1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalIndirectSymbol.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/Verifier.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/ManagedStatic.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <deque> 78 #include <map> 79 #include <memory> 80 #include <set> 81 #include <string> 82 #include <system_error> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 static cl::opt<bool> PrintSummaryGUIDs( 90 "print-summary-global-ids", cl::init(false), cl::Hidden, 91 cl::desc( 92 "Print the global id for each value when reading the module summary")); 93 94 namespace { 95 96 enum { 97 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 98 }; 99 100 } // end anonymous namespace 101 102 static Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 108 if (!Stream.canSkipToPos(4)) 109 return createStringError(std::errc::illegal_byte_sequence, 110 "file too small to contain bitcode header"); 111 for (unsigned C : {'B', 'C'}) 112 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 113 if (Res.get() != C) 114 return createStringError(std::errc::illegal_byte_sequence, 115 "file doesn't start with bitcode header"); 116 } else 117 return Res.takeError(); 118 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 119 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 120 if (Res.get() != C) 121 return createStringError(std::errc::illegal_byte_sequence, 122 "file doesn't start with bitcode header"); 123 } else 124 return Res.takeError(); 125 return Error::success(); 126 } 127 128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 129 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 130 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 131 132 if (Buffer.getBufferSize() & 3) 133 return error("Invalid bitcode signature"); 134 135 // If we have a wrapper header, parse it and ignore the non-bc file contents. 136 // The magic number is 0x0B17C0DE stored in little endian. 137 if (isBitcodeWrapper(BufPtr, BufEnd)) 138 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 139 return error("Invalid bitcode wrapper header"); 140 141 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 142 if (Error Err = hasInvalidBitcodeHeader(Stream)) 143 return std::move(Err); 144 145 return std::move(Stream); 146 } 147 148 /// Convert a string from a record into an std::string, return true on failure. 149 template <typename StrTy> 150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 156 Result += (char)Record[i]; 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 static void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return std::move(Err); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry; 183 if (Expected<BitstreamEntry> Res = Stream.advance()) 184 Entry = Res.get(); 185 else 186 return Res.takeError(); 187 188 switch (Entry.Kind) { 189 default: 190 case BitstreamEntry::Error: 191 return error("Malformed block"); 192 case BitstreamEntry::EndBlock: 193 return ProducerIdentification; 194 case BitstreamEntry::Record: 195 // The interesting case. 196 break; 197 } 198 199 // Read a record. 200 Record.clear(); 201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 202 if (!MaybeBitCode) 203 return MaybeBitCode.takeError(); 204 switch (MaybeBitCode.get()) { 205 default: // Default behavior: reject 206 return error("Invalid value"); 207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 208 convertToString(Record, 0, ProducerIdentification); 209 break; 210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 211 unsigned epoch = (unsigned)Record[0]; 212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 213 return error( 214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 216 } 217 } 218 } 219 } 220 } 221 222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 223 // We expect a number of well-defined blocks, though we don't necessarily 224 // need to understand them all. 225 while (true) { 226 if (Stream.AtEndOfStream()) 227 return ""; 228 229 BitstreamEntry Entry; 230 if (Expected<BitstreamEntry> Res = Stream.advance()) 231 Entry = std::move(Res.get()); 232 else 233 return Res.takeError(); 234 235 switch (Entry.Kind) { 236 case BitstreamEntry::EndBlock: 237 case BitstreamEntry::Error: 238 return error("Malformed block"); 239 240 case BitstreamEntry::SubBlock: 241 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 242 return readIdentificationBlock(Stream); 243 244 // Ignore other sub-blocks. 245 if (Error Err = Stream.SkipBlock()) 246 return std::move(Err); 247 continue; 248 case BitstreamEntry::Record: 249 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 250 continue; 251 else 252 return Skipped.takeError(); 253 } 254 } 255 } 256 257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 259 return std::move(Err); 260 261 SmallVector<uint64_t, 64> Record; 262 // Read all the records for this module. 263 264 while (true) { 265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 266 if (!MaybeEntry) 267 return MaybeEntry.takeError(); 268 BitstreamEntry Entry = MaybeEntry.get(); 269 270 switch (Entry.Kind) { 271 case BitstreamEntry::SubBlock: // Handled for us already. 272 case BitstreamEntry::Error: 273 return error("Malformed block"); 274 case BitstreamEntry::EndBlock: 275 return false; 276 case BitstreamEntry::Record: 277 // The interesting case. 278 break; 279 } 280 281 // Read a record. 282 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 283 if (!MaybeRecord) 284 return MaybeRecord.takeError(); 285 switch (MaybeRecord.get()) { 286 default: 287 break; // Default behavior, ignore unknown content. 288 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 289 std::string S; 290 if (convertToString(Record, 0, S)) 291 return error("Invalid record"); 292 // Check for the i386 and other (x86_64, ARM) conventions 293 if (S.find("__DATA,__objc_catlist") != std::string::npos || 294 S.find("__OBJC,__category") != std::string::npos) 295 return true; 296 break; 297 } 298 } 299 Record.clear(); 300 } 301 llvm_unreachable("Exit infinite loop"); 302 } 303 304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 305 // We expect a number of well-defined blocks, though we don't necessarily 306 // need to understand them all. 307 while (true) { 308 BitstreamEntry Entry; 309 if (Expected<BitstreamEntry> Res = Stream.advance()) 310 Entry = std::move(Res.get()); 311 else 312 return Res.takeError(); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 331 continue; 332 else 333 return Skipped.takeError(); 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 bool readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 483 LLVMContext &Context; 484 Module *TheModule = nullptr; 485 // Next offset to start scanning for lazy parsing of function bodies. 486 uint64_t NextUnreadBit = 0; 487 // Last function offset found in the VST. 488 uint64_t LastFunctionBlockBit = 0; 489 bool SeenValueSymbolTable = false; 490 uint64_t VSTOffset = 0; 491 492 std::vector<std::string> SectionTable; 493 std::vector<std::string> GCTable; 494 495 std::vector<Type*> TypeList; 496 DenseMap<Function *, FunctionType *> FunctionTypes; 497 BitcodeReaderValueList ValueList; 498 Optional<MetadataLoader> MDLoader; 499 std::vector<Comdat *> ComdatList; 500 SmallVector<Instruction *, 64> InstructionList; 501 502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 504 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 506 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 507 508 /// The set of attributes by index. Index zero in the file is for null, and 509 /// is thus not represented here. As such all indices are off by one. 510 std::vector<AttributeList> MAttributes; 511 512 /// The set of attribute groups. 513 std::map<unsigned, AttributeList> MAttributeGroups; 514 515 /// While parsing a function body, this is a list of the basic blocks for the 516 /// function. 517 std::vector<BasicBlock*> FunctionBBs; 518 519 // When reading the module header, this list is populated with functions that 520 // have bodies later in the file. 521 std::vector<Function*> FunctionsWithBodies; 522 523 // When intrinsic functions are encountered which require upgrading they are 524 // stored here with their replacement function. 525 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 526 UpdatedIntrinsicMap UpgradedIntrinsics; 527 // Intrinsics which were remangled because of types rename 528 UpdatedIntrinsicMap RemangledIntrinsics; 529 530 // Several operations happen after the module header has been read, but 531 // before function bodies are processed. This keeps track of whether 532 // we've done this yet. 533 bool SeenFirstFunctionBody = false; 534 535 /// When function bodies are initially scanned, this map contains info about 536 /// where to find deferred function body in the stream. 537 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 538 539 /// When Metadata block is initially scanned when parsing the module, we may 540 /// choose to defer parsing of the metadata. This vector contains info about 541 /// which Metadata blocks are deferred. 542 std::vector<uint64_t> DeferredMetadataInfo; 543 544 /// These are basic blocks forward-referenced by block addresses. They are 545 /// inserted lazily into functions when they're loaded. The basic block ID is 546 /// its index into the vector. 547 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 548 std::deque<Function *> BasicBlockFwdRefQueue; 549 550 /// Indicates that we are using a new encoding for instruction operands where 551 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 552 /// instruction number, for a more compact encoding. Some instruction 553 /// operands are not relative to the instruction ID: basic block numbers, and 554 /// types. Once the old style function blocks have been phased out, we would 555 /// not need this flag. 556 bool UseRelativeIDs = false; 557 558 /// True if all functions will be materialized, negating the need to process 559 /// (e.g.) blockaddress forward references. 560 bool WillMaterializeAllForwardRefs = false; 561 562 bool StripDebugInfo = false; 563 TBAAVerifier TBAAVerifyHelper; 564 565 std::vector<std::string> BundleTags; 566 SmallVector<SyncScope::ID, 8> SSIDs; 567 568 public: 569 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 570 StringRef ProducerIdentification, LLVMContext &Context); 571 572 Error materializeForwardReferencedFunctions(); 573 574 Error materialize(GlobalValue *GV) override; 575 Error materializeModule() override; 576 std::vector<StructType *> getIdentifiedStructTypes() const override; 577 578 /// Main interface to parsing a bitcode buffer. 579 /// \returns true if an error occurred. 580 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 581 bool IsImporting = false); 582 583 static uint64_t decodeSignRotatedValue(uint64_t V); 584 585 /// Materialize any deferred Metadata block. 586 Error materializeMetadata() override; 587 588 void setStripDebugInfo() override; 589 590 private: 591 std::vector<StructType *> IdentifiedStructTypes; 592 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 593 StructType *createIdentifiedStructType(LLVMContext &Context); 594 595 /// Map all pointer types within \param Ty to the opaque pointer 596 /// type in the same address space if opaque pointers are being 597 /// used, otherwise nop. This converts a bitcode-reader internal 598 /// type into one suitable for use in a Value. 599 Type *flattenPointerTypes(Type *Ty) { 600 return Ty; 601 } 602 603 /// Given a fully structured pointer type (i.e. not opaque), return 604 /// the flattened form of its element, suitable for use in a Value. 605 Type *getPointerElementFlatType(Type *Ty) { 606 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 607 } 608 609 /// Given a fully structured pointer type, get its element type in 610 /// both fully structured form, and flattened form suitable for use 611 /// in a Value. 612 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 613 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 614 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 615 } 616 617 /// Return the flattened type (suitable for use in a Value) 618 /// specified by the given \param ID . 619 Type *getTypeByID(unsigned ID) { 620 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 621 } 622 623 /// Return the fully structured (bitcode-reader internal) type 624 /// corresponding to the given \param ID . 625 Type *getFullyStructuredTypeByID(unsigned ID); 626 627 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 628 if (Ty && Ty->isMetadataTy()) 629 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 630 return ValueList.getValueFwdRef(ID, Ty, FullTy); 631 } 632 633 Metadata *getFnMetadataByID(unsigned ID) { 634 return MDLoader->getMetadataFwdRefOrLoad(ID); 635 } 636 637 BasicBlock *getBasicBlock(unsigned ID) const { 638 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 639 return FunctionBBs[ID]; 640 } 641 642 AttributeList getAttributes(unsigned i) const { 643 if (i-1 < MAttributes.size()) 644 return MAttributes[i-1]; 645 return AttributeList(); 646 } 647 648 /// Read a value/type pair out of the specified record from slot 'Slot'. 649 /// Increment Slot past the number of slots used in the record. Return true on 650 /// failure. 651 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 652 unsigned InstNum, Value *&ResVal, 653 Type **FullTy = nullptr) { 654 if (Slot == Record.size()) return true; 655 unsigned ValNo = (unsigned)Record[Slot++]; 656 // Adjust the ValNo, if it was encoded relative to the InstNum. 657 if (UseRelativeIDs) 658 ValNo = InstNum - ValNo; 659 if (ValNo < InstNum) { 660 // If this is not a forward reference, just return the value we already 661 // have. 662 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 663 return ResVal == nullptr; 664 } 665 if (Slot == Record.size()) 666 return true; 667 668 unsigned TypeNo = (unsigned)Record[Slot++]; 669 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 670 if (FullTy) 671 *FullTy = getFullyStructuredTypeByID(TypeNo); 672 return ResVal == nullptr; 673 } 674 675 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 676 /// past the number of slots used by the value in the record. Return true if 677 /// there is an error. 678 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 679 unsigned InstNum, Type *Ty, Value *&ResVal) { 680 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 681 return true; 682 // All values currently take a single record slot. 683 ++Slot; 684 return false; 685 } 686 687 /// Like popValue, but does not increment the Slot number. 688 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 689 unsigned InstNum, Type *Ty, Value *&ResVal) { 690 ResVal = getValue(Record, Slot, InstNum, Ty); 691 return ResVal == nullptr; 692 } 693 694 /// Version of getValue that returns ResVal directly, or 0 if there is an 695 /// error. 696 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 697 unsigned InstNum, Type *Ty) { 698 if (Slot == Record.size()) return nullptr; 699 unsigned ValNo = (unsigned)Record[Slot]; 700 // Adjust the ValNo, if it was encoded relative to the InstNum. 701 if (UseRelativeIDs) 702 ValNo = InstNum - ValNo; 703 return getFnValueByID(ValNo, Ty); 704 } 705 706 /// Like getValue, but decodes signed VBRs. 707 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 708 unsigned InstNum, Type *Ty) { 709 if (Slot == Record.size()) return nullptr; 710 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 711 // Adjust the ValNo, if it was encoded relative to the InstNum. 712 if (UseRelativeIDs) 713 ValNo = InstNum - ValNo; 714 return getFnValueByID(ValNo, Ty); 715 } 716 717 /// Upgrades old-style typeless byval attributes by adding the corresponding 718 /// argument's pointee type. 719 void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 720 721 /// Converts alignment exponent (i.e. power of two (or zero)) to the 722 /// corresponding alignment to use. If alignment is too large, returns 723 /// a corresponding error code. 724 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 725 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 726 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 727 728 Error parseComdatRecord(ArrayRef<uint64_t> Record); 729 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 730 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 731 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 732 ArrayRef<uint64_t> Record); 733 734 Error parseAttributeBlock(); 735 Error parseAttributeGroupBlock(); 736 Error parseTypeTable(); 737 Error parseTypeTableBody(); 738 Error parseOperandBundleTags(); 739 Error parseSyncScopeNames(); 740 741 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 742 unsigned NameIndex, Triple &TT); 743 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 744 ArrayRef<uint64_t> Record); 745 Error parseValueSymbolTable(uint64_t Offset = 0); 746 Error parseGlobalValueSymbolTable(); 747 Error parseConstants(); 748 Error rememberAndSkipFunctionBodies(); 749 Error rememberAndSkipFunctionBody(); 750 /// Save the positions of the Metadata blocks and skip parsing the blocks. 751 Error rememberAndSkipMetadata(); 752 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 753 Error parseFunctionBody(Function *F); 754 Error globalCleanup(); 755 Error resolveGlobalAndIndirectSymbolInits(); 756 Error parseUseLists(); 757 Error findFunctionInStream( 758 Function *F, 759 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 760 761 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 762 }; 763 764 /// Class to manage reading and parsing function summary index bitcode 765 /// files/sections. 766 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 767 /// The module index built during parsing. 768 ModuleSummaryIndex &TheIndex; 769 770 /// Indicates whether we have encountered a global value summary section 771 /// yet during parsing. 772 bool SeenGlobalValSummary = false; 773 774 /// Indicates whether we have already parsed the VST, used for error checking. 775 bool SeenValueSymbolTable = false; 776 777 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 778 /// Used to enable on-demand parsing of the VST. 779 uint64_t VSTOffset = 0; 780 781 // Map to save ValueId to ValueInfo association that was recorded in the 782 // ValueSymbolTable. It is used after the VST is parsed to convert 783 // call graph edges read from the function summary from referencing 784 // callees by their ValueId to using the ValueInfo instead, which is how 785 // they are recorded in the summary index being built. 786 // We save a GUID which refers to the same global as the ValueInfo, but 787 // ignoring the linkage, i.e. for values other than local linkage they are 788 // identical. 789 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 790 ValueIdToValueInfoMap; 791 792 /// Map populated during module path string table parsing, from the 793 /// module ID to a string reference owned by the index's module 794 /// path string table, used to correlate with combined index 795 /// summary records. 796 DenseMap<uint64_t, StringRef> ModuleIdMap; 797 798 /// Original source file name recorded in a bitcode record. 799 std::string SourceFileName; 800 801 /// The string identifier given to this module by the client, normally the 802 /// path to the bitcode file. 803 StringRef ModulePath; 804 805 /// For per-module summary indexes, the unique numerical identifier given to 806 /// this module by the client. 807 unsigned ModuleId; 808 809 public: 810 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 811 ModuleSummaryIndex &TheIndex, 812 StringRef ModulePath, unsigned ModuleId); 813 814 Error parseModule(); 815 816 private: 817 void setValueGUID(uint64_t ValueID, StringRef ValueName, 818 GlobalValue::LinkageTypes Linkage, 819 StringRef SourceFileName); 820 Error parseValueSymbolTable( 821 uint64_t Offset, 822 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 823 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 824 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 825 bool IsOldProfileFormat, 826 bool HasProfile, 827 bool HasRelBF); 828 Error parseEntireSummary(unsigned ID); 829 Error parseModuleStringTable(); 830 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 831 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 832 TypeIdCompatibleVtableInfo &TypeId); 833 834 std::pair<ValueInfo, GlobalValue::GUID> 835 getValueInfoFromValueId(unsigned ValueId); 836 837 void addThisModule(); 838 ModuleSummaryIndex::ModuleInfo *getThisModule(); 839 }; 840 841 } // end anonymous namespace 842 843 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 844 Error Err) { 845 if (Err) { 846 std::error_code EC; 847 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 848 EC = EIB.convertToErrorCode(); 849 Ctx.emitError(EIB.message()); 850 }); 851 return EC; 852 } 853 return std::error_code(); 854 } 855 856 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 857 StringRef ProducerIdentification, 858 LLVMContext &Context) 859 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 860 ValueList(Context, Stream.SizeInBytes()) { 861 this->ProducerIdentification = std::string(ProducerIdentification); 862 } 863 864 Error BitcodeReader::materializeForwardReferencedFunctions() { 865 if (WillMaterializeAllForwardRefs) 866 return Error::success(); 867 868 // Prevent recursion. 869 WillMaterializeAllForwardRefs = true; 870 871 while (!BasicBlockFwdRefQueue.empty()) { 872 Function *F = BasicBlockFwdRefQueue.front(); 873 BasicBlockFwdRefQueue.pop_front(); 874 assert(F && "Expected valid function"); 875 if (!BasicBlockFwdRefs.count(F)) 876 // Already materialized. 877 continue; 878 879 // Check for a function that isn't materializable to prevent an infinite 880 // loop. When parsing a blockaddress stored in a global variable, there 881 // isn't a trivial way to check if a function will have a body without a 882 // linear search through FunctionsWithBodies, so just check it here. 883 if (!F->isMaterializable()) 884 return error("Never resolved function from blockaddress"); 885 886 // Try to materialize F. 887 if (Error Err = materialize(F)) 888 return Err; 889 } 890 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 891 892 // Reset state. 893 WillMaterializeAllForwardRefs = false; 894 return Error::success(); 895 } 896 897 //===----------------------------------------------------------------------===// 898 // Helper functions to implement forward reference resolution, etc. 899 //===----------------------------------------------------------------------===// 900 901 static bool hasImplicitComdat(size_t Val) { 902 switch (Val) { 903 default: 904 return false; 905 case 1: // Old WeakAnyLinkage 906 case 4: // Old LinkOnceAnyLinkage 907 case 10: // Old WeakODRLinkage 908 case 11: // Old LinkOnceODRLinkage 909 return true; 910 } 911 } 912 913 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 914 switch (Val) { 915 default: // Map unknown/new linkages to external 916 case 0: 917 return GlobalValue::ExternalLinkage; 918 case 2: 919 return GlobalValue::AppendingLinkage; 920 case 3: 921 return GlobalValue::InternalLinkage; 922 case 5: 923 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 924 case 6: 925 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 926 case 7: 927 return GlobalValue::ExternalWeakLinkage; 928 case 8: 929 return GlobalValue::CommonLinkage; 930 case 9: 931 return GlobalValue::PrivateLinkage; 932 case 12: 933 return GlobalValue::AvailableExternallyLinkage; 934 case 13: 935 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 936 case 14: 937 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 938 case 15: 939 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 940 case 1: // Old value with implicit comdat. 941 case 16: 942 return GlobalValue::WeakAnyLinkage; 943 case 10: // Old value with implicit comdat. 944 case 17: 945 return GlobalValue::WeakODRLinkage; 946 case 4: // Old value with implicit comdat. 947 case 18: 948 return GlobalValue::LinkOnceAnyLinkage; 949 case 11: // Old value with implicit comdat. 950 case 19: 951 return GlobalValue::LinkOnceODRLinkage; 952 } 953 } 954 955 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 956 FunctionSummary::FFlags Flags; 957 Flags.ReadNone = RawFlags & 0x1; 958 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 959 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 960 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 961 Flags.NoInline = (RawFlags >> 4) & 0x1; 962 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 963 return Flags; 964 } 965 966 /// Decode the flags for GlobalValue in the summary. 967 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 968 uint64_t Version) { 969 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 970 // like getDecodedLinkage() above. Any future change to the linkage enum and 971 // to getDecodedLinkage() will need to be taken into account here as above. 972 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 973 RawFlags = RawFlags >> 4; 974 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 975 // The Live flag wasn't introduced until version 3. For dead stripping 976 // to work correctly on earlier versions, we must conservatively treat all 977 // values as live. 978 bool Live = (RawFlags & 0x2) || Version < 3; 979 bool Local = (RawFlags & 0x4); 980 bool AutoHide = (RawFlags & 0x8); 981 982 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 983 } 984 985 // Decode the flags for GlobalVariable in the summary 986 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 987 return GlobalVarSummary::GVarFlags( 988 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 989 (RawFlags & 0x4) ? true : false, 990 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 991 } 992 993 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 994 switch (Val) { 995 default: // Map unknown visibilities to default. 996 case 0: return GlobalValue::DefaultVisibility; 997 case 1: return GlobalValue::HiddenVisibility; 998 case 2: return GlobalValue::ProtectedVisibility; 999 } 1000 } 1001 1002 static GlobalValue::DLLStorageClassTypes 1003 getDecodedDLLStorageClass(unsigned Val) { 1004 switch (Val) { 1005 default: // Map unknown values to default. 1006 case 0: return GlobalValue::DefaultStorageClass; 1007 case 1: return GlobalValue::DLLImportStorageClass; 1008 case 2: return GlobalValue::DLLExportStorageClass; 1009 } 1010 } 1011 1012 static bool getDecodedDSOLocal(unsigned Val) { 1013 switch(Val) { 1014 default: // Map unknown values to preemptable. 1015 case 0: return false; 1016 case 1: return true; 1017 } 1018 } 1019 1020 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1021 switch (Val) { 1022 case 0: return GlobalVariable::NotThreadLocal; 1023 default: // Map unknown non-zero value to general dynamic. 1024 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1025 case 2: return GlobalVariable::LocalDynamicTLSModel; 1026 case 3: return GlobalVariable::InitialExecTLSModel; 1027 case 4: return GlobalVariable::LocalExecTLSModel; 1028 } 1029 } 1030 1031 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1032 switch (Val) { 1033 default: // Map unknown to UnnamedAddr::None. 1034 case 0: return GlobalVariable::UnnamedAddr::None; 1035 case 1: return GlobalVariable::UnnamedAddr::Global; 1036 case 2: return GlobalVariable::UnnamedAddr::Local; 1037 } 1038 } 1039 1040 static int getDecodedCastOpcode(unsigned Val) { 1041 switch (Val) { 1042 default: return -1; 1043 case bitc::CAST_TRUNC : return Instruction::Trunc; 1044 case bitc::CAST_ZEXT : return Instruction::ZExt; 1045 case bitc::CAST_SEXT : return Instruction::SExt; 1046 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1047 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1048 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1049 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1050 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1051 case bitc::CAST_FPEXT : return Instruction::FPExt; 1052 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1053 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1054 case bitc::CAST_BITCAST : return Instruction::BitCast; 1055 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1056 } 1057 } 1058 1059 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1060 bool IsFP = Ty->isFPOrFPVectorTy(); 1061 // UnOps are only valid for int/fp or vector of int/fp types 1062 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1063 return -1; 1064 1065 switch (Val) { 1066 default: 1067 return -1; 1068 case bitc::UNOP_FNEG: 1069 return IsFP ? Instruction::FNeg : -1; 1070 } 1071 } 1072 1073 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1074 bool IsFP = Ty->isFPOrFPVectorTy(); 1075 // BinOps are only valid for int/fp or vector of int/fp types 1076 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1077 return -1; 1078 1079 switch (Val) { 1080 default: 1081 return -1; 1082 case bitc::BINOP_ADD: 1083 return IsFP ? Instruction::FAdd : Instruction::Add; 1084 case bitc::BINOP_SUB: 1085 return IsFP ? Instruction::FSub : Instruction::Sub; 1086 case bitc::BINOP_MUL: 1087 return IsFP ? Instruction::FMul : Instruction::Mul; 1088 case bitc::BINOP_UDIV: 1089 return IsFP ? -1 : Instruction::UDiv; 1090 case bitc::BINOP_SDIV: 1091 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1092 case bitc::BINOP_UREM: 1093 return IsFP ? -1 : Instruction::URem; 1094 case bitc::BINOP_SREM: 1095 return IsFP ? Instruction::FRem : Instruction::SRem; 1096 case bitc::BINOP_SHL: 1097 return IsFP ? -1 : Instruction::Shl; 1098 case bitc::BINOP_LSHR: 1099 return IsFP ? -1 : Instruction::LShr; 1100 case bitc::BINOP_ASHR: 1101 return IsFP ? -1 : Instruction::AShr; 1102 case bitc::BINOP_AND: 1103 return IsFP ? -1 : Instruction::And; 1104 case bitc::BINOP_OR: 1105 return IsFP ? -1 : Instruction::Or; 1106 case bitc::BINOP_XOR: 1107 return IsFP ? -1 : Instruction::Xor; 1108 } 1109 } 1110 1111 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1112 switch (Val) { 1113 default: return AtomicRMWInst::BAD_BINOP; 1114 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1115 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1116 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1117 case bitc::RMW_AND: return AtomicRMWInst::And; 1118 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1119 case bitc::RMW_OR: return AtomicRMWInst::Or; 1120 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1121 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1122 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1123 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1124 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1125 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1126 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1127 } 1128 } 1129 1130 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1131 switch (Val) { 1132 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1133 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1134 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1135 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1136 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1137 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1138 default: // Map unknown orderings to sequentially-consistent. 1139 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1140 } 1141 } 1142 1143 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1144 switch (Val) { 1145 default: // Map unknown selection kinds to any. 1146 case bitc::COMDAT_SELECTION_KIND_ANY: 1147 return Comdat::Any; 1148 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1149 return Comdat::ExactMatch; 1150 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1151 return Comdat::Largest; 1152 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1153 return Comdat::NoDuplicates; 1154 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1155 return Comdat::SameSize; 1156 } 1157 } 1158 1159 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1160 FastMathFlags FMF; 1161 if (0 != (Val & bitc::UnsafeAlgebra)) 1162 FMF.setFast(); 1163 if (0 != (Val & bitc::AllowReassoc)) 1164 FMF.setAllowReassoc(); 1165 if (0 != (Val & bitc::NoNaNs)) 1166 FMF.setNoNaNs(); 1167 if (0 != (Val & bitc::NoInfs)) 1168 FMF.setNoInfs(); 1169 if (0 != (Val & bitc::NoSignedZeros)) 1170 FMF.setNoSignedZeros(); 1171 if (0 != (Val & bitc::AllowReciprocal)) 1172 FMF.setAllowReciprocal(); 1173 if (0 != (Val & bitc::AllowContract)) 1174 FMF.setAllowContract(true); 1175 if (0 != (Val & bitc::ApproxFunc)) 1176 FMF.setApproxFunc(); 1177 return FMF; 1178 } 1179 1180 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1181 switch (Val) { 1182 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1183 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1184 } 1185 } 1186 1187 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1188 // The type table size is always specified correctly. 1189 if (ID >= TypeList.size()) 1190 return nullptr; 1191 1192 if (Type *Ty = TypeList[ID]) 1193 return Ty; 1194 1195 // If we have a forward reference, the only possible case is when it is to a 1196 // named struct. Just create a placeholder for now. 1197 return TypeList[ID] = createIdentifiedStructType(Context); 1198 } 1199 1200 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1201 StringRef Name) { 1202 auto *Ret = StructType::create(Context, Name); 1203 IdentifiedStructTypes.push_back(Ret); 1204 return Ret; 1205 } 1206 1207 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1208 auto *Ret = StructType::create(Context); 1209 IdentifiedStructTypes.push_back(Ret); 1210 return Ret; 1211 } 1212 1213 //===----------------------------------------------------------------------===// 1214 // Functions for parsing blocks from the bitcode file 1215 //===----------------------------------------------------------------------===// 1216 1217 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1218 switch (Val) { 1219 case Attribute::EndAttrKinds: 1220 case Attribute::EmptyKey: 1221 case Attribute::TombstoneKey: 1222 llvm_unreachable("Synthetic enumerators which should never get here"); 1223 1224 case Attribute::None: return 0; 1225 case Attribute::ZExt: return 1 << 0; 1226 case Attribute::SExt: return 1 << 1; 1227 case Attribute::NoReturn: return 1 << 2; 1228 case Attribute::InReg: return 1 << 3; 1229 case Attribute::StructRet: return 1 << 4; 1230 case Attribute::NoUnwind: return 1 << 5; 1231 case Attribute::NoAlias: return 1 << 6; 1232 case Attribute::ByVal: return 1 << 7; 1233 case Attribute::Nest: return 1 << 8; 1234 case Attribute::ReadNone: return 1 << 9; 1235 case Attribute::ReadOnly: return 1 << 10; 1236 case Attribute::NoInline: return 1 << 11; 1237 case Attribute::AlwaysInline: return 1 << 12; 1238 case Attribute::OptimizeForSize: return 1 << 13; 1239 case Attribute::StackProtect: return 1 << 14; 1240 case Attribute::StackProtectReq: return 1 << 15; 1241 case Attribute::Alignment: return 31 << 16; 1242 case Attribute::NoCapture: return 1 << 21; 1243 case Attribute::NoRedZone: return 1 << 22; 1244 case Attribute::NoImplicitFloat: return 1 << 23; 1245 case Attribute::Naked: return 1 << 24; 1246 case Attribute::InlineHint: return 1 << 25; 1247 case Attribute::StackAlignment: return 7 << 26; 1248 case Attribute::ReturnsTwice: return 1 << 29; 1249 case Attribute::UWTable: return 1 << 30; 1250 case Attribute::NonLazyBind: return 1U << 31; 1251 case Attribute::SanitizeAddress: return 1ULL << 32; 1252 case Attribute::MinSize: return 1ULL << 33; 1253 case Attribute::NoDuplicate: return 1ULL << 34; 1254 case Attribute::StackProtectStrong: return 1ULL << 35; 1255 case Attribute::SanitizeThread: return 1ULL << 36; 1256 case Attribute::SanitizeMemory: return 1ULL << 37; 1257 case Attribute::NoBuiltin: return 1ULL << 38; 1258 case Attribute::Returned: return 1ULL << 39; 1259 case Attribute::Cold: return 1ULL << 40; 1260 case Attribute::Builtin: return 1ULL << 41; 1261 case Attribute::OptimizeNone: return 1ULL << 42; 1262 case Attribute::InAlloca: return 1ULL << 43; 1263 case Attribute::NonNull: return 1ULL << 44; 1264 case Attribute::JumpTable: return 1ULL << 45; 1265 case Attribute::Convergent: return 1ULL << 46; 1266 case Attribute::SafeStack: return 1ULL << 47; 1267 case Attribute::NoRecurse: return 1ULL << 48; 1268 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1269 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1270 case Attribute::SwiftSelf: return 1ULL << 51; 1271 case Attribute::SwiftError: return 1ULL << 52; 1272 case Attribute::WriteOnly: return 1ULL << 53; 1273 case Attribute::Speculatable: return 1ULL << 54; 1274 case Attribute::StrictFP: return 1ULL << 55; 1275 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1276 case Attribute::NoCfCheck: return 1ULL << 57; 1277 case Attribute::OptForFuzzing: return 1ULL << 58; 1278 case Attribute::ShadowCallStack: return 1ULL << 59; 1279 case Attribute::SpeculativeLoadHardening: 1280 return 1ULL << 60; 1281 case Attribute::ImmArg: 1282 return 1ULL << 61; 1283 case Attribute::WillReturn: 1284 return 1ULL << 62; 1285 case Attribute::NoFree: 1286 return 1ULL << 63; 1287 default: 1288 // Other attributes are not supported in the raw format, 1289 // as we ran out of space. 1290 return 0; 1291 } 1292 llvm_unreachable("Unsupported attribute type"); 1293 } 1294 1295 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1296 if (!Val) return; 1297 1298 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1299 I = Attribute::AttrKind(I + 1)) { 1300 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1301 if (I == Attribute::Alignment) 1302 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1303 else if (I == Attribute::StackAlignment) 1304 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1305 else 1306 B.addAttribute(I); 1307 } 1308 } 1309 } 1310 1311 /// This fills an AttrBuilder object with the LLVM attributes that have 1312 /// been decoded from the given integer. This function must stay in sync with 1313 /// 'encodeLLVMAttributesForBitcode'. 1314 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1315 uint64_t EncodedAttrs) { 1316 // FIXME: Remove in 4.0. 1317 1318 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1319 // the bits above 31 down by 11 bits. 1320 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1321 assert((!Alignment || isPowerOf2_32(Alignment)) && 1322 "Alignment must be a power of two."); 1323 1324 if (Alignment) 1325 B.addAlignmentAttr(Alignment); 1326 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1327 (EncodedAttrs & 0xffff)); 1328 } 1329 1330 Error BitcodeReader::parseAttributeBlock() { 1331 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1332 return Err; 1333 1334 if (!MAttributes.empty()) 1335 return error("Invalid multiple blocks"); 1336 1337 SmallVector<uint64_t, 64> Record; 1338 1339 SmallVector<AttributeList, 8> Attrs; 1340 1341 // Read all the records. 1342 while (true) { 1343 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1344 if (!MaybeEntry) 1345 return MaybeEntry.takeError(); 1346 BitstreamEntry Entry = MaybeEntry.get(); 1347 1348 switch (Entry.Kind) { 1349 case BitstreamEntry::SubBlock: // Handled for us already. 1350 case BitstreamEntry::Error: 1351 return error("Malformed block"); 1352 case BitstreamEntry::EndBlock: 1353 return Error::success(); 1354 case BitstreamEntry::Record: 1355 // The interesting case. 1356 break; 1357 } 1358 1359 // Read a record. 1360 Record.clear(); 1361 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1362 if (!MaybeRecord) 1363 return MaybeRecord.takeError(); 1364 switch (MaybeRecord.get()) { 1365 default: // Default behavior: ignore. 1366 break; 1367 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1368 // FIXME: Remove in 4.0. 1369 if (Record.size() & 1) 1370 return error("Invalid record"); 1371 1372 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1373 AttrBuilder B; 1374 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1375 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1376 } 1377 1378 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1379 Attrs.clear(); 1380 break; 1381 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1382 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1383 Attrs.push_back(MAttributeGroups[Record[i]]); 1384 1385 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1386 Attrs.clear(); 1387 break; 1388 } 1389 } 1390 } 1391 1392 // Returns Attribute::None on unrecognized codes. 1393 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1394 switch (Code) { 1395 default: 1396 return Attribute::None; 1397 case bitc::ATTR_KIND_ALIGNMENT: 1398 return Attribute::Alignment; 1399 case bitc::ATTR_KIND_ALWAYS_INLINE: 1400 return Attribute::AlwaysInline; 1401 case bitc::ATTR_KIND_ARGMEMONLY: 1402 return Attribute::ArgMemOnly; 1403 case bitc::ATTR_KIND_BUILTIN: 1404 return Attribute::Builtin; 1405 case bitc::ATTR_KIND_BY_VAL: 1406 return Attribute::ByVal; 1407 case bitc::ATTR_KIND_IN_ALLOCA: 1408 return Attribute::InAlloca; 1409 case bitc::ATTR_KIND_COLD: 1410 return Attribute::Cold; 1411 case bitc::ATTR_KIND_CONVERGENT: 1412 return Attribute::Convergent; 1413 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1414 return Attribute::InaccessibleMemOnly; 1415 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1416 return Attribute::InaccessibleMemOrArgMemOnly; 1417 case bitc::ATTR_KIND_INLINE_HINT: 1418 return Attribute::InlineHint; 1419 case bitc::ATTR_KIND_IN_REG: 1420 return Attribute::InReg; 1421 case bitc::ATTR_KIND_JUMP_TABLE: 1422 return Attribute::JumpTable; 1423 case bitc::ATTR_KIND_MIN_SIZE: 1424 return Attribute::MinSize; 1425 case bitc::ATTR_KIND_NAKED: 1426 return Attribute::Naked; 1427 case bitc::ATTR_KIND_NEST: 1428 return Attribute::Nest; 1429 case bitc::ATTR_KIND_NO_ALIAS: 1430 return Attribute::NoAlias; 1431 case bitc::ATTR_KIND_NO_BUILTIN: 1432 return Attribute::NoBuiltin; 1433 case bitc::ATTR_KIND_NO_CAPTURE: 1434 return Attribute::NoCapture; 1435 case bitc::ATTR_KIND_NO_DUPLICATE: 1436 return Attribute::NoDuplicate; 1437 case bitc::ATTR_KIND_NOFREE: 1438 return Attribute::NoFree; 1439 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1440 return Attribute::NoImplicitFloat; 1441 case bitc::ATTR_KIND_NO_INLINE: 1442 return Attribute::NoInline; 1443 case bitc::ATTR_KIND_NO_RECURSE: 1444 return Attribute::NoRecurse; 1445 case bitc::ATTR_KIND_NO_MERGE: 1446 return Attribute::NoMerge; 1447 case bitc::ATTR_KIND_NON_LAZY_BIND: 1448 return Attribute::NonLazyBind; 1449 case bitc::ATTR_KIND_NON_NULL: 1450 return Attribute::NonNull; 1451 case bitc::ATTR_KIND_DEREFERENCEABLE: 1452 return Attribute::Dereferenceable; 1453 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1454 return Attribute::DereferenceableOrNull; 1455 case bitc::ATTR_KIND_ALLOC_SIZE: 1456 return Attribute::AllocSize; 1457 case bitc::ATTR_KIND_NO_RED_ZONE: 1458 return Attribute::NoRedZone; 1459 case bitc::ATTR_KIND_NO_RETURN: 1460 return Attribute::NoReturn; 1461 case bitc::ATTR_KIND_NOSYNC: 1462 return Attribute::NoSync; 1463 case bitc::ATTR_KIND_NOCF_CHECK: 1464 return Attribute::NoCfCheck; 1465 case bitc::ATTR_KIND_NO_UNWIND: 1466 return Attribute::NoUnwind; 1467 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1468 return Attribute::OptForFuzzing; 1469 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1470 return Attribute::OptimizeForSize; 1471 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1472 return Attribute::OptimizeNone; 1473 case bitc::ATTR_KIND_READ_NONE: 1474 return Attribute::ReadNone; 1475 case bitc::ATTR_KIND_READ_ONLY: 1476 return Attribute::ReadOnly; 1477 case bitc::ATTR_KIND_RETURNED: 1478 return Attribute::Returned; 1479 case bitc::ATTR_KIND_RETURNS_TWICE: 1480 return Attribute::ReturnsTwice; 1481 case bitc::ATTR_KIND_S_EXT: 1482 return Attribute::SExt; 1483 case bitc::ATTR_KIND_SPECULATABLE: 1484 return Attribute::Speculatable; 1485 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1486 return Attribute::StackAlignment; 1487 case bitc::ATTR_KIND_STACK_PROTECT: 1488 return Attribute::StackProtect; 1489 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1490 return Attribute::StackProtectReq; 1491 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1492 return Attribute::StackProtectStrong; 1493 case bitc::ATTR_KIND_SAFESTACK: 1494 return Attribute::SafeStack; 1495 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1496 return Attribute::ShadowCallStack; 1497 case bitc::ATTR_KIND_STRICT_FP: 1498 return Attribute::StrictFP; 1499 case bitc::ATTR_KIND_STRUCT_RET: 1500 return Attribute::StructRet; 1501 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1502 return Attribute::SanitizeAddress; 1503 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1504 return Attribute::SanitizeHWAddress; 1505 case bitc::ATTR_KIND_SANITIZE_THREAD: 1506 return Attribute::SanitizeThread; 1507 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1508 return Attribute::SanitizeMemory; 1509 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1510 return Attribute::SpeculativeLoadHardening; 1511 case bitc::ATTR_KIND_SWIFT_ERROR: 1512 return Attribute::SwiftError; 1513 case bitc::ATTR_KIND_SWIFT_SELF: 1514 return Attribute::SwiftSelf; 1515 case bitc::ATTR_KIND_UW_TABLE: 1516 return Attribute::UWTable; 1517 case bitc::ATTR_KIND_WILLRETURN: 1518 return Attribute::WillReturn; 1519 case bitc::ATTR_KIND_WRITEONLY: 1520 return Attribute::WriteOnly; 1521 case bitc::ATTR_KIND_Z_EXT: 1522 return Attribute::ZExt; 1523 case bitc::ATTR_KIND_IMMARG: 1524 return Attribute::ImmArg; 1525 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1526 return Attribute::SanitizeMemTag; 1527 case bitc::ATTR_KIND_PREALLOCATED: 1528 return Attribute::Preallocated; 1529 } 1530 } 1531 1532 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1533 MaybeAlign &Alignment) { 1534 // Note: Alignment in bitcode files is incremented by 1, so that zero 1535 // can be used for default alignment. 1536 if (Exponent > Value::MaxAlignmentExponent + 1) 1537 return error("Invalid alignment value"); 1538 Alignment = decodeMaybeAlign(Exponent); 1539 return Error::success(); 1540 } 1541 1542 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1543 *Kind = getAttrFromCode(Code); 1544 if (*Kind == Attribute::None) 1545 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1546 return Error::success(); 1547 } 1548 1549 Error BitcodeReader::parseAttributeGroupBlock() { 1550 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1551 return Err; 1552 1553 if (!MAttributeGroups.empty()) 1554 return error("Invalid multiple blocks"); 1555 1556 SmallVector<uint64_t, 64> Record; 1557 1558 // Read all the records. 1559 while (true) { 1560 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1561 if (!MaybeEntry) 1562 return MaybeEntry.takeError(); 1563 BitstreamEntry Entry = MaybeEntry.get(); 1564 1565 switch (Entry.Kind) { 1566 case BitstreamEntry::SubBlock: // Handled for us already. 1567 case BitstreamEntry::Error: 1568 return error("Malformed block"); 1569 case BitstreamEntry::EndBlock: 1570 return Error::success(); 1571 case BitstreamEntry::Record: 1572 // The interesting case. 1573 break; 1574 } 1575 1576 // Read a record. 1577 Record.clear(); 1578 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1579 if (!MaybeRecord) 1580 return MaybeRecord.takeError(); 1581 switch (MaybeRecord.get()) { 1582 default: // Default behavior: ignore. 1583 break; 1584 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1585 if (Record.size() < 3) 1586 return error("Invalid record"); 1587 1588 uint64_t GrpID = Record[0]; 1589 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1590 1591 AttrBuilder B; 1592 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1593 if (Record[i] == 0) { // Enum attribute 1594 Attribute::AttrKind Kind; 1595 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1596 return Err; 1597 1598 // Upgrade old-style byval attribute to one with a type, even if it's 1599 // nullptr. We will have to insert the real type when we associate 1600 // this AttributeList with a function. 1601 if (Kind == Attribute::ByVal) 1602 B.addByValAttr(nullptr); 1603 1604 B.addAttribute(Kind); 1605 } else if (Record[i] == 1) { // Integer attribute 1606 Attribute::AttrKind Kind; 1607 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1608 return Err; 1609 if (Kind == Attribute::Alignment) 1610 B.addAlignmentAttr(Record[++i]); 1611 else if (Kind == Attribute::StackAlignment) 1612 B.addStackAlignmentAttr(Record[++i]); 1613 else if (Kind == Attribute::Dereferenceable) 1614 B.addDereferenceableAttr(Record[++i]); 1615 else if (Kind == Attribute::DereferenceableOrNull) 1616 B.addDereferenceableOrNullAttr(Record[++i]); 1617 else if (Kind == Attribute::AllocSize) 1618 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1619 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1620 bool HasValue = (Record[i++] == 4); 1621 SmallString<64> KindStr; 1622 SmallString<64> ValStr; 1623 1624 while (Record[i] != 0 && i != e) 1625 KindStr += Record[i++]; 1626 assert(Record[i] == 0 && "Kind string not null terminated"); 1627 1628 if (HasValue) { 1629 // Has a value associated with it. 1630 ++i; // Skip the '0' that terminates the "kind" string. 1631 while (Record[i] != 0 && i != e) 1632 ValStr += Record[i++]; 1633 assert(Record[i] == 0 && "Value string not null terminated"); 1634 } 1635 1636 B.addAttribute(KindStr.str(), ValStr.str()); 1637 } else { 1638 assert((Record[i] == 5 || Record[i] == 6) && 1639 "Invalid attribute group entry"); 1640 bool HasType = Record[i] == 6; 1641 Attribute::AttrKind Kind; 1642 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1643 return Err; 1644 if (Kind == Attribute::ByVal) { 1645 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1646 } else if (Kind == Attribute::Preallocated) { 1647 B.addPreallocatedAttr(getTypeByID(Record[++i])); 1648 } 1649 } 1650 } 1651 1652 UpgradeFramePointerAttributes(B); 1653 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1654 break; 1655 } 1656 } 1657 } 1658 } 1659 1660 Error BitcodeReader::parseTypeTable() { 1661 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1662 return Err; 1663 1664 return parseTypeTableBody(); 1665 } 1666 1667 Error BitcodeReader::parseTypeTableBody() { 1668 if (!TypeList.empty()) 1669 return error("Invalid multiple blocks"); 1670 1671 SmallVector<uint64_t, 64> Record; 1672 unsigned NumRecords = 0; 1673 1674 SmallString<64> TypeName; 1675 1676 // Read all the records for this type table. 1677 while (true) { 1678 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1679 if (!MaybeEntry) 1680 return MaybeEntry.takeError(); 1681 BitstreamEntry Entry = MaybeEntry.get(); 1682 1683 switch (Entry.Kind) { 1684 case BitstreamEntry::SubBlock: // Handled for us already. 1685 case BitstreamEntry::Error: 1686 return error("Malformed block"); 1687 case BitstreamEntry::EndBlock: 1688 if (NumRecords != TypeList.size()) 1689 return error("Malformed block"); 1690 return Error::success(); 1691 case BitstreamEntry::Record: 1692 // The interesting case. 1693 break; 1694 } 1695 1696 // Read a record. 1697 Record.clear(); 1698 Type *ResultTy = nullptr; 1699 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1700 if (!MaybeRecord) 1701 return MaybeRecord.takeError(); 1702 switch (MaybeRecord.get()) { 1703 default: 1704 return error("Invalid value"); 1705 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1706 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1707 // type list. This allows us to reserve space. 1708 if (Record.size() < 1) 1709 return error("Invalid record"); 1710 TypeList.resize(Record[0]); 1711 continue; 1712 case bitc::TYPE_CODE_VOID: // VOID 1713 ResultTy = Type::getVoidTy(Context); 1714 break; 1715 case bitc::TYPE_CODE_HALF: // HALF 1716 ResultTy = Type::getHalfTy(Context); 1717 break; 1718 case bitc::TYPE_CODE_FLOAT: // FLOAT 1719 ResultTy = Type::getFloatTy(Context); 1720 break; 1721 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1722 ResultTy = Type::getDoubleTy(Context); 1723 break; 1724 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1725 ResultTy = Type::getX86_FP80Ty(Context); 1726 break; 1727 case bitc::TYPE_CODE_FP128: // FP128 1728 ResultTy = Type::getFP128Ty(Context); 1729 break; 1730 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1731 ResultTy = Type::getPPC_FP128Ty(Context); 1732 break; 1733 case bitc::TYPE_CODE_LABEL: // LABEL 1734 ResultTy = Type::getLabelTy(Context); 1735 break; 1736 case bitc::TYPE_CODE_METADATA: // METADATA 1737 ResultTy = Type::getMetadataTy(Context); 1738 break; 1739 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1740 ResultTy = Type::getX86_MMXTy(Context); 1741 break; 1742 case bitc::TYPE_CODE_TOKEN: // TOKEN 1743 ResultTy = Type::getTokenTy(Context); 1744 break; 1745 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1746 if (Record.size() < 1) 1747 return error("Invalid record"); 1748 1749 uint64_t NumBits = Record[0]; 1750 if (NumBits < IntegerType::MIN_INT_BITS || 1751 NumBits > IntegerType::MAX_INT_BITS) 1752 return error("Bitwidth for integer type out of range"); 1753 ResultTy = IntegerType::get(Context, NumBits); 1754 break; 1755 } 1756 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1757 // [pointee type, address space] 1758 if (Record.size() < 1) 1759 return error("Invalid record"); 1760 unsigned AddressSpace = 0; 1761 if (Record.size() == 2) 1762 AddressSpace = Record[1]; 1763 ResultTy = getTypeByID(Record[0]); 1764 if (!ResultTy || 1765 !PointerType::isValidElementType(ResultTy)) 1766 return error("Invalid type"); 1767 ResultTy = PointerType::get(ResultTy, AddressSpace); 1768 break; 1769 } 1770 case bitc::TYPE_CODE_FUNCTION_OLD: { 1771 // FIXME: attrid is dead, remove it in LLVM 4.0 1772 // FUNCTION: [vararg, attrid, retty, paramty x N] 1773 if (Record.size() < 3) 1774 return error("Invalid record"); 1775 SmallVector<Type*, 8> ArgTys; 1776 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1777 if (Type *T = getTypeByID(Record[i])) 1778 ArgTys.push_back(T); 1779 else 1780 break; 1781 } 1782 1783 ResultTy = getTypeByID(Record[2]); 1784 if (!ResultTy || ArgTys.size() < Record.size()-3) 1785 return error("Invalid type"); 1786 1787 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1788 break; 1789 } 1790 case bitc::TYPE_CODE_FUNCTION: { 1791 // FUNCTION: [vararg, retty, paramty x N] 1792 if (Record.size() < 2) 1793 return error("Invalid record"); 1794 SmallVector<Type*, 8> ArgTys; 1795 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1796 if (Type *T = getTypeByID(Record[i])) { 1797 if (!FunctionType::isValidArgumentType(T)) 1798 return error("Invalid function argument type"); 1799 ArgTys.push_back(T); 1800 } 1801 else 1802 break; 1803 } 1804 1805 ResultTy = getTypeByID(Record[1]); 1806 if (!ResultTy || ArgTys.size() < Record.size()-2) 1807 return error("Invalid type"); 1808 1809 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1810 break; 1811 } 1812 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1813 if (Record.size() < 1) 1814 return error("Invalid record"); 1815 SmallVector<Type*, 8> EltTys; 1816 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1817 if (Type *T = getTypeByID(Record[i])) 1818 EltTys.push_back(T); 1819 else 1820 break; 1821 } 1822 if (EltTys.size() != Record.size()-1) 1823 return error("Invalid type"); 1824 ResultTy = StructType::get(Context, EltTys, Record[0]); 1825 break; 1826 } 1827 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1828 if (convertToString(Record, 0, TypeName)) 1829 return error("Invalid record"); 1830 continue; 1831 1832 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1833 if (Record.size() < 1) 1834 return error("Invalid record"); 1835 1836 if (NumRecords >= TypeList.size()) 1837 return error("Invalid TYPE table"); 1838 1839 // Check to see if this was forward referenced, if so fill in the temp. 1840 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1841 if (Res) { 1842 Res->setName(TypeName); 1843 TypeList[NumRecords] = nullptr; 1844 } else // Otherwise, create a new struct. 1845 Res = createIdentifiedStructType(Context, TypeName); 1846 TypeName.clear(); 1847 1848 SmallVector<Type*, 8> EltTys; 1849 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1850 if (Type *T = getTypeByID(Record[i])) 1851 EltTys.push_back(T); 1852 else 1853 break; 1854 } 1855 if (EltTys.size() != Record.size()-1) 1856 return error("Invalid record"); 1857 Res->setBody(EltTys, Record[0]); 1858 ResultTy = Res; 1859 break; 1860 } 1861 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1862 if (Record.size() != 1) 1863 return error("Invalid record"); 1864 1865 if (NumRecords >= TypeList.size()) 1866 return error("Invalid TYPE table"); 1867 1868 // Check to see if this was forward referenced, if so fill in the temp. 1869 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1870 if (Res) { 1871 Res->setName(TypeName); 1872 TypeList[NumRecords] = nullptr; 1873 } else // Otherwise, create a new struct with no body. 1874 Res = createIdentifiedStructType(Context, TypeName); 1875 TypeName.clear(); 1876 ResultTy = Res; 1877 break; 1878 } 1879 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1880 if (Record.size() < 2) 1881 return error("Invalid record"); 1882 ResultTy = getTypeByID(Record[1]); 1883 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1884 return error("Invalid type"); 1885 ResultTy = ArrayType::get(ResultTy, Record[0]); 1886 break; 1887 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1888 // [numelts, eltty, scalable] 1889 if (Record.size() < 2) 1890 return error("Invalid record"); 1891 if (Record[0] == 0) 1892 return error("Invalid vector length"); 1893 ResultTy = getTypeByID(Record[1]); 1894 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1895 return error("Invalid type"); 1896 bool Scalable = Record.size() > 2 ? Record[2] : false; 1897 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1898 break; 1899 } 1900 1901 if (NumRecords >= TypeList.size()) 1902 return error("Invalid TYPE table"); 1903 if (TypeList[NumRecords]) 1904 return error( 1905 "Invalid TYPE table: Only named structs can be forward referenced"); 1906 assert(ResultTy && "Didn't read a type?"); 1907 TypeList[NumRecords++] = ResultTy; 1908 } 1909 } 1910 1911 Error BitcodeReader::parseOperandBundleTags() { 1912 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1913 return Err; 1914 1915 if (!BundleTags.empty()) 1916 return error("Invalid multiple blocks"); 1917 1918 SmallVector<uint64_t, 64> Record; 1919 1920 while (true) { 1921 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1922 if (!MaybeEntry) 1923 return MaybeEntry.takeError(); 1924 BitstreamEntry Entry = MaybeEntry.get(); 1925 1926 switch (Entry.Kind) { 1927 case BitstreamEntry::SubBlock: // Handled for us already. 1928 case BitstreamEntry::Error: 1929 return error("Malformed block"); 1930 case BitstreamEntry::EndBlock: 1931 return Error::success(); 1932 case BitstreamEntry::Record: 1933 // The interesting case. 1934 break; 1935 } 1936 1937 // Tags are implicitly mapped to integers by their order. 1938 1939 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1940 if (!MaybeRecord) 1941 return MaybeRecord.takeError(); 1942 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1943 return error("Invalid record"); 1944 1945 // OPERAND_BUNDLE_TAG: [strchr x N] 1946 BundleTags.emplace_back(); 1947 if (convertToString(Record, 0, BundleTags.back())) 1948 return error("Invalid record"); 1949 Record.clear(); 1950 } 1951 } 1952 1953 Error BitcodeReader::parseSyncScopeNames() { 1954 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1955 return Err; 1956 1957 if (!SSIDs.empty()) 1958 return error("Invalid multiple synchronization scope names blocks"); 1959 1960 SmallVector<uint64_t, 64> Record; 1961 while (true) { 1962 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1963 if (!MaybeEntry) 1964 return MaybeEntry.takeError(); 1965 BitstreamEntry Entry = MaybeEntry.get(); 1966 1967 switch (Entry.Kind) { 1968 case BitstreamEntry::SubBlock: // Handled for us already. 1969 case BitstreamEntry::Error: 1970 return error("Malformed block"); 1971 case BitstreamEntry::EndBlock: 1972 if (SSIDs.empty()) 1973 return error("Invalid empty synchronization scope names block"); 1974 return Error::success(); 1975 case BitstreamEntry::Record: 1976 // The interesting case. 1977 break; 1978 } 1979 1980 // Synchronization scope names are implicitly mapped to synchronization 1981 // scope IDs by their order. 1982 1983 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1984 if (!MaybeRecord) 1985 return MaybeRecord.takeError(); 1986 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 1987 return error("Invalid record"); 1988 1989 SmallString<16> SSN; 1990 if (convertToString(Record, 0, SSN)) 1991 return error("Invalid record"); 1992 1993 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1994 Record.clear(); 1995 } 1996 } 1997 1998 /// Associate a value with its name from the given index in the provided record. 1999 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2000 unsigned NameIndex, Triple &TT) { 2001 SmallString<128> ValueName; 2002 if (convertToString(Record, NameIndex, ValueName)) 2003 return error("Invalid record"); 2004 unsigned ValueID = Record[0]; 2005 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2006 return error("Invalid record"); 2007 Value *V = ValueList[ValueID]; 2008 2009 StringRef NameStr(ValueName.data(), ValueName.size()); 2010 if (NameStr.find_first_of(0) != StringRef::npos) 2011 return error("Invalid value name"); 2012 V->setName(NameStr); 2013 auto *GO = dyn_cast<GlobalObject>(V); 2014 if (GO) { 2015 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2016 if (TT.supportsCOMDAT()) 2017 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2018 else 2019 GO->setComdat(nullptr); 2020 } 2021 } 2022 return V; 2023 } 2024 2025 /// Helper to note and return the current location, and jump to the given 2026 /// offset. 2027 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2028 BitstreamCursor &Stream) { 2029 // Save the current parsing location so we can jump back at the end 2030 // of the VST read. 2031 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2032 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2033 return std::move(JumpFailed); 2034 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2035 if (!MaybeEntry) 2036 return MaybeEntry.takeError(); 2037 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2038 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2039 return CurrentBit; 2040 } 2041 2042 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2043 Function *F, 2044 ArrayRef<uint64_t> Record) { 2045 // Note that we subtract 1 here because the offset is relative to one word 2046 // before the start of the identification or module block, which was 2047 // historically always the start of the regular bitcode header. 2048 uint64_t FuncWordOffset = Record[1] - 1; 2049 uint64_t FuncBitOffset = FuncWordOffset * 32; 2050 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2051 // Set the LastFunctionBlockBit to point to the last function block. 2052 // Later when parsing is resumed after function materialization, 2053 // we can simply skip that last function block. 2054 if (FuncBitOffset > LastFunctionBlockBit) 2055 LastFunctionBlockBit = FuncBitOffset; 2056 } 2057 2058 /// Read a new-style GlobalValue symbol table. 2059 Error BitcodeReader::parseGlobalValueSymbolTable() { 2060 unsigned FuncBitcodeOffsetDelta = 2061 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2062 2063 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2064 return Err; 2065 2066 SmallVector<uint64_t, 64> Record; 2067 while (true) { 2068 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2069 if (!MaybeEntry) 2070 return MaybeEntry.takeError(); 2071 BitstreamEntry Entry = MaybeEntry.get(); 2072 2073 switch (Entry.Kind) { 2074 case BitstreamEntry::SubBlock: 2075 case BitstreamEntry::Error: 2076 return error("Malformed block"); 2077 case BitstreamEntry::EndBlock: 2078 return Error::success(); 2079 case BitstreamEntry::Record: 2080 break; 2081 } 2082 2083 Record.clear(); 2084 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2085 if (!MaybeRecord) 2086 return MaybeRecord.takeError(); 2087 switch (MaybeRecord.get()) { 2088 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2089 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2090 cast<Function>(ValueList[Record[0]]), Record); 2091 break; 2092 } 2093 } 2094 } 2095 2096 /// Parse the value symbol table at either the current parsing location or 2097 /// at the given bit offset if provided. 2098 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2099 uint64_t CurrentBit; 2100 // Pass in the Offset to distinguish between calling for the module-level 2101 // VST (where we want to jump to the VST offset) and the function-level 2102 // VST (where we don't). 2103 if (Offset > 0) { 2104 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2105 if (!MaybeCurrentBit) 2106 return MaybeCurrentBit.takeError(); 2107 CurrentBit = MaybeCurrentBit.get(); 2108 // If this module uses a string table, read this as a module-level VST. 2109 if (UseStrtab) { 2110 if (Error Err = parseGlobalValueSymbolTable()) 2111 return Err; 2112 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2113 return JumpFailed; 2114 return Error::success(); 2115 } 2116 // Otherwise, the VST will be in a similar format to a function-level VST, 2117 // and will contain symbol names. 2118 } 2119 2120 // Compute the delta between the bitcode indices in the VST (the word offset 2121 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2122 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2123 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2124 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2125 // just before entering the VST subblock because: 1) the EnterSubBlock 2126 // changes the AbbrevID width; 2) the VST block is nested within the same 2127 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2128 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2129 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2130 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2131 unsigned FuncBitcodeOffsetDelta = 2132 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2133 2134 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2135 return Err; 2136 2137 SmallVector<uint64_t, 64> Record; 2138 2139 Triple TT(TheModule->getTargetTriple()); 2140 2141 // Read all the records for this value table. 2142 SmallString<128> ValueName; 2143 2144 while (true) { 2145 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2146 if (!MaybeEntry) 2147 return MaybeEntry.takeError(); 2148 BitstreamEntry Entry = MaybeEntry.get(); 2149 2150 switch (Entry.Kind) { 2151 case BitstreamEntry::SubBlock: // Handled for us already. 2152 case BitstreamEntry::Error: 2153 return error("Malformed block"); 2154 case BitstreamEntry::EndBlock: 2155 if (Offset > 0) 2156 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2157 return JumpFailed; 2158 return Error::success(); 2159 case BitstreamEntry::Record: 2160 // The interesting case. 2161 break; 2162 } 2163 2164 // Read a record. 2165 Record.clear(); 2166 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2167 if (!MaybeRecord) 2168 return MaybeRecord.takeError(); 2169 switch (MaybeRecord.get()) { 2170 default: // Default behavior: unknown type. 2171 break; 2172 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2173 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2174 if (Error Err = ValOrErr.takeError()) 2175 return Err; 2176 ValOrErr.get(); 2177 break; 2178 } 2179 case bitc::VST_CODE_FNENTRY: { 2180 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2181 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2182 if (Error Err = ValOrErr.takeError()) 2183 return Err; 2184 Value *V = ValOrErr.get(); 2185 2186 // Ignore function offsets emitted for aliases of functions in older 2187 // versions of LLVM. 2188 if (auto *F = dyn_cast<Function>(V)) 2189 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2190 break; 2191 } 2192 case bitc::VST_CODE_BBENTRY: { 2193 if (convertToString(Record, 1, ValueName)) 2194 return error("Invalid record"); 2195 BasicBlock *BB = getBasicBlock(Record[0]); 2196 if (!BB) 2197 return error("Invalid record"); 2198 2199 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2200 ValueName.clear(); 2201 break; 2202 } 2203 } 2204 } 2205 } 2206 2207 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2208 /// encoding. 2209 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2210 if ((V & 1) == 0) 2211 return V >> 1; 2212 if (V != 1) 2213 return -(V >> 1); 2214 // There is no such thing as -0 with integers. "-0" really means MININT. 2215 return 1ULL << 63; 2216 } 2217 2218 /// Resolve all of the initializers for global values and aliases that we can. 2219 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2220 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2221 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2222 IndirectSymbolInitWorklist; 2223 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2224 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2225 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2226 2227 GlobalInitWorklist.swap(GlobalInits); 2228 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2229 FunctionPrefixWorklist.swap(FunctionPrefixes); 2230 FunctionPrologueWorklist.swap(FunctionPrologues); 2231 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2232 2233 while (!GlobalInitWorklist.empty()) { 2234 unsigned ValID = GlobalInitWorklist.back().second; 2235 if (ValID >= ValueList.size()) { 2236 // Not ready to resolve this yet, it requires something later in the file. 2237 GlobalInits.push_back(GlobalInitWorklist.back()); 2238 } else { 2239 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2240 GlobalInitWorklist.back().first->setInitializer(C); 2241 else 2242 return error("Expected a constant"); 2243 } 2244 GlobalInitWorklist.pop_back(); 2245 } 2246 2247 while (!IndirectSymbolInitWorklist.empty()) { 2248 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2249 if (ValID >= ValueList.size()) { 2250 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2251 } else { 2252 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2253 if (!C) 2254 return error("Expected a constant"); 2255 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2256 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2257 return error("Alias and aliasee types don't match"); 2258 GIS->setIndirectSymbol(C); 2259 } 2260 IndirectSymbolInitWorklist.pop_back(); 2261 } 2262 2263 while (!FunctionPrefixWorklist.empty()) { 2264 unsigned ValID = FunctionPrefixWorklist.back().second; 2265 if (ValID >= ValueList.size()) { 2266 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2267 } else { 2268 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2269 FunctionPrefixWorklist.back().first->setPrefixData(C); 2270 else 2271 return error("Expected a constant"); 2272 } 2273 FunctionPrefixWorklist.pop_back(); 2274 } 2275 2276 while (!FunctionPrologueWorklist.empty()) { 2277 unsigned ValID = FunctionPrologueWorklist.back().second; 2278 if (ValID >= ValueList.size()) { 2279 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2280 } else { 2281 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2282 FunctionPrologueWorklist.back().first->setPrologueData(C); 2283 else 2284 return error("Expected a constant"); 2285 } 2286 FunctionPrologueWorklist.pop_back(); 2287 } 2288 2289 while (!FunctionPersonalityFnWorklist.empty()) { 2290 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2291 if (ValID >= ValueList.size()) { 2292 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2293 } else { 2294 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2295 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2296 else 2297 return error("Expected a constant"); 2298 } 2299 FunctionPersonalityFnWorklist.pop_back(); 2300 } 2301 2302 return Error::success(); 2303 } 2304 2305 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2306 SmallVector<uint64_t, 8> Words(Vals.size()); 2307 transform(Vals, Words.begin(), 2308 BitcodeReader::decodeSignRotatedValue); 2309 2310 return APInt(TypeBits, Words); 2311 } 2312 2313 Error BitcodeReader::parseConstants() { 2314 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2315 return Err; 2316 2317 SmallVector<uint64_t, 64> Record; 2318 2319 // Read all the records for this value table. 2320 Type *CurTy = Type::getInt32Ty(Context); 2321 Type *CurFullTy = Type::getInt32Ty(Context); 2322 unsigned NextCstNo = ValueList.size(); 2323 2324 struct DelayedShufTy { 2325 VectorType *OpTy; 2326 VectorType *RTy; 2327 Type *CurFullTy; 2328 uint64_t Op0Idx; 2329 uint64_t Op1Idx; 2330 uint64_t Op2Idx; 2331 }; 2332 std::vector<DelayedShufTy> DelayedShuffles; 2333 while (true) { 2334 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2335 if (!MaybeEntry) 2336 return MaybeEntry.takeError(); 2337 BitstreamEntry Entry = MaybeEntry.get(); 2338 2339 switch (Entry.Kind) { 2340 case BitstreamEntry::SubBlock: // Handled for us already. 2341 case BitstreamEntry::Error: 2342 return error("Malformed block"); 2343 case BitstreamEntry::EndBlock: 2344 if (NextCstNo != ValueList.size()) 2345 return error("Invalid constant reference"); 2346 2347 // Once all the constants have been read, go through and resolve forward 2348 // references. 2349 // 2350 // We have to treat shuffles specially because they don't have three 2351 // operands anymore. We need to convert the shuffle mask into an array, 2352 // and we can't convert a forward reference. 2353 for (auto &DelayedShuffle : DelayedShuffles) { 2354 VectorType *OpTy = DelayedShuffle.OpTy; 2355 VectorType *RTy = DelayedShuffle.RTy; 2356 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2357 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2358 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2359 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2360 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2361 Type *ShufTy = 2362 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2363 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2364 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2365 return error("Invalid shufflevector operands"); 2366 SmallVector<int, 16> Mask; 2367 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2368 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2369 ValueList.assignValue(V, NextCstNo, DelayedShuffle.CurFullTy); 2370 ++NextCstNo; 2371 } 2372 ValueList.resolveConstantForwardRefs(); 2373 return Error::success(); 2374 case BitstreamEntry::Record: 2375 // The interesting case. 2376 break; 2377 } 2378 2379 // Read a record. 2380 Record.clear(); 2381 Type *VoidType = Type::getVoidTy(Context); 2382 Value *V = nullptr; 2383 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2384 if (!MaybeBitCode) 2385 return MaybeBitCode.takeError(); 2386 switch (unsigned BitCode = MaybeBitCode.get()) { 2387 default: // Default behavior: unknown constant 2388 case bitc::CST_CODE_UNDEF: // UNDEF 2389 V = UndefValue::get(CurTy); 2390 break; 2391 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2392 if (Record.empty()) 2393 return error("Invalid record"); 2394 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2395 return error("Invalid record"); 2396 if (TypeList[Record[0]] == VoidType) 2397 return error("Invalid constant type"); 2398 CurFullTy = TypeList[Record[0]]; 2399 CurTy = flattenPointerTypes(CurFullTy); 2400 continue; // Skip the ValueList manipulation. 2401 case bitc::CST_CODE_NULL: // NULL 2402 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2403 return error("Invalid type for a constant null value"); 2404 V = Constant::getNullValue(CurTy); 2405 break; 2406 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2407 if (!CurTy->isIntegerTy() || Record.empty()) 2408 return error("Invalid record"); 2409 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2410 break; 2411 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2412 if (!CurTy->isIntegerTy() || Record.empty()) 2413 return error("Invalid record"); 2414 2415 APInt VInt = 2416 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2417 V = ConstantInt::get(Context, VInt); 2418 2419 break; 2420 } 2421 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2422 if (Record.empty()) 2423 return error("Invalid record"); 2424 if (CurTy->isHalfTy()) 2425 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2426 APInt(16, (uint16_t)Record[0]))); 2427 else if (CurTy->isFloatTy()) 2428 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2429 APInt(32, (uint32_t)Record[0]))); 2430 else if (CurTy->isDoubleTy()) 2431 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2432 APInt(64, Record[0]))); 2433 else if (CurTy->isX86_FP80Ty()) { 2434 // Bits are not stored the same way as a normal i80 APInt, compensate. 2435 uint64_t Rearrange[2]; 2436 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2437 Rearrange[1] = Record[0] >> 48; 2438 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2439 APInt(80, Rearrange))); 2440 } else if (CurTy->isFP128Ty()) 2441 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2442 APInt(128, Record))); 2443 else if (CurTy->isPPC_FP128Ty()) 2444 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2445 APInt(128, Record))); 2446 else 2447 V = UndefValue::get(CurTy); 2448 break; 2449 } 2450 2451 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2452 if (Record.empty()) 2453 return error("Invalid record"); 2454 2455 unsigned Size = Record.size(); 2456 SmallVector<Constant*, 16> Elts; 2457 2458 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2459 for (unsigned i = 0; i != Size; ++i) 2460 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2461 STy->getElementType(i))); 2462 V = ConstantStruct::get(STy, Elts); 2463 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2464 Type *EltTy = ATy->getElementType(); 2465 for (unsigned i = 0; i != Size; ++i) 2466 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2467 V = ConstantArray::get(ATy, Elts); 2468 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2469 Type *EltTy = VTy->getElementType(); 2470 for (unsigned i = 0; i != Size; ++i) 2471 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2472 V = ConstantVector::get(Elts); 2473 } else { 2474 V = UndefValue::get(CurTy); 2475 } 2476 break; 2477 } 2478 case bitc::CST_CODE_STRING: // STRING: [values] 2479 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2480 if (Record.empty()) 2481 return error("Invalid record"); 2482 2483 SmallString<16> Elts(Record.begin(), Record.end()); 2484 V = ConstantDataArray::getString(Context, Elts, 2485 BitCode == bitc::CST_CODE_CSTRING); 2486 break; 2487 } 2488 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2489 if (Record.empty()) 2490 return error("Invalid record"); 2491 2492 Type *EltTy; 2493 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2494 EltTy = Array->getElementType(); 2495 else 2496 EltTy = cast<VectorType>(CurTy)->getElementType(); 2497 if (EltTy->isIntegerTy(8)) { 2498 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2499 if (isa<VectorType>(CurTy)) 2500 V = ConstantDataVector::get(Context, Elts); 2501 else 2502 V = ConstantDataArray::get(Context, Elts); 2503 } else if (EltTy->isIntegerTy(16)) { 2504 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2505 if (isa<VectorType>(CurTy)) 2506 V = ConstantDataVector::get(Context, Elts); 2507 else 2508 V = ConstantDataArray::get(Context, Elts); 2509 } else if (EltTy->isIntegerTy(32)) { 2510 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2511 if (isa<VectorType>(CurTy)) 2512 V = ConstantDataVector::get(Context, Elts); 2513 else 2514 V = ConstantDataArray::get(Context, Elts); 2515 } else if (EltTy->isIntegerTy(64)) { 2516 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2517 if (isa<VectorType>(CurTy)) 2518 V = ConstantDataVector::get(Context, Elts); 2519 else 2520 V = ConstantDataArray::get(Context, Elts); 2521 } else if (EltTy->isHalfTy()) { 2522 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2523 if (isa<VectorType>(CurTy)) 2524 V = ConstantDataVector::getFP(Context, Elts); 2525 else 2526 V = ConstantDataArray::getFP(Context, Elts); 2527 } else if (EltTy->isFloatTy()) { 2528 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2529 if (isa<VectorType>(CurTy)) 2530 V = ConstantDataVector::getFP(Context, Elts); 2531 else 2532 V = ConstantDataArray::getFP(Context, Elts); 2533 } else if (EltTy->isDoubleTy()) { 2534 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2535 if (isa<VectorType>(CurTy)) 2536 V = ConstantDataVector::getFP(Context, Elts); 2537 else 2538 V = ConstantDataArray::getFP(Context, Elts); 2539 } else { 2540 return error("Invalid type for value"); 2541 } 2542 break; 2543 } 2544 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2545 if (Record.size() < 2) 2546 return error("Invalid record"); 2547 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2548 if (Opc < 0) { 2549 V = UndefValue::get(CurTy); // Unknown unop. 2550 } else { 2551 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2552 unsigned Flags = 0; 2553 V = ConstantExpr::get(Opc, LHS, Flags); 2554 } 2555 break; 2556 } 2557 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2558 if (Record.size() < 3) 2559 return error("Invalid record"); 2560 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2561 if (Opc < 0) { 2562 V = UndefValue::get(CurTy); // Unknown binop. 2563 } else { 2564 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2565 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2566 unsigned Flags = 0; 2567 if (Record.size() >= 4) { 2568 if (Opc == Instruction::Add || 2569 Opc == Instruction::Sub || 2570 Opc == Instruction::Mul || 2571 Opc == Instruction::Shl) { 2572 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2573 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2574 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2575 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2576 } else if (Opc == Instruction::SDiv || 2577 Opc == Instruction::UDiv || 2578 Opc == Instruction::LShr || 2579 Opc == Instruction::AShr) { 2580 if (Record[3] & (1 << bitc::PEO_EXACT)) 2581 Flags |= SDivOperator::IsExact; 2582 } 2583 } 2584 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2585 } 2586 break; 2587 } 2588 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2589 if (Record.size() < 3) 2590 return error("Invalid record"); 2591 int Opc = getDecodedCastOpcode(Record[0]); 2592 if (Opc < 0) { 2593 V = UndefValue::get(CurTy); // Unknown cast. 2594 } else { 2595 Type *OpTy = getTypeByID(Record[1]); 2596 if (!OpTy) 2597 return error("Invalid record"); 2598 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2599 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2600 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2601 } 2602 break; 2603 } 2604 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2605 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2606 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2607 // operands] 2608 unsigned OpNum = 0; 2609 Type *PointeeType = nullptr; 2610 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2611 Record.size() % 2) 2612 PointeeType = getTypeByID(Record[OpNum++]); 2613 2614 bool InBounds = false; 2615 Optional<unsigned> InRangeIndex; 2616 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2617 uint64_t Op = Record[OpNum++]; 2618 InBounds = Op & 1; 2619 InRangeIndex = Op >> 1; 2620 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2621 InBounds = true; 2622 2623 SmallVector<Constant*, 16> Elts; 2624 Type *Elt0FullTy = nullptr; 2625 while (OpNum != Record.size()) { 2626 if (!Elt0FullTy) 2627 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2628 Type *ElTy = getTypeByID(Record[OpNum++]); 2629 if (!ElTy) 2630 return error("Invalid record"); 2631 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2632 } 2633 2634 if (Elts.size() < 1) 2635 return error("Invalid gep with no operands"); 2636 2637 Type *ImplicitPointeeType = 2638 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2639 if (!PointeeType) 2640 PointeeType = ImplicitPointeeType; 2641 else if (PointeeType != ImplicitPointeeType) 2642 return error("Explicit gep operator type does not match pointee type " 2643 "of pointer operand"); 2644 2645 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2646 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2647 InBounds, InRangeIndex); 2648 break; 2649 } 2650 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2651 if (Record.size() < 3) 2652 return error("Invalid record"); 2653 2654 Type *SelectorTy = Type::getInt1Ty(Context); 2655 2656 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2657 // Get the type from the ValueList before getting a forward ref. 2658 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2659 if (Value *V = ValueList[Record[0]]) 2660 if (SelectorTy != V->getType()) 2661 SelectorTy = VectorType::get(SelectorTy, 2662 VTy->getElementCount()); 2663 2664 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2665 SelectorTy), 2666 ValueList.getConstantFwdRef(Record[1],CurTy), 2667 ValueList.getConstantFwdRef(Record[2],CurTy)); 2668 break; 2669 } 2670 case bitc::CST_CODE_CE_EXTRACTELT 2671 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2672 if (Record.size() < 3) 2673 return error("Invalid record"); 2674 VectorType *OpTy = 2675 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2676 if (!OpTy) 2677 return error("Invalid record"); 2678 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2679 Constant *Op1 = nullptr; 2680 if (Record.size() == 4) { 2681 Type *IdxTy = getTypeByID(Record[2]); 2682 if (!IdxTy) 2683 return error("Invalid record"); 2684 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2685 } else // TODO: Remove with llvm 4.0 2686 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2687 if (!Op1) 2688 return error("Invalid record"); 2689 V = ConstantExpr::getExtractElement(Op0, Op1); 2690 break; 2691 } 2692 case bitc::CST_CODE_CE_INSERTELT 2693 : { // CE_INSERTELT: [opval, opval, opty, opval] 2694 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2695 if (Record.size() < 3 || !OpTy) 2696 return error("Invalid record"); 2697 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2698 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2699 OpTy->getElementType()); 2700 Constant *Op2 = nullptr; 2701 if (Record.size() == 4) { 2702 Type *IdxTy = getTypeByID(Record[2]); 2703 if (!IdxTy) 2704 return error("Invalid record"); 2705 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2706 } else // TODO: Remove with llvm 4.0 2707 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2708 if (!Op2) 2709 return error("Invalid record"); 2710 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2711 break; 2712 } 2713 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2714 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2715 if (Record.size() < 3 || !OpTy) 2716 return error("Invalid record"); 2717 DelayedShuffles.push_back( 2718 {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2]}); 2719 continue; 2720 } 2721 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2722 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2723 VectorType *OpTy = 2724 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2725 if (Record.size() < 4 || !RTy || !OpTy) 2726 return error("Invalid record"); 2727 DelayedShuffles.push_back( 2728 {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3]}); 2729 continue; 2730 } 2731 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2732 if (Record.size() < 4) 2733 return error("Invalid record"); 2734 Type *OpTy = getTypeByID(Record[0]); 2735 if (!OpTy) 2736 return error("Invalid record"); 2737 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2738 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2739 2740 if (OpTy->isFPOrFPVectorTy()) 2741 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2742 else 2743 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2744 break; 2745 } 2746 // This maintains backward compatibility, pre-asm dialect keywords. 2747 // FIXME: Remove with the 4.0 release. 2748 case bitc::CST_CODE_INLINEASM_OLD: { 2749 if (Record.size() < 2) 2750 return error("Invalid record"); 2751 std::string AsmStr, ConstrStr; 2752 bool HasSideEffects = Record[0] & 1; 2753 bool IsAlignStack = Record[0] >> 1; 2754 unsigned AsmStrSize = Record[1]; 2755 if (2+AsmStrSize >= Record.size()) 2756 return error("Invalid record"); 2757 unsigned ConstStrSize = Record[2+AsmStrSize]; 2758 if (3+AsmStrSize+ConstStrSize > Record.size()) 2759 return error("Invalid record"); 2760 2761 for (unsigned i = 0; i != AsmStrSize; ++i) 2762 AsmStr += (char)Record[2+i]; 2763 for (unsigned i = 0; i != ConstStrSize; ++i) 2764 ConstrStr += (char)Record[3+AsmStrSize+i]; 2765 UpgradeInlineAsmString(&AsmStr); 2766 V = InlineAsm::get( 2767 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2768 ConstrStr, HasSideEffects, IsAlignStack); 2769 break; 2770 } 2771 // This version adds support for the asm dialect keywords (e.g., 2772 // inteldialect). 2773 case bitc::CST_CODE_INLINEASM: { 2774 if (Record.size() < 2) 2775 return error("Invalid record"); 2776 std::string AsmStr, ConstrStr; 2777 bool HasSideEffects = Record[0] & 1; 2778 bool IsAlignStack = (Record[0] >> 1) & 1; 2779 unsigned AsmDialect = Record[0] >> 2; 2780 unsigned AsmStrSize = Record[1]; 2781 if (2+AsmStrSize >= Record.size()) 2782 return error("Invalid record"); 2783 unsigned ConstStrSize = Record[2+AsmStrSize]; 2784 if (3+AsmStrSize+ConstStrSize > Record.size()) 2785 return error("Invalid record"); 2786 2787 for (unsigned i = 0; i != AsmStrSize; ++i) 2788 AsmStr += (char)Record[2+i]; 2789 for (unsigned i = 0; i != ConstStrSize; ++i) 2790 ConstrStr += (char)Record[3+AsmStrSize+i]; 2791 UpgradeInlineAsmString(&AsmStr); 2792 V = InlineAsm::get( 2793 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2794 ConstrStr, HasSideEffects, IsAlignStack, 2795 InlineAsm::AsmDialect(AsmDialect)); 2796 break; 2797 } 2798 case bitc::CST_CODE_BLOCKADDRESS:{ 2799 if (Record.size() < 3) 2800 return error("Invalid record"); 2801 Type *FnTy = getTypeByID(Record[0]); 2802 if (!FnTy) 2803 return error("Invalid record"); 2804 Function *Fn = 2805 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2806 if (!Fn) 2807 return error("Invalid record"); 2808 2809 // If the function is already parsed we can insert the block address right 2810 // away. 2811 BasicBlock *BB; 2812 unsigned BBID = Record[2]; 2813 if (!BBID) 2814 // Invalid reference to entry block. 2815 return error("Invalid ID"); 2816 if (!Fn->empty()) { 2817 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2818 for (size_t I = 0, E = BBID; I != E; ++I) { 2819 if (BBI == BBE) 2820 return error("Invalid ID"); 2821 ++BBI; 2822 } 2823 BB = &*BBI; 2824 } else { 2825 // Otherwise insert a placeholder and remember it so it can be inserted 2826 // when the function is parsed. 2827 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2828 if (FwdBBs.empty()) 2829 BasicBlockFwdRefQueue.push_back(Fn); 2830 if (FwdBBs.size() < BBID + 1) 2831 FwdBBs.resize(BBID + 1); 2832 if (!FwdBBs[BBID]) 2833 FwdBBs[BBID] = BasicBlock::Create(Context); 2834 BB = FwdBBs[BBID]; 2835 } 2836 V = BlockAddress::get(Fn, BB); 2837 break; 2838 } 2839 } 2840 2841 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2842 "Incorrect fully structured type provided for Constant"); 2843 ValueList.assignValue(V, NextCstNo, CurFullTy); 2844 ++NextCstNo; 2845 } 2846 } 2847 2848 Error BitcodeReader::parseUseLists() { 2849 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2850 return Err; 2851 2852 // Read all the records. 2853 SmallVector<uint64_t, 64> Record; 2854 2855 while (true) { 2856 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2857 if (!MaybeEntry) 2858 return MaybeEntry.takeError(); 2859 BitstreamEntry Entry = MaybeEntry.get(); 2860 2861 switch (Entry.Kind) { 2862 case BitstreamEntry::SubBlock: // Handled for us already. 2863 case BitstreamEntry::Error: 2864 return error("Malformed block"); 2865 case BitstreamEntry::EndBlock: 2866 return Error::success(); 2867 case BitstreamEntry::Record: 2868 // The interesting case. 2869 break; 2870 } 2871 2872 // Read a use list record. 2873 Record.clear(); 2874 bool IsBB = false; 2875 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2876 if (!MaybeRecord) 2877 return MaybeRecord.takeError(); 2878 switch (MaybeRecord.get()) { 2879 default: // Default behavior: unknown type. 2880 break; 2881 case bitc::USELIST_CODE_BB: 2882 IsBB = true; 2883 LLVM_FALLTHROUGH; 2884 case bitc::USELIST_CODE_DEFAULT: { 2885 unsigned RecordLength = Record.size(); 2886 if (RecordLength < 3) 2887 // Records should have at least an ID and two indexes. 2888 return error("Invalid record"); 2889 unsigned ID = Record.back(); 2890 Record.pop_back(); 2891 2892 Value *V; 2893 if (IsBB) { 2894 assert(ID < FunctionBBs.size() && "Basic block not found"); 2895 V = FunctionBBs[ID]; 2896 } else 2897 V = ValueList[ID]; 2898 unsigned NumUses = 0; 2899 SmallDenseMap<const Use *, unsigned, 16> Order; 2900 for (const Use &U : V->materialized_uses()) { 2901 if (++NumUses > Record.size()) 2902 break; 2903 Order[&U] = Record[NumUses - 1]; 2904 } 2905 if (Order.size() != Record.size() || NumUses > Record.size()) 2906 // Mismatches can happen if the functions are being materialized lazily 2907 // (out-of-order), or a value has been upgraded. 2908 break; 2909 2910 V->sortUseList([&](const Use &L, const Use &R) { 2911 return Order.lookup(&L) < Order.lookup(&R); 2912 }); 2913 break; 2914 } 2915 } 2916 } 2917 } 2918 2919 /// When we see the block for metadata, remember where it is and then skip it. 2920 /// This lets us lazily deserialize the metadata. 2921 Error BitcodeReader::rememberAndSkipMetadata() { 2922 // Save the current stream state. 2923 uint64_t CurBit = Stream.GetCurrentBitNo(); 2924 DeferredMetadataInfo.push_back(CurBit); 2925 2926 // Skip over the block for now. 2927 if (Error Err = Stream.SkipBlock()) 2928 return Err; 2929 return Error::success(); 2930 } 2931 2932 Error BitcodeReader::materializeMetadata() { 2933 for (uint64_t BitPos : DeferredMetadataInfo) { 2934 // Move the bit stream to the saved position. 2935 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2936 return JumpFailed; 2937 if (Error Err = MDLoader->parseModuleMetadata()) 2938 return Err; 2939 } 2940 2941 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2942 // metadata. 2943 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2944 NamedMDNode *LinkerOpts = 2945 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2946 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2947 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2948 } 2949 2950 DeferredMetadataInfo.clear(); 2951 return Error::success(); 2952 } 2953 2954 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2955 2956 /// When we see the block for a function body, remember where it is and then 2957 /// skip it. This lets us lazily deserialize the functions. 2958 Error BitcodeReader::rememberAndSkipFunctionBody() { 2959 // Get the function we are talking about. 2960 if (FunctionsWithBodies.empty()) 2961 return error("Insufficient function protos"); 2962 2963 Function *Fn = FunctionsWithBodies.back(); 2964 FunctionsWithBodies.pop_back(); 2965 2966 // Save the current stream state. 2967 uint64_t CurBit = Stream.GetCurrentBitNo(); 2968 assert( 2969 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2970 "Mismatch between VST and scanned function offsets"); 2971 DeferredFunctionInfo[Fn] = CurBit; 2972 2973 // Skip over the function block for now. 2974 if (Error Err = Stream.SkipBlock()) 2975 return Err; 2976 return Error::success(); 2977 } 2978 2979 Error BitcodeReader::globalCleanup() { 2980 // Patch the initializers for globals and aliases up. 2981 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2982 return Err; 2983 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2984 return error("Malformed global initializer set"); 2985 2986 // Look for intrinsic functions which need to be upgraded at some point 2987 for (Function &F : *TheModule) { 2988 MDLoader->upgradeDebugIntrinsics(F); 2989 Function *NewFn; 2990 if (UpgradeIntrinsicFunction(&F, NewFn)) 2991 UpgradedIntrinsics[&F] = NewFn; 2992 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2993 // Some types could be renamed during loading if several modules are 2994 // loaded in the same LLVMContext (LTO scenario). In this case we should 2995 // remangle intrinsics names as well. 2996 RemangledIntrinsics[&F] = Remangled.getValue(); 2997 } 2998 2999 // Look for global variables which need to be renamed. 3000 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3001 for (GlobalVariable &GV : TheModule->globals()) 3002 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3003 UpgradedVariables.emplace_back(&GV, Upgraded); 3004 for (auto &Pair : UpgradedVariables) { 3005 Pair.first->eraseFromParent(); 3006 TheModule->getGlobalList().push_back(Pair.second); 3007 } 3008 3009 // Force deallocation of memory for these vectors to favor the client that 3010 // want lazy deserialization. 3011 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3012 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3013 IndirectSymbolInits); 3014 return Error::success(); 3015 } 3016 3017 /// Support for lazy parsing of function bodies. This is required if we 3018 /// either have an old bitcode file without a VST forward declaration record, 3019 /// or if we have an anonymous function being materialized, since anonymous 3020 /// functions do not have a name and are therefore not in the VST. 3021 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3022 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3023 return JumpFailed; 3024 3025 if (Stream.AtEndOfStream()) 3026 return error("Could not find function in stream"); 3027 3028 if (!SeenFirstFunctionBody) 3029 return error("Trying to materialize functions before seeing function blocks"); 3030 3031 // An old bitcode file with the symbol table at the end would have 3032 // finished the parse greedily. 3033 assert(SeenValueSymbolTable); 3034 3035 SmallVector<uint64_t, 64> Record; 3036 3037 while (true) { 3038 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3039 if (!MaybeEntry) 3040 return MaybeEntry.takeError(); 3041 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3042 3043 switch (Entry.Kind) { 3044 default: 3045 return error("Expect SubBlock"); 3046 case BitstreamEntry::SubBlock: 3047 switch (Entry.ID) { 3048 default: 3049 return error("Expect function block"); 3050 case bitc::FUNCTION_BLOCK_ID: 3051 if (Error Err = rememberAndSkipFunctionBody()) 3052 return Err; 3053 NextUnreadBit = Stream.GetCurrentBitNo(); 3054 return Error::success(); 3055 } 3056 } 3057 } 3058 } 3059 3060 bool BitcodeReaderBase::readBlockInfo() { 3061 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3062 Stream.ReadBlockInfoBlock(); 3063 if (!MaybeNewBlockInfo) 3064 return true; // FIXME Handle the error. 3065 Optional<BitstreamBlockInfo> NewBlockInfo = 3066 std::move(MaybeNewBlockInfo.get()); 3067 if (!NewBlockInfo) 3068 return true; 3069 BlockInfo = std::move(*NewBlockInfo); 3070 return false; 3071 } 3072 3073 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3074 // v1: [selection_kind, name] 3075 // v2: [strtab_offset, strtab_size, selection_kind] 3076 StringRef Name; 3077 std::tie(Name, Record) = readNameFromStrtab(Record); 3078 3079 if (Record.empty()) 3080 return error("Invalid record"); 3081 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3082 std::string OldFormatName; 3083 if (!UseStrtab) { 3084 if (Record.size() < 2) 3085 return error("Invalid record"); 3086 unsigned ComdatNameSize = Record[1]; 3087 OldFormatName.reserve(ComdatNameSize); 3088 for (unsigned i = 0; i != ComdatNameSize; ++i) 3089 OldFormatName += (char)Record[2 + i]; 3090 Name = OldFormatName; 3091 } 3092 Comdat *C = TheModule->getOrInsertComdat(Name); 3093 C->setSelectionKind(SK); 3094 ComdatList.push_back(C); 3095 return Error::success(); 3096 } 3097 3098 static void inferDSOLocal(GlobalValue *GV) { 3099 // infer dso_local from linkage and visibility if it is not encoded. 3100 if (GV->hasLocalLinkage() || 3101 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3102 GV->setDSOLocal(true); 3103 } 3104 3105 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3106 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3107 // visibility, threadlocal, unnamed_addr, externally_initialized, 3108 // dllstorageclass, comdat, attributes, preemption specifier, 3109 // partition strtab offset, partition strtab size] (name in VST) 3110 // v2: [strtab_offset, strtab_size, v1] 3111 StringRef Name; 3112 std::tie(Name, Record) = readNameFromStrtab(Record); 3113 3114 if (Record.size() < 6) 3115 return error("Invalid record"); 3116 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3117 Type *Ty = flattenPointerTypes(FullTy); 3118 if (!Ty) 3119 return error("Invalid record"); 3120 bool isConstant = Record[1] & 1; 3121 bool explicitType = Record[1] & 2; 3122 unsigned AddressSpace; 3123 if (explicitType) { 3124 AddressSpace = Record[1] >> 2; 3125 } else { 3126 if (!Ty->isPointerTy()) 3127 return error("Invalid type for value"); 3128 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3129 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3130 } 3131 3132 uint64_t RawLinkage = Record[3]; 3133 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3134 MaybeAlign Alignment; 3135 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3136 return Err; 3137 std::string Section; 3138 if (Record[5]) { 3139 if (Record[5] - 1 >= SectionTable.size()) 3140 return error("Invalid ID"); 3141 Section = SectionTable[Record[5] - 1]; 3142 } 3143 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3144 // Local linkage must have default visibility. 3145 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3146 // FIXME: Change to an error if non-default in 4.0. 3147 Visibility = getDecodedVisibility(Record[6]); 3148 3149 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3150 if (Record.size() > 7) 3151 TLM = getDecodedThreadLocalMode(Record[7]); 3152 3153 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3154 if (Record.size() > 8) 3155 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3156 3157 bool ExternallyInitialized = false; 3158 if (Record.size() > 9) 3159 ExternallyInitialized = Record[9]; 3160 3161 GlobalVariable *NewGV = 3162 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3163 nullptr, TLM, AddressSpace, ExternallyInitialized); 3164 NewGV->setAlignment(Alignment); 3165 if (!Section.empty()) 3166 NewGV->setSection(Section); 3167 NewGV->setVisibility(Visibility); 3168 NewGV->setUnnamedAddr(UnnamedAddr); 3169 3170 if (Record.size() > 10) 3171 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3172 else 3173 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3174 3175 FullTy = PointerType::get(FullTy, AddressSpace); 3176 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3177 "Incorrect fully specified type for GlobalVariable"); 3178 ValueList.push_back(NewGV, FullTy); 3179 3180 // Remember which value to use for the global initializer. 3181 if (unsigned InitID = Record[2]) 3182 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3183 3184 if (Record.size() > 11) { 3185 if (unsigned ComdatID = Record[11]) { 3186 if (ComdatID > ComdatList.size()) 3187 return error("Invalid global variable comdat ID"); 3188 NewGV->setComdat(ComdatList[ComdatID - 1]); 3189 } 3190 } else if (hasImplicitComdat(RawLinkage)) { 3191 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3192 } 3193 3194 if (Record.size() > 12) { 3195 auto AS = getAttributes(Record[12]).getFnAttributes(); 3196 NewGV->setAttributes(AS); 3197 } 3198 3199 if (Record.size() > 13) { 3200 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3201 } 3202 inferDSOLocal(NewGV); 3203 3204 // Check whether we have enough values to read a partition name. 3205 if (Record.size() > 15) 3206 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3207 3208 return Error::success(); 3209 } 3210 3211 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3212 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3213 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3214 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3215 // v2: [strtab_offset, strtab_size, v1] 3216 StringRef Name; 3217 std::tie(Name, Record) = readNameFromStrtab(Record); 3218 3219 if (Record.size() < 8) 3220 return error("Invalid record"); 3221 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3222 Type *FTy = flattenPointerTypes(FullFTy); 3223 if (!FTy) 3224 return error("Invalid record"); 3225 if (isa<PointerType>(FTy)) 3226 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3227 3228 if (!isa<FunctionType>(FTy)) 3229 return error("Invalid type for value"); 3230 auto CC = static_cast<CallingConv::ID>(Record[1]); 3231 if (CC & ~CallingConv::MaxID) 3232 return error("Invalid calling convention ID"); 3233 3234 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3235 if (Record.size() > 16) 3236 AddrSpace = Record[16]; 3237 3238 Function *Func = 3239 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3240 AddrSpace, Name, TheModule); 3241 3242 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3243 "Incorrect fully specified type provided for function"); 3244 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3245 3246 Func->setCallingConv(CC); 3247 bool isProto = Record[2]; 3248 uint64_t RawLinkage = Record[3]; 3249 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3250 Func->setAttributes(getAttributes(Record[4])); 3251 3252 // Upgrade any old-style byval without a type by propagating the argument's 3253 // pointee type. There should be no opaque pointers where the byval type is 3254 // implicit. 3255 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3256 if (!Func->hasParamAttribute(i, Attribute::ByVal)) 3257 continue; 3258 3259 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3260 Func->removeParamAttr(i, Attribute::ByVal); 3261 Func->addParamAttr(i, Attribute::getWithByValType( 3262 Context, getPointerElementFlatType(PTy))); 3263 } 3264 3265 MaybeAlign Alignment; 3266 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3267 return Err; 3268 Func->setAlignment(Alignment); 3269 if (Record[6]) { 3270 if (Record[6] - 1 >= SectionTable.size()) 3271 return error("Invalid ID"); 3272 Func->setSection(SectionTable[Record[6] - 1]); 3273 } 3274 // Local linkage must have default visibility. 3275 if (!Func->hasLocalLinkage()) 3276 // FIXME: Change to an error if non-default in 4.0. 3277 Func->setVisibility(getDecodedVisibility(Record[7])); 3278 if (Record.size() > 8 && Record[8]) { 3279 if (Record[8] - 1 >= GCTable.size()) 3280 return error("Invalid ID"); 3281 Func->setGC(GCTable[Record[8] - 1]); 3282 } 3283 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3284 if (Record.size() > 9) 3285 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3286 Func->setUnnamedAddr(UnnamedAddr); 3287 if (Record.size() > 10 && Record[10] != 0) 3288 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3289 3290 if (Record.size() > 11) 3291 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3292 else 3293 upgradeDLLImportExportLinkage(Func, RawLinkage); 3294 3295 if (Record.size() > 12) { 3296 if (unsigned ComdatID = Record[12]) { 3297 if (ComdatID > ComdatList.size()) 3298 return error("Invalid function comdat ID"); 3299 Func->setComdat(ComdatList[ComdatID - 1]); 3300 } 3301 } else if (hasImplicitComdat(RawLinkage)) { 3302 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3303 } 3304 3305 if (Record.size() > 13 && Record[13] != 0) 3306 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3307 3308 if (Record.size() > 14 && Record[14] != 0) 3309 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3310 3311 if (Record.size() > 15) { 3312 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3313 } 3314 inferDSOLocal(Func); 3315 3316 // Record[16] is the address space number. 3317 3318 // Check whether we have enough values to read a partition name. 3319 if (Record.size() > 18) 3320 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3321 3322 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3323 assert(Func->getType() == flattenPointerTypes(FullTy) && 3324 "Incorrect fully specified type provided for Function"); 3325 ValueList.push_back(Func, FullTy); 3326 3327 // If this is a function with a body, remember the prototype we are 3328 // creating now, so that we can match up the body with them later. 3329 if (!isProto) { 3330 Func->setIsMaterializable(true); 3331 FunctionsWithBodies.push_back(Func); 3332 DeferredFunctionInfo[Func] = 0; 3333 } 3334 return Error::success(); 3335 } 3336 3337 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3338 unsigned BitCode, ArrayRef<uint64_t> Record) { 3339 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3340 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3341 // dllstorageclass, threadlocal, unnamed_addr, 3342 // preemption specifier] (name in VST) 3343 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3344 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3345 // preemption specifier] (name in VST) 3346 // v2: [strtab_offset, strtab_size, v1] 3347 StringRef Name; 3348 std::tie(Name, Record) = readNameFromStrtab(Record); 3349 3350 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3351 if (Record.size() < (3 + (unsigned)NewRecord)) 3352 return error("Invalid record"); 3353 unsigned OpNum = 0; 3354 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3355 Type *Ty = flattenPointerTypes(FullTy); 3356 if (!Ty) 3357 return error("Invalid record"); 3358 3359 unsigned AddrSpace; 3360 if (!NewRecord) { 3361 auto *PTy = dyn_cast<PointerType>(Ty); 3362 if (!PTy) 3363 return error("Invalid type for value"); 3364 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3365 AddrSpace = PTy->getAddressSpace(); 3366 } else { 3367 AddrSpace = Record[OpNum++]; 3368 } 3369 3370 auto Val = Record[OpNum++]; 3371 auto Linkage = Record[OpNum++]; 3372 GlobalIndirectSymbol *NewGA; 3373 if (BitCode == bitc::MODULE_CODE_ALIAS || 3374 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3375 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3376 TheModule); 3377 else 3378 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3379 nullptr, TheModule); 3380 3381 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3382 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3383 // Old bitcode files didn't have visibility field. 3384 // Local linkage must have default visibility. 3385 if (OpNum != Record.size()) { 3386 auto VisInd = OpNum++; 3387 if (!NewGA->hasLocalLinkage()) 3388 // FIXME: Change to an error if non-default in 4.0. 3389 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3390 } 3391 if (BitCode == bitc::MODULE_CODE_ALIAS || 3392 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3393 if (OpNum != Record.size()) 3394 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3395 else 3396 upgradeDLLImportExportLinkage(NewGA, Linkage); 3397 if (OpNum != Record.size()) 3398 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3399 if (OpNum != Record.size()) 3400 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3401 } 3402 if (OpNum != Record.size()) 3403 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3404 inferDSOLocal(NewGA); 3405 3406 // Check whether we have enough values to read a partition name. 3407 if (OpNum + 1 < Record.size()) { 3408 NewGA->setPartition( 3409 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3410 OpNum += 2; 3411 } 3412 3413 FullTy = PointerType::get(FullTy, AddrSpace); 3414 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3415 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3416 ValueList.push_back(NewGA, FullTy); 3417 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3418 return Error::success(); 3419 } 3420 3421 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3422 bool ShouldLazyLoadMetadata) { 3423 if (ResumeBit) { 3424 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3425 return JumpFailed; 3426 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3427 return Err; 3428 3429 SmallVector<uint64_t, 64> Record; 3430 3431 // Parts of bitcode parsing depend on the datalayout. Make sure we 3432 // finalize the datalayout before we run any of that code. 3433 bool ResolvedDataLayout = false; 3434 auto ResolveDataLayout = [&] { 3435 if (ResolvedDataLayout) 3436 return; 3437 3438 // datalayout and triple can't be parsed after this point. 3439 ResolvedDataLayout = true; 3440 3441 // Upgrade data layout string. 3442 std::string DL = llvm::UpgradeDataLayoutString( 3443 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3444 TheModule->setDataLayout(DL); 3445 }; 3446 3447 // Read all the records for this module. 3448 while (true) { 3449 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3450 if (!MaybeEntry) 3451 return MaybeEntry.takeError(); 3452 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3453 3454 switch (Entry.Kind) { 3455 case BitstreamEntry::Error: 3456 return error("Malformed block"); 3457 case BitstreamEntry::EndBlock: 3458 ResolveDataLayout(); 3459 return globalCleanup(); 3460 3461 case BitstreamEntry::SubBlock: 3462 switch (Entry.ID) { 3463 default: // Skip unknown content. 3464 if (Error Err = Stream.SkipBlock()) 3465 return Err; 3466 break; 3467 case bitc::BLOCKINFO_BLOCK_ID: 3468 if (readBlockInfo()) 3469 return error("Malformed block"); 3470 break; 3471 case bitc::PARAMATTR_BLOCK_ID: 3472 if (Error Err = parseAttributeBlock()) 3473 return Err; 3474 break; 3475 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3476 if (Error Err = parseAttributeGroupBlock()) 3477 return Err; 3478 break; 3479 case bitc::TYPE_BLOCK_ID_NEW: 3480 if (Error Err = parseTypeTable()) 3481 return Err; 3482 break; 3483 case bitc::VALUE_SYMTAB_BLOCK_ID: 3484 if (!SeenValueSymbolTable) { 3485 // Either this is an old form VST without function index and an 3486 // associated VST forward declaration record (which would have caused 3487 // the VST to be jumped to and parsed before it was encountered 3488 // normally in the stream), or there were no function blocks to 3489 // trigger an earlier parsing of the VST. 3490 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3491 if (Error Err = parseValueSymbolTable()) 3492 return Err; 3493 SeenValueSymbolTable = true; 3494 } else { 3495 // We must have had a VST forward declaration record, which caused 3496 // the parser to jump to and parse the VST earlier. 3497 assert(VSTOffset > 0); 3498 if (Error Err = Stream.SkipBlock()) 3499 return Err; 3500 } 3501 break; 3502 case bitc::CONSTANTS_BLOCK_ID: 3503 if (Error Err = parseConstants()) 3504 return Err; 3505 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3506 return Err; 3507 break; 3508 case bitc::METADATA_BLOCK_ID: 3509 if (ShouldLazyLoadMetadata) { 3510 if (Error Err = rememberAndSkipMetadata()) 3511 return Err; 3512 break; 3513 } 3514 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3515 if (Error Err = MDLoader->parseModuleMetadata()) 3516 return Err; 3517 break; 3518 case bitc::METADATA_KIND_BLOCK_ID: 3519 if (Error Err = MDLoader->parseMetadataKinds()) 3520 return Err; 3521 break; 3522 case bitc::FUNCTION_BLOCK_ID: 3523 ResolveDataLayout(); 3524 3525 // If this is the first function body we've seen, reverse the 3526 // FunctionsWithBodies list. 3527 if (!SeenFirstFunctionBody) { 3528 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3529 if (Error Err = globalCleanup()) 3530 return Err; 3531 SeenFirstFunctionBody = true; 3532 } 3533 3534 if (VSTOffset > 0) { 3535 // If we have a VST forward declaration record, make sure we 3536 // parse the VST now if we haven't already. It is needed to 3537 // set up the DeferredFunctionInfo vector for lazy reading. 3538 if (!SeenValueSymbolTable) { 3539 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3540 return Err; 3541 SeenValueSymbolTable = true; 3542 // Fall through so that we record the NextUnreadBit below. 3543 // This is necessary in case we have an anonymous function that 3544 // is later materialized. Since it will not have a VST entry we 3545 // need to fall back to the lazy parse to find its offset. 3546 } else { 3547 // If we have a VST forward declaration record, but have already 3548 // parsed the VST (just above, when the first function body was 3549 // encountered here), then we are resuming the parse after 3550 // materializing functions. The ResumeBit points to the 3551 // start of the last function block recorded in the 3552 // DeferredFunctionInfo map. Skip it. 3553 if (Error Err = Stream.SkipBlock()) 3554 return Err; 3555 continue; 3556 } 3557 } 3558 3559 // Support older bitcode files that did not have the function 3560 // index in the VST, nor a VST forward declaration record, as 3561 // well as anonymous functions that do not have VST entries. 3562 // Build the DeferredFunctionInfo vector on the fly. 3563 if (Error Err = rememberAndSkipFunctionBody()) 3564 return Err; 3565 3566 // Suspend parsing when we reach the function bodies. Subsequent 3567 // materialization calls will resume it when necessary. If the bitcode 3568 // file is old, the symbol table will be at the end instead and will not 3569 // have been seen yet. In this case, just finish the parse now. 3570 if (SeenValueSymbolTable) { 3571 NextUnreadBit = Stream.GetCurrentBitNo(); 3572 // After the VST has been parsed, we need to make sure intrinsic name 3573 // are auto-upgraded. 3574 return globalCleanup(); 3575 } 3576 break; 3577 case bitc::USELIST_BLOCK_ID: 3578 if (Error Err = parseUseLists()) 3579 return Err; 3580 break; 3581 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3582 if (Error Err = parseOperandBundleTags()) 3583 return Err; 3584 break; 3585 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3586 if (Error Err = parseSyncScopeNames()) 3587 return Err; 3588 break; 3589 } 3590 continue; 3591 3592 case BitstreamEntry::Record: 3593 // The interesting case. 3594 break; 3595 } 3596 3597 // Read a record. 3598 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3599 if (!MaybeBitCode) 3600 return MaybeBitCode.takeError(); 3601 switch (unsigned BitCode = MaybeBitCode.get()) { 3602 default: break; // Default behavior, ignore unknown content. 3603 case bitc::MODULE_CODE_VERSION: { 3604 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3605 if (!VersionOrErr) 3606 return VersionOrErr.takeError(); 3607 UseRelativeIDs = *VersionOrErr >= 1; 3608 break; 3609 } 3610 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3611 if (ResolvedDataLayout) 3612 return error("target triple too late in module"); 3613 std::string S; 3614 if (convertToString(Record, 0, S)) 3615 return error("Invalid record"); 3616 TheModule->setTargetTriple(S); 3617 break; 3618 } 3619 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3620 if (ResolvedDataLayout) 3621 return error("datalayout too late in module"); 3622 std::string S; 3623 if (convertToString(Record, 0, S)) 3624 return error("Invalid record"); 3625 TheModule->setDataLayout(S); 3626 break; 3627 } 3628 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3629 std::string S; 3630 if (convertToString(Record, 0, S)) 3631 return error("Invalid record"); 3632 TheModule->setModuleInlineAsm(S); 3633 break; 3634 } 3635 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3636 // FIXME: Remove in 4.0. 3637 std::string S; 3638 if (convertToString(Record, 0, S)) 3639 return error("Invalid record"); 3640 // Ignore value. 3641 break; 3642 } 3643 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3644 std::string S; 3645 if (convertToString(Record, 0, S)) 3646 return error("Invalid record"); 3647 SectionTable.push_back(S); 3648 break; 3649 } 3650 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3651 std::string S; 3652 if (convertToString(Record, 0, S)) 3653 return error("Invalid record"); 3654 GCTable.push_back(S); 3655 break; 3656 } 3657 case bitc::MODULE_CODE_COMDAT: 3658 if (Error Err = parseComdatRecord(Record)) 3659 return Err; 3660 break; 3661 case bitc::MODULE_CODE_GLOBALVAR: 3662 if (Error Err = parseGlobalVarRecord(Record)) 3663 return Err; 3664 break; 3665 case bitc::MODULE_CODE_FUNCTION: 3666 ResolveDataLayout(); 3667 if (Error Err = parseFunctionRecord(Record)) 3668 return Err; 3669 break; 3670 case bitc::MODULE_CODE_IFUNC: 3671 case bitc::MODULE_CODE_ALIAS: 3672 case bitc::MODULE_CODE_ALIAS_OLD: 3673 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3674 return Err; 3675 break; 3676 /// MODULE_CODE_VSTOFFSET: [offset] 3677 case bitc::MODULE_CODE_VSTOFFSET: 3678 if (Record.size() < 1) 3679 return error("Invalid record"); 3680 // Note that we subtract 1 here because the offset is relative to one word 3681 // before the start of the identification or module block, which was 3682 // historically always the start of the regular bitcode header. 3683 VSTOffset = Record[0] - 1; 3684 break; 3685 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3686 case bitc::MODULE_CODE_SOURCE_FILENAME: 3687 SmallString<128> ValueName; 3688 if (convertToString(Record, 0, ValueName)) 3689 return error("Invalid record"); 3690 TheModule->setSourceFileName(ValueName); 3691 break; 3692 } 3693 Record.clear(); 3694 } 3695 } 3696 3697 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3698 bool IsImporting) { 3699 TheModule = M; 3700 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3701 [&](unsigned ID) { return getTypeByID(ID); }); 3702 return parseModule(0, ShouldLazyLoadMetadata); 3703 } 3704 3705 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3706 if (!isa<PointerType>(PtrType)) 3707 return error("Load/Store operand is not a pointer type"); 3708 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3709 3710 if (ValType && ValType != ElemType) 3711 return error("Explicit load/store type does not match pointee " 3712 "type of pointer operand"); 3713 if (!PointerType::isLoadableOrStorableType(ElemType)) 3714 return error("Cannot load/store from pointer"); 3715 return Error::success(); 3716 } 3717 3718 void BitcodeReader::propagateByValTypes(CallBase *CB, 3719 ArrayRef<Type *> ArgsFullTys) { 3720 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3721 if (!CB->paramHasAttr(i, Attribute::ByVal)) 3722 continue; 3723 3724 CB->removeParamAttr(i, Attribute::ByVal); 3725 CB->addParamAttr( 3726 i, Attribute::getWithByValType( 3727 Context, getPointerElementFlatType(ArgsFullTys[i]))); 3728 } 3729 } 3730 3731 /// Lazily parse the specified function body block. 3732 Error BitcodeReader::parseFunctionBody(Function *F) { 3733 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3734 return Err; 3735 3736 // Unexpected unresolved metadata when parsing function. 3737 if (MDLoader->hasFwdRefs()) 3738 return error("Invalid function metadata: incoming forward references"); 3739 3740 InstructionList.clear(); 3741 unsigned ModuleValueListSize = ValueList.size(); 3742 unsigned ModuleMDLoaderSize = MDLoader->size(); 3743 3744 // Add all the function arguments to the value table. 3745 unsigned ArgNo = 0; 3746 FunctionType *FullFTy = FunctionTypes[F]; 3747 for (Argument &I : F->args()) { 3748 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3749 "Incorrect fully specified type for Function Argument"); 3750 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3751 } 3752 unsigned NextValueNo = ValueList.size(); 3753 BasicBlock *CurBB = nullptr; 3754 unsigned CurBBNo = 0; 3755 3756 DebugLoc LastLoc; 3757 auto getLastInstruction = [&]() -> Instruction * { 3758 if (CurBB && !CurBB->empty()) 3759 return &CurBB->back(); 3760 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3761 !FunctionBBs[CurBBNo - 1]->empty()) 3762 return &FunctionBBs[CurBBNo - 1]->back(); 3763 return nullptr; 3764 }; 3765 3766 std::vector<OperandBundleDef> OperandBundles; 3767 3768 // Read all the records. 3769 SmallVector<uint64_t, 64> Record; 3770 3771 while (true) { 3772 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3773 if (!MaybeEntry) 3774 return MaybeEntry.takeError(); 3775 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3776 3777 switch (Entry.Kind) { 3778 case BitstreamEntry::Error: 3779 return error("Malformed block"); 3780 case BitstreamEntry::EndBlock: 3781 goto OutOfRecordLoop; 3782 3783 case BitstreamEntry::SubBlock: 3784 switch (Entry.ID) { 3785 default: // Skip unknown content. 3786 if (Error Err = Stream.SkipBlock()) 3787 return Err; 3788 break; 3789 case bitc::CONSTANTS_BLOCK_ID: 3790 if (Error Err = parseConstants()) 3791 return Err; 3792 NextValueNo = ValueList.size(); 3793 break; 3794 case bitc::VALUE_SYMTAB_BLOCK_ID: 3795 if (Error Err = parseValueSymbolTable()) 3796 return Err; 3797 break; 3798 case bitc::METADATA_ATTACHMENT_ID: 3799 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3800 return Err; 3801 break; 3802 case bitc::METADATA_BLOCK_ID: 3803 assert(DeferredMetadataInfo.empty() && 3804 "Must read all module-level metadata before function-level"); 3805 if (Error Err = MDLoader->parseFunctionMetadata()) 3806 return Err; 3807 break; 3808 case bitc::USELIST_BLOCK_ID: 3809 if (Error Err = parseUseLists()) 3810 return Err; 3811 break; 3812 } 3813 continue; 3814 3815 case BitstreamEntry::Record: 3816 // The interesting case. 3817 break; 3818 } 3819 3820 // Read a record. 3821 Record.clear(); 3822 Instruction *I = nullptr; 3823 Type *FullTy = nullptr; 3824 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3825 if (!MaybeBitCode) 3826 return MaybeBitCode.takeError(); 3827 switch (unsigned BitCode = MaybeBitCode.get()) { 3828 default: // Default behavior: reject 3829 return error("Invalid value"); 3830 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3831 if (Record.size() < 1 || Record[0] == 0) 3832 return error("Invalid record"); 3833 // Create all the basic blocks for the function. 3834 FunctionBBs.resize(Record[0]); 3835 3836 // See if anything took the address of blocks in this function. 3837 auto BBFRI = BasicBlockFwdRefs.find(F); 3838 if (BBFRI == BasicBlockFwdRefs.end()) { 3839 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3840 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3841 } else { 3842 auto &BBRefs = BBFRI->second; 3843 // Check for invalid basic block references. 3844 if (BBRefs.size() > FunctionBBs.size()) 3845 return error("Invalid ID"); 3846 assert(!BBRefs.empty() && "Unexpected empty array"); 3847 assert(!BBRefs.front() && "Invalid reference to entry block"); 3848 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3849 ++I) 3850 if (I < RE && BBRefs[I]) { 3851 BBRefs[I]->insertInto(F); 3852 FunctionBBs[I] = BBRefs[I]; 3853 } else { 3854 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3855 } 3856 3857 // Erase from the table. 3858 BasicBlockFwdRefs.erase(BBFRI); 3859 } 3860 3861 CurBB = FunctionBBs[0]; 3862 continue; 3863 } 3864 3865 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3866 // This record indicates that the last instruction is at the same 3867 // location as the previous instruction with a location. 3868 I = getLastInstruction(); 3869 3870 if (!I) 3871 return error("Invalid record"); 3872 I->setDebugLoc(LastLoc); 3873 I = nullptr; 3874 continue; 3875 3876 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3877 I = getLastInstruction(); 3878 if (!I || Record.size() < 4) 3879 return error("Invalid record"); 3880 3881 unsigned Line = Record[0], Col = Record[1]; 3882 unsigned ScopeID = Record[2], IAID = Record[3]; 3883 bool isImplicitCode = Record.size() == 5 && Record[4]; 3884 3885 MDNode *Scope = nullptr, *IA = nullptr; 3886 if (ScopeID) { 3887 Scope = dyn_cast_or_null<MDNode>( 3888 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3889 if (!Scope) 3890 return error("Invalid record"); 3891 } 3892 if (IAID) { 3893 IA = dyn_cast_or_null<MDNode>( 3894 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3895 if (!IA) 3896 return error("Invalid record"); 3897 } 3898 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3899 I->setDebugLoc(LastLoc); 3900 I = nullptr; 3901 continue; 3902 } 3903 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3904 unsigned OpNum = 0; 3905 Value *LHS; 3906 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3907 OpNum+1 > Record.size()) 3908 return error("Invalid record"); 3909 3910 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3911 if (Opc == -1) 3912 return error("Invalid record"); 3913 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3914 InstructionList.push_back(I); 3915 if (OpNum < Record.size()) { 3916 if (isa<FPMathOperator>(I)) { 3917 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3918 if (FMF.any()) 3919 I->setFastMathFlags(FMF); 3920 } 3921 } 3922 break; 3923 } 3924 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3925 unsigned OpNum = 0; 3926 Value *LHS, *RHS; 3927 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3928 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3929 OpNum+1 > Record.size()) 3930 return error("Invalid record"); 3931 3932 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3933 if (Opc == -1) 3934 return error("Invalid record"); 3935 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3936 InstructionList.push_back(I); 3937 if (OpNum < Record.size()) { 3938 if (Opc == Instruction::Add || 3939 Opc == Instruction::Sub || 3940 Opc == Instruction::Mul || 3941 Opc == Instruction::Shl) { 3942 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3943 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3944 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3945 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3946 } else if (Opc == Instruction::SDiv || 3947 Opc == Instruction::UDiv || 3948 Opc == Instruction::LShr || 3949 Opc == Instruction::AShr) { 3950 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3951 cast<BinaryOperator>(I)->setIsExact(true); 3952 } else if (isa<FPMathOperator>(I)) { 3953 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3954 if (FMF.any()) 3955 I->setFastMathFlags(FMF); 3956 } 3957 3958 } 3959 break; 3960 } 3961 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3962 unsigned OpNum = 0; 3963 Value *Op; 3964 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3965 OpNum+2 != Record.size()) 3966 return error("Invalid record"); 3967 3968 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 3969 Type *ResTy = flattenPointerTypes(FullTy); 3970 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3971 if (Opc == -1 || !ResTy) 3972 return error("Invalid record"); 3973 Instruction *Temp = nullptr; 3974 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3975 if (Temp) { 3976 InstructionList.push_back(Temp); 3977 assert(CurBB && "No current BB?"); 3978 CurBB->getInstList().push_back(Temp); 3979 } 3980 } else { 3981 auto CastOp = (Instruction::CastOps)Opc; 3982 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3983 return error("Invalid cast"); 3984 I = CastInst::Create(CastOp, Op, ResTy); 3985 } 3986 InstructionList.push_back(I); 3987 break; 3988 } 3989 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3990 case bitc::FUNC_CODE_INST_GEP_OLD: 3991 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3992 unsigned OpNum = 0; 3993 3994 Type *Ty; 3995 bool InBounds; 3996 3997 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3998 InBounds = Record[OpNum++]; 3999 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4000 Ty = flattenPointerTypes(FullTy); 4001 } else { 4002 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4003 Ty = nullptr; 4004 } 4005 4006 Value *BasePtr; 4007 Type *FullBaseTy = nullptr; 4008 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 4009 return error("Invalid record"); 4010 4011 if (!Ty) { 4012 std::tie(FullTy, Ty) = 4013 getPointerElementTypes(FullBaseTy->getScalarType()); 4014 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 4015 return error( 4016 "Explicit gep type does not match pointee type of pointer operand"); 4017 4018 SmallVector<Value*, 16> GEPIdx; 4019 while (OpNum != Record.size()) { 4020 Value *Op; 4021 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4022 return error("Invalid record"); 4023 GEPIdx.push_back(Op); 4024 } 4025 4026 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4027 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 4028 4029 InstructionList.push_back(I); 4030 if (InBounds) 4031 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4032 break; 4033 } 4034 4035 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4036 // EXTRACTVAL: [opty, opval, n x indices] 4037 unsigned OpNum = 0; 4038 Value *Agg; 4039 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4040 return error("Invalid record"); 4041 4042 unsigned RecSize = Record.size(); 4043 if (OpNum == RecSize) 4044 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4045 4046 SmallVector<unsigned, 4> EXTRACTVALIdx; 4047 for (; OpNum != RecSize; ++OpNum) { 4048 bool IsArray = FullTy->isArrayTy(); 4049 bool IsStruct = FullTy->isStructTy(); 4050 uint64_t Index = Record[OpNum]; 4051 4052 if (!IsStruct && !IsArray) 4053 return error("EXTRACTVAL: Invalid type"); 4054 if ((unsigned)Index != Index) 4055 return error("Invalid value"); 4056 if (IsStruct && Index >= FullTy->getStructNumElements()) 4057 return error("EXTRACTVAL: Invalid struct index"); 4058 if (IsArray && Index >= FullTy->getArrayNumElements()) 4059 return error("EXTRACTVAL: Invalid array index"); 4060 EXTRACTVALIdx.push_back((unsigned)Index); 4061 4062 if (IsStruct) 4063 FullTy = FullTy->getStructElementType(Index); 4064 else 4065 FullTy = FullTy->getArrayElementType(); 4066 } 4067 4068 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4069 InstructionList.push_back(I); 4070 break; 4071 } 4072 4073 case bitc::FUNC_CODE_INST_INSERTVAL: { 4074 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4075 unsigned OpNum = 0; 4076 Value *Agg; 4077 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4078 return error("Invalid record"); 4079 Value *Val; 4080 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4081 return error("Invalid record"); 4082 4083 unsigned RecSize = Record.size(); 4084 if (OpNum == RecSize) 4085 return error("INSERTVAL: Invalid instruction with 0 indices"); 4086 4087 SmallVector<unsigned, 4> INSERTVALIdx; 4088 Type *CurTy = Agg->getType(); 4089 for (; OpNum != RecSize; ++OpNum) { 4090 bool IsArray = CurTy->isArrayTy(); 4091 bool IsStruct = CurTy->isStructTy(); 4092 uint64_t Index = Record[OpNum]; 4093 4094 if (!IsStruct && !IsArray) 4095 return error("INSERTVAL: Invalid type"); 4096 if ((unsigned)Index != Index) 4097 return error("Invalid value"); 4098 if (IsStruct && Index >= CurTy->getStructNumElements()) 4099 return error("INSERTVAL: Invalid struct index"); 4100 if (IsArray && Index >= CurTy->getArrayNumElements()) 4101 return error("INSERTVAL: Invalid array index"); 4102 4103 INSERTVALIdx.push_back((unsigned)Index); 4104 if (IsStruct) 4105 CurTy = CurTy->getStructElementType(Index); 4106 else 4107 CurTy = CurTy->getArrayElementType(); 4108 } 4109 4110 if (CurTy != Val->getType()) 4111 return error("Inserted value type doesn't match aggregate type"); 4112 4113 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4114 InstructionList.push_back(I); 4115 break; 4116 } 4117 4118 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4119 // obsolete form of select 4120 // handles select i1 ... in old bitcode 4121 unsigned OpNum = 0; 4122 Value *TrueVal, *FalseVal, *Cond; 4123 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4124 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4125 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4126 return error("Invalid record"); 4127 4128 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4129 InstructionList.push_back(I); 4130 break; 4131 } 4132 4133 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4134 // new form of select 4135 // handles select i1 or select [N x i1] 4136 unsigned OpNum = 0; 4137 Value *TrueVal, *FalseVal, *Cond; 4138 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4139 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4140 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4141 return error("Invalid record"); 4142 4143 // select condition can be either i1 or [N x i1] 4144 if (VectorType* vector_type = 4145 dyn_cast<VectorType>(Cond->getType())) { 4146 // expect <n x i1> 4147 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4148 return error("Invalid type for value"); 4149 } else { 4150 // expect i1 4151 if (Cond->getType() != Type::getInt1Ty(Context)) 4152 return error("Invalid type for value"); 4153 } 4154 4155 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4156 InstructionList.push_back(I); 4157 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4158 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4159 if (FMF.any()) 4160 I->setFastMathFlags(FMF); 4161 } 4162 break; 4163 } 4164 4165 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4166 unsigned OpNum = 0; 4167 Value *Vec, *Idx; 4168 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4169 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4170 return error("Invalid record"); 4171 if (!Vec->getType()->isVectorTy()) 4172 return error("Invalid type for value"); 4173 I = ExtractElementInst::Create(Vec, Idx); 4174 FullTy = cast<VectorType>(FullTy)->getElementType(); 4175 InstructionList.push_back(I); 4176 break; 4177 } 4178 4179 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4180 unsigned OpNum = 0; 4181 Value *Vec, *Elt, *Idx; 4182 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4183 return error("Invalid record"); 4184 if (!Vec->getType()->isVectorTy()) 4185 return error("Invalid type for value"); 4186 if (popValue(Record, OpNum, NextValueNo, 4187 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4188 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4189 return error("Invalid record"); 4190 I = InsertElementInst::Create(Vec, Elt, Idx); 4191 InstructionList.push_back(I); 4192 break; 4193 } 4194 4195 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4196 unsigned OpNum = 0; 4197 Value *Vec1, *Vec2, *Mask; 4198 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4199 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4200 return error("Invalid record"); 4201 4202 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4203 return error("Invalid record"); 4204 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4205 return error("Invalid type for value"); 4206 4207 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4208 FullTy = 4209 VectorType::get(cast<VectorType>(FullTy)->getElementType(), 4210 cast<VectorType>(Mask->getType())->getElementCount()); 4211 InstructionList.push_back(I); 4212 break; 4213 } 4214 4215 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4216 // Old form of ICmp/FCmp returning bool 4217 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4218 // both legal on vectors but had different behaviour. 4219 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4220 // FCmp/ICmp returning bool or vector of bool 4221 4222 unsigned OpNum = 0; 4223 Value *LHS, *RHS; 4224 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4225 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4226 return error("Invalid record"); 4227 4228 if (OpNum >= Record.size()) 4229 return error( 4230 "Invalid record: operand number exceeded available operands"); 4231 4232 unsigned PredVal = Record[OpNum]; 4233 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4234 FastMathFlags FMF; 4235 if (IsFP && Record.size() > OpNum+1) 4236 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4237 4238 if (OpNum+1 != Record.size()) 4239 return error("Invalid record"); 4240 4241 if (LHS->getType()->isFPOrFPVectorTy()) 4242 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4243 else 4244 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4245 4246 if (FMF.any()) 4247 I->setFastMathFlags(FMF); 4248 InstructionList.push_back(I); 4249 break; 4250 } 4251 4252 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4253 { 4254 unsigned Size = Record.size(); 4255 if (Size == 0) { 4256 I = ReturnInst::Create(Context); 4257 InstructionList.push_back(I); 4258 break; 4259 } 4260 4261 unsigned OpNum = 0; 4262 Value *Op = nullptr; 4263 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4264 return error("Invalid record"); 4265 if (OpNum != Record.size()) 4266 return error("Invalid record"); 4267 4268 I = ReturnInst::Create(Context, Op); 4269 InstructionList.push_back(I); 4270 break; 4271 } 4272 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4273 if (Record.size() != 1 && Record.size() != 3) 4274 return error("Invalid record"); 4275 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4276 if (!TrueDest) 4277 return error("Invalid record"); 4278 4279 if (Record.size() == 1) { 4280 I = BranchInst::Create(TrueDest); 4281 InstructionList.push_back(I); 4282 } 4283 else { 4284 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4285 Value *Cond = getValue(Record, 2, NextValueNo, 4286 Type::getInt1Ty(Context)); 4287 if (!FalseDest || !Cond) 4288 return error("Invalid record"); 4289 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4290 InstructionList.push_back(I); 4291 } 4292 break; 4293 } 4294 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4295 if (Record.size() != 1 && Record.size() != 2) 4296 return error("Invalid record"); 4297 unsigned Idx = 0; 4298 Value *CleanupPad = 4299 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4300 if (!CleanupPad) 4301 return error("Invalid record"); 4302 BasicBlock *UnwindDest = nullptr; 4303 if (Record.size() == 2) { 4304 UnwindDest = getBasicBlock(Record[Idx++]); 4305 if (!UnwindDest) 4306 return error("Invalid record"); 4307 } 4308 4309 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4310 InstructionList.push_back(I); 4311 break; 4312 } 4313 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4314 if (Record.size() != 2) 4315 return error("Invalid record"); 4316 unsigned Idx = 0; 4317 Value *CatchPad = 4318 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4319 if (!CatchPad) 4320 return error("Invalid record"); 4321 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4322 if (!BB) 4323 return error("Invalid record"); 4324 4325 I = CatchReturnInst::Create(CatchPad, BB); 4326 InstructionList.push_back(I); 4327 break; 4328 } 4329 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4330 // We must have, at minimum, the outer scope and the number of arguments. 4331 if (Record.size() < 2) 4332 return error("Invalid record"); 4333 4334 unsigned Idx = 0; 4335 4336 Value *ParentPad = 4337 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4338 4339 unsigned NumHandlers = Record[Idx++]; 4340 4341 SmallVector<BasicBlock *, 2> Handlers; 4342 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4343 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4344 if (!BB) 4345 return error("Invalid record"); 4346 Handlers.push_back(BB); 4347 } 4348 4349 BasicBlock *UnwindDest = nullptr; 4350 if (Idx + 1 == Record.size()) { 4351 UnwindDest = getBasicBlock(Record[Idx++]); 4352 if (!UnwindDest) 4353 return error("Invalid record"); 4354 } 4355 4356 if (Record.size() != Idx) 4357 return error("Invalid record"); 4358 4359 auto *CatchSwitch = 4360 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4361 for (BasicBlock *Handler : Handlers) 4362 CatchSwitch->addHandler(Handler); 4363 I = CatchSwitch; 4364 InstructionList.push_back(I); 4365 break; 4366 } 4367 case bitc::FUNC_CODE_INST_CATCHPAD: 4368 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4369 // We must have, at minimum, the outer scope and the number of arguments. 4370 if (Record.size() < 2) 4371 return error("Invalid record"); 4372 4373 unsigned Idx = 0; 4374 4375 Value *ParentPad = 4376 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4377 4378 unsigned NumArgOperands = Record[Idx++]; 4379 4380 SmallVector<Value *, 2> Args; 4381 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4382 Value *Val; 4383 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4384 return error("Invalid record"); 4385 Args.push_back(Val); 4386 } 4387 4388 if (Record.size() != Idx) 4389 return error("Invalid record"); 4390 4391 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4392 I = CleanupPadInst::Create(ParentPad, Args); 4393 else 4394 I = CatchPadInst::Create(ParentPad, Args); 4395 InstructionList.push_back(I); 4396 break; 4397 } 4398 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4399 // Check magic 4400 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4401 // "New" SwitchInst format with case ranges. The changes to write this 4402 // format were reverted but we still recognize bitcode that uses it. 4403 // Hopefully someday we will have support for case ranges and can use 4404 // this format again. 4405 4406 Type *OpTy = getTypeByID(Record[1]); 4407 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4408 4409 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4410 BasicBlock *Default = getBasicBlock(Record[3]); 4411 if (!OpTy || !Cond || !Default) 4412 return error("Invalid record"); 4413 4414 unsigned NumCases = Record[4]; 4415 4416 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4417 InstructionList.push_back(SI); 4418 4419 unsigned CurIdx = 5; 4420 for (unsigned i = 0; i != NumCases; ++i) { 4421 SmallVector<ConstantInt*, 1> CaseVals; 4422 unsigned NumItems = Record[CurIdx++]; 4423 for (unsigned ci = 0; ci != NumItems; ++ci) { 4424 bool isSingleNumber = Record[CurIdx++]; 4425 4426 APInt Low; 4427 unsigned ActiveWords = 1; 4428 if (ValueBitWidth > 64) 4429 ActiveWords = Record[CurIdx++]; 4430 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4431 ValueBitWidth); 4432 CurIdx += ActiveWords; 4433 4434 if (!isSingleNumber) { 4435 ActiveWords = 1; 4436 if (ValueBitWidth > 64) 4437 ActiveWords = Record[CurIdx++]; 4438 APInt High = readWideAPInt( 4439 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4440 CurIdx += ActiveWords; 4441 4442 // FIXME: It is not clear whether values in the range should be 4443 // compared as signed or unsigned values. The partially 4444 // implemented changes that used this format in the past used 4445 // unsigned comparisons. 4446 for ( ; Low.ule(High); ++Low) 4447 CaseVals.push_back(ConstantInt::get(Context, Low)); 4448 } else 4449 CaseVals.push_back(ConstantInt::get(Context, Low)); 4450 } 4451 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4452 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4453 cve = CaseVals.end(); cvi != cve; ++cvi) 4454 SI->addCase(*cvi, DestBB); 4455 } 4456 I = SI; 4457 break; 4458 } 4459 4460 // Old SwitchInst format without case ranges. 4461 4462 if (Record.size() < 3 || (Record.size() & 1) == 0) 4463 return error("Invalid record"); 4464 Type *OpTy = getTypeByID(Record[0]); 4465 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4466 BasicBlock *Default = getBasicBlock(Record[2]); 4467 if (!OpTy || !Cond || !Default) 4468 return error("Invalid record"); 4469 unsigned NumCases = (Record.size()-3)/2; 4470 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4471 InstructionList.push_back(SI); 4472 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4473 ConstantInt *CaseVal = 4474 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4475 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4476 if (!CaseVal || !DestBB) { 4477 delete SI; 4478 return error("Invalid record"); 4479 } 4480 SI->addCase(CaseVal, DestBB); 4481 } 4482 I = SI; 4483 break; 4484 } 4485 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4486 if (Record.size() < 2) 4487 return error("Invalid record"); 4488 Type *OpTy = getTypeByID(Record[0]); 4489 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4490 if (!OpTy || !Address) 4491 return error("Invalid record"); 4492 unsigned NumDests = Record.size()-2; 4493 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4494 InstructionList.push_back(IBI); 4495 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4496 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4497 IBI->addDestination(DestBB); 4498 } else { 4499 delete IBI; 4500 return error("Invalid record"); 4501 } 4502 } 4503 I = IBI; 4504 break; 4505 } 4506 4507 case bitc::FUNC_CODE_INST_INVOKE: { 4508 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4509 if (Record.size() < 4) 4510 return error("Invalid record"); 4511 unsigned OpNum = 0; 4512 AttributeList PAL = getAttributes(Record[OpNum++]); 4513 unsigned CCInfo = Record[OpNum++]; 4514 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4515 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4516 4517 FunctionType *FTy = nullptr; 4518 FunctionType *FullFTy = nullptr; 4519 if ((CCInfo >> 13) & 1) { 4520 FullFTy = 4521 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4522 if (!FullFTy) 4523 return error("Explicit invoke type is not a function type"); 4524 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4525 } 4526 4527 Value *Callee; 4528 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4529 return error("Invalid record"); 4530 4531 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4532 if (!CalleeTy) 4533 return error("Callee is not a pointer"); 4534 if (!FTy) { 4535 FullFTy = 4536 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4537 if (!FullFTy) 4538 return error("Callee is not of pointer to function type"); 4539 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4540 } else if (getPointerElementFlatType(FullTy) != FTy) 4541 return error("Explicit invoke type does not match pointee type of " 4542 "callee operand"); 4543 if (Record.size() < FTy->getNumParams() + OpNum) 4544 return error("Insufficient operands to call"); 4545 4546 SmallVector<Value*, 16> Ops; 4547 SmallVector<Type *, 16> ArgsFullTys; 4548 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4549 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4550 FTy->getParamType(i))); 4551 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4552 if (!Ops.back()) 4553 return error("Invalid record"); 4554 } 4555 4556 if (!FTy->isVarArg()) { 4557 if (Record.size() != OpNum) 4558 return error("Invalid record"); 4559 } else { 4560 // Read type/value pairs for varargs params. 4561 while (OpNum != Record.size()) { 4562 Value *Op; 4563 Type *FullTy; 4564 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4565 return error("Invalid record"); 4566 Ops.push_back(Op); 4567 ArgsFullTys.push_back(FullTy); 4568 } 4569 } 4570 4571 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4572 OperandBundles); 4573 FullTy = FullFTy->getReturnType(); 4574 OperandBundles.clear(); 4575 InstructionList.push_back(I); 4576 cast<InvokeInst>(I)->setCallingConv( 4577 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4578 cast<InvokeInst>(I)->setAttributes(PAL); 4579 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 4580 4581 break; 4582 } 4583 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4584 unsigned Idx = 0; 4585 Value *Val = nullptr; 4586 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4587 return error("Invalid record"); 4588 I = ResumeInst::Create(Val); 4589 InstructionList.push_back(I); 4590 break; 4591 } 4592 case bitc::FUNC_CODE_INST_CALLBR: { 4593 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4594 unsigned OpNum = 0; 4595 AttributeList PAL = getAttributes(Record[OpNum++]); 4596 unsigned CCInfo = Record[OpNum++]; 4597 4598 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4599 unsigned NumIndirectDests = Record[OpNum++]; 4600 SmallVector<BasicBlock *, 16> IndirectDests; 4601 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4602 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4603 4604 FunctionType *FTy = nullptr; 4605 FunctionType *FullFTy = nullptr; 4606 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4607 FullFTy = 4608 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4609 if (!FullFTy) 4610 return error("Explicit call type is not a function type"); 4611 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4612 } 4613 4614 Value *Callee; 4615 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4616 return error("Invalid record"); 4617 4618 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4619 if (!OpTy) 4620 return error("Callee is not a pointer type"); 4621 if (!FTy) { 4622 FullFTy = 4623 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4624 if (!FullFTy) 4625 return error("Callee is not of pointer to function type"); 4626 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4627 } else if (getPointerElementFlatType(FullTy) != FTy) 4628 return error("Explicit call type does not match pointee type of " 4629 "callee operand"); 4630 if (Record.size() < FTy->getNumParams() + OpNum) 4631 return error("Insufficient operands to call"); 4632 4633 SmallVector<Value*, 16> Args; 4634 // Read the fixed params. 4635 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4636 if (FTy->getParamType(i)->isLabelTy()) 4637 Args.push_back(getBasicBlock(Record[OpNum])); 4638 else 4639 Args.push_back(getValue(Record, OpNum, NextValueNo, 4640 FTy->getParamType(i))); 4641 if (!Args.back()) 4642 return error("Invalid record"); 4643 } 4644 4645 // Read type/value pairs for varargs params. 4646 if (!FTy->isVarArg()) { 4647 if (OpNum != Record.size()) 4648 return error("Invalid record"); 4649 } else { 4650 while (OpNum != Record.size()) { 4651 Value *Op; 4652 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4653 return error("Invalid record"); 4654 Args.push_back(Op); 4655 } 4656 } 4657 4658 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4659 OperandBundles); 4660 FullTy = FullFTy->getReturnType(); 4661 OperandBundles.clear(); 4662 InstructionList.push_back(I); 4663 cast<CallBrInst>(I)->setCallingConv( 4664 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4665 cast<CallBrInst>(I)->setAttributes(PAL); 4666 break; 4667 } 4668 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4669 I = new UnreachableInst(Context); 4670 InstructionList.push_back(I); 4671 break; 4672 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4673 if (Record.size() < 1) 4674 return error("Invalid record"); 4675 // The first record specifies the type. 4676 FullTy = getFullyStructuredTypeByID(Record[0]); 4677 Type *Ty = flattenPointerTypes(FullTy); 4678 if (!Ty) 4679 return error("Invalid record"); 4680 4681 // Phi arguments are pairs of records of [value, basic block]. 4682 // There is an optional final record for fast-math-flags if this phi has a 4683 // floating-point type. 4684 size_t NumArgs = (Record.size() - 1) / 2; 4685 PHINode *PN = PHINode::Create(Ty, NumArgs); 4686 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4687 return error("Invalid record"); 4688 InstructionList.push_back(PN); 4689 4690 for (unsigned i = 0; i != NumArgs; i++) { 4691 Value *V; 4692 // With the new function encoding, it is possible that operands have 4693 // negative IDs (for forward references). Use a signed VBR 4694 // representation to keep the encoding small. 4695 if (UseRelativeIDs) 4696 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4697 else 4698 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4699 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4700 if (!V || !BB) 4701 return error("Invalid record"); 4702 PN->addIncoming(V, BB); 4703 } 4704 I = PN; 4705 4706 // If there are an even number of records, the final record must be FMF. 4707 if (Record.size() % 2 == 0) { 4708 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4709 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4710 if (FMF.any()) 4711 I->setFastMathFlags(FMF); 4712 } 4713 4714 break; 4715 } 4716 4717 case bitc::FUNC_CODE_INST_LANDINGPAD: 4718 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4719 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4720 unsigned Idx = 0; 4721 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4722 if (Record.size() < 3) 4723 return error("Invalid record"); 4724 } else { 4725 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4726 if (Record.size() < 4) 4727 return error("Invalid record"); 4728 } 4729 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4730 Type *Ty = flattenPointerTypes(FullTy); 4731 if (!Ty) 4732 return error("Invalid record"); 4733 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4734 Value *PersFn = nullptr; 4735 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4736 return error("Invalid record"); 4737 4738 if (!F->hasPersonalityFn()) 4739 F->setPersonalityFn(cast<Constant>(PersFn)); 4740 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4741 return error("Personality function mismatch"); 4742 } 4743 4744 bool IsCleanup = !!Record[Idx++]; 4745 unsigned NumClauses = Record[Idx++]; 4746 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4747 LP->setCleanup(IsCleanup); 4748 for (unsigned J = 0; J != NumClauses; ++J) { 4749 LandingPadInst::ClauseType CT = 4750 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4751 Value *Val; 4752 4753 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4754 delete LP; 4755 return error("Invalid record"); 4756 } 4757 4758 assert((CT != LandingPadInst::Catch || 4759 !isa<ArrayType>(Val->getType())) && 4760 "Catch clause has a invalid type!"); 4761 assert((CT != LandingPadInst::Filter || 4762 isa<ArrayType>(Val->getType())) && 4763 "Filter clause has invalid type!"); 4764 LP->addClause(cast<Constant>(Val)); 4765 } 4766 4767 I = LP; 4768 InstructionList.push_back(I); 4769 break; 4770 } 4771 4772 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4773 if (Record.size() != 4) 4774 return error("Invalid record"); 4775 uint64_t AlignRecord = Record[3]; 4776 const uint64_t InAllocaMask = uint64_t(1) << 5; 4777 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4778 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4779 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4780 SwiftErrorMask; 4781 bool InAlloca = AlignRecord & InAllocaMask; 4782 bool SwiftError = AlignRecord & SwiftErrorMask; 4783 FullTy = getFullyStructuredTypeByID(Record[0]); 4784 Type *Ty = flattenPointerTypes(FullTy); 4785 if ((AlignRecord & ExplicitTypeMask) == 0) { 4786 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4787 if (!PTy) 4788 return error("Old-style alloca with a non-pointer type"); 4789 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4790 } 4791 Type *OpTy = getTypeByID(Record[1]); 4792 Value *Size = getFnValueByID(Record[2], OpTy); 4793 MaybeAlign Align; 4794 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4795 return Err; 4796 } 4797 if (!Ty || !Size) 4798 return error("Invalid record"); 4799 4800 // FIXME: Make this an optional field. 4801 const DataLayout &DL = TheModule->getDataLayout(); 4802 unsigned AS = DL.getAllocaAddrSpace(); 4803 4804 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4805 AI->setUsedWithInAlloca(InAlloca); 4806 AI->setSwiftError(SwiftError); 4807 I = AI; 4808 FullTy = PointerType::get(FullTy, AS); 4809 InstructionList.push_back(I); 4810 break; 4811 } 4812 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4813 unsigned OpNum = 0; 4814 Value *Op; 4815 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4816 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4817 return error("Invalid record"); 4818 4819 if (!isa<PointerType>(Op->getType())) 4820 return error("Load operand is not a pointer type"); 4821 4822 Type *Ty = nullptr; 4823 if (OpNum + 3 == Record.size()) { 4824 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4825 Ty = flattenPointerTypes(FullTy); 4826 } else 4827 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4828 4829 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4830 return Err; 4831 4832 MaybeAlign Align; 4833 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4834 return Err; 4835 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4836 InstructionList.push_back(I); 4837 break; 4838 } 4839 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4840 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4841 unsigned OpNum = 0; 4842 Value *Op; 4843 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4844 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4845 return error("Invalid record"); 4846 4847 if (!isa<PointerType>(Op->getType())) 4848 return error("Load operand is not a pointer type"); 4849 4850 Type *Ty = nullptr; 4851 if (OpNum + 5 == Record.size()) { 4852 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4853 Ty = flattenPointerTypes(FullTy); 4854 } else 4855 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4856 4857 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4858 return Err; 4859 4860 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4861 if (Ordering == AtomicOrdering::NotAtomic || 4862 Ordering == AtomicOrdering::Release || 4863 Ordering == AtomicOrdering::AcquireRelease) 4864 return error("Invalid record"); 4865 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4866 return error("Invalid record"); 4867 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4868 4869 MaybeAlign Align; 4870 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4871 return Err; 4872 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID); 4873 InstructionList.push_back(I); 4874 break; 4875 } 4876 case bitc::FUNC_CODE_INST_STORE: 4877 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4878 unsigned OpNum = 0; 4879 Value *Val, *Ptr; 4880 Type *FullTy; 4881 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4882 (BitCode == bitc::FUNC_CODE_INST_STORE 4883 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4884 : popValue(Record, OpNum, NextValueNo, 4885 getPointerElementFlatType(FullTy), Val)) || 4886 OpNum + 2 != Record.size()) 4887 return error("Invalid record"); 4888 4889 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4890 return Err; 4891 MaybeAlign Align; 4892 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4893 return Err; 4894 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align); 4895 InstructionList.push_back(I); 4896 break; 4897 } 4898 case bitc::FUNC_CODE_INST_STOREATOMIC: 4899 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4900 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4901 unsigned OpNum = 0; 4902 Value *Val, *Ptr; 4903 Type *FullTy; 4904 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4905 !isa<PointerType>(Ptr->getType()) || 4906 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4907 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4908 : popValue(Record, OpNum, NextValueNo, 4909 getPointerElementFlatType(FullTy), Val)) || 4910 OpNum + 4 != Record.size()) 4911 return error("Invalid record"); 4912 4913 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4914 return Err; 4915 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4916 if (Ordering == AtomicOrdering::NotAtomic || 4917 Ordering == AtomicOrdering::Acquire || 4918 Ordering == AtomicOrdering::AcquireRelease) 4919 return error("Invalid record"); 4920 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4921 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4922 return error("Invalid record"); 4923 4924 MaybeAlign Align; 4925 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4926 return Err; 4927 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align, Ordering, SSID); 4928 InstructionList.push_back(I); 4929 break; 4930 } 4931 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4932 case bitc::FUNC_CODE_INST_CMPXCHG: { 4933 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4934 // failureordering?, isweak?] 4935 unsigned OpNum = 0; 4936 Value *Ptr, *Cmp, *New; 4937 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 4938 return error("Invalid record"); 4939 4940 if (!isa<PointerType>(Ptr->getType())) 4941 return error("Cmpxchg operand is not a pointer type"); 4942 4943 if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) { 4944 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 4945 return error("Invalid record"); 4946 } else if (popValue(Record, OpNum, NextValueNo, 4947 getPointerElementFlatType(FullTy), Cmp)) 4948 return error("Invalid record"); 4949 else 4950 FullTy = cast<PointerType>(FullTy)->getElementType(); 4951 4952 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4953 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4954 return error("Invalid record"); 4955 4956 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4957 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4958 SuccessOrdering == AtomicOrdering::Unordered) 4959 return error("Invalid record"); 4960 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4961 4962 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4963 return Err; 4964 AtomicOrdering FailureOrdering; 4965 if (Record.size() < 7) 4966 FailureOrdering = 4967 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4968 else 4969 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4970 4971 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4972 SSID); 4973 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 4974 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4975 4976 if (Record.size() < 8) { 4977 // Before weak cmpxchgs existed, the instruction simply returned the 4978 // value loaded from memory, so bitcode files from that era will be 4979 // expecting the first component of a modern cmpxchg. 4980 CurBB->getInstList().push_back(I); 4981 I = ExtractValueInst::Create(I, 0); 4982 FullTy = cast<StructType>(FullTy)->getElementType(0); 4983 } else { 4984 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4985 } 4986 4987 InstructionList.push_back(I); 4988 break; 4989 } 4990 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4991 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4992 unsigned OpNum = 0; 4993 Value *Ptr, *Val; 4994 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4995 !isa<PointerType>(Ptr->getType()) || 4996 popValue(Record, OpNum, NextValueNo, 4997 getPointerElementFlatType(FullTy), Val) || 4998 OpNum + 4 != Record.size()) 4999 return error("Invalid record"); 5000 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5001 if (Operation < AtomicRMWInst::FIRST_BINOP || 5002 Operation > AtomicRMWInst::LAST_BINOP) 5003 return error("Invalid record"); 5004 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5005 if (Ordering == AtomicOrdering::NotAtomic || 5006 Ordering == AtomicOrdering::Unordered) 5007 return error("Invalid record"); 5008 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5009 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 5010 FullTy = getPointerElementFlatType(FullTy); 5011 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5012 InstructionList.push_back(I); 5013 break; 5014 } 5015 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5016 if (2 != Record.size()) 5017 return error("Invalid record"); 5018 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5019 if (Ordering == AtomicOrdering::NotAtomic || 5020 Ordering == AtomicOrdering::Unordered || 5021 Ordering == AtomicOrdering::Monotonic) 5022 return error("Invalid record"); 5023 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5024 I = new FenceInst(Context, Ordering, SSID); 5025 InstructionList.push_back(I); 5026 break; 5027 } 5028 case bitc::FUNC_CODE_INST_CALL: { 5029 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5030 if (Record.size() < 3) 5031 return error("Invalid record"); 5032 5033 unsigned OpNum = 0; 5034 AttributeList PAL = getAttributes(Record[OpNum++]); 5035 unsigned CCInfo = Record[OpNum++]; 5036 5037 FastMathFlags FMF; 5038 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5039 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5040 if (!FMF.any()) 5041 return error("Fast math flags indicator set for call with no FMF"); 5042 } 5043 5044 FunctionType *FTy = nullptr; 5045 FunctionType *FullFTy = nullptr; 5046 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5047 FullFTy = 5048 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5049 if (!FullFTy) 5050 return error("Explicit call type is not a function type"); 5051 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5052 } 5053 5054 Value *Callee; 5055 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5056 return error("Invalid record"); 5057 5058 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5059 if (!OpTy) 5060 return error("Callee is not a pointer type"); 5061 if (!FTy) { 5062 FullFTy = 5063 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5064 if (!FullFTy) 5065 return error("Callee is not of pointer to function type"); 5066 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5067 } else if (getPointerElementFlatType(FullTy) != FTy) 5068 return error("Explicit call type does not match pointee type of " 5069 "callee operand"); 5070 if (Record.size() < FTy->getNumParams() + OpNum) 5071 return error("Insufficient operands to call"); 5072 5073 SmallVector<Value*, 16> Args; 5074 SmallVector<Type*, 16> ArgsFullTys; 5075 // Read the fixed params. 5076 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5077 if (FTy->getParamType(i)->isLabelTy()) 5078 Args.push_back(getBasicBlock(Record[OpNum])); 5079 else 5080 Args.push_back(getValue(Record, OpNum, NextValueNo, 5081 FTy->getParamType(i))); 5082 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5083 if (!Args.back()) 5084 return error("Invalid record"); 5085 } 5086 5087 // Read type/value pairs for varargs params. 5088 if (!FTy->isVarArg()) { 5089 if (OpNum != Record.size()) 5090 return error("Invalid record"); 5091 } else { 5092 while (OpNum != Record.size()) { 5093 Value *Op; 5094 Type *FullTy; 5095 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5096 return error("Invalid record"); 5097 Args.push_back(Op); 5098 ArgsFullTys.push_back(FullTy); 5099 } 5100 } 5101 5102 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5103 FullTy = FullFTy->getReturnType(); 5104 OperandBundles.clear(); 5105 InstructionList.push_back(I); 5106 cast<CallInst>(I)->setCallingConv( 5107 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5108 CallInst::TailCallKind TCK = CallInst::TCK_None; 5109 if (CCInfo & 1 << bitc::CALL_TAIL) 5110 TCK = CallInst::TCK_Tail; 5111 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5112 TCK = CallInst::TCK_MustTail; 5113 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5114 TCK = CallInst::TCK_NoTail; 5115 cast<CallInst>(I)->setTailCallKind(TCK); 5116 cast<CallInst>(I)->setAttributes(PAL); 5117 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 5118 if (FMF.any()) { 5119 if (!isa<FPMathOperator>(I)) 5120 return error("Fast-math-flags specified for call without " 5121 "floating-point scalar or vector return type"); 5122 I->setFastMathFlags(FMF); 5123 } 5124 break; 5125 } 5126 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5127 if (Record.size() < 3) 5128 return error("Invalid record"); 5129 Type *OpTy = getTypeByID(Record[0]); 5130 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5131 FullTy = getFullyStructuredTypeByID(Record[2]); 5132 Type *ResTy = flattenPointerTypes(FullTy); 5133 if (!OpTy || !Op || !ResTy) 5134 return error("Invalid record"); 5135 I = new VAArgInst(Op, ResTy); 5136 InstructionList.push_back(I); 5137 break; 5138 } 5139 5140 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5141 // A call or an invoke can be optionally prefixed with some variable 5142 // number of operand bundle blocks. These blocks are read into 5143 // OperandBundles and consumed at the next call or invoke instruction. 5144 5145 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5146 return error("Invalid record"); 5147 5148 std::vector<Value *> Inputs; 5149 5150 unsigned OpNum = 1; 5151 while (OpNum != Record.size()) { 5152 Value *Op; 5153 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5154 return error("Invalid record"); 5155 Inputs.push_back(Op); 5156 } 5157 5158 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5159 continue; 5160 } 5161 5162 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5163 unsigned OpNum = 0; 5164 Value *Op = nullptr; 5165 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5166 return error("Invalid record"); 5167 if (OpNum != Record.size()) 5168 return error("Invalid record"); 5169 5170 I = new FreezeInst(Op); 5171 InstructionList.push_back(I); 5172 break; 5173 } 5174 } 5175 5176 // Add instruction to end of current BB. If there is no current BB, reject 5177 // this file. 5178 if (!CurBB) { 5179 I->deleteValue(); 5180 return error("Invalid instruction with no BB"); 5181 } 5182 if (!OperandBundles.empty()) { 5183 I->deleteValue(); 5184 return error("Operand bundles found with no consumer"); 5185 } 5186 CurBB->getInstList().push_back(I); 5187 5188 // If this was a terminator instruction, move to the next block. 5189 if (I->isTerminator()) { 5190 ++CurBBNo; 5191 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5192 } 5193 5194 // Non-void values get registered in the value table for future use. 5195 if (!I->getType()->isVoidTy()) { 5196 if (!FullTy) { 5197 FullTy = I->getType(); 5198 assert( 5199 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5200 !isa<ArrayType>(FullTy) && 5201 (!isa<VectorType>(FullTy) || 5202 cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() || 5203 cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) && 5204 "Structured types must be assigned with corresponding non-opaque " 5205 "pointer type"); 5206 } 5207 5208 assert(I->getType() == flattenPointerTypes(FullTy) && 5209 "Incorrect fully structured type provided for Instruction"); 5210 ValueList.assignValue(I, NextValueNo++, FullTy); 5211 } 5212 } 5213 5214 OutOfRecordLoop: 5215 5216 if (!OperandBundles.empty()) 5217 return error("Operand bundles found with no consumer"); 5218 5219 // Check the function list for unresolved values. 5220 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5221 if (!A->getParent()) { 5222 // We found at least one unresolved value. Nuke them all to avoid leaks. 5223 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5224 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5225 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5226 delete A; 5227 } 5228 } 5229 return error("Never resolved value found in function"); 5230 } 5231 } 5232 5233 // Unexpected unresolved metadata about to be dropped. 5234 if (MDLoader->hasFwdRefs()) 5235 return error("Invalid function metadata: outgoing forward refs"); 5236 5237 // Trim the value list down to the size it was before we parsed this function. 5238 ValueList.shrinkTo(ModuleValueListSize); 5239 MDLoader->shrinkTo(ModuleMDLoaderSize); 5240 std::vector<BasicBlock*>().swap(FunctionBBs); 5241 return Error::success(); 5242 } 5243 5244 /// Find the function body in the bitcode stream 5245 Error BitcodeReader::findFunctionInStream( 5246 Function *F, 5247 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5248 while (DeferredFunctionInfoIterator->second == 0) { 5249 // This is the fallback handling for the old format bitcode that 5250 // didn't contain the function index in the VST, or when we have 5251 // an anonymous function which would not have a VST entry. 5252 // Assert that we have one of those two cases. 5253 assert(VSTOffset == 0 || !F->hasName()); 5254 // Parse the next body in the stream and set its position in the 5255 // DeferredFunctionInfo map. 5256 if (Error Err = rememberAndSkipFunctionBodies()) 5257 return Err; 5258 } 5259 return Error::success(); 5260 } 5261 5262 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5263 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5264 return SyncScope::ID(Val); 5265 if (Val >= SSIDs.size()) 5266 return SyncScope::System; // Map unknown synchronization scopes to system. 5267 return SSIDs[Val]; 5268 } 5269 5270 //===----------------------------------------------------------------------===// 5271 // GVMaterializer implementation 5272 //===----------------------------------------------------------------------===// 5273 5274 Error BitcodeReader::materialize(GlobalValue *GV) { 5275 Function *F = dyn_cast<Function>(GV); 5276 // If it's not a function or is already material, ignore the request. 5277 if (!F || !F->isMaterializable()) 5278 return Error::success(); 5279 5280 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5281 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5282 // If its position is recorded as 0, its body is somewhere in the stream 5283 // but we haven't seen it yet. 5284 if (DFII->second == 0) 5285 if (Error Err = findFunctionInStream(F, DFII)) 5286 return Err; 5287 5288 // Materialize metadata before parsing any function bodies. 5289 if (Error Err = materializeMetadata()) 5290 return Err; 5291 5292 // Move the bit stream to the saved position of the deferred function body. 5293 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5294 return JumpFailed; 5295 if (Error Err = parseFunctionBody(F)) 5296 return Err; 5297 F->setIsMaterializable(false); 5298 5299 if (StripDebugInfo) 5300 stripDebugInfo(*F); 5301 5302 // Upgrade any old intrinsic calls in the function. 5303 for (auto &I : UpgradedIntrinsics) { 5304 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5305 UI != UE;) { 5306 User *U = *UI; 5307 ++UI; 5308 if (CallInst *CI = dyn_cast<CallInst>(U)) 5309 UpgradeIntrinsicCall(CI, I.second); 5310 } 5311 } 5312 5313 // Update calls to the remangled intrinsics 5314 for (auto &I : RemangledIntrinsics) 5315 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5316 UI != UE;) 5317 // Don't expect any other users than call sites 5318 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5319 5320 // Finish fn->subprogram upgrade for materialized functions. 5321 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5322 F->setSubprogram(SP); 5323 5324 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5325 if (!MDLoader->isStrippingTBAA()) { 5326 for (auto &I : instructions(F)) { 5327 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5328 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5329 continue; 5330 MDLoader->setStripTBAA(true); 5331 stripTBAA(F->getParent()); 5332 } 5333 } 5334 5335 // Bring in any functions that this function forward-referenced via 5336 // blockaddresses. 5337 return materializeForwardReferencedFunctions(); 5338 } 5339 5340 Error BitcodeReader::materializeModule() { 5341 if (Error Err = materializeMetadata()) 5342 return Err; 5343 5344 // Promise to materialize all forward references. 5345 WillMaterializeAllForwardRefs = true; 5346 5347 // Iterate over the module, deserializing any functions that are still on 5348 // disk. 5349 for (Function &F : *TheModule) { 5350 if (Error Err = materialize(&F)) 5351 return Err; 5352 } 5353 // At this point, if there are any function bodies, parse the rest of 5354 // the bits in the module past the last function block we have recorded 5355 // through either lazy scanning or the VST. 5356 if (LastFunctionBlockBit || NextUnreadBit) 5357 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5358 ? LastFunctionBlockBit 5359 : NextUnreadBit)) 5360 return Err; 5361 5362 // Check that all block address forward references got resolved (as we 5363 // promised above). 5364 if (!BasicBlockFwdRefs.empty()) 5365 return error("Never resolved function from blockaddress"); 5366 5367 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5368 // delete the old functions to clean up. We can't do this unless the entire 5369 // module is materialized because there could always be another function body 5370 // with calls to the old function. 5371 for (auto &I : UpgradedIntrinsics) { 5372 for (auto *U : I.first->users()) { 5373 if (CallInst *CI = dyn_cast<CallInst>(U)) 5374 UpgradeIntrinsicCall(CI, I.second); 5375 } 5376 if (!I.first->use_empty()) 5377 I.first->replaceAllUsesWith(I.second); 5378 I.first->eraseFromParent(); 5379 } 5380 UpgradedIntrinsics.clear(); 5381 // Do the same for remangled intrinsics 5382 for (auto &I : RemangledIntrinsics) { 5383 I.first->replaceAllUsesWith(I.second); 5384 I.first->eraseFromParent(); 5385 } 5386 RemangledIntrinsics.clear(); 5387 5388 UpgradeDebugInfo(*TheModule); 5389 5390 UpgradeModuleFlags(*TheModule); 5391 5392 UpgradeARCRuntime(*TheModule); 5393 5394 return Error::success(); 5395 } 5396 5397 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5398 return IdentifiedStructTypes; 5399 } 5400 5401 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5402 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5403 StringRef ModulePath, unsigned ModuleId) 5404 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5405 ModulePath(ModulePath), ModuleId(ModuleId) {} 5406 5407 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5408 TheIndex.addModule(ModulePath, ModuleId); 5409 } 5410 5411 ModuleSummaryIndex::ModuleInfo * 5412 ModuleSummaryIndexBitcodeReader::getThisModule() { 5413 return TheIndex.getModule(ModulePath); 5414 } 5415 5416 std::pair<ValueInfo, GlobalValue::GUID> 5417 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5418 auto VGI = ValueIdToValueInfoMap[ValueId]; 5419 assert(VGI.first); 5420 return VGI; 5421 } 5422 5423 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5424 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5425 StringRef SourceFileName) { 5426 std::string GlobalId = 5427 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5428 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5429 auto OriginalNameID = ValueGUID; 5430 if (GlobalValue::isLocalLinkage(Linkage)) 5431 OriginalNameID = GlobalValue::getGUID(ValueName); 5432 if (PrintSummaryGUIDs) 5433 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5434 << ValueName << "\n"; 5435 5436 // UseStrtab is false for legacy summary formats and value names are 5437 // created on stack. In that case we save the name in a string saver in 5438 // the index so that the value name can be recorded. 5439 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5440 TheIndex.getOrInsertValueInfo( 5441 ValueGUID, 5442 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5443 OriginalNameID); 5444 } 5445 5446 // Specialized value symbol table parser used when reading module index 5447 // blocks where we don't actually create global values. The parsed information 5448 // is saved in the bitcode reader for use when later parsing summaries. 5449 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5450 uint64_t Offset, 5451 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5452 // With a strtab the VST is not required to parse the summary. 5453 if (UseStrtab) 5454 return Error::success(); 5455 5456 assert(Offset > 0 && "Expected non-zero VST offset"); 5457 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5458 if (!MaybeCurrentBit) 5459 return MaybeCurrentBit.takeError(); 5460 uint64_t CurrentBit = MaybeCurrentBit.get(); 5461 5462 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5463 return Err; 5464 5465 SmallVector<uint64_t, 64> Record; 5466 5467 // Read all the records for this value table. 5468 SmallString<128> ValueName; 5469 5470 while (true) { 5471 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5472 if (!MaybeEntry) 5473 return MaybeEntry.takeError(); 5474 BitstreamEntry Entry = MaybeEntry.get(); 5475 5476 switch (Entry.Kind) { 5477 case BitstreamEntry::SubBlock: // Handled for us already. 5478 case BitstreamEntry::Error: 5479 return error("Malformed block"); 5480 case BitstreamEntry::EndBlock: 5481 // Done parsing VST, jump back to wherever we came from. 5482 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5483 return JumpFailed; 5484 return Error::success(); 5485 case BitstreamEntry::Record: 5486 // The interesting case. 5487 break; 5488 } 5489 5490 // Read a record. 5491 Record.clear(); 5492 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5493 if (!MaybeRecord) 5494 return MaybeRecord.takeError(); 5495 switch (MaybeRecord.get()) { 5496 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5497 break; 5498 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5499 if (convertToString(Record, 1, ValueName)) 5500 return error("Invalid record"); 5501 unsigned ValueID = Record[0]; 5502 assert(!SourceFileName.empty()); 5503 auto VLI = ValueIdToLinkageMap.find(ValueID); 5504 assert(VLI != ValueIdToLinkageMap.end() && 5505 "No linkage found for VST entry?"); 5506 auto Linkage = VLI->second; 5507 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5508 ValueName.clear(); 5509 break; 5510 } 5511 case bitc::VST_CODE_FNENTRY: { 5512 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5513 if (convertToString(Record, 2, ValueName)) 5514 return error("Invalid record"); 5515 unsigned ValueID = Record[0]; 5516 assert(!SourceFileName.empty()); 5517 auto VLI = ValueIdToLinkageMap.find(ValueID); 5518 assert(VLI != ValueIdToLinkageMap.end() && 5519 "No linkage found for VST entry?"); 5520 auto Linkage = VLI->second; 5521 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5522 ValueName.clear(); 5523 break; 5524 } 5525 case bitc::VST_CODE_COMBINED_ENTRY: { 5526 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5527 unsigned ValueID = Record[0]; 5528 GlobalValue::GUID RefGUID = Record[1]; 5529 // The "original name", which is the second value of the pair will be 5530 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5531 ValueIdToValueInfoMap[ValueID] = 5532 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5533 break; 5534 } 5535 } 5536 } 5537 } 5538 5539 // Parse just the blocks needed for building the index out of the module. 5540 // At the end of this routine the module Index is populated with a map 5541 // from global value id to GlobalValueSummary objects. 5542 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5543 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5544 return Err; 5545 5546 SmallVector<uint64_t, 64> Record; 5547 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5548 unsigned ValueId = 0; 5549 5550 // Read the index for this module. 5551 while (true) { 5552 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5553 if (!MaybeEntry) 5554 return MaybeEntry.takeError(); 5555 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5556 5557 switch (Entry.Kind) { 5558 case BitstreamEntry::Error: 5559 return error("Malformed block"); 5560 case BitstreamEntry::EndBlock: 5561 return Error::success(); 5562 5563 case BitstreamEntry::SubBlock: 5564 switch (Entry.ID) { 5565 default: // Skip unknown content. 5566 if (Error Err = Stream.SkipBlock()) 5567 return Err; 5568 break; 5569 case bitc::BLOCKINFO_BLOCK_ID: 5570 // Need to parse these to get abbrev ids (e.g. for VST) 5571 if (readBlockInfo()) 5572 return error("Malformed block"); 5573 break; 5574 case bitc::VALUE_SYMTAB_BLOCK_ID: 5575 // Should have been parsed earlier via VSTOffset, unless there 5576 // is no summary section. 5577 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5578 !SeenGlobalValSummary) && 5579 "Expected early VST parse via VSTOffset record"); 5580 if (Error Err = Stream.SkipBlock()) 5581 return Err; 5582 break; 5583 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5584 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5585 // Add the module if it is a per-module index (has a source file name). 5586 if (!SourceFileName.empty()) 5587 addThisModule(); 5588 assert(!SeenValueSymbolTable && 5589 "Already read VST when parsing summary block?"); 5590 // We might not have a VST if there were no values in the 5591 // summary. An empty summary block generated when we are 5592 // performing ThinLTO compiles so we don't later invoke 5593 // the regular LTO process on them. 5594 if (VSTOffset > 0) { 5595 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5596 return Err; 5597 SeenValueSymbolTable = true; 5598 } 5599 SeenGlobalValSummary = true; 5600 if (Error Err = parseEntireSummary(Entry.ID)) 5601 return Err; 5602 break; 5603 case bitc::MODULE_STRTAB_BLOCK_ID: 5604 if (Error Err = parseModuleStringTable()) 5605 return Err; 5606 break; 5607 } 5608 continue; 5609 5610 case BitstreamEntry::Record: { 5611 Record.clear(); 5612 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5613 if (!MaybeBitCode) 5614 return MaybeBitCode.takeError(); 5615 switch (MaybeBitCode.get()) { 5616 default: 5617 break; // Default behavior, ignore unknown content. 5618 case bitc::MODULE_CODE_VERSION: { 5619 if (Error Err = parseVersionRecord(Record).takeError()) 5620 return Err; 5621 break; 5622 } 5623 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5624 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5625 SmallString<128> ValueName; 5626 if (convertToString(Record, 0, ValueName)) 5627 return error("Invalid record"); 5628 SourceFileName = ValueName.c_str(); 5629 break; 5630 } 5631 /// MODULE_CODE_HASH: [5*i32] 5632 case bitc::MODULE_CODE_HASH: { 5633 if (Record.size() != 5) 5634 return error("Invalid hash length " + Twine(Record.size()).str()); 5635 auto &Hash = getThisModule()->second.second; 5636 int Pos = 0; 5637 for (auto &Val : Record) { 5638 assert(!(Val >> 32) && "Unexpected high bits set"); 5639 Hash[Pos++] = Val; 5640 } 5641 break; 5642 } 5643 /// MODULE_CODE_VSTOFFSET: [offset] 5644 case bitc::MODULE_CODE_VSTOFFSET: 5645 if (Record.size() < 1) 5646 return error("Invalid record"); 5647 // Note that we subtract 1 here because the offset is relative to one 5648 // word before the start of the identification or module block, which 5649 // was historically always the start of the regular bitcode header. 5650 VSTOffset = Record[0] - 1; 5651 break; 5652 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5653 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5654 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5655 // v2: [strtab offset, strtab size, v1] 5656 case bitc::MODULE_CODE_GLOBALVAR: 5657 case bitc::MODULE_CODE_FUNCTION: 5658 case bitc::MODULE_CODE_ALIAS: { 5659 StringRef Name; 5660 ArrayRef<uint64_t> GVRecord; 5661 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5662 if (GVRecord.size() <= 3) 5663 return error("Invalid record"); 5664 uint64_t RawLinkage = GVRecord[3]; 5665 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5666 if (!UseStrtab) { 5667 ValueIdToLinkageMap[ValueId++] = Linkage; 5668 break; 5669 } 5670 5671 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5672 break; 5673 } 5674 } 5675 } 5676 continue; 5677 } 5678 } 5679 } 5680 5681 std::vector<ValueInfo> 5682 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5683 std::vector<ValueInfo> Ret; 5684 Ret.reserve(Record.size()); 5685 for (uint64_t RefValueId : Record) 5686 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5687 return Ret; 5688 } 5689 5690 std::vector<FunctionSummary::EdgeTy> 5691 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5692 bool IsOldProfileFormat, 5693 bool HasProfile, bool HasRelBF) { 5694 std::vector<FunctionSummary::EdgeTy> Ret; 5695 Ret.reserve(Record.size()); 5696 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5697 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5698 uint64_t RelBF = 0; 5699 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5700 if (IsOldProfileFormat) { 5701 I += 1; // Skip old callsitecount field 5702 if (HasProfile) 5703 I += 1; // Skip old profilecount field 5704 } else if (HasProfile) 5705 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5706 else if (HasRelBF) 5707 RelBF = Record[++I]; 5708 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5709 } 5710 return Ret; 5711 } 5712 5713 static void 5714 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5715 WholeProgramDevirtResolution &Wpd) { 5716 uint64_t ArgNum = Record[Slot++]; 5717 WholeProgramDevirtResolution::ByArg &B = 5718 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5719 Slot += ArgNum; 5720 5721 B.TheKind = 5722 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5723 B.Info = Record[Slot++]; 5724 B.Byte = Record[Slot++]; 5725 B.Bit = Record[Slot++]; 5726 } 5727 5728 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5729 StringRef Strtab, size_t &Slot, 5730 TypeIdSummary &TypeId) { 5731 uint64_t Id = Record[Slot++]; 5732 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5733 5734 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5735 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5736 static_cast<size_t>(Record[Slot + 1])}; 5737 Slot += 2; 5738 5739 uint64_t ResByArgNum = Record[Slot++]; 5740 for (uint64_t I = 0; I != ResByArgNum; ++I) 5741 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5742 } 5743 5744 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5745 StringRef Strtab, 5746 ModuleSummaryIndex &TheIndex) { 5747 size_t Slot = 0; 5748 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5749 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5750 Slot += 2; 5751 5752 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5753 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5754 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5755 TypeId.TTRes.SizeM1 = Record[Slot++]; 5756 TypeId.TTRes.BitMask = Record[Slot++]; 5757 TypeId.TTRes.InlineBits = Record[Slot++]; 5758 5759 while (Slot < Record.size()) 5760 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5761 } 5762 5763 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5764 ArrayRef<uint64_t> Record, size_t &Slot, 5765 TypeIdCompatibleVtableInfo &TypeId) { 5766 uint64_t Offset = Record[Slot++]; 5767 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5768 TypeId.push_back({Offset, Callee}); 5769 } 5770 5771 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5772 ArrayRef<uint64_t> Record) { 5773 size_t Slot = 0; 5774 TypeIdCompatibleVtableInfo &TypeId = 5775 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5776 {Strtab.data() + Record[Slot], 5777 static_cast<size_t>(Record[Slot + 1])}); 5778 Slot += 2; 5779 5780 while (Slot < Record.size()) 5781 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5782 } 5783 5784 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 5785 unsigned WOCnt) { 5786 // Readonly and writeonly refs are in the end of the refs list. 5787 assert(ROCnt + WOCnt <= Refs.size()); 5788 unsigned FirstWORef = Refs.size() - WOCnt; 5789 unsigned RefNo = FirstWORef - ROCnt; 5790 for (; RefNo < FirstWORef; ++RefNo) 5791 Refs[RefNo].setReadOnly(); 5792 for (; RefNo < Refs.size(); ++RefNo) 5793 Refs[RefNo].setWriteOnly(); 5794 } 5795 5796 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5797 // objects in the index. 5798 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5799 if (Error Err = Stream.EnterSubBlock(ID)) 5800 return Err; 5801 SmallVector<uint64_t, 64> Record; 5802 5803 // Parse version 5804 { 5805 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5806 if (!MaybeEntry) 5807 return MaybeEntry.takeError(); 5808 BitstreamEntry Entry = MaybeEntry.get(); 5809 5810 if (Entry.Kind != BitstreamEntry::Record) 5811 return error("Invalid Summary Block: record for version expected"); 5812 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5813 if (!MaybeRecord) 5814 return MaybeRecord.takeError(); 5815 if (MaybeRecord.get() != bitc::FS_VERSION) 5816 return error("Invalid Summary Block: version expected"); 5817 } 5818 const uint64_t Version = Record[0]; 5819 const bool IsOldProfileFormat = Version == 1; 5820 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 5821 return error("Invalid summary version " + Twine(Version) + 5822 ". Version should be in the range [1-" + 5823 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 5824 "]."); 5825 Record.clear(); 5826 5827 // Keep around the last seen summary to be used when we see an optional 5828 // "OriginalName" attachement. 5829 GlobalValueSummary *LastSeenSummary = nullptr; 5830 GlobalValue::GUID LastSeenGUID = 0; 5831 5832 // We can expect to see any number of type ID information records before 5833 // each function summary records; these variables store the information 5834 // collected so far so that it can be used to create the summary object. 5835 std::vector<GlobalValue::GUID> PendingTypeTests; 5836 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5837 PendingTypeCheckedLoadVCalls; 5838 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5839 PendingTypeCheckedLoadConstVCalls; 5840 5841 while (true) { 5842 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5843 if (!MaybeEntry) 5844 return MaybeEntry.takeError(); 5845 BitstreamEntry Entry = MaybeEntry.get(); 5846 5847 switch (Entry.Kind) { 5848 case BitstreamEntry::SubBlock: // Handled for us already. 5849 case BitstreamEntry::Error: 5850 return error("Malformed block"); 5851 case BitstreamEntry::EndBlock: 5852 return Error::success(); 5853 case BitstreamEntry::Record: 5854 // The interesting case. 5855 break; 5856 } 5857 5858 // Read a record. The record format depends on whether this 5859 // is a per-module index or a combined index file. In the per-module 5860 // case the records contain the associated value's ID for correlation 5861 // with VST entries. In the combined index the correlation is done 5862 // via the bitcode offset of the summary records (which were saved 5863 // in the combined index VST entries). The records also contain 5864 // information used for ThinLTO renaming and importing. 5865 Record.clear(); 5866 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5867 if (!MaybeBitCode) 5868 return MaybeBitCode.takeError(); 5869 switch (unsigned BitCode = MaybeBitCode.get()) { 5870 default: // Default behavior: ignore. 5871 break; 5872 case bitc::FS_FLAGS: { // [flags] 5873 TheIndex.setFlags(Record[0]); 5874 break; 5875 } 5876 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5877 uint64_t ValueID = Record[0]; 5878 GlobalValue::GUID RefGUID = Record[1]; 5879 ValueIdToValueInfoMap[ValueID] = 5880 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5881 break; 5882 } 5883 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5884 // numrefs x valueid, n x (valueid)] 5885 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5886 // numrefs x valueid, 5887 // n x (valueid, hotness)] 5888 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5889 // numrefs x valueid, 5890 // n x (valueid, relblockfreq)] 5891 case bitc::FS_PERMODULE: 5892 case bitc::FS_PERMODULE_RELBF: 5893 case bitc::FS_PERMODULE_PROFILE: { 5894 unsigned ValueID = Record[0]; 5895 uint64_t RawFlags = Record[1]; 5896 unsigned InstCount = Record[2]; 5897 uint64_t RawFunFlags = 0; 5898 unsigned NumRefs = Record[3]; 5899 unsigned NumRORefs = 0, NumWORefs = 0; 5900 int RefListStartIndex = 4; 5901 if (Version >= 4) { 5902 RawFunFlags = Record[3]; 5903 NumRefs = Record[4]; 5904 RefListStartIndex = 5; 5905 if (Version >= 5) { 5906 NumRORefs = Record[5]; 5907 RefListStartIndex = 6; 5908 if (Version >= 7) { 5909 NumWORefs = Record[6]; 5910 RefListStartIndex = 7; 5911 } 5912 } 5913 } 5914 5915 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5916 // The module path string ref set in the summary must be owned by the 5917 // index's module string table. Since we don't have a module path 5918 // string table section in the per-module index, we create a single 5919 // module path string table entry with an empty (0) ID to take 5920 // ownership. 5921 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5922 assert(Record.size() >= RefListStartIndex + NumRefs && 5923 "Record size inconsistent with number of references"); 5924 std::vector<ValueInfo> Refs = makeRefList( 5925 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5926 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5927 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5928 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5929 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5930 IsOldProfileFormat, HasProfile, HasRelBF); 5931 setSpecialRefs(Refs, NumRORefs, NumWORefs); 5932 auto FS = std::make_unique<FunctionSummary>( 5933 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5934 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5935 std::move(PendingTypeTestAssumeVCalls), 5936 std::move(PendingTypeCheckedLoadVCalls), 5937 std::move(PendingTypeTestAssumeConstVCalls), 5938 std::move(PendingTypeCheckedLoadConstVCalls)); 5939 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5940 FS->setModulePath(getThisModule()->first()); 5941 FS->setOriginalName(VIAndOriginalGUID.second); 5942 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5943 break; 5944 } 5945 // FS_ALIAS: [valueid, flags, valueid] 5946 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5947 // they expect all aliasee summaries to be available. 5948 case bitc::FS_ALIAS: { 5949 unsigned ValueID = Record[0]; 5950 uint64_t RawFlags = Record[1]; 5951 unsigned AliaseeID = Record[2]; 5952 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5953 auto AS = std::make_unique<AliasSummary>(Flags); 5954 // The module path string ref set in the summary must be owned by the 5955 // index's module string table. Since we don't have a module path 5956 // string table section in the per-module index, we create a single 5957 // module path string table entry with an empty (0) ID to take 5958 // ownership. 5959 AS->setModulePath(getThisModule()->first()); 5960 5961 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5962 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5963 if (!AliaseeInModule) 5964 return error("Alias expects aliasee summary to be parsed"); 5965 AS->setAliasee(AliaseeVI, AliaseeInModule); 5966 5967 auto GUID = getValueInfoFromValueId(ValueID); 5968 AS->setOriginalName(GUID.second); 5969 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5970 break; 5971 } 5972 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5973 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5974 unsigned ValueID = Record[0]; 5975 uint64_t RawFlags = Record[1]; 5976 unsigned RefArrayStart = 2; 5977 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 5978 /* WriteOnly */ false, 5979 /* Constant */ false, 5980 GlobalObject::VCallVisibilityPublic); 5981 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5982 if (Version >= 5) { 5983 GVF = getDecodedGVarFlags(Record[2]); 5984 RefArrayStart = 3; 5985 } 5986 std::vector<ValueInfo> Refs = 5987 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5988 auto FS = 5989 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5990 FS->setModulePath(getThisModule()->first()); 5991 auto GUID = getValueInfoFromValueId(ValueID); 5992 FS->setOriginalName(GUID.second); 5993 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5994 break; 5995 } 5996 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 5997 // numrefs, numrefs x valueid, 5998 // n x (valueid, offset)] 5999 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6000 unsigned ValueID = Record[0]; 6001 uint64_t RawFlags = Record[1]; 6002 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6003 unsigned NumRefs = Record[3]; 6004 unsigned RefListStartIndex = 4; 6005 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6006 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6007 std::vector<ValueInfo> Refs = makeRefList( 6008 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6009 VTableFuncList VTableFuncs; 6010 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6011 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6012 uint64_t Offset = Record[++I]; 6013 VTableFuncs.push_back({Callee, Offset}); 6014 } 6015 auto VS = 6016 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6017 VS->setModulePath(getThisModule()->first()); 6018 VS->setVTableFuncs(VTableFuncs); 6019 auto GUID = getValueInfoFromValueId(ValueID); 6020 VS->setOriginalName(GUID.second); 6021 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6022 break; 6023 } 6024 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6025 // numrefs x valueid, n x (valueid)] 6026 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6027 // numrefs x valueid, n x (valueid, hotness)] 6028 case bitc::FS_COMBINED: 6029 case bitc::FS_COMBINED_PROFILE: { 6030 unsigned ValueID = Record[0]; 6031 uint64_t ModuleId = Record[1]; 6032 uint64_t RawFlags = Record[2]; 6033 unsigned InstCount = Record[3]; 6034 uint64_t RawFunFlags = 0; 6035 uint64_t EntryCount = 0; 6036 unsigned NumRefs = Record[4]; 6037 unsigned NumRORefs = 0, NumWORefs = 0; 6038 int RefListStartIndex = 5; 6039 6040 if (Version >= 4) { 6041 RawFunFlags = Record[4]; 6042 RefListStartIndex = 6; 6043 size_t NumRefsIndex = 5; 6044 if (Version >= 5) { 6045 unsigned NumRORefsOffset = 1; 6046 RefListStartIndex = 7; 6047 if (Version >= 6) { 6048 NumRefsIndex = 6; 6049 EntryCount = Record[5]; 6050 RefListStartIndex = 8; 6051 if (Version >= 7) { 6052 RefListStartIndex = 9; 6053 NumWORefs = Record[8]; 6054 NumRORefsOffset = 2; 6055 } 6056 } 6057 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6058 } 6059 NumRefs = Record[NumRefsIndex]; 6060 } 6061 6062 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6063 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6064 assert(Record.size() >= RefListStartIndex + NumRefs && 6065 "Record size inconsistent with number of references"); 6066 std::vector<ValueInfo> Refs = makeRefList( 6067 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6068 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6069 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6070 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6071 IsOldProfileFormat, HasProfile, false); 6072 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6073 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6074 auto FS = std::make_unique<FunctionSummary>( 6075 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6076 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6077 std::move(PendingTypeTestAssumeVCalls), 6078 std::move(PendingTypeCheckedLoadVCalls), 6079 std::move(PendingTypeTestAssumeConstVCalls), 6080 std::move(PendingTypeCheckedLoadConstVCalls)); 6081 LastSeenSummary = FS.get(); 6082 LastSeenGUID = VI.getGUID(); 6083 FS->setModulePath(ModuleIdMap[ModuleId]); 6084 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6085 break; 6086 } 6087 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6088 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6089 // they expect all aliasee summaries to be available. 6090 case bitc::FS_COMBINED_ALIAS: { 6091 unsigned ValueID = Record[0]; 6092 uint64_t ModuleId = Record[1]; 6093 uint64_t RawFlags = Record[2]; 6094 unsigned AliaseeValueId = Record[3]; 6095 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6096 auto AS = std::make_unique<AliasSummary>(Flags); 6097 LastSeenSummary = AS.get(); 6098 AS->setModulePath(ModuleIdMap[ModuleId]); 6099 6100 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6101 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6102 AS->setAliasee(AliaseeVI, AliaseeInModule); 6103 6104 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6105 LastSeenGUID = VI.getGUID(); 6106 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6107 break; 6108 } 6109 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6110 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6111 unsigned ValueID = Record[0]; 6112 uint64_t ModuleId = Record[1]; 6113 uint64_t RawFlags = Record[2]; 6114 unsigned RefArrayStart = 3; 6115 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6116 /* WriteOnly */ false, 6117 /* Constant */ false, 6118 GlobalObject::VCallVisibilityPublic); 6119 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6120 if (Version >= 5) { 6121 GVF = getDecodedGVarFlags(Record[3]); 6122 RefArrayStart = 4; 6123 } 6124 std::vector<ValueInfo> Refs = 6125 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6126 auto FS = 6127 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6128 LastSeenSummary = FS.get(); 6129 FS->setModulePath(ModuleIdMap[ModuleId]); 6130 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6131 LastSeenGUID = VI.getGUID(); 6132 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6133 break; 6134 } 6135 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6136 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6137 uint64_t OriginalName = Record[0]; 6138 if (!LastSeenSummary) 6139 return error("Name attachment that does not follow a combined record"); 6140 LastSeenSummary->setOriginalName(OriginalName); 6141 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6142 // Reset the LastSeenSummary 6143 LastSeenSummary = nullptr; 6144 LastSeenGUID = 0; 6145 break; 6146 } 6147 case bitc::FS_TYPE_TESTS: 6148 assert(PendingTypeTests.empty()); 6149 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6150 Record.end()); 6151 break; 6152 6153 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6154 assert(PendingTypeTestAssumeVCalls.empty()); 6155 for (unsigned I = 0; I != Record.size(); I += 2) 6156 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6157 break; 6158 6159 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6160 assert(PendingTypeCheckedLoadVCalls.empty()); 6161 for (unsigned I = 0; I != Record.size(); I += 2) 6162 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6163 break; 6164 6165 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6166 PendingTypeTestAssumeConstVCalls.push_back( 6167 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6168 break; 6169 6170 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6171 PendingTypeCheckedLoadConstVCalls.push_back( 6172 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6173 break; 6174 6175 case bitc::FS_CFI_FUNCTION_DEFS: { 6176 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6177 for (unsigned I = 0; I != Record.size(); I += 2) 6178 CfiFunctionDefs.insert( 6179 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6180 break; 6181 } 6182 6183 case bitc::FS_CFI_FUNCTION_DECLS: { 6184 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6185 for (unsigned I = 0; I != Record.size(); I += 2) 6186 CfiFunctionDecls.insert( 6187 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6188 break; 6189 } 6190 6191 case bitc::FS_TYPE_ID: 6192 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6193 break; 6194 6195 case bitc::FS_TYPE_ID_METADATA: 6196 parseTypeIdCompatibleVtableSummaryRecord(Record); 6197 break; 6198 } 6199 } 6200 llvm_unreachable("Exit infinite loop"); 6201 } 6202 6203 // Parse the module string table block into the Index. 6204 // This populates the ModulePathStringTable map in the index. 6205 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6206 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6207 return Err; 6208 6209 SmallVector<uint64_t, 64> Record; 6210 6211 SmallString<128> ModulePath; 6212 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6213 6214 while (true) { 6215 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6216 if (!MaybeEntry) 6217 return MaybeEntry.takeError(); 6218 BitstreamEntry Entry = MaybeEntry.get(); 6219 6220 switch (Entry.Kind) { 6221 case BitstreamEntry::SubBlock: // Handled for us already. 6222 case BitstreamEntry::Error: 6223 return error("Malformed block"); 6224 case BitstreamEntry::EndBlock: 6225 return Error::success(); 6226 case BitstreamEntry::Record: 6227 // The interesting case. 6228 break; 6229 } 6230 6231 Record.clear(); 6232 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6233 if (!MaybeRecord) 6234 return MaybeRecord.takeError(); 6235 switch (MaybeRecord.get()) { 6236 default: // Default behavior: ignore. 6237 break; 6238 case bitc::MST_CODE_ENTRY: { 6239 // MST_ENTRY: [modid, namechar x N] 6240 uint64_t ModuleId = Record[0]; 6241 6242 if (convertToString(Record, 1, ModulePath)) 6243 return error("Invalid record"); 6244 6245 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6246 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6247 6248 ModulePath.clear(); 6249 break; 6250 } 6251 /// MST_CODE_HASH: [5*i32] 6252 case bitc::MST_CODE_HASH: { 6253 if (Record.size() != 5) 6254 return error("Invalid hash length " + Twine(Record.size()).str()); 6255 if (!LastSeenModule) 6256 return error("Invalid hash that does not follow a module path"); 6257 int Pos = 0; 6258 for (auto &Val : Record) { 6259 assert(!(Val >> 32) && "Unexpected high bits set"); 6260 LastSeenModule->second.second[Pos++] = Val; 6261 } 6262 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6263 LastSeenModule = nullptr; 6264 break; 6265 } 6266 } 6267 } 6268 llvm_unreachable("Exit infinite loop"); 6269 } 6270 6271 namespace { 6272 6273 // FIXME: This class is only here to support the transition to llvm::Error. It 6274 // will be removed once this transition is complete. Clients should prefer to 6275 // deal with the Error value directly, rather than converting to error_code. 6276 class BitcodeErrorCategoryType : public std::error_category { 6277 const char *name() const noexcept override { 6278 return "llvm.bitcode"; 6279 } 6280 6281 std::string message(int IE) const override { 6282 BitcodeError E = static_cast<BitcodeError>(IE); 6283 switch (E) { 6284 case BitcodeError::CorruptedBitcode: 6285 return "Corrupted bitcode"; 6286 } 6287 llvm_unreachable("Unknown error type!"); 6288 } 6289 }; 6290 6291 } // end anonymous namespace 6292 6293 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6294 6295 const std::error_category &llvm::BitcodeErrorCategory() { 6296 return *ErrorCategory; 6297 } 6298 6299 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6300 unsigned Block, unsigned RecordID) { 6301 if (Error Err = Stream.EnterSubBlock(Block)) 6302 return std::move(Err); 6303 6304 StringRef Strtab; 6305 while (true) { 6306 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6307 if (!MaybeEntry) 6308 return MaybeEntry.takeError(); 6309 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6310 6311 switch (Entry.Kind) { 6312 case BitstreamEntry::EndBlock: 6313 return Strtab; 6314 6315 case BitstreamEntry::Error: 6316 return error("Malformed block"); 6317 6318 case BitstreamEntry::SubBlock: 6319 if (Error Err = Stream.SkipBlock()) 6320 return std::move(Err); 6321 break; 6322 6323 case BitstreamEntry::Record: 6324 StringRef Blob; 6325 SmallVector<uint64_t, 1> Record; 6326 Expected<unsigned> MaybeRecord = 6327 Stream.readRecord(Entry.ID, Record, &Blob); 6328 if (!MaybeRecord) 6329 return MaybeRecord.takeError(); 6330 if (MaybeRecord.get() == RecordID) 6331 Strtab = Blob; 6332 break; 6333 } 6334 } 6335 } 6336 6337 //===----------------------------------------------------------------------===// 6338 // External interface 6339 //===----------------------------------------------------------------------===// 6340 6341 Expected<std::vector<BitcodeModule>> 6342 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6343 auto FOrErr = getBitcodeFileContents(Buffer); 6344 if (!FOrErr) 6345 return FOrErr.takeError(); 6346 return std::move(FOrErr->Mods); 6347 } 6348 6349 Expected<BitcodeFileContents> 6350 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6351 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6352 if (!StreamOrErr) 6353 return StreamOrErr.takeError(); 6354 BitstreamCursor &Stream = *StreamOrErr; 6355 6356 BitcodeFileContents F; 6357 while (true) { 6358 uint64_t BCBegin = Stream.getCurrentByteNo(); 6359 6360 // We may be consuming bitcode from a client that leaves garbage at the end 6361 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6362 // the end that there cannot possibly be another module, stop looking. 6363 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6364 return F; 6365 6366 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6367 if (!MaybeEntry) 6368 return MaybeEntry.takeError(); 6369 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6370 6371 switch (Entry.Kind) { 6372 case BitstreamEntry::EndBlock: 6373 case BitstreamEntry::Error: 6374 return error("Malformed block"); 6375 6376 case BitstreamEntry::SubBlock: { 6377 uint64_t IdentificationBit = -1ull; 6378 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6379 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6380 if (Error Err = Stream.SkipBlock()) 6381 return std::move(Err); 6382 6383 { 6384 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6385 if (!MaybeEntry) 6386 return MaybeEntry.takeError(); 6387 Entry = MaybeEntry.get(); 6388 } 6389 6390 if (Entry.Kind != BitstreamEntry::SubBlock || 6391 Entry.ID != bitc::MODULE_BLOCK_ID) 6392 return error("Malformed block"); 6393 } 6394 6395 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6396 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6397 if (Error Err = Stream.SkipBlock()) 6398 return std::move(Err); 6399 6400 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6401 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6402 Buffer.getBufferIdentifier(), IdentificationBit, 6403 ModuleBit}); 6404 continue; 6405 } 6406 6407 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6408 Expected<StringRef> Strtab = 6409 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6410 if (!Strtab) 6411 return Strtab.takeError(); 6412 // This string table is used by every preceding bitcode module that does 6413 // not have its own string table. A bitcode file may have multiple 6414 // string tables if it was created by binary concatenation, for example 6415 // with "llvm-cat -b". 6416 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6417 if (!I->Strtab.empty()) 6418 break; 6419 I->Strtab = *Strtab; 6420 } 6421 // Similarly, the string table is used by every preceding symbol table; 6422 // normally there will be just one unless the bitcode file was created 6423 // by binary concatenation. 6424 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6425 F.StrtabForSymtab = *Strtab; 6426 continue; 6427 } 6428 6429 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6430 Expected<StringRef> SymtabOrErr = 6431 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6432 if (!SymtabOrErr) 6433 return SymtabOrErr.takeError(); 6434 6435 // We can expect the bitcode file to have multiple symbol tables if it 6436 // was created by binary concatenation. In that case we silently 6437 // ignore any subsequent symbol tables, which is fine because this is a 6438 // low level function. The client is expected to notice that the number 6439 // of modules in the symbol table does not match the number of modules 6440 // in the input file and regenerate the symbol table. 6441 if (F.Symtab.empty()) 6442 F.Symtab = *SymtabOrErr; 6443 continue; 6444 } 6445 6446 if (Error Err = Stream.SkipBlock()) 6447 return std::move(Err); 6448 continue; 6449 } 6450 case BitstreamEntry::Record: 6451 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6452 continue; 6453 else 6454 return StreamFailed.takeError(); 6455 } 6456 } 6457 } 6458 6459 /// Get a lazy one-at-time loading module from bitcode. 6460 /// 6461 /// This isn't always used in a lazy context. In particular, it's also used by 6462 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6463 /// in forward-referenced functions from block address references. 6464 /// 6465 /// \param[in] MaterializeAll Set to \c true if we should materialize 6466 /// everything. 6467 Expected<std::unique_ptr<Module>> 6468 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6469 bool ShouldLazyLoadMetadata, bool IsImporting) { 6470 BitstreamCursor Stream(Buffer); 6471 6472 std::string ProducerIdentification; 6473 if (IdentificationBit != -1ull) { 6474 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6475 return std::move(JumpFailed); 6476 Expected<std::string> ProducerIdentificationOrErr = 6477 readIdentificationBlock(Stream); 6478 if (!ProducerIdentificationOrErr) 6479 return ProducerIdentificationOrErr.takeError(); 6480 6481 ProducerIdentification = *ProducerIdentificationOrErr; 6482 } 6483 6484 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6485 return std::move(JumpFailed); 6486 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6487 Context); 6488 6489 std::unique_ptr<Module> M = 6490 std::make_unique<Module>(ModuleIdentifier, Context); 6491 M->setMaterializer(R); 6492 6493 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6494 if (Error Err = 6495 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 6496 return std::move(Err); 6497 6498 if (MaterializeAll) { 6499 // Read in the entire module, and destroy the BitcodeReader. 6500 if (Error Err = M->materializeAll()) 6501 return std::move(Err); 6502 } else { 6503 // Resolve forward references from blockaddresses. 6504 if (Error Err = R->materializeForwardReferencedFunctions()) 6505 return std::move(Err); 6506 } 6507 return std::move(M); 6508 } 6509 6510 Expected<std::unique_ptr<Module>> 6511 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6512 bool IsImporting) { 6513 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 6514 } 6515 6516 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6517 // We don't use ModuleIdentifier here because the client may need to control the 6518 // module path used in the combined summary (e.g. when reading summaries for 6519 // regular LTO modules). 6520 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6521 StringRef ModulePath, uint64_t ModuleId) { 6522 BitstreamCursor Stream(Buffer); 6523 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6524 return JumpFailed; 6525 6526 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6527 ModulePath, ModuleId); 6528 return R.parseModule(); 6529 } 6530 6531 // Parse the specified bitcode buffer, returning the function info index. 6532 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6533 BitstreamCursor Stream(Buffer); 6534 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6535 return std::move(JumpFailed); 6536 6537 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6538 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6539 ModuleIdentifier, 0); 6540 6541 if (Error Err = R.parseModule()) 6542 return std::move(Err); 6543 6544 return std::move(Index); 6545 } 6546 6547 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6548 unsigned ID) { 6549 if (Error Err = Stream.EnterSubBlock(ID)) 6550 return std::move(Err); 6551 SmallVector<uint64_t, 64> Record; 6552 6553 while (true) { 6554 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6555 if (!MaybeEntry) 6556 return MaybeEntry.takeError(); 6557 BitstreamEntry Entry = MaybeEntry.get(); 6558 6559 switch (Entry.Kind) { 6560 case BitstreamEntry::SubBlock: // Handled for us already. 6561 case BitstreamEntry::Error: 6562 return error("Malformed block"); 6563 case BitstreamEntry::EndBlock: 6564 // If no flags record found, conservatively return true to mimic 6565 // behavior before this flag was added. 6566 return true; 6567 case BitstreamEntry::Record: 6568 // The interesting case. 6569 break; 6570 } 6571 6572 // Look for the FS_FLAGS record. 6573 Record.clear(); 6574 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6575 if (!MaybeBitCode) 6576 return MaybeBitCode.takeError(); 6577 switch (MaybeBitCode.get()) { 6578 default: // Default behavior: ignore. 6579 break; 6580 case bitc::FS_FLAGS: { // [flags] 6581 uint64_t Flags = Record[0]; 6582 // Scan flags. 6583 assert(Flags <= 0x3f && "Unexpected bits in flag"); 6584 6585 return Flags & 0x8; 6586 } 6587 } 6588 } 6589 llvm_unreachable("Exit infinite loop"); 6590 } 6591 6592 // Check if the given bitcode buffer contains a global value summary block. 6593 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6594 BitstreamCursor Stream(Buffer); 6595 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6596 return std::move(JumpFailed); 6597 6598 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6599 return std::move(Err); 6600 6601 while (true) { 6602 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6603 if (!MaybeEntry) 6604 return MaybeEntry.takeError(); 6605 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6606 6607 switch (Entry.Kind) { 6608 case BitstreamEntry::Error: 6609 return error("Malformed block"); 6610 case BitstreamEntry::EndBlock: 6611 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6612 /*EnableSplitLTOUnit=*/false}; 6613 6614 case BitstreamEntry::SubBlock: 6615 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6616 Expected<bool> EnableSplitLTOUnit = 6617 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6618 if (!EnableSplitLTOUnit) 6619 return EnableSplitLTOUnit.takeError(); 6620 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6621 *EnableSplitLTOUnit}; 6622 } 6623 6624 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6625 Expected<bool> EnableSplitLTOUnit = 6626 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6627 if (!EnableSplitLTOUnit) 6628 return EnableSplitLTOUnit.takeError(); 6629 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6630 *EnableSplitLTOUnit}; 6631 } 6632 6633 // Ignore other sub-blocks. 6634 if (Error Err = Stream.SkipBlock()) 6635 return std::move(Err); 6636 continue; 6637 6638 case BitstreamEntry::Record: 6639 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6640 continue; 6641 else 6642 return StreamFailed.takeError(); 6643 } 6644 } 6645 } 6646 6647 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6648 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6649 if (!MsOrErr) 6650 return MsOrErr.takeError(); 6651 6652 if (MsOrErr->size() != 1) 6653 return error("Expected a single module"); 6654 6655 return (*MsOrErr)[0]; 6656 } 6657 6658 Expected<std::unique_ptr<Module>> 6659 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6660 bool ShouldLazyLoadMetadata, bool IsImporting) { 6661 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6662 if (!BM) 6663 return BM.takeError(); 6664 6665 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6666 } 6667 6668 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6669 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6670 bool ShouldLazyLoadMetadata, bool IsImporting) { 6671 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6672 IsImporting); 6673 if (MOrErr) 6674 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6675 return MOrErr; 6676 } 6677 6678 Expected<std::unique_ptr<Module>> 6679 BitcodeModule::parseModule(LLVMContext &Context) { 6680 return getModuleImpl(Context, true, false, false); 6681 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6682 // written. We must defer until the Module has been fully materialized. 6683 } 6684 6685 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6686 LLVMContext &Context) { 6687 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6688 if (!BM) 6689 return BM.takeError(); 6690 6691 return BM->parseModule(Context); 6692 } 6693 6694 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6695 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6696 if (!StreamOrErr) 6697 return StreamOrErr.takeError(); 6698 6699 return readTriple(*StreamOrErr); 6700 } 6701 6702 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6703 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6704 if (!StreamOrErr) 6705 return StreamOrErr.takeError(); 6706 6707 return hasObjCCategory(*StreamOrErr); 6708 } 6709 6710 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6711 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6712 if (!StreamOrErr) 6713 return StreamOrErr.takeError(); 6714 6715 return readIdentificationCode(*StreamOrErr); 6716 } 6717 6718 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6719 ModuleSummaryIndex &CombinedIndex, 6720 uint64_t ModuleId) { 6721 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6722 if (!BM) 6723 return BM.takeError(); 6724 6725 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6726 } 6727 6728 Expected<std::unique_ptr<ModuleSummaryIndex>> 6729 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6730 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6731 if (!BM) 6732 return BM.takeError(); 6733 6734 return BM->getSummary(); 6735 } 6736 6737 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6738 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6739 if (!BM) 6740 return BM.takeError(); 6741 6742 return BM->getLTOInfo(); 6743 } 6744 6745 Expected<std::unique_ptr<ModuleSummaryIndex>> 6746 llvm::getModuleSummaryIndexForFile(StringRef Path, 6747 bool IgnoreEmptyThinLTOIndexFile) { 6748 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6749 MemoryBuffer::getFileOrSTDIN(Path); 6750 if (!FileOrErr) 6751 return errorCodeToError(FileOrErr.getError()); 6752 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6753 return nullptr; 6754 return getModuleSummaryIndex(**FileOrErr); 6755 } 6756