1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Bitcode/BitstreamReader.h" 25 #include "llvm/Bitcode/LLVMBitCodes.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallSite.h" 32 #include "llvm/IR/CallingConv.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DataLayout.h" 37 #include "llvm/IR/DebugInfo.h" 38 #include "llvm/IR/DebugInfoMetadata.h" 39 #include "llvm/IR/DebugLoc.h" 40 #include "llvm/IR/DerivedTypes.h" 41 #include "llvm/IR/Function.h" 42 #include "llvm/IR/GVMaterializer.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalIndirectSymbol.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/InlineAsm.h" 50 #include "llvm/IR/InstIterator.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Metadata.h" 57 #include "llvm/IR/Module.h" 58 #include "llvm/IR/ModuleSummaryIndex.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/Type.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/Verifier.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ErrorOr.h" 71 #include "llvm/Support/ManagedStatic.h" 72 #include "llvm/Support/MathExtras.h" 73 #include "llvm/Support/MemoryBuffer.h" 74 #include "llvm/Support/raw_ostream.h" 75 #include <algorithm> 76 #include <cassert> 77 #include <cstddef> 78 #include <cstdint> 79 #include <deque> 80 #include <map> 81 #include <memory> 82 #include <set> 83 #include <string> 84 #include <system_error> 85 #include <tuple> 86 #include <utility> 87 #include <vector> 88 89 using namespace llvm; 90 91 static cl::opt<bool> PrintSummaryGUIDs( 92 "print-summary-global-ids", cl::init(false), cl::Hidden, 93 cl::desc( 94 "Print the global id for each value when reading the module summary")); 95 96 namespace { 97 98 enum { 99 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 100 }; 101 102 } // end anonymous namespace 103 104 static Error error(const Twine &Message) { 105 return make_error<StringError>( 106 Message, make_error_code(BitcodeError::CorruptedBitcode)); 107 } 108 109 /// Helper to read the header common to all bitcode files. 110 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 111 // Sniff for the signature. 112 if (!Stream.canSkipToPos(4) || 113 Stream.Read(8) != 'B' || 114 Stream.Read(8) != 'C' || 115 Stream.Read(4) != 0x0 || 116 Stream.Read(4) != 0xC || 117 Stream.Read(4) != 0xE || 118 Stream.Read(4) != 0xD) 119 return false; 120 return true; 121 } 122 123 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 124 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 125 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 126 127 if (Buffer.getBufferSize() & 3) 128 return error("Invalid bitcode signature"); 129 130 // If we have a wrapper header, parse it and ignore the non-bc file contents. 131 // The magic number is 0x0B17C0DE stored in little endian. 132 if (isBitcodeWrapper(BufPtr, BufEnd)) 133 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 134 return error("Invalid bitcode wrapper header"); 135 136 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 137 if (!hasValidBitcodeHeader(Stream)) 138 return error("Invalid bitcode signature"); 139 140 return std::move(Stream); 141 } 142 143 /// Convert a string from a record into an std::string, return true on failure. 144 template <typename StrTy> 145 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 146 StrTy &Result) { 147 if (Idx > Record.size()) 148 return true; 149 150 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 151 Result += (char)Record[i]; 152 return false; 153 } 154 155 // Strip all the TBAA attachment for the module. 156 static void stripTBAA(Module *M) { 157 for (auto &F : *M) { 158 if (F.isMaterializable()) 159 continue; 160 for (auto &I : instructions(F)) 161 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 162 } 163 } 164 165 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 166 /// "epoch" encoded in the bitcode, and return the producer name if any. 167 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 168 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 169 return error("Invalid record"); 170 171 // Read all the records. 172 SmallVector<uint64_t, 64> Record; 173 174 std::string ProducerIdentification; 175 176 while (true) { 177 BitstreamEntry Entry = Stream.advance(); 178 179 switch (Entry.Kind) { 180 default: 181 case BitstreamEntry::Error: 182 return error("Malformed block"); 183 case BitstreamEntry::EndBlock: 184 return ProducerIdentification; 185 case BitstreamEntry::Record: 186 // The interesting case. 187 break; 188 } 189 190 // Read a record. 191 Record.clear(); 192 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 193 switch (BitCode) { 194 default: // Default behavior: reject 195 return error("Invalid value"); 196 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 197 convertToString(Record, 0, ProducerIdentification); 198 break; 199 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 200 unsigned epoch = (unsigned)Record[0]; 201 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 202 return error( 203 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 204 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 205 } 206 } 207 } 208 } 209 } 210 211 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 212 // We expect a number of well-defined blocks, though we don't necessarily 213 // need to understand them all. 214 while (true) { 215 if (Stream.AtEndOfStream()) 216 return ""; 217 218 BitstreamEntry Entry = Stream.advance(); 219 switch (Entry.Kind) { 220 case BitstreamEntry::EndBlock: 221 case BitstreamEntry::Error: 222 return error("Malformed block"); 223 224 case BitstreamEntry::SubBlock: 225 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 226 return readIdentificationBlock(Stream); 227 228 // Ignore other sub-blocks. 229 if (Stream.SkipBlock()) 230 return error("Malformed block"); 231 continue; 232 case BitstreamEntry::Record: 233 Stream.skipRecord(Entry.ID); 234 continue; 235 } 236 } 237 } 238 239 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 240 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 241 return error("Invalid record"); 242 243 SmallVector<uint64_t, 64> Record; 244 // Read all the records for this module. 245 246 while (true) { 247 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 248 249 switch (Entry.Kind) { 250 case BitstreamEntry::SubBlock: // Handled for us already. 251 case BitstreamEntry::Error: 252 return error("Malformed block"); 253 case BitstreamEntry::EndBlock: 254 return false; 255 case BitstreamEntry::Record: 256 // The interesting case. 257 break; 258 } 259 260 // Read a record. 261 switch (Stream.readRecord(Entry.ID, Record)) { 262 default: 263 break; // Default behavior, ignore unknown content. 264 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 265 std::string S; 266 if (convertToString(Record, 0, S)) 267 return error("Invalid record"); 268 // Check for the i386 and other (x86_64, ARM) conventions 269 if (S.find("__DATA,__objc_catlist") != std::string::npos || 270 S.find("__OBJC,__category") != std::string::npos) 271 return true; 272 break; 273 } 274 } 275 Record.clear(); 276 } 277 llvm_unreachable("Exit infinite loop"); 278 } 279 280 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 281 // We expect a number of well-defined blocks, though we don't necessarily 282 // need to understand them all. 283 while (true) { 284 BitstreamEntry Entry = Stream.advance(); 285 286 switch (Entry.Kind) { 287 case BitstreamEntry::Error: 288 return error("Malformed block"); 289 case BitstreamEntry::EndBlock: 290 return false; 291 292 case BitstreamEntry::SubBlock: 293 if (Entry.ID == bitc::MODULE_BLOCK_ID) 294 return hasObjCCategoryInModule(Stream); 295 296 // Ignore other sub-blocks. 297 if (Stream.SkipBlock()) 298 return error("Malformed block"); 299 continue; 300 301 case BitstreamEntry::Record: 302 Stream.skipRecord(Entry.ID); 303 continue; 304 } 305 } 306 } 307 308 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 309 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 310 return error("Invalid record"); 311 312 SmallVector<uint64_t, 64> Record; 313 314 std::string Triple; 315 316 // Read all the records for this module. 317 while (true) { 318 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 319 320 switch (Entry.Kind) { 321 case BitstreamEntry::SubBlock: // Handled for us already. 322 case BitstreamEntry::Error: 323 return error("Malformed block"); 324 case BitstreamEntry::EndBlock: 325 return Triple; 326 case BitstreamEntry::Record: 327 // The interesting case. 328 break; 329 } 330 331 // Read a record. 332 switch (Stream.readRecord(Entry.ID, Record)) { 333 default: break; // Default behavior, ignore unknown content. 334 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 335 std::string S; 336 if (convertToString(Record, 0, S)) 337 return error("Invalid record"); 338 Triple = S; 339 break; 340 } 341 } 342 Record.clear(); 343 } 344 llvm_unreachable("Exit infinite loop"); 345 } 346 347 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 348 // We expect a number of well-defined blocks, though we don't necessarily 349 // need to understand them all. 350 while (true) { 351 BitstreamEntry Entry = Stream.advance(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::Error: 355 return error("Malformed block"); 356 case BitstreamEntry::EndBlock: 357 return ""; 358 359 case BitstreamEntry::SubBlock: 360 if (Entry.ID == bitc::MODULE_BLOCK_ID) 361 return readModuleTriple(Stream); 362 363 // Ignore other sub-blocks. 364 if (Stream.SkipBlock()) 365 return error("Malformed block"); 366 continue; 367 368 case BitstreamEntry::Record: 369 Stream.skipRecord(Entry.ID); 370 continue; 371 } 372 } 373 } 374 375 namespace { 376 377 class BitcodeReaderBase { 378 protected: 379 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 380 : Stream(std::move(Stream)), Strtab(Strtab) { 381 this->Stream.setBlockInfo(&BlockInfo); 382 } 383 384 BitstreamBlockInfo BlockInfo; 385 BitstreamCursor Stream; 386 StringRef Strtab; 387 388 /// In version 2 of the bitcode we store names of global values and comdats in 389 /// a string table rather than in the VST. 390 bool UseStrtab = false; 391 392 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 393 394 /// If this module uses a string table, pop the reference to the string table 395 /// and return the referenced string and the rest of the record. Otherwise 396 /// just return the record itself. 397 std::pair<StringRef, ArrayRef<uint64_t>> 398 readNameFromStrtab(ArrayRef<uint64_t> Record); 399 400 bool readBlockInfo(); 401 402 // Contains an arbitrary and optional string identifying the bitcode producer 403 std::string ProducerIdentification; 404 405 Error error(const Twine &Message); 406 }; 407 408 } // end anonymous namespace 409 410 Error BitcodeReaderBase::error(const Twine &Message) { 411 std::string FullMsg = Message.str(); 412 if (!ProducerIdentification.empty()) 413 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 414 LLVM_VERSION_STRING "')"; 415 return ::error(FullMsg); 416 } 417 418 Expected<unsigned> 419 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 420 if (Record.empty()) 421 return error("Invalid record"); 422 unsigned ModuleVersion = Record[0]; 423 if (ModuleVersion > 2) 424 return error("Invalid value"); 425 UseStrtab = ModuleVersion >= 2; 426 return ModuleVersion; 427 } 428 429 std::pair<StringRef, ArrayRef<uint64_t>> 430 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 431 if (!UseStrtab) 432 return {"", Record}; 433 // Invalid reference. Let the caller complain about the record being empty. 434 if (Record[0] + Record[1] > Strtab.size()) 435 return {"", {}}; 436 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 437 } 438 439 namespace { 440 441 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 442 LLVMContext &Context; 443 Module *TheModule = nullptr; 444 // Next offset to start scanning for lazy parsing of function bodies. 445 uint64_t NextUnreadBit = 0; 446 // Last function offset found in the VST. 447 uint64_t LastFunctionBlockBit = 0; 448 bool SeenValueSymbolTable = false; 449 uint64_t VSTOffset = 0; 450 451 std::vector<std::string> SectionTable; 452 std::vector<std::string> GCTable; 453 454 std::vector<Type*> TypeList; 455 BitcodeReaderValueList ValueList; 456 Optional<MetadataLoader> MDLoader; 457 std::vector<Comdat *> ComdatList; 458 SmallVector<Instruction *, 64> InstructionList; 459 460 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 461 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 463 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 464 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 465 466 /// The set of attributes by index. Index zero in the file is for null, and 467 /// is thus not represented here. As such all indices are off by one. 468 std::vector<AttributeList> MAttributes; 469 470 /// The set of attribute groups. 471 std::map<unsigned, AttributeList> MAttributeGroups; 472 473 /// While parsing a function body, this is a list of the basic blocks for the 474 /// function. 475 std::vector<BasicBlock*> FunctionBBs; 476 477 // When reading the module header, this list is populated with functions that 478 // have bodies later in the file. 479 std::vector<Function*> FunctionsWithBodies; 480 481 // When intrinsic functions are encountered which require upgrading they are 482 // stored here with their replacement function. 483 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 484 UpdatedIntrinsicMap UpgradedIntrinsics; 485 // Intrinsics which were remangled because of types rename 486 UpdatedIntrinsicMap RemangledIntrinsics; 487 488 // Several operations happen after the module header has been read, but 489 // before function bodies are processed. This keeps track of whether 490 // we've done this yet. 491 bool SeenFirstFunctionBody = false; 492 493 /// When function bodies are initially scanned, this map contains info about 494 /// where to find deferred function body in the stream. 495 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 496 497 /// When Metadata block is initially scanned when parsing the module, we may 498 /// choose to defer parsing of the metadata. This vector contains info about 499 /// which Metadata blocks are deferred. 500 std::vector<uint64_t> DeferredMetadataInfo; 501 502 /// These are basic blocks forward-referenced by block addresses. They are 503 /// inserted lazily into functions when they're loaded. The basic block ID is 504 /// its index into the vector. 505 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 506 std::deque<Function *> BasicBlockFwdRefQueue; 507 508 /// Indicates that we are using a new encoding for instruction operands where 509 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 510 /// instruction number, for a more compact encoding. Some instruction 511 /// operands are not relative to the instruction ID: basic block numbers, and 512 /// types. Once the old style function blocks have been phased out, we would 513 /// not need this flag. 514 bool UseRelativeIDs = false; 515 516 /// True if all functions will be materialized, negating the need to process 517 /// (e.g.) blockaddress forward references. 518 bool WillMaterializeAllForwardRefs = false; 519 520 bool StripDebugInfo = false; 521 TBAAVerifier TBAAVerifyHelper; 522 523 std::vector<std::string> BundleTags; 524 SmallVector<SyncScope::ID, 8> SSIDs; 525 526 public: 527 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 528 StringRef ProducerIdentification, LLVMContext &Context); 529 530 Error materializeForwardReferencedFunctions(); 531 532 Error materialize(GlobalValue *GV) override; 533 Error materializeModule() override; 534 std::vector<StructType *> getIdentifiedStructTypes() const override; 535 536 /// Main interface to parsing a bitcode buffer. 537 /// \returns true if an error occurred. 538 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 539 bool IsImporting = false); 540 541 static uint64_t decodeSignRotatedValue(uint64_t V); 542 543 /// Materialize any deferred Metadata block. 544 Error materializeMetadata() override; 545 546 void setStripDebugInfo() override; 547 548 private: 549 std::vector<StructType *> IdentifiedStructTypes; 550 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 551 StructType *createIdentifiedStructType(LLVMContext &Context); 552 553 Type *getTypeByID(unsigned ID); 554 555 Value *getFnValueByID(unsigned ID, Type *Ty) { 556 if (Ty && Ty->isMetadataTy()) 557 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 558 return ValueList.getValueFwdRef(ID, Ty); 559 } 560 561 Metadata *getFnMetadataByID(unsigned ID) { 562 return MDLoader->getMetadataFwdRefOrLoad(ID); 563 } 564 565 BasicBlock *getBasicBlock(unsigned ID) const { 566 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 567 return FunctionBBs[ID]; 568 } 569 570 AttributeList getAttributes(unsigned i) const { 571 if (i-1 < MAttributes.size()) 572 return MAttributes[i-1]; 573 return AttributeList(); 574 } 575 576 /// Read a value/type pair out of the specified record from slot 'Slot'. 577 /// Increment Slot past the number of slots used in the record. Return true on 578 /// failure. 579 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 580 unsigned InstNum, Value *&ResVal) { 581 if (Slot == Record.size()) return true; 582 unsigned ValNo = (unsigned)Record[Slot++]; 583 // Adjust the ValNo, if it was encoded relative to the InstNum. 584 if (UseRelativeIDs) 585 ValNo = InstNum - ValNo; 586 if (ValNo < InstNum) { 587 // If this is not a forward reference, just return the value we already 588 // have. 589 ResVal = getFnValueByID(ValNo, nullptr); 590 return ResVal == nullptr; 591 } 592 if (Slot == Record.size()) 593 return true; 594 595 unsigned TypeNo = (unsigned)Record[Slot++]; 596 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 597 return ResVal == nullptr; 598 } 599 600 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 601 /// past the number of slots used by the value in the record. Return true if 602 /// there is an error. 603 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 604 unsigned InstNum, Type *Ty, Value *&ResVal) { 605 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 606 return true; 607 // All values currently take a single record slot. 608 ++Slot; 609 return false; 610 } 611 612 /// Like popValue, but does not increment the Slot number. 613 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 614 unsigned InstNum, Type *Ty, Value *&ResVal) { 615 ResVal = getValue(Record, Slot, InstNum, Ty); 616 return ResVal == nullptr; 617 } 618 619 /// Version of getValue that returns ResVal directly, or 0 if there is an 620 /// error. 621 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 622 unsigned InstNum, Type *Ty) { 623 if (Slot == Record.size()) return nullptr; 624 unsigned ValNo = (unsigned)Record[Slot]; 625 // Adjust the ValNo, if it was encoded relative to the InstNum. 626 if (UseRelativeIDs) 627 ValNo = InstNum - ValNo; 628 return getFnValueByID(ValNo, Ty); 629 } 630 631 /// Like getValue, but decodes signed VBRs. 632 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 633 unsigned InstNum, Type *Ty) { 634 if (Slot == Record.size()) return nullptr; 635 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 636 // Adjust the ValNo, if it was encoded relative to the InstNum. 637 if (UseRelativeIDs) 638 ValNo = InstNum - ValNo; 639 return getFnValueByID(ValNo, Ty); 640 } 641 642 /// Converts alignment exponent (i.e. power of two (or zero)) to the 643 /// corresponding alignment to use. If alignment is too large, returns 644 /// a corresponding error code. 645 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 646 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 647 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 648 649 Error parseComdatRecord(ArrayRef<uint64_t> Record); 650 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 651 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 652 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 653 ArrayRef<uint64_t> Record); 654 655 Error parseAttributeBlock(); 656 Error parseAttributeGroupBlock(); 657 Error parseTypeTable(); 658 Error parseTypeTableBody(); 659 Error parseOperandBundleTags(); 660 Error parseSyncScopeNames(); 661 662 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 663 unsigned NameIndex, Triple &TT); 664 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 665 ArrayRef<uint64_t> Record); 666 Error parseValueSymbolTable(uint64_t Offset = 0); 667 Error parseGlobalValueSymbolTable(); 668 Error parseConstants(); 669 Error rememberAndSkipFunctionBodies(); 670 Error rememberAndSkipFunctionBody(); 671 /// Save the positions of the Metadata blocks and skip parsing the blocks. 672 Error rememberAndSkipMetadata(); 673 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 674 Error parseFunctionBody(Function *F); 675 Error globalCleanup(); 676 Error resolveGlobalAndIndirectSymbolInits(); 677 Error parseUseLists(); 678 Error findFunctionInStream( 679 Function *F, 680 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 681 682 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 683 }; 684 685 /// Class to manage reading and parsing function summary index bitcode 686 /// files/sections. 687 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 688 /// The module index built during parsing. 689 ModuleSummaryIndex &TheIndex; 690 691 /// Indicates whether we have encountered a global value summary section 692 /// yet during parsing. 693 bool SeenGlobalValSummary = false; 694 695 /// Indicates whether we have already parsed the VST, used for error checking. 696 bool SeenValueSymbolTable = false; 697 698 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 699 /// Used to enable on-demand parsing of the VST. 700 uint64_t VSTOffset = 0; 701 702 // Map to save ValueId to ValueInfo association that was recorded in the 703 // ValueSymbolTable. It is used after the VST is parsed to convert 704 // call graph edges read from the function summary from referencing 705 // callees by their ValueId to using the ValueInfo instead, which is how 706 // they are recorded in the summary index being built. 707 // We save a GUID which refers to the same global as the ValueInfo, but 708 // ignoring the linkage, i.e. for values other than local linkage they are 709 // identical. 710 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 711 ValueIdToValueInfoMap; 712 713 /// Map populated during module path string table parsing, from the 714 /// module ID to a string reference owned by the index's module 715 /// path string table, used to correlate with combined index 716 /// summary records. 717 DenseMap<uint64_t, StringRef> ModuleIdMap; 718 719 /// Original source file name recorded in a bitcode record. 720 std::string SourceFileName; 721 722 /// The string identifier given to this module by the client, normally the 723 /// path to the bitcode file. 724 StringRef ModulePath; 725 726 /// For per-module summary indexes, the unique numerical identifier given to 727 /// this module by the client. 728 unsigned ModuleId; 729 730 public: 731 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 732 ModuleSummaryIndex &TheIndex, 733 StringRef ModulePath, unsigned ModuleId); 734 735 Error parseModule(); 736 737 private: 738 void setValueGUID(uint64_t ValueID, StringRef ValueName, 739 GlobalValue::LinkageTypes Linkage, 740 StringRef SourceFileName); 741 Error parseValueSymbolTable( 742 uint64_t Offset, 743 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 744 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 745 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 746 bool IsOldProfileFormat, 747 bool HasProfile, 748 bool HasRelBF); 749 Error parseEntireSummary(unsigned ID); 750 Error parseModuleStringTable(); 751 void parseTypeIdMetadataSummaryRecord(ArrayRef<uint64_t> Record); 752 void parseTypeIdGVInfo(ArrayRef<uint64_t> Record, size_t &Slot, 753 TypeIdGVInfo &TypeId); 754 755 std::pair<ValueInfo, GlobalValue::GUID> 756 getValueInfoFromValueId(unsigned ValueId); 757 758 void addThisModule(); 759 ModuleSummaryIndex::ModuleInfo *getThisModule(); 760 }; 761 762 } // end anonymous namespace 763 764 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 765 Error Err) { 766 if (Err) { 767 std::error_code EC; 768 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 769 EC = EIB.convertToErrorCode(); 770 Ctx.emitError(EIB.message()); 771 }); 772 return EC; 773 } 774 return std::error_code(); 775 } 776 777 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 778 StringRef ProducerIdentification, 779 LLVMContext &Context) 780 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 781 ValueList(Context) { 782 this->ProducerIdentification = ProducerIdentification; 783 } 784 785 Error BitcodeReader::materializeForwardReferencedFunctions() { 786 if (WillMaterializeAllForwardRefs) 787 return Error::success(); 788 789 // Prevent recursion. 790 WillMaterializeAllForwardRefs = true; 791 792 while (!BasicBlockFwdRefQueue.empty()) { 793 Function *F = BasicBlockFwdRefQueue.front(); 794 BasicBlockFwdRefQueue.pop_front(); 795 assert(F && "Expected valid function"); 796 if (!BasicBlockFwdRefs.count(F)) 797 // Already materialized. 798 continue; 799 800 // Check for a function that isn't materializable to prevent an infinite 801 // loop. When parsing a blockaddress stored in a global variable, there 802 // isn't a trivial way to check if a function will have a body without a 803 // linear search through FunctionsWithBodies, so just check it here. 804 if (!F->isMaterializable()) 805 return error("Never resolved function from blockaddress"); 806 807 // Try to materialize F. 808 if (Error Err = materialize(F)) 809 return Err; 810 } 811 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 812 813 // Reset state. 814 WillMaterializeAllForwardRefs = false; 815 return Error::success(); 816 } 817 818 //===----------------------------------------------------------------------===// 819 // Helper functions to implement forward reference resolution, etc. 820 //===----------------------------------------------------------------------===// 821 822 static bool hasImplicitComdat(size_t Val) { 823 switch (Val) { 824 default: 825 return false; 826 case 1: // Old WeakAnyLinkage 827 case 4: // Old LinkOnceAnyLinkage 828 case 10: // Old WeakODRLinkage 829 case 11: // Old LinkOnceODRLinkage 830 return true; 831 } 832 } 833 834 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 835 switch (Val) { 836 default: // Map unknown/new linkages to external 837 case 0: 838 return GlobalValue::ExternalLinkage; 839 case 2: 840 return GlobalValue::AppendingLinkage; 841 case 3: 842 return GlobalValue::InternalLinkage; 843 case 5: 844 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 845 case 6: 846 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 847 case 7: 848 return GlobalValue::ExternalWeakLinkage; 849 case 8: 850 return GlobalValue::CommonLinkage; 851 case 9: 852 return GlobalValue::PrivateLinkage; 853 case 12: 854 return GlobalValue::AvailableExternallyLinkage; 855 case 13: 856 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 857 case 14: 858 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 859 case 15: 860 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 861 case 1: // Old value with implicit comdat. 862 case 16: 863 return GlobalValue::WeakAnyLinkage; 864 case 10: // Old value with implicit comdat. 865 case 17: 866 return GlobalValue::WeakODRLinkage; 867 case 4: // Old value with implicit comdat. 868 case 18: 869 return GlobalValue::LinkOnceAnyLinkage; 870 case 11: // Old value with implicit comdat. 871 case 19: 872 return GlobalValue::LinkOnceODRLinkage; 873 } 874 } 875 876 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 877 FunctionSummary::FFlags Flags; 878 Flags.ReadNone = RawFlags & 0x1; 879 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 880 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 881 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 882 Flags.NoInline = (RawFlags >> 4) & 0x1; 883 return Flags; 884 } 885 886 /// Decode the flags for GlobalValue in the summary. 887 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 888 uint64_t Version) { 889 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 890 // like getDecodedLinkage() above. Any future change to the linkage enum and 891 // to getDecodedLinkage() will need to be taken into account here as above. 892 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 893 RawFlags = RawFlags >> 4; 894 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 895 // The Live flag wasn't introduced until version 3. For dead stripping 896 // to work correctly on earlier versions, we must conservatively treat all 897 // values as live. 898 bool Live = (RawFlags & 0x2) || Version < 3; 899 bool Local = (RawFlags & 0x4); 900 901 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local); 902 } 903 904 // Decode the flags for GlobalVariable in the summary 905 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 906 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false); 907 } 908 909 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 910 switch (Val) { 911 default: // Map unknown visibilities to default. 912 case 0: return GlobalValue::DefaultVisibility; 913 case 1: return GlobalValue::HiddenVisibility; 914 case 2: return GlobalValue::ProtectedVisibility; 915 } 916 } 917 918 static GlobalValue::DLLStorageClassTypes 919 getDecodedDLLStorageClass(unsigned Val) { 920 switch (Val) { 921 default: // Map unknown values to default. 922 case 0: return GlobalValue::DefaultStorageClass; 923 case 1: return GlobalValue::DLLImportStorageClass; 924 case 2: return GlobalValue::DLLExportStorageClass; 925 } 926 } 927 928 static bool getDecodedDSOLocal(unsigned Val) { 929 switch(Val) { 930 default: // Map unknown values to preemptable. 931 case 0: return false; 932 case 1: return true; 933 } 934 } 935 936 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 937 switch (Val) { 938 case 0: return GlobalVariable::NotThreadLocal; 939 default: // Map unknown non-zero value to general dynamic. 940 case 1: return GlobalVariable::GeneralDynamicTLSModel; 941 case 2: return GlobalVariable::LocalDynamicTLSModel; 942 case 3: return GlobalVariable::InitialExecTLSModel; 943 case 4: return GlobalVariable::LocalExecTLSModel; 944 } 945 } 946 947 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 948 switch (Val) { 949 default: // Map unknown to UnnamedAddr::None. 950 case 0: return GlobalVariable::UnnamedAddr::None; 951 case 1: return GlobalVariable::UnnamedAddr::Global; 952 case 2: return GlobalVariable::UnnamedAddr::Local; 953 } 954 } 955 956 static int getDecodedCastOpcode(unsigned Val) { 957 switch (Val) { 958 default: return -1; 959 case bitc::CAST_TRUNC : return Instruction::Trunc; 960 case bitc::CAST_ZEXT : return Instruction::ZExt; 961 case bitc::CAST_SEXT : return Instruction::SExt; 962 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 963 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 964 case bitc::CAST_UITOFP : return Instruction::UIToFP; 965 case bitc::CAST_SITOFP : return Instruction::SIToFP; 966 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 967 case bitc::CAST_FPEXT : return Instruction::FPExt; 968 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 969 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 970 case bitc::CAST_BITCAST : return Instruction::BitCast; 971 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 972 } 973 } 974 975 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 976 bool IsFP = Ty->isFPOrFPVectorTy(); 977 // UnOps are only valid for int/fp or vector of int/fp types 978 if (!IsFP && !Ty->isIntOrIntVectorTy()) 979 return -1; 980 981 switch (Val) { 982 default: 983 return -1; 984 case bitc::UNOP_NEG: 985 return IsFP ? Instruction::FNeg : -1; 986 } 987 } 988 989 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 990 bool IsFP = Ty->isFPOrFPVectorTy(); 991 // BinOps are only valid for int/fp or vector of int/fp types 992 if (!IsFP && !Ty->isIntOrIntVectorTy()) 993 return -1; 994 995 switch (Val) { 996 default: 997 return -1; 998 case bitc::BINOP_ADD: 999 return IsFP ? Instruction::FAdd : Instruction::Add; 1000 case bitc::BINOP_SUB: 1001 return IsFP ? Instruction::FSub : Instruction::Sub; 1002 case bitc::BINOP_MUL: 1003 return IsFP ? Instruction::FMul : Instruction::Mul; 1004 case bitc::BINOP_UDIV: 1005 return IsFP ? -1 : Instruction::UDiv; 1006 case bitc::BINOP_SDIV: 1007 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1008 case bitc::BINOP_UREM: 1009 return IsFP ? -1 : Instruction::URem; 1010 case bitc::BINOP_SREM: 1011 return IsFP ? Instruction::FRem : Instruction::SRem; 1012 case bitc::BINOP_SHL: 1013 return IsFP ? -1 : Instruction::Shl; 1014 case bitc::BINOP_LSHR: 1015 return IsFP ? -1 : Instruction::LShr; 1016 case bitc::BINOP_ASHR: 1017 return IsFP ? -1 : Instruction::AShr; 1018 case bitc::BINOP_AND: 1019 return IsFP ? -1 : Instruction::And; 1020 case bitc::BINOP_OR: 1021 return IsFP ? -1 : Instruction::Or; 1022 case bitc::BINOP_XOR: 1023 return IsFP ? -1 : Instruction::Xor; 1024 } 1025 } 1026 1027 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1028 switch (Val) { 1029 default: return AtomicRMWInst::BAD_BINOP; 1030 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1031 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1032 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1033 case bitc::RMW_AND: return AtomicRMWInst::And; 1034 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1035 case bitc::RMW_OR: return AtomicRMWInst::Or; 1036 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1037 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1038 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1039 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1040 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1041 } 1042 } 1043 1044 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1045 switch (Val) { 1046 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1047 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1048 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1049 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1050 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1051 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1052 default: // Map unknown orderings to sequentially-consistent. 1053 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1054 } 1055 } 1056 1057 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1058 switch (Val) { 1059 default: // Map unknown selection kinds to any. 1060 case bitc::COMDAT_SELECTION_KIND_ANY: 1061 return Comdat::Any; 1062 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1063 return Comdat::ExactMatch; 1064 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1065 return Comdat::Largest; 1066 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1067 return Comdat::NoDuplicates; 1068 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1069 return Comdat::SameSize; 1070 } 1071 } 1072 1073 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1074 FastMathFlags FMF; 1075 if (0 != (Val & bitc::UnsafeAlgebra)) 1076 FMF.setFast(); 1077 if (0 != (Val & bitc::AllowReassoc)) 1078 FMF.setAllowReassoc(); 1079 if (0 != (Val & bitc::NoNaNs)) 1080 FMF.setNoNaNs(); 1081 if (0 != (Val & bitc::NoInfs)) 1082 FMF.setNoInfs(); 1083 if (0 != (Val & bitc::NoSignedZeros)) 1084 FMF.setNoSignedZeros(); 1085 if (0 != (Val & bitc::AllowReciprocal)) 1086 FMF.setAllowReciprocal(); 1087 if (0 != (Val & bitc::AllowContract)) 1088 FMF.setAllowContract(true); 1089 if (0 != (Val & bitc::ApproxFunc)) 1090 FMF.setApproxFunc(); 1091 return FMF; 1092 } 1093 1094 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1095 switch (Val) { 1096 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1097 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1098 } 1099 } 1100 1101 Type *BitcodeReader::getTypeByID(unsigned ID) { 1102 // The type table size is always specified correctly. 1103 if (ID >= TypeList.size()) 1104 return nullptr; 1105 1106 if (Type *Ty = TypeList[ID]) 1107 return Ty; 1108 1109 // If we have a forward reference, the only possible case is when it is to a 1110 // named struct. Just create a placeholder for now. 1111 return TypeList[ID] = createIdentifiedStructType(Context); 1112 } 1113 1114 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1115 StringRef Name) { 1116 auto *Ret = StructType::create(Context, Name); 1117 IdentifiedStructTypes.push_back(Ret); 1118 return Ret; 1119 } 1120 1121 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1122 auto *Ret = StructType::create(Context); 1123 IdentifiedStructTypes.push_back(Ret); 1124 return Ret; 1125 } 1126 1127 //===----------------------------------------------------------------------===// 1128 // Functions for parsing blocks from the bitcode file 1129 //===----------------------------------------------------------------------===// 1130 1131 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1132 switch (Val) { 1133 case Attribute::EndAttrKinds: 1134 llvm_unreachable("Synthetic enumerators which should never get here"); 1135 1136 case Attribute::None: return 0; 1137 case Attribute::ZExt: return 1 << 0; 1138 case Attribute::SExt: return 1 << 1; 1139 case Attribute::NoReturn: return 1 << 2; 1140 case Attribute::InReg: return 1 << 3; 1141 case Attribute::StructRet: return 1 << 4; 1142 case Attribute::NoUnwind: return 1 << 5; 1143 case Attribute::NoAlias: return 1 << 6; 1144 case Attribute::ByVal: return 1 << 7; 1145 case Attribute::Nest: return 1 << 8; 1146 case Attribute::ReadNone: return 1 << 9; 1147 case Attribute::ReadOnly: return 1 << 10; 1148 case Attribute::NoInline: return 1 << 11; 1149 case Attribute::AlwaysInline: return 1 << 12; 1150 case Attribute::OptimizeForSize: return 1 << 13; 1151 case Attribute::StackProtect: return 1 << 14; 1152 case Attribute::StackProtectReq: return 1 << 15; 1153 case Attribute::Alignment: return 31 << 16; 1154 case Attribute::NoCapture: return 1 << 21; 1155 case Attribute::NoRedZone: return 1 << 22; 1156 case Attribute::NoImplicitFloat: return 1 << 23; 1157 case Attribute::Naked: return 1 << 24; 1158 case Attribute::InlineHint: return 1 << 25; 1159 case Attribute::StackAlignment: return 7 << 26; 1160 case Attribute::ReturnsTwice: return 1 << 29; 1161 case Attribute::UWTable: return 1 << 30; 1162 case Attribute::NonLazyBind: return 1U << 31; 1163 case Attribute::SanitizeAddress: return 1ULL << 32; 1164 case Attribute::MinSize: return 1ULL << 33; 1165 case Attribute::NoDuplicate: return 1ULL << 34; 1166 case Attribute::StackProtectStrong: return 1ULL << 35; 1167 case Attribute::SanitizeThread: return 1ULL << 36; 1168 case Attribute::SanitizeMemory: return 1ULL << 37; 1169 case Attribute::NoBuiltin: return 1ULL << 38; 1170 case Attribute::Returned: return 1ULL << 39; 1171 case Attribute::Cold: return 1ULL << 40; 1172 case Attribute::Builtin: return 1ULL << 41; 1173 case Attribute::OptimizeNone: return 1ULL << 42; 1174 case Attribute::InAlloca: return 1ULL << 43; 1175 case Attribute::NonNull: return 1ULL << 44; 1176 case Attribute::JumpTable: return 1ULL << 45; 1177 case Attribute::Convergent: return 1ULL << 46; 1178 case Attribute::SafeStack: return 1ULL << 47; 1179 case Attribute::NoRecurse: return 1ULL << 48; 1180 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1181 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1182 case Attribute::SwiftSelf: return 1ULL << 51; 1183 case Attribute::SwiftError: return 1ULL << 52; 1184 case Attribute::WriteOnly: return 1ULL << 53; 1185 case Attribute::Speculatable: return 1ULL << 54; 1186 case Attribute::StrictFP: return 1ULL << 55; 1187 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1188 case Attribute::NoCfCheck: return 1ULL << 57; 1189 case Attribute::OptForFuzzing: return 1ULL << 58; 1190 case Attribute::ShadowCallStack: return 1ULL << 59; 1191 case Attribute::SpeculativeLoadHardening: 1192 return 1ULL << 60; 1193 case Attribute::Dereferenceable: 1194 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1195 break; 1196 case Attribute::DereferenceableOrNull: 1197 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1198 "format"); 1199 break; 1200 case Attribute::ArgMemOnly: 1201 llvm_unreachable("argmemonly attribute not supported in raw format"); 1202 break; 1203 case Attribute::AllocSize: 1204 llvm_unreachable("allocsize not supported in raw format"); 1205 break; 1206 } 1207 llvm_unreachable("Unsupported attribute type"); 1208 } 1209 1210 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1211 if (!Val) return; 1212 1213 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1214 I = Attribute::AttrKind(I + 1)) { 1215 if (I == Attribute::Dereferenceable || 1216 I == Attribute::DereferenceableOrNull || 1217 I == Attribute::ArgMemOnly || 1218 I == Attribute::AllocSize) 1219 continue; 1220 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1221 if (I == Attribute::Alignment) 1222 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1223 else if (I == Attribute::StackAlignment) 1224 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1225 else 1226 B.addAttribute(I); 1227 } 1228 } 1229 } 1230 1231 /// This fills an AttrBuilder object with the LLVM attributes that have 1232 /// been decoded from the given integer. This function must stay in sync with 1233 /// 'encodeLLVMAttributesForBitcode'. 1234 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1235 uint64_t EncodedAttrs) { 1236 // FIXME: Remove in 4.0. 1237 1238 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1239 // the bits above 31 down by 11 bits. 1240 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1241 assert((!Alignment || isPowerOf2_32(Alignment)) && 1242 "Alignment must be a power of two."); 1243 1244 if (Alignment) 1245 B.addAlignmentAttr(Alignment); 1246 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1247 (EncodedAttrs & 0xffff)); 1248 } 1249 1250 Error BitcodeReader::parseAttributeBlock() { 1251 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1252 return error("Invalid record"); 1253 1254 if (!MAttributes.empty()) 1255 return error("Invalid multiple blocks"); 1256 1257 SmallVector<uint64_t, 64> Record; 1258 1259 SmallVector<AttributeList, 8> Attrs; 1260 1261 // Read all the records. 1262 while (true) { 1263 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1264 1265 switch (Entry.Kind) { 1266 case BitstreamEntry::SubBlock: // Handled for us already. 1267 case BitstreamEntry::Error: 1268 return error("Malformed block"); 1269 case BitstreamEntry::EndBlock: 1270 return Error::success(); 1271 case BitstreamEntry::Record: 1272 // The interesting case. 1273 break; 1274 } 1275 1276 // Read a record. 1277 Record.clear(); 1278 switch (Stream.readRecord(Entry.ID, Record)) { 1279 default: // Default behavior: ignore. 1280 break; 1281 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1282 // FIXME: Remove in 4.0. 1283 if (Record.size() & 1) 1284 return error("Invalid record"); 1285 1286 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1287 AttrBuilder B; 1288 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1289 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1290 } 1291 1292 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1293 Attrs.clear(); 1294 break; 1295 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1296 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1297 Attrs.push_back(MAttributeGroups[Record[i]]); 1298 1299 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1300 Attrs.clear(); 1301 break; 1302 } 1303 } 1304 } 1305 1306 // Returns Attribute::None on unrecognized codes. 1307 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1308 switch (Code) { 1309 default: 1310 return Attribute::None; 1311 case bitc::ATTR_KIND_ALIGNMENT: 1312 return Attribute::Alignment; 1313 case bitc::ATTR_KIND_ALWAYS_INLINE: 1314 return Attribute::AlwaysInline; 1315 case bitc::ATTR_KIND_ARGMEMONLY: 1316 return Attribute::ArgMemOnly; 1317 case bitc::ATTR_KIND_BUILTIN: 1318 return Attribute::Builtin; 1319 case bitc::ATTR_KIND_BY_VAL: 1320 return Attribute::ByVal; 1321 case bitc::ATTR_KIND_IN_ALLOCA: 1322 return Attribute::InAlloca; 1323 case bitc::ATTR_KIND_COLD: 1324 return Attribute::Cold; 1325 case bitc::ATTR_KIND_CONVERGENT: 1326 return Attribute::Convergent; 1327 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1328 return Attribute::InaccessibleMemOnly; 1329 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1330 return Attribute::InaccessibleMemOrArgMemOnly; 1331 case bitc::ATTR_KIND_INLINE_HINT: 1332 return Attribute::InlineHint; 1333 case bitc::ATTR_KIND_IN_REG: 1334 return Attribute::InReg; 1335 case bitc::ATTR_KIND_JUMP_TABLE: 1336 return Attribute::JumpTable; 1337 case bitc::ATTR_KIND_MIN_SIZE: 1338 return Attribute::MinSize; 1339 case bitc::ATTR_KIND_NAKED: 1340 return Attribute::Naked; 1341 case bitc::ATTR_KIND_NEST: 1342 return Attribute::Nest; 1343 case bitc::ATTR_KIND_NO_ALIAS: 1344 return Attribute::NoAlias; 1345 case bitc::ATTR_KIND_NO_BUILTIN: 1346 return Attribute::NoBuiltin; 1347 case bitc::ATTR_KIND_NO_CAPTURE: 1348 return Attribute::NoCapture; 1349 case bitc::ATTR_KIND_NO_DUPLICATE: 1350 return Attribute::NoDuplicate; 1351 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1352 return Attribute::NoImplicitFloat; 1353 case bitc::ATTR_KIND_NO_INLINE: 1354 return Attribute::NoInline; 1355 case bitc::ATTR_KIND_NO_RECURSE: 1356 return Attribute::NoRecurse; 1357 case bitc::ATTR_KIND_NON_LAZY_BIND: 1358 return Attribute::NonLazyBind; 1359 case bitc::ATTR_KIND_NON_NULL: 1360 return Attribute::NonNull; 1361 case bitc::ATTR_KIND_DEREFERENCEABLE: 1362 return Attribute::Dereferenceable; 1363 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1364 return Attribute::DereferenceableOrNull; 1365 case bitc::ATTR_KIND_ALLOC_SIZE: 1366 return Attribute::AllocSize; 1367 case bitc::ATTR_KIND_NO_RED_ZONE: 1368 return Attribute::NoRedZone; 1369 case bitc::ATTR_KIND_NO_RETURN: 1370 return Attribute::NoReturn; 1371 case bitc::ATTR_KIND_NOCF_CHECK: 1372 return Attribute::NoCfCheck; 1373 case bitc::ATTR_KIND_NO_UNWIND: 1374 return Attribute::NoUnwind; 1375 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1376 return Attribute::OptForFuzzing; 1377 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1378 return Attribute::OptimizeForSize; 1379 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1380 return Attribute::OptimizeNone; 1381 case bitc::ATTR_KIND_READ_NONE: 1382 return Attribute::ReadNone; 1383 case bitc::ATTR_KIND_READ_ONLY: 1384 return Attribute::ReadOnly; 1385 case bitc::ATTR_KIND_RETURNED: 1386 return Attribute::Returned; 1387 case bitc::ATTR_KIND_RETURNS_TWICE: 1388 return Attribute::ReturnsTwice; 1389 case bitc::ATTR_KIND_S_EXT: 1390 return Attribute::SExt; 1391 case bitc::ATTR_KIND_SPECULATABLE: 1392 return Attribute::Speculatable; 1393 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1394 return Attribute::StackAlignment; 1395 case bitc::ATTR_KIND_STACK_PROTECT: 1396 return Attribute::StackProtect; 1397 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1398 return Attribute::StackProtectReq; 1399 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1400 return Attribute::StackProtectStrong; 1401 case bitc::ATTR_KIND_SAFESTACK: 1402 return Attribute::SafeStack; 1403 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1404 return Attribute::ShadowCallStack; 1405 case bitc::ATTR_KIND_STRICT_FP: 1406 return Attribute::StrictFP; 1407 case bitc::ATTR_KIND_STRUCT_RET: 1408 return Attribute::StructRet; 1409 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1410 return Attribute::SanitizeAddress; 1411 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1412 return Attribute::SanitizeHWAddress; 1413 case bitc::ATTR_KIND_SANITIZE_THREAD: 1414 return Attribute::SanitizeThread; 1415 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1416 return Attribute::SanitizeMemory; 1417 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1418 return Attribute::SpeculativeLoadHardening; 1419 case bitc::ATTR_KIND_SWIFT_ERROR: 1420 return Attribute::SwiftError; 1421 case bitc::ATTR_KIND_SWIFT_SELF: 1422 return Attribute::SwiftSelf; 1423 case bitc::ATTR_KIND_UW_TABLE: 1424 return Attribute::UWTable; 1425 case bitc::ATTR_KIND_WRITEONLY: 1426 return Attribute::WriteOnly; 1427 case bitc::ATTR_KIND_Z_EXT: 1428 return Attribute::ZExt; 1429 } 1430 } 1431 1432 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1433 unsigned &Alignment) { 1434 // Note: Alignment in bitcode files is incremented by 1, so that zero 1435 // can be used for default alignment. 1436 if (Exponent > Value::MaxAlignmentExponent + 1) 1437 return error("Invalid alignment value"); 1438 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1439 return Error::success(); 1440 } 1441 1442 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1443 *Kind = getAttrFromCode(Code); 1444 if (*Kind == Attribute::None) 1445 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1446 return Error::success(); 1447 } 1448 1449 Error BitcodeReader::parseAttributeGroupBlock() { 1450 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1451 return error("Invalid record"); 1452 1453 if (!MAttributeGroups.empty()) 1454 return error("Invalid multiple blocks"); 1455 1456 SmallVector<uint64_t, 64> Record; 1457 1458 // Read all the records. 1459 while (true) { 1460 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1461 1462 switch (Entry.Kind) { 1463 case BitstreamEntry::SubBlock: // Handled for us already. 1464 case BitstreamEntry::Error: 1465 return error("Malformed block"); 1466 case BitstreamEntry::EndBlock: 1467 return Error::success(); 1468 case BitstreamEntry::Record: 1469 // The interesting case. 1470 break; 1471 } 1472 1473 // Read a record. 1474 Record.clear(); 1475 switch (Stream.readRecord(Entry.ID, Record)) { 1476 default: // Default behavior: ignore. 1477 break; 1478 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1479 if (Record.size() < 3) 1480 return error("Invalid record"); 1481 1482 uint64_t GrpID = Record[0]; 1483 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1484 1485 AttrBuilder B; 1486 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1487 if (Record[i] == 0) { // Enum attribute 1488 Attribute::AttrKind Kind; 1489 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1490 return Err; 1491 1492 B.addAttribute(Kind); 1493 } else if (Record[i] == 1) { // Integer attribute 1494 Attribute::AttrKind Kind; 1495 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1496 return Err; 1497 if (Kind == Attribute::Alignment) 1498 B.addAlignmentAttr(Record[++i]); 1499 else if (Kind == Attribute::StackAlignment) 1500 B.addStackAlignmentAttr(Record[++i]); 1501 else if (Kind == Attribute::Dereferenceable) 1502 B.addDereferenceableAttr(Record[++i]); 1503 else if (Kind == Attribute::DereferenceableOrNull) 1504 B.addDereferenceableOrNullAttr(Record[++i]); 1505 else if (Kind == Attribute::AllocSize) 1506 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1507 } else { // String attribute 1508 assert((Record[i] == 3 || Record[i] == 4) && 1509 "Invalid attribute group entry"); 1510 bool HasValue = (Record[i++] == 4); 1511 SmallString<64> KindStr; 1512 SmallString<64> ValStr; 1513 1514 while (Record[i] != 0 && i != e) 1515 KindStr += Record[i++]; 1516 assert(Record[i] == 0 && "Kind string not null terminated"); 1517 1518 if (HasValue) { 1519 // Has a value associated with it. 1520 ++i; // Skip the '0' that terminates the "kind" string. 1521 while (Record[i] != 0 && i != e) 1522 ValStr += Record[i++]; 1523 assert(Record[i] == 0 && "Value string not null terminated"); 1524 } 1525 1526 B.addAttribute(KindStr.str(), ValStr.str()); 1527 } 1528 } 1529 1530 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1531 break; 1532 } 1533 } 1534 } 1535 } 1536 1537 Error BitcodeReader::parseTypeTable() { 1538 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1539 return error("Invalid record"); 1540 1541 return parseTypeTableBody(); 1542 } 1543 1544 Error BitcodeReader::parseTypeTableBody() { 1545 if (!TypeList.empty()) 1546 return error("Invalid multiple blocks"); 1547 1548 SmallVector<uint64_t, 64> Record; 1549 unsigned NumRecords = 0; 1550 1551 SmallString<64> TypeName; 1552 1553 // Read all the records for this type table. 1554 while (true) { 1555 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1556 1557 switch (Entry.Kind) { 1558 case BitstreamEntry::SubBlock: // Handled for us already. 1559 case BitstreamEntry::Error: 1560 return error("Malformed block"); 1561 case BitstreamEntry::EndBlock: 1562 if (NumRecords != TypeList.size()) 1563 return error("Malformed block"); 1564 return Error::success(); 1565 case BitstreamEntry::Record: 1566 // The interesting case. 1567 break; 1568 } 1569 1570 // Read a record. 1571 Record.clear(); 1572 Type *ResultTy = nullptr; 1573 switch (Stream.readRecord(Entry.ID, Record)) { 1574 default: 1575 return error("Invalid value"); 1576 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1577 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1578 // type list. This allows us to reserve space. 1579 if (Record.size() < 1) 1580 return error("Invalid record"); 1581 TypeList.resize(Record[0]); 1582 continue; 1583 case bitc::TYPE_CODE_VOID: // VOID 1584 ResultTy = Type::getVoidTy(Context); 1585 break; 1586 case bitc::TYPE_CODE_HALF: // HALF 1587 ResultTy = Type::getHalfTy(Context); 1588 break; 1589 case bitc::TYPE_CODE_FLOAT: // FLOAT 1590 ResultTy = Type::getFloatTy(Context); 1591 break; 1592 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1593 ResultTy = Type::getDoubleTy(Context); 1594 break; 1595 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1596 ResultTy = Type::getX86_FP80Ty(Context); 1597 break; 1598 case bitc::TYPE_CODE_FP128: // FP128 1599 ResultTy = Type::getFP128Ty(Context); 1600 break; 1601 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1602 ResultTy = Type::getPPC_FP128Ty(Context); 1603 break; 1604 case bitc::TYPE_CODE_LABEL: // LABEL 1605 ResultTy = Type::getLabelTy(Context); 1606 break; 1607 case bitc::TYPE_CODE_METADATA: // METADATA 1608 ResultTy = Type::getMetadataTy(Context); 1609 break; 1610 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1611 ResultTy = Type::getX86_MMXTy(Context); 1612 break; 1613 case bitc::TYPE_CODE_TOKEN: // TOKEN 1614 ResultTy = Type::getTokenTy(Context); 1615 break; 1616 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1617 if (Record.size() < 1) 1618 return error("Invalid record"); 1619 1620 uint64_t NumBits = Record[0]; 1621 if (NumBits < IntegerType::MIN_INT_BITS || 1622 NumBits > IntegerType::MAX_INT_BITS) 1623 return error("Bitwidth for integer type out of range"); 1624 ResultTy = IntegerType::get(Context, NumBits); 1625 break; 1626 } 1627 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1628 // [pointee type, address space] 1629 if (Record.size() < 1) 1630 return error("Invalid record"); 1631 unsigned AddressSpace = 0; 1632 if (Record.size() == 2) 1633 AddressSpace = Record[1]; 1634 ResultTy = getTypeByID(Record[0]); 1635 if (!ResultTy || 1636 !PointerType::isValidElementType(ResultTy)) 1637 return error("Invalid type"); 1638 ResultTy = PointerType::get(ResultTy, AddressSpace); 1639 break; 1640 } 1641 case bitc::TYPE_CODE_FUNCTION_OLD: { 1642 // FIXME: attrid is dead, remove it in LLVM 4.0 1643 // FUNCTION: [vararg, attrid, retty, paramty x N] 1644 if (Record.size() < 3) 1645 return error("Invalid record"); 1646 SmallVector<Type*, 8> ArgTys; 1647 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1648 if (Type *T = getTypeByID(Record[i])) 1649 ArgTys.push_back(T); 1650 else 1651 break; 1652 } 1653 1654 ResultTy = getTypeByID(Record[2]); 1655 if (!ResultTy || ArgTys.size() < Record.size()-3) 1656 return error("Invalid type"); 1657 1658 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1659 break; 1660 } 1661 case bitc::TYPE_CODE_FUNCTION: { 1662 // FUNCTION: [vararg, retty, paramty x N] 1663 if (Record.size() < 2) 1664 return error("Invalid record"); 1665 SmallVector<Type*, 8> ArgTys; 1666 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1667 if (Type *T = getTypeByID(Record[i])) { 1668 if (!FunctionType::isValidArgumentType(T)) 1669 return error("Invalid function argument type"); 1670 ArgTys.push_back(T); 1671 } 1672 else 1673 break; 1674 } 1675 1676 ResultTy = getTypeByID(Record[1]); 1677 if (!ResultTy || ArgTys.size() < Record.size()-2) 1678 return error("Invalid type"); 1679 1680 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1681 break; 1682 } 1683 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1684 if (Record.size() < 1) 1685 return error("Invalid record"); 1686 SmallVector<Type*, 8> EltTys; 1687 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1688 if (Type *T = getTypeByID(Record[i])) 1689 EltTys.push_back(T); 1690 else 1691 break; 1692 } 1693 if (EltTys.size() != Record.size()-1) 1694 return error("Invalid type"); 1695 ResultTy = StructType::get(Context, EltTys, Record[0]); 1696 break; 1697 } 1698 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1699 if (convertToString(Record, 0, TypeName)) 1700 return error("Invalid record"); 1701 continue; 1702 1703 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1704 if (Record.size() < 1) 1705 return error("Invalid record"); 1706 1707 if (NumRecords >= TypeList.size()) 1708 return error("Invalid TYPE table"); 1709 1710 // Check to see if this was forward referenced, if so fill in the temp. 1711 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1712 if (Res) { 1713 Res->setName(TypeName); 1714 TypeList[NumRecords] = nullptr; 1715 } else // Otherwise, create a new struct. 1716 Res = createIdentifiedStructType(Context, TypeName); 1717 TypeName.clear(); 1718 1719 SmallVector<Type*, 8> EltTys; 1720 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1721 if (Type *T = getTypeByID(Record[i])) 1722 EltTys.push_back(T); 1723 else 1724 break; 1725 } 1726 if (EltTys.size() != Record.size()-1) 1727 return error("Invalid record"); 1728 Res->setBody(EltTys, Record[0]); 1729 ResultTy = Res; 1730 break; 1731 } 1732 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1733 if (Record.size() != 1) 1734 return error("Invalid record"); 1735 1736 if (NumRecords >= TypeList.size()) 1737 return error("Invalid TYPE table"); 1738 1739 // Check to see if this was forward referenced, if so fill in the temp. 1740 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1741 if (Res) { 1742 Res->setName(TypeName); 1743 TypeList[NumRecords] = nullptr; 1744 } else // Otherwise, create a new struct with no body. 1745 Res = createIdentifiedStructType(Context, TypeName); 1746 TypeName.clear(); 1747 ResultTy = Res; 1748 break; 1749 } 1750 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1751 if (Record.size() < 2) 1752 return error("Invalid record"); 1753 ResultTy = getTypeByID(Record[1]); 1754 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1755 return error("Invalid type"); 1756 ResultTy = ArrayType::get(ResultTy, Record[0]); 1757 break; 1758 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1759 if (Record.size() < 2) 1760 return error("Invalid record"); 1761 if (Record[0] == 0) 1762 return error("Invalid vector length"); 1763 ResultTy = getTypeByID(Record[1]); 1764 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1765 return error("Invalid type"); 1766 ResultTy = VectorType::get(ResultTy, Record[0]); 1767 break; 1768 } 1769 1770 if (NumRecords >= TypeList.size()) 1771 return error("Invalid TYPE table"); 1772 if (TypeList[NumRecords]) 1773 return error( 1774 "Invalid TYPE table: Only named structs can be forward referenced"); 1775 assert(ResultTy && "Didn't read a type?"); 1776 TypeList[NumRecords++] = ResultTy; 1777 } 1778 } 1779 1780 Error BitcodeReader::parseOperandBundleTags() { 1781 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1782 return error("Invalid record"); 1783 1784 if (!BundleTags.empty()) 1785 return error("Invalid multiple blocks"); 1786 1787 SmallVector<uint64_t, 64> Record; 1788 1789 while (true) { 1790 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1791 1792 switch (Entry.Kind) { 1793 case BitstreamEntry::SubBlock: // Handled for us already. 1794 case BitstreamEntry::Error: 1795 return error("Malformed block"); 1796 case BitstreamEntry::EndBlock: 1797 return Error::success(); 1798 case BitstreamEntry::Record: 1799 // The interesting case. 1800 break; 1801 } 1802 1803 // Tags are implicitly mapped to integers by their order. 1804 1805 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1806 return error("Invalid record"); 1807 1808 // OPERAND_BUNDLE_TAG: [strchr x N] 1809 BundleTags.emplace_back(); 1810 if (convertToString(Record, 0, BundleTags.back())) 1811 return error("Invalid record"); 1812 Record.clear(); 1813 } 1814 } 1815 1816 Error BitcodeReader::parseSyncScopeNames() { 1817 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1818 return error("Invalid record"); 1819 1820 if (!SSIDs.empty()) 1821 return error("Invalid multiple synchronization scope names blocks"); 1822 1823 SmallVector<uint64_t, 64> Record; 1824 while (true) { 1825 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1826 switch (Entry.Kind) { 1827 case BitstreamEntry::SubBlock: // Handled for us already. 1828 case BitstreamEntry::Error: 1829 return error("Malformed block"); 1830 case BitstreamEntry::EndBlock: 1831 if (SSIDs.empty()) 1832 return error("Invalid empty synchronization scope names block"); 1833 return Error::success(); 1834 case BitstreamEntry::Record: 1835 // The interesting case. 1836 break; 1837 } 1838 1839 // Synchronization scope names are implicitly mapped to synchronization 1840 // scope IDs by their order. 1841 1842 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1843 return error("Invalid record"); 1844 1845 SmallString<16> SSN; 1846 if (convertToString(Record, 0, SSN)) 1847 return error("Invalid record"); 1848 1849 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1850 Record.clear(); 1851 } 1852 } 1853 1854 /// Associate a value with its name from the given index in the provided record. 1855 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1856 unsigned NameIndex, Triple &TT) { 1857 SmallString<128> ValueName; 1858 if (convertToString(Record, NameIndex, ValueName)) 1859 return error("Invalid record"); 1860 unsigned ValueID = Record[0]; 1861 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1862 return error("Invalid record"); 1863 Value *V = ValueList[ValueID]; 1864 1865 StringRef NameStr(ValueName.data(), ValueName.size()); 1866 if (NameStr.find_first_of(0) != StringRef::npos) 1867 return error("Invalid value name"); 1868 V->setName(NameStr); 1869 auto *GO = dyn_cast<GlobalObject>(V); 1870 if (GO) { 1871 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1872 if (TT.supportsCOMDAT()) 1873 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1874 else 1875 GO->setComdat(nullptr); 1876 } 1877 } 1878 return V; 1879 } 1880 1881 /// Helper to note and return the current location, and jump to the given 1882 /// offset. 1883 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1884 BitstreamCursor &Stream) { 1885 // Save the current parsing location so we can jump back at the end 1886 // of the VST read. 1887 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1888 Stream.JumpToBit(Offset * 32); 1889 #ifndef NDEBUG 1890 // Do some checking if we are in debug mode. 1891 BitstreamEntry Entry = Stream.advance(); 1892 assert(Entry.Kind == BitstreamEntry::SubBlock); 1893 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1894 #else 1895 // In NDEBUG mode ignore the output so we don't get an unused variable 1896 // warning. 1897 Stream.advance(); 1898 #endif 1899 return CurrentBit; 1900 } 1901 1902 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1903 Function *F, 1904 ArrayRef<uint64_t> Record) { 1905 // Note that we subtract 1 here because the offset is relative to one word 1906 // before the start of the identification or module block, which was 1907 // historically always the start of the regular bitcode header. 1908 uint64_t FuncWordOffset = Record[1] - 1; 1909 uint64_t FuncBitOffset = FuncWordOffset * 32; 1910 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1911 // Set the LastFunctionBlockBit to point to the last function block. 1912 // Later when parsing is resumed after function materialization, 1913 // we can simply skip that last function block. 1914 if (FuncBitOffset > LastFunctionBlockBit) 1915 LastFunctionBlockBit = FuncBitOffset; 1916 } 1917 1918 /// Read a new-style GlobalValue symbol table. 1919 Error BitcodeReader::parseGlobalValueSymbolTable() { 1920 unsigned FuncBitcodeOffsetDelta = 1921 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1922 1923 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1924 return error("Invalid record"); 1925 1926 SmallVector<uint64_t, 64> Record; 1927 while (true) { 1928 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1929 1930 switch (Entry.Kind) { 1931 case BitstreamEntry::SubBlock: 1932 case BitstreamEntry::Error: 1933 return error("Malformed block"); 1934 case BitstreamEntry::EndBlock: 1935 return Error::success(); 1936 case BitstreamEntry::Record: 1937 break; 1938 } 1939 1940 Record.clear(); 1941 switch (Stream.readRecord(Entry.ID, Record)) { 1942 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1943 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1944 cast<Function>(ValueList[Record[0]]), Record); 1945 break; 1946 } 1947 } 1948 } 1949 1950 /// Parse the value symbol table at either the current parsing location or 1951 /// at the given bit offset if provided. 1952 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1953 uint64_t CurrentBit; 1954 // Pass in the Offset to distinguish between calling for the module-level 1955 // VST (where we want to jump to the VST offset) and the function-level 1956 // VST (where we don't). 1957 if (Offset > 0) { 1958 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1959 // If this module uses a string table, read this as a module-level VST. 1960 if (UseStrtab) { 1961 if (Error Err = parseGlobalValueSymbolTable()) 1962 return Err; 1963 Stream.JumpToBit(CurrentBit); 1964 return Error::success(); 1965 } 1966 // Otherwise, the VST will be in a similar format to a function-level VST, 1967 // and will contain symbol names. 1968 } 1969 1970 // Compute the delta between the bitcode indices in the VST (the word offset 1971 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1972 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1973 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1974 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1975 // just before entering the VST subblock because: 1) the EnterSubBlock 1976 // changes the AbbrevID width; 2) the VST block is nested within the same 1977 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1978 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1979 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1980 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1981 unsigned FuncBitcodeOffsetDelta = 1982 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1983 1984 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1985 return error("Invalid record"); 1986 1987 SmallVector<uint64_t, 64> Record; 1988 1989 Triple TT(TheModule->getTargetTriple()); 1990 1991 // Read all the records for this value table. 1992 SmallString<128> ValueName; 1993 1994 while (true) { 1995 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1996 1997 switch (Entry.Kind) { 1998 case BitstreamEntry::SubBlock: // Handled for us already. 1999 case BitstreamEntry::Error: 2000 return error("Malformed block"); 2001 case BitstreamEntry::EndBlock: 2002 if (Offset > 0) 2003 Stream.JumpToBit(CurrentBit); 2004 return Error::success(); 2005 case BitstreamEntry::Record: 2006 // The interesting case. 2007 break; 2008 } 2009 2010 // Read a record. 2011 Record.clear(); 2012 switch (Stream.readRecord(Entry.ID, Record)) { 2013 default: // Default behavior: unknown type. 2014 break; 2015 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2016 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2017 if (Error Err = ValOrErr.takeError()) 2018 return Err; 2019 ValOrErr.get(); 2020 break; 2021 } 2022 case bitc::VST_CODE_FNENTRY: { 2023 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2024 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2025 if (Error Err = ValOrErr.takeError()) 2026 return Err; 2027 Value *V = ValOrErr.get(); 2028 2029 // Ignore function offsets emitted for aliases of functions in older 2030 // versions of LLVM. 2031 if (auto *F = dyn_cast<Function>(V)) 2032 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2033 break; 2034 } 2035 case bitc::VST_CODE_BBENTRY: { 2036 if (convertToString(Record, 1, ValueName)) 2037 return error("Invalid record"); 2038 BasicBlock *BB = getBasicBlock(Record[0]); 2039 if (!BB) 2040 return error("Invalid record"); 2041 2042 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2043 ValueName.clear(); 2044 break; 2045 } 2046 } 2047 } 2048 } 2049 2050 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2051 /// encoding. 2052 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2053 if ((V & 1) == 0) 2054 return V >> 1; 2055 if (V != 1) 2056 return -(V >> 1); 2057 // There is no such thing as -0 with integers. "-0" really means MININT. 2058 return 1ULL << 63; 2059 } 2060 2061 /// Resolve all of the initializers for global values and aliases that we can. 2062 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2063 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2064 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2065 IndirectSymbolInitWorklist; 2066 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2067 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2068 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2069 2070 GlobalInitWorklist.swap(GlobalInits); 2071 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2072 FunctionPrefixWorklist.swap(FunctionPrefixes); 2073 FunctionPrologueWorklist.swap(FunctionPrologues); 2074 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2075 2076 while (!GlobalInitWorklist.empty()) { 2077 unsigned ValID = GlobalInitWorklist.back().second; 2078 if (ValID >= ValueList.size()) { 2079 // Not ready to resolve this yet, it requires something later in the file. 2080 GlobalInits.push_back(GlobalInitWorklist.back()); 2081 } else { 2082 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2083 GlobalInitWorklist.back().first->setInitializer(C); 2084 else 2085 return error("Expected a constant"); 2086 } 2087 GlobalInitWorklist.pop_back(); 2088 } 2089 2090 while (!IndirectSymbolInitWorklist.empty()) { 2091 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2092 if (ValID >= ValueList.size()) { 2093 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2094 } else { 2095 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2096 if (!C) 2097 return error("Expected a constant"); 2098 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2099 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2100 return error("Alias and aliasee types don't match"); 2101 GIS->setIndirectSymbol(C); 2102 } 2103 IndirectSymbolInitWorklist.pop_back(); 2104 } 2105 2106 while (!FunctionPrefixWorklist.empty()) { 2107 unsigned ValID = FunctionPrefixWorklist.back().second; 2108 if (ValID >= ValueList.size()) { 2109 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2110 } else { 2111 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2112 FunctionPrefixWorklist.back().first->setPrefixData(C); 2113 else 2114 return error("Expected a constant"); 2115 } 2116 FunctionPrefixWorklist.pop_back(); 2117 } 2118 2119 while (!FunctionPrologueWorklist.empty()) { 2120 unsigned ValID = FunctionPrologueWorklist.back().second; 2121 if (ValID >= ValueList.size()) { 2122 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2123 } else { 2124 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2125 FunctionPrologueWorklist.back().first->setPrologueData(C); 2126 else 2127 return error("Expected a constant"); 2128 } 2129 FunctionPrologueWorklist.pop_back(); 2130 } 2131 2132 while (!FunctionPersonalityFnWorklist.empty()) { 2133 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2134 if (ValID >= ValueList.size()) { 2135 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2136 } else { 2137 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2138 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2139 else 2140 return error("Expected a constant"); 2141 } 2142 FunctionPersonalityFnWorklist.pop_back(); 2143 } 2144 2145 return Error::success(); 2146 } 2147 2148 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2149 SmallVector<uint64_t, 8> Words(Vals.size()); 2150 transform(Vals, Words.begin(), 2151 BitcodeReader::decodeSignRotatedValue); 2152 2153 return APInt(TypeBits, Words); 2154 } 2155 2156 Error BitcodeReader::parseConstants() { 2157 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2158 return error("Invalid record"); 2159 2160 SmallVector<uint64_t, 64> Record; 2161 2162 // Read all the records for this value table. 2163 Type *CurTy = Type::getInt32Ty(Context); 2164 unsigned NextCstNo = ValueList.size(); 2165 2166 while (true) { 2167 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2168 2169 switch (Entry.Kind) { 2170 case BitstreamEntry::SubBlock: // Handled for us already. 2171 case BitstreamEntry::Error: 2172 return error("Malformed block"); 2173 case BitstreamEntry::EndBlock: 2174 if (NextCstNo != ValueList.size()) 2175 return error("Invalid constant reference"); 2176 2177 // Once all the constants have been read, go through and resolve forward 2178 // references. 2179 ValueList.resolveConstantForwardRefs(); 2180 return Error::success(); 2181 case BitstreamEntry::Record: 2182 // The interesting case. 2183 break; 2184 } 2185 2186 // Read a record. 2187 Record.clear(); 2188 Type *VoidType = Type::getVoidTy(Context); 2189 Value *V = nullptr; 2190 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2191 switch (BitCode) { 2192 default: // Default behavior: unknown constant 2193 case bitc::CST_CODE_UNDEF: // UNDEF 2194 V = UndefValue::get(CurTy); 2195 break; 2196 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2197 if (Record.empty()) 2198 return error("Invalid record"); 2199 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2200 return error("Invalid record"); 2201 if (TypeList[Record[0]] == VoidType) 2202 return error("Invalid constant type"); 2203 CurTy = TypeList[Record[0]]; 2204 continue; // Skip the ValueList manipulation. 2205 case bitc::CST_CODE_NULL: // NULL 2206 V = Constant::getNullValue(CurTy); 2207 break; 2208 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2209 if (!CurTy->isIntegerTy() || Record.empty()) 2210 return error("Invalid record"); 2211 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2212 break; 2213 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2214 if (!CurTy->isIntegerTy() || Record.empty()) 2215 return error("Invalid record"); 2216 2217 APInt VInt = 2218 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2219 V = ConstantInt::get(Context, VInt); 2220 2221 break; 2222 } 2223 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2224 if (Record.empty()) 2225 return error("Invalid record"); 2226 if (CurTy->isHalfTy()) 2227 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2228 APInt(16, (uint16_t)Record[0]))); 2229 else if (CurTy->isFloatTy()) 2230 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2231 APInt(32, (uint32_t)Record[0]))); 2232 else if (CurTy->isDoubleTy()) 2233 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2234 APInt(64, Record[0]))); 2235 else if (CurTy->isX86_FP80Ty()) { 2236 // Bits are not stored the same way as a normal i80 APInt, compensate. 2237 uint64_t Rearrange[2]; 2238 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2239 Rearrange[1] = Record[0] >> 48; 2240 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2241 APInt(80, Rearrange))); 2242 } else if (CurTy->isFP128Ty()) 2243 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2244 APInt(128, Record))); 2245 else if (CurTy->isPPC_FP128Ty()) 2246 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2247 APInt(128, Record))); 2248 else 2249 V = UndefValue::get(CurTy); 2250 break; 2251 } 2252 2253 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2254 if (Record.empty()) 2255 return error("Invalid record"); 2256 2257 unsigned Size = Record.size(); 2258 SmallVector<Constant*, 16> Elts; 2259 2260 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2261 for (unsigned i = 0; i != Size; ++i) 2262 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2263 STy->getElementType(i))); 2264 V = ConstantStruct::get(STy, Elts); 2265 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2266 Type *EltTy = ATy->getElementType(); 2267 for (unsigned i = 0; i != Size; ++i) 2268 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2269 V = ConstantArray::get(ATy, Elts); 2270 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2271 Type *EltTy = VTy->getElementType(); 2272 for (unsigned i = 0; i != Size; ++i) 2273 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2274 V = ConstantVector::get(Elts); 2275 } else { 2276 V = UndefValue::get(CurTy); 2277 } 2278 break; 2279 } 2280 case bitc::CST_CODE_STRING: // STRING: [values] 2281 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2282 if (Record.empty()) 2283 return error("Invalid record"); 2284 2285 SmallString<16> Elts(Record.begin(), Record.end()); 2286 V = ConstantDataArray::getString(Context, Elts, 2287 BitCode == bitc::CST_CODE_CSTRING); 2288 break; 2289 } 2290 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2291 if (Record.empty()) 2292 return error("Invalid record"); 2293 2294 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2295 if (EltTy->isIntegerTy(8)) { 2296 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2297 if (isa<VectorType>(CurTy)) 2298 V = ConstantDataVector::get(Context, Elts); 2299 else 2300 V = ConstantDataArray::get(Context, Elts); 2301 } else if (EltTy->isIntegerTy(16)) { 2302 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2303 if (isa<VectorType>(CurTy)) 2304 V = ConstantDataVector::get(Context, Elts); 2305 else 2306 V = ConstantDataArray::get(Context, Elts); 2307 } else if (EltTy->isIntegerTy(32)) { 2308 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2309 if (isa<VectorType>(CurTy)) 2310 V = ConstantDataVector::get(Context, Elts); 2311 else 2312 V = ConstantDataArray::get(Context, Elts); 2313 } else if (EltTy->isIntegerTy(64)) { 2314 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2315 if (isa<VectorType>(CurTy)) 2316 V = ConstantDataVector::get(Context, Elts); 2317 else 2318 V = ConstantDataArray::get(Context, Elts); 2319 } else if (EltTy->isHalfTy()) { 2320 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2321 if (isa<VectorType>(CurTy)) 2322 V = ConstantDataVector::getFP(Context, Elts); 2323 else 2324 V = ConstantDataArray::getFP(Context, Elts); 2325 } else if (EltTy->isFloatTy()) { 2326 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2327 if (isa<VectorType>(CurTy)) 2328 V = ConstantDataVector::getFP(Context, Elts); 2329 else 2330 V = ConstantDataArray::getFP(Context, Elts); 2331 } else if (EltTy->isDoubleTy()) { 2332 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2333 if (isa<VectorType>(CurTy)) 2334 V = ConstantDataVector::getFP(Context, Elts); 2335 else 2336 V = ConstantDataArray::getFP(Context, Elts); 2337 } else { 2338 return error("Invalid type for value"); 2339 } 2340 break; 2341 } 2342 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2343 if (Record.size() < 2) 2344 return error("Invalid record"); 2345 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2346 if (Opc < 0) { 2347 V = UndefValue::get(CurTy); // Unknown unop. 2348 } else { 2349 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2350 unsigned Flags = 0; 2351 V = ConstantExpr::get(Opc, LHS, Flags); 2352 } 2353 break; 2354 } 2355 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2356 if (Record.size() < 3) 2357 return error("Invalid record"); 2358 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2359 if (Opc < 0) { 2360 V = UndefValue::get(CurTy); // Unknown binop. 2361 } else { 2362 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2363 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2364 unsigned Flags = 0; 2365 if (Record.size() >= 4) { 2366 if (Opc == Instruction::Add || 2367 Opc == Instruction::Sub || 2368 Opc == Instruction::Mul || 2369 Opc == Instruction::Shl) { 2370 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2371 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2372 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2373 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2374 } else if (Opc == Instruction::SDiv || 2375 Opc == Instruction::UDiv || 2376 Opc == Instruction::LShr || 2377 Opc == Instruction::AShr) { 2378 if (Record[3] & (1 << bitc::PEO_EXACT)) 2379 Flags |= SDivOperator::IsExact; 2380 } 2381 } 2382 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2383 } 2384 break; 2385 } 2386 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2387 if (Record.size() < 3) 2388 return error("Invalid record"); 2389 int Opc = getDecodedCastOpcode(Record[0]); 2390 if (Opc < 0) { 2391 V = UndefValue::get(CurTy); // Unknown cast. 2392 } else { 2393 Type *OpTy = getTypeByID(Record[1]); 2394 if (!OpTy) 2395 return error("Invalid record"); 2396 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2397 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2398 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2399 } 2400 break; 2401 } 2402 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2403 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2404 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2405 // operands] 2406 unsigned OpNum = 0; 2407 Type *PointeeType = nullptr; 2408 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2409 Record.size() % 2) 2410 PointeeType = getTypeByID(Record[OpNum++]); 2411 2412 bool InBounds = false; 2413 Optional<unsigned> InRangeIndex; 2414 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2415 uint64_t Op = Record[OpNum++]; 2416 InBounds = Op & 1; 2417 InRangeIndex = Op >> 1; 2418 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2419 InBounds = true; 2420 2421 SmallVector<Constant*, 16> Elts; 2422 while (OpNum != Record.size()) { 2423 Type *ElTy = getTypeByID(Record[OpNum++]); 2424 if (!ElTy) 2425 return error("Invalid record"); 2426 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2427 } 2428 2429 if (PointeeType && 2430 PointeeType != 2431 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2432 ->getElementType()) 2433 return error("Explicit gep operator type does not match pointee type " 2434 "of pointer operand"); 2435 2436 if (Elts.size() < 1) 2437 return error("Invalid gep with no operands"); 2438 2439 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2440 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2441 InBounds, InRangeIndex); 2442 break; 2443 } 2444 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2445 if (Record.size() < 3) 2446 return error("Invalid record"); 2447 2448 Type *SelectorTy = Type::getInt1Ty(Context); 2449 2450 // The selector might be an i1 or an <n x i1> 2451 // Get the type from the ValueList before getting a forward ref. 2452 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2453 if (Value *V = ValueList[Record[0]]) 2454 if (SelectorTy != V->getType()) 2455 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2456 2457 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2458 SelectorTy), 2459 ValueList.getConstantFwdRef(Record[1],CurTy), 2460 ValueList.getConstantFwdRef(Record[2],CurTy)); 2461 break; 2462 } 2463 case bitc::CST_CODE_CE_EXTRACTELT 2464 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2465 if (Record.size() < 3) 2466 return error("Invalid record"); 2467 VectorType *OpTy = 2468 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2469 if (!OpTy) 2470 return error("Invalid record"); 2471 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2472 Constant *Op1 = nullptr; 2473 if (Record.size() == 4) { 2474 Type *IdxTy = getTypeByID(Record[2]); 2475 if (!IdxTy) 2476 return error("Invalid record"); 2477 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2478 } else // TODO: Remove with llvm 4.0 2479 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2480 if (!Op1) 2481 return error("Invalid record"); 2482 V = ConstantExpr::getExtractElement(Op0, Op1); 2483 break; 2484 } 2485 case bitc::CST_CODE_CE_INSERTELT 2486 : { // CE_INSERTELT: [opval, opval, opty, opval] 2487 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2488 if (Record.size() < 3 || !OpTy) 2489 return error("Invalid record"); 2490 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2491 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2492 OpTy->getElementType()); 2493 Constant *Op2 = nullptr; 2494 if (Record.size() == 4) { 2495 Type *IdxTy = getTypeByID(Record[2]); 2496 if (!IdxTy) 2497 return error("Invalid record"); 2498 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2499 } else // TODO: Remove with llvm 4.0 2500 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2501 if (!Op2) 2502 return error("Invalid record"); 2503 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2504 break; 2505 } 2506 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2507 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2508 if (Record.size() < 3 || !OpTy) 2509 return error("Invalid record"); 2510 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2511 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2512 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2513 OpTy->getNumElements()); 2514 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2515 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2516 break; 2517 } 2518 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2519 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2520 VectorType *OpTy = 2521 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2522 if (Record.size() < 4 || !RTy || !OpTy) 2523 return error("Invalid record"); 2524 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2525 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2526 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2527 RTy->getNumElements()); 2528 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2529 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2530 break; 2531 } 2532 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2533 if (Record.size() < 4) 2534 return error("Invalid record"); 2535 Type *OpTy = getTypeByID(Record[0]); 2536 if (!OpTy) 2537 return error("Invalid record"); 2538 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2539 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2540 2541 if (OpTy->isFPOrFPVectorTy()) 2542 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2543 else 2544 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2545 break; 2546 } 2547 // This maintains backward compatibility, pre-asm dialect keywords. 2548 // FIXME: Remove with the 4.0 release. 2549 case bitc::CST_CODE_INLINEASM_OLD: { 2550 if (Record.size() < 2) 2551 return error("Invalid record"); 2552 std::string AsmStr, ConstrStr; 2553 bool HasSideEffects = Record[0] & 1; 2554 bool IsAlignStack = Record[0] >> 1; 2555 unsigned AsmStrSize = Record[1]; 2556 if (2+AsmStrSize >= Record.size()) 2557 return error("Invalid record"); 2558 unsigned ConstStrSize = Record[2+AsmStrSize]; 2559 if (3+AsmStrSize+ConstStrSize > Record.size()) 2560 return error("Invalid record"); 2561 2562 for (unsigned i = 0; i != AsmStrSize; ++i) 2563 AsmStr += (char)Record[2+i]; 2564 for (unsigned i = 0; i != ConstStrSize; ++i) 2565 ConstrStr += (char)Record[3+AsmStrSize+i]; 2566 PointerType *PTy = cast<PointerType>(CurTy); 2567 UpgradeInlineAsmString(&AsmStr); 2568 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2569 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2570 break; 2571 } 2572 // This version adds support for the asm dialect keywords (e.g., 2573 // inteldialect). 2574 case bitc::CST_CODE_INLINEASM: { 2575 if (Record.size() < 2) 2576 return error("Invalid record"); 2577 std::string AsmStr, ConstrStr; 2578 bool HasSideEffects = Record[0] & 1; 2579 bool IsAlignStack = (Record[0] >> 1) & 1; 2580 unsigned AsmDialect = Record[0] >> 2; 2581 unsigned AsmStrSize = Record[1]; 2582 if (2+AsmStrSize >= Record.size()) 2583 return error("Invalid record"); 2584 unsigned ConstStrSize = Record[2+AsmStrSize]; 2585 if (3+AsmStrSize+ConstStrSize > Record.size()) 2586 return error("Invalid record"); 2587 2588 for (unsigned i = 0; i != AsmStrSize; ++i) 2589 AsmStr += (char)Record[2+i]; 2590 for (unsigned i = 0; i != ConstStrSize; ++i) 2591 ConstrStr += (char)Record[3+AsmStrSize+i]; 2592 PointerType *PTy = cast<PointerType>(CurTy); 2593 UpgradeInlineAsmString(&AsmStr); 2594 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2595 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2596 InlineAsm::AsmDialect(AsmDialect)); 2597 break; 2598 } 2599 case bitc::CST_CODE_BLOCKADDRESS:{ 2600 if (Record.size() < 3) 2601 return error("Invalid record"); 2602 Type *FnTy = getTypeByID(Record[0]); 2603 if (!FnTy) 2604 return error("Invalid record"); 2605 Function *Fn = 2606 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2607 if (!Fn) 2608 return error("Invalid record"); 2609 2610 // If the function is already parsed we can insert the block address right 2611 // away. 2612 BasicBlock *BB; 2613 unsigned BBID = Record[2]; 2614 if (!BBID) 2615 // Invalid reference to entry block. 2616 return error("Invalid ID"); 2617 if (!Fn->empty()) { 2618 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2619 for (size_t I = 0, E = BBID; I != E; ++I) { 2620 if (BBI == BBE) 2621 return error("Invalid ID"); 2622 ++BBI; 2623 } 2624 BB = &*BBI; 2625 } else { 2626 // Otherwise insert a placeholder and remember it so it can be inserted 2627 // when the function is parsed. 2628 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2629 if (FwdBBs.empty()) 2630 BasicBlockFwdRefQueue.push_back(Fn); 2631 if (FwdBBs.size() < BBID + 1) 2632 FwdBBs.resize(BBID + 1); 2633 if (!FwdBBs[BBID]) 2634 FwdBBs[BBID] = BasicBlock::Create(Context); 2635 BB = FwdBBs[BBID]; 2636 } 2637 V = BlockAddress::get(Fn, BB); 2638 break; 2639 } 2640 } 2641 2642 ValueList.assignValue(V, NextCstNo); 2643 ++NextCstNo; 2644 } 2645 } 2646 2647 Error BitcodeReader::parseUseLists() { 2648 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2649 return error("Invalid record"); 2650 2651 // Read all the records. 2652 SmallVector<uint64_t, 64> Record; 2653 2654 while (true) { 2655 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2656 2657 switch (Entry.Kind) { 2658 case BitstreamEntry::SubBlock: // Handled for us already. 2659 case BitstreamEntry::Error: 2660 return error("Malformed block"); 2661 case BitstreamEntry::EndBlock: 2662 return Error::success(); 2663 case BitstreamEntry::Record: 2664 // The interesting case. 2665 break; 2666 } 2667 2668 // Read a use list record. 2669 Record.clear(); 2670 bool IsBB = false; 2671 switch (Stream.readRecord(Entry.ID, Record)) { 2672 default: // Default behavior: unknown type. 2673 break; 2674 case bitc::USELIST_CODE_BB: 2675 IsBB = true; 2676 LLVM_FALLTHROUGH; 2677 case bitc::USELIST_CODE_DEFAULT: { 2678 unsigned RecordLength = Record.size(); 2679 if (RecordLength < 3) 2680 // Records should have at least an ID and two indexes. 2681 return error("Invalid record"); 2682 unsigned ID = Record.back(); 2683 Record.pop_back(); 2684 2685 Value *V; 2686 if (IsBB) { 2687 assert(ID < FunctionBBs.size() && "Basic block not found"); 2688 V = FunctionBBs[ID]; 2689 } else 2690 V = ValueList[ID]; 2691 unsigned NumUses = 0; 2692 SmallDenseMap<const Use *, unsigned, 16> Order; 2693 for (const Use &U : V->materialized_uses()) { 2694 if (++NumUses > Record.size()) 2695 break; 2696 Order[&U] = Record[NumUses - 1]; 2697 } 2698 if (Order.size() != Record.size() || NumUses > Record.size()) 2699 // Mismatches can happen if the functions are being materialized lazily 2700 // (out-of-order), or a value has been upgraded. 2701 break; 2702 2703 V->sortUseList([&](const Use &L, const Use &R) { 2704 return Order.lookup(&L) < Order.lookup(&R); 2705 }); 2706 break; 2707 } 2708 } 2709 } 2710 } 2711 2712 /// When we see the block for metadata, remember where it is and then skip it. 2713 /// This lets us lazily deserialize the metadata. 2714 Error BitcodeReader::rememberAndSkipMetadata() { 2715 // Save the current stream state. 2716 uint64_t CurBit = Stream.GetCurrentBitNo(); 2717 DeferredMetadataInfo.push_back(CurBit); 2718 2719 // Skip over the block for now. 2720 if (Stream.SkipBlock()) 2721 return error("Invalid record"); 2722 return Error::success(); 2723 } 2724 2725 Error BitcodeReader::materializeMetadata() { 2726 for (uint64_t BitPos : DeferredMetadataInfo) { 2727 // Move the bit stream to the saved position. 2728 Stream.JumpToBit(BitPos); 2729 if (Error Err = MDLoader->parseModuleMetadata()) 2730 return Err; 2731 } 2732 2733 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2734 // metadata. 2735 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2736 NamedMDNode *LinkerOpts = 2737 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2738 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2739 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2740 } 2741 2742 DeferredMetadataInfo.clear(); 2743 return Error::success(); 2744 } 2745 2746 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2747 2748 /// When we see the block for a function body, remember where it is and then 2749 /// skip it. This lets us lazily deserialize the functions. 2750 Error BitcodeReader::rememberAndSkipFunctionBody() { 2751 // Get the function we are talking about. 2752 if (FunctionsWithBodies.empty()) 2753 return error("Insufficient function protos"); 2754 2755 Function *Fn = FunctionsWithBodies.back(); 2756 FunctionsWithBodies.pop_back(); 2757 2758 // Save the current stream state. 2759 uint64_t CurBit = Stream.GetCurrentBitNo(); 2760 assert( 2761 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2762 "Mismatch between VST and scanned function offsets"); 2763 DeferredFunctionInfo[Fn] = CurBit; 2764 2765 // Skip over the function block for now. 2766 if (Stream.SkipBlock()) 2767 return error("Invalid record"); 2768 return Error::success(); 2769 } 2770 2771 Error BitcodeReader::globalCleanup() { 2772 // Patch the initializers for globals and aliases up. 2773 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2774 return Err; 2775 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2776 return error("Malformed global initializer set"); 2777 2778 // Look for intrinsic functions which need to be upgraded at some point 2779 for (Function &F : *TheModule) { 2780 MDLoader->upgradeDebugIntrinsics(F); 2781 Function *NewFn; 2782 if (UpgradeIntrinsicFunction(&F, NewFn)) 2783 UpgradedIntrinsics[&F] = NewFn; 2784 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2785 // Some types could be renamed during loading if several modules are 2786 // loaded in the same LLVMContext (LTO scenario). In this case we should 2787 // remangle intrinsics names as well. 2788 RemangledIntrinsics[&F] = Remangled.getValue(); 2789 } 2790 2791 // Look for global variables which need to be renamed. 2792 for (GlobalVariable &GV : TheModule->globals()) 2793 UpgradeGlobalVariable(&GV); 2794 2795 // Force deallocation of memory for these vectors to favor the client that 2796 // want lazy deserialization. 2797 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2798 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2799 IndirectSymbolInits); 2800 return Error::success(); 2801 } 2802 2803 /// Support for lazy parsing of function bodies. This is required if we 2804 /// either have an old bitcode file without a VST forward declaration record, 2805 /// or if we have an anonymous function being materialized, since anonymous 2806 /// functions do not have a name and are therefore not in the VST. 2807 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2808 Stream.JumpToBit(NextUnreadBit); 2809 2810 if (Stream.AtEndOfStream()) 2811 return error("Could not find function in stream"); 2812 2813 if (!SeenFirstFunctionBody) 2814 return error("Trying to materialize functions before seeing function blocks"); 2815 2816 // An old bitcode file with the symbol table at the end would have 2817 // finished the parse greedily. 2818 assert(SeenValueSymbolTable); 2819 2820 SmallVector<uint64_t, 64> Record; 2821 2822 while (true) { 2823 BitstreamEntry Entry = Stream.advance(); 2824 switch (Entry.Kind) { 2825 default: 2826 return error("Expect SubBlock"); 2827 case BitstreamEntry::SubBlock: 2828 switch (Entry.ID) { 2829 default: 2830 return error("Expect function block"); 2831 case bitc::FUNCTION_BLOCK_ID: 2832 if (Error Err = rememberAndSkipFunctionBody()) 2833 return Err; 2834 NextUnreadBit = Stream.GetCurrentBitNo(); 2835 return Error::success(); 2836 } 2837 } 2838 } 2839 } 2840 2841 bool BitcodeReaderBase::readBlockInfo() { 2842 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2843 if (!NewBlockInfo) 2844 return true; 2845 BlockInfo = std::move(*NewBlockInfo); 2846 return false; 2847 } 2848 2849 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2850 // v1: [selection_kind, name] 2851 // v2: [strtab_offset, strtab_size, selection_kind] 2852 StringRef Name; 2853 std::tie(Name, Record) = readNameFromStrtab(Record); 2854 2855 if (Record.empty()) 2856 return error("Invalid record"); 2857 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2858 std::string OldFormatName; 2859 if (!UseStrtab) { 2860 if (Record.size() < 2) 2861 return error("Invalid record"); 2862 unsigned ComdatNameSize = Record[1]; 2863 OldFormatName.reserve(ComdatNameSize); 2864 for (unsigned i = 0; i != ComdatNameSize; ++i) 2865 OldFormatName += (char)Record[2 + i]; 2866 Name = OldFormatName; 2867 } 2868 Comdat *C = TheModule->getOrInsertComdat(Name); 2869 C->setSelectionKind(SK); 2870 ComdatList.push_back(C); 2871 return Error::success(); 2872 } 2873 2874 static void inferDSOLocal(GlobalValue *GV) { 2875 // infer dso_local from linkage and visibility if it is not encoded. 2876 if (GV->hasLocalLinkage() || 2877 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 2878 GV->setDSOLocal(true); 2879 } 2880 2881 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2882 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2883 // visibility, threadlocal, unnamed_addr, externally_initialized, 2884 // dllstorageclass, comdat, attributes, preemption specifier] (name in VST) 2885 // v2: [strtab_offset, strtab_size, v1] 2886 StringRef Name; 2887 std::tie(Name, Record) = readNameFromStrtab(Record); 2888 2889 if (Record.size() < 6) 2890 return error("Invalid record"); 2891 Type *Ty = getTypeByID(Record[0]); 2892 if (!Ty) 2893 return error("Invalid record"); 2894 bool isConstant = Record[1] & 1; 2895 bool explicitType = Record[1] & 2; 2896 unsigned AddressSpace; 2897 if (explicitType) { 2898 AddressSpace = Record[1] >> 2; 2899 } else { 2900 if (!Ty->isPointerTy()) 2901 return error("Invalid type for value"); 2902 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2903 Ty = cast<PointerType>(Ty)->getElementType(); 2904 } 2905 2906 uint64_t RawLinkage = Record[3]; 2907 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2908 unsigned Alignment; 2909 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2910 return Err; 2911 std::string Section; 2912 if (Record[5]) { 2913 if (Record[5] - 1 >= SectionTable.size()) 2914 return error("Invalid ID"); 2915 Section = SectionTable[Record[5] - 1]; 2916 } 2917 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2918 // Local linkage must have default visibility. 2919 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2920 // FIXME: Change to an error if non-default in 4.0. 2921 Visibility = getDecodedVisibility(Record[6]); 2922 2923 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2924 if (Record.size() > 7) 2925 TLM = getDecodedThreadLocalMode(Record[7]); 2926 2927 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2928 if (Record.size() > 8) 2929 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2930 2931 bool ExternallyInitialized = false; 2932 if (Record.size() > 9) 2933 ExternallyInitialized = Record[9]; 2934 2935 GlobalVariable *NewGV = 2936 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2937 nullptr, TLM, AddressSpace, ExternallyInitialized); 2938 NewGV->setAlignment(Alignment); 2939 if (!Section.empty()) 2940 NewGV->setSection(Section); 2941 NewGV->setVisibility(Visibility); 2942 NewGV->setUnnamedAddr(UnnamedAddr); 2943 2944 if (Record.size() > 10) 2945 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2946 else 2947 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2948 2949 ValueList.push_back(NewGV); 2950 2951 // Remember which value to use for the global initializer. 2952 if (unsigned InitID = Record[2]) 2953 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2954 2955 if (Record.size() > 11) { 2956 if (unsigned ComdatID = Record[11]) { 2957 if (ComdatID > ComdatList.size()) 2958 return error("Invalid global variable comdat ID"); 2959 NewGV->setComdat(ComdatList[ComdatID - 1]); 2960 } 2961 } else if (hasImplicitComdat(RawLinkage)) { 2962 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2963 } 2964 2965 if (Record.size() > 12) { 2966 auto AS = getAttributes(Record[12]).getFnAttributes(); 2967 NewGV->setAttributes(AS); 2968 } 2969 2970 if (Record.size() > 13) { 2971 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 2972 } 2973 inferDSOLocal(NewGV); 2974 2975 return Error::success(); 2976 } 2977 2978 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2979 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2980 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2981 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 2982 // v2: [strtab_offset, strtab_size, v1] 2983 StringRef Name; 2984 std::tie(Name, Record) = readNameFromStrtab(Record); 2985 2986 if (Record.size() < 8) 2987 return error("Invalid record"); 2988 Type *Ty = getTypeByID(Record[0]); 2989 if (!Ty) 2990 return error("Invalid record"); 2991 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2992 Ty = PTy->getElementType(); 2993 auto *FTy = dyn_cast<FunctionType>(Ty); 2994 if (!FTy) 2995 return error("Invalid type for value"); 2996 auto CC = static_cast<CallingConv::ID>(Record[1]); 2997 if (CC & ~CallingConv::MaxID) 2998 return error("Invalid calling convention ID"); 2999 3000 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3001 if (Record.size() > 16) 3002 AddrSpace = Record[16]; 3003 3004 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3005 AddrSpace, Name, TheModule); 3006 3007 Func->setCallingConv(CC); 3008 bool isProto = Record[2]; 3009 uint64_t RawLinkage = Record[3]; 3010 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3011 Func->setAttributes(getAttributes(Record[4])); 3012 3013 unsigned Alignment; 3014 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3015 return Err; 3016 Func->setAlignment(Alignment); 3017 if (Record[6]) { 3018 if (Record[6] - 1 >= SectionTable.size()) 3019 return error("Invalid ID"); 3020 Func->setSection(SectionTable[Record[6] - 1]); 3021 } 3022 // Local linkage must have default visibility. 3023 if (!Func->hasLocalLinkage()) 3024 // FIXME: Change to an error if non-default in 4.0. 3025 Func->setVisibility(getDecodedVisibility(Record[7])); 3026 if (Record.size() > 8 && Record[8]) { 3027 if (Record[8] - 1 >= GCTable.size()) 3028 return error("Invalid ID"); 3029 Func->setGC(GCTable[Record[8] - 1]); 3030 } 3031 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3032 if (Record.size() > 9) 3033 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3034 Func->setUnnamedAddr(UnnamedAddr); 3035 if (Record.size() > 10 && Record[10] != 0) 3036 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3037 3038 if (Record.size() > 11) 3039 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3040 else 3041 upgradeDLLImportExportLinkage(Func, RawLinkage); 3042 3043 if (Record.size() > 12) { 3044 if (unsigned ComdatID = Record[12]) { 3045 if (ComdatID > ComdatList.size()) 3046 return error("Invalid function comdat ID"); 3047 Func->setComdat(ComdatList[ComdatID - 1]); 3048 } 3049 } else if (hasImplicitComdat(RawLinkage)) { 3050 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3051 } 3052 3053 if (Record.size() > 13 && Record[13] != 0) 3054 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3055 3056 if (Record.size() > 14 && Record[14] != 0) 3057 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3058 3059 if (Record.size() > 15) { 3060 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3061 } 3062 inferDSOLocal(Func); 3063 3064 ValueList.push_back(Func); 3065 3066 // If this is a function with a body, remember the prototype we are 3067 // creating now, so that we can match up the body with them later. 3068 if (!isProto) { 3069 Func->setIsMaterializable(true); 3070 FunctionsWithBodies.push_back(Func); 3071 DeferredFunctionInfo[Func] = 0; 3072 } 3073 return Error::success(); 3074 } 3075 3076 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3077 unsigned BitCode, ArrayRef<uint64_t> Record) { 3078 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3079 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3080 // dllstorageclass, threadlocal, unnamed_addr, 3081 // preemption specifier] (name in VST) 3082 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3083 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3084 // preemption specifier] (name in VST) 3085 // v2: [strtab_offset, strtab_size, v1] 3086 StringRef Name; 3087 std::tie(Name, Record) = readNameFromStrtab(Record); 3088 3089 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3090 if (Record.size() < (3 + (unsigned)NewRecord)) 3091 return error("Invalid record"); 3092 unsigned OpNum = 0; 3093 Type *Ty = getTypeByID(Record[OpNum++]); 3094 if (!Ty) 3095 return error("Invalid record"); 3096 3097 unsigned AddrSpace; 3098 if (!NewRecord) { 3099 auto *PTy = dyn_cast<PointerType>(Ty); 3100 if (!PTy) 3101 return error("Invalid type for value"); 3102 Ty = PTy->getElementType(); 3103 AddrSpace = PTy->getAddressSpace(); 3104 } else { 3105 AddrSpace = Record[OpNum++]; 3106 } 3107 3108 auto Val = Record[OpNum++]; 3109 auto Linkage = Record[OpNum++]; 3110 GlobalIndirectSymbol *NewGA; 3111 if (BitCode == bitc::MODULE_CODE_ALIAS || 3112 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3113 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3114 TheModule); 3115 else 3116 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3117 nullptr, TheModule); 3118 // Old bitcode files didn't have visibility field. 3119 // Local linkage must have default visibility. 3120 if (OpNum != Record.size()) { 3121 auto VisInd = OpNum++; 3122 if (!NewGA->hasLocalLinkage()) 3123 // FIXME: Change to an error if non-default in 4.0. 3124 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3125 } 3126 if (BitCode == bitc::MODULE_CODE_ALIAS || 3127 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3128 if (OpNum != Record.size()) 3129 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3130 else 3131 upgradeDLLImportExportLinkage(NewGA, Linkage); 3132 if (OpNum != Record.size()) 3133 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3134 if (OpNum != Record.size()) 3135 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3136 } 3137 if (OpNum != Record.size()) 3138 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3139 inferDSOLocal(NewGA); 3140 3141 ValueList.push_back(NewGA); 3142 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3143 return Error::success(); 3144 } 3145 3146 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3147 bool ShouldLazyLoadMetadata) { 3148 if (ResumeBit) 3149 Stream.JumpToBit(ResumeBit); 3150 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3151 return error("Invalid record"); 3152 3153 SmallVector<uint64_t, 64> Record; 3154 3155 // Read all the records for this module. 3156 while (true) { 3157 BitstreamEntry Entry = Stream.advance(); 3158 3159 switch (Entry.Kind) { 3160 case BitstreamEntry::Error: 3161 return error("Malformed block"); 3162 case BitstreamEntry::EndBlock: 3163 return globalCleanup(); 3164 3165 case BitstreamEntry::SubBlock: 3166 switch (Entry.ID) { 3167 default: // Skip unknown content. 3168 if (Stream.SkipBlock()) 3169 return error("Invalid record"); 3170 break; 3171 case bitc::BLOCKINFO_BLOCK_ID: 3172 if (readBlockInfo()) 3173 return error("Malformed block"); 3174 break; 3175 case bitc::PARAMATTR_BLOCK_ID: 3176 if (Error Err = parseAttributeBlock()) 3177 return Err; 3178 break; 3179 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3180 if (Error Err = parseAttributeGroupBlock()) 3181 return Err; 3182 break; 3183 case bitc::TYPE_BLOCK_ID_NEW: 3184 if (Error Err = parseTypeTable()) 3185 return Err; 3186 break; 3187 case bitc::VALUE_SYMTAB_BLOCK_ID: 3188 if (!SeenValueSymbolTable) { 3189 // Either this is an old form VST without function index and an 3190 // associated VST forward declaration record (which would have caused 3191 // the VST to be jumped to and parsed before it was encountered 3192 // normally in the stream), or there were no function blocks to 3193 // trigger an earlier parsing of the VST. 3194 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3195 if (Error Err = parseValueSymbolTable()) 3196 return Err; 3197 SeenValueSymbolTable = true; 3198 } else { 3199 // We must have had a VST forward declaration record, which caused 3200 // the parser to jump to and parse the VST earlier. 3201 assert(VSTOffset > 0); 3202 if (Stream.SkipBlock()) 3203 return error("Invalid record"); 3204 } 3205 break; 3206 case bitc::CONSTANTS_BLOCK_ID: 3207 if (Error Err = parseConstants()) 3208 return Err; 3209 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3210 return Err; 3211 break; 3212 case bitc::METADATA_BLOCK_ID: 3213 if (ShouldLazyLoadMetadata) { 3214 if (Error Err = rememberAndSkipMetadata()) 3215 return Err; 3216 break; 3217 } 3218 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3219 if (Error Err = MDLoader->parseModuleMetadata()) 3220 return Err; 3221 break; 3222 case bitc::METADATA_KIND_BLOCK_ID: 3223 if (Error Err = MDLoader->parseMetadataKinds()) 3224 return Err; 3225 break; 3226 case bitc::FUNCTION_BLOCK_ID: 3227 // If this is the first function body we've seen, reverse the 3228 // FunctionsWithBodies list. 3229 if (!SeenFirstFunctionBody) { 3230 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3231 if (Error Err = globalCleanup()) 3232 return Err; 3233 SeenFirstFunctionBody = true; 3234 } 3235 3236 if (VSTOffset > 0) { 3237 // If we have a VST forward declaration record, make sure we 3238 // parse the VST now if we haven't already. It is needed to 3239 // set up the DeferredFunctionInfo vector for lazy reading. 3240 if (!SeenValueSymbolTable) { 3241 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3242 return Err; 3243 SeenValueSymbolTable = true; 3244 // Fall through so that we record the NextUnreadBit below. 3245 // This is necessary in case we have an anonymous function that 3246 // is later materialized. Since it will not have a VST entry we 3247 // need to fall back to the lazy parse to find its offset. 3248 } else { 3249 // If we have a VST forward declaration record, but have already 3250 // parsed the VST (just above, when the first function body was 3251 // encountered here), then we are resuming the parse after 3252 // materializing functions. The ResumeBit points to the 3253 // start of the last function block recorded in the 3254 // DeferredFunctionInfo map. Skip it. 3255 if (Stream.SkipBlock()) 3256 return error("Invalid record"); 3257 continue; 3258 } 3259 } 3260 3261 // Support older bitcode files that did not have the function 3262 // index in the VST, nor a VST forward declaration record, as 3263 // well as anonymous functions that do not have VST entries. 3264 // Build the DeferredFunctionInfo vector on the fly. 3265 if (Error Err = rememberAndSkipFunctionBody()) 3266 return Err; 3267 3268 // Suspend parsing when we reach the function bodies. Subsequent 3269 // materialization calls will resume it when necessary. If the bitcode 3270 // file is old, the symbol table will be at the end instead and will not 3271 // have been seen yet. In this case, just finish the parse now. 3272 if (SeenValueSymbolTable) { 3273 NextUnreadBit = Stream.GetCurrentBitNo(); 3274 // After the VST has been parsed, we need to make sure intrinsic name 3275 // are auto-upgraded. 3276 return globalCleanup(); 3277 } 3278 break; 3279 case bitc::USELIST_BLOCK_ID: 3280 if (Error Err = parseUseLists()) 3281 return Err; 3282 break; 3283 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3284 if (Error Err = parseOperandBundleTags()) 3285 return Err; 3286 break; 3287 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3288 if (Error Err = parseSyncScopeNames()) 3289 return Err; 3290 break; 3291 } 3292 continue; 3293 3294 case BitstreamEntry::Record: 3295 // The interesting case. 3296 break; 3297 } 3298 3299 // Read a record. 3300 auto BitCode = Stream.readRecord(Entry.ID, Record); 3301 switch (BitCode) { 3302 default: break; // Default behavior, ignore unknown content. 3303 case bitc::MODULE_CODE_VERSION: { 3304 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3305 if (!VersionOrErr) 3306 return VersionOrErr.takeError(); 3307 UseRelativeIDs = *VersionOrErr >= 1; 3308 break; 3309 } 3310 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3311 std::string S; 3312 if (convertToString(Record, 0, S)) 3313 return error("Invalid record"); 3314 TheModule->setTargetTriple(S); 3315 break; 3316 } 3317 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3318 std::string S; 3319 if (convertToString(Record, 0, S)) 3320 return error("Invalid record"); 3321 TheModule->setDataLayout(S); 3322 break; 3323 } 3324 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3325 std::string S; 3326 if (convertToString(Record, 0, S)) 3327 return error("Invalid record"); 3328 TheModule->setModuleInlineAsm(S); 3329 break; 3330 } 3331 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3332 // FIXME: Remove in 4.0. 3333 std::string S; 3334 if (convertToString(Record, 0, S)) 3335 return error("Invalid record"); 3336 // Ignore value. 3337 break; 3338 } 3339 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3340 std::string S; 3341 if (convertToString(Record, 0, S)) 3342 return error("Invalid record"); 3343 SectionTable.push_back(S); 3344 break; 3345 } 3346 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3347 std::string S; 3348 if (convertToString(Record, 0, S)) 3349 return error("Invalid record"); 3350 GCTable.push_back(S); 3351 break; 3352 } 3353 case bitc::MODULE_CODE_COMDAT: 3354 if (Error Err = parseComdatRecord(Record)) 3355 return Err; 3356 break; 3357 case bitc::MODULE_CODE_GLOBALVAR: 3358 if (Error Err = parseGlobalVarRecord(Record)) 3359 return Err; 3360 break; 3361 case bitc::MODULE_CODE_FUNCTION: 3362 if (Error Err = parseFunctionRecord(Record)) 3363 return Err; 3364 break; 3365 case bitc::MODULE_CODE_IFUNC: 3366 case bitc::MODULE_CODE_ALIAS: 3367 case bitc::MODULE_CODE_ALIAS_OLD: 3368 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3369 return Err; 3370 break; 3371 /// MODULE_CODE_VSTOFFSET: [offset] 3372 case bitc::MODULE_CODE_VSTOFFSET: 3373 if (Record.size() < 1) 3374 return error("Invalid record"); 3375 // Note that we subtract 1 here because the offset is relative to one word 3376 // before the start of the identification or module block, which was 3377 // historically always the start of the regular bitcode header. 3378 VSTOffset = Record[0] - 1; 3379 break; 3380 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3381 case bitc::MODULE_CODE_SOURCE_FILENAME: 3382 SmallString<128> ValueName; 3383 if (convertToString(Record, 0, ValueName)) 3384 return error("Invalid record"); 3385 TheModule->setSourceFileName(ValueName); 3386 break; 3387 } 3388 Record.clear(); 3389 } 3390 } 3391 3392 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3393 bool IsImporting) { 3394 TheModule = M; 3395 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3396 [&](unsigned ID) { return getTypeByID(ID); }); 3397 return parseModule(0, ShouldLazyLoadMetadata); 3398 } 3399 3400 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3401 if (!isa<PointerType>(PtrType)) 3402 return error("Load/Store operand is not a pointer type"); 3403 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3404 3405 if (ValType && ValType != ElemType) 3406 return error("Explicit load/store type does not match pointee " 3407 "type of pointer operand"); 3408 if (!PointerType::isLoadableOrStorableType(ElemType)) 3409 return error("Cannot load/store from pointer"); 3410 return Error::success(); 3411 } 3412 3413 /// Lazily parse the specified function body block. 3414 Error BitcodeReader::parseFunctionBody(Function *F) { 3415 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3416 return error("Invalid record"); 3417 3418 // Unexpected unresolved metadata when parsing function. 3419 if (MDLoader->hasFwdRefs()) 3420 return error("Invalid function metadata: incoming forward references"); 3421 3422 InstructionList.clear(); 3423 unsigned ModuleValueListSize = ValueList.size(); 3424 unsigned ModuleMDLoaderSize = MDLoader->size(); 3425 3426 // Add all the function arguments to the value table. 3427 for (Argument &I : F->args()) 3428 ValueList.push_back(&I); 3429 3430 unsigned NextValueNo = ValueList.size(); 3431 BasicBlock *CurBB = nullptr; 3432 unsigned CurBBNo = 0; 3433 3434 DebugLoc LastLoc; 3435 auto getLastInstruction = [&]() -> Instruction * { 3436 if (CurBB && !CurBB->empty()) 3437 return &CurBB->back(); 3438 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3439 !FunctionBBs[CurBBNo - 1]->empty()) 3440 return &FunctionBBs[CurBBNo - 1]->back(); 3441 return nullptr; 3442 }; 3443 3444 std::vector<OperandBundleDef> OperandBundles; 3445 3446 // Read all the records. 3447 SmallVector<uint64_t, 64> Record; 3448 3449 while (true) { 3450 BitstreamEntry Entry = Stream.advance(); 3451 3452 switch (Entry.Kind) { 3453 case BitstreamEntry::Error: 3454 return error("Malformed block"); 3455 case BitstreamEntry::EndBlock: 3456 goto OutOfRecordLoop; 3457 3458 case BitstreamEntry::SubBlock: 3459 switch (Entry.ID) { 3460 default: // Skip unknown content. 3461 if (Stream.SkipBlock()) 3462 return error("Invalid record"); 3463 break; 3464 case bitc::CONSTANTS_BLOCK_ID: 3465 if (Error Err = parseConstants()) 3466 return Err; 3467 NextValueNo = ValueList.size(); 3468 break; 3469 case bitc::VALUE_SYMTAB_BLOCK_ID: 3470 if (Error Err = parseValueSymbolTable()) 3471 return Err; 3472 break; 3473 case bitc::METADATA_ATTACHMENT_ID: 3474 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3475 return Err; 3476 break; 3477 case bitc::METADATA_BLOCK_ID: 3478 assert(DeferredMetadataInfo.empty() && 3479 "Must read all module-level metadata before function-level"); 3480 if (Error Err = MDLoader->parseFunctionMetadata()) 3481 return Err; 3482 break; 3483 case bitc::USELIST_BLOCK_ID: 3484 if (Error Err = parseUseLists()) 3485 return Err; 3486 break; 3487 } 3488 continue; 3489 3490 case BitstreamEntry::Record: 3491 // The interesting case. 3492 break; 3493 } 3494 3495 // Read a record. 3496 Record.clear(); 3497 Instruction *I = nullptr; 3498 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3499 switch (BitCode) { 3500 default: // Default behavior: reject 3501 return error("Invalid value"); 3502 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3503 if (Record.size() < 1 || Record[0] == 0) 3504 return error("Invalid record"); 3505 // Create all the basic blocks for the function. 3506 FunctionBBs.resize(Record[0]); 3507 3508 // See if anything took the address of blocks in this function. 3509 auto BBFRI = BasicBlockFwdRefs.find(F); 3510 if (BBFRI == BasicBlockFwdRefs.end()) { 3511 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3512 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3513 } else { 3514 auto &BBRefs = BBFRI->second; 3515 // Check for invalid basic block references. 3516 if (BBRefs.size() > FunctionBBs.size()) 3517 return error("Invalid ID"); 3518 assert(!BBRefs.empty() && "Unexpected empty array"); 3519 assert(!BBRefs.front() && "Invalid reference to entry block"); 3520 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3521 ++I) 3522 if (I < RE && BBRefs[I]) { 3523 BBRefs[I]->insertInto(F); 3524 FunctionBBs[I] = BBRefs[I]; 3525 } else { 3526 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3527 } 3528 3529 // Erase from the table. 3530 BasicBlockFwdRefs.erase(BBFRI); 3531 } 3532 3533 CurBB = FunctionBBs[0]; 3534 continue; 3535 } 3536 3537 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3538 // This record indicates that the last instruction is at the same 3539 // location as the previous instruction with a location. 3540 I = getLastInstruction(); 3541 3542 if (!I) 3543 return error("Invalid record"); 3544 I->setDebugLoc(LastLoc); 3545 I = nullptr; 3546 continue; 3547 3548 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3549 I = getLastInstruction(); 3550 if (!I || Record.size() < 4) 3551 return error("Invalid record"); 3552 3553 unsigned Line = Record[0], Col = Record[1]; 3554 unsigned ScopeID = Record[2], IAID = Record[3]; 3555 bool isImplicitCode = Record.size() == 5 && Record[4]; 3556 3557 MDNode *Scope = nullptr, *IA = nullptr; 3558 if (ScopeID) { 3559 Scope = dyn_cast_or_null<MDNode>( 3560 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3561 if (!Scope) 3562 return error("Invalid record"); 3563 } 3564 if (IAID) { 3565 IA = dyn_cast_or_null<MDNode>( 3566 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3567 if (!IA) 3568 return error("Invalid record"); 3569 } 3570 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3571 I->setDebugLoc(LastLoc); 3572 I = nullptr; 3573 continue; 3574 } 3575 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3576 unsigned OpNum = 0; 3577 Value *LHS; 3578 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3579 OpNum+1 > Record.size()) 3580 return error("Invalid record"); 3581 3582 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3583 if (Opc == -1) 3584 return error("Invalid record"); 3585 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3586 InstructionList.push_back(I); 3587 if (OpNum < Record.size()) { 3588 if (isa<FPMathOperator>(I)) { 3589 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3590 if (FMF.any()) 3591 I->setFastMathFlags(FMF); 3592 } 3593 } 3594 break; 3595 } 3596 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3597 unsigned OpNum = 0; 3598 Value *LHS, *RHS; 3599 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3600 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3601 OpNum+1 > Record.size()) 3602 return error("Invalid record"); 3603 3604 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3605 if (Opc == -1) 3606 return error("Invalid record"); 3607 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3608 InstructionList.push_back(I); 3609 if (OpNum < Record.size()) { 3610 if (Opc == Instruction::Add || 3611 Opc == Instruction::Sub || 3612 Opc == Instruction::Mul || 3613 Opc == Instruction::Shl) { 3614 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3615 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3616 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3617 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3618 } else if (Opc == Instruction::SDiv || 3619 Opc == Instruction::UDiv || 3620 Opc == Instruction::LShr || 3621 Opc == Instruction::AShr) { 3622 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3623 cast<BinaryOperator>(I)->setIsExact(true); 3624 } else if (isa<FPMathOperator>(I)) { 3625 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3626 if (FMF.any()) 3627 I->setFastMathFlags(FMF); 3628 } 3629 3630 } 3631 break; 3632 } 3633 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3634 unsigned OpNum = 0; 3635 Value *Op; 3636 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3637 OpNum+2 != Record.size()) 3638 return error("Invalid record"); 3639 3640 Type *ResTy = getTypeByID(Record[OpNum]); 3641 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3642 if (Opc == -1 || !ResTy) 3643 return error("Invalid record"); 3644 Instruction *Temp = nullptr; 3645 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3646 if (Temp) { 3647 InstructionList.push_back(Temp); 3648 CurBB->getInstList().push_back(Temp); 3649 } 3650 } else { 3651 auto CastOp = (Instruction::CastOps)Opc; 3652 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3653 return error("Invalid cast"); 3654 I = CastInst::Create(CastOp, Op, ResTy); 3655 } 3656 InstructionList.push_back(I); 3657 break; 3658 } 3659 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3660 case bitc::FUNC_CODE_INST_GEP_OLD: 3661 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3662 unsigned OpNum = 0; 3663 3664 Type *Ty; 3665 bool InBounds; 3666 3667 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3668 InBounds = Record[OpNum++]; 3669 Ty = getTypeByID(Record[OpNum++]); 3670 } else { 3671 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3672 Ty = nullptr; 3673 } 3674 3675 Value *BasePtr; 3676 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3677 return error("Invalid record"); 3678 3679 if (!Ty) 3680 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3681 ->getElementType(); 3682 else if (Ty != 3683 cast<PointerType>(BasePtr->getType()->getScalarType()) 3684 ->getElementType()) 3685 return error( 3686 "Explicit gep type does not match pointee type of pointer operand"); 3687 3688 SmallVector<Value*, 16> GEPIdx; 3689 while (OpNum != Record.size()) { 3690 Value *Op; 3691 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3692 return error("Invalid record"); 3693 GEPIdx.push_back(Op); 3694 } 3695 3696 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3697 3698 InstructionList.push_back(I); 3699 if (InBounds) 3700 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3701 break; 3702 } 3703 3704 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3705 // EXTRACTVAL: [opty, opval, n x indices] 3706 unsigned OpNum = 0; 3707 Value *Agg; 3708 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3709 return error("Invalid record"); 3710 3711 unsigned RecSize = Record.size(); 3712 if (OpNum == RecSize) 3713 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3714 3715 SmallVector<unsigned, 4> EXTRACTVALIdx; 3716 Type *CurTy = Agg->getType(); 3717 for (; OpNum != RecSize; ++OpNum) { 3718 bool IsArray = CurTy->isArrayTy(); 3719 bool IsStruct = CurTy->isStructTy(); 3720 uint64_t Index = Record[OpNum]; 3721 3722 if (!IsStruct && !IsArray) 3723 return error("EXTRACTVAL: Invalid type"); 3724 if ((unsigned)Index != Index) 3725 return error("Invalid value"); 3726 if (IsStruct && Index >= CurTy->getStructNumElements()) 3727 return error("EXTRACTVAL: Invalid struct index"); 3728 if (IsArray && Index >= CurTy->getArrayNumElements()) 3729 return error("EXTRACTVAL: Invalid array index"); 3730 EXTRACTVALIdx.push_back((unsigned)Index); 3731 3732 if (IsStruct) 3733 CurTy = CurTy->getStructElementType(Index); 3734 else 3735 CurTy = CurTy->getArrayElementType(); 3736 } 3737 3738 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3739 InstructionList.push_back(I); 3740 break; 3741 } 3742 3743 case bitc::FUNC_CODE_INST_INSERTVAL: { 3744 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3745 unsigned OpNum = 0; 3746 Value *Agg; 3747 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3748 return error("Invalid record"); 3749 Value *Val; 3750 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3751 return error("Invalid record"); 3752 3753 unsigned RecSize = Record.size(); 3754 if (OpNum == RecSize) 3755 return error("INSERTVAL: Invalid instruction with 0 indices"); 3756 3757 SmallVector<unsigned, 4> INSERTVALIdx; 3758 Type *CurTy = Agg->getType(); 3759 for (; OpNum != RecSize; ++OpNum) { 3760 bool IsArray = CurTy->isArrayTy(); 3761 bool IsStruct = CurTy->isStructTy(); 3762 uint64_t Index = Record[OpNum]; 3763 3764 if (!IsStruct && !IsArray) 3765 return error("INSERTVAL: Invalid type"); 3766 if ((unsigned)Index != Index) 3767 return error("Invalid value"); 3768 if (IsStruct && Index >= CurTy->getStructNumElements()) 3769 return error("INSERTVAL: Invalid struct index"); 3770 if (IsArray && Index >= CurTy->getArrayNumElements()) 3771 return error("INSERTVAL: Invalid array index"); 3772 3773 INSERTVALIdx.push_back((unsigned)Index); 3774 if (IsStruct) 3775 CurTy = CurTy->getStructElementType(Index); 3776 else 3777 CurTy = CurTy->getArrayElementType(); 3778 } 3779 3780 if (CurTy != Val->getType()) 3781 return error("Inserted value type doesn't match aggregate type"); 3782 3783 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3784 InstructionList.push_back(I); 3785 break; 3786 } 3787 3788 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3789 // obsolete form of select 3790 // handles select i1 ... in old bitcode 3791 unsigned OpNum = 0; 3792 Value *TrueVal, *FalseVal, *Cond; 3793 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3794 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3795 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3796 return error("Invalid record"); 3797 3798 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3799 InstructionList.push_back(I); 3800 break; 3801 } 3802 3803 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3804 // new form of select 3805 // handles select i1 or select [N x i1] 3806 unsigned OpNum = 0; 3807 Value *TrueVal, *FalseVal, *Cond; 3808 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3809 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3810 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3811 return error("Invalid record"); 3812 3813 // select condition can be either i1 or [N x i1] 3814 if (VectorType* vector_type = 3815 dyn_cast<VectorType>(Cond->getType())) { 3816 // expect <n x i1> 3817 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3818 return error("Invalid type for value"); 3819 } else { 3820 // expect i1 3821 if (Cond->getType() != Type::getInt1Ty(Context)) 3822 return error("Invalid type for value"); 3823 } 3824 3825 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3826 InstructionList.push_back(I); 3827 break; 3828 } 3829 3830 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3831 unsigned OpNum = 0; 3832 Value *Vec, *Idx; 3833 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3834 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3835 return error("Invalid record"); 3836 if (!Vec->getType()->isVectorTy()) 3837 return error("Invalid type for value"); 3838 I = ExtractElementInst::Create(Vec, Idx); 3839 InstructionList.push_back(I); 3840 break; 3841 } 3842 3843 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3844 unsigned OpNum = 0; 3845 Value *Vec, *Elt, *Idx; 3846 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3847 return error("Invalid record"); 3848 if (!Vec->getType()->isVectorTy()) 3849 return error("Invalid type for value"); 3850 if (popValue(Record, OpNum, NextValueNo, 3851 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3852 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3853 return error("Invalid record"); 3854 I = InsertElementInst::Create(Vec, Elt, Idx); 3855 InstructionList.push_back(I); 3856 break; 3857 } 3858 3859 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3860 unsigned OpNum = 0; 3861 Value *Vec1, *Vec2, *Mask; 3862 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3863 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3864 return error("Invalid record"); 3865 3866 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3867 return error("Invalid record"); 3868 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3869 return error("Invalid type for value"); 3870 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3871 InstructionList.push_back(I); 3872 break; 3873 } 3874 3875 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3876 // Old form of ICmp/FCmp returning bool 3877 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3878 // both legal on vectors but had different behaviour. 3879 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3880 // FCmp/ICmp returning bool or vector of bool 3881 3882 unsigned OpNum = 0; 3883 Value *LHS, *RHS; 3884 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3885 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3886 return error("Invalid record"); 3887 3888 unsigned PredVal = Record[OpNum]; 3889 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3890 FastMathFlags FMF; 3891 if (IsFP && Record.size() > OpNum+1) 3892 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3893 3894 if (OpNum+1 != Record.size()) 3895 return error("Invalid record"); 3896 3897 if (LHS->getType()->isFPOrFPVectorTy()) 3898 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3899 else 3900 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3901 3902 if (FMF.any()) 3903 I->setFastMathFlags(FMF); 3904 InstructionList.push_back(I); 3905 break; 3906 } 3907 3908 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3909 { 3910 unsigned Size = Record.size(); 3911 if (Size == 0) { 3912 I = ReturnInst::Create(Context); 3913 InstructionList.push_back(I); 3914 break; 3915 } 3916 3917 unsigned OpNum = 0; 3918 Value *Op = nullptr; 3919 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3920 return error("Invalid record"); 3921 if (OpNum != Record.size()) 3922 return error("Invalid record"); 3923 3924 I = ReturnInst::Create(Context, Op); 3925 InstructionList.push_back(I); 3926 break; 3927 } 3928 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3929 if (Record.size() != 1 && Record.size() != 3) 3930 return error("Invalid record"); 3931 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3932 if (!TrueDest) 3933 return error("Invalid record"); 3934 3935 if (Record.size() == 1) { 3936 I = BranchInst::Create(TrueDest); 3937 InstructionList.push_back(I); 3938 } 3939 else { 3940 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3941 Value *Cond = getValue(Record, 2, NextValueNo, 3942 Type::getInt1Ty(Context)); 3943 if (!FalseDest || !Cond) 3944 return error("Invalid record"); 3945 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3946 InstructionList.push_back(I); 3947 } 3948 break; 3949 } 3950 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3951 if (Record.size() != 1 && Record.size() != 2) 3952 return error("Invalid record"); 3953 unsigned Idx = 0; 3954 Value *CleanupPad = 3955 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3956 if (!CleanupPad) 3957 return error("Invalid record"); 3958 BasicBlock *UnwindDest = nullptr; 3959 if (Record.size() == 2) { 3960 UnwindDest = getBasicBlock(Record[Idx++]); 3961 if (!UnwindDest) 3962 return error("Invalid record"); 3963 } 3964 3965 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3966 InstructionList.push_back(I); 3967 break; 3968 } 3969 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3970 if (Record.size() != 2) 3971 return error("Invalid record"); 3972 unsigned Idx = 0; 3973 Value *CatchPad = 3974 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3975 if (!CatchPad) 3976 return error("Invalid record"); 3977 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3978 if (!BB) 3979 return error("Invalid record"); 3980 3981 I = CatchReturnInst::Create(CatchPad, BB); 3982 InstructionList.push_back(I); 3983 break; 3984 } 3985 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3986 // We must have, at minimum, the outer scope and the number of arguments. 3987 if (Record.size() < 2) 3988 return error("Invalid record"); 3989 3990 unsigned Idx = 0; 3991 3992 Value *ParentPad = 3993 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3994 3995 unsigned NumHandlers = Record[Idx++]; 3996 3997 SmallVector<BasicBlock *, 2> Handlers; 3998 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3999 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4000 if (!BB) 4001 return error("Invalid record"); 4002 Handlers.push_back(BB); 4003 } 4004 4005 BasicBlock *UnwindDest = nullptr; 4006 if (Idx + 1 == Record.size()) { 4007 UnwindDest = getBasicBlock(Record[Idx++]); 4008 if (!UnwindDest) 4009 return error("Invalid record"); 4010 } 4011 4012 if (Record.size() != Idx) 4013 return error("Invalid record"); 4014 4015 auto *CatchSwitch = 4016 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4017 for (BasicBlock *Handler : Handlers) 4018 CatchSwitch->addHandler(Handler); 4019 I = CatchSwitch; 4020 InstructionList.push_back(I); 4021 break; 4022 } 4023 case bitc::FUNC_CODE_INST_CATCHPAD: 4024 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4025 // We must have, at minimum, the outer scope and the number of arguments. 4026 if (Record.size() < 2) 4027 return error("Invalid record"); 4028 4029 unsigned Idx = 0; 4030 4031 Value *ParentPad = 4032 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4033 4034 unsigned NumArgOperands = Record[Idx++]; 4035 4036 SmallVector<Value *, 2> Args; 4037 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4038 Value *Val; 4039 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4040 return error("Invalid record"); 4041 Args.push_back(Val); 4042 } 4043 4044 if (Record.size() != Idx) 4045 return error("Invalid record"); 4046 4047 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4048 I = CleanupPadInst::Create(ParentPad, Args); 4049 else 4050 I = CatchPadInst::Create(ParentPad, Args); 4051 InstructionList.push_back(I); 4052 break; 4053 } 4054 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4055 // Check magic 4056 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4057 // "New" SwitchInst format with case ranges. The changes to write this 4058 // format were reverted but we still recognize bitcode that uses it. 4059 // Hopefully someday we will have support for case ranges and can use 4060 // this format again. 4061 4062 Type *OpTy = getTypeByID(Record[1]); 4063 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4064 4065 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4066 BasicBlock *Default = getBasicBlock(Record[3]); 4067 if (!OpTy || !Cond || !Default) 4068 return error("Invalid record"); 4069 4070 unsigned NumCases = Record[4]; 4071 4072 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4073 InstructionList.push_back(SI); 4074 4075 unsigned CurIdx = 5; 4076 for (unsigned i = 0; i != NumCases; ++i) { 4077 SmallVector<ConstantInt*, 1> CaseVals; 4078 unsigned NumItems = Record[CurIdx++]; 4079 for (unsigned ci = 0; ci != NumItems; ++ci) { 4080 bool isSingleNumber = Record[CurIdx++]; 4081 4082 APInt Low; 4083 unsigned ActiveWords = 1; 4084 if (ValueBitWidth > 64) 4085 ActiveWords = Record[CurIdx++]; 4086 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4087 ValueBitWidth); 4088 CurIdx += ActiveWords; 4089 4090 if (!isSingleNumber) { 4091 ActiveWords = 1; 4092 if (ValueBitWidth > 64) 4093 ActiveWords = Record[CurIdx++]; 4094 APInt High = readWideAPInt( 4095 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4096 CurIdx += ActiveWords; 4097 4098 // FIXME: It is not clear whether values in the range should be 4099 // compared as signed or unsigned values. The partially 4100 // implemented changes that used this format in the past used 4101 // unsigned comparisons. 4102 for ( ; Low.ule(High); ++Low) 4103 CaseVals.push_back(ConstantInt::get(Context, Low)); 4104 } else 4105 CaseVals.push_back(ConstantInt::get(Context, Low)); 4106 } 4107 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4108 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4109 cve = CaseVals.end(); cvi != cve; ++cvi) 4110 SI->addCase(*cvi, DestBB); 4111 } 4112 I = SI; 4113 break; 4114 } 4115 4116 // Old SwitchInst format without case ranges. 4117 4118 if (Record.size() < 3 || (Record.size() & 1) == 0) 4119 return error("Invalid record"); 4120 Type *OpTy = getTypeByID(Record[0]); 4121 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4122 BasicBlock *Default = getBasicBlock(Record[2]); 4123 if (!OpTy || !Cond || !Default) 4124 return error("Invalid record"); 4125 unsigned NumCases = (Record.size()-3)/2; 4126 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4127 InstructionList.push_back(SI); 4128 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4129 ConstantInt *CaseVal = 4130 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4131 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4132 if (!CaseVal || !DestBB) { 4133 delete SI; 4134 return error("Invalid record"); 4135 } 4136 SI->addCase(CaseVal, DestBB); 4137 } 4138 I = SI; 4139 break; 4140 } 4141 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4142 if (Record.size() < 2) 4143 return error("Invalid record"); 4144 Type *OpTy = getTypeByID(Record[0]); 4145 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4146 if (!OpTy || !Address) 4147 return error("Invalid record"); 4148 unsigned NumDests = Record.size()-2; 4149 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4150 InstructionList.push_back(IBI); 4151 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4152 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4153 IBI->addDestination(DestBB); 4154 } else { 4155 delete IBI; 4156 return error("Invalid record"); 4157 } 4158 } 4159 I = IBI; 4160 break; 4161 } 4162 4163 case bitc::FUNC_CODE_INST_INVOKE: { 4164 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4165 if (Record.size() < 4) 4166 return error("Invalid record"); 4167 unsigned OpNum = 0; 4168 AttributeList PAL = getAttributes(Record[OpNum++]); 4169 unsigned CCInfo = Record[OpNum++]; 4170 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4171 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4172 4173 FunctionType *FTy = nullptr; 4174 if (CCInfo >> 13 & 1 && 4175 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4176 return error("Explicit invoke type is not a function type"); 4177 4178 Value *Callee; 4179 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4180 return error("Invalid record"); 4181 4182 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4183 if (!CalleeTy) 4184 return error("Callee is not a pointer"); 4185 if (!FTy) { 4186 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4187 if (!FTy) 4188 return error("Callee is not of pointer to function type"); 4189 } else if (CalleeTy->getElementType() != FTy) 4190 return error("Explicit invoke type does not match pointee type of " 4191 "callee operand"); 4192 if (Record.size() < FTy->getNumParams() + OpNum) 4193 return error("Insufficient operands to call"); 4194 4195 SmallVector<Value*, 16> Ops; 4196 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4197 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4198 FTy->getParamType(i))); 4199 if (!Ops.back()) 4200 return error("Invalid record"); 4201 } 4202 4203 if (!FTy->isVarArg()) { 4204 if (Record.size() != OpNum) 4205 return error("Invalid record"); 4206 } else { 4207 // Read type/value pairs for varargs params. 4208 while (OpNum != Record.size()) { 4209 Value *Op; 4210 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4211 return error("Invalid record"); 4212 Ops.push_back(Op); 4213 } 4214 } 4215 4216 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4217 OperandBundles.clear(); 4218 InstructionList.push_back(I); 4219 cast<InvokeInst>(I)->setCallingConv( 4220 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4221 cast<InvokeInst>(I)->setAttributes(PAL); 4222 break; 4223 } 4224 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4225 unsigned Idx = 0; 4226 Value *Val = nullptr; 4227 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4228 return error("Invalid record"); 4229 I = ResumeInst::Create(Val); 4230 InstructionList.push_back(I); 4231 break; 4232 } 4233 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4234 I = new UnreachableInst(Context); 4235 InstructionList.push_back(I); 4236 break; 4237 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4238 if (Record.size() < 1 || ((Record.size()-1)&1)) 4239 return error("Invalid record"); 4240 Type *Ty = getTypeByID(Record[0]); 4241 if (!Ty) 4242 return error("Invalid record"); 4243 4244 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4245 InstructionList.push_back(PN); 4246 4247 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4248 Value *V; 4249 // With the new function encoding, it is possible that operands have 4250 // negative IDs (for forward references). Use a signed VBR 4251 // representation to keep the encoding small. 4252 if (UseRelativeIDs) 4253 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4254 else 4255 V = getValue(Record, 1+i, NextValueNo, Ty); 4256 BasicBlock *BB = getBasicBlock(Record[2+i]); 4257 if (!V || !BB) 4258 return error("Invalid record"); 4259 PN->addIncoming(V, BB); 4260 } 4261 I = PN; 4262 break; 4263 } 4264 4265 case bitc::FUNC_CODE_INST_LANDINGPAD: 4266 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4267 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4268 unsigned Idx = 0; 4269 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4270 if (Record.size() < 3) 4271 return error("Invalid record"); 4272 } else { 4273 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4274 if (Record.size() < 4) 4275 return error("Invalid record"); 4276 } 4277 Type *Ty = getTypeByID(Record[Idx++]); 4278 if (!Ty) 4279 return error("Invalid record"); 4280 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4281 Value *PersFn = nullptr; 4282 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4283 return error("Invalid record"); 4284 4285 if (!F->hasPersonalityFn()) 4286 F->setPersonalityFn(cast<Constant>(PersFn)); 4287 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4288 return error("Personality function mismatch"); 4289 } 4290 4291 bool IsCleanup = !!Record[Idx++]; 4292 unsigned NumClauses = Record[Idx++]; 4293 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4294 LP->setCleanup(IsCleanup); 4295 for (unsigned J = 0; J != NumClauses; ++J) { 4296 LandingPadInst::ClauseType CT = 4297 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4298 Value *Val; 4299 4300 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4301 delete LP; 4302 return error("Invalid record"); 4303 } 4304 4305 assert((CT != LandingPadInst::Catch || 4306 !isa<ArrayType>(Val->getType())) && 4307 "Catch clause has a invalid type!"); 4308 assert((CT != LandingPadInst::Filter || 4309 isa<ArrayType>(Val->getType())) && 4310 "Filter clause has invalid type!"); 4311 LP->addClause(cast<Constant>(Val)); 4312 } 4313 4314 I = LP; 4315 InstructionList.push_back(I); 4316 break; 4317 } 4318 4319 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4320 if (Record.size() != 4) 4321 return error("Invalid record"); 4322 uint64_t AlignRecord = Record[3]; 4323 const uint64_t InAllocaMask = uint64_t(1) << 5; 4324 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4325 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4326 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4327 SwiftErrorMask; 4328 bool InAlloca = AlignRecord & InAllocaMask; 4329 bool SwiftError = AlignRecord & SwiftErrorMask; 4330 Type *Ty = getTypeByID(Record[0]); 4331 if ((AlignRecord & ExplicitTypeMask) == 0) { 4332 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4333 if (!PTy) 4334 return error("Old-style alloca with a non-pointer type"); 4335 Ty = PTy->getElementType(); 4336 } 4337 Type *OpTy = getTypeByID(Record[1]); 4338 Value *Size = getFnValueByID(Record[2], OpTy); 4339 unsigned Align; 4340 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4341 return Err; 4342 } 4343 if (!Ty || !Size) 4344 return error("Invalid record"); 4345 4346 // FIXME: Make this an optional field. 4347 const DataLayout &DL = TheModule->getDataLayout(); 4348 unsigned AS = DL.getAllocaAddrSpace(); 4349 4350 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4351 AI->setUsedWithInAlloca(InAlloca); 4352 AI->setSwiftError(SwiftError); 4353 I = AI; 4354 InstructionList.push_back(I); 4355 break; 4356 } 4357 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4358 unsigned OpNum = 0; 4359 Value *Op; 4360 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4361 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4362 return error("Invalid record"); 4363 4364 Type *Ty = nullptr; 4365 if (OpNum + 3 == Record.size()) 4366 Ty = getTypeByID(Record[OpNum++]); 4367 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4368 return Err; 4369 if (!Ty) 4370 Ty = cast<PointerType>(Op->getType())->getElementType(); 4371 4372 unsigned Align; 4373 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4374 return Err; 4375 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4376 4377 InstructionList.push_back(I); 4378 break; 4379 } 4380 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4381 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4382 unsigned OpNum = 0; 4383 Value *Op; 4384 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4385 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4386 return error("Invalid record"); 4387 4388 Type *Ty = nullptr; 4389 if (OpNum + 5 == Record.size()) 4390 Ty = getTypeByID(Record[OpNum++]); 4391 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4392 return Err; 4393 if (!Ty) 4394 Ty = cast<PointerType>(Op->getType())->getElementType(); 4395 4396 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4397 if (Ordering == AtomicOrdering::NotAtomic || 4398 Ordering == AtomicOrdering::Release || 4399 Ordering == AtomicOrdering::AcquireRelease) 4400 return error("Invalid record"); 4401 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4402 return error("Invalid record"); 4403 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4404 4405 unsigned Align; 4406 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4407 return Err; 4408 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID); 4409 4410 InstructionList.push_back(I); 4411 break; 4412 } 4413 case bitc::FUNC_CODE_INST_STORE: 4414 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4415 unsigned OpNum = 0; 4416 Value *Val, *Ptr; 4417 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4418 (BitCode == bitc::FUNC_CODE_INST_STORE 4419 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4420 : popValue(Record, OpNum, NextValueNo, 4421 cast<PointerType>(Ptr->getType())->getElementType(), 4422 Val)) || 4423 OpNum + 2 != Record.size()) 4424 return error("Invalid record"); 4425 4426 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4427 return Err; 4428 unsigned Align; 4429 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4430 return Err; 4431 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4432 InstructionList.push_back(I); 4433 break; 4434 } 4435 case bitc::FUNC_CODE_INST_STOREATOMIC: 4436 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4437 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4438 unsigned OpNum = 0; 4439 Value *Val, *Ptr; 4440 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4441 !isa<PointerType>(Ptr->getType()) || 4442 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4443 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4444 : popValue(Record, OpNum, NextValueNo, 4445 cast<PointerType>(Ptr->getType())->getElementType(), 4446 Val)) || 4447 OpNum + 4 != Record.size()) 4448 return error("Invalid record"); 4449 4450 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4451 return Err; 4452 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4453 if (Ordering == AtomicOrdering::NotAtomic || 4454 Ordering == AtomicOrdering::Acquire || 4455 Ordering == AtomicOrdering::AcquireRelease) 4456 return error("Invalid record"); 4457 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4458 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4459 return error("Invalid record"); 4460 4461 unsigned Align; 4462 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4463 return Err; 4464 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4465 InstructionList.push_back(I); 4466 break; 4467 } 4468 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4469 case bitc::FUNC_CODE_INST_CMPXCHG: { 4470 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4471 // failureordering?, isweak?] 4472 unsigned OpNum = 0; 4473 Value *Ptr, *Cmp, *New; 4474 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4475 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4476 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4477 : popValue(Record, OpNum, NextValueNo, 4478 cast<PointerType>(Ptr->getType())->getElementType(), 4479 Cmp)) || 4480 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4481 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4482 return error("Invalid record"); 4483 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4484 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4485 SuccessOrdering == AtomicOrdering::Unordered) 4486 return error("Invalid record"); 4487 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4488 4489 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4490 return Err; 4491 AtomicOrdering FailureOrdering; 4492 if (Record.size() < 7) 4493 FailureOrdering = 4494 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4495 else 4496 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4497 4498 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4499 SSID); 4500 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4501 4502 if (Record.size() < 8) { 4503 // Before weak cmpxchgs existed, the instruction simply returned the 4504 // value loaded from memory, so bitcode files from that era will be 4505 // expecting the first component of a modern cmpxchg. 4506 CurBB->getInstList().push_back(I); 4507 I = ExtractValueInst::Create(I, 0); 4508 } else { 4509 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4510 } 4511 4512 InstructionList.push_back(I); 4513 break; 4514 } 4515 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4516 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4517 unsigned OpNum = 0; 4518 Value *Ptr, *Val; 4519 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4520 !isa<PointerType>(Ptr->getType()) || 4521 popValue(Record, OpNum, NextValueNo, 4522 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4523 OpNum+4 != Record.size()) 4524 return error("Invalid record"); 4525 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4526 if (Operation < AtomicRMWInst::FIRST_BINOP || 4527 Operation > AtomicRMWInst::LAST_BINOP) 4528 return error("Invalid record"); 4529 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4530 if (Ordering == AtomicOrdering::NotAtomic || 4531 Ordering == AtomicOrdering::Unordered) 4532 return error("Invalid record"); 4533 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4534 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4535 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4536 InstructionList.push_back(I); 4537 break; 4538 } 4539 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4540 if (2 != Record.size()) 4541 return error("Invalid record"); 4542 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4543 if (Ordering == AtomicOrdering::NotAtomic || 4544 Ordering == AtomicOrdering::Unordered || 4545 Ordering == AtomicOrdering::Monotonic) 4546 return error("Invalid record"); 4547 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4548 I = new FenceInst(Context, Ordering, SSID); 4549 InstructionList.push_back(I); 4550 break; 4551 } 4552 case bitc::FUNC_CODE_INST_CALL: { 4553 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4554 if (Record.size() < 3) 4555 return error("Invalid record"); 4556 4557 unsigned OpNum = 0; 4558 AttributeList PAL = getAttributes(Record[OpNum++]); 4559 unsigned CCInfo = Record[OpNum++]; 4560 4561 FastMathFlags FMF; 4562 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4563 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4564 if (!FMF.any()) 4565 return error("Fast math flags indicator set for call with no FMF"); 4566 } 4567 4568 FunctionType *FTy = nullptr; 4569 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4570 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4571 return error("Explicit call type is not a function type"); 4572 4573 Value *Callee; 4574 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4575 return error("Invalid record"); 4576 4577 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4578 if (!OpTy) 4579 return error("Callee is not a pointer type"); 4580 if (!FTy) { 4581 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4582 if (!FTy) 4583 return error("Callee is not of pointer to function type"); 4584 } else if (OpTy->getElementType() != FTy) 4585 return error("Explicit call type does not match pointee type of " 4586 "callee operand"); 4587 if (Record.size() < FTy->getNumParams() + OpNum) 4588 return error("Insufficient operands to call"); 4589 4590 SmallVector<Value*, 16> Args; 4591 // Read the fixed params. 4592 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4593 if (FTy->getParamType(i)->isLabelTy()) 4594 Args.push_back(getBasicBlock(Record[OpNum])); 4595 else 4596 Args.push_back(getValue(Record, OpNum, NextValueNo, 4597 FTy->getParamType(i))); 4598 if (!Args.back()) 4599 return error("Invalid record"); 4600 } 4601 4602 // Read type/value pairs for varargs params. 4603 if (!FTy->isVarArg()) { 4604 if (OpNum != Record.size()) 4605 return error("Invalid record"); 4606 } else { 4607 while (OpNum != Record.size()) { 4608 Value *Op; 4609 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4610 return error("Invalid record"); 4611 Args.push_back(Op); 4612 } 4613 } 4614 4615 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4616 OperandBundles.clear(); 4617 InstructionList.push_back(I); 4618 cast<CallInst>(I)->setCallingConv( 4619 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4620 CallInst::TailCallKind TCK = CallInst::TCK_None; 4621 if (CCInfo & 1 << bitc::CALL_TAIL) 4622 TCK = CallInst::TCK_Tail; 4623 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4624 TCK = CallInst::TCK_MustTail; 4625 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4626 TCK = CallInst::TCK_NoTail; 4627 cast<CallInst>(I)->setTailCallKind(TCK); 4628 cast<CallInst>(I)->setAttributes(PAL); 4629 if (FMF.any()) { 4630 if (!isa<FPMathOperator>(I)) 4631 return error("Fast-math-flags specified for call without " 4632 "floating-point scalar or vector return type"); 4633 I->setFastMathFlags(FMF); 4634 } 4635 break; 4636 } 4637 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4638 if (Record.size() < 3) 4639 return error("Invalid record"); 4640 Type *OpTy = getTypeByID(Record[0]); 4641 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4642 Type *ResTy = getTypeByID(Record[2]); 4643 if (!OpTy || !Op || !ResTy) 4644 return error("Invalid record"); 4645 I = new VAArgInst(Op, ResTy); 4646 InstructionList.push_back(I); 4647 break; 4648 } 4649 4650 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4651 // A call or an invoke can be optionally prefixed with some variable 4652 // number of operand bundle blocks. These blocks are read into 4653 // OperandBundles and consumed at the next call or invoke instruction. 4654 4655 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4656 return error("Invalid record"); 4657 4658 std::vector<Value *> Inputs; 4659 4660 unsigned OpNum = 1; 4661 while (OpNum != Record.size()) { 4662 Value *Op; 4663 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4664 return error("Invalid record"); 4665 Inputs.push_back(Op); 4666 } 4667 4668 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4669 continue; 4670 } 4671 } 4672 4673 // Add instruction to end of current BB. If there is no current BB, reject 4674 // this file. 4675 if (!CurBB) { 4676 I->deleteValue(); 4677 return error("Invalid instruction with no BB"); 4678 } 4679 if (!OperandBundles.empty()) { 4680 I->deleteValue(); 4681 return error("Operand bundles found with no consumer"); 4682 } 4683 CurBB->getInstList().push_back(I); 4684 4685 // If this was a terminator instruction, move to the next block. 4686 if (I->isTerminator()) { 4687 ++CurBBNo; 4688 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4689 } 4690 4691 // Non-void values get registered in the value table for future use. 4692 if (I && !I->getType()->isVoidTy()) 4693 ValueList.assignValue(I, NextValueNo++); 4694 } 4695 4696 OutOfRecordLoop: 4697 4698 if (!OperandBundles.empty()) 4699 return error("Operand bundles found with no consumer"); 4700 4701 // Check the function list for unresolved values. 4702 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4703 if (!A->getParent()) { 4704 // We found at least one unresolved value. Nuke them all to avoid leaks. 4705 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4706 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4707 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4708 delete A; 4709 } 4710 } 4711 return error("Never resolved value found in function"); 4712 } 4713 } 4714 4715 // Unexpected unresolved metadata about to be dropped. 4716 if (MDLoader->hasFwdRefs()) 4717 return error("Invalid function metadata: outgoing forward refs"); 4718 4719 // Trim the value list down to the size it was before we parsed this function. 4720 ValueList.shrinkTo(ModuleValueListSize); 4721 MDLoader->shrinkTo(ModuleMDLoaderSize); 4722 std::vector<BasicBlock*>().swap(FunctionBBs); 4723 return Error::success(); 4724 } 4725 4726 /// Find the function body in the bitcode stream 4727 Error BitcodeReader::findFunctionInStream( 4728 Function *F, 4729 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4730 while (DeferredFunctionInfoIterator->second == 0) { 4731 // This is the fallback handling for the old format bitcode that 4732 // didn't contain the function index in the VST, or when we have 4733 // an anonymous function which would not have a VST entry. 4734 // Assert that we have one of those two cases. 4735 assert(VSTOffset == 0 || !F->hasName()); 4736 // Parse the next body in the stream and set its position in the 4737 // DeferredFunctionInfo map. 4738 if (Error Err = rememberAndSkipFunctionBodies()) 4739 return Err; 4740 } 4741 return Error::success(); 4742 } 4743 4744 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4745 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4746 return SyncScope::ID(Val); 4747 if (Val >= SSIDs.size()) 4748 return SyncScope::System; // Map unknown synchronization scopes to system. 4749 return SSIDs[Val]; 4750 } 4751 4752 //===----------------------------------------------------------------------===// 4753 // GVMaterializer implementation 4754 //===----------------------------------------------------------------------===// 4755 4756 Error BitcodeReader::materialize(GlobalValue *GV) { 4757 Function *F = dyn_cast<Function>(GV); 4758 // If it's not a function or is already material, ignore the request. 4759 if (!F || !F->isMaterializable()) 4760 return Error::success(); 4761 4762 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4763 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4764 // If its position is recorded as 0, its body is somewhere in the stream 4765 // but we haven't seen it yet. 4766 if (DFII->second == 0) 4767 if (Error Err = findFunctionInStream(F, DFII)) 4768 return Err; 4769 4770 // Materialize metadata before parsing any function bodies. 4771 if (Error Err = materializeMetadata()) 4772 return Err; 4773 4774 // Move the bit stream to the saved position of the deferred function body. 4775 Stream.JumpToBit(DFII->second); 4776 4777 if (Error Err = parseFunctionBody(F)) 4778 return Err; 4779 F->setIsMaterializable(false); 4780 4781 if (StripDebugInfo) 4782 stripDebugInfo(*F); 4783 4784 // Upgrade any old intrinsic calls in the function. 4785 for (auto &I : UpgradedIntrinsics) { 4786 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4787 UI != UE;) { 4788 User *U = *UI; 4789 ++UI; 4790 if (CallInst *CI = dyn_cast<CallInst>(U)) 4791 UpgradeIntrinsicCall(CI, I.second); 4792 } 4793 } 4794 4795 // Update calls to the remangled intrinsics 4796 for (auto &I : RemangledIntrinsics) 4797 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4798 UI != UE;) 4799 // Don't expect any other users than call sites 4800 CallSite(*UI++).setCalledFunction(I.second); 4801 4802 // Finish fn->subprogram upgrade for materialized functions. 4803 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4804 F->setSubprogram(SP); 4805 4806 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4807 if (!MDLoader->isStrippingTBAA()) { 4808 for (auto &I : instructions(F)) { 4809 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4810 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4811 continue; 4812 MDLoader->setStripTBAA(true); 4813 stripTBAA(F->getParent()); 4814 } 4815 } 4816 4817 // Bring in any functions that this function forward-referenced via 4818 // blockaddresses. 4819 return materializeForwardReferencedFunctions(); 4820 } 4821 4822 Error BitcodeReader::materializeModule() { 4823 if (Error Err = materializeMetadata()) 4824 return Err; 4825 4826 // Promise to materialize all forward references. 4827 WillMaterializeAllForwardRefs = true; 4828 4829 // Iterate over the module, deserializing any functions that are still on 4830 // disk. 4831 for (Function &F : *TheModule) { 4832 if (Error Err = materialize(&F)) 4833 return Err; 4834 } 4835 // At this point, if there are any function bodies, parse the rest of 4836 // the bits in the module past the last function block we have recorded 4837 // through either lazy scanning or the VST. 4838 if (LastFunctionBlockBit || NextUnreadBit) 4839 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4840 ? LastFunctionBlockBit 4841 : NextUnreadBit)) 4842 return Err; 4843 4844 // Check that all block address forward references got resolved (as we 4845 // promised above). 4846 if (!BasicBlockFwdRefs.empty()) 4847 return error("Never resolved function from blockaddress"); 4848 4849 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4850 // delete the old functions to clean up. We can't do this unless the entire 4851 // module is materialized because there could always be another function body 4852 // with calls to the old function. 4853 for (auto &I : UpgradedIntrinsics) { 4854 for (auto *U : I.first->users()) { 4855 if (CallInst *CI = dyn_cast<CallInst>(U)) 4856 UpgradeIntrinsicCall(CI, I.second); 4857 } 4858 if (!I.first->use_empty()) 4859 I.first->replaceAllUsesWith(I.second); 4860 I.first->eraseFromParent(); 4861 } 4862 UpgradedIntrinsics.clear(); 4863 // Do the same for remangled intrinsics 4864 for (auto &I : RemangledIntrinsics) { 4865 I.first->replaceAllUsesWith(I.second); 4866 I.first->eraseFromParent(); 4867 } 4868 RemangledIntrinsics.clear(); 4869 4870 UpgradeDebugInfo(*TheModule); 4871 4872 UpgradeModuleFlags(*TheModule); 4873 4874 UpgradeRetainReleaseMarker(*TheModule); 4875 4876 return Error::success(); 4877 } 4878 4879 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4880 return IdentifiedStructTypes; 4881 } 4882 4883 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4884 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4885 StringRef ModulePath, unsigned ModuleId) 4886 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4887 ModulePath(ModulePath), ModuleId(ModuleId) {} 4888 4889 void ModuleSummaryIndexBitcodeReader::addThisModule() { 4890 TheIndex.addModule(ModulePath, ModuleId); 4891 } 4892 4893 ModuleSummaryIndex::ModuleInfo * 4894 ModuleSummaryIndexBitcodeReader::getThisModule() { 4895 return TheIndex.getModule(ModulePath); 4896 } 4897 4898 std::pair<ValueInfo, GlobalValue::GUID> 4899 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4900 auto VGI = ValueIdToValueInfoMap[ValueId]; 4901 assert(VGI.first); 4902 return VGI; 4903 } 4904 4905 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4906 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4907 StringRef SourceFileName) { 4908 std::string GlobalId = 4909 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4910 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4911 auto OriginalNameID = ValueGUID; 4912 if (GlobalValue::isLocalLinkage(Linkage)) 4913 OriginalNameID = GlobalValue::getGUID(ValueName); 4914 if (PrintSummaryGUIDs) 4915 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4916 << ValueName << "\n"; 4917 4918 // UseStrtab is false for legacy summary formats and value names are 4919 // created on stack. In that case we save the name in a string saver in 4920 // the index so that the value name can be recorded. 4921 ValueIdToValueInfoMap[ValueID] = std::make_pair( 4922 TheIndex.getOrInsertValueInfo( 4923 ValueGUID, 4924 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 4925 OriginalNameID); 4926 } 4927 4928 // Specialized value symbol table parser used when reading module index 4929 // blocks where we don't actually create global values. The parsed information 4930 // is saved in the bitcode reader for use when later parsing summaries. 4931 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4932 uint64_t Offset, 4933 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4934 // With a strtab the VST is not required to parse the summary. 4935 if (UseStrtab) 4936 return Error::success(); 4937 4938 assert(Offset > 0 && "Expected non-zero VST offset"); 4939 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4940 4941 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4942 return error("Invalid record"); 4943 4944 SmallVector<uint64_t, 64> Record; 4945 4946 // Read all the records for this value table. 4947 SmallString<128> ValueName; 4948 4949 while (true) { 4950 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4951 4952 switch (Entry.Kind) { 4953 case BitstreamEntry::SubBlock: // Handled for us already. 4954 case BitstreamEntry::Error: 4955 return error("Malformed block"); 4956 case BitstreamEntry::EndBlock: 4957 // Done parsing VST, jump back to wherever we came from. 4958 Stream.JumpToBit(CurrentBit); 4959 return Error::success(); 4960 case BitstreamEntry::Record: 4961 // The interesting case. 4962 break; 4963 } 4964 4965 // Read a record. 4966 Record.clear(); 4967 switch (Stream.readRecord(Entry.ID, Record)) { 4968 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4969 break; 4970 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4971 if (convertToString(Record, 1, ValueName)) 4972 return error("Invalid record"); 4973 unsigned ValueID = Record[0]; 4974 assert(!SourceFileName.empty()); 4975 auto VLI = ValueIdToLinkageMap.find(ValueID); 4976 assert(VLI != ValueIdToLinkageMap.end() && 4977 "No linkage found for VST entry?"); 4978 auto Linkage = VLI->second; 4979 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4980 ValueName.clear(); 4981 break; 4982 } 4983 case bitc::VST_CODE_FNENTRY: { 4984 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4985 if (convertToString(Record, 2, ValueName)) 4986 return error("Invalid record"); 4987 unsigned ValueID = Record[0]; 4988 assert(!SourceFileName.empty()); 4989 auto VLI = ValueIdToLinkageMap.find(ValueID); 4990 assert(VLI != ValueIdToLinkageMap.end() && 4991 "No linkage found for VST entry?"); 4992 auto Linkage = VLI->second; 4993 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4994 ValueName.clear(); 4995 break; 4996 } 4997 case bitc::VST_CODE_COMBINED_ENTRY: { 4998 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4999 unsigned ValueID = Record[0]; 5000 GlobalValue::GUID RefGUID = Record[1]; 5001 // The "original name", which is the second value of the pair will be 5002 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5003 ValueIdToValueInfoMap[ValueID] = 5004 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5005 break; 5006 } 5007 } 5008 } 5009 } 5010 5011 // Parse just the blocks needed for building the index out of the module. 5012 // At the end of this routine the module Index is populated with a map 5013 // from global value id to GlobalValueSummary objects. 5014 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5015 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5016 return error("Invalid record"); 5017 5018 SmallVector<uint64_t, 64> Record; 5019 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5020 unsigned ValueId = 0; 5021 5022 // Read the index for this module. 5023 while (true) { 5024 BitstreamEntry Entry = Stream.advance(); 5025 5026 switch (Entry.Kind) { 5027 case BitstreamEntry::Error: 5028 return error("Malformed block"); 5029 case BitstreamEntry::EndBlock: 5030 return Error::success(); 5031 5032 case BitstreamEntry::SubBlock: 5033 switch (Entry.ID) { 5034 default: // Skip unknown content. 5035 if (Stream.SkipBlock()) 5036 return error("Invalid record"); 5037 break; 5038 case bitc::BLOCKINFO_BLOCK_ID: 5039 // Need to parse these to get abbrev ids (e.g. for VST) 5040 if (readBlockInfo()) 5041 return error("Malformed block"); 5042 break; 5043 case bitc::VALUE_SYMTAB_BLOCK_ID: 5044 // Should have been parsed earlier via VSTOffset, unless there 5045 // is no summary section. 5046 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5047 !SeenGlobalValSummary) && 5048 "Expected early VST parse via VSTOffset record"); 5049 if (Stream.SkipBlock()) 5050 return error("Invalid record"); 5051 break; 5052 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5053 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5054 // Add the module if it is a per-module index (has a source file name). 5055 if (!SourceFileName.empty()) 5056 addThisModule(); 5057 assert(!SeenValueSymbolTable && 5058 "Already read VST when parsing summary block?"); 5059 // We might not have a VST if there were no values in the 5060 // summary. An empty summary block generated when we are 5061 // performing ThinLTO compiles so we don't later invoke 5062 // the regular LTO process on them. 5063 if (VSTOffset > 0) { 5064 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5065 return Err; 5066 SeenValueSymbolTable = true; 5067 } 5068 SeenGlobalValSummary = true; 5069 if (Error Err = parseEntireSummary(Entry.ID)) 5070 return Err; 5071 break; 5072 case bitc::MODULE_STRTAB_BLOCK_ID: 5073 if (Error Err = parseModuleStringTable()) 5074 return Err; 5075 break; 5076 } 5077 continue; 5078 5079 case BitstreamEntry::Record: { 5080 Record.clear(); 5081 auto BitCode = Stream.readRecord(Entry.ID, Record); 5082 switch (BitCode) { 5083 default: 5084 break; // Default behavior, ignore unknown content. 5085 case bitc::MODULE_CODE_VERSION: { 5086 if (Error Err = parseVersionRecord(Record).takeError()) 5087 return Err; 5088 break; 5089 } 5090 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5091 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5092 SmallString<128> ValueName; 5093 if (convertToString(Record, 0, ValueName)) 5094 return error("Invalid record"); 5095 SourceFileName = ValueName.c_str(); 5096 break; 5097 } 5098 /// MODULE_CODE_HASH: [5*i32] 5099 case bitc::MODULE_CODE_HASH: { 5100 if (Record.size() != 5) 5101 return error("Invalid hash length " + Twine(Record.size()).str()); 5102 auto &Hash = getThisModule()->second.second; 5103 int Pos = 0; 5104 for (auto &Val : Record) { 5105 assert(!(Val >> 32) && "Unexpected high bits set"); 5106 Hash[Pos++] = Val; 5107 } 5108 break; 5109 } 5110 /// MODULE_CODE_VSTOFFSET: [offset] 5111 case bitc::MODULE_CODE_VSTOFFSET: 5112 if (Record.size() < 1) 5113 return error("Invalid record"); 5114 // Note that we subtract 1 here because the offset is relative to one 5115 // word before the start of the identification or module block, which 5116 // was historically always the start of the regular bitcode header. 5117 VSTOffset = Record[0] - 1; 5118 break; 5119 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5120 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5121 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5122 // v2: [strtab offset, strtab size, v1] 5123 case bitc::MODULE_CODE_GLOBALVAR: 5124 case bitc::MODULE_CODE_FUNCTION: 5125 case bitc::MODULE_CODE_ALIAS: { 5126 StringRef Name; 5127 ArrayRef<uint64_t> GVRecord; 5128 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5129 if (GVRecord.size() <= 3) 5130 return error("Invalid record"); 5131 uint64_t RawLinkage = GVRecord[3]; 5132 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5133 if (!UseStrtab) { 5134 ValueIdToLinkageMap[ValueId++] = Linkage; 5135 break; 5136 } 5137 5138 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5139 break; 5140 } 5141 } 5142 } 5143 continue; 5144 } 5145 } 5146 } 5147 5148 std::vector<ValueInfo> 5149 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5150 std::vector<ValueInfo> Ret; 5151 Ret.reserve(Record.size()); 5152 for (uint64_t RefValueId : Record) 5153 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5154 return Ret; 5155 } 5156 5157 std::vector<FunctionSummary::EdgeTy> 5158 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5159 bool IsOldProfileFormat, 5160 bool HasProfile, bool HasRelBF) { 5161 std::vector<FunctionSummary::EdgeTy> Ret; 5162 Ret.reserve(Record.size()); 5163 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5164 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5165 uint64_t RelBF = 0; 5166 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5167 if (IsOldProfileFormat) { 5168 I += 1; // Skip old callsitecount field 5169 if (HasProfile) 5170 I += 1; // Skip old profilecount field 5171 } else if (HasProfile) 5172 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5173 else if (HasRelBF) 5174 RelBF = Record[++I]; 5175 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5176 } 5177 return Ret; 5178 } 5179 5180 static void 5181 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5182 WholeProgramDevirtResolution &Wpd) { 5183 uint64_t ArgNum = Record[Slot++]; 5184 WholeProgramDevirtResolution::ByArg &B = 5185 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5186 Slot += ArgNum; 5187 5188 B.TheKind = 5189 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5190 B.Info = Record[Slot++]; 5191 B.Byte = Record[Slot++]; 5192 B.Bit = Record[Slot++]; 5193 } 5194 5195 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5196 StringRef Strtab, size_t &Slot, 5197 TypeIdSummary &TypeId) { 5198 uint64_t Id = Record[Slot++]; 5199 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5200 5201 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5202 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5203 static_cast<size_t>(Record[Slot + 1])}; 5204 Slot += 2; 5205 5206 uint64_t ResByArgNum = Record[Slot++]; 5207 for (uint64_t I = 0; I != ResByArgNum; ++I) 5208 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5209 } 5210 5211 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5212 StringRef Strtab, 5213 ModuleSummaryIndex &TheIndex) { 5214 size_t Slot = 0; 5215 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5216 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5217 Slot += 2; 5218 5219 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5220 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5221 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5222 TypeId.TTRes.SizeM1 = Record[Slot++]; 5223 TypeId.TTRes.BitMask = Record[Slot++]; 5224 TypeId.TTRes.InlineBits = Record[Slot++]; 5225 5226 while (Slot < Record.size()) 5227 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5228 } 5229 5230 void ModuleSummaryIndexBitcodeReader::parseTypeIdGVInfo( 5231 ArrayRef<uint64_t> Record, size_t &Slot, TypeIdGVInfo &TypeId) { 5232 uint64_t Offset = Record[Slot++]; 5233 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5234 TypeId.push_back({Offset, Callee}); 5235 } 5236 5237 void ModuleSummaryIndexBitcodeReader::parseTypeIdMetadataSummaryRecord( 5238 ArrayRef<uint64_t> Record) { 5239 size_t Slot = 0; 5240 TypeIdGVInfo &TypeId = TheIndex.getOrInsertTypeIdMetadataSummary( 5241 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5242 Slot += 2; 5243 5244 while (Slot < Record.size()) 5245 parseTypeIdGVInfo(Record, Slot, TypeId); 5246 } 5247 5248 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) { 5249 // Read-only refs are in the end of the refs list. 5250 for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo) 5251 Refs[RefNo].setReadOnly(); 5252 } 5253 5254 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5255 // objects in the index. 5256 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5257 if (Stream.EnterSubBlock(ID)) 5258 return error("Invalid record"); 5259 SmallVector<uint64_t, 64> Record; 5260 5261 // Parse version 5262 { 5263 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5264 if (Entry.Kind != BitstreamEntry::Record) 5265 return error("Invalid Summary Block: record for version expected"); 5266 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5267 return error("Invalid Summary Block: version expected"); 5268 } 5269 const uint64_t Version = Record[0]; 5270 const bool IsOldProfileFormat = Version == 1; 5271 if (Version < 1 || Version > 6) 5272 return error("Invalid summary version " + Twine(Version) + 5273 ". Version should be in the range [1-6]."); 5274 Record.clear(); 5275 5276 // Keep around the last seen summary to be used when we see an optional 5277 // "OriginalName" attachement. 5278 GlobalValueSummary *LastSeenSummary = nullptr; 5279 GlobalValue::GUID LastSeenGUID = 0; 5280 5281 // We can expect to see any number of type ID information records before 5282 // each function summary records; these variables store the information 5283 // collected so far so that it can be used to create the summary object. 5284 std::vector<GlobalValue::GUID> PendingTypeTests; 5285 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5286 PendingTypeCheckedLoadVCalls; 5287 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5288 PendingTypeCheckedLoadConstVCalls; 5289 5290 while (true) { 5291 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5292 5293 switch (Entry.Kind) { 5294 case BitstreamEntry::SubBlock: // Handled for us already. 5295 case BitstreamEntry::Error: 5296 return error("Malformed block"); 5297 case BitstreamEntry::EndBlock: 5298 return Error::success(); 5299 case BitstreamEntry::Record: 5300 // The interesting case. 5301 break; 5302 } 5303 5304 // Read a record. The record format depends on whether this 5305 // is a per-module index or a combined index file. In the per-module 5306 // case the records contain the associated value's ID for correlation 5307 // with VST entries. In the combined index the correlation is done 5308 // via the bitcode offset of the summary records (which were saved 5309 // in the combined index VST entries). The records also contain 5310 // information used for ThinLTO renaming and importing. 5311 Record.clear(); 5312 auto BitCode = Stream.readRecord(Entry.ID, Record); 5313 switch (BitCode) { 5314 default: // Default behavior: ignore. 5315 break; 5316 case bitc::FS_FLAGS: { // [flags] 5317 uint64_t Flags = Record[0]; 5318 // Scan flags. 5319 assert(Flags <= 0x1f && "Unexpected bits in flag"); 5320 5321 // 1 bit: WithGlobalValueDeadStripping flag. 5322 // Set on combined index only. 5323 if (Flags & 0x1) 5324 TheIndex.setWithGlobalValueDeadStripping(); 5325 // 1 bit: SkipModuleByDistributedBackend flag. 5326 // Set on combined index only. 5327 if (Flags & 0x2) 5328 TheIndex.setSkipModuleByDistributedBackend(); 5329 // 1 bit: HasSyntheticEntryCounts flag. 5330 // Set on combined index only. 5331 if (Flags & 0x4) 5332 TheIndex.setHasSyntheticEntryCounts(); 5333 // 1 bit: DisableSplitLTOUnit flag. 5334 // Set on per module indexes. It is up to the client to validate 5335 // the consistency of this flag across modules being linked. 5336 if (Flags & 0x8) 5337 TheIndex.setEnableSplitLTOUnit(); 5338 // 1 bit: PartiallySplitLTOUnits flag. 5339 // Set on combined index only. 5340 if (Flags & 0x10) 5341 TheIndex.setPartiallySplitLTOUnits(); 5342 break; 5343 } 5344 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5345 uint64_t ValueID = Record[0]; 5346 GlobalValue::GUID RefGUID = Record[1]; 5347 ValueIdToValueInfoMap[ValueID] = 5348 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5349 break; 5350 } 5351 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5352 // numrefs x valueid, n x (valueid)] 5353 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5354 // numrefs x valueid, 5355 // n x (valueid, hotness)] 5356 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5357 // numrefs x valueid, 5358 // n x (valueid, relblockfreq)] 5359 case bitc::FS_PERMODULE: 5360 case bitc::FS_PERMODULE_RELBF: 5361 case bitc::FS_PERMODULE_PROFILE: { 5362 unsigned ValueID = Record[0]; 5363 uint64_t RawFlags = Record[1]; 5364 unsigned InstCount = Record[2]; 5365 uint64_t RawFunFlags = 0; 5366 unsigned NumRefs = Record[3]; 5367 unsigned NumImmutableRefs = 0; 5368 int RefListStartIndex = 4; 5369 if (Version >= 4) { 5370 RawFunFlags = Record[3]; 5371 NumRefs = Record[4]; 5372 RefListStartIndex = 5; 5373 if (Version >= 5) { 5374 NumImmutableRefs = Record[5]; 5375 RefListStartIndex = 6; 5376 } 5377 } 5378 5379 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5380 // The module path string ref set in the summary must be owned by the 5381 // index's module string table. Since we don't have a module path 5382 // string table section in the per-module index, we create a single 5383 // module path string table entry with an empty (0) ID to take 5384 // ownership. 5385 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5386 assert(Record.size() >= RefListStartIndex + NumRefs && 5387 "Record size inconsistent with number of references"); 5388 std::vector<ValueInfo> Refs = makeRefList( 5389 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5390 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5391 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5392 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5393 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5394 IsOldProfileFormat, HasProfile, HasRelBF); 5395 setImmutableRefs(Refs, NumImmutableRefs); 5396 auto FS = llvm::make_unique<FunctionSummary>( 5397 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5398 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5399 std::move(PendingTypeTestAssumeVCalls), 5400 std::move(PendingTypeCheckedLoadVCalls), 5401 std::move(PendingTypeTestAssumeConstVCalls), 5402 std::move(PendingTypeCheckedLoadConstVCalls)); 5403 PendingTypeTests.clear(); 5404 PendingTypeTestAssumeVCalls.clear(); 5405 PendingTypeCheckedLoadVCalls.clear(); 5406 PendingTypeTestAssumeConstVCalls.clear(); 5407 PendingTypeCheckedLoadConstVCalls.clear(); 5408 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5409 FS->setModulePath(getThisModule()->first()); 5410 FS->setOriginalName(VIAndOriginalGUID.second); 5411 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5412 break; 5413 } 5414 // FS_ALIAS: [valueid, flags, valueid] 5415 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5416 // they expect all aliasee summaries to be available. 5417 case bitc::FS_ALIAS: { 5418 unsigned ValueID = Record[0]; 5419 uint64_t RawFlags = Record[1]; 5420 unsigned AliaseeID = Record[2]; 5421 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5422 auto AS = llvm::make_unique<AliasSummary>(Flags); 5423 // The module path string ref set in the summary must be owned by the 5424 // index's module string table. Since we don't have a module path 5425 // string table section in the per-module index, we create a single 5426 // module path string table entry with an empty (0) ID to take 5427 // ownership. 5428 AS->setModulePath(getThisModule()->first()); 5429 5430 GlobalValue::GUID AliaseeGUID = 5431 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5432 auto AliaseeInModule = 5433 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5434 if (!AliaseeInModule) 5435 return error("Alias expects aliasee summary to be parsed"); 5436 AS->setAliasee(AliaseeInModule); 5437 AS->setAliaseeGUID(AliaseeGUID); 5438 5439 auto GUID = getValueInfoFromValueId(ValueID); 5440 AS->setOriginalName(GUID.second); 5441 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5442 break; 5443 } 5444 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5445 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5446 unsigned ValueID = Record[0]; 5447 uint64_t RawFlags = Record[1]; 5448 unsigned RefArrayStart = 2; 5449 GlobalVarSummary::GVarFlags GVF; 5450 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5451 if (Version >= 5) { 5452 GVF = getDecodedGVarFlags(Record[2]); 5453 RefArrayStart = 3; 5454 } 5455 std::vector<ValueInfo> Refs = 5456 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5457 auto FS = 5458 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5459 FS->setModulePath(getThisModule()->first()); 5460 auto GUID = getValueInfoFromValueId(ValueID); 5461 FS->setOriginalName(GUID.second); 5462 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5463 break; 5464 } 5465 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 5466 // numrefs, numrefs x valueid, 5467 // n x (valueid, offset)] 5468 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 5469 unsigned ValueID = Record[0]; 5470 uint64_t RawFlags = Record[1]; 5471 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 5472 unsigned NumRefs = Record[3]; 5473 unsigned RefListStartIndex = 4; 5474 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 5475 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5476 std::vector<ValueInfo> Refs = makeRefList( 5477 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5478 VTableFuncList VTableFuncs; 5479 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 5480 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5481 uint64_t Offset = Record[++I]; 5482 VTableFuncs.push_back({Callee, Offset}); 5483 } 5484 auto VS = 5485 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5486 VS->setModulePath(getThisModule()->first()); 5487 VS->setVTableFuncs(VTableFuncs); 5488 auto GUID = getValueInfoFromValueId(ValueID); 5489 VS->setOriginalName(GUID.second); 5490 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 5491 break; 5492 } 5493 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5494 // numrefs x valueid, n x (valueid)] 5495 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5496 // numrefs x valueid, n x (valueid, hotness)] 5497 case bitc::FS_COMBINED: 5498 case bitc::FS_COMBINED_PROFILE: { 5499 unsigned ValueID = Record[0]; 5500 uint64_t ModuleId = Record[1]; 5501 uint64_t RawFlags = Record[2]; 5502 unsigned InstCount = Record[3]; 5503 uint64_t RawFunFlags = 0; 5504 uint64_t EntryCount = 0; 5505 unsigned NumRefs = Record[4]; 5506 unsigned NumImmutableRefs = 0; 5507 int RefListStartIndex = 5; 5508 5509 if (Version >= 4) { 5510 RawFunFlags = Record[4]; 5511 RefListStartIndex = 6; 5512 size_t NumRefsIndex = 5; 5513 if (Version >= 5) { 5514 RefListStartIndex = 7; 5515 if (Version >= 6) { 5516 NumRefsIndex = 6; 5517 EntryCount = Record[5]; 5518 RefListStartIndex = 8; 5519 } 5520 NumImmutableRefs = Record[RefListStartIndex - 1]; 5521 } 5522 NumRefs = Record[NumRefsIndex]; 5523 } 5524 5525 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5526 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5527 assert(Record.size() >= RefListStartIndex + NumRefs && 5528 "Record size inconsistent with number of references"); 5529 std::vector<ValueInfo> Refs = makeRefList( 5530 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5531 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5532 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5533 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5534 IsOldProfileFormat, HasProfile, false); 5535 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5536 setImmutableRefs(Refs, NumImmutableRefs); 5537 auto FS = llvm::make_unique<FunctionSummary>( 5538 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 5539 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 5540 std::move(PendingTypeTestAssumeVCalls), 5541 std::move(PendingTypeCheckedLoadVCalls), 5542 std::move(PendingTypeTestAssumeConstVCalls), 5543 std::move(PendingTypeCheckedLoadConstVCalls)); 5544 PendingTypeTests.clear(); 5545 PendingTypeTestAssumeVCalls.clear(); 5546 PendingTypeCheckedLoadVCalls.clear(); 5547 PendingTypeTestAssumeConstVCalls.clear(); 5548 PendingTypeCheckedLoadConstVCalls.clear(); 5549 LastSeenSummary = FS.get(); 5550 LastSeenGUID = VI.getGUID(); 5551 FS->setModulePath(ModuleIdMap[ModuleId]); 5552 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5553 break; 5554 } 5555 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5556 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5557 // they expect all aliasee summaries to be available. 5558 case bitc::FS_COMBINED_ALIAS: { 5559 unsigned ValueID = Record[0]; 5560 uint64_t ModuleId = Record[1]; 5561 uint64_t RawFlags = Record[2]; 5562 unsigned AliaseeValueId = Record[3]; 5563 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5564 auto AS = llvm::make_unique<AliasSummary>(Flags); 5565 LastSeenSummary = AS.get(); 5566 AS->setModulePath(ModuleIdMap[ModuleId]); 5567 5568 auto AliaseeGUID = 5569 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5570 auto AliaseeInModule = 5571 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5572 AS->setAliasee(AliaseeInModule); 5573 AS->setAliaseeGUID(AliaseeGUID); 5574 5575 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5576 LastSeenGUID = VI.getGUID(); 5577 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5578 break; 5579 } 5580 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5581 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5582 unsigned ValueID = Record[0]; 5583 uint64_t ModuleId = Record[1]; 5584 uint64_t RawFlags = Record[2]; 5585 unsigned RefArrayStart = 3; 5586 GlobalVarSummary::GVarFlags GVF; 5587 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5588 if (Version >= 5) { 5589 GVF = getDecodedGVarFlags(Record[3]); 5590 RefArrayStart = 4; 5591 } 5592 std::vector<ValueInfo> Refs = 5593 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5594 auto FS = 5595 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5596 LastSeenSummary = FS.get(); 5597 FS->setModulePath(ModuleIdMap[ModuleId]); 5598 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5599 LastSeenGUID = VI.getGUID(); 5600 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5601 break; 5602 } 5603 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5604 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5605 uint64_t OriginalName = Record[0]; 5606 if (!LastSeenSummary) 5607 return error("Name attachment that does not follow a combined record"); 5608 LastSeenSummary->setOriginalName(OriginalName); 5609 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5610 // Reset the LastSeenSummary 5611 LastSeenSummary = nullptr; 5612 LastSeenGUID = 0; 5613 break; 5614 } 5615 case bitc::FS_TYPE_TESTS: 5616 assert(PendingTypeTests.empty()); 5617 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5618 Record.end()); 5619 break; 5620 5621 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5622 assert(PendingTypeTestAssumeVCalls.empty()); 5623 for (unsigned I = 0; I != Record.size(); I += 2) 5624 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5625 break; 5626 5627 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5628 assert(PendingTypeCheckedLoadVCalls.empty()); 5629 for (unsigned I = 0; I != Record.size(); I += 2) 5630 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5631 break; 5632 5633 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5634 PendingTypeTestAssumeConstVCalls.push_back( 5635 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5636 break; 5637 5638 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5639 PendingTypeCheckedLoadConstVCalls.push_back( 5640 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5641 break; 5642 5643 case bitc::FS_CFI_FUNCTION_DEFS: { 5644 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5645 for (unsigned I = 0; I != Record.size(); I += 2) 5646 CfiFunctionDefs.insert( 5647 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5648 break; 5649 } 5650 5651 case bitc::FS_CFI_FUNCTION_DECLS: { 5652 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5653 for (unsigned I = 0; I != Record.size(); I += 2) 5654 CfiFunctionDecls.insert( 5655 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5656 break; 5657 } 5658 5659 case bitc::FS_TYPE_ID: 5660 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 5661 break; 5662 5663 case bitc::FS_TYPE_ID_METADATA: 5664 parseTypeIdMetadataSummaryRecord(Record); 5665 break; 5666 } 5667 } 5668 llvm_unreachable("Exit infinite loop"); 5669 } 5670 5671 // Parse the module string table block into the Index. 5672 // This populates the ModulePathStringTable map in the index. 5673 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5674 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5675 return error("Invalid record"); 5676 5677 SmallVector<uint64_t, 64> Record; 5678 5679 SmallString<128> ModulePath; 5680 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5681 5682 while (true) { 5683 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5684 5685 switch (Entry.Kind) { 5686 case BitstreamEntry::SubBlock: // Handled for us already. 5687 case BitstreamEntry::Error: 5688 return error("Malformed block"); 5689 case BitstreamEntry::EndBlock: 5690 return Error::success(); 5691 case BitstreamEntry::Record: 5692 // The interesting case. 5693 break; 5694 } 5695 5696 Record.clear(); 5697 switch (Stream.readRecord(Entry.ID, Record)) { 5698 default: // Default behavior: ignore. 5699 break; 5700 case bitc::MST_CODE_ENTRY: { 5701 // MST_ENTRY: [modid, namechar x N] 5702 uint64_t ModuleId = Record[0]; 5703 5704 if (convertToString(Record, 1, ModulePath)) 5705 return error("Invalid record"); 5706 5707 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5708 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5709 5710 ModulePath.clear(); 5711 break; 5712 } 5713 /// MST_CODE_HASH: [5*i32] 5714 case bitc::MST_CODE_HASH: { 5715 if (Record.size() != 5) 5716 return error("Invalid hash length " + Twine(Record.size()).str()); 5717 if (!LastSeenModule) 5718 return error("Invalid hash that does not follow a module path"); 5719 int Pos = 0; 5720 for (auto &Val : Record) { 5721 assert(!(Val >> 32) && "Unexpected high bits set"); 5722 LastSeenModule->second.second[Pos++] = Val; 5723 } 5724 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5725 LastSeenModule = nullptr; 5726 break; 5727 } 5728 } 5729 } 5730 llvm_unreachable("Exit infinite loop"); 5731 } 5732 5733 namespace { 5734 5735 // FIXME: This class is only here to support the transition to llvm::Error. It 5736 // will be removed once this transition is complete. Clients should prefer to 5737 // deal with the Error value directly, rather than converting to error_code. 5738 class BitcodeErrorCategoryType : public std::error_category { 5739 const char *name() const noexcept override { 5740 return "llvm.bitcode"; 5741 } 5742 5743 std::string message(int IE) const override { 5744 BitcodeError E = static_cast<BitcodeError>(IE); 5745 switch (E) { 5746 case BitcodeError::CorruptedBitcode: 5747 return "Corrupted bitcode"; 5748 } 5749 llvm_unreachable("Unknown error type!"); 5750 } 5751 }; 5752 5753 } // end anonymous namespace 5754 5755 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5756 5757 const std::error_category &llvm::BitcodeErrorCategory() { 5758 return *ErrorCategory; 5759 } 5760 5761 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5762 unsigned Block, unsigned RecordID) { 5763 if (Stream.EnterSubBlock(Block)) 5764 return error("Invalid record"); 5765 5766 StringRef Strtab; 5767 while (true) { 5768 BitstreamEntry Entry = Stream.advance(); 5769 switch (Entry.Kind) { 5770 case BitstreamEntry::EndBlock: 5771 return Strtab; 5772 5773 case BitstreamEntry::Error: 5774 return error("Malformed block"); 5775 5776 case BitstreamEntry::SubBlock: 5777 if (Stream.SkipBlock()) 5778 return error("Malformed block"); 5779 break; 5780 5781 case BitstreamEntry::Record: 5782 StringRef Blob; 5783 SmallVector<uint64_t, 1> Record; 5784 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5785 Strtab = Blob; 5786 break; 5787 } 5788 } 5789 } 5790 5791 //===----------------------------------------------------------------------===// 5792 // External interface 5793 //===----------------------------------------------------------------------===// 5794 5795 Expected<std::vector<BitcodeModule>> 5796 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5797 auto FOrErr = getBitcodeFileContents(Buffer); 5798 if (!FOrErr) 5799 return FOrErr.takeError(); 5800 return std::move(FOrErr->Mods); 5801 } 5802 5803 Expected<BitcodeFileContents> 5804 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5805 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5806 if (!StreamOrErr) 5807 return StreamOrErr.takeError(); 5808 BitstreamCursor &Stream = *StreamOrErr; 5809 5810 BitcodeFileContents F; 5811 while (true) { 5812 uint64_t BCBegin = Stream.getCurrentByteNo(); 5813 5814 // We may be consuming bitcode from a client that leaves garbage at the end 5815 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5816 // the end that there cannot possibly be another module, stop looking. 5817 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5818 return F; 5819 5820 BitstreamEntry Entry = Stream.advance(); 5821 switch (Entry.Kind) { 5822 case BitstreamEntry::EndBlock: 5823 case BitstreamEntry::Error: 5824 return error("Malformed block"); 5825 5826 case BitstreamEntry::SubBlock: { 5827 uint64_t IdentificationBit = -1ull; 5828 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5829 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5830 if (Stream.SkipBlock()) 5831 return error("Malformed block"); 5832 5833 Entry = Stream.advance(); 5834 if (Entry.Kind != BitstreamEntry::SubBlock || 5835 Entry.ID != bitc::MODULE_BLOCK_ID) 5836 return error("Malformed block"); 5837 } 5838 5839 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5840 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5841 if (Stream.SkipBlock()) 5842 return error("Malformed block"); 5843 5844 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5845 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5846 Buffer.getBufferIdentifier(), IdentificationBit, 5847 ModuleBit}); 5848 continue; 5849 } 5850 5851 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5852 Expected<StringRef> Strtab = 5853 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5854 if (!Strtab) 5855 return Strtab.takeError(); 5856 // This string table is used by every preceding bitcode module that does 5857 // not have its own string table. A bitcode file may have multiple 5858 // string tables if it was created by binary concatenation, for example 5859 // with "llvm-cat -b". 5860 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5861 if (!I->Strtab.empty()) 5862 break; 5863 I->Strtab = *Strtab; 5864 } 5865 // Similarly, the string table is used by every preceding symbol table; 5866 // normally there will be just one unless the bitcode file was created 5867 // by binary concatenation. 5868 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5869 F.StrtabForSymtab = *Strtab; 5870 continue; 5871 } 5872 5873 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5874 Expected<StringRef> SymtabOrErr = 5875 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5876 if (!SymtabOrErr) 5877 return SymtabOrErr.takeError(); 5878 5879 // We can expect the bitcode file to have multiple symbol tables if it 5880 // was created by binary concatenation. In that case we silently 5881 // ignore any subsequent symbol tables, which is fine because this is a 5882 // low level function. The client is expected to notice that the number 5883 // of modules in the symbol table does not match the number of modules 5884 // in the input file and regenerate the symbol table. 5885 if (F.Symtab.empty()) 5886 F.Symtab = *SymtabOrErr; 5887 continue; 5888 } 5889 5890 if (Stream.SkipBlock()) 5891 return error("Malformed block"); 5892 continue; 5893 } 5894 case BitstreamEntry::Record: 5895 Stream.skipRecord(Entry.ID); 5896 continue; 5897 } 5898 } 5899 } 5900 5901 /// Get a lazy one-at-time loading module from bitcode. 5902 /// 5903 /// This isn't always used in a lazy context. In particular, it's also used by 5904 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5905 /// in forward-referenced functions from block address references. 5906 /// 5907 /// \param[in] MaterializeAll Set to \c true if we should materialize 5908 /// everything. 5909 Expected<std::unique_ptr<Module>> 5910 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5911 bool ShouldLazyLoadMetadata, bool IsImporting) { 5912 BitstreamCursor Stream(Buffer); 5913 5914 std::string ProducerIdentification; 5915 if (IdentificationBit != -1ull) { 5916 Stream.JumpToBit(IdentificationBit); 5917 Expected<std::string> ProducerIdentificationOrErr = 5918 readIdentificationBlock(Stream); 5919 if (!ProducerIdentificationOrErr) 5920 return ProducerIdentificationOrErr.takeError(); 5921 5922 ProducerIdentification = *ProducerIdentificationOrErr; 5923 } 5924 5925 Stream.JumpToBit(ModuleBit); 5926 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5927 Context); 5928 5929 std::unique_ptr<Module> M = 5930 llvm::make_unique<Module>(ModuleIdentifier, Context); 5931 M->setMaterializer(R); 5932 5933 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5934 if (Error Err = 5935 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5936 return std::move(Err); 5937 5938 if (MaterializeAll) { 5939 // Read in the entire module, and destroy the BitcodeReader. 5940 if (Error Err = M->materializeAll()) 5941 return std::move(Err); 5942 } else { 5943 // Resolve forward references from blockaddresses. 5944 if (Error Err = R->materializeForwardReferencedFunctions()) 5945 return std::move(Err); 5946 } 5947 return std::move(M); 5948 } 5949 5950 Expected<std::unique_ptr<Module>> 5951 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5952 bool IsImporting) { 5953 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5954 } 5955 5956 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5957 // We don't use ModuleIdentifier here because the client may need to control the 5958 // module path used in the combined summary (e.g. when reading summaries for 5959 // regular LTO modules). 5960 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5961 StringRef ModulePath, uint64_t ModuleId) { 5962 BitstreamCursor Stream(Buffer); 5963 Stream.JumpToBit(ModuleBit); 5964 5965 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5966 ModulePath, ModuleId); 5967 return R.parseModule(); 5968 } 5969 5970 // Parse the specified bitcode buffer, returning the function info index. 5971 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5972 BitstreamCursor Stream(Buffer); 5973 Stream.JumpToBit(ModuleBit); 5974 5975 auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 5976 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5977 ModuleIdentifier, 0); 5978 5979 if (Error Err = R.parseModule()) 5980 return std::move(Err); 5981 5982 return std::move(Index); 5983 } 5984 5985 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 5986 unsigned ID) { 5987 if (Stream.EnterSubBlock(ID)) 5988 return error("Invalid record"); 5989 SmallVector<uint64_t, 64> Record; 5990 5991 while (true) { 5992 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5993 5994 switch (Entry.Kind) { 5995 case BitstreamEntry::SubBlock: // Handled for us already. 5996 case BitstreamEntry::Error: 5997 return error("Malformed block"); 5998 case BitstreamEntry::EndBlock: 5999 // If no flags record found, conservatively return true to mimic 6000 // behavior before this flag was added. 6001 return true; 6002 case BitstreamEntry::Record: 6003 // The interesting case. 6004 break; 6005 } 6006 6007 // Look for the FS_FLAGS record. 6008 Record.clear(); 6009 auto BitCode = Stream.readRecord(Entry.ID, Record); 6010 switch (BitCode) { 6011 default: // Default behavior: ignore. 6012 break; 6013 case bitc::FS_FLAGS: { // [flags] 6014 uint64_t Flags = Record[0]; 6015 // Scan flags. 6016 assert(Flags <= 0x1f && "Unexpected bits in flag"); 6017 6018 return Flags & 0x8; 6019 } 6020 } 6021 } 6022 llvm_unreachable("Exit infinite loop"); 6023 } 6024 6025 // Check if the given bitcode buffer contains a global value summary block. 6026 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6027 BitstreamCursor Stream(Buffer); 6028 Stream.JumpToBit(ModuleBit); 6029 6030 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6031 return error("Invalid record"); 6032 6033 while (true) { 6034 BitstreamEntry Entry = Stream.advance(); 6035 6036 switch (Entry.Kind) { 6037 case BitstreamEntry::Error: 6038 return error("Malformed block"); 6039 case BitstreamEntry::EndBlock: 6040 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6041 /*EnableSplitLTOUnit=*/false}; 6042 6043 case BitstreamEntry::SubBlock: 6044 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6045 Expected<bool> EnableSplitLTOUnit = 6046 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6047 if (!EnableSplitLTOUnit) 6048 return EnableSplitLTOUnit.takeError(); 6049 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6050 *EnableSplitLTOUnit}; 6051 } 6052 6053 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6054 Expected<bool> EnableSplitLTOUnit = 6055 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6056 if (!EnableSplitLTOUnit) 6057 return EnableSplitLTOUnit.takeError(); 6058 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6059 *EnableSplitLTOUnit}; 6060 } 6061 6062 // Ignore other sub-blocks. 6063 if (Stream.SkipBlock()) 6064 return error("Malformed block"); 6065 continue; 6066 6067 case BitstreamEntry::Record: 6068 Stream.skipRecord(Entry.ID); 6069 continue; 6070 } 6071 } 6072 } 6073 6074 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6075 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6076 if (!MsOrErr) 6077 return MsOrErr.takeError(); 6078 6079 if (MsOrErr->size() != 1) 6080 return error("Expected a single module"); 6081 6082 return (*MsOrErr)[0]; 6083 } 6084 6085 Expected<std::unique_ptr<Module>> 6086 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6087 bool ShouldLazyLoadMetadata, bool IsImporting) { 6088 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6089 if (!BM) 6090 return BM.takeError(); 6091 6092 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6093 } 6094 6095 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6096 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6097 bool ShouldLazyLoadMetadata, bool IsImporting) { 6098 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6099 IsImporting); 6100 if (MOrErr) 6101 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6102 return MOrErr; 6103 } 6104 6105 Expected<std::unique_ptr<Module>> 6106 BitcodeModule::parseModule(LLVMContext &Context) { 6107 return getModuleImpl(Context, true, false, false); 6108 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6109 // written. We must defer until the Module has been fully materialized. 6110 } 6111 6112 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6113 LLVMContext &Context) { 6114 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6115 if (!BM) 6116 return BM.takeError(); 6117 6118 return BM->parseModule(Context); 6119 } 6120 6121 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6122 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6123 if (!StreamOrErr) 6124 return StreamOrErr.takeError(); 6125 6126 return readTriple(*StreamOrErr); 6127 } 6128 6129 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6130 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6131 if (!StreamOrErr) 6132 return StreamOrErr.takeError(); 6133 6134 return hasObjCCategory(*StreamOrErr); 6135 } 6136 6137 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6138 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6139 if (!StreamOrErr) 6140 return StreamOrErr.takeError(); 6141 6142 return readIdentificationCode(*StreamOrErr); 6143 } 6144 6145 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6146 ModuleSummaryIndex &CombinedIndex, 6147 uint64_t ModuleId) { 6148 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6149 if (!BM) 6150 return BM.takeError(); 6151 6152 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6153 } 6154 6155 Expected<std::unique_ptr<ModuleSummaryIndex>> 6156 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6157 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6158 if (!BM) 6159 return BM.takeError(); 6160 6161 return BM->getSummary(); 6162 } 6163 6164 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6165 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6166 if (!BM) 6167 return BM.takeError(); 6168 6169 return BM->getLTOInfo(); 6170 } 6171 6172 Expected<std::unique_ptr<ModuleSummaryIndex>> 6173 llvm::getModuleSummaryIndexForFile(StringRef Path, 6174 bool IgnoreEmptyThinLTOIndexFile) { 6175 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6176 MemoryBuffer::getFileOrSTDIN(Path); 6177 if (!FileOrErr) 6178 return errorCodeToError(FileOrErr.getError()); 6179 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6180 return nullptr; 6181 return getModuleSummaryIndex(**FileOrErr); 6182 } 6183