1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalIndirectSymbol.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/Verifier.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/ManagedStatic.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <deque> 78 #include <map> 79 #include <memory> 80 #include <set> 81 #include <string> 82 #include <system_error> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 static cl::opt<bool> PrintSummaryGUIDs( 90 "print-summary-global-ids", cl::init(false), cl::Hidden, 91 cl::desc( 92 "Print the global id for each value when reading the module summary")); 93 94 namespace { 95 96 enum { 97 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 98 }; 99 100 } // end anonymous namespace 101 102 static Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 108 if (!Stream.canSkipToPos(4)) 109 return createStringError(std::errc::illegal_byte_sequence, 110 "file too small to contain bitcode header"); 111 for (unsigned C : {'B', 'C'}) 112 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 113 if (Res.get() != C) 114 return createStringError(std::errc::illegal_byte_sequence, 115 "file doesn't start with bitcode header"); 116 } else 117 return Res.takeError(); 118 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 119 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 120 if (Res.get() != C) 121 return createStringError(std::errc::illegal_byte_sequence, 122 "file doesn't start with bitcode header"); 123 } else 124 return Res.takeError(); 125 return Error::success(); 126 } 127 128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 129 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 130 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 131 132 if (Buffer.getBufferSize() & 3) 133 return error("Invalid bitcode signature"); 134 135 // If we have a wrapper header, parse it and ignore the non-bc file contents. 136 // The magic number is 0x0B17C0DE stored in little endian. 137 if (isBitcodeWrapper(BufPtr, BufEnd)) 138 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 139 return error("Invalid bitcode wrapper header"); 140 141 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 142 if (Error Err = hasInvalidBitcodeHeader(Stream)) 143 return std::move(Err); 144 145 return std::move(Stream); 146 } 147 148 /// Convert a string from a record into an std::string, return true on failure. 149 template <typename StrTy> 150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 Result.append(Record.begin() + Idx, Record.end()); 156 return false; 157 } 158 159 // Strip all the TBAA attachment for the module. 160 static void stripTBAA(Module *M) { 161 for (auto &F : *M) { 162 if (F.isMaterializable()) 163 continue; 164 for (auto &I : instructions(F)) 165 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 166 } 167 } 168 169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 170 /// "epoch" encoded in the bitcode, and return the producer name if any. 171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 172 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 173 return std::move(Err); 174 175 // Read all the records. 176 SmallVector<uint64_t, 64> Record; 177 178 std::string ProducerIdentification; 179 180 while (true) { 181 BitstreamEntry Entry; 182 if (Expected<BitstreamEntry> Res = Stream.advance()) 183 Entry = Res.get(); 184 else 185 return Res.takeError(); 186 187 switch (Entry.Kind) { 188 default: 189 case BitstreamEntry::Error: 190 return error("Malformed block"); 191 case BitstreamEntry::EndBlock: 192 return ProducerIdentification; 193 case BitstreamEntry::Record: 194 // The interesting case. 195 break; 196 } 197 198 // Read a record. 199 Record.clear(); 200 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 201 if (!MaybeBitCode) 202 return MaybeBitCode.takeError(); 203 switch (MaybeBitCode.get()) { 204 default: // Default behavior: reject 205 return error("Invalid value"); 206 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 207 convertToString(Record, 0, ProducerIdentification); 208 break; 209 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 210 unsigned epoch = (unsigned)Record[0]; 211 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 212 return error( 213 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 214 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 215 } 216 } 217 } 218 } 219 } 220 221 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 222 // We expect a number of well-defined blocks, though we don't necessarily 223 // need to understand them all. 224 while (true) { 225 if (Stream.AtEndOfStream()) 226 return ""; 227 228 BitstreamEntry Entry; 229 if (Expected<BitstreamEntry> Res = Stream.advance()) 230 Entry = std::move(Res.get()); 231 else 232 return Res.takeError(); 233 234 switch (Entry.Kind) { 235 case BitstreamEntry::EndBlock: 236 case BitstreamEntry::Error: 237 return error("Malformed block"); 238 239 case BitstreamEntry::SubBlock: 240 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 241 return readIdentificationBlock(Stream); 242 243 // Ignore other sub-blocks. 244 if (Error Err = Stream.SkipBlock()) 245 return std::move(Err); 246 continue; 247 case BitstreamEntry::Record: 248 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 249 continue; 250 else 251 return Skipped.takeError(); 252 } 253 } 254 } 255 256 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 257 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 258 return std::move(Err); 259 260 SmallVector<uint64_t, 64> Record; 261 // Read all the records for this module. 262 263 while (true) { 264 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 265 if (!MaybeEntry) 266 return MaybeEntry.takeError(); 267 BitstreamEntry Entry = MaybeEntry.get(); 268 269 switch (Entry.Kind) { 270 case BitstreamEntry::SubBlock: // Handled for us already. 271 case BitstreamEntry::Error: 272 return error("Malformed block"); 273 case BitstreamEntry::EndBlock: 274 return false; 275 case BitstreamEntry::Record: 276 // The interesting case. 277 break; 278 } 279 280 // Read a record. 281 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 282 if (!MaybeRecord) 283 return MaybeRecord.takeError(); 284 switch (MaybeRecord.get()) { 285 default: 286 break; // Default behavior, ignore unknown content. 287 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 288 std::string S; 289 if (convertToString(Record, 0, S)) 290 return error("Invalid record"); 291 // Check for the i386 and other (x86_64, ARM) conventions 292 if (S.find("__DATA,__objc_catlist") != std::string::npos || 293 S.find("__OBJC,__category") != std::string::npos) 294 return true; 295 break; 296 } 297 } 298 Record.clear(); 299 } 300 llvm_unreachable("Exit infinite loop"); 301 } 302 303 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 304 // We expect a number of well-defined blocks, though we don't necessarily 305 // need to understand them all. 306 while (true) { 307 BitstreamEntry Entry; 308 if (Expected<BitstreamEntry> Res = Stream.advance()) 309 Entry = std::move(Res.get()); 310 else 311 return Res.takeError(); 312 313 switch (Entry.Kind) { 314 case BitstreamEntry::Error: 315 return error("Malformed block"); 316 case BitstreamEntry::EndBlock: 317 return false; 318 319 case BitstreamEntry::SubBlock: 320 if (Entry.ID == bitc::MODULE_BLOCK_ID) 321 return hasObjCCategoryInModule(Stream); 322 323 // Ignore other sub-blocks. 324 if (Error Err = Stream.SkipBlock()) 325 return std::move(Err); 326 continue; 327 328 case BitstreamEntry::Record: 329 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 330 continue; 331 else 332 return Skipped.takeError(); 333 } 334 } 335 } 336 337 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 338 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 339 return std::move(Err); 340 341 SmallVector<uint64_t, 64> Record; 342 343 std::string Triple; 344 345 // Read all the records for this module. 346 while (true) { 347 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 348 if (!MaybeEntry) 349 return MaybeEntry.takeError(); 350 BitstreamEntry Entry = MaybeEntry.get(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::SubBlock: // Handled for us already. 354 case BitstreamEntry::Error: 355 return error("Malformed block"); 356 case BitstreamEntry::EndBlock: 357 return Triple; 358 case BitstreamEntry::Record: 359 // The interesting case. 360 break; 361 } 362 363 // Read a record. 364 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 365 if (!MaybeRecord) 366 return MaybeRecord.takeError(); 367 switch (MaybeRecord.get()) { 368 default: break; // Default behavior, ignore unknown content. 369 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 370 std::string S; 371 if (convertToString(Record, 0, S)) 372 return error("Invalid record"); 373 Triple = S; 374 break; 375 } 376 } 377 Record.clear(); 378 } 379 llvm_unreachable("Exit infinite loop"); 380 } 381 382 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 383 // We expect a number of well-defined blocks, though we don't necessarily 384 // need to understand them all. 385 while (true) { 386 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 387 if (!MaybeEntry) 388 return MaybeEntry.takeError(); 389 BitstreamEntry Entry = MaybeEntry.get(); 390 391 switch (Entry.Kind) { 392 case BitstreamEntry::Error: 393 return error("Malformed block"); 394 case BitstreamEntry::EndBlock: 395 return ""; 396 397 case BitstreamEntry::SubBlock: 398 if (Entry.ID == bitc::MODULE_BLOCK_ID) 399 return readModuleTriple(Stream); 400 401 // Ignore other sub-blocks. 402 if (Error Err = Stream.SkipBlock()) 403 return std::move(Err); 404 continue; 405 406 case BitstreamEntry::Record: 407 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 408 continue; 409 else 410 return Skipped.takeError(); 411 } 412 } 413 } 414 415 namespace { 416 417 class BitcodeReaderBase { 418 protected: 419 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 420 : Stream(std::move(Stream)), Strtab(Strtab) { 421 this->Stream.setBlockInfo(&BlockInfo); 422 } 423 424 BitstreamBlockInfo BlockInfo; 425 BitstreamCursor Stream; 426 StringRef Strtab; 427 428 /// In version 2 of the bitcode we store names of global values and comdats in 429 /// a string table rather than in the VST. 430 bool UseStrtab = false; 431 432 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 433 434 /// If this module uses a string table, pop the reference to the string table 435 /// and return the referenced string and the rest of the record. Otherwise 436 /// just return the record itself. 437 std::pair<StringRef, ArrayRef<uint64_t>> 438 readNameFromStrtab(ArrayRef<uint64_t> Record); 439 440 bool readBlockInfo(); 441 442 // Contains an arbitrary and optional string identifying the bitcode producer 443 std::string ProducerIdentification; 444 445 Error error(const Twine &Message); 446 }; 447 448 } // end anonymous namespace 449 450 Error BitcodeReaderBase::error(const Twine &Message) { 451 std::string FullMsg = Message.str(); 452 if (!ProducerIdentification.empty()) 453 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 454 LLVM_VERSION_STRING "')"; 455 return ::error(FullMsg); 456 } 457 458 Expected<unsigned> 459 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 460 if (Record.empty()) 461 return error("Invalid record"); 462 unsigned ModuleVersion = Record[0]; 463 if (ModuleVersion > 2) 464 return error("Invalid value"); 465 UseStrtab = ModuleVersion >= 2; 466 return ModuleVersion; 467 } 468 469 std::pair<StringRef, ArrayRef<uint64_t>> 470 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 471 if (!UseStrtab) 472 return {"", Record}; 473 // Invalid reference. Let the caller complain about the record being empty. 474 if (Record[0] + Record[1] > Strtab.size()) 475 return {"", {}}; 476 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 477 } 478 479 namespace { 480 481 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 482 LLVMContext &Context; 483 Module *TheModule = nullptr; 484 // Next offset to start scanning for lazy parsing of function bodies. 485 uint64_t NextUnreadBit = 0; 486 // Last function offset found in the VST. 487 uint64_t LastFunctionBlockBit = 0; 488 bool SeenValueSymbolTable = false; 489 uint64_t VSTOffset = 0; 490 491 std::vector<std::string> SectionTable; 492 std::vector<std::string> GCTable; 493 494 std::vector<Type*> TypeList; 495 DenseMap<Function *, FunctionType *> FunctionTypes; 496 BitcodeReaderValueList ValueList; 497 Optional<MetadataLoader> MDLoader; 498 std::vector<Comdat *> ComdatList; 499 SmallVector<Instruction *, 64> InstructionList; 500 501 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 502 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 503 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 504 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 505 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 506 507 /// The set of attributes by index. Index zero in the file is for null, and 508 /// is thus not represented here. As such all indices are off by one. 509 std::vector<AttributeList> MAttributes; 510 511 /// The set of attribute groups. 512 std::map<unsigned, AttributeList> MAttributeGroups; 513 514 /// While parsing a function body, this is a list of the basic blocks for the 515 /// function. 516 std::vector<BasicBlock*> FunctionBBs; 517 518 // When reading the module header, this list is populated with functions that 519 // have bodies later in the file. 520 std::vector<Function*> FunctionsWithBodies; 521 522 // When intrinsic functions are encountered which require upgrading they are 523 // stored here with their replacement function. 524 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 525 UpdatedIntrinsicMap UpgradedIntrinsics; 526 // Intrinsics which were remangled because of types rename 527 UpdatedIntrinsicMap RemangledIntrinsics; 528 529 // Several operations happen after the module header has been read, but 530 // before function bodies are processed. This keeps track of whether 531 // we've done this yet. 532 bool SeenFirstFunctionBody = false; 533 534 /// When function bodies are initially scanned, this map contains info about 535 /// where to find deferred function body in the stream. 536 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 537 538 /// When Metadata block is initially scanned when parsing the module, we may 539 /// choose to defer parsing of the metadata. This vector contains info about 540 /// which Metadata blocks are deferred. 541 std::vector<uint64_t> DeferredMetadataInfo; 542 543 /// These are basic blocks forward-referenced by block addresses. They are 544 /// inserted lazily into functions when they're loaded. The basic block ID is 545 /// its index into the vector. 546 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 547 std::deque<Function *> BasicBlockFwdRefQueue; 548 549 /// Indicates that we are using a new encoding for instruction operands where 550 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 551 /// instruction number, for a more compact encoding. Some instruction 552 /// operands are not relative to the instruction ID: basic block numbers, and 553 /// types. Once the old style function blocks have been phased out, we would 554 /// not need this flag. 555 bool UseRelativeIDs = false; 556 557 /// True if all functions will be materialized, negating the need to process 558 /// (e.g.) blockaddress forward references. 559 bool WillMaterializeAllForwardRefs = false; 560 561 bool StripDebugInfo = false; 562 TBAAVerifier TBAAVerifyHelper; 563 564 std::vector<std::string> BundleTags; 565 SmallVector<SyncScope::ID, 8> SSIDs; 566 567 public: 568 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 569 StringRef ProducerIdentification, LLVMContext &Context); 570 571 Error materializeForwardReferencedFunctions(); 572 573 Error materialize(GlobalValue *GV) override; 574 Error materializeModule() override; 575 std::vector<StructType *> getIdentifiedStructTypes() const override; 576 577 /// Main interface to parsing a bitcode buffer. 578 /// \returns true if an error occurred. 579 Error parseBitcodeInto( 580 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 581 DataLayoutCallbackTy DataLayoutCallback = [](std::string) { 582 return None; 583 }); 584 585 static uint64_t decodeSignRotatedValue(uint64_t V); 586 587 /// Materialize any deferred Metadata block. 588 Error materializeMetadata() override; 589 590 void setStripDebugInfo() override; 591 592 private: 593 std::vector<StructType *> IdentifiedStructTypes; 594 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 595 StructType *createIdentifiedStructType(LLVMContext &Context); 596 597 /// Map all pointer types within \param Ty to the opaque pointer 598 /// type in the same address space if opaque pointers are being 599 /// used, otherwise nop. This converts a bitcode-reader internal 600 /// type into one suitable for use in a Value. 601 Type *flattenPointerTypes(Type *Ty) { 602 return Ty; 603 } 604 605 /// Given a fully structured pointer type (i.e. not opaque), return 606 /// the flattened form of its element, suitable for use in a Value. 607 Type *getPointerElementFlatType(Type *Ty) { 608 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 609 } 610 611 /// Given a fully structured pointer type, get its element type in 612 /// both fully structured form, and flattened form suitable for use 613 /// in a Value. 614 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 615 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 616 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 617 } 618 619 /// Return the flattened type (suitable for use in a Value) 620 /// specified by the given \param ID . 621 Type *getTypeByID(unsigned ID) { 622 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 623 } 624 625 /// Return the fully structured (bitcode-reader internal) type 626 /// corresponding to the given \param ID . 627 Type *getFullyStructuredTypeByID(unsigned ID); 628 629 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 630 if (Ty && Ty->isMetadataTy()) 631 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 632 return ValueList.getValueFwdRef(ID, Ty, FullTy); 633 } 634 635 Metadata *getFnMetadataByID(unsigned ID) { 636 return MDLoader->getMetadataFwdRefOrLoad(ID); 637 } 638 639 BasicBlock *getBasicBlock(unsigned ID) const { 640 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 641 return FunctionBBs[ID]; 642 } 643 644 AttributeList getAttributes(unsigned i) const { 645 if (i-1 < MAttributes.size()) 646 return MAttributes[i-1]; 647 return AttributeList(); 648 } 649 650 /// Read a value/type pair out of the specified record from slot 'Slot'. 651 /// Increment Slot past the number of slots used in the record. Return true on 652 /// failure. 653 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 654 unsigned InstNum, Value *&ResVal, 655 Type **FullTy = nullptr) { 656 if (Slot == Record.size()) return true; 657 unsigned ValNo = (unsigned)Record[Slot++]; 658 // Adjust the ValNo, if it was encoded relative to the InstNum. 659 if (UseRelativeIDs) 660 ValNo = InstNum - ValNo; 661 if (ValNo < InstNum) { 662 // If this is not a forward reference, just return the value we already 663 // have. 664 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 665 return ResVal == nullptr; 666 } 667 if (Slot == Record.size()) 668 return true; 669 670 unsigned TypeNo = (unsigned)Record[Slot++]; 671 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 672 if (FullTy) 673 *FullTy = getFullyStructuredTypeByID(TypeNo); 674 return ResVal == nullptr; 675 } 676 677 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 678 /// past the number of slots used by the value in the record. Return true if 679 /// there is an error. 680 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 681 unsigned InstNum, Type *Ty, Value *&ResVal) { 682 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 683 return true; 684 // All values currently take a single record slot. 685 ++Slot; 686 return false; 687 } 688 689 /// Like popValue, but does not increment the Slot number. 690 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 691 unsigned InstNum, Type *Ty, Value *&ResVal) { 692 ResVal = getValue(Record, Slot, InstNum, Ty); 693 return ResVal == nullptr; 694 } 695 696 /// Version of getValue that returns ResVal directly, or 0 if there is an 697 /// error. 698 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 699 unsigned InstNum, Type *Ty) { 700 if (Slot == Record.size()) return nullptr; 701 unsigned ValNo = (unsigned)Record[Slot]; 702 // Adjust the ValNo, if it was encoded relative to the InstNum. 703 if (UseRelativeIDs) 704 ValNo = InstNum - ValNo; 705 return getFnValueByID(ValNo, Ty); 706 } 707 708 /// Like getValue, but decodes signed VBRs. 709 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 710 unsigned InstNum, Type *Ty) { 711 if (Slot == Record.size()) return nullptr; 712 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 713 // Adjust the ValNo, if it was encoded relative to the InstNum. 714 if (UseRelativeIDs) 715 ValNo = InstNum - ValNo; 716 return getFnValueByID(ValNo, Ty); 717 } 718 719 /// Upgrades old-style typeless byval attributes by adding the corresponding 720 /// argument's pointee type. 721 void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 722 723 /// Converts alignment exponent (i.e. power of two (or zero)) to the 724 /// corresponding alignment to use. If alignment is too large, returns 725 /// a corresponding error code. 726 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 727 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 728 Error parseModule( 729 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 730 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 731 732 Error parseComdatRecord(ArrayRef<uint64_t> Record); 733 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 734 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 735 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 736 ArrayRef<uint64_t> Record); 737 738 Error parseAttributeBlock(); 739 Error parseAttributeGroupBlock(); 740 Error parseTypeTable(); 741 Error parseTypeTableBody(); 742 Error parseOperandBundleTags(); 743 Error parseSyncScopeNames(); 744 745 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 746 unsigned NameIndex, Triple &TT); 747 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 748 ArrayRef<uint64_t> Record); 749 Error parseValueSymbolTable(uint64_t Offset = 0); 750 Error parseGlobalValueSymbolTable(); 751 Error parseConstants(); 752 Error rememberAndSkipFunctionBodies(); 753 Error rememberAndSkipFunctionBody(); 754 /// Save the positions of the Metadata blocks and skip parsing the blocks. 755 Error rememberAndSkipMetadata(); 756 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 757 Error parseFunctionBody(Function *F); 758 Error globalCleanup(); 759 Error resolveGlobalAndIndirectSymbolInits(); 760 Error parseUseLists(); 761 Error findFunctionInStream( 762 Function *F, 763 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 764 765 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 766 }; 767 768 /// Class to manage reading and parsing function summary index bitcode 769 /// files/sections. 770 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 771 /// The module index built during parsing. 772 ModuleSummaryIndex &TheIndex; 773 774 /// Indicates whether we have encountered a global value summary section 775 /// yet during parsing. 776 bool SeenGlobalValSummary = false; 777 778 /// Indicates whether we have already parsed the VST, used for error checking. 779 bool SeenValueSymbolTable = false; 780 781 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 782 /// Used to enable on-demand parsing of the VST. 783 uint64_t VSTOffset = 0; 784 785 // Map to save ValueId to ValueInfo association that was recorded in the 786 // ValueSymbolTable. It is used after the VST is parsed to convert 787 // call graph edges read from the function summary from referencing 788 // callees by their ValueId to using the ValueInfo instead, which is how 789 // they are recorded in the summary index being built. 790 // We save a GUID which refers to the same global as the ValueInfo, but 791 // ignoring the linkage, i.e. for values other than local linkage they are 792 // identical. 793 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 794 ValueIdToValueInfoMap; 795 796 /// Map populated during module path string table parsing, from the 797 /// module ID to a string reference owned by the index's module 798 /// path string table, used to correlate with combined index 799 /// summary records. 800 DenseMap<uint64_t, StringRef> ModuleIdMap; 801 802 /// Original source file name recorded in a bitcode record. 803 std::string SourceFileName; 804 805 /// The string identifier given to this module by the client, normally the 806 /// path to the bitcode file. 807 StringRef ModulePath; 808 809 /// For per-module summary indexes, the unique numerical identifier given to 810 /// this module by the client. 811 unsigned ModuleId; 812 813 public: 814 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 815 ModuleSummaryIndex &TheIndex, 816 StringRef ModulePath, unsigned ModuleId); 817 818 Error parseModule(); 819 820 private: 821 void setValueGUID(uint64_t ValueID, StringRef ValueName, 822 GlobalValue::LinkageTypes Linkage, 823 StringRef SourceFileName); 824 Error parseValueSymbolTable( 825 uint64_t Offset, 826 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 827 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 828 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 829 bool IsOldProfileFormat, 830 bool HasProfile, 831 bool HasRelBF); 832 Error parseEntireSummary(unsigned ID); 833 Error parseModuleStringTable(); 834 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 835 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 836 TypeIdCompatibleVtableInfo &TypeId); 837 838 std::pair<ValueInfo, GlobalValue::GUID> 839 getValueInfoFromValueId(unsigned ValueId); 840 841 void addThisModule(); 842 ModuleSummaryIndex::ModuleInfo *getThisModule(); 843 }; 844 845 } // end anonymous namespace 846 847 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 848 Error Err) { 849 if (Err) { 850 std::error_code EC; 851 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 852 EC = EIB.convertToErrorCode(); 853 Ctx.emitError(EIB.message()); 854 }); 855 return EC; 856 } 857 return std::error_code(); 858 } 859 860 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 861 StringRef ProducerIdentification, 862 LLVMContext &Context) 863 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 864 ValueList(Context, Stream.SizeInBytes()) { 865 this->ProducerIdentification = std::string(ProducerIdentification); 866 } 867 868 Error BitcodeReader::materializeForwardReferencedFunctions() { 869 if (WillMaterializeAllForwardRefs) 870 return Error::success(); 871 872 // Prevent recursion. 873 WillMaterializeAllForwardRefs = true; 874 875 while (!BasicBlockFwdRefQueue.empty()) { 876 Function *F = BasicBlockFwdRefQueue.front(); 877 BasicBlockFwdRefQueue.pop_front(); 878 assert(F && "Expected valid function"); 879 if (!BasicBlockFwdRefs.count(F)) 880 // Already materialized. 881 continue; 882 883 // Check for a function that isn't materializable to prevent an infinite 884 // loop. When parsing a blockaddress stored in a global variable, there 885 // isn't a trivial way to check if a function will have a body without a 886 // linear search through FunctionsWithBodies, so just check it here. 887 if (!F->isMaterializable()) 888 return error("Never resolved function from blockaddress"); 889 890 // Try to materialize F. 891 if (Error Err = materialize(F)) 892 return Err; 893 } 894 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 895 896 // Reset state. 897 WillMaterializeAllForwardRefs = false; 898 return Error::success(); 899 } 900 901 //===----------------------------------------------------------------------===// 902 // Helper functions to implement forward reference resolution, etc. 903 //===----------------------------------------------------------------------===// 904 905 static bool hasImplicitComdat(size_t Val) { 906 switch (Val) { 907 default: 908 return false; 909 case 1: // Old WeakAnyLinkage 910 case 4: // Old LinkOnceAnyLinkage 911 case 10: // Old WeakODRLinkage 912 case 11: // Old LinkOnceODRLinkage 913 return true; 914 } 915 } 916 917 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 918 switch (Val) { 919 default: // Map unknown/new linkages to external 920 case 0: 921 return GlobalValue::ExternalLinkage; 922 case 2: 923 return GlobalValue::AppendingLinkage; 924 case 3: 925 return GlobalValue::InternalLinkage; 926 case 5: 927 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 928 case 6: 929 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 930 case 7: 931 return GlobalValue::ExternalWeakLinkage; 932 case 8: 933 return GlobalValue::CommonLinkage; 934 case 9: 935 return GlobalValue::PrivateLinkage; 936 case 12: 937 return GlobalValue::AvailableExternallyLinkage; 938 case 13: 939 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 940 case 14: 941 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 942 case 15: 943 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 944 case 1: // Old value with implicit comdat. 945 case 16: 946 return GlobalValue::WeakAnyLinkage; 947 case 10: // Old value with implicit comdat. 948 case 17: 949 return GlobalValue::WeakODRLinkage; 950 case 4: // Old value with implicit comdat. 951 case 18: 952 return GlobalValue::LinkOnceAnyLinkage; 953 case 11: // Old value with implicit comdat. 954 case 19: 955 return GlobalValue::LinkOnceODRLinkage; 956 } 957 } 958 959 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 960 FunctionSummary::FFlags Flags; 961 Flags.ReadNone = RawFlags & 0x1; 962 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 963 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 964 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 965 Flags.NoInline = (RawFlags >> 4) & 0x1; 966 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 967 return Flags; 968 } 969 970 /// Decode the flags for GlobalValue in the summary. 971 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 972 uint64_t Version) { 973 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 974 // like getDecodedLinkage() above. Any future change to the linkage enum and 975 // to getDecodedLinkage() will need to be taken into account here as above. 976 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 977 RawFlags = RawFlags >> 4; 978 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 979 // The Live flag wasn't introduced until version 3. For dead stripping 980 // to work correctly on earlier versions, we must conservatively treat all 981 // values as live. 982 bool Live = (RawFlags & 0x2) || Version < 3; 983 bool Local = (RawFlags & 0x4); 984 bool AutoHide = (RawFlags & 0x8); 985 986 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 987 } 988 989 // Decode the flags for GlobalVariable in the summary 990 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 991 return GlobalVarSummary::GVarFlags( 992 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 993 (RawFlags & 0x4) ? true : false, 994 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 995 } 996 997 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 998 switch (Val) { 999 default: // Map unknown visibilities to default. 1000 case 0: return GlobalValue::DefaultVisibility; 1001 case 1: return GlobalValue::HiddenVisibility; 1002 case 2: return GlobalValue::ProtectedVisibility; 1003 } 1004 } 1005 1006 static GlobalValue::DLLStorageClassTypes 1007 getDecodedDLLStorageClass(unsigned Val) { 1008 switch (Val) { 1009 default: // Map unknown values to default. 1010 case 0: return GlobalValue::DefaultStorageClass; 1011 case 1: return GlobalValue::DLLImportStorageClass; 1012 case 2: return GlobalValue::DLLExportStorageClass; 1013 } 1014 } 1015 1016 static bool getDecodedDSOLocal(unsigned Val) { 1017 switch(Val) { 1018 default: // Map unknown values to preemptable. 1019 case 0: return false; 1020 case 1: return true; 1021 } 1022 } 1023 1024 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1025 switch (Val) { 1026 case 0: return GlobalVariable::NotThreadLocal; 1027 default: // Map unknown non-zero value to general dynamic. 1028 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1029 case 2: return GlobalVariable::LocalDynamicTLSModel; 1030 case 3: return GlobalVariable::InitialExecTLSModel; 1031 case 4: return GlobalVariable::LocalExecTLSModel; 1032 } 1033 } 1034 1035 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1036 switch (Val) { 1037 default: // Map unknown to UnnamedAddr::None. 1038 case 0: return GlobalVariable::UnnamedAddr::None; 1039 case 1: return GlobalVariable::UnnamedAddr::Global; 1040 case 2: return GlobalVariable::UnnamedAddr::Local; 1041 } 1042 } 1043 1044 static int getDecodedCastOpcode(unsigned Val) { 1045 switch (Val) { 1046 default: return -1; 1047 case bitc::CAST_TRUNC : return Instruction::Trunc; 1048 case bitc::CAST_ZEXT : return Instruction::ZExt; 1049 case bitc::CAST_SEXT : return Instruction::SExt; 1050 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1051 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1052 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1053 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1054 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1055 case bitc::CAST_FPEXT : return Instruction::FPExt; 1056 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1057 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1058 case bitc::CAST_BITCAST : return Instruction::BitCast; 1059 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1060 } 1061 } 1062 1063 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1064 bool IsFP = Ty->isFPOrFPVectorTy(); 1065 // UnOps are only valid for int/fp or vector of int/fp types 1066 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1067 return -1; 1068 1069 switch (Val) { 1070 default: 1071 return -1; 1072 case bitc::UNOP_FNEG: 1073 return IsFP ? Instruction::FNeg : -1; 1074 } 1075 } 1076 1077 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1078 bool IsFP = Ty->isFPOrFPVectorTy(); 1079 // BinOps are only valid for int/fp or vector of int/fp types 1080 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1081 return -1; 1082 1083 switch (Val) { 1084 default: 1085 return -1; 1086 case bitc::BINOP_ADD: 1087 return IsFP ? Instruction::FAdd : Instruction::Add; 1088 case bitc::BINOP_SUB: 1089 return IsFP ? Instruction::FSub : Instruction::Sub; 1090 case bitc::BINOP_MUL: 1091 return IsFP ? Instruction::FMul : Instruction::Mul; 1092 case bitc::BINOP_UDIV: 1093 return IsFP ? -1 : Instruction::UDiv; 1094 case bitc::BINOP_SDIV: 1095 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1096 case bitc::BINOP_UREM: 1097 return IsFP ? -1 : Instruction::URem; 1098 case bitc::BINOP_SREM: 1099 return IsFP ? Instruction::FRem : Instruction::SRem; 1100 case bitc::BINOP_SHL: 1101 return IsFP ? -1 : Instruction::Shl; 1102 case bitc::BINOP_LSHR: 1103 return IsFP ? -1 : Instruction::LShr; 1104 case bitc::BINOP_ASHR: 1105 return IsFP ? -1 : Instruction::AShr; 1106 case bitc::BINOP_AND: 1107 return IsFP ? -1 : Instruction::And; 1108 case bitc::BINOP_OR: 1109 return IsFP ? -1 : Instruction::Or; 1110 case bitc::BINOP_XOR: 1111 return IsFP ? -1 : Instruction::Xor; 1112 } 1113 } 1114 1115 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1116 switch (Val) { 1117 default: return AtomicRMWInst::BAD_BINOP; 1118 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1119 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1120 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1121 case bitc::RMW_AND: return AtomicRMWInst::And; 1122 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1123 case bitc::RMW_OR: return AtomicRMWInst::Or; 1124 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1125 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1126 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1127 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1128 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1129 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1130 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1131 } 1132 } 1133 1134 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1135 switch (Val) { 1136 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1137 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1138 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1139 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1140 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1141 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1142 default: // Map unknown orderings to sequentially-consistent. 1143 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1144 } 1145 } 1146 1147 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1148 switch (Val) { 1149 default: // Map unknown selection kinds to any. 1150 case bitc::COMDAT_SELECTION_KIND_ANY: 1151 return Comdat::Any; 1152 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1153 return Comdat::ExactMatch; 1154 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1155 return Comdat::Largest; 1156 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1157 return Comdat::NoDuplicates; 1158 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1159 return Comdat::SameSize; 1160 } 1161 } 1162 1163 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1164 FastMathFlags FMF; 1165 if (0 != (Val & bitc::UnsafeAlgebra)) 1166 FMF.setFast(); 1167 if (0 != (Val & bitc::AllowReassoc)) 1168 FMF.setAllowReassoc(); 1169 if (0 != (Val & bitc::NoNaNs)) 1170 FMF.setNoNaNs(); 1171 if (0 != (Val & bitc::NoInfs)) 1172 FMF.setNoInfs(); 1173 if (0 != (Val & bitc::NoSignedZeros)) 1174 FMF.setNoSignedZeros(); 1175 if (0 != (Val & bitc::AllowReciprocal)) 1176 FMF.setAllowReciprocal(); 1177 if (0 != (Val & bitc::AllowContract)) 1178 FMF.setAllowContract(true); 1179 if (0 != (Val & bitc::ApproxFunc)) 1180 FMF.setApproxFunc(); 1181 return FMF; 1182 } 1183 1184 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1185 switch (Val) { 1186 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1187 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1188 } 1189 } 1190 1191 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1192 // The type table size is always specified correctly. 1193 if (ID >= TypeList.size()) 1194 return nullptr; 1195 1196 if (Type *Ty = TypeList[ID]) 1197 return Ty; 1198 1199 // If we have a forward reference, the only possible case is when it is to a 1200 // named struct. Just create a placeholder for now. 1201 return TypeList[ID] = createIdentifiedStructType(Context); 1202 } 1203 1204 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1205 StringRef Name) { 1206 auto *Ret = StructType::create(Context, Name); 1207 IdentifiedStructTypes.push_back(Ret); 1208 return Ret; 1209 } 1210 1211 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1212 auto *Ret = StructType::create(Context); 1213 IdentifiedStructTypes.push_back(Ret); 1214 return Ret; 1215 } 1216 1217 //===----------------------------------------------------------------------===// 1218 // Functions for parsing blocks from the bitcode file 1219 //===----------------------------------------------------------------------===// 1220 1221 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1222 switch (Val) { 1223 case Attribute::EndAttrKinds: 1224 case Attribute::EmptyKey: 1225 case Attribute::TombstoneKey: 1226 llvm_unreachable("Synthetic enumerators which should never get here"); 1227 1228 case Attribute::None: return 0; 1229 case Attribute::ZExt: return 1 << 0; 1230 case Attribute::SExt: return 1 << 1; 1231 case Attribute::NoReturn: return 1 << 2; 1232 case Attribute::InReg: return 1 << 3; 1233 case Attribute::StructRet: return 1 << 4; 1234 case Attribute::NoUnwind: return 1 << 5; 1235 case Attribute::NoAlias: return 1 << 6; 1236 case Attribute::ByVal: return 1 << 7; 1237 case Attribute::Nest: return 1 << 8; 1238 case Attribute::ReadNone: return 1 << 9; 1239 case Attribute::ReadOnly: return 1 << 10; 1240 case Attribute::NoInline: return 1 << 11; 1241 case Attribute::AlwaysInline: return 1 << 12; 1242 case Attribute::OptimizeForSize: return 1 << 13; 1243 case Attribute::StackProtect: return 1 << 14; 1244 case Attribute::StackProtectReq: return 1 << 15; 1245 case Attribute::Alignment: return 31 << 16; 1246 case Attribute::NoCapture: return 1 << 21; 1247 case Attribute::NoRedZone: return 1 << 22; 1248 case Attribute::NoImplicitFloat: return 1 << 23; 1249 case Attribute::Naked: return 1 << 24; 1250 case Attribute::InlineHint: return 1 << 25; 1251 case Attribute::StackAlignment: return 7 << 26; 1252 case Attribute::ReturnsTwice: return 1 << 29; 1253 case Attribute::UWTable: return 1 << 30; 1254 case Attribute::NonLazyBind: return 1U << 31; 1255 case Attribute::SanitizeAddress: return 1ULL << 32; 1256 case Attribute::MinSize: return 1ULL << 33; 1257 case Attribute::NoDuplicate: return 1ULL << 34; 1258 case Attribute::StackProtectStrong: return 1ULL << 35; 1259 case Attribute::SanitizeThread: return 1ULL << 36; 1260 case Attribute::SanitizeMemory: return 1ULL << 37; 1261 case Attribute::NoBuiltin: return 1ULL << 38; 1262 case Attribute::Returned: return 1ULL << 39; 1263 case Attribute::Cold: return 1ULL << 40; 1264 case Attribute::Builtin: return 1ULL << 41; 1265 case Attribute::OptimizeNone: return 1ULL << 42; 1266 case Attribute::InAlloca: return 1ULL << 43; 1267 case Attribute::NonNull: return 1ULL << 44; 1268 case Attribute::JumpTable: return 1ULL << 45; 1269 case Attribute::Convergent: return 1ULL << 46; 1270 case Attribute::SafeStack: return 1ULL << 47; 1271 case Attribute::NoRecurse: return 1ULL << 48; 1272 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1273 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1274 case Attribute::SwiftSelf: return 1ULL << 51; 1275 case Attribute::SwiftError: return 1ULL << 52; 1276 case Attribute::WriteOnly: return 1ULL << 53; 1277 case Attribute::Speculatable: return 1ULL << 54; 1278 case Attribute::StrictFP: return 1ULL << 55; 1279 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1280 case Attribute::NoCfCheck: return 1ULL << 57; 1281 case Attribute::OptForFuzzing: return 1ULL << 58; 1282 case Attribute::ShadowCallStack: return 1ULL << 59; 1283 case Attribute::SpeculativeLoadHardening: 1284 return 1ULL << 60; 1285 case Attribute::ImmArg: 1286 return 1ULL << 61; 1287 case Attribute::WillReturn: 1288 return 1ULL << 62; 1289 case Attribute::NoFree: 1290 return 1ULL << 63; 1291 default: 1292 // Other attributes are not supported in the raw format, 1293 // as we ran out of space. 1294 return 0; 1295 } 1296 llvm_unreachable("Unsupported attribute type"); 1297 } 1298 1299 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1300 if (!Val) return; 1301 1302 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1303 I = Attribute::AttrKind(I + 1)) { 1304 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1305 if (I == Attribute::Alignment) 1306 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1307 else if (I == Attribute::StackAlignment) 1308 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1309 else 1310 B.addAttribute(I); 1311 } 1312 } 1313 } 1314 1315 /// This fills an AttrBuilder object with the LLVM attributes that have 1316 /// been decoded from the given integer. This function must stay in sync with 1317 /// 'encodeLLVMAttributesForBitcode'. 1318 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1319 uint64_t EncodedAttrs) { 1320 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1321 // the bits above 31 down by 11 bits. 1322 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1323 assert((!Alignment || isPowerOf2_32(Alignment)) && 1324 "Alignment must be a power of two."); 1325 1326 if (Alignment) 1327 B.addAlignmentAttr(Alignment); 1328 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1329 (EncodedAttrs & 0xffff)); 1330 } 1331 1332 Error BitcodeReader::parseAttributeBlock() { 1333 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1334 return Err; 1335 1336 if (!MAttributes.empty()) 1337 return error("Invalid multiple blocks"); 1338 1339 SmallVector<uint64_t, 64> Record; 1340 1341 SmallVector<AttributeList, 8> Attrs; 1342 1343 // Read all the records. 1344 while (true) { 1345 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1346 if (!MaybeEntry) 1347 return MaybeEntry.takeError(); 1348 BitstreamEntry Entry = MaybeEntry.get(); 1349 1350 switch (Entry.Kind) { 1351 case BitstreamEntry::SubBlock: // Handled for us already. 1352 case BitstreamEntry::Error: 1353 return error("Malformed block"); 1354 case BitstreamEntry::EndBlock: 1355 return Error::success(); 1356 case BitstreamEntry::Record: 1357 // The interesting case. 1358 break; 1359 } 1360 1361 // Read a record. 1362 Record.clear(); 1363 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1364 if (!MaybeRecord) 1365 return MaybeRecord.takeError(); 1366 switch (MaybeRecord.get()) { 1367 default: // Default behavior: ignore. 1368 break; 1369 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1370 // Deprecated, but still needed to read old bitcode files. 1371 if (Record.size() & 1) 1372 return error("Invalid record"); 1373 1374 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1375 AttrBuilder B; 1376 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1377 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1378 } 1379 1380 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1381 Attrs.clear(); 1382 break; 1383 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1384 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1385 Attrs.push_back(MAttributeGroups[Record[i]]); 1386 1387 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1388 Attrs.clear(); 1389 break; 1390 } 1391 } 1392 } 1393 1394 // Returns Attribute::None on unrecognized codes. 1395 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1396 switch (Code) { 1397 default: 1398 return Attribute::None; 1399 case bitc::ATTR_KIND_ALIGNMENT: 1400 return Attribute::Alignment; 1401 case bitc::ATTR_KIND_ALWAYS_INLINE: 1402 return Attribute::AlwaysInline; 1403 case bitc::ATTR_KIND_ARGMEMONLY: 1404 return Attribute::ArgMemOnly; 1405 case bitc::ATTR_KIND_BUILTIN: 1406 return Attribute::Builtin; 1407 case bitc::ATTR_KIND_BY_VAL: 1408 return Attribute::ByVal; 1409 case bitc::ATTR_KIND_IN_ALLOCA: 1410 return Attribute::InAlloca; 1411 case bitc::ATTR_KIND_COLD: 1412 return Attribute::Cold; 1413 case bitc::ATTR_KIND_CONVERGENT: 1414 return Attribute::Convergent; 1415 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1416 return Attribute::InaccessibleMemOnly; 1417 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1418 return Attribute::InaccessibleMemOrArgMemOnly; 1419 case bitc::ATTR_KIND_INLINE_HINT: 1420 return Attribute::InlineHint; 1421 case bitc::ATTR_KIND_IN_REG: 1422 return Attribute::InReg; 1423 case bitc::ATTR_KIND_JUMP_TABLE: 1424 return Attribute::JumpTable; 1425 case bitc::ATTR_KIND_MIN_SIZE: 1426 return Attribute::MinSize; 1427 case bitc::ATTR_KIND_NAKED: 1428 return Attribute::Naked; 1429 case bitc::ATTR_KIND_NEST: 1430 return Attribute::Nest; 1431 case bitc::ATTR_KIND_NO_ALIAS: 1432 return Attribute::NoAlias; 1433 case bitc::ATTR_KIND_NO_BUILTIN: 1434 return Attribute::NoBuiltin; 1435 case bitc::ATTR_KIND_NO_CAPTURE: 1436 return Attribute::NoCapture; 1437 case bitc::ATTR_KIND_NO_DUPLICATE: 1438 return Attribute::NoDuplicate; 1439 case bitc::ATTR_KIND_NOFREE: 1440 return Attribute::NoFree; 1441 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1442 return Attribute::NoImplicitFloat; 1443 case bitc::ATTR_KIND_NO_INLINE: 1444 return Attribute::NoInline; 1445 case bitc::ATTR_KIND_NO_RECURSE: 1446 return Attribute::NoRecurse; 1447 case bitc::ATTR_KIND_NO_MERGE: 1448 return Attribute::NoMerge; 1449 case bitc::ATTR_KIND_NON_LAZY_BIND: 1450 return Attribute::NonLazyBind; 1451 case bitc::ATTR_KIND_NON_NULL: 1452 return Attribute::NonNull; 1453 case bitc::ATTR_KIND_DEREFERENCEABLE: 1454 return Attribute::Dereferenceable; 1455 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1456 return Attribute::DereferenceableOrNull; 1457 case bitc::ATTR_KIND_ALLOC_SIZE: 1458 return Attribute::AllocSize; 1459 case bitc::ATTR_KIND_NO_RED_ZONE: 1460 return Attribute::NoRedZone; 1461 case bitc::ATTR_KIND_NO_RETURN: 1462 return Attribute::NoReturn; 1463 case bitc::ATTR_KIND_NOSYNC: 1464 return Attribute::NoSync; 1465 case bitc::ATTR_KIND_NOCF_CHECK: 1466 return Attribute::NoCfCheck; 1467 case bitc::ATTR_KIND_NO_UNWIND: 1468 return Attribute::NoUnwind; 1469 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1470 return Attribute::NullPointerIsValid; 1471 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1472 return Attribute::OptForFuzzing; 1473 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1474 return Attribute::OptimizeForSize; 1475 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1476 return Attribute::OptimizeNone; 1477 case bitc::ATTR_KIND_READ_NONE: 1478 return Attribute::ReadNone; 1479 case bitc::ATTR_KIND_READ_ONLY: 1480 return Attribute::ReadOnly; 1481 case bitc::ATTR_KIND_RETURNED: 1482 return Attribute::Returned; 1483 case bitc::ATTR_KIND_RETURNS_TWICE: 1484 return Attribute::ReturnsTwice; 1485 case bitc::ATTR_KIND_S_EXT: 1486 return Attribute::SExt; 1487 case bitc::ATTR_KIND_SPECULATABLE: 1488 return Attribute::Speculatable; 1489 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1490 return Attribute::StackAlignment; 1491 case bitc::ATTR_KIND_STACK_PROTECT: 1492 return Attribute::StackProtect; 1493 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1494 return Attribute::StackProtectReq; 1495 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1496 return Attribute::StackProtectStrong; 1497 case bitc::ATTR_KIND_SAFESTACK: 1498 return Attribute::SafeStack; 1499 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1500 return Attribute::ShadowCallStack; 1501 case bitc::ATTR_KIND_STRICT_FP: 1502 return Attribute::StrictFP; 1503 case bitc::ATTR_KIND_STRUCT_RET: 1504 return Attribute::StructRet; 1505 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1506 return Attribute::SanitizeAddress; 1507 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1508 return Attribute::SanitizeHWAddress; 1509 case bitc::ATTR_KIND_SANITIZE_THREAD: 1510 return Attribute::SanitizeThread; 1511 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1512 return Attribute::SanitizeMemory; 1513 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1514 return Attribute::SpeculativeLoadHardening; 1515 case bitc::ATTR_KIND_SWIFT_ERROR: 1516 return Attribute::SwiftError; 1517 case bitc::ATTR_KIND_SWIFT_SELF: 1518 return Attribute::SwiftSelf; 1519 case bitc::ATTR_KIND_UW_TABLE: 1520 return Attribute::UWTable; 1521 case bitc::ATTR_KIND_WILLRETURN: 1522 return Attribute::WillReturn; 1523 case bitc::ATTR_KIND_WRITEONLY: 1524 return Attribute::WriteOnly; 1525 case bitc::ATTR_KIND_Z_EXT: 1526 return Attribute::ZExt; 1527 case bitc::ATTR_KIND_IMMARG: 1528 return Attribute::ImmArg; 1529 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1530 return Attribute::SanitizeMemTag; 1531 case bitc::ATTR_KIND_PREALLOCATED: 1532 return Attribute::Preallocated; 1533 } 1534 } 1535 1536 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1537 MaybeAlign &Alignment) { 1538 // Note: Alignment in bitcode files is incremented by 1, so that zero 1539 // can be used for default alignment. 1540 if (Exponent > Value::MaxAlignmentExponent + 1) 1541 return error("Invalid alignment value"); 1542 Alignment = decodeMaybeAlign(Exponent); 1543 return Error::success(); 1544 } 1545 1546 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1547 *Kind = getAttrFromCode(Code); 1548 if (*Kind == Attribute::None) 1549 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1550 return Error::success(); 1551 } 1552 1553 Error BitcodeReader::parseAttributeGroupBlock() { 1554 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1555 return Err; 1556 1557 if (!MAttributeGroups.empty()) 1558 return error("Invalid multiple blocks"); 1559 1560 SmallVector<uint64_t, 64> Record; 1561 1562 // Read all the records. 1563 while (true) { 1564 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1565 if (!MaybeEntry) 1566 return MaybeEntry.takeError(); 1567 BitstreamEntry Entry = MaybeEntry.get(); 1568 1569 switch (Entry.Kind) { 1570 case BitstreamEntry::SubBlock: // Handled for us already. 1571 case BitstreamEntry::Error: 1572 return error("Malformed block"); 1573 case BitstreamEntry::EndBlock: 1574 return Error::success(); 1575 case BitstreamEntry::Record: 1576 // The interesting case. 1577 break; 1578 } 1579 1580 // Read a record. 1581 Record.clear(); 1582 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1583 if (!MaybeRecord) 1584 return MaybeRecord.takeError(); 1585 switch (MaybeRecord.get()) { 1586 default: // Default behavior: ignore. 1587 break; 1588 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1589 if (Record.size() < 3) 1590 return error("Invalid record"); 1591 1592 uint64_t GrpID = Record[0]; 1593 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1594 1595 AttrBuilder B; 1596 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1597 if (Record[i] == 0) { // Enum attribute 1598 Attribute::AttrKind Kind; 1599 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1600 return Err; 1601 1602 // Upgrade old-style byval attribute to one with a type, even if it's 1603 // nullptr. We will have to insert the real type when we associate 1604 // this AttributeList with a function. 1605 if (Kind == Attribute::ByVal) 1606 B.addByValAttr(nullptr); 1607 1608 B.addAttribute(Kind); 1609 } else if (Record[i] == 1) { // Integer attribute 1610 Attribute::AttrKind Kind; 1611 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1612 return Err; 1613 if (Kind == Attribute::Alignment) 1614 B.addAlignmentAttr(Record[++i]); 1615 else if (Kind == Attribute::StackAlignment) 1616 B.addStackAlignmentAttr(Record[++i]); 1617 else if (Kind == Attribute::Dereferenceable) 1618 B.addDereferenceableAttr(Record[++i]); 1619 else if (Kind == Attribute::DereferenceableOrNull) 1620 B.addDereferenceableOrNullAttr(Record[++i]); 1621 else if (Kind == Attribute::AllocSize) 1622 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1623 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1624 bool HasValue = (Record[i++] == 4); 1625 SmallString<64> KindStr; 1626 SmallString<64> ValStr; 1627 1628 while (Record[i] != 0 && i != e) 1629 KindStr += Record[i++]; 1630 assert(Record[i] == 0 && "Kind string not null terminated"); 1631 1632 if (HasValue) { 1633 // Has a value associated with it. 1634 ++i; // Skip the '0' that terminates the "kind" string. 1635 while (Record[i] != 0 && i != e) 1636 ValStr += Record[i++]; 1637 assert(Record[i] == 0 && "Value string not null terminated"); 1638 } 1639 1640 B.addAttribute(KindStr.str(), ValStr.str()); 1641 } else { 1642 assert((Record[i] == 5 || Record[i] == 6) && 1643 "Invalid attribute group entry"); 1644 bool HasType = Record[i] == 6; 1645 Attribute::AttrKind Kind; 1646 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1647 return Err; 1648 if (Kind == Attribute::ByVal) { 1649 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1650 } else if (Kind == Attribute::Preallocated) { 1651 B.addPreallocatedAttr(getTypeByID(Record[++i])); 1652 } 1653 } 1654 } 1655 1656 UpgradeAttributes(B); 1657 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1658 break; 1659 } 1660 } 1661 } 1662 } 1663 1664 Error BitcodeReader::parseTypeTable() { 1665 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1666 return Err; 1667 1668 return parseTypeTableBody(); 1669 } 1670 1671 Error BitcodeReader::parseTypeTableBody() { 1672 if (!TypeList.empty()) 1673 return error("Invalid multiple blocks"); 1674 1675 SmallVector<uint64_t, 64> Record; 1676 unsigned NumRecords = 0; 1677 1678 SmallString<64> TypeName; 1679 1680 // Read all the records for this type table. 1681 while (true) { 1682 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1683 if (!MaybeEntry) 1684 return MaybeEntry.takeError(); 1685 BitstreamEntry Entry = MaybeEntry.get(); 1686 1687 switch (Entry.Kind) { 1688 case BitstreamEntry::SubBlock: // Handled for us already. 1689 case BitstreamEntry::Error: 1690 return error("Malformed block"); 1691 case BitstreamEntry::EndBlock: 1692 if (NumRecords != TypeList.size()) 1693 return error("Malformed block"); 1694 return Error::success(); 1695 case BitstreamEntry::Record: 1696 // The interesting case. 1697 break; 1698 } 1699 1700 // Read a record. 1701 Record.clear(); 1702 Type *ResultTy = nullptr; 1703 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1704 if (!MaybeRecord) 1705 return MaybeRecord.takeError(); 1706 switch (MaybeRecord.get()) { 1707 default: 1708 return error("Invalid value"); 1709 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1710 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1711 // type list. This allows us to reserve space. 1712 if (Record.size() < 1) 1713 return error("Invalid record"); 1714 TypeList.resize(Record[0]); 1715 continue; 1716 case bitc::TYPE_CODE_VOID: // VOID 1717 ResultTy = Type::getVoidTy(Context); 1718 break; 1719 case bitc::TYPE_CODE_HALF: // HALF 1720 ResultTy = Type::getHalfTy(Context); 1721 break; 1722 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1723 ResultTy = Type::getBFloatTy(Context); 1724 break; 1725 case bitc::TYPE_CODE_FLOAT: // FLOAT 1726 ResultTy = Type::getFloatTy(Context); 1727 break; 1728 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1729 ResultTy = Type::getDoubleTy(Context); 1730 break; 1731 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1732 ResultTy = Type::getX86_FP80Ty(Context); 1733 break; 1734 case bitc::TYPE_CODE_FP128: // FP128 1735 ResultTy = Type::getFP128Ty(Context); 1736 break; 1737 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1738 ResultTy = Type::getPPC_FP128Ty(Context); 1739 break; 1740 case bitc::TYPE_CODE_LABEL: // LABEL 1741 ResultTy = Type::getLabelTy(Context); 1742 break; 1743 case bitc::TYPE_CODE_METADATA: // METADATA 1744 ResultTy = Type::getMetadataTy(Context); 1745 break; 1746 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1747 ResultTy = Type::getX86_MMXTy(Context); 1748 break; 1749 case bitc::TYPE_CODE_TOKEN: // TOKEN 1750 ResultTy = Type::getTokenTy(Context); 1751 break; 1752 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1753 if (Record.size() < 1) 1754 return error("Invalid record"); 1755 1756 uint64_t NumBits = Record[0]; 1757 if (NumBits < IntegerType::MIN_INT_BITS || 1758 NumBits > IntegerType::MAX_INT_BITS) 1759 return error("Bitwidth for integer type out of range"); 1760 ResultTy = IntegerType::get(Context, NumBits); 1761 break; 1762 } 1763 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1764 // [pointee type, address space] 1765 if (Record.size() < 1) 1766 return error("Invalid record"); 1767 unsigned AddressSpace = 0; 1768 if (Record.size() == 2) 1769 AddressSpace = Record[1]; 1770 ResultTy = getTypeByID(Record[0]); 1771 if (!ResultTy || 1772 !PointerType::isValidElementType(ResultTy)) 1773 return error("Invalid type"); 1774 ResultTy = PointerType::get(ResultTy, AddressSpace); 1775 break; 1776 } 1777 case bitc::TYPE_CODE_FUNCTION_OLD: { 1778 // Deprecated, but still needed to read old bitcode files. 1779 // FUNCTION: [vararg, attrid, retty, paramty x N] 1780 if (Record.size() < 3) 1781 return error("Invalid record"); 1782 SmallVector<Type*, 8> ArgTys; 1783 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1784 if (Type *T = getTypeByID(Record[i])) 1785 ArgTys.push_back(T); 1786 else 1787 break; 1788 } 1789 1790 ResultTy = getTypeByID(Record[2]); 1791 if (!ResultTy || ArgTys.size() < Record.size()-3) 1792 return error("Invalid type"); 1793 1794 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1795 break; 1796 } 1797 case bitc::TYPE_CODE_FUNCTION: { 1798 // FUNCTION: [vararg, retty, paramty x N] 1799 if (Record.size() < 2) 1800 return error("Invalid record"); 1801 SmallVector<Type*, 8> ArgTys; 1802 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1803 if (Type *T = getTypeByID(Record[i])) { 1804 if (!FunctionType::isValidArgumentType(T)) 1805 return error("Invalid function argument type"); 1806 ArgTys.push_back(T); 1807 } 1808 else 1809 break; 1810 } 1811 1812 ResultTy = getTypeByID(Record[1]); 1813 if (!ResultTy || ArgTys.size() < Record.size()-2) 1814 return error("Invalid type"); 1815 1816 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1817 break; 1818 } 1819 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1820 if (Record.size() < 1) 1821 return error("Invalid record"); 1822 SmallVector<Type*, 8> EltTys; 1823 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1824 if (Type *T = getTypeByID(Record[i])) 1825 EltTys.push_back(T); 1826 else 1827 break; 1828 } 1829 if (EltTys.size() != Record.size()-1) 1830 return error("Invalid type"); 1831 ResultTy = StructType::get(Context, EltTys, Record[0]); 1832 break; 1833 } 1834 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1835 if (convertToString(Record, 0, TypeName)) 1836 return error("Invalid record"); 1837 continue; 1838 1839 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1840 if (Record.size() < 1) 1841 return error("Invalid record"); 1842 1843 if (NumRecords >= TypeList.size()) 1844 return error("Invalid TYPE table"); 1845 1846 // Check to see if this was forward referenced, if so fill in the temp. 1847 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1848 if (Res) { 1849 Res->setName(TypeName); 1850 TypeList[NumRecords] = nullptr; 1851 } else // Otherwise, create a new struct. 1852 Res = createIdentifiedStructType(Context, TypeName); 1853 TypeName.clear(); 1854 1855 SmallVector<Type*, 8> EltTys; 1856 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1857 if (Type *T = getTypeByID(Record[i])) 1858 EltTys.push_back(T); 1859 else 1860 break; 1861 } 1862 if (EltTys.size() != Record.size()-1) 1863 return error("Invalid record"); 1864 Res->setBody(EltTys, Record[0]); 1865 ResultTy = Res; 1866 break; 1867 } 1868 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1869 if (Record.size() != 1) 1870 return error("Invalid record"); 1871 1872 if (NumRecords >= TypeList.size()) 1873 return error("Invalid TYPE table"); 1874 1875 // Check to see if this was forward referenced, if so fill in the temp. 1876 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1877 if (Res) { 1878 Res->setName(TypeName); 1879 TypeList[NumRecords] = nullptr; 1880 } else // Otherwise, create a new struct with no body. 1881 Res = createIdentifiedStructType(Context, TypeName); 1882 TypeName.clear(); 1883 ResultTy = Res; 1884 break; 1885 } 1886 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1887 if (Record.size() < 2) 1888 return error("Invalid record"); 1889 ResultTy = getTypeByID(Record[1]); 1890 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1891 return error("Invalid type"); 1892 ResultTy = ArrayType::get(ResultTy, Record[0]); 1893 break; 1894 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1895 // [numelts, eltty, scalable] 1896 if (Record.size() < 2) 1897 return error("Invalid record"); 1898 if (Record[0] == 0) 1899 return error("Invalid vector length"); 1900 ResultTy = getTypeByID(Record[1]); 1901 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1902 return error("Invalid type"); 1903 bool Scalable = Record.size() > 2 ? Record[2] : false; 1904 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1905 break; 1906 } 1907 1908 if (NumRecords >= TypeList.size()) 1909 return error("Invalid TYPE table"); 1910 if (TypeList[NumRecords]) 1911 return error( 1912 "Invalid TYPE table: Only named structs can be forward referenced"); 1913 assert(ResultTy && "Didn't read a type?"); 1914 TypeList[NumRecords++] = ResultTy; 1915 } 1916 } 1917 1918 Error BitcodeReader::parseOperandBundleTags() { 1919 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1920 return Err; 1921 1922 if (!BundleTags.empty()) 1923 return error("Invalid multiple blocks"); 1924 1925 SmallVector<uint64_t, 64> Record; 1926 1927 while (true) { 1928 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1929 if (!MaybeEntry) 1930 return MaybeEntry.takeError(); 1931 BitstreamEntry Entry = MaybeEntry.get(); 1932 1933 switch (Entry.Kind) { 1934 case BitstreamEntry::SubBlock: // Handled for us already. 1935 case BitstreamEntry::Error: 1936 return error("Malformed block"); 1937 case BitstreamEntry::EndBlock: 1938 return Error::success(); 1939 case BitstreamEntry::Record: 1940 // The interesting case. 1941 break; 1942 } 1943 1944 // Tags are implicitly mapped to integers by their order. 1945 1946 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1947 if (!MaybeRecord) 1948 return MaybeRecord.takeError(); 1949 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1950 return error("Invalid record"); 1951 1952 // OPERAND_BUNDLE_TAG: [strchr x N] 1953 BundleTags.emplace_back(); 1954 if (convertToString(Record, 0, BundleTags.back())) 1955 return error("Invalid record"); 1956 Record.clear(); 1957 } 1958 } 1959 1960 Error BitcodeReader::parseSyncScopeNames() { 1961 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1962 return Err; 1963 1964 if (!SSIDs.empty()) 1965 return error("Invalid multiple synchronization scope names blocks"); 1966 1967 SmallVector<uint64_t, 64> Record; 1968 while (true) { 1969 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1970 if (!MaybeEntry) 1971 return MaybeEntry.takeError(); 1972 BitstreamEntry Entry = MaybeEntry.get(); 1973 1974 switch (Entry.Kind) { 1975 case BitstreamEntry::SubBlock: // Handled for us already. 1976 case BitstreamEntry::Error: 1977 return error("Malformed block"); 1978 case BitstreamEntry::EndBlock: 1979 if (SSIDs.empty()) 1980 return error("Invalid empty synchronization scope names block"); 1981 return Error::success(); 1982 case BitstreamEntry::Record: 1983 // The interesting case. 1984 break; 1985 } 1986 1987 // Synchronization scope names are implicitly mapped to synchronization 1988 // scope IDs by their order. 1989 1990 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1991 if (!MaybeRecord) 1992 return MaybeRecord.takeError(); 1993 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 1994 return error("Invalid record"); 1995 1996 SmallString<16> SSN; 1997 if (convertToString(Record, 0, SSN)) 1998 return error("Invalid record"); 1999 2000 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2001 Record.clear(); 2002 } 2003 } 2004 2005 /// Associate a value with its name from the given index in the provided record. 2006 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2007 unsigned NameIndex, Triple &TT) { 2008 SmallString<128> ValueName; 2009 if (convertToString(Record, NameIndex, ValueName)) 2010 return error("Invalid record"); 2011 unsigned ValueID = Record[0]; 2012 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2013 return error("Invalid record"); 2014 Value *V = ValueList[ValueID]; 2015 2016 StringRef NameStr(ValueName.data(), ValueName.size()); 2017 if (NameStr.find_first_of(0) != StringRef::npos) 2018 return error("Invalid value name"); 2019 V->setName(NameStr); 2020 auto *GO = dyn_cast<GlobalObject>(V); 2021 if (GO) { 2022 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2023 if (TT.supportsCOMDAT()) 2024 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2025 else 2026 GO->setComdat(nullptr); 2027 } 2028 } 2029 return V; 2030 } 2031 2032 /// Helper to note and return the current location, and jump to the given 2033 /// offset. 2034 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2035 BitstreamCursor &Stream) { 2036 // Save the current parsing location so we can jump back at the end 2037 // of the VST read. 2038 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2039 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2040 return std::move(JumpFailed); 2041 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2042 if (!MaybeEntry) 2043 return MaybeEntry.takeError(); 2044 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2045 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2046 return CurrentBit; 2047 } 2048 2049 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2050 Function *F, 2051 ArrayRef<uint64_t> Record) { 2052 // Note that we subtract 1 here because the offset is relative to one word 2053 // before the start of the identification or module block, which was 2054 // historically always the start of the regular bitcode header. 2055 uint64_t FuncWordOffset = Record[1] - 1; 2056 uint64_t FuncBitOffset = FuncWordOffset * 32; 2057 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2058 // Set the LastFunctionBlockBit to point to the last function block. 2059 // Later when parsing is resumed after function materialization, 2060 // we can simply skip that last function block. 2061 if (FuncBitOffset > LastFunctionBlockBit) 2062 LastFunctionBlockBit = FuncBitOffset; 2063 } 2064 2065 /// Read a new-style GlobalValue symbol table. 2066 Error BitcodeReader::parseGlobalValueSymbolTable() { 2067 unsigned FuncBitcodeOffsetDelta = 2068 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2069 2070 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2071 return Err; 2072 2073 SmallVector<uint64_t, 64> Record; 2074 while (true) { 2075 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2076 if (!MaybeEntry) 2077 return MaybeEntry.takeError(); 2078 BitstreamEntry Entry = MaybeEntry.get(); 2079 2080 switch (Entry.Kind) { 2081 case BitstreamEntry::SubBlock: 2082 case BitstreamEntry::Error: 2083 return error("Malformed block"); 2084 case BitstreamEntry::EndBlock: 2085 return Error::success(); 2086 case BitstreamEntry::Record: 2087 break; 2088 } 2089 2090 Record.clear(); 2091 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2092 if (!MaybeRecord) 2093 return MaybeRecord.takeError(); 2094 switch (MaybeRecord.get()) { 2095 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2096 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2097 cast<Function>(ValueList[Record[0]]), Record); 2098 break; 2099 } 2100 } 2101 } 2102 2103 /// Parse the value symbol table at either the current parsing location or 2104 /// at the given bit offset if provided. 2105 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2106 uint64_t CurrentBit; 2107 // Pass in the Offset to distinguish between calling for the module-level 2108 // VST (where we want to jump to the VST offset) and the function-level 2109 // VST (where we don't). 2110 if (Offset > 0) { 2111 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2112 if (!MaybeCurrentBit) 2113 return MaybeCurrentBit.takeError(); 2114 CurrentBit = MaybeCurrentBit.get(); 2115 // If this module uses a string table, read this as a module-level VST. 2116 if (UseStrtab) { 2117 if (Error Err = parseGlobalValueSymbolTable()) 2118 return Err; 2119 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2120 return JumpFailed; 2121 return Error::success(); 2122 } 2123 // Otherwise, the VST will be in a similar format to a function-level VST, 2124 // and will contain symbol names. 2125 } 2126 2127 // Compute the delta between the bitcode indices in the VST (the word offset 2128 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2129 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2130 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2131 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2132 // just before entering the VST subblock because: 1) the EnterSubBlock 2133 // changes the AbbrevID width; 2) the VST block is nested within the same 2134 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2135 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2136 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2137 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2138 unsigned FuncBitcodeOffsetDelta = 2139 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2140 2141 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2142 return Err; 2143 2144 SmallVector<uint64_t, 64> Record; 2145 2146 Triple TT(TheModule->getTargetTriple()); 2147 2148 // Read all the records for this value table. 2149 SmallString<128> ValueName; 2150 2151 while (true) { 2152 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2153 if (!MaybeEntry) 2154 return MaybeEntry.takeError(); 2155 BitstreamEntry Entry = MaybeEntry.get(); 2156 2157 switch (Entry.Kind) { 2158 case BitstreamEntry::SubBlock: // Handled for us already. 2159 case BitstreamEntry::Error: 2160 return error("Malformed block"); 2161 case BitstreamEntry::EndBlock: 2162 if (Offset > 0) 2163 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2164 return JumpFailed; 2165 return Error::success(); 2166 case BitstreamEntry::Record: 2167 // The interesting case. 2168 break; 2169 } 2170 2171 // Read a record. 2172 Record.clear(); 2173 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2174 if (!MaybeRecord) 2175 return MaybeRecord.takeError(); 2176 switch (MaybeRecord.get()) { 2177 default: // Default behavior: unknown type. 2178 break; 2179 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2180 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2181 if (Error Err = ValOrErr.takeError()) 2182 return Err; 2183 ValOrErr.get(); 2184 break; 2185 } 2186 case bitc::VST_CODE_FNENTRY: { 2187 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2188 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2189 if (Error Err = ValOrErr.takeError()) 2190 return Err; 2191 Value *V = ValOrErr.get(); 2192 2193 // Ignore function offsets emitted for aliases of functions in older 2194 // versions of LLVM. 2195 if (auto *F = dyn_cast<Function>(V)) 2196 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2197 break; 2198 } 2199 case bitc::VST_CODE_BBENTRY: { 2200 if (convertToString(Record, 1, ValueName)) 2201 return error("Invalid record"); 2202 BasicBlock *BB = getBasicBlock(Record[0]); 2203 if (!BB) 2204 return error("Invalid record"); 2205 2206 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2207 ValueName.clear(); 2208 break; 2209 } 2210 } 2211 } 2212 } 2213 2214 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2215 /// encoding. 2216 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2217 if ((V & 1) == 0) 2218 return V >> 1; 2219 if (V != 1) 2220 return -(V >> 1); 2221 // There is no such thing as -0 with integers. "-0" really means MININT. 2222 return 1ULL << 63; 2223 } 2224 2225 /// Resolve all of the initializers for global values and aliases that we can. 2226 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2227 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2228 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2229 IndirectSymbolInitWorklist; 2230 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2231 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2232 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2233 2234 GlobalInitWorklist.swap(GlobalInits); 2235 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2236 FunctionPrefixWorklist.swap(FunctionPrefixes); 2237 FunctionPrologueWorklist.swap(FunctionPrologues); 2238 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2239 2240 while (!GlobalInitWorklist.empty()) { 2241 unsigned ValID = GlobalInitWorklist.back().second; 2242 if (ValID >= ValueList.size()) { 2243 // Not ready to resolve this yet, it requires something later in the file. 2244 GlobalInits.push_back(GlobalInitWorklist.back()); 2245 } else { 2246 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2247 GlobalInitWorklist.back().first->setInitializer(C); 2248 else 2249 return error("Expected a constant"); 2250 } 2251 GlobalInitWorklist.pop_back(); 2252 } 2253 2254 while (!IndirectSymbolInitWorklist.empty()) { 2255 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2256 if (ValID >= ValueList.size()) { 2257 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2258 } else { 2259 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2260 if (!C) 2261 return error("Expected a constant"); 2262 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2263 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2264 return error("Alias and aliasee types don't match"); 2265 GIS->setIndirectSymbol(C); 2266 } 2267 IndirectSymbolInitWorklist.pop_back(); 2268 } 2269 2270 while (!FunctionPrefixWorklist.empty()) { 2271 unsigned ValID = FunctionPrefixWorklist.back().second; 2272 if (ValID >= ValueList.size()) { 2273 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2274 } else { 2275 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2276 FunctionPrefixWorklist.back().first->setPrefixData(C); 2277 else 2278 return error("Expected a constant"); 2279 } 2280 FunctionPrefixWorklist.pop_back(); 2281 } 2282 2283 while (!FunctionPrologueWorklist.empty()) { 2284 unsigned ValID = FunctionPrologueWorklist.back().second; 2285 if (ValID >= ValueList.size()) { 2286 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2287 } else { 2288 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2289 FunctionPrologueWorklist.back().first->setPrologueData(C); 2290 else 2291 return error("Expected a constant"); 2292 } 2293 FunctionPrologueWorklist.pop_back(); 2294 } 2295 2296 while (!FunctionPersonalityFnWorklist.empty()) { 2297 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2298 if (ValID >= ValueList.size()) { 2299 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2300 } else { 2301 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2302 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2303 else 2304 return error("Expected a constant"); 2305 } 2306 FunctionPersonalityFnWorklist.pop_back(); 2307 } 2308 2309 return Error::success(); 2310 } 2311 2312 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2313 SmallVector<uint64_t, 8> Words(Vals.size()); 2314 transform(Vals, Words.begin(), 2315 BitcodeReader::decodeSignRotatedValue); 2316 2317 return APInt(TypeBits, Words); 2318 } 2319 2320 Error BitcodeReader::parseConstants() { 2321 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2322 return Err; 2323 2324 SmallVector<uint64_t, 64> Record; 2325 2326 // Read all the records for this value table. 2327 Type *CurTy = Type::getInt32Ty(Context); 2328 Type *CurFullTy = Type::getInt32Ty(Context); 2329 unsigned NextCstNo = ValueList.size(); 2330 2331 struct DelayedShufTy { 2332 VectorType *OpTy; 2333 VectorType *RTy; 2334 Type *CurFullTy; 2335 uint64_t Op0Idx; 2336 uint64_t Op1Idx; 2337 uint64_t Op2Idx; 2338 }; 2339 std::vector<DelayedShufTy> DelayedShuffles; 2340 while (true) { 2341 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2342 if (!MaybeEntry) 2343 return MaybeEntry.takeError(); 2344 BitstreamEntry Entry = MaybeEntry.get(); 2345 2346 switch (Entry.Kind) { 2347 case BitstreamEntry::SubBlock: // Handled for us already. 2348 case BitstreamEntry::Error: 2349 return error("Malformed block"); 2350 case BitstreamEntry::EndBlock: 2351 if (NextCstNo != ValueList.size()) 2352 return error("Invalid constant reference"); 2353 2354 // Once all the constants have been read, go through and resolve forward 2355 // references. 2356 // 2357 // We have to treat shuffles specially because they don't have three 2358 // operands anymore. We need to convert the shuffle mask into an array, 2359 // and we can't convert a forward reference. 2360 for (auto &DelayedShuffle : DelayedShuffles) { 2361 VectorType *OpTy = DelayedShuffle.OpTy; 2362 VectorType *RTy = DelayedShuffle.RTy; 2363 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2364 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2365 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2366 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2367 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2368 Type *ShufTy = 2369 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2370 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2371 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2372 return error("Invalid shufflevector operands"); 2373 SmallVector<int, 16> Mask; 2374 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2375 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2376 ValueList.assignValue(V, NextCstNo, DelayedShuffle.CurFullTy); 2377 ++NextCstNo; 2378 } 2379 ValueList.resolveConstantForwardRefs(); 2380 return Error::success(); 2381 case BitstreamEntry::Record: 2382 // The interesting case. 2383 break; 2384 } 2385 2386 // Read a record. 2387 Record.clear(); 2388 Type *VoidType = Type::getVoidTy(Context); 2389 Value *V = nullptr; 2390 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2391 if (!MaybeBitCode) 2392 return MaybeBitCode.takeError(); 2393 switch (unsigned BitCode = MaybeBitCode.get()) { 2394 default: // Default behavior: unknown constant 2395 case bitc::CST_CODE_UNDEF: // UNDEF 2396 V = UndefValue::get(CurTy); 2397 break; 2398 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2399 if (Record.empty()) 2400 return error("Invalid record"); 2401 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2402 return error("Invalid record"); 2403 if (TypeList[Record[0]] == VoidType) 2404 return error("Invalid constant type"); 2405 CurFullTy = TypeList[Record[0]]; 2406 CurTy = flattenPointerTypes(CurFullTy); 2407 continue; // Skip the ValueList manipulation. 2408 case bitc::CST_CODE_NULL: // NULL 2409 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2410 return error("Invalid type for a constant null value"); 2411 V = Constant::getNullValue(CurTy); 2412 break; 2413 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2414 if (!CurTy->isIntegerTy() || Record.empty()) 2415 return error("Invalid record"); 2416 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2417 break; 2418 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2419 if (!CurTy->isIntegerTy() || Record.empty()) 2420 return error("Invalid record"); 2421 2422 APInt VInt = 2423 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2424 V = ConstantInt::get(Context, VInt); 2425 2426 break; 2427 } 2428 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2429 if (Record.empty()) 2430 return error("Invalid record"); 2431 if (CurTy->isHalfTy()) 2432 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2433 APInt(16, (uint16_t)Record[0]))); 2434 else if (CurTy->isBFloatTy()) 2435 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2436 APInt(16, (uint32_t)Record[0]))); 2437 else if (CurTy->isFloatTy()) 2438 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2439 APInt(32, (uint32_t)Record[0]))); 2440 else if (CurTy->isDoubleTy()) 2441 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2442 APInt(64, Record[0]))); 2443 else if (CurTy->isX86_FP80Ty()) { 2444 // Bits are not stored the same way as a normal i80 APInt, compensate. 2445 uint64_t Rearrange[2]; 2446 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2447 Rearrange[1] = Record[0] >> 48; 2448 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2449 APInt(80, Rearrange))); 2450 } else if (CurTy->isFP128Ty()) 2451 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2452 APInt(128, Record))); 2453 else if (CurTy->isPPC_FP128Ty()) 2454 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2455 APInt(128, Record))); 2456 else 2457 V = UndefValue::get(CurTy); 2458 break; 2459 } 2460 2461 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2462 if (Record.empty()) 2463 return error("Invalid record"); 2464 2465 unsigned Size = Record.size(); 2466 SmallVector<Constant*, 16> Elts; 2467 2468 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2469 for (unsigned i = 0; i != Size; ++i) 2470 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2471 STy->getElementType(i))); 2472 V = ConstantStruct::get(STy, Elts); 2473 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2474 Type *EltTy = ATy->getElementType(); 2475 for (unsigned i = 0; i != Size; ++i) 2476 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2477 V = ConstantArray::get(ATy, Elts); 2478 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2479 Type *EltTy = VTy->getElementType(); 2480 for (unsigned i = 0; i != Size; ++i) 2481 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2482 V = ConstantVector::get(Elts); 2483 } else { 2484 V = UndefValue::get(CurTy); 2485 } 2486 break; 2487 } 2488 case bitc::CST_CODE_STRING: // STRING: [values] 2489 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2490 if (Record.empty()) 2491 return error("Invalid record"); 2492 2493 SmallString<16> Elts(Record.begin(), Record.end()); 2494 V = ConstantDataArray::getString(Context, Elts, 2495 BitCode == bitc::CST_CODE_CSTRING); 2496 break; 2497 } 2498 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2499 if (Record.empty()) 2500 return error("Invalid record"); 2501 2502 Type *EltTy; 2503 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2504 EltTy = Array->getElementType(); 2505 else 2506 EltTy = cast<VectorType>(CurTy)->getElementType(); 2507 if (EltTy->isIntegerTy(8)) { 2508 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2509 if (isa<VectorType>(CurTy)) 2510 V = ConstantDataVector::get(Context, Elts); 2511 else 2512 V = ConstantDataArray::get(Context, Elts); 2513 } else if (EltTy->isIntegerTy(16)) { 2514 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2515 if (isa<VectorType>(CurTy)) 2516 V = ConstantDataVector::get(Context, Elts); 2517 else 2518 V = ConstantDataArray::get(Context, Elts); 2519 } else if (EltTy->isIntegerTy(32)) { 2520 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2521 if (isa<VectorType>(CurTy)) 2522 V = ConstantDataVector::get(Context, Elts); 2523 else 2524 V = ConstantDataArray::get(Context, Elts); 2525 } else if (EltTy->isIntegerTy(64)) { 2526 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2527 if (isa<VectorType>(CurTy)) 2528 V = ConstantDataVector::get(Context, Elts); 2529 else 2530 V = ConstantDataArray::get(Context, Elts); 2531 } else if (EltTy->isHalfTy()) { 2532 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2533 if (isa<VectorType>(CurTy)) 2534 V = ConstantDataVector::getFP(EltTy, Elts); 2535 else 2536 V = ConstantDataArray::getFP(EltTy, Elts); 2537 } else if (EltTy->isBFloatTy()) { 2538 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2539 if (isa<VectorType>(CurTy)) 2540 V = ConstantDataVector::getFP(EltTy, Elts); 2541 else 2542 V = ConstantDataArray::getFP(EltTy, Elts); 2543 } else if (EltTy->isFloatTy()) { 2544 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2545 if (isa<VectorType>(CurTy)) 2546 V = ConstantDataVector::getFP(EltTy, Elts); 2547 else 2548 V = ConstantDataArray::getFP(EltTy, Elts); 2549 } else if (EltTy->isDoubleTy()) { 2550 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2551 if (isa<VectorType>(CurTy)) 2552 V = ConstantDataVector::getFP(EltTy, Elts); 2553 else 2554 V = ConstantDataArray::getFP(EltTy, Elts); 2555 } else { 2556 return error("Invalid type for value"); 2557 } 2558 break; 2559 } 2560 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2561 if (Record.size() < 2) 2562 return error("Invalid record"); 2563 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2564 if (Opc < 0) { 2565 V = UndefValue::get(CurTy); // Unknown unop. 2566 } else { 2567 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2568 unsigned Flags = 0; 2569 V = ConstantExpr::get(Opc, LHS, Flags); 2570 } 2571 break; 2572 } 2573 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2574 if (Record.size() < 3) 2575 return error("Invalid record"); 2576 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2577 if (Opc < 0) { 2578 V = UndefValue::get(CurTy); // Unknown binop. 2579 } else { 2580 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2581 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2582 unsigned Flags = 0; 2583 if (Record.size() >= 4) { 2584 if (Opc == Instruction::Add || 2585 Opc == Instruction::Sub || 2586 Opc == Instruction::Mul || 2587 Opc == Instruction::Shl) { 2588 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2589 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2590 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2591 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2592 } else if (Opc == Instruction::SDiv || 2593 Opc == Instruction::UDiv || 2594 Opc == Instruction::LShr || 2595 Opc == Instruction::AShr) { 2596 if (Record[3] & (1 << bitc::PEO_EXACT)) 2597 Flags |= SDivOperator::IsExact; 2598 } 2599 } 2600 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2601 } 2602 break; 2603 } 2604 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2605 if (Record.size() < 3) 2606 return error("Invalid record"); 2607 int Opc = getDecodedCastOpcode(Record[0]); 2608 if (Opc < 0) { 2609 V = UndefValue::get(CurTy); // Unknown cast. 2610 } else { 2611 Type *OpTy = getTypeByID(Record[1]); 2612 if (!OpTy) 2613 return error("Invalid record"); 2614 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2615 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2616 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2617 } 2618 break; 2619 } 2620 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2621 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2622 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2623 // operands] 2624 unsigned OpNum = 0; 2625 Type *PointeeType = nullptr; 2626 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2627 Record.size() % 2) 2628 PointeeType = getTypeByID(Record[OpNum++]); 2629 2630 bool InBounds = false; 2631 Optional<unsigned> InRangeIndex; 2632 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2633 uint64_t Op = Record[OpNum++]; 2634 InBounds = Op & 1; 2635 InRangeIndex = Op >> 1; 2636 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2637 InBounds = true; 2638 2639 SmallVector<Constant*, 16> Elts; 2640 Type *Elt0FullTy = nullptr; 2641 while (OpNum != Record.size()) { 2642 if (!Elt0FullTy) 2643 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2644 Type *ElTy = getTypeByID(Record[OpNum++]); 2645 if (!ElTy) 2646 return error("Invalid record"); 2647 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2648 } 2649 2650 if (Elts.size() < 1) 2651 return error("Invalid gep with no operands"); 2652 2653 Type *ImplicitPointeeType = 2654 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2655 if (!PointeeType) 2656 PointeeType = ImplicitPointeeType; 2657 else if (PointeeType != ImplicitPointeeType) 2658 return error("Explicit gep operator type does not match pointee type " 2659 "of pointer operand"); 2660 2661 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2662 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2663 InBounds, InRangeIndex); 2664 break; 2665 } 2666 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2667 if (Record.size() < 3) 2668 return error("Invalid record"); 2669 2670 Type *SelectorTy = Type::getInt1Ty(Context); 2671 2672 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2673 // Get the type from the ValueList before getting a forward ref. 2674 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2675 if (Value *V = ValueList[Record[0]]) 2676 if (SelectorTy != V->getType()) 2677 SelectorTy = VectorType::get(SelectorTy, 2678 VTy->getElementCount()); 2679 2680 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2681 SelectorTy), 2682 ValueList.getConstantFwdRef(Record[1],CurTy), 2683 ValueList.getConstantFwdRef(Record[2],CurTy)); 2684 break; 2685 } 2686 case bitc::CST_CODE_CE_EXTRACTELT 2687 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2688 if (Record.size() < 3) 2689 return error("Invalid record"); 2690 VectorType *OpTy = 2691 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2692 if (!OpTy) 2693 return error("Invalid record"); 2694 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2695 Constant *Op1 = nullptr; 2696 if (Record.size() == 4) { 2697 Type *IdxTy = getTypeByID(Record[2]); 2698 if (!IdxTy) 2699 return error("Invalid record"); 2700 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2701 } else { 2702 // Deprecated, but still needed to read old bitcode files. 2703 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2704 } 2705 if (!Op1) 2706 return error("Invalid record"); 2707 V = ConstantExpr::getExtractElement(Op0, Op1); 2708 break; 2709 } 2710 case bitc::CST_CODE_CE_INSERTELT 2711 : { // CE_INSERTELT: [opval, opval, opty, opval] 2712 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2713 if (Record.size() < 3 || !OpTy) 2714 return error("Invalid record"); 2715 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2716 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2717 OpTy->getElementType()); 2718 Constant *Op2 = nullptr; 2719 if (Record.size() == 4) { 2720 Type *IdxTy = getTypeByID(Record[2]); 2721 if (!IdxTy) 2722 return error("Invalid record"); 2723 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2724 } else { 2725 // Deprecated, but still needed to read old bitcode files. 2726 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2727 } 2728 if (!Op2) 2729 return error("Invalid record"); 2730 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2731 break; 2732 } 2733 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2734 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2735 if (Record.size() < 3 || !OpTy) 2736 return error("Invalid record"); 2737 DelayedShuffles.push_back( 2738 {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2]}); 2739 continue; 2740 } 2741 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2742 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2743 VectorType *OpTy = 2744 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2745 if (Record.size() < 4 || !RTy || !OpTy) 2746 return error("Invalid record"); 2747 DelayedShuffles.push_back( 2748 {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3]}); 2749 continue; 2750 } 2751 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2752 if (Record.size() < 4) 2753 return error("Invalid record"); 2754 Type *OpTy = getTypeByID(Record[0]); 2755 if (!OpTy) 2756 return error("Invalid record"); 2757 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2758 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2759 2760 if (OpTy->isFPOrFPVectorTy()) 2761 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2762 else 2763 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2764 break; 2765 } 2766 // This maintains backward compatibility, pre-asm dialect keywords. 2767 // Deprecated, but still needed to read old bitcode files. 2768 case bitc::CST_CODE_INLINEASM_OLD: { 2769 if (Record.size() < 2) 2770 return error("Invalid record"); 2771 std::string AsmStr, ConstrStr; 2772 bool HasSideEffects = Record[0] & 1; 2773 bool IsAlignStack = Record[0] >> 1; 2774 unsigned AsmStrSize = Record[1]; 2775 if (2+AsmStrSize >= Record.size()) 2776 return error("Invalid record"); 2777 unsigned ConstStrSize = Record[2+AsmStrSize]; 2778 if (3+AsmStrSize+ConstStrSize > Record.size()) 2779 return error("Invalid record"); 2780 2781 for (unsigned i = 0; i != AsmStrSize; ++i) 2782 AsmStr += (char)Record[2+i]; 2783 for (unsigned i = 0; i != ConstStrSize; ++i) 2784 ConstrStr += (char)Record[3+AsmStrSize+i]; 2785 UpgradeInlineAsmString(&AsmStr); 2786 V = InlineAsm::get( 2787 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2788 ConstrStr, HasSideEffects, IsAlignStack); 2789 break; 2790 } 2791 // This version adds support for the asm dialect keywords (e.g., 2792 // inteldialect). 2793 case bitc::CST_CODE_INLINEASM: { 2794 if (Record.size() < 2) 2795 return error("Invalid record"); 2796 std::string AsmStr, ConstrStr; 2797 bool HasSideEffects = Record[0] & 1; 2798 bool IsAlignStack = (Record[0] >> 1) & 1; 2799 unsigned AsmDialect = Record[0] >> 2; 2800 unsigned AsmStrSize = Record[1]; 2801 if (2+AsmStrSize >= Record.size()) 2802 return error("Invalid record"); 2803 unsigned ConstStrSize = Record[2+AsmStrSize]; 2804 if (3+AsmStrSize+ConstStrSize > Record.size()) 2805 return error("Invalid record"); 2806 2807 for (unsigned i = 0; i != AsmStrSize; ++i) 2808 AsmStr += (char)Record[2+i]; 2809 for (unsigned i = 0; i != ConstStrSize; ++i) 2810 ConstrStr += (char)Record[3+AsmStrSize+i]; 2811 UpgradeInlineAsmString(&AsmStr); 2812 V = InlineAsm::get( 2813 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2814 ConstrStr, HasSideEffects, IsAlignStack, 2815 InlineAsm::AsmDialect(AsmDialect)); 2816 break; 2817 } 2818 case bitc::CST_CODE_BLOCKADDRESS:{ 2819 if (Record.size() < 3) 2820 return error("Invalid record"); 2821 Type *FnTy = getTypeByID(Record[0]); 2822 if (!FnTy) 2823 return error("Invalid record"); 2824 Function *Fn = 2825 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2826 if (!Fn) 2827 return error("Invalid record"); 2828 2829 // If the function is already parsed we can insert the block address right 2830 // away. 2831 BasicBlock *BB; 2832 unsigned BBID = Record[2]; 2833 if (!BBID) 2834 // Invalid reference to entry block. 2835 return error("Invalid ID"); 2836 if (!Fn->empty()) { 2837 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2838 for (size_t I = 0, E = BBID; I != E; ++I) { 2839 if (BBI == BBE) 2840 return error("Invalid ID"); 2841 ++BBI; 2842 } 2843 BB = &*BBI; 2844 } else { 2845 // Otherwise insert a placeholder and remember it so it can be inserted 2846 // when the function is parsed. 2847 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2848 if (FwdBBs.empty()) 2849 BasicBlockFwdRefQueue.push_back(Fn); 2850 if (FwdBBs.size() < BBID + 1) 2851 FwdBBs.resize(BBID + 1); 2852 if (!FwdBBs[BBID]) 2853 FwdBBs[BBID] = BasicBlock::Create(Context); 2854 BB = FwdBBs[BBID]; 2855 } 2856 V = BlockAddress::get(Fn, BB); 2857 break; 2858 } 2859 } 2860 2861 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2862 "Incorrect fully structured type provided for Constant"); 2863 ValueList.assignValue(V, NextCstNo, CurFullTy); 2864 ++NextCstNo; 2865 } 2866 } 2867 2868 Error BitcodeReader::parseUseLists() { 2869 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2870 return Err; 2871 2872 // Read all the records. 2873 SmallVector<uint64_t, 64> Record; 2874 2875 while (true) { 2876 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2877 if (!MaybeEntry) 2878 return MaybeEntry.takeError(); 2879 BitstreamEntry Entry = MaybeEntry.get(); 2880 2881 switch (Entry.Kind) { 2882 case BitstreamEntry::SubBlock: // Handled for us already. 2883 case BitstreamEntry::Error: 2884 return error("Malformed block"); 2885 case BitstreamEntry::EndBlock: 2886 return Error::success(); 2887 case BitstreamEntry::Record: 2888 // The interesting case. 2889 break; 2890 } 2891 2892 // Read a use list record. 2893 Record.clear(); 2894 bool IsBB = false; 2895 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2896 if (!MaybeRecord) 2897 return MaybeRecord.takeError(); 2898 switch (MaybeRecord.get()) { 2899 default: // Default behavior: unknown type. 2900 break; 2901 case bitc::USELIST_CODE_BB: 2902 IsBB = true; 2903 LLVM_FALLTHROUGH; 2904 case bitc::USELIST_CODE_DEFAULT: { 2905 unsigned RecordLength = Record.size(); 2906 if (RecordLength < 3) 2907 // Records should have at least an ID and two indexes. 2908 return error("Invalid record"); 2909 unsigned ID = Record.back(); 2910 Record.pop_back(); 2911 2912 Value *V; 2913 if (IsBB) { 2914 assert(ID < FunctionBBs.size() && "Basic block not found"); 2915 V = FunctionBBs[ID]; 2916 } else 2917 V = ValueList[ID]; 2918 unsigned NumUses = 0; 2919 SmallDenseMap<const Use *, unsigned, 16> Order; 2920 for (const Use &U : V->materialized_uses()) { 2921 if (++NumUses > Record.size()) 2922 break; 2923 Order[&U] = Record[NumUses - 1]; 2924 } 2925 if (Order.size() != Record.size() || NumUses > Record.size()) 2926 // Mismatches can happen if the functions are being materialized lazily 2927 // (out-of-order), or a value has been upgraded. 2928 break; 2929 2930 V->sortUseList([&](const Use &L, const Use &R) { 2931 return Order.lookup(&L) < Order.lookup(&R); 2932 }); 2933 break; 2934 } 2935 } 2936 } 2937 } 2938 2939 /// When we see the block for metadata, remember where it is and then skip it. 2940 /// This lets us lazily deserialize the metadata. 2941 Error BitcodeReader::rememberAndSkipMetadata() { 2942 // Save the current stream state. 2943 uint64_t CurBit = Stream.GetCurrentBitNo(); 2944 DeferredMetadataInfo.push_back(CurBit); 2945 2946 // Skip over the block for now. 2947 if (Error Err = Stream.SkipBlock()) 2948 return Err; 2949 return Error::success(); 2950 } 2951 2952 Error BitcodeReader::materializeMetadata() { 2953 for (uint64_t BitPos : DeferredMetadataInfo) { 2954 // Move the bit stream to the saved position. 2955 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2956 return JumpFailed; 2957 if (Error Err = MDLoader->parseModuleMetadata()) 2958 return Err; 2959 } 2960 2961 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2962 // metadata. 2963 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2964 NamedMDNode *LinkerOpts = 2965 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2966 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2967 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2968 } 2969 2970 DeferredMetadataInfo.clear(); 2971 return Error::success(); 2972 } 2973 2974 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2975 2976 /// When we see the block for a function body, remember where it is and then 2977 /// skip it. This lets us lazily deserialize the functions. 2978 Error BitcodeReader::rememberAndSkipFunctionBody() { 2979 // Get the function we are talking about. 2980 if (FunctionsWithBodies.empty()) 2981 return error("Insufficient function protos"); 2982 2983 Function *Fn = FunctionsWithBodies.back(); 2984 FunctionsWithBodies.pop_back(); 2985 2986 // Save the current stream state. 2987 uint64_t CurBit = Stream.GetCurrentBitNo(); 2988 assert( 2989 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2990 "Mismatch between VST and scanned function offsets"); 2991 DeferredFunctionInfo[Fn] = CurBit; 2992 2993 // Skip over the function block for now. 2994 if (Error Err = Stream.SkipBlock()) 2995 return Err; 2996 return Error::success(); 2997 } 2998 2999 Error BitcodeReader::globalCleanup() { 3000 // Patch the initializers for globals and aliases up. 3001 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3002 return Err; 3003 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3004 return error("Malformed global initializer set"); 3005 3006 // Look for intrinsic functions which need to be upgraded at some point 3007 // and functions that need to have their function attributes upgraded. 3008 for (Function &F : *TheModule) { 3009 MDLoader->upgradeDebugIntrinsics(F); 3010 Function *NewFn; 3011 if (UpgradeIntrinsicFunction(&F, NewFn)) 3012 UpgradedIntrinsics[&F] = NewFn; 3013 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3014 // Some types could be renamed during loading if several modules are 3015 // loaded in the same LLVMContext (LTO scenario). In this case we should 3016 // remangle intrinsics names as well. 3017 RemangledIntrinsics[&F] = Remangled.getValue(); 3018 // Look for functions that rely on old function attribute behavior. 3019 UpgradeFunctionAttributes(F); 3020 } 3021 3022 // Look for global variables which need to be renamed. 3023 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3024 for (GlobalVariable &GV : TheModule->globals()) 3025 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3026 UpgradedVariables.emplace_back(&GV, Upgraded); 3027 for (auto &Pair : UpgradedVariables) { 3028 Pair.first->eraseFromParent(); 3029 TheModule->getGlobalList().push_back(Pair.second); 3030 } 3031 3032 // Force deallocation of memory for these vectors to favor the client that 3033 // want lazy deserialization. 3034 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3035 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3036 IndirectSymbolInits); 3037 return Error::success(); 3038 } 3039 3040 /// Support for lazy parsing of function bodies. This is required if we 3041 /// either have an old bitcode file without a VST forward declaration record, 3042 /// or if we have an anonymous function being materialized, since anonymous 3043 /// functions do not have a name and are therefore not in the VST. 3044 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3045 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3046 return JumpFailed; 3047 3048 if (Stream.AtEndOfStream()) 3049 return error("Could not find function in stream"); 3050 3051 if (!SeenFirstFunctionBody) 3052 return error("Trying to materialize functions before seeing function blocks"); 3053 3054 // An old bitcode file with the symbol table at the end would have 3055 // finished the parse greedily. 3056 assert(SeenValueSymbolTable); 3057 3058 SmallVector<uint64_t, 64> Record; 3059 3060 while (true) { 3061 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3062 if (!MaybeEntry) 3063 return MaybeEntry.takeError(); 3064 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3065 3066 switch (Entry.Kind) { 3067 default: 3068 return error("Expect SubBlock"); 3069 case BitstreamEntry::SubBlock: 3070 switch (Entry.ID) { 3071 default: 3072 return error("Expect function block"); 3073 case bitc::FUNCTION_BLOCK_ID: 3074 if (Error Err = rememberAndSkipFunctionBody()) 3075 return Err; 3076 NextUnreadBit = Stream.GetCurrentBitNo(); 3077 return Error::success(); 3078 } 3079 } 3080 } 3081 } 3082 3083 bool BitcodeReaderBase::readBlockInfo() { 3084 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3085 Stream.ReadBlockInfoBlock(); 3086 if (!MaybeNewBlockInfo) 3087 return true; // FIXME Handle the error. 3088 Optional<BitstreamBlockInfo> NewBlockInfo = 3089 std::move(MaybeNewBlockInfo.get()); 3090 if (!NewBlockInfo) 3091 return true; 3092 BlockInfo = std::move(*NewBlockInfo); 3093 return false; 3094 } 3095 3096 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3097 // v1: [selection_kind, name] 3098 // v2: [strtab_offset, strtab_size, selection_kind] 3099 StringRef Name; 3100 std::tie(Name, Record) = readNameFromStrtab(Record); 3101 3102 if (Record.empty()) 3103 return error("Invalid record"); 3104 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3105 std::string OldFormatName; 3106 if (!UseStrtab) { 3107 if (Record.size() < 2) 3108 return error("Invalid record"); 3109 unsigned ComdatNameSize = Record[1]; 3110 OldFormatName.reserve(ComdatNameSize); 3111 for (unsigned i = 0; i != ComdatNameSize; ++i) 3112 OldFormatName += (char)Record[2 + i]; 3113 Name = OldFormatName; 3114 } 3115 Comdat *C = TheModule->getOrInsertComdat(Name); 3116 C->setSelectionKind(SK); 3117 ComdatList.push_back(C); 3118 return Error::success(); 3119 } 3120 3121 static void inferDSOLocal(GlobalValue *GV) { 3122 // infer dso_local from linkage and visibility if it is not encoded. 3123 if (GV->hasLocalLinkage() || 3124 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3125 GV->setDSOLocal(true); 3126 } 3127 3128 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3129 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3130 // visibility, threadlocal, unnamed_addr, externally_initialized, 3131 // dllstorageclass, comdat, attributes, preemption specifier, 3132 // partition strtab offset, partition strtab size] (name in VST) 3133 // v2: [strtab_offset, strtab_size, v1] 3134 StringRef Name; 3135 std::tie(Name, Record) = readNameFromStrtab(Record); 3136 3137 if (Record.size() < 6) 3138 return error("Invalid record"); 3139 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3140 Type *Ty = flattenPointerTypes(FullTy); 3141 if (!Ty) 3142 return error("Invalid record"); 3143 bool isConstant = Record[1] & 1; 3144 bool explicitType = Record[1] & 2; 3145 unsigned AddressSpace; 3146 if (explicitType) { 3147 AddressSpace = Record[1] >> 2; 3148 } else { 3149 if (!Ty->isPointerTy()) 3150 return error("Invalid type for value"); 3151 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3152 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3153 } 3154 3155 uint64_t RawLinkage = Record[3]; 3156 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3157 MaybeAlign Alignment; 3158 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3159 return Err; 3160 std::string Section; 3161 if (Record[5]) { 3162 if (Record[5] - 1 >= SectionTable.size()) 3163 return error("Invalid ID"); 3164 Section = SectionTable[Record[5] - 1]; 3165 } 3166 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3167 // Local linkage must have default visibility. 3168 // auto-upgrade `hidden` and `protected` for old bitcode. 3169 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3170 Visibility = getDecodedVisibility(Record[6]); 3171 3172 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3173 if (Record.size() > 7) 3174 TLM = getDecodedThreadLocalMode(Record[7]); 3175 3176 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3177 if (Record.size() > 8) 3178 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3179 3180 bool ExternallyInitialized = false; 3181 if (Record.size() > 9) 3182 ExternallyInitialized = Record[9]; 3183 3184 GlobalVariable *NewGV = 3185 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3186 nullptr, TLM, AddressSpace, ExternallyInitialized); 3187 NewGV->setAlignment(Alignment); 3188 if (!Section.empty()) 3189 NewGV->setSection(Section); 3190 NewGV->setVisibility(Visibility); 3191 NewGV->setUnnamedAddr(UnnamedAddr); 3192 3193 if (Record.size() > 10) 3194 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3195 else 3196 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3197 3198 FullTy = PointerType::get(FullTy, AddressSpace); 3199 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3200 "Incorrect fully specified type for GlobalVariable"); 3201 ValueList.push_back(NewGV, FullTy); 3202 3203 // Remember which value to use for the global initializer. 3204 if (unsigned InitID = Record[2]) 3205 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3206 3207 if (Record.size() > 11) { 3208 if (unsigned ComdatID = Record[11]) { 3209 if (ComdatID > ComdatList.size()) 3210 return error("Invalid global variable comdat ID"); 3211 NewGV->setComdat(ComdatList[ComdatID - 1]); 3212 } 3213 } else if (hasImplicitComdat(RawLinkage)) { 3214 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3215 } 3216 3217 if (Record.size() > 12) { 3218 auto AS = getAttributes(Record[12]).getFnAttributes(); 3219 NewGV->setAttributes(AS); 3220 } 3221 3222 if (Record.size() > 13) { 3223 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3224 } 3225 inferDSOLocal(NewGV); 3226 3227 // Check whether we have enough values to read a partition name. 3228 if (Record.size() > 15) 3229 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3230 3231 return Error::success(); 3232 } 3233 3234 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3235 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3236 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3237 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3238 // v2: [strtab_offset, strtab_size, v1] 3239 StringRef Name; 3240 std::tie(Name, Record) = readNameFromStrtab(Record); 3241 3242 if (Record.size() < 8) 3243 return error("Invalid record"); 3244 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3245 Type *FTy = flattenPointerTypes(FullFTy); 3246 if (!FTy) 3247 return error("Invalid record"); 3248 if (isa<PointerType>(FTy)) 3249 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3250 3251 if (!isa<FunctionType>(FTy)) 3252 return error("Invalid type for value"); 3253 auto CC = static_cast<CallingConv::ID>(Record[1]); 3254 if (CC & ~CallingConv::MaxID) 3255 return error("Invalid calling convention ID"); 3256 3257 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3258 if (Record.size() > 16) 3259 AddrSpace = Record[16]; 3260 3261 Function *Func = 3262 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3263 AddrSpace, Name, TheModule); 3264 3265 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3266 "Incorrect fully specified type provided for function"); 3267 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3268 3269 Func->setCallingConv(CC); 3270 bool isProto = Record[2]; 3271 uint64_t RawLinkage = Record[3]; 3272 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3273 Func->setAttributes(getAttributes(Record[4])); 3274 3275 // Upgrade any old-style byval without a type by propagating the argument's 3276 // pointee type. There should be no opaque pointers where the byval type is 3277 // implicit. 3278 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3279 if (!Func->hasParamAttribute(i, Attribute::ByVal)) 3280 continue; 3281 3282 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3283 Func->removeParamAttr(i, Attribute::ByVal); 3284 Func->addParamAttr(i, Attribute::getWithByValType( 3285 Context, getPointerElementFlatType(PTy))); 3286 } 3287 3288 MaybeAlign Alignment; 3289 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3290 return Err; 3291 Func->setAlignment(Alignment); 3292 if (Record[6]) { 3293 if (Record[6] - 1 >= SectionTable.size()) 3294 return error("Invalid ID"); 3295 Func->setSection(SectionTable[Record[6] - 1]); 3296 } 3297 // Local linkage must have default visibility. 3298 // auto-upgrade `hidden` and `protected` for old bitcode. 3299 if (!Func->hasLocalLinkage()) 3300 Func->setVisibility(getDecodedVisibility(Record[7])); 3301 if (Record.size() > 8 && Record[8]) { 3302 if (Record[8] - 1 >= GCTable.size()) 3303 return error("Invalid ID"); 3304 Func->setGC(GCTable[Record[8] - 1]); 3305 } 3306 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3307 if (Record.size() > 9) 3308 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3309 Func->setUnnamedAddr(UnnamedAddr); 3310 if (Record.size() > 10 && Record[10] != 0) 3311 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3312 3313 if (Record.size() > 11) 3314 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3315 else 3316 upgradeDLLImportExportLinkage(Func, RawLinkage); 3317 3318 if (Record.size() > 12) { 3319 if (unsigned ComdatID = Record[12]) { 3320 if (ComdatID > ComdatList.size()) 3321 return error("Invalid function comdat ID"); 3322 Func->setComdat(ComdatList[ComdatID - 1]); 3323 } 3324 } else if (hasImplicitComdat(RawLinkage)) { 3325 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3326 } 3327 3328 if (Record.size() > 13 && Record[13] != 0) 3329 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3330 3331 if (Record.size() > 14 && Record[14] != 0) 3332 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3333 3334 if (Record.size() > 15) { 3335 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3336 } 3337 inferDSOLocal(Func); 3338 3339 // Record[16] is the address space number. 3340 3341 // Check whether we have enough values to read a partition name. 3342 if (Record.size() > 18) 3343 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3344 3345 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3346 assert(Func->getType() == flattenPointerTypes(FullTy) && 3347 "Incorrect fully specified type provided for Function"); 3348 ValueList.push_back(Func, FullTy); 3349 3350 // If this is a function with a body, remember the prototype we are 3351 // creating now, so that we can match up the body with them later. 3352 if (!isProto) { 3353 Func->setIsMaterializable(true); 3354 FunctionsWithBodies.push_back(Func); 3355 DeferredFunctionInfo[Func] = 0; 3356 } 3357 return Error::success(); 3358 } 3359 3360 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3361 unsigned BitCode, ArrayRef<uint64_t> Record) { 3362 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3363 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3364 // dllstorageclass, threadlocal, unnamed_addr, 3365 // preemption specifier] (name in VST) 3366 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3367 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3368 // preemption specifier] (name in VST) 3369 // v2: [strtab_offset, strtab_size, v1] 3370 StringRef Name; 3371 std::tie(Name, Record) = readNameFromStrtab(Record); 3372 3373 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3374 if (Record.size() < (3 + (unsigned)NewRecord)) 3375 return error("Invalid record"); 3376 unsigned OpNum = 0; 3377 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3378 Type *Ty = flattenPointerTypes(FullTy); 3379 if (!Ty) 3380 return error("Invalid record"); 3381 3382 unsigned AddrSpace; 3383 if (!NewRecord) { 3384 auto *PTy = dyn_cast<PointerType>(Ty); 3385 if (!PTy) 3386 return error("Invalid type for value"); 3387 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3388 AddrSpace = PTy->getAddressSpace(); 3389 } else { 3390 AddrSpace = Record[OpNum++]; 3391 } 3392 3393 auto Val = Record[OpNum++]; 3394 auto Linkage = Record[OpNum++]; 3395 GlobalIndirectSymbol *NewGA; 3396 if (BitCode == bitc::MODULE_CODE_ALIAS || 3397 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3398 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3399 TheModule); 3400 else 3401 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3402 nullptr, TheModule); 3403 3404 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3405 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3406 // Local linkage must have default visibility. 3407 // auto-upgrade `hidden` and `protected` for old bitcode. 3408 if (OpNum != Record.size()) { 3409 auto VisInd = OpNum++; 3410 if (!NewGA->hasLocalLinkage()) 3411 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3412 } 3413 if (BitCode == bitc::MODULE_CODE_ALIAS || 3414 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3415 if (OpNum != Record.size()) 3416 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3417 else 3418 upgradeDLLImportExportLinkage(NewGA, Linkage); 3419 if (OpNum != Record.size()) 3420 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3421 if (OpNum != Record.size()) 3422 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3423 } 3424 if (OpNum != Record.size()) 3425 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3426 inferDSOLocal(NewGA); 3427 3428 // Check whether we have enough values to read a partition name. 3429 if (OpNum + 1 < Record.size()) { 3430 NewGA->setPartition( 3431 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3432 OpNum += 2; 3433 } 3434 3435 FullTy = PointerType::get(FullTy, AddrSpace); 3436 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3437 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3438 ValueList.push_back(NewGA, FullTy); 3439 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3440 return Error::success(); 3441 } 3442 3443 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3444 bool ShouldLazyLoadMetadata, 3445 DataLayoutCallbackTy DataLayoutCallback) { 3446 if (ResumeBit) { 3447 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3448 return JumpFailed; 3449 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3450 return Err; 3451 3452 SmallVector<uint64_t, 64> Record; 3453 3454 // Parts of bitcode parsing depend on the datalayout. Make sure we 3455 // finalize the datalayout before we run any of that code. 3456 bool ResolvedDataLayout = false; 3457 auto ResolveDataLayout = [&] { 3458 if (ResolvedDataLayout) 3459 return; 3460 3461 // datalayout and triple can't be parsed after this point. 3462 ResolvedDataLayout = true; 3463 3464 // Upgrade data layout string. 3465 std::string DL = llvm::UpgradeDataLayoutString( 3466 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3467 TheModule->setDataLayout(DL); 3468 3469 if (auto LayoutOverride = 3470 DataLayoutCallback(TheModule->getTargetTriple())) 3471 TheModule->setDataLayout(*LayoutOverride); 3472 }; 3473 3474 // Read all the records for this module. 3475 while (true) { 3476 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3477 if (!MaybeEntry) 3478 return MaybeEntry.takeError(); 3479 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3480 3481 switch (Entry.Kind) { 3482 case BitstreamEntry::Error: 3483 return error("Malformed block"); 3484 case BitstreamEntry::EndBlock: 3485 ResolveDataLayout(); 3486 return globalCleanup(); 3487 3488 case BitstreamEntry::SubBlock: 3489 switch (Entry.ID) { 3490 default: // Skip unknown content. 3491 if (Error Err = Stream.SkipBlock()) 3492 return Err; 3493 break; 3494 case bitc::BLOCKINFO_BLOCK_ID: 3495 if (readBlockInfo()) 3496 return error("Malformed block"); 3497 break; 3498 case bitc::PARAMATTR_BLOCK_ID: 3499 if (Error Err = parseAttributeBlock()) 3500 return Err; 3501 break; 3502 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3503 if (Error Err = parseAttributeGroupBlock()) 3504 return Err; 3505 break; 3506 case bitc::TYPE_BLOCK_ID_NEW: 3507 if (Error Err = parseTypeTable()) 3508 return Err; 3509 break; 3510 case bitc::VALUE_SYMTAB_BLOCK_ID: 3511 if (!SeenValueSymbolTable) { 3512 // Either this is an old form VST without function index and an 3513 // associated VST forward declaration record (which would have caused 3514 // the VST to be jumped to and parsed before it was encountered 3515 // normally in the stream), or there were no function blocks to 3516 // trigger an earlier parsing of the VST. 3517 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3518 if (Error Err = parseValueSymbolTable()) 3519 return Err; 3520 SeenValueSymbolTable = true; 3521 } else { 3522 // We must have had a VST forward declaration record, which caused 3523 // the parser to jump to and parse the VST earlier. 3524 assert(VSTOffset > 0); 3525 if (Error Err = Stream.SkipBlock()) 3526 return Err; 3527 } 3528 break; 3529 case bitc::CONSTANTS_BLOCK_ID: 3530 if (Error Err = parseConstants()) 3531 return Err; 3532 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3533 return Err; 3534 break; 3535 case bitc::METADATA_BLOCK_ID: 3536 if (ShouldLazyLoadMetadata) { 3537 if (Error Err = rememberAndSkipMetadata()) 3538 return Err; 3539 break; 3540 } 3541 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3542 if (Error Err = MDLoader->parseModuleMetadata()) 3543 return Err; 3544 break; 3545 case bitc::METADATA_KIND_BLOCK_ID: 3546 if (Error Err = MDLoader->parseMetadataKinds()) 3547 return Err; 3548 break; 3549 case bitc::FUNCTION_BLOCK_ID: 3550 ResolveDataLayout(); 3551 3552 // If this is the first function body we've seen, reverse the 3553 // FunctionsWithBodies list. 3554 if (!SeenFirstFunctionBody) { 3555 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3556 if (Error Err = globalCleanup()) 3557 return Err; 3558 SeenFirstFunctionBody = true; 3559 } 3560 3561 if (VSTOffset > 0) { 3562 // If we have a VST forward declaration record, make sure we 3563 // parse the VST now if we haven't already. It is needed to 3564 // set up the DeferredFunctionInfo vector for lazy reading. 3565 if (!SeenValueSymbolTable) { 3566 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3567 return Err; 3568 SeenValueSymbolTable = true; 3569 // Fall through so that we record the NextUnreadBit below. 3570 // This is necessary in case we have an anonymous function that 3571 // is later materialized. Since it will not have a VST entry we 3572 // need to fall back to the lazy parse to find its offset. 3573 } else { 3574 // If we have a VST forward declaration record, but have already 3575 // parsed the VST (just above, when the first function body was 3576 // encountered here), then we are resuming the parse after 3577 // materializing functions. The ResumeBit points to the 3578 // start of the last function block recorded in the 3579 // DeferredFunctionInfo map. Skip it. 3580 if (Error Err = Stream.SkipBlock()) 3581 return Err; 3582 continue; 3583 } 3584 } 3585 3586 // Support older bitcode files that did not have the function 3587 // index in the VST, nor a VST forward declaration record, as 3588 // well as anonymous functions that do not have VST entries. 3589 // Build the DeferredFunctionInfo vector on the fly. 3590 if (Error Err = rememberAndSkipFunctionBody()) 3591 return Err; 3592 3593 // Suspend parsing when we reach the function bodies. Subsequent 3594 // materialization calls will resume it when necessary. If the bitcode 3595 // file is old, the symbol table will be at the end instead and will not 3596 // have been seen yet. In this case, just finish the parse now. 3597 if (SeenValueSymbolTable) { 3598 NextUnreadBit = Stream.GetCurrentBitNo(); 3599 // After the VST has been parsed, we need to make sure intrinsic name 3600 // are auto-upgraded. 3601 return globalCleanup(); 3602 } 3603 break; 3604 case bitc::USELIST_BLOCK_ID: 3605 if (Error Err = parseUseLists()) 3606 return Err; 3607 break; 3608 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3609 if (Error Err = parseOperandBundleTags()) 3610 return Err; 3611 break; 3612 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3613 if (Error Err = parseSyncScopeNames()) 3614 return Err; 3615 break; 3616 } 3617 continue; 3618 3619 case BitstreamEntry::Record: 3620 // The interesting case. 3621 break; 3622 } 3623 3624 // Read a record. 3625 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3626 if (!MaybeBitCode) 3627 return MaybeBitCode.takeError(); 3628 switch (unsigned BitCode = MaybeBitCode.get()) { 3629 default: break; // Default behavior, ignore unknown content. 3630 case bitc::MODULE_CODE_VERSION: { 3631 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3632 if (!VersionOrErr) 3633 return VersionOrErr.takeError(); 3634 UseRelativeIDs = *VersionOrErr >= 1; 3635 break; 3636 } 3637 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3638 if (ResolvedDataLayout) 3639 return error("target triple too late in module"); 3640 std::string S; 3641 if (convertToString(Record, 0, S)) 3642 return error("Invalid record"); 3643 TheModule->setTargetTriple(S); 3644 break; 3645 } 3646 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3647 if (ResolvedDataLayout) 3648 return error("datalayout too late in module"); 3649 std::string S; 3650 if (convertToString(Record, 0, S)) 3651 return error("Invalid record"); 3652 TheModule->setDataLayout(S); 3653 break; 3654 } 3655 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3656 std::string S; 3657 if (convertToString(Record, 0, S)) 3658 return error("Invalid record"); 3659 TheModule->setModuleInlineAsm(S); 3660 break; 3661 } 3662 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3663 // Deprecated, but still needed to read old bitcode files. 3664 std::string S; 3665 if (convertToString(Record, 0, S)) 3666 return error("Invalid record"); 3667 // Ignore value. 3668 break; 3669 } 3670 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3671 std::string S; 3672 if (convertToString(Record, 0, S)) 3673 return error("Invalid record"); 3674 SectionTable.push_back(S); 3675 break; 3676 } 3677 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3678 std::string S; 3679 if (convertToString(Record, 0, S)) 3680 return error("Invalid record"); 3681 GCTable.push_back(S); 3682 break; 3683 } 3684 case bitc::MODULE_CODE_COMDAT: 3685 if (Error Err = parseComdatRecord(Record)) 3686 return Err; 3687 break; 3688 case bitc::MODULE_CODE_GLOBALVAR: 3689 if (Error Err = parseGlobalVarRecord(Record)) 3690 return Err; 3691 break; 3692 case bitc::MODULE_CODE_FUNCTION: 3693 ResolveDataLayout(); 3694 if (Error Err = parseFunctionRecord(Record)) 3695 return Err; 3696 break; 3697 case bitc::MODULE_CODE_IFUNC: 3698 case bitc::MODULE_CODE_ALIAS: 3699 case bitc::MODULE_CODE_ALIAS_OLD: 3700 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3701 return Err; 3702 break; 3703 /// MODULE_CODE_VSTOFFSET: [offset] 3704 case bitc::MODULE_CODE_VSTOFFSET: 3705 if (Record.size() < 1) 3706 return error("Invalid record"); 3707 // Note that we subtract 1 here because the offset is relative to one word 3708 // before the start of the identification or module block, which was 3709 // historically always the start of the regular bitcode header. 3710 VSTOffset = Record[0] - 1; 3711 break; 3712 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3713 case bitc::MODULE_CODE_SOURCE_FILENAME: 3714 SmallString<128> ValueName; 3715 if (convertToString(Record, 0, ValueName)) 3716 return error("Invalid record"); 3717 TheModule->setSourceFileName(ValueName); 3718 break; 3719 } 3720 Record.clear(); 3721 } 3722 } 3723 3724 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3725 bool IsImporting, 3726 DataLayoutCallbackTy DataLayoutCallback) { 3727 TheModule = M; 3728 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3729 [&](unsigned ID) { return getTypeByID(ID); }); 3730 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3731 } 3732 3733 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3734 if (!isa<PointerType>(PtrType)) 3735 return error("Load/Store operand is not a pointer type"); 3736 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3737 3738 if (ValType && ValType != ElemType) 3739 return error("Explicit load/store type does not match pointee " 3740 "type of pointer operand"); 3741 if (!PointerType::isLoadableOrStorableType(ElemType)) 3742 return error("Cannot load/store from pointer"); 3743 return Error::success(); 3744 } 3745 3746 void BitcodeReader::propagateByValTypes(CallBase *CB, 3747 ArrayRef<Type *> ArgsFullTys) { 3748 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3749 if (!CB->paramHasAttr(i, Attribute::ByVal)) 3750 continue; 3751 3752 CB->removeParamAttr(i, Attribute::ByVal); 3753 CB->addParamAttr( 3754 i, Attribute::getWithByValType( 3755 Context, getPointerElementFlatType(ArgsFullTys[i]))); 3756 } 3757 } 3758 3759 /// Lazily parse the specified function body block. 3760 Error BitcodeReader::parseFunctionBody(Function *F) { 3761 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3762 return Err; 3763 3764 // Unexpected unresolved metadata when parsing function. 3765 if (MDLoader->hasFwdRefs()) 3766 return error("Invalid function metadata: incoming forward references"); 3767 3768 InstructionList.clear(); 3769 unsigned ModuleValueListSize = ValueList.size(); 3770 unsigned ModuleMDLoaderSize = MDLoader->size(); 3771 3772 // Add all the function arguments to the value table. 3773 unsigned ArgNo = 0; 3774 FunctionType *FullFTy = FunctionTypes[F]; 3775 for (Argument &I : F->args()) { 3776 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3777 "Incorrect fully specified type for Function Argument"); 3778 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3779 } 3780 unsigned NextValueNo = ValueList.size(); 3781 BasicBlock *CurBB = nullptr; 3782 unsigned CurBBNo = 0; 3783 3784 DebugLoc LastLoc; 3785 auto getLastInstruction = [&]() -> Instruction * { 3786 if (CurBB && !CurBB->empty()) 3787 return &CurBB->back(); 3788 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3789 !FunctionBBs[CurBBNo - 1]->empty()) 3790 return &FunctionBBs[CurBBNo - 1]->back(); 3791 return nullptr; 3792 }; 3793 3794 std::vector<OperandBundleDef> OperandBundles; 3795 3796 // Read all the records. 3797 SmallVector<uint64_t, 64> Record; 3798 3799 while (true) { 3800 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3801 if (!MaybeEntry) 3802 return MaybeEntry.takeError(); 3803 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3804 3805 switch (Entry.Kind) { 3806 case BitstreamEntry::Error: 3807 return error("Malformed block"); 3808 case BitstreamEntry::EndBlock: 3809 goto OutOfRecordLoop; 3810 3811 case BitstreamEntry::SubBlock: 3812 switch (Entry.ID) { 3813 default: // Skip unknown content. 3814 if (Error Err = Stream.SkipBlock()) 3815 return Err; 3816 break; 3817 case bitc::CONSTANTS_BLOCK_ID: 3818 if (Error Err = parseConstants()) 3819 return Err; 3820 NextValueNo = ValueList.size(); 3821 break; 3822 case bitc::VALUE_SYMTAB_BLOCK_ID: 3823 if (Error Err = parseValueSymbolTable()) 3824 return Err; 3825 break; 3826 case bitc::METADATA_ATTACHMENT_ID: 3827 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3828 return Err; 3829 break; 3830 case bitc::METADATA_BLOCK_ID: 3831 assert(DeferredMetadataInfo.empty() && 3832 "Must read all module-level metadata before function-level"); 3833 if (Error Err = MDLoader->parseFunctionMetadata()) 3834 return Err; 3835 break; 3836 case bitc::USELIST_BLOCK_ID: 3837 if (Error Err = parseUseLists()) 3838 return Err; 3839 break; 3840 } 3841 continue; 3842 3843 case BitstreamEntry::Record: 3844 // The interesting case. 3845 break; 3846 } 3847 3848 // Read a record. 3849 Record.clear(); 3850 Instruction *I = nullptr; 3851 Type *FullTy = nullptr; 3852 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3853 if (!MaybeBitCode) 3854 return MaybeBitCode.takeError(); 3855 switch (unsigned BitCode = MaybeBitCode.get()) { 3856 default: // Default behavior: reject 3857 return error("Invalid value"); 3858 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3859 if (Record.size() < 1 || Record[0] == 0) 3860 return error("Invalid record"); 3861 // Create all the basic blocks for the function. 3862 FunctionBBs.resize(Record[0]); 3863 3864 // See if anything took the address of blocks in this function. 3865 auto BBFRI = BasicBlockFwdRefs.find(F); 3866 if (BBFRI == BasicBlockFwdRefs.end()) { 3867 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3868 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3869 } else { 3870 auto &BBRefs = BBFRI->second; 3871 // Check for invalid basic block references. 3872 if (BBRefs.size() > FunctionBBs.size()) 3873 return error("Invalid ID"); 3874 assert(!BBRefs.empty() && "Unexpected empty array"); 3875 assert(!BBRefs.front() && "Invalid reference to entry block"); 3876 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3877 ++I) 3878 if (I < RE && BBRefs[I]) { 3879 BBRefs[I]->insertInto(F); 3880 FunctionBBs[I] = BBRefs[I]; 3881 } else { 3882 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3883 } 3884 3885 // Erase from the table. 3886 BasicBlockFwdRefs.erase(BBFRI); 3887 } 3888 3889 CurBB = FunctionBBs[0]; 3890 continue; 3891 } 3892 3893 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3894 // This record indicates that the last instruction is at the same 3895 // location as the previous instruction with a location. 3896 I = getLastInstruction(); 3897 3898 if (!I) 3899 return error("Invalid record"); 3900 I->setDebugLoc(LastLoc); 3901 I = nullptr; 3902 continue; 3903 3904 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3905 I = getLastInstruction(); 3906 if (!I || Record.size() < 4) 3907 return error("Invalid record"); 3908 3909 unsigned Line = Record[0], Col = Record[1]; 3910 unsigned ScopeID = Record[2], IAID = Record[3]; 3911 bool isImplicitCode = Record.size() == 5 && Record[4]; 3912 3913 MDNode *Scope = nullptr, *IA = nullptr; 3914 if (ScopeID) { 3915 Scope = dyn_cast_or_null<MDNode>( 3916 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3917 if (!Scope) 3918 return error("Invalid record"); 3919 } 3920 if (IAID) { 3921 IA = dyn_cast_or_null<MDNode>( 3922 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3923 if (!IA) 3924 return error("Invalid record"); 3925 } 3926 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3927 I->setDebugLoc(LastLoc); 3928 I = nullptr; 3929 continue; 3930 } 3931 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3932 unsigned OpNum = 0; 3933 Value *LHS; 3934 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3935 OpNum+1 > Record.size()) 3936 return error("Invalid record"); 3937 3938 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3939 if (Opc == -1) 3940 return error("Invalid record"); 3941 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3942 InstructionList.push_back(I); 3943 if (OpNum < Record.size()) { 3944 if (isa<FPMathOperator>(I)) { 3945 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3946 if (FMF.any()) 3947 I->setFastMathFlags(FMF); 3948 } 3949 } 3950 break; 3951 } 3952 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3953 unsigned OpNum = 0; 3954 Value *LHS, *RHS; 3955 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3956 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3957 OpNum+1 > Record.size()) 3958 return error("Invalid record"); 3959 3960 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3961 if (Opc == -1) 3962 return error("Invalid record"); 3963 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3964 InstructionList.push_back(I); 3965 if (OpNum < Record.size()) { 3966 if (Opc == Instruction::Add || 3967 Opc == Instruction::Sub || 3968 Opc == Instruction::Mul || 3969 Opc == Instruction::Shl) { 3970 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3971 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3972 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3973 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3974 } else if (Opc == Instruction::SDiv || 3975 Opc == Instruction::UDiv || 3976 Opc == Instruction::LShr || 3977 Opc == Instruction::AShr) { 3978 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3979 cast<BinaryOperator>(I)->setIsExact(true); 3980 } else if (isa<FPMathOperator>(I)) { 3981 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3982 if (FMF.any()) 3983 I->setFastMathFlags(FMF); 3984 } 3985 3986 } 3987 break; 3988 } 3989 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3990 unsigned OpNum = 0; 3991 Value *Op; 3992 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3993 OpNum+2 != Record.size()) 3994 return error("Invalid record"); 3995 3996 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 3997 Type *ResTy = flattenPointerTypes(FullTy); 3998 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3999 if (Opc == -1 || !ResTy) 4000 return error("Invalid record"); 4001 Instruction *Temp = nullptr; 4002 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4003 if (Temp) { 4004 InstructionList.push_back(Temp); 4005 assert(CurBB && "No current BB?"); 4006 CurBB->getInstList().push_back(Temp); 4007 } 4008 } else { 4009 auto CastOp = (Instruction::CastOps)Opc; 4010 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4011 return error("Invalid cast"); 4012 I = CastInst::Create(CastOp, Op, ResTy); 4013 } 4014 InstructionList.push_back(I); 4015 break; 4016 } 4017 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4018 case bitc::FUNC_CODE_INST_GEP_OLD: 4019 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4020 unsigned OpNum = 0; 4021 4022 Type *Ty; 4023 bool InBounds; 4024 4025 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4026 InBounds = Record[OpNum++]; 4027 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4028 Ty = flattenPointerTypes(FullTy); 4029 } else { 4030 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4031 Ty = nullptr; 4032 } 4033 4034 Value *BasePtr; 4035 Type *FullBaseTy = nullptr; 4036 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 4037 return error("Invalid record"); 4038 4039 if (!Ty) { 4040 std::tie(FullTy, Ty) = 4041 getPointerElementTypes(FullBaseTy->getScalarType()); 4042 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 4043 return error( 4044 "Explicit gep type does not match pointee type of pointer operand"); 4045 4046 SmallVector<Value*, 16> GEPIdx; 4047 while (OpNum != Record.size()) { 4048 Value *Op; 4049 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4050 return error("Invalid record"); 4051 GEPIdx.push_back(Op); 4052 } 4053 4054 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4055 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 4056 4057 InstructionList.push_back(I); 4058 if (InBounds) 4059 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4060 break; 4061 } 4062 4063 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4064 // EXTRACTVAL: [opty, opval, n x indices] 4065 unsigned OpNum = 0; 4066 Value *Agg; 4067 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4068 return error("Invalid record"); 4069 4070 unsigned RecSize = Record.size(); 4071 if (OpNum == RecSize) 4072 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4073 4074 SmallVector<unsigned, 4> EXTRACTVALIdx; 4075 for (; OpNum != RecSize; ++OpNum) { 4076 bool IsArray = FullTy->isArrayTy(); 4077 bool IsStruct = FullTy->isStructTy(); 4078 uint64_t Index = Record[OpNum]; 4079 4080 if (!IsStruct && !IsArray) 4081 return error("EXTRACTVAL: Invalid type"); 4082 if ((unsigned)Index != Index) 4083 return error("Invalid value"); 4084 if (IsStruct && Index >= FullTy->getStructNumElements()) 4085 return error("EXTRACTVAL: Invalid struct index"); 4086 if (IsArray && Index >= FullTy->getArrayNumElements()) 4087 return error("EXTRACTVAL: Invalid array index"); 4088 EXTRACTVALIdx.push_back((unsigned)Index); 4089 4090 if (IsStruct) 4091 FullTy = FullTy->getStructElementType(Index); 4092 else 4093 FullTy = FullTy->getArrayElementType(); 4094 } 4095 4096 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4097 InstructionList.push_back(I); 4098 break; 4099 } 4100 4101 case bitc::FUNC_CODE_INST_INSERTVAL: { 4102 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4103 unsigned OpNum = 0; 4104 Value *Agg; 4105 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4106 return error("Invalid record"); 4107 Value *Val; 4108 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4109 return error("Invalid record"); 4110 4111 unsigned RecSize = Record.size(); 4112 if (OpNum == RecSize) 4113 return error("INSERTVAL: Invalid instruction with 0 indices"); 4114 4115 SmallVector<unsigned, 4> INSERTVALIdx; 4116 Type *CurTy = Agg->getType(); 4117 for (; OpNum != RecSize; ++OpNum) { 4118 bool IsArray = CurTy->isArrayTy(); 4119 bool IsStruct = CurTy->isStructTy(); 4120 uint64_t Index = Record[OpNum]; 4121 4122 if (!IsStruct && !IsArray) 4123 return error("INSERTVAL: Invalid type"); 4124 if ((unsigned)Index != Index) 4125 return error("Invalid value"); 4126 if (IsStruct && Index >= CurTy->getStructNumElements()) 4127 return error("INSERTVAL: Invalid struct index"); 4128 if (IsArray && Index >= CurTy->getArrayNumElements()) 4129 return error("INSERTVAL: Invalid array index"); 4130 4131 INSERTVALIdx.push_back((unsigned)Index); 4132 if (IsStruct) 4133 CurTy = CurTy->getStructElementType(Index); 4134 else 4135 CurTy = CurTy->getArrayElementType(); 4136 } 4137 4138 if (CurTy != Val->getType()) 4139 return error("Inserted value type doesn't match aggregate type"); 4140 4141 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4142 InstructionList.push_back(I); 4143 break; 4144 } 4145 4146 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4147 // obsolete form of select 4148 // handles select i1 ... in old bitcode 4149 unsigned OpNum = 0; 4150 Value *TrueVal, *FalseVal, *Cond; 4151 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4152 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4153 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4154 return error("Invalid record"); 4155 4156 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4157 InstructionList.push_back(I); 4158 break; 4159 } 4160 4161 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4162 // new form of select 4163 // handles select i1 or select [N x i1] 4164 unsigned OpNum = 0; 4165 Value *TrueVal, *FalseVal, *Cond; 4166 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4167 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4168 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4169 return error("Invalid record"); 4170 4171 // select condition can be either i1 or [N x i1] 4172 if (VectorType* vector_type = 4173 dyn_cast<VectorType>(Cond->getType())) { 4174 // expect <n x i1> 4175 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4176 return error("Invalid type for value"); 4177 } else { 4178 // expect i1 4179 if (Cond->getType() != Type::getInt1Ty(Context)) 4180 return error("Invalid type for value"); 4181 } 4182 4183 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4184 InstructionList.push_back(I); 4185 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4186 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4187 if (FMF.any()) 4188 I->setFastMathFlags(FMF); 4189 } 4190 break; 4191 } 4192 4193 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4194 unsigned OpNum = 0; 4195 Value *Vec, *Idx; 4196 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4197 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4198 return error("Invalid record"); 4199 if (!Vec->getType()->isVectorTy()) 4200 return error("Invalid type for value"); 4201 I = ExtractElementInst::Create(Vec, Idx); 4202 FullTy = cast<VectorType>(FullTy)->getElementType(); 4203 InstructionList.push_back(I); 4204 break; 4205 } 4206 4207 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4208 unsigned OpNum = 0; 4209 Value *Vec, *Elt, *Idx; 4210 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4211 return error("Invalid record"); 4212 if (!Vec->getType()->isVectorTy()) 4213 return error("Invalid type for value"); 4214 if (popValue(Record, OpNum, NextValueNo, 4215 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4216 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4217 return error("Invalid record"); 4218 I = InsertElementInst::Create(Vec, Elt, Idx); 4219 InstructionList.push_back(I); 4220 break; 4221 } 4222 4223 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4224 unsigned OpNum = 0; 4225 Value *Vec1, *Vec2, *Mask; 4226 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4227 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4228 return error("Invalid record"); 4229 4230 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4231 return error("Invalid record"); 4232 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4233 return error("Invalid type for value"); 4234 4235 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4236 FullTy = 4237 VectorType::get(cast<VectorType>(FullTy)->getElementType(), 4238 cast<VectorType>(Mask->getType())->getElementCount()); 4239 InstructionList.push_back(I); 4240 break; 4241 } 4242 4243 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4244 // Old form of ICmp/FCmp returning bool 4245 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4246 // both legal on vectors but had different behaviour. 4247 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4248 // FCmp/ICmp returning bool or vector of bool 4249 4250 unsigned OpNum = 0; 4251 Value *LHS, *RHS; 4252 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4253 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4254 return error("Invalid record"); 4255 4256 if (OpNum >= Record.size()) 4257 return error( 4258 "Invalid record: operand number exceeded available operands"); 4259 4260 unsigned PredVal = Record[OpNum]; 4261 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4262 FastMathFlags FMF; 4263 if (IsFP && Record.size() > OpNum+1) 4264 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4265 4266 if (OpNum+1 != Record.size()) 4267 return error("Invalid record"); 4268 4269 if (LHS->getType()->isFPOrFPVectorTy()) 4270 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4271 else 4272 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4273 4274 if (FMF.any()) 4275 I->setFastMathFlags(FMF); 4276 InstructionList.push_back(I); 4277 break; 4278 } 4279 4280 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4281 { 4282 unsigned Size = Record.size(); 4283 if (Size == 0) { 4284 I = ReturnInst::Create(Context); 4285 InstructionList.push_back(I); 4286 break; 4287 } 4288 4289 unsigned OpNum = 0; 4290 Value *Op = nullptr; 4291 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4292 return error("Invalid record"); 4293 if (OpNum != Record.size()) 4294 return error("Invalid record"); 4295 4296 I = ReturnInst::Create(Context, Op); 4297 InstructionList.push_back(I); 4298 break; 4299 } 4300 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4301 if (Record.size() != 1 && Record.size() != 3) 4302 return error("Invalid record"); 4303 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4304 if (!TrueDest) 4305 return error("Invalid record"); 4306 4307 if (Record.size() == 1) { 4308 I = BranchInst::Create(TrueDest); 4309 InstructionList.push_back(I); 4310 } 4311 else { 4312 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4313 Value *Cond = getValue(Record, 2, NextValueNo, 4314 Type::getInt1Ty(Context)); 4315 if (!FalseDest || !Cond) 4316 return error("Invalid record"); 4317 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4318 InstructionList.push_back(I); 4319 } 4320 break; 4321 } 4322 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4323 if (Record.size() != 1 && Record.size() != 2) 4324 return error("Invalid record"); 4325 unsigned Idx = 0; 4326 Value *CleanupPad = 4327 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4328 if (!CleanupPad) 4329 return error("Invalid record"); 4330 BasicBlock *UnwindDest = nullptr; 4331 if (Record.size() == 2) { 4332 UnwindDest = getBasicBlock(Record[Idx++]); 4333 if (!UnwindDest) 4334 return error("Invalid record"); 4335 } 4336 4337 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4338 InstructionList.push_back(I); 4339 break; 4340 } 4341 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4342 if (Record.size() != 2) 4343 return error("Invalid record"); 4344 unsigned Idx = 0; 4345 Value *CatchPad = 4346 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4347 if (!CatchPad) 4348 return error("Invalid record"); 4349 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4350 if (!BB) 4351 return error("Invalid record"); 4352 4353 I = CatchReturnInst::Create(CatchPad, BB); 4354 InstructionList.push_back(I); 4355 break; 4356 } 4357 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4358 // We must have, at minimum, the outer scope and the number of arguments. 4359 if (Record.size() < 2) 4360 return error("Invalid record"); 4361 4362 unsigned Idx = 0; 4363 4364 Value *ParentPad = 4365 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4366 4367 unsigned NumHandlers = Record[Idx++]; 4368 4369 SmallVector<BasicBlock *, 2> Handlers; 4370 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4371 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4372 if (!BB) 4373 return error("Invalid record"); 4374 Handlers.push_back(BB); 4375 } 4376 4377 BasicBlock *UnwindDest = nullptr; 4378 if (Idx + 1 == Record.size()) { 4379 UnwindDest = getBasicBlock(Record[Idx++]); 4380 if (!UnwindDest) 4381 return error("Invalid record"); 4382 } 4383 4384 if (Record.size() != Idx) 4385 return error("Invalid record"); 4386 4387 auto *CatchSwitch = 4388 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4389 for (BasicBlock *Handler : Handlers) 4390 CatchSwitch->addHandler(Handler); 4391 I = CatchSwitch; 4392 InstructionList.push_back(I); 4393 break; 4394 } 4395 case bitc::FUNC_CODE_INST_CATCHPAD: 4396 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4397 // We must have, at minimum, the outer scope and the number of arguments. 4398 if (Record.size() < 2) 4399 return error("Invalid record"); 4400 4401 unsigned Idx = 0; 4402 4403 Value *ParentPad = 4404 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4405 4406 unsigned NumArgOperands = Record[Idx++]; 4407 4408 SmallVector<Value *, 2> Args; 4409 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4410 Value *Val; 4411 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4412 return error("Invalid record"); 4413 Args.push_back(Val); 4414 } 4415 4416 if (Record.size() != Idx) 4417 return error("Invalid record"); 4418 4419 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4420 I = CleanupPadInst::Create(ParentPad, Args); 4421 else 4422 I = CatchPadInst::Create(ParentPad, Args); 4423 InstructionList.push_back(I); 4424 break; 4425 } 4426 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4427 // Check magic 4428 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4429 // "New" SwitchInst format with case ranges. The changes to write this 4430 // format were reverted but we still recognize bitcode that uses it. 4431 // Hopefully someday we will have support for case ranges and can use 4432 // this format again. 4433 4434 Type *OpTy = getTypeByID(Record[1]); 4435 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4436 4437 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4438 BasicBlock *Default = getBasicBlock(Record[3]); 4439 if (!OpTy || !Cond || !Default) 4440 return error("Invalid record"); 4441 4442 unsigned NumCases = Record[4]; 4443 4444 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4445 InstructionList.push_back(SI); 4446 4447 unsigned CurIdx = 5; 4448 for (unsigned i = 0; i != NumCases; ++i) { 4449 SmallVector<ConstantInt*, 1> CaseVals; 4450 unsigned NumItems = Record[CurIdx++]; 4451 for (unsigned ci = 0; ci != NumItems; ++ci) { 4452 bool isSingleNumber = Record[CurIdx++]; 4453 4454 APInt Low; 4455 unsigned ActiveWords = 1; 4456 if (ValueBitWidth > 64) 4457 ActiveWords = Record[CurIdx++]; 4458 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4459 ValueBitWidth); 4460 CurIdx += ActiveWords; 4461 4462 if (!isSingleNumber) { 4463 ActiveWords = 1; 4464 if (ValueBitWidth > 64) 4465 ActiveWords = Record[CurIdx++]; 4466 APInt High = readWideAPInt( 4467 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4468 CurIdx += ActiveWords; 4469 4470 // FIXME: It is not clear whether values in the range should be 4471 // compared as signed or unsigned values. The partially 4472 // implemented changes that used this format in the past used 4473 // unsigned comparisons. 4474 for ( ; Low.ule(High); ++Low) 4475 CaseVals.push_back(ConstantInt::get(Context, Low)); 4476 } else 4477 CaseVals.push_back(ConstantInt::get(Context, Low)); 4478 } 4479 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4480 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4481 cve = CaseVals.end(); cvi != cve; ++cvi) 4482 SI->addCase(*cvi, DestBB); 4483 } 4484 I = SI; 4485 break; 4486 } 4487 4488 // Old SwitchInst format without case ranges. 4489 4490 if (Record.size() < 3 || (Record.size() & 1) == 0) 4491 return error("Invalid record"); 4492 Type *OpTy = getTypeByID(Record[0]); 4493 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4494 BasicBlock *Default = getBasicBlock(Record[2]); 4495 if (!OpTy || !Cond || !Default) 4496 return error("Invalid record"); 4497 unsigned NumCases = (Record.size()-3)/2; 4498 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4499 InstructionList.push_back(SI); 4500 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4501 ConstantInt *CaseVal = 4502 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4503 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4504 if (!CaseVal || !DestBB) { 4505 delete SI; 4506 return error("Invalid record"); 4507 } 4508 SI->addCase(CaseVal, DestBB); 4509 } 4510 I = SI; 4511 break; 4512 } 4513 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4514 if (Record.size() < 2) 4515 return error("Invalid record"); 4516 Type *OpTy = getTypeByID(Record[0]); 4517 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4518 if (!OpTy || !Address) 4519 return error("Invalid record"); 4520 unsigned NumDests = Record.size()-2; 4521 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4522 InstructionList.push_back(IBI); 4523 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4524 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4525 IBI->addDestination(DestBB); 4526 } else { 4527 delete IBI; 4528 return error("Invalid record"); 4529 } 4530 } 4531 I = IBI; 4532 break; 4533 } 4534 4535 case bitc::FUNC_CODE_INST_INVOKE: { 4536 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4537 if (Record.size() < 4) 4538 return error("Invalid record"); 4539 unsigned OpNum = 0; 4540 AttributeList PAL = getAttributes(Record[OpNum++]); 4541 unsigned CCInfo = Record[OpNum++]; 4542 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4543 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4544 4545 FunctionType *FTy = nullptr; 4546 FunctionType *FullFTy = nullptr; 4547 if ((CCInfo >> 13) & 1) { 4548 FullFTy = 4549 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4550 if (!FullFTy) 4551 return error("Explicit invoke type is not a function type"); 4552 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4553 } 4554 4555 Value *Callee; 4556 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4557 return error("Invalid record"); 4558 4559 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4560 if (!CalleeTy) 4561 return error("Callee is not a pointer"); 4562 if (!FTy) { 4563 FullFTy = 4564 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4565 if (!FullFTy) 4566 return error("Callee is not of pointer to function type"); 4567 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4568 } else if (getPointerElementFlatType(FullTy) != FTy) 4569 return error("Explicit invoke type does not match pointee type of " 4570 "callee operand"); 4571 if (Record.size() < FTy->getNumParams() + OpNum) 4572 return error("Insufficient operands to call"); 4573 4574 SmallVector<Value*, 16> Ops; 4575 SmallVector<Type *, 16> ArgsFullTys; 4576 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4577 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4578 FTy->getParamType(i))); 4579 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4580 if (!Ops.back()) 4581 return error("Invalid record"); 4582 } 4583 4584 if (!FTy->isVarArg()) { 4585 if (Record.size() != OpNum) 4586 return error("Invalid record"); 4587 } else { 4588 // Read type/value pairs for varargs params. 4589 while (OpNum != Record.size()) { 4590 Value *Op; 4591 Type *FullTy; 4592 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4593 return error("Invalid record"); 4594 Ops.push_back(Op); 4595 ArgsFullTys.push_back(FullTy); 4596 } 4597 } 4598 4599 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4600 OperandBundles); 4601 FullTy = FullFTy->getReturnType(); 4602 OperandBundles.clear(); 4603 InstructionList.push_back(I); 4604 cast<InvokeInst>(I)->setCallingConv( 4605 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4606 cast<InvokeInst>(I)->setAttributes(PAL); 4607 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 4608 4609 break; 4610 } 4611 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4612 unsigned Idx = 0; 4613 Value *Val = nullptr; 4614 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4615 return error("Invalid record"); 4616 I = ResumeInst::Create(Val); 4617 InstructionList.push_back(I); 4618 break; 4619 } 4620 case bitc::FUNC_CODE_INST_CALLBR: { 4621 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4622 unsigned OpNum = 0; 4623 AttributeList PAL = getAttributes(Record[OpNum++]); 4624 unsigned CCInfo = Record[OpNum++]; 4625 4626 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4627 unsigned NumIndirectDests = Record[OpNum++]; 4628 SmallVector<BasicBlock *, 16> IndirectDests; 4629 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4630 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4631 4632 FunctionType *FTy = nullptr; 4633 FunctionType *FullFTy = nullptr; 4634 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4635 FullFTy = 4636 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4637 if (!FullFTy) 4638 return error("Explicit call type is not a function type"); 4639 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4640 } 4641 4642 Value *Callee; 4643 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4644 return error("Invalid record"); 4645 4646 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4647 if (!OpTy) 4648 return error("Callee is not a pointer type"); 4649 if (!FTy) { 4650 FullFTy = 4651 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4652 if (!FullFTy) 4653 return error("Callee is not of pointer to function type"); 4654 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4655 } else if (getPointerElementFlatType(FullTy) != FTy) 4656 return error("Explicit call type does not match pointee type of " 4657 "callee operand"); 4658 if (Record.size() < FTy->getNumParams() + OpNum) 4659 return error("Insufficient operands to call"); 4660 4661 SmallVector<Value*, 16> Args; 4662 // Read the fixed params. 4663 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4664 if (FTy->getParamType(i)->isLabelTy()) 4665 Args.push_back(getBasicBlock(Record[OpNum])); 4666 else 4667 Args.push_back(getValue(Record, OpNum, NextValueNo, 4668 FTy->getParamType(i))); 4669 if (!Args.back()) 4670 return error("Invalid record"); 4671 } 4672 4673 // Read type/value pairs for varargs params. 4674 if (!FTy->isVarArg()) { 4675 if (OpNum != Record.size()) 4676 return error("Invalid record"); 4677 } else { 4678 while (OpNum != Record.size()) { 4679 Value *Op; 4680 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4681 return error("Invalid record"); 4682 Args.push_back(Op); 4683 } 4684 } 4685 4686 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4687 OperandBundles); 4688 FullTy = FullFTy->getReturnType(); 4689 OperandBundles.clear(); 4690 InstructionList.push_back(I); 4691 cast<CallBrInst>(I)->setCallingConv( 4692 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4693 cast<CallBrInst>(I)->setAttributes(PAL); 4694 break; 4695 } 4696 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4697 I = new UnreachableInst(Context); 4698 InstructionList.push_back(I); 4699 break; 4700 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4701 if (Record.size() < 1) 4702 return error("Invalid record"); 4703 // The first record specifies the type. 4704 FullTy = getFullyStructuredTypeByID(Record[0]); 4705 Type *Ty = flattenPointerTypes(FullTy); 4706 if (!Ty) 4707 return error("Invalid record"); 4708 4709 // Phi arguments are pairs of records of [value, basic block]. 4710 // There is an optional final record for fast-math-flags if this phi has a 4711 // floating-point type. 4712 size_t NumArgs = (Record.size() - 1) / 2; 4713 PHINode *PN = PHINode::Create(Ty, NumArgs); 4714 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4715 return error("Invalid record"); 4716 InstructionList.push_back(PN); 4717 4718 for (unsigned i = 0; i != NumArgs; i++) { 4719 Value *V; 4720 // With the new function encoding, it is possible that operands have 4721 // negative IDs (for forward references). Use a signed VBR 4722 // representation to keep the encoding small. 4723 if (UseRelativeIDs) 4724 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4725 else 4726 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4727 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4728 if (!V || !BB) 4729 return error("Invalid record"); 4730 PN->addIncoming(V, BB); 4731 } 4732 I = PN; 4733 4734 // If there are an even number of records, the final record must be FMF. 4735 if (Record.size() % 2 == 0) { 4736 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4737 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4738 if (FMF.any()) 4739 I->setFastMathFlags(FMF); 4740 } 4741 4742 break; 4743 } 4744 4745 case bitc::FUNC_CODE_INST_LANDINGPAD: 4746 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4747 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4748 unsigned Idx = 0; 4749 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4750 if (Record.size() < 3) 4751 return error("Invalid record"); 4752 } else { 4753 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4754 if (Record.size() < 4) 4755 return error("Invalid record"); 4756 } 4757 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4758 Type *Ty = flattenPointerTypes(FullTy); 4759 if (!Ty) 4760 return error("Invalid record"); 4761 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4762 Value *PersFn = nullptr; 4763 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4764 return error("Invalid record"); 4765 4766 if (!F->hasPersonalityFn()) 4767 F->setPersonalityFn(cast<Constant>(PersFn)); 4768 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4769 return error("Personality function mismatch"); 4770 } 4771 4772 bool IsCleanup = !!Record[Idx++]; 4773 unsigned NumClauses = Record[Idx++]; 4774 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4775 LP->setCleanup(IsCleanup); 4776 for (unsigned J = 0; J != NumClauses; ++J) { 4777 LandingPadInst::ClauseType CT = 4778 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4779 Value *Val; 4780 4781 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4782 delete LP; 4783 return error("Invalid record"); 4784 } 4785 4786 assert((CT != LandingPadInst::Catch || 4787 !isa<ArrayType>(Val->getType())) && 4788 "Catch clause has a invalid type!"); 4789 assert((CT != LandingPadInst::Filter || 4790 isa<ArrayType>(Val->getType())) && 4791 "Filter clause has invalid type!"); 4792 LP->addClause(cast<Constant>(Val)); 4793 } 4794 4795 I = LP; 4796 InstructionList.push_back(I); 4797 break; 4798 } 4799 4800 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4801 if (Record.size() != 4) 4802 return error("Invalid record"); 4803 uint64_t AlignRecord = Record[3]; 4804 const uint64_t InAllocaMask = uint64_t(1) << 5; 4805 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4806 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4807 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4808 SwiftErrorMask; 4809 bool InAlloca = AlignRecord & InAllocaMask; 4810 bool SwiftError = AlignRecord & SwiftErrorMask; 4811 FullTy = getFullyStructuredTypeByID(Record[0]); 4812 Type *Ty = flattenPointerTypes(FullTy); 4813 if ((AlignRecord & ExplicitTypeMask) == 0) { 4814 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4815 if (!PTy) 4816 return error("Old-style alloca with a non-pointer type"); 4817 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4818 } 4819 Type *OpTy = getTypeByID(Record[1]); 4820 Value *Size = getFnValueByID(Record[2], OpTy); 4821 MaybeAlign Align; 4822 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4823 return Err; 4824 } 4825 if (!Ty || !Size) 4826 return error("Invalid record"); 4827 4828 // FIXME: Make this an optional field. 4829 const DataLayout &DL = TheModule->getDataLayout(); 4830 unsigned AS = DL.getAllocaAddrSpace(); 4831 4832 SmallPtrSet<Type *, 4> Visited; 4833 if (!Align && !Ty->isSized(&Visited)) 4834 return error("alloca of unsized type"); 4835 if (!Align) 4836 Align = DL.getPrefTypeAlign(Ty); 4837 4838 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4839 AI->setUsedWithInAlloca(InAlloca); 4840 AI->setSwiftError(SwiftError); 4841 I = AI; 4842 FullTy = PointerType::get(FullTy, AS); 4843 InstructionList.push_back(I); 4844 break; 4845 } 4846 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4847 unsigned OpNum = 0; 4848 Value *Op; 4849 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4850 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4851 return error("Invalid record"); 4852 4853 if (!isa<PointerType>(Op->getType())) 4854 return error("Load operand is not a pointer type"); 4855 4856 Type *Ty = nullptr; 4857 if (OpNum + 3 == Record.size()) { 4858 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4859 Ty = flattenPointerTypes(FullTy); 4860 } else 4861 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4862 4863 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4864 return Err; 4865 4866 MaybeAlign Align; 4867 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4868 return Err; 4869 SmallPtrSet<Type *, 4> Visited; 4870 if (!Align && !Ty->isSized(&Visited)) 4871 return error("load of unsized type"); 4872 if (!Align) 4873 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4874 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4875 InstructionList.push_back(I); 4876 break; 4877 } 4878 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4879 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4880 unsigned OpNum = 0; 4881 Value *Op; 4882 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4883 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4884 return error("Invalid record"); 4885 4886 if (!isa<PointerType>(Op->getType())) 4887 return error("Load operand is not a pointer type"); 4888 4889 Type *Ty = nullptr; 4890 if (OpNum + 5 == Record.size()) { 4891 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4892 Ty = flattenPointerTypes(FullTy); 4893 } else 4894 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4895 4896 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4897 return Err; 4898 4899 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4900 if (Ordering == AtomicOrdering::NotAtomic || 4901 Ordering == AtomicOrdering::Release || 4902 Ordering == AtomicOrdering::AcquireRelease) 4903 return error("Invalid record"); 4904 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4905 return error("Invalid record"); 4906 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4907 4908 MaybeAlign Align; 4909 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4910 return Err; 4911 if (!Align) 4912 return error("Alignment missing from atomic load"); 4913 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 4914 InstructionList.push_back(I); 4915 break; 4916 } 4917 case bitc::FUNC_CODE_INST_STORE: 4918 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4919 unsigned OpNum = 0; 4920 Value *Val, *Ptr; 4921 Type *FullTy; 4922 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4923 (BitCode == bitc::FUNC_CODE_INST_STORE 4924 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4925 : popValue(Record, OpNum, NextValueNo, 4926 getPointerElementFlatType(FullTy), Val)) || 4927 OpNum + 2 != Record.size()) 4928 return error("Invalid record"); 4929 4930 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4931 return Err; 4932 MaybeAlign Align; 4933 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4934 return Err; 4935 SmallPtrSet<Type *, 4> Visited; 4936 if (!Align && !Val->getType()->isSized(&Visited)) 4937 return error("store of unsized type"); 4938 if (!Align) 4939 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 4940 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 4941 InstructionList.push_back(I); 4942 break; 4943 } 4944 case bitc::FUNC_CODE_INST_STOREATOMIC: 4945 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4946 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4947 unsigned OpNum = 0; 4948 Value *Val, *Ptr; 4949 Type *FullTy; 4950 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4951 !isa<PointerType>(Ptr->getType()) || 4952 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4953 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4954 : popValue(Record, OpNum, NextValueNo, 4955 getPointerElementFlatType(FullTy), Val)) || 4956 OpNum + 4 != Record.size()) 4957 return error("Invalid record"); 4958 4959 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4960 return Err; 4961 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4962 if (Ordering == AtomicOrdering::NotAtomic || 4963 Ordering == AtomicOrdering::Acquire || 4964 Ordering == AtomicOrdering::AcquireRelease) 4965 return error("Invalid record"); 4966 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4967 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4968 return error("Invalid record"); 4969 4970 MaybeAlign Align; 4971 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4972 return Err; 4973 if (!Align) 4974 return error("Alignment missing from atomic store"); 4975 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 4976 InstructionList.push_back(I); 4977 break; 4978 } 4979 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4980 case bitc::FUNC_CODE_INST_CMPXCHG: { 4981 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4982 // failureordering?, isweak?] 4983 unsigned OpNum = 0; 4984 Value *Ptr, *Cmp, *New; 4985 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 4986 return error("Invalid record"); 4987 4988 if (!isa<PointerType>(Ptr->getType())) 4989 return error("Cmpxchg operand is not a pointer type"); 4990 4991 if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) { 4992 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 4993 return error("Invalid record"); 4994 } else if (popValue(Record, OpNum, NextValueNo, 4995 getPointerElementFlatType(FullTy), Cmp)) 4996 return error("Invalid record"); 4997 else 4998 FullTy = cast<PointerType>(FullTy)->getElementType(); 4999 5000 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5001 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5002 return error("Invalid record"); 5003 5004 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5005 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5006 SuccessOrdering == AtomicOrdering::Unordered) 5007 return error("Invalid record"); 5008 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5009 5010 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5011 return Err; 5012 AtomicOrdering FailureOrdering; 5013 if (Record.size() < 7) 5014 FailureOrdering = 5015 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5016 else 5017 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5018 5019 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5020 SSID); 5021 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 5022 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5023 5024 if (Record.size() < 8) { 5025 // Before weak cmpxchgs existed, the instruction simply returned the 5026 // value loaded from memory, so bitcode files from that era will be 5027 // expecting the first component of a modern cmpxchg. 5028 CurBB->getInstList().push_back(I); 5029 I = ExtractValueInst::Create(I, 0); 5030 FullTy = cast<StructType>(FullTy)->getElementType(0); 5031 } else { 5032 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5033 } 5034 5035 InstructionList.push_back(I); 5036 break; 5037 } 5038 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5039 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 5040 unsigned OpNum = 0; 5041 Value *Ptr, *Val; 5042 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 5043 !isa<PointerType>(Ptr->getType()) || 5044 popValue(Record, OpNum, NextValueNo, 5045 getPointerElementFlatType(FullTy), Val) || 5046 OpNum + 4 != Record.size()) 5047 return error("Invalid record"); 5048 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5049 if (Operation < AtomicRMWInst::FIRST_BINOP || 5050 Operation > AtomicRMWInst::LAST_BINOP) 5051 return error("Invalid record"); 5052 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5053 if (Ordering == AtomicOrdering::NotAtomic || 5054 Ordering == AtomicOrdering::Unordered) 5055 return error("Invalid record"); 5056 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5057 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 5058 FullTy = getPointerElementFlatType(FullTy); 5059 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5060 InstructionList.push_back(I); 5061 break; 5062 } 5063 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5064 if (2 != Record.size()) 5065 return error("Invalid record"); 5066 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5067 if (Ordering == AtomicOrdering::NotAtomic || 5068 Ordering == AtomicOrdering::Unordered || 5069 Ordering == AtomicOrdering::Monotonic) 5070 return error("Invalid record"); 5071 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5072 I = new FenceInst(Context, Ordering, SSID); 5073 InstructionList.push_back(I); 5074 break; 5075 } 5076 case bitc::FUNC_CODE_INST_CALL: { 5077 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5078 if (Record.size() < 3) 5079 return error("Invalid record"); 5080 5081 unsigned OpNum = 0; 5082 AttributeList PAL = getAttributes(Record[OpNum++]); 5083 unsigned CCInfo = Record[OpNum++]; 5084 5085 FastMathFlags FMF; 5086 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5087 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5088 if (!FMF.any()) 5089 return error("Fast math flags indicator set for call with no FMF"); 5090 } 5091 5092 FunctionType *FTy = nullptr; 5093 FunctionType *FullFTy = nullptr; 5094 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5095 FullFTy = 5096 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5097 if (!FullFTy) 5098 return error("Explicit call type is not a function type"); 5099 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5100 } 5101 5102 Value *Callee; 5103 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5104 return error("Invalid record"); 5105 5106 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5107 if (!OpTy) 5108 return error("Callee is not a pointer type"); 5109 if (!FTy) { 5110 FullFTy = 5111 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5112 if (!FullFTy) 5113 return error("Callee is not of pointer to function type"); 5114 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5115 } else if (getPointerElementFlatType(FullTy) != FTy) 5116 return error("Explicit call type does not match pointee type of " 5117 "callee operand"); 5118 if (Record.size() < FTy->getNumParams() + OpNum) 5119 return error("Insufficient operands to call"); 5120 5121 SmallVector<Value*, 16> Args; 5122 SmallVector<Type*, 16> ArgsFullTys; 5123 // Read the fixed params. 5124 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5125 if (FTy->getParamType(i)->isLabelTy()) 5126 Args.push_back(getBasicBlock(Record[OpNum])); 5127 else 5128 Args.push_back(getValue(Record, OpNum, NextValueNo, 5129 FTy->getParamType(i))); 5130 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5131 if (!Args.back()) 5132 return error("Invalid record"); 5133 } 5134 5135 // Read type/value pairs for varargs params. 5136 if (!FTy->isVarArg()) { 5137 if (OpNum != Record.size()) 5138 return error("Invalid record"); 5139 } else { 5140 while (OpNum != Record.size()) { 5141 Value *Op; 5142 Type *FullTy; 5143 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5144 return error("Invalid record"); 5145 Args.push_back(Op); 5146 ArgsFullTys.push_back(FullTy); 5147 } 5148 } 5149 5150 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5151 FullTy = FullFTy->getReturnType(); 5152 OperandBundles.clear(); 5153 InstructionList.push_back(I); 5154 cast<CallInst>(I)->setCallingConv( 5155 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5156 CallInst::TailCallKind TCK = CallInst::TCK_None; 5157 if (CCInfo & 1 << bitc::CALL_TAIL) 5158 TCK = CallInst::TCK_Tail; 5159 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5160 TCK = CallInst::TCK_MustTail; 5161 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5162 TCK = CallInst::TCK_NoTail; 5163 cast<CallInst>(I)->setTailCallKind(TCK); 5164 cast<CallInst>(I)->setAttributes(PAL); 5165 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 5166 if (FMF.any()) { 5167 if (!isa<FPMathOperator>(I)) 5168 return error("Fast-math-flags specified for call without " 5169 "floating-point scalar or vector return type"); 5170 I->setFastMathFlags(FMF); 5171 } 5172 break; 5173 } 5174 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5175 if (Record.size() < 3) 5176 return error("Invalid record"); 5177 Type *OpTy = getTypeByID(Record[0]); 5178 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5179 FullTy = getFullyStructuredTypeByID(Record[2]); 5180 Type *ResTy = flattenPointerTypes(FullTy); 5181 if (!OpTy || !Op || !ResTy) 5182 return error("Invalid record"); 5183 I = new VAArgInst(Op, ResTy); 5184 InstructionList.push_back(I); 5185 break; 5186 } 5187 5188 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5189 // A call or an invoke can be optionally prefixed with some variable 5190 // number of operand bundle blocks. These blocks are read into 5191 // OperandBundles and consumed at the next call or invoke instruction. 5192 5193 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5194 return error("Invalid record"); 5195 5196 std::vector<Value *> Inputs; 5197 5198 unsigned OpNum = 1; 5199 while (OpNum != Record.size()) { 5200 Value *Op; 5201 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5202 return error("Invalid record"); 5203 Inputs.push_back(Op); 5204 } 5205 5206 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5207 continue; 5208 } 5209 5210 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5211 unsigned OpNum = 0; 5212 Value *Op = nullptr; 5213 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5214 return error("Invalid record"); 5215 if (OpNum != Record.size()) 5216 return error("Invalid record"); 5217 5218 I = new FreezeInst(Op); 5219 InstructionList.push_back(I); 5220 break; 5221 } 5222 } 5223 5224 // Add instruction to end of current BB. If there is no current BB, reject 5225 // this file. 5226 if (!CurBB) { 5227 I->deleteValue(); 5228 return error("Invalid instruction with no BB"); 5229 } 5230 if (!OperandBundles.empty()) { 5231 I->deleteValue(); 5232 return error("Operand bundles found with no consumer"); 5233 } 5234 CurBB->getInstList().push_back(I); 5235 5236 // If this was a terminator instruction, move to the next block. 5237 if (I->isTerminator()) { 5238 ++CurBBNo; 5239 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5240 } 5241 5242 // Non-void values get registered in the value table for future use. 5243 if (!I->getType()->isVoidTy()) { 5244 if (!FullTy) { 5245 FullTy = I->getType(); 5246 assert( 5247 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5248 !isa<ArrayType>(FullTy) && 5249 (!isa<VectorType>(FullTy) || 5250 cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() || 5251 cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) && 5252 "Structured types must be assigned with corresponding non-opaque " 5253 "pointer type"); 5254 } 5255 5256 assert(I->getType() == flattenPointerTypes(FullTy) && 5257 "Incorrect fully structured type provided for Instruction"); 5258 ValueList.assignValue(I, NextValueNo++, FullTy); 5259 } 5260 } 5261 5262 OutOfRecordLoop: 5263 5264 if (!OperandBundles.empty()) 5265 return error("Operand bundles found with no consumer"); 5266 5267 // Check the function list for unresolved values. 5268 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5269 if (!A->getParent()) { 5270 // We found at least one unresolved value. Nuke them all to avoid leaks. 5271 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5272 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5273 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5274 delete A; 5275 } 5276 } 5277 return error("Never resolved value found in function"); 5278 } 5279 } 5280 5281 // Unexpected unresolved metadata about to be dropped. 5282 if (MDLoader->hasFwdRefs()) 5283 return error("Invalid function metadata: outgoing forward refs"); 5284 5285 // Trim the value list down to the size it was before we parsed this function. 5286 ValueList.shrinkTo(ModuleValueListSize); 5287 MDLoader->shrinkTo(ModuleMDLoaderSize); 5288 std::vector<BasicBlock*>().swap(FunctionBBs); 5289 return Error::success(); 5290 } 5291 5292 /// Find the function body in the bitcode stream 5293 Error BitcodeReader::findFunctionInStream( 5294 Function *F, 5295 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5296 while (DeferredFunctionInfoIterator->second == 0) { 5297 // This is the fallback handling for the old format bitcode that 5298 // didn't contain the function index in the VST, or when we have 5299 // an anonymous function which would not have a VST entry. 5300 // Assert that we have one of those two cases. 5301 assert(VSTOffset == 0 || !F->hasName()); 5302 // Parse the next body in the stream and set its position in the 5303 // DeferredFunctionInfo map. 5304 if (Error Err = rememberAndSkipFunctionBodies()) 5305 return Err; 5306 } 5307 return Error::success(); 5308 } 5309 5310 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5311 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5312 return SyncScope::ID(Val); 5313 if (Val >= SSIDs.size()) 5314 return SyncScope::System; // Map unknown synchronization scopes to system. 5315 return SSIDs[Val]; 5316 } 5317 5318 //===----------------------------------------------------------------------===// 5319 // GVMaterializer implementation 5320 //===----------------------------------------------------------------------===// 5321 5322 Error BitcodeReader::materialize(GlobalValue *GV) { 5323 Function *F = dyn_cast<Function>(GV); 5324 // If it's not a function or is already material, ignore the request. 5325 if (!F || !F->isMaterializable()) 5326 return Error::success(); 5327 5328 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5329 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5330 // If its position is recorded as 0, its body is somewhere in the stream 5331 // but we haven't seen it yet. 5332 if (DFII->second == 0) 5333 if (Error Err = findFunctionInStream(F, DFII)) 5334 return Err; 5335 5336 // Materialize metadata before parsing any function bodies. 5337 if (Error Err = materializeMetadata()) 5338 return Err; 5339 5340 // Move the bit stream to the saved position of the deferred function body. 5341 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5342 return JumpFailed; 5343 if (Error Err = parseFunctionBody(F)) 5344 return Err; 5345 F->setIsMaterializable(false); 5346 5347 if (StripDebugInfo) 5348 stripDebugInfo(*F); 5349 5350 // Upgrade any old intrinsic calls in the function. 5351 for (auto &I : UpgradedIntrinsics) { 5352 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5353 UI != UE;) { 5354 User *U = *UI; 5355 ++UI; 5356 if (CallInst *CI = dyn_cast<CallInst>(U)) 5357 UpgradeIntrinsicCall(CI, I.second); 5358 } 5359 } 5360 5361 // Update calls to the remangled intrinsics 5362 for (auto &I : RemangledIntrinsics) 5363 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5364 UI != UE;) 5365 // Don't expect any other users than call sites 5366 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5367 5368 // Finish fn->subprogram upgrade for materialized functions. 5369 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5370 F->setSubprogram(SP); 5371 5372 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5373 if (!MDLoader->isStrippingTBAA()) { 5374 for (auto &I : instructions(F)) { 5375 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5376 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5377 continue; 5378 MDLoader->setStripTBAA(true); 5379 stripTBAA(F->getParent()); 5380 } 5381 } 5382 5383 // Look for functions that rely on old function attribute behavior. 5384 UpgradeFunctionAttributes(*F); 5385 5386 // Bring in any functions that this function forward-referenced via 5387 // blockaddresses. 5388 return materializeForwardReferencedFunctions(); 5389 } 5390 5391 Error BitcodeReader::materializeModule() { 5392 if (Error Err = materializeMetadata()) 5393 return Err; 5394 5395 // Promise to materialize all forward references. 5396 WillMaterializeAllForwardRefs = true; 5397 5398 // Iterate over the module, deserializing any functions that are still on 5399 // disk. 5400 for (Function &F : *TheModule) { 5401 if (Error Err = materialize(&F)) 5402 return Err; 5403 } 5404 // At this point, if there are any function bodies, parse the rest of 5405 // the bits in the module past the last function block we have recorded 5406 // through either lazy scanning or the VST. 5407 if (LastFunctionBlockBit || NextUnreadBit) 5408 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5409 ? LastFunctionBlockBit 5410 : NextUnreadBit)) 5411 return Err; 5412 5413 // Check that all block address forward references got resolved (as we 5414 // promised above). 5415 if (!BasicBlockFwdRefs.empty()) 5416 return error("Never resolved function from blockaddress"); 5417 5418 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5419 // delete the old functions to clean up. We can't do this unless the entire 5420 // module is materialized because there could always be another function body 5421 // with calls to the old function. 5422 for (auto &I : UpgradedIntrinsics) { 5423 for (auto *U : I.first->users()) { 5424 if (CallInst *CI = dyn_cast<CallInst>(U)) 5425 UpgradeIntrinsicCall(CI, I.second); 5426 } 5427 if (!I.first->use_empty()) 5428 I.first->replaceAllUsesWith(I.second); 5429 I.first->eraseFromParent(); 5430 } 5431 UpgradedIntrinsics.clear(); 5432 // Do the same for remangled intrinsics 5433 for (auto &I : RemangledIntrinsics) { 5434 I.first->replaceAllUsesWith(I.second); 5435 I.first->eraseFromParent(); 5436 } 5437 RemangledIntrinsics.clear(); 5438 5439 UpgradeDebugInfo(*TheModule); 5440 5441 UpgradeModuleFlags(*TheModule); 5442 5443 UpgradeARCRuntime(*TheModule); 5444 5445 return Error::success(); 5446 } 5447 5448 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5449 return IdentifiedStructTypes; 5450 } 5451 5452 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5453 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5454 StringRef ModulePath, unsigned ModuleId) 5455 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5456 ModulePath(ModulePath), ModuleId(ModuleId) {} 5457 5458 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5459 TheIndex.addModule(ModulePath, ModuleId); 5460 } 5461 5462 ModuleSummaryIndex::ModuleInfo * 5463 ModuleSummaryIndexBitcodeReader::getThisModule() { 5464 return TheIndex.getModule(ModulePath); 5465 } 5466 5467 std::pair<ValueInfo, GlobalValue::GUID> 5468 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5469 auto VGI = ValueIdToValueInfoMap[ValueId]; 5470 assert(VGI.first); 5471 return VGI; 5472 } 5473 5474 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5475 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5476 StringRef SourceFileName) { 5477 std::string GlobalId = 5478 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5479 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5480 auto OriginalNameID = ValueGUID; 5481 if (GlobalValue::isLocalLinkage(Linkage)) 5482 OriginalNameID = GlobalValue::getGUID(ValueName); 5483 if (PrintSummaryGUIDs) 5484 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5485 << ValueName << "\n"; 5486 5487 // UseStrtab is false for legacy summary formats and value names are 5488 // created on stack. In that case we save the name in a string saver in 5489 // the index so that the value name can be recorded. 5490 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5491 TheIndex.getOrInsertValueInfo( 5492 ValueGUID, 5493 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5494 OriginalNameID); 5495 } 5496 5497 // Specialized value symbol table parser used when reading module index 5498 // blocks where we don't actually create global values. The parsed information 5499 // is saved in the bitcode reader for use when later parsing summaries. 5500 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5501 uint64_t Offset, 5502 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5503 // With a strtab the VST is not required to parse the summary. 5504 if (UseStrtab) 5505 return Error::success(); 5506 5507 assert(Offset > 0 && "Expected non-zero VST offset"); 5508 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5509 if (!MaybeCurrentBit) 5510 return MaybeCurrentBit.takeError(); 5511 uint64_t CurrentBit = MaybeCurrentBit.get(); 5512 5513 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5514 return Err; 5515 5516 SmallVector<uint64_t, 64> Record; 5517 5518 // Read all the records for this value table. 5519 SmallString<128> ValueName; 5520 5521 while (true) { 5522 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5523 if (!MaybeEntry) 5524 return MaybeEntry.takeError(); 5525 BitstreamEntry Entry = MaybeEntry.get(); 5526 5527 switch (Entry.Kind) { 5528 case BitstreamEntry::SubBlock: // Handled for us already. 5529 case BitstreamEntry::Error: 5530 return error("Malformed block"); 5531 case BitstreamEntry::EndBlock: 5532 // Done parsing VST, jump back to wherever we came from. 5533 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5534 return JumpFailed; 5535 return Error::success(); 5536 case BitstreamEntry::Record: 5537 // The interesting case. 5538 break; 5539 } 5540 5541 // Read a record. 5542 Record.clear(); 5543 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5544 if (!MaybeRecord) 5545 return MaybeRecord.takeError(); 5546 switch (MaybeRecord.get()) { 5547 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5548 break; 5549 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5550 if (convertToString(Record, 1, ValueName)) 5551 return error("Invalid record"); 5552 unsigned ValueID = Record[0]; 5553 assert(!SourceFileName.empty()); 5554 auto VLI = ValueIdToLinkageMap.find(ValueID); 5555 assert(VLI != ValueIdToLinkageMap.end() && 5556 "No linkage found for VST entry?"); 5557 auto Linkage = VLI->second; 5558 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5559 ValueName.clear(); 5560 break; 5561 } 5562 case bitc::VST_CODE_FNENTRY: { 5563 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5564 if (convertToString(Record, 2, ValueName)) 5565 return error("Invalid record"); 5566 unsigned ValueID = Record[0]; 5567 assert(!SourceFileName.empty()); 5568 auto VLI = ValueIdToLinkageMap.find(ValueID); 5569 assert(VLI != ValueIdToLinkageMap.end() && 5570 "No linkage found for VST entry?"); 5571 auto Linkage = VLI->second; 5572 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5573 ValueName.clear(); 5574 break; 5575 } 5576 case bitc::VST_CODE_COMBINED_ENTRY: { 5577 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5578 unsigned ValueID = Record[0]; 5579 GlobalValue::GUID RefGUID = Record[1]; 5580 // The "original name", which is the second value of the pair will be 5581 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5582 ValueIdToValueInfoMap[ValueID] = 5583 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5584 break; 5585 } 5586 } 5587 } 5588 } 5589 5590 // Parse just the blocks needed for building the index out of the module. 5591 // At the end of this routine the module Index is populated with a map 5592 // from global value id to GlobalValueSummary objects. 5593 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5594 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5595 return Err; 5596 5597 SmallVector<uint64_t, 64> Record; 5598 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5599 unsigned ValueId = 0; 5600 5601 // Read the index for this module. 5602 while (true) { 5603 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5604 if (!MaybeEntry) 5605 return MaybeEntry.takeError(); 5606 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5607 5608 switch (Entry.Kind) { 5609 case BitstreamEntry::Error: 5610 return error("Malformed block"); 5611 case BitstreamEntry::EndBlock: 5612 return Error::success(); 5613 5614 case BitstreamEntry::SubBlock: 5615 switch (Entry.ID) { 5616 default: // Skip unknown content. 5617 if (Error Err = Stream.SkipBlock()) 5618 return Err; 5619 break; 5620 case bitc::BLOCKINFO_BLOCK_ID: 5621 // Need to parse these to get abbrev ids (e.g. for VST) 5622 if (readBlockInfo()) 5623 return error("Malformed block"); 5624 break; 5625 case bitc::VALUE_SYMTAB_BLOCK_ID: 5626 // Should have been parsed earlier via VSTOffset, unless there 5627 // is no summary section. 5628 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5629 !SeenGlobalValSummary) && 5630 "Expected early VST parse via VSTOffset record"); 5631 if (Error Err = Stream.SkipBlock()) 5632 return Err; 5633 break; 5634 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5635 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5636 // Add the module if it is a per-module index (has a source file name). 5637 if (!SourceFileName.empty()) 5638 addThisModule(); 5639 assert(!SeenValueSymbolTable && 5640 "Already read VST when parsing summary block?"); 5641 // We might not have a VST if there were no values in the 5642 // summary. An empty summary block generated when we are 5643 // performing ThinLTO compiles so we don't later invoke 5644 // the regular LTO process on them. 5645 if (VSTOffset > 0) { 5646 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5647 return Err; 5648 SeenValueSymbolTable = true; 5649 } 5650 SeenGlobalValSummary = true; 5651 if (Error Err = parseEntireSummary(Entry.ID)) 5652 return Err; 5653 break; 5654 case bitc::MODULE_STRTAB_BLOCK_ID: 5655 if (Error Err = parseModuleStringTable()) 5656 return Err; 5657 break; 5658 } 5659 continue; 5660 5661 case BitstreamEntry::Record: { 5662 Record.clear(); 5663 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5664 if (!MaybeBitCode) 5665 return MaybeBitCode.takeError(); 5666 switch (MaybeBitCode.get()) { 5667 default: 5668 break; // Default behavior, ignore unknown content. 5669 case bitc::MODULE_CODE_VERSION: { 5670 if (Error Err = parseVersionRecord(Record).takeError()) 5671 return Err; 5672 break; 5673 } 5674 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5675 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5676 SmallString<128> ValueName; 5677 if (convertToString(Record, 0, ValueName)) 5678 return error("Invalid record"); 5679 SourceFileName = ValueName.c_str(); 5680 break; 5681 } 5682 /// MODULE_CODE_HASH: [5*i32] 5683 case bitc::MODULE_CODE_HASH: { 5684 if (Record.size() != 5) 5685 return error("Invalid hash length " + Twine(Record.size()).str()); 5686 auto &Hash = getThisModule()->second.second; 5687 int Pos = 0; 5688 for (auto &Val : Record) { 5689 assert(!(Val >> 32) && "Unexpected high bits set"); 5690 Hash[Pos++] = Val; 5691 } 5692 break; 5693 } 5694 /// MODULE_CODE_VSTOFFSET: [offset] 5695 case bitc::MODULE_CODE_VSTOFFSET: 5696 if (Record.size() < 1) 5697 return error("Invalid record"); 5698 // Note that we subtract 1 here because the offset is relative to one 5699 // word before the start of the identification or module block, which 5700 // was historically always the start of the regular bitcode header. 5701 VSTOffset = Record[0] - 1; 5702 break; 5703 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5704 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5705 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5706 // v2: [strtab offset, strtab size, v1] 5707 case bitc::MODULE_CODE_GLOBALVAR: 5708 case bitc::MODULE_CODE_FUNCTION: 5709 case bitc::MODULE_CODE_ALIAS: { 5710 StringRef Name; 5711 ArrayRef<uint64_t> GVRecord; 5712 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5713 if (GVRecord.size() <= 3) 5714 return error("Invalid record"); 5715 uint64_t RawLinkage = GVRecord[3]; 5716 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5717 if (!UseStrtab) { 5718 ValueIdToLinkageMap[ValueId++] = Linkage; 5719 break; 5720 } 5721 5722 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5723 break; 5724 } 5725 } 5726 } 5727 continue; 5728 } 5729 } 5730 } 5731 5732 std::vector<ValueInfo> 5733 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5734 std::vector<ValueInfo> Ret; 5735 Ret.reserve(Record.size()); 5736 for (uint64_t RefValueId : Record) 5737 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5738 return Ret; 5739 } 5740 5741 std::vector<FunctionSummary::EdgeTy> 5742 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5743 bool IsOldProfileFormat, 5744 bool HasProfile, bool HasRelBF) { 5745 std::vector<FunctionSummary::EdgeTy> Ret; 5746 Ret.reserve(Record.size()); 5747 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5748 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5749 uint64_t RelBF = 0; 5750 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5751 if (IsOldProfileFormat) { 5752 I += 1; // Skip old callsitecount field 5753 if (HasProfile) 5754 I += 1; // Skip old profilecount field 5755 } else if (HasProfile) 5756 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5757 else if (HasRelBF) 5758 RelBF = Record[++I]; 5759 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5760 } 5761 return Ret; 5762 } 5763 5764 static void 5765 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5766 WholeProgramDevirtResolution &Wpd) { 5767 uint64_t ArgNum = Record[Slot++]; 5768 WholeProgramDevirtResolution::ByArg &B = 5769 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5770 Slot += ArgNum; 5771 5772 B.TheKind = 5773 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5774 B.Info = Record[Slot++]; 5775 B.Byte = Record[Slot++]; 5776 B.Bit = Record[Slot++]; 5777 } 5778 5779 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5780 StringRef Strtab, size_t &Slot, 5781 TypeIdSummary &TypeId) { 5782 uint64_t Id = Record[Slot++]; 5783 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5784 5785 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5786 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5787 static_cast<size_t>(Record[Slot + 1])}; 5788 Slot += 2; 5789 5790 uint64_t ResByArgNum = Record[Slot++]; 5791 for (uint64_t I = 0; I != ResByArgNum; ++I) 5792 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5793 } 5794 5795 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5796 StringRef Strtab, 5797 ModuleSummaryIndex &TheIndex) { 5798 size_t Slot = 0; 5799 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5800 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5801 Slot += 2; 5802 5803 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5804 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5805 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5806 TypeId.TTRes.SizeM1 = Record[Slot++]; 5807 TypeId.TTRes.BitMask = Record[Slot++]; 5808 TypeId.TTRes.InlineBits = Record[Slot++]; 5809 5810 while (Slot < Record.size()) 5811 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5812 } 5813 5814 static std::vector<FunctionSummary::ParamAccess> 5815 parseParamAccesses(ArrayRef<uint64_t> Record) { 5816 auto ReadRange = [&]() { 5817 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 5818 BitcodeReader::decodeSignRotatedValue(Record.front())); 5819 Record = Record.drop_front(); 5820 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 5821 BitcodeReader::decodeSignRotatedValue(Record.front())); 5822 Record = Record.drop_front(); 5823 ConstantRange Range{Lower, Upper}; 5824 assert(!Range.isFullSet()); 5825 assert(!Range.isUpperSignWrapped()); 5826 return Range; 5827 }; 5828 5829 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 5830 while (!Record.empty()) { 5831 PendingParamAccesses.emplace_back(); 5832 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 5833 ParamAccess.ParamNo = Record.front(); 5834 Record = Record.drop_front(); 5835 ParamAccess.Use = ReadRange(); 5836 ParamAccess.Calls.resize(Record.front()); 5837 Record = Record.drop_front(); 5838 for (auto &Call : ParamAccess.Calls) { 5839 Call.ParamNo = Record.front(); 5840 Record = Record.drop_front(); 5841 Call.Callee = Record.front(); 5842 Record = Record.drop_front(); 5843 Call.Offsets = ReadRange(); 5844 } 5845 } 5846 return PendingParamAccesses; 5847 } 5848 5849 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5850 ArrayRef<uint64_t> Record, size_t &Slot, 5851 TypeIdCompatibleVtableInfo &TypeId) { 5852 uint64_t Offset = Record[Slot++]; 5853 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5854 TypeId.push_back({Offset, Callee}); 5855 } 5856 5857 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5858 ArrayRef<uint64_t> Record) { 5859 size_t Slot = 0; 5860 TypeIdCompatibleVtableInfo &TypeId = 5861 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5862 {Strtab.data() + Record[Slot], 5863 static_cast<size_t>(Record[Slot + 1])}); 5864 Slot += 2; 5865 5866 while (Slot < Record.size()) 5867 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5868 } 5869 5870 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 5871 unsigned WOCnt) { 5872 // Readonly and writeonly refs are in the end of the refs list. 5873 assert(ROCnt + WOCnt <= Refs.size()); 5874 unsigned FirstWORef = Refs.size() - WOCnt; 5875 unsigned RefNo = FirstWORef - ROCnt; 5876 for (; RefNo < FirstWORef; ++RefNo) 5877 Refs[RefNo].setReadOnly(); 5878 for (; RefNo < Refs.size(); ++RefNo) 5879 Refs[RefNo].setWriteOnly(); 5880 } 5881 5882 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5883 // objects in the index. 5884 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5885 if (Error Err = Stream.EnterSubBlock(ID)) 5886 return Err; 5887 SmallVector<uint64_t, 64> Record; 5888 5889 // Parse version 5890 { 5891 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5892 if (!MaybeEntry) 5893 return MaybeEntry.takeError(); 5894 BitstreamEntry Entry = MaybeEntry.get(); 5895 5896 if (Entry.Kind != BitstreamEntry::Record) 5897 return error("Invalid Summary Block: record for version expected"); 5898 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5899 if (!MaybeRecord) 5900 return MaybeRecord.takeError(); 5901 if (MaybeRecord.get() != bitc::FS_VERSION) 5902 return error("Invalid Summary Block: version expected"); 5903 } 5904 const uint64_t Version = Record[0]; 5905 const bool IsOldProfileFormat = Version == 1; 5906 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 5907 return error("Invalid summary version " + Twine(Version) + 5908 ". Version should be in the range [1-" + 5909 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 5910 "]."); 5911 Record.clear(); 5912 5913 // Keep around the last seen summary to be used when we see an optional 5914 // "OriginalName" attachement. 5915 GlobalValueSummary *LastSeenSummary = nullptr; 5916 GlobalValue::GUID LastSeenGUID = 0; 5917 5918 // We can expect to see any number of type ID information records before 5919 // each function summary records; these variables store the information 5920 // collected so far so that it can be used to create the summary object. 5921 std::vector<GlobalValue::GUID> PendingTypeTests; 5922 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5923 PendingTypeCheckedLoadVCalls; 5924 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5925 PendingTypeCheckedLoadConstVCalls; 5926 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 5927 5928 while (true) { 5929 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5930 if (!MaybeEntry) 5931 return MaybeEntry.takeError(); 5932 BitstreamEntry Entry = MaybeEntry.get(); 5933 5934 switch (Entry.Kind) { 5935 case BitstreamEntry::SubBlock: // Handled for us already. 5936 case BitstreamEntry::Error: 5937 return error("Malformed block"); 5938 case BitstreamEntry::EndBlock: 5939 return Error::success(); 5940 case BitstreamEntry::Record: 5941 // The interesting case. 5942 break; 5943 } 5944 5945 // Read a record. The record format depends on whether this 5946 // is a per-module index or a combined index file. In the per-module 5947 // case the records contain the associated value's ID for correlation 5948 // with VST entries. In the combined index the correlation is done 5949 // via the bitcode offset of the summary records (which were saved 5950 // in the combined index VST entries). The records also contain 5951 // information used for ThinLTO renaming and importing. 5952 Record.clear(); 5953 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5954 if (!MaybeBitCode) 5955 return MaybeBitCode.takeError(); 5956 switch (unsigned BitCode = MaybeBitCode.get()) { 5957 default: // Default behavior: ignore. 5958 break; 5959 case bitc::FS_FLAGS: { // [flags] 5960 TheIndex.setFlags(Record[0]); 5961 break; 5962 } 5963 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5964 uint64_t ValueID = Record[0]; 5965 GlobalValue::GUID RefGUID = Record[1]; 5966 ValueIdToValueInfoMap[ValueID] = 5967 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5968 break; 5969 } 5970 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5971 // numrefs x valueid, n x (valueid)] 5972 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5973 // numrefs x valueid, 5974 // n x (valueid, hotness)] 5975 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5976 // numrefs x valueid, 5977 // n x (valueid, relblockfreq)] 5978 case bitc::FS_PERMODULE: 5979 case bitc::FS_PERMODULE_RELBF: 5980 case bitc::FS_PERMODULE_PROFILE: { 5981 unsigned ValueID = Record[0]; 5982 uint64_t RawFlags = Record[1]; 5983 unsigned InstCount = Record[2]; 5984 uint64_t RawFunFlags = 0; 5985 unsigned NumRefs = Record[3]; 5986 unsigned NumRORefs = 0, NumWORefs = 0; 5987 int RefListStartIndex = 4; 5988 if (Version >= 4) { 5989 RawFunFlags = Record[3]; 5990 NumRefs = Record[4]; 5991 RefListStartIndex = 5; 5992 if (Version >= 5) { 5993 NumRORefs = Record[5]; 5994 RefListStartIndex = 6; 5995 if (Version >= 7) { 5996 NumWORefs = Record[6]; 5997 RefListStartIndex = 7; 5998 } 5999 } 6000 } 6001 6002 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6003 // The module path string ref set in the summary must be owned by the 6004 // index's module string table. Since we don't have a module path 6005 // string table section in the per-module index, we create a single 6006 // module path string table entry with an empty (0) ID to take 6007 // ownership. 6008 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6009 assert(Record.size() >= RefListStartIndex + NumRefs && 6010 "Record size inconsistent with number of references"); 6011 std::vector<ValueInfo> Refs = makeRefList( 6012 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6013 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6014 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6015 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6016 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6017 IsOldProfileFormat, HasProfile, HasRelBF); 6018 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6019 auto FS = std::make_unique<FunctionSummary>( 6020 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6021 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6022 std::move(PendingTypeTestAssumeVCalls), 6023 std::move(PendingTypeCheckedLoadVCalls), 6024 std::move(PendingTypeTestAssumeConstVCalls), 6025 std::move(PendingTypeCheckedLoadConstVCalls), 6026 std::move(PendingParamAccesses)); 6027 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6028 FS->setModulePath(getThisModule()->first()); 6029 FS->setOriginalName(VIAndOriginalGUID.second); 6030 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6031 break; 6032 } 6033 // FS_ALIAS: [valueid, flags, valueid] 6034 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6035 // they expect all aliasee summaries to be available. 6036 case bitc::FS_ALIAS: { 6037 unsigned ValueID = Record[0]; 6038 uint64_t RawFlags = Record[1]; 6039 unsigned AliaseeID = Record[2]; 6040 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6041 auto AS = std::make_unique<AliasSummary>(Flags); 6042 // The module path string ref set in the summary must be owned by the 6043 // index's module string table. Since we don't have a module path 6044 // string table section in the per-module index, we create a single 6045 // module path string table entry with an empty (0) ID to take 6046 // ownership. 6047 AS->setModulePath(getThisModule()->first()); 6048 6049 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6050 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6051 if (!AliaseeInModule) 6052 return error("Alias expects aliasee summary to be parsed"); 6053 AS->setAliasee(AliaseeVI, AliaseeInModule); 6054 6055 auto GUID = getValueInfoFromValueId(ValueID); 6056 AS->setOriginalName(GUID.second); 6057 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6058 break; 6059 } 6060 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6061 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6062 unsigned ValueID = Record[0]; 6063 uint64_t RawFlags = Record[1]; 6064 unsigned RefArrayStart = 2; 6065 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6066 /* WriteOnly */ false, 6067 /* Constant */ false, 6068 GlobalObject::VCallVisibilityPublic); 6069 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6070 if (Version >= 5) { 6071 GVF = getDecodedGVarFlags(Record[2]); 6072 RefArrayStart = 3; 6073 } 6074 std::vector<ValueInfo> Refs = 6075 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6076 auto FS = 6077 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6078 FS->setModulePath(getThisModule()->first()); 6079 auto GUID = getValueInfoFromValueId(ValueID); 6080 FS->setOriginalName(GUID.second); 6081 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6082 break; 6083 } 6084 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6085 // numrefs, numrefs x valueid, 6086 // n x (valueid, offset)] 6087 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6088 unsigned ValueID = Record[0]; 6089 uint64_t RawFlags = Record[1]; 6090 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6091 unsigned NumRefs = Record[3]; 6092 unsigned RefListStartIndex = 4; 6093 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6094 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6095 std::vector<ValueInfo> Refs = makeRefList( 6096 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6097 VTableFuncList VTableFuncs; 6098 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6099 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6100 uint64_t Offset = Record[++I]; 6101 VTableFuncs.push_back({Callee, Offset}); 6102 } 6103 auto VS = 6104 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6105 VS->setModulePath(getThisModule()->first()); 6106 VS->setVTableFuncs(VTableFuncs); 6107 auto GUID = getValueInfoFromValueId(ValueID); 6108 VS->setOriginalName(GUID.second); 6109 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6110 break; 6111 } 6112 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6113 // numrefs x valueid, n x (valueid)] 6114 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6115 // numrefs x valueid, n x (valueid, hotness)] 6116 case bitc::FS_COMBINED: 6117 case bitc::FS_COMBINED_PROFILE: { 6118 unsigned ValueID = Record[0]; 6119 uint64_t ModuleId = Record[1]; 6120 uint64_t RawFlags = Record[2]; 6121 unsigned InstCount = Record[3]; 6122 uint64_t RawFunFlags = 0; 6123 uint64_t EntryCount = 0; 6124 unsigned NumRefs = Record[4]; 6125 unsigned NumRORefs = 0, NumWORefs = 0; 6126 int RefListStartIndex = 5; 6127 6128 if (Version >= 4) { 6129 RawFunFlags = Record[4]; 6130 RefListStartIndex = 6; 6131 size_t NumRefsIndex = 5; 6132 if (Version >= 5) { 6133 unsigned NumRORefsOffset = 1; 6134 RefListStartIndex = 7; 6135 if (Version >= 6) { 6136 NumRefsIndex = 6; 6137 EntryCount = Record[5]; 6138 RefListStartIndex = 8; 6139 if (Version >= 7) { 6140 RefListStartIndex = 9; 6141 NumWORefs = Record[8]; 6142 NumRORefsOffset = 2; 6143 } 6144 } 6145 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6146 } 6147 NumRefs = Record[NumRefsIndex]; 6148 } 6149 6150 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6151 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6152 assert(Record.size() >= RefListStartIndex + NumRefs && 6153 "Record size inconsistent with number of references"); 6154 std::vector<ValueInfo> Refs = makeRefList( 6155 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6156 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6157 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6158 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6159 IsOldProfileFormat, HasProfile, false); 6160 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6161 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6162 auto FS = std::make_unique<FunctionSummary>( 6163 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6164 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6165 std::move(PendingTypeTestAssumeVCalls), 6166 std::move(PendingTypeCheckedLoadVCalls), 6167 std::move(PendingTypeTestAssumeConstVCalls), 6168 std::move(PendingTypeCheckedLoadConstVCalls), 6169 std::move(PendingParamAccesses)); 6170 LastSeenSummary = FS.get(); 6171 LastSeenGUID = VI.getGUID(); 6172 FS->setModulePath(ModuleIdMap[ModuleId]); 6173 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6174 break; 6175 } 6176 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6177 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6178 // they expect all aliasee summaries to be available. 6179 case bitc::FS_COMBINED_ALIAS: { 6180 unsigned ValueID = Record[0]; 6181 uint64_t ModuleId = Record[1]; 6182 uint64_t RawFlags = Record[2]; 6183 unsigned AliaseeValueId = Record[3]; 6184 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6185 auto AS = std::make_unique<AliasSummary>(Flags); 6186 LastSeenSummary = AS.get(); 6187 AS->setModulePath(ModuleIdMap[ModuleId]); 6188 6189 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6190 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6191 AS->setAliasee(AliaseeVI, AliaseeInModule); 6192 6193 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6194 LastSeenGUID = VI.getGUID(); 6195 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6196 break; 6197 } 6198 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6199 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6200 unsigned ValueID = Record[0]; 6201 uint64_t ModuleId = Record[1]; 6202 uint64_t RawFlags = Record[2]; 6203 unsigned RefArrayStart = 3; 6204 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6205 /* WriteOnly */ false, 6206 /* Constant */ false, 6207 GlobalObject::VCallVisibilityPublic); 6208 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6209 if (Version >= 5) { 6210 GVF = getDecodedGVarFlags(Record[3]); 6211 RefArrayStart = 4; 6212 } 6213 std::vector<ValueInfo> Refs = 6214 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6215 auto FS = 6216 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6217 LastSeenSummary = FS.get(); 6218 FS->setModulePath(ModuleIdMap[ModuleId]); 6219 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6220 LastSeenGUID = VI.getGUID(); 6221 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6222 break; 6223 } 6224 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6225 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6226 uint64_t OriginalName = Record[0]; 6227 if (!LastSeenSummary) 6228 return error("Name attachment that does not follow a combined record"); 6229 LastSeenSummary->setOriginalName(OriginalName); 6230 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6231 // Reset the LastSeenSummary 6232 LastSeenSummary = nullptr; 6233 LastSeenGUID = 0; 6234 break; 6235 } 6236 case bitc::FS_TYPE_TESTS: 6237 assert(PendingTypeTests.empty()); 6238 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6239 Record.end()); 6240 break; 6241 6242 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6243 assert(PendingTypeTestAssumeVCalls.empty()); 6244 for (unsigned I = 0; I != Record.size(); I += 2) 6245 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6246 break; 6247 6248 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6249 assert(PendingTypeCheckedLoadVCalls.empty()); 6250 for (unsigned I = 0; I != Record.size(); I += 2) 6251 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6252 break; 6253 6254 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6255 PendingTypeTestAssumeConstVCalls.push_back( 6256 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6257 break; 6258 6259 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6260 PendingTypeCheckedLoadConstVCalls.push_back( 6261 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6262 break; 6263 6264 case bitc::FS_CFI_FUNCTION_DEFS: { 6265 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6266 for (unsigned I = 0; I != Record.size(); I += 2) 6267 CfiFunctionDefs.insert( 6268 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6269 break; 6270 } 6271 6272 case bitc::FS_CFI_FUNCTION_DECLS: { 6273 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6274 for (unsigned I = 0; I != Record.size(); I += 2) 6275 CfiFunctionDecls.insert( 6276 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6277 break; 6278 } 6279 6280 case bitc::FS_TYPE_ID: 6281 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6282 break; 6283 6284 case bitc::FS_TYPE_ID_METADATA: 6285 parseTypeIdCompatibleVtableSummaryRecord(Record); 6286 break; 6287 6288 case bitc::FS_BLOCK_COUNT: 6289 TheIndex.addBlockCount(Record[0]); 6290 break; 6291 6292 case bitc::FS_PARAM_ACCESS: { 6293 PendingParamAccesses = parseParamAccesses(Record); 6294 break; 6295 } 6296 } 6297 } 6298 llvm_unreachable("Exit infinite loop"); 6299 } 6300 6301 // Parse the module string table block into the Index. 6302 // This populates the ModulePathStringTable map in the index. 6303 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6304 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6305 return Err; 6306 6307 SmallVector<uint64_t, 64> Record; 6308 6309 SmallString<128> ModulePath; 6310 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6311 6312 while (true) { 6313 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6314 if (!MaybeEntry) 6315 return MaybeEntry.takeError(); 6316 BitstreamEntry Entry = MaybeEntry.get(); 6317 6318 switch (Entry.Kind) { 6319 case BitstreamEntry::SubBlock: // Handled for us already. 6320 case BitstreamEntry::Error: 6321 return error("Malformed block"); 6322 case BitstreamEntry::EndBlock: 6323 return Error::success(); 6324 case BitstreamEntry::Record: 6325 // The interesting case. 6326 break; 6327 } 6328 6329 Record.clear(); 6330 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6331 if (!MaybeRecord) 6332 return MaybeRecord.takeError(); 6333 switch (MaybeRecord.get()) { 6334 default: // Default behavior: ignore. 6335 break; 6336 case bitc::MST_CODE_ENTRY: { 6337 // MST_ENTRY: [modid, namechar x N] 6338 uint64_t ModuleId = Record[0]; 6339 6340 if (convertToString(Record, 1, ModulePath)) 6341 return error("Invalid record"); 6342 6343 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6344 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6345 6346 ModulePath.clear(); 6347 break; 6348 } 6349 /// MST_CODE_HASH: [5*i32] 6350 case bitc::MST_CODE_HASH: { 6351 if (Record.size() != 5) 6352 return error("Invalid hash length " + Twine(Record.size()).str()); 6353 if (!LastSeenModule) 6354 return error("Invalid hash that does not follow a module path"); 6355 int Pos = 0; 6356 for (auto &Val : Record) { 6357 assert(!(Val >> 32) && "Unexpected high bits set"); 6358 LastSeenModule->second.second[Pos++] = Val; 6359 } 6360 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6361 LastSeenModule = nullptr; 6362 break; 6363 } 6364 } 6365 } 6366 llvm_unreachable("Exit infinite loop"); 6367 } 6368 6369 namespace { 6370 6371 // FIXME: This class is only here to support the transition to llvm::Error. It 6372 // will be removed once this transition is complete. Clients should prefer to 6373 // deal with the Error value directly, rather than converting to error_code. 6374 class BitcodeErrorCategoryType : public std::error_category { 6375 const char *name() const noexcept override { 6376 return "llvm.bitcode"; 6377 } 6378 6379 std::string message(int IE) const override { 6380 BitcodeError E = static_cast<BitcodeError>(IE); 6381 switch (E) { 6382 case BitcodeError::CorruptedBitcode: 6383 return "Corrupted bitcode"; 6384 } 6385 llvm_unreachable("Unknown error type!"); 6386 } 6387 }; 6388 6389 } // end anonymous namespace 6390 6391 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6392 6393 const std::error_category &llvm::BitcodeErrorCategory() { 6394 return *ErrorCategory; 6395 } 6396 6397 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6398 unsigned Block, unsigned RecordID) { 6399 if (Error Err = Stream.EnterSubBlock(Block)) 6400 return std::move(Err); 6401 6402 StringRef Strtab; 6403 while (true) { 6404 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6405 if (!MaybeEntry) 6406 return MaybeEntry.takeError(); 6407 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6408 6409 switch (Entry.Kind) { 6410 case BitstreamEntry::EndBlock: 6411 return Strtab; 6412 6413 case BitstreamEntry::Error: 6414 return error("Malformed block"); 6415 6416 case BitstreamEntry::SubBlock: 6417 if (Error Err = Stream.SkipBlock()) 6418 return std::move(Err); 6419 break; 6420 6421 case BitstreamEntry::Record: 6422 StringRef Blob; 6423 SmallVector<uint64_t, 1> Record; 6424 Expected<unsigned> MaybeRecord = 6425 Stream.readRecord(Entry.ID, Record, &Blob); 6426 if (!MaybeRecord) 6427 return MaybeRecord.takeError(); 6428 if (MaybeRecord.get() == RecordID) 6429 Strtab = Blob; 6430 break; 6431 } 6432 } 6433 } 6434 6435 //===----------------------------------------------------------------------===// 6436 // External interface 6437 //===----------------------------------------------------------------------===// 6438 6439 Expected<std::vector<BitcodeModule>> 6440 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6441 auto FOrErr = getBitcodeFileContents(Buffer); 6442 if (!FOrErr) 6443 return FOrErr.takeError(); 6444 return std::move(FOrErr->Mods); 6445 } 6446 6447 Expected<BitcodeFileContents> 6448 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6449 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6450 if (!StreamOrErr) 6451 return StreamOrErr.takeError(); 6452 BitstreamCursor &Stream = *StreamOrErr; 6453 6454 BitcodeFileContents F; 6455 while (true) { 6456 uint64_t BCBegin = Stream.getCurrentByteNo(); 6457 6458 // We may be consuming bitcode from a client that leaves garbage at the end 6459 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6460 // the end that there cannot possibly be another module, stop looking. 6461 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6462 return F; 6463 6464 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6465 if (!MaybeEntry) 6466 return MaybeEntry.takeError(); 6467 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6468 6469 switch (Entry.Kind) { 6470 case BitstreamEntry::EndBlock: 6471 case BitstreamEntry::Error: 6472 return error("Malformed block"); 6473 6474 case BitstreamEntry::SubBlock: { 6475 uint64_t IdentificationBit = -1ull; 6476 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6477 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6478 if (Error Err = Stream.SkipBlock()) 6479 return std::move(Err); 6480 6481 { 6482 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6483 if (!MaybeEntry) 6484 return MaybeEntry.takeError(); 6485 Entry = MaybeEntry.get(); 6486 } 6487 6488 if (Entry.Kind != BitstreamEntry::SubBlock || 6489 Entry.ID != bitc::MODULE_BLOCK_ID) 6490 return error("Malformed block"); 6491 } 6492 6493 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6494 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6495 if (Error Err = Stream.SkipBlock()) 6496 return std::move(Err); 6497 6498 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6499 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6500 Buffer.getBufferIdentifier(), IdentificationBit, 6501 ModuleBit}); 6502 continue; 6503 } 6504 6505 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6506 Expected<StringRef> Strtab = 6507 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6508 if (!Strtab) 6509 return Strtab.takeError(); 6510 // This string table is used by every preceding bitcode module that does 6511 // not have its own string table. A bitcode file may have multiple 6512 // string tables if it was created by binary concatenation, for example 6513 // with "llvm-cat -b". 6514 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6515 if (!I->Strtab.empty()) 6516 break; 6517 I->Strtab = *Strtab; 6518 } 6519 // Similarly, the string table is used by every preceding symbol table; 6520 // normally there will be just one unless the bitcode file was created 6521 // by binary concatenation. 6522 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6523 F.StrtabForSymtab = *Strtab; 6524 continue; 6525 } 6526 6527 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6528 Expected<StringRef> SymtabOrErr = 6529 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6530 if (!SymtabOrErr) 6531 return SymtabOrErr.takeError(); 6532 6533 // We can expect the bitcode file to have multiple symbol tables if it 6534 // was created by binary concatenation. In that case we silently 6535 // ignore any subsequent symbol tables, which is fine because this is a 6536 // low level function. The client is expected to notice that the number 6537 // of modules in the symbol table does not match the number of modules 6538 // in the input file and regenerate the symbol table. 6539 if (F.Symtab.empty()) 6540 F.Symtab = *SymtabOrErr; 6541 continue; 6542 } 6543 6544 if (Error Err = Stream.SkipBlock()) 6545 return std::move(Err); 6546 continue; 6547 } 6548 case BitstreamEntry::Record: 6549 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6550 continue; 6551 else 6552 return StreamFailed.takeError(); 6553 } 6554 } 6555 } 6556 6557 /// Get a lazy one-at-time loading module from bitcode. 6558 /// 6559 /// This isn't always used in a lazy context. In particular, it's also used by 6560 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6561 /// in forward-referenced functions from block address references. 6562 /// 6563 /// \param[in] MaterializeAll Set to \c true if we should materialize 6564 /// everything. 6565 Expected<std::unique_ptr<Module>> 6566 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6567 bool ShouldLazyLoadMetadata, bool IsImporting, 6568 DataLayoutCallbackTy DataLayoutCallback) { 6569 BitstreamCursor Stream(Buffer); 6570 6571 std::string ProducerIdentification; 6572 if (IdentificationBit != -1ull) { 6573 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6574 return std::move(JumpFailed); 6575 Expected<std::string> ProducerIdentificationOrErr = 6576 readIdentificationBlock(Stream); 6577 if (!ProducerIdentificationOrErr) 6578 return ProducerIdentificationOrErr.takeError(); 6579 6580 ProducerIdentification = *ProducerIdentificationOrErr; 6581 } 6582 6583 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6584 return std::move(JumpFailed); 6585 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6586 Context); 6587 6588 std::unique_ptr<Module> M = 6589 std::make_unique<Module>(ModuleIdentifier, Context); 6590 M->setMaterializer(R); 6591 6592 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6593 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6594 IsImporting, DataLayoutCallback)) 6595 return std::move(Err); 6596 6597 if (MaterializeAll) { 6598 // Read in the entire module, and destroy the BitcodeReader. 6599 if (Error Err = M->materializeAll()) 6600 return std::move(Err); 6601 } else { 6602 // Resolve forward references from blockaddresses. 6603 if (Error Err = R->materializeForwardReferencedFunctions()) 6604 return std::move(Err); 6605 } 6606 return std::move(M); 6607 } 6608 6609 Expected<std::unique_ptr<Module>> 6610 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6611 bool IsImporting) { 6612 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6613 [](StringRef) { return None; }); 6614 } 6615 6616 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6617 // We don't use ModuleIdentifier here because the client may need to control the 6618 // module path used in the combined summary (e.g. when reading summaries for 6619 // regular LTO modules). 6620 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6621 StringRef ModulePath, uint64_t ModuleId) { 6622 BitstreamCursor Stream(Buffer); 6623 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6624 return JumpFailed; 6625 6626 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6627 ModulePath, ModuleId); 6628 return R.parseModule(); 6629 } 6630 6631 // Parse the specified bitcode buffer, returning the function info index. 6632 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6633 BitstreamCursor Stream(Buffer); 6634 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6635 return std::move(JumpFailed); 6636 6637 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6638 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6639 ModuleIdentifier, 0); 6640 6641 if (Error Err = R.parseModule()) 6642 return std::move(Err); 6643 6644 return std::move(Index); 6645 } 6646 6647 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6648 unsigned ID) { 6649 if (Error Err = Stream.EnterSubBlock(ID)) 6650 return std::move(Err); 6651 SmallVector<uint64_t, 64> Record; 6652 6653 while (true) { 6654 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6655 if (!MaybeEntry) 6656 return MaybeEntry.takeError(); 6657 BitstreamEntry Entry = MaybeEntry.get(); 6658 6659 switch (Entry.Kind) { 6660 case BitstreamEntry::SubBlock: // Handled for us already. 6661 case BitstreamEntry::Error: 6662 return error("Malformed block"); 6663 case BitstreamEntry::EndBlock: 6664 // If no flags record found, conservatively return true to mimic 6665 // behavior before this flag was added. 6666 return true; 6667 case BitstreamEntry::Record: 6668 // The interesting case. 6669 break; 6670 } 6671 6672 // Look for the FS_FLAGS record. 6673 Record.clear(); 6674 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6675 if (!MaybeBitCode) 6676 return MaybeBitCode.takeError(); 6677 switch (MaybeBitCode.get()) { 6678 default: // Default behavior: ignore. 6679 break; 6680 case bitc::FS_FLAGS: { // [flags] 6681 uint64_t Flags = Record[0]; 6682 // Scan flags. 6683 assert(Flags <= 0x3f && "Unexpected bits in flag"); 6684 6685 return Flags & 0x8; 6686 } 6687 } 6688 } 6689 llvm_unreachable("Exit infinite loop"); 6690 } 6691 6692 // Check if the given bitcode buffer contains a global value summary block. 6693 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6694 BitstreamCursor Stream(Buffer); 6695 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6696 return std::move(JumpFailed); 6697 6698 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6699 return std::move(Err); 6700 6701 while (true) { 6702 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6703 if (!MaybeEntry) 6704 return MaybeEntry.takeError(); 6705 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6706 6707 switch (Entry.Kind) { 6708 case BitstreamEntry::Error: 6709 return error("Malformed block"); 6710 case BitstreamEntry::EndBlock: 6711 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6712 /*EnableSplitLTOUnit=*/false}; 6713 6714 case BitstreamEntry::SubBlock: 6715 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6716 Expected<bool> EnableSplitLTOUnit = 6717 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6718 if (!EnableSplitLTOUnit) 6719 return EnableSplitLTOUnit.takeError(); 6720 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6721 *EnableSplitLTOUnit}; 6722 } 6723 6724 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6725 Expected<bool> EnableSplitLTOUnit = 6726 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6727 if (!EnableSplitLTOUnit) 6728 return EnableSplitLTOUnit.takeError(); 6729 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6730 *EnableSplitLTOUnit}; 6731 } 6732 6733 // Ignore other sub-blocks. 6734 if (Error Err = Stream.SkipBlock()) 6735 return std::move(Err); 6736 continue; 6737 6738 case BitstreamEntry::Record: 6739 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6740 continue; 6741 else 6742 return StreamFailed.takeError(); 6743 } 6744 } 6745 } 6746 6747 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6748 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6749 if (!MsOrErr) 6750 return MsOrErr.takeError(); 6751 6752 if (MsOrErr->size() != 1) 6753 return error("Expected a single module"); 6754 6755 return (*MsOrErr)[0]; 6756 } 6757 6758 Expected<std::unique_ptr<Module>> 6759 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6760 bool ShouldLazyLoadMetadata, bool IsImporting) { 6761 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6762 if (!BM) 6763 return BM.takeError(); 6764 6765 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6766 } 6767 6768 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6769 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6770 bool ShouldLazyLoadMetadata, bool IsImporting) { 6771 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6772 IsImporting); 6773 if (MOrErr) 6774 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6775 return MOrErr; 6776 } 6777 6778 Expected<std::unique_ptr<Module>> 6779 BitcodeModule::parseModule(LLVMContext &Context, 6780 DataLayoutCallbackTy DataLayoutCallback) { 6781 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 6782 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6783 // written. We must defer until the Module has been fully materialized. 6784 } 6785 6786 Expected<std::unique_ptr<Module>> 6787 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 6788 DataLayoutCallbackTy DataLayoutCallback) { 6789 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6790 if (!BM) 6791 return BM.takeError(); 6792 6793 return BM->parseModule(Context, DataLayoutCallback); 6794 } 6795 6796 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6797 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6798 if (!StreamOrErr) 6799 return StreamOrErr.takeError(); 6800 6801 return readTriple(*StreamOrErr); 6802 } 6803 6804 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6805 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6806 if (!StreamOrErr) 6807 return StreamOrErr.takeError(); 6808 6809 return hasObjCCategory(*StreamOrErr); 6810 } 6811 6812 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6813 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6814 if (!StreamOrErr) 6815 return StreamOrErr.takeError(); 6816 6817 return readIdentificationCode(*StreamOrErr); 6818 } 6819 6820 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6821 ModuleSummaryIndex &CombinedIndex, 6822 uint64_t ModuleId) { 6823 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6824 if (!BM) 6825 return BM.takeError(); 6826 6827 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6828 } 6829 6830 Expected<std::unique_ptr<ModuleSummaryIndex>> 6831 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6832 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6833 if (!BM) 6834 return BM.takeError(); 6835 6836 return BM->getSummary(); 6837 } 6838 6839 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6840 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6841 if (!BM) 6842 return BM.takeError(); 6843 6844 return BM->getLTOInfo(); 6845 } 6846 6847 Expected<std::unique_ptr<ModuleSummaryIndex>> 6848 llvm::getModuleSummaryIndexForFile(StringRef Path, 6849 bool IgnoreEmptyThinLTOIndexFile) { 6850 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6851 MemoryBuffer::getFileOrSTDIN(Path); 6852 if (!FileOrErr) 6853 return errorCodeToError(FileOrErr.getError()); 6854 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6855 return nullptr; 6856 return getModuleSummaryIndex(**FileOrErr); 6857 } 6858