1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/Verifier.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/ManagedStatic.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <deque> 78 #include <map> 79 #include <memory> 80 #include <set> 81 #include <string> 82 #include <system_error> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 static cl::opt<bool> PrintSummaryGUIDs( 90 "print-summary-global-ids", cl::init(false), cl::Hidden, 91 cl::desc( 92 "Print the global id for each value when reading the module summary")); 93 94 namespace { 95 96 enum { 97 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 98 }; 99 100 } // end anonymous namespace 101 102 static Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 108 if (!Stream.canSkipToPos(4)) 109 return createStringError(std::errc::illegal_byte_sequence, 110 "file too small to contain bitcode header"); 111 for (unsigned C : {'B', 'C'}) 112 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 113 if (Res.get() != C) 114 return createStringError(std::errc::illegal_byte_sequence, 115 "file doesn't start with bitcode header"); 116 } else 117 return Res.takeError(); 118 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 119 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 120 if (Res.get() != C) 121 return createStringError(std::errc::illegal_byte_sequence, 122 "file doesn't start with bitcode header"); 123 } else 124 return Res.takeError(); 125 return Error::success(); 126 } 127 128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 129 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 130 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 131 132 if (Buffer.getBufferSize() & 3) 133 return error("Invalid bitcode signature"); 134 135 // If we have a wrapper header, parse it and ignore the non-bc file contents. 136 // The magic number is 0x0B17C0DE stored in little endian. 137 if (isBitcodeWrapper(BufPtr, BufEnd)) 138 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 139 return error("Invalid bitcode wrapper header"); 140 141 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 142 if (Error Err = hasInvalidBitcodeHeader(Stream)) 143 return std::move(Err); 144 145 return std::move(Stream); 146 } 147 148 /// Convert a string from a record into an std::string, return true on failure. 149 template <typename StrTy> 150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 Result.append(Record.begin() + Idx, Record.end()); 156 return false; 157 } 158 159 // Strip all the TBAA attachment for the module. 160 static void stripTBAA(Module *M) { 161 for (auto &F : *M) { 162 if (F.isMaterializable()) 163 continue; 164 for (auto &I : instructions(F)) 165 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 166 } 167 } 168 169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 170 /// "epoch" encoded in the bitcode, and return the producer name if any. 171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 172 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 173 return std::move(Err); 174 175 // Read all the records. 176 SmallVector<uint64_t, 64> Record; 177 178 std::string ProducerIdentification; 179 180 while (true) { 181 BitstreamEntry Entry; 182 if (Error E = Stream.advance().moveInto(Entry)) 183 return std::move(E); 184 185 switch (Entry.Kind) { 186 default: 187 case BitstreamEntry::Error: 188 return error("Malformed block"); 189 case BitstreamEntry::EndBlock: 190 return ProducerIdentification; 191 case BitstreamEntry::Record: 192 // The interesting case. 193 break; 194 } 195 196 // Read a record. 197 Record.clear(); 198 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 199 if (!MaybeBitCode) 200 return MaybeBitCode.takeError(); 201 switch (MaybeBitCode.get()) { 202 default: // Default behavior: reject 203 return error("Invalid value"); 204 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 205 convertToString(Record, 0, ProducerIdentification); 206 break; 207 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 208 unsigned epoch = (unsigned)Record[0]; 209 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 210 return error( 211 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 212 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 213 } 214 } 215 } 216 } 217 } 218 219 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 220 // We expect a number of well-defined blocks, though we don't necessarily 221 // need to understand them all. 222 while (true) { 223 if (Stream.AtEndOfStream()) 224 return ""; 225 226 BitstreamEntry Entry; 227 if (Error E = Stream.advance().moveInto(Entry)) 228 return std::move(E); 229 230 switch (Entry.Kind) { 231 case BitstreamEntry::EndBlock: 232 case BitstreamEntry::Error: 233 return error("Malformed block"); 234 235 case BitstreamEntry::SubBlock: 236 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 237 return readIdentificationBlock(Stream); 238 239 // Ignore other sub-blocks. 240 if (Error Err = Stream.SkipBlock()) 241 return std::move(Err); 242 continue; 243 case BitstreamEntry::Record: 244 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 245 return std::move(E); 246 continue; 247 } 248 } 249 } 250 251 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 252 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 253 return std::move(Err); 254 255 SmallVector<uint64_t, 64> Record; 256 // Read all the records for this module. 257 258 while (true) { 259 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 260 if (!MaybeEntry) 261 return MaybeEntry.takeError(); 262 BitstreamEntry Entry = MaybeEntry.get(); 263 264 switch (Entry.Kind) { 265 case BitstreamEntry::SubBlock: // Handled for us already. 266 case BitstreamEntry::Error: 267 return error("Malformed block"); 268 case BitstreamEntry::EndBlock: 269 return false; 270 case BitstreamEntry::Record: 271 // The interesting case. 272 break; 273 } 274 275 // Read a record. 276 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 277 if (!MaybeRecord) 278 return MaybeRecord.takeError(); 279 switch (MaybeRecord.get()) { 280 default: 281 break; // Default behavior, ignore unknown content. 282 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 283 std::string S; 284 if (convertToString(Record, 0, S)) 285 return error("Invalid record"); 286 // Check for the i386 and other (x86_64, ARM) conventions 287 if (S.find("__DATA,__objc_catlist") != std::string::npos || 288 S.find("__OBJC,__category") != std::string::npos) 289 return true; 290 break; 291 } 292 } 293 Record.clear(); 294 } 295 llvm_unreachable("Exit infinite loop"); 296 } 297 298 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 299 // We expect a number of well-defined blocks, though we don't necessarily 300 // need to understand them all. 301 while (true) { 302 BitstreamEntry Entry; 303 if (Error E = Stream.advance().moveInto(Entry)) 304 return std::move(E); 305 306 switch (Entry.Kind) { 307 case BitstreamEntry::Error: 308 return error("Malformed block"); 309 case BitstreamEntry::EndBlock: 310 return false; 311 312 case BitstreamEntry::SubBlock: 313 if (Entry.ID == bitc::MODULE_BLOCK_ID) 314 return hasObjCCategoryInModule(Stream); 315 316 // Ignore other sub-blocks. 317 if (Error Err = Stream.SkipBlock()) 318 return std::move(Err); 319 continue; 320 321 case BitstreamEntry::Record: 322 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 323 return std::move(E); 324 continue; 325 } 326 } 327 } 328 329 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 330 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 331 return std::move(Err); 332 333 SmallVector<uint64_t, 64> Record; 334 335 std::string Triple; 336 337 // Read all the records for this module. 338 while (true) { 339 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 340 if (!MaybeEntry) 341 return MaybeEntry.takeError(); 342 BitstreamEntry Entry = MaybeEntry.get(); 343 344 switch (Entry.Kind) { 345 case BitstreamEntry::SubBlock: // Handled for us already. 346 case BitstreamEntry::Error: 347 return error("Malformed block"); 348 case BitstreamEntry::EndBlock: 349 return Triple; 350 case BitstreamEntry::Record: 351 // The interesting case. 352 break; 353 } 354 355 // Read a record. 356 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 357 if (!MaybeRecord) 358 return MaybeRecord.takeError(); 359 switch (MaybeRecord.get()) { 360 default: break; // Default behavior, ignore unknown content. 361 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 362 std::string S; 363 if (convertToString(Record, 0, S)) 364 return error("Invalid record"); 365 Triple = S; 366 break; 367 } 368 } 369 Record.clear(); 370 } 371 llvm_unreachable("Exit infinite loop"); 372 } 373 374 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 375 // We expect a number of well-defined blocks, though we don't necessarily 376 // need to understand them all. 377 while (true) { 378 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 379 if (!MaybeEntry) 380 return MaybeEntry.takeError(); 381 BitstreamEntry Entry = MaybeEntry.get(); 382 383 switch (Entry.Kind) { 384 case BitstreamEntry::Error: 385 return error("Malformed block"); 386 case BitstreamEntry::EndBlock: 387 return ""; 388 389 case BitstreamEntry::SubBlock: 390 if (Entry.ID == bitc::MODULE_BLOCK_ID) 391 return readModuleTriple(Stream); 392 393 // Ignore other sub-blocks. 394 if (Error Err = Stream.SkipBlock()) 395 return std::move(Err); 396 continue; 397 398 case BitstreamEntry::Record: 399 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 400 continue; 401 else 402 return Skipped.takeError(); 403 } 404 } 405 } 406 407 namespace { 408 409 class BitcodeReaderBase { 410 protected: 411 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 412 : Stream(std::move(Stream)), Strtab(Strtab) { 413 this->Stream.setBlockInfo(&BlockInfo); 414 } 415 416 BitstreamBlockInfo BlockInfo; 417 BitstreamCursor Stream; 418 StringRef Strtab; 419 420 /// In version 2 of the bitcode we store names of global values and comdats in 421 /// a string table rather than in the VST. 422 bool UseStrtab = false; 423 424 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 425 426 /// If this module uses a string table, pop the reference to the string table 427 /// and return the referenced string and the rest of the record. Otherwise 428 /// just return the record itself. 429 std::pair<StringRef, ArrayRef<uint64_t>> 430 readNameFromStrtab(ArrayRef<uint64_t> Record); 431 432 Error readBlockInfo(); 433 434 // Contains an arbitrary and optional string identifying the bitcode producer 435 std::string ProducerIdentification; 436 437 Error error(const Twine &Message); 438 }; 439 440 } // end anonymous namespace 441 442 Error BitcodeReaderBase::error(const Twine &Message) { 443 std::string FullMsg = Message.str(); 444 if (!ProducerIdentification.empty()) 445 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 446 LLVM_VERSION_STRING "')"; 447 return ::error(FullMsg); 448 } 449 450 Expected<unsigned> 451 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 452 if (Record.empty()) 453 return error("Invalid record"); 454 unsigned ModuleVersion = Record[0]; 455 if (ModuleVersion > 2) 456 return error("Invalid value"); 457 UseStrtab = ModuleVersion >= 2; 458 return ModuleVersion; 459 } 460 461 std::pair<StringRef, ArrayRef<uint64_t>> 462 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 463 if (!UseStrtab) 464 return {"", Record}; 465 // Invalid reference. Let the caller complain about the record being empty. 466 if (Record[0] + Record[1] > Strtab.size()) 467 return {"", {}}; 468 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 469 } 470 471 namespace { 472 473 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 474 LLVMContext &Context; 475 Module *TheModule = nullptr; 476 // Next offset to start scanning for lazy parsing of function bodies. 477 uint64_t NextUnreadBit = 0; 478 // Last function offset found in the VST. 479 uint64_t LastFunctionBlockBit = 0; 480 bool SeenValueSymbolTable = false; 481 uint64_t VSTOffset = 0; 482 483 std::vector<std::string> SectionTable; 484 std::vector<std::string> GCTable; 485 486 std::vector<Type *> TypeList; 487 /// Stores pointer element type for a given type ID. This is used during 488 /// upgrades of typed pointer IR in opaque pointer mode. 489 std::vector<Type *> ElementTypeList; 490 DenseMap<Function *, FunctionType *> FunctionTypes; 491 BitcodeReaderValueList ValueList; 492 Optional<MetadataLoader> MDLoader; 493 std::vector<Comdat *> ComdatList; 494 DenseSet<GlobalObject *> ImplicitComdatObjects; 495 SmallVector<Instruction *, 64> InstructionList; 496 497 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 498 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 499 500 struct FunctionOperandInfo { 501 Function *F; 502 unsigned PersonalityFn; 503 unsigned Prefix; 504 unsigned Prologue; 505 }; 506 std::vector<FunctionOperandInfo> FunctionOperands; 507 508 /// The set of attributes by index. Index zero in the file is for null, and 509 /// is thus not represented here. As such all indices are off by one. 510 std::vector<AttributeList> MAttributes; 511 512 /// The set of attribute groups. 513 std::map<unsigned, AttributeList> MAttributeGroups; 514 515 /// While parsing a function body, this is a list of the basic blocks for the 516 /// function. 517 std::vector<BasicBlock*> FunctionBBs; 518 519 // When reading the module header, this list is populated with functions that 520 // have bodies later in the file. 521 std::vector<Function*> FunctionsWithBodies; 522 523 // When intrinsic functions are encountered which require upgrading they are 524 // stored here with their replacement function. 525 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 526 UpdatedIntrinsicMap UpgradedIntrinsics; 527 // Intrinsics which were remangled because of types rename 528 UpdatedIntrinsicMap RemangledIntrinsics; 529 530 // Several operations happen after the module header has been read, but 531 // before function bodies are processed. This keeps track of whether 532 // we've done this yet. 533 bool SeenFirstFunctionBody = false; 534 535 /// When function bodies are initially scanned, this map contains info about 536 /// where to find deferred function body in the stream. 537 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 538 539 /// When Metadata block is initially scanned when parsing the module, we may 540 /// choose to defer parsing of the metadata. This vector contains info about 541 /// which Metadata blocks are deferred. 542 std::vector<uint64_t> DeferredMetadataInfo; 543 544 /// These are basic blocks forward-referenced by block addresses. They are 545 /// inserted lazily into functions when they're loaded. The basic block ID is 546 /// its index into the vector. 547 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 548 std::deque<Function *> BasicBlockFwdRefQueue; 549 550 /// Indicates that we are using a new encoding for instruction operands where 551 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 552 /// instruction number, for a more compact encoding. Some instruction 553 /// operands are not relative to the instruction ID: basic block numbers, and 554 /// types. Once the old style function blocks have been phased out, we would 555 /// not need this flag. 556 bool UseRelativeIDs = false; 557 558 /// True if all functions will be materialized, negating the need to process 559 /// (e.g.) blockaddress forward references. 560 bool WillMaterializeAllForwardRefs = false; 561 562 bool StripDebugInfo = false; 563 TBAAVerifier TBAAVerifyHelper; 564 565 std::vector<std::string> BundleTags; 566 SmallVector<SyncScope::ID, 8> SSIDs; 567 568 public: 569 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 570 StringRef ProducerIdentification, LLVMContext &Context); 571 572 Error materializeForwardReferencedFunctions(); 573 574 Error materialize(GlobalValue *GV) override; 575 Error materializeModule() override; 576 std::vector<StructType *> getIdentifiedStructTypes() const override; 577 578 /// Main interface to parsing a bitcode buffer. 579 /// \returns true if an error occurred. 580 Error parseBitcodeInto( 581 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 582 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 Type *getTypeByID(unsigned ID); 597 Type *getPtrElementTypeByID(unsigned ID); 598 599 Value *getFnValueByID(unsigned ID, Type *Ty) { 600 if (Ty && Ty->isMetadataTy()) 601 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 602 return ValueList.getValueFwdRef(ID, Ty); 603 } 604 605 Metadata *getFnMetadataByID(unsigned ID) { 606 return MDLoader->getMetadataFwdRefOrLoad(ID); 607 } 608 609 BasicBlock *getBasicBlock(unsigned ID) const { 610 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 611 return FunctionBBs[ID]; 612 } 613 614 AttributeList getAttributes(unsigned i) const { 615 if (i-1 < MAttributes.size()) 616 return MAttributes[i-1]; 617 return AttributeList(); 618 } 619 620 /// Read a value/type pair out of the specified record from slot 'Slot'. 621 /// Increment Slot past the number of slots used in the record. Return true on 622 /// failure. 623 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 624 unsigned InstNum, Value *&ResVal) { 625 if (Slot == Record.size()) return true; 626 unsigned ValNo = (unsigned)Record[Slot++]; 627 // Adjust the ValNo, if it was encoded relative to the InstNum. 628 if (UseRelativeIDs) 629 ValNo = InstNum - ValNo; 630 if (ValNo < InstNum) { 631 // If this is not a forward reference, just return the value we already 632 // have. 633 ResVal = getFnValueByID(ValNo, nullptr); 634 return ResVal == nullptr; 635 } 636 if (Slot == Record.size()) 637 return true; 638 639 unsigned TypeNo = (unsigned)Record[Slot++]; 640 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 641 return ResVal == nullptr; 642 } 643 644 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 645 /// past the number of slots used by the value in the record. Return true if 646 /// there is an error. 647 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 648 unsigned InstNum, Type *Ty, Value *&ResVal) { 649 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 650 return true; 651 // All values currently take a single record slot. 652 ++Slot; 653 return false; 654 } 655 656 /// Like popValue, but does not increment the Slot number. 657 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 658 unsigned InstNum, Type *Ty, Value *&ResVal) { 659 ResVal = getValue(Record, Slot, InstNum, Ty); 660 return ResVal == nullptr; 661 } 662 663 /// Version of getValue that returns ResVal directly, or 0 if there is an 664 /// error. 665 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 666 unsigned InstNum, Type *Ty) { 667 if (Slot == Record.size()) return nullptr; 668 unsigned ValNo = (unsigned)Record[Slot]; 669 // Adjust the ValNo, if it was encoded relative to the InstNum. 670 if (UseRelativeIDs) 671 ValNo = InstNum - ValNo; 672 return getFnValueByID(ValNo, Ty); 673 } 674 675 /// Like getValue, but decodes signed VBRs. 676 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 677 unsigned InstNum, Type *Ty) { 678 if (Slot == Record.size()) return nullptr; 679 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 680 // Adjust the ValNo, if it was encoded relative to the InstNum. 681 if (UseRelativeIDs) 682 ValNo = InstNum - ValNo; 683 return getFnValueByID(ValNo, Ty); 684 } 685 686 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 687 /// corresponding argument's pointee type. Also upgrades intrinsics that now 688 /// require an elementtype attribute. 689 void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys); 690 691 /// Converts alignment exponent (i.e. power of two (or zero)) to the 692 /// corresponding alignment to use. If alignment is too large, returns 693 /// a corresponding error code. 694 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 695 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 696 Error parseModule( 697 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 698 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 699 700 Error parseComdatRecord(ArrayRef<uint64_t> Record); 701 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 702 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 703 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 704 ArrayRef<uint64_t> Record); 705 706 Error parseAttributeBlock(); 707 Error parseAttributeGroupBlock(); 708 Error parseTypeTable(); 709 Error parseTypeTableBody(); 710 Error parseOperandBundleTags(); 711 Error parseSyncScopeNames(); 712 713 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 714 unsigned NameIndex, Triple &TT); 715 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 716 ArrayRef<uint64_t> Record); 717 Error parseValueSymbolTable(uint64_t Offset = 0); 718 Error parseGlobalValueSymbolTable(); 719 Error parseConstants(); 720 Error rememberAndSkipFunctionBodies(); 721 Error rememberAndSkipFunctionBody(); 722 /// Save the positions of the Metadata blocks and skip parsing the blocks. 723 Error rememberAndSkipMetadata(); 724 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 725 Error parseFunctionBody(Function *F); 726 Error globalCleanup(); 727 Error resolveGlobalAndIndirectSymbolInits(); 728 Error parseUseLists(); 729 Error findFunctionInStream( 730 Function *F, 731 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 732 733 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 734 }; 735 736 /// Class to manage reading and parsing function summary index bitcode 737 /// files/sections. 738 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 739 /// The module index built during parsing. 740 ModuleSummaryIndex &TheIndex; 741 742 /// Indicates whether we have encountered a global value summary section 743 /// yet during parsing. 744 bool SeenGlobalValSummary = false; 745 746 /// Indicates whether we have already parsed the VST, used for error checking. 747 bool SeenValueSymbolTable = false; 748 749 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 750 /// Used to enable on-demand parsing of the VST. 751 uint64_t VSTOffset = 0; 752 753 // Map to save ValueId to ValueInfo association that was recorded in the 754 // ValueSymbolTable. It is used after the VST is parsed to convert 755 // call graph edges read from the function summary from referencing 756 // callees by their ValueId to using the ValueInfo instead, which is how 757 // they are recorded in the summary index being built. 758 // We save a GUID which refers to the same global as the ValueInfo, but 759 // ignoring the linkage, i.e. for values other than local linkage they are 760 // identical. 761 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 762 ValueIdToValueInfoMap; 763 764 /// Map populated during module path string table parsing, from the 765 /// module ID to a string reference owned by the index's module 766 /// path string table, used to correlate with combined index 767 /// summary records. 768 DenseMap<uint64_t, StringRef> ModuleIdMap; 769 770 /// Original source file name recorded in a bitcode record. 771 std::string SourceFileName; 772 773 /// The string identifier given to this module by the client, normally the 774 /// path to the bitcode file. 775 StringRef ModulePath; 776 777 /// For per-module summary indexes, the unique numerical identifier given to 778 /// this module by the client. 779 unsigned ModuleId; 780 781 public: 782 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 783 ModuleSummaryIndex &TheIndex, 784 StringRef ModulePath, unsigned ModuleId); 785 786 Error parseModule(); 787 788 private: 789 void setValueGUID(uint64_t ValueID, StringRef ValueName, 790 GlobalValue::LinkageTypes Linkage, 791 StringRef SourceFileName); 792 Error parseValueSymbolTable( 793 uint64_t Offset, 794 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 795 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 796 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 797 bool IsOldProfileFormat, 798 bool HasProfile, 799 bool HasRelBF); 800 Error parseEntireSummary(unsigned ID); 801 Error parseModuleStringTable(); 802 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 803 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 804 TypeIdCompatibleVtableInfo &TypeId); 805 std::vector<FunctionSummary::ParamAccess> 806 parseParamAccesses(ArrayRef<uint64_t> Record); 807 808 std::pair<ValueInfo, GlobalValue::GUID> 809 getValueInfoFromValueId(unsigned ValueId); 810 811 void addThisModule(); 812 ModuleSummaryIndex::ModuleInfo *getThisModule(); 813 }; 814 815 } // end anonymous namespace 816 817 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 818 Error Err) { 819 if (Err) { 820 std::error_code EC; 821 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 822 EC = EIB.convertToErrorCode(); 823 Ctx.emitError(EIB.message()); 824 }); 825 return EC; 826 } 827 return std::error_code(); 828 } 829 830 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 831 StringRef ProducerIdentification, 832 LLVMContext &Context) 833 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 834 ValueList(Context, Stream.SizeInBytes()) { 835 this->ProducerIdentification = std::string(ProducerIdentification); 836 } 837 838 Error BitcodeReader::materializeForwardReferencedFunctions() { 839 if (WillMaterializeAllForwardRefs) 840 return Error::success(); 841 842 // Prevent recursion. 843 WillMaterializeAllForwardRefs = true; 844 845 while (!BasicBlockFwdRefQueue.empty()) { 846 Function *F = BasicBlockFwdRefQueue.front(); 847 BasicBlockFwdRefQueue.pop_front(); 848 assert(F && "Expected valid function"); 849 if (!BasicBlockFwdRefs.count(F)) 850 // Already materialized. 851 continue; 852 853 // Check for a function that isn't materializable to prevent an infinite 854 // loop. When parsing a blockaddress stored in a global variable, there 855 // isn't a trivial way to check if a function will have a body without a 856 // linear search through FunctionsWithBodies, so just check it here. 857 if (!F->isMaterializable()) 858 return error("Never resolved function from blockaddress"); 859 860 // Try to materialize F. 861 if (Error Err = materialize(F)) 862 return Err; 863 } 864 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 865 866 // Reset state. 867 WillMaterializeAllForwardRefs = false; 868 return Error::success(); 869 } 870 871 //===----------------------------------------------------------------------===// 872 // Helper functions to implement forward reference resolution, etc. 873 //===----------------------------------------------------------------------===// 874 875 static bool hasImplicitComdat(size_t Val) { 876 switch (Val) { 877 default: 878 return false; 879 case 1: // Old WeakAnyLinkage 880 case 4: // Old LinkOnceAnyLinkage 881 case 10: // Old WeakODRLinkage 882 case 11: // Old LinkOnceODRLinkage 883 return true; 884 } 885 } 886 887 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 888 switch (Val) { 889 default: // Map unknown/new linkages to external 890 case 0: 891 return GlobalValue::ExternalLinkage; 892 case 2: 893 return GlobalValue::AppendingLinkage; 894 case 3: 895 return GlobalValue::InternalLinkage; 896 case 5: 897 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 898 case 6: 899 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 900 case 7: 901 return GlobalValue::ExternalWeakLinkage; 902 case 8: 903 return GlobalValue::CommonLinkage; 904 case 9: 905 return GlobalValue::PrivateLinkage; 906 case 12: 907 return GlobalValue::AvailableExternallyLinkage; 908 case 13: 909 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 910 case 14: 911 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 912 case 15: 913 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 914 case 1: // Old value with implicit comdat. 915 case 16: 916 return GlobalValue::WeakAnyLinkage; 917 case 10: // Old value with implicit comdat. 918 case 17: 919 return GlobalValue::WeakODRLinkage; 920 case 4: // Old value with implicit comdat. 921 case 18: 922 return GlobalValue::LinkOnceAnyLinkage; 923 case 11: // Old value with implicit comdat. 924 case 19: 925 return GlobalValue::LinkOnceODRLinkage; 926 } 927 } 928 929 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 930 FunctionSummary::FFlags Flags; 931 Flags.ReadNone = RawFlags & 0x1; 932 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 933 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 934 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 935 Flags.NoInline = (RawFlags >> 4) & 0x1; 936 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 937 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 938 Flags.MayThrow = (RawFlags >> 7) & 0x1; 939 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 940 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 941 return Flags; 942 } 943 944 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 945 // 946 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 947 // visibility: [8, 10). 948 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 949 uint64_t Version) { 950 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 951 // like getDecodedLinkage() above. Any future change to the linkage enum and 952 // to getDecodedLinkage() will need to be taken into account here as above. 953 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 954 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 955 RawFlags = RawFlags >> 4; 956 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 957 // The Live flag wasn't introduced until version 3. For dead stripping 958 // to work correctly on earlier versions, we must conservatively treat all 959 // values as live. 960 bool Live = (RawFlags & 0x2) || Version < 3; 961 bool Local = (RawFlags & 0x4); 962 bool AutoHide = (RawFlags & 0x8); 963 964 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 965 Live, Local, AutoHide); 966 } 967 968 // Decode the flags for GlobalVariable in the summary 969 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 970 return GlobalVarSummary::GVarFlags( 971 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 972 (RawFlags & 0x4) ? true : false, 973 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 974 } 975 976 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 977 switch (Val) { 978 default: // Map unknown visibilities to default. 979 case 0: return GlobalValue::DefaultVisibility; 980 case 1: return GlobalValue::HiddenVisibility; 981 case 2: return GlobalValue::ProtectedVisibility; 982 } 983 } 984 985 static GlobalValue::DLLStorageClassTypes 986 getDecodedDLLStorageClass(unsigned Val) { 987 switch (Val) { 988 default: // Map unknown values to default. 989 case 0: return GlobalValue::DefaultStorageClass; 990 case 1: return GlobalValue::DLLImportStorageClass; 991 case 2: return GlobalValue::DLLExportStorageClass; 992 } 993 } 994 995 static bool getDecodedDSOLocal(unsigned Val) { 996 switch(Val) { 997 default: // Map unknown values to preemptable. 998 case 0: return false; 999 case 1: return true; 1000 } 1001 } 1002 1003 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1004 switch (Val) { 1005 case 0: return GlobalVariable::NotThreadLocal; 1006 default: // Map unknown non-zero value to general dynamic. 1007 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1008 case 2: return GlobalVariable::LocalDynamicTLSModel; 1009 case 3: return GlobalVariable::InitialExecTLSModel; 1010 case 4: return GlobalVariable::LocalExecTLSModel; 1011 } 1012 } 1013 1014 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1015 switch (Val) { 1016 default: // Map unknown to UnnamedAddr::None. 1017 case 0: return GlobalVariable::UnnamedAddr::None; 1018 case 1: return GlobalVariable::UnnamedAddr::Global; 1019 case 2: return GlobalVariable::UnnamedAddr::Local; 1020 } 1021 } 1022 1023 static int getDecodedCastOpcode(unsigned Val) { 1024 switch (Val) { 1025 default: return -1; 1026 case bitc::CAST_TRUNC : return Instruction::Trunc; 1027 case bitc::CAST_ZEXT : return Instruction::ZExt; 1028 case bitc::CAST_SEXT : return Instruction::SExt; 1029 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1030 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1031 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1032 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1033 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1034 case bitc::CAST_FPEXT : return Instruction::FPExt; 1035 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1036 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1037 case bitc::CAST_BITCAST : return Instruction::BitCast; 1038 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1039 } 1040 } 1041 1042 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1043 bool IsFP = Ty->isFPOrFPVectorTy(); 1044 // UnOps are only valid for int/fp or vector of int/fp types 1045 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1046 return -1; 1047 1048 switch (Val) { 1049 default: 1050 return -1; 1051 case bitc::UNOP_FNEG: 1052 return IsFP ? Instruction::FNeg : -1; 1053 } 1054 } 1055 1056 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1057 bool IsFP = Ty->isFPOrFPVectorTy(); 1058 // BinOps are only valid for int/fp or vector of int/fp types 1059 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1060 return -1; 1061 1062 switch (Val) { 1063 default: 1064 return -1; 1065 case bitc::BINOP_ADD: 1066 return IsFP ? Instruction::FAdd : Instruction::Add; 1067 case bitc::BINOP_SUB: 1068 return IsFP ? Instruction::FSub : Instruction::Sub; 1069 case bitc::BINOP_MUL: 1070 return IsFP ? Instruction::FMul : Instruction::Mul; 1071 case bitc::BINOP_UDIV: 1072 return IsFP ? -1 : Instruction::UDiv; 1073 case bitc::BINOP_SDIV: 1074 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1075 case bitc::BINOP_UREM: 1076 return IsFP ? -1 : Instruction::URem; 1077 case bitc::BINOP_SREM: 1078 return IsFP ? Instruction::FRem : Instruction::SRem; 1079 case bitc::BINOP_SHL: 1080 return IsFP ? -1 : Instruction::Shl; 1081 case bitc::BINOP_LSHR: 1082 return IsFP ? -1 : Instruction::LShr; 1083 case bitc::BINOP_ASHR: 1084 return IsFP ? -1 : Instruction::AShr; 1085 case bitc::BINOP_AND: 1086 return IsFP ? -1 : Instruction::And; 1087 case bitc::BINOP_OR: 1088 return IsFP ? -1 : Instruction::Or; 1089 case bitc::BINOP_XOR: 1090 return IsFP ? -1 : Instruction::Xor; 1091 } 1092 } 1093 1094 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1095 switch (Val) { 1096 default: return AtomicRMWInst::BAD_BINOP; 1097 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1098 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1099 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1100 case bitc::RMW_AND: return AtomicRMWInst::And; 1101 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1102 case bitc::RMW_OR: return AtomicRMWInst::Or; 1103 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1104 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1105 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1106 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1107 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1108 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1109 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1110 } 1111 } 1112 1113 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1114 switch (Val) { 1115 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1116 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1117 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1118 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1119 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1120 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1121 default: // Map unknown orderings to sequentially-consistent. 1122 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1123 } 1124 } 1125 1126 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1127 switch (Val) { 1128 default: // Map unknown selection kinds to any. 1129 case bitc::COMDAT_SELECTION_KIND_ANY: 1130 return Comdat::Any; 1131 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1132 return Comdat::ExactMatch; 1133 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1134 return Comdat::Largest; 1135 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1136 return Comdat::NoDeduplicate; 1137 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1138 return Comdat::SameSize; 1139 } 1140 } 1141 1142 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1143 FastMathFlags FMF; 1144 if (0 != (Val & bitc::UnsafeAlgebra)) 1145 FMF.setFast(); 1146 if (0 != (Val & bitc::AllowReassoc)) 1147 FMF.setAllowReassoc(); 1148 if (0 != (Val & bitc::NoNaNs)) 1149 FMF.setNoNaNs(); 1150 if (0 != (Val & bitc::NoInfs)) 1151 FMF.setNoInfs(); 1152 if (0 != (Val & bitc::NoSignedZeros)) 1153 FMF.setNoSignedZeros(); 1154 if (0 != (Val & bitc::AllowReciprocal)) 1155 FMF.setAllowReciprocal(); 1156 if (0 != (Val & bitc::AllowContract)) 1157 FMF.setAllowContract(true); 1158 if (0 != (Val & bitc::ApproxFunc)) 1159 FMF.setApproxFunc(); 1160 return FMF; 1161 } 1162 1163 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1164 switch (Val) { 1165 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1166 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1167 } 1168 } 1169 1170 Type *BitcodeReader::getTypeByID(unsigned ID) { 1171 // The type table size is always specified correctly. 1172 if (ID >= TypeList.size()) 1173 return nullptr; 1174 1175 if (Type *Ty = TypeList[ID]) 1176 return Ty; 1177 1178 // If we have a forward reference, the only possible case is when it is to a 1179 // named struct. Just create a placeholder for now. 1180 return TypeList[ID] = createIdentifiedStructType(Context); 1181 } 1182 1183 Type *BitcodeReader::getPtrElementTypeByID(unsigned ID) { 1184 if (ID >= TypeList.size()) 1185 return nullptr; 1186 1187 Type *Ty = TypeList[ID]; 1188 if (!Ty->isPointerTy()) 1189 return nullptr; 1190 1191 Type *ElemTy = ElementTypeList[ID]; 1192 if (!ElemTy) 1193 return nullptr; 1194 1195 assert(cast<PointerType>(Ty)->isOpaqueOrPointeeTypeMatches(ElemTy) && 1196 "Incorrect element type"); 1197 return ElemTy; 1198 } 1199 1200 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1201 StringRef Name) { 1202 auto *Ret = StructType::create(Context, Name); 1203 IdentifiedStructTypes.push_back(Ret); 1204 return Ret; 1205 } 1206 1207 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1208 auto *Ret = StructType::create(Context); 1209 IdentifiedStructTypes.push_back(Ret); 1210 return Ret; 1211 } 1212 1213 //===----------------------------------------------------------------------===// 1214 // Functions for parsing blocks from the bitcode file 1215 //===----------------------------------------------------------------------===// 1216 1217 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1218 switch (Val) { 1219 case Attribute::EndAttrKinds: 1220 case Attribute::EmptyKey: 1221 case Attribute::TombstoneKey: 1222 llvm_unreachable("Synthetic enumerators which should never get here"); 1223 1224 case Attribute::None: return 0; 1225 case Attribute::ZExt: return 1 << 0; 1226 case Attribute::SExt: return 1 << 1; 1227 case Attribute::NoReturn: return 1 << 2; 1228 case Attribute::InReg: return 1 << 3; 1229 case Attribute::StructRet: return 1 << 4; 1230 case Attribute::NoUnwind: return 1 << 5; 1231 case Attribute::NoAlias: return 1 << 6; 1232 case Attribute::ByVal: return 1 << 7; 1233 case Attribute::Nest: return 1 << 8; 1234 case Attribute::ReadNone: return 1 << 9; 1235 case Attribute::ReadOnly: return 1 << 10; 1236 case Attribute::NoInline: return 1 << 11; 1237 case Attribute::AlwaysInline: return 1 << 12; 1238 case Attribute::OptimizeForSize: return 1 << 13; 1239 case Attribute::StackProtect: return 1 << 14; 1240 case Attribute::StackProtectReq: return 1 << 15; 1241 case Attribute::Alignment: return 31 << 16; 1242 case Attribute::NoCapture: return 1 << 21; 1243 case Attribute::NoRedZone: return 1 << 22; 1244 case Attribute::NoImplicitFloat: return 1 << 23; 1245 case Attribute::Naked: return 1 << 24; 1246 case Attribute::InlineHint: return 1 << 25; 1247 case Attribute::StackAlignment: return 7 << 26; 1248 case Attribute::ReturnsTwice: return 1 << 29; 1249 case Attribute::UWTable: return 1 << 30; 1250 case Attribute::NonLazyBind: return 1U << 31; 1251 case Attribute::SanitizeAddress: return 1ULL << 32; 1252 case Attribute::MinSize: return 1ULL << 33; 1253 case Attribute::NoDuplicate: return 1ULL << 34; 1254 case Attribute::StackProtectStrong: return 1ULL << 35; 1255 case Attribute::SanitizeThread: return 1ULL << 36; 1256 case Attribute::SanitizeMemory: return 1ULL << 37; 1257 case Attribute::NoBuiltin: return 1ULL << 38; 1258 case Attribute::Returned: return 1ULL << 39; 1259 case Attribute::Cold: return 1ULL << 40; 1260 case Attribute::Builtin: return 1ULL << 41; 1261 case Attribute::OptimizeNone: return 1ULL << 42; 1262 case Attribute::InAlloca: return 1ULL << 43; 1263 case Attribute::NonNull: return 1ULL << 44; 1264 case Attribute::JumpTable: return 1ULL << 45; 1265 case Attribute::Convergent: return 1ULL << 46; 1266 case Attribute::SafeStack: return 1ULL << 47; 1267 case Attribute::NoRecurse: return 1ULL << 48; 1268 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1269 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1270 case Attribute::SwiftSelf: return 1ULL << 51; 1271 case Attribute::SwiftError: return 1ULL << 52; 1272 case Attribute::WriteOnly: return 1ULL << 53; 1273 case Attribute::Speculatable: return 1ULL << 54; 1274 case Attribute::StrictFP: return 1ULL << 55; 1275 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1276 case Attribute::NoCfCheck: return 1ULL << 57; 1277 case Attribute::OptForFuzzing: return 1ULL << 58; 1278 case Attribute::ShadowCallStack: return 1ULL << 59; 1279 case Attribute::SpeculativeLoadHardening: 1280 return 1ULL << 60; 1281 case Attribute::ImmArg: 1282 return 1ULL << 61; 1283 case Attribute::WillReturn: 1284 return 1ULL << 62; 1285 case Attribute::NoFree: 1286 return 1ULL << 63; 1287 default: 1288 // Other attributes are not supported in the raw format, 1289 // as we ran out of space. 1290 return 0; 1291 } 1292 llvm_unreachable("Unsupported attribute type"); 1293 } 1294 1295 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1296 if (!Val) return; 1297 1298 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1299 I = Attribute::AttrKind(I + 1)) { 1300 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1301 if (I == Attribute::Alignment) 1302 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1303 else if (I == Attribute::StackAlignment) 1304 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1305 else if (Attribute::isTypeAttrKind(I)) 1306 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1307 else 1308 B.addAttribute(I); 1309 } 1310 } 1311 } 1312 1313 /// This fills an AttrBuilder object with the LLVM attributes that have 1314 /// been decoded from the given integer. This function must stay in sync with 1315 /// 'encodeLLVMAttributesForBitcode'. 1316 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1317 uint64_t EncodedAttrs) { 1318 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1319 // the bits above 31 down by 11 bits. 1320 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1321 assert((!Alignment || isPowerOf2_32(Alignment)) && 1322 "Alignment must be a power of two."); 1323 1324 if (Alignment) 1325 B.addAlignmentAttr(Alignment); 1326 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1327 (EncodedAttrs & 0xffff)); 1328 } 1329 1330 Error BitcodeReader::parseAttributeBlock() { 1331 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1332 return Err; 1333 1334 if (!MAttributes.empty()) 1335 return error("Invalid multiple blocks"); 1336 1337 SmallVector<uint64_t, 64> Record; 1338 1339 SmallVector<AttributeList, 8> Attrs; 1340 1341 // Read all the records. 1342 while (true) { 1343 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1344 if (!MaybeEntry) 1345 return MaybeEntry.takeError(); 1346 BitstreamEntry Entry = MaybeEntry.get(); 1347 1348 switch (Entry.Kind) { 1349 case BitstreamEntry::SubBlock: // Handled for us already. 1350 case BitstreamEntry::Error: 1351 return error("Malformed block"); 1352 case BitstreamEntry::EndBlock: 1353 return Error::success(); 1354 case BitstreamEntry::Record: 1355 // The interesting case. 1356 break; 1357 } 1358 1359 // Read a record. 1360 Record.clear(); 1361 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1362 if (!MaybeRecord) 1363 return MaybeRecord.takeError(); 1364 switch (MaybeRecord.get()) { 1365 default: // Default behavior: ignore. 1366 break; 1367 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1368 // Deprecated, but still needed to read old bitcode files. 1369 if (Record.size() & 1) 1370 return error("Invalid record"); 1371 1372 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1373 AttrBuilder B(Context); 1374 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1375 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1376 } 1377 1378 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1379 Attrs.clear(); 1380 break; 1381 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1382 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1383 Attrs.push_back(MAttributeGroups[Record[i]]); 1384 1385 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1386 Attrs.clear(); 1387 break; 1388 } 1389 } 1390 } 1391 1392 // Returns Attribute::None on unrecognized codes. 1393 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1394 switch (Code) { 1395 default: 1396 return Attribute::None; 1397 case bitc::ATTR_KIND_ALIGNMENT: 1398 return Attribute::Alignment; 1399 case bitc::ATTR_KIND_ALWAYS_INLINE: 1400 return Attribute::AlwaysInline; 1401 case bitc::ATTR_KIND_ARGMEMONLY: 1402 return Attribute::ArgMemOnly; 1403 case bitc::ATTR_KIND_BUILTIN: 1404 return Attribute::Builtin; 1405 case bitc::ATTR_KIND_BY_VAL: 1406 return Attribute::ByVal; 1407 case bitc::ATTR_KIND_IN_ALLOCA: 1408 return Attribute::InAlloca; 1409 case bitc::ATTR_KIND_COLD: 1410 return Attribute::Cold; 1411 case bitc::ATTR_KIND_CONVERGENT: 1412 return Attribute::Convergent; 1413 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1414 return Attribute::DisableSanitizerInstrumentation; 1415 case bitc::ATTR_KIND_ELEMENTTYPE: 1416 return Attribute::ElementType; 1417 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1418 return Attribute::InaccessibleMemOnly; 1419 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1420 return Attribute::InaccessibleMemOrArgMemOnly; 1421 case bitc::ATTR_KIND_INLINE_HINT: 1422 return Attribute::InlineHint; 1423 case bitc::ATTR_KIND_IN_REG: 1424 return Attribute::InReg; 1425 case bitc::ATTR_KIND_JUMP_TABLE: 1426 return Attribute::JumpTable; 1427 case bitc::ATTR_KIND_MIN_SIZE: 1428 return Attribute::MinSize; 1429 case bitc::ATTR_KIND_NAKED: 1430 return Attribute::Naked; 1431 case bitc::ATTR_KIND_NEST: 1432 return Attribute::Nest; 1433 case bitc::ATTR_KIND_NO_ALIAS: 1434 return Attribute::NoAlias; 1435 case bitc::ATTR_KIND_NO_BUILTIN: 1436 return Attribute::NoBuiltin; 1437 case bitc::ATTR_KIND_NO_CALLBACK: 1438 return Attribute::NoCallback; 1439 case bitc::ATTR_KIND_NO_CAPTURE: 1440 return Attribute::NoCapture; 1441 case bitc::ATTR_KIND_NO_DUPLICATE: 1442 return Attribute::NoDuplicate; 1443 case bitc::ATTR_KIND_NOFREE: 1444 return Attribute::NoFree; 1445 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1446 return Attribute::NoImplicitFloat; 1447 case bitc::ATTR_KIND_NO_INLINE: 1448 return Attribute::NoInline; 1449 case bitc::ATTR_KIND_NO_RECURSE: 1450 return Attribute::NoRecurse; 1451 case bitc::ATTR_KIND_NO_MERGE: 1452 return Attribute::NoMerge; 1453 case bitc::ATTR_KIND_NON_LAZY_BIND: 1454 return Attribute::NonLazyBind; 1455 case bitc::ATTR_KIND_NON_NULL: 1456 return Attribute::NonNull; 1457 case bitc::ATTR_KIND_DEREFERENCEABLE: 1458 return Attribute::Dereferenceable; 1459 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1460 return Attribute::DereferenceableOrNull; 1461 case bitc::ATTR_KIND_ALLOC_SIZE: 1462 return Attribute::AllocSize; 1463 case bitc::ATTR_KIND_NO_RED_ZONE: 1464 return Attribute::NoRedZone; 1465 case bitc::ATTR_KIND_NO_RETURN: 1466 return Attribute::NoReturn; 1467 case bitc::ATTR_KIND_NOSYNC: 1468 return Attribute::NoSync; 1469 case bitc::ATTR_KIND_NOCF_CHECK: 1470 return Attribute::NoCfCheck; 1471 case bitc::ATTR_KIND_NO_PROFILE: 1472 return Attribute::NoProfile; 1473 case bitc::ATTR_KIND_NO_UNWIND: 1474 return Attribute::NoUnwind; 1475 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1476 return Attribute::NoSanitizeCoverage; 1477 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1478 return Attribute::NullPointerIsValid; 1479 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1480 return Attribute::OptForFuzzing; 1481 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1482 return Attribute::OptimizeForSize; 1483 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1484 return Attribute::OptimizeNone; 1485 case bitc::ATTR_KIND_READ_NONE: 1486 return Attribute::ReadNone; 1487 case bitc::ATTR_KIND_READ_ONLY: 1488 return Attribute::ReadOnly; 1489 case bitc::ATTR_KIND_RETURNED: 1490 return Attribute::Returned; 1491 case bitc::ATTR_KIND_RETURNS_TWICE: 1492 return Attribute::ReturnsTwice; 1493 case bitc::ATTR_KIND_S_EXT: 1494 return Attribute::SExt; 1495 case bitc::ATTR_KIND_SPECULATABLE: 1496 return Attribute::Speculatable; 1497 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1498 return Attribute::StackAlignment; 1499 case bitc::ATTR_KIND_STACK_PROTECT: 1500 return Attribute::StackProtect; 1501 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1502 return Attribute::StackProtectReq; 1503 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1504 return Attribute::StackProtectStrong; 1505 case bitc::ATTR_KIND_SAFESTACK: 1506 return Attribute::SafeStack; 1507 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1508 return Attribute::ShadowCallStack; 1509 case bitc::ATTR_KIND_STRICT_FP: 1510 return Attribute::StrictFP; 1511 case bitc::ATTR_KIND_STRUCT_RET: 1512 return Attribute::StructRet; 1513 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1514 return Attribute::SanitizeAddress; 1515 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1516 return Attribute::SanitizeHWAddress; 1517 case bitc::ATTR_KIND_SANITIZE_THREAD: 1518 return Attribute::SanitizeThread; 1519 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1520 return Attribute::SanitizeMemory; 1521 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1522 return Attribute::SpeculativeLoadHardening; 1523 case bitc::ATTR_KIND_SWIFT_ERROR: 1524 return Attribute::SwiftError; 1525 case bitc::ATTR_KIND_SWIFT_SELF: 1526 return Attribute::SwiftSelf; 1527 case bitc::ATTR_KIND_SWIFT_ASYNC: 1528 return Attribute::SwiftAsync; 1529 case bitc::ATTR_KIND_UW_TABLE: 1530 return Attribute::UWTable; 1531 case bitc::ATTR_KIND_VSCALE_RANGE: 1532 return Attribute::VScaleRange; 1533 case bitc::ATTR_KIND_WILLRETURN: 1534 return Attribute::WillReturn; 1535 case bitc::ATTR_KIND_WRITEONLY: 1536 return Attribute::WriteOnly; 1537 case bitc::ATTR_KIND_Z_EXT: 1538 return Attribute::ZExt; 1539 case bitc::ATTR_KIND_IMMARG: 1540 return Attribute::ImmArg; 1541 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1542 return Attribute::SanitizeMemTag; 1543 case bitc::ATTR_KIND_PREALLOCATED: 1544 return Attribute::Preallocated; 1545 case bitc::ATTR_KIND_NOUNDEF: 1546 return Attribute::NoUndef; 1547 case bitc::ATTR_KIND_BYREF: 1548 return Attribute::ByRef; 1549 case bitc::ATTR_KIND_MUSTPROGRESS: 1550 return Attribute::MustProgress; 1551 case bitc::ATTR_KIND_HOT: 1552 return Attribute::Hot; 1553 } 1554 } 1555 1556 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1557 MaybeAlign &Alignment) { 1558 // Note: Alignment in bitcode files is incremented by 1, so that zero 1559 // can be used for default alignment. 1560 if (Exponent > Value::MaxAlignmentExponent + 1) 1561 return error("Invalid alignment value"); 1562 Alignment = decodeMaybeAlign(Exponent); 1563 return Error::success(); 1564 } 1565 1566 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1567 *Kind = getAttrFromCode(Code); 1568 if (*Kind == Attribute::None) 1569 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1570 return Error::success(); 1571 } 1572 1573 Error BitcodeReader::parseAttributeGroupBlock() { 1574 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1575 return Err; 1576 1577 if (!MAttributeGroups.empty()) 1578 return error("Invalid multiple blocks"); 1579 1580 SmallVector<uint64_t, 64> Record; 1581 1582 // Read all the records. 1583 while (true) { 1584 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1585 if (!MaybeEntry) 1586 return MaybeEntry.takeError(); 1587 BitstreamEntry Entry = MaybeEntry.get(); 1588 1589 switch (Entry.Kind) { 1590 case BitstreamEntry::SubBlock: // Handled for us already. 1591 case BitstreamEntry::Error: 1592 return error("Malformed block"); 1593 case BitstreamEntry::EndBlock: 1594 return Error::success(); 1595 case BitstreamEntry::Record: 1596 // The interesting case. 1597 break; 1598 } 1599 1600 // Read a record. 1601 Record.clear(); 1602 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1603 if (!MaybeRecord) 1604 return MaybeRecord.takeError(); 1605 switch (MaybeRecord.get()) { 1606 default: // Default behavior: ignore. 1607 break; 1608 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1609 if (Record.size() < 3) 1610 return error("Invalid record"); 1611 1612 uint64_t GrpID = Record[0]; 1613 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1614 1615 AttrBuilder B(Context); 1616 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1617 if (Record[i] == 0) { // Enum attribute 1618 Attribute::AttrKind Kind; 1619 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1620 return Err; 1621 1622 // Upgrade old-style byval attribute to one with a type, even if it's 1623 // nullptr. We will have to insert the real type when we associate 1624 // this AttributeList with a function. 1625 if (Kind == Attribute::ByVal) 1626 B.addByValAttr(nullptr); 1627 else if (Kind == Attribute::StructRet) 1628 B.addStructRetAttr(nullptr); 1629 else if (Kind == Attribute::InAlloca) 1630 B.addInAllocaAttr(nullptr); 1631 else if (Attribute::isEnumAttrKind(Kind)) 1632 B.addAttribute(Kind); 1633 else 1634 return error("Not an enum attribute"); 1635 } else if (Record[i] == 1) { // Integer attribute 1636 Attribute::AttrKind Kind; 1637 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1638 return Err; 1639 if (!Attribute::isIntAttrKind(Kind)) 1640 return error("Not an int attribute"); 1641 if (Kind == Attribute::Alignment) 1642 B.addAlignmentAttr(Record[++i]); 1643 else if (Kind == Attribute::StackAlignment) 1644 B.addStackAlignmentAttr(Record[++i]); 1645 else if (Kind == Attribute::Dereferenceable) 1646 B.addDereferenceableAttr(Record[++i]); 1647 else if (Kind == Attribute::DereferenceableOrNull) 1648 B.addDereferenceableOrNullAttr(Record[++i]); 1649 else if (Kind == Attribute::AllocSize) 1650 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1651 else if (Kind == Attribute::VScaleRange) 1652 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1653 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1654 bool HasValue = (Record[i++] == 4); 1655 SmallString<64> KindStr; 1656 SmallString<64> ValStr; 1657 1658 while (Record[i] != 0 && i != e) 1659 KindStr += Record[i++]; 1660 assert(Record[i] == 0 && "Kind string not null terminated"); 1661 1662 if (HasValue) { 1663 // Has a value associated with it. 1664 ++i; // Skip the '0' that terminates the "kind" string. 1665 while (Record[i] != 0 && i != e) 1666 ValStr += Record[i++]; 1667 assert(Record[i] == 0 && "Value string not null terminated"); 1668 } 1669 1670 B.addAttribute(KindStr.str(), ValStr.str()); 1671 } else if (Record[i] == 5 || Record[i] == 6) { 1672 bool HasType = Record[i] == 6; 1673 Attribute::AttrKind Kind; 1674 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1675 return Err; 1676 if (!Attribute::isTypeAttrKind(Kind)) 1677 return error("Not a type attribute"); 1678 1679 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 1680 } else { 1681 return error("Invalid attribute group entry"); 1682 } 1683 } 1684 1685 UpgradeAttributes(B); 1686 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1687 break; 1688 } 1689 } 1690 } 1691 } 1692 1693 Error BitcodeReader::parseTypeTable() { 1694 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1695 return Err; 1696 1697 return parseTypeTableBody(); 1698 } 1699 1700 Error BitcodeReader::parseTypeTableBody() { 1701 if (!TypeList.empty()) 1702 return error("Invalid multiple blocks"); 1703 1704 SmallVector<uint64_t, 64> Record; 1705 unsigned NumRecords = 0; 1706 1707 SmallString<64> TypeName; 1708 1709 // Read all the records for this type table. 1710 while (true) { 1711 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1712 if (!MaybeEntry) 1713 return MaybeEntry.takeError(); 1714 BitstreamEntry Entry = MaybeEntry.get(); 1715 1716 switch (Entry.Kind) { 1717 case BitstreamEntry::SubBlock: // Handled for us already. 1718 case BitstreamEntry::Error: 1719 return error("Malformed block"); 1720 case BitstreamEntry::EndBlock: 1721 if (NumRecords != TypeList.size()) 1722 return error("Malformed block"); 1723 return Error::success(); 1724 case BitstreamEntry::Record: 1725 // The interesting case. 1726 break; 1727 } 1728 1729 // Read a record. 1730 Record.clear(); 1731 Type *ResultTy = nullptr; 1732 Type *ElemTy = nullptr; 1733 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1734 if (!MaybeRecord) 1735 return MaybeRecord.takeError(); 1736 switch (MaybeRecord.get()) { 1737 default: 1738 return error("Invalid value"); 1739 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1740 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1741 // type list. This allows us to reserve space. 1742 if (Record.empty()) 1743 return error("Invalid record"); 1744 TypeList.resize(Record[0]); 1745 ElementTypeList.resize(Record[0]); 1746 continue; 1747 case bitc::TYPE_CODE_VOID: // VOID 1748 ResultTy = Type::getVoidTy(Context); 1749 break; 1750 case bitc::TYPE_CODE_HALF: // HALF 1751 ResultTy = Type::getHalfTy(Context); 1752 break; 1753 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1754 ResultTy = Type::getBFloatTy(Context); 1755 break; 1756 case bitc::TYPE_CODE_FLOAT: // FLOAT 1757 ResultTy = Type::getFloatTy(Context); 1758 break; 1759 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1760 ResultTy = Type::getDoubleTy(Context); 1761 break; 1762 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1763 ResultTy = Type::getX86_FP80Ty(Context); 1764 break; 1765 case bitc::TYPE_CODE_FP128: // FP128 1766 ResultTy = Type::getFP128Ty(Context); 1767 break; 1768 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1769 ResultTy = Type::getPPC_FP128Ty(Context); 1770 break; 1771 case bitc::TYPE_CODE_LABEL: // LABEL 1772 ResultTy = Type::getLabelTy(Context); 1773 break; 1774 case bitc::TYPE_CODE_METADATA: // METADATA 1775 ResultTy = Type::getMetadataTy(Context); 1776 break; 1777 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1778 ResultTy = Type::getX86_MMXTy(Context); 1779 break; 1780 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1781 ResultTy = Type::getX86_AMXTy(Context); 1782 break; 1783 case bitc::TYPE_CODE_TOKEN: // TOKEN 1784 ResultTy = Type::getTokenTy(Context); 1785 break; 1786 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1787 if (Record.empty()) 1788 return error("Invalid record"); 1789 1790 uint64_t NumBits = Record[0]; 1791 if (NumBits < IntegerType::MIN_INT_BITS || 1792 NumBits > IntegerType::MAX_INT_BITS) 1793 return error("Bitwidth for integer type out of range"); 1794 ResultTy = IntegerType::get(Context, NumBits); 1795 break; 1796 } 1797 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1798 // [pointee type, address space] 1799 if (Record.empty()) 1800 return error("Invalid record"); 1801 unsigned AddressSpace = 0; 1802 if (Record.size() == 2) 1803 AddressSpace = Record[1]; 1804 ResultTy = getTypeByID(Record[0]); 1805 if (!ResultTy || 1806 !PointerType::isValidElementType(ResultTy)) 1807 return error("Invalid type"); 1808 ElemTy = ResultTy; 1809 ResultTy = PointerType::get(ResultTy, AddressSpace); 1810 break; 1811 } 1812 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1813 if (Record.size() != 1) 1814 return error("Invalid record"); 1815 if (Context.supportsTypedPointers()) 1816 return error( 1817 "Opaque pointers are only supported in -opaque-pointers mode"); 1818 unsigned AddressSpace = Record[0]; 1819 ResultTy = PointerType::get(Context, AddressSpace); 1820 break; 1821 } 1822 case bitc::TYPE_CODE_FUNCTION_OLD: { 1823 // Deprecated, but still needed to read old bitcode files. 1824 // FUNCTION: [vararg, attrid, retty, paramty x N] 1825 if (Record.size() < 3) 1826 return error("Invalid record"); 1827 SmallVector<Type*, 8> ArgTys; 1828 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1829 if (Type *T = getTypeByID(Record[i])) 1830 ArgTys.push_back(T); 1831 else 1832 break; 1833 } 1834 1835 ResultTy = getTypeByID(Record[2]); 1836 if (!ResultTy || ArgTys.size() < Record.size()-3) 1837 return error("Invalid type"); 1838 1839 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1840 break; 1841 } 1842 case bitc::TYPE_CODE_FUNCTION: { 1843 // FUNCTION: [vararg, retty, paramty x N] 1844 if (Record.size() < 2) 1845 return error("Invalid record"); 1846 SmallVector<Type*, 8> ArgTys; 1847 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1848 if (Type *T = getTypeByID(Record[i])) { 1849 if (!FunctionType::isValidArgumentType(T)) 1850 return error("Invalid function argument type"); 1851 ArgTys.push_back(T); 1852 } 1853 else 1854 break; 1855 } 1856 1857 ResultTy = getTypeByID(Record[1]); 1858 if (!ResultTy || ArgTys.size() < Record.size()-2) 1859 return error("Invalid type"); 1860 1861 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1862 break; 1863 } 1864 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1865 if (Record.empty()) 1866 return error("Invalid record"); 1867 SmallVector<Type*, 8> EltTys; 1868 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1869 if (Type *T = getTypeByID(Record[i])) 1870 EltTys.push_back(T); 1871 else 1872 break; 1873 } 1874 if (EltTys.size() != Record.size()-1) 1875 return error("Invalid type"); 1876 ResultTy = StructType::get(Context, EltTys, Record[0]); 1877 break; 1878 } 1879 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1880 if (convertToString(Record, 0, TypeName)) 1881 return error("Invalid record"); 1882 continue; 1883 1884 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1885 if (Record.empty()) 1886 return error("Invalid record"); 1887 1888 if (NumRecords >= TypeList.size()) 1889 return error("Invalid TYPE table"); 1890 1891 // Check to see if this was forward referenced, if so fill in the temp. 1892 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1893 if (Res) { 1894 Res->setName(TypeName); 1895 TypeList[NumRecords] = nullptr; 1896 } else // Otherwise, create a new struct. 1897 Res = createIdentifiedStructType(Context, TypeName); 1898 TypeName.clear(); 1899 1900 SmallVector<Type*, 8> EltTys; 1901 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1902 if (Type *T = getTypeByID(Record[i])) 1903 EltTys.push_back(T); 1904 else 1905 break; 1906 } 1907 if (EltTys.size() != Record.size()-1) 1908 return error("Invalid record"); 1909 Res->setBody(EltTys, Record[0]); 1910 ResultTy = Res; 1911 break; 1912 } 1913 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1914 if (Record.size() != 1) 1915 return error("Invalid record"); 1916 1917 if (NumRecords >= TypeList.size()) 1918 return error("Invalid TYPE table"); 1919 1920 // Check to see if this was forward referenced, if so fill in the temp. 1921 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1922 if (Res) { 1923 Res->setName(TypeName); 1924 TypeList[NumRecords] = nullptr; 1925 } else // Otherwise, create a new struct with no body. 1926 Res = createIdentifiedStructType(Context, TypeName); 1927 TypeName.clear(); 1928 ResultTy = Res; 1929 break; 1930 } 1931 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1932 if (Record.size() < 2) 1933 return error("Invalid record"); 1934 ResultTy = getTypeByID(Record[1]); 1935 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1936 return error("Invalid type"); 1937 ResultTy = ArrayType::get(ResultTy, Record[0]); 1938 break; 1939 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1940 // [numelts, eltty, scalable] 1941 if (Record.size() < 2) 1942 return error("Invalid record"); 1943 if (Record[0] == 0) 1944 return error("Invalid vector length"); 1945 ResultTy = getTypeByID(Record[1]); 1946 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 1947 return error("Invalid type"); 1948 bool Scalable = Record.size() > 2 ? Record[2] : false; 1949 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1950 break; 1951 } 1952 1953 if (NumRecords >= TypeList.size()) 1954 return error("Invalid TYPE table"); 1955 if (TypeList[NumRecords]) 1956 return error( 1957 "Invalid TYPE table: Only named structs can be forward referenced"); 1958 assert(ResultTy && "Didn't read a type?"); 1959 TypeList[NumRecords] = ResultTy; 1960 ElementTypeList[NumRecords] = ElemTy; 1961 ++NumRecords; 1962 } 1963 } 1964 1965 Error BitcodeReader::parseOperandBundleTags() { 1966 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1967 return Err; 1968 1969 if (!BundleTags.empty()) 1970 return error("Invalid multiple blocks"); 1971 1972 SmallVector<uint64_t, 64> Record; 1973 1974 while (true) { 1975 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1976 if (!MaybeEntry) 1977 return MaybeEntry.takeError(); 1978 BitstreamEntry Entry = MaybeEntry.get(); 1979 1980 switch (Entry.Kind) { 1981 case BitstreamEntry::SubBlock: // Handled for us already. 1982 case BitstreamEntry::Error: 1983 return error("Malformed block"); 1984 case BitstreamEntry::EndBlock: 1985 return Error::success(); 1986 case BitstreamEntry::Record: 1987 // The interesting case. 1988 break; 1989 } 1990 1991 // Tags are implicitly mapped to integers by their order. 1992 1993 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1994 if (!MaybeRecord) 1995 return MaybeRecord.takeError(); 1996 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1997 return error("Invalid record"); 1998 1999 // OPERAND_BUNDLE_TAG: [strchr x N] 2000 BundleTags.emplace_back(); 2001 if (convertToString(Record, 0, BundleTags.back())) 2002 return error("Invalid record"); 2003 Record.clear(); 2004 } 2005 } 2006 2007 Error BitcodeReader::parseSyncScopeNames() { 2008 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2009 return Err; 2010 2011 if (!SSIDs.empty()) 2012 return error("Invalid multiple synchronization scope names blocks"); 2013 2014 SmallVector<uint64_t, 64> Record; 2015 while (true) { 2016 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2017 if (!MaybeEntry) 2018 return MaybeEntry.takeError(); 2019 BitstreamEntry Entry = MaybeEntry.get(); 2020 2021 switch (Entry.Kind) { 2022 case BitstreamEntry::SubBlock: // Handled for us already. 2023 case BitstreamEntry::Error: 2024 return error("Malformed block"); 2025 case BitstreamEntry::EndBlock: 2026 if (SSIDs.empty()) 2027 return error("Invalid empty synchronization scope names block"); 2028 return Error::success(); 2029 case BitstreamEntry::Record: 2030 // The interesting case. 2031 break; 2032 } 2033 2034 // Synchronization scope names are implicitly mapped to synchronization 2035 // scope IDs by their order. 2036 2037 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2038 if (!MaybeRecord) 2039 return MaybeRecord.takeError(); 2040 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2041 return error("Invalid record"); 2042 2043 SmallString<16> SSN; 2044 if (convertToString(Record, 0, SSN)) 2045 return error("Invalid record"); 2046 2047 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2048 Record.clear(); 2049 } 2050 } 2051 2052 /// Associate a value with its name from the given index in the provided record. 2053 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2054 unsigned NameIndex, Triple &TT) { 2055 SmallString<128> ValueName; 2056 if (convertToString(Record, NameIndex, ValueName)) 2057 return error("Invalid record"); 2058 unsigned ValueID = Record[0]; 2059 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2060 return error("Invalid record"); 2061 Value *V = ValueList[ValueID]; 2062 2063 StringRef NameStr(ValueName.data(), ValueName.size()); 2064 if (NameStr.find_first_of(0) != StringRef::npos) 2065 return error("Invalid value name"); 2066 V->setName(NameStr); 2067 auto *GO = dyn_cast<GlobalObject>(V); 2068 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2069 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2070 return V; 2071 } 2072 2073 /// Helper to note and return the current location, and jump to the given 2074 /// offset. 2075 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2076 BitstreamCursor &Stream) { 2077 // Save the current parsing location so we can jump back at the end 2078 // of the VST read. 2079 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2080 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2081 return std::move(JumpFailed); 2082 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2083 if (!MaybeEntry) 2084 return MaybeEntry.takeError(); 2085 if (MaybeEntry.get().Kind != BitstreamEntry::SubBlock || 2086 MaybeEntry.get().ID != bitc::VALUE_SYMTAB_BLOCK_ID) 2087 return error("Expected value symbol table subblock"); 2088 return CurrentBit; 2089 } 2090 2091 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2092 Function *F, 2093 ArrayRef<uint64_t> Record) { 2094 // Note that we subtract 1 here because the offset is relative to one word 2095 // before the start of the identification or module block, which was 2096 // historically always the start of the regular bitcode header. 2097 uint64_t FuncWordOffset = Record[1] - 1; 2098 uint64_t FuncBitOffset = FuncWordOffset * 32; 2099 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2100 // Set the LastFunctionBlockBit to point to the last function block. 2101 // Later when parsing is resumed after function materialization, 2102 // we can simply skip that last function block. 2103 if (FuncBitOffset > LastFunctionBlockBit) 2104 LastFunctionBlockBit = FuncBitOffset; 2105 } 2106 2107 /// Read a new-style GlobalValue symbol table. 2108 Error BitcodeReader::parseGlobalValueSymbolTable() { 2109 unsigned FuncBitcodeOffsetDelta = 2110 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2111 2112 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2113 return Err; 2114 2115 SmallVector<uint64_t, 64> Record; 2116 while (true) { 2117 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2118 if (!MaybeEntry) 2119 return MaybeEntry.takeError(); 2120 BitstreamEntry Entry = MaybeEntry.get(); 2121 2122 switch (Entry.Kind) { 2123 case BitstreamEntry::SubBlock: 2124 case BitstreamEntry::Error: 2125 return error("Malformed block"); 2126 case BitstreamEntry::EndBlock: 2127 return Error::success(); 2128 case BitstreamEntry::Record: 2129 break; 2130 } 2131 2132 Record.clear(); 2133 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2134 if (!MaybeRecord) 2135 return MaybeRecord.takeError(); 2136 switch (MaybeRecord.get()) { 2137 case bitc::VST_CODE_FNENTRY: { // [valueid, offset] 2138 unsigned ValueID = Record[0]; 2139 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2140 return error("Invalid value reference in symbol table"); 2141 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2142 cast<Function>(ValueList[ValueID]), Record); 2143 break; 2144 } 2145 } 2146 } 2147 } 2148 2149 /// Parse the value symbol table at either the current parsing location or 2150 /// at the given bit offset if provided. 2151 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2152 uint64_t CurrentBit; 2153 // Pass in the Offset to distinguish between calling for the module-level 2154 // VST (where we want to jump to the VST offset) and the function-level 2155 // VST (where we don't). 2156 if (Offset > 0) { 2157 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2158 if (!MaybeCurrentBit) 2159 return MaybeCurrentBit.takeError(); 2160 CurrentBit = MaybeCurrentBit.get(); 2161 // If this module uses a string table, read this as a module-level VST. 2162 if (UseStrtab) { 2163 if (Error Err = parseGlobalValueSymbolTable()) 2164 return Err; 2165 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2166 return JumpFailed; 2167 return Error::success(); 2168 } 2169 // Otherwise, the VST will be in a similar format to a function-level VST, 2170 // and will contain symbol names. 2171 } 2172 2173 // Compute the delta between the bitcode indices in the VST (the word offset 2174 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2175 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2176 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2177 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2178 // just before entering the VST subblock because: 1) the EnterSubBlock 2179 // changes the AbbrevID width; 2) the VST block is nested within the same 2180 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2181 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2182 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2183 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2184 unsigned FuncBitcodeOffsetDelta = 2185 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2186 2187 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2188 return Err; 2189 2190 SmallVector<uint64_t, 64> Record; 2191 2192 Triple TT(TheModule->getTargetTriple()); 2193 2194 // Read all the records for this value table. 2195 SmallString<128> ValueName; 2196 2197 while (true) { 2198 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2199 if (!MaybeEntry) 2200 return MaybeEntry.takeError(); 2201 BitstreamEntry Entry = MaybeEntry.get(); 2202 2203 switch (Entry.Kind) { 2204 case BitstreamEntry::SubBlock: // Handled for us already. 2205 case BitstreamEntry::Error: 2206 return error("Malformed block"); 2207 case BitstreamEntry::EndBlock: 2208 if (Offset > 0) 2209 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2210 return JumpFailed; 2211 return Error::success(); 2212 case BitstreamEntry::Record: 2213 // The interesting case. 2214 break; 2215 } 2216 2217 // Read a record. 2218 Record.clear(); 2219 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2220 if (!MaybeRecord) 2221 return MaybeRecord.takeError(); 2222 switch (MaybeRecord.get()) { 2223 default: // Default behavior: unknown type. 2224 break; 2225 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2226 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2227 if (Error Err = ValOrErr.takeError()) 2228 return Err; 2229 ValOrErr.get(); 2230 break; 2231 } 2232 case bitc::VST_CODE_FNENTRY: { 2233 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2234 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2235 if (Error Err = ValOrErr.takeError()) 2236 return Err; 2237 Value *V = ValOrErr.get(); 2238 2239 // Ignore function offsets emitted for aliases of functions in older 2240 // versions of LLVM. 2241 if (auto *F = dyn_cast<Function>(V)) 2242 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2243 break; 2244 } 2245 case bitc::VST_CODE_BBENTRY: { 2246 if (convertToString(Record, 1, ValueName)) 2247 return error("Invalid record"); 2248 BasicBlock *BB = getBasicBlock(Record[0]); 2249 if (!BB) 2250 return error("Invalid record"); 2251 2252 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2253 ValueName.clear(); 2254 break; 2255 } 2256 } 2257 } 2258 } 2259 2260 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2261 /// encoding. 2262 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2263 if ((V & 1) == 0) 2264 return V >> 1; 2265 if (V != 1) 2266 return -(V >> 1); 2267 // There is no such thing as -0 with integers. "-0" really means MININT. 2268 return 1ULL << 63; 2269 } 2270 2271 /// Resolve all of the initializers for global values and aliases that we can. 2272 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2273 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2274 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2275 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2276 2277 GlobalInitWorklist.swap(GlobalInits); 2278 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2279 FunctionOperandWorklist.swap(FunctionOperands); 2280 2281 while (!GlobalInitWorklist.empty()) { 2282 unsigned ValID = GlobalInitWorklist.back().second; 2283 if (ValID >= ValueList.size()) { 2284 // Not ready to resolve this yet, it requires something later in the file. 2285 GlobalInits.push_back(GlobalInitWorklist.back()); 2286 } else { 2287 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2288 GlobalInitWorklist.back().first->setInitializer(C); 2289 else 2290 return error("Expected a constant"); 2291 } 2292 GlobalInitWorklist.pop_back(); 2293 } 2294 2295 while (!IndirectSymbolInitWorklist.empty()) { 2296 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2297 if (ValID >= ValueList.size()) { 2298 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2299 } else { 2300 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2301 if (!C) 2302 return error("Expected a constant"); 2303 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2304 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2305 if (C->getType() != GV->getType()) 2306 return error("Alias and aliasee types don't match"); 2307 GA->setAliasee(C); 2308 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2309 Type *ResolverFTy = 2310 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2311 // Transparently fix up the type for compatiblity with older bitcode 2312 GI->setResolver( 2313 ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo())); 2314 } else { 2315 return error("Expected an alias or an ifunc"); 2316 } 2317 } 2318 IndirectSymbolInitWorklist.pop_back(); 2319 } 2320 2321 while (!FunctionOperandWorklist.empty()) { 2322 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2323 if (Info.PersonalityFn) { 2324 unsigned ValID = Info.PersonalityFn - 1; 2325 if (ValID < ValueList.size()) { 2326 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2327 Info.F->setPersonalityFn(C); 2328 else 2329 return error("Expected a constant"); 2330 Info.PersonalityFn = 0; 2331 } 2332 } 2333 if (Info.Prefix) { 2334 unsigned ValID = Info.Prefix - 1; 2335 if (ValID < ValueList.size()) { 2336 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2337 Info.F->setPrefixData(C); 2338 else 2339 return error("Expected a constant"); 2340 Info.Prefix = 0; 2341 } 2342 } 2343 if (Info.Prologue) { 2344 unsigned ValID = Info.Prologue - 1; 2345 if (ValID < ValueList.size()) { 2346 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2347 Info.F->setPrologueData(C); 2348 else 2349 return error("Expected a constant"); 2350 Info.Prologue = 0; 2351 } 2352 } 2353 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2354 FunctionOperands.push_back(Info); 2355 FunctionOperandWorklist.pop_back(); 2356 } 2357 2358 return Error::success(); 2359 } 2360 2361 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2362 SmallVector<uint64_t, 8> Words(Vals.size()); 2363 transform(Vals, Words.begin(), 2364 BitcodeReader::decodeSignRotatedValue); 2365 2366 return APInt(TypeBits, Words); 2367 } 2368 2369 Error BitcodeReader::parseConstants() { 2370 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2371 return Err; 2372 2373 SmallVector<uint64_t, 64> Record; 2374 2375 // Read all the records for this value table. 2376 Type *CurTy = Type::getInt32Ty(Context); 2377 Type *CurElemTy = nullptr; 2378 unsigned NextCstNo = ValueList.size(); 2379 2380 struct DelayedShufTy { 2381 VectorType *OpTy; 2382 VectorType *RTy; 2383 uint64_t Op0Idx; 2384 uint64_t Op1Idx; 2385 uint64_t Op2Idx; 2386 unsigned CstNo; 2387 }; 2388 std::vector<DelayedShufTy> DelayedShuffles; 2389 struct DelayedSelTy { 2390 Type *OpTy; 2391 uint64_t Op0Idx; 2392 uint64_t Op1Idx; 2393 uint64_t Op2Idx; 2394 unsigned CstNo; 2395 }; 2396 std::vector<DelayedSelTy> DelayedSelectors; 2397 2398 while (true) { 2399 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2400 if (!MaybeEntry) 2401 return MaybeEntry.takeError(); 2402 BitstreamEntry Entry = MaybeEntry.get(); 2403 2404 switch (Entry.Kind) { 2405 case BitstreamEntry::SubBlock: // Handled for us already. 2406 case BitstreamEntry::Error: 2407 return error("Malformed block"); 2408 case BitstreamEntry::EndBlock: 2409 // Once all the constants have been read, go through and resolve forward 2410 // references. 2411 // 2412 // We have to treat shuffles specially because they don't have three 2413 // operands anymore. We need to convert the shuffle mask into an array, 2414 // and we can't convert a forward reference. 2415 for (auto &DelayedShuffle : DelayedShuffles) { 2416 VectorType *OpTy = DelayedShuffle.OpTy; 2417 VectorType *RTy = DelayedShuffle.RTy; 2418 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2419 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2420 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2421 uint64_t CstNo = DelayedShuffle.CstNo; 2422 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2423 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2424 Type *ShufTy = 2425 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2426 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2427 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2428 return error("Invalid shufflevector operands"); 2429 SmallVector<int, 16> Mask; 2430 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2431 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2432 ValueList.assignValue(V, CstNo); 2433 } 2434 for (auto &DelayedSelector : DelayedSelectors) { 2435 Type *OpTy = DelayedSelector.OpTy; 2436 Type *SelectorTy = Type::getInt1Ty(Context); 2437 uint64_t Op0Idx = DelayedSelector.Op0Idx; 2438 uint64_t Op1Idx = DelayedSelector.Op1Idx; 2439 uint64_t Op2Idx = DelayedSelector.Op2Idx; 2440 uint64_t CstNo = DelayedSelector.CstNo; 2441 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2442 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy); 2443 // The selector might be an i1 or an <n x i1> 2444 // Get the type from the ValueList before getting a forward ref. 2445 if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) { 2446 Value *V = ValueList[Op0Idx]; 2447 assert(V); 2448 if (SelectorTy != V->getType()) 2449 SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount()); 2450 } 2451 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, SelectorTy); 2452 Value *V = ConstantExpr::getSelect(Op0, Op1, Op2); 2453 ValueList.assignValue(V, CstNo); 2454 } 2455 2456 if (NextCstNo != ValueList.size()) 2457 return error("Invalid constant reference"); 2458 2459 ValueList.resolveConstantForwardRefs(); 2460 return Error::success(); 2461 case BitstreamEntry::Record: 2462 // The interesting case. 2463 break; 2464 } 2465 2466 // Read a record. 2467 Record.clear(); 2468 Type *VoidType = Type::getVoidTy(Context); 2469 Value *V = nullptr; 2470 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2471 if (!MaybeBitCode) 2472 return MaybeBitCode.takeError(); 2473 switch (unsigned BitCode = MaybeBitCode.get()) { 2474 default: // Default behavior: unknown constant 2475 case bitc::CST_CODE_UNDEF: // UNDEF 2476 V = UndefValue::get(CurTy); 2477 break; 2478 case bitc::CST_CODE_POISON: // POISON 2479 V = PoisonValue::get(CurTy); 2480 break; 2481 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2482 if (Record.empty()) 2483 return error("Invalid record"); 2484 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2485 return error("Invalid record"); 2486 if (TypeList[Record[0]] == VoidType) 2487 return error("Invalid constant type"); 2488 CurTy = TypeList[Record[0]]; 2489 CurElemTy = getPtrElementTypeByID(Record[0]); 2490 continue; // Skip the ValueList manipulation. 2491 case bitc::CST_CODE_NULL: // NULL 2492 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2493 return error("Invalid type for a constant null value"); 2494 V = Constant::getNullValue(CurTy); 2495 break; 2496 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2497 if (!CurTy->isIntegerTy() || Record.empty()) 2498 return error("Invalid record"); 2499 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2500 break; 2501 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2502 if (!CurTy->isIntegerTy() || Record.empty()) 2503 return error("Invalid record"); 2504 2505 APInt VInt = 2506 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2507 V = ConstantInt::get(Context, VInt); 2508 2509 break; 2510 } 2511 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2512 if (Record.empty()) 2513 return error("Invalid record"); 2514 if (CurTy->isHalfTy()) 2515 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2516 APInt(16, (uint16_t)Record[0]))); 2517 else if (CurTy->isBFloatTy()) 2518 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2519 APInt(16, (uint32_t)Record[0]))); 2520 else if (CurTy->isFloatTy()) 2521 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2522 APInt(32, (uint32_t)Record[0]))); 2523 else if (CurTy->isDoubleTy()) 2524 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2525 APInt(64, Record[0]))); 2526 else if (CurTy->isX86_FP80Ty()) { 2527 // Bits are not stored the same way as a normal i80 APInt, compensate. 2528 uint64_t Rearrange[2]; 2529 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2530 Rearrange[1] = Record[0] >> 48; 2531 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2532 APInt(80, Rearrange))); 2533 } else if (CurTy->isFP128Ty()) 2534 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2535 APInt(128, Record))); 2536 else if (CurTy->isPPC_FP128Ty()) 2537 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2538 APInt(128, Record))); 2539 else 2540 V = UndefValue::get(CurTy); 2541 break; 2542 } 2543 2544 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2545 if (Record.empty()) 2546 return error("Invalid record"); 2547 2548 unsigned Size = Record.size(); 2549 SmallVector<Constant*, 16> Elts; 2550 2551 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2552 for (unsigned i = 0; i != Size; ++i) 2553 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2554 STy->getElementType(i))); 2555 V = ConstantStruct::get(STy, Elts); 2556 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2557 Type *EltTy = ATy->getElementType(); 2558 for (unsigned i = 0; i != Size; ++i) 2559 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2560 V = ConstantArray::get(ATy, Elts); 2561 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2562 Type *EltTy = VTy->getElementType(); 2563 for (unsigned i = 0; i != Size; ++i) 2564 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2565 V = ConstantVector::get(Elts); 2566 } else { 2567 V = UndefValue::get(CurTy); 2568 } 2569 break; 2570 } 2571 case bitc::CST_CODE_STRING: // STRING: [values] 2572 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2573 if (Record.empty()) 2574 return error("Invalid record"); 2575 2576 SmallString<16> Elts(Record.begin(), Record.end()); 2577 V = ConstantDataArray::getString(Context, Elts, 2578 BitCode == bitc::CST_CODE_CSTRING); 2579 break; 2580 } 2581 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2582 if (Record.empty()) 2583 return error("Invalid record"); 2584 2585 Type *EltTy; 2586 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2587 EltTy = Array->getElementType(); 2588 else 2589 EltTy = cast<VectorType>(CurTy)->getElementType(); 2590 if (EltTy->isIntegerTy(8)) { 2591 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2592 if (isa<VectorType>(CurTy)) 2593 V = ConstantDataVector::get(Context, Elts); 2594 else 2595 V = ConstantDataArray::get(Context, Elts); 2596 } else if (EltTy->isIntegerTy(16)) { 2597 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2598 if (isa<VectorType>(CurTy)) 2599 V = ConstantDataVector::get(Context, Elts); 2600 else 2601 V = ConstantDataArray::get(Context, Elts); 2602 } else if (EltTy->isIntegerTy(32)) { 2603 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2604 if (isa<VectorType>(CurTy)) 2605 V = ConstantDataVector::get(Context, Elts); 2606 else 2607 V = ConstantDataArray::get(Context, Elts); 2608 } else if (EltTy->isIntegerTy(64)) { 2609 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2610 if (isa<VectorType>(CurTy)) 2611 V = ConstantDataVector::get(Context, Elts); 2612 else 2613 V = ConstantDataArray::get(Context, Elts); 2614 } else if (EltTy->isHalfTy()) { 2615 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2616 if (isa<VectorType>(CurTy)) 2617 V = ConstantDataVector::getFP(EltTy, Elts); 2618 else 2619 V = ConstantDataArray::getFP(EltTy, Elts); 2620 } else if (EltTy->isBFloatTy()) { 2621 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2622 if (isa<VectorType>(CurTy)) 2623 V = ConstantDataVector::getFP(EltTy, Elts); 2624 else 2625 V = ConstantDataArray::getFP(EltTy, Elts); 2626 } else if (EltTy->isFloatTy()) { 2627 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2628 if (isa<VectorType>(CurTy)) 2629 V = ConstantDataVector::getFP(EltTy, Elts); 2630 else 2631 V = ConstantDataArray::getFP(EltTy, Elts); 2632 } else if (EltTy->isDoubleTy()) { 2633 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2634 if (isa<VectorType>(CurTy)) 2635 V = ConstantDataVector::getFP(EltTy, Elts); 2636 else 2637 V = ConstantDataArray::getFP(EltTy, Elts); 2638 } else { 2639 return error("Invalid type for value"); 2640 } 2641 break; 2642 } 2643 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2644 if (Record.size() < 2) 2645 return error("Invalid record"); 2646 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2647 if (Opc < 0) { 2648 V = UndefValue::get(CurTy); // Unknown unop. 2649 } else { 2650 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2651 unsigned Flags = 0; 2652 V = ConstantExpr::get(Opc, LHS, Flags); 2653 } 2654 break; 2655 } 2656 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2657 if (Record.size() < 3) 2658 return error("Invalid record"); 2659 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2660 if (Opc < 0) { 2661 V = UndefValue::get(CurTy); // Unknown binop. 2662 } else { 2663 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2664 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2665 unsigned Flags = 0; 2666 if (Record.size() >= 4) { 2667 if (Opc == Instruction::Add || 2668 Opc == Instruction::Sub || 2669 Opc == Instruction::Mul || 2670 Opc == Instruction::Shl) { 2671 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2672 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2673 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2674 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2675 } else if (Opc == Instruction::SDiv || 2676 Opc == Instruction::UDiv || 2677 Opc == Instruction::LShr || 2678 Opc == Instruction::AShr) { 2679 if (Record[3] & (1 << bitc::PEO_EXACT)) 2680 Flags |= SDivOperator::IsExact; 2681 } 2682 } 2683 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2684 } 2685 break; 2686 } 2687 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2688 if (Record.size() < 3) 2689 return error("Invalid record"); 2690 int Opc = getDecodedCastOpcode(Record[0]); 2691 if (Opc < 0) { 2692 V = UndefValue::get(CurTy); // Unknown cast. 2693 } else { 2694 Type *OpTy = getTypeByID(Record[1]); 2695 if (!OpTy) 2696 return error("Invalid record"); 2697 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2698 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2699 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2700 } 2701 break; 2702 } 2703 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2704 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2705 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2706 // operands] 2707 if (Record.size() < 2) 2708 return error("Constant GEP record must have at least two elements"); 2709 unsigned OpNum = 0; 2710 Type *PointeeType = nullptr; 2711 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2712 Record.size() % 2) 2713 PointeeType = getTypeByID(Record[OpNum++]); 2714 2715 bool InBounds = false; 2716 Optional<unsigned> InRangeIndex; 2717 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2718 uint64_t Op = Record[OpNum++]; 2719 InBounds = Op & 1; 2720 InRangeIndex = Op >> 1; 2721 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2722 InBounds = true; 2723 2724 SmallVector<Constant*, 16> Elts; 2725 Type *Elt0FullTy = nullptr; 2726 while (OpNum != Record.size()) { 2727 if (!Elt0FullTy) 2728 Elt0FullTy = getTypeByID(Record[OpNum]); 2729 Type *ElTy = getTypeByID(Record[OpNum++]); 2730 if (!ElTy) 2731 return error("Invalid record"); 2732 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2733 } 2734 2735 if (Elts.size() < 1) 2736 return error("Invalid gep with no operands"); 2737 2738 PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType()); 2739 if (!PointeeType) 2740 PointeeType = OrigPtrTy->getPointerElementType(); 2741 else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 2742 return error("Explicit gep operator type does not match pointee type " 2743 "of pointer operand"); 2744 2745 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2746 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2747 InBounds, InRangeIndex); 2748 break; 2749 } 2750 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2751 if (Record.size() < 3) 2752 return error("Invalid record"); 2753 2754 DelayedSelectors.push_back( 2755 {CurTy, Record[0], Record[1], Record[2], NextCstNo}); 2756 (void)ValueList.getConstantFwdRef(NextCstNo, CurTy); 2757 ++NextCstNo; 2758 continue; 2759 } 2760 case bitc::CST_CODE_CE_EXTRACTELT 2761 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2762 if (Record.size() < 3) 2763 return error("Invalid record"); 2764 VectorType *OpTy = 2765 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2766 if (!OpTy) 2767 return error("Invalid record"); 2768 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2769 Constant *Op1 = nullptr; 2770 if (Record.size() == 4) { 2771 Type *IdxTy = getTypeByID(Record[2]); 2772 if (!IdxTy) 2773 return error("Invalid record"); 2774 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2775 } else { 2776 // Deprecated, but still needed to read old bitcode files. 2777 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2778 } 2779 if (!Op1) 2780 return error("Invalid record"); 2781 V = ConstantExpr::getExtractElement(Op0, Op1); 2782 break; 2783 } 2784 case bitc::CST_CODE_CE_INSERTELT 2785 : { // CE_INSERTELT: [opval, opval, opty, opval] 2786 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2787 if (Record.size() < 3 || !OpTy) 2788 return error("Invalid record"); 2789 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2790 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2791 OpTy->getElementType()); 2792 Constant *Op2 = nullptr; 2793 if (Record.size() == 4) { 2794 Type *IdxTy = getTypeByID(Record[2]); 2795 if (!IdxTy) 2796 return error("Invalid record"); 2797 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2798 } else { 2799 // Deprecated, but still needed to read old bitcode files. 2800 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2801 } 2802 if (!Op2) 2803 return error("Invalid record"); 2804 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2805 break; 2806 } 2807 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2808 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2809 if (Record.size() < 3 || !OpTy) 2810 return error("Invalid record"); 2811 DelayedShuffles.push_back( 2812 {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2813 ++NextCstNo; 2814 continue; 2815 } 2816 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2817 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2818 VectorType *OpTy = 2819 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2820 if (Record.size() < 4 || !RTy || !OpTy) 2821 return error("Invalid record"); 2822 DelayedShuffles.push_back( 2823 {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2824 ++NextCstNo; 2825 continue; 2826 } 2827 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2828 if (Record.size() < 4) 2829 return error("Invalid record"); 2830 Type *OpTy = getTypeByID(Record[0]); 2831 if (!OpTy) 2832 return error("Invalid record"); 2833 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2834 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2835 2836 if (OpTy->isFPOrFPVectorTy()) 2837 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2838 else 2839 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2840 break; 2841 } 2842 // This maintains backward compatibility, pre-asm dialect keywords. 2843 // Deprecated, but still needed to read old bitcode files. 2844 case bitc::CST_CODE_INLINEASM_OLD: { 2845 if (Record.size() < 2) 2846 return error("Invalid record"); 2847 std::string AsmStr, ConstrStr; 2848 bool HasSideEffects = Record[0] & 1; 2849 bool IsAlignStack = Record[0] >> 1; 2850 unsigned AsmStrSize = Record[1]; 2851 if (2+AsmStrSize >= Record.size()) 2852 return error("Invalid record"); 2853 unsigned ConstStrSize = Record[2+AsmStrSize]; 2854 if (3+AsmStrSize+ConstStrSize > Record.size()) 2855 return error("Invalid record"); 2856 2857 for (unsigned i = 0; i != AsmStrSize; ++i) 2858 AsmStr += (char)Record[2+i]; 2859 for (unsigned i = 0; i != ConstStrSize; ++i) 2860 ConstrStr += (char)Record[3+AsmStrSize+i]; 2861 UpgradeInlineAsmString(&AsmStr); 2862 if (!CurElemTy) 2863 return error("Missing element type for old-style inlineasm"); 2864 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 2865 HasSideEffects, IsAlignStack); 2866 break; 2867 } 2868 // This version adds support for the asm dialect keywords (e.g., 2869 // inteldialect). 2870 case bitc::CST_CODE_INLINEASM_OLD2: { 2871 if (Record.size() < 2) 2872 return error("Invalid record"); 2873 std::string AsmStr, ConstrStr; 2874 bool HasSideEffects = Record[0] & 1; 2875 bool IsAlignStack = (Record[0] >> 1) & 1; 2876 unsigned AsmDialect = Record[0] >> 2; 2877 unsigned AsmStrSize = Record[1]; 2878 if (2+AsmStrSize >= Record.size()) 2879 return error("Invalid record"); 2880 unsigned ConstStrSize = Record[2+AsmStrSize]; 2881 if (3+AsmStrSize+ConstStrSize > Record.size()) 2882 return error("Invalid record"); 2883 2884 for (unsigned i = 0; i != AsmStrSize; ++i) 2885 AsmStr += (char)Record[2+i]; 2886 for (unsigned i = 0; i != ConstStrSize; ++i) 2887 ConstrStr += (char)Record[3+AsmStrSize+i]; 2888 UpgradeInlineAsmString(&AsmStr); 2889 if (!CurElemTy) 2890 return error("Missing element type for old-style inlineasm"); 2891 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 2892 HasSideEffects, IsAlignStack, 2893 InlineAsm::AsmDialect(AsmDialect)); 2894 break; 2895 } 2896 // This version adds support for the unwind keyword. 2897 case bitc::CST_CODE_INLINEASM_OLD3: { 2898 if (Record.size() < 2) 2899 return error("Invalid record"); 2900 unsigned OpNum = 0; 2901 std::string AsmStr, ConstrStr; 2902 bool HasSideEffects = Record[OpNum] & 1; 2903 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 2904 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 2905 bool CanThrow = (Record[OpNum] >> 3) & 1; 2906 ++OpNum; 2907 unsigned AsmStrSize = Record[OpNum]; 2908 ++OpNum; 2909 if (OpNum + AsmStrSize >= Record.size()) 2910 return error("Invalid record"); 2911 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 2912 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 2913 return error("Invalid record"); 2914 2915 for (unsigned i = 0; i != AsmStrSize; ++i) 2916 AsmStr += (char)Record[OpNum + i]; 2917 ++OpNum; 2918 for (unsigned i = 0; i != ConstStrSize; ++i) 2919 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 2920 UpgradeInlineAsmString(&AsmStr); 2921 if (!CurElemTy) 2922 return error("Missing element type for old-style inlineasm"); 2923 V = InlineAsm::get(cast<FunctionType>(CurElemTy), AsmStr, ConstrStr, 2924 HasSideEffects, IsAlignStack, 2925 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2926 break; 2927 } 2928 // This version adds explicit function type. 2929 case bitc::CST_CODE_INLINEASM: { 2930 if (Record.size() < 3) 2931 return error("Invalid record"); 2932 unsigned OpNum = 0; 2933 auto *FnTy = dyn_cast_or_null<FunctionType>(getTypeByID(Record[OpNum])); 2934 ++OpNum; 2935 if (!FnTy) 2936 return error("Invalid record"); 2937 std::string AsmStr, ConstrStr; 2938 bool HasSideEffects = Record[OpNum] & 1; 2939 bool IsAlignStack = (Record[OpNum] >> 1) & 1; 2940 unsigned AsmDialect = (Record[OpNum] >> 2) & 1; 2941 bool CanThrow = (Record[OpNum] >> 3) & 1; 2942 ++OpNum; 2943 unsigned AsmStrSize = Record[OpNum]; 2944 ++OpNum; 2945 if (OpNum + AsmStrSize >= Record.size()) 2946 return error("Invalid record"); 2947 unsigned ConstStrSize = Record[OpNum + AsmStrSize]; 2948 if (OpNum + 1 + AsmStrSize + ConstStrSize > Record.size()) 2949 return error("Invalid record"); 2950 2951 for (unsigned i = 0; i != AsmStrSize; ++i) 2952 AsmStr += (char)Record[OpNum + i]; 2953 ++OpNum; 2954 for (unsigned i = 0; i != ConstStrSize; ++i) 2955 ConstrStr += (char)Record[OpNum + AsmStrSize + i]; 2956 UpgradeInlineAsmString(&AsmStr); 2957 V = InlineAsm::get(FnTy, AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2958 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2959 break; 2960 } 2961 case bitc::CST_CODE_BLOCKADDRESS:{ 2962 if (Record.size() < 3) 2963 return error("Invalid record"); 2964 Type *FnTy = getTypeByID(Record[0]); 2965 if (!FnTy) 2966 return error("Invalid record"); 2967 Function *Fn = 2968 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2969 if (!Fn) 2970 return error("Invalid record"); 2971 2972 // If the function is already parsed we can insert the block address right 2973 // away. 2974 BasicBlock *BB; 2975 unsigned BBID = Record[2]; 2976 if (!BBID) 2977 // Invalid reference to entry block. 2978 return error("Invalid ID"); 2979 if (!Fn->empty()) { 2980 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2981 for (size_t I = 0, E = BBID; I != E; ++I) { 2982 if (BBI == BBE) 2983 return error("Invalid ID"); 2984 ++BBI; 2985 } 2986 BB = &*BBI; 2987 } else { 2988 // Otherwise insert a placeholder and remember it so it can be inserted 2989 // when the function is parsed. 2990 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2991 if (FwdBBs.empty()) 2992 BasicBlockFwdRefQueue.push_back(Fn); 2993 if (FwdBBs.size() < BBID + 1) 2994 FwdBBs.resize(BBID + 1); 2995 if (!FwdBBs[BBID]) 2996 FwdBBs[BBID] = BasicBlock::Create(Context); 2997 BB = FwdBBs[BBID]; 2998 } 2999 V = BlockAddress::get(Fn, BB); 3000 break; 3001 } 3002 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 3003 if (Record.size() < 2) 3004 return error("Invalid record"); 3005 Type *GVTy = getTypeByID(Record[0]); 3006 if (!GVTy) 3007 return error("Invalid record"); 3008 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 3009 ValueList.getConstantFwdRef(Record[1], GVTy)); 3010 if (!GV) 3011 return error("Invalid record"); 3012 3013 V = DSOLocalEquivalent::get(GV); 3014 break; 3015 } 3016 case bitc::CST_CODE_NO_CFI_VALUE: { 3017 if (Record.size() < 2) 3018 return error("Invalid record"); 3019 Type *GVTy = getTypeByID(Record[0]); 3020 if (!GVTy) 3021 return error("Invalid record"); 3022 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 3023 ValueList.getConstantFwdRef(Record[1], GVTy)); 3024 if (!GV) 3025 return error("Invalid record"); 3026 V = NoCFIValue::get(GV); 3027 break; 3028 } 3029 } 3030 3031 ValueList.assignValue(V, NextCstNo); 3032 ++NextCstNo; 3033 } 3034 } 3035 3036 Error BitcodeReader::parseUseLists() { 3037 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3038 return Err; 3039 3040 // Read all the records. 3041 SmallVector<uint64_t, 64> Record; 3042 3043 while (true) { 3044 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 3045 if (!MaybeEntry) 3046 return MaybeEntry.takeError(); 3047 BitstreamEntry Entry = MaybeEntry.get(); 3048 3049 switch (Entry.Kind) { 3050 case BitstreamEntry::SubBlock: // Handled for us already. 3051 case BitstreamEntry::Error: 3052 return error("Malformed block"); 3053 case BitstreamEntry::EndBlock: 3054 return Error::success(); 3055 case BitstreamEntry::Record: 3056 // The interesting case. 3057 break; 3058 } 3059 3060 // Read a use list record. 3061 Record.clear(); 3062 bool IsBB = false; 3063 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 3064 if (!MaybeRecord) 3065 return MaybeRecord.takeError(); 3066 switch (MaybeRecord.get()) { 3067 default: // Default behavior: unknown type. 3068 break; 3069 case bitc::USELIST_CODE_BB: 3070 IsBB = true; 3071 LLVM_FALLTHROUGH; 3072 case bitc::USELIST_CODE_DEFAULT: { 3073 unsigned RecordLength = Record.size(); 3074 if (RecordLength < 3) 3075 // Records should have at least an ID and two indexes. 3076 return error("Invalid record"); 3077 unsigned ID = Record.pop_back_val(); 3078 3079 Value *V; 3080 if (IsBB) { 3081 assert(ID < FunctionBBs.size() && "Basic block not found"); 3082 V = FunctionBBs[ID]; 3083 } else 3084 V = ValueList[ID]; 3085 unsigned NumUses = 0; 3086 SmallDenseMap<const Use *, unsigned, 16> Order; 3087 for (const Use &U : V->materialized_uses()) { 3088 if (++NumUses > Record.size()) 3089 break; 3090 Order[&U] = Record[NumUses - 1]; 3091 } 3092 if (Order.size() != Record.size() || NumUses > Record.size()) 3093 // Mismatches can happen if the functions are being materialized lazily 3094 // (out-of-order), or a value has been upgraded. 3095 break; 3096 3097 V->sortUseList([&](const Use &L, const Use &R) { 3098 return Order.lookup(&L) < Order.lookup(&R); 3099 }); 3100 break; 3101 } 3102 } 3103 } 3104 } 3105 3106 /// When we see the block for metadata, remember where it is and then skip it. 3107 /// This lets us lazily deserialize the metadata. 3108 Error BitcodeReader::rememberAndSkipMetadata() { 3109 // Save the current stream state. 3110 uint64_t CurBit = Stream.GetCurrentBitNo(); 3111 DeferredMetadataInfo.push_back(CurBit); 3112 3113 // Skip over the block for now. 3114 if (Error Err = Stream.SkipBlock()) 3115 return Err; 3116 return Error::success(); 3117 } 3118 3119 Error BitcodeReader::materializeMetadata() { 3120 for (uint64_t BitPos : DeferredMetadataInfo) { 3121 // Move the bit stream to the saved position. 3122 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3123 return JumpFailed; 3124 if (Error Err = MDLoader->parseModuleMetadata()) 3125 return Err; 3126 } 3127 3128 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3129 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3130 // multiple times. 3131 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3132 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3133 NamedMDNode *LinkerOpts = 3134 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3135 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3136 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3137 } 3138 } 3139 3140 DeferredMetadataInfo.clear(); 3141 return Error::success(); 3142 } 3143 3144 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3145 3146 /// When we see the block for a function body, remember where it is and then 3147 /// skip it. This lets us lazily deserialize the functions. 3148 Error BitcodeReader::rememberAndSkipFunctionBody() { 3149 // Get the function we are talking about. 3150 if (FunctionsWithBodies.empty()) 3151 return error("Insufficient function protos"); 3152 3153 Function *Fn = FunctionsWithBodies.back(); 3154 FunctionsWithBodies.pop_back(); 3155 3156 // Save the current stream state. 3157 uint64_t CurBit = Stream.GetCurrentBitNo(); 3158 assert( 3159 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3160 "Mismatch between VST and scanned function offsets"); 3161 DeferredFunctionInfo[Fn] = CurBit; 3162 3163 // Skip over the function block for now. 3164 if (Error Err = Stream.SkipBlock()) 3165 return Err; 3166 return Error::success(); 3167 } 3168 3169 Error BitcodeReader::globalCleanup() { 3170 // Patch the initializers for globals and aliases up. 3171 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3172 return Err; 3173 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3174 return error("Malformed global initializer set"); 3175 3176 // Look for intrinsic functions which need to be upgraded at some point 3177 // and functions that need to have their function attributes upgraded. 3178 for (Function &F : *TheModule) { 3179 MDLoader->upgradeDebugIntrinsics(F); 3180 Function *NewFn; 3181 if (UpgradeIntrinsicFunction(&F, NewFn)) 3182 UpgradedIntrinsics[&F] = NewFn; 3183 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3184 // Some types could be renamed during loading if several modules are 3185 // loaded in the same LLVMContext (LTO scenario). In this case we should 3186 // remangle intrinsics names as well. 3187 RemangledIntrinsics[&F] = Remangled.getValue(); 3188 // Look for functions that rely on old function attribute behavior. 3189 UpgradeFunctionAttributes(F); 3190 } 3191 3192 // Look for global variables which need to be renamed. 3193 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3194 for (GlobalVariable &GV : TheModule->globals()) 3195 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3196 UpgradedVariables.emplace_back(&GV, Upgraded); 3197 for (auto &Pair : UpgradedVariables) { 3198 Pair.first->eraseFromParent(); 3199 TheModule->getGlobalList().push_back(Pair.second); 3200 } 3201 3202 // Force deallocation of memory for these vectors to favor the client that 3203 // want lazy deserialization. 3204 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3205 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3206 return Error::success(); 3207 } 3208 3209 /// Support for lazy parsing of function bodies. This is required if we 3210 /// either have an old bitcode file without a VST forward declaration record, 3211 /// or if we have an anonymous function being materialized, since anonymous 3212 /// functions do not have a name and are therefore not in the VST. 3213 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3214 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3215 return JumpFailed; 3216 3217 if (Stream.AtEndOfStream()) 3218 return error("Could not find function in stream"); 3219 3220 if (!SeenFirstFunctionBody) 3221 return error("Trying to materialize functions before seeing function blocks"); 3222 3223 // An old bitcode file with the symbol table at the end would have 3224 // finished the parse greedily. 3225 assert(SeenValueSymbolTable); 3226 3227 SmallVector<uint64_t, 64> Record; 3228 3229 while (true) { 3230 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3231 if (!MaybeEntry) 3232 return MaybeEntry.takeError(); 3233 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3234 3235 switch (Entry.Kind) { 3236 default: 3237 return error("Expect SubBlock"); 3238 case BitstreamEntry::SubBlock: 3239 switch (Entry.ID) { 3240 default: 3241 return error("Expect function block"); 3242 case bitc::FUNCTION_BLOCK_ID: 3243 if (Error Err = rememberAndSkipFunctionBody()) 3244 return Err; 3245 NextUnreadBit = Stream.GetCurrentBitNo(); 3246 return Error::success(); 3247 } 3248 } 3249 } 3250 } 3251 3252 Error BitcodeReaderBase::readBlockInfo() { 3253 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3254 Stream.ReadBlockInfoBlock(); 3255 if (!MaybeNewBlockInfo) 3256 return MaybeNewBlockInfo.takeError(); 3257 Optional<BitstreamBlockInfo> NewBlockInfo = 3258 std::move(MaybeNewBlockInfo.get()); 3259 if (!NewBlockInfo) 3260 return error("Malformed block"); 3261 BlockInfo = std::move(*NewBlockInfo); 3262 return Error::success(); 3263 } 3264 3265 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3266 // v1: [selection_kind, name] 3267 // v2: [strtab_offset, strtab_size, selection_kind] 3268 StringRef Name; 3269 std::tie(Name, Record) = readNameFromStrtab(Record); 3270 3271 if (Record.empty()) 3272 return error("Invalid record"); 3273 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3274 std::string OldFormatName; 3275 if (!UseStrtab) { 3276 if (Record.size() < 2) 3277 return error("Invalid record"); 3278 unsigned ComdatNameSize = Record[1]; 3279 if (ComdatNameSize > Record.size() - 2) 3280 return error("Comdat name size too large"); 3281 OldFormatName.reserve(ComdatNameSize); 3282 for (unsigned i = 0; i != ComdatNameSize; ++i) 3283 OldFormatName += (char)Record[2 + i]; 3284 Name = OldFormatName; 3285 } 3286 Comdat *C = TheModule->getOrInsertComdat(Name); 3287 C->setSelectionKind(SK); 3288 ComdatList.push_back(C); 3289 return Error::success(); 3290 } 3291 3292 static void inferDSOLocal(GlobalValue *GV) { 3293 // infer dso_local from linkage and visibility if it is not encoded. 3294 if (GV->hasLocalLinkage() || 3295 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3296 GV->setDSOLocal(true); 3297 } 3298 3299 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3300 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3301 // visibility, threadlocal, unnamed_addr, externally_initialized, 3302 // dllstorageclass, comdat, attributes, preemption specifier, 3303 // partition strtab offset, partition strtab size] (name in VST) 3304 // v2: [strtab_offset, strtab_size, v1] 3305 StringRef Name; 3306 std::tie(Name, Record) = readNameFromStrtab(Record); 3307 3308 if (Record.size() < 6) 3309 return error("Invalid record"); 3310 Type *Ty = getTypeByID(Record[0]); 3311 if (!Ty) 3312 return error("Invalid record"); 3313 bool isConstant = Record[1] & 1; 3314 bool explicitType = Record[1] & 2; 3315 unsigned AddressSpace; 3316 if (explicitType) { 3317 AddressSpace = Record[1] >> 2; 3318 } else { 3319 if (!Ty->isPointerTy()) 3320 return error("Invalid type for value"); 3321 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3322 Ty = getPtrElementTypeByID(Record[0]); 3323 if (!Ty) 3324 return error("Missing element type for old-style global"); 3325 } 3326 3327 uint64_t RawLinkage = Record[3]; 3328 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3329 MaybeAlign Alignment; 3330 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3331 return Err; 3332 std::string Section; 3333 if (Record[5]) { 3334 if (Record[5] - 1 >= SectionTable.size()) 3335 return error("Invalid ID"); 3336 Section = SectionTable[Record[5] - 1]; 3337 } 3338 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3339 // Local linkage must have default visibility. 3340 // auto-upgrade `hidden` and `protected` for old bitcode. 3341 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3342 Visibility = getDecodedVisibility(Record[6]); 3343 3344 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3345 if (Record.size() > 7) 3346 TLM = getDecodedThreadLocalMode(Record[7]); 3347 3348 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3349 if (Record.size() > 8) 3350 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3351 3352 bool ExternallyInitialized = false; 3353 if (Record.size() > 9) 3354 ExternallyInitialized = Record[9]; 3355 3356 GlobalVariable *NewGV = 3357 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3358 nullptr, TLM, AddressSpace, ExternallyInitialized); 3359 NewGV->setAlignment(Alignment); 3360 if (!Section.empty()) 3361 NewGV->setSection(Section); 3362 NewGV->setVisibility(Visibility); 3363 NewGV->setUnnamedAddr(UnnamedAddr); 3364 3365 if (Record.size() > 10) 3366 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3367 else 3368 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3369 3370 ValueList.push_back(NewGV); 3371 3372 // Remember which value to use for the global initializer. 3373 if (unsigned InitID = Record[2]) 3374 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3375 3376 if (Record.size() > 11) { 3377 if (unsigned ComdatID = Record[11]) { 3378 if (ComdatID > ComdatList.size()) 3379 return error("Invalid global variable comdat ID"); 3380 NewGV->setComdat(ComdatList[ComdatID - 1]); 3381 } 3382 } else if (hasImplicitComdat(RawLinkage)) { 3383 ImplicitComdatObjects.insert(NewGV); 3384 } 3385 3386 if (Record.size() > 12) { 3387 auto AS = getAttributes(Record[12]).getFnAttrs(); 3388 NewGV->setAttributes(AS); 3389 } 3390 3391 if (Record.size() > 13) { 3392 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3393 } 3394 inferDSOLocal(NewGV); 3395 3396 // Check whether we have enough values to read a partition name. 3397 if (Record.size() > 15) 3398 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3399 3400 return Error::success(); 3401 } 3402 3403 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3404 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3405 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3406 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3407 // v2: [strtab_offset, strtab_size, v1] 3408 StringRef Name; 3409 std::tie(Name, Record) = readNameFromStrtab(Record); 3410 3411 if (Record.size() < 8) 3412 return error("Invalid record"); 3413 Type *FTy = getTypeByID(Record[0]); 3414 if (!FTy) 3415 return error("Invalid record"); 3416 if (isa<PointerType>(FTy)) { 3417 FTy = getPtrElementTypeByID(Record[0]); 3418 if (!FTy) 3419 return error("Missing element type for old-style function"); 3420 } 3421 3422 if (!isa<FunctionType>(FTy)) 3423 return error("Invalid type for value"); 3424 auto CC = static_cast<CallingConv::ID>(Record[1]); 3425 if (CC & ~CallingConv::MaxID) 3426 return error("Invalid calling convention ID"); 3427 3428 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3429 if (Record.size() > 16) 3430 AddrSpace = Record[16]; 3431 3432 Function *Func = 3433 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3434 AddrSpace, Name, TheModule); 3435 3436 assert(Func->getFunctionType() == FTy && 3437 "Incorrect fully specified type provided for function"); 3438 FunctionTypes[Func] = cast<FunctionType>(FTy); 3439 3440 Func->setCallingConv(CC); 3441 bool isProto = Record[2]; 3442 uint64_t RawLinkage = Record[3]; 3443 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3444 Func->setAttributes(getAttributes(Record[4])); 3445 3446 // Upgrade any old-style byval or sret without a type by propagating the 3447 // argument's pointee type. There should be no opaque pointers where the byval 3448 // type is implicit. 3449 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3450 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3451 Attribute::InAlloca}) { 3452 if (!Func->hasParamAttribute(i, Kind)) 3453 continue; 3454 3455 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3456 continue; 3457 3458 Func->removeParamAttr(i, Kind); 3459 3460 Type *PTy = cast<FunctionType>(FTy)->getParamType(i); 3461 Type *PtrEltTy = PTy->getPointerElementType(); 3462 Attribute NewAttr; 3463 switch (Kind) { 3464 case Attribute::ByVal: 3465 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3466 break; 3467 case Attribute::StructRet: 3468 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3469 break; 3470 case Attribute::InAlloca: 3471 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3472 break; 3473 default: 3474 llvm_unreachable("not an upgraded type attribute"); 3475 } 3476 3477 Func->addParamAttr(i, NewAttr); 3478 } 3479 } 3480 3481 MaybeAlign Alignment; 3482 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3483 return Err; 3484 Func->setAlignment(Alignment); 3485 if (Record[6]) { 3486 if (Record[6] - 1 >= SectionTable.size()) 3487 return error("Invalid ID"); 3488 Func->setSection(SectionTable[Record[6] - 1]); 3489 } 3490 // Local linkage must have default visibility. 3491 // auto-upgrade `hidden` and `protected` for old bitcode. 3492 if (!Func->hasLocalLinkage()) 3493 Func->setVisibility(getDecodedVisibility(Record[7])); 3494 if (Record.size() > 8 && Record[8]) { 3495 if (Record[8] - 1 >= GCTable.size()) 3496 return error("Invalid ID"); 3497 Func->setGC(GCTable[Record[8] - 1]); 3498 } 3499 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3500 if (Record.size() > 9) 3501 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3502 Func->setUnnamedAddr(UnnamedAddr); 3503 3504 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 3505 if (Record.size() > 10) 3506 OperandInfo.Prologue = Record[10]; 3507 3508 if (Record.size() > 11) 3509 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3510 else 3511 upgradeDLLImportExportLinkage(Func, RawLinkage); 3512 3513 if (Record.size() > 12) { 3514 if (unsigned ComdatID = Record[12]) { 3515 if (ComdatID > ComdatList.size()) 3516 return error("Invalid function comdat ID"); 3517 Func->setComdat(ComdatList[ComdatID - 1]); 3518 } 3519 } else if (hasImplicitComdat(RawLinkage)) { 3520 ImplicitComdatObjects.insert(Func); 3521 } 3522 3523 if (Record.size() > 13) 3524 OperandInfo.Prefix = Record[13]; 3525 3526 if (Record.size() > 14) 3527 OperandInfo.PersonalityFn = Record[14]; 3528 3529 if (Record.size() > 15) { 3530 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3531 } 3532 inferDSOLocal(Func); 3533 3534 // Record[16] is the address space number. 3535 3536 // Check whether we have enough values to read a partition name. Also make 3537 // sure Strtab has enough values. 3538 if (Record.size() > 18 && Strtab.data() && 3539 Record[17] + Record[18] <= Strtab.size()) { 3540 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3541 } 3542 3543 ValueList.push_back(Func); 3544 3545 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 3546 FunctionOperands.push_back(OperandInfo); 3547 3548 // If this is a function with a body, remember the prototype we are 3549 // creating now, so that we can match up the body with them later. 3550 if (!isProto) { 3551 Func->setIsMaterializable(true); 3552 FunctionsWithBodies.push_back(Func); 3553 DeferredFunctionInfo[Func] = 0; 3554 } 3555 return Error::success(); 3556 } 3557 3558 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3559 unsigned BitCode, ArrayRef<uint64_t> Record) { 3560 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3561 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3562 // dllstorageclass, threadlocal, unnamed_addr, 3563 // preemption specifier] (name in VST) 3564 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3565 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3566 // preemption specifier] (name in VST) 3567 // v2: [strtab_offset, strtab_size, v1] 3568 StringRef Name; 3569 std::tie(Name, Record) = readNameFromStrtab(Record); 3570 3571 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3572 if (Record.size() < (3 + (unsigned)NewRecord)) 3573 return error("Invalid record"); 3574 unsigned OpNum = 0; 3575 unsigned TypeID = Record[OpNum++]; 3576 Type *Ty = getTypeByID(TypeID); 3577 if (!Ty) 3578 return error("Invalid record"); 3579 3580 unsigned AddrSpace; 3581 if (!NewRecord) { 3582 auto *PTy = dyn_cast<PointerType>(Ty); 3583 if (!PTy) 3584 return error("Invalid type for value"); 3585 AddrSpace = PTy->getAddressSpace(); 3586 Ty = getPtrElementTypeByID(TypeID); 3587 if (!Ty) 3588 return error("Missing element type for old-style indirect symbol"); 3589 } else { 3590 AddrSpace = Record[OpNum++]; 3591 } 3592 3593 auto Val = Record[OpNum++]; 3594 auto Linkage = Record[OpNum++]; 3595 GlobalValue *NewGA; 3596 if (BitCode == bitc::MODULE_CODE_ALIAS || 3597 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3598 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3599 TheModule); 3600 else 3601 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3602 nullptr, TheModule); 3603 3604 // Local linkage must have default visibility. 3605 // auto-upgrade `hidden` and `protected` for old bitcode. 3606 if (OpNum != Record.size()) { 3607 auto VisInd = OpNum++; 3608 if (!NewGA->hasLocalLinkage()) 3609 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3610 } 3611 if (BitCode == bitc::MODULE_CODE_ALIAS || 3612 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3613 if (OpNum != Record.size()) 3614 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3615 else 3616 upgradeDLLImportExportLinkage(NewGA, Linkage); 3617 if (OpNum != Record.size()) 3618 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3619 if (OpNum != Record.size()) 3620 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3621 } 3622 if (OpNum != Record.size()) 3623 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3624 inferDSOLocal(NewGA); 3625 3626 // Check whether we have enough values to read a partition name. 3627 if (OpNum + 1 < Record.size()) { 3628 NewGA->setPartition( 3629 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3630 OpNum += 2; 3631 } 3632 3633 ValueList.push_back(NewGA); 3634 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3635 return Error::success(); 3636 } 3637 3638 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3639 bool ShouldLazyLoadMetadata, 3640 DataLayoutCallbackTy DataLayoutCallback) { 3641 if (ResumeBit) { 3642 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3643 return JumpFailed; 3644 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3645 return Err; 3646 3647 SmallVector<uint64_t, 64> Record; 3648 3649 // Parts of bitcode parsing depend on the datalayout. Make sure we 3650 // finalize the datalayout before we run any of that code. 3651 bool ResolvedDataLayout = false; 3652 auto ResolveDataLayout = [&] { 3653 if (ResolvedDataLayout) 3654 return; 3655 3656 // datalayout and triple can't be parsed after this point. 3657 ResolvedDataLayout = true; 3658 3659 // Upgrade data layout string. 3660 std::string DL = llvm::UpgradeDataLayoutString( 3661 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3662 TheModule->setDataLayout(DL); 3663 3664 if (auto LayoutOverride = 3665 DataLayoutCallback(TheModule->getTargetTriple())) 3666 TheModule->setDataLayout(*LayoutOverride); 3667 }; 3668 3669 // Read all the records for this module. 3670 while (true) { 3671 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3672 if (!MaybeEntry) 3673 return MaybeEntry.takeError(); 3674 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3675 3676 switch (Entry.Kind) { 3677 case BitstreamEntry::Error: 3678 return error("Malformed block"); 3679 case BitstreamEntry::EndBlock: 3680 ResolveDataLayout(); 3681 return globalCleanup(); 3682 3683 case BitstreamEntry::SubBlock: 3684 switch (Entry.ID) { 3685 default: // Skip unknown content. 3686 if (Error Err = Stream.SkipBlock()) 3687 return Err; 3688 break; 3689 case bitc::BLOCKINFO_BLOCK_ID: 3690 if (Error Err = readBlockInfo()) 3691 return Err; 3692 break; 3693 case bitc::PARAMATTR_BLOCK_ID: 3694 if (Error Err = parseAttributeBlock()) 3695 return Err; 3696 break; 3697 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3698 if (Error Err = parseAttributeGroupBlock()) 3699 return Err; 3700 break; 3701 case bitc::TYPE_BLOCK_ID_NEW: 3702 if (Error Err = parseTypeTable()) 3703 return Err; 3704 break; 3705 case bitc::VALUE_SYMTAB_BLOCK_ID: 3706 if (!SeenValueSymbolTable) { 3707 // Either this is an old form VST without function index and an 3708 // associated VST forward declaration record (which would have caused 3709 // the VST to be jumped to and parsed before it was encountered 3710 // normally in the stream), or there were no function blocks to 3711 // trigger an earlier parsing of the VST. 3712 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3713 if (Error Err = parseValueSymbolTable()) 3714 return Err; 3715 SeenValueSymbolTable = true; 3716 } else { 3717 // We must have had a VST forward declaration record, which caused 3718 // the parser to jump to and parse the VST earlier. 3719 assert(VSTOffset > 0); 3720 if (Error Err = Stream.SkipBlock()) 3721 return Err; 3722 } 3723 break; 3724 case bitc::CONSTANTS_BLOCK_ID: 3725 if (Error Err = parseConstants()) 3726 return Err; 3727 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3728 return Err; 3729 break; 3730 case bitc::METADATA_BLOCK_ID: 3731 if (ShouldLazyLoadMetadata) { 3732 if (Error Err = rememberAndSkipMetadata()) 3733 return Err; 3734 break; 3735 } 3736 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3737 if (Error Err = MDLoader->parseModuleMetadata()) 3738 return Err; 3739 break; 3740 case bitc::METADATA_KIND_BLOCK_ID: 3741 if (Error Err = MDLoader->parseMetadataKinds()) 3742 return Err; 3743 break; 3744 case bitc::FUNCTION_BLOCK_ID: 3745 ResolveDataLayout(); 3746 3747 // If this is the first function body we've seen, reverse the 3748 // FunctionsWithBodies list. 3749 if (!SeenFirstFunctionBody) { 3750 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3751 if (Error Err = globalCleanup()) 3752 return Err; 3753 SeenFirstFunctionBody = true; 3754 } 3755 3756 if (VSTOffset > 0) { 3757 // If we have a VST forward declaration record, make sure we 3758 // parse the VST now if we haven't already. It is needed to 3759 // set up the DeferredFunctionInfo vector for lazy reading. 3760 if (!SeenValueSymbolTable) { 3761 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3762 return Err; 3763 SeenValueSymbolTable = true; 3764 // Fall through so that we record the NextUnreadBit below. 3765 // This is necessary in case we have an anonymous function that 3766 // is later materialized. Since it will not have a VST entry we 3767 // need to fall back to the lazy parse to find its offset. 3768 } else { 3769 // If we have a VST forward declaration record, but have already 3770 // parsed the VST (just above, when the first function body was 3771 // encountered here), then we are resuming the parse after 3772 // materializing functions. The ResumeBit points to the 3773 // start of the last function block recorded in the 3774 // DeferredFunctionInfo map. Skip it. 3775 if (Error Err = Stream.SkipBlock()) 3776 return Err; 3777 continue; 3778 } 3779 } 3780 3781 // Support older bitcode files that did not have the function 3782 // index in the VST, nor a VST forward declaration record, as 3783 // well as anonymous functions that do not have VST entries. 3784 // Build the DeferredFunctionInfo vector on the fly. 3785 if (Error Err = rememberAndSkipFunctionBody()) 3786 return Err; 3787 3788 // Suspend parsing when we reach the function bodies. Subsequent 3789 // materialization calls will resume it when necessary. If the bitcode 3790 // file is old, the symbol table will be at the end instead and will not 3791 // have been seen yet. In this case, just finish the parse now. 3792 if (SeenValueSymbolTable) { 3793 NextUnreadBit = Stream.GetCurrentBitNo(); 3794 // After the VST has been parsed, we need to make sure intrinsic name 3795 // are auto-upgraded. 3796 return globalCleanup(); 3797 } 3798 break; 3799 case bitc::USELIST_BLOCK_ID: 3800 if (Error Err = parseUseLists()) 3801 return Err; 3802 break; 3803 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3804 if (Error Err = parseOperandBundleTags()) 3805 return Err; 3806 break; 3807 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3808 if (Error Err = parseSyncScopeNames()) 3809 return Err; 3810 break; 3811 } 3812 continue; 3813 3814 case BitstreamEntry::Record: 3815 // The interesting case. 3816 break; 3817 } 3818 3819 // Read a record. 3820 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3821 if (!MaybeBitCode) 3822 return MaybeBitCode.takeError(); 3823 switch (unsigned BitCode = MaybeBitCode.get()) { 3824 default: break; // Default behavior, ignore unknown content. 3825 case bitc::MODULE_CODE_VERSION: { 3826 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3827 if (!VersionOrErr) 3828 return VersionOrErr.takeError(); 3829 UseRelativeIDs = *VersionOrErr >= 1; 3830 break; 3831 } 3832 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3833 if (ResolvedDataLayout) 3834 return error("target triple too late in module"); 3835 std::string S; 3836 if (convertToString(Record, 0, S)) 3837 return error("Invalid record"); 3838 TheModule->setTargetTriple(S); 3839 break; 3840 } 3841 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3842 if (ResolvedDataLayout) 3843 return error("datalayout too late in module"); 3844 std::string S; 3845 if (convertToString(Record, 0, S)) 3846 return error("Invalid record"); 3847 Expected<DataLayout> MaybeDL = DataLayout::parse(S); 3848 if (!MaybeDL) 3849 return MaybeDL.takeError(); 3850 TheModule->setDataLayout(MaybeDL.get()); 3851 break; 3852 } 3853 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3854 std::string S; 3855 if (convertToString(Record, 0, S)) 3856 return error("Invalid record"); 3857 TheModule->setModuleInlineAsm(S); 3858 break; 3859 } 3860 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3861 // Deprecated, but still needed to read old bitcode files. 3862 std::string S; 3863 if (convertToString(Record, 0, S)) 3864 return error("Invalid record"); 3865 // Ignore value. 3866 break; 3867 } 3868 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3869 std::string S; 3870 if (convertToString(Record, 0, S)) 3871 return error("Invalid record"); 3872 SectionTable.push_back(S); 3873 break; 3874 } 3875 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3876 std::string S; 3877 if (convertToString(Record, 0, S)) 3878 return error("Invalid record"); 3879 GCTable.push_back(S); 3880 break; 3881 } 3882 case bitc::MODULE_CODE_COMDAT: 3883 if (Error Err = parseComdatRecord(Record)) 3884 return Err; 3885 break; 3886 // FIXME: BitcodeReader should handle {GLOBALVAR, FUNCTION, ALIAS, IFUNC} 3887 // written by ThinLinkBitcodeWriter. See 3888 // `ThinLinkBitcodeWriter::writeSimplifiedModuleInfo` for the format of each 3889 // record 3890 // (https://github.com/llvm/llvm-project/blob/b6a93967d9c11e79802b5e75cec1584d6c8aa472/llvm/lib/Bitcode/Writer/BitcodeWriter.cpp#L4714) 3891 case bitc::MODULE_CODE_GLOBALVAR: 3892 if (Error Err = parseGlobalVarRecord(Record)) 3893 return Err; 3894 break; 3895 case bitc::MODULE_CODE_FUNCTION: 3896 ResolveDataLayout(); 3897 if (Error Err = parseFunctionRecord(Record)) 3898 return Err; 3899 break; 3900 case bitc::MODULE_CODE_IFUNC: 3901 case bitc::MODULE_CODE_ALIAS: 3902 case bitc::MODULE_CODE_ALIAS_OLD: 3903 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3904 return Err; 3905 break; 3906 /// MODULE_CODE_VSTOFFSET: [offset] 3907 case bitc::MODULE_CODE_VSTOFFSET: 3908 if (Record.empty()) 3909 return error("Invalid record"); 3910 // Note that we subtract 1 here because the offset is relative to one word 3911 // before the start of the identification or module block, which was 3912 // historically always the start of the regular bitcode header. 3913 VSTOffset = Record[0] - 1; 3914 break; 3915 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3916 case bitc::MODULE_CODE_SOURCE_FILENAME: 3917 SmallString<128> ValueName; 3918 if (convertToString(Record, 0, ValueName)) 3919 return error("Invalid record"); 3920 TheModule->setSourceFileName(ValueName); 3921 break; 3922 } 3923 Record.clear(); 3924 } 3925 } 3926 3927 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3928 bool IsImporting, 3929 DataLayoutCallbackTy DataLayoutCallback) { 3930 TheModule = M; 3931 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3932 [&](unsigned ID) { return getTypeByID(ID); }); 3933 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3934 } 3935 3936 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3937 if (!isa<PointerType>(PtrType)) 3938 return error("Load/Store operand is not a pointer type"); 3939 3940 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 3941 return error("Explicit load/store type does not match pointee " 3942 "type of pointer operand"); 3943 if (!PointerType::isLoadableOrStorableType(ValType)) 3944 return error("Cannot load/store from pointer"); 3945 return Error::success(); 3946 } 3947 3948 void BitcodeReader::propagateAttributeTypes(CallBase *CB, 3949 ArrayRef<Type *> ArgsTys) { 3950 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3951 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3952 Attribute::InAlloca}) { 3953 if (!CB->paramHasAttr(i, Kind) || 3954 CB->getParamAttr(i, Kind).getValueAsType()) 3955 continue; 3956 3957 CB->removeParamAttr(i, Kind); 3958 3959 Type *PtrEltTy = ArgsTys[i]->getPointerElementType(); 3960 Attribute NewAttr; 3961 switch (Kind) { 3962 case Attribute::ByVal: 3963 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3964 break; 3965 case Attribute::StructRet: 3966 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3967 break; 3968 case Attribute::InAlloca: 3969 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3970 break; 3971 default: 3972 llvm_unreachable("not an upgraded type attribute"); 3973 } 3974 3975 CB->addParamAttr(i, NewAttr); 3976 } 3977 } 3978 3979 if (CB->isInlineAsm()) { 3980 const InlineAsm *IA = cast<InlineAsm>(CB->getCalledOperand()); 3981 unsigned ArgNo = 0; 3982 for (const InlineAsm::ConstraintInfo &CI : IA->ParseConstraints()) { 3983 if (!CI.hasArg()) 3984 continue; 3985 3986 if (CI.isIndirect && !CB->getAttributes().getParamElementType(ArgNo)) { 3987 Type *ElemTy = ArgsTys[ArgNo]->getPointerElementType(); 3988 CB->addParamAttr( 3989 ArgNo, Attribute::get(Context, Attribute::ElementType, ElemTy)); 3990 } 3991 3992 ArgNo++; 3993 } 3994 } 3995 3996 switch (CB->getIntrinsicID()) { 3997 case Intrinsic::preserve_array_access_index: 3998 case Intrinsic::preserve_struct_access_index: 3999 if (!CB->getAttributes().getParamElementType(0)) { 4000 Type *ElTy = ArgsTys[0]->getPointerElementType(); 4001 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 4002 CB->addParamAttr(0, NewAttr); 4003 } 4004 break; 4005 default: 4006 break; 4007 } 4008 } 4009 4010 /// Lazily parse the specified function body block. 4011 Error BitcodeReader::parseFunctionBody(Function *F) { 4012 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4013 return Err; 4014 4015 // Unexpected unresolved metadata when parsing function. 4016 if (MDLoader->hasFwdRefs()) 4017 return error("Invalid function metadata: incoming forward references"); 4018 4019 InstructionList.clear(); 4020 unsigned ModuleValueListSize = ValueList.size(); 4021 unsigned ModuleMDLoaderSize = MDLoader->size(); 4022 4023 // Add all the function arguments to the value table. 4024 #ifndef NDEBUG 4025 unsigned ArgNo = 0; 4026 FunctionType *FTy = FunctionTypes[F]; 4027 #endif 4028 for (Argument &I : F->args()) { 4029 assert(I.getType() == FTy->getParamType(ArgNo++) && 4030 "Incorrect fully specified type for Function Argument"); 4031 ValueList.push_back(&I); 4032 } 4033 unsigned NextValueNo = ValueList.size(); 4034 BasicBlock *CurBB = nullptr; 4035 unsigned CurBBNo = 0; 4036 4037 DebugLoc LastLoc; 4038 auto getLastInstruction = [&]() -> Instruction * { 4039 if (CurBB && !CurBB->empty()) 4040 return &CurBB->back(); 4041 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4042 !FunctionBBs[CurBBNo - 1]->empty()) 4043 return &FunctionBBs[CurBBNo - 1]->back(); 4044 return nullptr; 4045 }; 4046 4047 std::vector<OperandBundleDef> OperandBundles; 4048 4049 // Read all the records. 4050 SmallVector<uint64_t, 64> Record; 4051 4052 while (true) { 4053 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 4054 if (!MaybeEntry) 4055 return MaybeEntry.takeError(); 4056 llvm::BitstreamEntry Entry = MaybeEntry.get(); 4057 4058 switch (Entry.Kind) { 4059 case BitstreamEntry::Error: 4060 return error("Malformed block"); 4061 case BitstreamEntry::EndBlock: 4062 goto OutOfRecordLoop; 4063 4064 case BitstreamEntry::SubBlock: 4065 switch (Entry.ID) { 4066 default: // Skip unknown content. 4067 if (Error Err = Stream.SkipBlock()) 4068 return Err; 4069 break; 4070 case bitc::CONSTANTS_BLOCK_ID: 4071 if (Error Err = parseConstants()) 4072 return Err; 4073 NextValueNo = ValueList.size(); 4074 break; 4075 case bitc::VALUE_SYMTAB_BLOCK_ID: 4076 if (Error Err = parseValueSymbolTable()) 4077 return Err; 4078 break; 4079 case bitc::METADATA_ATTACHMENT_ID: 4080 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 4081 return Err; 4082 break; 4083 case bitc::METADATA_BLOCK_ID: 4084 assert(DeferredMetadataInfo.empty() && 4085 "Must read all module-level metadata before function-level"); 4086 if (Error Err = MDLoader->parseFunctionMetadata()) 4087 return Err; 4088 break; 4089 case bitc::USELIST_BLOCK_ID: 4090 if (Error Err = parseUseLists()) 4091 return Err; 4092 break; 4093 } 4094 continue; 4095 4096 case BitstreamEntry::Record: 4097 // The interesting case. 4098 break; 4099 } 4100 4101 // Read a record. 4102 Record.clear(); 4103 Instruction *I = nullptr; 4104 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 4105 if (!MaybeBitCode) 4106 return MaybeBitCode.takeError(); 4107 switch (unsigned BitCode = MaybeBitCode.get()) { 4108 default: // Default behavior: reject 4109 return error("Invalid value"); 4110 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4111 if (Record.empty() || Record[0] == 0) 4112 return error("Invalid record"); 4113 // Create all the basic blocks for the function. 4114 FunctionBBs.resize(Record[0]); 4115 4116 // See if anything took the address of blocks in this function. 4117 auto BBFRI = BasicBlockFwdRefs.find(F); 4118 if (BBFRI == BasicBlockFwdRefs.end()) { 4119 for (BasicBlock *&BB : FunctionBBs) 4120 BB = BasicBlock::Create(Context, "", F); 4121 } else { 4122 auto &BBRefs = BBFRI->second; 4123 // Check for invalid basic block references. 4124 if (BBRefs.size() > FunctionBBs.size()) 4125 return error("Invalid ID"); 4126 assert(!BBRefs.empty() && "Unexpected empty array"); 4127 assert(!BBRefs.front() && "Invalid reference to entry block"); 4128 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4129 ++I) 4130 if (I < RE && BBRefs[I]) { 4131 BBRefs[I]->insertInto(F); 4132 FunctionBBs[I] = BBRefs[I]; 4133 } else { 4134 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4135 } 4136 4137 // Erase from the table. 4138 BasicBlockFwdRefs.erase(BBFRI); 4139 } 4140 4141 CurBB = FunctionBBs[0]; 4142 continue; 4143 } 4144 4145 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4146 // This record indicates that the last instruction is at the same 4147 // location as the previous instruction with a location. 4148 I = getLastInstruction(); 4149 4150 if (!I) 4151 return error("Invalid record"); 4152 I->setDebugLoc(LastLoc); 4153 I = nullptr; 4154 continue; 4155 4156 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4157 I = getLastInstruction(); 4158 if (!I || Record.size() < 4) 4159 return error("Invalid record"); 4160 4161 unsigned Line = Record[0], Col = Record[1]; 4162 unsigned ScopeID = Record[2], IAID = Record[3]; 4163 bool isImplicitCode = Record.size() == 5 && Record[4]; 4164 4165 MDNode *Scope = nullptr, *IA = nullptr; 4166 if (ScopeID) { 4167 Scope = dyn_cast_or_null<MDNode>( 4168 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4169 if (!Scope) 4170 return error("Invalid record"); 4171 } 4172 if (IAID) { 4173 IA = dyn_cast_or_null<MDNode>( 4174 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4175 if (!IA) 4176 return error("Invalid record"); 4177 } 4178 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4179 isImplicitCode); 4180 I->setDebugLoc(LastLoc); 4181 I = nullptr; 4182 continue; 4183 } 4184 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4185 unsigned OpNum = 0; 4186 Value *LHS; 4187 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4188 OpNum+1 > Record.size()) 4189 return error("Invalid record"); 4190 4191 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4192 if (Opc == -1) 4193 return error("Invalid record"); 4194 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4195 InstructionList.push_back(I); 4196 if (OpNum < Record.size()) { 4197 if (isa<FPMathOperator>(I)) { 4198 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4199 if (FMF.any()) 4200 I->setFastMathFlags(FMF); 4201 } 4202 } 4203 break; 4204 } 4205 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4206 unsigned OpNum = 0; 4207 Value *LHS, *RHS; 4208 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4209 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4210 OpNum+1 > Record.size()) 4211 return error("Invalid record"); 4212 4213 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4214 if (Opc == -1) 4215 return error("Invalid record"); 4216 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4217 InstructionList.push_back(I); 4218 if (OpNum < Record.size()) { 4219 if (Opc == Instruction::Add || 4220 Opc == Instruction::Sub || 4221 Opc == Instruction::Mul || 4222 Opc == Instruction::Shl) { 4223 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4224 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4225 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4226 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4227 } else if (Opc == Instruction::SDiv || 4228 Opc == Instruction::UDiv || 4229 Opc == Instruction::LShr || 4230 Opc == Instruction::AShr) { 4231 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4232 cast<BinaryOperator>(I)->setIsExact(true); 4233 } else if (isa<FPMathOperator>(I)) { 4234 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4235 if (FMF.any()) 4236 I->setFastMathFlags(FMF); 4237 } 4238 4239 } 4240 break; 4241 } 4242 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4243 unsigned OpNum = 0; 4244 Value *Op; 4245 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4246 OpNum+2 != Record.size()) 4247 return error("Invalid record"); 4248 4249 Type *ResTy = getTypeByID(Record[OpNum]); 4250 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4251 if (Opc == -1 || !ResTy) 4252 return error("Invalid record"); 4253 Instruction *Temp = nullptr; 4254 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4255 if (Temp) { 4256 InstructionList.push_back(Temp); 4257 assert(CurBB && "No current BB?"); 4258 CurBB->getInstList().push_back(Temp); 4259 } 4260 } else { 4261 auto CastOp = (Instruction::CastOps)Opc; 4262 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4263 return error("Invalid cast"); 4264 I = CastInst::Create(CastOp, Op, ResTy); 4265 } 4266 InstructionList.push_back(I); 4267 break; 4268 } 4269 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4270 case bitc::FUNC_CODE_INST_GEP_OLD: 4271 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4272 unsigned OpNum = 0; 4273 4274 Type *Ty; 4275 bool InBounds; 4276 4277 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4278 InBounds = Record[OpNum++]; 4279 Ty = getTypeByID(Record[OpNum++]); 4280 } else { 4281 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4282 Ty = nullptr; 4283 } 4284 4285 Value *BasePtr; 4286 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4287 return error("Invalid record"); 4288 4289 if (!Ty) { 4290 Ty = BasePtr->getType()->getScalarType()->getPointerElementType(); 4291 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4292 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4293 return error( 4294 "Explicit gep type does not match pointee type of pointer operand"); 4295 } 4296 4297 SmallVector<Value*, 16> GEPIdx; 4298 while (OpNum != Record.size()) { 4299 Value *Op; 4300 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4301 return error("Invalid record"); 4302 GEPIdx.push_back(Op); 4303 } 4304 4305 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4306 4307 InstructionList.push_back(I); 4308 if (InBounds) 4309 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4310 break; 4311 } 4312 4313 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4314 // EXTRACTVAL: [opty, opval, n x indices] 4315 unsigned OpNum = 0; 4316 Value *Agg; 4317 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4318 return error("Invalid record"); 4319 Type *Ty = Agg->getType(); 4320 4321 unsigned RecSize = Record.size(); 4322 if (OpNum == RecSize) 4323 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4324 4325 SmallVector<unsigned, 4> EXTRACTVALIdx; 4326 for (; OpNum != RecSize; ++OpNum) { 4327 bool IsArray = Ty->isArrayTy(); 4328 bool IsStruct = Ty->isStructTy(); 4329 uint64_t Index = Record[OpNum]; 4330 4331 if (!IsStruct && !IsArray) 4332 return error("EXTRACTVAL: Invalid type"); 4333 if ((unsigned)Index != Index) 4334 return error("Invalid value"); 4335 if (IsStruct && Index >= Ty->getStructNumElements()) 4336 return error("EXTRACTVAL: Invalid struct index"); 4337 if (IsArray && Index >= Ty->getArrayNumElements()) 4338 return error("EXTRACTVAL: Invalid array index"); 4339 EXTRACTVALIdx.push_back((unsigned)Index); 4340 4341 if (IsStruct) 4342 Ty = Ty->getStructElementType(Index); 4343 else 4344 Ty = Ty->getArrayElementType(); 4345 } 4346 4347 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4348 InstructionList.push_back(I); 4349 break; 4350 } 4351 4352 case bitc::FUNC_CODE_INST_INSERTVAL: { 4353 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4354 unsigned OpNum = 0; 4355 Value *Agg; 4356 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4357 return error("Invalid record"); 4358 Value *Val; 4359 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4360 return error("Invalid record"); 4361 4362 unsigned RecSize = Record.size(); 4363 if (OpNum == RecSize) 4364 return error("INSERTVAL: Invalid instruction with 0 indices"); 4365 4366 SmallVector<unsigned, 4> INSERTVALIdx; 4367 Type *CurTy = Agg->getType(); 4368 for (; OpNum != RecSize; ++OpNum) { 4369 bool IsArray = CurTy->isArrayTy(); 4370 bool IsStruct = CurTy->isStructTy(); 4371 uint64_t Index = Record[OpNum]; 4372 4373 if (!IsStruct && !IsArray) 4374 return error("INSERTVAL: Invalid type"); 4375 if ((unsigned)Index != Index) 4376 return error("Invalid value"); 4377 if (IsStruct && Index >= CurTy->getStructNumElements()) 4378 return error("INSERTVAL: Invalid struct index"); 4379 if (IsArray && Index >= CurTy->getArrayNumElements()) 4380 return error("INSERTVAL: Invalid array index"); 4381 4382 INSERTVALIdx.push_back((unsigned)Index); 4383 if (IsStruct) 4384 CurTy = CurTy->getStructElementType(Index); 4385 else 4386 CurTy = CurTy->getArrayElementType(); 4387 } 4388 4389 if (CurTy != Val->getType()) 4390 return error("Inserted value type doesn't match aggregate type"); 4391 4392 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4393 InstructionList.push_back(I); 4394 break; 4395 } 4396 4397 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4398 // obsolete form of select 4399 // handles select i1 ... in old bitcode 4400 unsigned OpNum = 0; 4401 Value *TrueVal, *FalseVal, *Cond; 4402 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4403 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4404 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4405 return error("Invalid record"); 4406 4407 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4408 InstructionList.push_back(I); 4409 break; 4410 } 4411 4412 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4413 // new form of select 4414 // handles select i1 or select [N x i1] 4415 unsigned OpNum = 0; 4416 Value *TrueVal, *FalseVal, *Cond; 4417 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4418 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4419 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4420 return error("Invalid record"); 4421 4422 // select condition can be either i1 or [N x i1] 4423 if (VectorType* vector_type = 4424 dyn_cast<VectorType>(Cond->getType())) { 4425 // expect <n x i1> 4426 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4427 return error("Invalid type for value"); 4428 } else { 4429 // expect i1 4430 if (Cond->getType() != Type::getInt1Ty(Context)) 4431 return error("Invalid type for value"); 4432 } 4433 4434 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4435 InstructionList.push_back(I); 4436 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4437 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4438 if (FMF.any()) 4439 I->setFastMathFlags(FMF); 4440 } 4441 break; 4442 } 4443 4444 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4445 unsigned OpNum = 0; 4446 Value *Vec, *Idx; 4447 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4448 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4449 return error("Invalid record"); 4450 if (!Vec->getType()->isVectorTy()) 4451 return error("Invalid type for value"); 4452 I = ExtractElementInst::Create(Vec, Idx); 4453 InstructionList.push_back(I); 4454 break; 4455 } 4456 4457 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4458 unsigned OpNum = 0; 4459 Value *Vec, *Elt, *Idx; 4460 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4461 return error("Invalid record"); 4462 if (!Vec->getType()->isVectorTy()) 4463 return error("Invalid type for value"); 4464 if (popValue(Record, OpNum, NextValueNo, 4465 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4466 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4467 return error("Invalid record"); 4468 I = InsertElementInst::Create(Vec, Elt, Idx); 4469 InstructionList.push_back(I); 4470 break; 4471 } 4472 4473 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4474 unsigned OpNum = 0; 4475 Value *Vec1, *Vec2, *Mask; 4476 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4477 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4478 return error("Invalid record"); 4479 4480 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4481 return error("Invalid record"); 4482 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4483 return error("Invalid type for value"); 4484 4485 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4486 InstructionList.push_back(I); 4487 break; 4488 } 4489 4490 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4491 // Old form of ICmp/FCmp returning bool 4492 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4493 // both legal on vectors but had different behaviour. 4494 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4495 // FCmp/ICmp returning bool or vector of bool 4496 4497 unsigned OpNum = 0; 4498 Value *LHS, *RHS; 4499 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4500 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4501 return error("Invalid record"); 4502 4503 if (OpNum >= Record.size()) 4504 return error( 4505 "Invalid record: operand number exceeded available operands"); 4506 4507 unsigned PredVal = Record[OpNum]; 4508 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4509 FastMathFlags FMF; 4510 if (IsFP && Record.size() > OpNum+1) 4511 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4512 4513 if (OpNum+1 != Record.size()) 4514 return error("Invalid record"); 4515 4516 if (LHS->getType()->isFPOrFPVectorTy()) 4517 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4518 else 4519 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4520 4521 if (FMF.any()) 4522 I->setFastMathFlags(FMF); 4523 InstructionList.push_back(I); 4524 break; 4525 } 4526 4527 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4528 { 4529 unsigned Size = Record.size(); 4530 if (Size == 0) { 4531 I = ReturnInst::Create(Context); 4532 InstructionList.push_back(I); 4533 break; 4534 } 4535 4536 unsigned OpNum = 0; 4537 Value *Op = nullptr; 4538 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4539 return error("Invalid record"); 4540 if (OpNum != Record.size()) 4541 return error("Invalid record"); 4542 4543 I = ReturnInst::Create(Context, Op); 4544 InstructionList.push_back(I); 4545 break; 4546 } 4547 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4548 if (Record.size() != 1 && Record.size() != 3) 4549 return error("Invalid record"); 4550 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4551 if (!TrueDest) 4552 return error("Invalid record"); 4553 4554 if (Record.size() == 1) { 4555 I = BranchInst::Create(TrueDest); 4556 InstructionList.push_back(I); 4557 } 4558 else { 4559 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4560 Value *Cond = getValue(Record, 2, NextValueNo, 4561 Type::getInt1Ty(Context)); 4562 if (!FalseDest || !Cond) 4563 return error("Invalid record"); 4564 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4565 InstructionList.push_back(I); 4566 } 4567 break; 4568 } 4569 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4570 if (Record.size() != 1 && Record.size() != 2) 4571 return error("Invalid record"); 4572 unsigned Idx = 0; 4573 Value *CleanupPad = 4574 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4575 if (!CleanupPad) 4576 return error("Invalid record"); 4577 BasicBlock *UnwindDest = nullptr; 4578 if (Record.size() == 2) { 4579 UnwindDest = getBasicBlock(Record[Idx++]); 4580 if (!UnwindDest) 4581 return error("Invalid record"); 4582 } 4583 4584 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4585 InstructionList.push_back(I); 4586 break; 4587 } 4588 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4589 if (Record.size() != 2) 4590 return error("Invalid record"); 4591 unsigned Idx = 0; 4592 Value *CatchPad = 4593 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4594 if (!CatchPad) 4595 return error("Invalid record"); 4596 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4597 if (!BB) 4598 return error("Invalid record"); 4599 4600 I = CatchReturnInst::Create(CatchPad, BB); 4601 InstructionList.push_back(I); 4602 break; 4603 } 4604 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4605 // We must have, at minimum, the outer scope and the number of arguments. 4606 if (Record.size() < 2) 4607 return error("Invalid record"); 4608 4609 unsigned Idx = 0; 4610 4611 Value *ParentPad = 4612 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4613 4614 unsigned NumHandlers = Record[Idx++]; 4615 4616 SmallVector<BasicBlock *, 2> Handlers; 4617 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4618 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4619 if (!BB) 4620 return error("Invalid record"); 4621 Handlers.push_back(BB); 4622 } 4623 4624 BasicBlock *UnwindDest = nullptr; 4625 if (Idx + 1 == Record.size()) { 4626 UnwindDest = getBasicBlock(Record[Idx++]); 4627 if (!UnwindDest) 4628 return error("Invalid record"); 4629 } 4630 4631 if (Record.size() != Idx) 4632 return error("Invalid record"); 4633 4634 auto *CatchSwitch = 4635 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4636 for (BasicBlock *Handler : Handlers) 4637 CatchSwitch->addHandler(Handler); 4638 I = CatchSwitch; 4639 InstructionList.push_back(I); 4640 break; 4641 } 4642 case bitc::FUNC_CODE_INST_CATCHPAD: 4643 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4644 // We must have, at minimum, the outer scope and the number of arguments. 4645 if (Record.size() < 2) 4646 return error("Invalid record"); 4647 4648 unsigned Idx = 0; 4649 4650 Value *ParentPad = 4651 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4652 4653 unsigned NumArgOperands = Record[Idx++]; 4654 4655 SmallVector<Value *, 2> Args; 4656 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4657 Value *Val; 4658 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4659 return error("Invalid record"); 4660 Args.push_back(Val); 4661 } 4662 4663 if (Record.size() != Idx) 4664 return error("Invalid record"); 4665 4666 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4667 I = CleanupPadInst::Create(ParentPad, Args); 4668 else 4669 I = CatchPadInst::Create(ParentPad, Args); 4670 InstructionList.push_back(I); 4671 break; 4672 } 4673 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4674 // Check magic 4675 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4676 // "New" SwitchInst format with case ranges. The changes to write this 4677 // format were reverted but we still recognize bitcode that uses it. 4678 // Hopefully someday we will have support for case ranges and can use 4679 // this format again. 4680 4681 Type *OpTy = getTypeByID(Record[1]); 4682 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4683 4684 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4685 BasicBlock *Default = getBasicBlock(Record[3]); 4686 if (!OpTy || !Cond || !Default) 4687 return error("Invalid record"); 4688 4689 unsigned NumCases = Record[4]; 4690 4691 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4692 InstructionList.push_back(SI); 4693 4694 unsigned CurIdx = 5; 4695 for (unsigned i = 0; i != NumCases; ++i) { 4696 SmallVector<ConstantInt*, 1> CaseVals; 4697 unsigned NumItems = Record[CurIdx++]; 4698 for (unsigned ci = 0; ci != NumItems; ++ci) { 4699 bool isSingleNumber = Record[CurIdx++]; 4700 4701 APInt Low; 4702 unsigned ActiveWords = 1; 4703 if (ValueBitWidth > 64) 4704 ActiveWords = Record[CurIdx++]; 4705 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4706 ValueBitWidth); 4707 CurIdx += ActiveWords; 4708 4709 if (!isSingleNumber) { 4710 ActiveWords = 1; 4711 if (ValueBitWidth > 64) 4712 ActiveWords = Record[CurIdx++]; 4713 APInt High = readWideAPInt( 4714 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4715 CurIdx += ActiveWords; 4716 4717 // FIXME: It is not clear whether values in the range should be 4718 // compared as signed or unsigned values. The partially 4719 // implemented changes that used this format in the past used 4720 // unsigned comparisons. 4721 for ( ; Low.ule(High); ++Low) 4722 CaseVals.push_back(ConstantInt::get(Context, Low)); 4723 } else 4724 CaseVals.push_back(ConstantInt::get(Context, Low)); 4725 } 4726 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4727 for (ConstantInt *Cst : CaseVals) 4728 SI->addCase(Cst, DestBB); 4729 } 4730 I = SI; 4731 break; 4732 } 4733 4734 // Old SwitchInst format without case ranges. 4735 4736 if (Record.size() < 3 || (Record.size() & 1) == 0) 4737 return error("Invalid record"); 4738 Type *OpTy = getTypeByID(Record[0]); 4739 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4740 BasicBlock *Default = getBasicBlock(Record[2]); 4741 if (!OpTy || !Cond || !Default) 4742 return error("Invalid record"); 4743 unsigned NumCases = (Record.size()-3)/2; 4744 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4745 InstructionList.push_back(SI); 4746 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4747 ConstantInt *CaseVal = 4748 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4749 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4750 if (!CaseVal || !DestBB) { 4751 delete SI; 4752 return error("Invalid record"); 4753 } 4754 SI->addCase(CaseVal, DestBB); 4755 } 4756 I = SI; 4757 break; 4758 } 4759 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4760 if (Record.size() < 2) 4761 return error("Invalid record"); 4762 Type *OpTy = getTypeByID(Record[0]); 4763 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4764 if (!OpTy || !Address) 4765 return error("Invalid record"); 4766 unsigned NumDests = Record.size()-2; 4767 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4768 InstructionList.push_back(IBI); 4769 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4770 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4771 IBI->addDestination(DestBB); 4772 } else { 4773 delete IBI; 4774 return error("Invalid record"); 4775 } 4776 } 4777 I = IBI; 4778 break; 4779 } 4780 4781 case bitc::FUNC_CODE_INST_INVOKE: { 4782 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4783 if (Record.size() < 4) 4784 return error("Invalid record"); 4785 unsigned OpNum = 0; 4786 AttributeList PAL = getAttributes(Record[OpNum++]); 4787 unsigned CCInfo = Record[OpNum++]; 4788 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4789 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4790 4791 FunctionType *FTy = nullptr; 4792 if ((CCInfo >> 13) & 1) { 4793 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4794 if (!FTy) 4795 return error("Explicit invoke type is not a function type"); 4796 } 4797 4798 Value *Callee; 4799 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4800 return error("Invalid record"); 4801 4802 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4803 if (!CalleeTy) 4804 return error("Callee is not a pointer"); 4805 if (!FTy) { 4806 FTy = 4807 dyn_cast<FunctionType>(Callee->getType()->getPointerElementType()); 4808 if (!FTy) 4809 return error("Callee is not of pointer to function type"); 4810 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 4811 return error("Explicit invoke type does not match pointee type of " 4812 "callee operand"); 4813 if (Record.size() < FTy->getNumParams() + OpNum) 4814 return error("Insufficient operands to call"); 4815 4816 SmallVector<Value*, 16> Ops; 4817 SmallVector<Type *, 16> ArgsTys; 4818 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4819 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4820 FTy->getParamType(i))); 4821 ArgsTys.push_back(FTy->getParamType(i)); 4822 if (!Ops.back()) 4823 return error("Invalid record"); 4824 } 4825 4826 if (!FTy->isVarArg()) { 4827 if (Record.size() != OpNum) 4828 return error("Invalid record"); 4829 } else { 4830 // Read type/value pairs for varargs params. 4831 while (OpNum != Record.size()) { 4832 Value *Op; 4833 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4834 return error("Invalid record"); 4835 Ops.push_back(Op); 4836 ArgsTys.push_back(Op->getType()); 4837 } 4838 } 4839 4840 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4841 OperandBundles); 4842 OperandBundles.clear(); 4843 InstructionList.push_back(I); 4844 cast<InvokeInst>(I)->setCallingConv( 4845 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4846 cast<InvokeInst>(I)->setAttributes(PAL); 4847 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 4848 4849 break; 4850 } 4851 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4852 unsigned Idx = 0; 4853 Value *Val = nullptr; 4854 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4855 return error("Invalid record"); 4856 I = ResumeInst::Create(Val); 4857 InstructionList.push_back(I); 4858 break; 4859 } 4860 case bitc::FUNC_CODE_INST_CALLBR: { 4861 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4862 unsigned OpNum = 0; 4863 AttributeList PAL = getAttributes(Record[OpNum++]); 4864 unsigned CCInfo = Record[OpNum++]; 4865 4866 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4867 unsigned NumIndirectDests = Record[OpNum++]; 4868 SmallVector<BasicBlock *, 16> IndirectDests; 4869 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4870 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4871 4872 FunctionType *FTy = nullptr; 4873 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4874 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4875 if (!FTy) 4876 return error("Explicit call type is not a function type"); 4877 } 4878 4879 Value *Callee; 4880 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4881 return error("Invalid record"); 4882 4883 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4884 if (!OpTy) 4885 return error("Callee is not a pointer type"); 4886 if (!FTy) { 4887 FTy = 4888 dyn_cast<FunctionType>(Callee->getType()->getPointerElementType()); 4889 if (!FTy) 4890 return error("Callee is not of pointer to function type"); 4891 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 4892 return error("Explicit call type does not match pointee type of " 4893 "callee operand"); 4894 if (Record.size() < FTy->getNumParams() + OpNum) 4895 return error("Insufficient operands to call"); 4896 4897 SmallVector<Value*, 16> Args; 4898 SmallVector<Type *, 16> ArgsTys; 4899 // Read the fixed params. 4900 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4901 Value *Arg; 4902 if (FTy->getParamType(i)->isLabelTy()) 4903 Arg = getBasicBlock(Record[OpNum]); 4904 else 4905 Arg = getValue(Record, OpNum, NextValueNo, FTy->getParamType(i)); 4906 if (!Arg) 4907 return error("Invalid record"); 4908 Args.push_back(Arg); 4909 ArgsTys.push_back(Arg->getType()); 4910 } 4911 4912 // Read type/value pairs for varargs params. 4913 if (!FTy->isVarArg()) { 4914 if (OpNum != Record.size()) 4915 return error("Invalid record"); 4916 } else { 4917 while (OpNum != Record.size()) { 4918 Value *Op; 4919 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4920 return error("Invalid record"); 4921 Args.push_back(Op); 4922 ArgsTys.push_back(Op->getType()); 4923 } 4924 } 4925 4926 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4927 OperandBundles); 4928 OperandBundles.clear(); 4929 InstructionList.push_back(I); 4930 cast<CallBrInst>(I)->setCallingConv( 4931 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4932 cast<CallBrInst>(I)->setAttributes(PAL); 4933 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 4934 break; 4935 } 4936 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4937 I = new UnreachableInst(Context); 4938 InstructionList.push_back(I); 4939 break; 4940 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4941 if (Record.empty()) 4942 return error("Invalid record"); 4943 // The first record specifies the type. 4944 Type *Ty = getTypeByID(Record[0]); 4945 if (!Ty) 4946 return error("Invalid record"); 4947 4948 // Phi arguments are pairs of records of [value, basic block]. 4949 // There is an optional final record for fast-math-flags if this phi has a 4950 // floating-point type. 4951 size_t NumArgs = (Record.size() - 1) / 2; 4952 PHINode *PN = PHINode::Create(Ty, NumArgs); 4953 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4954 return error("Invalid record"); 4955 InstructionList.push_back(PN); 4956 4957 for (unsigned i = 0; i != NumArgs; i++) { 4958 Value *V; 4959 // With the new function encoding, it is possible that operands have 4960 // negative IDs (for forward references). Use a signed VBR 4961 // representation to keep the encoding small. 4962 if (UseRelativeIDs) 4963 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4964 else 4965 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4966 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4967 if (!V || !BB) 4968 return error("Invalid record"); 4969 PN->addIncoming(V, BB); 4970 } 4971 I = PN; 4972 4973 // If there are an even number of records, the final record must be FMF. 4974 if (Record.size() % 2 == 0) { 4975 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4976 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4977 if (FMF.any()) 4978 I->setFastMathFlags(FMF); 4979 } 4980 4981 break; 4982 } 4983 4984 case bitc::FUNC_CODE_INST_LANDINGPAD: 4985 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4986 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4987 unsigned Idx = 0; 4988 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4989 if (Record.size() < 3) 4990 return error("Invalid record"); 4991 } else { 4992 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4993 if (Record.size() < 4) 4994 return error("Invalid record"); 4995 } 4996 Type *Ty = getTypeByID(Record[Idx++]); 4997 if (!Ty) 4998 return error("Invalid record"); 4999 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5000 Value *PersFn = nullptr; 5001 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5002 return error("Invalid record"); 5003 5004 if (!F->hasPersonalityFn()) 5005 F->setPersonalityFn(cast<Constant>(PersFn)); 5006 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5007 return error("Personality function mismatch"); 5008 } 5009 5010 bool IsCleanup = !!Record[Idx++]; 5011 unsigned NumClauses = Record[Idx++]; 5012 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5013 LP->setCleanup(IsCleanup); 5014 for (unsigned J = 0; J != NumClauses; ++J) { 5015 LandingPadInst::ClauseType CT = 5016 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5017 Value *Val; 5018 5019 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5020 delete LP; 5021 return error("Invalid record"); 5022 } 5023 5024 assert((CT != LandingPadInst::Catch || 5025 !isa<ArrayType>(Val->getType())) && 5026 "Catch clause has a invalid type!"); 5027 assert((CT != LandingPadInst::Filter || 5028 isa<ArrayType>(Val->getType())) && 5029 "Filter clause has invalid type!"); 5030 LP->addClause(cast<Constant>(Val)); 5031 } 5032 5033 I = LP; 5034 InstructionList.push_back(I); 5035 break; 5036 } 5037 5038 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5039 if (Record.size() != 4) 5040 return error("Invalid record"); 5041 using APV = AllocaPackedValues; 5042 const uint64_t Rec = Record[3]; 5043 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 5044 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 5045 Type *Ty = getTypeByID(Record[0]); 5046 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 5047 Ty = getPtrElementTypeByID(Record[0]); 5048 if (!Ty) 5049 return error("Missing element type for old-style alloca"); 5050 } 5051 Type *OpTy = getTypeByID(Record[1]); 5052 Value *Size = getFnValueByID(Record[2], OpTy); 5053 MaybeAlign Align; 5054 uint64_t AlignExp = 5055 Bitfield::get<APV::AlignLower>(Rec) | 5056 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 5057 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 5058 return Err; 5059 } 5060 if (!Ty || !Size) 5061 return error("Invalid record"); 5062 5063 // FIXME: Make this an optional field. 5064 const DataLayout &DL = TheModule->getDataLayout(); 5065 unsigned AS = DL.getAllocaAddrSpace(); 5066 5067 SmallPtrSet<Type *, 4> Visited; 5068 if (!Align && !Ty->isSized(&Visited)) 5069 return error("alloca of unsized type"); 5070 if (!Align) 5071 Align = DL.getPrefTypeAlign(Ty); 5072 5073 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 5074 AI->setUsedWithInAlloca(InAlloca); 5075 AI->setSwiftError(SwiftError); 5076 I = AI; 5077 InstructionList.push_back(I); 5078 break; 5079 } 5080 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5081 unsigned OpNum = 0; 5082 Value *Op; 5083 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5084 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5085 return error("Invalid record"); 5086 5087 if (!isa<PointerType>(Op->getType())) 5088 return error("Load operand is not a pointer type"); 5089 5090 Type *Ty = nullptr; 5091 if (OpNum + 3 == Record.size()) { 5092 Ty = getTypeByID(Record[OpNum++]); 5093 } else { 5094 Ty = Op->getType()->getPointerElementType(); 5095 } 5096 5097 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5098 return Err; 5099 5100 MaybeAlign Align; 5101 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5102 return Err; 5103 SmallPtrSet<Type *, 4> Visited; 5104 if (!Align && !Ty->isSized(&Visited)) 5105 return error("load of unsized type"); 5106 if (!Align) 5107 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 5108 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5109 InstructionList.push_back(I); 5110 break; 5111 } 5112 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5113 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5114 unsigned OpNum = 0; 5115 Value *Op; 5116 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5117 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5118 return error("Invalid record"); 5119 5120 if (!isa<PointerType>(Op->getType())) 5121 return error("Load operand is not a pointer type"); 5122 5123 Type *Ty = nullptr; 5124 if (OpNum + 5 == Record.size()) { 5125 Ty = getTypeByID(Record[OpNum++]); 5126 } else { 5127 Ty = Op->getType()->getPointerElementType(); 5128 } 5129 5130 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5131 return Err; 5132 5133 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5134 if (Ordering == AtomicOrdering::NotAtomic || 5135 Ordering == AtomicOrdering::Release || 5136 Ordering == AtomicOrdering::AcquireRelease) 5137 return error("Invalid record"); 5138 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5139 return error("Invalid record"); 5140 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5141 5142 MaybeAlign Align; 5143 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5144 return Err; 5145 if (!Align) 5146 return error("Alignment missing from atomic load"); 5147 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5148 InstructionList.push_back(I); 5149 break; 5150 } 5151 case bitc::FUNC_CODE_INST_STORE: 5152 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5153 unsigned OpNum = 0; 5154 Value *Val, *Ptr; 5155 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5156 (BitCode == bitc::FUNC_CODE_INST_STORE 5157 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5158 : popValue(Record, OpNum, NextValueNo, 5159 Ptr->getType()->getPointerElementType(), Val)) || 5160 OpNum + 2 != Record.size()) 5161 return error("Invalid record"); 5162 5163 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5164 return Err; 5165 MaybeAlign Align; 5166 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5167 return Err; 5168 SmallPtrSet<Type *, 4> Visited; 5169 if (!Align && !Val->getType()->isSized(&Visited)) 5170 return error("store of unsized type"); 5171 if (!Align) 5172 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5173 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5174 InstructionList.push_back(I); 5175 break; 5176 } 5177 case bitc::FUNC_CODE_INST_STOREATOMIC: 5178 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5179 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5180 unsigned OpNum = 0; 5181 Value *Val, *Ptr; 5182 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5183 !isa<PointerType>(Ptr->getType()) || 5184 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5185 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5186 : popValue(Record, OpNum, NextValueNo, 5187 Ptr->getType()->getPointerElementType(), Val)) || 5188 OpNum + 4 != Record.size()) 5189 return error("Invalid record"); 5190 5191 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5192 return Err; 5193 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5194 if (Ordering == AtomicOrdering::NotAtomic || 5195 Ordering == AtomicOrdering::Acquire || 5196 Ordering == AtomicOrdering::AcquireRelease) 5197 return error("Invalid record"); 5198 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5199 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5200 return error("Invalid record"); 5201 5202 MaybeAlign Align; 5203 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5204 return Err; 5205 if (!Align) 5206 return error("Alignment missing from atomic store"); 5207 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5208 InstructionList.push_back(I); 5209 break; 5210 } 5211 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5212 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5213 // failure_ordering?, weak?] 5214 const size_t NumRecords = Record.size(); 5215 unsigned OpNum = 0; 5216 Value *Ptr = nullptr; 5217 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5218 return error("Invalid record"); 5219 5220 if (!isa<PointerType>(Ptr->getType())) 5221 return error("Cmpxchg operand is not a pointer type"); 5222 5223 Value *Cmp = nullptr; 5224 if (popValue(Record, OpNum, NextValueNo, 5225 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5226 Cmp)) 5227 return error("Invalid record"); 5228 5229 Value *New = nullptr; 5230 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5231 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5232 return error("Invalid record"); 5233 5234 const AtomicOrdering SuccessOrdering = 5235 getDecodedOrdering(Record[OpNum + 1]); 5236 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5237 SuccessOrdering == AtomicOrdering::Unordered) 5238 return error("Invalid record"); 5239 5240 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5241 5242 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5243 return Err; 5244 5245 const AtomicOrdering FailureOrdering = 5246 NumRecords < 7 5247 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5248 : getDecodedOrdering(Record[OpNum + 3]); 5249 5250 if (FailureOrdering == AtomicOrdering::NotAtomic || 5251 FailureOrdering == AtomicOrdering::Unordered) 5252 return error("Invalid record"); 5253 5254 const Align Alignment( 5255 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5256 5257 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5258 FailureOrdering, SSID); 5259 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5260 5261 if (NumRecords < 8) { 5262 // Before weak cmpxchgs existed, the instruction simply returned the 5263 // value loaded from memory, so bitcode files from that era will be 5264 // expecting the first component of a modern cmpxchg. 5265 CurBB->getInstList().push_back(I); 5266 I = ExtractValueInst::Create(I, 0); 5267 } else { 5268 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5269 } 5270 5271 InstructionList.push_back(I); 5272 break; 5273 } 5274 case bitc::FUNC_CODE_INST_CMPXCHG: { 5275 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5276 // failure_ordering, weak, align?] 5277 const size_t NumRecords = Record.size(); 5278 unsigned OpNum = 0; 5279 Value *Ptr = nullptr; 5280 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5281 return error("Invalid record"); 5282 5283 if (!isa<PointerType>(Ptr->getType())) 5284 return error("Cmpxchg operand is not a pointer type"); 5285 5286 Value *Cmp = nullptr; 5287 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp)) 5288 return error("Invalid record"); 5289 5290 Value *Val = nullptr; 5291 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val)) 5292 return error("Invalid record"); 5293 5294 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5295 return error("Invalid record"); 5296 5297 const bool IsVol = Record[OpNum]; 5298 5299 const AtomicOrdering SuccessOrdering = 5300 getDecodedOrdering(Record[OpNum + 1]); 5301 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5302 return error("Invalid cmpxchg success ordering"); 5303 5304 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5305 5306 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5307 return Err; 5308 5309 const AtomicOrdering FailureOrdering = 5310 getDecodedOrdering(Record[OpNum + 3]); 5311 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5312 return error("Invalid cmpxchg failure ordering"); 5313 5314 const bool IsWeak = Record[OpNum + 4]; 5315 5316 MaybeAlign Alignment; 5317 5318 if (NumRecords == (OpNum + 6)) { 5319 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5320 return Err; 5321 } 5322 if (!Alignment) 5323 Alignment = 5324 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5325 5326 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5327 FailureOrdering, SSID); 5328 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5329 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5330 5331 InstructionList.push_back(I); 5332 break; 5333 } 5334 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5335 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5336 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5337 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5338 const size_t NumRecords = Record.size(); 5339 unsigned OpNum = 0; 5340 5341 Value *Ptr = nullptr; 5342 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5343 return error("Invalid record"); 5344 5345 if (!isa<PointerType>(Ptr->getType())) 5346 return error("Invalid record"); 5347 5348 Value *Val = nullptr; 5349 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5350 if (popValue(Record, OpNum, NextValueNo, 5351 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5352 Val)) 5353 return error("Invalid record"); 5354 } else { 5355 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 5356 return error("Invalid record"); 5357 } 5358 5359 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5360 return error("Invalid record"); 5361 5362 const AtomicRMWInst::BinOp Operation = 5363 getDecodedRMWOperation(Record[OpNum]); 5364 if (Operation < AtomicRMWInst::FIRST_BINOP || 5365 Operation > AtomicRMWInst::LAST_BINOP) 5366 return error("Invalid record"); 5367 5368 const bool IsVol = Record[OpNum + 1]; 5369 5370 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5371 if (Ordering == AtomicOrdering::NotAtomic || 5372 Ordering == AtomicOrdering::Unordered) 5373 return error("Invalid record"); 5374 5375 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5376 5377 MaybeAlign Alignment; 5378 5379 if (NumRecords == (OpNum + 5)) { 5380 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5381 return Err; 5382 } 5383 5384 if (!Alignment) 5385 Alignment = 5386 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5387 5388 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5389 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5390 5391 InstructionList.push_back(I); 5392 break; 5393 } 5394 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5395 if (2 != Record.size()) 5396 return error("Invalid record"); 5397 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5398 if (Ordering == AtomicOrdering::NotAtomic || 5399 Ordering == AtomicOrdering::Unordered || 5400 Ordering == AtomicOrdering::Monotonic) 5401 return error("Invalid record"); 5402 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5403 I = new FenceInst(Context, Ordering, SSID); 5404 InstructionList.push_back(I); 5405 break; 5406 } 5407 case bitc::FUNC_CODE_INST_CALL: { 5408 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5409 if (Record.size() < 3) 5410 return error("Invalid record"); 5411 5412 unsigned OpNum = 0; 5413 AttributeList PAL = getAttributes(Record[OpNum++]); 5414 unsigned CCInfo = Record[OpNum++]; 5415 5416 FastMathFlags FMF; 5417 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5418 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5419 if (!FMF.any()) 5420 return error("Fast math flags indicator set for call with no FMF"); 5421 } 5422 5423 FunctionType *FTy = nullptr; 5424 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5425 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 5426 if (!FTy) 5427 return error("Explicit call type is not a function type"); 5428 } 5429 5430 Value *Callee; 5431 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5432 return error("Invalid record"); 5433 5434 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5435 if (!OpTy) 5436 return error("Callee is not a pointer type"); 5437 if (!FTy) { 5438 FTy = 5439 dyn_cast<FunctionType>(Callee->getType()->getPointerElementType()); 5440 if (!FTy) 5441 return error("Callee is not of pointer to function type"); 5442 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5443 return error("Explicit call type does not match pointee type of " 5444 "callee operand"); 5445 if (Record.size() < FTy->getNumParams() + OpNum) 5446 return error("Insufficient operands to call"); 5447 5448 SmallVector<Value*, 16> Args; 5449 SmallVector<Type *, 16> ArgsTys; 5450 // Read the fixed params. 5451 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5452 if (FTy->getParamType(i)->isLabelTy()) 5453 Args.push_back(getBasicBlock(Record[OpNum])); 5454 else 5455 Args.push_back(getValue(Record, OpNum, NextValueNo, 5456 FTy->getParamType(i))); 5457 ArgsTys.push_back(FTy->getParamType(i)); 5458 if (!Args.back()) 5459 return error("Invalid record"); 5460 } 5461 5462 // Read type/value pairs for varargs params. 5463 if (!FTy->isVarArg()) { 5464 if (OpNum != Record.size()) 5465 return error("Invalid record"); 5466 } else { 5467 while (OpNum != Record.size()) { 5468 Value *Op; 5469 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5470 return error("Invalid record"); 5471 Args.push_back(Op); 5472 ArgsTys.push_back(Op->getType()); 5473 } 5474 } 5475 5476 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5477 OperandBundles.clear(); 5478 InstructionList.push_back(I); 5479 cast<CallInst>(I)->setCallingConv( 5480 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5481 CallInst::TailCallKind TCK = CallInst::TCK_None; 5482 if (CCInfo & 1 << bitc::CALL_TAIL) 5483 TCK = CallInst::TCK_Tail; 5484 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5485 TCK = CallInst::TCK_MustTail; 5486 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5487 TCK = CallInst::TCK_NoTail; 5488 cast<CallInst>(I)->setTailCallKind(TCK); 5489 cast<CallInst>(I)->setAttributes(PAL); 5490 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 5491 if (FMF.any()) { 5492 if (!isa<FPMathOperator>(I)) 5493 return error("Fast-math-flags specified for call without " 5494 "floating-point scalar or vector return type"); 5495 I->setFastMathFlags(FMF); 5496 } 5497 break; 5498 } 5499 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5500 if (Record.size() < 3) 5501 return error("Invalid record"); 5502 Type *OpTy = getTypeByID(Record[0]); 5503 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5504 Type *ResTy = getTypeByID(Record[2]); 5505 if (!OpTy || !Op || !ResTy) 5506 return error("Invalid record"); 5507 I = new VAArgInst(Op, ResTy); 5508 InstructionList.push_back(I); 5509 break; 5510 } 5511 5512 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5513 // A call or an invoke can be optionally prefixed with some variable 5514 // number of operand bundle blocks. These blocks are read into 5515 // OperandBundles and consumed at the next call or invoke instruction. 5516 5517 if (Record.empty() || Record[0] >= BundleTags.size()) 5518 return error("Invalid record"); 5519 5520 std::vector<Value *> Inputs; 5521 5522 unsigned OpNum = 1; 5523 while (OpNum != Record.size()) { 5524 Value *Op; 5525 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5526 return error("Invalid record"); 5527 Inputs.push_back(Op); 5528 } 5529 5530 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5531 continue; 5532 } 5533 5534 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5535 unsigned OpNum = 0; 5536 Value *Op = nullptr; 5537 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5538 return error("Invalid record"); 5539 if (OpNum != Record.size()) 5540 return error("Invalid record"); 5541 5542 I = new FreezeInst(Op); 5543 InstructionList.push_back(I); 5544 break; 5545 } 5546 } 5547 5548 // Add instruction to end of current BB. If there is no current BB, reject 5549 // this file. 5550 if (!CurBB) { 5551 I->deleteValue(); 5552 return error("Invalid instruction with no BB"); 5553 } 5554 if (!OperandBundles.empty()) { 5555 I->deleteValue(); 5556 return error("Operand bundles found with no consumer"); 5557 } 5558 CurBB->getInstList().push_back(I); 5559 5560 // If this was a terminator instruction, move to the next block. 5561 if (I->isTerminator()) { 5562 ++CurBBNo; 5563 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5564 } 5565 5566 // Non-void values get registered in the value table for future use. 5567 if (!I->getType()->isVoidTy()) 5568 ValueList.assignValue(I, NextValueNo++); 5569 } 5570 5571 OutOfRecordLoop: 5572 5573 if (!OperandBundles.empty()) 5574 return error("Operand bundles found with no consumer"); 5575 5576 // Check the function list for unresolved values. 5577 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5578 if (!A->getParent()) { 5579 // We found at least one unresolved value. Nuke them all to avoid leaks. 5580 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5581 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5582 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5583 delete A; 5584 } 5585 } 5586 return error("Never resolved value found in function"); 5587 } 5588 } 5589 5590 // Unexpected unresolved metadata about to be dropped. 5591 if (MDLoader->hasFwdRefs()) 5592 return error("Invalid function metadata: outgoing forward refs"); 5593 5594 // Trim the value list down to the size it was before we parsed this function. 5595 ValueList.shrinkTo(ModuleValueListSize); 5596 MDLoader->shrinkTo(ModuleMDLoaderSize); 5597 std::vector<BasicBlock*>().swap(FunctionBBs); 5598 return Error::success(); 5599 } 5600 5601 /// Find the function body in the bitcode stream 5602 Error BitcodeReader::findFunctionInStream( 5603 Function *F, 5604 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5605 while (DeferredFunctionInfoIterator->second == 0) { 5606 // This is the fallback handling for the old format bitcode that 5607 // didn't contain the function index in the VST, or when we have 5608 // an anonymous function which would not have a VST entry. 5609 // Assert that we have one of those two cases. 5610 assert(VSTOffset == 0 || !F->hasName()); 5611 // Parse the next body in the stream and set its position in the 5612 // DeferredFunctionInfo map. 5613 if (Error Err = rememberAndSkipFunctionBodies()) 5614 return Err; 5615 } 5616 return Error::success(); 5617 } 5618 5619 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5620 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5621 return SyncScope::ID(Val); 5622 if (Val >= SSIDs.size()) 5623 return SyncScope::System; // Map unknown synchronization scopes to system. 5624 return SSIDs[Val]; 5625 } 5626 5627 //===----------------------------------------------------------------------===// 5628 // GVMaterializer implementation 5629 //===----------------------------------------------------------------------===// 5630 5631 Error BitcodeReader::materialize(GlobalValue *GV) { 5632 Function *F = dyn_cast<Function>(GV); 5633 // If it's not a function or is already material, ignore the request. 5634 if (!F || !F->isMaterializable()) 5635 return Error::success(); 5636 5637 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5638 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5639 // If its position is recorded as 0, its body is somewhere in the stream 5640 // but we haven't seen it yet. 5641 if (DFII->second == 0) 5642 if (Error Err = findFunctionInStream(F, DFII)) 5643 return Err; 5644 5645 // Materialize metadata before parsing any function bodies. 5646 if (Error Err = materializeMetadata()) 5647 return Err; 5648 5649 // Move the bit stream to the saved position of the deferred function body. 5650 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5651 return JumpFailed; 5652 if (Error Err = parseFunctionBody(F)) 5653 return Err; 5654 F->setIsMaterializable(false); 5655 5656 if (StripDebugInfo) 5657 stripDebugInfo(*F); 5658 5659 // Upgrade any old intrinsic calls in the function. 5660 for (auto &I : UpgradedIntrinsics) { 5661 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 5662 if (CallInst *CI = dyn_cast<CallInst>(U)) 5663 UpgradeIntrinsicCall(CI, I.second); 5664 } 5665 5666 // Update calls to the remangled intrinsics 5667 for (auto &I : RemangledIntrinsics) 5668 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 5669 // Don't expect any other users than call sites 5670 cast<CallBase>(U)->setCalledFunction(I.second); 5671 5672 // Finish fn->subprogram upgrade for materialized functions. 5673 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5674 F->setSubprogram(SP); 5675 5676 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5677 if (!MDLoader->isStrippingTBAA()) { 5678 for (auto &I : instructions(F)) { 5679 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5680 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5681 continue; 5682 MDLoader->setStripTBAA(true); 5683 stripTBAA(F->getParent()); 5684 } 5685 } 5686 5687 for (auto &I : instructions(F)) { 5688 // "Upgrade" older incorrect branch weights by dropping them. 5689 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5690 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5691 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5692 StringRef ProfName = MDS->getString(); 5693 // Check consistency of !prof branch_weights metadata. 5694 if (!ProfName.equals("branch_weights")) 5695 continue; 5696 unsigned ExpectedNumOperands = 0; 5697 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5698 ExpectedNumOperands = BI->getNumSuccessors(); 5699 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5700 ExpectedNumOperands = SI->getNumSuccessors(); 5701 else if (isa<CallInst>(&I)) 5702 ExpectedNumOperands = 1; 5703 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5704 ExpectedNumOperands = IBI->getNumDestinations(); 5705 else if (isa<SelectInst>(&I)) 5706 ExpectedNumOperands = 2; 5707 else 5708 continue; // ignore and continue. 5709 5710 // If branch weight doesn't match, just strip branch weight. 5711 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5712 I.setMetadata(LLVMContext::MD_prof, nullptr); 5713 } 5714 } 5715 5716 // Remove incompatible attributes on function calls. 5717 if (auto *CI = dyn_cast<CallBase>(&I)) { 5718 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 5719 CI->getFunctionType()->getReturnType())); 5720 5721 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 5722 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 5723 CI->getArgOperand(ArgNo)->getType())); 5724 } 5725 } 5726 5727 // Look for functions that rely on old function attribute behavior. 5728 UpgradeFunctionAttributes(*F); 5729 5730 // Bring in any functions that this function forward-referenced via 5731 // blockaddresses. 5732 return materializeForwardReferencedFunctions(); 5733 } 5734 5735 Error BitcodeReader::materializeModule() { 5736 if (Error Err = materializeMetadata()) 5737 return Err; 5738 5739 // Promise to materialize all forward references. 5740 WillMaterializeAllForwardRefs = true; 5741 5742 // Iterate over the module, deserializing any functions that are still on 5743 // disk. 5744 for (Function &F : *TheModule) { 5745 if (Error Err = materialize(&F)) 5746 return Err; 5747 } 5748 // At this point, if there are any function bodies, parse the rest of 5749 // the bits in the module past the last function block we have recorded 5750 // through either lazy scanning or the VST. 5751 if (LastFunctionBlockBit || NextUnreadBit) 5752 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5753 ? LastFunctionBlockBit 5754 : NextUnreadBit)) 5755 return Err; 5756 5757 // Check that all block address forward references got resolved (as we 5758 // promised above). 5759 if (!BasicBlockFwdRefs.empty()) 5760 return error("Never resolved function from blockaddress"); 5761 5762 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5763 // delete the old functions to clean up. We can't do this unless the entire 5764 // module is materialized because there could always be another function body 5765 // with calls to the old function. 5766 for (auto &I : UpgradedIntrinsics) { 5767 for (auto *U : I.first->users()) { 5768 if (CallInst *CI = dyn_cast<CallInst>(U)) 5769 UpgradeIntrinsicCall(CI, I.second); 5770 } 5771 if (!I.first->use_empty()) 5772 I.first->replaceAllUsesWith(I.second); 5773 I.first->eraseFromParent(); 5774 } 5775 UpgradedIntrinsics.clear(); 5776 // Do the same for remangled intrinsics 5777 for (auto &I : RemangledIntrinsics) { 5778 I.first->replaceAllUsesWith(I.second); 5779 I.first->eraseFromParent(); 5780 } 5781 RemangledIntrinsics.clear(); 5782 5783 UpgradeDebugInfo(*TheModule); 5784 5785 UpgradeModuleFlags(*TheModule); 5786 5787 UpgradeARCRuntime(*TheModule); 5788 5789 return Error::success(); 5790 } 5791 5792 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5793 return IdentifiedStructTypes; 5794 } 5795 5796 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5797 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5798 StringRef ModulePath, unsigned ModuleId) 5799 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5800 ModulePath(ModulePath), ModuleId(ModuleId) {} 5801 5802 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5803 TheIndex.addModule(ModulePath, ModuleId); 5804 } 5805 5806 ModuleSummaryIndex::ModuleInfo * 5807 ModuleSummaryIndexBitcodeReader::getThisModule() { 5808 return TheIndex.getModule(ModulePath); 5809 } 5810 5811 std::pair<ValueInfo, GlobalValue::GUID> 5812 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5813 auto VGI = ValueIdToValueInfoMap[ValueId]; 5814 assert(VGI.first); 5815 return VGI; 5816 } 5817 5818 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5819 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5820 StringRef SourceFileName) { 5821 std::string GlobalId = 5822 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5823 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5824 auto OriginalNameID = ValueGUID; 5825 if (GlobalValue::isLocalLinkage(Linkage)) 5826 OriginalNameID = GlobalValue::getGUID(ValueName); 5827 if (PrintSummaryGUIDs) 5828 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5829 << ValueName << "\n"; 5830 5831 // UseStrtab is false for legacy summary formats and value names are 5832 // created on stack. In that case we save the name in a string saver in 5833 // the index so that the value name can be recorded. 5834 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5835 TheIndex.getOrInsertValueInfo( 5836 ValueGUID, 5837 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5838 OriginalNameID); 5839 } 5840 5841 // Specialized value symbol table parser used when reading module index 5842 // blocks where we don't actually create global values. The parsed information 5843 // is saved in the bitcode reader for use when later parsing summaries. 5844 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5845 uint64_t Offset, 5846 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5847 // With a strtab the VST is not required to parse the summary. 5848 if (UseStrtab) 5849 return Error::success(); 5850 5851 assert(Offset > 0 && "Expected non-zero VST offset"); 5852 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5853 if (!MaybeCurrentBit) 5854 return MaybeCurrentBit.takeError(); 5855 uint64_t CurrentBit = MaybeCurrentBit.get(); 5856 5857 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5858 return Err; 5859 5860 SmallVector<uint64_t, 64> Record; 5861 5862 // Read all the records for this value table. 5863 SmallString<128> ValueName; 5864 5865 while (true) { 5866 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5867 if (!MaybeEntry) 5868 return MaybeEntry.takeError(); 5869 BitstreamEntry Entry = MaybeEntry.get(); 5870 5871 switch (Entry.Kind) { 5872 case BitstreamEntry::SubBlock: // Handled for us already. 5873 case BitstreamEntry::Error: 5874 return error("Malformed block"); 5875 case BitstreamEntry::EndBlock: 5876 // Done parsing VST, jump back to wherever we came from. 5877 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5878 return JumpFailed; 5879 return Error::success(); 5880 case BitstreamEntry::Record: 5881 // The interesting case. 5882 break; 5883 } 5884 5885 // Read a record. 5886 Record.clear(); 5887 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5888 if (!MaybeRecord) 5889 return MaybeRecord.takeError(); 5890 switch (MaybeRecord.get()) { 5891 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5892 break; 5893 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5894 if (convertToString(Record, 1, ValueName)) 5895 return error("Invalid record"); 5896 unsigned ValueID = Record[0]; 5897 assert(!SourceFileName.empty()); 5898 auto VLI = ValueIdToLinkageMap.find(ValueID); 5899 assert(VLI != ValueIdToLinkageMap.end() && 5900 "No linkage found for VST entry?"); 5901 auto Linkage = VLI->second; 5902 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5903 ValueName.clear(); 5904 break; 5905 } 5906 case bitc::VST_CODE_FNENTRY: { 5907 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5908 if (convertToString(Record, 2, ValueName)) 5909 return error("Invalid record"); 5910 unsigned ValueID = Record[0]; 5911 assert(!SourceFileName.empty()); 5912 auto VLI = ValueIdToLinkageMap.find(ValueID); 5913 assert(VLI != ValueIdToLinkageMap.end() && 5914 "No linkage found for VST entry?"); 5915 auto Linkage = VLI->second; 5916 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5917 ValueName.clear(); 5918 break; 5919 } 5920 case bitc::VST_CODE_COMBINED_ENTRY: { 5921 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5922 unsigned ValueID = Record[0]; 5923 GlobalValue::GUID RefGUID = Record[1]; 5924 // The "original name", which is the second value of the pair will be 5925 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5926 ValueIdToValueInfoMap[ValueID] = 5927 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5928 break; 5929 } 5930 } 5931 } 5932 } 5933 5934 // Parse just the blocks needed for building the index out of the module. 5935 // At the end of this routine the module Index is populated with a map 5936 // from global value id to GlobalValueSummary objects. 5937 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5938 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5939 return Err; 5940 5941 SmallVector<uint64_t, 64> Record; 5942 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5943 unsigned ValueId = 0; 5944 5945 // Read the index for this module. 5946 while (true) { 5947 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5948 if (!MaybeEntry) 5949 return MaybeEntry.takeError(); 5950 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5951 5952 switch (Entry.Kind) { 5953 case BitstreamEntry::Error: 5954 return error("Malformed block"); 5955 case BitstreamEntry::EndBlock: 5956 return Error::success(); 5957 5958 case BitstreamEntry::SubBlock: 5959 switch (Entry.ID) { 5960 default: // Skip unknown content. 5961 if (Error Err = Stream.SkipBlock()) 5962 return Err; 5963 break; 5964 case bitc::BLOCKINFO_BLOCK_ID: 5965 // Need to parse these to get abbrev ids (e.g. for VST) 5966 if (Error Err = readBlockInfo()) 5967 return Err; 5968 break; 5969 case bitc::VALUE_SYMTAB_BLOCK_ID: 5970 // Should have been parsed earlier via VSTOffset, unless there 5971 // is no summary section. 5972 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5973 !SeenGlobalValSummary) && 5974 "Expected early VST parse via VSTOffset record"); 5975 if (Error Err = Stream.SkipBlock()) 5976 return Err; 5977 break; 5978 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5979 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5980 // Add the module if it is a per-module index (has a source file name). 5981 if (!SourceFileName.empty()) 5982 addThisModule(); 5983 assert(!SeenValueSymbolTable && 5984 "Already read VST when parsing summary block?"); 5985 // We might not have a VST if there were no values in the 5986 // summary. An empty summary block generated when we are 5987 // performing ThinLTO compiles so we don't later invoke 5988 // the regular LTO process on them. 5989 if (VSTOffset > 0) { 5990 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5991 return Err; 5992 SeenValueSymbolTable = true; 5993 } 5994 SeenGlobalValSummary = true; 5995 if (Error Err = parseEntireSummary(Entry.ID)) 5996 return Err; 5997 break; 5998 case bitc::MODULE_STRTAB_BLOCK_ID: 5999 if (Error Err = parseModuleStringTable()) 6000 return Err; 6001 break; 6002 } 6003 continue; 6004 6005 case BitstreamEntry::Record: { 6006 Record.clear(); 6007 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6008 if (!MaybeBitCode) 6009 return MaybeBitCode.takeError(); 6010 switch (MaybeBitCode.get()) { 6011 default: 6012 break; // Default behavior, ignore unknown content. 6013 case bitc::MODULE_CODE_VERSION: { 6014 if (Error Err = parseVersionRecord(Record).takeError()) 6015 return Err; 6016 break; 6017 } 6018 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 6019 case bitc::MODULE_CODE_SOURCE_FILENAME: { 6020 SmallString<128> ValueName; 6021 if (convertToString(Record, 0, ValueName)) 6022 return error("Invalid record"); 6023 SourceFileName = ValueName.c_str(); 6024 break; 6025 } 6026 /// MODULE_CODE_HASH: [5*i32] 6027 case bitc::MODULE_CODE_HASH: { 6028 if (Record.size() != 5) 6029 return error("Invalid hash length " + Twine(Record.size()).str()); 6030 auto &Hash = getThisModule()->second.second; 6031 int Pos = 0; 6032 for (auto &Val : Record) { 6033 assert(!(Val >> 32) && "Unexpected high bits set"); 6034 Hash[Pos++] = Val; 6035 } 6036 break; 6037 } 6038 /// MODULE_CODE_VSTOFFSET: [offset] 6039 case bitc::MODULE_CODE_VSTOFFSET: 6040 if (Record.empty()) 6041 return error("Invalid record"); 6042 // Note that we subtract 1 here because the offset is relative to one 6043 // word before the start of the identification or module block, which 6044 // was historically always the start of the regular bitcode header. 6045 VSTOffset = Record[0] - 1; 6046 break; 6047 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 6048 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 6049 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 6050 // v2: [strtab offset, strtab size, v1] 6051 case bitc::MODULE_CODE_GLOBALVAR: 6052 case bitc::MODULE_CODE_FUNCTION: 6053 case bitc::MODULE_CODE_ALIAS: { 6054 StringRef Name; 6055 ArrayRef<uint64_t> GVRecord; 6056 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 6057 if (GVRecord.size() <= 3) 6058 return error("Invalid record"); 6059 uint64_t RawLinkage = GVRecord[3]; 6060 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 6061 if (!UseStrtab) { 6062 ValueIdToLinkageMap[ValueId++] = Linkage; 6063 break; 6064 } 6065 6066 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 6067 break; 6068 } 6069 } 6070 } 6071 continue; 6072 } 6073 } 6074 } 6075 6076 std::vector<ValueInfo> 6077 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 6078 std::vector<ValueInfo> Ret; 6079 Ret.reserve(Record.size()); 6080 for (uint64_t RefValueId : Record) 6081 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 6082 return Ret; 6083 } 6084 6085 std::vector<FunctionSummary::EdgeTy> 6086 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 6087 bool IsOldProfileFormat, 6088 bool HasProfile, bool HasRelBF) { 6089 std::vector<FunctionSummary::EdgeTy> Ret; 6090 Ret.reserve(Record.size()); 6091 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 6092 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 6093 uint64_t RelBF = 0; 6094 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6095 if (IsOldProfileFormat) { 6096 I += 1; // Skip old callsitecount field 6097 if (HasProfile) 6098 I += 1; // Skip old profilecount field 6099 } else if (HasProfile) 6100 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6101 else if (HasRelBF) 6102 RelBF = Record[++I]; 6103 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 6104 } 6105 return Ret; 6106 } 6107 6108 static void 6109 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 6110 WholeProgramDevirtResolution &Wpd) { 6111 uint64_t ArgNum = Record[Slot++]; 6112 WholeProgramDevirtResolution::ByArg &B = 6113 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 6114 Slot += ArgNum; 6115 6116 B.TheKind = 6117 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 6118 B.Info = Record[Slot++]; 6119 B.Byte = Record[Slot++]; 6120 B.Bit = Record[Slot++]; 6121 } 6122 6123 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 6124 StringRef Strtab, size_t &Slot, 6125 TypeIdSummary &TypeId) { 6126 uint64_t Id = Record[Slot++]; 6127 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 6128 6129 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 6130 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 6131 static_cast<size_t>(Record[Slot + 1])}; 6132 Slot += 2; 6133 6134 uint64_t ResByArgNum = Record[Slot++]; 6135 for (uint64_t I = 0; I != ResByArgNum; ++I) 6136 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 6137 } 6138 6139 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6140 StringRef Strtab, 6141 ModuleSummaryIndex &TheIndex) { 6142 size_t Slot = 0; 6143 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6144 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6145 Slot += 2; 6146 6147 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6148 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6149 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6150 TypeId.TTRes.SizeM1 = Record[Slot++]; 6151 TypeId.TTRes.BitMask = Record[Slot++]; 6152 TypeId.TTRes.InlineBits = Record[Slot++]; 6153 6154 while (Slot < Record.size()) 6155 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6156 } 6157 6158 std::vector<FunctionSummary::ParamAccess> 6159 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6160 auto ReadRange = [&]() { 6161 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6162 BitcodeReader::decodeSignRotatedValue(Record.front())); 6163 Record = Record.drop_front(); 6164 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6165 BitcodeReader::decodeSignRotatedValue(Record.front())); 6166 Record = Record.drop_front(); 6167 ConstantRange Range{Lower, Upper}; 6168 assert(!Range.isFullSet()); 6169 assert(!Range.isUpperSignWrapped()); 6170 return Range; 6171 }; 6172 6173 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6174 while (!Record.empty()) { 6175 PendingParamAccesses.emplace_back(); 6176 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6177 ParamAccess.ParamNo = Record.front(); 6178 Record = Record.drop_front(); 6179 ParamAccess.Use = ReadRange(); 6180 ParamAccess.Calls.resize(Record.front()); 6181 Record = Record.drop_front(); 6182 for (auto &Call : ParamAccess.Calls) { 6183 Call.ParamNo = Record.front(); 6184 Record = Record.drop_front(); 6185 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6186 Record = Record.drop_front(); 6187 Call.Offsets = ReadRange(); 6188 } 6189 } 6190 return PendingParamAccesses; 6191 } 6192 6193 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6194 ArrayRef<uint64_t> Record, size_t &Slot, 6195 TypeIdCompatibleVtableInfo &TypeId) { 6196 uint64_t Offset = Record[Slot++]; 6197 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6198 TypeId.push_back({Offset, Callee}); 6199 } 6200 6201 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6202 ArrayRef<uint64_t> Record) { 6203 size_t Slot = 0; 6204 TypeIdCompatibleVtableInfo &TypeId = 6205 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6206 {Strtab.data() + Record[Slot], 6207 static_cast<size_t>(Record[Slot + 1])}); 6208 Slot += 2; 6209 6210 while (Slot < Record.size()) 6211 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6212 } 6213 6214 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6215 unsigned WOCnt) { 6216 // Readonly and writeonly refs are in the end of the refs list. 6217 assert(ROCnt + WOCnt <= Refs.size()); 6218 unsigned FirstWORef = Refs.size() - WOCnt; 6219 unsigned RefNo = FirstWORef - ROCnt; 6220 for (; RefNo < FirstWORef; ++RefNo) 6221 Refs[RefNo].setReadOnly(); 6222 for (; RefNo < Refs.size(); ++RefNo) 6223 Refs[RefNo].setWriteOnly(); 6224 } 6225 6226 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6227 // objects in the index. 6228 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6229 if (Error Err = Stream.EnterSubBlock(ID)) 6230 return Err; 6231 SmallVector<uint64_t, 64> Record; 6232 6233 // Parse version 6234 { 6235 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6236 if (!MaybeEntry) 6237 return MaybeEntry.takeError(); 6238 BitstreamEntry Entry = MaybeEntry.get(); 6239 6240 if (Entry.Kind != BitstreamEntry::Record) 6241 return error("Invalid Summary Block: record for version expected"); 6242 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6243 if (!MaybeRecord) 6244 return MaybeRecord.takeError(); 6245 if (MaybeRecord.get() != bitc::FS_VERSION) 6246 return error("Invalid Summary Block: version expected"); 6247 } 6248 const uint64_t Version = Record[0]; 6249 const bool IsOldProfileFormat = Version == 1; 6250 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6251 return error("Invalid summary version " + Twine(Version) + 6252 ". Version should be in the range [1-" + 6253 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6254 "]."); 6255 Record.clear(); 6256 6257 // Keep around the last seen summary to be used when we see an optional 6258 // "OriginalName" attachement. 6259 GlobalValueSummary *LastSeenSummary = nullptr; 6260 GlobalValue::GUID LastSeenGUID = 0; 6261 6262 // We can expect to see any number of type ID information records before 6263 // each function summary records; these variables store the information 6264 // collected so far so that it can be used to create the summary object. 6265 std::vector<GlobalValue::GUID> PendingTypeTests; 6266 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6267 PendingTypeCheckedLoadVCalls; 6268 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6269 PendingTypeCheckedLoadConstVCalls; 6270 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6271 6272 while (true) { 6273 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6274 if (!MaybeEntry) 6275 return MaybeEntry.takeError(); 6276 BitstreamEntry Entry = MaybeEntry.get(); 6277 6278 switch (Entry.Kind) { 6279 case BitstreamEntry::SubBlock: // Handled for us already. 6280 case BitstreamEntry::Error: 6281 return error("Malformed block"); 6282 case BitstreamEntry::EndBlock: 6283 return Error::success(); 6284 case BitstreamEntry::Record: 6285 // The interesting case. 6286 break; 6287 } 6288 6289 // Read a record. The record format depends on whether this 6290 // is a per-module index or a combined index file. In the per-module 6291 // case the records contain the associated value's ID for correlation 6292 // with VST entries. In the combined index the correlation is done 6293 // via the bitcode offset of the summary records (which were saved 6294 // in the combined index VST entries). The records also contain 6295 // information used for ThinLTO renaming and importing. 6296 Record.clear(); 6297 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6298 if (!MaybeBitCode) 6299 return MaybeBitCode.takeError(); 6300 switch (unsigned BitCode = MaybeBitCode.get()) { 6301 default: // Default behavior: ignore. 6302 break; 6303 case bitc::FS_FLAGS: { // [flags] 6304 TheIndex.setFlags(Record[0]); 6305 break; 6306 } 6307 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6308 uint64_t ValueID = Record[0]; 6309 GlobalValue::GUID RefGUID = Record[1]; 6310 ValueIdToValueInfoMap[ValueID] = 6311 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6312 break; 6313 } 6314 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6315 // numrefs x valueid, n x (valueid)] 6316 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6317 // numrefs x valueid, 6318 // n x (valueid, hotness)] 6319 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6320 // numrefs x valueid, 6321 // n x (valueid, relblockfreq)] 6322 case bitc::FS_PERMODULE: 6323 case bitc::FS_PERMODULE_RELBF: 6324 case bitc::FS_PERMODULE_PROFILE: { 6325 unsigned ValueID = Record[0]; 6326 uint64_t RawFlags = Record[1]; 6327 unsigned InstCount = Record[2]; 6328 uint64_t RawFunFlags = 0; 6329 unsigned NumRefs = Record[3]; 6330 unsigned NumRORefs = 0, NumWORefs = 0; 6331 int RefListStartIndex = 4; 6332 if (Version >= 4) { 6333 RawFunFlags = Record[3]; 6334 NumRefs = Record[4]; 6335 RefListStartIndex = 5; 6336 if (Version >= 5) { 6337 NumRORefs = Record[5]; 6338 RefListStartIndex = 6; 6339 if (Version >= 7) { 6340 NumWORefs = Record[6]; 6341 RefListStartIndex = 7; 6342 } 6343 } 6344 } 6345 6346 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6347 // The module path string ref set in the summary must be owned by the 6348 // index's module string table. Since we don't have a module path 6349 // string table section in the per-module index, we create a single 6350 // module path string table entry with an empty (0) ID to take 6351 // ownership. 6352 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6353 assert(Record.size() >= RefListStartIndex + NumRefs && 6354 "Record size inconsistent with number of references"); 6355 std::vector<ValueInfo> Refs = makeRefList( 6356 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6357 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6358 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6359 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6360 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6361 IsOldProfileFormat, HasProfile, HasRelBF); 6362 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6363 auto FS = std::make_unique<FunctionSummary>( 6364 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6365 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6366 std::move(PendingTypeTestAssumeVCalls), 6367 std::move(PendingTypeCheckedLoadVCalls), 6368 std::move(PendingTypeTestAssumeConstVCalls), 6369 std::move(PendingTypeCheckedLoadConstVCalls), 6370 std::move(PendingParamAccesses)); 6371 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6372 FS->setModulePath(getThisModule()->first()); 6373 FS->setOriginalName(VIAndOriginalGUID.second); 6374 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6375 break; 6376 } 6377 // FS_ALIAS: [valueid, flags, valueid] 6378 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6379 // they expect all aliasee summaries to be available. 6380 case bitc::FS_ALIAS: { 6381 unsigned ValueID = Record[0]; 6382 uint64_t RawFlags = Record[1]; 6383 unsigned AliaseeID = Record[2]; 6384 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6385 auto AS = std::make_unique<AliasSummary>(Flags); 6386 // The module path string ref set in the summary must be owned by the 6387 // index's module string table. Since we don't have a module path 6388 // string table section in the per-module index, we create a single 6389 // module path string table entry with an empty (0) ID to take 6390 // ownership. 6391 AS->setModulePath(getThisModule()->first()); 6392 6393 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6394 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6395 if (!AliaseeInModule) 6396 return error("Alias expects aliasee summary to be parsed"); 6397 AS->setAliasee(AliaseeVI, AliaseeInModule); 6398 6399 auto GUID = getValueInfoFromValueId(ValueID); 6400 AS->setOriginalName(GUID.second); 6401 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6402 break; 6403 } 6404 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6405 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6406 unsigned ValueID = Record[0]; 6407 uint64_t RawFlags = Record[1]; 6408 unsigned RefArrayStart = 2; 6409 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6410 /* WriteOnly */ false, 6411 /* Constant */ false, 6412 GlobalObject::VCallVisibilityPublic); 6413 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6414 if (Version >= 5) { 6415 GVF = getDecodedGVarFlags(Record[2]); 6416 RefArrayStart = 3; 6417 } 6418 std::vector<ValueInfo> Refs = 6419 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6420 auto FS = 6421 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6422 FS->setModulePath(getThisModule()->first()); 6423 auto GUID = getValueInfoFromValueId(ValueID); 6424 FS->setOriginalName(GUID.second); 6425 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6426 break; 6427 } 6428 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6429 // numrefs, numrefs x valueid, 6430 // n x (valueid, offset)] 6431 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6432 unsigned ValueID = Record[0]; 6433 uint64_t RawFlags = Record[1]; 6434 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6435 unsigned NumRefs = Record[3]; 6436 unsigned RefListStartIndex = 4; 6437 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6438 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6439 std::vector<ValueInfo> Refs = makeRefList( 6440 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6441 VTableFuncList VTableFuncs; 6442 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6443 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6444 uint64_t Offset = Record[++I]; 6445 VTableFuncs.push_back({Callee, Offset}); 6446 } 6447 auto VS = 6448 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6449 VS->setModulePath(getThisModule()->first()); 6450 VS->setVTableFuncs(VTableFuncs); 6451 auto GUID = getValueInfoFromValueId(ValueID); 6452 VS->setOriginalName(GUID.second); 6453 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6454 break; 6455 } 6456 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6457 // numrefs x valueid, n x (valueid)] 6458 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6459 // numrefs x valueid, n x (valueid, hotness)] 6460 case bitc::FS_COMBINED: 6461 case bitc::FS_COMBINED_PROFILE: { 6462 unsigned ValueID = Record[0]; 6463 uint64_t ModuleId = Record[1]; 6464 uint64_t RawFlags = Record[2]; 6465 unsigned InstCount = Record[3]; 6466 uint64_t RawFunFlags = 0; 6467 uint64_t EntryCount = 0; 6468 unsigned NumRefs = Record[4]; 6469 unsigned NumRORefs = 0, NumWORefs = 0; 6470 int RefListStartIndex = 5; 6471 6472 if (Version >= 4) { 6473 RawFunFlags = Record[4]; 6474 RefListStartIndex = 6; 6475 size_t NumRefsIndex = 5; 6476 if (Version >= 5) { 6477 unsigned NumRORefsOffset = 1; 6478 RefListStartIndex = 7; 6479 if (Version >= 6) { 6480 NumRefsIndex = 6; 6481 EntryCount = Record[5]; 6482 RefListStartIndex = 8; 6483 if (Version >= 7) { 6484 RefListStartIndex = 9; 6485 NumWORefs = Record[8]; 6486 NumRORefsOffset = 2; 6487 } 6488 } 6489 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6490 } 6491 NumRefs = Record[NumRefsIndex]; 6492 } 6493 6494 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6495 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6496 assert(Record.size() >= RefListStartIndex + NumRefs && 6497 "Record size inconsistent with number of references"); 6498 std::vector<ValueInfo> Refs = makeRefList( 6499 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6500 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6501 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6502 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6503 IsOldProfileFormat, HasProfile, false); 6504 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6505 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6506 auto FS = std::make_unique<FunctionSummary>( 6507 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6508 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6509 std::move(PendingTypeTestAssumeVCalls), 6510 std::move(PendingTypeCheckedLoadVCalls), 6511 std::move(PendingTypeTestAssumeConstVCalls), 6512 std::move(PendingTypeCheckedLoadConstVCalls), 6513 std::move(PendingParamAccesses)); 6514 LastSeenSummary = FS.get(); 6515 LastSeenGUID = VI.getGUID(); 6516 FS->setModulePath(ModuleIdMap[ModuleId]); 6517 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6518 break; 6519 } 6520 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6521 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6522 // they expect all aliasee summaries to be available. 6523 case bitc::FS_COMBINED_ALIAS: { 6524 unsigned ValueID = Record[0]; 6525 uint64_t ModuleId = Record[1]; 6526 uint64_t RawFlags = Record[2]; 6527 unsigned AliaseeValueId = Record[3]; 6528 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6529 auto AS = std::make_unique<AliasSummary>(Flags); 6530 LastSeenSummary = AS.get(); 6531 AS->setModulePath(ModuleIdMap[ModuleId]); 6532 6533 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6534 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6535 AS->setAliasee(AliaseeVI, AliaseeInModule); 6536 6537 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6538 LastSeenGUID = VI.getGUID(); 6539 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6540 break; 6541 } 6542 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6543 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6544 unsigned ValueID = Record[0]; 6545 uint64_t ModuleId = Record[1]; 6546 uint64_t RawFlags = Record[2]; 6547 unsigned RefArrayStart = 3; 6548 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6549 /* WriteOnly */ false, 6550 /* Constant */ false, 6551 GlobalObject::VCallVisibilityPublic); 6552 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6553 if (Version >= 5) { 6554 GVF = getDecodedGVarFlags(Record[3]); 6555 RefArrayStart = 4; 6556 } 6557 std::vector<ValueInfo> Refs = 6558 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6559 auto FS = 6560 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6561 LastSeenSummary = FS.get(); 6562 FS->setModulePath(ModuleIdMap[ModuleId]); 6563 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6564 LastSeenGUID = VI.getGUID(); 6565 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6566 break; 6567 } 6568 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6569 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6570 uint64_t OriginalName = Record[0]; 6571 if (!LastSeenSummary) 6572 return error("Name attachment that does not follow a combined record"); 6573 LastSeenSummary->setOriginalName(OriginalName); 6574 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6575 // Reset the LastSeenSummary 6576 LastSeenSummary = nullptr; 6577 LastSeenGUID = 0; 6578 break; 6579 } 6580 case bitc::FS_TYPE_TESTS: 6581 assert(PendingTypeTests.empty()); 6582 llvm::append_range(PendingTypeTests, Record); 6583 break; 6584 6585 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6586 assert(PendingTypeTestAssumeVCalls.empty()); 6587 for (unsigned I = 0; I != Record.size(); I += 2) 6588 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6589 break; 6590 6591 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6592 assert(PendingTypeCheckedLoadVCalls.empty()); 6593 for (unsigned I = 0; I != Record.size(); I += 2) 6594 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6595 break; 6596 6597 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6598 PendingTypeTestAssumeConstVCalls.push_back( 6599 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6600 break; 6601 6602 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6603 PendingTypeCheckedLoadConstVCalls.push_back( 6604 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6605 break; 6606 6607 case bitc::FS_CFI_FUNCTION_DEFS: { 6608 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6609 for (unsigned I = 0; I != Record.size(); I += 2) 6610 CfiFunctionDefs.insert( 6611 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6612 break; 6613 } 6614 6615 case bitc::FS_CFI_FUNCTION_DECLS: { 6616 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6617 for (unsigned I = 0; I != Record.size(); I += 2) 6618 CfiFunctionDecls.insert( 6619 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6620 break; 6621 } 6622 6623 case bitc::FS_TYPE_ID: 6624 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6625 break; 6626 6627 case bitc::FS_TYPE_ID_METADATA: 6628 parseTypeIdCompatibleVtableSummaryRecord(Record); 6629 break; 6630 6631 case bitc::FS_BLOCK_COUNT: 6632 TheIndex.addBlockCount(Record[0]); 6633 break; 6634 6635 case bitc::FS_PARAM_ACCESS: { 6636 PendingParamAccesses = parseParamAccesses(Record); 6637 break; 6638 } 6639 } 6640 } 6641 llvm_unreachable("Exit infinite loop"); 6642 } 6643 6644 // Parse the module string table block into the Index. 6645 // This populates the ModulePathStringTable map in the index. 6646 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6647 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6648 return Err; 6649 6650 SmallVector<uint64_t, 64> Record; 6651 6652 SmallString<128> ModulePath; 6653 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6654 6655 while (true) { 6656 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6657 if (!MaybeEntry) 6658 return MaybeEntry.takeError(); 6659 BitstreamEntry Entry = MaybeEntry.get(); 6660 6661 switch (Entry.Kind) { 6662 case BitstreamEntry::SubBlock: // Handled for us already. 6663 case BitstreamEntry::Error: 6664 return error("Malformed block"); 6665 case BitstreamEntry::EndBlock: 6666 return Error::success(); 6667 case BitstreamEntry::Record: 6668 // The interesting case. 6669 break; 6670 } 6671 6672 Record.clear(); 6673 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6674 if (!MaybeRecord) 6675 return MaybeRecord.takeError(); 6676 switch (MaybeRecord.get()) { 6677 default: // Default behavior: ignore. 6678 break; 6679 case bitc::MST_CODE_ENTRY: { 6680 // MST_ENTRY: [modid, namechar x N] 6681 uint64_t ModuleId = Record[0]; 6682 6683 if (convertToString(Record, 1, ModulePath)) 6684 return error("Invalid record"); 6685 6686 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6687 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6688 6689 ModulePath.clear(); 6690 break; 6691 } 6692 /// MST_CODE_HASH: [5*i32] 6693 case bitc::MST_CODE_HASH: { 6694 if (Record.size() != 5) 6695 return error("Invalid hash length " + Twine(Record.size()).str()); 6696 if (!LastSeenModule) 6697 return error("Invalid hash that does not follow a module path"); 6698 int Pos = 0; 6699 for (auto &Val : Record) { 6700 assert(!(Val >> 32) && "Unexpected high bits set"); 6701 LastSeenModule->second.second[Pos++] = Val; 6702 } 6703 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6704 LastSeenModule = nullptr; 6705 break; 6706 } 6707 } 6708 } 6709 llvm_unreachable("Exit infinite loop"); 6710 } 6711 6712 namespace { 6713 6714 // FIXME: This class is only here to support the transition to llvm::Error. It 6715 // will be removed once this transition is complete. Clients should prefer to 6716 // deal with the Error value directly, rather than converting to error_code. 6717 class BitcodeErrorCategoryType : public std::error_category { 6718 const char *name() const noexcept override { 6719 return "llvm.bitcode"; 6720 } 6721 6722 std::string message(int IE) const override { 6723 BitcodeError E = static_cast<BitcodeError>(IE); 6724 switch (E) { 6725 case BitcodeError::CorruptedBitcode: 6726 return "Corrupted bitcode"; 6727 } 6728 llvm_unreachable("Unknown error type!"); 6729 } 6730 }; 6731 6732 } // end anonymous namespace 6733 6734 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6735 6736 const std::error_category &llvm::BitcodeErrorCategory() { 6737 return *ErrorCategory; 6738 } 6739 6740 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6741 unsigned Block, unsigned RecordID) { 6742 if (Error Err = Stream.EnterSubBlock(Block)) 6743 return std::move(Err); 6744 6745 StringRef Strtab; 6746 while (true) { 6747 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6748 if (!MaybeEntry) 6749 return MaybeEntry.takeError(); 6750 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6751 6752 switch (Entry.Kind) { 6753 case BitstreamEntry::EndBlock: 6754 return Strtab; 6755 6756 case BitstreamEntry::Error: 6757 return error("Malformed block"); 6758 6759 case BitstreamEntry::SubBlock: 6760 if (Error Err = Stream.SkipBlock()) 6761 return std::move(Err); 6762 break; 6763 6764 case BitstreamEntry::Record: 6765 StringRef Blob; 6766 SmallVector<uint64_t, 1> Record; 6767 Expected<unsigned> MaybeRecord = 6768 Stream.readRecord(Entry.ID, Record, &Blob); 6769 if (!MaybeRecord) 6770 return MaybeRecord.takeError(); 6771 if (MaybeRecord.get() == RecordID) 6772 Strtab = Blob; 6773 break; 6774 } 6775 } 6776 } 6777 6778 //===----------------------------------------------------------------------===// 6779 // External interface 6780 //===----------------------------------------------------------------------===// 6781 6782 Expected<std::vector<BitcodeModule>> 6783 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6784 auto FOrErr = getBitcodeFileContents(Buffer); 6785 if (!FOrErr) 6786 return FOrErr.takeError(); 6787 return std::move(FOrErr->Mods); 6788 } 6789 6790 Expected<BitcodeFileContents> 6791 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6792 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6793 if (!StreamOrErr) 6794 return StreamOrErr.takeError(); 6795 BitstreamCursor &Stream = *StreamOrErr; 6796 6797 BitcodeFileContents F; 6798 while (true) { 6799 uint64_t BCBegin = Stream.getCurrentByteNo(); 6800 6801 // We may be consuming bitcode from a client that leaves garbage at the end 6802 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6803 // the end that there cannot possibly be another module, stop looking. 6804 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6805 return F; 6806 6807 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6808 if (!MaybeEntry) 6809 return MaybeEntry.takeError(); 6810 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6811 6812 switch (Entry.Kind) { 6813 case BitstreamEntry::EndBlock: 6814 case BitstreamEntry::Error: 6815 return error("Malformed block"); 6816 6817 case BitstreamEntry::SubBlock: { 6818 uint64_t IdentificationBit = -1ull; 6819 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6820 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6821 if (Error Err = Stream.SkipBlock()) 6822 return std::move(Err); 6823 6824 { 6825 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6826 if (!MaybeEntry) 6827 return MaybeEntry.takeError(); 6828 Entry = MaybeEntry.get(); 6829 } 6830 6831 if (Entry.Kind != BitstreamEntry::SubBlock || 6832 Entry.ID != bitc::MODULE_BLOCK_ID) 6833 return error("Malformed block"); 6834 } 6835 6836 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6837 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6838 if (Error Err = Stream.SkipBlock()) 6839 return std::move(Err); 6840 6841 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6842 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6843 Buffer.getBufferIdentifier(), IdentificationBit, 6844 ModuleBit}); 6845 continue; 6846 } 6847 6848 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6849 Expected<StringRef> Strtab = 6850 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6851 if (!Strtab) 6852 return Strtab.takeError(); 6853 // This string table is used by every preceding bitcode module that does 6854 // not have its own string table. A bitcode file may have multiple 6855 // string tables if it was created by binary concatenation, for example 6856 // with "llvm-cat -b". 6857 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 6858 if (!I.Strtab.empty()) 6859 break; 6860 I.Strtab = *Strtab; 6861 } 6862 // Similarly, the string table is used by every preceding symbol table; 6863 // normally there will be just one unless the bitcode file was created 6864 // by binary concatenation. 6865 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6866 F.StrtabForSymtab = *Strtab; 6867 continue; 6868 } 6869 6870 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6871 Expected<StringRef> SymtabOrErr = 6872 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6873 if (!SymtabOrErr) 6874 return SymtabOrErr.takeError(); 6875 6876 // We can expect the bitcode file to have multiple symbol tables if it 6877 // was created by binary concatenation. In that case we silently 6878 // ignore any subsequent symbol tables, which is fine because this is a 6879 // low level function. The client is expected to notice that the number 6880 // of modules in the symbol table does not match the number of modules 6881 // in the input file and regenerate the symbol table. 6882 if (F.Symtab.empty()) 6883 F.Symtab = *SymtabOrErr; 6884 continue; 6885 } 6886 6887 if (Error Err = Stream.SkipBlock()) 6888 return std::move(Err); 6889 continue; 6890 } 6891 case BitstreamEntry::Record: 6892 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 6893 return std::move(E); 6894 continue; 6895 } 6896 } 6897 } 6898 6899 /// Get a lazy one-at-time loading module from bitcode. 6900 /// 6901 /// This isn't always used in a lazy context. In particular, it's also used by 6902 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6903 /// in forward-referenced functions from block address references. 6904 /// 6905 /// \param[in] MaterializeAll Set to \c true if we should materialize 6906 /// everything. 6907 Expected<std::unique_ptr<Module>> 6908 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6909 bool ShouldLazyLoadMetadata, bool IsImporting, 6910 DataLayoutCallbackTy DataLayoutCallback) { 6911 BitstreamCursor Stream(Buffer); 6912 6913 std::string ProducerIdentification; 6914 if (IdentificationBit != -1ull) { 6915 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6916 return std::move(JumpFailed); 6917 if (Error E = 6918 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 6919 return std::move(E); 6920 } 6921 6922 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6923 return std::move(JumpFailed); 6924 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6925 Context); 6926 6927 std::unique_ptr<Module> M = 6928 std::make_unique<Module>(ModuleIdentifier, Context); 6929 M->setMaterializer(R); 6930 6931 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6932 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6933 IsImporting, DataLayoutCallback)) 6934 return std::move(Err); 6935 6936 if (MaterializeAll) { 6937 // Read in the entire module, and destroy the BitcodeReader. 6938 if (Error Err = M->materializeAll()) 6939 return std::move(Err); 6940 } else { 6941 // Resolve forward references from blockaddresses. 6942 if (Error Err = R->materializeForwardReferencedFunctions()) 6943 return std::move(Err); 6944 } 6945 return std::move(M); 6946 } 6947 6948 Expected<std::unique_ptr<Module>> 6949 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6950 bool IsImporting) { 6951 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6952 [](StringRef) { return None; }); 6953 } 6954 6955 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6956 // We don't use ModuleIdentifier here because the client may need to control the 6957 // module path used in the combined summary (e.g. when reading summaries for 6958 // regular LTO modules). 6959 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6960 StringRef ModulePath, uint64_t ModuleId) { 6961 BitstreamCursor Stream(Buffer); 6962 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6963 return JumpFailed; 6964 6965 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6966 ModulePath, ModuleId); 6967 return R.parseModule(); 6968 } 6969 6970 // Parse the specified bitcode buffer, returning the function info index. 6971 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6972 BitstreamCursor Stream(Buffer); 6973 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6974 return std::move(JumpFailed); 6975 6976 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6977 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6978 ModuleIdentifier, 0); 6979 6980 if (Error Err = R.parseModule()) 6981 return std::move(Err); 6982 6983 return std::move(Index); 6984 } 6985 6986 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6987 unsigned ID) { 6988 if (Error Err = Stream.EnterSubBlock(ID)) 6989 return std::move(Err); 6990 SmallVector<uint64_t, 64> Record; 6991 6992 while (true) { 6993 BitstreamEntry Entry; 6994 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 6995 return std::move(E); 6996 6997 switch (Entry.Kind) { 6998 case BitstreamEntry::SubBlock: // Handled for us already. 6999 case BitstreamEntry::Error: 7000 return error("Malformed block"); 7001 case BitstreamEntry::EndBlock: 7002 // If no flags record found, conservatively return true to mimic 7003 // behavior before this flag was added. 7004 return true; 7005 case BitstreamEntry::Record: 7006 // The interesting case. 7007 break; 7008 } 7009 7010 // Look for the FS_FLAGS record. 7011 Record.clear(); 7012 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 7013 if (!MaybeBitCode) 7014 return MaybeBitCode.takeError(); 7015 switch (MaybeBitCode.get()) { 7016 default: // Default behavior: ignore. 7017 break; 7018 case bitc::FS_FLAGS: { // [flags] 7019 uint64_t Flags = Record[0]; 7020 // Scan flags. 7021 assert(Flags <= 0x7f && "Unexpected bits in flag"); 7022 7023 return Flags & 0x8; 7024 } 7025 } 7026 } 7027 llvm_unreachable("Exit infinite loop"); 7028 } 7029 7030 // Check if the given bitcode buffer contains a global value summary block. 7031 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 7032 BitstreamCursor Stream(Buffer); 7033 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 7034 return std::move(JumpFailed); 7035 7036 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 7037 return std::move(Err); 7038 7039 while (true) { 7040 llvm::BitstreamEntry Entry; 7041 if (Error E = Stream.advance().moveInto(Entry)) 7042 return std::move(E); 7043 7044 switch (Entry.Kind) { 7045 case BitstreamEntry::Error: 7046 return error("Malformed block"); 7047 case BitstreamEntry::EndBlock: 7048 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 7049 /*EnableSplitLTOUnit=*/false}; 7050 7051 case BitstreamEntry::SubBlock: 7052 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 7053 Expected<bool> EnableSplitLTOUnit = 7054 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7055 if (!EnableSplitLTOUnit) 7056 return EnableSplitLTOUnit.takeError(); 7057 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 7058 *EnableSplitLTOUnit}; 7059 } 7060 7061 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 7062 Expected<bool> EnableSplitLTOUnit = 7063 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 7064 if (!EnableSplitLTOUnit) 7065 return EnableSplitLTOUnit.takeError(); 7066 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 7067 *EnableSplitLTOUnit}; 7068 } 7069 7070 // Ignore other sub-blocks. 7071 if (Error Err = Stream.SkipBlock()) 7072 return std::move(Err); 7073 continue; 7074 7075 case BitstreamEntry::Record: 7076 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 7077 continue; 7078 else 7079 return StreamFailed.takeError(); 7080 } 7081 } 7082 } 7083 7084 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 7085 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 7086 if (!MsOrErr) 7087 return MsOrErr.takeError(); 7088 7089 if (MsOrErr->size() != 1) 7090 return error("Expected a single module"); 7091 7092 return (*MsOrErr)[0]; 7093 } 7094 7095 Expected<std::unique_ptr<Module>> 7096 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 7097 bool ShouldLazyLoadMetadata, bool IsImporting) { 7098 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7099 if (!BM) 7100 return BM.takeError(); 7101 7102 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 7103 } 7104 7105 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 7106 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 7107 bool ShouldLazyLoadMetadata, bool IsImporting) { 7108 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 7109 IsImporting); 7110 if (MOrErr) 7111 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 7112 return MOrErr; 7113 } 7114 7115 Expected<std::unique_ptr<Module>> 7116 BitcodeModule::parseModule(LLVMContext &Context, 7117 DataLayoutCallbackTy DataLayoutCallback) { 7118 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 7119 // TODO: Restore the use-lists to the in-memory state when the bitcode was 7120 // written. We must defer until the Module has been fully materialized. 7121 } 7122 7123 Expected<std::unique_ptr<Module>> 7124 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 7125 DataLayoutCallbackTy DataLayoutCallback) { 7126 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7127 if (!BM) 7128 return BM.takeError(); 7129 7130 return BM->parseModule(Context, DataLayoutCallback); 7131 } 7132 7133 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7134 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7135 if (!StreamOrErr) 7136 return StreamOrErr.takeError(); 7137 7138 return readTriple(*StreamOrErr); 7139 } 7140 7141 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7142 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7143 if (!StreamOrErr) 7144 return StreamOrErr.takeError(); 7145 7146 return hasObjCCategory(*StreamOrErr); 7147 } 7148 7149 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7150 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7151 if (!StreamOrErr) 7152 return StreamOrErr.takeError(); 7153 7154 return readIdentificationCode(*StreamOrErr); 7155 } 7156 7157 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7158 ModuleSummaryIndex &CombinedIndex, 7159 uint64_t ModuleId) { 7160 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7161 if (!BM) 7162 return BM.takeError(); 7163 7164 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7165 } 7166 7167 Expected<std::unique_ptr<ModuleSummaryIndex>> 7168 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7169 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7170 if (!BM) 7171 return BM.takeError(); 7172 7173 return BM->getSummary(); 7174 } 7175 7176 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7177 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7178 if (!BM) 7179 return BM.takeError(); 7180 7181 return BM->getLTOInfo(); 7182 } 7183 7184 Expected<std::unique_ptr<ModuleSummaryIndex>> 7185 llvm::getModuleSummaryIndexForFile(StringRef Path, 7186 bool IgnoreEmptyThinLTOIndexFile) { 7187 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7188 MemoryBuffer::getFileOrSTDIN(Path); 7189 if (!FileOrErr) 7190 return errorCodeToError(FileOrErr.getError()); 7191 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7192 return nullptr; 7193 return getModuleSummaryIndex(**FileOrErr); 7194 } 7195