1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/DataStream.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <deque> 40 41 using namespace llvm; 42 43 static cl::opt<bool> PrintSummaryGUIDs( 44 "print-summary-global-ids", cl::init(false), cl::Hidden, 45 cl::desc( 46 "Print the global id for each value when reading the module summary")); 47 48 namespace { 49 enum { 50 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty); 97 98 void assignValue(Value *V, unsigned Idx); 99 100 /// Once all constants are read, this method bulk resolves any forward 101 /// references. 102 void resolveConstantForwardRefs(); 103 }; 104 105 class BitcodeReaderMetadataList { 106 unsigned NumFwdRefs; 107 bool AnyFwdRefs; 108 unsigned MinFwdRef; 109 unsigned MaxFwdRef; 110 111 /// Array of metadata references. 112 /// 113 /// Don't use std::vector here. Some versions of libc++ copy (instead of 114 /// move) on resize, and TrackingMDRef is very expensive to copy. 115 SmallVector<TrackingMDRef, 1> MetadataPtrs; 116 117 LLVMContext &Context; 118 public: 119 BitcodeReaderMetadataList(LLVMContext &C) 120 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 121 122 // vector compatibility methods 123 unsigned size() const { return MetadataPtrs.size(); } 124 void resize(unsigned N) { MetadataPtrs.resize(N); } 125 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 126 void clear() { MetadataPtrs.clear(); } 127 Metadata *back() const { return MetadataPtrs.back(); } 128 void pop_back() { MetadataPtrs.pop_back(); } 129 bool empty() const { return MetadataPtrs.empty(); } 130 131 Metadata *operator[](unsigned i) const { 132 assert(i < MetadataPtrs.size()); 133 return MetadataPtrs[i]; 134 } 135 136 Metadata *lookup(unsigned I) const { 137 return I < MetadataPtrs.size() ? MetadataPtrs[I] : nullptr; 138 } 139 140 void shrinkTo(unsigned N) { 141 assert(N <= size() && "Invalid shrinkTo request!"); 142 assert(!AnyFwdRefs && "Unexpected forward refs"); 143 MetadataPtrs.resize(N); 144 } 145 146 /// Return the given metadata, creating a replaceable forward reference if 147 /// necessary. 148 Metadata *getMetadataFwdRef(unsigned Idx); 149 150 /// Return the the given metadata only if it is fully resolved. 151 /// 152 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 153 /// would give \c false. 154 Metadata *getMetadataIfResolved(unsigned Idx); 155 156 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 157 void assignValue(Metadata *MD, unsigned Idx); 158 void tryToResolveCycles(); 159 bool hasFwdRefs() const { return AnyFwdRefs; } 160 }; 161 162 class BitcodeReader : public GVMaterializer { 163 LLVMContext &Context; 164 Module *TheModule = nullptr; 165 std::unique_ptr<MemoryBuffer> Buffer; 166 std::unique_ptr<BitstreamReader> StreamFile; 167 BitstreamCursor Stream; 168 // Next offset to start scanning for lazy parsing of function bodies. 169 uint64_t NextUnreadBit = 0; 170 // Last function offset found in the VST. 171 uint64_t LastFunctionBlockBit = 0; 172 bool SeenValueSymbolTable = false; 173 uint64_t VSTOffset = 0; 174 // Contains an arbitrary and optional string identifying the bitcode producer 175 std::string ProducerIdentification; 176 177 std::vector<Type*> TypeList; 178 BitcodeReaderValueList ValueList; 179 BitcodeReaderMetadataList MetadataList; 180 std::vector<Comdat *> ComdatList; 181 SmallVector<Instruction *, 64> InstructionList; 182 183 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 184 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 185 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 186 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 187 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 188 189 SmallVector<Instruction*, 64> InstsWithTBAATag; 190 191 bool HasSeenOldLoopTags = false; 192 193 /// The set of attributes by index. Index zero in the file is for null, and 194 /// is thus not represented here. As such all indices are off by one. 195 std::vector<AttributeSet> MAttributes; 196 197 /// The set of attribute groups. 198 std::map<unsigned, AttributeSet> MAttributeGroups; 199 200 /// While parsing a function body, this is a list of the basic blocks for the 201 /// function. 202 std::vector<BasicBlock*> FunctionBBs; 203 204 // When reading the module header, this list is populated with functions that 205 // have bodies later in the file. 206 std::vector<Function*> FunctionsWithBodies; 207 208 // When intrinsic functions are encountered which require upgrading they are 209 // stored here with their replacement function. 210 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 211 UpgradedIntrinsicMap UpgradedIntrinsics; 212 213 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 214 DenseMap<unsigned, unsigned> MDKindMap; 215 216 // Several operations happen after the module header has been read, but 217 // before function bodies are processed. This keeps track of whether 218 // we've done this yet. 219 bool SeenFirstFunctionBody = false; 220 221 /// When function bodies are initially scanned, this map contains info about 222 /// where to find deferred function body in the stream. 223 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 224 225 /// When Metadata block is initially scanned when parsing the module, we may 226 /// choose to defer parsing of the metadata. This vector contains info about 227 /// which Metadata blocks are deferred. 228 std::vector<uint64_t> DeferredMetadataInfo; 229 230 /// These are basic blocks forward-referenced by block addresses. They are 231 /// inserted lazily into functions when they're loaded. The basic block ID is 232 /// its index into the vector. 233 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 234 std::deque<Function *> BasicBlockFwdRefQueue; 235 236 /// Indicates that we are using a new encoding for instruction operands where 237 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 238 /// instruction number, for a more compact encoding. Some instruction 239 /// operands are not relative to the instruction ID: basic block numbers, and 240 /// types. Once the old style function blocks have been phased out, we would 241 /// not need this flag. 242 bool UseRelativeIDs = false; 243 244 /// True if all functions will be materialized, negating the need to process 245 /// (e.g.) blockaddress forward references. 246 bool WillMaterializeAllForwardRefs = false; 247 248 /// True if any Metadata block has been materialized. 249 bool IsMetadataMaterialized = false; 250 251 bool StripDebugInfo = false; 252 253 /// Functions that need to be matched with subprograms when upgrading old 254 /// metadata. 255 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 256 257 std::vector<std::string> BundleTags; 258 259 public: 260 std::error_code error(BitcodeError E, const Twine &Message); 261 std::error_code error(BitcodeError E); 262 std::error_code error(const Twine &Message); 263 264 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 265 BitcodeReader(LLVMContext &Context); 266 ~BitcodeReader() override { freeState(); } 267 268 std::error_code materializeForwardReferencedFunctions(); 269 270 void freeState(); 271 272 void releaseBuffer(); 273 274 std::error_code materialize(GlobalValue *GV) override; 275 std::error_code materializeModule() override; 276 std::vector<StructType *> getIdentifiedStructTypes() const override; 277 278 /// \brief Main interface to parsing a bitcode buffer. 279 /// \returns true if an error occurred. 280 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 281 Module *M, 282 bool ShouldLazyLoadMetadata = false); 283 284 /// \brief Cheap mechanism to just extract module triple 285 /// \returns true if an error occurred. 286 ErrorOr<std::string> parseTriple(); 287 288 /// Cheap mechanism to just extract the identification block out of bitcode. 289 ErrorOr<std::string> parseIdentificationBlock(); 290 291 static uint64_t decodeSignRotatedValue(uint64_t V); 292 293 /// Materialize any deferred Metadata block. 294 std::error_code materializeMetadata() override; 295 296 void setStripDebugInfo() override; 297 298 private: 299 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 300 // ProducerIdentification data member, and do some basic enforcement on the 301 // "epoch" encoded in the bitcode. 302 std::error_code parseBitcodeVersion(); 303 304 std::vector<StructType *> IdentifiedStructTypes; 305 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 306 StructType *createIdentifiedStructType(LLVMContext &Context); 307 308 Type *getTypeByID(unsigned ID); 309 Value *getFnValueByID(unsigned ID, Type *Ty) { 310 if (Ty && Ty->isMetadataTy()) 311 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 312 return ValueList.getValueFwdRef(ID, Ty); 313 } 314 Metadata *getFnMetadataByID(unsigned ID) { 315 return MetadataList.getMetadataFwdRef(ID); 316 } 317 BasicBlock *getBasicBlock(unsigned ID) const { 318 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 319 return FunctionBBs[ID]; 320 } 321 AttributeSet getAttributes(unsigned i) const { 322 if (i-1 < MAttributes.size()) 323 return MAttributes[i-1]; 324 return AttributeSet(); 325 } 326 327 /// Read a value/type pair out of the specified record from slot 'Slot'. 328 /// Increment Slot past the number of slots used in the record. Return true on 329 /// failure. 330 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 331 unsigned InstNum, Value *&ResVal) { 332 if (Slot == Record.size()) return true; 333 unsigned ValNo = (unsigned)Record[Slot++]; 334 // Adjust the ValNo, if it was encoded relative to the InstNum. 335 if (UseRelativeIDs) 336 ValNo = InstNum - ValNo; 337 if (ValNo < InstNum) { 338 // If this is not a forward reference, just return the value we already 339 // have. 340 ResVal = getFnValueByID(ValNo, nullptr); 341 return ResVal == nullptr; 342 } 343 if (Slot == Record.size()) 344 return true; 345 346 unsigned TypeNo = (unsigned)Record[Slot++]; 347 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 348 return ResVal == nullptr; 349 } 350 351 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 352 /// past the number of slots used by the value in the record. Return true if 353 /// there is an error. 354 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 355 unsigned InstNum, Type *Ty, Value *&ResVal) { 356 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 357 return true; 358 // All values currently take a single record slot. 359 ++Slot; 360 return false; 361 } 362 363 /// Like popValue, but does not increment the Slot number. 364 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 365 unsigned InstNum, Type *Ty, Value *&ResVal) { 366 ResVal = getValue(Record, Slot, InstNum, Ty); 367 return ResVal == nullptr; 368 } 369 370 /// Version of getValue that returns ResVal directly, or 0 if there is an 371 /// error. 372 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 373 unsigned InstNum, Type *Ty) { 374 if (Slot == Record.size()) return nullptr; 375 unsigned ValNo = (unsigned)Record[Slot]; 376 // Adjust the ValNo, if it was encoded relative to the InstNum. 377 if (UseRelativeIDs) 378 ValNo = InstNum - ValNo; 379 return getFnValueByID(ValNo, Ty); 380 } 381 382 /// Like getValue, but decodes signed VBRs. 383 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 384 unsigned InstNum, Type *Ty) { 385 if (Slot == Record.size()) return nullptr; 386 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 387 // Adjust the ValNo, if it was encoded relative to the InstNum. 388 if (UseRelativeIDs) 389 ValNo = InstNum - ValNo; 390 return getFnValueByID(ValNo, Ty); 391 } 392 393 /// Converts alignment exponent (i.e. power of two (or zero)) to the 394 /// corresponding alignment to use. If alignment is too large, returns 395 /// a corresponding error code. 396 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 397 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 398 std::error_code parseModule(uint64_t ResumeBit, 399 bool ShouldLazyLoadMetadata = false); 400 std::error_code parseAttributeBlock(); 401 std::error_code parseAttributeGroupBlock(); 402 std::error_code parseTypeTable(); 403 std::error_code parseTypeTableBody(); 404 std::error_code parseOperandBundleTags(); 405 406 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 407 unsigned NameIndex, Triple &TT); 408 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 409 std::error_code parseConstants(); 410 std::error_code rememberAndSkipFunctionBodies(); 411 std::error_code rememberAndSkipFunctionBody(); 412 /// Save the positions of the Metadata blocks and skip parsing the blocks. 413 std::error_code rememberAndSkipMetadata(); 414 std::error_code parseFunctionBody(Function *F); 415 std::error_code globalCleanup(); 416 std::error_code resolveGlobalAndIndirectSymbolInits(); 417 std::error_code parseMetadata(bool ModuleLevel = false); 418 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 419 StringRef Blob, 420 unsigned &NextMetadataNo); 421 std::error_code parseMetadataKinds(); 422 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 423 std::error_code parseMetadataAttachment(Function &F); 424 ErrorOr<std::string> parseModuleTriple(); 425 std::error_code parseUseLists(); 426 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 427 std::error_code initStreamFromBuffer(); 428 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 429 std::error_code findFunctionInStream( 430 Function *F, 431 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 432 }; 433 434 /// Class to manage reading and parsing function summary index bitcode 435 /// files/sections. 436 class ModuleSummaryIndexBitcodeReader { 437 DiagnosticHandlerFunction DiagnosticHandler; 438 439 /// Eventually points to the module index built during parsing. 440 ModuleSummaryIndex *TheIndex = nullptr; 441 442 std::unique_ptr<MemoryBuffer> Buffer; 443 std::unique_ptr<BitstreamReader> StreamFile; 444 BitstreamCursor Stream; 445 446 /// Used to indicate whether caller only wants to check for the presence 447 /// of the global value summary bitcode section. All blocks are skipped, 448 /// but the SeenGlobalValSummary boolean is set. 449 bool CheckGlobalValSummaryPresenceOnly = false; 450 451 /// Indicates whether we have encountered a global value summary section 452 /// yet during parsing, used when checking if file contains global value 453 /// summary section. 454 bool SeenGlobalValSummary = false; 455 456 /// Indicates whether we have already parsed the VST, used for error checking. 457 bool SeenValueSymbolTable = false; 458 459 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 460 /// Used to enable on-demand parsing of the VST. 461 uint64_t VSTOffset = 0; 462 463 // Map to save ValueId to GUID association that was recorded in the 464 // ValueSymbolTable. It is used after the VST is parsed to convert 465 // call graph edges read from the function summary from referencing 466 // callees by their ValueId to using the GUID instead, which is how 467 // they are recorded in the summary index being built. 468 DenseMap<unsigned, GlobalValue::GUID> ValueIdToCallGraphGUIDMap; 469 470 /// Map to save the association between summary offset in the VST to the 471 /// GlobalValueInfo object created when parsing it. Used to access the 472 /// info object when parsing the summary section. 473 DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap; 474 475 /// Map populated during module path string table parsing, from the 476 /// module ID to a string reference owned by the index's module 477 /// path string table, used to correlate with combined index 478 /// summary records. 479 DenseMap<uint64_t, StringRef> ModuleIdMap; 480 481 /// Original source file name recorded in a bitcode record. 482 std::string SourceFileName; 483 484 public: 485 std::error_code error(BitcodeError E, const Twine &Message); 486 std::error_code error(BitcodeError E); 487 std::error_code error(const Twine &Message); 488 489 ModuleSummaryIndexBitcodeReader( 490 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 491 bool CheckGlobalValSummaryPresenceOnly = false); 492 ModuleSummaryIndexBitcodeReader( 493 DiagnosticHandlerFunction DiagnosticHandler, 494 bool CheckGlobalValSummaryPresenceOnly = false); 495 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 496 497 void freeState(); 498 499 void releaseBuffer(); 500 501 /// Check if the parser has encountered a summary section. 502 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 503 504 /// \brief Main interface to parsing a bitcode buffer. 505 /// \returns true if an error occurred. 506 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 507 ModuleSummaryIndex *I); 508 509 /// \brief Interface for parsing a summary lazily. 510 std::error_code 511 parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer, 512 ModuleSummaryIndex *I, size_t SummaryOffset); 513 514 private: 515 std::error_code parseModule(); 516 std::error_code parseValueSymbolTable( 517 uint64_t Offset, 518 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 519 std::error_code parseEntireSummary(); 520 std::error_code parseModuleStringTable(); 521 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 522 std::error_code initStreamFromBuffer(); 523 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 524 GlobalValue::GUID getGUIDFromValueId(unsigned ValueId); 525 GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset); 526 }; 527 } // end anonymous namespace 528 529 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 530 DiagnosticSeverity Severity, 531 const Twine &Msg) 532 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 533 534 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 535 536 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 537 std::error_code EC, const Twine &Message) { 538 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 539 DiagnosticHandler(DI); 540 return EC; 541 } 542 543 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 544 std::error_code EC) { 545 return error(DiagnosticHandler, EC, EC.message()); 546 } 547 548 static std::error_code error(LLVMContext &Context, std::error_code EC, 549 const Twine &Message) { 550 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 551 Message); 552 } 553 554 static std::error_code error(LLVMContext &Context, std::error_code EC) { 555 return error(Context, EC, EC.message()); 556 } 557 558 static std::error_code error(LLVMContext &Context, const Twine &Message) { 559 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 560 Message); 561 } 562 563 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 564 if (!ProducerIdentification.empty()) { 565 return ::error(Context, make_error_code(E), 566 Message + " (Producer: '" + ProducerIdentification + 567 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 568 } 569 return ::error(Context, make_error_code(E), Message); 570 } 571 572 std::error_code BitcodeReader::error(const Twine &Message) { 573 if (!ProducerIdentification.empty()) { 574 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 575 Message + " (Producer: '" + ProducerIdentification + 576 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 577 } 578 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 579 Message); 580 } 581 582 std::error_code BitcodeReader::error(BitcodeError E) { 583 return ::error(Context, make_error_code(E)); 584 } 585 586 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 587 : Context(Context), Buffer(Buffer), ValueList(Context), 588 MetadataList(Context) {} 589 590 BitcodeReader::BitcodeReader(LLVMContext &Context) 591 : Context(Context), Buffer(nullptr), ValueList(Context), 592 MetadataList(Context) {} 593 594 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 595 if (WillMaterializeAllForwardRefs) 596 return std::error_code(); 597 598 // Prevent recursion. 599 WillMaterializeAllForwardRefs = true; 600 601 while (!BasicBlockFwdRefQueue.empty()) { 602 Function *F = BasicBlockFwdRefQueue.front(); 603 BasicBlockFwdRefQueue.pop_front(); 604 assert(F && "Expected valid function"); 605 if (!BasicBlockFwdRefs.count(F)) 606 // Already materialized. 607 continue; 608 609 // Check for a function that isn't materializable to prevent an infinite 610 // loop. When parsing a blockaddress stored in a global variable, there 611 // isn't a trivial way to check if a function will have a body without a 612 // linear search through FunctionsWithBodies, so just check it here. 613 if (!F->isMaterializable()) 614 return error("Never resolved function from blockaddress"); 615 616 // Try to materialize F. 617 if (std::error_code EC = materialize(F)) 618 return EC; 619 } 620 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 621 622 // Reset state. 623 WillMaterializeAllForwardRefs = false; 624 return std::error_code(); 625 } 626 627 void BitcodeReader::freeState() { 628 Buffer = nullptr; 629 std::vector<Type*>().swap(TypeList); 630 ValueList.clear(); 631 MetadataList.clear(); 632 std::vector<Comdat *>().swap(ComdatList); 633 634 std::vector<AttributeSet>().swap(MAttributes); 635 std::vector<BasicBlock*>().swap(FunctionBBs); 636 std::vector<Function*>().swap(FunctionsWithBodies); 637 DeferredFunctionInfo.clear(); 638 DeferredMetadataInfo.clear(); 639 MDKindMap.clear(); 640 641 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 642 BasicBlockFwdRefQueue.clear(); 643 } 644 645 //===----------------------------------------------------------------------===// 646 // Helper functions to implement forward reference resolution, etc. 647 //===----------------------------------------------------------------------===// 648 649 /// Convert a string from a record into an std::string, return true on failure. 650 template <typename StrTy> 651 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 652 StrTy &Result) { 653 if (Idx > Record.size()) 654 return true; 655 656 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 657 Result += (char)Record[i]; 658 return false; 659 } 660 661 static bool hasImplicitComdat(size_t Val) { 662 switch (Val) { 663 default: 664 return false; 665 case 1: // Old WeakAnyLinkage 666 case 4: // Old LinkOnceAnyLinkage 667 case 10: // Old WeakODRLinkage 668 case 11: // Old LinkOnceODRLinkage 669 return true; 670 } 671 } 672 673 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 674 switch (Val) { 675 default: // Map unknown/new linkages to external 676 case 0: 677 return GlobalValue::ExternalLinkage; 678 case 2: 679 return GlobalValue::AppendingLinkage; 680 case 3: 681 return GlobalValue::InternalLinkage; 682 case 5: 683 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 684 case 6: 685 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 686 case 7: 687 return GlobalValue::ExternalWeakLinkage; 688 case 8: 689 return GlobalValue::CommonLinkage; 690 case 9: 691 return GlobalValue::PrivateLinkage; 692 case 12: 693 return GlobalValue::AvailableExternallyLinkage; 694 case 13: 695 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 696 case 14: 697 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 698 case 15: 699 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 700 case 1: // Old value with implicit comdat. 701 case 16: 702 return GlobalValue::WeakAnyLinkage; 703 case 10: // Old value with implicit comdat. 704 case 17: 705 return GlobalValue::WeakODRLinkage; 706 case 4: // Old value with implicit comdat. 707 case 18: 708 return GlobalValue::LinkOnceAnyLinkage; 709 case 11: // Old value with implicit comdat. 710 case 19: 711 return GlobalValue::LinkOnceODRLinkage; 712 } 713 } 714 715 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 716 switch (Val) { 717 default: // Map unknown visibilities to default. 718 case 0: return GlobalValue::DefaultVisibility; 719 case 1: return GlobalValue::HiddenVisibility; 720 case 2: return GlobalValue::ProtectedVisibility; 721 } 722 } 723 724 static GlobalValue::DLLStorageClassTypes 725 getDecodedDLLStorageClass(unsigned Val) { 726 switch (Val) { 727 default: // Map unknown values to default. 728 case 0: return GlobalValue::DefaultStorageClass; 729 case 1: return GlobalValue::DLLImportStorageClass; 730 case 2: return GlobalValue::DLLExportStorageClass; 731 } 732 } 733 734 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 735 switch (Val) { 736 case 0: return GlobalVariable::NotThreadLocal; 737 default: // Map unknown non-zero value to general dynamic. 738 case 1: return GlobalVariable::GeneralDynamicTLSModel; 739 case 2: return GlobalVariable::LocalDynamicTLSModel; 740 case 3: return GlobalVariable::InitialExecTLSModel; 741 case 4: return GlobalVariable::LocalExecTLSModel; 742 } 743 } 744 745 static int getDecodedCastOpcode(unsigned Val) { 746 switch (Val) { 747 default: return -1; 748 case bitc::CAST_TRUNC : return Instruction::Trunc; 749 case bitc::CAST_ZEXT : return Instruction::ZExt; 750 case bitc::CAST_SEXT : return Instruction::SExt; 751 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 752 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 753 case bitc::CAST_UITOFP : return Instruction::UIToFP; 754 case bitc::CAST_SITOFP : return Instruction::SIToFP; 755 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 756 case bitc::CAST_FPEXT : return Instruction::FPExt; 757 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 758 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 759 case bitc::CAST_BITCAST : return Instruction::BitCast; 760 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 761 } 762 } 763 764 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 765 bool IsFP = Ty->isFPOrFPVectorTy(); 766 // BinOps are only valid for int/fp or vector of int/fp types 767 if (!IsFP && !Ty->isIntOrIntVectorTy()) 768 return -1; 769 770 switch (Val) { 771 default: 772 return -1; 773 case bitc::BINOP_ADD: 774 return IsFP ? Instruction::FAdd : Instruction::Add; 775 case bitc::BINOP_SUB: 776 return IsFP ? Instruction::FSub : Instruction::Sub; 777 case bitc::BINOP_MUL: 778 return IsFP ? Instruction::FMul : Instruction::Mul; 779 case bitc::BINOP_UDIV: 780 return IsFP ? -1 : Instruction::UDiv; 781 case bitc::BINOP_SDIV: 782 return IsFP ? Instruction::FDiv : Instruction::SDiv; 783 case bitc::BINOP_UREM: 784 return IsFP ? -1 : Instruction::URem; 785 case bitc::BINOP_SREM: 786 return IsFP ? Instruction::FRem : Instruction::SRem; 787 case bitc::BINOP_SHL: 788 return IsFP ? -1 : Instruction::Shl; 789 case bitc::BINOP_LSHR: 790 return IsFP ? -1 : Instruction::LShr; 791 case bitc::BINOP_ASHR: 792 return IsFP ? -1 : Instruction::AShr; 793 case bitc::BINOP_AND: 794 return IsFP ? -1 : Instruction::And; 795 case bitc::BINOP_OR: 796 return IsFP ? -1 : Instruction::Or; 797 case bitc::BINOP_XOR: 798 return IsFP ? -1 : Instruction::Xor; 799 } 800 } 801 802 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 803 switch (Val) { 804 default: return AtomicRMWInst::BAD_BINOP; 805 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 806 case bitc::RMW_ADD: return AtomicRMWInst::Add; 807 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 808 case bitc::RMW_AND: return AtomicRMWInst::And; 809 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 810 case bitc::RMW_OR: return AtomicRMWInst::Or; 811 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 812 case bitc::RMW_MAX: return AtomicRMWInst::Max; 813 case bitc::RMW_MIN: return AtomicRMWInst::Min; 814 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 815 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 816 } 817 } 818 819 static AtomicOrdering getDecodedOrdering(unsigned Val) { 820 switch (Val) { 821 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 822 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 823 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 824 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 825 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 826 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 827 default: // Map unknown orderings to sequentially-consistent. 828 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 829 } 830 } 831 832 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 833 switch (Val) { 834 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 835 default: // Map unknown scopes to cross-thread. 836 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 837 } 838 } 839 840 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 841 switch (Val) { 842 default: // Map unknown selection kinds to any. 843 case bitc::COMDAT_SELECTION_KIND_ANY: 844 return Comdat::Any; 845 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 846 return Comdat::ExactMatch; 847 case bitc::COMDAT_SELECTION_KIND_LARGEST: 848 return Comdat::Largest; 849 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 850 return Comdat::NoDuplicates; 851 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 852 return Comdat::SameSize; 853 } 854 } 855 856 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 857 FastMathFlags FMF; 858 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 859 FMF.setUnsafeAlgebra(); 860 if (0 != (Val & FastMathFlags::NoNaNs)) 861 FMF.setNoNaNs(); 862 if (0 != (Val & FastMathFlags::NoInfs)) 863 FMF.setNoInfs(); 864 if (0 != (Val & FastMathFlags::NoSignedZeros)) 865 FMF.setNoSignedZeros(); 866 if (0 != (Val & FastMathFlags::AllowReciprocal)) 867 FMF.setAllowReciprocal(); 868 return FMF; 869 } 870 871 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 872 switch (Val) { 873 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 874 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 875 } 876 } 877 878 namespace llvm { 879 namespace { 880 /// \brief A class for maintaining the slot number definition 881 /// as a placeholder for the actual definition for forward constants defs. 882 class ConstantPlaceHolder : public ConstantExpr { 883 void operator=(const ConstantPlaceHolder &) = delete; 884 885 public: 886 // allocate space for exactly one operand 887 void *operator new(size_t s) { return User::operator new(s, 1); } 888 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 889 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 890 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 891 } 892 893 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 894 static bool classof(const Value *V) { 895 return isa<ConstantExpr>(V) && 896 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 897 } 898 899 /// Provide fast operand accessors 900 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 901 }; 902 } // end anonymous namespace 903 904 // FIXME: can we inherit this from ConstantExpr? 905 template <> 906 struct OperandTraits<ConstantPlaceHolder> : 907 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 908 }; 909 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 910 } // end namespace llvm 911 912 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 913 if (Idx == size()) { 914 push_back(V); 915 return; 916 } 917 918 if (Idx >= size()) 919 resize(Idx+1); 920 921 WeakVH &OldV = ValuePtrs[Idx]; 922 if (!OldV) { 923 OldV = V; 924 return; 925 } 926 927 // Handle constants and non-constants (e.g. instrs) differently for 928 // efficiency. 929 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 930 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 931 OldV = V; 932 } else { 933 // If there was a forward reference to this value, replace it. 934 Value *PrevVal = OldV; 935 OldV->replaceAllUsesWith(V); 936 delete PrevVal; 937 } 938 } 939 940 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 941 Type *Ty) { 942 if (Idx >= size()) 943 resize(Idx + 1); 944 945 if (Value *V = ValuePtrs[Idx]) { 946 if (Ty != V->getType()) 947 report_fatal_error("Type mismatch in constant table!"); 948 return cast<Constant>(V); 949 } 950 951 // Create and return a placeholder, which will later be RAUW'd. 952 Constant *C = new ConstantPlaceHolder(Ty, Context); 953 ValuePtrs[Idx] = C; 954 return C; 955 } 956 957 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 958 // Bail out for a clearly invalid value. This would make us call resize(0) 959 if (Idx == UINT_MAX) 960 return nullptr; 961 962 if (Idx >= size()) 963 resize(Idx + 1); 964 965 if (Value *V = ValuePtrs[Idx]) { 966 // If the types don't match, it's invalid. 967 if (Ty && Ty != V->getType()) 968 return nullptr; 969 return V; 970 } 971 972 // No type specified, must be invalid reference. 973 if (!Ty) return nullptr; 974 975 // Create and return a placeholder, which will later be RAUW'd. 976 Value *V = new Argument(Ty); 977 ValuePtrs[Idx] = V; 978 return V; 979 } 980 981 /// Once all constants are read, this method bulk resolves any forward 982 /// references. The idea behind this is that we sometimes get constants (such 983 /// as large arrays) which reference *many* forward ref constants. Replacing 984 /// each of these causes a lot of thrashing when building/reuniquing the 985 /// constant. Instead of doing this, we look at all the uses and rewrite all 986 /// the place holders at once for any constant that uses a placeholder. 987 void BitcodeReaderValueList::resolveConstantForwardRefs() { 988 // Sort the values by-pointer so that they are efficient to look up with a 989 // binary search. 990 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 991 992 SmallVector<Constant*, 64> NewOps; 993 994 while (!ResolveConstants.empty()) { 995 Value *RealVal = operator[](ResolveConstants.back().second); 996 Constant *Placeholder = ResolveConstants.back().first; 997 ResolveConstants.pop_back(); 998 999 // Loop over all users of the placeholder, updating them to reference the 1000 // new value. If they reference more than one placeholder, update them all 1001 // at once. 1002 while (!Placeholder->use_empty()) { 1003 auto UI = Placeholder->user_begin(); 1004 User *U = *UI; 1005 1006 // If the using object isn't uniqued, just update the operands. This 1007 // handles instructions and initializers for global variables. 1008 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1009 UI.getUse().set(RealVal); 1010 continue; 1011 } 1012 1013 // Otherwise, we have a constant that uses the placeholder. Replace that 1014 // constant with a new constant that has *all* placeholder uses updated. 1015 Constant *UserC = cast<Constant>(U); 1016 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1017 I != E; ++I) { 1018 Value *NewOp; 1019 if (!isa<ConstantPlaceHolder>(*I)) { 1020 // Not a placeholder reference. 1021 NewOp = *I; 1022 } else if (*I == Placeholder) { 1023 // Common case is that it just references this one placeholder. 1024 NewOp = RealVal; 1025 } else { 1026 // Otherwise, look up the placeholder in ResolveConstants. 1027 ResolveConstantsTy::iterator It = 1028 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1029 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1030 0)); 1031 assert(It != ResolveConstants.end() && It->first == *I); 1032 NewOp = operator[](It->second); 1033 } 1034 1035 NewOps.push_back(cast<Constant>(NewOp)); 1036 } 1037 1038 // Make the new constant. 1039 Constant *NewC; 1040 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1041 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1042 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1043 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1044 } else if (isa<ConstantVector>(UserC)) { 1045 NewC = ConstantVector::get(NewOps); 1046 } else { 1047 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1048 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1049 } 1050 1051 UserC->replaceAllUsesWith(NewC); 1052 UserC->destroyConstant(); 1053 NewOps.clear(); 1054 } 1055 1056 // Update all ValueHandles, they should be the only users at this point. 1057 Placeholder->replaceAllUsesWith(RealVal); 1058 delete Placeholder; 1059 } 1060 } 1061 1062 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1063 if (Idx == size()) { 1064 push_back(MD); 1065 return; 1066 } 1067 1068 if (Idx >= size()) 1069 resize(Idx+1); 1070 1071 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1072 if (!OldMD) { 1073 OldMD.reset(MD); 1074 return; 1075 } 1076 1077 // If there was a forward reference to this value, replace it. 1078 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1079 PrevMD->replaceAllUsesWith(MD); 1080 --NumFwdRefs; 1081 } 1082 1083 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1084 if (Idx >= size()) 1085 resize(Idx + 1); 1086 1087 if (Metadata *MD = MetadataPtrs[Idx]) 1088 return MD; 1089 1090 // Track forward refs to be resolved later. 1091 if (AnyFwdRefs) { 1092 MinFwdRef = std::min(MinFwdRef, Idx); 1093 MaxFwdRef = std::max(MaxFwdRef, Idx); 1094 } else { 1095 AnyFwdRefs = true; 1096 MinFwdRef = MaxFwdRef = Idx; 1097 } 1098 ++NumFwdRefs; 1099 1100 // Create and return a placeholder, which will later be RAUW'd. 1101 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1102 MetadataPtrs[Idx].reset(MD); 1103 return MD; 1104 } 1105 1106 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1107 Metadata *MD = lookup(Idx); 1108 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1109 if (!N->isResolved()) 1110 return nullptr; 1111 return MD; 1112 } 1113 1114 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1115 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1116 } 1117 1118 void BitcodeReaderMetadataList::tryToResolveCycles() { 1119 if (!AnyFwdRefs) 1120 // Nothing to do. 1121 return; 1122 1123 if (NumFwdRefs) 1124 // Still forward references... can't resolve cycles. 1125 return; 1126 1127 // Resolve any cycles. 1128 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1129 auto &MD = MetadataPtrs[I]; 1130 auto *N = dyn_cast_or_null<MDNode>(MD); 1131 if (!N) 1132 continue; 1133 1134 assert(!N->isTemporary() && "Unexpected forward reference"); 1135 N->resolveCycles(); 1136 } 1137 1138 // Make sure we return early again until there's another forward ref. 1139 AnyFwdRefs = false; 1140 } 1141 1142 Type *BitcodeReader::getTypeByID(unsigned ID) { 1143 // The type table size is always specified correctly. 1144 if (ID >= TypeList.size()) 1145 return nullptr; 1146 1147 if (Type *Ty = TypeList[ID]) 1148 return Ty; 1149 1150 // If we have a forward reference, the only possible case is when it is to a 1151 // named struct. Just create a placeholder for now. 1152 return TypeList[ID] = createIdentifiedStructType(Context); 1153 } 1154 1155 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1156 StringRef Name) { 1157 auto *Ret = StructType::create(Context, Name); 1158 IdentifiedStructTypes.push_back(Ret); 1159 return Ret; 1160 } 1161 1162 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1163 auto *Ret = StructType::create(Context); 1164 IdentifiedStructTypes.push_back(Ret); 1165 return Ret; 1166 } 1167 1168 //===----------------------------------------------------------------------===// 1169 // Functions for parsing blocks from the bitcode file 1170 //===----------------------------------------------------------------------===// 1171 1172 1173 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1174 /// been decoded from the given integer. This function must stay in sync with 1175 /// 'encodeLLVMAttributesForBitcode'. 1176 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1177 uint64_t EncodedAttrs) { 1178 // FIXME: Remove in 4.0. 1179 1180 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1181 // the bits above 31 down by 11 bits. 1182 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1183 assert((!Alignment || isPowerOf2_32(Alignment)) && 1184 "Alignment must be a power of two."); 1185 1186 if (Alignment) 1187 B.addAlignmentAttr(Alignment); 1188 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1189 (EncodedAttrs & 0xffff)); 1190 } 1191 1192 std::error_code BitcodeReader::parseAttributeBlock() { 1193 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1194 return error("Invalid record"); 1195 1196 if (!MAttributes.empty()) 1197 return error("Invalid multiple blocks"); 1198 1199 SmallVector<uint64_t, 64> Record; 1200 1201 SmallVector<AttributeSet, 8> Attrs; 1202 1203 // Read all the records. 1204 while (1) { 1205 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1206 1207 switch (Entry.Kind) { 1208 case BitstreamEntry::SubBlock: // Handled for us already. 1209 case BitstreamEntry::Error: 1210 return error("Malformed block"); 1211 case BitstreamEntry::EndBlock: 1212 return std::error_code(); 1213 case BitstreamEntry::Record: 1214 // The interesting case. 1215 break; 1216 } 1217 1218 // Read a record. 1219 Record.clear(); 1220 switch (Stream.readRecord(Entry.ID, Record)) { 1221 default: // Default behavior: ignore. 1222 break; 1223 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1224 // FIXME: Remove in 4.0. 1225 if (Record.size() & 1) 1226 return error("Invalid record"); 1227 1228 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1229 AttrBuilder B; 1230 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1231 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1232 } 1233 1234 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1235 Attrs.clear(); 1236 break; 1237 } 1238 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1239 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1240 Attrs.push_back(MAttributeGroups[Record[i]]); 1241 1242 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1243 Attrs.clear(); 1244 break; 1245 } 1246 } 1247 } 1248 } 1249 1250 // Returns Attribute::None on unrecognized codes. 1251 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1252 switch (Code) { 1253 default: 1254 return Attribute::None; 1255 case bitc::ATTR_KIND_ALIGNMENT: 1256 return Attribute::Alignment; 1257 case bitc::ATTR_KIND_ALWAYS_INLINE: 1258 return Attribute::AlwaysInline; 1259 case bitc::ATTR_KIND_ARGMEMONLY: 1260 return Attribute::ArgMemOnly; 1261 case bitc::ATTR_KIND_BUILTIN: 1262 return Attribute::Builtin; 1263 case bitc::ATTR_KIND_BY_VAL: 1264 return Attribute::ByVal; 1265 case bitc::ATTR_KIND_IN_ALLOCA: 1266 return Attribute::InAlloca; 1267 case bitc::ATTR_KIND_COLD: 1268 return Attribute::Cold; 1269 case bitc::ATTR_KIND_CONVERGENT: 1270 return Attribute::Convergent; 1271 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1272 return Attribute::InaccessibleMemOnly; 1273 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1274 return Attribute::InaccessibleMemOrArgMemOnly; 1275 case bitc::ATTR_KIND_INLINE_HINT: 1276 return Attribute::InlineHint; 1277 case bitc::ATTR_KIND_IN_REG: 1278 return Attribute::InReg; 1279 case bitc::ATTR_KIND_JUMP_TABLE: 1280 return Attribute::JumpTable; 1281 case bitc::ATTR_KIND_MIN_SIZE: 1282 return Attribute::MinSize; 1283 case bitc::ATTR_KIND_NAKED: 1284 return Attribute::Naked; 1285 case bitc::ATTR_KIND_NEST: 1286 return Attribute::Nest; 1287 case bitc::ATTR_KIND_NO_ALIAS: 1288 return Attribute::NoAlias; 1289 case bitc::ATTR_KIND_NO_BUILTIN: 1290 return Attribute::NoBuiltin; 1291 case bitc::ATTR_KIND_NO_CAPTURE: 1292 return Attribute::NoCapture; 1293 case bitc::ATTR_KIND_NO_DUPLICATE: 1294 return Attribute::NoDuplicate; 1295 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1296 return Attribute::NoImplicitFloat; 1297 case bitc::ATTR_KIND_NO_INLINE: 1298 return Attribute::NoInline; 1299 case bitc::ATTR_KIND_NO_RECURSE: 1300 return Attribute::NoRecurse; 1301 case bitc::ATTR_KIND_NON_LAZY_BIND: 1302 return Attribute::NonLazyBind; 1303 case bitc::ATTR_KIND_NON_NULL: 1304 return Attribute::NonNull; 1305 case bitc::ATTR_KIND_DEREFERENCEABLE: 1306 return Attribute::Dereferenceable; 1307 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1308 return Attribute::DereferenceableOrNull; 1309 case bitc::ATTR_KIND_ALLOC_SIZE: 1310 return Attribute::AllocSize; 1311 case bitc::ATTR_KIND_NO_RED_ZONE: 1312 return Attribute::NoRedZone; 1313 case bitc::ATTR_KIND_NO_RETURN: 1314 return Attribute::NoReturn; 1315 case bitc::ATTR_KIND_NO_UNWIND: 1316 return Attribute::NoUnwind; 1317 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1318 return Attribute::OptimizeForSize; 1319 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1320 return Attribute::OptimizeNone; 1321 case bitc::ATTR_KIND_READ_NONE: 1322 return Attribute::ReadNone; 1323 case bitc::ATTR_KIND_READ_ONLY: 1324 return Attribute::ReadOnly; 1325 case bitc::ATTR_KIND_RETURNED: 1326 return Attribute::Returned; 1327 case bitc::ATTR_KIND_RETURNS_TWICE: 1328 return Attribute::ReturnsTwice; 1329 case bitc::ATTR_KIND_S_EXT: 1330 return Attribute::SExt; 1331 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1332 return Attribute::StackAlignment; 1333 case bitc::ATTR_KIND_STACK_PROTECT: 1334 return Attribute::StackProtect; 1335 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1336 return Attribute::StackProtectReq; 1337 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1338 return Attribute::StackProtectStrong; 1339 case bitc::ATTR_KIND_SAFESTACK: 1340 return Attribute::SafeStack; 1341 case bitc::ATTR_KIND_STRUCT_RET: 1342 return Attribute::StructRet; 1343 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1344 return Attribute::SanitizeAddress; 1345 case bitc::ATTR_KIND_SANITIZE_THREAD: 1346 return Attribute::SanitizeThread; 1347 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1348 return Attribute::SanitizeMemory; 1349 case bitc::ATTR_KIND_SWIFT_ERROR: 1350 return Attribute::SwiftError; 1351 case bitc::ATTR_KIND_SWIFT_SELF: 1352 return Attribute::SwiftSelf; 1353 case bitc::ATTR_KIND_UW_TABLE: 1354 return Attribute::UWTable; 1355 case bitc::ATTR_KIND_Z_EXT: 1356 return Attribute::ZExt; 1357 } 1358 } 1359 1360 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1361 unsigned &Alignment) { 1362 // Note: Alignment in bitcode files is incremented by 1, so that zero 1363 // can be used for default alignment. 1364 if (Exponent > Value::MaxAlignmentExponent + 1) 1365 return error("Invalid alignment value"); 1366 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1367 return std::error_code(); 1368 } 1369 1370 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1371 Attribute::AttrKind *Kind) { 1372 *Kind = getAttrFromCode(Code); 1373 if (*Kind == Attribute::None) 1374 return error(BitcodeError::CorruptedBitcode, 1375 "Unknown attribute kind (" + Twine(Code) + ")"); 1376 return std::error_code(); 1377 } 1378 1379 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1380 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1381 return error("Invalid record"); 1382 1383 if (!MAttributeGroups.empty()) 1384 return error("Invalid multiple blocks"); 1385 1386 SmallVector<uint64_t, 64> Record; 1387 1388 // Read all the records. 1389 while (1) { 1390 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1391 1392 switch (Entry.Kind) { 1393 case BitstreamEntry::SubBlock: // Handled for us already. 1394 case BitstreamEntry::Error: 1395 return error("Malformed block"); 1396 case BitstreamEntry::EndBlock: 1397 return std::error_code(); 1398 case BitstreamEntry::Record: 1399 // The interesting case. 1400 break; 1401 } 1402 1403 // Read a record. 1404 Record.clear(); 1405 switch (Stream.readRecord(Entry.ID, Record)) { 1406 default: // Default behavior: ignore. 1407 break; 1408 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1409 if (Record.size() < 3) 1410 return error("Invalid record"); 1411 1412 uint64_t GrpID = Record[0]; 1413 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1414 1415 AttrBuilder B; 1416 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1417 if (Record[i] == 0) { // Enum attribute 1418 Attribute::AttrKind Kind; 1419 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1420 return EC; 1421 1422 B.addAttribute(Kind); 1423 } else if (Record[i] == 1) { // Integer attribute 1424 Attribute::AttrKind Kind; 1425 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1426 return EC; 1427 if (Kind == Attribute::Alignment) 1428 B.addAlignmentAttr(Record[++i]); 1429 else if (Kind == Attribute::StackAlignment) 1430 B.addStackAlignmentAttr(Record[++i]); 1431 else if (Kind == Attribute::Dereferenceable) 1432 B.addDereferenceableAttr(Record[++i]); 1433 else if (Kind == Attribute::DereferenceableOrNull) 1434 B.addDereferenceableOrNullAttr(Record[++i]); 1435 else if (Kind == Attribute::AllocSize) 1436 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1437 } else { // String attribute 1438 assert((Record[i] == 3 || Record[i] == 4) && 1439 "Invalid attribute group entry"); 1440 bool HasValue = (Record[i++] == 4); 1441 SmallString<64> KindStr; 1442 SmallString<64> ValStr; 1443 1444 while (Record[i] != 0 && i != e) 1445 KindStr += Record[i++]; 1446 assert(Record[i] == 0 && "Kind string not null terminated"); 1447 1448 if (HasValue) { 1449 // Has a value associated with it. 1450 ++i; // Skip the '0' that terminates the "kind" string. 1451 while (Record[i] != 0 && i != e) 1452 ValStr += Record[i++]; 1453 assert(Record[i] == 0 && "Value string not null terminated"); 1454 } 1455 1456 B.addAttribute(KindStr.str(), ValStr.str()); 1457 } 1458 } 1459 1460 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1461 break; 1462 } 1463 } 1464 } 1465 } 1466 1467 std::error_code BitcodeReader::parseTypeTable() { 1468 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1469 return error("Invalid record"); 1470 1471 return parseTypeTableBody(); 1472 } 1473 1474 std::error_code BitcodeReader::parseTypeTableBody() { 1475 if (!TypeList.empty()) 1476 return error("Invalid multiple blocks"); 1477 1478 SmallVector<uint64_t, 64> Record; 1479 unsigned NumRecords = 0; 1480 1481 SmallString<64> TypeName; 1482 1483 // Read all the records for this type table. 1484 while (1) { 1485 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1486 1487 switch (Entry.Kind) { 1488 case BitstreamEntry::SubBlock: // Handled for us already. 1489 case BitstreamEntry::Error: 1490 return error("Malformed block"); 1491 case BitstreamEntry::EndBlock: 1492 if (NumRecords != TypeList.size()) 1493 return error("Malformed block"); 1494 return std::error_code(); 1495 case BitstreamEntry::Record: 1496 // The interesting case. 1497 break; 1498 } 1499 1500 // Read a record. 1501 Record.clear(); 1502 Type *ResultTy = nullptr; 1503 switch (Stream.readRecord(Entry.ID, Record)) { 1504 default: 1505 return error("Invalid value"); 1506 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1507 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1508 // type list. This allows us to reserve space. 1509 if (Record.size() < 1) 1510 return error("Invalid record"); 1511 TypeList.resize(Record[0]); 1512 continue; 1513 case bitc::TYPE_CODE_VOID: // VOID 1514 ResultTy = Type::getVoidTy(Context); 1515 break; 1516 case bitc::TYPE_CODE_HALF: // HALF 1517 ResultTy = Type::getHalfTy(Context); 1518 break; 1519 case bitc::TYPE_CODE_FLOAT: // FLOAT 1520 ResultTy = Type::getFloatTy(Context); 1521 break; 1522 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1523 ResultTy = Type::getDoubleTy(Context); 1524 break; 1525 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1526 ResultTy = Type::getX86_FP80Ty(Context); 1527 break; 1528 case bitc::TYPE_CODE_FP128: // FP128 1529 ResultTy = Type::getFP128Ty(Context); 1530 break; 1531 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1532 ResultTy = Type::getPPC_FP128Ty(Context); 1533 break; 1534 case bitc::TYPE_CODE_LABEL: // LABEL 1535 ResultTy = Type::getLabelTy(Context); 1536 break; 1537 case bitc::TYPE_CODE_METADATA: // METADATA 1538 ResultTy = Type::getMetadataTy(Context); 1539 break; 1540 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1541 ResultTy = Type::getX86_MMXTy(Context); 1542 break; 1543 case bitc::TYPE_CODE_TOKEN: // TOKEN 1544 ResultTy = Type::getTokenTy(Context); 1545 break; 1546 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1547 if (Record.size() < 1) 1548 return error("Invalid record"); 1549 1550 uint64_t NumBits = Record[0]; 1551 if (NumBits < IntegerType::MIN_INT_BITS || 1552 NumBits > IntegerType::MAX_INT_BITS) 1553 return error("Bitwidth for integer type out of range"); 1554 ResultTy = IntegerType::get(Context, NumBits); 1555 break; 1556 } 1557 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1558 // [pointee type, address space] 1559 if (Record.size() < 1) 1560 return error("Invalid record"); 1561 unsigned AddressSpace = 0; 1562 if (Record.size() == 2) 1563 AddressSpace = Record[1]; 1564 ResultTy = getTypeByID(Record[0]); 1565 if (!ResultTy || 1566 !PointerType::isValidElementType(ResultTy)) 1567 return error("Invalid type"); 1568 ResultTy = PointerType::get(ResultTy, AddressSpace); 1569 break; 1570 } 1571 case bitc::TYPE_CODE_FUNCTION_OLD: { 1572 // FIXME: attrid is dead, remove it in LLVM 4.0 1573 // FUNCTION: [vararg, attrid, retty, paramty x N] 1574 if (Record.size() < 3) 1575 return error("Invalid record"); 1576 SmallVector<Type*, 8> ArgTys; 1577 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1578 if (Type *T = getTypeByID(Record[i])) 1579 ArgTys.push_back(T); 1580 else 1581 break; 1582 } 1583 1584 ResultTy = getTypeByID(Record[2]); 1585 if (!ResultTy || ArgTys.size() < Record.size()-3) 1586 return error("Invalid type"); 1587 1588 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1589 break; 1590 } 1591 case bitc::TYPE_CODE_FUNCTION: { 1592 // FUNCTION: [vararg, retty, paramty x N] 1593 if (Record.size() < 2) 1594 return error("Invalid record"); 1595 SmallVector<Type*, 8> ArgTys; 1596 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1597 if (Type *T = getTypeByID(Record[i])) { 1598 if (!FunctionType::isValidArgumentType(T)) 1599 return error("Invalid function argument type"); 1600 ArgTys.push_back(T); 1601 } 1602 else 1603 break; 1604 } 1605 1606 ResultTy = getTypeByID(Record[1]); 1607 if (!ResultTy || ArgTys.size() < Record.size()-2) 1608 return error("Invalid type"); 1609 1610 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1611 break; 1612 } 1613 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1614 if (Record.size() < 1) 1615 return error("Invalid record"); 1616 SmallVector<Type*, 8> EltTys; 1617 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1618 if (Type *T = getTypeByID(Record[i])) 1619 EltTys.push_back(T); 1620 else 1621 break; 1622 } 1623 if (EltTys.size() != Record.size()-1) 1624 return error("Invalid type"); 1625 ResultTy = StructType::get(Context, EltTys, Record[0]); 1626 break; 1627 } 1628 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1629 if (convertToString(Record, 0, TypeName)) 1630 return error("Invalid record"); 1631 continue; 1632 1633 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1634 if (Record.size() < 1) 1635 return error("Invalid record"); 1636 1637 if (NumRecords >= TypeList.size()) 1638 return error("Invalid TYPE table"); 1639 1640 // Check to see if this was forward referenced, if so fill in the temp. 1641 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1642 if (Res) { 1643 Res->setName(TypeName); 1644 TypeList[NumRecords] = nullptr; 1645 } else // Otherwise, create a new struct. 1646 Res = createIdentifiedStructType(Context, TypeName); 1647 TypeName.clear(); 1648 1649 SmallVector<Type*, 8> EltTys; 1650 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1651 if (Type *T = getTypeByID(Record[i])) 1652 EltTys.push_back(T); 1653 else 1654 break; 1655 } 1656 if (EltTys.size() != Record.size()-1) 1657 return error("Invalid record"); 1658 Res->setBody(EltTys, Record[0]); 1659 ResultTy = Res; 1660 break; 1661 } 1662 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1663 if (Record.size() != 1) 1664 return error("Invalid record"); 1665 1666 if (NumRecords >= TypeList.size()) 1667 return error("Invalid TYPE table"); 1668 1669 // Check to see if this was forward referenced, if so fill in the temp. 1670 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1671 if (Res) { 1672 Res->setName(TypeName); 1673 TypeList[NumRecords] = nullptr; 1674 } else // Otherwise, create a new struct with no body. 1675 Res = createIdentifiedStructType(Context, TypeName); 1676 TypeName.clear(); 1677 ResultTy = Res; 1678 break; 1679 } 1680 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1681 if (Record.size() < 2) 1682 return error("Invalid record"); 1683 ResultTy = getTypeByID(Record[1]); 1684 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1685 return error("Invalid type"); 1686 ResultTy = ArrayType::get(ResultTy, Record[0]); 1687 break; 1688 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1689 if (Record.size() < 2) 1690 return error("Invalid record"); 1691 if (Record[0] == 0) 1692 return error("Invalid vector length"); 1693 ResultTy = getTypeByID(Record[1]); 1694 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1695 return error("Invalid type"); 1696 ResultTy = VectorType::get(ResultTy, Record[0]); 1697 break; 1698 } 1699 1700 if (NumRecords >= TypeList.size()) 1701 return error("Invalid TYPE table"); 1702 if (TypeList[NumRecords]) 1703 return error( 1704 "Invalid TYPE table: Only named structs can be forward referenced"); 1705 assert(ResultTy && "Didn't read a type?"); 1706 TypeList[NumRecords++] = ResultTy; 1707 } 1708 } 1709 1710 std::error_code BitcodeReader::parseOperandBundleTags() { 1711 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1712 return error("Invalid record"); 1713 1714 if (!BundleTags.empty()) 1715 return error("Invalid multiple blocks"); 1716 1717 SmallVector<uint64_t, 64> Record; 1718 1719 while (1) { 1720 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1721 1722 switch (Entry.Kind) { 1723 case BitstreamEntry::SubBlock: // Handled for us already. 1724 case BitstreamEntry::Error: 1725 return error("Malformed block"); 1726 case BitstreamEntry::EndBlock: 1727 return std::error_code(); 1728 case BitstreamEntry::Record: 1729 // The interesting case. 1730 break; 1731 } 1732 1733 // Tags are implicitly mapped to integers by their order. 1734 1735 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1736 return error("Invalid record"); 1737 1738 // OPERAND_BUNDLE_TAG: [strchr x N] 1739 BundleTags.emplace_back(); 1740 if (convertToString(Record, 0, BundleTags.back())) 1741 return error("Invalid record"); 1742 Record.clear(); 1743 } 1744 } 1745 1746 /// Associate a value with its name from the given index in the provided record. 1747 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1748 unsigned NameIndex, Triple &TT) { 1749 SmallString<128> ValueName; 1750 if (convertToString(Record, NameIndex, ValueName)) 1751 return error("Invalid record"); 1752 unsigned ValueID = Record[0]; 1753 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1754 return error("Invalid record"); 1755 Value *V = ValueList[ValueID]; 1756 1757 StringRef NameStr(ValueName.data(), ValueName.size()); 1758 if (NameStr.find_first_of(0) != StringRef::npos) 1759 return error("Invalid value name"); 1760 V->setName(NameStr); 1761 auto *GO = dyn_cast<GlobalObject>(V); 1762 if (GO) { 1763 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1764 if (TT.isOSBinFormatMachO()) 1765 GO->setComdat(nullptr); 1766 else 1767 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1768 } 1769 } 1770 return V; 1771 } 1772 1773 /// Helper to note and return the current location, and jump to the given 1774 /// offset. 1775 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1776 BitstreamCursor &Stream) { 1777 // Save the current parsing location so we can jump back at the end 1778 // of the VST read. 1779 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1780 Stream.JumpToBit(Offset * 32); 1781 #ifndef NDEBUG 1782 // Do some checking if we are in debug mode. 1783 BitstreamEntry Entry = Stream.advance(); 1784 assert(Entry.Kind == BitstreamEntry::SubBlock); 1785 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1786 #else 1787 // In NDEBUG mode ignore the output so we don't get an unused variable 1788 // warning. 1789 Stream.advance(); 1790 #endif 1791 return CurrentBit; 1792 } 1793 1794 /// Parse the value symbol table at either the current parsing location or 1795 /// at the given bit offset if provided. 1796 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1797 uint64_t CurrentBit; 1798 // Pass in the Offset to distinguish between calling for the module-level 1799 // VST (where we want to jump to the VST offset) and the function-level 1800 // VST (where we don't). 1801 if (Offset > 0) 1802 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1803 1804 // Compute the delta between the bitcode indices in the VST (the word offset 1805 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1806 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1807 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1808 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1809 // just before entering the VST subblock because: 1) the EnterSubBlock 1810 // changes the AbbrevID width; 2) the VST block is nested within the same 1811 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1812 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1813 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1814 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1815 unsigned FuncBitcodeOffsetDelta = 1816 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1817 1818 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1819 return error("Invalid record"); 1820 1821 SmallVector<uint64_t, 64> Record; 1822 1823 Triple TT(TheModule->getTargetTriple()); 1824 1825 // Read all the records for this value table. 1826 SmallString<128> ValueName; 1827 while (1) { 1828 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1829 1830 switch (Entry.Kind) { 1831 case BitstreamEntry::SubBlock: // Handled for us already. 1832 case BitstreamEntry::Error: 1833 return error("Malformed block"); 1834 case BitstreamEntry::EndBlock: 1835 if (Offset > 0) 1836 Stream.JumpToBit(CurrentBit); 1837 return std::error_code(); 1838 case BitstreamEntry::Record: 1839 // The interesting case. 1840 break; 1841 } 1842 1843 // Read a record. 1844 Record.clear(); 1845 switch (Stream.readRecord(Entry.ID, Record)) { 1846 default: // Default behavior: unknown type. 1847 break; 1848 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1849 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1850 if (std::error_code EC = ValOrErr.getError()) 1851 return EC; 1852 ValOrErr.get(); 1853 break; 1854 } 1855 case bitc::VST_CODE_FNENTRY: { 1856 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1857 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1858 if (std::error_code EC = ValOrErr.getError()) 1859 return EC; 1860 Value *V = ValOrErr.get(); 1861 1862 auto *GO = dyn_cast<GlobalObject>(V); 1863 if (!GO) { 1864 // If this is an alias, need to get the actual Function object 1865 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1866 auto *GA = dyn_cast<GlobalAlias>(V); 1867 if (GA) 1868 GO = GA->getBaseObject(); 1869 assert(GO); 1870 } 1871 1872 uint64_t FuncWordOffset = Record[1]; 1873 Function *F = dyn_cast<Function>(GO); 1874 assert(F); 1875 uint64_t FuncBitOffset = FuncWordOffset * 32; 1876 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1877 // Set the LastFunctionBlockBit to point to the last function block. 1878 // Later when parsing is resumed after function materialization, 1879 // we can simply skip that last function block. 1880 if (FuncBitOffset > LastFunctionBlockBit) 1881 LastFunctionBlockBit = FuncBitOffset; 1882 break; 1883 } 1884 case bitc::VST_CODE_BBENTRY: { 1885 if (convertToString(Record, 1, ValueName)) 1886 return error("Invalid record"); 1887 BasicBlock *BB = getBasicBlock(Record[0]); 1888 if (!BB) 1889 return error("Invalid record"); 1890 1891 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1892 ValueName.clear(); 1893 break; 1894 } 1895 } 1896 } 1897 } 1898 1899 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1900 std::error_code 1901 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1902 if (Record.size() < 2) 1903 return error("Invalid record"); 1904 1905 unsigned Kind = Record[0]; 1906 SmallString<8> Name(Record.begin() + 1, Record.end()); 1907 1908 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1909 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1910 return error("Conflicting METADATA_KIND records"); 1911 return std::error_code(); 1912 } 1913 1914 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1915 1916 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 1917 StringRef Blob, 1918 unsigned &NextMetadataNo) { 1919 // All the MDStrings in the block are emitted together in a single 1920 // record. The strings are concatenated and stored in a blob along with 1921 // their sizes. 1922 if (Record.size() != 2) 1923 return error("Invalid record: metadata strings layout"); 1924 1925 unsigned NumStrings = Record[0]; 1926 unsigned StringsOffset = Record[1]; 1927 if (!NumStrings) 1928 return error("Invalid record: metadata strings with no strings"); 1929 if (StringsOffset > Blob.size()) 1930 return error("Invalid record: metadata strings corrupt offset"); 1931 1932 StringRef Lengths = Blob.slice(0, StringsOffset); 1933 SimpleBitstreamCursor R(*StreamFile); 1934 R.jumpToPointer(Lengths.begin()); 1935 1936 // Ensure that Blob doesn't get invalidated, even if this is reading from 1937 // a StreamingMemoryObject with corrupt data. 1938 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 1939 1940 StringRef Strings = Blob.drop_front(StringsOffset); 1941 do { 1942 if (R.AtEndOfStream()) 1943 return error("Invalid record: metadata strings bad length"); 1944 1945 unsigned Size = R.ReadVBR(6); 1946 if (Strings.size() < Size) 1947 return error("Invalid record: metadata strings truncated chars"); 1948 1949 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 1950 NextMetadataNo++); 1951 Strings = Strings.drop_front(Size); 1952 } while (--NumStrings); 1953 1954 return std::error_code(); 1955 } 1956 1957 namespace { 1958 class PlaceholderQueue { 1959 // Placeholders would thrash around when moved, so store in a std::deque 1960 // instead of some sort of vector. 1961 std::deque<DistinctMDOperandPlaceholder> PHs; 1962 1963 public: 1964 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 1965 void flush(BitcodeReaderMetadataList &MetadataList); 1966 }; 1967 } // end namespace 1968 1969 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 1970 PHs.emplace_back(ID); 1971 return PHs.back(); 1972 } 1973 1974 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 1975 while (!PHs.empty()) { 1976 PHs.front().replaceUseWith( 1977 MetadataList.getMetadataFwdRef(PHs.front().getID())); 1978 PHs.pop_front(); 1979 } 1980 } 1981 1982 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1983 /// module level metadata. 1984 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1985 IsMetadataMaterialized = true; 1986 unsigned NextMetadataNo = MetadataList.size(); 1987 1988 if (!ModuleLevel && MetadataList.hasFwdRefs()) 1989 return error("Invalid metadata: fwd refs into function blocks"); 1990 1991 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1992 return error("Invalid record"); 1993 1994 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 1995 SmallVector<uint64_t, 64> Record; 1996 1997 PlaceholderQueue Placeholders; 1998 bool IsDistinct; 1999 auto getMD = [&](unsigned ID, bool AllowPlaceholders = true) -> Metadata * { 2000 if (!IsDistinct || !AllowPlaceholders) 2001 return MetadataList.getMetadataFwdRef(ID); 2002 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2003 return MD; 2004 return &Placeholders.getPlaceholderOp(ID); 2005 }; 2006 auto getMDOrNull = [&](unsigned ID, 2007 bool AllowPlaceholders = true) -> Metadata * { 2008 if (ID) 2009 return getMD(ID - 1, AllowPlaceholders); 2010 return nullptr; 2011 }; 2012 auto getMDString = [&](unsigned ID) -> MDString *{ 2013 // This requires that the ID is not really a forward reference. In 2014 // particular, the MDString must already have been resolved. 2015 return cast_or_null<MDString>(getMDOrNull(ID)); 2016 }; 2017 2018 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2019 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2020 2021 // Read all the records. 2022 while (1) { 2023 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2024 2025 switch (Entry.Kind) { 2026 case BitstreamEntry::SubBlock: // Handled for us already. 2027 case BitstreamEntry::Error: 2028 return error("Malformed block"); 2029 case BitstreamEntry::EndBlock: 2030 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2031 for (auto CU_SP : CUSubprograms) 2032 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2033 for (auto &Op : SPs->operands()) 2034 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2035 SP->replaceOperandWith(7, CU_SP.first); 2036 2037 MetadataList.tryToResolveCycles(); 2038 Placeholders.flush(MetadataList); 2039 return std::error_code(); 2040 case BitstreamEntry::Record: 2041 // The interesting case. 2042 break; 2043 } 2044 2045 // Read a record. 2046 Record.clear(); 2047 StringRef Blob; 2048 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2049 IsDistinct = false; 2050 switch (Code) { 2051 default: // Default behavior: ignore. 2052 break; 2053 case bitc::METADATA_NAME: { 2054 // Read name of the named metadata. 2055 SmallString<8> Name(Record.begin(), Record.end()); 2056 Record.clear(); 2057 Code = Stream.ReadCode(); 2058 2059 unsigned NextBitCode = Stream.readRecord(Code, Record); 2060 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2061 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2062 2063 // Read named metadata elements. 2064 unsigned Size = Record.size(); 2065 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2066 for (unsigned i = 0; i != Size; ++i) { 2067 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2068 if (!MD) 2069 return error("Invalid record"); 2070 NMD->addOperand(MD); 2071 } 2072 break; 2073 } 2074 case bitc::METADATA_OLD_FN_NODE: { 2075 // FIXME: Remove in 4.0. 2076 // This is a LocalAsMetadata record, the only type of function-local 2077 // metadata. 2078 if (Record.size() % 2 == 1) 2079 return error("Invalid record"); 2080 2081 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2082 // to be legal, but there's no upgrade path. 2083 auto dropRecord = [&] { 2084 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2085 }; 2086 if (Record.size() != 2) { 2087 dropRecord(); 2088 break; 2089 } 2090 2091 Type *Ty = getTypeByID(Record[0]); 2092 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2093 dropRecord(); 2094 break; 2095 } 2096 2097 MetadataList.assignValue( 2098 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2099 NextMetadataNo++); 2100 break; 2101 } 2102 case bitc::METADATA_OLD_NODE: { 2103 // FIXME: Remove in 4.0. 2104 if (Record.size() % 2 == 1) 2105 return error("Invalid record"); 2106 2107 unsigned Size = Record.size(); 2108 SmallVector<Metadata *, 8> Elts; 2109 for (unsigned i = 0; i != Size; i += 2) { 2110 Type *Ty = getTypeByID(Record[i]); 2111 if (!Ty) 2112 return error("Invalid record"); 2113 if (Ty->isMetadataTy()) 2114 Elts.push_back(getMD(Record[i + 1])); 2115 else if (!Ty->isVoidTy()) { 2116 auto *MD = 2117 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2118 assert(isa<ConstantAsMetadata>(MD) && 2119 "Expected non-function-local metadata"); 2120 Elts.push_back(MD); 2121 } else 2122 Elts.push_back(nullptr); 2123 } 2124 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2125 break; 2126 } 2127 case bitc::METADATA_VALUE: { 2128 if (Record.size() != 2) 2129 return error("Invalid record"); 2130 2131 Type *Ty = getTypeByID(Record[0]); 2132 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2133 return error("Invalid record"); 2134 2135 MetadataList.assignValue( 2136 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2137 NextMetadataNo++); 2138 break; 2139 } 2140 case bitc::METADATA_DISTINCT_NODE: 2141 IsDistinct = true; 2142 // fallthrough... 2143 case bitc::METADATA_NODE: { 2144 SmallVector<Metadata *, 8> Elts; 2145 Elts.reserve(Record.size()); 2146 for (unsigned ID : Record) 2147 Elts.push_back(getMDOrNull(ID)); 2148 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2149 : MDNode::get(Context, Elts), 2150 NextMetadataNo++); 2151 break; 2152 } 2153 case bitc::METADATA_LOCATION: { 2154 if (Record.size() != 5) 2155 return error("Invalid record"); 2156 2157 IsDistinct = Record[0]; 2158 unsigned Line = Record[1]; 2159 unsigned Column = Record[2]; 2160 Metadata *Scope = getMD(Record[3]); 2161 Metadata *InlinedAt = getMDOrNull(Record[4]); 2162 MetadataList.assignValue( 2163 GET_OR_DISTINCT(DILocation, 2164 (Context, Line, Column, Scope, InlinedAt)), 2165 NextMetadataNo++); 2166 break; 2167 } 2168 case bitc::METADATA_GENERIC_DEBUG: { 2169 if (Record.size() < 4) 2170 return error("Invalid record"); 2171 2172 IsDistinct = Record[0]; 2173 unsigned Tag = Record[1]; 2174 unsigned Version = Record[2]; 2175 2176 if (Tag >= 1u << 16 || Version != 0) 2177 return error("Invalid record"); 2178 2179 auto *Header = getMDString(Record[3]); 2180 SmallVector<Metadata *, 8> DwarfOps; 2181 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2182 DwarfOps.push_back(getMDOrNull(Record[I])); 2183 MetadataList.assignValue( 2184 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2185 NextMetadataNo++); 2186 break; 2187 } 2188 case bitc::METADATA_SUBRANGE: { 2189 if (Record.size() != 3) 2190 return error("Invalid record"); 2191 2192 IsDistinct = Record[0]; 2193 MetadataList.assignValue( 2194 GET_OR_DISTINCT(DISubrange, 2195 (Context, Record[1], unrotateSign(Record[2]))), 2196 NextMetadataNo++); 2197 break; 2198 } 2199 case bitc::METADATA_ENUMERATOR: { 2200 if (Record.size() != 3) 2201 return error("Invalid record"); 2202 2203 IsDistinct = Record[0]; 2204 MetadataList.assignValue( 2205 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2206 getMDString(Record[2]))), 2207 NextMetadataNo++); 2208 break; 2209 } 2210 case bitc::METADATA_BASIC_TYPE: { 2211 if (Record.size() != 6) 2212 return error("Invalid record"); 2213 2214 IsDistinct = Record[0]; 2215 MetadataList.assignValue( 2216 GET_OR_DISTINCT(DIBasicType, 2217 (Context, Record[1], getMDString(Record[2]), 2218 Record[3], Record[4], Record[5])), 2219 NextMetadataNo++); 2220 break; 2221 } 2222 case bitc::METADATA_DERIVED_TYPE: { 2223 if (Record.size() != 12) 2224 return error("Invalid record"); 2225 2226 IsDistinct = Record[0]; 2227 MetadataList.assignValue( 2228 GET_OR_DISTINCT(DIDerivedType, 2229 (Context, Record[1], getMDString(Record[2]), 2230 getMDOrNull(Record[3]), Record[4], 2231 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2232 Record[7], Record[8], Record[9], Record[10], 2233 getMDOrNull(Record[11]))), 2234 NextMetadataNo++); 2235 break; 2236 } 2237 case bitc::METADATA_COMPOSITE_TYPE: { 2238 if (Record.size() != 16) 2239 return error("Invalid record"); 2240 2241 // If we have a UUID and this is not a forward declaration, lookup the 2242 // mapping. 2243 IsDistinct = Record[0]; 2244 unsigned Tag = Record[1]; 2245 MDString *Name = getMDString(Record[2]); 2246 Metadata *File = getMDOrNull(Record[3]); 2247 unsigned Line = Record[4]; 2248 Metadata *Scope = getMDOrNull(Record[5]); 2249 Metadata *BaseType = getMDOrNull(Record[6]); 2250 uint64_t SizeInBits = Record[7]; 2251 uint64_t AlignInBits = Record[8]; 2252 uint64_t OffsetInBits = Record[9]; 2253 unsigned Flags = Record[10]; 2254 Metadata *Elements = getMDOrNull(Record[11]); 2255 unsigned RuntimeLang = Record[12]; 2256 Metadata *VTableHolder = getMDOrNull(Record[13]); 2257 Metadata *TemplateParams = getMDOrNull(Record[14]); 2258 auto *Identifier = getMDString(Record[15]); 2259 DICompositeType *CT = nullptr; 2260 if (Identifier) 2261 CT = DICompositeType::buildODRType( 2262 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2263 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2264 VTableHolder, TemplateParams); 2265 2266 // Create a node if we didn't get a lazy ODR type. 2267 if (!CT) 2268 CT = GET_OR_DISTINCT(DICompositeType, 2269 (Context, Tag, Name, File, Line, Scope, BaseType, 2270 SizeInBits, AlignInBits, OffsetInBits, Flags, 2271 Elements, RuntimeLang, VTableHolder, 2272 TemplateParams, Identifier)); 2273 2274 MetadataList.assignValue(CT, NextMetadataNo++); 2275 break; 2276 } 2277 case bitc::METADATA_SUBROUTINE_TYPE: { 2278 if (Record.size() != 3) 2279 return error("Invalid record"); 2280 2281 IsDistinct = Record[0]; 2282 MetadataList.assignValue( 2283 GET_OR_DISTINCT(DISubroutineType, 2284 (Context, Record[1], getMDOrNull(Record[2]))), 2285 NextMetadataNo++); 2286 break; 2287 } 2288 2289 case bitc::METADATA_MODULE: { 2290 if (Record.size() != 6) 2291 return error("Invalid record"); 2292 2293 IsDistinct = Record[0]; 2294 MetadataList.assignValue( 2295 GET_OR_DISTINCT(DIModule, 2296 (Context, getMDOrNull(Record[1]), 2297 getMDString(Record[2]), getMDString(Record[3]), 2298 getMDString(Record[4]), getMDString(Record[5]))), 2299 NextMetadataNo++); 2300 break; 2301 } 2302 2303 case bitc::METADATA_FILE: { 2304 if (Record.size() != 3) 2305 return error("Invalid record"); 2306 2307 IsDistinct = Record[0]; 2308 MetadataList.assignValue( 2309 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2310 getMDString(Record[2]))), 2311 NextMetadataNo++); 2312 break; 2313 } 2314 case bitc::METADATA_COMPILE_UNIT: { 2315 if (Record.size() < 14 || Record.size() > 16) 2316 return error("Invalid record"); 2317 2318 // Ignore Record[0], which indicates whether this compile unit is 2319 // distinct. It's always distinct. 2320 IsDistinct = true; 2321 auto *CU = DICompileUnit::getDistinct( 2322 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2323 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2324 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2325 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2326 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2327 Record.size() <= 14 ? 0 : Record[14]); 2328 2329 MetadataList.assignValue(CU, NextMetadataNo++); 2330 2331 // Move the Upgrade the list of subprograms. 2332 if (Metadata *SPs = 2333 getMDOrNull(Record[11], /* AllowPlaceholders = */ false)) 2334 CUSubprograms.push_back({CU, SPs}); 2335 break; 2336 } 2337 case bitc::METADATA_SUBPROGRAM: { 2338 if (Record.size() != 18 && Record.size() != 19) 2339 return error("Invalid record"); 2340 2341 IsDistinct = 2342 Record[0] || Record[8]; // All definitions should be distinct. 2343 // Version 1 has a Function as Record[15]. 2344 // Version 2 has removed Record[15]. 2345 // Version 3 has the Unit as Record[15]. 2346 Metadata *CUorFn = getMDOrNull(Record[15]); 2347 unsigned Offset = Record.size() == 19 ? 1 : 0; 2348 bool HasFn = Offset && dyn_cast_or_null<ConstantAsMetadata>(CUorFn); 2349 bool HasCU = Offset && !HasFn; 2350 DISubprogram *SP = GET_OR_DISTINCT( 2351 DISubprogram, 2352 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2353 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2354 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2355 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2356 Record[14], HasCU ? CUorFn : nullptr, 2357 getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]), 2358 getMDOrNull(Record[17 + Offset]))); 2359 MetadataList.assignValue(SP, NextMetadataNo++); 2360 2361 // Upgrade sp->function mapping to function->sp mapping. 2362 if (HasFn) { 2363 if (auto *CMD = dyn_cast<ConstantAsMetadata>(CUorFn)) 2364 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2365 if (F->isMaterializable()) 2366 // Defer until materialized; unmaterialized functions may not have 2367 // metadata. 2368 FunctionsWithSPs[F] = SP; 2369 else if (!F->empty()) 2370 F->setSubprogram(SP); 2371 } 2372 } 2373 break; 2374 } 2375 case bitc::METADATA_LEXICAL_BLOCK: { 2376 if (Record.size() != 5) 2377 return error("Invalid record"); 2378 2379 IsDistinct = Record[0]; 2380 MetadataList.assignValue( 2381 GET_OR_DISTINCT(DILexicalBlock, 2382 (Context, getMDOrNull(Record[1]), 2383 getMDOrNull(Record[2]), Record[3], Record[4])), 2384 NextMetadataNo++); 2385 break; 2386 } 2387 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2388 if (Record.size() != 4) 2389 return error("Invalid record"); 2390 2391 IsDistinct = Record[0]; 2392 MetadataList.assignValue( 2393 GET_OR_DISTINCT(DILexicalBlockFile, 2394 (Context, getMDOrNull(Record[1]), 2395 getMDOrNull(Record[2]), Record[3])), 2396 NextMetadataNo++); 2397 break; 2398 } 2399 case bitc::METADATA_NAMESPACE: { 2400 if (Record.size() != 5) 2401 return error("Invalid record"); 2402 2403 IsDistinct = Record[0]; 2404 MetadataList.assignValue( 2405 GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]), 2406 getMDOrNull(Record[2]), 2407 getMDString(Record[3]), Record[4])), 2408 NextMetadataNo++); 2409 break; 2410 } 2411 case bitc::METADATA_MACRO: { 2412 if (Record.size() != 5) 2413 return error("Invalid record"); 2414 2415 IsDistinct = Record[0]; 2416 MetadataList.assignValue( 2417 GET_OR_DISTINCT(DIMacro, 2418 (Context, Record[1], Record[2], 2419 getMDString(Record[3]), getMDString(Record[4]))), 2420 NextMetadataNo++); 2421 break; 2422 } 2423 case bitc::METADATA_MACRO_FILE: { 2424 if (Record.size() != 5) 2425 return error("Invalid record"); 2426 2427 IsDistinct = Record[0]; 2428 MetadataList.assignValue( 2429 GET_OR_DISTINCT(DIMacroFile, 2430 (Context, Record[1], Record[2], 2431 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2432 NextMetadataNo++); 2433 break; 2434 } 2435 case bitc::METADATA_TEMPLATE_TYPE: { 2436 if (Record.size() != 3) 2437 return error("Invalid record"); 2438 2439 IsDistinct = Record[0]; 2440 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2441 (Context, getMDString(Record[1]), 2442 getMDOrNull(Record[2]))), 2443 NextMetadataNo++); 2444 break; 2445 } 2446 case bitc::METADATA_TEMPLATE_VALUE: { 2447 if (Record.size() != 5) 2448 return error("Invalid record"); 2449 2450 IsDistinct = Record[0]; 2451 MetadataList.assignValue( 2452 GET_OR_DISTINCT(DITemplateValueParameter, 2453 (Context, Record[1], getMDString(Record[2]), 2454 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2455 NextMetadataNo++); 2456 break; 2457 } 2458 case bitc::METADATA_GLOBAL_VAR: { 2459 if (Record.size() != 11) 2460 return error("Invalid record"); 2461 2462 IsDistinct = Record[0]; 2463 MetadataList.assignValue( 2464 GET_OR_DISTINCT(DIGlobalVariable, 2465 (Context, getMDOrNull(Record[1]), 2466 getMDString(Record[2]), getMDString(Record[3]), 2467 getMDOrNull(Record[4]), Record[5], 2468 getMDOrNull(Record[6]), Record[7], Record[8], 2469 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2470 NextMetadataNo++); 2471 break; 2472 } 2473 case bitc::METADATA_LOCAL_VAR: { 2474 // 10th field is for the obseleted 'inlinedAt:' field. 2475 if (Record.size() < 8 || Record.size() > 10) 2476 return error("Invalid record"); 2477 2478 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2479 // DW_TAG_arg_variable. 2480 IsDistinct = Record[0]; 2481 bool HasTag = Record.size() > 8; 2482 MetadataList.assignValue( 2483 GET_OR_DISTINCT(DILocalVariable, 2484 (Context, getMDOrNull(Record[1 + HasTag]), 2485 getMDString(Record[2 + HasTag]), 2486 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2487 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2488 Record[7 + HasTag])), 2489 NextMetadataNo++); 2490 break; 2491 } 2492 case bitc::METADATA_EXPRESSION: { 2493 if (Record.size() < 1) 2494 return error("Invalid record"); 2495 2496 IsDistinct = Record[0]; 2497 MetadataList.assignValue( 2498 GET_OR_DISTINCT(DIExpression, 2499 (Context, makeArrayRef(Record).slice(1))), 2500 NextMetadataNo++); 2501 break; 2502 } 2503 case bitc::METADATA_OBJC_PROPERTY: { 2504 if (Record.size() != 8) 2505 return error("Invalid record"); 2506 2507 IsDistinct = Record[0]; 2508 MetadataList.assignValue( 2509 GET_OR_DISTINCT(DIObjCProperty, 2510 (Context, getMDString(Record[1]), 2511 getMDOrNull(Record[2]), Record[3], 2512 getMDString(Record[4]), getMDString(Record[5]), 2513 Record[6], getMDOrNull(Record[7]))), 2514 NextMetadataNo++); 2515 break; 2516 } 2517 case bitc::METADATA_IMPORTED_ENTITY: { 2518 if (Record.size() != 6) 2519 return error("Invalid record"); 2520 2521 IsDistinct = Record[0]; 2522 MetadataList.assignValue( 2523 GET_OR_DISTINCT(DIImportedEntity, 2524 (Context, Record[1], getMDOrNull(Record[2]), 2525 getMDOrNull(Record[3]), Record[4], 2526 getMDString(Record[5]))), 2527 NextMetadataNo++); 2528 break; 2529 } 2530 case bitc::METADATA_STRING_OLD: { 2531 std::string String(Record.begin(), Record.end()); 2532 2533 // Test for upgrading !llvm.loop. 2534 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2535 2536 Metadata *MD = MDString::get(Context, String); 2537 MetadataList.assignValue(MD, NextMetadataNo++); 2538 break; 2539 } 2540 case bitc::METADATA_STRINGS: 2541 if (std::error_code EC = 2542 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2543 return EC; 2544 break; 2545 case bitc::METADATA_KIND: { 2546 // Support older bitcode files that had METADATA_KIND records in a 2547 // block with METADATA_BLOCK_ID. 2548 if (std::error_code EC = parseMetadataKindRecord(Record)) 2549 return EC; 2550 break; 2551 } 2552 } 2553 } 2554 #undef GET_OR_DISTINCT 2555 } 2556 2557 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2558 std::error_code BitcodeReader::parseMetadataKinds() { 2559 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2560 return error("Invalid record"); 2561 2562 SmallVector<uint64_t, 64> Record; 2563 2564 // Read all the records. 2565 while (1) { 2566 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2567 2568 switch (Entry.Kind) { 2569 case BitstreamEntry::SubBlock: // Handled for us already. 2570 case BitstreamEntry::Error: 2571 return error("Malformed block"); 2572 case BitstreamEntry::EndBlock: 2573 return std::error_code(); 2574 case BitstreamEntry::Record: 2575 // The interesting case. 2576 break; 2577 } 2578 2579 // Read a record. 2580 Record.clear(); 2581 unsigned Code = Stream.readRecord(Entry.ID, Record); 2582 switch (Code) { 2583 default: // Default behavior: ignore. 2584 break; 2585 case bitc::METADATA_KIND: { 2586 if (std::error_code EC = parseMetadataKindRecord(Record)) 2587 return EC; 2588 break; 2589 } 2590 } 2591 } 2592 } 2593 2594 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2595 /// encoding. 2596 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2597 if ((V & 1) == 0) 2598 return V >> 1; 2599 if (V != 1) 2600 return -(V >> 1); 2601 // There is no such thing as -0 with integers. "-0" really means MININT. 2602 return 1ULL << 63; 2603 } 2604 2605 /// Resolve all of the initializers for global values and aliases that we can. 2606 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2607 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2608 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2609 IndirectSymbolInitWorklist; 2610 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2611 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2612 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2613 2614 GlobalInitWorklist.swap(GlobalInits); 2615 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2616 FunctionPrefixWorklist.swap(FunctionPrefixes); 2617 FunctionPrologueWorklist.swap(FunctionPrologues); 2618 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2619 2620 while (!GlobalInitWorklist.empty()) { 2621 unsigned ValID = GlobalInitWorklist.back().second; 2622 if (ValID >= ValueList.size()) { 2623 // Not ready to resolve this yet, it requires something later in the file. 2624 GlobalInits.push_back(GlobalInitWorklist.back()); 2625 } else { 2626 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2627 GlobalInitWorklist.back().first->setInitializer(C); 2628 else 2629 return error("Expected a constant"); 2630 } 2631 GlobalInitWorklist.pop_back(); 2632 } 2633 2634 while (!IndirectSymbolInitWorklist.empty()) { 2635 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2636 if (ValID >= ValueList.size()) { 2637 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2638 } else { 2639 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2640 if (!C) 2641 return error("Expected a constant"); 2642 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2643 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2644 return error("Alias and aliasee types don't match"); 2645 GIS->setIndirectSymbol(C); 2646 } 2647 IndirectSymbolInitWorklist.pop_back(); 2648 } 2649 2650 while (!FunctionPrefixWorklist.empty()) { 2651 unsigned ValID = FunctionPrefixWorklist.back().second; 2652 if (ValID >= ValueList.size()) { 2653 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2654 } else { 2655 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2656 FunctionPrefixWorklist.back().first->setPrefixData(C); 2657 else 2658 return error("Expected a constant"); 2659 } 2660 FunctionPrefixWorklist.pop_back(); 2661 } 2662 2663 while (!FunctionPrologueWorklist.empty()) { 2664 unsigned ValID = FunctionPrologueWorklist.back().second; 2665 if (ValID >= ValueList.size()) { 2666 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2667 } else { 2668 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2669 FunctionPrologueWorklist.back().first->setPrologueData(C); 2670 else 2671 return error("Expected a constant"); 2672 } 2673 FunctionPrologueWorklist.pop_back(); 2674 } 2675 2676 while (!FunctionPersonalityFnWorklist.empty()) { 2677 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2678 if (ValID >= ValueList.size()) { 2679 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2680 } else { 2681 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2682 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2683 else 2684 return error("Expected a constant"); 2685 } 2686 FunctionPersonalityFnWorklist.pop_back(); 2687 } 2688 2689 return std::error_code(); 2690 } 2691 2692 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2693 SmallVector<uint64_t, 8> Words(Vals.size()); 2694 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2695 BitcodeReader::decodeSignRotatedValue); 2696 2697 return APInt(TypeBits, Words); 2698 } 2699 2700 std::error_code BitcodeReader::parseConstants() { 2701 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2702 return error("Invalid record"); 2703 2704 SmallVector<uint64_t, 64> Record; 2705 2706 // Read all the records for this value table. 2707 Type *CurTy = Type::getInt32Ty(Context); 2708 unsigned NextCstNo = ValueList.size(); 2709 while (1) { 2710 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2711 2712 switch (Entry.Kind) { 2713 case BitstreamEntry::SubBlock: // Handled for us already. 2714 case BitstreamEntry::Error: 2715 return error("Malformed block"); 2716 case BitstreamEntry::EndBlock: 2717 if (NextCstNo != ValueList.size()) 2718 return error("Invalid constant reference"); 2719 2720 // Once all the constants have been read, go through and resolve forward 2721 // references. 2722 ValueList.resolveConstantForwardRefs(); 2723 return std::error_code(); 2724 case BitstreamEntry::Record: 2725 // The interesting case. 2726 break; 2727 } 2728 2729 // Read a record. 2730 Record.clear(); 2731 Value *V = nullptr; 2732 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2733 switch (BitCode) { 2734 default: // Default behavior: unknown constant 2735 case bitc::CST_CODE_UNDEF: // UNDEF 2736 V = UndefValue::get(CurTy); 2737 break; 2738 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2739 if (Record.empty()) 2740 return error("Invalid record"); 2741 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2742 return error("Invalid record"); 2743 CurTy = TypeList[Record[0]]; 2744 continue; // Skip the ValueList manipulation. 2745 case bitc::CST_CODE_NULL: // NULL 2746 V = Constant::getNullValue(CurTy); 2747 break; 2748 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2749 if (!CurTy->isIntegerTy() || Record.empty()) 2750 return error("Invalid record"); 2751 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2752 break; 2753 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2754 if (!CurTy->isIntegerTy() || Record.empty()) 2755 return error("Invalid record"); 2756 2757 APInt VInt = 2758 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2759 V = ConstantInt::get(Context, VInt); 2760 2761 break; 2762 } 2763 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2764 if (Record.empty()) 2765 return error("Invalid record"); 2766 if (CurTy->isHalfTy()) 2767 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2768 APInt(16, (uint16_t)Record[0]))); 2769 else if (CurTy->isFloatTy()) 2770 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2771 APInt(32, (uint32_t)Record[0]))); 2772 else if (CurTy->isDoubleTy()) 2773 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2774 APInt(64, Record[0]))); 2775 else if (CurTy->isX86_FP80Ty()) { 2776 // Bits are not stored the same way as a normal i80 APInt, compensate. 2777 uint64_t Rearrange[2]; 2778 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2779 Rearrange[1] = Record[0] >> 48; 2780 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2781 APInt(80, Rearrange))); 2782 } else if (CurTy->isFP128Ty()) 2783 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2784 APInt(128, Record))); 2785 else if (CurTy->isPPC_FP128Ty()) 2786 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2787 APInt(128, Record))); 2788 else 2789 V = UndefValue::get(CurTy); 2790 break; 2791 } 2792 2793 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2794 if (Record.empty()) 2795 return error("Invalid record"); 2796 2797 unsigned Size = Record.size(); 2798 SmallVector<Constant*, 16> Elts; 2799 2800 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2801 for (unsigned i = 0; i != Size; ++i) 2802 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2803 STy->getElementType(i))); 2804 V = ConstantStruct::get(STy, Elts); 2805 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2806 Type *EltTy = ATy->getElementType(); 2807 for (unsigned i = 0; i != Size; ++i) 2808 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2809 V = ConstantArray::get(ATy, Elts); 2810 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2811 Type *EltTy = VTy->getElementType(); 2812 for (unsigned i = 0; i != Size; ++i) 2813 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2814 V = ConstantVector::get(Elts); 2815 } else { 2816 V = UndefValue::get(CurTy); 2817 } 2818 break; 2819 } 2820 case bitc::CST_CODE_STRING: // STRING: [values] 2821 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2822 if (Record.empty()) 2823 return error("Invalid record"); 2824 2825 SmallString<16> Elts(Record.begin(), Record.end()); 2826 V = ConstantDataArray::getString(Context, Elts, 2827 BitCode == bitc::CST_CODE_CSTRING); 2828 break; 2829 } 2830 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2831 if (Record.empty()) 2832 return error("Invalid record"); 2833 2834 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2835 if (EltTy->isIntegerTy(8)) { 2836 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2837 if (isa<VectorType>(CurTy)) 2838 V = ConstantDataVector::get(Context, Elts); 2839 else 2840 V = ConstantDataArray::get(Context, Elts); 2841 } else if (EltTy->isIntegerTy(16)) { 2842 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2843 if (isa<VectorType>(CurTy)) 2844 V = ConstantDataVector::get(Context, Elts); 2845 else 2846 V = ConstantDataArray::get(Context, Elts); 2847 } else if (EltTy->isIntegerTy(32)) { 2848 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2849 if (isa<VectorType>(CurTy)) 2850 V = ConstantDataVector::get(Context, Elts); 2851 else 2852 V = ConstantDataArray::get(Context, Elts); 2853 } else if (EltTy->isIntegerTy(64)) { 2854 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2855 if (isa<VectorType>(CurTy)) 2856 V = ConstantDataVector::get(Context, Elts); 2857 else 2858 V = ConstantDataArray::get(Context, Elts); 2859 } else if (EltTy->isHalfTy()) { 2860 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2861 if (isa<VectorType>(CurTy)) 2862 V = ConstantDataVector::getFP(Context, Elts); 2863 else 2864 V = ConstantDataArray::getFP(Context, Elts); 2865 } else if (EltTy->isFloatTy()) { 2866 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2867 if (isa<VectorType>(CurTy)) 2868 V = ConstantDataVector::getFP(Context, Elts); 2869 else 2870 V = ConstantDataArray::getFP(Context, Elts); 2871 } else if (EltTy->isDoubleTy()) { 2872 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2873 if (isa<VectorType>(CurTy)) 2874 V = ConstantDataVector::getFP(Context, Elts); 2875 else 2876 V = ConstantDataArray::getFP(Context, Elts); 2877 } else { 2878 return error("Invalid type for value"); 2879 } 2880 break; 2881 } 2882 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2883 if (Record.size() < 3) 2884 return error("Invalid record"); 2885 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2886 if (Opc < 0) { 2887 V = UndefValue::get(CurTy); // Unknown binop. 2888 } else { 2889 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2890 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2891 unsigned Flags = 0; 2892 if (Record.size() >= 4) { 2893 if (Opc == Instruction::Add || 2894 Opc == Instruction::Sub || 2895 Opc == Instruction::Mul || 2896 Opc == Instruction::Shl) { 2897 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2898 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2899 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2900 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2901 } else if (Opc == Instruction::SDiv || 2902 Opc == Instruction::UDiv || 2903 Opc == Instruction::LShr || 2904 Opc == Instruction::AShr) { 2905 if (Record[3] & (1 << bitc::PEO_EXACT)) 2906 Flags |= SDivOperator::IsExact; 2907 } 2908 } 2909 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2910 } 2911 break; 2912 } 2913 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2914 if (Record.size() < 3) 2915 return error("Invalid record"); 2916 int Opc = getDecodedCastOpcode(Record[0]); 2917 if (Opc < 0) { 2918 V = UndefValue::get(CurTy); // Unknown cast. 2919 } else { 2920 Type *OpTy = getTypeByID(Record[1]); 2921 if (!OpTy) 2922 return error("Invalid record"); 2923 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2924 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2925 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2926 } 2927 break; 2928 } 2929 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2930 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2931 unsigned OpNum = 0; 2932 Type *PointeeType = nullptr; 2933 if (Record.size() % 2) 2934 PointeeType = getTypeByID(Record[OpNum++]); 2935 SmallVector<Constant*, 16> Elts; 2936 while (OpNum != Record.size()) { 2937 Type *ElTy = getTypeByID(Record[OpNum++]); 2938 if (!ElTy) 2939 return error("Invalid record"); 2940 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2941 } 2942 2943 if (PointeeType && 2944 PointeeType != 2945 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2946 ->getElementType()) 2947 return error("Explicit gep operator type does not match pointee type " 2948 "of pointer operand"); 2949 2950 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2951 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2952 BitCode == 2953 bitc::CST_CODE_CE_INBOUNDS_GEP); 2954 break; 2955 } 2956 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2957 if (Record.size() < 3) 2958 return error("Invalid record"); 2959 2960 Type *SelectorTy = Type::getInt1Ty(Context); 2961 2962 // The selector might be an i1 or an <n x i1> 2963 // Get the type from the ValueList before getting a forward ref. 2964 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2965 if (Value *V = ValueList[Record[0]]) 2966 if (SelectorTy != V->getType()) 2967 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2968 2969 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2970 SelectorTy), 2971 ValueList.getConstantFwdRef(Record[1],CurTy), 2972 ValueList.getConstantFwdRef(Record[2],CurTy)); 2973 break; 2974 } 2975 case bitc::CST_CODE_CE_EXTRACTELT 2976 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2977 if (Record.size() < 3) 2978 return error("Invalid record"); 2979 VectorType *OpTy = 2980 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2981 if (!OpTy) 2982 return error("Invalid record"); 2983 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2984 Constant *Op1 = nullptr; 2985 if (Record.size() == 4) { 2986 Type *IdxTy = getTypeByID(Record[2]); 2987 if (!IdxTy) 2988 return error("Invalid record"); 2989 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2990 } else // TODO: Remove with llvm 4.0 2991 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2992 if (!Op1) 2993 return error("Invalid record"); 2994 V = ConstantExpr::getExtractElement(Op0, Op1); 2995 break; 2996 } 2997 case bitc::CST_CODE_CE_INSERTELT 2998 : { // CE_INSERTELT: [opval, opval, opty, opval] 2999 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3000 if (Record.size() < 3 || !OpTy) 3001 return error("Invalid record"); 3002 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3003 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3004 OpTy->getElementType()); 3005 Constant *Op2 = nullptr; 3006 if (Record.size() == 4) { 3007 Type *IdxTy = getTypeByID(Record[2]); 3008 if (!IdxTy) 3009 return error("Invalid record"); 3010 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3011 } else // TODO: Remove with llvm 4.0 3012 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3013 if (!Op2) 3014 return error("Invalid record"); 3015 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3016 break; 3017 } 3018 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3019 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3020 if (Record.size() < 3 || !OpTy) 3021 return error("Invalid record"); 3022 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3023 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3024 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3025 OpTy->getNumElements()); 3026 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3027 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3028 break; 3029 } 3030 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3031 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3032 VectorType *OpTy = 3033 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3034 if (Record.size() < 4 || !RTy || !OpTy) 3035 return error("Invalid record"); 3036 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3037 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3038 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3039 RTy->getNumElements()); 3040 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3041 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3042 break; 3043 } 3044 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3045 if (Record.size() < 4) 3046 return error("Invalid record"); 3047 Type *OpTy = getTypeByID(Record[0]); 3048 if (!OpTy) 3049 return error("Invalid record"); 3050 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3051 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3052 3053 if (OpTy->isFPOrFPVectorTy()) 3054 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3055 else 3056 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3057 break; 3058 } 3059 // This maintains backward compatibility, pre-asm dialect keywords. 3060 // FIXME: Remove with the 4.0 release. 3061 case bitc::CST_CODE_INLINEASM_OLD: { 3062 if (Record.size() < 2) 3063 return error("Invalid record"); 3064 std::string AsmStr, ConstrStr; 3065 bool HasSideEffects = Record[0] & 1; 3066 bool IsAlignStack = Record[0] >> 1; 3067 unsigned AsmStrSize = Record[1]; 3068 if (2+AsmStrSize >= Record.size()) 3069 return error("Invalid record"); 3070 unsigned ConstStrSize = Record[2+AsmStrSize]; 3071 if (3+AsmStrSize+ConstStrSize > Record.size()) 3072 return error("Invalid record"); 3073 3074 for (unsigned i = 0; i != AsmStrSize; ++i) 3075 AsmStr += (char)Record[2+i]; 3076 for (unsigned i = 0; i != ConstStrSize; ++i) 3077 ConstrStr += (char)Record[3+AsmStrSize+i]; 3078 PointerType *PTy = cast<PointerType>(CurTy); 3079 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3080 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3081 break; 3082 } 3083 // This version adds support for the asm dialect keywords (e.g., 3084 // inteldialect). 3085 case bitc::CST_CODE_INLINEASM: { 3086 if (Record.size() < 2) 3087 return error("Invalid record"); 3088 std::string AsmStr, ConstrStr; 3089 bool HasSideEffects = Record[0] & 1; 3090 bool IsAlignStack = (Record[0] >> 1) & 1; 3091 unsigned AsmDialect = Record[0] >> 2; 3092 unsigned AsmStrSize = Record[1]; 3093 if (2+AsmStrSize >= Record.size()) 3094 return error("Invalid record"); 3095 unsigned ConstStrSize = Record[2+AsmStrSize]; 3096 if (3+AsmStrSize+ConstStrSize > Record.size()) 3097 return error("Invalid record"); 3098 3099 for (unsigned i = 0; i != AsmStrSize; ++i) 3100 AsmStr += (char)Record[2+i]; 3101 for (unsigned i = 0; i != ConstStrSize; ++i) 3102 ConstrStr += (char)Record[3+AsmStrSize+i]; 3103 PointerType *PTy = cast<PointerType>(CurTy); 3104 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3105 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3106 InlineAsm::AsmDialect(AsmDialect)); 3107 break; 3108 } 3109 case bitc::CST_CODE_BLOCKADDRESS:{ 3110 if (Record.size() < 3) 3111 return error("Invalid record"); 3112 Type *FnTy = getTypeByID(Record[0]); 3113 if (!FnTy) 3114 return error("Invalid record"); 3115 Function *Fn = 3116 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3117 if (!Fn) 3118 return error("Invalid record"); 3119 3120 // If the function is already parsed we can insert the block address right 3121 // away. 3122 BasicBlock *BB; 3123 unsigned BBID = Record[2]; 3124 if (!BBID) 3125 // Invalid reference to entry block. 3126 return error("Invalid ID"); 3127 if (!Fn->empty()) { 3128 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3129 for (size_t I = 0, E = BBID; I != E; ++I) { 3130 if (BBI == BBE) 3131 return error("Invalid ID"); 3132 ++BBI; 3133 } 3134 BB = &*BBI; 3135 } else { 3136 // Otherwise insert a placeholder and remember it so it can be inserted 3137 // when the function is parsed. 3138 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3139 if (FwdBBs.empty()) 3140 BasicBlockFwdRefQueue.push_back(Fn); 3141 if (FwdBBs.size() < BBID + 1) 3142 FwdBBs.resize(BBID + 1); 3143 if (!FwdBBs[BBID]) 3144 FwdBBs[BBID] = BasicBlock::Create(Context); 3145 BB = FwdBBs[BBID]; 3146 } 3147 V = BlockAddress::get(Fn, BB); 3148 break; 3149 } 3150 } 3151 3152 ValueList.assignValue(V, NextCstNo); 3153 ++NextCstNo; 3154 } 3155 } 3156 3157 std::error_code BitcodeReader::parseUseLists() { 3158 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3159 return error("Invalid record"); 3160 3161 // Read all the records. 3162 SmallVector<uint64_t, 64> Record; 3163 while (1) { 3164 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3165 3166 switch (Entry.Kind) { 3167 case BitstreamEntry::SubBlock: // Handled for us already. 3168 case BitstreamEntry::Error: 3169 return error("Malformed block"); 3170 case BitstreamEntry::EndBlock: 3171 return std::error_code(); 3172 case BitstreamEntry::Record: 3173 // The interesting case. 3174 break; 3175 } 3176 3177 // Read a use list record. 3178 Record.clear(); 3179 bool IsBB = false; 3180 switch (Stream.readRecord(Entry.ID, Record)) { 3181 default: // Default behavior: unknown type. 3182 break; 3183 case bitc::USELIST_CODE_BB: 3184 IsBB = true; 3185 // fallthrough 3186 case bitc::USELIST_CODE_DEFAULT: { 3187 unsigned RecordLength = Record.size(); 3188 if (RecordLength < 3) 3189 // Records should have at least an ID and two indexes. 3190 return error("Invalid record"); 3191 unsigned ID = Record.back(); 3192 Record.pop_back(); 3193 3194 Value *V; 3195 if (IsBB) { 3196 assert(ID < FunctionBBs.size() && "Basic block not found"); 3197 V = FunctionBBs[ID]; 3198 } else 3199 V = ValueList[ID]; 3200 unsigned NumUses = 0; 3201 SmallDenseMap<const Use *, unsigned, 16> Order; 3202 for (const Use &U : V->materialized_uses()) { 3203 if (++NumUses > Record.size()) 3204 break; 3205 Order[&U] = Record[NumUses - 1]; 3206 } 3207 if (Order.size() != Record.size() || NumUses > Record.size()) 3208 // Mismatches can happen if the functions are being materialized lazily 3209 // (out-of-order), or a value has been upgraded. 3210 break; 3211 3212 V->sortUseList([&](const Use &L, const Use &R) { 3213 return Order.lookup(&L) < Order.lookup(&R); 3214 }); 3215 break; 3216 } 3217 } 3218 } 3219 } 3220 3221 /// When we see the block for metadata, remember where it is and then skip it. 3222 /// This lets us lazily deserialize the metadata. 3223 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3224 // Save the current stream state. 3225 uint64_t CurBit = Stream.GetCurrentBitNo(); 3226 DeferredMetadataInfo.push_back(CurBit); 3227 3228 // Skip over the block for now. 3229 if (Stream.SkipBlock()) 3230 return error("Invalid record"); 3231 return std::error_code(); 3232 } 3233 3234 std::error_code BitcodeReader::materializeMetadata() { 3235 for (uint64_t BitPos : DeferredMetadataInfo) { 3236 // Move the bit stream to the saved position. 3237 Stream.JumpToBit(BitPos); 3238 if (std::error_code EC = parseMetadata(true)) 3239 return EC; 3240 } 3241 DeferredMetadataInfo.clear(); 3242 return std::error_code(); 3243 } 3244 3245 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3246 3247 /// When we see the block for a function body, remember where it is and then 3248 /// skip it. This lets us lazily deserialize the functions. 3249 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3250 // Get the function we are talking about. 3251 if (FunctionsWithBodies.empty()) 3252 return error("Insufficient function protos"); 3253 3254 Function *Fn = FunctionsWithBodies.back(); 3255 FunctionsWithBodies.pop_back(); 3256 3257 // Save the current stream state. 3258 uint64_t CurBit = Stream.GetCurrentBitNo(); 3259 assert( 3260 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3261 "Mismatch between VST and scanned function offsets"); 3262 DeferredFunctionInfo[Fn] = CurBit; 3263 3264 // Skip over the function block for now. 3265 if (Stream.SkipBlock()) 3266 return error("Invalid record"); 3267 return std::error_code(); 3268 } 3269 3270 std::error_code BitcodeReader::globalCleanup() { 3271 // Patch the initializers for globals and aliases up. 3272 resolveGlobalAndIndirectSymbolInits(); 3273 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3274 return error("Malformed global initializer set"); 3275 3276 // Look for intrinsic functions which need to be upgraded at some point 3277 for (Function &F : *TheModule) { 3278 Function *NewFn; 3279 if (UpgradeIntrinsicFunction(&F, NewFn)) 3280 UpgradedIntrinsics[&F] = NewFn; 3281 } 3282 3283 // Look for global variables which need to be renamed. 3284 for (GlobalVariable &GV : TheModule->globals()) 3285 UpgradeGlobalVariable(&GV); 3286 3287 // Force deallocation of memory for these vectors to favor the client that 3288 // want lazy deserialization. 3289 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3290 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3291 IndirectSymbolInits); 3292 return std::error_code(); 3293 } 3294 3295 /// Support for lazy parsing of function bodies. This is required if we 3296 /// either have an old bitcode file without a VST forward declaration record, 3297 /// or if we have an anonymous function being materialized, since anonymous 3298 /// functions do not have a name and are therefore not in the VST. 3299 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3300 Stream.JumpToBit(NextUnreadBit); 3301 3302 if (Stream.AtEndOfStream()) 3303 return error("Could not find function in stream"); 3304 3305 if (!SeenFirstFunctionBody) 3306 return error("Trying to materialize functions before seeing function blocks"); 3307 3308 // An old bitcode file with the symbol table at the end would have 3309 // finished the parse greedily. 3310 assert(SeenValueSymbolTable); 3311 3312 SmallVector<uint64_t, 64> Record; 3313 3314 while (1) { 3315 BitstreamEntry Entry = Stream.advance(); 3316 switch (Entry.Kind) { 3317 default: 3318 return error("Expect SubBlock"); 3319 case BitstreamEntry::SubBlock: 3320 switch (Entry.ID) { 3321 default: 3322 return error("Expect function block"); 3323 case bitc::FUNCTION_BLOCK_ID: 3324 if (std::error_code EC = rememberAndSkipFunctionBody()) 3325 return EC; 3326 NextUnreadBit = Stream.GetCurrentBitNo(); 3327 return std::error_code(); 3328 } 3329 } 3330 } 3331 } 3332 3333 std::error_code BitcodeReader::parseBitcodeVersion() { 3334 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3335 return error("Invalid record"); 3336 3337 // Read all the records. 3338 SmallVector<uint64_t, 64> Record; 3339 while (1) { 3340 BitstreamEntry Entry = Stream.advance(); 3341 3342 switch (Entry.Kind) { 3343 default: 3344 case BitstreamEntry::Error: 3345 return error("Malformed block"); 3346 case BitstreamEntry::EndBlock: 3347 return std::error_code(); 3348 case BitstreamEntry::Record: 3349 // The interesting case. 3350 break; 3351 } 3352 3353 // Read a record. 3354 Record.clear(); 3355 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3356 switch (BitCode) { 3357 default: // Default behavior: reject 3358 return error("Invalid value"); 3359 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3360 // N] 3361 convertToString(Record, 0, ProducerIdentification); 3362 break; 3363 } 3364 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3365 unsigned epoch = (unsigned)Record[0]; 3366 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3367 return error( 3368 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3369 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3370 } 3371 } 3372 } 3373 } 3374 } 3375 3376 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3377 bool ShouldLazyLoadMetadata) { 3378 if (ResumeBit) 3379 Stream.JumpToBit(ResumeBit); 3380 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3381 return error("Invalid record"); 3382 3383 SmallVector<uint64_t, 64> Record; 3384 std::vector<std::string> SectionTable; 3385 std::vector<std::string> GCTable; 3386 3387 // Read all the records for this module. 3388 while (1) { 3389 BitstreamEntry Entry = Stream.advance(); 3390 3391 switch (Entry.Kind) { 3392 case BitstreamEntry::Error: 3393 return error("Malformed block"); 3394 case BitstreamEntry::EndBlock: 3395 return globalCleanup(); 3396 3397 case BitstreamEntry::SubBlock: 3398 switch (Entry.ID) { 3399 default: // Skip unknown content. 3400 if (Stream.SkipBlock()) 3401 return error("Invalid record"); 3402 break; 3403 case bitc::BLOCKINFO_BLOCK_ID: 3404 if (Stream.ReadBlockInfoBlock()) 3405 return error("Malformed block"); 3406 break; 3407 case bitc::PARAMATTR_BLOCK_ID: 3408 if (std::error_code EC = parseAttributeBlock()) 3409 return EC; 3410 break; 3411 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3412 if (std::error_code EC = parseAttributeGroupBlock()) 3413 return EC; 3414 break; 3415 case bitc::TYPE_BLOCK_ID_NEW: 3416 if (std::error_code EC = parseTypeTable()) 3417 return EC; 3418 break; 3419 case bitc::VALUE_SYMTAB_BLOCK_ID: 3420 if (!SeenValueSymbolTable) { 3421 // Either this is an old form VST without function index and an 3422 // associated VST forward declaration record (which would have caused 3423 // the VST to be jumped to and parsed before it was encountered 3424 // normally in the stream), or there were no function blocks to 3425 // trigger an earlier parsing of the VST. 3426 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3427 if (std::error_code EC = parseValueSymbolTable()) 3428 return EC; 3429 SeenValueSymbolTable = true; 3430 } else { 3431 // We must have had a VST forward declaration record, which caused 3432 // the parser to jump to and parse the VST earlier. 3433 assert(VSTOffset > 0); 3434 if (Stream.SkipBlock()) 3435 return error("Invalid record"); 3436 } 3437 break; 3438 case bitc::CONSTANTS_BLOCK_ID: 3439 if (std::error_code EC = parseConstants()) 3440 return EC; 3441 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3442 return EC; 3443 break; 3444 case bitc::METADATA_BLOCK_ID: 3445 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3446 if (std::error_code EC = rememberAndSkipMetadata()) 3447 return EC; 3448 break; 3449 } 3450 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3451 if (std::error_code EC = parseMetadata(true)) 3452 return EC; 3453 break; 3454 case bitc::METADATA_KIND_BLOCK_ID: 3455 if (std::error_code EC = parseMetadataKinds()) 3456 return EC; 3457 break; 3458 case bitc::FUNCTION_BLOCK_ID: 3459 // If this is the first function body we've seen, reverse the 3460 // FunctionsWithBodies list. 3461 if (!SeenFirstFunctionBody) { 3462 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3463 if (std::error_code EC = globalCleanup()) 3464 return EC; 3465 SeenFirstFunctionBody = true; 3466 } 3467 3468 if (VSTOffset > 0) { 3469 // If we have a VST forward declaration record, make sure we 3470 // parse the VST now if we haven't already. It is needed to 3471 // set up the DeferredFunctionInfo vector for lazy reading. 3472 if (!SeenValueSymbolTable) { 3473 if (std::error_code EC = 3474 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3475 return EC; 3476 SeenValueSymbolTable = true; 3477 // Fall through so that we record the NextUnreadBit below. 3478 // This is necessary in case we have an anonymous function that 3479 // is later materialized. Since it will not have a VST entry we 3480 // need to fall back to the lazy parse to find its offset. 3481 } else { 3482 // If we have a VST forward declaration record, but have already 3483 // parsed the VST (just above, when the first function body was 3484 // encountered here), then we are resuming the parse after 3485 // materializing functions. The ResumeBit points to the 3486 // start of the last function block recorded in the 3487 // DeferredFunctionInfo map. Skip it. 3488 if (Stream.SkipBlock()) 3489 return error("Invalid record"); 3490 continue; 3491 } 3492 } 3493 3494 // Support older bitcode files that did not have the function 3495 // index in the VST, nor a VST forward declaration record, as 3496 // well as anonymous functions that do not have VST entries. 3497 // Build the DeferredFunctionInfo vector on the fly. 3498 if (std::error_code EC = rememberAndSkipFunctionBody()) 3499 return EC; 3500 3501 // Suspend parsing when we reach the function bodies. Subsequent 3502 // materialization calls will resume it when necessary. If the bitcode 3503 // file is old, the symbol table will be at the end instead and will not 3504 // have been seen yet. In this case, just finish the parse now. 3505 if (SeenValueSymbolTable) { 3506 NextUnreadBit = Stream.GetCurrentBitNo(); 3507 return std::error_code(); 3508 } 3509 break; 3510 case bitc::USELIST_BLOCK_ID: 3511 if (std::error_code EC = parseUseLists()) 3512 return EC; 3513 break; 3514 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3515 if (std::error_code EC = parseOperandBundleTags()) 3516 return EC; 3517 break; 3518 } 3519 continue; 3520 3521 case BitstreamEntry::Record: 3522 // The interesting case. 3523 break; 3524 } 3525 3526 // Read a record. 3527 auto BitCode = Stream.readRecord(Entry.ID, Record); 3528 switch (BitCode) { 3529 default: break; // Default behavior, ignore unknown content. 3530 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3531 if (Record.size() < 1) 3532 return error("Invalid record"); 3533 // Only version #0 and #1 are supported so far. 3534 unsigned module_version = Record[0]; 3535 switch (module_version) { 3536 default: 3537 return error("Invalid value"); 3538 case 0: 3539 UseRelativeIDs = false; 3540 break; 3541 case 1: 3542 UseRelativeIDs = true; 3543 break; 3544 } 3545 break; 3546 } 3547 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3548 std::string S; 3549 if (convertToString(Record, 0, S)) 3550 return error("Invalid record"); 3551 TheModule->setTargetTriple(S); 3552 break; 3553 } 3554 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3555 std::string S; 3556 if (convertToString(Record, 0, S)) 3557 return error("Invalid record"); 3558 TheModule->setDataLayout(S); 3559 break; 3560 } 3561 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3562 std::string S; 3563 if (convertToString(Record, 0, S)) 3564 return error("Invalid record"); 3565 TheModule->setModuleInlineAsm(S); 3566 break; 3567 } 3568 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3569 // FIXME: Remove in 4.0. 3570 std::string S; 3571 if (convertToString(Record, 0, S)) 3572 return error("Invalid record"); 3573 // Ignore value. 3574 break; 3575 } 3576 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3577 std::string S; 3578 if (convertToString(Record, 0, S)) 3579 return error("Invalid record"); 3580 SectionTable.push_back(S); 3581 break; 3582 } 3583 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3584 std::string S; 3585 if (convertToString(Record, 0, S)) 3586 return error("Invalid record"); 3587 GCTable.push_back(S); 3588 break; 3589 } 3590 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3591 if (Record.size() < 2) 3592 return error("Invalid record"); 3593 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3594 unsigned ComdatNameSize = Record[1]; 3595 std::string ComdatName; 3596 ComdatName.reserve(ComdatNameSize); 3597 for (unsigned i = 0; i != ComdatNameSize; ++i) 3598 ComdatName += (char)Record[2 + i]; 3599 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3600 C->setSelectionKind(SK); 3601 ComdatList.push_back(C); 3602 break; 3603 } 3604 // GLOBALVAR: [pointer type, isconst, initid, 3605 // linkage, alignment, section, visibility, threadlocal, 3606 // unnamed_addr, externally_initialized, dllstorageclass, 3607 // comdat] 3608 case bitc::MODULE_CODE_GLOBALVAR: { 3609 if (Record.size() < 6) 3610 return error("Invalid record"); 3611 Type *Ty = getTypeByID(Record[0]); 3612 if (!Ty) 3613 return error("Invalid record"); 3614 bool isConstant = Record[1] & 1; 3615 bool explicitType = Record[1] & 2; 3616 unsigned AddressSpace; 3617 if (explicitType) { 3618 AddressSpace = Record[1] >> 2; 3619 } else { 3620 if (!Ty->isPointerTy()) 3621 return error("Invalid type for value"); 3622 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3623 Ty = cast<PointerType>(Ty)->getElementType(); 3624 } 3625 3626 uint64_t RawLinkage = Record[3]; 3627 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3628 unsigned Alignment; 3629 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3630 return EC; 3631 std::string Section; 3632 if (Record[5]) { 3633 if (Record[5]-1 >= SectionTable.size()) 3634 return error("Invalid ID"); 3635 Section = SectionTable[Record[5]-1]; 3636 } 3637 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3638 // Local linkage must have default visibility. 3639 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3640 // FIXME: Change to an error if non-default in 4.0. 3641 Visibility = getDecodedVisibility(Record[6]); 3642 3643 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3644 if (Record.size() > 7) 3645 TLM = getDecodedThreadLocalMode(Record[7]); 3646 3647 bool UnnamedAddr = false; 3648 if (Record.size() > 8) 3649 UnnamedAddr = Record[8]; 3650 3651 bool ExternallyInitialized = false; 3652 if (Record.size() > 9) 3653 ExternallyInitialized = Record[9]; 3654 3655 GlobalVariable *NewGV = 3656 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3657 TLM, AddressSpace, ExternallyInitialized); 3658 NewGV->setAlignment(Alignment); 3659 if (!Section.empty()) 3660 NewGV->setSection(Section); 3661 NewGV->setVisibility(Visibility); 3662 NewGV->setUnnamedAddr(UnnamedAddr); 3663 3664 if (Record.size() > 10) 3665 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3666 else 3667 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3668 3669 ValueList.push_back(NewGV); 3670 3671 // Remember which value to use for the global initializer. 3672 if (unsigned InitID = Record[2]) 3673 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3674 3675 if (Record.size() > 11) { 3676 if (unsigned ComdatID = Record[11]) { 3677 if (ComdatID > ComdatList.size()) 3678 return error("Invalid global variable comdat ID"); 3679 NewGV->setComdat(ComdatList[ComdatID - 1]); 3680 } 3681 } else if (hasImplicitComdat(RawLinkage)) { 3682 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3683 } 3684 break; 3685 } 3686 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3687 // alignment, section, visibility, gc, unnamed_addr, 3688 // prologuedata, dllstorageclass, comdat, prefixdata] 3689 case bitc::MODULE_CODE_FUNCTION: { 3690 if (Record.size() < 8) 3691 return error("Invalid record"); 3692 Type *Ty = getTypeByID(Record[0]); 3693 if (!Ty) 3694 return error("Invalid record"); 3695 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3696 Ty = PTy->getElementType(); 3697 auto *FTy = dyn_cast<FunctionType>(Ty); 3698 if (!FTy) 3699 return error("Invalid type for value"); 3700 auto CC = static_cast<CallingConv::ID>(Record[1]); 3701 if (CC & ~CallingConv::MaxID) 3702 return error("Invalid calling convention ID"); 3703 3704 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3705 "", TheModule); 3706 3707 Func->setCallingConv(CC); 3708 bool isProto = Record[2]; 3709 uint64_t RawLinkage = Record[3]; 3710 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3711 Func->setAttributes(getAttributes(Record[4])); 3712 3713 unsigned Alignment; 3714 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3715 return EC; 3716 Func->setAlignment(Alignment); 3717 if (Record[6]) { 3718 if (Record[6]-1 >= SectionTable.size()) 3719 return error("Invalid ID"); 3720 Func->setSection(SectionTable[Record[6]-1]); 3721 } 3722 // Local linkage must have default visibility. 3723 if (!Func->hasLocalLinkage()) 3724 // FIXME: Change to an error if non-default in 4.0. 3725 Func->setVisibility(getDecodedVisibility(Record[7])); 3726 if (Record.size() > 8 && Record[8]) { 3727 if (Record[8]-1 >= GCTable.size()) 3728 return error("Invalid ID"); 3729 Func->setGC(GCTable[Record[8]-1].c_str()); 3730 } 3731 bool UnnamedAddr = false; 3732 if (Record.size() > 9) 3733 UnnamedAddr = Record[9]; 3734 Func->setUnnamedAddr(UnnamedAddr); 3735 if (Record.size() > 10 && Record[10] != 0) 3736 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3737 3738 if (Record.size() > 11) 3739 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3740 else 3741 upgradeDLLImportExportLinkage(Func, RawLinkage); 3742 3743 if (Record.size() > 12) { 3744 if (unsigned ComdatID = Record[12]) { 3745 if (ComdatID > ComdatList.size()) 3746 return error("Invalid function comdat ID"); 3747 Func->setComdat(ComdatList[ComdatID - 1]); 3748 } 3749 } else if (hasImplicitComdat(RawLinkage)) { 3750 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3751 } 3752 3753 if (Record.size() > 13 && Record[13] != 0) 3754 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3755 3756 if (Record.size() > 14 && Record[14] != 0) 3757 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3758 3759 ValueList.push_back(Func); 3760 3761 // If this is a function with a body, remember the prototype we are 3762 // creating now, so that we can match up the body with them later. 3763 if (!isProto) { 3764 Func->setIsMaterializable(true); 3765 FunctionsWithBodies.push_back(Func); 3766 DeferredFunctionInfo[Func] = 0; 3767 } 3768 break; 3769 } 3770 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3771 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3772 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3773 case bitc::MODULE_CODE_IFUNC: 3774 case bitc::MODULE_CODE_ALIAS: 3775 case bitc::MODULE_CODE_ALIAS_OLD: { 3776 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3777 if (Record.size() < (3 + (unsigned)NewRecord)) 3778 return error("Invalid record"); 3779 unsigned OpNum = 0; 3780 Type *Ty = getTypeByID(Record[OpNum++]); 3781 if (!Ty) 3782 return error("Invalid record"); 3783 3784 unsigned AddrSpace; 3785 if (!NewRecord) { 3786 auto *PTy = dyn_cast<PointerType>(Ty); 3787 if (!PTy) 3788 return error("Invalid type for value"); 3789 Ty = PTy->getElementType(); 3790 AddrSpace = PTy->getAddressSpace(); 3791 } else { 3792 AddrSpace = Record[OpNum++]; 3793 } 3794 3795 auto Val = Record[OpNum++]; 3796 auto Linkage = Record[OpNum++]; 3797 GlobalIndirectSymbol *NewGA; 3798 if (BitCode == bitc::MODULE_CODE_ALIAS || 3799 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3800 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3801 "", TheModule); 3802 else 3803 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3804 "", nullptr, TheModule); 3805 // Old bitcode files didn't have visibility field. 3806 // Local linkage must have default visibility. 3807 if (OpNum != Record.size()) { 3808 auto VisInd = OpNum++; 3809 if (!NewGA->hasLocalLinkage()) 3810 // FIXME: Change to an error if non-default in 4.0. 3811 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3812 } 3813 if (OpNum != Record.size()) 3814 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3815 else 3816 upgradeDLLImportExportLinkage(NewGA, Linkage); 3817 if (OpNum != Record.size()) 3818 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3819 if (OpNum != Record.size()) 3820 NewGA->setUnnamedAddr(Record[OpNum++]); 3821 ValueList.push_back(NewGA); 3822 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3823 break; 3824 } 3825 /// MODULE_CODE_PURGEVALS: [numvals] 3826 case bitc::MODULE_CODE_PURGEVALS: 3827 // Trim down the value list to the specified size. 3828 if (Record.size() < 1 || Record[0] > ValueList.size()) 3829 return error("Invalid record"); 3830 ValueList.shrinkTo(Record[0]); 3831 break; 3832 /// MODULE_CODE_VSTOFFSET: [offset] 3833 case bitc::MODULE_CODE_VSTOFFSET: 3834 if (Record.size() < 1) 3835 return error("Invalid record"); 3836 VSTOffset = Record[0]; 3837 break; 3838 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3839 case bitc::MODULE_CODE_SOURCE_FILENAME: 3840 SmallString<128> ValueName; 3841 if (convertToString(Record, 0, ValueName)) 3842 return error("Invalid record"); 3843 TheModule->setSourceFileName(ValueName); 3844 break; 3845 } 3846 Record.clear(); 3847 } 3848 } 3849 3850 /// Helper to read the header common to all bitcode files. 3851 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3852 // Sniff for the signature. 3853 if (Stream.Read(8) != 'B' || 3854 Stream.Read(8) != 'C' || 3855 Stream.Read(4) != 0x0 || 3856 Stream.Read(4) != 0xC || 3857 Stream.Read(4) != 0xE || 3858 Stream.Read(4) != 0xD) 3859 return false; 3860 return true; 3861 } 3862 3863 std::error_code 3864 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3865 Module *M, bool ShouldLazyLoadMetadata) { 3866 TheModule = M; 3867 3868 if (std::error_code EC = initStream(std::move(Streamer))) 3869 return EC; 3870 3871 // Sniff for the signature. 3872 if (!hasValidBitcodeHeader(Stream)) 3873 return error("Invalid bitcode signature"); 3874 3875 // We expect a number of well-defined blocks, though we don't necessarily 3876 // need to understand them all. 3877 while (1) { 3878 if (Stream.AtEndOfStream()) { 3879 // We didn't really read a proper Module. 3880 return error("Malformed IR file"); 3881 } 3882 3883 BitstreamEntry Entry = 3884 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3885 3886 if (Entry.Kind != BitstreamEntry::SubBlock) 3887 return error("Malformed block"); 3888 3889 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3890 parseBitcodeVersion(); 3891 continue; 3892 } 3893 3894 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3895 return parseModule(0, ShouldLazyLoadMetadata); 3896 3897 if (Stream.SkipBlock()) 3898 return error("Invalid record"); 3899 } 3900 } 3901 3902 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3903 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3904 return error("Invalid record"); 3905 3906 SmallVector<uint64_t, 64> Record; 3907 3908 std::string Triple; 3909 // Read all the records for this module. 3910 while (1) { 3911 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3912 3913 switch (Entry.Kind) { 3914 case BitstreamEntry::SubBlock: // Handled for us already. 3915 case BitstreamEntry::Error: 3916 return error("Malformed block"); 3917 case BitstreamEntry::EndBlock: 3918 return Triple; 3919 case BitstreamEntry::Record: 3920 // The interesting case. 3921 break; 3922 } 3923 3924 // Read a record. 3925 switch (Stream.readRecord(Entry.ID, Record)) { 3926 default: break; // Default behavior, ignore unknown content. 3927 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3928 std::string S; 3929 if (convertToString(Record, 0, S)) 3930 return error("Invalid record"); 3931 Triple = S; 3932 break; 3933 } 3934 } 3935 Record.clear(); 3936 } 3937 llvm_unreachable("Exit infinite loop"); 3938 } 3939 3940 ErrorOr<std::string> BitcodeReader::parseTriple() { 3941 if (std::error_code EC = initStream(nullptr)) 3942 return EC; 3943 3944 // Sniff for the signature. 3945 if (!hasValidBitcodeHeader(Stream)) 3946 return error("Invalid bitcode signature"); 3947 3948 // We expect a number of well-defined blocks, though we don't necessarily 3949 // need to understand them all. 3950 while (1) { 3951 BitstreamEntry Entry = Stream.advance(); 3952 3953 switch (Entry.Kind) { 3954 case BitstreamEntry::Error: 3955 return error("Malformed block"); 3956 case BitstreamEntry::EndBlock: 3957 return std::error_code(); 3958 3959 case BitstreamEntry::SubBlock: 3960 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3961 return parseModuleTriple(); 3962 3963 // Ignore other sub-blocks. 3964 if (Stream.SkipBlock()) 3965 return error("Malformed block"); 3966 continue; 3967 3968 case BitstreamEntry::Record: 3969 Stream.skipRecord(Entry.ID); 3970 continue; 3971 } 3972 } 3973 } 3974 3975 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3976 if (std::error_code EC = initStream(nullptr)) 3977 return EC; 3978 3979 // Sniff for the signature. 3980 if (!hasValidBitcodeHeader(Stream)) 3981 return error("Invalid bitcode signature"); 3982 3983 // We expect a number of well-defined blocks, though we don't necessarily 3984 // need to understand them all. 3985 while (1) { 3986 BitstreamEntry Entry = Stream.advance(); 3987 switch (Entry.Kind) { 3988 case BitstreamEntry::Error: 3989 return error("Malformed block"); 3990 case BitstreamEntry::EndBlock: 3991 return std::error_code(); 3992 3993 case BitstreamEntry::SubBlock: 3994 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3995 if (std::error_code EC = parseBitcodeVersion()) 3996 return EC; 3997 return ProducerIdentification; 3998 } 3999 // Ignore other sub-blocks. 4000 if (Stream.SkipBlock()) 4001 return error("Malformed block"); 4002 continue; 4003 case BitstreamEntry::Record: 4004 Stream.skipRecord(Entry.ID); 4005 continue; 4006 } 4007 } 4008 } 4009 4010 /// Parse metadata attachments. 4011 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 4012 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4013 return error("Invalid record"); 4014 4015 SmallVector<uint64_t, 64> Record; 4016 while (1) { 4017 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4018 4019 switch (Entry.Kind) { 4020 case BitstreamEntry::SubBlock: // Handled for us already. 4021 case BitstreamEntry::Error: 4022 return error("Malformed block"); 4023 case BitstreamEntry::EndBlock: 4024 return std::error_code(); 4025 case BitstreamEntry::Record: 4026 // The interesting case. 4027 break; 4028 } 4029 4030 // Read a metadata attachment record. 4031 Record.clear(); 4032 switch (Stream.readRecord(Entry.ID, Record)) { 4033 default: // Default behavior: ignore. 4034 break; 4035 case bitc::METADATA_ATTACHMENT: { 4036 unsigned RecordLength = Record.size(); 4037 if (Record.empty()) 4038 return error("Invalid record"); 4039 if (RecordLength % 2 == 0) { 4040 // A function attachment. 4041 for (unsigned I = 0; I != RecordLength; I += 2) { 4042 auto K = MDKindMap.find(Record[I]); 4043 if (K == MDKindMap.end()) 4044 return error("Invalid ID"); 4045 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4046 if (!MD) 4047 return error("Invalid metadata attachment"); 4048 F.setMetadata(K->second, MD); 4049 } 4050 continue; 4051 } 4052 4053 // An instruction attachment. 4054 Instruction *Inst = InstructionList[Record[0]]; 4055 for (unsigned i = 1; i != RecordLength; i = i+2) { 4056 unsigned Kind = Record[i]; 4057 DenseMap<unsigned, unsigned>::iterator I = 4058 MDKindMap.find(Kind); 4059 if (I == MDKindMap.end()) 4060 return error("Invalid ID"); 4061 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4062 if (isa<LocalAsMetadata>(Node)) 4063 // Drop the attachment. This used to be legal, but there's no 4064 // upgrade path. 4065 break; 4066 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4067 if (!MD) 4068 return error("Invalid metadata attachment"); 4069 4070 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4071 MD = upgradeInstructionLoopAttachment(*MD); 4072 4073 Inst->setMetadata(I->second, MD); 4074 if (I->second == LLVMContext::MD_tbaa) { 4075 InstsWithTBAATag.push_back(Inst); 4076 continue; 4077 } 4078 } 4079 break; 4080 } 4081 } 4082 } 4083 } 4084 4085 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4086 LLVMContext &Context = PtrType->getContext(); 4087 if (!isa<PointerType>(PtrType)) 4088 return error(Context, "Load/Store operand is not a pointer type"); 4089 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4090 4091 if (ValType && ValType != ElemType) 4092 return error(Context, "Explicit load/store type does not match pointee " 4093 "type of pointer operand"); 4094 if (!PointerType::isLoadableOrStorableType(ElemType)) 4095 return error(Context, "Cannot load/store from pointer"); 4096 return std::error_code(); 4097 } 4098 4099 /// Lazily parse the specified function body block. 4100 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4101 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4102 return error("Invalid record"); 4103 4104 // Unexpected unresolved metadata when parsing function. 4105 if (MetadataList.hasFwdRefs()) 4106 return error("Invalid function metadata: incoming forward references"); 4107 4108 InstructionList.clear(); 4109 unsigned ModuleValueListSize = ValueList.size(); 4110 unsigned ModuleMetadataListSize = MetadataList.size(); 4111 4112 // Add all the function arguments to the value table. 4113 for (Argument &I : F->args()) 4114 ValueList.push_back(&I); 4115 4116 unsigned NextValueNo = ValueList.size(); 4117 BasicBlock *CurBB = nullptr; 4118 unsigned CurBBNo = 0; 4119 4120 DebugLoc LastLoc; 4121 auto getLastInstruction = [&]() -> Instruction * { 4122 if (CurBB && !CurBB->empty()) 4123 return &CurBB->back(); 4124 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4125 !FunctionBBs[CurBBNo - 1]->empty()) 4126 return &FunctionBBs[CurBBNo - 1]->back(); 4127 return nullptr; 4128 }; 4129 4130 std::vector<OperandBundleDef> OperandBundles; 4131 4132 // Read all the records. 4133 SmallVector<uint64_t, 64> Record; 4134 while (1) { 4135 BitstreamEntry Entry = Stream.advance(); 4136 4137 switch (Entry.Kind) { 4138 case BitstreamEntry::Error: 4139 return error("Malformed block"); 4140 case BitstreamEntry::EndBlock: 4141 goto OutOfRecordLoop; 4142 4143 case BitstreamEntry::SubBlock: 4144 switch (Entry.ID) { 4145 default: // Skip unknown content. 4146 if (Stream.SkipBlock()) 4147 return error("Invalid record"); 4148 break; 4149 case bitc::CONSTANTS_BLOCK_ID: 4150 if (std::error_code EC = parseConstants()) 4151 return EC; 4152 NextValueNo = ValueList.size(); 4153 break; 4154 case bitc::VALUE_SYMTAB_BLOCK_ID: 4155 if (std::error_code EC = parseValueSymbolTable()) 4156 return EC; 4157 break; 4158 case bitc::METADATA_ATTACHMENT_ID: 4159 if (std::error_code EC = parseMetadataAttachment(*F)) 4160 return EC; 4161 break; 4162 case bitc::METADATA_BLOCK_ID: 4163 if (std::error_code EC = parseMetadata()) 4164 return EC; 4165 break; 4166 case bitc::USELIST_BLOCK_ID: 4167 if (std::error_code EC = parseUseLists()) 4168 return EC; 4169 break; 4170 } 4171 continue; 4172 4173 case BitstreamEntry::Record: 4174 // The interesting case. 4175 break; 4176 } 4177 4178 // Read a record. 4179 Record.clear(); 4180 Instruction *I = nullptr; 4181 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4182 switch (BitCode) { 4183 default: // Default behavior: reject 4184 return error("Invalid value"); 4185 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4186 if (Record.size() < 1 || Record[0] == 0) 4187 return error("Invalid record"); 4188 // Create all the basic blocks for the function. 4189 FunctionBBs.resize(Record[0]); 4190 4191 // See if anything took the address of blocks in this function. 4192 auto BBFRI = BasicBlockFwdRefs.find(F); 4193 if (BBFRI == BasicBlockFwdRefs.end()) { 4194 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4195 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4196 } else { 4197 auto &BBRefs = BBFRI->second; 4198 // Check for invalid basic block references. 4199 if (BBRefs.size() > FunctionBBs.size()) 4200 return error("Invalid ID"); 4201 assert(!BBRefs.empty() && "Unexpected empty array"); 4202 assert(!BBRefs.front() && "Invalid reference to entry block"); 4203 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4204 ++I) 4205 if (I < RE && BBRefs[I]) { 4206 BBRefs[I]->insertInto(F); 4207 FunctionBBs[I] = BBRefs[I]; 4208 } else { 4209 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4210 } 4211 4212 // Erase from the table. 4213 BasicBlockFwdRefs.erase(BBFRI); 4214 } 4215 4216 CurBB = FunctionBBs[0]; 4217 continue; 4218 } 4219 4220 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4221 // This record indicates that the last instruction is at the same 4222 // location as the previous instruction with a location. 4223 I = getLastInstruction(); 4224 4225 if (!I) 4226 return error("Invalid record"); 4227 I->setDebugLoc(LastLoc); 4228 I = nullptr; 4229 continue; 4230 4231 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4232 I = getLastInstruction(); 4233 if (!I || Record.size() < 4) 4234 return error("Invalid record"); 4235 4236 unsigned Line = Record[0], Col = Record[1]; 4237 unsigned ScopeID = Record[2], IAID = Record[3]; 4238 4239 MDNode *Scope = nullptr, *IA = nullptr; 4240 if (ScopeID) { 4241 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4242 if (!Scope) 4243 return error("Invalid record"); 4244 } 4245 if (IAID) { 4246 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4247 if (!IA) 4248 return error("Invalid record"); 4249 } 4250 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4251 I->setDebugLoc(LastLoc); 4252 I = nullptr; 4253 continue; 4254 } 4255 4256 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4257 unsigned OpNum = 0; 4258 Value *LHS, *RHS; 4259 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4260 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4261 OpNum+1 > Record.size()) 4262 return error("Invalid record"); 4263 4264 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4265 if (Opc == -1) 4266 return error("Invalid record"); 4267 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4268 InstructionList.push_back(I); 4269 if (OpNum < Record.size()) { 4270 if (Opc == Instruction::Add || 4271 Opc == Instruction::Sub || 4272 Opc == Instruction::Mul || 4273 Opc == Instruction::Shl) { 4274 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4275 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4276 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4277 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4278 } else if (Opc == Instruction::SDiv || 4279 Opc == Instruction::UDiv || 4280 Opc == Instruction::LShr || 4281 Opc == Instruction::AShr) { 4282 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4283 cast<BinaryOperator>(I)->setIsExact(true); 4284 } else if (isa<FPMathOperator>(I)) { 4285 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4286 if (FMF.any()) 4287 I->setFastMathFlags(FMF); 4288 } 4289 4290 } 4291 break; 4292 } 4293 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4294 unsigned OpNum = 0; 4295 Value *Op; 4296 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4297 OpNum+2 != Record.size()) 4298 return error("Invalid record"); 4299 4300 Type *ResTy = getTypeByID(Record[OpNum]); 4301 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4302 if (Opc == -1 || !ResTy) 4303 return error("Invalid record"); 4304 Instruction *Temp = nullptr; 4305 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4306 if (Temp) { 4307 InstructionList.push_back(Temp); 4308 CurBB->getInstList().push_back(Temp); 4309 } 4310 } else { 4311 auto CastOp = (Instruction::CastOps)Opc; 4312 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4313 return error("Invalid cast"); 4314 I = CastInst::Create(CastOp, Op, ResTy); 4315 } 4316 InstructionList.push_back(I); 4317 break; 4318 } 4319 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4320 case bitc::FUNC_CODE_INST_GEP_OLD: 4321 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4322 unsigned OpNum = 0; 4323 4324 Type *Ty; 4325 bool InBounds; 4326 4327 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4328 InBounds = Record[OpNum++]; 4329 Ty = getTypeByID(Record[OpNum++]); 4330 } else { 4331 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4332 Ty = nullptr; 4333 } 4334 4335 Value *BasePtr; 4336 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4337 return error("Invalid record"); 4338 4339 if (!Ty) 4340 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4341 ->getElementType(); 4342 else if (Ty != 4343 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4344 ->getElementType()) 4345 return error( 4346 "Explicit gep type does not match pointee type of pointer operand"); 4347 4348 SmallVector<Value*, 16> GEPIdx; 4349 while (OpNum != Record.size()) { 4350 Value *Op; 4351 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4352 return error("Invalid record"); 4353 GEPIdx.push_back(Op); 4354 } 4355 4356 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4357 4358 InstructionList.push_back(I); 4359 if (InBounds) 4360 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4361 break; 4362 } 4363 4364 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4365 // EXTRACTVAL: [opty, opval, n x indices] 4366 unsigned OpNum = 0; 4367 Value *Agg; 4368 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4369 return error("Invalid record"); 4370 4371 unsigned RecSize = Record.size(); 4372 if (OpNum == RecSize) 4373 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4374 4375 SmallVector<unsigned, 4> EXTRACTVALIdx; 4376 Type *CurTy = Agg->getType(); 4377 for (; OpNum != RecSize; ++OpNum) { 4378 bool IsArray = CurTy->isArrayTy(); 4379 bool IsStruct = CurTy->isStructTy(); 4380 uint64_t Index = Record[OpNum]; 4381 4382 if (!IsStruct && !IsArray) 4383 return error("EXTRACTVAL: Invalid type"); 4384 if ((unsigned)Index != Index) 4385 return error("Invalid value"); 4386 if (IsStruct && Index >= CurTy->subtypes().size()) 4387 return error("EXTRACTVAL: Invalid struct index"); 4388 if (IsArray && Index >= CurTy->getArrayNumElements()) 4389 return error("EXTRACTVAL: Invalid array index"); 4390 EXTRACTVALIdx.push_back((unsigned)Index); 4391 4392 if (IsStruct) 4393 CurTy = CurTy->subtypes()[Index]; 4394 else 4395 CurTy = CurTy->subtypes()[0]; 4396 } 4397 4398 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4399 InstructionList.push_back(I); 4400 break; 4401 } 4402 4403 case bitc::FUNC_CODE_INST_INSERTVAL: { 4404 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4405 unsigned OpNum = 0; 4406 Value *Agg; 4407 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4408 return error("Invalid record"); 4409 Value *Val; 4410 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4411 return error("Invalid record"); 4412 4413 unsigned RecSize = Record.size(); 4414 if (OpNum == RecSize) 4415 return error("INSERTVAL: Invalid instruction with 0 indices"); 4416 4417 SmallVector<unsigned, 4> INSERTVALIdx; 4418 Type *CurTy = Agg->getType(); 4419 for (; OpNum != RecSize; ++OpNum) { 4420 bool IsArray = CurTy->isArrayTy(); 4421 bool IsStruct = CurTy->isStructTy(); 4422 uint64_t Index = Record[OpNum]; 4423 4424 if (!IsStruct && !IsArray) 4425 return error("INSERTVAL: Invalid type"); 4426 if ((unsigned)Index != Index) 4427 return error("Invalid value"); 4428 if (IsStruct && Index >= CurTy->subtypes().size()) 4429 return error("INSERTVAL: Invalid struct index"); 4430 if (IsArray && Index >= CurTy->getArrayNumElements()) 4431 return error("INSERTVAL: Invalid array index"); 4432 4433 INSERTVALIdx.push_back((unsigned)Index); 4434 if (IsStruct) 4435 CurTy = CurTy->subtypes()[Index]; 4436 else 4437 CurTy = CurTy->subtypes()[0]; 4438 } 4439 4440 if (CurTy != Val->getType()) 4441 return error("Inserted value type doesn't match aggregate type"); 4442 4443 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4444 InstructionList.push_back(I); 4445 break; 4446 } 4447 4448 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4449 // obsolete form of select 4450 // handles select i1 ... in old bitcode 4451 unsigned OpNum = 0; 4452 Value *TrueVal, *FalseVal, *Cond; 4453 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4454 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4455 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4456 return error("Invalid record"); 4457 4458 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4459 InstructionList.push_back(I); 4460 break; 4461 } 4462 4463 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4464 // new form of select 4465 // handles select i1 or select [N x i1] 4466 unsigned OpNum = 0; 4467 Value *TrueVal, *FalseVal, *Cond; 4468 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4469 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4470 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4471 return error("Invalid record"); 4472 4473 // select condition can be either i1 or [N x i1] 4474 if (VectorType* vector_type = 4475 dyn_cast<VectorType>(Cond->getType())) { 4476 // expect <n x i1> 4477 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4478 return error("Invalid type for value"); 4479 } else { 4480 // expect i1 4481 if (Cond->getType() != Type::getInt1Ty(Context)) 4482 return error("Invalid type for value"); 4483 } 4484 4485 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4486 InstructionList.push_back(I); 4487 break; 4488 } 4489 4490 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4491 unsigned OpNum = 0; 4492 Value *Vec, *Idx; 4493 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4494 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4495 return error("Invalid record"); 4496 if (!Vec->getType()->isVectorTy()) 4497 return error("Invalid type for value"); 4498 I = ExtractElementInst::Create(Vec, Idx); 4499 InstructionList.push_back(I); 4500 break; 4501 } 4502 4503 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4504 unsigned OpNum = 0; 4505 Value *Vec, *Elt, *Idx; 4506 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4507 return error("Invalid record"); 4508 if (!Vec->getType()->isVectorTy()) 4509 return error("Invalid type for value"); 4510 if (popValue(Record, OpNum, NextValueNo, 4511 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4512 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4513 return error("Invalid record"); 4514 I = InsertElementInst::Create(Vec, Elt, Idx); 4515 InstructionList.push_back(I); 4516 break; 4517 } 4518 4519 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4520 unsigned OpNum = 0; 4521 Value *Vec1, *Vec2, *Mask; 4522 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4523 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4524 return error("Invalid record"); 4525 4526 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4527 return error("Invalid record"); 4528 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4529 return error("Invalid type for value"); 4530 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4531 InstructionList.push_back(I); 4532 break; 4533 } 4534 4535 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4536 // Old form of ICmp/FCmp returning bool 4537 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4538 // both legal on vectors but had different behaviour. 4539 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4540 // FCmp/ICmp returning bool or vector of bool 4541 4542 unsigned OpNum = 0; 4543 Value *LHS, *RHS; 4544 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4545 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4546 return error("Invalid record"); 4547 4548 unsigned PredVal = Record[OpNum]; 4549 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4550 FastMathFlags FMF; 4551 if (IsFP && Record.size() > OpNum+1) 4552 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4553 4554 if (OpNum+1 != Record.size()) 4555 return error("Invalid record"); 4556 4557 if (LHS->getType()->isFPOrFPVectorTy()) 4558 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4559 else 4560 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4561 4562 if (FMF.any()) 4563 I->setFastMathFlags(FMF); 4564 InstructionList.push_back(I); 4565 break; 4566 } 4567 4568 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4569 { 4570 unsigned Size = Record.size(); 4571 if (Size == 0) { 4572 I = ReturnInst::Create(Context); 4573 InstructionList.push_back(I); 4574 break; 4575 } 4576 4577 unsigned OpNum = 0; 4578 Value *Op = nullptr; 4579 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4580 return error("Invalid record"); 4581 if (OpNum != Record.size()) 4582 return error("Invalid record"); 4583 4584 I = ReturnInst::Create(Context, Op); 4585 InstructionList.push_back(I); 4586 break; 4587 } 4588 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4589 if (Record.size() != 1 && Record.size() != 3) 4590 return error("Invalid record"); 4591 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4592 if (!TrueDest) 4593 return error("Invalid record"); 4594 4595 if (Record.size() == 1) { 4596 I = BranchInst::Create(TrueDest); 4597 InstructionList.push_back(I); 4598 } 4599 else { 4600 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4601 Value *Cond = getValue(Record, 2, NextValueNo, 4602 Type::getInt1Ty(Context)); 4603 if (!FalseDest || !Cond) 4604 return error("Invalid record"); 4605 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4606 InstructionList.push_back(I); 4607 } 4608 break; 4609 } 4610 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4611 if (Record.size() != 1 && Record.size() != 2) 4612 return error("Invalid record"); 4613 unsigned Idx = 0; 4614 Value *CleanupPad = 4615 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4616 if (!CleanupPad) 4617 return error("Invalid record"); 4618 BasicBlock *UnwindDest = nullptr; 4619 if (Record.size() == 2) { 4620 UnwindDest = getBasicBlock(Record[Idx++]); 4621 if (!UnwindDest) 4622 return error("Invalid record"); 4623 } 4624 4625 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4626 InstructionList.push_back(I); 4627 break; 4628 } 4629 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4630 if (Record.size() != 2) 4631 return error("Invalid record"); 4632 unsigned Idx = 0; 4633 Value *CatchPad = 4634 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4635 if (!CatchPad) 4636 return error("Invalid record"); 4637 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4638 if (!BB) 4639 return error("Invalid record"); 4640 4641 I = CatchReturnInst::Create(CatchPad, BB); 4642 InstructionList.push_back(I); 4643 break; 4644 } 4645 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4646 // We must have, at minimum, the outer scope and the number of arguments. 4647 if (Record.size() < 2) 4648 return error("Invalid record"); 4649 4650 unsigned Idx = 0; 4651 4652 Value *ParentPad = 4653 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4654 4655 unsigned NumHandlers = Record[Idx++]; 4656 4657 SmallVector<BasicBlock *, 2> Handlers; 4658 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4659 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4660 if (!BB) 4661 return error("Invalid record"); 4662 Handlers.push_back(BB); 4663 } 4664 4665 BasicBlock *UnwindDest = nullptr; 4666 if (Idx + 1 == Record.size()) { 4667 UnwindDest = getBasicBlock(Record[Idx++]); 4668 if (!UnwindDest) 4669 return error("Invalid record"); 4670 } 4671 4672 if (Record.size() != Idx) 4673 return error("Invalid record"); 4674 4675 auto *CatchSwitch = 4676 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4677 for (BasicBlock *Handler : Handlers) 4678 CatchSwitch->addHandler(Handler); 4679 I = CatchSwitch; 4680 InstructionList.push_back(I); 4681 break; 4682 } 4683 case bitc::FUNC_CODE_INST_CATCHPAD: 4684 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4685 // We must have, at minimum, the outer scope and the number of arguments. 4686 if (Record.size() < 2) 4687 return error("Invalid record"); 4688 4689 unsigned Idx = 0; 4690 4691 Value *ParentPad = 4692 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4693 4694 unsigned NumArgOperands = Record[Idx++]; 4695 4696 SmallVector<Value *, 2> Args; 4697 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4698 Value *Val; 4699 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4700 return error("Invalid record"); 4701 Args.push_back(Val); 4702 } 4703 4704 if (Record.size() != Idx) 4705 return error("Invalid record"); 4706 4707 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4708 I = CleanupPadInst::Create(ParentPad, Args); 4709 else 4710 I = CatchPadInst::Create(ParentPad, Args); 4711 InstructionList.push_back(I); 4712 break; 4713 } 4714 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4715 // Check magic 4716 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4717 // "New" SwitchInst format with case ranges. The changes to write this 4718 // format were reverted but we still recognize bitcode that uses it. 4719 // Hopefully someday we will have support for case ranges and can use 4720 // this format again. 4721 4722 Type *OpTy = getTypeByID(Record[1]); 4723 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4724 4725 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4726 BasicBlock *Default = getBasicBlock(Record[3]); 4727 if (!OpTy || !Cond || !Default) 4728 return error("Invalid record"); 4729 4730 unsigned NumCases = Record[4]; 4731 4732 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4733 InstructionList.push_back(SI); 4734 4735 unsigned CurIdx = 5; 4736 for (unsigned i = 0; i != NumCases; ++i) { 4737 SmallVector<ConstantInt*, 1> CaseVals; 4738 unsigned NumItems = Record[CurIdx++]; 4739 for (unsigned ci = 0; ci != NumItems; ++ci) { 4740 bool isSingleNumber = Record[CurIdx++]; 4741 4742 APInt Low; 4743 unsigned ActiveWords = 1; 4744 if (ValueBitWidth > 64) 4745 ActiveWords = Record[CurIdx++]; 4746 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4747 ValueBitWidth); 4748 CurIdx += ActiveWords; 4749 4750 if (!isSingleNumber) { 4751 ActiveWords = 1; 4752 if (ValueBitWidth > 64) 4753 ActiveWords = Record[CurIdx++]; 4754 APInt High = readWideAPInt( 4755 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4756 CurIdx += ActiveWords; 4757 4758 // FIXME: It is not clear whether values in the range should be 4759 // compared as signed or unsigned values. The partially 4760 // implemented changes that used this format in the past used 4761 // unsigned comparisons. 4762 for ( ; Low.ule(High); ++Low) 4763 CaseVals.push_back(ConstantInt::get(Context, Low)); 4764 } else 4765 CaseVals.push_back(ConstantInt::get(Context, Low)); 4766 } 4767 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4768 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4769 cve = CaseVals.end(); cvi != cve; ++cvi) 4770 SI->addCase(*cvi, DestBB); 4771 } 4772 I = SI; 4773 break; 4774 } 4775 4776 // Old SwitchInst format without case ranges. 4777 4778 if (Record.size() < 3 || (Record.size() & 1) == 0) 4779 return error("Invalid record"); 4780 Type *OpTy = getTypeByID(Record[0]); 4781 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4782 BasicBlock *Default = getBasicBlock(Record[2]); 4783 if (!OpTy || !Cond || !Default) 4784 return error("Invalid record"); 4785 unsigned NumCases = (Record.size()-3)/2; 4786 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4787 InstructionList.push_back(SI); 4788 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4789 ConstantInt *CaseVal = 4790 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4791 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4792 if (!CaseVal || !DestBB) { 4793 delete SI; 4794 return error("Invalid record"); 4795 } 4796 SI->addCase(CaseVal, DestBB); 4797 } 4798 I = SI; 4799 break; 4800 } 4801 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4802 if (Record.size() < 2) 4803 return error("Invalid record"); 4804 Type *OpTy = getTypeByID(Record[0]); 4805 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4806 if (!OpTy || !Address) 4807 return error("Invalid record"); 4808 unsigned NumDests = Record.size()-2; 4809 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4810 InstructionList.push_back(IBI); 4811 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4812 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4813 IBI->addDestination(DestBB); 4814 } else { 4815 delete IBI; 4816 return error("Invalid record"); 4817 } 4818 } 4819 I = IBI; 4820 break; 4821 } 4822 4823 case bitc::FUNC_CODE_INST_INVOKE: { 4824 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4825 if (Record.size() < 4) 4826 return error("Invalid record"); 4827 unsigned OpNum = 0; 4828 AttributeSet PAL = getAttributes(Record[OpNum++]); 4829 unsigned CCInfo = Record[OpNum++]; 4830 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4831 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4832 4833 FunctionType *FTy = nullptr; 4834 if (CCInfo >> 13 & 1 && 4835 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4836 return error("Explicit invoke type is not a function type"); 4837 4838 Value *Callee; 4839 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4840 return error("Invalid record"); 4841 4842 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4843 if (!CalleeTy) 4844 return error("Callee is not a pointer"); 4845 if (!FTy) { 4846 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4847 if (!FTy) 4848 return error("Callee is not of pointer to function type"); 4849 } else if (CalleeTy->getElementType() != FTy) 4850 return error("Explicit invoke type does not match pointee type of " 4851 "callee operand"); 4852 if (Record.size() < FTy->getNumParams() + OpNum) 4853 return error("Insufficient operands to call"); 4854 4855 SmallVector<Value*, 16> Ops; 4856 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4857 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4858 FTy->getParamType(i))); 4859 if (!Ops.back()) 4860 return error("Invalid record"); 4861 } 4862 4863 if (!FTy->isVarArg()) { 4864 if (Record.size() != OpNum) 4865 return error("Invalid record"); 4866 } else { 4867 // Read type/value pairs for varargs params. 4868 while (OpNum != Record.size()) { 4869 Value *Op; 4870 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4871 return error("Invalid record"); 4872 Ops.push_back(Op); 4873 } 4874 } 4875 4876 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4877 OperandBundles.clear(); 4878 InstructionList.push_back(I); 4879 cast<InvokeInst>(I)->setCallingConv( 4880 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4881 cast<InvokeInst>(I)->setAttributes(PAL); 4882 break; 4883 } 4884 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4885 unsigned Idx = 0; 4886 Value *Val = nullptr; 4887 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4888 return error("Invalid record"); 4889 I = ResumeInst::Create(Val); 4890 InstructionList.push_back(I); 4891 break; 4892 } 4893 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4894 I = new UnreachableInst(Context); 4895 InstructionList.push_back(I); 4896 break; 4897 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4898 if (Record.size() < 1 || ((Record.size()-1)&1)) 4899 return error("Invalid record"); 4900 Type *Ty = getTypeByID(Record[0]); 4901 if (!Ty) 4902 return error("Invalid record"); 4903 4904 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4905 InstructionList.push_back(PN); 4906 4907 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4908 Value *V; 4909 // With the new function encoding, it is possible that operands have 4910 // negative IDs (for forward references). Use a signed VBR 4911 // representation to keep the encoding small. 4912 if (UseRelativeIDs) 4913 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4914 else 4915 V = getValue(Record, 1+i, NextValueNo, Ty); 4916 BasicBlock *BB = getBasicBlock(Record[2+i]); 4917 if (!V || !BB) 4918 return error("Invalid record"); 4919 PN->addIncoming(V, BB); 4920 } 4921 I = PN; 4922 break; 4923 } 4924 4925 case bitc::FUNC_CODE_INST_LANDINGPAD: 4926 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4927 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4928 unsigned Idx = 0; 4929 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4930 if (Record.size() < 3) 4931 return error("Invalid record"); 4932 } else { 4933 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4934 if (Record.size() < 4) 4935 return error("Invalid record"); 4936 } 4937 Type *Ty = getTypeByID(Record[Idx++]); 4938 if (!Ty) 4939 return error("Invalid record"); 4940 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4941 Value *PersFn = nullptr; 4942 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4943 return error("Invalid record"); 4944 4945 if (!F->hasPersonalityFn()) 4946 F->setPersonalityFn(cast<Constant>(PersFn)); 4947 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4948 return error("Personality function mismatch"); 4949 } 4950 4951 bool IsCleanup = !!Record[Idx++]; 4952 unsigned NumClauses = Record[Idx++]; 4953 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4954 LP->setCleanup(IsCleanup); 4955 for (unsigned J = 0; J != NumClauses; ++J) { 4956 LandingPadInst::ClauseType CT = 4957 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4958 Value *Val; 4959 4960 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4961 delete LP; 4962 return error("Invalid record"); 4963 } 4964 4965 assert((CT != LandingPadInst::Catch || 4966 !isa<ArrayType>(Val->getType())) && 4967 "Catch clause has a invalid type!"); 4968 assert((CT != LandingPadInst::Filter || 4969 isa<ArrayType>(Val->getType())) && 4970 "Filter clause has invalid type!"); 4971 LP->addClause(cast<Constant>(Val)); 4972 } 4973 4974 I = LP; 4975 InstructionList.push_back(I); 4976 break; 4977 } 4978 4979 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4980 if (Record.size() != 4) 4981 return error("Invalid record"); 4982 uint64_t AlignRecord = Record[3]; 4983 const uint64_t InAllocaMask = uint64_t(1) << 5; 4984 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4985 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4986 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4987 SwiftErrorMask; 4988 bool InAlloca = AlignRecord & InAllocaMask; 4989 bool SwiftError = AlignRecord & SwiftErrorMask; 4990 Type *Ty = getTypeByID(Record[0]); 4991 if ((AlignRecord & ExplicitTypeMask) == 0) { 4992 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4993 if (!PTy) 4994 return error("Old-style alloca with a non-pointer type"); 4995 Ty = PTy->getElementType(); 4996 } 4997 Type *OpTy = getTypeByID(Record[1]); 4998 Value *Size = getFnValueByID(Record[2], OpTy); 4999 unsigned Align; 5000 if (std::error_code EC = 5001 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5002 return EC; 5003 } 5004 if (!Ty || !Size) 5005 return error("Invalid record"); 5006 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5007 AI->setUsedWithInAlloca(InAlloca); 5008 AI->setSwiftError(SwiftError); 5009 I = AI; 5010 InstructionList.push_back(I); 5011 break; 5012 } 5013 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5014 unsigned OpNum = 0; 5015 Value *Op; 5016 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5017 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5018 return error("Invalid record"); 5019 5020 Type *Ty = nullptr; 5021 if (OpNum + 3 == Record.size()) 5022 Ty = getTypeByID(Record[OpNum++]); 5023 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5024 return EC; 5025 if (!Ty) 5026 Ty = cast<PointerType>(Op->getType())->getElementType(); 5027 5028 unsigned Align; 5029 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5030 return EC; 5031 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5032 5033 InstructionList.push_back(I); 5034 break; 5035 } 5036 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5037 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5038 unsigned OpNum = 0; 5039 Value *Op; 5040 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5041 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5042 return error("Invalid record"); 5043 5044 Type *Ty = nullptr; 5045 if (OpNum + 5 == Record.size()) 5046 Ty = getTypeByID(Record[OpNum++]); 5047 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5048 return EC; 5049 if (!Ty) 5050 Ty = cast<PointerType>(Op->getType())->getElementType(); 5051 5052 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5053 if (Ordering == AtomicOrdering::NotAtomic || 5054 Ordering == AtomicOrdering::Release || 5055 Ordering == AtomicOrdering::AcquireRelease) 5056 return error("Invalid record"); 5057 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5058 return error("Invalid record"); 5059 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5060 5061 unsigned Align; 5062 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5063 return EC; 5064 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5065 5066 InstructionList.push_back(I); 5067 break; 5068 } 5069 case bitc::FUNC_CODE_INST_STORE: 5070 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5071 unsigned OpNum = 0; 5072 Value *Val, *Ptr; 5073 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5074 (BitCode == bitc::FUNC_CODE_INST_STORE 5075 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5076 : popValue(Record, OpNum, NextValueNo, 5077 cast<PointerType>(Ptr->getType())->getElementType(), 5078 Val)) || 5079 OpNum + 2 != Record.size()) 5080 return error("Invalid record"); 5081 5082 if (std::error_code EC = 5083 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5084 return EC; 5085 unsigned Align; 5086 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5087 return EC; 5088 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5089 InstructionList.push_back(I); 5090 break; 5091 } 5092 case bitc::FUNC_CODE_INST_STOREATOMIC: 5093 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5094 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5095 unsigned OpNum = 0; 5096 Value *Val, *Ptr; 5097 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5098 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5099 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5100 : popValue(Record, OpNum, NextValueNo, 5101 cast<PointerType>(Ptr->getType())->getElementType(), 5102 Val)) || 5103 OpNum + 4 != Record.size()) 5104 return error("Invalid record"); 5105 5106 if (std::error_code EC = 5107 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5108 return EC; 5109 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5110 if (Ordering == AtomicOrdering::NotAtomic || 5111 Ordering == AtomicOrdering::Acquire || 5112 Ordering == AtomicOrdering::AcquireRelease) 5113 return error("Invalid record"); 5114 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5115 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5116 return error("Invalid record"); 5117 5118 unsigned Align; 5119 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5120 return EC; 5121 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5122 InstructionList.push_back(I); 5123 break; 5124 } 5125 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5126 case bitc::FUNC_CODE_INST_CMPXCHG: { 5127 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5128 // failureordering?, isweak?] 5129 unsigned OpNum = 0; 5130 Value *Ptr, *Cmp, *New; 5131 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5132 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5133 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5134 : popValue(Record, OpNum, NextValueNo, 5135 cast<PointerType>(Ptr->getType())->getElementType(), 5136 Cmp)) || 5137 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5138 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5139 return error("Invalid record"); 5140 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5141 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5142 SuccessOrdering == AtomicOrdering::Unordered) 5143 return error("Invalid record"); 5144 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5145 5146 if (std::error_code EC = 5147 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5148 return EC; 5149 AtomicOrdering FailureOrdering; 5150 if (Record.size() < 7) 5151 FailureOrdering = 5152 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5153 else 5154 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5155 5156 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5157 SynchScope); 5158 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5159 5160 if (Record.size() < 8) { 5161 // Before weak cmpxchgs existed, the instruction simply returned the 5162 // value loaded from memory, so bitcode files from that era will be 5163 // expecting the first component of a modern cmpxchg. 5164 CurBB->getInstList().push_back(I); 5165 I = ExtractValueInst::Create(I, 0); 5166 } else { 5167 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5168 } 5169 5170 InstructionList.push_back(I); 5171 break; 5172 } 5173 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5174 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5175 unsigned OpNum = 0; 5176 Value *Ptr, *Val; 5177 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5178 popValue(Record, OpNum, NextValueNo, 5179 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5180 OpNum+4 != Record.size()) 5181 return error("Invalid record"); 5182 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5183 if (Operation < AtomicRMWInst::FIRST_BINOP || 5184 Operation > AtomicRMWInst::LAST_BINOP) 5185 return error("Invalid record"); 5186 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5187 if (Ordering == AtomicOrdering::NotAtomic || 5188 Ordering == AtomicOrdering::Unordered) 5189 return error("Invalid record"); 5190 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5191 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5192 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5193 InstructionList.push_back(I); 5194 break; 5195 } 5196 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5197 if (2 != Record.size()) 5198 return error("Invalid record"); 5199 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5200 if (Ordering == AtomicOrdering::NotAtomic || 5201 Ordering == AtomicOrdering::Unordered || 5202 Ordering == AtomicOrdering::Monotonic) 5203 return error("Invalid record"); 5204 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5205 I = new FenceInst(Context, Ordering, SynchScope); 5206 InstructionList.push_back(I); 5207 break; 5208 } 5209 case bitc::FUNC_CODE_INST_CALL: { 5210 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5211 if (Record.size() < 3) 5212 return error("Invalid record"); 5213 5214 unsigned OpNum = 0; 5215 AttributeSet PAL = getAttributes(Record[OpNum++]); 5216 unsigned CCInfo = Record[OpNum++]; 5217 5218 FastMathFlags FMF; 5219 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5220 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5221 if (!FMF.any()) 5222 return error("Fast math flags indicator set for call with no FMF"); 5223 } 5224 5225 FunctionType *FTy = nullptr; 5226 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5227 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5228 return error("Explicit call type is not a function type"); 5229 5230 Value *Callee; 5231 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5232 return error("Invalid record"); 5233 5234 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5235 if (!OpTy) 5236 return error("Callee is not a pointer type"); 5237 if (!FTy) { 5238 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5239 if (!FTy) 5240 return error("Callee is not of pointer to function type"); 5241 } else if (OpTy->getElementType() != FTy) 5242 return error("Explicit call type does not match pointee type of " 5243 "callee operand"); 5244 if (Record.size() < FTy->getNumParams() + OpNum) 5245 return error("Insufficient operands to call"); 5246 5247 SmallVector<Value*, 16> Args; 5248 // Read the fixed params. 5249 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5250 if (FTy->getParamType(i)->isLabelTy()) 5251 Args.push_back(getBasicBlock(Record[OpNum])); 5252 else 5253 Args.push_back(getValue(Record, OpNum, NextValueNo, 5254 FTy->getParamType(i))); 5255 if (!Args.back()) 5256 return error("Invalid record"); 5257 } 5258 5259 // Read type/value pairs for varargs params. 5260 if (!FTy->isVarArg()) { 5261 if (OpNum != Record.size()) 5262 return error("Invalid record"); 5263 } else { 5264 while (OpNum != Record.size()) { 5265 Value *Op; 5266 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5267 return error("Invalid record"); 5268 Args.push_back(Op); 5269 } 5270 } 5271 5272 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5273 OperandBundles.clear(); 5274 InstructionList.push_back(I); 5275 cast<CallInst>(I)->setCallingConv( 5276 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5277 CallInst::TailCallKind TCK = CallInst::TCK_None; 5278 if (CCInfo & 1 << bitc::CALL_TAIL) 5279 TCK = CallInst::TCK_Tail; 5280 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5281 TCK = CallInst::TCK_MustTail; 5282 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5283 TCK = CallInst::TCK_NoTail; 5284 cast<CallInst>(I)->setTailCallKind(TCK); 5285 cast<CallInst>(I)->setAttributes(PAL); 5286 if (FMF.any()) { 5287 if (!isa<FPMathOperator>(I)) 5288 return error("Fast-math-flags specified for call without " 5289 "floating-point scalar or vector return type"); 5290 I->setFastMathFlags(FMF); 5291 } 5292 break; 5293 } 5294 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5295 if (Record.size() < 3) 5296 return error("Invalid record"); 5297 Type *OpTy = getTypeByID(Record[0]); 5298 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5299 Type *ResTy = getTypeByID(Record[2]); 5300 if (!OpTy || !Op || !ResTy) 5301 return error("Invalid record"); 5302 I = new VAArgInst(Op, ResTy); 5303 InstructionList.push_back(I); 5304 break; 5305 } 5306 5307 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5308 // A call or an invoke can be optionally prefixed with some variable 5309 // number of operand bundle blocks. These blocks are read into 5310 // OperandBundles and consumed at the next call or invoke instruction. 5311 5312 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5313 return error("Invalid record"); 5314 5315 std::vector<Value *> Inputs; 5316 5317 unsigned OpNum = 1; 5318 while (OpNum != Record.size()) { 5319 Value *Op; 5320 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5321 return error("Invalid record"); 5322 Inputs.push_back(Op); 5323 } 5324 5325 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5326 continue; 5327 } 5328 } 5329 5330 // Add instruction to end of current BB. If there is no current BB, reject 5331 // this file. 5332 if (!CurBB) { 5333 delete I; 5334 return error("Invalid instruction with no BB"); 5335 } 5336 if (!OperandBundles.empty()) { 5337 delete I; 5338 return error("Operand bundles found with no consumer"); 5339 } 5340 CurBB->getInstList().push_back(I); 5341 5342 // If this was a terminator instruction, move to the next block. 5343 if (isa<TerminatorInst>(I)) { 5344 ++CurBBNo; 5345 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5346 } 5347 5348 // Non-void values get registered in the value table for future use. 5349 if (I && !I->getType()->isVoidTy()) 5350 ValueList.assignValue(I, NextValueNo++); 5351 } 5352 5353 OutOfRecordLoop: 5354 5355 if (!OperandBundles.empty()) 5356 return error("Operand bundles found with no consumer"); 5357 5358 // Check the function list for unresolved values. 5359 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5360 if (!A->getParent()) { 5361 // We found at least one unresolved value. Nuke them all to avoid leaks. 5362 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5363 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5364 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5365 delete A; 5366 } 5367 } 5368 return error("Never resolved value found in function"); 5369 } 5370 } 5371 5372 // Unexpected unresolved metadata about to be dropped. 5373 if (MetadataList.hasFwdRefs()) 5374 return error("Invalid function metadata: outgoing forward refs"); 5375 5376 // Trim the value list down to the size it was before we parsed this function. 5377 ValueList.shrinkTo(ModuleValueListSize); 5378 MetadataList.shrinkTo(ModuleMetadataListSize); 5379 std::vector<BasicBlock*>().swap(FunctionBBs); 5380 return std::error_code(); 5381 } 5382 5383 /// Find the function body in the bitcode stream 5384 std::error_code BitcodeReader::findFunctionInStream( 5385 Function *F, 5386 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5387 while (DeferredFunctionInfoIterator->second == 0) { 5388 // This is the fallback handling for the old format bitcode that 5389 // didn't contain the function index in the VST, or when we have 5390 // an anonymous function which would not have a VST entry. 5391 // Assert that we have one of those two cases. 5392 assert(VSTOffset == 0 || !F->hasName()); 5393 // Parse the next body in the stream and set its position in the 5394 // DeferredFunctionInfo map. 5395 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5396 return EC; 5397 } 5398 return std::error_code(); 5399 } 5400 5401 //===----------------------------------------------------------------------===// 5402 // GVMaterializer implementation 5403 //===----------------------------------------------------------------------===// 5404 5405 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5406 5407 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5408 if (std::error_code EC = materializeMetadata()) 5409 return EC; 5410 5411 Function *F = dyn_cast<Function>(GV); 5412 // If it's not a function or is already material, ignore the request. 5413 if (!F || !F->isMaterializable()) 5414 return std::error_code(); 5415 5416 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5417 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5418 // If its position is recorded as 0, its body is somewhere in the stream 5419 // but we haven't seen it yet. 5420 if (DFII->second == 0) 5421 if (std::error_code EC = findFunctionInStream(F, DFII)) 5422 return EC; 5423 5424 // Move the bit stream to the saved position of the deferred function body. 5425 Stream.JumpToBit(DFII->second); 5426 5427 if (std::error_code EC = parseFunctionBody(F)) 5428 return EC; 5429 F->setIsMaterializable(false); 5430 5431 if (StripDebugInfo) 5432 stripDebugInfo(*F); 5433 5434 // Upgrade any old intrinsic calls in the function. 5435 for (auto &I : UpgradedIntrinsics) { 5436 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5437 UI != UE;) { 5438 User *U = *UI; 5439 ++UI; 5440 if (CallInst *CI = dyn_cast<CallInst>(U)) 5441 UpgradeIntrinsicCall(CI, I.second); 5442 } 5443 } 5444 5445 // Finish fn->subprogram upgrade for materialized functions. 5446 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5447 F->setSubprogram(SP); 5448 5449 // Bring in any functions that this function forward-referenced via 5450 // blockaddresses. 5451 return materializeForwardReferencedFunctions(); 5452 } 5453 5454 std::error_code BitcodeReader::materializeModule() { 5455 if (std::error_code EC = materializeMetadata()) 5456 return EC; 5457 5458 // Promise to materialize all forward references. 5459 WillMaterializeAllForwardRefs = true; 5460 5461 // Iterate over the module, deserializing any functions that are still on 5462 // disk. 5463 for (Function &F : *TheModule) { 5464 if (std::error_code EC = materialize(&F)) 5465 return EC; 5466 } 5467 // At this point, if there are any function bodies, parse the rest of 5468 // the bits in the module past the last function block we have recorded 5469 // through either lazy scanning or the VST. 5470 if (LastFunctionBlockBit || NextUnreadBit) 5471 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5472 : NextUnreadBit); 5473 5474 // Check that all block address forward references got resolved (as we 5475 // promised above). 5476 if (!BasicBlockFwdRefs.empty()) 5477 return error("Never resolved function from blockaddress"); 5478 5479 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5480 // to prevent this instructions with TBAA tags should be upgraded first. 5481 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5482 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5483 5484 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5485 // delete the old functions to clean up. We can't do this unless the entire 5486 // module is materialized because there could always be another function body 5487 // with calls to the old function. 5488 for (auto &I : UpgradedIntrinsics) { 5489 for (auto *U : I.first->users()) { 5490 if (CallInst *CI = dyn_cast<CallInst>(U)) 5491 UpgradeIntrinsicCall(CI, I.second); 5492 } 5493 if (!I.first->use_empty()) 5494 I.first->replaceAllUsesWith(I.second); 5495 I.first->eraseFromParent(); 5496 } 5497 UpgradedIntrinsics.clear(); 5498 5499 UpgradeDebugInfo(*TheModule); 5500 return std::error_code(); 5501 } 5502 5503 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5504 return IdentifiedStructTypes; 5505 } 5506 5507 std::error_code 5508 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5509 if (Streamer) 5510 return initLazyStream(std::move(Streamer)); 5511 return initStreamFromBuffer(); 5512 } 5513 5514 std::error_code BitcodeReader::initStreamFromBuffer() { 5515 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5516 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5517 5518 if (Buffer->getBufferSize() & 3) 5519 return error("Invalid bitcode signature"); 5520 5521 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5522 // The magic number is 0x0B17C0DE stored in little endian. 5523 if (isBitcodeWrapper(BufPtr, BufEnd)) 5524 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5525 return error("Invalid bitcode wrapper header"); 5526 5527 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5528 Stream.init(&*StreamFile); 5529 5530 return std::error_code(); 5531 } 5532 5533 std::error_code 5534 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5535 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5536 // see it. 5537 auto OwnedBytes = 5538 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5539 StreamingMemoryObject &Bytes = *OwnedBytes; 5540 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5541 Stream.init(&*StreamFile); 5542 5543 unsigned char buf[16]; 5544 if (Bytes.readBytes(buf, 16, 0) != 16) 5545 return error("Invalid bitcode signature"); 5546 5547 if (!isBitcode(buf, buf + 16)) 5548 return error("Invalid bitcode signature"); 5549 5550 if (isBitcodeWrapper(buf, buf + 4)) { 5551 const unsigned char *bitcodeStart = buf; 5552 const unsigned char *bitcodeEnd = buf + 16; 5553 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5554 Bytes.dropLeadingBytes(bitcodeStart - buf); 5555 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5556 } 5557 return std::error_code(); 5558 } 5559 5560 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5561 const Twine &Message) { 5562 return ::error(DiagnosticHandler, make_error_code(E), Message); 5563 } 5564 5565 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5566 return ::error(DiagnosticHandler, 5567 make_error_code(BitcodeError::CorruptedBitcode), Message); 5568 } 5569 5570 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5571 return ::error(DiagnosticHandler, make_error_code(E)); 5572 } 5573 5574 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5575 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5576 bool CheckGlobalValSummaryPresenceOnly) 5577 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), 5578 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5579 5580 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5581 DiagnosticHandlerFunction DiagnosticHandler, 5582 bool CheckGlobalValSummaryPresenceOnly) 5583 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), 5584 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5585 5586 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5587 5588 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5589 5590 GlobalValue::GUID 5591 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5592 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5593 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5594 return VGI->second; 5595 } 5596 5597 GlobalValueInfo * 5598 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) { 5599 auto I = SummaryOffsetToInfoMap.find(Offset); 5600 assert(I != SummaryOffsetToInfoMap.end()); 5601 return I->second; 5602 } 5603 5604 // Specialized value symbol table parser used when reading module index 5605 // blocks where we don't actually create global values. 5606 // At the end of this routine the module index is populated with a map 5607 // from global value name to GlobalValueInfo. The global value info contains 5608 // the function block's bitcode offset (if applicable), or the offset into the 5609 // summary section for the combined index. 5610 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5611 uint64_t Offset, 5612 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5613 assert(Offset > 0 && "Expected non-zero VST offset"); 5614 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5615 5616 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5617 return error("Invalid record"); 5618 5619 SmallVector<uint64_t, 64> Record; 5620 5621 // Read all the records for this value table. 5622 SmallString<128> ValueName; 5623 while (1) { 5624 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5625 5626 switch (Entry.Kind) { 5627 case BitstreamEntry::SubBlock: // Handled for us already. 5628 case BitstreamEntry::Error: 5629 return error("Malformed block"); 5630 case BitstreamEntry::EndBlock: 5631 // Done parsing VST, jump back to wherever we came from. 5632 Stream.JumpToBit(CurrentBit); 5633 return std::error_code(); 5634 case BitstreamEntry::Record: 5635 // The interesting case. 5636 break; 5637 } 5638 5639 // Read a record. 5640 Record.clear(); 5641 switch (Stream.readRecord(Entry.ID, Record)) { 5642 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5643 break; 5644 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5645 if (convertToString(Record, 1, ValueName)) 5646 return error("Invalid record"); 5647 unsigned ValueID = Record[0]; 5648 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5649 llvm::make_unique<GlobalValueInfo>(); 5650 assert(!SourceFileName.empty()); 5651 auto VLI = ValueIdToLinkageMap.find(ValueID); 5652 assert(VLI != ValueIdToLinkageMap.end() && 5653 "No linkage found for VST entry?"); 5654 std::string GlobalId = GlobalValue::getGlobalIdentifier( 5655 ValueName, VLI->second, SourceFileName); 5656 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5657 if (PrintSummaryGUIDs) 5658 dbgs() << "GUID " << ValueGUID << " is " << ValueName << "\n"; 5659 TheIndex->addGlobalValueInfo(ValueGUID, std::move(GlobalValInfo)); 5660 ValueIdToCallGraphGUIDMap[ValueID] = ValueGUID; 5661 ValueName.clear(); 5662 break; 5663 } 5664 case bitc::VST_CODE_FNENTRY: { 5665 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5666 if (convertToString(Record, 2, ValueName)) 5667 return error("Invalid record"); 5668 unsigned ValueID = Record[0]; 5669 uint64_t FuncOffset = Record[1]; 5670 std::unique_ptr<GlobalValueInfo> FuncInfo = 5671 llvm::make_unique<GlobalValueInfo>(FuncOffset); 5672 assert(!SourceFileName.empty()); 5673 auto VLI = ValueIdToLinkageMap.find(ValueID); 5674 assert(VLI != ValueIdToLinkageMap.end() && 5675 "No linkage found for VST entry?"); 5676 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5677 ValueName, VLI->second, SourceFileName); 5678 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5679 if (PrintSummaryGUIDs) 5680 dbgs() << "GUID " << FunctionGUID << " is " << ValueName << "\n"; 5681 TheIndex->addGlobalValueInfo(FunctionGUID, std::move(FuncInfo)); 5682 ValueIdToCallGraphGUIDMap[ValueID] = FunctionGUID; 5683 5684 ValueName.clear(); 5685 break; 5686 } 5687 case bitc::VST_CODE_COMBINED_GVDEFENTRY: { 5688 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid] 5689 unsigned ValueID = Record[0]; 5690 uint64_t GlobalValSummaryOffset = Record[1]; 5691 GlobalValue::GUID GlobalValGUID = Record[2]; 5692 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5693 llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset); 5694 SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get(); 5695 TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo)); 5696 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID; 5697 break; 5698 } 5699 case bitc::VST_CODE_COMBINED_ENTRY: { 5700 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5701 unsigned ValueID = Record[0]; 5702 GlobalValue::GUID RefGUID = Record[1]; 5703 ValueIdToCallGraphGUIDMap[ValueID] = RefGUID; 5704 break; 5705 } 5706 } 5707 } 5708 } 5709 5710 // Parse just the blocks needed for building the index out of the module. 5711 // At the end of this routine the module Index is populated with a map 5712 // from global value name to GlobalValueInfo. The global value info contains 5713 // the parsed summary information (when parsing summaries eagerly). 5714 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5715 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5716 return error("Invalid record"); 5717 5718 SmallVector<uint64_t, 64> Record; 5719 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5720 unsigned ValueId = 0; 5721 5722 // Read the index for this module. 5723 while (1) { 5724 BitstreamEntry Entry = Stream.advance(); 5725 5726 switch (Entry.Kind) { 5727 case BitstreamEntry::Error: 5728 return error("Malformed block"); 5729 case BitstreamEntry::EndBlock: 5730 return std::error_code(); 5731 5732 case BitstreamEntry::SubBlock: 5733 if (CheckGlobalValSummaryPresenceOnly) { 5734 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5735 SeenGlobalValSummary = true; 5736 // No need to parse the rest since we found the summary. 5737 return std::error_code(); 5738 } 5739 if (Stream.SkipBlock()) 5740 return error("Invalid record"); 5741 continue; 5742 } 5743 switch (Entry.ID) { 5744 default: // Skip unknown content. 5745 if (Stream.SkipBlock()) 5746 return error("Invalid record"); 5747 break; 5748 case bitc::BLOCKINFO_BLOCK_ID: 5749 // Need to parse these to get abbrev ids (e.g. for VST) 5750 if (Stream.ReadBlockInfoBlock()) 5751 return error("Malformed block"); 5752 break; 5753 case bitc::VALUE_SYMTAB_BLOCK_ID: 5754 // Should have been parsed earlier via VSTOffset, unless there 5755 // is no summary section. 5756 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5757 !SeenGlobalValSummary) && 5758 "Expected early VST parse via VSTOffset record"); 5759 if (Stream.SkipBlock()) 5760 return error("Invalid record"); 5761 break; 5762 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5763 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5764 assert(!SeenValueSymbolTable && 5765 "Already read VST when parsing summary block?"); 5766 if (std::error_code EC = 5767 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5768 return EC; 5769 SeenValueSymbolTable = true; 5770 SeenGlobalValSummary = true; 5771 if (std::error_code EC = parseEntireSummary()) 5772 return EC; 5773 break; 5774 case bitc::MODULE_STRTAB_BLOCK_ID: 5775 if (std::error_code EC = parseModuleStringTable()) 5776 return EC; 5777 break; 5778 } 5779 continue; 5780 5781 case BitstreamEntry::Record: { 5782 Record.clear(); 5783 auto BitCode = Stream.readRecord(Entry.ID, Record); 5784 switch (BitCode) { 5785 default: 5786 break; // Default behavior, ignore unknown content. 5787 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5788 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5789 SmallString<128> ValueName; 5790 if (convertToString(Record, 0, ValueName)) 5791 return error("Invalid record"); 5792 SourceFileName = ValueName.c_str(); 5793 break; 5794 } 5795 /// MODULE_CODE_HASH: [5*i32] 5796 case bitc::MODULE_CODE_HASH: { 5797 if (Record.size() != 5) 5798 return error("Invalid hash length " + Twine(Record.size()).str()); 5799 if (!TheIndex) 5800 break; 5801 if (TheIndex->modulePaths().empty()) 5802 // Does not have any summary emitted. 5803 break; 5804 if (TheIndex->modulePaths().size() != 1) 5805 return error("Don't expect multiple modules defined?"); 5806 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5807 int Pos = 0; 5808 for (auto &Val : Record) { 5809 assert(!(Val >> 32) && "Unexpected high bits set"); 5810 Hash[Pos++] = Val; 5811 } 5812 break; 5813 } 5814 /// MODULE_CODE_VSTOFFSET: [offset] 5815 case bitc::MODULE_CODE_VSTOFFSET: 5816 if (Record.size() < 1) 5817 return error("Invalid record"); 5818 VSTOffset = Record[0]; 5819 break; 5820 // GLOBALVAR: [pointer type, isconst, initid, 5821 // linkage, alignment, section, visibility, threadlocal, 5822 // unnamed_addr, externally_initialized, dllstorageclass, 5823 // comdat] 5824 case bitc::MODULE_CODE_GLOBALVAR: { 5825 if (Record.size() < 6) 5826 return error("Invalid record"); 5827 uint64_t RawLinkage = Record[3]; 5828 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5829 ValueIdToLinkageMap[ValueId++] = Linkage; 5830 break; 5831 } 5832 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5833 // alignment, section, visibility, gc, unnamed_addr, 5834 // prologuedata, dllstorageclass, comdat, prefixdata] 5835 case bitc::MODULE_CODE_FUNCTION: { 5836 if (Record.size() < 8) 5837 return error("Invalid record"); 5838 uint64_t RawLinkage = Record[3]; 5839 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5840 ValueIdToLinkageMap[ValueId++] = Linkage; 5841 break; 5842 } 5843 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5844 // dllstorageclass] 5845 case bitc::MODULE_CODE_ALIAS: { 5846 if (Record.size() < 6) 5847 return error("Invalid record"); 5848 uint64_t RawLinkage = Record[3]; 5849 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5850 ValueIdToLinkageMap[ValueId++] = Linkage; 5851 break; 5852 } 5853 } 5854 } 5855 continue; 5856 } 5857 } 5858 } 5859 5860 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5861 // objects in the index. 5862 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 5863 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 5864 return error("Invalid record"); 5865 5866 SmallVector<uint64_t, 64> Record; 5867 5868 bool Combined = false; 5869 while (1) { 5870 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5871 5872 switch (Entry.Kind) { 5873 case BitstreamEntry::SubBlock: // Handled for us already. 5874 case BitstreamEntry::Error: 5875 return error("Malformed block"); 5876 case BitstreamEntry::EndBlock: 5877 // For a per-module index, remove any entries that still have empty 5878 // summaries. The VST parsing creates entries eagerly for all symbols, 5879 // but not all have associated summaries (e.g. it doesn't know how to 5880 // distinguish between VST_CODE_ENTRY for function declarations vs global 5881 // variables with initializers that end up with a summary). Remove those 5882 // entries now so that we don't need to rely on the combined index merger 5883 // to clean them up (especially since that may not run for the first 5884 // module's index if we merge into that). 5885 if (!Combined) 5886 TheIndex->removeEmptySummaryEntries(); 5887 return std::error_code(); 5888 case BitstreamEntry::Record: 5889 // The interesting case. 5890 break; 5891 } 5892 5893 // Read a record. The record format depends on whether this 5894 // is a per-module index or a combined index file. In the per-module 5895 // case the records contain the associated value's ID for correlation 5896 // with VST entries. In the combined index the correlation is done 5897 // via the bitcode offset of the summary records (which were saved 5898 // in the combined index VST entries). The records also contain 5899 // information used for ThinLTO renaming and importing. 5900 Record.clear(); 5901 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5902 auto BitCode = Stream.readRecord(Entry.ID, Record); 5903 switch (BitCode) { 5904 default: // Default behavior: ignore. 5905 break; 5906 // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid, 5907 // n x (valueid, callsitecount)] 5908 // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs, 5909 // numrefs x valueid, 5910 // n x (valueid, callsitecount, profilecount)] 5911 case bitc::FS_PERMODULE: 5912 case bitc::FS_PERMODULE_PROFILE: { 5913 unsigned ValueID = Record[0]; 5914 uint64_t RawLinkage = Record[1]; 5915 unsigned InstCount = Record[2]; 5916 unsigned NumRefs = Record[3]; 5917 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5918 getDecodedLinkage(RawLinkage), InstCount); 5919 // The module path string ref set in the summary must be owned by the 5920 // index's module string table. Since we don't have a module path 5921 // string table section in the per-module index, we create a single 5922 // module path string table entry with an empty (0) ID to take 5923 // ownership. 5924 FS->setModulePath( 5925 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5926 static int RefListStartIndex = 4; 5927 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5928 assert(Record.size() >= RefListStartIndex + NumRefs && 5929 "Record size inconsistent with number of references"); 5930 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5931 unsigned RefValueId = Record[I]; 5932 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5933 FS->addRefEdge(RefGUID); 5934 } 5935 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5936 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5937 ++I) { 5938 unsigned CalleeValueId = Record[I]; 5939 unsigned CallsiteCount = Record[++I]; 5940 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5941 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId); 5942 FS->addCallGraphEdge(CalleeGUID, 5943 CalleeInfo(CallsiteCount, ProfileCount)); 5944 } 5945 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5946 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5947 assert(!Info->summary() && "Expected a single summary per VST entry"); 5948 Info->setSummary(std::move(FS)); 5949 break; 5950 } 5951 // FS_ALIAS: [valueid, linkage, valueid] 5952 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5953 // they expect all aliasee summaries to be available. 5954 case bitc::FS_ALIAS: { 5955 unsigned ValueID = Record[0]; 5956 uint64_t RawLinkage = Record[1]; 5957 unsigned AliaseeID = Record[2]; 5958 std::unique_ptr<AliasSummary> AS = 5959 llvm::make_unique<AliasSummary>(getDecodedLinkage(RawLinkage)); 5960 // The module path string ref set in the summary must be owned by the 5961 // index's module string table. Since we don't have a module path 5962 // string table section in the per-module index, we create a single 5963 // module path string table entry with an empty (0) ID to take 5964 // ownership. 5965 AS->setModulePath( 5966 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5967 5968 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID); 5969 auto *AliaseeInfo = TheIndex->getGlobalValueInfo(AliaseeGUID); 5970 if (!AliaseeInfo->summary()) 5971 return error("Alias expects aliasee summary to be parsed"); 5972 AS->setAliasee(AliaseeInfo->summary()); 5973 5974 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5975 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5976 assert(!Info->summary() && "Expected a single summary per VST entry"); 5977 Info->setSummary(std::move(AS)); 5978 break; 5979 } 5980 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid] 5981 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5982 unsigned ValueID = Record[0]; 5983 uint64_t RawLinkage = Record[1]; 5984 std::unique_ptr<GlobalVarSummary> FS = 5985 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5986 FS->setModulePath( 5987 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5988 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5989 unsigned RefValueId = Record[I]; 5990 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5991 FS->addRefEdge(RefGUID); 5992 } 5993 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5994 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5995 assert(!Info->summary() && "Expected a single summary per VST entry"); 5996 Info->setSummary(std::move(FS)); 5997 break; 5998 } 5999 // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid, 6000 // n x (valueid, callsitecount)] 6001 // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs, 6002 // numrefs x valueid, 6003 // n x (valueid, callsitecount, profilecount)] 6004 case bitc::FS_COMBINED: 6005 case bitc::FS_COMBINED_PROFILE: { 6006 uint64_t ModuleId = Record[0]; 6007 uint64_t RawLinkage = Record[1]; 6008 unsigned InstCount = Record[2]; 6009 unsigned NumRefs = Record[3]; 6010 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 6011 getDecodedLinkage(RawLinkage), InstCount); 6012 FS->setModulePath(ModuleIdMap[ModuleId]); 6013 static int RefListStartIndex = 4; 6014 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6015 assert(Record.size() >= RefListStartIndex + NumRefs && 6016 "Record size inconsistent with number of references"); 6017 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6018 unsigned RefValueId = Record[I]; 6019 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 6020 FS->addRefEdge(RefGUID); 6021 } 6022 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6023 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6024 ++I) { 6025 unsigned CalleeValueId = Record[I]; 6026 unsigned CallsiteCount = Record[++I]; 6027 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6028 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId); 6029 FS->addCallGraphEdge(CalleeGUID, 6030 CalleeInfo(CallsiteCount, ProfileCount)); 6031 } 6032 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 6033 assert(!Info->summary() && "Expected a single summary per VST entry"); 6034 Info->setSummary(std::move(FS)); 6035 Combined = true; 6036 break; 6037 } 6038 // FS_COMBINED_ALIAS: [modid, linkage, offset] 6039 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6040 // they expect all aliasee summaries to be available. 6041 case bitc::FS_COMBINED_ALIAS: { 6042 uint64_t ModuleId = Record[0]; 6043 uint64_t RawLinkage = Record[1]; 6044 uint64_t AliaseeSummaryOffset = Record[2]; 6045 std::unique_ptr<AliasSummary> AS = 6046 llvm::make_unique<AliasSummary>(getDecodedLinkage(RawLinkage)); 6047 AS->setModulePath(ModuleIdMap[ModuleId]); 6048 6049 auto *AliaseeInfo = getInfoFromSummaryOffset(AliaseeSummaryOffset); 6050 if (!AliaseeInfo->summary()) 6051 return error("Alias expects aliasee summary to be parsed"); 6052 AS->setAliasee(AliaseeInfo->summary()); 6053 6054 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 6055 assert(!Info->summary() && "Expected a single summary per VST entry"); 6056 Info->setSummary(std::move(AS)); 6057 Combined = true; 6058 break; 6059 } 6060 // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid] 6061 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6062 uint64_t ModuleId = Record[0]; 6063 uint64_t RawLinkage = Record[1]; 6064 std::unique_ptr<GlobalVarSummary> FS = 6065 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 6066 FS->setModulePath(ModuleIdMap[ModuleId]); 6067 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6068 unsigned RefValueId = Record[I]; 6069 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 6070 FS->addRefEdge(RefGUID); 6071 } 6072 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 6073 assert(!Info->summary() && "Expected a single summary per VST entry"); 6074 Info->setSummary(std::move(FS)); 6075 Combined = true; 6076 break; 6077 } 6078 } 6079 } 6080 llvm_unreachable("Exit infinite loop"); 6081 } 6082 6083 // Parse the module string table block into the Index. 6084 // This populates the ModulePathStringTable map in the index. 6085 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6086 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6087 return error("Invalid record"); 6088 6089 SmallVector<uint64_t, 64> Record; 6090 6091 SmallString<128> ModulePath; 6092 ModulePathStringTableTy::iterator LastSeenModulePath; 6093 while (1) { 6094 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6095 6096 switch (Entry.Kind) { 6097 case BitstreamEntry::SubBlock: // Handled for us already. 6098 case BitstreamEntry::Error: 6099 return error("Malformed block"); 6100 case BitstreamEntry::EndBlock: 6101 return std::error_code(); 6102 case BitstreamEntry::Record: 6103 // The interesting case. 6104 break; 6105 } 6106 6107 Record.clear(); 6108 switch (Stream.readRecord(Entry.ID, Record)) { 6109 default: // Default behavior: ignore. 6110 break; 6111 case bitc::MST_CODE_ENTRY: { 6112 // MST_ENTRY: [modid, namechar x N] 6113 uint64_t ModuleId = Record[0]; 6114 6115 if (convertToString(Record, 1, ModulePath)) 6116 return error("Invalid record"); 6117 6118 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6119 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6120 6121 ModulePath.clear(); 6122 break; 6123 } 6124 /// MST_CODE_HASH: [5*i32] 6125 case bitc::MST_CODE_HASH: { 6126 if (Record.size() != 5) 6127 return error("Invalid hash length " + Twine(Record.size()).str()); 6128 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6129 return error("Invalid hash that does not follow a module path"); 6130 int Pos = 0; 6131 for (auto &Val : Record) { 6132 assert(!(Val >> 32) && "Unexpected high bits set"); 6133 LastSeenModulePath->second.second[Pos++] = Val; 6134 } 6135 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6136 LastSeenModulePath = TheIndex->modulePaths().end(); 6137 break; 6138 } 6139 } 6140 } 6141 llvm_unreachable("Exit infinite loop"); 6142 } 6143 6144 // Parse the function info index from the bitcode streamer into the given index. 6145 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6146 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6147 TheIndex = I; 6148 6149 if (std::error_code EC = initStream(std::move(Streamer))) 6150 return EC; 6151 6152 // Sniff for the signature. 6153 if (!hasValidBitcodeHeader(Stream)) 6154 return error("Invalid bitcode signature"); 6155 6156 // We expect a number of well-defined blocks, though we don't necessarily 6157 // need to understand them all. 6158 while (1) { 6159 if (Stream.AtEndOfStream()) { 6160 // We didn't really read a proper Module block. 6161 return error("Malformed block"); 6162 } 6163 6164 BitstreamEntry Entry = 6165 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6166 6167 if (Entry.Kind != BitstreamEntry::SubBlock) 6168 return error("Malformed block"); 6169 6170 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6171 // building the function summary index. 6172 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6173 return parseModule(); 6174 6175 if (Stream.SkipBlock()) 6176 return error("Invalid record"); 6177 } 6178 } 6179 6180 // Parse the summary information at the given offset in the buffer into 6181 // the index. Used to support lazy parsing of summaries from the 6182 // combined index during importing. 6183 // TODO: This function is not yet complete as it won't have a consumer 6184 // until ThinLTO function importing is added. 6185 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary( 6186 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I, 6187 size_t SummaryOffset) { 6188 TheIndex = I; 6189 6190 if (std::error_code EC = initStream(std::move(Streamer))) 6191 return EC; 6192 6193 // Sniff for the signature. 6194 if (!hasValidBitcodeHeader(Stream)) 6195 return error("Invalid bitcode signature"); 6196 6197 Stream.JumpToBit(SummaryOffset); 6198 6199 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6200 6201 switch (Entry.Kind) { 6202 default: 6203 return error("Malformed block"); 6204 case BitstreamEntry::Record: 6205 // The expected case. 6206 break; 6207 } 6208 6209 // TODO: Read a record. This interface will be completed when ThinLTO 6210 // importing is added so that it can be tested. 6211 SmallVector<uint64_t, 64> Record; 6212 switch (Stream.readRecord(Entry.ID, Record)) { 6213 case bitc::FS_COMBINED: 6214 case bitc::FS_COMBINED_PROFILE: 6215 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: 6216 default: 6217 return error("Invalid record"); 6218 } 6219 6220 return std::error_code(); 6221 } 6222 6223 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6224 std::unique_ptr<DataStreamer> Streamer) { 6225 if (Streamer) 6226 return initLazyStream(std::move(Streamer)); 6227 return initStreamFromBuffer(); 6228 } 6229 6230 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6231 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6232 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6233 6234 if (Buffer->getBufferSize() & 3) 6235 return error("Invalid bitcode signature"); 6236 6237 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6238 // The magic number is 0x0B17C0DE stored in little endian. 6239 if (isBitcodeWrapper(BufPtr, BufEnd)) 6240 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6241 return error("Invalid bitcode wrapper header"); 6242 6243 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6244 Stream.init(&*StreamFile); 6245 6246 return std::error_code(); 6247 } 6248 6249 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6250 std::unique_ptr<DataStreamer> Streamer) { 6251 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6252 // see it. 6253 auto OwnedBytes = 6254 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6255 StreamingMemoryObject &Bytes = *OwnedBytes; 6256 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6257 Stream.init(&*StreamFile); 6258 6259 unsigned char buf[16]; 6260 if (Bytes.readBytes(buf, 16, 0) != 16) 6261 return error("Invalid bitcode signature"); 6262 6263 if (!isBitcode(buf, buf + 16)) 6264 return error("Invalid bitcode signature"); 6265 6266 if (isBitcodeWrapper(buf, buf + 4)) { 6267 const unsigned char *bitcodeStart = buf; 6268 const unsigned char *bitcodeEnd = buf + 16; 6269 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6270 Bytes.dropLeadingBytes(bitcodeStart - buf); 6271 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6272 } 6273 return std::error_code(); 6274 } 6275 6276 namespace { 6277 class BitcodeErrorCategoryType : public std::error_category { 6278 const char *name() const LLVM_NOEXCEPT override { 6279 return "llvm.bitcode"; 6280 } 6281 std::string message(int IE) const override { 6282 BitcodeError E = static_cast<BitcodeError>(IE); 6283 switch (E) { 6284 case BitcodeError::InvalidBitcodeSignature: 6285 return "Invalid bitcode signature"; 6286 case BitcodeError::CorruptedBitcode: 6287 return "Corrupted bitcode"; 6288 } 6289 llvm_unreachable("Unknown error type!"); 6290 } 6291 }; 6292 } // end anonymous namespace 6293 6294 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6295 6296 const std::error_category &llvm::BitcodeErrorCategory() { 6297 return *ErrorCategory; 6298 } 6299 6300 //===----------------------------------------------------------------------===// 6301 // External interface 6302 //===----------------------------------------------------------------------===// 6303 6304 static ErrorOr<std::unique_ptr<Module>> 6305 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6306 BitcodeReader *R, LLVMContext &Context, 6307 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6308 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6309 M->setMaterializer(R); 6310 6311 auto cleanupOnError = [&](std::error_code EC) { 6312 R->releaseBuffer(); // Never take ownership on error. 6313 return EC; 6314 }; 6315 6316 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6317 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6318 ShouldLazyLoadMetadata)) 6319 return cleanupOnError(EC); 6320 6321 if (MaterializeAll) { 6322 // Read in the entire module, and destroy the BitcodeReader. 6323 if (std::error_code EC = M->materializeAll()) 6324 return cleanupOnError(EC); 6325 } else { 6326 // Resolve forward references from blockaddresses. 6327 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6328 return cleanupOnError(EC); 6329 } 6330 return std::move(M); 6331 } 6332 6333 /// \brief Get a lazy one-at-time loading module from bitcode. 6334 /// 6335 /// This isn't always used in a lazy context. In particular, it's also used by 6336 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6337 /// in forward-referenced functions from block address references. 6338 /// 6339 /// \param[in] MaterializeAll Set to \c true if we should materialize 6340 /// everything. 6341 static ErrorOr<std::unique_ptr<Module>> 6342 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6343 LLVMContext &Context, bool MaterializeAll, 6344 bool ShouldLazyLoadMetadata = false) { 6345 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6346 6347 ErrorOr<std::unique_ptr<Module>> Ret = 6348 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6349 MaterializeAll, ShouldLazyLoadMetadata); 6350 if (!Ret) 6351 return Ret; 6352 6353 Buffer.release(); // The BitcodeReader owns it now. 6354 return Ret; 6355 } 6356 6357 ErrorOr<std::unique_ptr<Module>> 6358 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6359 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6360 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6361 ShouldLazyLoadMetadata); 6362 } 6363 6364 ErrorOr<std::unique_ptr<Module>> 6365 llvm::getStreamedBitcodeModule(StringRef Name, 6366 std::unique_ptr<DataStreamer> Streamer, 6367 LLVMContext &Context) { 6368 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6369 BitcodeReader *R = new BitcodeReader(Context); 6370 6371 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6372 false); 6373 } 6374 6375 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6376 LLVMContext &Context) { 6377 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6378 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6379 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6380 // written. We must defer until the Module has been fully materialized. 6381 } 6382 6383 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6384 LLVMContext &Context) { 6385 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6386 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6387 ErrorOr<std::string> Triple = R->parseTriple(); 6388 if (Triple.getError()) 6389 return ""; 6390 return Triple.get(); 6391 } 6392 6393 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6394 LLVMContext &Context) { 6395 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6396 BitcodeReader R(Buf.release(), Context); 6397 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6398 if (ProducerString.getError()) 6399 return ""; 6400 return ProducerString.get(); 6401 } 6402 6403 // Parse the specified bitcode buffer, returning the function info index. 6404 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6405 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6406 DiagnosticHandlerFunction DiagnosticHandler) { 6407 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6408 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6409 6410 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6411 6412 auto cleanupOnError = [&](std::error_code EC) { 6413 R.releaseBuffer(); // Never take ownership on error. 6414 return EC; 6415 }; 6416 6417 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6418 return cleanupOnError(EC); 6419 6420 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6421 return std::move(Index); 6422 } 6423 6424 // Check if the given bitcode buffer contains a global value summary block. 6425 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6426 DiagnosticHandlerFunction DiagnosticHandler) { 6427 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6428 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true); 6429 6430 auto cleanupOnError = [&](std::error_code EC) { 6431 R.releaseBuffer(); // Never take ownership on error. 6432 return false; 6433 }; 6434 6435 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6436 return cleanupOnError(EC); 6437 6438 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6439 return R.foundGlobalValSummary(); 6440 } 6441