1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/Bitcode/BitstreamReader.h"
15 #include "llvm/Bitcode/LLVMBitCodes.h"
16 #include "llvm/Bitcode/ReaderWriter.h"
17 #include "llvm/IR/AutoUpgrade.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfo.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/GVMaterializer.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/ModuleSummaryIndex.h"
29 #include "llvm/IR/OperandTraits.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/DataStream.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ManagedStatic.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/MemoryBuffer.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <deque>
40 
41 using namespace llvm;
42 
43 static cl::opt<bool> PrintSummaryGUIDs(
44     "print-summary-global-ids", cl::init(false), cl::Hidden,
45     cl::desc(
46         "Print the global id for each value when reading the module summary"));
47 
48 namespace {
49 enum {
50   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
51 };
52 
53 class BitcodeReaderValueList {
54   std::vector<WeakVH> ValuePtrs;
55 
56   /// As we resolve forward-referenced constants, we add information about them
57   /// to this vector.  This allows us to resolve them in bulk instead of
58   /// resolving each reference at a time.  See the code in
59   /// ResolveConstantForwardRefs for more information about this.
60   ///
61   /// The key of this vector is the placeholder constant, the value is the slot
62   /// number that holds the resolved value.
63   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
64   ResolveConstantsTy ResolveConstants;
65   LLVMContext &Context;
66 public:
67   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
68   ~BitcodeReaderValueList() {
69     assert(ResolveConstants.empty() && "Constants not resolved?");
70   }
71 
72   // vector compatibility methods
73   unsigned size() const { return ValuePtrs.size(); }
74   void resize(unsigned N) { ValuePtrs.resize(N); }
75   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
76 
77   void clear() {
78     assert(ResolveConstants.empty() && "Constants not resolved?");
79     ValuePtrs.clear();
80   }
81 
82   Value *operator[](unsigned i) const {
83     assert(i < ValuePtrs.size());
84     return ValuePtrs[i];
85   }
86 
87   Value *back() const { return ValuePtrs.back(); }
88   void pop_back() { ValuePtrs.pop_back(); }
89   bool empty() const { return ValuePtrs.empty(); }
90   void shrinkTo(unsigned N) {
91     assert(N <= size() && "Invalid shrinkTo request!");
92     ValuePtrs.resize(N);
93   }
94 
95   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
96   Value *getValueFwdRef(unsigned Idx, Type *Ty);
97 
98   void assignValue(Value *V, unsigned Idx);
99 
100   /// Once all constants are read, this method bulk resolves any forward
101   /// references.
102   void resolveConstantForwardRefs();
103 };
104 
105 class BitcodeReaderMetadataList {
106   unsigned NumFwdRefs;
107   bool AnyFwdRefs;
108   unsigned MinFwdRef;
109   unsigned MaxFwdRef;
110 
111   /// Array of metadata references.
112   ///
113   /// Don't use std::vector here.  Some versions of libc++ copy (instead of
114   /// move) on resize, and TrackingMDRef is very expensive to copy.
115   SmallVector<TrackingMDRef, 1> MetadataPtrs;
116 
117   LLVMContext &Context;
118 public:
119   BitcodeReaderMetadataList(LLVMContext &C)
120       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
121 
122   // vector compatibility methods
123   unsigned size() const { return MetadataPtrs.size(); }
124   void resize(unsigned N) { MetadataPtrs.resize(N); }
125   void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
126   void clear() { MetadataPtrs.clear(); }
127   Metadata *back() const { return MetadataPtrs.back(); }
128   void pop_back() { MetadataPtrs.pop_back(); }
129   bool empty() const { return MetadataPtrs.empty(); }
130 
131   Metadata *operator[](unsigned i) const {
132     assert(i < MetadataPtrs.size());
133     return MetadataPtrs[i];
134   }
135 
136   Metadata *lookup(unsigned I) const {
137     if (I < MetadataPtrs.size())
138       return MetadataPtrs[I];
139     return nullptr;
140   }
141 
142   void shrinkTo(unsigned N) {
143     assert(N <= size() && "Invalid shrinkTo request!");
144     assert(!AnyFwdRefs && "Unexpected forward refs");
145     MetadataPtrs.resize(N);
146   }
147 
148   /// Return the given metadata, creating a replaceable forward reference if
149   /// necessary.
150   Metadata *getMetadataFwdRef(unsigned Idx);
151 
152   /// Return the the given metadata only if it is fully resolved.
153   ///
154   /// Gives the same result as \a lookup(), unless \a MDNode::isResolved()
155   /// would give \c false.
156   Metadata *getMetadataIfResolved(unsigned Idx);
157 
158   MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
159   void assignValue(Metadata *MD, unsigned Idx);
160   void tryToResolveCycles();
161   bool hasFwdRefs() const { return AnyFwdRefs; }
162 };
163 
164 class BitcodeReader : public GVMaterializer {
165   LLVMContext &Context;
166   Module *TheModule = nullptr;
167   std::unique_ptr<MemoryBuffer> Buffer;
168   std::unique_ptr<BitstreamReader> StreamFile;
169   BitstreamCursor Stream;
170   // Next offset to start scanning for lazy parsing of function bodies.
171   uint64_t NextUnreadBit = 0;
172   // Last function offset found in the VST.
173   uint64_t LastFunctionBlockBit = 0;
174   bool SeenValueSymbolTable = false;
175   uint64_t VSTOffset = 0;
176   // Contains an arbitrary and optional string identifying the bitcode producer
177   std::string ProducerIdentification;
178 
179   std::vector<Type*> TypeList;
180   BitcodeReaderValueList ValueList;
181   BitcodeReaderMetadataList MetadataList;
182   std::vector<Comdat *> ComdatList;
183   SmallVector<Instruction *, 64> InstructionList;
184 
185   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
186   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits;
187   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
188   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
189   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
190 
191   SmallVector<Instruction*, 64> InstsWithTBAATag;
192 
193   bool HasSeenOldLoopTags = false;
194 
195   /// The set of attributes by index.  Index zero in the file is for null, and
196   /// is thus not represented here.  As such all indices are off by one.
197   std::vector<AttributeSet> MAttributes;
198 
199   /// The set of attribute groups.
200   std::map<unsigned, AttributeSet> MAttributeGroups;
201 
202   /// While parsing a function body, this is a list of the basic blocks for the
203   /// function.
204   std::vector<BasicBlock*> FunctionBBs;
205 
206   // When reading the module header, this list is populated with functions that
207   // have bodies later in the file.
208   std::vector<Function*> FunctionsWithBodies;
209 
210   // When intrinsic functions are encountered which require upgrading they are
211   // stored here with their replacement function.
212   typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap;
213   UpgradedIntrinsicMap UpgradedIntrinsics;
214 
215   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
216   DenseMap<unsigned, unsigned> MDKindMap;
217 
218   // Several operations happen after the module header has been read, but
219   // before function bodies are processed. This keeps track of whether
220   // we've done this yet.
221   bool SeenFirstFunctionBody = false;
222 
223   /// When function bodies are initially scanned, this map contains info about
224   /// where to find deferred function body in the stream.
225   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
226 
227   /// When Metadata block is initially scanned when parsing the module, we may
228   /// choose to defer parsing of the metadata. This vector contains info about
229   /// which Metadata blocks are deferred.
230   std::vector<uint64_t> DeferredMetadataInfo;
231 
232   /// These are basic blocks forward-referenced by block addresses.  They are
233   /// inserted lazily into functions when they're loaded.  The basic block ID is
234   /// its index into the vector.
235   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
236   std::deque<Function *> BasicBlockFwdRefQueue;
237 
238   /// Indicates that we are using a new encoding for instruction operands where
239   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
240   /// instruction number, for a more compact encoding.  Some instruction
241   /// operands are not relative to the instruction ID: basic block numbers, and
242   /// types. Once the old style function blocks have been phased out, we would
243   /// not need this flag.
244   bool UseRelativeIDs = false;
245 
246   /// True if all functions will be materialized, negating the need to process
247   /// (e.g.) blockaddress forward references.
248   bool WillMaterializeAllForwardRefs = false;
249 
250   /// True if any Metadata block has been materialized.
251   bool IsMetadataMaterialized = false;
252 
253   bool StripDebugInfo = false;
254 
255   /// Functions that need to be matched with subprograms when upgrading old
256   /// metadata.
257   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
258 
259   std::vector<std::string> BundleTags;
260 
261 public:
262   std::error_code error(BitcodeError E, const Twine &Message);
263   std::error_code error(BitcodeError E);
264   std::error_code error(const Twine &Message);
265 
266   BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
267   BitcodeReader(LLVMContext &Context);
268   ~BitcodeReader() override { freeState(); }
269 
270   std::error_code materializeForwardReferencedFunctions();
271 
272   void freeState();
273 
274   void releaseBuffer();
275 
276   std::error_code materialize(GlobalValue *GV) override;
277   std::error_code materializeModule() override;
278   std::vector<StructType *> getIdentifiedStructTypes() const override;
279 
280   /// \brief Main interface to parsing a bitcode buffer.
281   /// \returns true if an error occurred.
282   std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
283                                    Module *M,
284                                    bool ShouldLazyLoadMetadata = false);
285 
286   /// \brief Cheap mechanism to just extract module triple
287   /// \returns true if an error occurred.
288   ErrorOr<std::string> parseTriple();
289 
290   /// Cheap mechanism to just extract the identification block out of bitcode.
291   ErrorOr<std::string> parseIdentificationBlock();
292 
293   static uint64_t decodeSignRotatedValue(uint64_t V);
294 
295   /// Materialize any deferred Metadata block.
296   std::error_code materializeMetadata() override;
297 
298   void setStripDebugInfo() override;
299 
300 private:
301   /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
302   // ProducerIdentification data member, and do some basic enforcement on the
303   // "epoch" encoded in the bitcode.
304   std::error_code parseBitcodeVersion();
305 
306   std::vector<StructType *> IdentifiedStructTypes;
307   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
308   StructType *createIdentifiedStructType(LLVMContext &Context);
309 
310   Type *getTypeByID(unsigned ID);
311   Value *getFnValueByID(unsigned ID, Type *Ty) {
312     if (Ty && Ty->isMetadataTy())
313       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
314     return ValueList.getValueFwdRef(ID, Ty);
315   }
316   Metadata *getFnMetadataByID(unsigned ID) {
317     return MetadataList.getMetadataFwdRef(ID);
318   }
319   BasicBlock *getBasicBlock(unsigned ID) const {
320     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
321     return FunctionBBs[ID];
322   }
323   AttributeSet getAttributes(unsigned i) const {
324     if (i-1 < MAttributes.size())
325       return MAttributes[i-1];
326     return AttributeSet();
327   }
328 
329   /// Read a value/type pair out of the specified record from slot 'Slot'.
330   /// Increment Slot past the number of slots used in the record. Return true on
331   /// failure.
332   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
333                         unsigned InstNum, Value *&ResVal) {
334     if (Slot == Record.size()) return true;
335     unsigned ValNo = (unsigned)Record[Slot++];
336     // Adjust the ValNo, if it was encoded relative to the InstNum.
337     if (UseRelativeIDs)
338       ValNo = InstNum - ValNo;
339     if (ValNo < InstNum) {
340       // If this is not a forward reference, just return the value we already
341       // have.
342       ResVal = getFnValueByID(ValNo, nullptr);
343       return ResVal == nullptr;
344     }
345     if (Slot == Record.size())
346       return true;
347 
348     unsigned TypeNo = (unsigned)Record[Slot++];
349     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
350     return ResVal == nullptr;
351   }
352 
353   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
354   /// past the number of slots used by the value in the record. Return true if
355   /// there is an error.
356   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
357                 unsigned InstNum, Type *Ty, Value *&ResVal) {
358     if (getValue(Record, Slot, InstNum, Ty, ResVal))
359       return true;
360     // All values currently take a single record slot.
361     ++Slot;
362     return false;
363   }
364 
365   /// Like popValue, but does not increment the Slot number.
366   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
367                 unsigned InstNum, Type *Ty, Value *&ResVal) {
368     ResVal = getValue(Record, Slot, InstNum, Ty);
369     return ResVal == nullptr;
370   }
371 
372   /// Version of getValue that returns ResVal directly, or 0 if there is an
373   /// error.
374   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
375                   unsigned InstNum, Type *Ty) {
376     if (Slot == Record.size()) return nullptr;
377     unsigned ValNo = (unsigned)Record[Slot];
378     // Adjust the ValNo, if it was encoded relative to the InstNum.
379     if (UseRelativeIDs)
380       ValNo = InstNum - ValNo;
381     return getFnValueByID(ValNo, Ty);
382   }
383 
384   /// Like getValue, but decodes signed VBRs.
385   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
386                         unsigned InstNum, Type *Ty) {
387     if (Slot == Record.size()) return nullptr;
388     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
389     // Adjust the ValNo, if it was encoded relative to the InstNum.
390     if (UseRelativeIDs)
391       ValNo = InstNum - ValNo;
392     return getFnValueByID(ValNo, Ty);
393   }
394 
395   /// Converts alignment exponent (i.e. power of two (or zero)) to the
396   /// corresponding alignment to use. If alignment is too large, returns
397   /// a corresponding error code.
398   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
399   std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
400   std::error_code parseModule(uint64_t ResumeBit,
401                               bool ShouldLazyLoadMetadata = false);
402   std::error_code parseAttributeBlock();
403   std::error_code parseAttributeGroupBlock();
404   std::error_code parseTypeTable();
405   std::error_code parseTypeTableBody();
406   std::error_code parseOperandBundleTags();
407 
408   ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
409                                unsigned NameIndex, Triple &TT);
410   std::error_code parseValueSymbolTable(uint64_t Offset = 0);
411   std::error_code parseConstants();
412   std::error_code rememberAndSkipFunctionBodies();
413   std::error_code rememberAndSkipFunctionBody();
414   /// Save the positions of the Metadata blocks and skip parsing the blocks.
415   std::error_code rememberAndSkipMetadata();
416   std::error_code parseFunctionBody(Function *F);
417   std::error_code globalCleanup();
418   std::error_code resolveGlobalAndIndirectSymbolInits();
419   std::error_code parseMetadata(bool ModuleLevel = false);
420   std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record,
421                                        StringRef Blob,
422                                        unsigned &NextMetadataNo);
423   std::error_code parseMetadataKinds();
424   std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
425   std::error_code parseMetadataAttachment(Function &F);
426   ErrorOr<std::string> parseModuleTriple();
427   std::error_code parseUseLists();
428   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
429   std::error_code initStreamFromBuffer();
430   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
431   std::error_code findFunctionInStream(
432       Function *F,
433       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
434 };
435 
436 /// Class to manage reading and parsing function summary index bitcode
437 /// files/sections.
438 class ModuleSummaryIndexBitcodeReader {
439   DiagnosticHandlerFunction DiagnosticHandler;
440 
441   /// Eventually points to the module index built during parsing.
442   ModuleSummaryIndex *TheIndex = nullptr;
443 
444   std::unique_ptr<MemoryBuffer> Buffer;
445   std::unique_ptr<BitstreamReader> StreamFile;
446   BitstreamCursor Stream;
447 
448   /// Used to indicate whether caller only wants to check for the presence
449   /// of the global value summary bitcode section. All blocks are skipped,
450   /// but the SeenGlobalValSummary boolean is set.
451   bool CheckGlobalValSummaryPresenceOnly = false;
452 
453   /// Indicates whether we have encountered a global value summary section
454   /// yet during parsing, used when checking if file contains global value
455   /// summary section.
456   bool SeenGlobalValSummary = false;
457 
458   /// Indicates whether we have already parsed the VST, used for error checking.
459   bool SeenValueSymbolTable = false;
460 
461   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
462   /// Used to enable on-demand parsing of the VST.
463   uint64_t VSTOffset = 0;
464 
465   // Map to save ValueId to GUID association that was recorded in the
466   // ValueSymbolTable. It is used after the VST is parsed to convert
467   // call graph edges read from the function summary from referencing
468   // callees by their ValueId to using the GUID instead, which is how
469   // they are recorded in the summary index being built.
470   DenseMap<unsigned, GlobalValue::GUID> ValueIdToCallGraphGUIDMap;
471 
472   /// Map to save the association between summary offset in the VST to the
473   /// GlobalValueInfo object created when parsing it. Used to access the
474   /// info object when parsing the summary section.
475   DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap;
476 
477   /// Map populated during module path string table parsing, from the
478   /// module ID to a string reference owned by the index's module
479   /// path string table, used to correlate with combined index
480   /// summary records.
481   DenseMap<uint64_t, StringRef> ModuleIdMap;
482 
483   /// Original source file name recorded in a bitcode record.
484   std::string SourceFileName;
485 
486 public:
487   std::error_code error(BitcodeError E, const Twine &Message);
488   std::error_code error(BitcodeError E);
489   std::error_code error(const Twine &Message);
490 
491   ModuleSummaryIndexBitcodeReader(
492       MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
493       bool CheckGlobalValSummaryPresenceOnly = false);
494   ModuleSummaryIndexBitcodeReader(
495       DiagnosticHandlerFunction DiagnosticHandler,
496       bool CheckGlobalValSummaryPresenceOnly = false);
497   ~ModuleSummaryIndexBitcodeReader() { freeState(); }
498 
499   void freeState();
500 
501   void releaseBuffer();
502 
503   /// Check if the parser has encountered a summary section.
504   bool foundGlobalValSummary() { return SeenGlobalValSummary; }
505 
506   /// \brief Main interface to parsing a bitcode buffer.
507   /// \returns true if an error occurred.
508   std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
509                                         ModuleSummaryIndex *I);
510 
511   /// \brief Interface for parsing a summary lazily.
512   std::error_code
513   parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer,
514                           ModuleSummaryIndex *I, size_t SummaryOffset);
515 
516 private:
517   std::error_code parseModule();
518   std::error_code parseValueSymbolTable(
519       uint64_t Offset,
520       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
521   std::error_code parseEntireSummary();
522   std::error_code parseModuleStringTable();
523   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
524   std::error_code initStreamFromBuffer();
525   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
526   GlobalValue::GUID getGUIDFromValueId(unsigned ValueId);
527   GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset);
528 };
529 } // end anonymous namespace
530 
531 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
532                                              DiagnosticSeverity Severity,
533                                              const Twine &Msg)
534     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
535 
536 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
537 
538 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
539                              std::error_code EC, const Twine &Message) {
540   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
541   DiagnosticHandler(DI);
542   return EC;
543 }
544 
545 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
546                              std::error_code EC) {
547   return error(DiagnosticHandler, EC, EC.message());
548 }
549 
550 static std::error_code error(LLVMContext &Context, std::error_code EC,
551                              const Twine &Message) {
552   return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
553                Message);
554 }
555 
556 static std::error_code error(LLVMContext &Context, std::error_code EC) {
557   return error(Context, EC, EC.message());
558 }
559 
560 static std::error_code error(LLVMContext &Context, const Twine &Message) {
561   return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
562                Message);
563 }
564 
565 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
566   if (!ProducerIdentification.empty()) {
567     return ::error(Context, make_error_code(E),
568                    Message + " (Producer: '" + ProducerIdentification +
569                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
570   }
571   return ::error(Context, make_error_code(E), Message);
572 }
573 
574 std::error_code BitcodeReader::error(const Twine &Message) {
575   if (!ProducerIdentification.empty()) {
576     return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
577                    Message + " (Producer: '" + ProducerIdentification +
578                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
579   }
580   return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
581                  Message);
582 }
583 
584 std::error_code BitcodeReader::error(BitcodeError E) {
585   return ::error(Context, make_error_code(E));
586 }
587 
588 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
589     : Context(Context), Buffer(Buffer), ValueList(Context),
590       MetadataList(Context) {}
591 
592 BitcodeReader::BitcodeReader(LLVMContext &Context)
593     : Context(Context), Buffer(nullptr), ValueList(Context),
594       MetadataList(Context) {}
595 
596 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
597   if (WillMaterializeAllForwardRefs)
598     return std::error_code();
599 
600   // Prevent recursion.
601   WillMaterializeAllForwardRefs = true;
602 
603   while (!BasicBlockFwdRefQueue.empty()) {
604     Function *F = BasicBlockFwdRefQueue.front();
605     BasicBlockFwdRefQueue.pop_front();
606     assert(F && "Expected valid function");
607     if (!BasicBlockFwdRefs.count(F))
608       // Already materialized.
609       continue;
610 
611     // Check for a function that isn't materializable to prevent an infinite
612     // loop.  When parsing a blockaddress stored in a global variable, there
613     // isn't a trivial way to check if a function will have a body without a
614     // linear search through FunctionsWithBodies, so just check it here.
615     if (!F->isMaterializable())
616       return error("Never resolved function from blockaddress");
617 
618     // Try to materialize F.
619     if (std::error_code EC = materialize(F))
620       return EC;
621   }
622   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
623 
624   // Reset state.
625   WillMaterializeAllForwardRefs = false;
626   return std::error_code();
627 }
628 
629 void BitcodeReader::freeState() {
630   Buffer = nullptr;
631   std::vector<Type*>().swap(TypeList);
632   ValueList.clear();
633   MetadataList.clear();
634   std::vector<Comdat *>().swap(ComdatList);
635 
636   std::vector<AttributeSet>().swap(MAttributes);
637   std::vector<BasicBlock*>().swap(FunctionBBs);
638   std::vector<Function*>().swap(FunctionsWithBodies);
639   DeferredFunctionInfo.clear();
640   DeferredMetadataInfo.clear();
641   MDKindMap.clear();
642 
643   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
644   BasicBlockFwdRefQueue.clear();
645 }
646 
647 //===----------------------------------------------------------------------===//
648 //  Helper functions to implement forward reference resolution, etc.
649 //===----------------------------------------------------------------------===//
650 
651 /// Convert a string from a record into an std::string, return true on failure.
652 template <typename StrTy>
653 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
654                             StrTy &Result) {
655   if (Idx > Record.size())
656     return true;
657 
658   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
659     Result += (char)Record[i];
660   return false;
661 }
662 
663 static bool hasImplicitComdat(size_t Val) {
664   switch (Val) {
665   default:
666     return false;
667   case 1:  // Old WeakAnyLinkage
668   case 4:  // Old LinkOnceAnyLinkage
669   case 10: // Old WeakODRLinkage
670   case 11: // Old LinkOnceODRLinkage
671     return true;
672   }
673 }
674 
675 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
676   switch (Val) {
677   default: // Map unknown/new linkages to external
678   case 0:
679     return GlobalValue::ExternalLinkage;
680   case 2:
681     return GlobalValue::AppendingLinkage;
682   case 3:
683     return GlobalValue::InternalLinkage;
684   case 5:
685     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
686   case 6:
687     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
688   case 7:
689     return GlobalValue::ExternalWeakLinkage;
690   case 8:
691     return GlobalValue::CommonLinkage;
692   case 9:
693     return GlobalValue::PrivateLinkage;
694   case 12:
695     return GlobalValue::AvailableExternallyLinkage;
696   case 13:
697     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
698   case 14:
699     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
700   case 15:
701     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
702   case 1: // Old value with implicit comdat.
703   case 16:
704     return GlobalValue::WeakAnyLinkage;
705   case 10: // Old value with implicit comdat.
706   case 17:
707     return GlobalValue::WeakODRLinkage;
708   case 4: // Old value with implicit comdat.
709   case 18:
710     return GlobalValue::LinkOnceAnyLinkage;
711   case 11: // Old value with implicit comdat.
712   case 19:
713     return GlobalValue::LinkOnceODRLinkage;
714   }
715 }
716 
717 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
718   switch (Val) {
719   default: // Map unknown visibilities to default.
720   case 0: return GlobalValue::DefaultVisibility;
721   case 1: return GlobalValue::HiddenVisibility;
722   case 2: return GlobalValue::ProtectedVisibility;
723   }
724 }
725 
726 static GlobalValue::DLLStorageClassTypes
727 getDecodedDLLStorageClass(unsigned Val) {
728   switch (Val) {
729   default: // Map unknown values to default.
730   case 0: return GlobalValue::DefaultStorageClass;
731   case 1: return GlobalValue::DLLImportStorageClass;
732   case 2: return GlobalValue::DLLExportStorageClass;
733   }
734 }
735 
736 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
737   switch (Val) {
738     case 0: return GlobalVariable::NotThreadLocal;
739     default: // Map unknown non-zero value to general dynamic.
740     case 1: return GlobalVariable::GeneralDynamicTLSModel;
741     case 2: return GlobalVariable::LocalDynamicTLSModel;
742     case 3: return GlobalVariable::InitialExecTLSModel;
743     case 4: return GlobalVariable::LocalExecTLSModel;
744   }
745 }
746 
747 static int getDecodedCastOpcode(unsigned Val) {
748   switch (Val) {
749   default: return -1;
750   case bitc::CAST_TRUNC   : return Instruction::Trunc;
751   case bitc::CAST_ZEXT    : return Instruction::ZExt;
752   case bitc::CAST_SEXT    : return Instruction::SExt;
753   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
754   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
755   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
756   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
757   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
758   case bitc::CAST_FPEXT   : return Instruction::FPExt;
759   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
760   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
761   case bitc::CAST_BITCAST : return Instruction::BitCast;
762   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
763   }
764 }
765 
766 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
767   bool IsFP = Ty->isFPOrFPVectorTy();
768   // BinOps are only valid for int/fp or vector of int/fp types
769   if (!IsFP && !Ty->isIntOrIntVectorTy())
770     return -1;
771 
772   switch (Val) {
773   default:
774     return -1;
775   case bitc::BINOP_ADD:
776     return IsFP ? Instruction::FAdd : Instruction::Add;
777   case bitc::BINOP_SUB:
778     return IsFP ? Instruction::FSub : Instruction::Sub;
779   case bitc::BINOP_MUL:
780     return IsFP ? Instruction::FMul : Instruction::Mul;
781   case bitc::BINOP_UDIV:
782     return IsFP ? -1 : Instruction::UDiv;
783   case bitc::BINOP_SDIV:
784     return IsFP ? Instruction::FDiv : Instruction::SDiv;
785   case bitc::BINOP_UREM:
786     return IsFP ? -1 : Instruction::URem;
787   case bitc::BINOP_SREM:
788     return IsFP ? Instruction::FRem : Instruction::SRem;
789   case bitc::BINOP_SHL:
790     return IsFP ? -1 : Instruction::Shl;
791   case bitc::BINOP_LSHR:
792     return IsFP ? -1 : Instruction::LShr;
793   case bitc::BINOP_ASHR:
794     return IsFP ? -1 : Instruction::AShr;
795   case bitc::BINOP_AND:
796     return IsFP ? -1 : Instruction::And;
797   case bitc::BINOP_OR:
798     return IsFP ? -1 : Instruction::Or;
799   case bitc::BINOP_XOR:
800     return IsFP ? -1 : Instruction::Xor;
801   }
802 }
803 
804 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
805   switch (Val) {
806   default: return AtomicRMWInst::BAD_BINOP;
807   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
808   case bitc::RMW_ADD: return AtomicRMWInst::Add;
809   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
810   case bitc::RMW_AND: return AtomicRMWInst::And;
811   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
812   case bitc::RMW_OR: return AtomicRMWInst::Or;
813   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
814   case bitc::RMW_MAX: return AtomicRMWInst::Max;
815   case bitc::RMW_MIN: return AtomicRMWInst::Min;
816   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
817   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
818   }
819 }
820 
821 static AtomicOrdering getDecodedOrdering(unsigned Val) {
822   switch (Val) {
823   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
824   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
825   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
826   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
827   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
828   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
829   default: // Map unknown orderings to sequentially-consistent.
830   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
831   }
832 }
833 
834 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
835   switch (Val) {
836   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
837   default: // Map unknown scopes to cross-thread.
838   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
839   }
840 }
841 
842 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
843   switch (Val) {
844   default: // Map unknown selection kinds to any.
845   case bitc::COMDAT_SELECTION_KIND_ANY:
846     return Comdat::Any;
847   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
848     return Comdat::ExactMatch;
849   case bitc::COMDAT_SELECTION_KIND_LARGEST:
850     return Comdat::Largest;
851   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
852     return Comdat::NoDuplicates;
853   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
854     return Comdat::SameSize;
855   }
856 }
857 
858 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
859   FastMathFlags FMF;
860   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
861     FMF.setUnsafeAlgebra();
862   if (0 != (Val & FastMathFlags::NoNaNs))
863     FMF.setNoNaNs();
864   if (0 != (Val & FastMathFlags::NoInfs))
865     FMF.setNoInfs();
866   if (0 != (Val & FastMathFlags::NoSignedZeros))
867     FMF.setNoSignedZeros();
868   if (0 != (Val & FastMathFlags::AllowReciprocal))
869     FMF.setAllowReciprocal();
870   return FMF;
871 }
872 
873 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
874   switch (Val) {
875   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
876   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
877   }
878 }
879 
880 namespace llvm {
881 namespace {
882 /// \brief A class for maintaining the slot number definition
883 /// as a placeholder for the actual definition for forward constants defs.
884 class ConstantPlaceHolder : public ConstantExpr {
885   void operator=(const ConstantPlaceHolder &) = delete;
886 
887 public:
888   // allocate space for exactly one operand
889   void *operator new(size_t s) { return User::operator new(s, 1); }
890   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
891       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
892     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
893   }
894 
895   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
896   static bool classof(const Value *V) {
897     return isa<ConstantExpr>(V) &&
898            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
899   }
900 
901   /// Provide fast operand accessors
902   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
903 };
904 } // end anonymous namespace
905 
906 // FIXME: can we inherit this from ConstantExpr?
907 template <>
908 struct OperandTraits<ConstantPlaceHolder> :
909   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
910 };
911 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
912 } // end namespace llvm
913 
914 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
915   if (Idx == size()) {
916     push_back(V);
917     return;
918   }
919 
920   if (Idx >= size())
921     resize(Idx+1);
922 
923   WeakVH &OldV = ValuePtrs[Idx];
924   if (!OldV) {
925     OldV = V;
926     return;
927   }
928 
929   // Handle constants and non-constants (e.g. instrs) differently for
930   // efficiency.
931   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
932     ResolveConstants.push_back(std::make_pair(PHC, Idx));
933     OldV = V;
934   } else {
935     // If there was a forward reference to this value, replace it.
936     Value *PrevVal = OldV;
937     OldV->replaceAllUsesWith(V);
938     delete PrevVal;
939   }
940 }
941 
942 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
943                                                     Type *Ty) {
944   if (Idx >= size())
945     resize(Idx + 1);
946 
947   if (Value *V = ValuePtrs[Idx]) {
948     if (Ty != V->getType())
949       report_fatal_error("Type mismatch in constant table!");
950     return cast<Constant>(V);
951   }
952 
953   // Create and return a placeholder, which will later be RAUW'd.
954   Constant *C = new ConstantPlaceHolder(Ty, Context);
955   ValuePtrs[Idx] = C;
956   return C;
957 }
958 
959 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
960   // Bail out for a clearly invalid value. This would make us call resize(0)
961   if (Idx == UINT_MAX)
962     return nullptr;
963 
964   if (Idx >= size())
965     resize(Idx + 1);
966 
967   if (Value *V = ValuePtrs[Idx]) {
968     // If the types don't match, it's invalid.
969     if (Ty && Ty != V->getType())
970       return nullptr;
971     return V;
972   }
973 
974   // No type specified, must be invalid reference.
975   if (!Ty) return nullptr;
976 
977   // Create and return a placeholder, which will later be RAUW'd.
978   Value *V = new Argument(Ty);
979   ValuePtrs[Idx] = V;
980   return V;
981 }
982 
983 /// Once all constants are read, this method bulk resolves any forward
984 /// references.  The idea behind this is that we sometimes get constants (such
985 /// as large arrays) which reference *many* forward ref constants.  Replacing
986 /// each of these causes a lot of thrashing when building/reuniquing the
987 /// constant.  Instead of doing this, we look at all the uses and rewrite all
988 /// the place holders at once for any constant that uses a placeholder.
989 void BitcodeReaderValueList::resolveConstantForwardRefs() {
990   // Sort the values by-pointer so that they are efficient to look up with a
991   // binary search.
992   std::sort(ResolveConstants.begin(), ResolveConstants.end());
993 
994   SmallVector<Constant*, 64> NewOps;
995 
996   while (!ResolveConstants.empty()) {
997     Value *RealVal = operator[](ResolveConstants.back().second);
998     Constant *Placeholder = ResolveConstants.back().first;
999     ResolveConstants.pop_back();
1000 
1001     // Loop over all users of the placeholder, updating them to reference the
1002     // new value.  If they reference more than one placeholder, update them all
1003     // at once.
1004     while (!Placeholder->use_empty()) {
1005       auto UI = Placeholder->user_begin();
1006       User *U = *UI;
1007 
1008       // If the using object isn't uniqued, just update the operands.  This
1009       // handles instructions and initializers for global variables.
1010       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
1011         UI.getUse().set(RealVal);
1012         continue;
1013       }
1014 
1015       // Otherwise, we have a constant that uses the placeholder.  Replace that
1016       // constant with a new constant that has *all* placeholder uses updated.
1017       Constant *UserC = cast<Constant>(U);
1018       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
1019            I != E; ++I) {
1020         Value *NewOp;
1021         if (!isa<ConstantPlaceHolder>(*I)) {
1022           // Not a placeholder reference.
1023           NewOp = *I;
1024         } else if (*I == Placeholder) {
1025           // Common case is that it just references this one placeholder.
1026           NewOp = RealVal;
1027         } else {
1028           // Otherwise, look up the placeholder in ResolveConstants.
1029           ResolveConstantsTy::iterator It =
1030             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1031                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1032                                                             0));
1033           assert(It != ResolveConstants.end() && It->first == *I);
1034           NewOp = operator[](It->second);
1035         }
1036 
1037         NewOps.push_back(cast<Constant>(NewOp));
1038       }
1039 
1040       // Make the new constant.
1041       Constant *NewC;
1042       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1043         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1044       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1045         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1046       } else if (isa<ConstantVector>(UserC)) {
1047         NewC = ConstantVector::get(NewOps);
1048       } else {
1049         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1050         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1051       }
1052 
1053       UserC->replaceAllUsesWith(NewC);
1054       UserC->destroyConstant();
1055       NewOps.clear();
1056     }
1057 
1058     // Update all ValueHandles, they should be the only users at this point.
1059     Placeholder->replaceAllUsesWith(RealVal);
1060     delete Placeholder;
1061   }
1062 }
1063 
1064 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1065   if (Idx == size()) {
1066     push_back(MD);
1067     return;
1068   }
1069 
1070   if (Idx >= size())
1071     resize(Idx+1);
1072 
1073   TrackingMDRef &OldMD = MetadataPtrs[Idx];
1074   if (!OldMD) {
1075     OldMD.reset(MD);
1076     return;
1077   }
1078 
1079   // If there was a forward reference to this value, replace it.
1080   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1081   PrevMD->replaceAllUsesWith(MD);
1082   --NumFwdRefs;
1083 }
1084 
1085 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
1086   if (Idx >= size())
1087     resize(Idx + 1);
1088 
1089   if (Metadata *MD = MetadataPtrs[Idx])
1090     return MD;
1091 
1092   // Track forward refs to be resolved later.
1093   if (AnyFwdRefs) {
1094     MinFwdRef = std::min(MinFwdRef, Idx);
1095     MaxFwdRef = std::max(MaxFwdRef, Idx);
1096   } else {
1097     AnyFwdRefs = true;
1098     MinFwdRef = MaxFwdRef = Idx;
1099   }
1100   ++NumFwdRefs;
1101 
1102   // Create and return a placeholder, which will later be RAUW'd.
1103   Metadata *MD = MDNode::getTemporary(Context, None).release();
1104   MetadataPtrs[Idx].reset(MD);
1105   return MD;
1106 }
1107 
1108 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) {
1109   Metadata *MD = lookup(Idx);
1110   if (auto *N = dyn_cast_or_null<MDNode>(MD))
1111     if (!N->isResolved())
1112       return nullptr;
1113   return MD;
1114 }
1115 
1116 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
1117   return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
1118 }
1119 
1120 void BitcodeReaderMetadataList::tryToResolveCycles() {
1121   if (!AnyFwdRefs)
1122     // Nothing to do.
1123     return;
1124 
1125   if (NumFwdRefs)
1126     // Still forward references... can't resolve cycles.
1127     return;
1128 
1129   // Resolve any cycles.
1130   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1131     auto &MD = MetadataPtrs[I];
1132     auto *N = dyn_cast_or_null<MDNode>(MD);
1133     if (!N)
1134       continue;
1135 
1136     assert(!N->isTemporary() && "Unexpected forward reference");
1137     N->resolveCycles();
1138   }
1139 
1140   // Make sure we return early again until there's another forward ref.
1141   AnyFwdRefs = false;
1142 }
1143 
1144 Type *BitcodeReader::getTypeByID(unsigned ID) {
1145   // The type table size is always specified correctly.
1146   if (ID >= TypeList.size())
1147     return nullptr;
1148 
1149   if (Type *Ty = TypeList[ID])
1150     return Ty;
1151 
1152   // If we have a forward reference, the only possible case is when it is to a
1153   // named struct.  Just create a placeholder for now.
1154   return TypeList[ID] = createIdentifiedStructType(Context);
1155 }
1156 
1157 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1158                                                       StringRef Name) {
1159   auto *Ret = StructType::create(Context, Name);
1160   IdentifiedStructTypes.push_back(Ret);
1161   return Ret;
1162 }
1163 
1164 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1165   auto *Ret = StructType::create(Context);
1166   IdentifiedStructTypes.push_back(Ret);
1167   return Ret;
1168 }
1169 
1170 //===----------------------------------------------------------------------===//
1171 //  Functions for parsing blocks from the bitcode file
1172 //===----------------------------------------------------------------------===//
1173 
1174 
1175 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1176 /// been decoded from the given integer. This function must stay in sync with
1177 /// 'encodeLLVMAttributesForBitcode'.
1178 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1179                                            uint64_t EncodedAttrs) {
1180   // FIXME: Remove in 4.0.
1181 
1182   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1183   // the bits above 31 down by 11 bits.
1184   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1185   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1186          "Alignment must be a power of two.");
1187 
1188   if (Alignment)
1189     B.addAlignmentAttr(Alignment);
1190   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1191                 (EncodedAttrs & 0xffff));
1192 }
1193 
1194 std::error_code BitcodeReader::parseAttributeBlock() {
1195   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1196     return error("Invalid record");
1197 
1198   if (!MAttributes.empty())
1199     return error("Invalid multiple blocks");
1200 
1201   SmallVector<uint64_t, 64> Record;
1202 
1203   SmallVector<AttributeSet, 8> Attrs;
1204 
1205   // Read all the records.
1206   while (1) {
1207     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1208 
1209     switch (Entry.Kind) {
1210     case BitstreamEntry::SubBlock: // Handled for us already.
1211     case BitstreamEntry::Error:
1212       return error("Malformed block");
1213     case BitstreamEntry::EndBlock:
1214       return std::error_code();
1215     case BitstreamEntry::Record:
1216       // The interesting case.
1217       break;
1218     }
1219 
1220     // Read a record.
1221     Record.clear();
1222     switch (Stream.readRecord(Entry.ID, Record)) {
1223     default:  // Default behavior: ignore.
1224       break;
1225     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1226       // FIXME: Remove in 4.0.
1227       if (Record.size() & 1)
1228         return error("Invalid record");
1229 
1230       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1231         AttrBuilder B;
1232         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1233         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1234       }
1235 
1236       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1237       Attrs.clear();
1238       break;
1239     }
1240     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1241       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1242         Attrs.push_back(MAttributeGroups[Record[i]]);
1243 
1244       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1245       Attrs.clear();
1246       break;
1247     }
1248     }
1249   }
1250 }
1251 
1252 // Returns Attribute::None on unrecognized codes.
1253 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1254   switch (Code) {
1255   default:
1256     return Attribute::None;
1257   case bitc::ATTR_KIND_ALIGNMENT:
1258     return Attribute::Alignment;
1259   case bitc::ATTR_KIND_ALWAYS_INLINE:
1260     return Attribute::AlwaysInline;
1261   case bitc::ATTR_KIND_ARGMEMONLY:
1262     return Attribute::ArgMemOnly;
1263   case bitc::ATTR_KIND_BUILTIN:
1264     return Attribute::Builtin;
1265   case bitc::ATTR_KIND_BY_VAL:
1266     return Attribute::ByVal;
1267   case bitc::ATTR_KIND_IN_ALLOCA:
1268     return Attribute::InAlloca;
1269   case bitc::ATTR_KIND_COLD:
1270     return Attribute::Cold;
1271   case bitc::ATTR_KIND_CONVERGENT:
1272     return Attribute::Convergent;
1273   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1274     return Attribute::InaccessibleMemOnly;
1275   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1276     return Attribute::InaccessibleMemOrArgMemOnly;
1277   case bitc::ATTR_KIND_INLINE_HINT:
1278     return Attribute::InlineHint;
1279   case bitc::ATTR_KIND_IN_REG:
1280     return Attribute::InReg;
1281   case bitc::ATTR_KIND_JUMP_TABLE:
1282     return Attribute::JumpTable;
1283   case bitc::ATTR_KIND_MIN_SIZE:
1284     return Attribute::MinSize;
1285   case bitc::ATTR_KIND_NAKED:
1286     return Attribute::Naked;
1287   case bitc::ATTR_KIND_NEST:
1288     return Attribute::Nest;
1289   case bitc::ATTR_KIND_NO_ALIAS:
1290     return Attribute::NoAlias;
1291   case bitc::ATTR_KIND_NO_BUILTIN:
1292     return Attribute::NoBuiltin;
1293   case bitc::ATTR_KIND_NO_CAPTURE:
1294     return Attribute::NoCapture;
1295   case bitc::ATTR_KIND_NO_DUPLICATE:
1296     return Attribute::NoDuplicate;
1297   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1298     return Attribute::NoImplicitFloat;
1299   case bitc::ATTR_KIND_NO_INLINE:
1300     return Attribute::NoInline;
1301   case bitc::ATTR_KIND_NO_RECURSE:
1302     return Attribute::NoRecurse;
1303   case bitc::ATTR_KIND_NON_LAZY_BIND:
1304     return Attribute::NonLazyBind;
1305   case bitc::ATTR_KIND_NON_NULL:
1306     return Attribute::NonNull;
1307   case bitc::ATTR_KIND_DEREFERENCEABLE:
1308     return Attribute::Dereferenceable;
1309   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1310     return Attribute::DereferenceableOrNull;
1311   case bitc::ATTR_KIND_ALLOC_SIZE:
1312     return Attribute::AllocSize;
1313   case bitc::ATTR_KIND_NO_RED_ZONE:
1314     return Attribute::NoRedZone;
1315   case bitc::ATTR_KIND_NO_RETURN:
1316     return Attribute::NoReturn;
1317   case bitc::ATTR_KIND_NO_UNWIND:
1318     return Attribute::NoUnwind;
1319   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1320     return Attribute::OptimizeForSize;
1321   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1322     return Attribute::OptimizeNone;
1323   case bitc::ATTR_KIND_READ_NONE:
1324     return Attribute::ReadNone;
1325   case bitc::ATTR_KIND_READ_ONLY:
1326     return Attribute::ReadOnly;
1327   case bitc::ATTR_KIND_RETURNED:
1328     return Attribute::Returned;
1329   case bitc::ATTR_KIND_RETURNS_TWICE:
1330     return Attribute::ReturnsTwice;
1331   case bitc::ATTR_KIND_S_EXT:
1332     return Attribute::SExt;
1333   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1334     return Attribute::StackAlignment;
1335   case bitc::ATTR_KIND_STACK_PROTECT:
1336     return Attribute::StackProtect;
1337   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1338     return Attribute::StackProtectReq;
1339   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1340     return Attribute::StackProtectStrong;
1341   case bitc::ATTR_KIND_SAFESTACK:
1342     return Attribute::SafeStack;
1343   case bitc::ATTR_KIND_STRUCT_RET:
1344     return Attribute::StructRet;
1345   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1346     return Attribute::SanitizeAddress;
1347   case bitc::ATTR_KIND_SANITIZE_THREAD:
1348     return Attribute::SanitizeThread;
1349   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1350     return Attribute::SanitizeMemory;
1351   case bitc::ATTR_KIND_SWIFT_ERROR:
1352     return Attribute::SwiftError;
1353   case bitc::ATTR_KIND_SWIFT_SELF:
1354     return Attribute::SwiftSelf;
1355   case bitc::ATTR_KIND_UW_TABLE:
1356     return Attribute::UWTable;
1357   case bitc::ATTR_KIND_Z_EXT:
1358     return Attribute::ZExt;
1359   }
1360 }
1361 
1362 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1363                                                    unsigned &Alignment) {
1364   // Note: Alignment in bitcode files is incremented by 1, so that zero
1365   // can be used for default alignment.
1366   if (Exponent > Value::MaxAlignmentExponent + 1)
1367     return error("Invalid alignment value");
1368   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1369   return std::error_code();
1370 }
1371 
1372 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1373                                              Attribute::AttrKind *Kind) {
1374   *Kind = getAttrFromCode(Code);
1375   if (*Kind == Attribute::None)
1376     return error(BitcodeError::CorruptedBitcode,
1377                  "Unknown attribute kind (" + Twine(Code) + ")");
1378   return std::error_code();
1379 }
1380 
1381 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1382   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1383     return error("Invalid record");
1384 
1385   if (!MAttributeGroups.empty())
1386     return error("Invalid multiple blocks");
1387 
1388   SmallVector<uint64_t, 64> Record;
1389 
1390   // Read all the records.
1391   while (1) {
1392     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1393 
1394     switch (Entry.Kind) {
1395     case BitstreamEntry::SubBlock: // Handled for us already.
1396     case BitstreamEntry::Error:
1397       return error("Malformed block");
1398     case BitstreamEntry::EndBlock:
1399       return std::error_code();
1400     case BitstreamEntry::Record:
1401       // The interesting case.
1402       break;
1403     }
1404 
1405     // Read a record.
1406     Record.clear();
1407     switch (Stream.readRecord(Entry.ID, Record)) {
1408     default:  // Default behavior: ignore.
1409       break;
1410     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1411       if (Record.size() < 3)
1412         return error("Invalid record");
1413 
1414       uint64_t GrpID = Record[0];
1415       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1416 
1417       AttrBuilder B;
1418       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1419         if (Record[i] == 0) {        // Enum attribute
1420           Attribute::AttrKind Kind;
1421           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1422             return EC;
1423 
1424           B.addAttribute(Kind);
1425         } else if (Record[i] == 1) { // Integer attribute
1426           Attribute::AttrKind Kind;
1427           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1428             return EC;
1429           if (Kind == Attribute::Alignment)
1430             B.addAlignmentAttr(Record[++i]);
1431           else if (Kind == Attribute::StackAlignment)
1432             B.addStackAlignmentAttr(Record[++i]);
1433           else if (Kind == Attribute::Dereferenceable)
1434             B.addDereferenceableAttr(Record[++i]);
1435           else if (Kind == Attribute::DereferenceableOrNull)
1436             B.addDereferenceableOrNullAttr(Record[++i]);
1437           else if (Kind == Attribute::AllocSize)
1438             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1439         } else {                     // String attribute
1440           assert((Record[i] == 3 || Record[i] == 4) &&
1441                  "Invalid attribute group entry");
1442           bool HasValue = (Record[i++] == 4);
1443           SmallString<64> KindStr;
1444           SmallString<64> ValStr;
1445 
1446           while (Record[i] != 0 && i != e)
1447             KindStr += Record[i++];
1448           assert(Record[i] == 0 && "Kind string not null terminated");
1449 
1450           if (HasValue) {
1451             // Has a value associated with it.
1452             ++i; // Skip the '0' that terminates the "kind" string.
1453             while (Record[i] != 0 && i != e)
1454               ValStr += Record[i++];
1455             assert(Record[i] == 0 && "Value string not null terminated");
1456           }
1457 
1458           B.addAttribute(KindStr.str(), ValStr.str());
1459         }
1460       }
1461 
1462       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1463       break;
1464     }
1465     }
1466   }
1467 }
1468 
1469 std::error_code BitcodeReader::parseTypeTable() {
1470   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1471     return error("Invalid record");
1472 
1473   return parseTypeTableBody();
1474 }
1475 
1476 std::error_code BitcodeReader::parseTypeTableBody() {
1477   if (!TypeList.empty())
1478     return error("Invalid multiple blocks");
1479 
1480   SmallVector<uint64_t, 64> Record;
1481   unsigned NumRecords = 0;
1482 
1483   SmallString<64> TypeName;
1484 
1485   // Read all the records for this type table.
1486   while (1) {
1487     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1488 
1489     switch (Entry.Kind) {
1490     case BitstreamEntry::SubBlock: // Handled for us already.
1491     case BitstreamEntry::Error:
1492       return error("Malformed block");
1493     case BitstreamEntry::EndBlock:
1494       if (NumRecords != TypeList.size())
1495         return error("Malformed block");
1496       return std::error_code();
1497     case BitstreamEntry::Record:
1498       // The interesting case.
1499       break;
1500     }
1501 
1502     // Read a record.
1503     Record.clear();
1504     Type *ResultTy = nullptr;
1505     switch (Stream.readRecord(Entry.ID, Record)) {
1506     default:
1507       return error("Invalid value");
1508     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1509       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1510       // type list.  This allows us to reserve space.
1511       if (Record.size() < 1)
1512         return error("Invalid record");
1513       TypeList.resize(Record[0]);
1514       continue;
1515     case bitc::TYPE_CODE_VOID:      // VOID
1516       ResultTy = Type::getVoidTy(Context);
1517       break;
1518     case bitc::TYPE_CODE_HALF:     // HALF
1519       ResultTy = Type::getHalfTy(Context);
1520       break;
1521     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1522       ResultTy = Type::getFloatTy(Context);
1523       break;
1524     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1525       ResultTy = Type::getDoubleTy(Context);
1526       break;
1527     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1528       ResultTy = Type::getX86_FP80Ty(Context);
1529       break;
1530     case bitc::TYPE_CODE_FP128:     // FP128
1531       ResultTy = Type::getFP128Ty(Context);
1532       break;
1533     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1534       ResultTy = Type::getPPC_FP128Ty(Context);
1535       break;
1536     case bitc::TYPE_CODE_LABEL:     // LABEL
1537       ResultTy = Type::getLabelTy(Context);
1538       break;
1539     case bitc::TYPE_CODE_METADATA:  // METADATA
1540       ResultTy = Type::getMetadataTy(Context);
1541       break;
1542     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1543       ResultTy = Type::getX86_MMXTy(Context);
1544       break;
1545     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1546       ResultTy = Type::getTokenTy(Context);
1547       break;
1548     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1549       if (Record.size() < 1)
1550         return error("Invalid record");
1551 
1552       uint64_t NumBits = Record[0];
1553       if (NumBits < IntegerType::MIN_INT_BITS ||
1554           NumBits > IntegerType::MAX_INT_BITS)
1555         return error("Bitwidth for integer type out of range");
1556       ResultTy = IntegerType::get(Context, NumBits);
1557       break;
1558     }
1559     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1560                                     //          [pointee type, address space]
1561       if (Record.size() < 1)
1562         return error("Invalid record");
1563       unsigned AddressSpace = 0;
1564       if (Record.size() == 2)
1565         AddressSpace = Record[1];
1566       ResultTy = getTypeByID(Record[0]);
1567       if (!ResultTy ||
1568           !PointerType::isValidElementType(ResultTy))
1569         return error("Invalid type");
1570       ResultTy = PointerType::get(ResultTy, AddressSpace);
1571       break;
1572     }
1573     case bitc::TYPE_CODE_FUNCTION_OLD: {
1574       // FIXME: attrid is dead, remove it in LLVM 4.0
1575       // FUNCTION: [vararg, attrid, retty, paramty x N]
1576       if (Record.size() < 3)
1577         return error("Invalid record");
1578       SmallVector<Type*, 8> ArgTys;
1579       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1580         if (Type *T = getTypeByID(Record[i]))
1581           ArgTys.push_back(T);
1582         else
1583           break;
1584       }
1585 
1586       ResultTy = getTypeByID(Record[2]);
1587       if (!ResultTy || ArgTys.size() < Record.size()-3)
1588         return error("Invalid type");
1589 
1590       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1591       break;
1592     }
1593     case bitc::TYPE_CODE_FUNCTION: {
1594       // FUNCTION: [vararg, retty, paramty x N]
1595       if (Record.size() < 2)
1596         return error("Invalid record");
1597       SmallVector<Type*, 8> ArgTys;
1598       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1599         if (Type *T = getTypeByID(Record[i])) {
1600           if (!FunctionType::isValidArgumentType(T))
1601             return error("Invalid function argument type");
1602           ArgTys.push_back(T);
1603         }
1604         else
1605           break;
1606       }
1607 
1608       ResultTy = getTypeByID(Record[1]);
1609       if (!ResultTy || ArgTys.size() < Record.size()-2)
1610         return error("Invalid type");
1611 
1612       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1613       break;
1614     }
1615     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1616       if (Record.size() < 1)
1617         return error("Invalid record");
1618       SmallVector<Type*, 8> EltTys;
1619       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1620         if (Type *T = getTypeByID(Record[i]))
1621           EltTys.push_back(T);
1622         else
1623           break;
1624       }
1625       if (EltTys.size() != Record.size()-1)
1626         return error("Invalid type");
1627       ResultTy = StructType::get(Context, EltTys, Record[0]);
1628       break;
1629     }
1630     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1631       if (convertToString(Record, 0, TypeName))
1632         return error("Invalid record");
1633       continue;
1634 
1635     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1636       if (Record.size() < 1)
1637         return error("Invalid record");
1638 
1639       if (NumRecords >= TypeList.size())
1640         return error("Invalid TYPE table");
1641 
1642       // Check to see if this was forward referenced, if so fill in the temp.
1643       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1644       if (Res) {
1645         Res->setName(TypeName);
1646         TypeList[NumRecords] = nullptr;
1647       } else  // Otherwise, create a new struct.
1648         Res = createIdentifiedStructType(Context, TypeName);
1649       TypeName.clear();
1650 
1651       SmallVector<Type*, 8> EltTys;
1652       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1653         if (Type *T = getTypeByID(Record[i]))
1654           EltTys.push_back(T);
1655         else
1656           break;
1657       }
1658       if (EltTys.size() != Record.size()-1)
1659         return error("Invalid record");
1660       Res->setBody(EltTys, Record[0]);
1661       ResultTy = Res;
1662       break;
1663     }
1664     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1665       if (Record.size() != 1)
1666         return error("Invalid record");
1667 
1668       if (NumRecords >= TypeList.size())
1669         return error("Invalid TYPE table");
1670 
1671       // Check to see if this was forward referenced, if so fill in the temp.
1672       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1673       if (Res) {
1674         Res->setName(TypeName);
1675         TypeList[NumRecords] = nullptr;
1676       } else  // Otherwise, create a new struct with no body.
1677         Res = createIdentifiedStructType(Context, TypeName);
1678       TypeName.clear();
1679       ResultTy = Res;
1680       break;
1681     }
1682     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1683       if (Record.size() < 2)
1684         return error("Invalid record");
1685       ResultTy = getTypeByID(Record[1]);
1686       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1687         return error("Invalid type");
1688       ResultTy = ArrayType::get(ResultTy, Record[0]);
1689       break;
1690     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1691       if (Record.size() < 2)
1692         return error("Invalid record");
1693       if (Record[0] == 0)
1694         return error("Invalid vector length");
1695       ResultTy = getTypeByID(Record[1]);
1696       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1697         return error("Invalid type");
1698       ResultTy = VectorType::get(ResultTy, Record[0]);
1699       break;
1700     }
1701 
1702     if (NumRecords >= TypeList.size())
1703       return error("Invalid TYPE table");
1704     if (TypeList[NumRecords])
1705       return error(
1706           "Invalid TYPE table: Only named structs can be forward referenced");
1707     assert(ResultTy && "Didn't read a type?");
1708     TypeList[NumRecords++] = ResultTy;
1709   }
1710 }
1711 
1712 std::error_code BitcodeReader::parseOperandBundleTags() {
1713   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1714     return error("Invalid record");
1715 
1716   if (!BundleTags.empty())
1717     return error("Invalid multiple blocks");
1718 
1719   SmallVector<uint64_t, 64> Record;
1720 
1721   while (1) {
1722     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1723 
1724     switch (Entry.Kind) {
1725     case BitstreamEntry::SubBlock: // Handled for us already.
1726     case BitstreamEntry::Error:
1727       return error("Malformed block");
1728     case BitstreamEntry::EndBlock:
1729       return std::error_code();
1730     case BitstreamEntry::Record:
1731       // The interesting case.
1732       break;
1733     }
1734 
1735     // Tags are implicitly mapped to integers by their order.
1736 
1737     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1738       return error("Invalid record");
1739 
1740     // OPERAND_BUNDLE_TAG: [strchr x N]
1741     BundleTags.emplace_back();
1742     if (convertToString(Record, 0, BundleTags.back()))
1743       return error("Invalid record");
1744     Record.clear();
1745   }
1746 }
1747 
1748 /// Associate a value with its name from the given index in the provided record.
1749 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1750                                             unsigned NameIndex, Triple &TT) {
1751   SmallString<128> ValueName;
1752   if (convertToString(Record, NameIndex, ValueName))
1753     return error("Invalid record");
1754   unsigned ValueID = Record[0];
1755   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1756     return error("Invalid record");
1757   Value *V = ValueList[ValueID];
1758 
1759   StringRef NameStr(ValueName.data(), ValueName.size());
1760   if (NameStr.find_first_of(0) != StringRef::npos)
1761     return error("Invalid value name");
1762   V->setName(NameStr);
1763   auto *GO = dyn_cast<GlobalObject>(V);
1764   if (GO) {
1765     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1766       if (TT.isOSBinFormatMachO())
1767         GO->setComdat(nullptr);
1768       else
1769         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1770     }
1771   }
1772   return V;
1773 }
1774 
1775 /// Helper to note and return the current location, and jump to the given
1776 /// offset.
1777 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1778                                        BitstreamCursor &Stream) {
1779   // Save the current parsing location so we can jump back at the end
1780   // of the VST read.
1781   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1782   Stream.JumpToBit(Offset * 32);
1783 #ifndef NDEBUG
1784   // Do some checking if we are in debug mode.
1785   BitstreamEntry Entry = Stream.advance();
1786   assert(Entry.Kind == BitstreamEntry::SubBlock);
1787   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1788 #else
1789   // In NDEBUG mode ignore the output so we don't get an unused variable
1790   // warning.
1791   Stream.advance();
1792 #endif
1793   return CurrentBit;
1794 }
1795 
1796 /// Parse the value symbol table at either the current parsing location or
1797 /// at the given bit offset if provided.
1798 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1799   uint64_t CurrentBit;
1800   // Pass in the Offset to distinguish between calling for the module-level
1801   // VST (where we want to jump to the VST offset) and the function-level
1802   // VST (where we don't).
1803   if (Offset > 0)
1804     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1805 
1806   // Compute the delta between the bitcode indices in the VST (the word offset
1807   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1808   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1809   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1810   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1811   // just before entering the VST subblock because: 1) the EnterSubBlock
1812   // changes the AbbrevID width; 2) the VST block is nested within the same
1813   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1814   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1815   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1816   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1817   unsigned FuncBitcodeOffsetDelta =
1818       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1819 
1820   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1821     return error("Invalid record");
1822 
1823   SmallVector<uint64_t, 64> Record;
1824 
1825   Triple TT(TheModule->getTargetTriple());
1826 
1827   // Read all the records for this value table.
1828   SmallString<128> ValueName;
1829   while (1) {
1830     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1831 
1832     switch (Entry.Kind) {
1833     case BitstreamEntry::SubBlock: // Handled for us already.
1834     case BitstreamEntry::Error:
1835       return error("Malformed block");
1836     case BitstreamEntry::EndBlock:
1837       if (Offset > 0)
1838         Stream.JumpToBit(CurrentBit);
1839       return std::error_code();
1840     case BitstreamEntry::Record:
1841       // The interesting case.
1842       break;
1843     }
1844 
1845     // Read a record.
1846     Record.clear();
1847     switch (Stream.readRecord(Entry.ID, Record)) {
1848     default:  // Default behavior: unknown type.
1849       break;
1850     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1851       ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
1852       if (std::error_code EC = ValOrErr.getError())
1853         return EC;
1854       ValOrErr.get();
1855       break;
1856     }
1857     case bitc::VST_CODE_FNENTRY: {
1858       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1859       ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
1860       if (std::error_code EC = ValOrErr.getError())
1861         return EC;
1862       Value *V = ValOrErr.get();
1863 
1864       auto *GO = dyn_cast<GlobalObject>(V);
1865       if (!GO) {
1866         // If this is an alias, need to get the actual Function object
1867         // it aliases, in order to set up the DeferredFunctionInfo entry below.
1868         auto *GA = dyn_cast<GlobalAlias>(V);
1869         if (GA)
1870           GO = GA->getBaseObject();
1871         assert(GO);
1872       }
1873 
1874       uint64_t FuncWordOffset = Record[1];
1875       Function *F = dyn_cast<Function>(GO);
1876       assert(F);
1877       uint64_t FuncBitOffset = FuncWordOffset * 32;
1878       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1879       // Set the LastFunctionBlockBit to point to the last function block.
1880       // Later when parsing is resumed after function materialization,
1881       // we can simply skip that last function block.
1882       if (FuncBitOffset > LastFunctionBlockBit)
1883         LastFunctionBlockBit = FuncBitOffset;
1884       break;
1885     }
1886     case bitc::VST_CODE_BBENTRY: {
1887       if (convertToString(Record, 1, ValueName))
1888         return error("Invalid record");
1889       BasicBlock *BB = getBasicBlock(Record[0]);
1890       if (!BB)
1891         return error("Invalid record");
1892 
1893       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1894       ValueName.clear();
1895       break;
1896     }
1897     }
1898   }
1899 }
1900 
1901 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
1902 std::error_code
1903 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
1904   if (Record.size() < 2)
1905     return error("Invalid record");
1906 
1907   unsigned Kind = Record[0];
1908   SmallString<8> Name(Record.begin() + 1, Record.end());
1909 
1910   unsigned NewKind = TheModule->getMDKindID(Name.str());
1911   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
1912     return error("Conflicting METADATA_KIND records");
1913   return std::error_code();
1914 }
1915 
1916 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
1917 
1918 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record,
1919                                                     StringRef Blob,
1920                                                     unsigned &NextMetadataNo) {
1921   // All the MDStrings in the block are emitted together in a single
1922   // record.  The strings are concatenated and stored in a blob along with
1923   // their sizes.
1924   if (Record.size() != 2)
1925     return error("Invalid record: metadata strings layout");
1926 
1927   unsigned NumStrings = Record[0];
1928   unsigned StringsOffset = Record[1];
1929   if (!NumStrings)
1930     return error("Invalid record: metadata strings with no strings");
1931   if (StringsOffset > Blob.size())
1932     return error("Invalid record: metadata strings corrupt offset");
1933 
1934   StringRef Lengths = Blob.slice(0, StringsOffset);
1935   SimpleBitstreamCursor R(*StreamFile);
1936   R.jumpToPointer(Lengths.begin());
1937 
1938   // Ensure that Blob doesn't get invalidated, even if this is reading from
1939   // a StreamingMemoryObject with corrupt data.
1940   R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset);
1941 
1942   StringRef Strings = Blob.drop_front(StringsOffset);
1943   do {
1944     if (R.AtEndOfStream())
1945       return error("Invalid record: metadata strings bad length");
1946 
1947     unsigned Size = R.ReadVBR(6);
1948     if (Strings.size() < Size)
1949       return error("Invalid record: metadata strings truncated chars");
1950 
1951     MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)),
1952                              NextMetadataNo++);
1953     Strings = Strings.drop_front(Size);
1954   } while (--NumStrings);
1955 
1956   return std::error_code();
1957 }
1958 
1959 namespace {
1960 class PlaceholderQueue {
1961   // Placeholders would thrash around when moved, so store in a std::deque
1962   // instead of some sort of vector.
1963   std::deque<DistinctMDOperandPlaceholder> PHs;
1964 
1965 public:
1966   DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID);
1967   void flush(BitcodeReaderMetadataList &MetadataList);
1968 };
1969 } // end namespace
1970 
1971 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) {
1972   PHs.emplace_back(ID);
1973   return PHs.back();
1974 }
1975 
1976 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) {
1977   while (!PHs.empty()) {
1978     PHs.front().replaceUseWith(
1979         MetadataList.getMetadataFwdRef(PHs.front().getID()));
1980     PHs.pop_front();
1981   }
1982 }
1983 
1984 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
1985 /// module level metadata.
1986 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
1987   IsMetadataMaterialized = true;
1988   unsigned NextMetadataNo = MetadataList.size();
1989 
1990   if (!ModuleLevel && MetadataList.hasFwdRefs())
1991     return error("Invalid metadata: fwd refs into function blocks");
1992 
1993   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1994     return error("Invalid record");
1995 
1996   std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms;
1997   SmallVector<uint64_t, 64> Record;
1998 
1999   PlaceholderQueue Placeholders;
2000   bool IsDistinct;
2001   auto getMD = [&](unsigned ID) -> Metadata * {
2002     if (!IsDistinct)
2003       return MetadataList.getMetadataFwdRef(ID);
2004     if (auto *MD = MetadataList.getMetadataIfResolved(ID))
2005       return MD;
2006     return &Placeholders.getPlaceholderOp(ID);
2007   };
2008   auto getMDOrNull = [&](unsigned ID) -> Metadata * {
2009     if (ID)
2010       return getMD(ID - 1);
2011     return nullptr;
2012   };
2013   auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * {
2014     if (ID)
2015       return MetadataList.getMetadataFwdRef(ID - 1);
2016     return nullptr;
2017   };
2018   auto getMDString = [&](unsigned ID) -> MDString *{
2019     // This requires that the ID is not really a forward reference.  In
2020     // particular, the MDString must already have been resolved.
2021     return cast_or_null<MDString>(getMDOrNull(ID));
2022   };
2023 
2024 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
2025   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
2026 
2027   // Read all the records.
2028   while (1) {
2029     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2030 
2031     switch (Entry.Kind) {
2032     case BitstreamEntry::SubBlock: // Handled for us already.
2033     case BitstreamEntry::Error:
2034       return error("Malformed block");
2035     case BitstreamEntry::EndBlock:
2036       // Upgrade old-style CU <-> SP pointers to point from SP to CU.
2037       for (auto CU_SP : CUSubprograms)
2038         if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second))
2039           for (auto &Op : SPs->operands())
2040             if (auto *SP = dyn_cast_or_null<MDNode>(Op))
2041               SP->replaceOperandWith(7, CU_SP.first);
2042 
2043       MetadataList.tryToResolveCycles();
2044       Placeholders.flush(MetadataList);
2045       return std::error_code();
2046     case BitstreamEntry::Record:
2047       // The interesting case.
2048       break;
2049     }
2050 
2051     // Read a record.
2052     Record.clear();
2053     StringRef Blob;
2054     unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob);
2055     IsDistinct = false;
2056     switch (Code) {
2057     default:  // Default behavior: ignore.
2058       break;
2059     case bitc::METADATA_NAME: {
2060       // Read name of the named metadata.
2061       SmallString<8> Name(Record.begin(), Record.end());
2062       Record.clear();
2063       Code = Stream.ReadCode();
2064 
2065       unsigned NextBitCode = Stream.readRecord(Code, Record);
2066       if (NextBitCode != bitc::METADATA_NAMED_NODE)
2067         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
2068 
2069       // Read named metadata elements.
2070       unsigned Size = Record.size();
2071       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
2072       for (unsigned i = 0; i != Size; ++i) {
2073         MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
2074         if (!MD)
2075           return error("Invalid record");
2076         NMD->addOperand(MD);
2077       }
2078       break;
2079     }
2080     case bitc::METADATA_OLD_FN_NODE: {
2081       // FIXME: Remove in 4.0.
2082       // This is a LocalAsMetadata record, the only type of function-local
2083       // metadata.
2084       if (Record.size() % 2 == 1)
2085         return error("Invalid record");
2086 
2087       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
2088       // to be legal, but there's no upgrade path.
2089       auto dropRecord = [&] {
2090         MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
2091       };
2092       if (Record.size() != 2) {
2093         dropRecord();
2094         break;
2095       }
2096 
2097       Type *Ty = getTypeByID(Record[0]);
2098       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
2099         dropRecord();
2100         break;
2101       }
2102 
2103       MetadataList.assignValue(
2104           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2105           NextMetadataNo++);
2106       break;
2107     }
2108     case bitc::METADATA_OLD_NODE: {
2109       // FIXME: Remove in 4.0.
2110       if (Record.size() % 2 == 1)
2111         return error("Invalid record");
2112 
2113       unsigned Size = Record.size();
2114       SmallVector<Metadata *, 8> Elts;
2115       for (unsigned i = 0; i != Size; i += 2) {
2116         Type *Ty = getTypeByID(Record[i]);
2117         if (!Ty)
2118           return error("Invalid record");
2119         if (Ty->isMetadataTy())
2120           Elts.push_back(getMD(Record[i + 1]));
2121         else if (!Ty->isVoidTy()) {
2122           auto *MD =
2123               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2124           assert(isa<ConstantAsMetadata>(MD) &&
2125                  "Expected non-function-local metadata");
2126           Elts.push_back(MD);
2127         } else
2128           Elts.push_back(nullptr);
2129       }
2130       MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2131       break;
2132     }
2133     case bitc::METADATA_VALUE: {
2134       if (Record.size() != 2)
2135         return error("Invalid record");
2136 
2137       Type *Ty = getTypeByID(Record[0]);
2138       if (Ty->isMetadataTy() || Ty->isVoidTy())
2139         return error("Invalid record");
2140 
2141       MetadataList.assignValue(
2142           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2143           NextMetadataNo++);
2144       break;
2145     }
2146     case bitc::METADATA_DISTINCT_NODE:
2147       IsDistinct = true;
2148       // fallthrough...
2149     case bitc::METADATA_NODE: {
2150       SmallVector<Metadata *, 8> Elts;
2151       Elts.reserve(Record.size());
2152       for (unsigned ID : Record)
2153         Elts.push_back(getMDOrNull(ID));
2154       MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2155                                           : MDNode::get(Context, Elts),
2156                                NextMetadataNo++);
2157       break;
2158     }
2159     case bitc::METADATA_LOCATION: {
2160       if (Record.size() != 5)
2161         return error("Invalid record");
2162 
2163       IsDistinct = Record[0];
2164       unsigned Line = Record[1];
2165       unsigned Column = Record[2];
2166       Metadata *Scope = getMD(Record[3]);
2167       Metadata *InlinedAt = getMDOrNull(Record[4]);
2168       MetadataList.assignValue(
2169           GET_OR_DISTINCT(DILocation,
2170                           (Context, Line, Column, Scope, InlinedAt)),
2171           NextMetadataNo++);
2172       break;
2173     }
2174     case bitc::METADATA_GENERIC_DEBUG: {
2175       if (Record.size() < 4)
2176         return error("Invalid record");
2177 
2178       IsDistinct = Record[0];
2179       unsigned Tag = Record[1];
2180       unsigned Version = Record[2];
2181 
2182       if (Tag >= 1u << 16 || Version != 0)
2183         return error("Invalid record");
2184 
2185       auto *Header = getMDString(Record[3]);
2186       SmallVector<Metadata *, 8> DwarfOps;
2187       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2188         DwarfOps.push_back(getMDOrNull(Record[I]));
2189       MetadataList.assignValue(
2190           GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)),
2191           NextMetadataNo++);
2192       break;
2193     }
2194     case bitc::METADATA_SUBRANGE: {
2195       if (Record.size() != 3)
2196         return error("Invalid record");
2197 
2198       IsDistinct = Record[0];
2199       MetadataList.assignValue(
2200           GET_OR_DISTINCT(DISubrange,
2201                           (Context, Record[1], unrotateSign(Record[2]))),
2202           NextMetadataNo++);
2203       break;
2204     }
2205     case bitc::METADATA_ENUMERATOR: {
2206       if (Record.size() != 3)
2207         return error("Invalid record");
2208 
2209       IsDistinct = Record[0];
2210       MetadataList.assignValue(
2211           GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]),
2212                                          getMDString(Record[2]))),
2213           NextMetadataNo++);
2214       break;
2215     }
2216     case bitc::METADATA_BASIC_TYPE: {
2217       if (Record.size() != 6)
2218         return error("Invalid record");
2219 
2220       IsDistinct = Record[0];
2221       MetadataList.assignValue(
2222           GET_OR_DISTINCT(DIBasicType,
2223                           (Context, Record[1], getMDString(Record[2]),
2224                            Record[3], Record[4], Record[5])),
2225           NextMetadataNo++);
2226       break;
2227     }
2228     case bitc::METADATA_DERIVED_TYPE: {
2229       if (Record.size() != 12)
2230         return error("Invalid record");
2231 
2232       IsDistinct = Record[0];
2233       MetadataList.assignValue(
2234           GET_OR_DISTINCT(DIDerivedType,
2235                           (Context, Record[1], getMDString(Record[2]),
2236                            getMDOrNull(Record[3]), Record[4],
2237                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2238                            Record[7], Record[8], Record[9], Record[10],
2239                            getMDOrNull(Record[11]))),
2240           NextMetadataNo++);
2241       break;
2242     }
2243     case bitc::METADATA_COMPOSITE_TYPE: {
2244       if (Record.size() != 16)
2245         return error("Invalid record");
2246 
2247       // If we have a UUID and this is not a forward declaration, lookup the
2248       // mapping.
2249       IsDistinct = Record[0];
2250       unsigned Tag = Record[1];
2251       MDString *Name = getMDString(Record[2]);
2252       Metadata *File = getMDOrNull(Record[3]);
2253       unsigned Line = Record[4];
2254       Metadata *Scope = getMDOrNull(Record[5]);
2255       Metadata *BaseType = getMDOrNull(Record[6]);
2256       uint64_t SizeInBits = Record[7];
2257       uint64_t AlignInBits = Record[8];
2258       uint64_t OffsetInBits = Record[9];
2259       unsigned Flags = Record[10];
2260       Metadata *Elements = getMDOrNull(Record[11]);
2261       unsigned RuntimeLang = Record[12];
2262       Metadata *VTableHolder = getMDOrNull(Record[13]);
2263       Metadata *TemplateParams = getMDOrNull(Record[14]);
2264       auto *Identifier = getMDString(Record[15]);
2265       DICompositeType *CT = nullptr;
2266       if (Identifier)
2267         CT = DICompositeType::buildODRType(
2268             Context, *Identifier, Tag, Name, File, Line, Scope, BaseType,
2269             SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
2270             VTableHolder, TemplateParams);
2271 
2272       // Create a node if we didn't get a lazy ODR type.
2273       if (!CT)
2274         CT = GET_OR_DISTINCT(DICompositeType,
2275                              (Context, Tag, Name, File, Line, Scope, BaseType,
2276                               SizeInBits, AlignInBits, OffsetInBits, Flags,
2277                               Elements, RuntimeLang, VTableHolder,
2278                               TemplateParams, Identifier));
2279 
2280       MetadataList.assignValue(CT, NextMetadataNo++);
2281       break;
2282     }
2283     case bitc::METADATA_SUBROUTINE_TYPE: {
2284       if (Record.size() != 3)
2285         return error("Invalid record");
2286 
2287       IsDistinct = Record[0];
2288       MetadataList.assignValue(
2289           GET_OR_DISTINCT(DISubroutineType,
2290                           (Context, Record[1], getMDOrNull(Record[2]))),
2291           NextMetadataNo++);
2292       break;
2293     }
2294 
2295     case bitc::METADATA_MODULE: {
2296       if (Record.size() != 6)
2297         return error("Invalid record");
2298 
2299       IsDistinct = Record[0];
2300       MetadataList.assignValue(
2301           GET_OR_DISTINCT(DIModule,
2302                           (Context, getMDOrNull(Record[1]),
2303                            getMDString(Record[2]), getMDString(Record[3]),
2304                            getMDString(Record[4]), getMDString(Record[5]))),
2305           NextMetadataNo++);
2306       break;
2307     }
2308 
2309     case bitc::METADATA_FILE: {
2310       if (Record.size() != 3)
2311         return error("Invalid record");
2312 
2313       IsDistinct = Record[0];
2314       MetadataList.assignValue(
2315           GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]),
2316                                    getMDString(Record[2]))),
2317           NextMetadataNo++);
2318       break;
2319     }
2320     case bitc::METADATA_COMPILE_UNIT: {
2321       if (Record.size() < 14 || Record.size() > 16)
2322         return error("Invalid record");
2323 
2324       // Ignore Record[0], which indicates whether this compile unit is
2325       // distinct.  It's always distinct.
2326       IsDistinct = true;
2327       auto *CU = DICompileUnit::getDistinct(
2328           Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]),
2329           Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]),
2330           Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2331           getMDOrNull(Record[12]), getMDOrNull(Record[13]),
2332           Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
2333           Record.size() <= 14 ? 0 : Record[14]);
2334 
2335       MetadataList.assignValue(CU, NextMetadataNo++);
2336 
2337       // Move the Upgrade the list of subprograms.
2338       if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11]))
2339         CUSubprograms.push_back({CU, SPs});
2340       break;
2341     }
2342     case bitc::METADATA_SUBPROGRAM: {
2343       if (Record.size() != 18 && Record.size() != 19)
2344         return error("Invalid record");
2345 
2346       IsDistinct =
2347           Record[0] || Record[8]; // All definitions should be distinct.
2348       // Version 1 has a Function as Record[15].
2349       // Version 2 has removed Record[15].
2350       // Version 3 has the Unit as Record[15].
2351       Metadata *CUorFn = getMDOrNull(Record[15]);
2352       unsigned Offset = Record.size() == 19 ? 1 : 0;
2353       bool HasFn = Offset && dyn_cast_or_null<ConstantAsMetadata>(CUorFn);
2354       bool HasCU = Offset && !HasFn;
2355       DISubprogram *SP = GET_OR_DISTINCT(
2356           DISubprogram,
2357           (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
2358            getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2359            getMDOrNull(Record[6]), Record[7], Record[8], Record[9],
2360            getMDOrNull(Record[10]), Record[11], Record[12], Record[13],
2361            Record[14], HasCU ? CUorFn : nullptr,
2362            getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]),
2363            getMDOrNull(Record[17 + Offset])));
2364       MetadataList.assignValue(SP, NextMetadataNo++);
2365 
2366       // Upgrade sp->function mapping to function->sp mapping.
2367       if (HasFn) {
2368         if (auto *CMD = dyn_cast<ConstantAsMetadata>(CUorFn))
2369           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2370             if (F->isMaterializable())
2371               // Defer until materialized; unmaterialized functions may not have
2372               // metadata.
2373               FunctionsWithSPs[F] = SP;
2374             else if (!F->empty())
2375               F->setSubprogram(SP);
2376           }
2377       }
2378       break;
2379     }
2380     case bitc::METADATA_LEXICAL_BLOCK: {
2381       if (Record.size() != 5)
2382         return error("Invalid record");
2383 
2384       IsDistinct = Record[0];
2385       MetadataList.assignValue(
2386           GET_OR_DISTINCT(DILexicalBlock,
2387                           (Context, getMDOrNull(Record[1]),
2388                            getMDOrNull(Record[2]), Record[3], Record[4])),
2389           NextMetadataNo++);
2390       break;
2391     }
2392     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2393       if (Record.size() != 4)
2394         return error("Invalid record");
2395 
2396       IsDistinct = Record[0];
2397       MetadataList.assignValue(
2398           GET_OR_DISTINCT(DILexicalBlockFile,
2399                           (Context, getMDOrNull(Record[1]),
2400                            getMDOrNull(Record[2]), Record[3])),
2401           NextMetadataNo++);
2402       break;
2403     }
2404     case bitc::METADATA_NAMESPACE: {
2405       if (Record.size() != 5)
2406         return error("Invalid record");
2407 
2408       IsDistinct = Record[0];
2409       MetadataList.assignValue(
2410           GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]),
2411                                         getMDOrNull(Record[2]),
2412                                         getMDString(Record[3]), Record[4])),
2413           NextMetadataNo++);
2414       break;
2415     }
2416     case bitc::METADATA_MACRO: {
2417       if (Record.size() != 5)
2418         return error("Invalid record");
2419 
2420       IsDistinct = Record[0];
2421       MetadataList.assignValue(
2422           GET_OR_DISTINCT(DIMacro,
2423                           (Context, Record[1], Record[2],
2424                            getMDString(Record[3]), getMDString(Record[4]))),
2425           NextMetadataNo++);
2426       break;
2427     }
2428     case bitc::METADATA_MACRO_FILE: {
2429       if (Record.size() != 5)
2430         return error("Invalid record");
2431 
2432       IsDistinct = Record[0];
2433       MetadataList.assignValue(
2434           GET_OR_DISTINCT(DIMacroFile,
2435                           (Context, Record[1], Record[2],
2436                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2437           NextMetadataNo++);
2438       break;
2439     }
2440     case bitc::METADATA_TEMPLATE_TYPE: {
2441       if (Record.size() != 3)
2442         return error("Invalid record");
2443 
2444       IsDistinct = Record[0];
2445       MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2446                                                (Context, getMDString(Record[1]),
2447                                                 getMDOrNull(Record[2]))),
2448                                NextMetadataNo++);
2449       break;
2450     }
2451     case bitc::METADATA_TEMPLATE_VALUE: {
2452       if (Record.size() != 5)
2453         return error("Invalid record");
2454 
2455       IsDistinct = Record[0];
2456       MetadataList.assignValue(
2457           GET_OR_DISTINCT(DITemplateValueParameter,
2458                           (Context, Record[1], getMDString(Record[2]),
2459                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2460           NextMetadataNo++);
2461       break;
2462     }
2463     case bitc::METADATA_GLOBAL_VAR: {
2464       if (Record.size() != 11)
2465         return error("Invalid record");
2466 
2467       IsDistinct = Record[0];
2468       MetadataList.assignValue(
2469           GET_OR_DISTINCT(DIGlobalVariable,
2470                           (Context, getMDOrNull(Record[1]),
2471                            getMDString(Record[2]), getMDString(Record[3]),
2472                            getMDOrNull(Record[4]), Record[5],
2473                            getMDOrNull(Record[6]), Record[7], Record[8],
2474                            getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
2475           NextMetadataNo++);
2476       break;
2477     }
2478     case bitc::METADATA_LOCAL_VAR: {
2479       // 10th field is for the obseleted 'inlinedAt:' field.
2480       if (Record.size() < 8 || Record.size() > 10)
2481         return error("Invalid record");
2482 
2483       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2484       // DW_TAG_arg_variable.
2485       IsDistinct = Record[0];
2486       bool HasTag = Record.size() > 8;
2487       MetadataList.assignValue(
2488           GET_OR_DISTINCT(DILocalVariable,
2489                           (Context, getMDOrNull(Record[1 + HasTag]),
2490                            getMDString(Record[2 + HasTag]),
2491                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2492                            getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag],
2493                            Record[7 + HasTag])),
2494           NextMetadataNo++);
2495       break;
2496     }
2497     case bitc::METADATA_EXPRESSION: {
2498       if (Record.size() < 1)
2499         return error("Invalid record");
2500 
2501       IsDistinct = Record[0];
2502       MetadataList.assignValue(
2503           GET_OR_DISTINCT(DIExpression,
2504                           (Context, makeArrayRef(Record).slice(1))),
2505           NextMetadataNo++);
2506       break;
2507     }
2508     case bitc::METADATA_OBJC_PROPERTY: {
2509       if (Record.size() != 8)
2510         return error("Invalid record");
2511 
2512       IsDistinct = Record[0];
2513       MetadataList.assignValue(
2514           GET_OR_DISTINCT(DIObjCProperty,
2515                           (Context, getMDString(Record[1]),
2516                            getMDOrNull(Record[2]), Record[3],
2517                            getMDString(Record[4]), getMDString(Record[5]),
2518                            Record[6], getMDOrNull(Record[7]))),
2519           NextMetadataNo++);
2520       break;
2521     }
2522     case bitc::METADATA_IMPORTED_ENTITY: {
2523       if (Record.size() != 6)
2524         return error("Invalid record");
2525 
2526       IsDistinct = Record[0];
2527       MetadataList.assignValue(
2528           GET_OR_DISTINCT(DIImportedEntity,
2529                           (Context, Record[1], getMDOrNull(Record[2]),
2530                            getMDOrNull(Record[3]), Record[4],
2531                            getMDString(Record[5]))),
2532           NextMetadataNo++);
2533       break;
2534     }
2535     case bitc::METADATA_STRING_OLD: {
2536       std::string String(Record.begin(), Record.end());
2537 
2538       // Test for upgrading !llvm.loop.
2539       HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String);
2540 
2541       Metadata *MD = MDString::get(Context, String);
2542       MetadataList.assignValue(MD, NextMetadataNo++);
2543       break;
2544     }
2545     case bitc::METADATA_STRINGS:
2546       if (std::error_code EC =
2547               parseMetadataStrings(Record, Blob, NextMetadataNo))
2548         return EC;
2549       break;
2550     case bitc::METADATA_KIND: {
2551       // Support older bitcode files that had METADATA_KIND records in a
2552       // block with METADATA_BLOCK_ID.
2553       if (std::error_code EC = parseMetadataKindRecord(Record))
2554         return EC;
2555       break;
2556     }
2557     }
2558   }
2559 #undef GET_OR_DISTINCT
2560 }
2561 
2562 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
2563 std::error_code BitcodeReader::parseMetadataKinds() {
2564   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
2565     return error("Invalid record");
2566 
2567   SmallVector<uint64_t, 64> Record;
2568 
2569   // Read all the records.
2570   while (1) {
2571     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2572 
2573     switch (Entry.Kind) {
2574     case BitstreamEntry::SubBlock: // Handled for us already.
2575     case BitstreamEntry::Error:
2576       return error("Malformed block");
2577     case BitstreamEntry::EndBlock:
2578       return std::error_code();
2579     case BitstreamEntry::Record:
2580       // The interesting case.
2581       break;
2582     }
2583 
2584     // Read a record.
2585     Record.clear();
2586     unsigned Code = Stream.readRecord(Entry.ID, Record);
2587     switch (Code) {
2588     default: // Default behavior: ignore.
2589       break;
2590     case bitc::METADATA_KIND: {
2591       if (std::error_code EC = parseMetadataKindRecord(Record))
2592         return EC;
2593       break;
2594     }
2595     }
2596   }
2597 }
2598 
2599 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2600 /// encoding.
2601 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2602   if ((V & 1) == 0)
2603     return V >> 1;
2604   if (V != 1)
2605     return -(V >> 1);
2606   // There is no such thing as -0 with integers.  "-0" really means MININT.
2607   return 1ULL << 63;
2608 }
2609 
2610 /// Resolve all of the initializers for global values and aliases that we can.
2611 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2612   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2613   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >
2614       IndirectSymbolInitWorklist;
2615   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2616   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2617   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2618 
2619   GlobalInitWorklist.swap(GlobalInits);
2620   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2621   FunctionPrefixWorklist.swap(FunctionPrefixes);
2622   FunctionPrologueWorklist.swap(FunctionPrologues);
2623   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2624 
2625   while (!GlobalInitWorklist.empty()) {
2626     unsigned ValID = GlobalInitWorklist.back().second;
2627     if (ValID >= ValueList.size()) {
2628       // Not ready to resolve this yet, it requires something later in the file.
2629       GlobalInits.push_back(GlobalInitWorklist.back());
2630     } else {
2631       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2632         GlobalInitWorklist.back().first->setInitializer(C);
2633       else
2634         return error("Expected a constant");
2635     }
2636     GlobalInitWorklist.pop_back();
2637   }
2638 
2639   while (!IndirectSymbolInitWorklist.empty()) {
2640     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2641     if (ValID >= ValueList.size()) {
2642       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2643     } else {
2644       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2645       if (!C)
2646         return error("Expected a constant");
2647       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2648       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2649         return error("Alias and aliasee types don't match");
2650       GIS->setIndirectSymbol(C);
2651     }
2652     IndirectSymbolInitWorklist.pop_back();
2653   }
2654 
2655   while (!FunctionPrefixWorklist.empty()) {
2656     unsigned ValID = FunctionPrefixWorklist.back().second;
2657     if (ValID >= ValueList.size()) {
2658       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2659     } else {
2660       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2661         FunctionPrefixWorklist.back().first->setPrefixData(C);
2662       else
2663         return error("Expected a constant");
2664     }
2665     FunctionPrefixWorklist.pop_back();
2666   }
2667 
2668   while (!FunctionPrologueWorklist.empty()) {
2669     unsigned ValID = FunctionPrologueWorklist.back().second;
2670     if (ValID >= ValueList.size()) {
2671       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2672     } else {
2673       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2674         FunctionPrologueWorklist.back().first->setPrologueData(C);
2675       else
2676         return error("Expected a constant");
2677     }
2678     FunctionPrologueWorklist.pop_back();
2679   }
2680 
2681   while (!FunctionPersonalityFnWorklist.empty()) {
2682     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2683     if (ValID >= ValueList.size()) {
2684       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2685     } else {
2686       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2687         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2688       else
2689         return error("Expected a constant");
2690     }
2691     FunctionPersonalityFnWorklist.pop_back();
2692   }
2693 
2694   return std::error_code();
2695 }
2696 
2697 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2698   SmallVector<uint64_t, 8> Words(Vals.size());
2699   std::transform(Vals.begin(), Vals.end(), Words.begin(),
2700                  BitcodeReader::decodeSignRotatedValue);
2701 
2702   return APInt(TypeBits, Words);
2703 }
2704 
2705 std::error_code BitcodeReader::parseConstants() {
2706   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2707     return error("Invalid record");
2708 
2709   SmallVector<uint64_t, 64> Record;
2710 
2711   // Read all the records for this value table.
2712   Type *CurTy = Type::getInt32Ty(Context);
2713   unsigned NextCstNo = ValueList.size();
2714   while (1) {
2715     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2716 
2717     switch (Entry.Kind) {
2718     case BitstreamEntry::SubBlock: // Handled for us already.
2719     case BitstreamEntry::Error:
2720       return error("Malformed block");
2721     case BitstreamEntry::EndBlock:
2722       if (NextCstNo != ValueList.size())
2723         return error("Invalid constant reference");
2724 
2725       // Once all the constants have been read, go through and resolve forward
2726       // references.
2727       ValueList.resolveConstantForwardRefs();
2728       return std::error_code();
2729     case BitstreamEntry::Record:
2730       // The interesting case.
2731       break;
2732     }
2733 
2734     // Read a record.
2735     Record.clear();
2736     Value *V = nullptr;
2737     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2738     switch (BitCode) {
2739     default:  // Default behavior: unknown constant
2740     case bitc::CST_CODE_UNDEF:     // UNDEF
2741       V = UndefValue::get(CurTy);
2742       break;
2743     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2744       if (Record.empty())
2745         return error("Invalid record");
2746       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2747         return error("Invalid record");
2748       CurTy = TypeList[Record[0]];
2749       continue;  // Skip the ValueList manipulation.
2750     case bitc::CST_CODE_NULL:      // NULL
2751       V = Constant::getNullValue(CurTy);
2752       break;
2753     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2754       if (!CurTy->isIntegerTy() || Record.empty())
2755         return error("Invalid record");
2756       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2757       break;
2758     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2759       if (!CurTy->isIntegerTy() || Record.empty())
2760         return error("Invalid record");
2761 
2762       APInt VInt =
2763           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2764       V = ConstantInt::get(Context, VInt);
2765 
2766       break;
2767     }
2768     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2769       if (Record.empty())
2770         return error("Invalid record");
2771       if (CurTy->isHalfTy())
2772         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
2773                                              APInt(16, (uint16_t)Record[0])));
2774       else if (CurTy->isFloatTy())
2775         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
2776                                              APInt(32, (uint32_t)Record[0])));
2777       else if (CurTy->isDoubleTy())
2778         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
2779                                              APInt(64, Record[0])));
2780       else if (CurTy->isX86_FP80Ty()) {
2781         // Bits are not stored the same way as a normal i80 APInt, compensate.
2782         uint64_t Rearrange[2];
2783         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2784         Rearrange[1] = Record[0] >> 48;
2785         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
2786                                              APInt(80, Rearrange)));
2787       } else if (CurTy->isFP128Ty())
2788         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2789                                              APInt(128, Record)));
2790       else if (CurTy->isPPC_FP128Ty())
2791         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2792                                              APInt(128, Record)));
2793       else
2794         V = UndefValue::get(CurTy);
2795       break;
2796     }
2797 
2798     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2799       if (Record.empty())
2800         return error("Invalid record");
2801 
2802       unsigned Size = Record.size();
2803       SmallVector<Constant*, 16> Elts;
2804 
2805       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2806         for (unsigned i = 0; i != Size; ++i)
2807           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2808                                                      STy->getElementType(i)));
2809         V = ConstantStruct::get(STy, Elts);
2810       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2811         Type *EltTy = ATy->getElementType();
2812         for (unsigned i = 0; i != Size; ++i)
2813           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2814         V = ConstantArray::get(ATy, Elts);
2815       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2816         Type *EltTy = VTy->getElementType();
2817         for (unsigned i = 0; i != Size; ++i)
2818           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2819         V = ConstantVector::get(Elts);
2820       } else {
2821         V = UndefValue::get(CurTy);
2822       }
2823       break;
2824     }
2825     case bitc::CST_CODE_STRING:    // STRING: [values]
2826     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2827       if (Record.empty())
2828         return error("Invalid record");
2829 
2830       SmallString<16> Elts(Record.begin(), Record.end());
2831       V = ConstantDataArray::getString(Context, Elts,
2832                                        BitCode == bitc::CST_CODE_CSTRING);
2833       break;
2834     }
2835     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2836       if (Record.empty())
2837         return error("Invalid record");
2838 
2839       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2840       if (EltTy->isIntegerTy(8)) {
2841         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2842         if (isa<VectorType>(CurTy))
2843           V = ConstantDataVector::get(Context, Elts);
2844         else
2845           V = ConstantDataArray::get(Context, Elts);
2846       } else if (EltTy->isIntegerTy(16)) {
2847         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2848         if (isa<VectorType>(CurTy))
2849           V = ConstantDataVector::get(Context, Elts);
2850         else
2851           V = ConstantDataArray::get(Context, Elts);
2852       } else if (EltTy->isIntegerTy(32)) {
2853         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2854         if (isa<VectorType>(CurTy))
2855           V = ConstantDataVector::get(Context, Elts);
2856         else
2857           V = ConstantDataArray::get(Context, Elts);
2858       } else if (EltTy->isIntegerTy(64)) {
2859         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2860         if (isa<VectorType>(CurTy))
2861           V = ConstantDataVector::get(Context, Elts);
2862         else
2863           V = ConstantDataArray::get(Context, Elts);
2864       } else if (EltTy->isHalfTy()) {
2865         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2866         if (isa<VectorType>(CurTy))
2867           V = ConstantDataVector::getFP(Context, Elts);
2868         else
2869           V = ConstantDataArray::getFP(Context, Elts);
2870       } else if (EltTy->isFloatTy()) {
2871         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2872         if (isa<VectorType>(CurTy))
2873           V = ConstantDataVector::getFP(Context, Elts);
2874         else
2875           V = ConstantDataArray::getFP(Context, Elts);
2876       } else if (EltTy->isDoubleTy()) {
2877         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2878         if (isa<VectorType>(CurTy))
2879           V = ConstantDataVector::getFP(Context, Elts);
2880         else
2881           V = ConstantDataArray::getFP(Context, Elts);
2882       } else {
2883         return error("Invalid type for value");
2884       }
2885       break;
2886     }
2887     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2888       if (Record.size() < 3)
2889         return error("Invalid record");
2890       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2891       if (Opc < 0) {
2892         V = UndefValue::get(CurTy);  // Unknown binop.
2893       } else {
2894         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2895         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2896         unsigned Flags = 0;
2897         if (Record.size() >= 4) {
2898           if (Opc == Instruction::Add ||
2899               Opc == Instruction::Sub ||
2900               Opc == Instruction::Mul ||
2901               Opc == Instruction::Shl) {
2902             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2903               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2904             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2905               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2906           } else if (Opc == Instruction::SDiv ||
2907                      Opc == Instruction::UDiv ||
2908                      Opc == Instruction::LShr ||
2909                      Opc == Instruction::AShr) {
2910             if (Record[3] & (1 << bitc::PEO_EXACT))
2911               Flags |= SDivOperator::IsExact;
2912           }
2913         }
2914         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2915       }
2916       break;
2917     }
2918     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2919       if (Record.size() < 3)
2920         return error("Invalid record");
2921       int Opc = getDecodedCastOpcode(Record[0]);
2922       if (Opc < 0) {
2923         V = UndefValue::get(CurTy);  // Unknown cast.
2924       } else {
2925         Type *OpTy = getTypeByID(Record[1]);
2926         if (!OpTy)
2927           return error("Invalid record");
2928         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2929         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2930         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2931       }
2932       break;
2933     }
2934     case bitc::CST_CODE_CE_INBOUNDS_GEP:
2935     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
2936       unsigned OpNum = 0;
2937       Type *PointeeType = nullptr;
2938       if (Record.size() % 2)
2939         PointeeType = getTypeByID(Record[OpNum++]);
2940       SmallVector<Constant*, 16> Elts;
2941       while (OpNum != Record.size()) {
2942         Type *ElTy = getTypeByID(Record[OpNum++]);
2943         if (!ElTy)
2944           return error("Invalid record");
2945         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2946       }
2947 
2948       if (PointeeType &&
2949           PointeeType !=
2950               cast<SequentialType>(Elts[0]->getType()->getScalarType())
2951                   ->getElementType())
2952         return error("Explicit gep operator type does not match pointee type "
2953                      "of pointer operand");
2954 
2955       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2956       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2957                                          BitCode ==
2958                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
2959       break;
2960     }
2961     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2962       if (Record.size() < 3)
2963         return error("Invalid record");
2964 
2965       Type *SelectorTy = Type::getInt1Ty(Context);
2966 
2967       // The selector might be an i1 or an <n x i1>
2968       // Get the type from the ValueList before getting a forward ref.
2969       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2970         if (Value *V = ValueList[Record[0]])
2971           if (SelectorTy != V->getType())
2972             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2973 
2974       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2975                                                               SelectorTy),
2976                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2977                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2978       break;
2979     }
2980     case bitc::CST_CODE_CE_EXTRACTELT
2981         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2982       if (Record.size() < 3)
2983         return error("Invalid record");
2984       VectorType *OpTy =
2985         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2986       if (!OpTy)
2987         return error("Invalid record");
2988       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2989       Constant *Op1 = nullptr;
2990       if (Record.size() == 4) {
2991         Type *IdxTy = getTypeByID(Record[2]);
2992         if (!IdxTy)
2993           return error("Invalid record");
2994         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2995       } else // TODO: Remove with llvm 4.0
2996         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2997       if (!Op1)
2998         return error("Invalid record");
2999       V = ConstantExpr::getExtractElement(Op0, Op1);
3000       break;
3001     }
3002     case bitc::CST_CODE_CE_INSERTELT
3003         : { // CE_INSERTELT: [opval, opval, opty, opval]
3004       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3005       if (Record.size() < 3 || !OpTy)
3006         return error("Invalid record");
3007       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3008       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
3009                                                   OpTy->getElementType());
3010       Constant *Op2 = nullptr;
3011       if (Record.size() == 4) {
3012         Type *IdxTy = getTypeByID(Record[2]);
3013         if (!IdxTy)
3014           return error("Invalid record");
3015         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3016       } else // TODO: Remove with llvm 4.0
3017         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3018       if (!Op2)
3019         return error("Invalid record");
3020       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
3021       break;
3022     }
3023     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3024       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3025       if (Record.size() < 3 || !OpTy)
3026         return error("Invalid record");
3027       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3028       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
3029       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3030                                                  OpTy->getNumElements());
3031       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
3032       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3033       break;
3034     }
3035     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3036       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3037       VectorType *OpTy =
3038         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3039       if (Record.size() < 4 || !RTy || !OpTy)
3040         return error("Invalid record");
3041       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3042       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3043       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3044                                                  RTy->getNumElements());
3045       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
3046       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3047       break;
3048     }
3049     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3050       if (Record.size() < 4)
3051         return error("Invalid record");
3052       Type *OpTy = getTypeByID(Record[0]);
3053       if (!OpTy)
3054         return error("Invalid record");
3055       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3056       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3057 
3058       if (OpTy->isFPOrFPVectorTy())
3059         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
3060       else
3061         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
3062       break;
3063     }
3064     // This maintains backward compatibility, pre-asm dialect keywords.
3065     // FIXME: Remove with the 4.0 release.
3066     case bitc::CST_CODE_INLINEASM_OLD: {
3067       if (Record.size() < 2)
3068         return error("Invalid record");
3069       std::string AsmStr, ConstrStr;
3070       bool HasSideEffects = Record[0] & 1;
3071       bool IsAlignStack = Record[0] >> 1;
3072       unsigned AsmStrSize = Record[1];
3073       if (2+AsmStrSize >= Record.size())
3074         return error("Invalid record");
3075       unsigned ConstStrSize = Record[2+AsmStrSize];
3076       if (3+AsmStrSize+ConstStrSize > Record.size())
3077         return error("Invalid record");
3078 
3079       for (unsigned i = 0; i != AsmStrSize; ++i)
3080         AsmStr += (char)Record[2+i];
3081       for (unsigned i = 0; i != ConstStrSize; ++i)
3082         ConstrStr += (char)Record[3+AsmStrSize+i];
3083       PointerType *PTy = cast<PointerType>(CurTy);
3084       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3085                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
3086       break;
3087     }
3088     // This version adds support for the asm dialect keywords (e.g.,
3089     // inteldialect).
3090     case bitc::CST_CODE_INLINEASM: {
3091       if (Record.size() < 2)
3092         return error("Invalid record");
3093       std::string AsmStr, ConstrStr;
3094       bool HasSideEffects = Record[0] & 1;
3095       bool IsAlignStack = (Record[0] >> 1) & 1;
3096       unsigned AsmDialect = Record[0] >> 2;
3097       unsigned AsmStrSize = Record[1];
3098       if (2+AsmStrSize >= Record.size())
3099         return error("Invalid record");
3100       unsigned ConstStrSize = Record[2+AsmStrSize];
3101       if (3+AsmStrSize+ConstStrSize > Record.size())
3102         return error("Invalid record");
3103 
3104       for (unsigned i = 0; i != AsmStrSize; ++i)
3105         AsmStr += (char)Record[2+i];
3106       for (unsigned i = 0; i != ConstStrSize; ++i)
3107         ConstrStr += (char)Record[3+AsmStrSize+i];
3108       PointerType *PTy = cast<PointerType>(CurTy);
3109       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3110                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3111                          InlineAsm::AsmDialect(AsmDialect));
3112       break;
3113     }
3114     case bitc::CST_CODE_BLOCKADDRESS:{
3115       if (Record.size() < 3)
3116         return error("Invalid record");
3117       Type *FnTy = getTypeByID(Record[0]);
3118       if (!FnTy)
3119         return error("Invalid record");
3120       Function *Fn =
3121         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
3122       if (!Fn)
3123         return error("Invalid record");
3124 
3125       // If the function is already parsed we can insert the block address right
3126       // away.
3127       BasicBlock *BB;
3128       unsigned BBID = Record[2];
3129       if (!BBID)
3130         // Invalid reference to entry block.
3131         return error("Invalid ID");
3132       if (!Fn->empty()) {
3133         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3134         for (size_t I = 0, E = BBID; I != E; ++I) {
3135           if (BBI == BBE)
3136             return error("Invalid ID");
3137           ++BBI;
3138         }
3139         BB = &*BBI;
3140       } else {
3141         // Otherwise insert a placeholder and remember it so it can be inserted
3142         // when the function is parsed.
3143         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3144         if (FwdBBs.empty())
3145           BasicBlockFwdRefQueue.push_back(Fn);
3146         if (FwdBBs.size() < BBID + 1)
3147           FwdBBs.resize(BBID + 1);
3148         if (!FwdBBs[BBID])
3149           FwdBBs[BBID] = BasicBlock::Create(Context);
3150         BB = FwdBBs[BBID];
3151       }
3152       V = BlockAddress::get(Fn, BB);
3153       break;
3154     }
3155     }
3156 
3157     ValueList.assignValue(V, NextCstNo);
3158     ++NextCstNo;
3159   }
3160 }
3161 
3162 std::error_code BitcodeReader::parseUseLists() {
3163   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3164     return error("Invalid record");
3165 
3166   // Read all the records.
3167   SmallVector<uint64_t, 64> Record;
3168   while (1) {
3169     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3170 
3171     switch (Entry.Kind) {
3172     case BitstreamEntry::SubBlock: // Handled for us already.
3173     case BitstreamEntry::Error:
3174       return error("Malformed block");
3175     case BitstreamEntry::EndBlock:
3176       return std::error_code();
3177     case BitstreamEntry::Record:
3178       // The interesting case.
3179       break;
3180     }
3181 
3182     // Read a use list record.
3183     Record.clear();
3184     bool IsBB = false;
3185     switch (Stream.readRecord(Entry.ID, Record)) {
3186     default:  // Default behavior: unknown type.
3187       break;
3188     case bitc::USELIST_CODE_BB:
3189       IsBB = true;
3190       // fallthrough
3191     case bitc::USELIST_CODE_DEFAULT: {
3192       unsigned RecordLength = Record.size();
3193       if (RecordLength < 3)
3194         // Records should have at least an ID and two indexes.
3195         return error("Invalid record");
3196       unsigned ID = Record.back();
3197       Record.pop_back();
3198 
3199       Value *V;
3200       if (IsBB) {
3201         assert(ID < FunctionBBs.size() && "Basic block not found");
3202         V = FunctionBBs[ID];
3203       } else
3204         V = ValueList[ID];
3205       unsigned NumUses = 0;
3206       SmallDenseMap<const Use *, unsigned, 16> Order;
3207       for (const Use &U : V->materialized_uses()) {
3208         if (++NumUses > Record.size())
3209           break;
3210         Order[&U] = Record[NumUses - 1];
3211       }
3212       if (Order.size() != Record.size() || NumUses > Record.size())
3213         // Mismatches can happen if the functions are being materialized lazily
3214         // (out-of-order), or a value has been upgraded.
3215         break;
3216 
3217       V->sortUseList([&](const Use &L, const Use &R) {
3218         return Order.lookup(&L) < Order.lookup(&R);
3219       });
3220       break;
3221     }
3222     }
3223   }
3224 }
3225 
3226 /// When we see the block for metadata, remember where it is and then skip it.
3227 /// This lets us lazily deserialize the metadata.
3228 std::error_code BitcodeReader::rememberAndSkipMetadata() {
3229   // Save the current stream state.
3230   uint64_t CurBit = Stream.GetCurrentBitNo();
3231   DeferredMetadataInfo.push_back(CurBit);
3232 
3233   // Skip over the block for now.
3234   if (Stream.SkipBlock())
3235     return error("Invalid record");
3236   return std::error_code();
3237 }
3238 
3239 std::error_code BitcodeReader::materializeMetadata() {
3240   for (uint64_t BitPos : DeferredMetadataInfo) {
3241     // Move the bit stream to the saved position.
3242     Stream.JumpToBit(BitPos);
3243     if (std::error_code EC = parseMetadata(true))
3244       return EC;
3245   }
3246   DeferredMetadataInfo.clear();
3247   return std::error_code();
3248 }
3249 
3250 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3251 
3252 /// When we see the block for a function body, remember where it is and then
3253 /// skip it.  This lets us lazily deserialize the functions.
3254 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
3255   // Get the function we are talking about.
3256   if (FunctionsWithBodies.empty())
3257     return error("Insufficient function protos");
3258 
3259   Function *Fn = FunctionsWithBodies.back();
3260   FunctionsWithBodies.pop_back();
3261 
3262   // Save the current stream state.
3263   uint64_t CurBit = Stream.GetCurrentBitNo();
3264   assert(
3265       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3266       "Mismatch between VST and scanned function offsets");
3267   DeferredFunctionInfo[Fn] = CurBit;
3268 
3269   // Skip over the function block for now.
3270   if (Stream.SkipBlock())
3271     return error("Invalid record");
3272   return std::error_code();
3273 }
3274 
3275 std::error_code BitcodeReader::globalCleanup() {
3276   // Patch the initializers for globals and aliases up.
3277   resolveGlobalAndIndirectSymbolInits();
3278   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3279     return error("Malformed global initializer set");
3280 
3281   // Look for intrinsic functions which need to be upgraded at some point
3282   for (Function &F : *TheModule) {
3283     Function *NewFn;
3284     if (UpgradeIntrinsicFunction(&F, NewFn))
3285       UpgradedIntrinsics[&F] = NewFn;
3286   }
3287 
3288   // Look for global variables which need to be renamed.
3289   for (GlobalVariable &GV : TheModule->globals())
3290     UpgradeGlobalVariable(&GV);
3291 
3292   // Force deallocation of memory for these vectors to favor the client that
3293   // want lazy deserialization.
3294   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3295   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap(
3296       IndirectSymbolInits);
3297   return std::error_code();
3298 }
3299 
3300 /// Support for lazy parsing of function bodies. This is required if we
3301 /// either have an old bitcode file without a VST forward declaration record,
3302 /// or if we have an anonymous function being materialized, since anonymous
3303 /// functions do not have a name and are therefore not in the VST.
3304 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
3305   Stream.JumpToBit(NextUnreadBit);
3306 
3307   if (Stream.AtEndOfStream())
3308     return error("Could not find function in stream");
3309 
3310   if (!SeenFirstFunctionBody)
3311     return error("Trying to materialize functions before seeing function blocks");
3312 
3313   // An old bitcode file with the symbol table at the end would have
3314   // finished the parse greedily.
3315   assert(SeenValueSymbolTable);
3316 
3317   SmallVector<uint64_t, 64> Record;
3318 
3319   while (1) {
3320     BitstreamEntry Entry = Stream.advance();
3321     switch (Entry.Kind) {
3322     default:
3323       return error("Expect SubBlock");
3324     case BitstreamEntry::SubBlock:
3325       switch (Entry.ID) {
3326       default:
3327         return error("Expect function block");
3328       case bitc::FUNCTION_BLOCK_ID:
3329         if (std::error_code EC = rememberAndSkipFunctionBody())
3330           return EC;
3331         NextUnreadBit = Stream.GetCurrentBitNo();
3332         return std::error_code();
3333       }
3334     }
3335   }
3336 }
3337 
3338 std::error_code BitcodeReader::parseBitcodeVersion() {
3339   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
3340     return error("Invalid record");
3341 
3342   // Read all the records.
3343   SmallVector<uint64_t, 64> Record;
3344   while (1) {
3345     BitstreamEntry Entry = Stream.advance();
3346 
3347     switch (Entry.Kind) {
3348     default:
3349     case BitstreamEntry::Error:
3350       return error("Malformed block");
3351     case BitstreamEntry::EndBlock:
3352       return std::error_code();
3353     case BitstreamEntry::Record:
3354       // The interesting case.
3355       break;
3356     }
3357 
3358     // Read a record.
3359     Record.clear();
3360     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3361     switch (BitCode) {
3362     default: // Default behavior: reject
3363       return error("Invalid value");
3364     case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION:      [strchr x
3365                                              // N]
3366       convertToString(Record, 0, ProducerIdentification);
3367       break;
3368     }
3369     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH:      [epoch#]
3370       unsigned epoch = (unsigned)Record[0];
3371       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
3372         return error(
3373           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
3374           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
3375       }
3376     }
3377     }
3378   }
3379 }
3380 
3381 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
3382                                            bool ShouldLazyLoadMetadata) {
3383   if (ResumeBit)
3384     Stream.JumpToBit(ResumeBit);
3385   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3386     return error("Invalid record");
3387 
3388   SmallVector<uint64_t, 64> Record;
3389   std::vector<std::string> SectionTable;
3390   std::vector<std::string> GCTable;
3391 
3392   // Read all the records for this module.
3393   while (1) {
3394     BitstreamEntry Entry = Stream.advance();
3395 
3396     switch (Entry.Kind) {
3397     case BitstreamEntry::Error:
3398       return error("Malformed block");
3399     case BitstreamEntry::EndBlock:
3400       return globalCleanup();
3401 
3402     case BitstreamEntry::SubBlock:
3403       switch (Entry.ID) {
3404       default:  // Skip unknown content.
3405         if (Stream.SkipBlock())
3406           return error("Invalid record");
3407         break;
3408       case bitc::BLOCKINFO_BLOCK_ID:
3409         if (Stream.ReadBlockInfoBlock())
3410           return error("Malformed block");
3411         break;
3412       case bitc::PARAMATTR_BLOCK_ID:
3413         if (std::error_code EC = parseAttributeBlock())
3414           return EC;
3415         break;
3416       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3417         if (std::error_code EC = parseAttributeGroupBlock())
3418           return EC;
3419         break;
3420       case bitc::TYPE_BLOCK_ID_NEW:
3421         if (std::error_code EC = parseTypeTable())
3422           return EC;
3423         break;
3424       case bitc::VALUE_SYMTAB_BLOCK_ID:
3425         if (!SeenValueSymbolTable) {
3426           // Either this is an old form VST without function index and an
3427           // associated VST forward declaration record (which would have caused
3428           // the VST to be jumped to and parsed before it was encountered
3429           // normally in the stream), or there were no function blocks to
3430           // trigger an earlier parsing of the VST.
3431           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3432           if (std::error_code EC = parseValueSymbolTable())
3433             return EC;
3434           SeenValueSymbolTable = true;
3435         } else {
3436           // We must have had a VST forward declaration record, which caused
3437           // the parser to jump to and parse the VST earlier.
3438           assert(VSTOffset > 0);
3439           if (Stream.SkipBlock())
3440             return error("Invalid record");
3441         }
3442         break;
3443       case bitc::CONSTANTS_BLOCK_ID:
3444         if (std::error_code EC = parseConstants())
3445           return EC;
3446         if (std::error_code EC = resolveGlobalAndIndirectSymbolInits())
3447           return EC;
3448         break;
3449       case bitc::METADATA_BLOCK_ID:
3450         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3451           if (std::error_code EC = rememberAndSkipMetadata())
3452             return EC;
3453           break;
3454         }
3455         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3456         if (std::error_code EC = parseMetadata(true))
3457           return EC;
3458         break;
3459       case bitc::METADATA_KIND_BLOCK_ID:
3460         if (std::error_code EC = parseMetadataKinds())
3461           return EC;
3462         break;
3463       case bitc::FUNCTION_BLOCK_ID:
3464         // If this is the first function body we've seen, reverse the
3465         // FunctionsWithBodies list.
3466         if (!SeenFirstFunctionBody) {
3467           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3468           if (std::error_code EC = globalCleanup())
3469             return EC;
3470           SeenFirstFunctionBody = true;
3471         }
3472 
3473         if (VSTOffset > 0) {
3474           // If we have a VST forward declaration record, make sure we
3475           // parse the VST now if we haven't already. It is needed to
3476           // set up the DeferredFunctionInfo vector for lazy reading.
3477           if (!SeenValueSymbolTable) {
3478             if (std::error_code EC =
3479                     BitcodeReader::parseValueSymbolTable(VSTOffset))
3480               return EC;
3481             SeenValueSymbolTable = true;
3482             // Fall through so that we record the NextUnreadBit below.
3483             // This is necessary in case we have an anonymous function that
3484             // is later materialized. Since it will not have a VST entry we
3485             // need to fall back to the lazy parse to find its offset.
3486           } else {
3487             // If we have a VST forward declaration record, but have already
3488             // parsed the VST (just above, when the first function body was
3489             // encountered here), then we are resuming the parse after
3490             // materializing functions. The ResumeBit points to the
3491             // start of the last function block recorded in the
3492             // DeferredFunctionInfo map. Skip it.
3493             if (Stream.SkipBlock())
3494               return error("Invalid record");
3495             continue;
3496           }
3497         }
3498 
3499         // Support older bitcode files that did not have the function
3500         // index in the VST, nor a VST forward declaration record, as
3501         // well as anonymous functions that do not have VST entries.
3502         // Build the DeferredFunctionInfo vector on the fly.
3503         if (std::error_code EC = rememberAndSkipFunctionBody())
3504           return EC;
3505 
3506         // Suspend parsing when we reach the function bodies. Subsequent
3507         // materialization calls will resume it when necessary. If the bitcode
3508         // file is old, the symbol table will be at the end instead and will not
3509         // have been seen yet. In this case, just finish the parse now.
3510         if (SeenValueSymbolTable) {
3511           NextUnreadBit = Stream.GetCurrentBitNo();
3512           return std::error_code();
3513         }
3514         break;
3515       case bitc::USELIST_BLOCK_ID:
3516         if (std::error_code EC = parseUseLists())
3517           return EC;
3518         break;
3519       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3520         if (std::error_code EC = parseOperandBundleTags())
3521           return EC;
3522         break;
3523       }
3524       continue;
3525 
3526     case BitstreamEntry::Record:
3527       // The interesting case.
3528       break;
3529     }
3530 
3531     // Read a record.
3532     auto BitCode = Stream.readRecord(Entry.ID, Record);
3533     switch (BitCode) {
3534     default: break;  // Default behavior, ignore unknown content.
3535     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
3536       if (Record.size() < 1)
3537         return error("Invalid record");
3538       // Only version #0 and #1 are supported so far.
3539       unsigned module_version = Record[0];
3540       switch (module_version) {
3541         default:
3542           return error("Invalid value");
3543         case 0:
3544           UseRelativeIDs = false;
3545           break;
3546         case 1:
3547           UseRelativeIDs = true;
3548           break;
3549       }
3550       break;
3551     }
3552     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3553       std::string S;
3554       if (convertToString(Record, 0, S))
3555         return error("Invalid record");
3556       TheModule->setTargetTriple(S);
3557       break;
3558     }
3559     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3560       std::string S;
3561       if (convertToString(Record, 0, S))
3562         return error("Invalid record");
3563       TheModule->setDataLayout(S);
3564       break;
3565     }
3566     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3567       std::string S;
3568       if (convertToString(Record, 0, S))
3569         return error("Invalid record");
3570       TheModule->setModuleInlineAsm(S);
3571       break;
3572     }
3573     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3574       // FIXME: Remove in 4.0.
3575       std::string S;
3576       if (convertToString(Record, 0, S))
3577         return error("Invalid record");
3578       // Ignore value.
3579       break;
3580     }
3581     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3582       std::string S;
3583       if (convertToString(Record, 0, S))
3584         return error("Invalid record");
3585       SectionTable.push_back(S);
3586       break;
3587     }
3588     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3589       std::string S;
3590       if (convertToString(Record, 0, S))
3591         return error("Invalid record");
3592       GCTable.push_back(S);
3593       break;
3594     }
3595     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
3596       if (Record.size() < 2)
3597         return error("Invalid record");
3598       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3599       unsigned ComdatNameSize = Record[1];
3600       std::string ComdatName;
3601       ComdatName.reserve(ComdatNameSize);
3602       for (unsigned i = 0; i != ComdatNameSize; ++i)
3603         ComdatName += (char)Record[2 + i];
3604       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
3605       C->setSelectionKind(SK);
3606       ComdatList.push_back(C);
3607       break;
3608     }
3609     // GLOBALVAR: [pointer type, isconst, initid,
3610     //             linkage, alignment, section, visibility, threadlocal,
3611     //             unnamed_addr, externally_initialized, dllstorageclass,
3612     //             comdat]
3613     case bitc::MODULE_CODE_GLOBALVAR: {
3614       if (Record.size() < 6)
3615         return error("Invalid record");
3616       Type *Ty = getTypeByID(Record[0]);
3617       if (!Ty)
3618         return error("Invalid record");
3619       bool isConstant = Record[1] & 1;
3620       bool explicitType = Record[1] & 2;
3621       unsigned AddressSpace;
3622       if (explicitType) {
3623         AddressSpace = Record[1] >> 2;
3624       } else {
3625         if (!Ty->isPointerTy())
3626           return error("Invalid type for value");
3627         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3628         Ty = cast<PointerType>(Ty)->getElementType();
3629       }
3630 
3631       uint64_t RawLinkage = Record[3];
3632       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3633       unsigned Alignment;
3634       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
3635         return EC;
3636       std::string Section;
3637       if (Record[5]) {
3638         if (Record[5]-1 >= SectionTable.size())
3639           return error("Invalid ID");
3640         Section = SectionTable[Record[5]-1];
3641       }
3642       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3643       // Local linkage must have default visibility.
3644       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3645         // FIXME: Change to an error if non-default in 4.0.
3646         Visibility = getDecodedVisibility(Record[6]);
3647 
3648       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3649       if (Record.size() > 7)
3650         TLM = getDecodedThreadLocalMode(Record[7]);
3651 
3652       bool UnnamedAddr = false;
3653       if (Record.size() > 8)
3654         UnnamedAddr = Record[8];
3655 
3656       bool ExternallyInitialized = false;
3657       if (Record.size() > 9)
3658         ExternallyInitialized = Record[9];
3659 
3660       GlobalVariable *NewGV =
3661         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
3662                            TLM, AddressSpace, ExternallyInitialized);
3663       NewGV->setAlignment(Alignment);
3664       if (!Section.empty())
3665         NewGV->setSection(Section);
3666       NewGV->setVisibility(Visibility);
3667       NewGV->setUnnamedAddr(UnnamedAddr);
3668 
3669       if (Record.size() > 10)
3670         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3671       else
3672         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3673 
3674       ValueList.push_back(NewGV);
3675 
3676       // Remember which value to use for the global initializer.
3677       if (unsigned InitID = Record[2])
3678         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
3679 
3680       if (Record.size() > 11) {
3681         if (unsigned ComdatID = Record[11]) {
3682           if (ComdatID > ComdatList.size())
3683             return error("Invalid global variable comdat ID");
3684           NewGV->setComdat(ComdatList[ComdatID - 1]);
3685         }
3686       } else if (hasImplicitComdat(RawLinkage)) {
3687         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3688       }
3689       break;
3690     }
3691     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
3692     //             alignment, section, visibility, gc, unnamed_addr,
3693     //             prologuedata, dllstorageclass, comdat, prefixdata]
3694     case bitc::MODULE_CODE_FUNCTION: {
3695       if (Record.size() < 8)
3696         return error("Invalid record");
3697       Type *Ty = getTypeByID(Record[0]);
3698       if (!Ty)
3699         return error("Invalid record");
3700       if (auto *PTy = dyn_cast<PointerType>(Ty))
3701         Ty = PTy->getElementType();
3702       auto *FTy = dyn_cast<FunctionType>(Ty);
3703       if (!FTy)
3704         return error("Invalid type for value");
3705       auto CC = static_cast<CallingConv::ID>(Record[1]);
3706       if (CC & ~CallingConv::MaxID)
3707         return error("Invalid calling convention ID");
3708 
3709       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3710                                         "", TheModule);
3711 
3712       Func->setCallingConv(CC);
3713       bool isProto = Record[2];
3714       uint64_t RawLinkage = Record[3];
3715       Func->setLinkage(getDecodedLinkage(RawLinkage));
3716       Func->setAttributes(getAttributes(Record[4]));
3717 
3718       unsigned Alignment;
3719       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
3720         return EC;
3721       Func->setAlignment(Alignment);
3722       if (Record[6]) {
3723         if (Record[6]-1 >= SectionTable.size())
3724           return error("Invalid ID");
3725         Func->setSection(SectionTable[Record[6]-1]);
3726       }
3727       // Local linkage must have default visibility.
3728       if (!Func->hasLocalLinkage())
3729         // FIXME: Change to an error if non-default in 4.0.
3730         Func->setVisibility(getDecodedVisibility(Record[7]));
3731       if (Record.size() > 8 && Record[8]) {
3732         if (Record[8]-1 >= GCTable.size())
3733           return error("Invalid ID");
3734         Func->setGC(GCTable[Record[8]-1].c_str());
3735       }
3736       bool UnnamedAddr = false;
3737       if (Record.size() > 9)
3738         UnnamedAddr = Record[9];
3739       Func->setUnnamedAddr(UnnamedAddr);
3740       if (Record.size() > 10 && Record[10] != 0)
3741         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
3742 
3743       if (Record.size() > 11)
3744         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3745       else
3746         upgradeDLLImportExportLinkage(Func, RawLinkage);
3747 
3748       if (Record.size() > 12) {
3749         if (unsigned ComdatID = Record[12]) {
3750           if (ComdatID > ComdatList.size())
3751             return error("Invalid function comdat ID");
3752           Func->setComdat(ComdatList[ComdatID - 1]);
3753         }
3754       } else if (hasImplicitComdat(RawLinkage)) {
3755         Func->setComdat(reinterpret_cast<Comdat *>(1));
3756       }
3757 
3758       if (Record.size() > 13 && Record[13] != 0)
3759         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
3760 
3761       if (Record.size() > 14 && Record[14] != 0)
3762         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3763 
3764       ValueList.push_back(Func);
3765 
3766       // If this is a function with a body, remember the prototype we are
3767       // creating now, so that we can match up the body with them later.
3768       if (!isProto) {
3769         Func->setIsMaterializable(true);
3770         FunctionsWithBodies.push_back(Func);
3771         DeferredFunctionInfo[Func] = 0;
3772       }
3773       break;
3774     }
3775     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
3776     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3777     // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3778     case bitc::MODULE_CODE_IFUNC:
3779     case bitc::MODULE_CODE_ALIAS:
3780     case bitc::MODULE_CODE_ALIAS_OLD: {
3781       bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3782       if (Record.size() < (3 + (unsigned)NewRecord))
3783         return error("Invalid record");
3784       unsigned OpNum = 0;
3785       Type *Ty = getTypeByID(Record[OpNum++]);
3786       if (!Ty)
3787         return error("Invalid record");
3788 
3789       unsigned AddrSpace;
3790       if (!NewRecord) {
3791         auto *PTy = dyn_cast<PointerType>(Ty);
3792         if (!PTy)
3793           return error("Invalid type for value");
3794         Ty = PTy->getElementType();
3795         AddrSpace = PTy->getAddressSpace();
3796       } else {
3797         AddrSpace = Record[OpNum++];
3798       }
3799 
3800       auto Val = Record[OpNum++];
3801       auto Linkage = Record[OpNum++];
3802       GlobalIndirectSymbol *NewGA;
3803       if (BitCode == bitc::MODULE_CODE_ALIAS ||
3804           BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3805         NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
3806                                     "", TheModule);
3807       else
3808         NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
3809                                     "", nullptr, TheModule);
3810       // Old bitcode files didn't have visibility field.
3811       // Local linkage must have default visibility.
3812       if (OpNum != Record.size()) {
3813         auto VisInd = OpNum++;
3814         if (!NewGA->hasLocalLinkage())
3815           // FIXME: Change to an error if non-default in 4.0.
3816           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3817       }
3818       if (OpNum != Record.size())
3819         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3820       else
3821         upgradeDLLImportExportLinkage(NewGA, Linkage);
3822       if (OpNum != Record.size())
3823         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3824       if (OpNum != Record.size())
3825         NewGA->setUnnamedAddr(Record[OpNum++]);
3826       ValueList.push_back(NewGA);
3827       IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3828       break;
3829     }
3830     /// MODULE_CODE_PURGEVALS: [numvals]
3831     case bitc::MODULE_CODE_PURGEVALS:
3832       // Trim down the value list to the specified size.
3833       if (Record.size() < 1 || Record[0] > ValueList.size())
3834         return error("Invalid record");
3835       ValueList.shrinkTo(Record[0]);
3836       break;
3837     /// MODULE_CODE_VSTOFFSET: [offset]
3838     case bitc::MODULE_CODE_VSTOFFSET:
3839       if (Record.size() < 1)
3840         return error("Invalid record");
3841       VSTOffset = Record[0];
3842       break;
3843     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3844     case bitc::MODULE_CODE_SOURCE_FILENAME:
3845       SmallString<128> ValueName;
3846       if (convertToString(Record, 0, ValueName))
3847         return error("Invalid record");
3848       TheModule->setSourceFileName(ValueName);
3849       break;
3850     }
3851     Record.clear();
3852   }
3853 }
3854 
3855 /// Helper to read the header common to all bitcode files.
3856 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
3857   // Sniff for the signature.
3858   if (Stream.Read(8) != 'B' ||
3859       Stream.Read(8) != 'C' ||
3860       Stream.Read(4) != 0x0 ||
3861       Stream.Read(4) != 0xC ||
3862       Stream.Read(4) != 0xE ||
3863       Stream.Read(4) != 0xD)
3864     return false;
3865   return true;
3866 }
3867 
3868 std::error_code
3869 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
3870                                 Module *M, bool ShouldLazyLoadMetadata) {
3871   TheModule = M;
3872 
3873   if (std::error_code EC = initStream(std::move(Streamer)))
3874     return EC;
3875 
3876   // Sniff for the signature.
3877   if (!hasValidBitcodeHeader(Stream))
3878     return error("Invalid bitcode signature");
3879 
3880   // We expect a number of well-defined blocks, though we don't necessarily
3881   // need to understand them all.
3882   while (1) {
3883     if (Stream.AtEndOfStream()) {
3884       // We didn't really read a proper Module.
3885       return error("Malformed IR file");
3886     }
3887 
3888     BitstreamEntry Entry =
3889       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
3890 
3891     if (Entry.Kind != BitstreamEntry::SubBlock)
3892       return error("Malformed block");
3893 
3894     if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
3895       parseBitcodeVersion();
3896       continue;
3897     }
3898 
3899     if (Entry.ID == bitc::MODULE_BLOCK_ID)
3900       return parseModule(0, ShouldLazyLoadMetadata);
3901 
3902     if (Stream.SkipBlock())
3903       return error("Invalid record");
3904   }
3905 }
3906 
3907 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
3908   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3909     return error("Invalid record");
3910 
3911   SmallVector<uint64_t, 64> Record;
3912 
3913   std::string Triple;
3914   // Read all the records for this module.
3915   while (1) {
3916     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3917 
3918     switch (Entry.Kind) {
3919     case BitstreamEntry::SubBlock: // Handled for us already.
3920     case BitstreamEntry::Error:
3921       return error("Malformed block");
3922     case BitstreamEntry::EndBlock:
3923       return Triple;
3924     case BitstreamEntry::Record:
3925       // The interesting case.
3926       break;
3927     }
3928 
3929     // Read a record.
3930     switch (Stream.readRecord(Entry.ID, Record)) {
3931     default: break;  // Default behavior, ignore unknown content.
3932     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3933       std::string S;
3934       if (convertToString(Record, 0, S))
3935         return error("Invalid record");
3936       Triple = S;
3937       break;
3938     }
3939     }
3940     Record.clear();
3941   }
3942   llvm_unreachable("Exit infinite loop");
3943 }
3944 
3945 ErrorOr<std::string> BitcodeReader::parseTriple() {
3946   if (std::error_code EC = initStream(nullptr))
3947     return EC;
3948 
3949   // Sniff for the signature.
3950   if (!hasValidBitcodeHeader(Stream))
3951     return error("Invalid bitcode signature");
3952 
3953   // We expect a number of well-defined blocks, though we don't necessarily
3954   // need to understand them all.
3955   while (1) {
3956     BitstreamEntry Entry = Stream.advance();
3957 
3958     switch (Entry.Kind) {
3959     case BitstreamEntry::Error:
3960       return error("Malformed block");
3961     case BitstreamEntry::EndBlock:
3962       return std::error_code();
3963 
3964     case BitstreamEntry::SubBlock:
3965       if (Entry.ID == bitc::MODULE_BLOCK_ID)
3966         return parseModuleTriple();
3967 
3968       // Ignore other sub-blocks.
3969       if (Stream.SkipBlock())
3970         return error("Malformed block");
3971       continue;
3972 
3973     case BitstreamEntry::Record:
3974       Stream.skipRecord(Entry.ID);
3975       continue;
3976     }
3977   }
3978 }
3979 
3980 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
3981   if (std::error_code EC = initStream(nullptr))
3982     return EC;
3983 
3984   // Sniff for the signature.
3985   if (!hasValidBitcodeHeader(Stream))
3986     return error("Invalid bitcode signature");
3987 
3988   // We expect a number of well-defined blocks, though we don't necessarily
3989   // need to understand them all.
3990   while (1) {
3991     BitstreamEntry Entry = Stream.advance();
3992     switch (Entry.Kind) {
3993     case BitstreamEntry::Error:
3994       return error("Malformed block");
3995     case BitstreamEntry::EndBlock:
3996       return std::error_code();
3997 
3998     case BitstreamEntry::SubBlock:
3999       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
4000         if (std::error_code EC = parseBitcodeVersion())
4001           return EC;
4002         return ProducerIdentification;
4003       }
4004       // Ignore other sub-blocks.
4005       if (Stream.SkipBlock())
4006         return error("Malformed block");
4007       continue;
4008     case BitstreamEntry::Record:
4009       Stream.skipRecord(Entry.ID);
4010       continue;
4011     }
4012   }
4013 }
4014 
4015 /// Parse metadata attachments.
4016 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
4017   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
4018     return error("Invalid record");
4019 
4020   SmallVector<uint64_t, 64> Record;
4021   while (1) {
4022     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4023 
4024     switch (Entry.Kind) {
4025     case BitstreamEntry::SubBlock: // Handled for us already.
4026     case BitstreamEntry::Error:
4027       return error("Malformed block");
4028     case BitstreamEntry::EndBlock:
4029       return std::error_code();
4030     case BitstreamEntry::Record:
4031       // The interesting case.
4032       break;
4033     }
4034 
4035     // Read a metadata attachment record.
4036     Record.clear();
4037     switch (Stream.readRecord(Entry.ID, Record)) {
4038     default:  // Default behavior: ignore.
4039       break;
4040     case bitc::METADATA_ATTACHMENT: {
4041       unsigned RecordLength = Record.size();
4042       if (Record.empty())
4043         return error("Invalid record");
4044       if (RecordLength % 2 == 0) {
4045         // A function attachment.
4046         for (unsigned I = 0; I != RecordLength; I += 2) {
4047           auto K = MDKindMap.find(Record[I]);
4048           if (K == MDKindMap.end())
4049             return error("Invalid ID");
4050           MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
4051           if (!MD)
4052             return error("Invalid metadata attachment");
4053           F.setMetadata(K->second, MD);
4054         }
4055         continue;
4056       }
4057 
4058       // An instruction attachment.
4059       Instruction *Inst = InstructionList[Record[0]];
4060       for (unsigned i = 1; i != RecordLength; i = i+2) {
4061         unsigned Kind = Record[i];
4062         DenseMap<unsigned, unsigned>::iterator I =
4063           MDKindMap.find(Kind);
4064         if (I == MDKindMap.end())
4065           return error("Invalid ID");
4066         Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]);
4067         if (isa<LocalAsMetadata>(Node))
4068           // Drop the attachment.  This used to be legal, but there's no
4069           // upgrade path.
4070           break;
4071         MDNode *MD = dyn_cast_or_null<MDNode>(Node);
4072         if (!MD)
4073           return error("Invalid metadata attachment");
4074 
4075         if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop)
4076           MD = upgradeInstructionLoopAttachment(*MD);
4077 
4078         Inst->setMetadata(I->second, MD);
4079         if (I->second == LLVMContext::MD_tbaa) {
4080           InstsWithTBAATag.push_back(Inst);
4081           continue;
4082         }
4083       }
4084       break;
4085     }
4086     }
4087   }
4088 }
4089 
4090 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4091   LLVMContext &Context = PtrType->getContext();
4092   if (!isa<PointerType>(PtrType))
4093     return error(Context, "Load/Store operand is not a pointer type");
4094   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
4095 
4096   if (ValType && ValType != ElemType)
4097     return error(Context, "Explicit load/store type does not match pointee "
4098                           "type of pointer operand");
4099   if (!PointerType::isLoadableOrStorableType(ElemType))
4100     return error(Context, "Cannot load/store from pointer");
4101   return std::error_code();
4102 }
4103 
4104 /// Lazily parse the specified function body block.
4105 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
4106   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4107     return error("Invalid record");
4108 
4109   // Unexpected unresolved metadata when parsing function.
4110   if (MetadataList.hasFwdRefs())
4111     return error("Invalid function metadata: incoming forward references");
4112 
4113   InstructionList.clear();
4114   unsigned ModuleValueListSize = ValueList.size();
4115   unsigned ModuleMetadataListSize = MetadataList.size();
4116 
4117   // Add all the function arguments to the value table.
4118   for (Argument &I : F->args())
4119     ValueList.push_back(&I);
4120 
4121   unsigned NextValueNo = ValueList.size();
4122   BasicBlock *CurBB = nullptr;
4123   unsigned CurBBNo = 0;
4124 
4125   DebugLoc LastLoc;
4126   auto getLastInstruction = [&]() -> Instruction * {
4127     if (CurBB && !CurBB->empty())
4128       return &CurBB->back();
4129     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4130              !FunctionBBs[CurBBNo - 1]->empty())
4131       return &FunctionBBs[CurBBNo - 1]->back();
4132     return nullptr;
4133   };
4134 
4135   std::vector<OperandBundleDef> OperandBundles;
4136 
4137   // Read all the records.
4138   SmallVector<uint64_t, 64> Record;
4139   while (1) {
4140     BitstreamEntry Entry = Stream.advance();
4141 
4142     switch (Entry.Kind) {
4143     case BitstreamEntry::Error:
4144       return error("Malformed block");
4145     case BitstreamEntry::EndBlock:
4146       goto OutOfRecordLoop;
4147 
4148     case BitstreamEntry::SubBlock:
4149       switch (Entry.ID) {
4150       default:  // Skip unknown content.
4151         if (Stream.SkipBlock())
4152           return error("Invalid record");
4153         break;
4154       case bitc::CONSTANTS_BLOCK_ID:
4155         if (std::error_code EC = parseConstants())
4156           return EC;
4157         NextValueNo = ValueList.size();
4158         break;
4159       case bitc::VALUE_SYMTAB_BLOCK_ID:
4160         if (std::error_code EC = parseValueSymbolTable())
4161           return EC;
4162         break;
4163       case bitc::METADATA_ATTACHMENT_ID:
4164         if (std::error_code EC = parseMetadataAttachment(*F))
4165           return EC;
4166         break;
4167       case bitc::METADATA_BLOCK_ID:
4168         if (std::error_code EC = parseMetadata())
4169           return EC;
4170         break;
4171       case bitc::USELIST_BLOCK_ID:
4172         if (std::error_code EC = parseUseLists())
4173           return EC;
4174         break;
4175       }
4176       continue;
4177 
4178     case BitstreamEntry::Record:
4179       // The interesting case.
4180       break;
4181     }
4182 
4183     // Read a record.
4184     Record.clear();
4185     Instruction *I = nullptr;
4186     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4187     switch (BitCode) {
4188     default: // Default behavior: reject
4189       return error("Invalid value");
4190     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4191       if (Record.size() < 1 || Record[0] == 0)
4192         return error("Invalid record");
4193       // Create all the basic blocks for the function.
4194       FunctionBBs.resize(Record[0]);
4195 
4196       // See if anything took the address of blocks in this function.
4197       auto BBFRI = BasicBlockFwdRefs.find(F);
4198       if (BBFRI == BasicBlockFwdRefs.end()) {
4199         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4200           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4201       } else {
4202         auto &BBRefs = BBFRI->second;
4203         // Check for invalid basic block references.
4204         if (BBRefs.size() > FunctionBBs.size())
4205           return error("Invalid ID");
4206         assert(!BBRefs.empty() && "Unexpected empty array");
4207         assert(!BBRefs.front() && "Invalid reference to entry block");
4208         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4209              ++I)
4210           if (I < RE && BBRefs[I]) {
4211             BBRefs[I]->insertInto(F);
4212             FunctionBBs[I] = BBRefs[I];
4213           } else {
4214             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4215           }
4216 
4217         // Erase from the table.
4218         BasicBlockFwdRefs.erase(BBFRI);
4219       }
4220 
4221       CurBB = FunctionBBs[0];
4222       continue;
4223     }
4224 
4225     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4226       // This record indicates that the last instruction is at the same
4227       // location as the previous instruction with a location.
4228       I = getLastInstruction();
4229 
4230       if (!I)
4231         return error("Invalid record");
4232       I->setDebugLoc(LastLoc);
4233       I = nullptr;
4234       continue;
4235 
4236     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4237       I = getLastInstruction();
4238       if (!I || Record.size() < 4)
4239         return error("Invalid record");
4240 
4241       unsigned Line = Record[0], Col = Record[1];
4242       unsigned ScopeID = Record[2], IAID = Record[3];
4243 
4244       MDNode *Scope = nullptr, *IA = nullptr;
4245       if (ScopeID) {
4246         Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1);
4247         if (!Scope)
4248           return error("Invalid record");
4249       }
4250       if (IAID) {
4251         IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1);
4252         if (!IA)
4253           return error("Invalid record");
4254       }
4255       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4256       I->setDebugLoc(LastLoc);
4257       I = nullptr;
4258       continue;
4259     }
4260 
4261     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4262       unsigned OpNum = 0;
4263       Value *LHS, *RHS;
4264       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4265           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4266           OpNum+1 > Record.size())
4267         return error("Invalid record");
4268 
4269       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4270       if (Opc == -1)
4271         return error("Invalid record");
4272       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4273       InstructionList.push_back(I);
4274       if (OpNum < Record.size()) {
4275         if (Opc == Instruction::Add ||
4276             Opc == Instruction::Sub ||
4277             Opc == Instruction::Mul ||
4278             Opc == Instruction::Shl) {
4279           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4280             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4281           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4282             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4283         } else if (Opc == Instruction::SDiv ||
4284                    Opc == Instruction::UDiv ||
4285                    Opc == Instruction::LShr ||
4286                    Opc == Instruction::AShr) {
4287           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4288             cast<BinaryOperator>(I)->setIsExact(true);
4289         } else if (isa<FPMathOperator>(I)) {
4290           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4291           if (FMF.any())
4292             I->setFastMathFlags(FMF);
4293         }
4294 
4295       }
4296       break;
4297     }
4298     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4299       unsigned OpNum = 0;
4300       Value *Op;
4301       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4302           OpNum+2 != Record.size())
4303         return error("Invalid record");
4304 
4305       Type *ResTy = getTypeByID(Record[OpNum]);
4306       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4307       if (Opc == -1 || !ResTy)
4308         return error("Invalid record");
4309       Instruction *Temp = nullptr;
4310       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4311         if (Temp) {
4312           InstructionList.push_back(Temp);
4313           CurBB->getInstList().push_back(Temp);
4314         }
4315       } else {
4316         auto CastOp = (Instruction::CastOps)Opc;
4317         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4318           return error("Invalid cast");
4319         I = CastInst::Create(CastOp, Op, ResTy);
4320       }
4321       InstructionList.push_back(I);
4322       break;
4323     }
4324     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4325     case bitc::FUNC_CODE_INST_GEP_OLD:
4326     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4327       unsigned OpNum = 0;
4328 
4329       Type *Ty;
4330       bool InBounds;
4331 
4332       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4333         InBounds = Record[OpNum++];
4334         Ty = getTypeByID(Record[OpNum++]);
4335       } else {
4336         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4337         Ty = nullptr;
4338       }
4339 
4340       Value *BasePtr;
4341       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4342         return error("Invalid record");
4343 
4344       if (!Ty)
4345         Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
4346                  ->getElementType();
4347       else if (Ty !=
4348                cast<SequentialType>(BasePtr->getType()->getScalarType())
4349                    ->getElementType())
4350         return error(
4351             "Explicit gep type does not match pointee type of pointer operand");
4352 
4353       SmallVector<Value*, 16> GEPIdx;
4354       while (OpNum != Record.size()) {
4355         Value *Op;
4356         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4357           return error("Invalid record");
4358         GEPIdx.push_back(Op);
4359       }
4360 
4361       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4362 
4363       InstructionList.push_back(I);
4364       if (InBounds)
4365         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4366       break;
4367     }
4368 
4369     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4370                                        // EXTRACTVAL: [opty, opval, n x indices]
4371       unsigned OpNum = 0;
4372       Value *Agg;
4373       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4374         return error("Invalid record");
4375 
4376       unsigned RecSize = Record.size();
4377       if (OpNum == RecSize)
4378         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4379 
4380       SmallVector<unsigned, 4> EXTRACTVALIdx;
4381       Type *CurTy = Agg->getType();
4382       for (; OpNum != RecSize; ++OpNum) {
4383         bool IsArray = CurTy->isArrayTy();
4384         bool IsStruct = CurTy->isStructTy();
4385         uint64_t Index = Record[OpNum];
4386 
4387         if (!IsStruct && !IsArray)
4388           return error("EXTRACTVAL: Invalid type");
4389         if ((unsigned)Index != Index)
4390           return error("Invalid value");
4391         if (IsStruct && Index >= CurTy->subtypes().size())
4392           return error("EXTRACTVAL: Invalid struct index");
4393         if (IsArray && Index >= CurTy->getArrayNumElements())
4394           return error("EXTRACTVAL: Invalid array index");
4395         EXTRACTVALIdx.push_back((unsigned)Index);
4396 
4397         if (IsStruct)
4398           CurTy = CurTy->subtypes()[Index];
4399         else
4400           CurTy = CurTy->subtypes()[0];
4401       }
4402 
4403       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4404       InstructionList.push_back(I);
4405       break;
4406     }
4407 
4408     case bitc::FUNC_CODE_INST_INSERTVAL: {
4409                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4410       unsigned OpNum = 0;
4411       Value *Agg;
4412       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4413         return error("Invalid record");
4414       Value *Val;
4415       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4416         return error("Invalid record");
4417 
4418       unsigned RecSize = Record.size();
4419       if (OpNum == RecSize)
4420         return error("INSERTVAL: Invalid instruction with 0 indices");
4421 
4422       SmallVector<unsigned, 4> INSERTVALIdx;
4423       Type *CurTy = Agg->getType();
4424       for (; OpNum != RecSize; ++OpNum) {
4425         bool IsArray = CurTy->isArrayTy();
4426         bool IsStruct = CurTy->isStructTy();
4427         uint64_t Index = Record[OpNum];
4428 
4429         if (!IsStruct && !IsArray)
4430           return error("INSERTVAL: Invalid type");
4431         if ((unsigned)Index != Index)
4432           return error("Invalid value");
4433         if (IsStruct && Index >= CurTy->subtypes().size())
4434           return error("INSERTVAL: Invalid struct index");
4435         if (IsArray && Index >= CurTy->getArrayNumElements())
4436           return error("INSERTVAL: Invalid array index");
4437 
4438         INSERTVALIdx.push_back((unsigned)Index);
4439         if (IsStruct)
4440           CurTy = CurTy->subtypes()[Index];
4441         else
4442           CurTy = CurTy->subtypes()[0];
4443       }
4444 
4445       if (CurTy != Val->getType())
4446         return error("Inserted value type doesn't match aggregate type");
4447 
4448       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4449       InstructionList.push_back(I);
4450       break;
4451     }
4452 
4453     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4454       // obsolete form of select
4455       // handles select i1 ... in old bitcode
4456       unsigned OpNum = 0;
4457       Value *TrueVal, *FalseVal, *Cond;
4458       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4459           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4460           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4461         return error("Invalid record");
4462 
4463       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4464       InstructionList.push_back(I);
4465       break;
4466     }
4467 
4468     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4469       // new form of select
4470       // handles select i1 or select [N x i1]
4471       unsigned OpNum = 0;
4472       Value *TrueVal, *FalseVal, *Cond;
4473       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4474           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4475           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4476         return error("Invalid record");
4477 
4478       // select condition can be either i1 or [N x i1]
4479       if (VectorType* vector_type =
4480           dyn_cast<VectorType>(Cond->getType())) {
4481         // expect <n x i1>
4482         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4483           return error("Invalid type for value");
4484       } else {
4485         // expect i1
4486         if (Cond->getType() != Type::getInt1Ty(Context))
4487           return error("Invalid type for value");
4488       }
4489 
4490       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4491       InstructionList.push_back(I);
4492       break;
4493     }
4494 
4495     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4496       unsigned OpNum = 0;
4497       Value *Vec, *Idx;
4498       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4499           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4500         return error("Invalid record");
4501       if (!Vec->getType()->isVectorTy())
4502         return error("Invalid type for value");
4503       I = ExtractElementInst::Create(Vec, Idx);
4504       InstructionList.push_back(I);
4505       break;
4506     }
4507 
4508     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4509       unsigned OpNum = 0;
4510       Value *Vec, *Elt, *Idx;
4511       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4512         return error("Invalid record");
4513       if (!Vec->getType()->isVectorTy())
4514         return error("Invalid type for value");
4515       if (popValue(Record, OpNum, NextValueNo,
4516                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4517           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4518         return error("Invalid record");
4519       I = InsertElementInst::Create(Vec, Elt, Idx);
4520       InstructionList.push_back(I);
4521       break;
4522     }
4523 
4524     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4525       unsigned OpNum = 0;
4526       Value *Vec1, *Vec2, *Mask;
4527       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4528           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4529         return error("Invalid record");
4530 
4531       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4532         return error("Invalid record");
4533       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4534         return error("Invalid type for value");
4535       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4536       InstructionList.push_back(I);
4537       break;
4538     }
4539 
4540     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4541       // Old form of ICmp/FCmp returning bool
4542       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4543       // both legal on vectors but had different behaviour.
4544     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4545       // FCmp/ICmp returning bool or vector of bool
4546 
4547       unsigned OpNum = 0;
4548       Value *LHS, *RHS;
4549       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4550           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4551         return error("Invalid record");
4552 
4553       unsigned PredVal = Record[OpNum];
4554       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4555       FastMathFlags FMF;
4556       if (IsFP && Record.size() > OpNum+1)
4557         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4558 
4559       if (OpNum+1 != Record.size())
4560         return error("Invalid record");
4561 
4562       if (LHS->getType()->isFPOrFPVectorTy())
4563         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4564       else
4565         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4566 
4567       if (FMF.any())
4568         I->setFastMathFlags(FMF);
4569       InstructionList.push_back(I);
4570       break;
4571     }
4572 
4573     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4574       {
4575         unsigned Size = Record.size();
4576         if (Size == 0) {
4577           I = ReturnInst::Create(Context);
4578           InstructionList.push_back(I);
4579           break;
4580         }
4581 
4582         unsigned OpNum = 0;
4583         Value *Op = nullptr;
4584         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4585           return error("Invalid record");
4586         if (OpNum != Record.size())
4587           return error("Invalid record");
4588 
4589         I = ReturnInst::Create(Context, Op);
4590         InstructionList.push_back(I);
4591         break;
4592       }
4593     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4594       if (Record.size() != 1 && Record.size() != 3)
4595         return error("Invalid record");
4596       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4597       if (!TrueDest)
4598         return error("Invalid record");
4599 
4600       if (Record.size() == 1) {
4601         I = BranchInst::Create(TrueDest);
4602         InstructionList.push_back(I);
4603       }
4604       else {
4605         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4606         Value *Cond = getValue(Record, 2, NextValueNo,
4607                                Type::getInt1Ty(Context));
4608         if (!FalseDest || !Cond)
4609           return error("Invalid record");
4610         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4611         InstructionList.push_back(I);
4612       }
4613       break;
4614     }
4615     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4616       if (Record.size() != 1 && Record.size() != 2)
4617         return error("Invalid record");
4618       unsigned Idx = 0;
4619       Value *CleanupPad =
4620           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4621       if (!CleanupPad)
4622         return error("Invalid record");
4623       BasicBlock *UnwindDest = nullptr;
4624       if (Record.size() == 2) {
4625         UnwindDest = getBasicBlock(Record[Idx++]);
4626         if (!UnwindDest)
4627           return error("Invalid record");
4628       }
4629 
4630       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4631       InstructionList.push_back(I);
4632       break;
4633     }
4634     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4635       if (Record.size() != 2)
4636         return error("Invalid record");
4637       unsigned Idx = 0;
4638       Value *CatchPad =
4639           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4640       if (!CatchPad)
4641         return error("Invalid record");
4642       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4643       if (!BB)
4644         return error("Invalid record");
4645 
4646       I = CatchReturnInst::Create(CatchPad, BB);
4647       InstructionList.push_back(I);
4648       break;
4649     }
4650     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4651       // We must have, at minimum, the outer scope and the number of arguments.
4652       if (Record.size() < 2)
4653         return error("Invalid record");
4654 
4655       unsigned Idx = 0;
4656 
4657       Value *ParentPad =
4658           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4659 
4660       unsigned NumHandlers = Record[Idx++];
4661 
4662       SmallVector<BasicBlock *, 2> Handlers;
4663       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4664         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4665         if (!BB)
4666           return error("Invalid record");
4667         Handlers.push_back(BB);
4668       }
4669 
4670       BasicBlock *UnwindDest = nullptr;
4671       if (Idx + 1 == Record.size()) {
4672         UnwindDest = getBasicBlock(Record[Idx++]);
4673         if (!UnwindDest)
4674           return error("Invalid record");
4675       }
4676 
4677       if (Record.size() != Idx)
4678         return error("Invalid record");
4679 
4680       auto *CatchSwitch =
4681           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4682       for (BasicBlock *Handler : Handlers)
4683         CatchSwitch->addHandler(Handler);
4684       I = CatchSwitch;
4685       InstructionList.push_back(I);
4686       break;
4687     }
4688     case bitc::FUNC_CODE_INST_CATCHPAD:
4689     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4690       // We must have, at minimum, the outer scope and the number of arguments.
4691       if (Record.size() < 2)
4692         return error("Invalid record");
4693 
4694       unsigned Idx = 0;
4695 
4696       Value *ParentPad =
4697           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4698 
4699       unsigned NumArgOperands = Record[Idx++];
4700 
4701       SmallVector<Value *, 2> Args;
4702       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4703         Value *Val;
4704         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4705           return error("Invalid record");
4706         Args.push_back(Val);
4707       }
4708 
4709       if (Record.size() != Idx)
4710         return error("Invalid record");
4711 
4712       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4713         I = CleanupPadInst::Create(ParentPad, Args);
4714       else
4715         I = CatchPadInst::Create(ParentPad, Args);
4716       InstructionList.push_back(I);
4717       break;
4718     }
4719     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4720       // Check magic
4721       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4722         // "New" SwitchInst format with case ranges. The changes to write this
4723         // format were reverted but we still recognize bitcode that uses it.
4724         // Hopefully someday we will have support for case ranges and can use
4725         // this format again.
4726 
4727         Type *OpTy = getTypeByID(Record[1]);
4728         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4729 
4730         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4731         BasicBlock *Default = getBasicBlock(Record[3]);
4732         if (!OpTy || !Cond || !Default)
4733           return error("Invalid record");
4734 
4735         unsigned NumCases = Record[4];
4736 
4737         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4738         InstructionList.push_back(SI);
4739 
4740         unsigned CurIdx = 5;
4741         for (unsigned i = 0; i != NumCases; ++i) {
4742           SmallVector<ConstantInt*, 1> CaseVals;
4743           unsigned NumItems = Record[CurIdx++];
4744           for (unsigned ci = 0; ci != NumItems; ++ci) {
4745             bool isSingleNumber = Record[CurIdx++];
4746 
4747             APInt Low;
4748             unsigned ActiveWords = 1;
4749             if (ValueBitWidth > 64)
4750               ActiveWords = Record[CurIdx++];
4751             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4752                                 ValueBitWidth);
4753             CurIdx += ActiveWords;
4754 
4755             if (!isSingleNumber) {
4756               ActiveWords = 1;
4757               if (ValueBitWidth > 64)
4758                 ActiveWords = Record[CurIdx++];
4759               APInt High = readWideAPInt(
4760                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4761               CurIdx += ActiveWords;
4762 
4763               // FIXME: It is not clear whether values in the range should be
4764               // compared as signed or unsigned values. The partially
4765               // implemented changes that used this format in the past used
4766               // unsigned comparisons.
4767               for ( ; Low.ule(High); ++Low)
4768                 CaseVals.push_back(ConstantInt::get(Context, Low));
4769             } else
4770               CaseVals.push_back(ConstantInt::get(Context, Low));
4771           }
4772           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4773           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4774                  cve = CaseVals.end(); cvi != cve; ++cvi)
4775             SI->addCase(*cvi, DestBB);
4776         }
4777         I = SI;
4778         break;
4779       }
4780 
4781       // Old SwitchInst format without case ranges.
4782 
4783       if (Record.size() < 3 || (Record.size() & 1) == 0)
4784         return error("Invalid record");
4785       Type *OpTy = getTypeByID(Record[0]);
4786       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4787       BasicBlock *Default = getBasicBlock(Record[2]);
4788       if (!OpTy || !Cond || !Default)
4789         return error("Invalid record");
4790       unsigned NumCases = (Record.size()-3)/2;
4791       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4792       InstructionList.push_back(SI);
4793       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4794         ConstantInt *CaseVal =
4795           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4796         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4797         if (!CaseVal || !DestBB) {
4798           delete SI;
4799           return error("Invalid record");
4800         }
4801         SI->addCase(CaseVal, DestBB);
4802       }
4803       I = SI;
4804       break;
4805     }
4806     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4807       if (Record.size() < 2)
4808         return error("Invalid record");
4809       Type *OpTy = getTypeByID(Record[0]);
4810       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4811       if (!OpTy || !Address)
4812         return error("Invalid record");
4813       unsigned NumDests = Record.size()-2;
4814       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4815       InstructionList.push_back(IBI);
4816       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4817         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4818           IBI->addDestination(DestBB);
4819         } else {
4820           delete IBI;
4821           return error("Invalid record");
4822         }
4823       }
4824       I = IBI;
4825       break;
4826     }
4827 
4828     case bitc::FUNC_CODE_INST_INVOKE: {
4829       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4830       if (Record.size() < 4)
4831         return error("Invalid record");
4832       unsigned OpNum = 0;
4833       AttributeSet PAL = getAttributes(Record[OpNum++]);
4834       unsigned CCInfo = Record[OpNum++];
4835       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4836       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4837 
4838       FunctionType *FTy = nullptr;
4839       if (CCInfo >> 13 & 1 &&
4840           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4841         return error("Explicit invoke type is not a function type");
4842 
4843       Value *Callee;
4844       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4845         return error("Invalid record");
4846 
4847       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4848       if (!CalleeTy)
4849         return error("Callee is not a pointer");
4850       if (!FTy) {
4851         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4852         if (!FTy)
4853           return error("Callee is not of pointer to function type");
4854       } else if (CalleeTy->getElementType() != FTy)
4855         return error("Explicit invoke type does not match pointee type of "
4856                      "callee operand");
4857       if (Record.size() < FTy->getNumParams() + OpNum)
4858         return error("Insufficient operands to call");
4859 
4860       SmallVector<Value*, 16> Ops;
4861       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4862         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4863                                FTy->getParamType(i)));
4864         if (!Ops.back())
4865           return error("Invalid record");
4866       }
4867 
4868       if (!FTy->isVarArg()) {
4869         if (Record.size() != OpNum)
4870           return error("Invalid record");
4871       } else {
4872         // Read type/value pairs for varargs params.
4873         while (OpNum != Record.size()) {
4874           Value *Op;
4875           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4876             return error("Invalid record");
4877           Ops.push_back(Op);
4878         }
4879       }
4880 
4881       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4882       OperandBundles.clear();
4883       InstructionList.push_back(I);
4884       cast<InvokeInst>(I)->setCallingConv(
4885           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4886       cast<InvokeInst>(I)->setAttributes(PAL);
4887       break;
4888     }
4889     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4890       unsigned Idx = 0;
4891       Value *Val = nullptr;
4892       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4893         return error("Invalid record");
4894       I = ResumeInst::Create(Val);
4895       InstructionList.push_back(I);
4896       break;
4897     }
4898     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4899       I = new UnreachableInst(Context);
4900       InstructionList.push_back(I);
4901       break;
4902     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4903       if (Record.size() < 1 || ((Record.size()-1)&1))
4904         return error("Invalid record");
4905       Type *Ty = getTypeByID(Record[0]);
4906       if (!Ty)
4907         return error("Invalid record");
4908 
4909       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4910       InstructionList.push_back(PN);
4911 
4912       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4913         Value *V;
4914         // With the new function encoding, it is possible that operands have
4915         // negative IDs (for forward references).  Use a signed VBR
4916         // representation to keep the encoding small.
4917         if (UseRelativeIDs)
4918           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4919         else
4920           V = getValue(Record, 1+i, NextValueNo, Ty);
4921         BasicBlock *BB = getBasicBlock(Record[2+i]);
4922         if (!V || !BB)
4923           return error("Invalid record");
4924         PN->addIncoming(V, BB);
4925       }
4926       I = PN;
4927       break;
4928     }
4929 
4930     case bitc::FUNC_CODE_INST_LANDINGPAD:
4931     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4932       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4933       unsigned Idx = 0;
4934       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4935         if (Record.size() < 3)
4936           return error("Invalid record");
4937       } else {
4938         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4939         if (Record.size() < 4)
4940           return error("Invalid record");
4941       }
4942       Type *Ty = getTypeByID(Record[Idx++]);
4943       if (!Ty)
4944         return error("Invalid record");
4945       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4946         Value *PersFn = nullptr;
4947         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4948           return error("Invalid record");
4949 
4950         if (!F->hasPersonalityFn())
4951           F->setPersonalityFn(cast<Constant>(PersFn));
4952         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4953           return error("Personality function mismatch");
4954       }
4955 
4956       bool IsCleanup = !!Record[Idx++];
4957       unsigned NumClauses = Record[Idx++];
4958       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4959       LP->setCleanup(IsCleanup);
4960       for (unsigned J = 0; J != NumClauses; ++J) {
4961         LandingPadInst::ClauseType CT =
4962           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4963         Value *Val;
4964 
4965         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4966           delete LP;
4967           return error("Invalid record");
4968         }
4969 
4970         assert((CT != LandingPadInst::Catch ||
4971                 !isa<ArrayType>(Val->getType())) &&
4972                "Catch clause has a invalid type!");
4973         assert((CT != LandingPadInst::Filter ||
4974                 isa<ArrayType>(Val->getType())) &&
4975                "Filter clause has invalid type!");
4976         LP->addClause(cast<Constant>(Val));
4977       }
4978 
4979       I = LP;
4980       InstructionList.push_back(I);
4981       break;
4982     }
4983 
4984     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4985       if (Record.size() != 4)
4986         return error("Invalid record");
4987       uint64_t AlignRecord = Record[3];
4988       const uint64_t InAllocaMask = uint64_t(1) << 5;
4989       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4990       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4991       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4992                                 SwiftErrorMask;
4993       bool InAlloca = AlignRecord & InAllocaMask;
4994       bool SwiftError = AlignRecord & SwiftErrorMask;
4995       Type *Ty = getTypeByID(Record[0]);
4996       if ((AlignRecord & ExplicitTypeMask) == 0) {
4997         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4998         if (!PTy)
4999           return error("Old-style alloca with a non-pointer type");
5000         Ty = PTy->getElementType();
5001       }
5002       Type *OpTy = getTypeByID(Record[1]);
5003       Value *Size = getFnValueByID(Record[2], OpTy);
5004       unsigned Align;
5005       if (std::error_code EC =
5006               parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
5007         return EC;
5008       }
5009       if (!Ty || !Size)
5010         return error("Invalid record");
5011       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
5012       AI->setUsedWithInAlloca(InAlloca);
5013       AI->setSwiftError(SwiftError);
5014       I = AI;
5015       InstructionList.push_back(I);
5016       break;
5017     }
5018     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5019       unsigned OpNum = 0;
5020       Value *Op;
5021       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5022           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5023         return error("Invalid record");
5024 
5025       Type *Ty = nullptr;
5026       if (OpNum + 3 == Record.size())
5027         Ty = getTypeByID(Record[OpNum++]);
5028       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
5029         return EC;
5030       if (!Ty)
5031         Ty = cast<PointerType>(Op->getType())->getElementType();
5032 
5033       unsigned Align;
5034       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5035         return EC;
5036       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
5037 
5038       InstructionList.push_back(I);
5039       break;
5040     }
5041     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5042        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
5043       unsigned OpNum = 0;
5044       Value *Op;
5045       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5046           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5047         return error("Invalid record");
5048 
5049       Type *Ty = nullptr;
5050       if (OpNum + 5 == Record.size())
5051         Ty = getTypeByID(Record[OpNum++]);
5052       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
5053         return EC;
5054       if (!Ty)
5055         Ty = cast<PointerType>(Op->getType())->getElementType();
5056 
5057       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5058       if (Ordering == AtomicOrdering::NotAtomic ||
5059           Ordering == AtomicOrdering::Release ||
5060           Ordering == AtomicOrdering::AcquireRelease)
5061         return error("Invalid record");
5062       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5063         return error("Invalid record");
5064       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5065 
5066       unsigned Align;
5067       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5068         return EC;
5069       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
5070 
5071       InstructionList.push_back(I);
5072       break;
5073     }
5074     case bitc::FUNC_CODE_INST_STORE:
5075     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5076       unsigned OpNum = 0;
5077       Value *Val, *Ptr;
5078       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5079           (BitCode == bitc::FUNC_CODE_INST_STORE
5080                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5081                : popValue(Record, OpNum, NextValueNo,
5082                           cast<PointerType>(Ptr->getType())->getElementType(),
5083                           Val)) ||
5084           OpNum + 2 != Record.size())
5085         return error("Invalid record");
5086 
5087       if (std::error_code EC =
5088               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5089         return EC;
5090       unsigned Align;
5091       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5092         return EC;
5093       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
5094       InstructionList.push_back(I);
5095       break;
5096     }
5097     case bitc::FUNC_CODE_INST_STOREATOMIC:
5098     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5099       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
5100       unsigned OpNum = 0;
5101       Value *Val, *Ptr;
5102       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5103           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5104                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5105                : popValue(Record, OpNum, NextValueNo,
5106                           cast<PointerType>(Ptr->getType())->getElementType(),
5107                           Val)) ||
5108           OpNum + 4 != Record.size())
5109         return error("Invalid record");
5110 
5111       if (std::error_code EC =
5112               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5113         return EC;
5114       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5115       if (Ordering == AtomicOrdering::NotAtomic ||
5116           Ordering == AtomicOrdering::Acquire ||
5117           Ordering == AtomicOrdering::AcquireRelease)
5118         return error("Invalid record");
5119       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5120       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5121         return error("Invalid record");
5122 
5123       unsigned Align;
5124       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5125         return EC;
5126       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
5127       InstructionList.push_back(I);
5128       break;
5129     }
5130     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
5131     case bitc::FUNC_CODE_INST_CMPXCHG: {
5132       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
5133       //          failureordering?, isweak?]
5134       unsigned OpNum = 0;
5135       Value *Ptr, *Cmp, *New;
5136       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5137           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
5138                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
5139                : popValue(Record, OpNum, NextValueNo,
5140                           cast<PointerType>(Ptr->getType())->getElementType(),
5141                           Cmp)) ||
5142           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5143           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5144         return error("Invalid record");
5145       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5146       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5147           SuccessOrdering == AtomicOrdering::Unordered)
5148         return error("Invalid record");
5149       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
5150 
5151       if (std::error_code EC =
5152               typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5153         return EC;
5154       AtomicOrdering FailureOrdering;
5155       if (Record.size() < 7)
5156         FailureOrdering =
5157             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5158       else
5159         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5160 
5161       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
5162                                 SynchScope);
5163       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5164 
5165       if (Record.size() < 8) {
5166         // Before weak cmpxchgs existed, the instruction simply returned the
5167         // value loaded from memory, so bitcode files from that era will be
5168         // expecting the first component of a modern cmpxchg.
5169         CurBB->getInstList().push_back(I);
5170         I = ExtractValueInst::Create(I, 0);
5171       } else {
5172         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5173       }
5174 
5175       InstructionList.push_back(I);
5176       break;
5177     }
5178     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5179       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
5180       unsigned OpNum = 0;
5181       Value *Ptr, *Val;
5182       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5183           popValue(Record, OpNum, NextValueNo,
5184                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
5185           OpNum+4 != Record.size())
5186         return error("Invalid record");
5187       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5188       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5189           Operation > AtomicRMWInst::LAST_BINOP)
5190         return error("Invalid record");
5191       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5192       if (Ordering == AtomicOrdering::NotAtomic ||
5193           Ordering == AtomicOrdering::Unordered)
5194         return error("Invalid record");
5195       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5196       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5197       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5198       InstructionList.push_back(I);
5199       break;
5200     }
5201     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5202       if (2 != Record.size())
5203         return error("Invalid record");
5204       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5205       if (Ordering == AtomicOrdering::NotAtomic ||
5206           Ordering == AtomicOrdering::Unordered ||
5207           Ordering == AtomicOrdering::Monotonic)
5208         return error("Invalid record");
5209       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5210       I = new FenceInst(Context, Ordering, SynchScope);
5211       InstructionList.push_back(I);
5212       break;
5213     }
5214     case bitc::FUNC_CODE_INST_CALL: {
5215       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5216       if (Record.size() < 3)
5217         return error("Invalid record");
5218 
5219       unsigned OpNum = 0;
5220       AttributeSet PAL = getAttributes(Record[OpNum++]);
5221       unsigned CCInfo = Record[OpNum++];
5222 
5223       FastMathFlags FMF;
5224       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5225         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5226         if (!FMF.any())
5227           return error("Fast math flags indicator set for call with no FMF");
5228       }
5229 
5230       FunctionType *FTy = nullptr;
5231       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5232           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5233         return error("Explicit call type is not a function type");
5234 
5235       Value *Callee;
5236       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5237         return error("Invalid record");
5238 
5239       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5240       if (!OpTy)
5241         return error("Callee is not a pointer type");
5242       if (!FTy) {
5243         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5244         if (!FTy)
5245           return error("Callee is not of pointer to function type");
5246       } else if (OpTy->getElementType() != FTy)
5247         return error("Explicit call type does not match pointee type of "
5248                      "callee operand");
5249       if (Record.size() < FTy->getNumParams() + OpNum)
5250         return error("Insufficient operands to call");
5251 
5252       SmallVector<Value*, 16> Args;
5253       // Read the fixed params.
5254       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5255         if (FTy->getParamType(i)->isLabelTy())
5256           Args.push_back(getBasicBlock(Record[OpNum]));
5257         else
5258           Args.push_back(getValue(Record, OpNum, NextValueNo,
5259                                   FTy->getParamType(i)));
5260         if (!Args.back())
5261           return error("Invalid record");
5262       }
5263 
5264       // Read type/value pairs for varargs params.
5265       if (!FTy->isVarArg()) {
5266         if (OpNum != Record.size())
5267           return error("Invalid record");
5268       } else {
5269         while (OpNum != Record.size()) {
5270           Value *Op;
5271           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5272             return error("Invalid record");
5273           Args.push_back(Op);
5274         }
5275       }
5276 
5277       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5278       OperandBundles.clear();
5279       InstructionList.push_back(I);
5280       cast<CallInst>(I)->setCallingConv(
5281           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5282       CallInst::TailCallKind TCK = CallInst::TCK_None;
5283       if (CCInfo & 1 << bitc::CALL_TAIL)
5284         TCK = CallInst::TCK_Tail;
5285       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5286         TCK = CallInst::TCK_MustTail;
5287       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5288         TCK = CallInst::TCK_NoTail;
5289       cast<CallInst>(I)->setTailCallKind(TCK);
5290       cast<CallInst>(I)->setAttributes(PAL);
5291       if (FMF.any()) {
5292         if (!isa<FPMathOperator>(I))
5293           return error("Fast-math-flags specified for call without "
5294                        "floating-point scalar or vector return type");
5295         I->setFastMathFlags(FMF);
5296       }
5297       break;
5298     }
5299     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5300       if (Record.size() < 3)
5301         return error("Invalid record");
5302       Type *OpTy = getTypeByID(Record[0]);
5303       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5304       Type *ResTy = getTypeByID(Record[2]);
5305       if (!OpTy || !Op || !ResTy)
5306         return error("Invalid record");
5307       I = new VAArgInst(Op, ResTy);
5308       InstructionList.push_back(I);
5309       break;
5310     }
5311 
5312     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5313       // A call or an invoke can be optionally prefixed with some variable
5314       // number of operand bundle blocks.  These blocks are read into
5315       // OperandBundles and consumed at the next call or invoke instruction.
5316 
5317       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5318         return error("Invalid record");
5319 
5320       std::vector<Value *> Inputs;
5321 
5322       unsigned OpNum = 1;
5323       while (OpNum != Record.size()) {
5324         Value *Op;
5325         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5326           return error("Invalid record");
5327         Inputs.push_back(Op);
5328       }
5329 
5330       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5331       continue;
5332     }
5333     }
5334 
5335     // Add instruction to end of current BB.  If there is no current BB, reject
5336     // this file.
5337     if (!CurBB) {
5338       delete I;
5339       return error("Invalid instruction with no BB");
5340     }
5341     if (!OperandBundles.empty()) {
5342       delete I;
5343       return error("Operand bundles found with no consumer");
5344     }
5345     CurBB->getInstList().push_back(I);
5346 
5347     // If this was a terminator instruction, move to the next block.
5348     if (isa<TerminatorInst>(I)) {
5349       ++CurBBNo;
5350       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5351     }
5352 
5353     // Non-void values get registered in the value table for future use.
5354     if (I && !I->getType()->isVoidTy())
5355       ValueList.assignValue(I, NextValueNo++);
5356   }
5357 
5358 OutOfRecordLoop:
5359 
5360   if (!OperandBundles.empty())
5361     return error("Operand bundles found with no consumer");
5362 
5363   // Check the function list for unresolved values.
5364   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5365     if (!A->getParent()) {
5366       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5367       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5368         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5369           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5370           delete A;
5371         }
5372       }
5373       return error("Never resolved value found in function");
5374     }
5375   }
5376 
5377   // Unexpected unresolved metadata about to be dropped.
5378   if (MetadataList.hasFwdRefs())
5379     return error("Invalid function metadata: outgoing forward refs");
5380 
5381   // Trim the value list down to the size it was before we parsed this function.
5382   ValueList.shrinkTo(ModuleValueListSize);
5383   MetadataList.shrinkTo(ModuleMetadataListSize);
5384   std::vector<BasicBlock*>().swap(FunctionBBs);
5385   return std::error_code();
5386 }
5387 
5388 /// Find the function body in the bitcode stream
5389 std::error_code BitcodeReader::findFunctionInStream(
5390     Function *F,
5391     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5392   while (DeferredFunctionInfoIterator->second == 0) {
5393     // This is the fallback handling for the old format bitcode that
5394     // didn't contain the function index in the VST, or when we have
5395     // an anonymous function which would not have a VST entry.
5396     // Assert that we have one of those two cases.
5397     assert(VSTOffset == 0 || !F->hasName());
5398     // Parse the next body in the stream and set its position in the
5399     // DeferredFunctionInfo map.
5400     if (std::error_code EC = rememberAndSkipFunctionBodies())
5401       return EC;
5402   }
5403   return std::error_code();
5404 }
5405 
5406 //===----------------------------------------------------------------------===//
5407 // GVMaterializer implementation
5408 //===----------------------------------------------------------------------===//
5409 
5410 void BitcodeReader::releaseBuffer() { Buffer.release(); }
5411 
5412 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
5413   if (std::error_code EC = materializeMetadata())
5414     return EC;
5415 
5416   Function *F = dyn_cast<Function>(GV);
5417   // If it's not a function or is already material, ignore the request.
5418   if (!F || !F->isMaterializable())
5419     return std::error_code();
5420 
5421   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5422   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5423   // If its position is recorded as 0, its body is somewhere in the stream
5424   // but we haven't seen it yet.
5425   if (DFII->second == 0)
5426     if (std::error_code EC = findFunctionInStream(F, DFII))
5427       return EC;
5428 
5429   // Move the bit stream to the saved position of the deferred function body.
5430   Stream.JumpToBit(DFII->second);
5431 
5432   if (std::error_code EC = parseFunctionBody(F))
5433     return EC;
5434   F->setIsMaterializable(false);
5435 
5436   if (StripDebugInfo)
5437     stripDebugInfo(*F);
5438 
5439   // Upgrade any old intrinsic calls in the function.
5440   for (auto &I : UpgradedIntrinsics) {
5441     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5442          UI != UE;) {
5443       User *U = *UI;
5444       ++UI;
5445       if (CallInst *CI = dyn_cast<CallInst>(U))
5446         UpgradeIntrinsicCall(CI, I.second);
5447     }
5448   }
5449 
5450   // Finish fn->subprogram upgrade for materialized functions.
5451   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5452     F->setSubprogram(SP);
5453 
5454   // Bring in any functions that this function forward-referenced via
5455   // blockaddresses.
5456   return materializeForwardReferencedFunctions();
5457 }
5458 
5459 std::error_code BitcodeReader::materializeModule() {
5460   if (std::error_code EC = materializeMetadata())
5461     return EC;
5462 
5463   // Promise to materialize all forward references.
5464   WillMaterializeAllForwardRefs = true;
5465 
5466   // Iterate over the module, deserializing any functions that are still on
5467   // disk.
5468   for (Function &F : *TheModule) {
5469     if (std::error_code EC = materialize(&F))
5470       return EC;
5471   }
5472   // At this point, if there are any function bodies, parse the rest of
5473   // the bits in the module past the last function block we have recorded
5474   // through either lazy scanning or the VST.
5475   if (LastFunctionBlockBit || NextUnreadBit)
5476     parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
5477                                                      : NextUnreadBit);
5478 
5479   // Check that all block address forward references got resolved (as we
5480   // promised above).
5481   if (!BasicBlockFwdRefs.empty())
5482     return error("Never resolved function from blockaddress");
5483 
5484   // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost,
5485   // to prevent this instructions with TBAA tags should be upgraded first.
5486   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
5487     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
5488 
5489   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5490   // delete the old functions to clean up. We can't do this unless the entire
5491   // module is materialized because there could always be another function body
5492   // with calls to the old function.
5493   for (auto &I : UpgradedIntrinsics) {
5494     for (auto *U : I.first->users()) {
5495       if (CallInst *CI = dyn_cast<CallInst>(U))
5496         UpgradeIntrinsicCall(CI, I.second);
5497     }
5498     if (!I.first->use_empty())
5499       I.first->replaceAllUsesWith(I.second);
5500     I.first->eraseFromParent();
5501   }
5502   UpgradedIntrinsics.clear();
5503 
5504   UpgradeDebugInfo(*TheModule);
5505   return std::error_code();
5506 }
5507 
5508 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5509   return IdentifiedStructTypes;
5510 }
5511 
5512 std::error_code
5513 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
5514   if (Streamer)
5515     return initLazyStream(std::move(Streamer));
5516   return initStreamFromBuffer();
5517 }
5518 
5519 std::error_code BitcodeReader::initStreamFromBuffer() {
5520   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
5521   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
5522 
5523   if (Buffer->getBufferSize() & 3)
5524     return error("Invalid bitcode signature");
5525 
5526   // If we have a wrapper header, parse it and ignore the non-bc file contents.
5527   // The magic number is 0x0B17C0DE stored in little endian.
5528   if (isBitcodeWrapper(BufPtr, BufEnd))
5529     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5530       return error("Invalid bitcode wrapper header");
5531 
5532   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5533   Stream.init(&*StreamFile);
5534 
5535   return std::error_code();
5536 }
5537 
5538 std::error_code
5539 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
5540   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5541   // see it.
5542   auto OwnedBytes =
5543       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5544   StreamingMemoryObject &Bytes = *OwnedBytes;
5545   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5546   Stream.init(&*StreamFile);
5547 
5548   unsigned char buf[16];
5549   if (Bytes.readBytes(buf, 16, 0) != 16)
5550     return error("Invalid bitcode signature");
5551 
5552   if (!isBitcode(buf, buf + 16))
5553     return error("Invalid bitcode signature");
5554 
5555   if (isBitcodeWrapper(buf, buf + 4)) {
5556     const unsigned char *bitcodeStart = buf;
5557     const unsigned char *bitcodeEnd = buf + 16;
5558     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5559     Bytes.dropLeadingBytes(bitcodeStart - buf);
5560     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5561   }
5562   return std::error_code();
5563 }
5564 
5565 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E,
5566                                                        const Twine &Message) {
5567   return ::error(DiagnosticHandler, make_error_code(E), Message);
5568 }
5569 
5570 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) {
5571   return ::error(DiagnosticHandler,
5572                  make_error_code(BitcodeError::CorruptedBitcode), Message);
5573 }
5574 
5575 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) {
5576   return ::error(DiagnosticHandler, make_error_code(E));
5577 }
5578 
5579 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5580     MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
5581     bool CheckGlobalValSummaryPresenceOnly)
5582     : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer),
5583       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5584 
5585 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5586     DiagnosticHandlerFunction DiagnosticHandler,
5587     bool CheckGlobalValSummaryPresenceOnly)
5588     : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr),
5589       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5590 
5591 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; }
5592 
5593 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
5594 
5595 GlobalValue::GUID
5596 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) {
5597   auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId);
5598   assert(VGI != ValueIdToCallGraphGUIDMap.end());
5599   return VGI->second;
5600 }
5601 
5602 GlobalValueInfo *
5603 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) {
5604   auto I = SummaryOffsetToInfoMap.find(Offset);
5605   assert(I != SummaryOffsetToInfoMap.end());
5606   return I->second;
5607 }
5608 
5609 // Specialized value symbol table parser used when reading module index
5610 // blocks where we don't actually create global values.
5611 // At the end of this routine the module index is populated with a map
5612 // from global value name to GlobalValueInfo. The global value info contains
5613 // the function block's bitcode offset (if applicable), or the offset into the
5614 // summary section for the combined index.
5615 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5616     uint64_t Offset,
5617     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5618   assert(Offset > 0 && "Expected non-zero VST offset");
5619   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5620 
5621   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5622     return error("Invalid record");
5623 
5624   SmallVector<uint64_t, 64> Record;
5625 
5626   // Read all the records for this value table.
5627   SmallString<128> ValueName;
5628   while (1) {
5629     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5630 
5631     switch (Entry.Kind) {
5632     case BitstreamEntry::SubBlock: // Handled for us already.
5633     case BitstreamEntry::Error:
5634       return error("Malformed block");
5635     case BitstreamEntry::EndBlock:
5636       // Done parsing VST, jump back to wherever we came from.
5637       Stream.JumpToBit(CurrentBit);
5638       return std::error_code();
5639     case BitstreamEntry::Record:
5640       // The interesting case.
5641       break;
5642     }
5643 
5644     // Read a record.
5645     Record.clear();
5646     switch (Stream.readRecord(Entry.ID, Record)) {
5647     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5648       break;
5649     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5650       if (convertToString(Record, 1, ValueName))
5651         return error("Invalid record");
5652       unsigned ValueID = Record[0];
5653       std::unique_ptr<GlobalValueInfo> GlobalValInfo =
5654           llvm::make_unique<GlobalValueInfo>();
5655       assert(!SourceFileName.empty());
5656       auto VLI = ValueIdToLinkageMap.find(ValueID);
5657       assert(VLI != ValueIdToLinkageMap.end() &&
5658              "No linkage found for VST entry?");
5659       std::string GlobalId = GlobalValue::getGlobalIdentifier(
5660           ValueName, VLI->second, SourceFileName);
5661       auto ValueGUID = GlobalValue::getGUID(GlobalId);
5662       if (PrintSummaryGUIDs)
5663         dbgs() << "GUID " << ValueGUID << " is " << ValueName << "\n";
5664       TheIndex->addGlobalValueInfo(ValueGUID, std::move(GlobalValInfo));
5665       ValueIdToCallGraphGUIDMap[ValueID] = ValueGUID;
5666       ValueName.clear();
5667       break;
5668     }
5669     case bitc::VST_CODE_FNENTRY: {
5670       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5671       if (convertToString(Record, 2, ValueName))
5672         return error("Invalid record");
5673       unsigned ValueID = Record[0];
5674       uint64_t FuncOffset = Record[1];
5675       std::unique_ptr<GlobalValueInfo> FuncInfo =
5676           llvm::make_unique<GlobalValueInfo>(FuncOffset);
5677       assert(!SourceFileName.empty());
5678       auto VLI = ValueIdToLinkageMap.find(ValueID);
5679       assert(VLI != ValueIdToLinkageMap.end() &&
5680              "No linkage found for VST entry?");
5681       std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier(
5682           ValueName, VLI->second, SourceFileName);
5683       auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId);
5684       if (PrintSummaryGUIDs)
5685         dbgs() << "GUID " << FunctionGUID << " is " << ValueName << "\n";
5686       TheIndex->addGlobalValueInfo(FunctionGUID, std::move(FuncInfo));
5687       ValueIdToCallGraphGUIDMap[ValueID] = FunctionGUID;
5688 
5689       ValueName.clear();
5690       break;
5691     }
5692     case bitc::VST_CODE_COMBINED_GVDEFENTRY: {
5693       // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid]
5694       unsigned ValueID = Record[0];
5695       uint64_t GlobalValSummaryOffset = Record[1];
5696       GlobalValue::GUID GlobalValGUID = Record[2];
5697       std::unique_ptr<GlobalValueInfo> GlobalValInfo =
5698           llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset);
5699       SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get();
5700       TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo));
5701       ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID;
5702       break;
5703     }
5704     case bitc::VST_CODE_COMBINED_ENTRY: {
5705       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5706       unsigned ValueID = Record[0];
5707       GlobalValue::GUID RefGUID = Record[1];
5708       ValueIdToCallGraphGUIDMap[ValueID] = RefGUID;
5709       break;
5710     }
5711     }
5712   }
5713 }
5714 
5715 // Parse just the blocks needed for building the index out of the module.
5716 // At the end of this routine the module Index is populated with a map
5717 // from global value name to GlobalValueInfo. The global value info contains
5718 // the parsed summary information (when parsing summaries eagerly).
5719 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() {
5720   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5721     return error("Invalid record");
5722 
5723   SmallVector<uint64_t, 64> Record;
5724   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5725   unsigned ValueId = 0;
5726 
5727   // Read the index for this module.
5728   while (1) {
5729     BitstreamEntry Entry = Stream.advance();
5730 
5731     switch (Entry.Kind) {
5732     case BitstreamEntry::Error:
5733       return error("Malformed block");
5734     case BitstreamEntry::EndBlock:
5735       return std::error_code();
5736 
5737     case BitstreamEntry::SubBlock:
5738       if (CheckGlobalValSummaryPresenceOnly) {
5739         if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
5740           SeenGlobalValSummary = true;
5741           // No need to parse the rest since we found the summary.
5742           return std::error_code();
5743         }
5744         if (Stream.SkipBlock())
5745           return error("Invalid record");
5746         continue;
5747       }
5748       switch (Entry.ID) {
5749       default: // Skip unknown content.
5750         if (Stream.SkipBlock())
5751           return error("Invalid record");
5752         break;
5753       case bitc::BLOCKINFO_BLOCK_ID:
5754         // Need to parse these to get abbrev ids (e.g. for VST)
5755         if (Stream.ReadBlockInfoBlock())
5756           return error("Malformed block");
5757         break;
5758       case bitc::VALUE_SYMTAB_BLOCK_ID:
5759         // Should have been parsed earlier via VSTOffset, unless there
5760         // is no summary section.
5761         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5762                 !SeenGlobalValSummary) &&
5763                "Expected early VST parse via VSTOffset record");
5764         if (Stream.SkipBlock())
5765           return error("Invalid record");
5766         break;
5767       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5768         assert(VSTOffset > 0 && "Expected non-zero VST offset");
5769         assert(!SeenValueSymbolTable &&
5770                "Already read VST when parsing summary block?");
5771         if (std::error_code EC =
5772                 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5773           return EC;
5774         SeenValueSymbolTable = true;
5775         SeenGlobalValSummary = true;
5776         if (std::error_code EC = parseEntireSummary())
5777           return EC;
5778         break;
5779       case bitc::MODULE_STRTAB_BLOCK_ID:
5780         if (std::error_code EC = parseModuleStringTable())
5781           return EC;
5782         break;
5783       }
5784       continue;
5785 
5786     case BitstreamEntry::Record: {
5787         Record.clear();
5788         auto BitCode = Stream.readRecord(Entry.ID, Record);
5789         switch (BitCode) {
5790         default:
5791           break; // Default behavior, ignore unknown content.
5792         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5793         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5794           SmallString<128> ValueName;
5795           if (convertToString(Record, 0, ValueName))
5796             return error("Invalid record");
5797           SourceFileName = ValueName.c_str();
5798           break;
5799         }
5800         /// MODULE_CODE_HASH: [5*i32]
5801         case bitc::MODULE_CODE_HASH: {
5802           if (Record.size() != 5)
5803             return error("Invalid hash length " + Twine(Record.size()).str());
5804           if (!TheIndex)
5805             break;
5806           if (TheIndex->modulePaths().empty())
5807             // Does not have any summary emitted.
5808             break;
5809           if (TheIndex->modulePaths().size() != 1)
5810             return error("Don't expect multiple modules defined?");
5811           auto &Hash = TheIndex->modulePaths().begin()->second.second;
5812           int Pos = 0;
5813           for (auto &Val : Record) {
5814             assert(!(Val >> 32) && "Unexpected high bits set");
5815             Hash[Pos++] = Val;
5816           }
5817           break;
5818         }
5819         /// MODULE_CODE_VSTOFFSET: [offset]
5820         case bitc::MODULE_CODE_VSTOFFSET:
5821           if (Record.size() < 1)
5822             return error("Invalid record");
5823           VSTOffset = Record[0];
5824           break;
5825         // GLOBALVAR: [pointer type, isconst, initid,
5826         //             linkage, alignment, section, visibility, threadlocal,
5827         //             unnamed_addr, externally_initialized, dllstorageclass,
5828         //             comdat]
5829         case bitc::MODULE_CODE_GLOBALVAR: {
5830           if (Record.size() < 6)
5831             return error("Invalid record");
5832           uint64_t RawLinkage = Record[3];
5833           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5834           ValueIdToLinkageMap[ValueId++] = Linkage;
5835           break;
5836         }
5837         // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
5838         //             alignment, section, visibility, gc, unnamed_addr,
5839         //             prologuedata, dllstorageclass, comdat, prefixdata]
5840         case bitc::MODULE_CODE_FUNCTION: {
5841           if (Record.size() < 8)
5842             return error("Invalid record");
5843           uint64_t RawLinkage = Record[3];
5844           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5845           ValueIdToLinkageMap[ValueId++] = Linkage;
5846           break;
5847         }
5848         // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
5849         // dllstorageclass]
5850         case bitc::MODULE_CODE_ALIAS: {
5851           if (Record.size() < 6)
5852             return error("Invalid record");
5853           uint64_t RawLinkage = Record[3];
5854           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5855           ValueIdToLinkageMap[ValueId++] = Linkage;
5856           break;
5857         }
5858         }
5859       }
5860       continue;
5861     }
5862   }
5863 }
5864 
5865 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5866 // objects in the index.
5867 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() {
5868   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
5869     return error("Invalid record");
5870 
5871   SmallVector<uint64_t, 64> Record;
5872 
5873   bool Combined = false;
5874   while (1) {
5875     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5876 
5877     switch (Entry.Kind) {
5878     case BitstreamEntry::SubBlock: // Handled for us already.
5879     case BitstreamEntry::Error:
5880       return error("Malformed block");
5881     case BitstreamEntry::EndBlock:
5882       // For a per-module index, remove any entries that still have empty
5883       // summaries. The VST parsing creates entries eagerly for all symbols,
5884       // but not all have associated summaries (e.g. it doesn't know how to
5885       // distinguish between VST_CODE_ENTRY for function declarations vs global
5886       // variables with initializers that end up with a summary). Remove those
5887       // entries now so that we don't need to rely on the combined index merger
5888       // to clean them up (especially since that may not run for the first
5889       // module's index if we merge into that).
5890       if (!Combined)
5891         TheIndex->removeEmptySummaryEntries();
5892       return std::error_code();
5893     case BitstreamEntry::Record:
5894       // The interesting case.
5895       break;
5896     }
5897 
5898     // Read a record. The record format depends on whether this
5899     // is a per-module index or a combined index file. In the per-module
5900     // case the records contain the associated value's ID for correlation
5901     // with VST entries. In the combined index the correlation is done
5902     // via the bitcode offset of the summary records (which were saved
5903     // in the combined index VST entries). The records also contain
5904     // information used for ThinLTO renaming and importing.
5905     Record.clear();
5906     uint64_t CurRecordBit = Stream.GetCurrentBitNo();
5907     auto BitCode = Stream.readRecord(Entry.ID, Record);
5908     switch (BitCode) {
5909     default: // Default behavior: ignore.
5910       break;
5911     // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid,
5912     //                n x (valueid, callsitecount)]
5913     // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs,
5914     //                        numrefs x valueid,
5915     //                        n x (valueid, callsitecount, profilecount)]
5916     case bitc::FS_PERMODULE:
5917     case bitc::FS_PERMODULE_PROFILE: {
5918       unsigned ValueID = Record[0];
5919       uint64_t RawLinkage = Record[1];
5920       unsigned InstCount = Record[2];
5921       unsigned NumRefs = Record[3];
5922       std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>(
5923           getDecodedLinkage(RawLinkage), InstCount);
5924       // The module path string ref set in the summary must be owned by the
5925       // index's module string table. Since we don't have a module path
5926       // string table section in the per-module index, we create a single
5927       // module path string table entry with an empty (0) ID to take
5928       // ownership.
5929       FS->setModulePath(
5930           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
5931       static int RefListStartIndex = 4;
5932       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5933       assert(Record.size() >= RefListStartIndex + NumRefs &&
5934              "Record size inconsistent with number of references");
5935       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
5936         unsigned RefValueId = Record[I];
5937         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId);
5938         FS->addRefEdge(RefGUID);
5939       }
5940       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5941       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
5942            ++I) {
5943         unsigned CalleeValueId = Record[I];
5944         unsigned CallsiteCount = Record[++I];
5945         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
5946         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId);
5947         FS->addCallGraphEdge(CalleeGUID,
5948                              CalleeInfo(CallsiteCount, ProfileCount));
5949       }
5950       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID);
5951       auto *Info = TheIndex->getGlobalValueInfo(GUID);
5952       assert(!Info->summary() && "Expected a single summary per VST entry");
5953       Info->setSummary(std::move(FS));
5954       break;
5955     }
5956     // FS_ALIAS: [valueid, linkage, valueid]
5957     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5958     // they expect all aliasee summaries to be available.
5959     case bitc::FS_ALIAS: {
5960       unsigned ValueID = Record[0];
5961       uint64_t RawLinkage = Record[1];
5962       unsigned AliaseeID = Record[2];
5963       std::unique_ptr<AliasSummary> AS =
5964           llvm::make_unique<AliasSummary>(getDecodedLinkage(RawLinkage));
5965       // The module path string ref set in the summary must be owned by the
5966       // index's module string table. Since we don't have a module path
5967       // string table section in the per-module index, we create a single
5968       // module path string table entry with an empty (0) ID to take
5969       // ownership.
5970       AS->setModulePath(
5971           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
5972 
5973       GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID);
5974       auto *AliaseeInfo = TheIndex->getGlobalValueInfo(AliaseeGUID);
5975       if (!AliaseeInfo->summary())
5976         return error("Alias expects aliasee summary to be parsed");
5977       AS->setAliasee(AliaseeInfo->summary());
5978 
5979       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID);
5980       auto *Info = TheIndex->getGlobalValueInfo(GUID);
5981       assert(!Info->summary() && "Expected a single summary per VST entry");
5982       Info->setSummary(std::move(AS));
5983       break;
5984     }
5985     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid]
5986     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5987       unsigned ValueID = Record[0];
5988       uint64_t RawLinkage = Record[1];
5989       std::unique_ptr<GlobalVarSummary> FS =
5990           llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage));
5991       FS->setModulePath(
5992           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
5993       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
5994         unsigned RefValueId = Record[I];
5995         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId);
5996         FS->addRefEdge(RefGUID);
5997       }
5998       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID);
5999       auto *Info = TheIndex->getGlobalValueInfo(GUID);
6000       assert(!Info->summary() && "Expected a single summary per VST entry");
6001       Info->setSummary(std::move(FS));
6002       break;
6003     }
6004     // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid,
6005     //               n x (valueid, callsitecount)]
6006     // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs,
6007     //                       numrefs x valueid,
6008     //                       n x (valueid, callsitecount, profilecount)]
6009     case bitc::FS_COMBINED:
6010     case bitc::FS_COMBINED_PROFILE: {
6011       uint64_t ModuleId = Record[0];
6012       uint64_t RawLinkage = Record[1];
6013       unsigned InstCount = Record[2];
6014       unsigned NumRefs = Record[3];
6015       std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>(
6016           getDecodedLinkage(RawLinkage), InstCount);
6017       FS->setModulePath(ModuleIdMap[ModuleId]);
6018       static int RefListStartIndex = 4;
6019       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6020       assert(Record.size() >= RefListStartIndex + NumRefs &&
6021              "Record size inconsistent with number of references");
6022       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
6023         unsigned RefValueId = Record[I];
6024         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId);
6025         FS->addRefEdge(RefGUID);
6026       }
6027       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6028       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6029            ++I) {
6030         unsigned CalleeValueId = Record[I];
6031         unsigned CallsiteCount = Record[++I];
6032         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
6033         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId);
6034         FS->addCallGraphEdge(CalleeGUID,
6035                              CalleeInfo(CallsiteCount, ProfileCount));
6036       }
6037       auto *Info = getInfoFromSummaryOffset(CurRecordBit);
6038       assert(!Info->summary() && "Expected a single summary per VST entry");
6039       Info->setSummary(std::move(FS));
6040       Combined = true;
6041       break;
6042     }
6043     // FS_COMBINED_ALIAS: [modid, linkage, offset]
6044     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6045     // they expect all aliasee summaries to be available.
6046     case bitc::FS_COMBINED_ALIAS: {
6047       uint64_t ModuleId = Record[0];
6048       uint64_t RawLinkage = Record[1];
6049       uint64_t AliaseeSummaryOffset = Record[2];
6050       std::unique_ptr<AliasSummary> AS =
6051           llvm::make_unique<AliasSummary>(getDecodedLinkage(RawLinkage));
6052       AS->setModulePath(ModuleIdMap[ModuleId]);
6053 
6054       auto *AliaseeInfo = getInfoFromSummaryOffset(AliaseeSummaryOffset);
6055       if (!AliaseeInfo->summary())
6056         return error("Alias expects aliasee summary to be parsed");
6057       AS->setAliasee(AliaseeInfo->summary());
6058 
6059       auto *Info = getInfoFromSummaryOffset(CurRecordBit);
6060       assert(!Info->summary() && "Expected a single summary per VST entry");
6061       Info->setSummary(std::move(AS));
6062       Combined = true;
6063       break;
6064     }
6065     // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid]
6066     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6067       uint64_t ModuleId = Record[0];
6068       uint64_t RawLinkage = Record[1];
6069       std::unique_ptr<GlobalVarSummary> FS =
6070           llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage));
6071       FS->setModulePath(ModuleIdMap[ModuleId]);
6072       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
6073         unsigned RefValueId = Record[I];
6074         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId);
6075         FS->addRefEdge(RefGUID);
6076       }
6077       auto *Info = getInfoFromSummaryOffset(CurRecordBit);
6078       assert(!Info->summary() && "Expected a single summary per VST entry");
6079       Info->setSummary(std::move(FS));
6080       Combined = true;
6081       break;
6082     }
6083     }
6084   }
6085   llvm_unreachable("Exit infinite loop");
6086 }
6087 
6088 // Parse the  module string table block into the Index.
6089 // This populates the ModulePathStringTable map in the index.
6090 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6091   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6092     return error("Invalid record");
6093 
6094   SmallVector<uint64_t, 64> Record;
6095 
6096   SmallString<128> ModulePath;
6097   ModulePathStringTableTy::iterator LastSeenModulePath;
6098   while (1) {
6099     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6100 
6101     switch (Entry.Kind) {
6102     case BitstreamEntry::SubBlock: // Handled for us already.
6103     case BitstreamEntry::Error:
6104       return error("Malformed block");
6105     case BitstreamEntry::EndBlock:
6106       return std::error_code();
6107     case BitstreamEntry::Record:
6108       // The interesting case.
6109       break;
6110     }
6111 
6112     Record.clear();
6113     switch (Stream.readRecord(Entry.ID, Record)) {
6114     default: // Default behavior: ignore.
6115       break;
6116     case bitc::MST_CODE_ENTRY: {
6117       // MST_ENTRY: [modid, namechar x N]
6118       uint64_t ModuleId = Record[0];
6119 
6120       if (convertToString(Record, 1, ModulePath))
6121         return error("Invalid record");
6122 
6123       LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId);
6124       ModuleIdMap[ModuleId] = LastSeenModulePath->first();
6125 
6126       ModulePath.clear();
6127       break;
6128     }
6129     /// MST_CODE_HASH: [5*i32]
6130     case bitc::MST_CODE_HASH: {
6131       if (Record.size() != 5)
6132         return error("Invalid hash length " + Twine(Record.size()).str());
6133       if (LastSeenModulePath == TheIndex->modulePaths().end())
6134         return error("Invalid hash that does not follow a module path");
6135       int Pos = 0;
6136       for (auto &Val : Record) {
6137         assert(!(Val >> 32) && "Unexpected high bits set");
6138         LastSeenModulePath->second.second[Pos++] = Val;
6139       }
6140       // Reset LastSeenModulePath to avoid overriding the hash unexpectedly.
6141       LastSeenModulePath = TheIndex->modulePaths().end();
6142       break;
6143     }
6144     }
6145   }
6146   llvm_unreachable("Exit infinite loop");
6147 }
6148 
6149 // Parse the function info index from the bitcode streamer into the given index.
6150 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(
6151     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) {
6152   TheIndex = I;
6153 
6154   if (std::error_code EC = initStream(std::move(Streamer)))
6155     return EC;
6156 
6157   // Sniff for the signature.
6158   if (!hasValidBitcodeHeader(Stream))
6159     return error("Invalid bitcode signature");
6160 
6161   // We expect a number of well-defined blocks, though we don't necessarily
6162   // need to understand them all.
6163   while (1) {
6164     if (Stream.AtEndOfStream()) {
6165       // We didn't really read a proper Module block.
6166       return error("Malformed block");
6167     }
6168 
6169     BitstreamEntry Entry =
6170         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
6171 
6172     if (Entry.Kind != BitstreamEntry::SubBlock)
6173       return error("Malformed block");
6174 
6175     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
6176     // building the function summary index.
6177     if (Entry.ID == bitc::MODULE_BLOCK_ID)
6178       return parseModule();
6179 
6180     if (Stream.SkipBlock())
6181       return error("Invalid record");
6182   }
6183 }
6184 
6185 // Parse the summary information at the given offset in the buffer into
6186 // the index. Used to support lazy parsing of summaries from the
6187 // combined index during importing.
6188 // TODO: This function is not yet complete as it won't have a consumer
6189 // until ThinLTO function importing is added.
6190 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary(
6191     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I,
6192     size_t SummaryOffset) {
6193   TheIndex = I;
6194 
6195   if (std::error_code EC = initStream(std::move(Streamer)))
6196     return EC;
6197 
6198   // Sniff for the signature.
6199   if (!hasValidBitcodeHeader(Stream))
6200     return error("Invalid bitcode signature");
6201 
6202   Stream.JumpToBit(SummaryOffset);
6203 
6204   BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6205 
6206   switch (Entry.Kind) {
6207   default:
6208     return error("Malformed block");
6209   case BitstreamEntry::Record:
6210     // The expected case.
6211     break;
6212   }
6213 
6214   // TODO: Read a record. This interface will be completed when ThinLTO
6215   // importing is added so that it can be tested.
6216   SmallVector<uint64_t, 64> Record;
6217   switch (Stream.readRecord(Entry.ID, Record)) {
6218   case bitc::FS_COMBINED:
6219   case bitc::FS_COMBINED_PROFILE:
6220   case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS:
6221   default:
6222     return error("Invalid record");
6223   }
6224 
6225   return std::error_code();
6226 }
6227 
6228 std::error_code ModuleSummaryIndexBitcodeReader::initStream(
6229     std::unique_ptr<DataStreamer> Streamer) {
6230   if (Streamer)
6231     return initLazyStream(std::move(Streamer));
6232   return initStreamFromBuffer();
6233 }
6234 
6235 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() {
6236   const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart();
6237   const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize();
6238 
6239   if (Buffer->getBufferSize() & 3)
6240     return error("Invalid bitcode signature");
6241 
6242   // If we have a wrapper header, parse it and ignore the non-bc file contents.
6243   // The magic number is 0x0B17C0DE stored in little endian.
6244   if (isBitcodeWrapper(BufPtr, BufEnd))
6245     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
6246       return error("Invalid bitcode wrapper header");
6247 
6248   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
6249   Stream.init(&*StreamFile);
6250 
6251   return std::error_code();
6252 }
6253 
6254 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream(
6255     std::unique_ptr<DataStreamer> Streamer) {
6256   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
6257   // see it.
6258   auto OwnedBytes =
6259       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
6260   StreamingMemoryObject &Bytes = *OwnedBytes;
6261   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
6262   Stream.init(&*StreamFile);
6263 
6264   unsigned char buf[16];
6265   if (Bytes.readBytes(buf, 16, 0) != 16)
6266     return error("Invalid bitcode signature");
6267 
6268   if (!isBitcode(buf, buf + 16))
6269     return error("Invalid bitcode signature");
6270 
6271   if (isBitcodeWrapper(buf, buf + 4)) {
6272     const unsigned char *bitcodeStart = buf;
6273     const unsigned char *bitcodeEnd = buf + 16;
6274     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
6275     Bytes.dropLeadingBytes(bitcodeStart - buf);
6276     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
6277   }
6278   return std::error_code();
6279 }
6280 
6281 namespace {
6282 class BitcodeErrorCategoryType : public std::error_category {
6283   const char *name() const LLVM_NOEXCEPT override {
6284     return "llvm.bitcode";
6285   }
6286   std::string message(int IE) const override {
6287     BitcodeError E = static_cast<BitcodeError>(IE);
6288     switch (E) {
6289     case BitcodeError::InvalidBitcodeSignature:
6290       return "Invalid bitcode signature";
6291     case BitcodeError::CorruptedBitcode:
6292       return "Corrupted bitcode";
6293     }
6294     llvm_unreachable("Unknown error type!");
6295   }
6296 };
6297 } // end anonymous namespace
6298 
6299 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6300 
6301 const std::error_category &llvm::BitcodeErrorCategory() {
6302   return *ErrorCategory;
6303 }
6304 
6305 //===----------------------------------------------------------------------===//
6306 // External interface
6307 //===----------------------------------------------------------------------===//
6308 
6309 static ErrorOr<std::unique_ptr<Module>>
6310 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name,
6311                      BitcodeReader *R, LLVMContext &Context,
6312                      bool MaterializeAll, bool ShouldLazyLoadMetadata) {
6313   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6314   M->setMaterializer(R);
6315 
6316   auto cleanupOnError = [&](std::error_code EC) {
6317     R->releaseBuffer(); // Never take ownership on error.
6318     return EC;
6319   };
6320 
6321   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6322   if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(),
6323                                                ShouldLazyLoadMetadata))
6324     return cleanupOnError(EC);
6325 
6326   if (MaterializeAll) {
6327     // Read in the entire module, and destroy the BitcodeReader.
6328     if (std::error_code EC = M->materializeAll())
6329       return cleanupOnError(EC);
6330   } else {
6331     // Resolve forward references from blockaddresses.
6332     if (std::error_code EC = R->materializeForwardReferencedFunctions())
6333       return cleanupOnError(EC);
6334   }
6335   return std::move(M);
6336 }
6337 
6338 /// \brief Get a lazy one-at-time loading module from bitcode.
6339 ///
6340 /// This isn't always used in a lazy context.  In particular, it's also used by
6341 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
6342 /// in forward-referenced functions from block address references.
6343 ///
6344 /// \param[in] MaterializeAll Set to \c true if we should materialize
6345 /// everything.
6346 static ErrorOr<std::unique_ptr<Module>>
6347 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
6348                          LLVMContext &Context, bool MaterializeAll,
6349                          bool ShouldLazyLoadMetadata = false) {
6350   BitcodeReader *R = new BitcodeReader(Buffer.get(), Context);
6351 
6352   ErrorOr<std::unique_ptr<Module>> Ret =
6353       getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context,
6354                            MaterializeAll, ShouldLazyLoadMetadata);
6355   if (!Ret)
6356     return Ret;
6357 
6358   Buffer.release(); // The BitcodeReader owns it now.
6359   return Ret;
6360 }
6361 
6362 ErrorOr<std::unique_ptr<Module>>
6363 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
6364                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
6365   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
6366                                   ShouldLazyLoadMetadata);
6367 }
6368 
6369 ErrorOr<std::unique_ptr<Module>>
6370 llvm::getStreamedBitcodeModule(StringRef Name,
6371                                std::unique_ptr<DataStreamer> Streamer,
6372                                LLVMContext &Context) {
6373   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6374   BitcodeReader *R = new BitcodeReader(Context);
6375 
6376   return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false,
6377                               false);
6378 }
6379 
6380 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6381                                                         LLVMContext &Context) {
6382   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6383   return getLazyBitcodeModuleImpl(std::move(Buf), Context, true);
6384   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6385   // written.  We must defer until the Module has been fully materialized.
6386 }
6387 
6388 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer,
6389                                          LLVMContext &Context) {
6390   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6391   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6392   ErrorOr<std::string> Triple = R->parseTriple();
6393   if (Triple.getError())
6394     return "";
6395   return Triple.get();
6396 }
6397 
6398 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer,
6399                                            LLVMContext &Context) {
6400   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6401   BitcodeReader R(Buf.release(), Context);
6402   ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
6403   if (ProducerString.getError())
6404     return "";
6405   return ProducerString.get();
6406 }
6407 
6408 // Parse the specified bitcode buffer, returning the function info index.
6409 ErrorOr<std::unique_ptr<ModuleSummaryIndex>>
6410 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer,
6411                             DiagnosticHandlerFunction DiagnosticHandler) {
6412   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6413   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
6414 
6415   auto Index = llvm::make_unique<ModuleSummaryIndex>();
6416 
6417   auto cleanupOnError = [&](std::error_code EC) {
6418     R.releaseBuffer(); // Never take ownership on error.
6419     return EC;
6420   };
6421 
6422   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
6423     return cleanupOnError(EC);
6424 
6425   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6426   return std::move(Index);
6427 }
6428 
6429 // Check if the given bitcode buffer contains a global value summary block.
6430 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer,
6431                                  DiagnosticHandlerFunction DiagnosticHandler) {
6432   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6433   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true);
6434 
6435   auto cleanupOnError = [&](std::error_code EC) {
6436     R.releaseBuffer(); // Never take ownership on error.
6437     return false;
6438   };
6439 
6440   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
6441     return cleanupOnError(EC);
6442 
6443   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6444   return R.foundGlobalValSummary();
6445 }
6446