1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Bitcode/BitcodeReader.h"
11 #include "MetadataLoader.h"
12 #include "ValueList.h"
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Bitcode/BitstreamReader.h"
25 #include "llvm/Bitcode/LLVMBitCodes.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 /// Helper to read the header common to all bitcode files.
109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
110   // Sniff for the signature.
111   if (!Stream.canSkipToPos(4) ||
112       Stream.Read(8) != 'B' ||
113       Stream.Read(8) != 'C' ||
114       Stream.Read(4) != 0x0 ||
115       Stream.Read(4) != 0xC ||
116       Stream.Read(4) != 0xE ||
117       Stream.Read(4) != 0xD)
118     return false;
119   return true;
120 }
121 
122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
123   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
124   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
125 
126   if (Buffer.getBufferSize() & 3)
127     return error("Invalid bitcode signature");
128 
129   // If we have a wrapper header, parse it and ignore the non-bc file contents.
130   // The magic number is 0x0B17C0DE stored in little endian.
131   if (isBitcodeWrapper(BufPtr, BufEnd))
132     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
133       return error("Invalid bitcode wrapper header");
134 
135   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
136   if (!hasValidBitcodeHeader(Stream))
137     return error("Invalid bitcode signature");
138 
139   return std::move(Stream);
140 }
141 
142 /// Convert a string from a record into an std::string, return true on failure.
143 template <typename StrTy>
144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
145                             StrTy &Result) {
146   if (Idx > Record.size())
147     return true;
148 
149   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
150     Result += (char)Record[i];
151   return false;
152 }
153 
154 // Strip all the TBAA attachment for the module.
155 static void stripTBAA(Module *M) {
156   for (auto &F : *M) {
157     if (F.isMaterializable())
158       continue;
159     for (auto &I : instructions(F))
160       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
161   }
162 }
163 
164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
165 /// "epoch" encoded in the bitcode, and return the producer name if any.
166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
167   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
168     return error("Invalid record");
169 
170   // Read all the records.
171   SmallVector<uint64_t, 64> Record;
172 
173   std::string ProducerIdentification;
174 
175   while (true) {
176     BitstreamEntry Entry = Stream.advance();
177 
178     switch (Entry.Kind) {
179     default:
180     case BitstreamEntry::Error:
181       return error("Malformed block");
182     case BitstreamEntry::EndBlock:
183       return ProducerIdentification;
184     case BitstreamEntry::Record:
185       // The interesting case.
186       break;
187     }
188 
189     // Read a record.
190     Record.clear();
191     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
192     switch (BitCode) {
193     default: // Default behavior: reject
194       return error("Invalid value");
195     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
196       convertToString(Record, 0, ProducerIdentification);
197       break;
198     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
199       unsigned epoch = (unsigned)Record[0];
200       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
201         return error(
202           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
203           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
204       }
205     }
206     }
207   }
208 }
209 
210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
211   // We expect a number of well-defined blocks, though we don't necessarily
212   // need to understand them all.
213   while (true) {
214     if (Stream.AtEndOfStream())
215       return "";
216 
217     BitstreamEntry Entry = Stream.advance();
218     switch (Entry.Kind) {
219     case BitstreamEntry::EndBlock:
220     case BitstreamEntry::Error:
221       return error("Malformed block");
222 
223     case BitstreamEntry::SubBlock:
224       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
225         return readIdentificationBlock(Stream);
226 
227       // Ignore other sub-blocks.
228       if (Stream.SkipBlock())
229         return error("Malformed block");
230       continue;
231     case BitstreamEntry::Record:
232       Stream.skipRecord(Entry.ID);
233       continue;
234     }
235   }
236 }
237 
238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
239   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
240     return error("Invalid record");
241 
242   SmallVector<uint64_t, 64> Record;
243   // Read all the records for this module.
244 
245   while (true) {
246     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
247 
248     switch (Entry.Kind) {
249     case BitstreamEntry::SubBlock: // Handled for us already.
250     case BitstreamEntry::Error:
251       return error("Malformed block");
252     case BitstreamEntry::EndBlock:
253       return false;
254     case BitstreamEntry::Record:
255       // The interesting case.
256       break;
257     }
258 
259     // Read a record.
260     switch (Stream.readRecord(Entry.ID, Record)) {
261     default:
262       break; // Default behavior, ignore unknown content.
263     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
264       std::string S;
265       if (convertToString(Record, 0, S))
266         return error("Invalid record");
267       // Check for the i386 and other (x86_64, ARM) conventions
268       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
269           S.find("__OBJC,__category") != std::string::npos)
270         return true;
271       break;
272     }
273     }
274     Record.clear();
275   }
276   llvm_unreachable("Exit infinite loop");
277 }
278 
279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
280   // We expect a number of well-defined blocks, though we don't necessarily
281   // need to understand them all.
282   while (true) {
283     BitstreamEntry Entry = Stream.advance();
284 
285     switch (Entry.Kind) {
286     case BitstreamEntry::Error:
287       return error("Malformed block");
288     case BitstreamEntry::EndBlock:
289       return false;
290 
291     case BitstreamEntry::SubBlock:
292       if (Entry.ID == bitc::MODULE_BLOCK_ID)
293         return hasObjCCategoryInModule(Stream);
294 
295       // Ignore other sub-blocks.
296       if (Stream.SkipBlock())
297         return error("Malformed block");
298       continue;
299 
300     case BitstreamEntry::Record:
301       Stream.skipRecord(Entry.ID);
302       continue;
303     }
304   }
305 }
306 
307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
308   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
309     return error("Invalid record");
310 
311   SmallVector<uint64_t, 64> Record;
312 
313   std::string Triple;
314 
315   // Read all the records for this module.
316   while (true) {
317     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
318 
319     switch (Entry.Kind) {
320     case BitstreamEntry::SubBlock: // Handled for us already.
321     case BitstreamEntry::Error:
322       return error("Malformed block");
323     case BitstreamEntry::EndBlock:
324       return Triple;
325     case BitstreamEntry::Record:
326       // The interesting case.
327       break;
328     }
329 
330     // Read a record.
331     switch (Stream.readRecord(Entry.ID, Record)) {
332     default: break;  // Default behavior, ignore unknown content.
333     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
334       std::string S;
335       if (convertToString(Record, 0, S))
336         return error("Invalid record");
337       Triple = S;
338       break;
339     }
340     }
341     Record.clear();
342   }
343   llvm_unreachable("Exit infinite loop");
344 }
345 
346 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
347   // We expect a number of well-defined blocks, though we don't necessarily
348   // need to understand them all.
349   while (true) {
350     BitstreamEntry Entry = Stream.advance();
351 
352     switch (Entry.Kind) {
353     case BitstreamEntry::Error:
354       return error("Malformed block");
355     case BitstreamEntry::EndBlock:
356       return "";
357 
358     case BitstreamEntry::SubBlock:
359       if (Entry.ID == bitc::MODULE_BLOCK_ID)
360         return readModuleTriple(Stream);
361 
362       // Ignore other sub-blocks.
363       if (Stream.SkipBlock())
364         return error("Malformed block");
365       continue;
366 
367     case BitstreamEntry::Record:
368       Stream.skipRecord(Entry.ID);
369       continue;
370     }
371   }
372 }
373 
374 namespace {
375 
376 class BitcodeReaderBase {
377 protected:
378   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
379       : Stream(std::move(Stream)), Strtab(Strtab) {
380     this->Stream.setBlockInfo(&BlockInfo);
381   }
382 
383   BitstreamBlockInfo BlockInfo;
384   BitstreamCursor Stream;
385   StringRef Strtab;
386 
387   /// In version 2 of the bitcode we store names of global values and comdats in
388   /// a string table rather than in the VST.
389   bool UseStrtab = false;
390 
391   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
392 
393   /// If this module uses a string table, pop the reference to the string table
394   /// and return the referenced string and the rest of the record. Otherwise
395   /// just return the record itself.
396   std::pair<StringRef, ArrayRef<uint64_t>>
397   readNameFromStrtab(ArrayRef<uint64_t> Record);
398 
399   bool readBlockInfo();
400 
401   // Contains an arbitrary and optional string identifying the bitcode producer
402   std::string ProducerIdentification;
403 
404   Error error(const Twine &Message);
405 };
406 
407 } // end anonymous namespace
408 
409 Error BitcodeReaderBase::error(const Twine &Message) {
410   std::string FullMsg = Message.str();
411   if (!ProducerIdentification.empty())
412     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
413                LLVM_VERSION_STRING "')";
414   return ::error(FullMsg);
415 }
416 
417 Expected<unsigned>
418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
419   if (Record.empty())
420     return error("Invalid record");
421   unsigned ModuleVersion = Record[0];
422   if (ModuleVersion > 2)
423     return error("Invalid value");
424   UseStrtab = ModuleVersion >= 2;
425   return ModuleVersion;
426 }
427 
428 std::pair<StringRef, ArrayRef<uint64_t>>
429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
430   if (!UseStrtab)
431     return {"", Record};
432   // Invalid reference. Let the caller complain about the record being empty.
433   if (Record[0] + Record[1] > Strtab.size())
434     return {"", {}};
435   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
436 }
437 
438 namespace {
439 
440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
441   LLVMContext &Context;
442   Module *TheModule = nullptr;
443   // Next offset to start scanning for lazy parsing of function bodies.
444   uint64_t NextUnreadBit = 0;
445   // Last function offset found in the VST.
446   uint64_t LastFunctionBlockBit = 0;
447   bool SeenValueSymbolTable = false;
448   uint64_t VSTOffset = 0;
449 
450   std::vector<std::string> SectionTable;
451   std::vector<std::string> GCTable;
452 
453   std::vector<Type*> TypeList;
454   BitcodeReaderValueList ValueList;
455   Optional<MetadataLoader> MDLoader;
456   std::vector<Comdat *> ComdatList;
457   SmallVector<Instruction *, 64> InstructionList;
458 
459   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
460   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
461   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
462   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
463   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
464 
465   /// The set of attributes by index.  Index zero in the file is for null, and
466   /// is thus not represented here.  As such all indices are off by one.
467   std::vector<AttributeList> MAttributes;
468 
469   /// The set of attribute groups.
470   std::map<unsigned, AttributeList> MAttributeGroups;
471 
472   /// While parsing a function body, this is a list of the basic blocks for the
473   /// function.
474   std::vector<BasicBlock*> FunctionBBs;
475 
476   // When reading the module header, this list is populated with functions that
477   // have bodies later in the file.
478   std::vector<Function*> FunctionsWithBodies;
479 
480   // When intrinsic functions are encountered which require upgrading they are
481   // stored here with their replacement function.
482   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
483   UpdatedIntrinsicMap UpgradedIntrinsics;
484   // Intrinsics which were remangled because of types rename
485   UpdatedIntrinsicMap RemangledIntrinsics;
486 
487   // Several operations happen after the module header has been read, but
488   // before function bodies are processed. This keeps track of whether
489   // we've done this yet.
490   bool SeenFirstFunctionBody = false;
491 
492   /// When function bodies are initially scanned, this map contains info about
493   /// where to find deferred function body in the stream.
494   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
495 
496   /// When Metadata block is initially scanned when parsing the module, we may
497   /// choose to defer parsing of the metadata. This vector contains info about
498   /// which Metadata blocks are deferred.
499   std::vector<uint64_t> DeferredMetadataInfo;
500 
501   /// These are basic blocks forward-referenced by block addresses.  They are
502   /// inserted lazily into functions when they're loaded.  The basic block ID is
503   /// its index into the vector.
504   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
505   std::deque<Function *> BasicBlockFwdRefQueue;
506 
507   /// Indicates that we are using a new encoding for instruction operands where
508   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
509   /// instruction number, for a more compact encoding.  Some instruction
510   /// operands are not relative to the instruction ID: basic block numbers, and
511   /// types. Once the old style function blocks have been phased out, we would
512   /// not need this flag.
513   bool UseRelativeIDs = false;
514 
515   /// True if all functions will be materialized, negating the need to process
516   /// (e.g.) blockaddress forward references.
517   bool WillMaterializeAllForwardRefs = false;
518 
519   bool StripDebugInfo = false;
520   TBAAVerifier TBAAVerifyHelper;
521 
522   std::vector<std::string> BundleTags;
523   SmallVector<SyncScope::ID, 8> SSIDs;
524 
525 public:
526   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
527                 StringRef ProducerIdentification, LLVMContext &Context);
528 
529   Error materializeForwardReferencedFunctions();
530 
531   Error materialize(GlobalValue *GV) override;
532   Error materializeModule() override;
533   std::vector<StructType *> getIdentifiedStructTypes() const override;
534 
535   /// \brief Main interface to parsing a bitcode buffer.
536   /// \returns true if an error occurred.
537   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
538                          bool IsImporting = false);
539 
540   static uint64_t decodeSignRotatedValue(uint64_t V);
541 
542   /// Materialize any deferred Metadata block.
543   Error materializeMetadata() override;
544 
545   void setStripDebugInfo() override;
546 
547 private:
548   std::vector<StructType *> IdentifiedStructTypes;
549   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
550   StructType *createIdentifiedStructType(LLVMContext &Context);
551 
552   Type *getTypeByID(unsigned ID);
553 
554   Value *getFnValueByID(unsigned ID, Type *Ty) {
555     if (Ty && Ty->isMetadataTy())
556       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
557     return ValueList.getValueFwdRef(ID, Ty);
558   }
559 
560   Metadata *getFnMetadataByID(unsigned ID) {
561     return MDLoader->getMetadataFwdRefOrLoad(ID);
562   }
563 
564   BasicBlock *getBasicBlock(unsigned ID) const {
565     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
566     return FunctionBBs[ID];
567   }
568 
569   AttributeList getAttributes(unsigned i) const {
570     if (i-1 < MAttributes.size())
571       return MAttributes[i-1];
572     return AttributeList();
573   }
574 
575   /// Read a value/type pair out of the specified record from slot 'Slot'.
576   /// Increment Slot past the number of slots used in the record. Return true on
577   /// failure.
578   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
579                         unsigned InstNum, Value *&ResVal) {
580     if (Slot == Record.size()) return true;
581     unsigned ValNo = (unsigned)Record[Slot++];
582     // Adjust the ValNo, if it was encoded relative to the InstNum.
583     if (UseRelativeIDs)
584       ValNo = InstNum - ValNo;
585     if (ValNo < InstNum) {
586       // If this is not a forward reference, just return the value we already
587       // have.
588       ResVal = getFnValueByID(ValNo, nullptr);
589       return ResVal == nullptr;
590     }
591     if (Slot == Record.size())
592       return true;
593 
594     unsigned TypeNo = (unsigned)Record[Slot++];
595     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
596     return ResVal == nullptr;
597   }
598 
599   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
600   /// past the number of slots used by the value in the record. Return true if
601   /// there is an error.
602   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
603                 unsigned InstNum, Type *Ty, Value *&ResVal) {
604     if (getValue(Record, Slot, InstNum, Ty, ResVal))
605       return true;
606     // All values currently take a single record slot.
607     ++Slot;
608     return false;
609   }
610 
611   /// Like popValue, but does not increment the Slot number.
612   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
613                 unsigned InstNum, Type *Ty, Value *&ResVal) {
614     ResVal = getValue(Record, Slot, InstNum, Ty);
615     return ResVal == nullptr;
616   }
617 
618   /// Version of getValue that returns ResVal directly, or 0 if there is an
619   /// error.
620   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
621                   unsigned InstNum, Type *Ty) {
622     if (Slot == Record.size()) return nullptr;
623     unsigned ValNo = (unsigned)Record[Slot];
624     // Adjust the ValNo, if it was encoded relative to the InstNum.
625     if (UseRelativeIDs)
626       ValNo = InstNum - ValNo;
627     return getFnValueByID(ValNo, Ty);
628   }
629 
630   /// Like getValue, but decodes signed VBRs.
631   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
632                         unsigned InstNum, Type *Ty) {
633     if (Slot == Record.size()) return nullptr;
634     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
635     // Adjust the ValNo, if it was encoded relative to the InstNum.
636     if (UseRelativeIDs)
637       ValNo = InstNum - ValNo;
638     return getFnValueByID(ValNo, Ty);
639   }
640 
641   /// Converts alignment exponent (i.e. power of two (or zero)) to the
642   /// corresponding alignment to use. If alignment is too large, returns
643   /// a corresponding error code.
644   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
645   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
646   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
647 
648   Error parseComdatRecord(ArrayRef<uint64_t> Record);
649   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
650   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
651   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
652                                         ArrayRef<uint64_t> Record);
653 
654   Error parseAttributeBlock();
655   Error parseAttributeGroupBlock();
656   Error parseTypeTable();
657   Error parseTypeTableBody();
658   Error parseOperandBundleTags();
659   Error parseSyncScopeNames();
660 
661   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
662                                 unsigned NameIndex, Triple &TT);
663   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
664                                ArrayRef<uint64_t> Record);
665   Error parseValueSymbolTable(uint64_t Offset = 0);
666   Error parseGlobalValueSymbolTable();
667   Error parseConstants();
668   Error rememberAndSkipFunctionBodies();
669   Error rememberAndSkipFunctionBody();
670   /// Save the positions of the Metadata blocks and skip parsing the blocks.
671   Error rememberAndSkipMetadata();
672   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
673   Error parseFunctionBody(Function *F);
674   Error globalCleanup();
675   Error resolveGlobalAndIndirectSymbolInits();
676   Error parseUseLists();
677   Error findFunctionInStream(
678       Function *F,
679       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
680 
681   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
682 };
683 
684 /// Class to manage reading and parsing function summary index bitcode
685 /// files/sections.
686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
687   /// The module index built during parsing.
688   ModuleSummaryIndex &TheIndex;
689 
690   /// Indicates whether we have encountered a global value summary section
691   /// yet during parsing.
692   bool SeenGlobalValSummary = false;
693 
694   /// Indicates whether we have already parsed the VST, used for error checking.
695   bool SeenValueSymbolTable = false;
696 
697   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
698   /// Used to enable on-demand parsing of the VST.
699   uint64_t VSTOffset = 0;
700 
701   // Map to save ValueId to ValueInfo association that was recorded in the
702   // ValueSymbolTable. It is used after the VST is parsed to convert
703   // call graph edges read from the function summary from referencing
704   // callees by their ValueId to using the ValueInfo instead, which is how
705   // they are recorded in the summary index being built.
706   // We save a GUID which refers to the same global as the ValueInfo, but
707   // ignoring the linkage, i.e. for values other than local linkage they are
708   // identical.
709   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
710       ValueIdToValueInfoMap;
711 
712   /// Map populated during module path string table parsing, from the
713   /// module ID to a string reference owned by the index's module
714   /// path string table, used to correlate with combined index
715   /// summary records.
716   DenseMap<uint64_t, StringRef> ModuleIdMap;
717 
718   /// Original source file name recorded in a bitcode record.
719   std::string SourceFileName;
720 
721   /// The string identifier given to this module by the client, normally the
722   /// path to the bitcode file.
723   StringRef ModulePath;
724 
725   /// For per-module summary indexes, the unique numerical identifier given to
726   /// this module by the client.
727   unsigned ModuleId;
728 
729 public:
730   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
731                                   ModuleSummaryIndex &TheIndex,
732                                   StringRef ModulePath, unsigned ModuleId);
733 
734   Error parseModule();
735 
736 private:
737   void setValueGUID(uint64_t ValueID, StringRef ValueName,
738                     GlobalValue::LinkageTypes Linkage,
739                     StringRef SourceFileName);
740   Error parseValueSymbolTable(
741       uint64_t Offset,
742       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
743   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
744   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
745                                                     bool IsOldProfileFormat,
746                                                     bool HasProfile);
747   Error parseEntireSummary(unsigned ID);
748   Error parseModuleStringTable();
749 
750   std::pair<ValueInfo, GlobalValue::GUID>
751   getValueInfoFromValueId(unsigned ValueId);
752 
753   ModuleSummaryIndex::ModuleInfo *addThisModule();
754 };
755 
756 } // end anonymous namespace
757 
758 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
759                                                     Error Err) {
760   if (Err) {
761     std::error_code EC;
762     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
763       EC = EIB.convertToErrorCode();
764       Ctx.emitError(EIB.message());
765     });
766     return EC;
767   }
768   return std::error_code();
769 }
770 
771 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
772                              StringRef ProducerIdentification,
773                              LLVMContext &Context)
774     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
775       ValueList(Context) {
776   this->ProducerIdentification = ProducerIdentification;
777 }
778 
779 Error BitcodeReader::materializeForwardReferencedFunctions() {
780   if (WillMaterializeAllForwardRefs)
781     return Error::success();
782 
783   // Prevent recursion.
784   WillMaterializeAllForwardRefs = true;
785 
786   while (!BasicBlockFwdRefQueue.empty()) {
787     Function *F = BasicBlockFwdRefQueue.front();
788     BasicBlockFwdRefQueue.pop_front();
789     assert(F && "Expected valid function");
790     if (!BasicBlockFwdRefs.count(F))
791       // Already materialized.
792       continue;
793 
794     // Check for a function that isn't materializable to prevent an infinite
795     // loop.  When parsing a blockaddress stored in a global variable, there
796     // isn't a trivial way to check if a function will have a body without a
797     // linear search through FunctionsWithBodies, so just check it here.
798     if (!F->isMaterializable())
799       return error("Never resolved function from blockaddress");
800 
801     // Try to materialize F.
802     if (Error Err = materialize(F))
803       return Err;
804   }
805   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
806 
807   // Reset state.
808   WillMaterializeAllForwardRefs = false;
809   return Error::success();
810 }
811 
812 //===----------------------------------------------------------------------===//
813 //  Helper functions to implement forward reference resolution, etc.
814 //===----------------------------------------------------------------------===//
815 
816 static bool hasImplicitComdat(size_t Val) {
817   switch (Val) {
818   default:
819     return false;
820   case 1:  // Old WeakAnyLinkage
821   case 4:  // Old LinkOnceAnyLinkage
822   case 10: // Old WeakODRLinkage
823   case 11: // Old LinkOnceODRLinkage
824     return true;
825   }
826 }
827 
828 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
829   switch (Val) {
830   default: // Map unknown/new linkages to external
831   case 0:
832     return GlobalValue::ExternalLinkage;
833   case 2:
834     return GlobalValue::AppendingLinkage;
835   case 3:
836     return GlobalValue::InternalLinkage;
837   case 5:
838     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
839   case 6:
840     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
841   case 7:
842     return GlobalValue::ExternalWeakLinkage;
843   case 8:
844     return GlobalValue::CommonLinkage;
845   case 9:
846     return GlobalValue::PrivateLinkage;
847   case 12:
848     return GlobalValue::AvailableExternallyLinkage;
849   case 13:
850     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
851   case 14:
852     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
853   case 15:
854     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
855   case 1: // Old value with implicit comdat.
856   case 16:
857     return GlobalValue::WeakAnyLinkage;
858   case 10: // Old value with implicit comdat.
859   case 17:
860     return GlobalValue::WeakODRLinkage;
861   case 4: // Old value with implicit comdat.
862   case 18:
863     return GlobalValue::LinkOnceAnyLinkage;
864   case 11: // Old value with implicit comdat.
865   case 19:
866     return GlobalValue::LinkOnceODRLinkage;
867   }
868 }
869 
870 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
871   FunctionSummary::FFlags Flags;
872   Flags.ReadNone = RawFlags & 0x1;
873   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
874   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
875   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
876   return Flags;
877 }
878 
879 /// Decode the flags for GlobalValue in the summary.
880 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
881                                                             uint64_t Version) {
882   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
883   // like getDecodedLinkage() above. Any future change to the linkage enum and
884   // to getDecodedLinkage() will need to be taken into account here as above.
885   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
886   RawFlags = RawFlags >> 4;
887   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
888   // The Live flag wasn't introduced until version 3. For dead stripping
889   // to work correctly on earlier versions, we must conservatively treat all
890   // values as live.
891   bool Live = (RawFlags & 0x2) || Version < 3;
892   bool Local = (RawFlags & 0x4);
893 
894   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local);
895 }
896 
897 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
898   switch (Val) {
899   default: // Map unknown visibilities to default.
900   case 0: return GlobalValue::DefaultVisibility;
901   case 1: return GlobalValue::HiddenVisibility;
902   case 2: return GlobalValue::ProtectedVisibility;
903   }
904 }
905 
906 static GlobalValue::DLLStorageClassTypes
907 getDecodedDLLStorageClass(unsigned Val) {
908   switch (Val) {
909   default: // Map unknown values to default.
910   case 0: return GlobalValue::DefaultStorageClass;
911   case 1: return GlobalValue::DLLImportStorageClass;
912   case 2: return GlobalValue::DLLExportStorageClass;
913   }
914 }
915 
916 static bool getDecodedDSOLocal(unsigned Val) {
917   switch(Val) {
918   default: // Map unknown values to preemptable.
919   case 0:  return false;
920   case 1:  return true;
921   }
922 }
923 
924 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
925   switch (Val) {
926     case 0: return GlobalVariable::NotThreadLocal;
927     default: // Map unknown non-zero value to general dynamic.
928     case 1: return GlobalVariable::GeneralDynamicTLSModel;
929     case 2: return GlobalVariable::LocalDynamicTLSModel;
930     case 3: return GlobalVariable::InitialExecTLSModel;
931     case 4: return GlobalVariable::LocalExecTLSModel;
932   }
933 }
934 
935 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
936   switch (Val) {
937     default: // Map unknown to UnnamedAddr::None.
938     case 0: return GlobalVariable::UnnamedAddr::None;
939     case 1: return GlobalVariable::UnnamedAddr::Global;
940     case 2: return GlobalVariable::UnnamedAddr::Local;
941   }
942 }
943 
944 static int getDecodedCastOpcode(unsigned Val) {
945   switch (Val) {
946   default: return -1;
947   case bitc::CAST_TRUNC   : return Instruction::Trunc;
948   case bitc::CAST_ZEXT    : return Instruction::ZExt;
949   case bitc::CAST_SEXT    : return Instruction::SExt;
950   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
951   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
952   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
953   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
954   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
955   case bitc::CAST_FPEXT   : return Instruction::FPExt;
956   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
957   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
958   case bitc::CAST_BITCAST : return Instruction::BitCast;
959   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
960   }
961 }
962 
963 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
964   bool IsFP = Ty->isFPOrFPVectorTy();
965   // BinOps are only valid for int/fp or vector of int/fp types
966   if (!IsFP && !Ty->isIntOrIntVectorTy())
967     return -1;
968 
969   switch (Val) {
970   default:
971     return -1;
972   case bitc::BINOP_ADD:
973     return IsFP ? Instruction::FAdd : Instruction::Add;
974   case bitc::BINOP_SUB:
975     return IsFP ? Instruction::FSub : Instruction::Sub;
976   case bitc::BINOP_MUL:
977     return IsFP ? Instruction::FMul : Instruction::Mul;
978   case bitc::BINOP_UDIV:
979     return IsFP ? -1 : Instruction::UDiv;
980   case bitc::BINOP_SDIV:
981     return IsFP ? Instruction::FDiv : Instruction::SDiv;
982   case bitc::BINOP_UREM:
983     return IsFP ? -1 : Instruction::URem;
984   case bitc::BINOP_SREM:
985     return IsFP ? Instruction::FRem : Instruction::SRem;
986   case bitc::BINOP_SHL:
987     return IsFP ? -1 : Instruction::Shl;
988   case bitc::BINOP_LSHR:
989     return IsFP ? -1 : Instruction::LShr;
990   case bitc::BINOP_ASHR:
991     return IsFP ? -1 : Instruction::AShr;
992   case bitc::BINOP_AND:
993     return IsFP ? -1 : Instruction::And;
994   case bitc::BINOP_OR:
995     return IsFP ? -1 : Instruction::Or;
996   case bitc::BINOP_XOR:
997     return IsFP ? -1 : Instruction::Xor;
998   }
999 }
1000 
1001 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1002   switch (Val) {
1003   default: return AtomicRMWInst::BAD_BINOP;
1004   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1005   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1006   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1007   case bitc::RMW_AND: return AtomicRMWInst::And;
1008   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1009   case bitc::RMW_OR: return AtomicRMWInst::Or;
1010   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1011   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1012   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1013   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1014   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1015   }
1016 }
1017 
1018 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1019   switch (Val) {
1020   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1021   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1022   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1023   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1024   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1025   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1026   default: // Map unknown orderings to sequentially-consistent.
1027   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1028   }
1029 }
1030 
1031 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1032   switch (Val) {
1033   default: // Map unknown selection kinds to any.
1034   case bitc::COMDAT_SELECTION_KIND_ANY:
1035     return Comdat::Any;
1036   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1037     return Comdat::ExactMatch;
1038   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1039     return Comdat::Largest;
1040   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1041     return Comdat::NoDuplicates;
1042   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1043     return Comdat::SameSize;
1044   }
1045 }
1046 
1047 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1048   FastMathFlags FMF;
1049   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
1050     FMF.setUnsafeAlgebra();
1051   if (0 != (Val & FastMathFlags::NoNaNs))
1052     FMF.setNoNaNs();
1053   if (0 != (Val & FastMathFlags::NoInfs))
1054     FMF.setNoInfs();
1055   if (0 != (Val & FastMathFlags::NoSignedZeros))
1056     FMF.setNoSignedZeros();
1057   if (0 != (Val & FastMathFlags::AllowReciprocal))
1058     FMF.setAllowReciprocal();
1059   if (0 != (Val & FastMathFlags::AllowContract))
1060     FMF.setAllowContract(true);
1061   return FMF;
1062 }
1063 
1064 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1065   switch (Val) {
1066   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1067   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1068   }
1069 }
1070 
1071 Type *BitcodeReader::getTypeByID(unsigned ID) {
1072   // The type table size is always specified correctly.
1073   if (ID >= TypeList.size())
1074     return nullptr;
1075 
1076   if (Type *Ty = TypeList[ID])
1077     return Ty;
1078 
1079   // If we have a forward reference, the only possible case is when it is to a
1080   // named struct.  Just create a placeholder for now.
1081   return TypeList[ID] = createIdentifiedStructType(Context);
1082 }
1083 
1084 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1085                                                       StringRef Name) {
1086   auto *Ret = StructType::create(Context, Name);
1087   IdentifiedStructTypes.push_back(Ret);
1088   return Ret;
1089 }
1090 
1091 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1092   auto *Ret = StructType::create(Context);
1093   IdentifiedStructTypes.push_back(Ret);
1094   return Ret;
1095 }
1096 
1097 //===----------------------------------------------------------------------===//
1098 //  Functions for parsing blocks from the bitcode file
1099 //===----------------------------------------------------------------------===//
1100 
1101 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1102   switch (Val) {
1103   case Attribute::EndAttrKinds:
1104     llvm_unreachable("Synthetic enumerators which should never get here");
1105 
1106   case Attribute::None:            return 0;
1107   case Attribute::ZExt:            return 1 << 0;
1108   case Attribute::SExt:            return 1 << 1;
1109   case Attribute::NoReturn:        return 1 << 2;
1110   case Attribute::InReg:           return 1 << 3;
1111   case Attribute::StructRet:       return 1 << 4;
1112   case Attribute::NoUnwind:        return 1 << 5;
1113   case Attribute::NoAlias:         return 1 << 6;
1114   case Attribute::ByVal:           return 1 << 7;
1115   case Attribute::Nest:            return 1 << 8;
1116   case Attribute::ReadNone:        return 1 << 9;
1117   case Attribute::ReadOnly:        return 1 << 10;
1118   case Attribute::NoInline:        return 1 << 11;
1119   case Attribute::AlwaysInline:    return 1 << 12;
1120   case Attribute::OptimizeForSize: return 1 << 13;
1121   case Attribute::StackProtect:    return 1 << 14;
1122   case Attribute::StackProtectReq: return 1 << 15;
1123   case Attribute::Alignment:       return 31 << 16;
1124   case Attribute::NoCapture:       return 1 << 21;
1125   case Attribute::NoRedZone:       return 1 << 22;
1126   case Attribute::NoImplicitFloat: return 1 << 23;
1127   case Attribute::Naked:           return 1 << 24;
1128   case Attribute::InlineHint:      return 1 << 25;
1129   case Attribute::StackAlignment:  return 7 << 26;
1130   case Attribute::ReturnsTwice:    return 1 << 29;
1131   case Attribute::UWTable:         return 1 << 30;
1132   case Attribute::NonLazyBind:     return 1U << 31;
1133   case Attribute::SanitizeAddress: return 1ULL << 32;
1134   case Attribute::MinSize:         return 1ULL << 33;
1135   case Attribute::NoDuplicate:     return 1ULL << 34;
1136   case Attribute::StackProtectStrong: return 1ULL << 35;
1137   case Attribute::SanitizeThread:  return 1ULL << 36;
1138   case Attribute::SanitizeMemory:  return 1ULL << 37;
1139   case Attribute::NoBuiltin:       return 1ULL << 38;
1140   case Attribute::Returned:        return 1ULL << 39;
1141   case Attribute::Cold:            return 1ULL << 40;
1142   case Attribute::Builtin:         return 1ULL << 41;
1143   case Attribute::OptimizeNone:    return 1ULL << 42;
1144   case Attribute::InAlloca:        return 1ULL << 43;
1145   case Attribute::NonNull:         return 1ULL << 44;
1146   case Attribute::JumpTable:       return 1ULL << 45;
1147   case Attribute::Convergent:      return 1ULL << 46;
1148   case Attribute::SafeStack:       return 1ULL << 47;
1149   case Attribute::NoRecurse:       return 1ULL << 48;
1150   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1151   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1152   case Attribute::SwiftSelf:       return 1ULL << 51;
1153   case Attribute::SwiftError:      return 1ULL << 52;
1154   case Attribute::WriteOnly:       return 1ULL << 53;
1155   case Attribute::Speculatable:    return 1ULL << 54;
1156   case Attribute::StrictFP:        return 1ULL << 55;
1157   case Attribute::Dereferenceable:
1158     llvm_unreachable("dereferenceable attribute not supported in raw format");
1159     break;
1160   case Attribute::DereferenceableOrNull:
1161     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1162                      "format");
1163     break;
1164   case Attribute::ArgMemOnly:
1165     llvm_unreachable("argmemonly attribute not supported in raw format");
1166     break;
1167   case Attribute::AllocSize:
1168     llvm_unreachable("allocsize not supported in raw format");
1169     break;
1170   }
1171   llvm_unreachable("Unsupported attribute type");
1172 }
1173 
1174 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1175   if (!Val) return;
1176 
1177   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1178        I = Attribute::AttrKind(I + 1)) {
1179     if (I == Attribute::Dereferenceable ||
1180         I == Attribute::DereferenceableOrNull ||
1181         I == Attribute::ArgMemOnly ||
1182         I == Attribute::AllocSize)
1183       continue;
1184     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1185       if (I == Attribute::Alignment)
1186         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1187       else if (I == Attribute::StackAlignment)
1188         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1189       else
1190         B.addAttribute(I);
1191     }
1192   }
1193 }
1194 
1195 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1196 /// been decoded from the given integer. This function must stay in sync with
1197 /// 'encodeLLVMAttributesForBitcode'.
1198 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1199                                            uint64_t EncodedAttrs) {
1200   // FIXME: Remove in 4.0.
1201 
1202   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1203   // the bits above 31 down by 11 bits.
1204   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1205   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1206          "Alignment must be a power of two.");
1207 
1208   if (Alignment)
1209     B.addAlignmentAttr(Alignment);
1210   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1211                           (EncodedAttrs & 0xffff));
1212 }
1213 
1214 Error BitcodeReader::parseAttributeBlock() {
1215   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1216     return error("Invalid record");
1217 
1218   if (!MAttributes.empty())
1219     return error("Invalid multiple blocks");
1220 
1221   SmallVector<uint64_t, 64> Record;
1222 
1223   SmallVector<AttributeList, 8> Attrs;
1224 
1225   // Read all the records.
1226   while (true) {
1227     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1228 
1229     switch (Entry.Kind) {
1230     case BitstreamEntry::SubBlock: // Handled for us already.
1231     case BitstreamEntry::Error:
1232       return error("Malformed block");
1233     case BitstreamEntry::EndBlock:
1234       return Error::success();
1235     case BitstreamEntry::Record:
1236       // The interesting case.
1237       break;
1238     }
1239 
1240     // Read a record.
1241     Record.clear();
1242     switch (Stream.readRecord(Entry.ID, Record)) {
1243     default:  // Default behavior: ignore.
1244       break;
1245     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1246       // FIXME: Remove in 4.0.
1247       if (Record.size() & 1)
1248         return error("Invalid record");
1249 
1250       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1251         AttrBuilder B;
1252         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1253         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1254       }
1255 
1256       MAttributes.push_back(AttributeList::get(Context, Attrs));
1257       Attrs.clear();
1258       break;
1259     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1260       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1261         Attrs.push_back(MAttributeGroups[Record[i]]);
1262 
1263       MAttributes.push_back(AttributeList::get(Context, Attrs));
1264       Attrs.clear();
1265       break;
1266     }
1267   }
1268 }
1269 
1270 // Returns Attribute::None on unrecognized codes.
1271 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1272   switch (Code) {
1273   default:
1274     return Attribute::None;
1275   case bitc::ATTR_KIND_ALIGNMENT:
1276     return Attribute::Alignment;
1277   case bitc::ATTR_KIND_ALWAYS_INLINE:
1278     return Attribute::AlwaysInline;
1279   case bitc::ATTR_KIND_ARGMEMONLY:
1280     return Attribute::ArgMemOnly;
1281   case bitc::ATTR_KIND_BUILTIN:
1282     return Attribute::Builtin;
1283   case bitc::ATTR_KIND_BY_VAL:
1284     return Attribute::ByVal;
1285   case bitc::ATTR_KIND_IN_ALLOCA:
1286     return Attribute::InAlloca;
1287   case bitc::ATTR_KIND_COLD:
1288     return Attribute::Cold;
1289   case bitc::ATTR_KIND_CONVERGENT:
1290     return Attribute::Convergent;
1291   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1292     return Attribute::InaccessibleMemOnly;
1293   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1294     return Attribute::InaccessibleMemOrArgMemOnly;
1295   case bitc::ATTR_KIND_INLINE_HINT:
1296     return Attribute::InlineHint;
1297   case bitc::ATTR_KIND_IN_REG:
1298     return Attribute::InReg;
1299   case bitc::ATTR_KIND_JUMP_TABLE:
1300     return Attribute::JumpTable;
1301   case bitc::ATTR_KIND_MIN_SIZE:
1302     return Attribute::MinSize;
1303   case bitc::ATTR_KIND_NAKED:
1304     return Attribute::Naked;
1305   case bitc::ATTR_KIND_NEST:
1306     return Attribute::Nest;
1307   case bitc::ATTR_KIND_NO_ALIAS:
1308     return Attribute::NoAlias;
1309   case bitc::ATTR_KIND_NO_BUILTIN:
1310     return Attribute::NoBuiltin;
1311   case bitc::ATTR_KIND_NO_CAPTURE:
1312     return Attribute::NoCapture;
1313   case bitc::ATTR_KIND_NO_DUPLICATE:
1314     return Attribute::NoDuplicate;
1315   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1316     return Attribute::NoImplicitFloat;
1317   case bitc::ATTR_KIND_NO_INLINE:
1318     return Attribute::NoInline;
1319   case bitc::ATTR_KIND_NO_RECURSE:
1320     return Attribute::NoRecurse;
1321   case bitc::ATTR_KIND_NON_LAZY_BIND:
1322     return Attribute::NonLazyBind;
1323   case bitc::ATTR_KIND_NON_NULL:
1324     return Attribute::NonNull;
1325   case bitc::ATTR_KIND_DEREFERENCEABLE:
1326     return Attribute::Dereferenceable;
1327   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1328     return Attribute::DereferenceableOrNull;
1329   case bitc::ATTR_KIND_ALLOC_SIZE:
1330     return Attribute::AllocSize;
1331   case bitc::ATTR_KIND_NO_RED_ZONE:
1332     return Attribute::NoRedZone;
1333   case bitc::ATTR_KIND_NO_RETURN:
1334     return Attribute::NoReturn;
1335   case bitc::ATTR_KIND_NO_UNWIND:
1336     return Attribute::NoUnwind;
1337   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1338     return Attribute::OptimizeForSize;
1339   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1340     return Attribute::OptimizeNone;
1341   case bitc::ATTR_KIND_READ_NONE:
1342     return Attribute::ReadNone;
1343   case bitc::ATTR_KIND_READ_ONLY:
1344     return Attribute::ReadOnly;
1345   case bitc::ATTR_KIND_RETURNED:
1346     return Attribute::Returned;
1347   case bitc::ATTR_KIND_RETURNS_TWICE:
1348     return Attribute::ReturnsTwice;
1349   case bitc::ATTR_KIND_S_EXT:
1350     return Attribute::SExt;
1351   case bitc::ATTR_KIND_SPECULATABLE:
1352     return Attribute::Speculatable;
1353   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1354     return Attribute::StackAlignment;
1355   case bitc::ATTR_KIND_STACK_PROTECT:
1356     return Attribute::StackProtect;
1357   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1358     return Attribute::StackProtectReq;
1359   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1360     return Attribute::StackProtectStrong;
1361   case bitc::ATTR_KIND_SAFESTACK:
1362     return Attribute::SafeStack;
1363   case bitc::ATTR_KIND_STRICT_FP:
1364     return Attribute::StrictFP;
1365   case bitc::ATTR_KIND_STRUCT_RET:
1366     return Attribute::StructRet;
1367   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1368     return Attribute::SanitizeAddress;
1369   case bitc::ATTR_KIND_SANITIZE_THREAD:
1370     return Attribute::SanitizeThread;
1371   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1372     return Attribute::SanitizeMemory;
1373   case bitc::ATTR_KIND_SWIFT_ERROR:
1374     return Attribute::SwiftError;
1375   case bitc::ATTR_KIND_SWIFT_SELF:
1376     return Attribute::SwiftSelf;
1377   case bitc::ATTR_KIND_UW_TABLE:
1378     return Attribute::UWTable;
1379   case bitc::ATTR_KIND_WRITEONLY:
1380     return Attribute::WriteOnly;
1381   case bitc::ATTR_KIND_Z_EXT:
1382     return Attribute::ZExt;
1383   }
1384 }
1385 
1386 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1387                                          unsigned &Alignment) {
1388   // Note: Alignment in bitcode files is incremented by 1, so that zero
1389   // can be used for default alignment.
1390   if (Exponent > Value::MaxAlignmentExponent + 1)
1391     return error("Invalid alignment value");
1392   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1393   return Error::success();
1394 }
1395 
1396 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1397   *Kind = getAttrFromCode(Code);
1398   if (*Kind == Attribute::None)
1399     return error("Unknown attribute kind (" + Twine(Code) + ")");
1400   return Error::success();
1401 }
1402 
1403 Error BitcodeReader::parseAttributeGroupBlock() {
1404   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1405     return error("Invalid record");
1406 
1407   if (!MAttributeGroups.empty())
1408     return error("Invalid multiple blocks");
1409 
1410   SmallVector<uint64_t, 64> Record;
1411 
1412   // Read all the records.
1413   while (true) {
1414     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1415 
1416     switch (Entry.Kind) {
1417     case BitstreamEntry::SubBlock: // Handled for us already.
1418     case BitstreamEntry::Error:
1419       return error("Malformed block");
1420     case BitstreamEntry::EndBlock:
1421       return Error::success();
1422     case BitstreamEntry::Record:
1423       // The interesting case.
1424       break;
1425     }
1426 
1427     // Read a record.
1428     Record.clear();
1429     switch (Stream.readRecord(Entry.ID, Record)) {
1430     default:  // Default behavior: ignore.
1431       break;
1432     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1433       if (Record.size() < 3)
1434         return error("Invalid record");
1435 
1436       uint64_t GrpID = Record[0];
1437       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1438 
1439       AttrBuilder B;
1440       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1441         if (Record[i] == 0) {        // Enum attribute
1442           Attribute::AttrKind Kind;
1443           if (Error Err = parseAttrKind(Record[++i], &Kind))
1444             return Err;
1445 
1446           B.addAttribute(Kind);
1447         } else if (Record[i] == 1) { // Integer attribute
1448           Attribute::AttrKind Kind;
1449           if (Error Err = parseAttrKind(Record[++i], &Kind))
1450             return Err;
1451           if (Kind == Attribute::Alignment)
1452             B.addAlignmentAttr(Record[++i]);
1453           else if (Kind == Attribute::StackAlignment)
1454             B.addStackAlignmentAttr(Record[++i]);
1455           else if (Kind == Attribute::Dereferenceable)
1456             B.addDereferenceableAttr(Record[++i]);
1457           else if (Kind == Attribute::DereferenceableOrNull)
1458             B.addDereferenceableOrNullAttr(Record[++i]);
1459           else if (Kind == Attribute::AllocSize)
1460             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1461         } else {                     // String attribute
1462           assert((Record[i] == 3 || Record[i] == 4) &&
1463                  "Invalid attribute group entry");
1464           bool HasValue = (Record[i++] == 4);
1465           SmallString<64> KindStr;
1466           SmallString<64> ValStr;
1467 
1468           while (Record[i] != 0 && i != e)
1469             KindStr += Record[i++];
1470           assert(Record[i] == 0 && "Kind string not null terminated");
1471 
1472           if (HasValue) {
1473             // Has a value associated with it.
1474             ++i; // Skip the '0' that terminates the "kind" string.
1475             while (Record[i] != 0 && i != e)
1476               ValStr += Record[i++];
1477             assert(Record[i] == 0 && "Value string not null terminated");
1478           }
1479 
1480           B.addAttribute(KindStr.str(), ValStr.str());
1481         }
1482       }
1483 
1484       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1485       break;
1486     }
1487     }
1488   }
1489 }
1490 
1491 Error BitcodeReader::parseTypeTable() {
1492   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1493     return error("Invalid record");
1494 
1495   return parseTypeTableBody();
1496 }
1497 
1498 Error BitcodeReader::parseTypeTableBody() {
1499   if (!TypeList.empty())
1500     return error("Invalid multiple blocks");
1501 
1502   SmallVector<uint64_t, 64> Record;
1503   unsigned NumRecords = 0;
1504 
1505   SmallString<64> TypeName;
1506 
1507   // Read all the records for this type table.
1508   while (true) {
1509     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1510 
1511     switch (Entry.Kind) {
1512     case BitstreamEntry::SubBlock: // Handled for us already.
1513     case BitstreamEntry::Error:
1514       return error("Malformed block");
1515     case BitstreamEntry::EndBlock:
1516       if (NumRecords != TypeList.size())
1517         return error("Malformed block");
1518       return Error::success();
1519     case BitstreamEntry::Record:
1520       // The interesting case.
1521       break;
1522     }
1523 
1524     // Read a record.
1525     Record.clear();
1526     Type *ResultTy = nullptr;
1527     switch (Stream.readRecord(Entry.ID, Record)) {
1528     default:
1529       return error("Invalid value");
1530     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1531       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1532       // type list.  This allows us to reserve space.
1533       if (Record.size() < 1)
1534         return error("Invalid record");
1535       TypeList.resize(Record[0]);
1536       continue;
1537     case bitc::TYPE_CODE_VOID:      // VOID
1538       ResultTy = Type::getVoidTy(Context);
1539       break;
1540     case bitc::TYPE_CODE_HALF:     // HALF
1541       ResultTy = Type::getHalfTy(Context);
1542       break;
1543     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1544       ResultTy = Type::getFloatTy(Context);
1545       break;
1546     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1547       ResultTy = Type::getDoubleTy(Context);
1548       break;
1549     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1550       ResultTy = Type::getX86_FP80Ty(Context);
1551       break;
1552     case bitc::TYPE_CODE_FP128:     // FP128
1553       ResultTy = Type::getFP128Ty(Context);
1554       break;
1555     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1556       ResultTy = Type::getPPC_FP128Ty(Context);
1557       break;
1558     case bitc::TYPE_CODE_LABEL:     // LABEL
1559       ResultTy = Type::getLabelTy(Context);
1560       break;
1561     case bitc::TYPE_CODE_METADATA:  // METADATA
1562       ResultTy = Type::getMetadataTy(Context);
1563       break;
1564     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1565       ResultTy = Type::getX86_MMXTy(Context);
1566       break;
1567     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1568       ResultTy = Type::getTokenTy(Context);
1569       break;
1570     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1571       if (Record.size() < 1)
1572         return error("Invalid record");
1573 
1574       uint64_t NumBits = Record[0];
1575       if (NumBits < IntegerType::MIN_INT_BITS ||
1576           NumBits > IntegerType::MAX_INT_BITS)
1577         return error("Bitwidth for integer type out of range");
1578       ResultTy = IntegerType::get(Context, NumBits);
1579       break;
1580     }
1581     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1582                                     //          [pointee type, address space]
1583       if (Record.size() < 1)
1584         return error("Invalid record");
1585       unsigned AddressSpace = 0;
1586       if (Record.size() == 2)
1587         AddressSpace = Record[1];
1588       ResultTy = getTypeByID(Record[0]);
1589       if (!ResultTy ||
1590           !PointerType::isValidElementType(ResultTy))
1591         return error("Invalid type");
1592       ResultTy = PointerType::get(ResultTy, AddressSpace);
1593       break;
1594     }
1595     case bitc::TYPE_CODE_FUNCTION_OLD: {
1596       // FIXME: attrid is dead, remove it in LLVM 4.0
1597       // FUNCTION: [vararg, attrid, retty, paramty x N]
1598       if (Record.size() < 3)
1599         return error("Invalid record");
1600       SmallVector<Type*, 8> ArgTys;
1601       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1602         if (Type *T = getTypeByID(Record[i]))
1603           ArgTys.push_back(T);
1604         else
1605           break;
1606       }
1607 
1608       ResultTy = getTypeByID(Record[2]);
1609       if (!ResultTy || ArgTys.size() < Record.size()-3)
1610         return error("Invalid type");
1611 
1612       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1613       break;
1614     }
1615     case bitc::TYPE_CODE_FUNCTION: {
1616       // FUNCTION: [vararg, retty, paramty x N]
1617       if (Record.size() < 2)
1618         return error("Invalid record");
1619       SmallVector<Type*, 8> ArgTys;
1620       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1621         if (Type *T = getTypeByID(Record[i])) {
1622           if (!FunctionType::isValidArgumentType(T))
1623             return error("Invalid function argument type");
1624           ArgTys.push_back(T);
1625         }
1626         else
1627           break;
1628       }
1629 
1630       ResultTy = getTypeByID(Record[1]);
1631       if (!ResultTy || ArgTys.size() < Record.size()-2)
1632         return error("Invalid type");
1633 
1634       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1635       break;
1636     }
1637     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1638       if (Record.size() < 1)
1639         return error("Invalid record");
1640       SmallVector<Type*, 8> EltTys;
1641       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1642         if (Type *T = getTypeByID(Record[i]))
1643           EltTys.push_back(T);
1644         else
1645           break;
1646       }
1647       if (EltTys.size() != Record.size()-1)
1648         return error("Invalid type");
1649       ResultTy = StructType::get(Context, EltTys, Record[0]);
1650       break;
1651     }
1652     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1653       if (convertToString(Record, 0, TypeName))
1654         return error("Invalid record");
1655       continue;
1656 
1657     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1658       if (Record.size() < 1)
1659         return error("Invalid record");
1660 
1661       if (NumRecords >= TypeList.size())
1662         return error("Invalid TYPE table");
1663 
1664       // Check to see if this was forward referenced, if so fill in the temp.
1665       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1666       if (Res) {
1667         Res->setName(TypeName);
1668         TypeList[NumRecords] = nullptr;
1669       } else  // Otherwise, create a new struct.
1670         Res = createIdentifiedStructType(Context, TypeName);
1671       TypeName.clear();
1672 
1673       SmallVector<Type*, 8> EltTys;
1674       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1675         if (Type *T = getTypeByID(Record[i]))
1676           EltTys.push_back(T);
1677         else
1678           break;
1679       }
1680       if (EltTys.size() != Record.size()-1)
1681         return error("Invalid record");
1682       Res->setBody(EltTys, Record[0]);
1683       ResultTy = Res;
1684       break;
1685     }
1686     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1687       if (Record.size() != 1)
1688         return error("Invalid record");
1689 
1690       if (NumRecords >= TypeList.size())
1691         return error("Invalid TYPE table");
1692 
1693       // Check to see if this was forward referenced, if so fill in the temp.
1694       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1695       if (Res) {
1696         Res->setName(TypeName);
1697         TypeList[NumRecords] = nullptr;
1698       } else  // Otherwise, create a new struct with no body.
1699         Res = createIdentifiedStructType(Context, TypeName);
1700       TypeName.clear();
1701       ResultTy = Res;
1702       break;
1703     }
1704     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1705       if (Record.size() < 2)
1706         return error("Invalid record");
1707       ResultTy = getTypeByID(Record[1]);
1708       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1709         return error("Invalid type");
1710       ResultTy = ArrayType::get(ResultTy, Record[0]);
1711       break;
1712     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1713       if (Record.size() < 2)
1714         return error("Invalid record");
1715       if (Record[0] == 0)
1716         return error("Invalid vector length");
1717       ResultTy = getTypeByID(Record[1]);
1718       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1719         return error("Invalid type");
1720       ResultTy = VectorType::get(ResultTy, Record[0]);
1721       break;
1722     }
1723 
1724     if (NumRecords >= TypeList.size())
1725       return error("Invalid TYPE table");
1726     if (TypeList[NumRecords])
1727       return error(
1728           "Invalid TYPE table: Only named structs can be forward referenced");
1729     assert(ResultTy && "Didn't read a type?");
1730     TypeList[NumRecords++] = ResultTy;
1731   }
1732 }
1733 
1734 Error BitcodeReader::parseOperandBundleTags() {
1735   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1736     return error("Invalid record");
1737 
1738   if (!BundleTags.empty())
1739     return error("Invalid multiple blocks");
1740 
1741   SmallVector<uint64_t, 64> Record;
1742 
1743   while (true) {
1744     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1745 
1746     switch (Entry.Kind) {
1747     case BitstreamEntry::SubBlock: // Handled for us already.
1748     case BitstreamEntry::Error:
1749       return error("Malformed block");
1750     case BitstreamEntry::EndBlock:
1751       return Error::success();
1752     case BitstreamEntry::Record:
1753       // The interesting case.
1754       break;
1755     }
1756 
1757     // Tags are implicitly mapped to integers by their order.
1758 
1759     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1760       return error("Invalid record");
1761 
1762     // OPERAND_BUNDLE_TAG: [strchr x N]
1763     BundleTags.emplace_back();
1764     if (convertToString(Record, 0, BundleTags.back()))
1765       return error("Invalid record");
1766     Record.clear();
1767   }
1768 }
1769 
1770 Error BitcodeReader::parseSyncScopeNames() {
1771   if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1772     return error("Invalid record");
1773 
1774   if (!SSIDs.empty())
1775     return error("Invalid multiple synchronization scope names blocks");
1776 
1777   SmallVector<uint64_t, 64> Record;
1778   while (true) {
1779     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1780     switch (Entry.Kind) {
1781     case BitstreamEntry::SubBlock: // Handled for us already.
1782     case BitstreamEntry::Error:
1783       return error("Malformed block");
1784     case BitstreamEntry::EndBlock:
1785       if (SSIDs.empty())
1786         return error("Invalid empty synchronization scope names block");
1787       return Error::success();
1788     case BitstreamEntry::Record:
1789       // The interesting case.
1790       break;
1791     }
1792 
1793     // Synchronization scope names are implicitly mapped to synchronization
1794     // scope IDs by their order.
1795 
1796     if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME)
1797       return error("Invalid record");
1798 
1799     SmallString<16> SSN;
1800     if (convertToString(Record, 0, SSN))
1801       return error("Invalid record");
1802 
1803     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1804     Record.clear();
1805   }
1806 }
1807 
1808 /// Associate a value with its name from the given index in the provided record.
1809 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1810                                              unsigned NameIndex, Triple &TT) {
1811   SmallString<128> ValueName;
1812   if (convertToString(Record, NameIndex, ValueName))
1813     return error("Invalid record");
1814   unsigned ValueID = Record[0];
1815   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1816     return error("Invalid record");
1817   Value *V = ValueList[ValueID];
1818 
1819   StringRef NameStr(ValueName.data(), ValueName.size());
1820   if (NameStr.find_first_of(0) != StringRef::npos)
1821     return error("Invalid value name");
1822   V->setName(NameStr);
1823   auto *GO = dyn_cast<GlobalObject>(V);
1824   if (GO) {
1825     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1826       if (TT.isOSBinFormatMachO())
1827         GO->setComdat(nullptr);
1828       else
1829         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1830     }
1831   }
1832   return V;
1833 }
1834 
1835 /// Helper to note and return the current location, and jump to the given
1836 /// offset.
1837 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1838                                        BitstreamCursor &Stream) {
1839   // Save the current parsing location so we can jump back at the end
1840   // of the VST read.
1841   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1842   Stream.JumpToBit(Offset * 32);
1843 #ifndef NDEBUG
1844   // Do some checking if we are in debug mode.
1845   BitstreamEntry Entry = Stream.advance();
1846   assert(Entry.Kind == BitstreamEntry::SubBlock);
1847   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1848 #else
1849   // In NDEBUG mode ignore the output so we don't get an unused variable
1850   // warning.
1851   Stream.advance();
1852 #endif
1853   return CurrentBit;
1854 }
1855 
1856 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
1857                                             Function *F,
1858                                             ArrayRef<uint64_t> Record) {
1859   // Note that we subtract 1 here because the offset is relative to one word
1860   // before the start of the identification or module block, which was
1861   // historically always the start of the regular bitcode header.
1862   uint64_t FuncWordOffset = Record[1] - 1;
1863   uint64_t FuncBitOffset = FuncWordOffset * 32;
1864   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1865   // Set the LastFunctionBlockBit to point to the last function block.
1866   // Later when parsing is resumed after function materialization,
1867   // we can simply skip that last function block.
1868   if (FuncBitOffset > LastFunctionBlockBit)
1869     LastFunctionBlockBit = FuncBitOffset;
1870 }
1871 
1872 /// Read a new-style GlobalValue symbol table.
1873 Error BitcodeReader::parseGlobalValueSymbolTable() {
1874   unsigned FuncBitcodeOffsetDelta =
1875       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1876 
1877   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1878     return error("Invalid record");
1879 
1880   SmallVector<uint64_t, 64> Record;
1881   while (true) {
1882     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1883 
1884     switch (Entry.Kind) {
1885     case BitstreamEntry::SubBlock:
1886     case BitstreamEntry::Error:
1887       return error("Malformed block");
1888     case BitstreamEntry::EndBlock:
1889       return Error::success();
1890     case BitstreamEntry::Record:
1891       break;
1892     }
1893 
1894     Record.clear();
1895     switch (Stream.readRecord(Entry.ID, Record)) {
1896     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
1897       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
1898                               cast<Function>(ValueList[Record[0]]), Record);
1899       break;
1900     }
1901   }
1902 }
1903 
1904 /// Parse the value symbol table at either the current parsing location or
1905 /// at the given bit offset if provided.
1906 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1907   uint64_t CurrentBit;
1908   // Pass in the Offset to distinguish between calling for the module-level
1909   // VST (where we want to jump to the VST offset) and the function-level
1910   // VST (where we don't).
1911   if (Offset > 0) {
1912     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1913     // If this module uses a string table, read this as a module-level VST.
1914     if (UseStrtab) {
1915       if (Error Err = parseGlobalValueSymbolTable())
1916         return Err;
1917       Stream.JumpToBit(CurrentBit);
1918       return Error::success();
1919     }
1920     // Otherwise, the VST will be in a similar format to a function-level VST,
1921     // and will contain symbol names.
1922   }
1923 
1924   // Compute the delta between the bitcode indices in the VST (the word offset
1925   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1926   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1927   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1928   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1929   // just before entering the VST subblock because: 1) the EnterSubBlock
1930   // changes the AbbrevID width; 2) the VST block is nested within the same
1931   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1932   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1933   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1934   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1935   unsigned FuncBitcodeOffsetDelta =
1936       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1937 
1938   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1939     return error("Invalid record");
1940 
1941   SmallVector<uint64_t, 64> Record;
1942 
1943   Triple TT(TheModule->getTargetTriple());
1944 
1945   // Read all the records for this value table.
1946   SmallString<128> ValueName;
1947 
1948   while (true) {
1949     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1950 
1951     switch (Entry.Kind) {
1952     case BitstreamEntry::SubBlock: // Handled for us already.
1953     case BitstreamEntry::Error:
1954       return error("Malformed block");
1955     case BitstreamEntry::EndBlock:
1956       if (Offset > 0)
1957         Stream.JumpToBit(CurrentBit);
1958       return Error::success();
1959     case BitstreamEntry::Record:
1960       // The interesting case.
1961       break;
1962     }
1963 
1964     // Read a record.
1965     Record.clear();
1966     switch (Stream.readRecord(Entry.ID, Record)) {
1967     default:  // Default behavior: unknown type.
1968       break;
1969     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1970       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
1971       if (Error Err = ValOrErr.takeError())
1972         return Err;
1973       ValOrErr.get();
1974       break;
1975     }
1976     case bitc::VST_CODE_FNENTRY: {
1977       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1978       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
1979       if (Error Err = ValOrErr.takeError())
1980         return Err;
1981       Value *V = ValOrErr.get();
1982 
1983       // Ignore function offsets emitted for aliases of functions in older
1984       // versions of LLVM.
1985       if (auto *F = dyn_cast<Function>(V))
1986         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
1987       break;
1988     }
1989     case bitc::VST_CODE_BBENTRY: {
1990       if (convertToString(Record, 1, ValueName))
1991         return error("Invalid record");
1992       BasicBlock *BB = getBasicBlock(Record[0]);
1993       if (!BB)
1994         return error("Invalid record");
1995 
1996       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1997       ValueName.clear();
1998       break;
1999     }
2000     }
2001   }
2002 }
2003 
2004 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2005 /// encoding.
2006 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2007   if ((V & 1) == 0)
2008     return V >> 1;
2009   if (V != 1)
2010     return -(V >> 1);
2011   // There is no such thing as -0 with integers.  "-0" really means MININT.
2012   return 1ULL << 63;
2013 }
2014 
2015 /// Resolve all of the initializers for global values and aliases that we can.
2016 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2017   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2018   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2019       IndirectSymbolInitWorklist;
2020   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2021   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2022   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2023 
2024   GlobalInitWorklist.swap(GlobalInits);
2025   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2026   FunctionPrefixWorklist.swap(FunctionPrefixes);
2027   FunctionPrologueWorklist.swap(FunctionPrologues);
2028   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2029 
2030   while (!GlobalInitWorklist.empty()) {
2031     unsigned ValID = GlobalInitWorklist.back().second;
2032     if (ValID >= ValueList.size()) {
2033       // Not ready to resolve this yet, it requires something later in the file.
2034       GlobalInits.push_back(GlobalInitWorklist.back());
2035     } else {
2036       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2037         GlobalInitWorklist.back().first->setInitializer(C);
2038       else
2039         return error("Expected a constant");
2040     }
2041     GlobalInitWorklist.pop_back();
2042   }
2043 
2044   while (!IndirectSymbolInitWorklist.empty()) {
2045     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2046     if (ValID >= ValueList.size()) {
2047       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2048     } else {
2049       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2050       if (!C)
2051         return error("Expected a constant");
2052       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2053       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2054         return error("Alias and aliasee types don't match");
2055       GIS->setIndirectSymbol(C);
2056     }
2057     IndirectSymbolInitWorklist.pop_back();
2058   }
2059 
2060   while (!FunctionPrefixWorklist.empty()) {
2061     unsigned ValID = FunctionPrefixWorklist.back().second;
2062     if (ValID >= ValueList.size()) {
2063       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2064     } else {
2065       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2066         FunctionPrefixWorklist.back().first->setPrefixData(C);
2067       else
2068         return error("Expected a constant");
2069     }
2070     FunctionPrefixWorklist.pop_back();
2071   }
2072 
2073   while (!FunctionPrologueWorklist.empty()) {
2074     unsigned ValID = FunctionPrologueWorklist.back().second;
2075     if (ValID >= ValueList.size()) {
2076       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2077     } else {
2078       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2079         FunctionPrologueWorklist.back().first->setPrologueData(C);
2080       else
2081         return error("Expected a constant");
2082     }
2083     FunctionPrologueWorklist.pop_back();
2084   }
2085 
2086   while (!FunctionPersonalityFnWorklist.empty()) {
2087     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2088     if (ValID >= ValueList.size()) {
2089       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2090     } else {
2091       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2092         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2093       else
2094         return error("Expected a constant");
2095     }
2096     FunctionPersonalityFnWorklist.pop_back();
2097   }
2098 
2099   return Error::success();
2100 }
2101 
2102 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2103   SmallVector<uint64_t, 8> Words(Vals.size());
2104   transform(Vals, Words.begin(),
2105                  BitcodeReader::decodeSignRotatedValue);
2106 
2107   return APInt(TypeBits, Words);
2108 }
2109 
2110 Error BitcodeReader::parseConstants() {
2111   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2112     return error("Invalid record");
2113 
2114   SmallVector<uint64_t, 64> Record;
2115 
2116   // Read all the records for this value table.
2117   Type *CurTy = Type::getInt32Ty(Context);
2118   unsigned NextCstNo = ValueList.size();
2119 
2120   while (true) {
2121     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2122 
2123     switch (Entry.Kind) {
2124     case BitstreamEntry::SubBlock: // Handled for us already.
2125     case BitstreamEntry::Error:
2126       return error("Malformed block");
2127     case BitstreamEntry::EndBlock:
2128       if (NextCstNo != ValueList.size())
2129         return error("Invalid constant reference");
2130 
2131       // Once all the constants have been read, go through and resolve forward
2132       // references.
2133       ValueList.resolveConstantForwardRefs();
2134       return Error::success();
2135     case BitstreamEntry::Record:
2136       // The interesting case.
2137       break;
2138     }
2139 
2140     // Read a record.
2141     Record.clear();
2142     Type *VoidType = Type::getVoidTy(Context);
2143     Value *V = nullptr;
2144     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2145     switch (BitCode) {
2146     default:  // Default behavior: unknown constant
2147     case bitc::CST_CODE_UNDEF:     // UNDEF
2148       V = UndefValue::get(CurTy);
2149       break;
2150     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2151       if (Record.empty())
2152         return error("Invalid record");
2153       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2154         return error("Invalid record");
2155       if (TypeList[Record[0]] == VoidType)
2156         return error("Invalid constant type");
2157       CurTy = TypeList[Record[0]];
2158       continue;  // Skip the ValueList manipulation.
2159     case bitc::CST_CODE_NULL:      // NULL
2160       V = Constant::getNullValue(CurTy);
2161       break;
2162     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2163       if (!CurTy->isIntegerTy() || Record.empty())
2164         return error("Invalid record");
2165       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2166       break;
2167     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2168       if (!CurTy->isIntegerTy() || Record.empty())
2169         return error("Invalid record");
2170 
2171       APInt VInt =
2172           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2173       V = ConstantInt::get(Context, VInt);
2174 
2175       break;
2176     }
2177     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2178       if (Record.empty())
2179         return error("Invalid record");
2180       if (CurTy->isHalfTy())
2181         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2182                                              APInt(16, (uint16_t)Record[0])));
2183       else if (CurTy->isFloatTy())
2184         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2185                                              APInt(32, (uint32_t)Record[0])));
2186       else if (CurTy->isDoubleTy())
2187         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2188                                              APInt(64, Record[0])));
2189       else if (CurTy->isX86_FP80Ty()) {
2190         // Bits are not stored the same way as a normal i80 APInt, compensate.
2191         uint64_t Rearrange[2];
2192         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2193         Rearrange[1] = Record[0] >> 48;
2194         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2195                                              APInt(80, Rearrange)));
2196       } else if (CurTy->isFP128Ty())
2197         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2198                                              APInt(128, Record)));
2199       else if (CurTy->isPPC_FP128Ty())
2200         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2201                                              APInt(128, Record)));
2202       else
2203         V = UndefValue::get(CurTy);
2204       break;
2205     }
2206 
2207     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2208       if (Record.empty())
2209         return error("Invalid record");
2210 
2211       unsigned Size = Record.size();
2212       SmallVector<Constant*, 16> Elts;
2213 
2214       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2215         for (unsigned i = 0; i != Size; ++i)
2216           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2217                                                      STy->getElementType(i)));
2218         V = ConstantStruct::get(STy, Elts);
2219       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2220         Type *EltTy = ATy->getElementType();
2221         for (unsigned i = 0; i != Size; ++i)
2222           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2223         V = ConstantArray::get(ATy, Elts);
2224       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2225         Type *EltTy = VTy->getElementType();
2226         for (unsigned i = 0; i != Size; ++i)
2227           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2228         V = ConstantVector::get(Elts);
2229       } else {
2230         V = UndefValue::get(CurTy);
2231       }
2232       break;
2233     }
2234     case bitc::CST_CODE_STRING:    // STRING: [values]
2235     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2236       if (Record.empty())
2237         return error("Invalid record");
2238 
2239       SmallString<16> Elts(Record.begin(), Record.end());
2240       V = ConstantDataArray::getString(Context, Elts,
2241                                        BitCode == bitc::CST_CODE_CSTRING);
2242       break;
2243     }
2244     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2245       if (Record.empty())
2246         return error("Invalid record");
2247 
2248       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2249       if (EltTy->isIntegerTy(8)) {
2250         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2251         if (isa<VectorType>(CurTy))
2252           V = ConstantDataVector::get(Context, Elts);
2253         else
2254           V = ConstantDataArray::get(Context, Elts);
2255       } else if (EltTy->isIntegerTy(16)) {
2256         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2257         if (isa<VectorType>(CurTy))
2258           V = ConstantDataVector::get(Context, Elts);
2259         else
2260           V = ConstantDataArray::get(Context, Elts);
2261       } else if (EltTy->isIntegerTy(32)) {
2262         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2263         if (isa<VectorType>(CurTy))
2264           V = ConstantDataVector::get(Context, Elts);
2265         else
2266           V = ConstantDataArray::get(Context, Elts);
2267       } else if (EltTy->isIntegerTy(64)) {
2268         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2269         if (isa<VectorType>(CurTy))
2270           V = ConstantDataVector::get(Context, Elts);
2271         else
2272           V = ConstantDataArray::get(Context, Elts);
2273       } else if (EltTy->isHalfTy()) {
2274         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2275         if (isa<VectorType>(CurTy))
2276           V = ConstantDataVector::getFP(Context, Elts);
2277         else
2278           V = ConstantDataArray::getFP(Context, Elts);
2279       } else if (EltTy->isFloatTy()) {
2280         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2281         if (isa<VectorType>(CurTy))
2282           V = ConstantDataVector::getFP(Context, Elts);
2283         else
2284           V = ConstantDataArray::getFP(Context, Elts);
2285       } else if (EltTy->isDoubleTy()) {
2286         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2287         if (isa<VectorType>(CurTy))
2288           V = ConstantDataVector::getFP(Context, Elts);
2289         else
2290           V = ConstantDataArray::getFP(Context, Elts);
2291       } else {
2292         return error("Invalid type for value");
2293       }
2294       break;
2295     }
2296     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2297       if (Record.size() < 3)
2298         return error("Invalid record");
2299       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2300       if (Opc < 0) {
2301         V = UndefValue::get(CurTy);  // Unknown binop.
2302       } else {
2303         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2304         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2305         unsigned Flags = 0;
2306         if (Record.size() >= 4) {
2307           if (Opc == Instruction::Add ||
2308               Opc == Instruction::Sub ||
2309               Opc == Instruction::Mul ||
2310               Opc == Instruction::Shl) {
2311             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2312               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2313             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2314               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2315           } else if (Opc == Instruction::SDiv ||
2316                      Opc == Instruction::UDiv ||
2317                      Opc == Instruction::LShr ||
2318                      Opc == Instruction::AShr) {
2319             if (Record[3] & (1 << bitc::PEO_EXACT))
2320               Flags |= SDivOperator::IsExact;
2321           }
2322         }
2323         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2324       }
2325       break;
2326     }
2327     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2328       if (Record.size() < 3)
2329         return error("Invalid record");
2330       int Opc = getDecodedCastOpcode(Record[0]);
2331       if (Opc < 0) {
2332         V = UndefValue::get(CurTy);  // Unknown cast.
2333       } else {
2334         Type *OpTy = getTypeByID(Record[1]);
2335         if (!OpTy)
2336           return error("Invalid record");
2337         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2338         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2339         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2340       }
2341       break;
2342     }
2343     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2344     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2345     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2346                                                      // operands]
2347       unsigned OpNum = 0;
2348       Type *PointeeType = nullptr;
2349       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2350           Record.size() % 2)
2351         PointeeType = getTypeByID(Record[OpNum++]);
2352 
2353       bool InBounds = false;
2354       Optional<unsigned> InRangeIndex;
2355       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2356         uint64_t Op = Record[OpNum++];
2357         InBounds = Op & 1;
2358         InRangeIndex = Op >> 1;
2359       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2360         InBounds = true;
2361 
2362       SmallVector<Constant*, 16> Elts;
2363       while (OpNum != Record.size()) {
2364         Type *ElTy = getTypeByID(Record[OpNum++]);
2365         if (!ElTy)
2366           return error("Invalid record");
2367         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2368       }
2369 
2370       if (PointeeType &&
2371           PointeeType !=
2372               cast<PointerType>(Elts[0]->getType()->getScalarType())
2373                   ->getElementType())
2374         return error("Explicit gep operator type does not match pointee type "
2375                      "of pointer operand");
2376 
2377       if (Elts.size() < 1)
2378         return error("Invalid gep with no operands");
2379 
2380       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2381       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2382                                          InBounds, InRangeIndex);
2383       break;
2384     }
2385     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2386       if (Record.size() < 3)
2387         return error("Invalid record");
2388 
2389       Type *SelectorTy = Type::getInt1Ty(Context);
2390 
2391       // The selector might be an i1 or an <n x i1>
2392       // Get the type from the ValueList before getting a forward ref.
2393       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2394         if (Value *V = ValueList[Record[0]])
2395           if (SelectorTy != V->getType())
2396             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2397 
2398       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2399                                                               SelectorTy),
2400                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2401                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2402       break;
2403     }
2404     case bitc::CST_CODE_CE_EXTRACTELT
2405         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2406       if (Record.size() < 3)
2407         return error("Invalid record");
2408       VectorType *OpTy =
2409         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2410       if (!OpTy)
2411         return error("Invalid record");
2412       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2413       Constant *Op1 = nullptr;
2414       if (Record.size() == 4) {
2415         Type *IdxTy = getTypeByID(Record[2]);
2416         if (!IdxTy)
2417           return error("Invalid record");
2418         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2419       } else // TODO: Remove with llvm 4.0
2420         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2421       if (!Op1)
2422         return error("Invalid record");
2423       V = ConstantExpr::getExtractElement(Op0, Op1);
2424       break;
2425     }
2426     case bitc::CST_CODE_CE_INSERTELT
2427         : { // CE_INSERTELT: [opval, opval, opty, opval]
2428       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2429       if (Record.size() < 3 || !OpTy)
2430         return error("Invalid record");
2431       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2432       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2433                                                   OpTy->getElementType());
2434       Constant *Op2 = nullptr;
2435       if (Record.size() == 4) {
2436         Type *IdxTy = getTypeByID(Record[2]);
2437         if (!IdxTy)
2438           return error("Invalid record");
2439         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2440       } else // TODO: Remove with llvm 4.0
2441         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2442       if (!Op2)
2443         return error("Invalid record");
2444       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2445       break;
2446     }
2447     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2448       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2449       if (Record.size() < 3 || !OpTy)
2450         return error("Invalid record");
2451       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2452       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2453       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2454                                                  OpTy->getNumElements());
2455       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2456       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2457       break;
2458     }
2459     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2460       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2461       VectorType *OpTy =
2462         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2463       if (Record.size() < 4 || !RTy || !OpTy)
2464         return error("Invalid record");
2465       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2466       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2467       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2468                                                  RTy->getNumElements());
2469       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2470       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2471       break;
2472     }
2473     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2474       if (Record.size() < 4)
2475         return error("Invalid record");
2476       Type *OpTy = getTypeByID(Record[0]);
2477       if (!OpTy)
2478         return error("Invalid record");
2479       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2480       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2481 
2482       if (OpTy->isFPOrFPVectorTy())
2483         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2484       else
2485         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2486       break;
2487     }
2488     // This maintains backward compatibility, pre-asm dialect keywords.
2489     // FIXME: Remove with the 4.0 release.
2490     case bitc::CST_CODE_INLINEASM_OLD: {
2491       if (Record.size() < 2)
2492         return error("Invalid record");
2493       std::string AsmStr, ConstrStr;
2494       bool HasSideEffects = Record[0] & 1;
2495       bool IsAlignStack = Record[0] >> 1;
2496       unsigned AsmStrSize = Record[1];
2497       if (2+AsmStrSize >= Record.size())
2498         return error("Invalid record");
2499       unsigned ConstStrSize = Record[2+AsmStrSize];
2500       if (3+AsmStrSize+ConstStrSize > Record.size())
2501         return error("Invalid record");
2502 
2503       for (unsigned i = 0; i != AsmStrSize; ++i)
2504         AsmStr += (char)Record[2+i];
2505       for (unsigned i = 0; i != ConstStrSize; ++i)
2506         ConstrStr += (char)Record[3+AsmStrSize+i];
2507       PointerType *PTy = cast<PointerType>(CurTy);
2508       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2509                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2510       break;
2511     }
2512     // This version adds support for the asm dialect keywords (e.g.,
2513     // inteldialect).
2514     case bitc::CST_CODE_INLINEASM: {
2515       if (Record.size() < 2)
2516         return error("Invalid record");
2517       std::string AsmStr, ConstrStr;
2518       bool HasSideEffects = Record[0] & 1;
2519       bool IsAlignStack = (Record[0] >> 1) & 1;
2520       unsigned AsmDialect = Record[0] >> 2;
2521       unsigned AsmStrSize = Record[1];
2522       if (2+AsmStrSize >= Record.size())
2523         return error("Invalid record");
2524       unsigned ConstStrSize = Record[2+AsmStrSize];
2525       if (3+AsmStrSize+ConstStrSize > Record.size())
2526         return error("Invalid record");
2527 
2528       for (unsigned i = 0; i != AsmStrSize; ++i)
2529         AsmStr += (char)Record[2+i];
2530       for (unsigned i = 0; i != ConstStrSize; ++i)
2531         ConstrStr += (char)Record[3+AsmStrSize+i];
2532       PointerType *PTy = cast<PointerType>(CurTy);
2533       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2534                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2535                          InlineAsm::AsmDialect(AsmDialect));
2536       break;
2537     }
2538     case bitc::CST_CODE_BLOCKADDRESS:{
2539       if (Record.size() < 3)
2540         return error("Invalid record");
2541       Type *FnTy = getTypeByID(Record[0]);
2542       if (!FnTy)
2543         return error("Invalid record");
2544       Function *Fn =
2545         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2546       if (!Fn)
2547         return error("Invalid record");
2548 
2549       // If the function is already parsed we can insert the block address right
2550       // away.
2551       BasicBlock *BB;
2552       unsigned BBID = Record[2];
2553       if (!BBID)
2554         // Invalid reference to entry block.
2555         return error("Invalid ID");
2556       if (!Fn->empty()) {
2557         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2558         for (size_t I = 0, E = BBID; I != E; ++I) {
2559           if (BBI == BBE)
2560             return error("Invalid ID");
2561           ++BBI;
2562         }
2563         BB = &*BBI;
2564       } else {
2565         // Otherwise insert a placeholder and remember it so it can be inserted
2566         // when the function is parsed.
2567         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2568         if (FwdBBs.empty())
2569           BasicBlockFwdRefQueue.push_back(Fn);
2570         if (FwdBBs.size() < BBID + 1)
2571           FwdBBs.resize(BBID + 1);
2572         if (!FwdBBs[BBID])
2573           FwdBBs[BBID] = BasicBlock::Create(Context);
2574         BB = FwdBBs[BBID];
2575       }
2576       V = BlockAddress::get(Fn, BB);
2577       break;
2578     }
2579     }
2580 
2581     ValueList.assignValue(V, NextCstNo);
2582     ++NextCstNo;
2583   }
2584 }
2585 
2586 Error BitcodeReader::parseUseLists() {
2587   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2588     return error("Invalid record");
2589 
2590   // Read all the records.
2591   SmallVector<uint64_t, 64> Record;
2592 
2593   while (true) {
2594     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2595 
2596     switch (Entry.Kind) {
2597     case BitstreamEntry::SubBlock: // Handled for us already.
2598     case BitstreamEntry::Error:
2599       return error("Malformed block");
2600     case BitstreamEntry::EndBlock:
2601       return Error::success();
2602     case BitstreamEntry::Record:
2603       // The interesting case.
2604       break;
2605     }
2606 
2607     // Read a use list record.
2608     Record.clear();
2609     bool IsBB = false;
2610     switch (Stream.readRecord(Entry.ID, Record)) {
2611     default:  // Default behavior: unknown type.
2612       break;
2613     case bitc::USELIST_CODE_BB:
2614       IsBB = true;
2615       LLVM_FALLTHROUGH;
2616     case bitc::USELIST_CODE_DEFAULT: {
2617       unsigned RecordLength = Record.size();
2618       if (RecordLength < 3)
2619         // Records should have at least an ID and two indexes.
2620         return error("Invalid record");
2621       unsigned ID = Record.back();
2622       Record.pop_back();
2623 
2624       Value *V;
2625       if (IsBB) {
2626         assert(ID < FunctionBBs.size() && "Basic block not found");
2627         V = FunctionBBs[ID];
2628       } else
2629         V = ValueList[ID];
2630       unsigned NumUses = 0;
2631       SmallDenseMap<const Use *, unsigned, 16> Order;
2632       for (const Use &U : V->materialized_uses()) {
2633         if (++NumUses > Record.size())
2634           break;
2635         Order[&U] = Record[NumUses - 1];
2636       }
2637       if (Order.size() != Record.size() || NumUses > Record.size())
2638         // Mismatches can happen if the functions are being materialized lazily
2639         // (out-of-order), or a value has been upgraded.
2640         break;
2641 
2642       V->sortUseList([&](const Use &L, const Use &R) {
2643         return Order.lookup(&L) < Order.lookup(&R);
2644       });
2645       break;
2646     }
2647     }
2648   }
2649 }
2650 
2651 /// When we see the block for metadata, remember where it is and then skip it.
2652 /// This lets us lazily deserialize the metadata.
2653 Error BitcodeReader::rememberAndSkipMetadata() {
2654   // Save the current stream state.
2655   uint64_t CurBit = Stream.GetCurrentBitNo();
2656   DeferredMetadataInfo.push_back(CurBit);
2657 
2658   // Skip over the block for now.
2659   if (Stream.SkipBlock())
2660     return error("Invalid record");
2661   return Error::success();
2662 }
2663 
2664 Error BitcodeReader::materializeMetadata() {
2665   for (uint64_t BitPos : DeferredMetadataInfo) {
2666     // Move the bit stream to the saved position.
2667     Stream.JumpToBit(BitPos);
2668     if (Error Err = MDLoader->parseModuleMetadata())
2669       return Err;
2670   }
2671 
2672   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2673   // metadata.
2674   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2675     NamedMDNode *LinkerOpts =
2676         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2677     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2678       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2679   }
2680 
2681   DeferredMetadataInfo.clear();
2682   return Error::success();
2683 }
2684 
2685 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2686 
2687 /// When we see the block for a function body, remember where it is and then
2688 /// skip it.  This lets us lazily deserialize the functions.
2689 Error BitcodeReader::rememberAndSkipFunctionBody() {
2690   // Get the function we are talking about.
2691   if (FunctionsWithBodies.empty())
2692     return error("Insufficient function protos");
2693 
2694   Function *Fn = FunctionsWithBodies.back();
2695   FunctionsWithBodies.pop_back();
2696 
2697   // Save the current stream state.
2698   uint64_t CurBit = Stream.GetCurrentBitNo();
2699   assert(
2700       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2701       "Mismatch between VST and scanned function offsets");
2702   DeferredFunctionInfo[Fn] = CurBit;
2703 
2704   // Skip over the function block for now.
2705   if (Stream.SkipBlock())
2706     return error("Invalid record");
2707   return Error::success();
2708 }
2709 
2710 Error BitcodeReader::globalCleanup() {
2711   // Patch the initializers for globals and aliases up.
2712   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2713     return Err;
2714   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2715     return error("Malformed global initializer set");
2716 
2717   // Look for intrinsic functions which need to be upgraded at some point
2718   for (Function &F : *TheModule) {
2719     MDLoader->upgradeDebugIntrinsics(F);
2720     Function *NewFn;
2721     if (UpgradeIntrinsicFunction(&F, NewFn))
2722       UpgradedIntrinsics[&F] = NewFn;
2723     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2724       // Some types could be renamed during loading if several modules are
2725       // loaded in the same LLVMContext (LTO scenario). In this case we should
2726       // remangle intrinsics names as well.
2727       RemangledIntrinsics[&F] = Remangled.getValue();
2728   }
2729 
2730   // Look for global variables which need to be renamed.
2731   for (GlobalVariable &GV : TheModule->globals())
2732     UpgradeGlobalVariable(&GV);
2733 
2734   // Force deallocation of memory for these vectors to favor the client that
2735   // want lazy deserialization.
2736   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2737   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2738       IndirectSymbolInits);
2739   return Error::success();
2740 }
2741 
2742 /// Support for lazy parsing of function bodies. This is required if we
2743 /// either have an old bitcode file without a VST forward declaration record,
2744 /// or if we have an anonymous function being materialized, since anonymous
2745 /// functions do not have a name and are therefore not in the VST.
2746 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2747   Stream.JumpToBit(NextUnreadBit);
2748 
2749   if (Stream.AtEndOfStream())
2750     return error("Could not find function in stream");
2751 
2752   if (!SeenFirstFunctionBody)
2753     return error("Trying to materialize functions before seeing function blocks");
2754 
2755   // An old bitcode file with the symbol table at the end would have
2756   // finished the parse greedily.
2757   assert(SeenValueSymbolTable);
2758 
2759   SmallVector<uint64_t, 64> Record;
2760 
2761   while (true) {
2762     BitstreamEntry Entry = Stream.advance();
2763     switch (Entry.Kind) {
2764     default:
2765       return error("Expect SubBlock");
2766     case BitstreamEntry::SubBlock:
2767       switch (Entry.ID) {
2768       default:
2769         return error("Expect function block");
2770       case bitc::FUNCTION_BLOCK_ID:
2771         if (Error Err = rememberAndSkipFunctionBody())
2772           return Err;
2773         NextUnreadBit = Stream.GetCurrentBitNo();
2774         return Error::success();
2775       }
2776     }
2777   }
2778 }
2779 
2780 bool BitcodeReaderBase::readBlockInfo() {
2781   Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
2782   if (!NewBlockInfo)
2783     return true;
2784   BlockInfo = std::move(*NewBlockInfo);
2785   return false;
2786 }
2787 
2788 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
2789   // v1: [selection_kind, name]
2790   // v2: [strtab_offset, strtab_size, selection_kind]
2791   StringRef Name;
2792   std::tie(Name, Record) = readNameFromStrtab(Record);
2793 
2794   if (Record.empty())
2795     return error("Invalid record");
2796   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
2797   std::string OldFormatName;
2798   if (!UseStrtab) {
2799     if (Record.size() < 2)
2800       return error("Invalid record");
2801     unsigned ComdatNameSize = Record[1];
2802     OldFormatName.reserve(ComdatNameSize);
2803     for (unsigned i = 0; i != ComdatNameSize; ++i)
2804       OldFormatName += (char)Record[2 + i];
2805     Name = OldFormatName;
2806   }
2807   Comdat *C = TheModule->getOrInsertComdat(Name);
2808   C->setSelectionKind(SK);
2809   ComdatList.push_back(C);
2810   return Error::success();
2811 }
2812 
2813 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
2814   // v1: [pointer type, isconst, initid, linkage, alignment, section,
2815   // visibility, threadlocal, unnamed_addr, externally_initialized,
2816   // dllstorageclass, comdat, attributes, preemption specifier] (name in VST)
2817   // v2: [strtab_offset, strtab_size, v1]
2818   StringRef Name;
2819   std::tie(Name, Record) = readNameFromStrtab(Record);
2820 
2821   if (Record.size() < 6)
2822     return error("Invalid record");
2823   Type *Ty = getTypeByID(Record[0]);
2824   if (!Ty)
2825     return error("Invalid record");
2826   bool isConstant = Record[1] & 1;
2827   bool explicitType = Record[1] & 2;
2828   unsigned AddressSpace;
2829   if (explicitType) {
2830     AddressSpace = Record[1] >> 2;
2831   } else {
2832     if (!Ty->isPointerTy())
2833       return error("Invalid type for value");
2834     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2835     Ty = cast<PointerType>(Ty)->getElementType();
2836   }
2837 
2838   uint64_t RawLinkage = Record[3];
2839   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2840   unsigned Alignment;
2841   if (Error Err = parseAlignmentValue(Record[4], Alignment))
2842     return Err;
2843   std::string Section;
2844   if (Record[5]) {
2845     if (Record[5] - 1 >= SectionTable.size())
2846       return error("Invalid ID");
2847     Section = SectionTable[Record[5] - 1];
2848   }
2849   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2850   // Local linkage must have default visibility.
2851   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
2852     // FIXME: Change to an error if non-default in 4.0.
2853     Visibility = getDecodedVisibility(Record[6]);
2854 
2855   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2856   if (Record.size() > 7)
2857     TLM = getDecodedThreadLocalMode(Record[7]);
2858 
2859   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2860   if (Record.size() > 8)
2861     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2862 
2863   bool ExternallyInitialized = false;
2864   if (Record.size() > 9)
2865     ExternallyInitialized = Record[9];
2866 
2867   GlobalVariable *NewGV =
2868       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
2869                          nullptr, TLM, AddressSpace, ExternallyInitialized);
2870   NewGV->setAlignment(Alignment);
2871   if (!Section.empty())
2872     NewGV->setSection(Section);
2873   NewGV->setVisibility(Visibility);
2874   NewGV->setUnnamedAddr(UnnamedAddr);
2875 
2876   if (Record.size() > 10)
2877     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
2878   else
2879     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
2880 
2881   ValueList.push_back(NewGV);
2882 
2883   // Remember which value to use for the global initializer.
2884   if (unsigned InitID = Record[2])
2885     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
2886 
2887   if (Record.size() > 11) {
2888     if (unsigned ComdatID = Record[11]) {
2889       if (ComdatID > ComdatList.size())
2890         return error("Invalid global variable comdat ID");
2891       NewGV->setComdat(ComdatList[ComdatID - 1]);
2892     }
2893   } else if (hasImplicitComdat(RawLinkage)) {
2894     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2895   }
2896 
2897   if (Record.size() > 12) {
2898     auto AS = getAttributes(Record[12]).getFnAttributes();
2899     NewGV->setAttributes(AS);
2900   }
2901 
2902   if (Record.size() > 13) {
2903     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
2904   }
2905 
2906   return Error::success();
2907 }
2908 
2909 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
2910   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
2911   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
2912   // prefixdata,  personalityfn, preemption specifier] (name in VST)
2913   // v2: [strtab_offset, strtab_size, v1]
2914   StringRef Name;
2915   std::tie(Name, Record) = readNameFromStrtab(Record);
2916 
2917   if (Record.size() < 8)
2918     return error("Invalid record");
2919   Type *Ty = getTypeByID(Record[0]);
2920   if (!Ty)
2921     return error("Invalid record");
2922   if (auto *PTy = dyn_cast<PointerType>(Ty))
2923     Ty = PTy->getElementType();
2924   auto *FTy = dyn_cast<FunctionType>(Ty);
2925   if (!FTy)
2926     return error("Invalid type for value");
2927   auto CC = static_cast<CallingConv::ID>(Record[1]);
2928   if (CC & ~CallingConv::MaxID)
2929     return error("Invalid calling convention ID");
2930 
2931   Function *Func =
2932       Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule);
2933 
2934   Func->setCallingConv(CC);
2935   bool isProto = Record[2];
2936   uint64_t RawLinkage = Record[3];
2937   Func->setLinkage(getDecodedLinkage(RawLinkage));
2938   Func->setAttributes(getAttributes(Record[4]));
2939 
2940   unsigned Alignment;
2941   if (Error Err = parseAlignmentValue(Record[5], Alignment))
2942     return Err;
2943   Func->setAlignment(Alignment);
2944   if (Record[6]) {
2945     if (Record[6] - 1 >= SectionTable.size())
2946       return error("Invalid ID");
2947     Func->setSection(SectionTable[Record[6] - 1]);
2948   }
2949   // Local linkage must have default visibility.
2950   if (!Func->hasLocalLinkage())
2951     // FIXME: Change to an error if non-default in 4.0.
2952     Func->setVisibility(getDecodedVisibility(Record[7]));
2953   if (Record.size() > 8 && Record[8]) {
2954     if (Record[8] - 1 >= GCTable.size())
2955       return error("Invalid ID");
2956     Func->setGC(GCTable[Record[8] - 1]);
2957   }
2958   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2959   if (Record.size() > 9)
2960     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
2961   Func->setUnnamedAddr(UnnamedAddr);
2962   if (Record.size() > 10 && Record[10] != 0)
2963     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
2964 
2965   if (Record.size() > 11)
2966     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
2967   else
2968     upgradeDLLImportExportLinkage(Func, RawLinkage);
2969 
2970   if (Record.size() > 12) {
2971     if (unsigned ComdatID = Record[12]) {
2972       if (ComdatID > ComdatList.size())
2973         return error("Invalid function comdat ID");
2974       Func->setComdat(ComdatList[ComdatID - 1]);
2975     }
2976   } else if (hasImplicitComdat(RawLinkage)) {
2977     Func->setComdat(reinterpret_cast<Comdat *>(1));
2978   }
2979 
2980   if (Record.size() > 13 && Record[13] != 0)
2981     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
2982 
2983   if (Record.size() > 14 && Record[14] != 0)
2984     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
2985 
2986   if (Record.size() > 15) {
2987     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
2988   }
2989 
2990   ValueList.push_back(Func);
2991 
2992   // If this is a function with a body, remember the prototype we are
2993   // creating now, so that we can match up the body with them later.
2994   if (!isProto) {
2995     Func->setIsMaterializable(true);
2996     FunctionsWithBodies.push_back(Func);
2997     DeferredFunctionInfo[Func] = 0;
2998   }
2999   return Error::success();
3000 }
3001 
3002 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3003     unsigned BitCode, ArrayRef<uint64_t> Record) {
3004   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3005   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3006   // dllstorageclass, threadlocal, unnamed_addr,
3007   // preemption specifier] (name in VST)
3008   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3009   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3010   // preemption specifier] (name in VST)
3011   // v2: [strtab_offset, strtab_size, v1]
3012   StringRef Name;
3013   std::tie(Name, Record) = readNameFromStrtab(Record);
3014 
3015   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3016   if (Record.size() < (3 + (unsigned)NewRecord))
3017     return error("Invalid record");
3018   unsigned OpNum = 0;
3019   Type *Ty = getTypeByID(Record[OpNum++]);
3020   if (!Ty)
3021     return error("Invalid record");
3022 
3023   unsigned AddrSpace;
3024   if (!NewRecord) {
3025     auto *PTy = dyn_cast<PointerType>(Ty);
3026     if (!PTy)
3027       return error("Invalid type for value");
3028     Ty = PTy->getElementType();
3029     AddrSpace = PTy->getAddressSpace();
3030   } else {
3031     AddrSpace = Record[OpNum++];
3032   }
3033 
3034   auto Val = Record[OpNum++];
3035   auto Linkage = Record[OpNum++];
3036   GlobalIndirectSymbol *NewGA;
3037   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3038       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3039     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3040                                 TheModule);
3041   else
3042     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3043                                 nullptr, TheModule);
3044   // Old bitcode files didn't have visibility field.
3045   // Local linkage must have default visibility.
3046   if (OpNum != Record.size()) {
3047     auto VisInd = OpNum++;
3048     if (!NewGA->hasLocalLinkage())
3049       // FIXME: Change to an error if non-default in 4.0.
3050       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3051   }
3052   if (OpNum != Record.size())
3053     NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3054   else
3055     upgradeDLLImportExportLinkage(NewGA, Linkage);
3056   if (OpNum != Record.size())
3057     NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3058   if (OpNum != Record.size())
3059     NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3060   if (OpNum != Record.size())
3061     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3062   ValueList.push_back(NewGA);
3063   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3064   return Error::success();
3065 }
3066 
3067 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3068                                  bool ShouldLazyLoadMetadata) {
3069   if (ResumeBit)
3070     Stream.JumpToBit(ResumeBit);
3071   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3072     return error("Invalid record");
3073 
3074   SmallVector<uint64_t, 64> Record;
3075 
3076   // Read all the records for this module.
3077   while (true) {
3078     BitstreamEntry Entry = Stream.advance();
3079 
3080     switch (Entry.Kind) {
3081     case BitstreamEntry::Error:
3082       return error("Malformed block");
3083     case BitstreamEntry::EndBlock:
3084       return globalCleanup();
3085 
3086     case BitstreamEntry::SubBlock:
3087       switch (Entry.ID) {
3088       default:  // Skip unknown content.
3089         if (Stream.SkipBlock())
3090           return error("Invalid record");
3091         break;
3092       case bitc::BLOCKINFO_BLOCK_ID:
3093         if (readBlockInfo())
3094           return error("Malformed block");
3095         break;
3096       case bitc::PARAMATTR_BLOCK_ID:
3097         if (Error Err = parseAttributeBlock())
3098           return Err;
3099         break;
3100       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3101         if (Error Err = parseAttributeGroupBlock())
3102           return Err;
3103         break;
3104       case bitc::TYPE_BLOCK_ID_NEW:
3105         if (Error Err = parseTypeTable())
3106           return Err;
3107         break;
3108       case bitc::VALUE_SYMTAB_BLOCK_ID:
3109         if (!SeenValueSymbolTable) {
3110           // Either this is an old form VST without function index and an
3111           // associated VST forward declaration record (which would have caused
3112           // the VST to be jumped to and parsed before it was encountered
3113           // normally in the stream), or there were no function blocks to
3114           // trigger an earlier parsing of the VST.
3115           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3116           if (Error Err = parseValueSymbolTable())
3117             return Err;
3118           SeenValueSymbolTable = true;
3119         } else {
3120           // We must have had a VST forward declaration record, which caused
3121           // the parser to jump to and parse the VST earlier.
3122           assert(VSTOffset > 0);
3123           if (Stream.SkipBlock())
3124             return error("Invalid record");
3125         }
3126         break;
3127       case bitc::CONSTANTS_BLOCK_ID:
3128         if (Error Err = parseConstants())
3129           return Err;
3130         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3131           return Err;
3132         break;
3133       case bitc::METADATA_BLOCK_ID:
3134         if (ShouldLazyLoadMetadata) {
3135           if (Error Err = rememberAndSkipMetadata())
3136             return Err;
3137           break;
3138         }
3139         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3140         if (Error Err = MDLoader->parseModuleMetadata())
3141           return Err;
3142         break;
3143       case bitc::METADATA_KIND_BLOCK_ID:
3144         if (Error Err = MDLoader->parseMetadataKinds())
3145           return Err;
3146         break;
3147       case bitc::FUNCTION_BLOCK_ID:
3148         // If this is the first function body we've seen, reverse the
3149         // FunctionsWithBodies list.
3150         if (!SeenFirstFunctionBody) {
3151           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3152           if (Error Err = globalCleanup())
3153             return Err;
3154           SeenFirstFunctionBody = true;
3155         }
3156 
3157         if (VSTOffset > 0) {
3158           // If we have a VST forward declaration record, make sure we
3159           // parse the VST now if we haven't already. It is needed to
3160           // set up the DeferredFunctionInfo vector for lazy reading.
3161           if (!SeenValueSymbolTable) {
3162             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3163               return Err;
3164             SeenValueSymbolTable = true;
3165             // Fall through so that we record the NextUnreadBit below.
3166             // This is necessary in case we have an anonymous function that
3167             // is later materialized. Since it will not have a VST entry we
3168             // need to fall back to the lazy parse to find its offset.
3169           } else {
3170             // If we have a VST forward declaration record, but have already
3171             // parsed the VST (just above, when the first function body was
3172             // encountered here), then we are resuming the parse after
3173             // materializing functions. The ResumeBit points to the
3174             // start of the last function block recorded in the
3175             // DeferredFunctionInfo map. Skip it.
3176             if (Stream.SkipBlock())
3177               return error("Invalid record");
3178             continue;
3179           }
3180         }
3181 
3182         // Support older bitcode files that did not have the function
3183         // index in the VST, nor a VST forward declaration record, as
3184         // well as anonymous functions that do not have VST entries.
3185         // Build the DeferredFunctionInfo vector on the fly.
3186         if (Error Err = rememberAndSkipFunctionBody())
3187           return Err;
3188 
3189         // Suspend parsing when we reach the function bodies. Subsequent
3190         // materialization calls will resume it when necessary. If the bitcode
3191         // file is old, the symbol table will be at the end instead and will not
3192         // have been seen yet. In this case, just finish the parse now.
3193         if (SeenValueSymbolTable) {
3194           NextUnreadBit = Stream.GetCurrentBitNo();
3195           // After the VST has been parsed, we need to make sure intrinsic name
3196           // are auto-upgraded.
3197           return globalCleanup();
3198         }
3199         break;
3200       case bitc::USELIST_BLOCK_ID:
3201         if (Error Err = parseUseLists())
3202           return Err;
3203         break;
3204       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3205         if (Error Err = parseOperandBundleTags())
3206           return Err;
3207         break;
3208       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3209         if (Error Err = parseSyncScopeNames())
3210           return Err;
3211         break;
3212       }
3213       continue;
3214 
3215     case BitstreamEntry::Record:
3216       // The interesting case.
3217       break;
3218     }
3219 
3220     // Read a record.
3221     auto BitCode = Stream.readRecord(Entry.ID, Record);
3222     switch (BitCode) {
3223     default: break;  // Default behavior, ignore unknown content.
3224     case bitc::MODULE_CODE_VERSION: {
3225       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3226       if (!VersionOrErr)
3227         return VersionOrErr.takeError();
3228       UseRelativeIDs = *VersionOrErr >= 1;
3229       break;
3230     }
3231     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3232       std::string S;
3233       if (convertToString(Record, 0, S))
3234         return error("Invalid record");
3235       TheModule->setTargetTriple(S);
3236       break;
3237     }
3238     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3239       std::string S;
3240       if (convertToString(Record, 0, S))
3241         return error("Invalid record");
3242       TheModule->setDataLayout(S);
3243       break;
3244     }
3245     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3246       std::string S;
3247       if (convertToString(Record, 0, S))
3248         return error("Invalid record");
3249       TheModule->setModuleInlineAsm(S);
3250       break;
3251     }
3252     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3253       // FIXME: Remove in 4.0.
3254       std::string S;
3255       if (convertToString(Record, 0, S))
3256         return error("Invalid record");
3257       // Ignore value.
3258       break;
3259     }
3260     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3261       std::string S;
3262       if (convertToString(Record, 0, S))
3263         return error("Invalid record");
3264       SectionTable.push_back(S);
3265       break;
3266     }
3267     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3268       std::string S;
3269       if (convertToString(Record, 0, S))
3270         return error("Invalid record");
3271       GCTable.push_back(S);
3272       break;
3273     }
3274     case bitc::MODULE_CODE_COMDAT:
3275       if (Error Err = parseComdatRecord(Record))
3276         return Err;
3277       break;
3278     case bitc::MODULE_CODE_GLOBALVAR:
3279       if (Error Err = parseGlobalVarRecord(Record))
3280         return Err;
3281       break;
3282     case bitc::MODULE_CODE_FUNCTION:
3283       if (Error Err = parseFunctionRecord(Record))
3284         return Err;
3285       break;
3286     case bitc::MODULE_CODE_IFUNC:
3287     case bitc::MODULE_CODE_ALIAS:
3288     case bitc::MODULE_CODE_ALIAS_OLD:
3289       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3290         return Err;
3291       break;
3292     /// MODULE_CODE_VSTOFFSET: [offset]
3293     case bitc::MODULE_CODE_VSTOFFSET:
3294       if (Record.size() < 1)
3295         return error("Invalid record");
3296       // Note that we subtract 1 here because the offset is relative to one word
3297       // before the start of the identification or module block, which was
3298       // historically always the start of the regular bitcode header.
3299       VSTOffset = Record[0] - 1;
3300       break;
3301     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3302     case bitc::MODULE_CODE_SOURCE_FILENAME:
3303       SmallString<128> ValueName;
3304       if (convertToString(Record, 0, ValueName))
3305         return error("Invalid record");
3306       TheModule->setSourceFileName(ValueName);
3307       break;
3308     }
3309     Record.clear();
3310   }
3311 }
3312 
3313 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3314                                       bool IsImporting) {
3315   TheModule = M;
3316   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3317                             [&](unsigned ID) { return getTypeByID(ID); });
3318   return parseModule(0, ShouldLazyLoadMetadata);
3319 }
3320 
3321 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3322   if (!isa<PointerType>(PtrType))
3323     return error("Load/Store operand is not a pointer type");
3324   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3325 
3326   if (ValType && ValType != ElemType)
3327     return error("Explicit load/store type does not match pointee "
3328                  "type of pointer operand");
3329   if (!PointerType::isLoadableOrStorableType(ElemType))
3330     return error("Cannot load/store from pointer");
3331   return Error::success();
3332 }
3333 
3334 /// Lazily parse the specified function body block.
3335 Error BitcodeReader::parseFunctionBody(Function *F) {
3336   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3337     return error("Invalid record");
3338 
3339   // Unexpected unresolved metadata when parsing function.
3340   if (MDLoader->hasFwdRefs())
3341     return error("Invalid function metadata: incoming forward references");
3342 
3343   InstructionList.clear();
3344   unsigned ModuleValueListSize = ValueList.size();
3345   unsigned ModuleMDLoaderSize = MDLoader->size();
3346 
3347   // Add all the function arguments to the value table.
3348   for (Argument &I : F->args())
3349     ValueList.push_back(&I);
3350 
3351   unsigned NextValueNo = ValueList.size();
3352   BasicBlock *CurBB = nullptr;
3353   unsigned CurBBNo = 0;
3354 
3355   DebugLoc LastLoc;
3356   auto getLastInstruction = [&]() -> Instruction * {
3357     if (CurBB && !CurBB->empty())
3358       return &CurBB->back();
3359     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3360              !FunctionBBs[CurBBNo - 1]->empty())
3361       return &FunctionBBs[CurBBNo - 1]->back();
3362     return nullptr;
3363   };
3364 
3365   std::vector<OperandBundleDef> OperandBundles;
3366 
3367   // Read all the records.
3368   SmallVector<uint64_t, 64> Record;
3369 
3370   while (true) {
3371     BitstreamEntry Entry = Stream.advance();
3372 
3373     switch (Entry.Kind) {
3374     case BitstreamEntry::Error:
3375       return error("Malformed block");
3376     case BitstreamEntry::EndBlock:
3377       goto OutOfRecordLoop;
3378 
3379     case BitstreamEntry::SubBlock:
3380       switch (Entry.ID) {
3381       default:  // Skip unknown content.
3382         if (Stream.SkipBlock())
3383           return error("Invalid record");
3384         break;
3385       case bitc::CONSTANTS_BLOCK_ID:
3386         if (Error Err = parseConstants())
3387           return Err;
3388         NextValueNo = ValueList.size();
3389         break;
3390       case bitc::VALUE_SYMTAB_BLOCK_ID:
3391         if (Error Err = parseValueSymbolTable())
3392           return Err;
3393         break;
3394       case bitc::METADATA_ATTACHMENT_ID:
3395         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3396           return Err;
3397         break;
3398       case bitc::METADATA_BLOCK_ID:
3399         assert(DeferredMetadataInfo.empty() &&
3400                "Must read all module-level metadata before function-level");
3401         if (Error Err = MDLoader->parseFunctionMetadata())
3402           return Err;
3403         break;
3404       case bitc::USELIST_BLOCK_ID:
3405         if (Error Err = parseUseLists())
3406           return Err;
3407         break;
3408       }
3409       continue;
3410 
3411     case BitstreamEntry::Record:
3412       // The interesting case.
3413       break;
3414     }
3415 
3416     // Read a record.
3417     Record.clear();
3418     Instruction *I = nullptr;
3419     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3420     switch (BitCode) {
3421     default: // Default behavior: reject
3422       return error("Invalid value");
3423     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3424       if (Record.size() < 1 || Record[0] == 0)
3425         return error("Invalid record");
3426       // Create all the basic blocks for the function.
3427       FunctionBBs.resize(Record[0]);
3428 
3429       // See if anything took the address of blocks in this function.
3430       auto BBFRI = BasicBlockFwdRefs.find(F);
3431       if (BBFRI == BasicBlockFwdRefs.end()) {
3432         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3433           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3434       } else {
3435         auto &BBRefs = BBFRI->second;
3436         // Check for invalid basic block references.
3437         if (BBRefs.size() > FunctionBBs.size())
3438           return error("Invalid ID");
3439         assert(!BBRefs.empty() && "Unexpected empty array");
3440         assert(!BBRefs.front() && "Invalid reference to entry block");
3441         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3442              ++I)
3443           if (I < RE && BBRefs[I]) {
3444             BBRefs[I]->insertInto(F);
3445             FunctionBBs[I] = BBRefs[I];
3446           } else {
3447             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3448           }
3449 
3450         // Erase from the table.
3451         BasicBlockFwdRefs.erase(BBFRI);
3452       }
3453 
3454       CurBB = FunctionBBs[0];
3455       continue;
3456     }
3457 
3458     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3459       // This record indicates that the last instruction is at the same
3460       // location as the previous instruction with a location.
3461       I = getLastInstruction();
3462 
3463       if (!I)
3464         return error("Invalid record");
3465       I->setDebugLoc(LastLoc);
3466       I = nullptr;
3467       continue;
3468 
3469     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3470       I = getLastInstruction();
3471       if (!I || Record.size() < 4)
3472         return error("Invalid record");
3473 
3474       unsigned Line = Record[0], Col = Record[1];
3475       unsigned ScopeID = Record[2], IAID = Record[3];
3476 
3477       MDNode *Scope = nullptr, *IA = nullptr;
3478       if (ScopeID) {
3479         Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1);
3480         if (!Scope)
3481           return error("Invalid record");
3482       }
3483       if (IAID) {
3484         IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1);
3485         if (!IA)
3486           return error("Invalid record");
3487       }
3488       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
3489       I->setDebugLoc(LastLoc);
3490       I = nullptr;
3491       continue;
3492     }
3493 
3494     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3495       unsigned OpNum = 0;
3496       Value *LHS, *RHS;
3497       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3498           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3499           OpNum+1 > Record.size())
3500         return error("Invalid record");
3501 
3502       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3503       if (Opc == -1)
3504         return error("Invalid record");
3505       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3506       InstructionList.push_back(I);
3507       if (OpNum < Record.size()) {
3508         if (Opc == Instruction::Add ||
3509             Opc == Instruction::Sub ||
3510             Opc == Instruction::Mul ||
3511             Opc == Instruction::Shl) {
3512           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3513             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3514           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3515             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3516         } else if (Opc == Instruction::SDiv ||
3517                    Opc == Instruction::UDiv ||
3518                    Opc == Instruction::LShr ||
3519                    Opc == Instruction::AShr) {
3520           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3521             cast<BinaryOperator>(I)->setIsExact(true);
3522         } else if (isa<FPMathOperator>(I)) {
3523           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3524           if (FMF.any())
3525             I->setFastMathFlags(FMF);
3526         }
3527 
3528       }
3529       break;
3530     }
3531     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3532       unsigned OpNum = 0;
3533       Value *Op;
3534       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3535           OpNum+2 != Record.size())
3536         return error("Invalid record");
3537 
3538       Type *ResTy = getTypeByID(Record[OpNum]);
3539       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3540       if (Opc == -1 || !ResTy)
3541         return error("Invalid record");
3542       Instruction *Temp = nullptr;
3543       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3544         if (Temp) {
3545           InstructionList.push_back(Temp);
3546           CurBB->getInstList().push_back(Temp);
3547         }
3548       } else {
3549         auto CastOp = (Instruction::CastOps)Opc;
3550         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3551           return error("Invalid cast");
3552         I = CastInst::Create(CastOp, Op, ResTy);
3553       }
3554       InstructionList.push_back(I);
3555       break;
3556     }
3557     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3558     case bitc::FUNC_CODE_INST_GEP_OLD:
3559     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3560       unsigned OpNum = 0;
3561 
3562       Type *Ty;
3563       bool InBounds;
3564 
3565       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3566         InBounds = Record[OpNum++];
3567         Ty = getTypeByID(Record[OpNum++]);
3568       } else {
3569         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3570         Ty = nullptr;
3571       }
3572 
3573       Value *BasePtr;
3574       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3575         return error("Invalid record");
3576 
3577       if (!Ty)
3578         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
3579                  ->getElementType();
3580       else if (Ty !=
3581                cast<PointerType>(BasePtr->getType()->getScalarType())
3582                    ->getElementType())
3583         return error(
3584             "Explicit gep type does not match pointee type of pointer operand");
3585 
3586       SmallVector<Value*, 16> GEPIdx;
3587       while (OpNum != Record.size()) {
3588         Value *Op;
3589         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3590           return error("Invalid record");
3591         GEPIdx.push_back(Op);
3592       }
3593 
3594       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3595 
3596       InstructionList.push_back(I);
3597       if (InBounds)
3598         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3599       break;
3600     }
3601 
3602     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3603                                        // EXTRACTVAL: [opty, opval, n x indices]
3604       unsigned OpNum = 0;
3605       Value *Agg;
3606       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3607         return error("Invalid record");
3608 
3609       unsigned RecSize = Record.size();
3610       if (OpNum == RecSize)
3611         return error("EXTRACTVAL: Invalid instruction with 0 indices");
3612 
3613       SmallVector<unsigned, 4> EXTRACTVALIdx;
3614       Type *CurTy = Agg->getType();
3615       for (; OpNum != RecSize; ++OpNum) {
3616         bool IsArray = CurTy->isArrayTy();
3617         bool IsStruct = CurTy->isStructTy();
3618         uint64_t Index = Record[OpNum];
3619 
3620         if (!IsStruct && !IsArray)
3621           return error("EXTRACTVAL: Invalid type");
3622         if ((unsigned)Index != Index)
3623           return error("Invalid value");
3624         if (IsStruct && Index >= CurTy->subtypes().size())
3625           return error("EXTRACTVAL: Invalid struct index");
3626         if (IsArray && Index >= CurTy->getArrayNumElements())
3627           return error("EXTRACTVAL: Invalid array index");
3628         EXTRACTVALIdx.push_back((unsigned)Index);
3629 
3630         if (IsStruct)
3631           CurTy = CurTy->subtypes()[Index];
3632         else
3633           CurTy = CurTy->subtypes()[0];
3634       }
3635 
3636       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3637       InstructionList.push_back(I);
3638       break;
3639     }
3640 
3641     case bitc::FUNC_CODE_INST_INSERTVAL: {
3642                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
3643       unsigned OpNum = 0;
3644       Value *Agg;
3645       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3646         return error("Invalid record");
3647       Value *Val;
3648       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3649         return error("Invalid record");
3650 
3651       unsigned RecSize = Record.size();
3652       if (OpNum == RecSize)
3653         return error("INSERTVAL: Invalid instruction with 0 indices");
3654 
3655       SmallVector<unsigned, 4> INSERTVALIdx;
3656       Type *CurTy = Agg->getType();
3657       for (; OpNum != RecSize; ++OpNum) {
3658         bool IsArray = CurTy->isArrayTy();
3659         bool IsStruct = CurTy->isStructTy();
3660         uint64_t Index = Record[OpNum];
3661 
3662         if (!IsStruct && !IsArray)
3663           return error("INSERTVAL: Invalid type");
3664         if ((unsigned)Index != Index)
3665           return error("Invalid value");
3666         if (IsStruct && Index >= CurTy->subtypes().size())
3667           return error("INSERTVAL: Invalid struct index");
3668         if (IsArray && Index >= CurTy->getArrayNumElements())
3669           return error("INSERTVAL: Invalid array index");
3670 
3671         INSERTVALIdx.push_back((unsigned)Index);
3672         if (IsStruct)
3673           CurTy = CurTy->subtypes()[Index];
3674         else
3675           CurTy = CurTy->subtypes()[0];
3676       }
3677 
3678       if (CurTy != Val->getType())
3679         return error("Inserted value type doesn't match aggregate type");
3680 
3681       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3682       InstructionList.push_back(I);
3683       break;
3684     }
3685 
3686     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3687       // obsolete form of select
3688       // handles select i1 ... in old bitcode
3689       unsigned OpNum = 0;
3690       Value *TrueVal, *FalseVal, *Cond;
3691       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3692           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3693           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3694         return error("Invalid record");
3695 
3696       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3697       InstructionList.push_back(I);
3698       break;
3699     }
3700 
3701     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3702       // new form of select
3703       // handles select i1 or select [N x i1]
3704       unsigned OpNum = 0;
3705       Value *TrueVal, *FalseVal, *Cond;
3706       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3707           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3708           getValueTypePair(Record, OpNum, NextValueNo, Cond))
3709         return error("Invalid record");
3710 
3711       // select condition can be either i1 or [N x i1]
3712       if (VectorType* vector_type =
3713           dyn_cast<VectorType>(Cond->getType())) {
3714         // expect <n x i1>
3715         if (vector_type->getElementType() != Type::getInt1Ty(Context))
3716           return error("Invalid type for value");
3717       } else {
3718         // expect i1
3719         if (Cond->getType() != Type::getInt1Ty(Context))
3720           return error("Invalid type for value");
3721       }
3722 
3723       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3724       InstructionList.push_back(I);
3725       break;
3726     }
3727 
3728     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3729       unsigned OpNum = 0;
3730       Value *Vec, *Idx;
3731       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3732           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3733         return error("Invalid record");
3734       if (!Vec->getType()->isVectorTy())
3735         return error("Invalid type for value");
3736       I = ExtractElementInst::Create(Vec, Idx);
3737       InstructionList.push_back(I);
3738       break;
3739     }
3740 
3741     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3742       unsigned OpNum = 0;
3743       Value *Vec, *Elt, *Idx;
3744       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
3745         return error("Invalid record");
3746       if (!Vec->getType()->isVectorTy())
3747         return error("Invalid type for value");
3748       if (popValue(Record, OpNum, NextValueNo,
3749                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3750           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3751         return error("Invalid record");
3752       I = InsertElementInst::Create(Vec, Elt, Idx);
3753       InstructionList.push_back(I);
3754       break;
3755     }
3756 
3757     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3758       unsigned OpNum = 0;
3759       Value *Vec1, *Vec2, *Mask;
3760       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3761           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
3762         return error("Invalid record");
3763 
3764       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3765         return error("Invalid record");
3766       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
3767         return error("Invalid type for value");
3768       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3769       InstructionList.push_back(I);
3770       break;
3771     }
3772 
3773     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
3774       // Old form of ICmp/FCmp returning bool
3775       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3776       // both legal on vectors but had different behaviour.
3777     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3778       // FCmp/ICmp returning bool or vector of bool
3779 
3780       unsigned OpNum = 0;
3781       Value *LHS, *RHS;
3782       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3783           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
3784         return error("Invalid record");
3785 
3786       unsigned PredVal = Record[OpNum];
3787       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
3788       FastMathFlags FMF;
3789       if (IsFP && Record.size() > OpNum+1)
3790         FMF = getDecodedFastMathFlags(Record[++OpNum]);
3791 
3792       if (OpNum+1 != Record.size())
3793         return error("Invalid record");
3794 
3795       if (LHS->getType()->isFPOrFPVectorTy())
3796         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
3797       else
3798         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
3799 
3800       if (FMF.any())
3801         I->setFastMathFlags(FMF);
3802       InstructionList.push_back(I);
3803       break;
3804     }
3805 
3806     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3807       {
3808         unsigned Size = Record.size();
3809         if (Size == 0) {
3810           I = ReturnInst::Create(Context);
3811           InstructionList.push_back(I);
3812           break;
3813         }
3814 
3815         unsigned OpNum = 0;
3816         Value *Op = nullptr;
3817         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3818           return error("Invalid record");
3819         if (OpNum != Record.size())
3820           return error("Invalid record");
3821 
3822         I = ReturnInst::Create(Context, Op);
3823         InstructionList.push_back(I);
3824         break;
3825       }
3826     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3827       if (Record.size() != 1 && Record.size() != 3)
3828         return error("Invalid record");
3829       BasicBlock *TrueDest = getBasicBlock(Record[0]);
3830       if (!TrueDest)
3831         return error("Invalid record");
3832 
3833       if (Record.size() == 1) {
3834         I = BranchInst::Create(TrueDest);
3835         InstructionList.push_back(I);
3836       }
3837       else {
3838         BasicBlock *FalseDest = getBasicBlock(Record[1]);
3839         Value *Cond = getValue(Record, 2, NextValueNo,
3840                                Type::getInt1Ty(Context));
3841         if (!FalseDest || !Cond)
3842           return error("Invalid record");
3843         I = BranchInst::Create(TrueDest, FalseDest, Cond);
3844         InstructionList.push_back(I);
3845       }
3846       break;
3847     }
3848     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
3849       if (Record.size() != 1 && Record.size() != 2)
3850         return error("Invalid record");
3851       unsigned Idx = 0;
3852       Value *CleanupPad =
3853           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3854       if (!CleanupPad)
3855         return error("Invalid record");
3856       BasicBlock *UnwindDest = nullptr;
3857       if (Record.size() == 2) {
3858         UnwindDest = getBasicBlock(Record[Idx++]);
3859         if (!UnwindDest)
3860           return error("Invalid record");
3861       }
3862 
3863       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
3864       InstructionList.push_back(I);
3865       break;
3866     }
3867     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
3868       if (Record.size() != 2)
3869         return error("Invalid record");
3870       unsigned Idx = 0;
3871       Value *CatchPad =
3872           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3873       if (!CatchPad)
3874         return error("Invalid record");
3875       BasicBlock *BB = getBasicBlock(Record[Idx++]);
3876       if (!BB)
3877         return error("Invalid record");
3878 
3879       I = CatchReturnInst::Create(CatchPad, BB);
3880       InstructionList.push_back(I);
3881       break;
3882     }
3883     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
3884       // We must have, at minimum, the outer scope and the number of arguments.
3885       if (Record.size() < 2)
3886         return error("Invalid record");
3887 
3888       unsigned Idx = 0;
3889 
3890       Value *ParentPad =
3891           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3892 
3893       unsigned NumHandlers = Record[Idx++];
3894 
3895       SmallVector<BasicBlock *, 2> Handlers;
3896       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
3897         BasicBlock *BB = getBasicBlock(Record[Idx++]);
3898         if (!BB)
3899           return error("Invalid record");
3900         Handlers.push_back(BB);
3901       }
3902 
3903       BasicBlock *UnwindDest = nullptr;
3904       if (Idx + 1 == Record.size()) {
3905         UnwindDest = getBasicBlock(Record[Idx++]);
3906         if (!UnwindDest)
3907           return error("Invalid record");
3908       }
3909 
3910       if (Record.size() != Idx)
3911         return error("Invalid record");
3912 
3913       auto *CatchSwitch =
3914           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
3915       for (BasicBlock *Handler : Handlers)
3916         CatchSwitch->addHandler(Handler);
3917       I = CatchSwitch;
3918       InstructionList.push_back(I);
3919       break;
3920     }
3921     case bitc::FUNC_CODE_INST_CATCHPAD:
3922     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
3923       // We must have, at minimum, the outer scope and the number of arguments.
3924       if (Record.size() < 2)
3925         return error("Invalid record");
3926 
3927       unsigned Idx = 0;
3928 
3929       Value *ParentPad =
3930           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3931 
3932       unsigned NumArgOperands = Record[Idx++];
3933 
3934       SmallVector<Value *, 2> Args;
3935       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
3936         Value *Val;
3937         if (getValueTypePair(Record, Idx, NextValueNo, Val))
3938           return error("Invalid record");
3939         Args.push_back(Val);
3940       }
3941 
3942       if (Record.size() != Idx)
3943         return error("Invalid record");
3944 
3945       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
3946         I = CleanupPadInst::Create(ParentPad, Args);
3947       else
3948         I = CatchPadInst::Create(ParentPad, Args);
3949       InstructionList.push_back(I);
3950       break;
3951     }
3952     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
3953       // Check magic
3954       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
3955         // "New" SwitchInst format with case ranges. The changes to write this
3956         // format were reverted but we still recognize bitcode that uses it.
3957         // Hopefully someday we will have support for case ranges and can use
3958         // this format again.
3959 
3960         Type *OpTy = getTypeByID(Record[1]);
3961         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
3962 
3963         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
3964         BasicBlock *Default = getBasicBlock(Record[3]);
3965         if (!OpTy || !Cond || !Default)
3966           return error("Invalid record");
3967 
3968         unsigned NumCases = Record[4];
3969 
3970         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3971         InstructionList.push_back(SI);
3972 
3973         unsigned CurIdx = 5;
3974         for (unsigned i = 0; i != NumCases; ++i) {
3975           SmallVector<ConstantInt*, 1> CaseVals;
3976           unsigned NumItems = Record[CurIdx++];
3977           for (unsigned ci = 0; ci != NumItems; ++ci) {
3978             bool isSingleNumber = Record[CurIdx++];
3979 
3980             APInt Low;
3981             unsigned ActiveWords = 1;
3982             if (ValueBitWidth > 64)
3983               ActiveWords = Record[CurIdx++];
3984             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
3985                                 ValueBitWidth);
3986             CurIdx += ActiveWords;
3987 
3988             if (!isSingleNumber) {
3989               ActiveWords = 1;
3990               if (ValueBitWidth > 64)
3991                 ActiveWords = Record[CurIdx++];
3992               APInt High = readWideAPInt(
3993                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
3994               CurIdx += ActiveWords;
3995 
3996               // FIXME: It is not clear whether values in the range should be
3997               // compared as signed or unsigned values. The partially
3998               // implemented changes that used this format in the past used
3999               // unsigned comparisons.
4000               for ( ; Low.ule(High); ++Low)
4001                 CaseVals.push_back(ConstantInt::get(Context, Low));
4002             } else
4003               CaseVals.push_back(ConstantInt::get(Context, Low));
4004           }
4005           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4006           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4007                  cve = CaseVals.end(); cvi != cve; ++cvi)
4008             SI->addCase(*cvi, DestBB);
4009         }
4010         I = SI;
4011         break;
4012       }
4013 
4014       // Old SwitchInst format without case ranges.
4015 
4016       if (Record.size() < 3 || (Record.size() & 1) == 0)
4017         return error("Invalid record");
4018       Type *OpTy = getTypeByID(Record[0]);
4019       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4020       BasicBlock *Default = getBasicBlock(Record[2]);
4021       if (!OpTy || !Cond || !Default)
4022         return error("Invalid record");
4023       unsigned NumCases = (Record.size()-3)/2;
4024       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4025       InstructionList.push_back(SI);
4026       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4027         ConstantInt *CaseVal =
4028           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4029         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4030         if (!CaseVal || !DestBB) {
4031           delete SI;
4032           return error("Invalid record");
4033         }
4034         SI->addCase(CaseVal, DestBB);
4035       }
4036       I = SI;
4037       break;
4038     }
4039     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4040       if (Record.size() < 2)
4041         return error("Invalid record");
4042       Type *OpTy = getTypeByID(Record[0]);
4043       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4044       if (!OpTy || !Address)
4045         return error("Invalid record");
4046       unsigned NumDests = Record.size()-2;
4047       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4048       InstructionList.push_back(IBI);
4049       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4050         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4051           IBI->addDestination(DestBB);
4052         } else {
4053           delete IBI;
4054           return error("Invalid record");
4055         }
4056       }
4057       I = IBI;
4058       break;
4059     }
4060 
4061     case bitc::FUNC_CODE_INST_INVOKE: {
4062       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4063       if (Record.size() < 4)
4064         return error("Invalid record");
4065       unsigned OpNum = 0;
4066       AttributeList PAL = getAttributes(Record[OpNum++]);
4067       unsigned CCInfo = Record[OpNum++];
4068       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4069       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4070 
4071       FunctionType *FTy = nullptr;
4072       if (CCInfo >> 13 & 1 &&
4073           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4074         return error("Explicit invoke type is not a function type");
4075 
4076       Value *Callee;
4077       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4078         return error("Invalid record");
4079 
4080       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4081       if (!CalleeTy)
4082         return error("Callee is not a pointer");
4083       if (!FTy) {
4084         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4085         if (!FTy)
4086           return error("Callee is not of pointer to function type");
4087       } else if (CalleeTy->getElementType() != FTy)
4088         return error("Explicit invoke type does not match pointee type of "
4089                      "callee operand");
4090       if (Record.size() < FTy->getNumParams() + OpNum)
4091         return error("Insufficient operands to call");
4092 
4093       SmallVector<Value*, 16> Ops;
4094       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4095         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4096                                FTy->getParamType(i)));
4097         if (!Ops.back())
4098           return error("Invalid record");
4099       }
4100 
4101       if (!FTy->isVarArg()) {
4102         if (Record.size() != OpNum)
4103           return error("Invalid record");
4104       } else {
4105         // Read type/value pairs for varargs params.
4106         while (OpNum != Record.size()) {
4107           Value *Op;
4108           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4109             return error("Invalid record");
4110           Ops.push_back(Op);
4111         }
4112       }
4113 
4114       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4115       OperandBundles.clear();
4116       InstructionList.push_back(I);
4117       cast<InvokeInst>(I)->setCallingConv(
4118           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4119       cast<InvokeInst>(I)->setAttributes(PAL);
4120       break;
4121     }
4122     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4123       unsigned Idx = 0;
4124       Value *Val = nullptr;
4125       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4126         return error("Invalid record");
4127       I = ResumeInst::Create(Val);
4128       InstructionList.push_back(I);
4129       break;
4130     }
4131     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4132       I = new UnreachableInst(Context);
4133       InstructionList.push_back(I);
4134       break;
4135     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4136       if (Record.size() < 1 || ((Record.size()-1)&1))
4137         return error("Invalid record");
4138       Type *Ty = getTypeByID(Record[0]);
4139       if (!Ty)
4140         return error("Invalid record");
4141 
4142       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4143       InstructionList.push_back(PN);
4144 
4145       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4146         Value *V;
4147         // With the new function encoding, it is possible that operands have
4148         // negative IDs (for forward references).  Use a signed VBR
4149         // representation to keep the encoding small.
4150         if (UseRelativeIDs)
4151           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4152         else
4153           V = getValue(Record, 1+i, NextValueNo, Ty);
4154         BasicBlock *BB = getBasicBlock(Record[2+i]);
4155         if (!V || !BB)
4156           return error("Invalid record");
4157         PN->addIncoming(V, BB);
4158       }
4159       I = PN;
4160       break;
4161     }
4162 
4163     case bitc::FUNC_CODE_INST_LANDINGPAD:
4164     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4165       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4166       unsigned Idx = 0;
4167       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4168         if (Record.size() < 3)
4169           return error("Invalid record");
4170       } else {
4171         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4172         if (Record.size() < 4)
4173           return error("Invalid record");
4174       }
4175       Type *Ty = getTypeByID(Record[Idx++]);
4176       if (!Ty)
4177         return error("Invalid record");
4178       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4179         Value *PersFn = nullptr;
4180         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4181           return error("Invalid record");
4182 
4183         if (!F->hasPersonalityFn())
4184           F->setPersonalityFn(cast<Constant>(PersFn));
4185         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4186           return error("Personality function mismatch");
4187       }
4188 
4189       bool IsCleanup = !!Record[Idx++];
4190       unsigned NumClauses = Record[Idx++];
4191       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4192       LP->setCleanup(IsCleanup);
4193       for (unsigned J = 0; J != NumClauses; ++J) {
4194         LandingPadInst::ClauseType CT =
4195           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4196         Value *Val;
4197 
4198         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4199           delete LP;
4200           return error("Invalid record");
4201         }
4202 
4203         assert((CT != LandingPadInst::Catch ||
4204                 !isa<ArrayType>(Val->getType())) &&
4205                "Catch clause has a invalid type!");
4206         assert((CT != LandingPadInst::Filter ||
4207                 isa<ArrayType>(Val->getType())) &&
4208                "Filter clause has invalid type!");
4209         LP->addClause(cast<Constant>(Val));
4210       }
4211 
4212       I = LP;
4213       InstructionList.push_back(I);
4214       break;
4215     }
4216 
4217     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4218       if (Record.size() != 4)
4219         return error("Invalid record");
4220       uint64_t AlignRecord = Record[3];
4221       const uint64_t InAllocaMask = uint64_t(1) << 5;
4222       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4223       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4224       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4225                                 SwiftErrorMask;
4226       bool InAlloca = AlignRecord & InAllocaMask;
4227       bool SwiftError = AlignRecord & SwiftErrorMask;
4228       Type *Ty = getTypeByID(Record[0]);
4229       if ((AlignRecord & ExplicitTypeMask) == 0) {
4230         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4231         if (!PTy)
4232           return error("Old-style alloca with a non-pointer type");
4233         Ty = PTy->getElementType();
4234       }
4235       Type *OpTy = getTypeByID(Record[1]);
4236       Value *Size = getFnValueByID(Record[2], OpTy);
4237       unsigned Align;
4238       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4239         return Err;
4240       }
4241       if (!Ty || !Size)
4242         return error("Invalid record");
4243 
4244       // FIXME: Make this an optional field.
4245       const DataLayout &DL = TheModule->getDataLayout();
4246       unsigned AS = DL.getAllocaAddrSpace();
4247 
4248       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4249       AI->setUsedWithInAlloca(InAlloca);
4250       AI->setSwiftError(SwiftError);
4251       I = AI;
4252       InstructionList.push_back(I);
4253       break;
4254     }
4255     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4256       unsigned OpNum = 0;
4257       Value *Op;
4258       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4259           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4260         return error("Invalid record");
4261 
4262       Type *Ty = nullptr;
4263       if (OpNum + 3 == Record.size())
4264         Ty = getTypeByID(Record[OpNum++]);
4265       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4266         return Err;
4267       if (!Ty)
4268         Ty = cast<PointerType>(Op->getType())->getElementType();
4269 
4270       unsigned Align;
4271       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4272         return Err;
4273       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4274 
4275       InstructionList.push_back(I);
4276       break;
4277     }
4278     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4279        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4280       unsigned OpNum = 0;
4281       Value *Op;
4282       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4283           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4284         return error("Invalid record");
4285 
4286       Type *Ty = nullptr;
4287       if (OpNum + 5 == Record.size())
4288         Ty = getTypeByID(Record[OpNum++]);
4289       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4290         return Err;
4291       if (!Ty)
4292         Ty = cast<PointerType>(Op->getType())->getElementType();
4293 
4294       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4295       if (Ordering == AtomicOrdering::NotAtomic ||
4296           Ordering == AtomicOrdering::Release ||
4297           Ordering == AtomicOrdering::AcquireRelease)
4298         return error("Invalid record");
4299       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4300         return error("Invalid record");
4301       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4302 
4303       unsigned Align;
4304       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4305         return Err;
4306       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID);
4307 
4308       InstructionList.push_back(I);
4309       break;
4310     }
4311     case bitc::FUNC_CODE_INST_STORE:
4312     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4313       unsigned OpNum = 0;
4314       Value *Val, *Ptr;
4315       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4316           (BitCode == bitc::FUNC_CODE_INST_STORE
4317                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4318                : popValue(Record, OpNum, NextValueNo,
4319                           cast<PointerType>(Ptr->getType())->getElementType(),
4320                           Val)) ||
4321           OpNum + 2 != Record.size())
4322         return error("Invalid record");
4323 
4324       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4325         return Err;
4326       unsigned Align;
4327       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4328         return Err;
4329       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4330       InstructionList.push_back(I);
4331       break;
4332     }
4333     case bitc::FUNC_CODE_INST_STOREATOMIC:
4334     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4335       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4336       unsigned OpNum = 0;
4337       Value *Val, *Ptr;
4338       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4339           !isa<PointerType>(Ptr->getType()) ||
4340           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4341                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4342                : popValue(Record, OpNum, NextValueNo,
4343                           cast<PointerType>(Ptr->getType())->getElementType(),
4344                           Val)) ||
4345           OpNum + 4 != Record.size())
4346         return error("Invalid record");
4347 
4348       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4349         return Err;
4350       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4351       if (Ordering == AtomicOrdering::NotAtomic ||
4352           Ordering == AtomicOrdering::Acquire ||
4353           Ordering == AtomicOrdering::AcquireRelease)
4354         return error("Invalid record");
4355       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4356       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4357         return error("Invalid record");
4358 
4359       unsigned Align;
4360       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4361         return Err;
4362       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4363       InstructionList.push_back(I);
4364       break;
4365     }
4366     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4367     case bitc::FUNC_CODE_INST_CMPXCHG: {
4368       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4369       //          failureordering?, isweak?]
4370       unsigned OpNum = 0;
4371       Value *Ptr, *Cmp, *New;
4372       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4373           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4374                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4375                : popValue(Record, OpNum, NextValueNo,
4376                           cast<PointerType>(Ptr->getType())->getElementType(),
4377                           Cmp)) ||
4378           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4379           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4380         return error("Invalid record");
4381       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4382       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4383           SuccessOrdering == AtomicOrdering::Unordered)
4384         return error("Invalid record");
4385       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4386 
4387       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4388         return Err;
4389       AtomicOrdering FailureOrdering;
4390       if (Record.size() < 7)
4391         FailureOrdering =
4392             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4393       else
4394         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4395 
4396       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4397                                 SSID);
4398       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4399 
4400       if (Record.size() < 8) {
4401         // Before weak cmpxchgs existed, the instruction simply returned the
4402         // value loaded from memory, so bitcode files from that era will be
4403         // expecting the first component of a modern cmpxchg.
4404         CurBB->getInstList().push_back(I);
4405         I = ExtractValueInst::Create(I, 0);
4406       } else {
4407         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4408       }
4409 
4410       InstructionList.push_back(I);
4411       break;
4412     }
4413     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4414       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4415       unsigned OpNum = 0;
4416       Value *Ptr, *Val;
4417       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4418           !isa<PointerType>(Ptr->getType()) ||
4419           popValue(Record, OpNum, NextValueNo,
4420                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4421           OpNum+4 != Record.size())
4422         return error("Invalid record");
4423       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4424       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4425           Operation > AtomicRMWInst::LAST_BINOP)
4426         return error("Invalid record");
4427       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4428       if (Ordering == AtomicOrdering::NotAtomic ||
4429           Ordering == AtomicOrdering::Unordered)
4430         return error("Invalid record");
4431       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4432       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4433       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4434       InstructionList.push_back(I);
4435       break;
4436     }
4437     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4438       if (2 != Record.size())
4439         return error("Invalid record");
4440       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4441       if (Ordering == AtomicOrdering::NotAtomic ||
4442           Ordering == AtomicOrdering::Unordered ||
4443           Ordering == AtomicOrdering::Monotonic)
4444         return error("Invalid record");
4445       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4446       I = new FenceInst(Context, Ordering, SSID);
4447       InstructionList.push_back(I);
4448       break;
4449     }
4450     case bitc::FUNC_CODE_INST_CALL: {
4451       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4452       if (Record.size() < 3)
4453         return error("Invalid record");
4454 
4455       unsigned OpNum = 0;
4456       AttributeList PAL = getAttributes(Record[OpNum++]);
4457       unsigned CCInfo = Record[OpNum++];
4458 
4459       FastMathFlags FMF;
4460       if ((CCInfo >> bitc::CALL_FMF) & 1) {
4461         FMF = getDecodedFastMathFlags(Record[OpNum++]);
4462         if (!FMF.any())
4463           return error("Fast math flags indicator set for call with no FMF");
4464       }
4465 
4466       FunctionType *FTy = nullptr;
4467       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4468           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4469         return error("Explicit call type is not a function type");
4470 
4471       Value *Callee;
4472       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4473         return error("Invalid record");
4474 
4475       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4476       if (!OpTy)
4477         return error("Callee is not a pointer type");
4478       if (!FTy) {
4479         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4480         if (!FTy)
4481           return error("Callee is not of pointer to function type");
4482       } else if (OpTy->getElementType() != FTy)
4483         return error("Explicit call type does not match pointee type of "
4484                      "callee operand");
4485       if (Record.size() < FTy->getNumParams() + OpNum)
4486         return error("Insufficient operands to call");
4487 
4488       SmallVector<Value*, 16> Args;
4489       // Read the fixed params.
4490       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4491         if (FTy->getParamType(i)->isLabelTy())
4492           Args.push_back(getBasicBlock(Record[OpNum]));
4493         else
4494           Args.push_back(getValue(Record, OpNum, NextValueNo,
4495                                   FTy->getParamType(i)));
4496         if (!Args.back())
4497           return error("Invalid record");
4498       }
4499 
4500       // Read type/value pairs for varargs params.
4501       if (!FTy->isVarArg()) {
4502         if (OpNum != Record.size())
4503           return error("Invalid record");
4504       } else {
4505         while (OpNum != Record.size()) {
4506           Value *Op;
4507           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4508             return error("Invalid record");
4509           Args.push_back(Op);
4510         }
4511       }
4512 
4513       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
4514       OperandBundles.clear();
4515       InstructionList.push_back(I);
4516       cast<CallInst>(I)->setCallingConv(
4517           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4518       CallInst::TailCallKind TCK = CallInst::TCK_None;
4519       if (CCInfo & 1 << bitc::CALL_TAIL)
4520         TCK = CallInst::TCK_Tail;
4521       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
4522         TCK = CallInst::TCK_MustTail;
4523       if (CCInfo & (1 << bitc::CALL_NOTAIL))
4524         TCK = CallInst::TCK_NoTail;
4525       cast<CallInst>(I)->setTailCallKind(TCK);
4526       cast<CallInst>(I)->setAttributes(PAL);
4527       if (FMF.any()) {
4528         if (!isa<FPMathOperator>(I))
4529           return error("Fast-math-flags specified for call without "
4530                        "floating-point scalar or vector return type");
4531         I->setFastMathFlags(FMF);
4532       }
4533       break;
4534     }
4535     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4536       if (Record.size() < 3)
4537         return error("Invalid record");
4538       Type *OpTy = getTypeByID(Record[0]);
4539       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4540       Type *ResTy = getTypeByID(Record[2]);
4541       if (!OpTy || !Op || !ResTy)
4542         return error("Invalid record");
4543       I = new VAArgInst(Op, ResTy);
4544       InstructionList.push_back(I);
4545       break;
4546     }
4547 
4548     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
4549       // A call or an invoke can be optionally prefixed with some variable
4550       // number of operand bundle blocks.  These blocks are read into
4551       // OperandBundles and consumed at the next call or invoke instruction.
4552 
4553       if (Record.size() < 1 || Record[0] >= BundleTags.size())
4554         return error("Invalid record");
4555 
4556       std::vector<Value *> Inputs;
4557 
4558       unsigned OpNum = 1;
4559       while (OpNum != Record.size()) {
4560         Value *Op;
4561         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4562           return error("Invalid record");
4563         Inputs.push_back(Op);
4564       }
4565 
4566       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
4567       continue;
4568     }
4569     }
4570 
4571     // Add instruction to end of current BB.  If there is no current BB, reject
4572     // this file.
4573     if (!CurBB) {
4574       I->deleteValue();
4575       return error("Invalid instruction with no BB");
4576     }
4577     if (!OperandBundles.empty()) {
4578       I->deleteValue();
4579       return error("Operand bundles found with no consumer");
4580     }
4581     CurBB->getInstList().push_back(I);
4582 
4583     // If this was a terminator instruction, move to the next block.
4584     if (isa<TerminatorInst>(I)) {
4585       ++CurBBNo;
4586       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4587     }
4588 
4589     // Non-void values get registered in the value table for future use.
4590     if (I && !I->getType()->isVoidTy())
4591       ValueList.assignValue(I, NextValueNo++);
4592   }
4593 
4594 OutOfRecordLoop:
4595 
4596   if (!OperandBundles.empty())
4597     return error("Operand bundles found with no consumer");
4598 
4599   // Check the function list for unresolved values.
4600   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4601     if (!A->getParent()) {
4602       // We found at least one unresolved value.  Nuke them all to avoid leaks.
4603       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4604         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4605           A->replaceAllUsesWith(UndefValue::get(A->getType()));
4606           delete A;
4607         }
4608       }
4609       return error("Never resolved value found in function");
4610     }
4611   }
4612 
4613   // Unexpected unresolved metadata about to be dropped.
4614   if (MDLoader->hasFwdRefs())
4615     return error("Invalid function metadata: outgoing forward refs");
4616 
4617   // Trim the value list down to the size it was before we parsed this function.
4618   ValueList.shrinkTo(ModuleValueListSize);
4619   MDLoader->shrinkTo(ModuleMDLoaderSize);
4620   std::vector<BasicBlock*>().swap(FunctionBBs);
4621   return Error::success();
4622 }
4623 
4624 /// Find the function body in the bitcode stream
4625 Error BitcodeReader::findFunctionInStream(
4626     Function *F,
4627     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4628   while (DeferredFunctionInfoIterator->second == 0) {
4629     // This is the fallback handling for the old format bitcode that
4630     // didn't contain the function index in the VST, or when we have
4631     // an anonymous function which would not have a VST entry.
4632     // Assert that we have one of those two cases.
4633     assert(VSTOffset == 0 || !F->hasName());
4634     // Parse the next body in the stream and set its position in the
4635     // DeferredFunctionInfo map.
4636     if (Error Err = rememberAndSkipFunctionBodies())
4637       return Err;
4638   }
4639   return Error::success();
4640 }
4641 
4642 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
4643   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
4644     return SyncScope::ID(Val);
4645   if (Val >= SSIDs.size())
4646     return SyncScope::System; // Map unknown synchronization scopes to system.
4647   return SSIDs[Val];
4648 }
4649 
4650 //===----------------------------------------------------------------------===//
4651 // GVMaterializer implementation
4652 //===----------------------------------------------------------------------===//
4653 
4654 Error BitcodeReader::materialize(GlobalValue *GV) {
4655   Function *F = dyn_cast<Function>(GV);
4656   // If it's not a function or is already material, ignore the request.
4657   if (!F || !F->isMaterializable())
4658     return Error::success();
4659 
4660   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4661   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
4662   // If its position is recorded as 0, its body is somewhere in the stream
4663   // but we haven't seen it yet.
4664   if (DFII->second == 0)
4665     if (Error Err = findFunctionInStream(F, DFII))
4666       return Err;
4667 
4668   // Materialize metadata before parsing any function bodies.
4669   if (Error Err = materializeMetadata())
4670     return Err;
4671 
4672   // Move the bit stream to the saved position of the deferred function body.
4673   Stream.JumpToBit(DFII->second);
4674 
4675   if (Error Err = parseFunctionBody(F))
4676     return Err;
4677   F->setIsMaterializable(false);
4678 
4679   if (StripDebugInfo)
4680     stripDebugInfo(*F);
4681 
4682   // Upgrade any old intrinsic calls in the function.
4683   for (auto &I : UpgradedIntrinsics) {
4684     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4685          UI != UE;) {
4686       User *U = *UI;
4687       ++UI;
4688       if (CallInst *CI = dyn_cast<CallInst>(U))
4689         UpgradeIntrinsicCall(CI, I.second);
4690     }
4691   }
4692 
4693   // Update calls to the remangled intrinsics
4694   for (auto &I : RemangledIntrinsics)
4695     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4696          UI != UE;)
4697       // Don't expect any other users than call sites
4698       CallSite(*UI++).setCalledFunction(I.second);
4699 
4700   // Finish fn->subprogram upgrade for materialized functions.
4701   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
4702     F->setSubprogram(SP);
4703 
4704   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
4705   if (!MDLoader->isStrippingTBAA()) {
4706     for (auto &I : instructions(F)) {
4707       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
4708       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
4709         continue;
4710       MDLoader->setStripTBAA(true);
4711       stripTBAA(F->getParent());
4712     }
4713   }
4714 
4715   // Bring in any functions that this function forward-referenced via
4716   // blockaddresses.
4717   return materializeForwardReferencedFunctions();
4718 }
4719 
4720 Error BitcodeReader::materializeModule() {
4721   if (Error Err = materializeMetadata())
4722     return Err;
4723 
4724   // Promise to materialize all forward references.
4725   WillMaterializeAllForwardRefs = true;
4726 
4727   // Iterate over the module, deserializing any functions that are still on
4728   // disk.
4729   for (Function &F : *TheModule) {
4730     if (Error Err = materialize(&F))
4731       return Err;
4732   }
4733   // At this point, if there are any function bodies, parse the rest of
4734   // the bits in the module past the last function block we have recorded
4735   // through either lazy scanning or the VST.
4736   if (LastFunctionBlockBit || NextUnreadBit)
4737     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
4738                                     ? LastFunctionBlockBit
4739                                     : NextUnreadBit))
4740       return Err;
4741 
4742   // Check that all block address forward references got resolved (as we
4743   // promised above).
4744   if (!BasicBlockFwdRefs.empty())
4745     return error("Never resolved function from blockaddress");
4746 
4747   // Upgrade any intrinsic calls that slipped through (should not happen!) and
4748   // delete the old functions to clean up. We can't do this unless the entire
4749   // module is materialized because there could always be another function body
4750   // with calls to the old function.
4751   for (auto &I : UpgradedIntrinsics) {
4752     for (auto *U : I.first->users()) {
4753       if (CallInst *CI = dyn_cast<CallInst>(U))
4754         UpgradeIntrinsicCall(CI, I.second);
4755     }
4756     if (!I.first->use_empty())
4757       I.first->replaceAllUsesWith(I.second);
4758     I.first->eraseFromParent();
4759   }
4760   UpgradedIntrinsics.clear();
4761   // Do the same for remangled intrinsics
4762   for (auto &I : RemangledIntrinsics) {
4763     I.first->replaceAllUsesWith(I.second);
4764     I.first->eraseFromParent();
4765   }
4766   RemangledIntrinsics.clear();
4767 
4768   UpgradeDebugInfo(*TheModule);
4769 
4770   UpgradeModuleFlags(*TheModule);
4771   return Error::success();
4772 }
4773 
4774 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
4775   return IdentifiedStructTypes;
4776 }
4777 
4778 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
4779     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
4780     StringRef ModulePath, unsigned ModuleId)
4781     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
4782       ModulePath(ModulePath), ModuleId(ModuleId) {}
4783 
4784 ModuleSummaryIndex::ModuleInfo *
4785 ModuleSummaryIndexBitcodeReader::addThisModule() {
4786   return TheIndex.addModule(ModulePath, ModuleId);
4787 }
4788 
4789 std::pair<ValueInfo, GlobalValue::GUID>
4790 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
4791   auto VGI = ValueIdToValueInfoMap[ValueId];
4792   assert(VGI.first);
4793   return VGI;
4794 }
4795 
4796 void ModuleSummaryIndexBitcodeReader::setValueGUID(
4797     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
4798     StringRef SourceFileName) {
4799   std::string GlobalId =
4800       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
4801   auto ValueGUID = GlobalValue::getGUID(GlobalId);
4802   auto OriginalNameID = ValueGUID;
4803   if (GlobalValue::isLocalLinkage(Linkage))
4804     OriginalNameID = GlobalValue::getGUID(ValueName);
4805   if (PrintSummaryGUIDs)
4806     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
4807            << ValueName << "\n";
4808   ValueIdToValueInfoMap[ValueID] =
4809       std::make_pair(TheIndex.getOrInsertValueInfo(ValueGUID), OriginalNameID);
4810 }
4811 
4812 // Specialized value symbol table parser used when reading module index
4813 // blocks where we don't actually create global values. The parsed information
4814 // is saved in the bitcode reader for use when later parsing summaries.
4815 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
4816     uint64_t Offset,
4817     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
4818   // With a strtab the VST is not required to parse the summary.
4819   if (UseStrtab)
4820     return Error::success();
4821 
4822   assert(Offset > 0 && "Expected non-zero VST offset");
4823   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
4824 
4825   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
4826     return error("Invalid record");
4827 
4828   SmallVector<uint64_t, 64> Record;
4829 
4830   // Read all the records for this value table.
4831   SmallString<128> ValueName;
4832 
4833   while (true) {
4834     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4835 
4836     switch (Entry.Kind) {
4837     case BitstreamEntry::SubBlock: // Handled for us already.
4838     case BitstreamEntry::Error:
4839       return error("Malformed block");
4840     case BitstreamEntry::EndBlock:
4841       // Done parsing VST, jump back to wherever we came from.
4842       Stream.JumpToBit(CurrentBit);
4843       return Error::success();
4844     case BitstreamEntry::Record:
4845       // The interesting case.
4846       break;
4847     }
4848 
4849     // Read a record.
4850     Record.clear();
4851     switch (Stream.readRecord(Entry.ID, Record)) {
4852     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
4853       break;
4854     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
4855       if (convertToString(Record, 1, ValueName))
4856         return error("Invalid record");
4857       unsigned ValueID = Record[0];
4858       assert(!SourceFileName.empty());
4859       auto VLI = ValueIdToLinkageMap.find(ValueID);
4860       assert(VLI != ValueIdToLinkageMap.end() &&
4861              "No linkage found for VST entry?");
4862       auto Linkage = VLI->second;
4863       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4864       ValueName.clear();
4865       break;
4866     }
4867     case bitc::VST_CODE_FNENTRY: {
4868       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
4869       if (convertToString(Record, 2, ValueName))
4870         return error("Invalid record");
4871       unsigned ValueID = Record[0];
4872       assert(!SourceFileName.empty());
4873       auto VLI = ValueIdToLinkageMap.find(ValueID);
4874       assert(VLI != ValueIdToLinkageMap.end() &&
4875              "No linkage found for VST entry?");
4876       auto Linkage = VLI->second;
4877       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4878       ValueName.clear();
4879       break;
4880     }
4881     case bitc::VST_CODE_COMBINED_ENTRY: {
4882       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
4883       unsigned ValueID = Record[0];
4884       GlobalValue::GUID RefGUID = Record[1];
4885       // The "original name", which is the second value of the pair will be
4886       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
4887       ValueIdToValueInfoMap[ValueID] =
4888           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
4889       break;
4890     }
4891     }
4892   }
4893 }
4894 
4895 // Parse just the blocks needed for building the index out of the module.
4896 // At the end of this routine the module Index is populated with a map
4897 // from global value id to GlobalValueSummary objects.
4898 Error ModuleSummaryIndexBitcodeReader::parseModule() {
4899   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4900     return error("Invalid record");
4901 
4902   SmallVector<uint64_t, 64> Record;
4903   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
4904   unsigned ValueId = 0;
4905 
4906   // Read the index for this module.
4907   while (true) {
4908     BitstreamEntry Entry = Stream.advance();
4909 
4910     switch (Entry.Kind) {
4911     case BitstreamEntry::Error:
4912       return error("Malformed block");
4913     case BitstreamEntry::EndBlock:
4914       return Error::success();
4915 
4916     case BitstreamEntry::SubBlock:
4917       switch (Entry.ID) {
4918       default: // Skip unknown content.
4919         if (Stream.SkipBlock())
4920           return error("Invalid record");
4921         break;
4922       case bitc::BLOCKINFO_BLOCK_ID:
4923         // Need to parse these to get abbrev ids (e.g. for VST)
4924         if (readBlockInfo())
4925           return error("Malformed block");
4926         break;
4927       case bitc::VALUE_SYMTAB_BLOCK_ID:
4928         // Should have been parsed earlier via VSTOffset, unless there
4929         // is no summary section.
4930         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
4931                 !SeenGlobalValSummary) &&
4932                "Expected early VST parse via VSTOffset record");
4933         if (Stream.SkipBlock())
4934           return error("Invalid record");
4935         break;
4936       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
4937       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
4938         assert(!SeenValueSymbolTable &&
4939                "Already read VST when parsing summary block?");
4940         // We might not have a VST if there were no values in the
4941         // summary. An empty summary block generated when we are
4942         // performing ThinLTO compiles so we don't later invoke
4943         // the regular LTO process on them.
4944         if (VSTOffset > 0) {
4945           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
4946             return Err;
4947           SeenValueSymbolTable = true;
4948         }
4949         SeenGlobalValSummary = true;
4950         if (Error Err = parseEntireSummary(Entry.ID))
4951           return Err;
4952         break;
4953       case bitc::MODULE_STRTAB_BLOCK_ID:
4954         if (Error Err = parseModuleStringTable())
4955           return Err;
4956         break;
4957       }
4958       continue;
4959 
4960     case BitstreamEntry::Record: {
4961         Record.clear();
4962         auto BitCode = Stream.readRecord(Entry.ID, Record);
4963         switch (BitCode) {
4964         default:
4965           break; // Default behavior, ignore unknown content.
4966         case bitc::MODULE_CODE_VERSION: {
4967           if (Error Err = parseVersionRecord(Record).takeError())
4968             return Err;
4969           break;
4970         }
4971         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4972         case bitc::MODULE_CODE_SOURCE_FILENAME: {
4973           SmallString<128> ValueName;
4974           if (convertToString(Record, 0, ValueName))
4975             return error("Invalid record");
4976           SourceFileName = ValueName.c_str();
4977           break;
4978         }
4979         /// MODULE_CODE_HASH: [5*i32]
4980         case bitc::MODULE_CODE_HASH: {
4981           if (Record.size() != 5)
4982             return error("Invalid hash length " + Twine(Record.size()).str());
4983           auto &Hash = addThisModule()->second.second;
4984           int Pos = 0;
4985           for (auto &Val : Record) {
4986             assert(!(Val >> 32) && "Unexpected high bits set");
4987             Hash[Pos++] = Val;
4988           }
4989           break;
4990         }
4991         /// MODULE_CODE_VSTOFFSET: [offset]
4992         case bitc::MODULE_CODE_VSTOFFSET:
4993           if (Record.size() < 1)
4994             return error("Invalid record");
4995           // Note that we subtract 1 here because the offset is relative to one
4996           // word before the start of the identification or module block, which
4997           // was historically always the start of the regular bitcode header.
4998           VSTOffset = Record[0] - 1;
4999           break;
5000         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5001         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5002         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5003         // v2: [strtab offset, strtab size, v1]
5004         case bitc::MODULE_CODE_GLOBALVAR:
5005         case bitc::MODULE_CODE_FUNCTION:
5006         case bitc::MODULE_CODE_ALIAS: {
5007           StringRef Name;
5008           ArrayRef<uint64_t> GVRecord;
5009           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5010           if (GVRecord.size() <= 3)
5011             return error("Invalid record");
5012           uint64_t RawLinkage = GVRecord[3];
5013           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5014           if (!UseStrtab) {
5015             ValueIdToLinkageMap[ValueId++] = Linkage;
5016             break;
5017           }
5018 
5019           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5020           break;
5021         }
5022         }
5023       }
5024       continue;
5025     }
5026   }
5027 }
5028 
5029 std::vector<ValueInfo>
5030 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5031   std::vector<ValueInfo> Ret;
5032   Ret.reserve(Record.size());
5033   for (uint64_t RefValueId : Record)
5034     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5035   return Ret;
5036 }
5037 
5038 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList(
5039     ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) {
5040   std::vector<FunctionSummary::EdgeTy> Ret;
5041   Ret.reserve(Record.size());
5042   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5043     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5044     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5045     if (IsOldProfileFormat) {
5046       I += 1; // Skip old callsitecount field
5047       if (HasProfile)
5048         I += 1; // Skip old profilecount field
5049     } else if (HasProfile)
5050       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5051     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo{Hotness}});
5052   }
5053   return Ret;
5054 }
5055 
5056 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5057 // objects in the index.
5058 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5059   if (Stream.EnterSubBlock(ID))
5060     return error("Invalid record");
5061   SmallVector<uint64_t, 64> Record;
5062 
5063   // Parse version
5064   {
5065     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5066     if (Entry.Kind != BitstreamEntry::Record)
5067       return error("Invalid Summary Block: record for version expected");
5068     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
5069       return error("Invalid Summary Block: version expected");
5070   }
5071   const uint64_t Version = Record[0];
5072   const bool IsOldProfileFormat = Version == 1;
5073   if (Version < 1 || Version > 4)
5074     return error("Invalid summary version " + Twine(Version) +
5075                  ", 1, 2, 3 or 4 expected");
5076   Record.clear();
5077 
5078   // Keep around the last seen summary to be used when we see an optional
5079   // "OriginalName" attachement.
5080   GlobalValueSummary *LastSeenSummary = nullptr;
5081   GlobalValue::GUID LastSeenGUID = 0;
5082 
5083   // We can expect to see any number of type ID information records before
5084   // each function summary records; these variables store the information
5085   // collected so far so that it can be used to create the summary object.
5086   std::vector<GlobalValue::GUID> PendingTypeTests;
5087   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5088       PendingTypeCheckedLoadVCalls;
5089   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5090       PendingTypeCheckedLoadConstVCalls;
5091 
5092   while (true) {
5093     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5094 
5095     switch (Entry.Kind) {
5096     case BitstreamEntry::SubBlock: // Handled for us already.
5097     case BitstreamEntry::Error:
5098       return error("Malformed block");
5099     case BitstreamEntry::EndBlock:
5100       return Error::success();
5101     case BitstreamEntry::Record:
5102       // The interesting case.
5103       break;
5104     }
5105 
5106     // Read a record. The record format depends on whether this
5107     // is a per-module index or a combined index file. In the per-module
5108     // case the records contain the associated value's ID for correlation
5109     // with VST entries. In the combined index the correlation is done
5110     // via the bitcode offset of the summary records (which were saved
5111     // in the combined index VST entries). The records also contain
5112     // information used for ThinLTO renaming and importing.
5113     Record.clear();
5114     auto BitCode = Stream.readRecord(Entry.ID, Record);
5115     switch (BitCode) {
5116     default: // Default behavior: ignore.
5117       break;
5118     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5119       uint64_t ValueID = Record[0];
5120       GlobalValue::GUID RefGUID = Record[1];
5121       ValueIdToValueInfoMap[ValueID] =
5122           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5123       break;
5124     }
5125     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5126     //                numrefs x valueid, n x (valueid)]
5127     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5128     //                        numrefs x valueid,
5129     //                        n x (valueid, hotness)]
5130     case bitc::FS_PERMODULE:
5131     case bitc::FS_PERMODULE_PROFILE: {
5132       unsigned ValueID = Record[0];
5133       uint64_t RawFlags = Record[1];
5134       unsigned InstCount = Record[2];
5135       uint64_t RawFunFlags = 0;
5136       unsigned NumRefs = Record[3];
5137       int RefListStartIndex = 4;
5138       if (Version >= 4) {
5139         RawFunFlags = Record[3];
5140         NumRefs = Record[4];
5141         RefListStartIndex = 5;
5142       }
5143 
5144       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5145       // The module path string ref set in the summary must be owned by the
5146       // index's module string table. Since we don't have a module path
5147       // string table section in the per-module index, we create a single
5148       // module path string table entry with an empty (0) ID to take
5149       // ownership.
5150       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5151       assert(Record.size() >= RefListStartIndex + NumRefs &&
5152              "Record size inconsistent with number of references");
5153       std::vector<ValueInfo> Refs = makeRefList(
5154           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5155       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5156       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5157           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5158           IsOldProfileFormat, HasProfile);
5159       auto FS = llvm::make_unique<FunctionSummary>(
5160           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
5161           std::move(Calls), std::move(PendingTypeTests),
5162           std::move(PendingTypeTestAssumeVCalls),
5163           std::move(PendingTypeCheckedLoadVCalls),
5164           std::move(PendingTypeTestAssumeConstVCalls),
5165           std::move(PendingTypeCheckedLoadConstVCalls));
5166       PendingTypeTests.clear();
5167       PendingTypeTestAssumeVCalls.clear();
5168       PendingTypeCheckedLoadVCalls.clear();
5169       PendingTypeTestAssumeConstVCalls.clear();
5170       PendingTypeCheckedLoadConstVCalls.clear();
5171       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5172       FS->setModulePath(addThisModule()->first());
5173       FS->setOriginalName(VIAndOriginalGUID.second);
5174       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5175       break;
5176     }
5177     // FS_ALIAS: [valueid, flags, valueid]
5178     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5179     // they expect all aliasee summaries to be available.
5180     case bitc::FS_ALIAS: {
5181       unsigned ValueID = Record[0];
5182       uint64_t RawFlags = Record[1];
5183       unsigned AliaseeID = Record[2];
5184       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5185       auto AS = llvm::make_unique<AliasSummary>(Flags);
5186       // The module path string ref set in the summary must be owned by the
5187       // index's module string table. Since we don't have a module path
5188       // string table section in the per-module index, we create a single
5189       // module path string table entry with an empty (0) ID to take
5190       // ownership.
5191       AS->setModulePath(addThisModule()->first());
5192 
5193       GlobalValue::GUID AliaseeGUID =
5194           getValueInfoFromValueId(AliaseeID).first.getGUID();
5195       auto AliaseeInModule =
5196           TheIndex.findSummaryInModule(AliaseeGUID, ModulePath);
5197       if (!AliaseeInModule)
5198         return error("Alias expects aliasee summary to be parsed");
5199       AS->setAliasee(AliaseeInModule);
5200 
5201       auto GUID = getValueInfoFromValueId(ValueID);
5202       AS->setOriginalName(GUID.second);
5203       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5204       break;
5205     }
5206     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
5207     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5208       unsigned ValueID = Record[0];
5209       uint64_t RawFlags = Record[1];
5210       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5211       std::vector<ValueInfo> Refs =
5212           makeRefList(ArrayRef<uint64_t>(Record).slice(2));
5213       auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5214       FS->setModulePath(addThisModule()->first());
5215       auto GUID = getValueInfoFromValueId(ValueID);
5216       FS->setOriginalName(GUID.second);
5217       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5218       break;
5219     }
5220     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5221     //               numrefs x valueid, n x (valueid)]
5222     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5223     //                       numrefs x valueid, n x (valueid, hotness)]
5224     case bitc::FS_COMBINED:
5225     case bitc::FS_COMBINED_PROFILE: {
5226       unsigned ValueID = Record[0];
5227       uint64_t ModuleId = Record[1];
5228       uint64_t RawFlags = Record[2];
5229       unsigned InstCount = Record[3];
5230       uint64_t RawFunFlags = 0;
5231       unsigned NumRefs = Record[4];
5232       int RefListStartIndex = 5;
5233 
5234       if (Version >= 4) {
5235         RawFunFlags = Record[4];
5236         NumRefs = Record[5];
5237         RefListStartIndex = 6;
5238       }
5239 
5240       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5241       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5242       assert(Record.size() >= RefListStartIndex + NumRefs &&
5243              "Record size inconsistent with number of references");
5244       std::vector<ValueInfo> Refs = makeRefList(
5245           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5246       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5247       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
5248           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5249           IsOldProfileFormat, HasProfile);
5250       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5251       auto FS = llvm::make_unique<FunctionSummary>(
5252           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
5253           std::move(Edges), std::move(PendingTypeTests),
5254           std::move(PendingTypeTestAssumeVCalls),
5255           std::move(PendingTypeCheckedLoadVCalls),
5256           std::move(PendingTypeTestAssumeConstVCalls),
5257           std::move(PendingTypeCheckedLoadConstVCalls));
5258       PendingTypeTests.clear();
5259       PendingTypeTestAssumeVCalls.clear();
5260       PendingTypeCheckedLoadVCalls.clear();
5261       PendingTypeTestAssumeConstVCalls.clear();
5262       PendingTypeCheckedLoadConstVCalls.clear();
5263       LastSeenSummary = FS.get();
5264       LastSeenGUID = VI.getGUID();
5265       FS->setModulePath(ModuleIdMap[ModuleId]);
5266       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5267       break;
5268     }
5269     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
5270     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
5271     // they expect all aliasee summaries to be available.
5272     case bitc::FS_COMBINED_ALIAS: {
5273       unsigned ValueID = Record[0];
5274       uint64_t ModuleId = Record[1];
5275       uint64_t RawFlags = Record[2];
5276       unsigned AliaseeValueId = Record[3];
5277       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5278       auto AS = llvm::make_unique<AliasSummary>(Flags);
5279       LastSeenSummary = AS.get();
5280       AS->setModulePath(ModuleIdMap[ModuleId]);
5281 
5282       auto AliaseeGUID =
5283           getValueInfoFromValueId(AliaseeValueId).first.getGUID();
5284       auto AliaseeInModule =
5285           TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath());
5286       if (!AliaseeInModule)
5287         return error("Alias expects aliasee summary to be parsed");
5288       AS->setAliasee(AliaseeInModule);
5289 
5290       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5291       LastSeenGUID = VI.getGUID();
5292       TheIndex.addGlobalValueSummary(VI, std::move(AS));
5293       break;
5294     }
5295     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
5296     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5297       unsigned ValueID = Record[0];
5298       uint64_t ModuleId = Record[1];
5299       uint64_t RawFlags = Record[2];
5300       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5301       std::vector<ValueInfo> Refs =
5302           makeRefList(ArrayRef<uint64_t>(Record).slice(3));
5303       auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5304       LastSeenSummary = FS.get();
5305       FS->setModulePath(ModuleIdMap[ModuleId]);
5306       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5307       LastSeenGUID = VI.getGUID();
5308       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5309       break;
5310     }
5311     // FS_COMBINED_ORIGINAL_NAME: [original_name]
5312     case bitc::FS_COMBINED_ORIGINAL_NAME: {
5313       uint64_t OriginalName = Record[0];
5314       if (!LastSeenSummary)
5315         return error("Name attachment that does not follow a combined record");
5316       LastSeenSummary->setOriginalName(OriginalName);
5317       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
5318       // Reset the LastSeenSummary
5319       LastSeenSummary = nullptr;
5320       LastSeenGUID = 0;
5321       break;
5322     }
5323     case bitc::FS_TYPE_TESTS:
5324       assert(PendingTypeTests.empty());
5325       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
5326                               Record.end());
5327       break;
5328 
5329     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
5330       assert(PendingTypeTestAssumeVCalls.empty());
5331       for (unsigned I = 0; I != Record.size(); I += 2)
5332         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
5333       break;
5334 
5335     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
5336       assert(PendingTypeCheckedLoadVCalls.empty());
5337       for (unsigned I = 0; I != Record.size(); I += 2)
5338         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
5339       break;
5340 
5341     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
5342       PendingTypeTestAssumeConstVCalls.push_back(
5343           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5344       break;
5345 
5346     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
5347       PendingTypeCheckedLoadConstVCalls.push_back(
5348           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5349       break;
5350 
5351     case bitc::FS_CFI_FUNCTION_DEFS: {
5352       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
5353       for (unsigned I = 0; I != Record.size(); I += 2)
5354         CfiFunctionDefs.insert(
5355             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5356       break;
5357     }
5358     case bitc::FS_CFI_FUNCTION_DECLS: {
5359       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
5360       for (unsigned I = 0; I != Record.size(); I += 2)
5361         CfiFunctionDecls.insert(
5362             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5363       break;
5364     }
5365     }
5366   }
5367   llvm_unreachable("Exit infinite loop");
5368 }
5369 
5370 // Parse the  module string table block into the Index.
5371 // This populates the ModulePathStringTable map in the index.
5372 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5373   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5374     return error("Invalid record");
5375 
5376   SmallVector<uint64_t, 64> Record;
5377 
5378   SmallString<128> ModulePath;
5379   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
5380 
5381   while (true) {
5382     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5383 
5384     switch (Entry.Kind) {
5385     case BitstreamEntry::SubBlock: // Handled for us already.
5386     case BitstreamEntry::Error:
5387       return error("Malformed block");
5388     case BitstreamEntry::EndBlock:
5389       return Error::success();
5390     case BitstreamEntry::Record:
5391       // The interesting case.
5392       break;
5393     }
5394 
5395     Record.clear();
5396     switch (Stream.readRecord(Entry.ID, Record)) {
5397     default: // Default behavior: ignore.
5398       break;
5399     case bitc::MST_CODE_ENTRY: {
5400       // MST_ENTRY: [modid, namechar x N]
5401       uint64_t ModuleId = Record[0];
5402 
5403       if (convertToString(Record, 1, ModulePath))
5404         return error("Invalid record");
5405 
5406       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
5407       ModuleIdMap[ModuleId] = LastSeenModule->first();
5408 
5409       ModulePath.clear();
5410       break;
5411     }
5412     /// MST_CODE_HASH: [5*i32]
5413     case bitc::MST_CODE_HASH: {
5414       if (Record.size() != 5)
5415         return error("Invalid hash length " + Twine(Record.size()).str());
5416       if (!LastSeenModule)
5417         return error("Invalid hash that does not follow a module path");
5418       int Pos = 0;
5419       for (auto &Val : Record) {
5420         assert(!(Val >> 32) && "Unexpected high bits set");
5421         LastSeenModule->second.second[Pos++] = Val;
5422       }
5423       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
5424       LastSeenModule = nullptr;
5425       break;
5426     }
5427     }
5428   }
5429   llvm_unreachable("Exit infinite loop");
5430 }
5431 
5432 namespace {
5433 
5434 // FIXME: This class is only here to support the transition to llvm::Error. It
5435 // will be removed once this transition is complete. Clients should prefer to
5436 // deal with the Error value directly, rather than converting to error_code.
5437 class BitcodeErrorCategoryType : public std::error_category {
5438   const char *name() const noexcept override {
5439     return "llvm.bitcode";
5440   }
5441 
5442   std::string message(int IE) const override {
5443     BitcodeError E = static_cast<BitcodeError>(IE);
5444     switch (E) {
5445     case BitcodeError::CorruptedBitcode:
5446       return "Corrupted bitcode";
5447     }
5448     llvm_unreachable("Unknown error type!");
5449   }
5450 };
5451 
5452 } // end anonymous namespace
5453 
5454 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
5455 
5456 const std::error_category &llvm::BitcodeErrorCategory() {
5457   return *ErrorCategory;
5458 }
5459 
5460 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
5461                                             unsigned Block, unsigned RecordID) {
5462   if (Stream.EnterSubBlock(Block))
5463     return error("Invalid record");
5464 
5465   StringRef Strtab;
5466   while (true) {
5467     BitstreamEntry Entry = Stream.advance();
5468     switch (Entry.Kind) {
5469     case BitstreamEntry::EndBlock:
5470       return Strtab;
5471 
5472     case BitstreamEntry::Error:
5473       return error("Malformed block");
5474 
5475     case BitstreamEntry::SubBlock:
5476       if (Stream.SkipBlock())
5477         return error("Malformed block");
5478       break;
5479 
5480     case BitstreamEntry::Record:
5481       StringRef Blob;
5482       SmallVector<uint64_t, 1> Record;
5483       if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID)
5484         Strtab = Blob;
5485       break;
5486     }
5487   }
5488 }
5489 
5490 //===----------------------------------------------------------------------===//
5491 // External interface
5492 //===----------------------------------------------------------------------===//
5493 
5494 Expected<std::vector<BitcodeModule>>
5495 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
5496   auto FOrErr = getBitcodeFileContents(Buffer);
5497   if (!FOrErr)
5498     return FOrErr.takeError();
5499   return std::move(FOrErr->Mods);
5500 }
5501 
5502 Expected<BitcodeFileContents>
5503 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
5504   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5505   if (!StreamOrErr)
5506     return StreamOrErr.takeError();
5507   BitstreamCursor &Stream = *StreamOrErr;
5508 
5509   BitcodeFileContents F;
5510   while (true) {
5511     uint64_t BCBegin = Stream.getCurrentByteNo();
5512 
5513     // We may be consuming bitcode from a client that leaves garbage at the end
5514     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
5515     // the end that there cannot possibly be another module, stop looking.
5516     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
5517       return F;
5518 
5519     BitstreamEntry Entry = Stream.advance();
5520     switch (Entry.Kind) {
5521     case BitstreamEntry::EndBlock:
5522     case BitstreamEntry::Error:
5523       return error("Malformed block");
5524 
5525     case BitstreamEntry::SubBlock: {
5526       uint64_t IdentificationBit = -1ull;
5527       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
5528         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5529         if (Stream.SkipBlock())
5530           return error("Malformed block");
5531 
5532         Entry = Stream.advance();
5533         if (Entry.Kind != BitstreamEntry::SubBlock ||
5534             Entry.ID != bitc::MODULE_BLOCK_ID)
5535           return error("Malformed block");
5536       }
5537 
5538       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
5539         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5540         if (Stream.SkipBlock())
5541           return error("Malformed block");
5542 
5543         F.Mods.push_back({Stream.getBitcodeBytes().slice(
5544                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
5545                           Buffer.getBufferIdentifier(), IdentificationBit,
5546                           ModuleBit});
5547         continue;
5548       }
5549 
5550       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
5551         Expected<StringRef> Strtab =
5552             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
5553         if (!Strtab)
5554           return Strtab.takeError();
5555         // This string table is used by every preceding bitcode module that does
5556         // not have its own string table. A bitcode file may have multiple
5557         // string tables if it was created by binary concatenation, for example
5558         // with "llvm-cat -b".
5559         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
5560           if (!I->Strtab.empty())
5561             break;
5562           I->Strtab = *Strtab;
5563         }
5564         // Similarly, the string table is used by every preceding symbol table;
5565         // normally there will be just one unless the bitcode file was created
5566         // by binary concatenation.
5567         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
5568           F.StrtabForSymtab = *Strtab;
5569         continue;
5570       }
5571 
5572       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
5573         Expected<StringRef> SymtabOrErr =
5574             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
5575         if (!SymtabOrErr)
5576           return SymtabOrErr.takeError();
5577 
5578         // We can expect the bitcode file to have multiple symbol tables if it
5579         // was created by binary concatenation. In that case we silently
5580         // ignore any subsequent symbol tables, which is fine because this is a
5581         // low level function. The client is expected to notice that the number
5582         // of modules in the symbol table does not match the number of modules
5583         // in the input file and regenerate the symbol table.
5584         if (F.Symtab.empty())
5585           F.Symtab = *SymtabOrErr;
5586         continue;
5587       }
5588 
5589       if (Stream.SkipBlock())
5590         return error("Malformed block");
5591       continue;
5592     }
5593     case BitstreamEntry::Record:
5594       Stream.skipRecord(Entry.ID);
5595       continue;
5596     }
5597   }
5598 }
5599 
5600 /// \brief Get a lazy one-at-time loading module from bitcode.
5601 ///
5602 /// This isn't always used in a lazy context.  In particular, it's also used by
5603 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
5604 /// in forward-referenced functions from block address references.
5605 ///
5606 /// \param[in] MaterializeAll Set to \c true if we should materialize
5607 /// everything.
5608 Expected<std::unique_ptr<Module>>
5609 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
5610                              bool ShouldLazyLoadMetadata, bool IsImporting) {
5611   BitstreamCursor Stream(Buffer);
5612 
5613   std::string ProducerIdentification;
5614   if (IdentificationBit != -1ull) {
5615     Stream.JumpToBit(IdentificationBit);
5616     Expected<std::string> ProducerIdentificationOrErr =
5617         readIdentificationBlock(Stream);
5618     if (!ProducerIdentificationOrErr)
5619       return ProducerIdentificationOrErr.takeError();
5620 
5621     ProducerIdentification = *ProducerIdentificationOrErr;
5622   }
5623 
5624   Stream.JumpToBit(ModuleBit);
5625   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
5626                               Context);
5627 
5628   std::unique_ptr<Module> M =
5629       llvm::make_unique<Module>(ModuleIdentifier, Context);
5630   M->setMaterializer(R);
5631 
5632   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
5633   if (Error Err =
5634           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
5635     return std::move(Err);
5636 
5637   if (MaterializeAll) {
5638     // Read in the entire module, and destroy the BitcodeReader.
5639     if (Error Err = M->materializeAll())
5640       return std::move(Err);
5641   } else {
5642     // Resolve forward references from blockaddresses.
5643     if (Error Err = R->materializeForwardReferencedFunctions())
5644       return std::move(Err);
5645   }
5646   return std::move(M);
5647 }
5648 
5649 Expected<std::unique_ptr<Module>>
5650 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
5651                              bool IsImporting) {
5652   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
5653 }
5654 
5655 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
5656 // We don't use ModuleIdentifier here because the client may need to control the
5657 // module path used in the combined summary (e.g. when reading summaries for
5658 // regular LTO modules).
5659 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
5660                                  StringRef ModulePath, uint64_t ModuleId) {
5661   BitstreamCursor Stream(Buffer);
5662   Stream.JumpToBit(ModuleBit);
5663 
5664   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
5665                                     ModulePath, ModuleId);
5666   return R.parseModule();
5667 }
5668 
5669 // Parse the specified bitcode buffer, returning the function info index.
5670 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
5671   BitstreamCursor Stream(Buffer);
5672   Stream.JumpToBit(ModuleBit);
5673 
5674   auto Index = llvm::make_unique<ModuleSummaryIndex>();
5675   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
5676                                     ModuleIdentifier, 0);
5677 
5678   if (Error Err = R.parseModule())
5679     return std::move(Err);
5680 
5681   return std::move(Index);
5682 }
5683 
5684 // Check if the given bitcode buffer contains a global value summary block.
5685 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
5686   BitstreamCursor Stream(Buffer);
5687   Stream.JumpToBit(ModuleBit);
5688 
5689   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5690     return error("Invalid record");
5691 
5692   while (true) {
5693     BitstreamEntry Entry = Stream.advance();
5694 
5695     switch (Entry.Kind) {
5696     case BitstreamEntry::Error:
5697       return error("Malformed block");
5698     case BitstreamEntry::EndBlock:
5699       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false};
5700 
5701     case BitstreamEntry::SubBlock:
5702       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID)
5703         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true};
5704 
5705       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID)
5706         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true};
5707 
5708       // Ignore other sub-blocks.
5709       if (Stream.SkipBlock())
5710         return error("Malformed block");
5711       continue;
5712 
5713     case BitstreamEntry::Record:
5714       Stream.skipRecord(Entry.ID);
5715       continue;
5716     }
5717   }
5718 }
5719 
5720 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
5721   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
5722   if (!MsOrErr)
5723     return MsOrErr.takeError();
5724 
5725   if (MsOrErr->size() != 1)
5726     return error("Expected a single module");
5727 
5728   return (*MsOrErr)[0];
5729 }
5730 
5731 Expected<std::unique_ptr<Module>>
5732 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
5733                            bool ShouldLazyLoadMetadata, bool IsImporting) {
5734   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5735   if (!BM)
5736     return BM.takeError();
5737 
5738   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
5739 }
5740 
5741 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
5742     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
5743     bool ShouldLazyLoadMetadata, bool IsImporting) {
5744   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
5745                                      IsImporting);
5746   if (MOrErr)
5747     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
5748   return MOrErr;
5749 }
5750 
5751 Expected<std::unique_ptr<Module>>
5752 BitcodeModule::parseModule(LLVMContext &Context) {
5753   return getModuleImpl(Context, true, false, false);
5754   // TODO: Restore the use-lists to the in-memory state when the bitcode was
5755   // written.  We must defer until the Module has been fully materialized.
5756 }
5757 
5758 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
5759                                                          LLVMContext &Context) {
5760   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5761   if (!BM)
5762     return BM.takeError();
5763 
5764   return BM->parseModule(Context);
5765 }
5766 
5767 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
5768   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5769   if (!StreamOrErr)
5770     return StreamOrErr.takeError();
5771 
5772   return readTriple(*StreamOrErr);
5773 }
5774 
5775 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
5776   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5777   if (!StreamOrErr)
5778     return StreamOrErr.takeError();
5779 
5780   return hasObjCCategory(*StreamOrErr);
5781 }
5782 
5783 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
5784   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5785   if (!StreamOrErr)
5786     return StreamOrErr.takeError();
5787 
5788   return readIdentificationCode(*StreamOrErr);
5789 }
5790 
5791 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
5792                                    ModuleSummaryIndex &CombinedIndex,
5793                                    uint64_t ModuleId) {
5794   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5795   if (!BM)
5796     return BM.takeError();
5797 
5798   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
5799 }
5800 
5801 Expected<std::unique_ptr<ModuleSummaryIndex>>
5802 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
5803   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5804   if (!BM)
5805     return BM.takeError();
5806 
5807   return BM->getSummary();
5808 }
5809 
5810 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
5811   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5812   if (!BM)
5813     return BM.takeError();
5814 
5815   return BM->getLTOInfo();
5816 }
5817 
5818 Expected<std::unique_ptr<ModuleSummaryIndex>>
5819 llvm::getModuleSummaryIndexForFile(StringRef Path,
5820                                    bool IgnoreEmptyThinLTOIndexFile) {
5821   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
5822       MemoryBuffer::getFileOrSTDIN(Path);
5823   if (!FileOrErr)
5824     return errorCodeToError(FileOrErr.getError());
5825   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
5826     return nullptr;
5827   return getModuleSummaryIndex(**FileOrErr);
5828 }
5829