1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Support/DataStream.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <deque> 37 using namespace llvm; 38 39 namespace { 40 enum { 41 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 42 }; 43 44 class BitcodeReaderValueList { 45 std::vector<WeakVH> ValuePtrs; 46 47 /// ResolveConstants - As we resolve forward-referenced constants, we add 48 /// information about them to this vector. This allows us to resolve them in 49 /// bulk instead of resolving each reference at a time. See the code in 50 /// ResolveConstantForwardRefs for more information about this. 51 /// 52 /// The key of this vector is the placeholder constant, the value is the slot 53 /// number that holds the resolved value. 54 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 55 ResolveConstantsTy ResolveConstants; 56 LLVMContext &Context; 57 public: 58 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 59 ~BitcodeReaderValueList() { 60 assert(ResolveConstants.empty() && "Constants not resolved?"); 61 } 62 63 // vector compatibility methods 64 unsigned size() const { return ValuePtrs.size(); } 65 void resize(unsigned N) { ValuePtrs.resize(N); } 66 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 67 68 void clear() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 ValuePtrs.clear(); 71 } 72 73 Value *operator[](unsigned i) const { 74 assert(i < ValuePtrs.size()); 75 return ValuePtrs[i]; 76 } 77 78 Value *back() const { return ValuePtrs.back(); } 79 void pop_back() { ValuePtrs.pop_back(); } 80 bool empty() const { return ValuePtrs.empty(); } 81 void shrinkTo(unsigned N) { 82 assert(N <= size() && "Invalid shrinkTo request!"); 83 ValuePtrs.resize(N); 84 } 85 86 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 87 Value *getValueFwdRef(unsigned Idx, Type *Ty); 88 89 void AssignValue(Value *V, unsigned Idx); 90 91 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 92 /// resolves any forward references. 93 void ResolveConstantForwardRefs(); 94 }; 95 96 class BitcodeReaderMDValueList { 97 unsigned NumFwdRefs; 98 bool AnyFwdRefs; 99 unsigned MinFwdRef; 100 unsigned MaxFwdRef; 101 std::vector<TrackingMDRef> MDValuePtrs; 102 103 LLVMContext &Context; 104 public: 105 BitcodeReaderMDValueList(LLVMContext &C) 106 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 107 108 // vector compatibility methods 109 unsigned size() const { return MDValuePtrs.size(); } 110 void resize(unsigned N) { MDValuePtrs.resize(N); } 111 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 112 void clear() { MDValuePtrs.clear(); } 113 Metadata *back() const { return MDValuePtrs.back(); } 114 void pop_back() { MDValuePtrs.pop_back(); } 115 bool empty() const { return MDValuePtrs.empty(); } 116 117 Metadata *operator[](unsigned i) const { 118 assert(i < MDValuePtrs.size()); 119 return MDValuePtrs[i]; 120 } 121 122 void shrinkTo(unsigned N) { 123 assert(N <= size() && "Invalid shrinkTo request!"); 124 MDValuePtrs.resize(N); 125 } 126 127 Metadata *getValueFwdRef(unsigned Idx); 128 void AssignValue(Metadata *MD, unsigned Idx); 129 void tryToResolveCycles(); 130 }; 131 132 class BitcodeReader : public GVMaterializer { 133 LLVMContext &Context; 134 DiagnosticHandlerFunction DiagnosticHandler; 135 Module *TheModule = nullptr; 136 std::unique_ptr<MemoryBuffer> Buffer; 137 std::unique_ptr<BitstreamReader> StreamFile; 138 BitstreamCursor Stream; 139 DataStreamer *Streamer; 140 uint64_t NextUnreadBit = 0; 141 bool SeenValueSymbolTable = false; 142 143 std::vector<Type*> TypeList; 144 BitcodeReaderValueList ValueList; 145 BitcodeReaderMDValueList MDValueList; 146 std::vector<Comdat *> ComdatList; 147 SmallVector<Instruction *, 64> InstructionList; 148 149 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 150 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 151 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 152 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 153 154 SmallVector<Instruction*, 64> InstsWithTBAATag; 155 156 /// MAttributes - The set of attributes by index. Index zero in the 157 /// file is for null, and is thus not represented here. As such all indices 158 /// are off by one. 159 std::vector<AttributeSet> MAttributes; 160 161 /// \brief The set of attribute groups. 162 std::map<unsigned, AttributeSet> MAttributeGroups; 163 164 /// FunctionBBs - While parsing a function body, this is a list of the basic 165 /// blocks for the function. 166 std::vector<BasicBlock*> FunctionBBs; 167 168 // When reading the module header, this list is populated with functions that 169 // have bodies later in the file. 170 std::vector<Function*> FunctionsWithBodies; 171 172 // When intrinsic functions are encountered which require upgrading they are 173 // stored here with their replacement function. 174 typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap; 175 UpgradedIntrinsicMap UpgradedIntrinsics; 176 177 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 178 DenseMap<unsigned, unsigned> MDKindMap; 179 180 // Several operations happen after the module header has been read, but 181 // before function bodies are processed. This keeps track of whether 182 // we've done this yet. 183 bool SeenFirstFunctionBody = false; 184 185 /// DeferredFunctionInfo - When function bodies are initially scanned, this 186 /// map contains info about where to find deferred function body in the 187 /// stream. 188 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 189 190 /// When Metadata block is initially scanned when parsing the module, we may 191 /// choose to defer parsing of the metadata. This vector contains info about 192 /// which Metadata blocks are deferred. 193 std::vector<uint64_t> DeferredMetadataInfo; 194 195 /// These are basic blocks forward-referenced by block addresses. They are 196 /// inserted lazily into functions when they're loaded. The basic block ID is 197 /// its index into the vector. 198 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 199 std::deque<Function *> BasicBlockFwdRefQueue; 200 201 /// UseRelativeIDs - Indicates that we are using a new encoding for 202 /// instruction operands where most operands in the current 203 /// FUNCTION_BLOCK are encoded relative to the instruction number, 204 /// for a more compact encoding. Some instruction operands are not 205 /// relative to the instruction ID: basic block numbers, and types. 206 /// Once the old style function blocks have been phased out, we would 207 /// not need this flag. 208 bool UseRelativeIDs = false; 209 210 /// True if all functions will be materialized, negating the need to process 211 /// (e.g.) blockaddress forward references. 212 bool WillMaterializeAllForwardRefs = false; 213 214 /// Functions that have block addresses taken. This is usually empty. 215 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 216 217 /// True if any Metadata block has been materialized. 218 bool IsMetadataMaterialized = false; 219 220 bool StripDebugInfo = false; 221 222 public: 223 std::error_code Error(BitcodeError E, const Twine &Message); 224 std::error_code Error(BitcodeError E); 225 std::error_code Error(const Twine &Message); 226 227 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 228 DiagnosticHandlerFunction DiagnosticHandler); 229 BitcodeReader(DataStreamer *Streamer, LLVMContext &Context, 230 DiagnosticHandlerFunction DiagnosticHandler); 231 ~BitcodeReader() override { FreeState(); } 232 233 std::error_code materializeForwardReferencedFunctions(); 234 235 void FreeState(); 236 237 void releaseBuffer(); 238 239 bool isDematerializable(const GlobalValue *GV) const override; 240 std::error_code materialize(GlobalValue *GV) override; 241 std::error_code materializeModule(Module *M) override; 242 std::vector<StructType *> getIdentifiedStructTypes() const override; 243 void dematerialize(GlobalValue *GV) override; 244 245 /// @brief Main interface to parsing a bitcode buffer. 246 /// @returns true if an error occurred. 247 std::error_code ParseBitcodeInto(Module *M, 248 bool ShouldLazyLoadMetadata = false); 249 250 /// @brief Cheap mechanism to just extract module triple 251 /// @returns true if an error occurred. 252 ErrorOr<std::string> parseTriple(); 253 254 static uint64_t decodeSignRotatedValue(uint64_t V); 255 256 /// Materialize any deferred Metadata block. 257 std::error_code materializeMetadata() override; 258 259 void setStripDebugInfo() override; 260 261 private: 262 std::vector<StructType *> IdentifiedStructTypes; 263 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 264 StructType *createIdentifiedStructType(LLVMContext &Context); 265 266 Type *getTypeByID(unsigned ID); 267 Value *getFnValueByID(unsigned ID, Type *Ty) { 268 if (Ty && Ty->isMetadataTy()) 269 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 270 return ValueList.getValueFwdRef(ID, Ty); 271 } 272 Metadata *getFnMetadataByID(unsigned ID) { 273 return MDValueList.getValueFwdRef(ID); 274 } 275 BasicBlock *getBasicBlock(unsigned ID) const { 276 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 277 return FunctionBBs[ID]; 278 } 279 AttributeSet getAttributes(unsigned i) const { 280 if (i-1 < MAttributes.size()) 281 return MAttributes[i-1]; 282 return AttributeSet(); 283 } 284 285 /// getValueTypePair - Read a value/type pair out of the specified record from 286 /// slot 'Slot'. Increment Slot past the number of slots used in the record. 287 /// Return true on failure. 288 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 289 unsigned InstNum, Value *&ResVal) { 290 if (Slot == Record.size()) return true; 291 unsigned ValNo = (unsigned)Record[Slot++]; 292 // Adjust the ValNo, if it was encoded relative to the InstNum. 293 if (UseRelativeIDs) 294 ValNo = InstNum - ValNo; 295 if (ValNo < InstNum) { 296 // If this is not a forward reference, just return the value we already 297 // have. 298 ResVal = getFnValueByID(ValNo, nullptr); 299 return ResVal == nullptr; 300 } 301 if (Slot == Record.size()) 302 return true; 303 304 unsigned TypeNo = (unsigned)Record[Slot++]; 305 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 306 return ResVal == nullptr; 307 } 308 309 /// popValue - Read a value out of the specified record from slot 'Slot'. 310 /// Increment Slot past the number of slots used by the value in the record. 311 /// Return true if there is an error. 312 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 313 unsigned InstNum, Type *Ty, Value *&ResVal) { 314 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 315 return true; 316 // All values currently take a single record slot. 317 ++Slot; 318 return false; 319 } 320 321 /// getValue -- Like popValue, but does not increment the Slot number. 322 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 323 unsigned InstNum, Type *Ty, Value *&ResVal) { 324 ResVal = getValue(Record, Slot, InstNum, Ty); 325 return ResVal == nullptr; 326 } 327 328 /// getValue -- Version of getValue that returns ResVal directly, 329 /// or 0 if there is an error. 330 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 331 unsigned InstNum, Type *Ty) { 332 if (Slot == Record.size()) return nullptr; 333 unsigned ValNo = (unsigned)Record[Slot]; 334 // Adjust the ValNo, if it was encoded relative to the InstNum. 335 if (UseRelativeIDs) 336 ValNo = InstNum - ValNo; 337 return getFnValueByID(ValNo, Ty); 338 } 339 340 /// getValueSigned -- Like getValue, but decodes signed VBRs. 341 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 342 unsigned InstNum, Type *Ty) { 343 if (Slot == Record.size()) return nullptr; 344 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 345 // Adjust the ValNo, if it was encoded relative to the InstNum. 346 if (UseRelativeIDs) 347 ValNo = InstNum - ValNo; 348 return getFnValueByID(ValNo, Ty); 349 } 350 351 /// Converts alignment exponent (i.e. power of two (or zero)) to the 352 /// corresponding alignment to use. If alignment is too large, returns 353 /// a corresponding error code. 354 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 355 std::error_code ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 356 std::error_code ParseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 357 std::error_code ParseAttributeBlock(); 358 std::error_code ParseAttributeGroupBlock(); 359 std::error_code ParseTypeTable(); 360 std::error_code ParseTypeTableBody(); 361 362 std::error_code ParseValueSymbolTable(); 363 std::error_code ParseConstants(); 364 std::error_code RememberAndSkipFunctionBody(); 365 /// Save the positions of the Metadata blocks and skip parsing the blocks. 366 std::error_code rememberAndSkipMetadata(); 367 std::error_code ParseFunctionBody(Function *F); 368 std::error_code GlobalCleanup(); 369 std::error_code ResolveGlobalAndAliasInits(); 370 std::error_code ParseMetadata(); 371 std::error_code ParseMetadataAttachment(Function &F); 372 ErrorOr<std::string> parseModuleTriple(); 373 std::error_code ParseUseLists(); 374 std::error_code InitStream(); 375 std::error_code InitStreamFromBuffer(); 376 std::error_code InitLazyStream(); 377 std::error_code FindFunctionInStream( 378 Function *F, 379 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 380 }; 381 } // namespace 382 383 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 384 DiagnosticSeverity Severity, 385 const Twine &Msg) 386 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 387 388 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 389 390 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 391 std::error_code EC, const Twine &Message) { 392 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 393 DiagnosticHandler(DI); 394 return EC; 395 } 396 397 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 398 std::error_code EC) { 399 return Error(DiagnosticHandler, EC, EC.message()); 400 } 401 402 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 403 const Twine &Message) { 404 return Error(DiagnosticHandler, 405 make_error_code(BitcodeError::CorruptedBitcode), Message); 406 } 407 408 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 409 return ::Error(DiagnosticHandler, make_error_code(E), Message); 410 } 411 412 std::error_code BitcodeReader::Error(const Twine &Message) { 413 return ::Error(DiagnosticHandler, 414 make_error_code(BitcodeError::CorruptedBitcode), Message); 415 } 416 417 std::error_code BitcodeReader::Error(BitcodeError E) { 418 return ::Error(DiagnosticHandler, make_error_code(E)); 419 } 420 421 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 422 LLVMContext &C) { 423 if (F) 424 return F; 425 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 426 } 427 428 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 429 DiagnosticHandlerFunction DiagnosticHandler) 430 : Context(Context), 431 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 432 Buffer(Buffer), Streamer(nullptr), ValueList(Context), 433 MDValueList(Context) {} 434 435 BitcodeReader::BitcodeReader(DataStreamer *Streamer, LLVMContext &Context, 436 DiagnosticHandlerFunction DiagnosticHandler) 437 : Context(Context), 438 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 439 Buffer(nullptr), Streamer(Streamer), ValueList(Context), 440 MDValueList(Context) {} 441 442 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 443 if (WillMaterializeAllForwardRefs) 444 return std::error_code(); 445 446 // Prevent recursion. 447 WillMaterializeAllForwardRefs = true; 448 449 while (!BasicBlockFwdRefQueue.empty()) { 450 Function *F = BasicBlockFwdRefQueue.front(); 451 BasicBlockFwdRefQueue.pop_front(); 452 assert(F && "Expected valid function"); 453 if (!BasicBlockFwdRefs.count(F)) 454 // Already materialized. 455 continue; 456 457 // Check for a function that isn't materializable to prevent an infinite 458 // loop. When parsing a blockaddress stored in a global variable, there 459 // isn't a trivial way to check if a function will have a body without a 460 // linear search through FunctionsWithBodies, so just check it here. 461 if (!F->isMaterializable()) 462 return Error("Never resolved function from blockaddress"); 463 464 // Try to materialize F. 465 if (std::error_code EC = materialize(F)) 466 return EC; 467 } 468 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 469 470 // Reset state. 471 WillMaterializeAllForwardRefs = false; 472 return std::error_code(); 473 } 474 475 void BitcodeReader::FreeState() { 476 Buffer = nullptr; 477 std::vector<Type*>().swap(TypeList); 478 ValueList.clear(); 479 MDValueList.clear(); 480 std::vector<Comdat *>().swap(ComdatList); 481 482 std::vector<AttributeSet>().swap(MAttributes); 483 std::vector<BasicBlock*>().swap(FunctionBBs); 484 std::vector<Function*>().swap(FunctionsWithBodies); 485 DeferredFunctionInfo.clear(); 486 DeferredMetadataInfo.clear(); 487 MDKindMap.clear(); 488 489 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 490 BasicBlockFwdRefQueue.clear(); 491 } 492 493 //===----------------------------------------------------------------------===// 494 // Helper functions to implement forward reference resolution, etc. 495 //===----------------------------------------------------------------------===// 496 497 /// ConvertToString - Convert a string from a record into an std::string, return 498 /// true on failure. 499 template<typename StrTy> 500 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 501 StrTy &Result) { 502 if (Idx > Record.size()) 503 return true; 504 505 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 506 Result += (char)Record[i]; 507 return false; 508 } 509 510 static bool hasImplicitComdat(size_t Val) { 511 switch (Val) { 512 default: 513 return false; 514 case 1: // Old WeakAnyLinkage 515 case 4: // Old LinkOnceAnyLinkage 516 case 10: // Old WeakODRLinkage 517 case 11: // Old LinkOnceODRLinkage 518 return true; 519 } 520 } 521 522 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 523 switch (Val) { 524 default: // Map unknown/new linkages to external 525 case 0: 526 return GlobalValue::ExternalLinkage; 527 case 2: 528 return GlobalValue::AppendingLinkage; 529 case 3: 530 return GlobalValue::InternalLinkage; 531 case 5: 532 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 533 case 6: 534 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 535 case 7: 536 return GlobalValue::ExternalWeakLinkage; 537 case 8: 538 return GlobalValue::CommonLinkage; 539 case 9: 540 return GlobalValue::PrivateLinkage; 541 case 12: 542 return GlobalValue::AvailableExternallyLinkage; 543 case 13: 544 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 545 case 14: 546 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 547 case 15: 548 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 549 case 1: // Old value with implicit comdat. 550 case 16: 551 return GlobalValue::WeakAnyLinkage; 552 case 10: // Old value with implicit comdat. 553 case 17: 554 return GlobalValue::WeakODRLinkage; 555 case 4: // Old value with implicit comdat. 556 case 18: 557 return GlobalValue::LinkOnceAnyLinkage; 558 case 11: // Old value with implicit comdat. 559 case 19: 560 return GlobalValue::LinkOnceODRLinkage; 561 } 562 } 563 564 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 565 switch (Val) { 566 default: // Map unknown visibilities to default. 567 case 0: return GlobalValue::DefaultVisibility; 568 case 1: return GlobalValue::HiddenVisibility; 569 case 2: return GlobalValue::ProtectedVisibility; 570 } 571 } 572 573 static GlobalValue::DLLStorageClassTypes 574 GetDecodedDLLStorageClass(unsigned Val) { 575 switch (Val) { 576 default: // Map unknown values to default. 577 case 0: return GlobalValue::DefaultStorageClass; 578 case 1: return GlobalValue::DLLImportStorageClass; 579 case 2: return GlobalValue::DLLExportStorageClass; 580 } 581 } 582 583 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 584 switch (Val) { 585 case 0: return GlobalVariable::NotThreadLocal; 586 default: // Map unknown non-zero value to general dynamic. 587 case 1: return GlobalVariable::GeneralDynamicTLSModel; 588 case 2: return GlobalVariable::LocalDynamicTLSModel; 589 case 3: return GlobalVariable::InitialExecTLSModel; 590 case 4: return GlobalVariable::LocalExecTLSModel; 591 } 592 } 593 594 static int GetDecodedCastOpcode(unsigned Val) { 595 switch (Val) { 596 default: return -1; 597 case bitc::CAST_TRUNC : return Instruction::Trunc; 598 case bitc::CAST_ZEXT : return Instruction::ZExt; 599 case bitc::CAST_SEXT : return Instruction::SExt; 600 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 601 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 602 case bitc::CAST_UITOFP : return Instruction::UIToFP; 603 case bitc::CAST_SITOFP : return Instruction::SIToFP; 604 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 605 case bitc::CAST_FPEXT : return Instruction::FPExt; 606 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 607 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 608 case bitc::CAST_BITCAST : return Instruction::BitCast; 609 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 610 } 611 } 612 613 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 614 bool IsFP = Ty->isFPOrFPVectorTy(); 615 // BinOps are only valid for int/fp or vector of int/fp types 616 if (!IsFP && !Ty->isIntOrIntVectorTy()) 617 return -1; 618 619 switch (Val) { 620 default: 621 return -1; 622 case bitc::BINOP_ADD: 623 return IsFP ? Instruction::FAdd : Instruction::Add; 624 case bitc::BINOP_SUB: 625 return IsFP ? Instruction::FSub : Instruction::Sub; 626 case bitc::BINOP_MUL: 627 return IsFP ? Instruction::FMul : Instruction::Mul; 628 case bitc::BINOP_UDIV: 629 return IsFP ? -1 : Instruction::UDiv; 630 case bitc::BINOP_SDIV: 631 return IsFP ? Instruction::FDiv : Instruction::SDiv; 632 case bitc::BINOP_UREM: 633 return IsFP ? -1 : Instruction::URem; 634 case bitc::BINOP_SREM: 635 return IsFP ? Instruction::FRem : Instruction::SRem; 636 case bitc::BINOP_SHL: 637 return IsFP ? -1 : Instruction::Shl; 638 case bitc::BINOP_LSHR: 639 return IsFP ? -1 : Instruction::LShr; 640 case bitc::BINOP_ASHR: 641 return IsFP ? -1 : Instruction::AShr; 642 case bitc::BINOP_AND: 643 return IsFP ? -1 : Instruction::And; 644 case bitc::BINOP_OR: 645 return IsFP ? -1 : Instruction::Or; 646 case bitc::BINOP_XOR: 647 return IsFP ? -1 : Instruction::Xor; 648 } 649 } 650 651 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 652 switch (Val) { 653 default: return AtomicRMWInst::BAD_BINOP; 654 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 655 case bitc::RMW_ADD: return AtomicRMWInst::Add; 656 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 657 case bitc::RMW_AND: return AtomicRMWInst::And; 658 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 659 case bitc::RMW_OR: return AtomicRMWInst::Or; 660 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 661 case bitc::RMW_MAX: return AtomicRMWInst::Max; 662 case bitc::RMW_MIN: return AtomicRMWInst::Min; 663 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 664 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 665 } 666 } 667 668 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 669 switch (Val) { 670 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 671 case bitc::ORDERING_UNORDERED: return Unordered; 672 case bitc::ORDERING_MONOTONIC: return Monotonic; 673 case bitc::ORDERING_ACQUIRE: return Acquire; 674 case bitc::ORDERING_RELEASE: return Release; 675 case bitc::ORDERING_ACQREL: return AcquireRelease; 676 default: // Map unknown orderings to sequentially-consistent. 677 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 678 } 679 } 680 681 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 682 switch (Val) { 683 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 684 default: // Map unknown scopes to cross-thread. 685 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 686 } 687 } 688 689 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 690 switch (Val) { 691 default: // Map unknown selection kinds to any. 692 case bitc::COMDAT_SELECTION_KIND_ANY: 693 return Comdat::Any; 694 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 695 return Comdat::ExactMatch; 696 case bitc::COMDAT_SELECTION_KIND_LARGEST: 697 return Comdat::Largest; 698 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 699 return Comdat::NoDuplicates; 700 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 701 return Comdat::SameSize; 702 } 703 } 704 705 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 706 switch (Val) { 707 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 708 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 709 } 710 } 711 712 namespace llvm { 713 namespace { 714 /// @brief A class for maintaining the slot number definition 715 /// as a placeholder for the actual definition for forward constants defs. 716 class ConstantPlaceHolder : public ConstantExpr { 717 void operator=(const ConstantPlaceHolder &) = delete; 718 public: 719 // allocate space for exactly one operand 720 void *operator new(size_t s) { 721 return User::operator new(s, 1); 722 } 723 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 724 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 725 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 726 } 727 728 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 729 static bool classof(const Value *V) { 730 return isa<ConstantExpr>(V) && 731 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 732 } 733 734 735 /// Provide fast operand accessors 736 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 737 }; 738 } 739 740 // FIXME: can we inherit this from ConstantExpr? 741 template <> 742 struct OperandTraits<ConstantPlaceHolder> : 743 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 744 }; 745 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 746 } 747 748 749 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 750 if (Idx == size()) { 751 push_back(V); 752 return; 753 } 754 755 if (Idx >= size()) 756 resize(Idx+1); 757 758 WeakVH &OldV = ValuePtrs[Idx]; 759 if (!OldV) { 760 OldV = V; 761 return; 762 } 763 764 // Handle constants and non-constants (e.g. instrs) differently for 765 // efficiency. 766 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 767 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 768 OldV = V; 769 } else { 770 // If there was a forward reference to this value, replace it. 771 Value *PrevVal = OldV; 772 OldV->replaceAllUsesWith(V); 773 delete PrevVal; 774 } 775 } 776 777 778 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 779 Type *Ty) { 780 if (Idx >= size()) 781 resize(Idx + 1); 782 783 if (Value *V = ValuePtrs[Idx]) { 784 if (Ty != V->getType()) 785 report_fatal_error("Type mismatch in constant table!"); 786 return cast<Constant>(V); 787 } 788 789 // Create and return a placeholder, which will later be RAUW'd. 790 Constant *C = new ConstantPlaceHolder(Ty, Context); 791 ValuePtrs[Idx] = C; 792 return C; 793 } 794 795 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 796 // Bail out for a clearly invalid value. This would make us call resize(0) 797 if (Idx == UINT_MAX) 798 return nullptr; 799 800 if (Idx >= size()) 801 resize(Idx + 1); 802 803 if (Value *V = ValuePtrs[Idx]) { 804 // If the types don't match, it's invalid. 805 if (Ty && Ty != V->getType()) 806 return nullptr; 807 return V; 808 } 809 810 // No type specified, must be invalid reference. 811 if (!Ty) return nullptr; 812 813 // Create and return a placeholder, which will later be RAUW'd. 814 Value *V = new Argument(Ty); 815 ValuePtrs[Idx] = V; 816 return V; 817 } 818 819 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 820 /// resolves any forward references. The idea behind this is that we sometimes 821 /// get constants (such as large arrays) which reference *many* forward ref 822 /// constants. Replacing each of these causes a lot of thrashing when 823 /// building/reuniquing the constant. Instead of doing this, we look at all the 824 /// uses and rewrite all the place holders at once for any constant that uses 825 /// a placeholder. 826 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 827 // Sort the values by-pointer so that they are efficient to look up with a 828 // binary search. 829 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 830 831 SmallVector<Constant*, 64> NewOps; 832 833 while (!ResolveConstants.empty()) { 834 Value *RealVal = operator[](ResolveConstants.back().second); 835 Constant *Placeholder = ResolveConstants.back().first; 836 ResolveConstants.pop_back(); 837 838 // Loop over all users of the placeholder, updating them to reference the 839 // new value. If they reference more than one placeholder, update them all 840 // at once. 841 while (!Placeholder->use_empty()) { 842 auto UI = Placeholder->user_begin(); 843 User *U = *UI; 844 845 // If the using object isn't uniqued, just update the operands. This 846 // handles instructions and initializers for global variables. 847 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 848 UI.getUse().set(RealVal); 849 continue; 850 } 851 852 // Otherwise, we have a constant that uses the placeholder. Replace that 853 // constant with a new constant that has *all* placeholder uses updated. 854 Constant *UserC = cast<Constant>(U); 855 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 856 I != E; ++I) { 857 Value *NewOp; 858 if (!isa<ConstantPlaceHolder>(*I)) { 859 // Not a placeholder reference. 860 NewOp = *I; 861 } else if (*I == Placeholder) { 862 // Common case is that it just references this one placeholder. 863 NewOp = RealVal; 864 } else { 865 // Otherwise, look up the placeholder in ResolveConstants. 866 ResolveConstantsTy::iterator It = 867 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 868 std::pair<Constant*, unsigned>(cast<Constant>(*I), 869 0)); 870 assert(It != ResolveConstants.end() && It->first == *I); 871 NewOp = operator[](It->second); 872 } 873 874 NewOps.push_back(cast<Constant>(NewOp)); 875 } 876 877 // Make the new constant. 878 Constant *NewC; 879 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 880 NewC = ConstantArray::get(UserCA->getType(), NewOps); 881 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 882 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 883 } else if (isa<ConstantVector>(UserC)) { 884 NewC = ConstantVector::get(NewOps); 885 } else { 886 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 887 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 888 } 889 890 UserC->replaceAllUsesWith(NewC); 891 UserC->destroyConstant(); 892 NewOps.clear(); 893 } 894 895 // Update all ValueHandles, they should be the only users at this point. 896 Placeholder->replaceAllUsesWith(RealVal); 897 delete Placeholder; 898 } 899 } 900 901 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 902 if (Idx == size()) { 903 push_back(MD); 904 return; 905 } 906 907 if (Idx >= size()) 908 resize(Idx+1); 909 910 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 911 if (!OldMD) { 912 OldMD.reset(MD); 913 return; 914 } 915 916 // If there was a forward reference to this value, replace it. 917 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 918 PrevMD->replaceAllUsesWith(MD); 919 --NumFwdRefs; 920 } 921 922 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 923 if (Idx >= size()) 924 resize(Idx + 1); 925 926 if (Metadata *MD = MDValuePtrs[Idx]) 927 return MD; 928 929 // Track forward refs to be resolved later. 930 if (AnyFwdRefs) { 931 MinFwdRef = std::min(MinFwdRef, Idx); 932 MaxFwdRef = std::max(MaxFwdRef, Idx); 933 } else { 934 AnyFwdRefs = true; 935 MinFwdRef = MaxFwdRef = Idx; 936 } 937 ++NumFwdRefs; 938 939 // Create and return a placeholder, which will later be RAUW'd. 940 Metadata *MD = MDNode::getTemporary(Context, None).release(); 941 MDValuePtrs[Idx].reset(MD); 942 return MD; 943 } 944 945 void BitcodeReaderMDValueList::tryToResolveCycles() { 946 if (!AnyFwdRefs) 947 // Nothing to do. 948 return; 949 950 if (NumFwdRefs) 951 // Still forward references... can't resolve cycles. 952 return; 953 954 // Resolve any cycles. 955 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 956 auto &MD = MDValuePtrs[I]; 957 auto *N = dyn_cast_or_null<MDNode>(MD); 958 if (!N) 959 continue; 960 961 assert(!N->isTemporary() && "Unexpected forward reference"); 962 N->resolveCycles(); 963 } 964 965 // Make sure we return early again until there's another forward ref. 966 AnyFwdRefs = false; 967 } 968 969 Type *BitcodeReader::getTypeByID(unsigned ID) { 970 // The type table size is always specified correctly. 971 if (ID >= TypeList.size()) 972 return nullptr; 973 974 if (Type *Ty = TypeList[ID]) 975 return Ty; 976 977 // If we have a forward reference, the only possible case is when it is to a 978 // named struct. Just create a placeholder for now. 979 return TypeList[ID] = createIdentifiedStructType(Context); 980 } 981 982 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 983 StringRef Name) { 984 auto *Ret = StructType::create(Context, Name); 985 IdentifiedStructTypes.push_back(Ret); 986 return Ret; 987 } 988 989 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 990 auto *Ret = StructType::create(Context); 991 IdentifiedStructTypes.push_back(Ret); 992 return Ret; 993 } 994 995 996 //===----------------------------------------------------------------------===// 997 // Functions for parsing blocks from the bitcode file 998 //===----------------------------------------------------------------------===// 999 1000 1001 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1002 /// been decoded from the given integer. This function must stay in sync with 1003 /// 'encodeLLVMAttributesForBitcode'. 1004 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1005 uint64_t EncodedAttrs) { 1006 // FIXME: Remove in 4.0. 1007 1008 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1009 // the bits above 31 down by 11 bits. 1010 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1011 assert((!Alignment || isPowerOf2_32(Alignment)) && 1012 "Alignment must be a power of two."); 1013 1014 if (Alignment) 1015 B.addAlignmentAttr(Alignment); 1016 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1017 (EncodedAttrs & 0xffff)); 1018 } 1019 1020 std::error_code BitcodeReader::ParseAttributeBlock() { 1021 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1022 return Error("Invalid record"); 1023 1024 if (!MAttributes.empty()) 1025 return Error("Invalid multiple blocks"); 1026 1027 SmallVector<uint64_t, 64> Record; 1028 1029 SmallVector<AttributeSet, 8> Attrs; 1030 1031 // Read all the records. 1032 while (1) { 1033 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1034 1035 switch (Entry.Kind) { 1036 case BitstreamEntry::SubBlock: // Handled for us already. 1037 case BitstreamEntry::Error: 1038 return Error("Malformed block"); 1039 case BitstreamEntry::EndBlock: 1040 return std::error_code(); 1041 case BitstreamEntry::Record: 1042 // The interesting case. 1043 break; 1044 } 1045 1046 // Read a record. 1047 Record.clear(); 1048 switch (Stream.readRecord(Entry.ID, Record)) { 1049 default: // Default behavior: ignore. 1050 break; 1051 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1052 // FIXME: Remove in 4.0. 1053 if (Record.size() & 1) 1054 return Error("Invalid record"); 1055 1056 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1057 AttrBuilder B; 1058 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1059 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1060 } 1061 1062 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1063 Attrs.clear(); 1064 break; 1065 } 1066 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1067 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1068 Attrs.push_back(MAttributeGroups[Record[i]]); 1069 1070 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1071 Attrs.clear(); 1072 break; 1073 } 1074 } 1075 } 1076 } 1077 1078 // Returns Attribute::None on unrecognized codes. 1079 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 1080 switch (Code) { 1081 default: 1082 return Attribute::None; 1083 case bitc::ATTR_KIND_ALIGNMENT: 1084 return Attribute::Alignment; 1085 case bitc::ATTR_KIND_ALWAYS_INLINE: 1086 return Attribute::AlwaysInline; 1087 case bitc::ATTR_KIND_BUILTIN: 1088 return Attribute::Builtin; 1089 case bitc::ATTR_KIND_BY_VAL: 1090 return Attribute::ByVal; 1091 case bitc::ATTR_KIND_IN_ALLOCA: 1092 return Attribute::InAlloca; 1093 case bitc::ATTR_KIND_COLD: 1094 return Attribute::Cold; 1095 case bitc::ATTR_KIND_CONVERGENT: 1096 return Attribute::Convergent; 1097 case bitc::ATTR_KIND_INLINE_HINT: 1098 return Attribute::InlineHint; 1099 case bitc::ATTR_KIND_IN_REG: 1100 return Attribute::InReg; 1101 case bitc::ATTR_KIND_JUMP_TABLE: 1102 return Attribute::JumpTable; 1103 case bitc::ATTR_KIND_MIN_SIZE: 1104 return Attribute::MinSize; 1105 case bitc::ATTR_KIND_NAKED: 1106 return Attribute::Naked; 1107 case bitc::ATTR_KIND_NEST: 1108 return Attribute::Nest; 1109 case bitc::ATTR_KIND_NO_ALIAS: 1110 return Attribute::NoAlias; 1111 case bitc::ATTR_KIND_NO_BUILTIN: 1112 return Attribute::NoBuiltin; 1113 case bitc::ATTR_KIND_NO_CAPTURE: 1114 return Attribute::NoCapture; 1115 case bitc::ATTR_KIND_NO_DUPLICATE: 1116 return Attribute::NoDuplicate; 1117 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1118 return Attribute::NoImplicitFloat; 1119 case bitc::ATTR_KIND_NO_INLINE: 1120 return Attribute::NoInline; 1121 case bitc::ATTR_KIND_NON_LAZY_BIND: 1122 return Attribute::NonLazyBind; 1123 case bitc::ATTR_KIND_NON_NULL: 1124 return Attribute::NonNull; 1125 case bitc::ATTR_KIND_DEREFERENCEABLE: 1126 return Attribute::Dereferenceable; 1127 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1128 return Attribute::DereferenceableOrNull; 1129 case bitc::ATTR_KIND_NO_RED_ZONE: 1130 return Attribute::NoRedZone; 1131 case bitc::ATTR_KIND_NO_RETURN: 1132 return Attribute::NoReturn; 1133 case bitc::ATTR_KIND_NO_UNWIND: 1134 return Attribute::NoUnwind; 1135 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1136 return Attribute::OptimizeForSize; 1137 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1138 return Attribute::OptimizeNone; 1139 case bitc::ATTR_KIND_READ_NONE: 1140 return Attribute::ReadNone; 1141 case bitc::ATTR_KIND_READ_ONLY: 1142 return Attribute::ReadOnly; 1143 case bitc::ATTR_KIND_RETURNED: 1144 return Attribute::Returned; 1145 case bitc::ATTR_KIND_RETURNS_TWICE: 1146 return Attribute::ReturnsTwice; 1147 case bitc::ATTR_KIND_S_EXT: 1148 return Attribute::SExt; 1149 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1150 return Attribute::StackAlignment; 1151 case bitc::ATTR_KIND_STACK_PROTECT: 1152 return Attribute::StackProtect; 1153 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1154 return Attribute::StackProtectReq; 1155 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1156 return Attribute::StackProtectStrong; 1157 case bitc::ATTR_KIND_STRUCT_RET: 1158 return Attribute::StructRet; 1159 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1160 return Attribute::SanitizeAddress; 1161 case bitc::ATTR_KIND_SANITIZE_THREAD: 1162 return Attribute::SanitizeThread; 1163 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1164 return Attribute::SanitizeMemory; 1165 case bitc::ATTR_KIND_UW_TABLE: 1166 return Attribute::UWTable; 1167 case bitc::ATTR_KIND_Z_EXT: 1168 return Attribute::ZExt; 1169 } 1170 } 1171 1172 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1173 unsigned &Alignment) { 1174 // Note: Alignment in bitcode files is incremented by 1, so that zero 1175 // can be used for default alignment. 1176 if (Exponent > Value::MaxAlignmentExponent + 1) 1177 return Error("Invalid alignment value"); 1178 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1179 return std::error_code(); 1180 } 1181 1182 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 1183 Attribute::AttrKind *Kind) { 1184 *Kind = GetAttrFromCode(Code); 1185 if (*Kind == Attribute::None) 1186 return Error(BitcodeError::CorruptedBitcode, 1187 "Unknown attribute kind (" + Twine(Code) + ")"); 1188 return std::error_code(); 1189 } 1190 1191 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 1192 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1193 return Error("Invalid record"); 1194 1195 if (!MAttributeGroups.empty()) 1196 return Error("Invalid multiple blocks"); 1197 1198 SmallVector<uint64_t, 64> Record; 1199 1200 // Read all the records. 1201 while (1) { 1202 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1203 1204 switch (Entry.Kind) { 1205 case BitstreamEntry::SubBlock: // Handled for us already. 1206 case BitstreamEntry::Error: 1207 return Error("Malformed block"); 1208 case BitstreamEntry::EndBlock: 1209 return std::error_code(); 1210 case BitstreamEntry::Record: 1211 // The interesting case. 1212 break; 1213 } 1214 1215 // Read a record. 1216 Record.clear(); 1217 switch (Stream.readRecord(Entry.ID, Record)) { 1218 default: // Default behavior: ignore. 1219 break; 1220 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1221 if (Record.size() < 3) 1222 return Error("Invalid record"); 1223 1224 uint64_t GrpID = Record[0]; 1225 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1226 1227 AttrBuilder B; 1228 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1229 if (Record[i] == 0) { // Enum attribute 1230 Attribute::AttrKind Kind; 1231 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1232 return EC; 1233 1234 B.addAttribute(Kind); 1235 } else if (Record[i] == 1) { // Integer attribute 1236 Attribute::AttrKind Kind; 1237 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1238 return EC; 1239 if (Kind == Attribute::Alignment) 1240 B.addAlignmentAttr(Record[++i]); 1241 else if (Kind == Attribute::StackAlignment) 1242 B.addStackAlignmentAttr(Record[++i]); 1243 else if (Kind == Attribute::Dereferenceable) 1244 B.addDereferenceableAttr(Record[++i]); 1245 else if (Kind == Attribute::DereferenceableOrNull) 1246 B.addDereferenceableOrNullAttr(Record[++i]); 1247 } else { // String attribute 1248 assert((Record[i] == 3 || Record[i] == 4) && 1249 "Invalid attribute group entry"); 1250 bool HasValue = (Record[i++] == 4); 1251 SmallString<64> KindStr; 1252 SmallString<64> ValStr; 1253 1254 while (Record[i] != 0 && i != e) 1255 KindStr += Record[i++]; 1256 assert(Record[i] == 0 && "Kind string not null terminated"); 1257 1258 if (HasValue) { 1259 // Has a value associated with it. 1260 ++i; // Skip the '0' that terminates the "kind" string. 1261 while (Record[i] != 0 && i != e) 1262 ValStr += Record[i++]; 1263 assert(Record[i] == 0 && "Value string not null terminated"); 1264 } 1265 1266 B.addAttribute(KindStr.str(), ValStr.str()); 1267 } 1268 } 1269 1270 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1271 break; 1272 } 1273 } 1274 } 1275 } 1276 1277 std::error_code BitcodeReader::ParseTypeTable() { 1278 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1279 return Error("Invalid record"); 1280 1281 return ParseTypeTableBody(); 1282 } 1283 1284 std::error_code BitcodeReader::ParseTypeTableBody() { 1285 if (!TypeList.empty()) 1286 return Error("Invalid multiple blocks"); 1287 1288 SmallVector<uint64_t, 64> Record; 1289 unsigned NumRecords = 0; 1290 1291 SmallString<64> TypeName; 1292 1293 // Read all the records for this type table. 1294 while (1) { 1295 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1296 1297 switch (Entry.Kind) { 1298 case BitstreamEntry::SubBlock: // Handled for us already. 1299 case BitstreamEntry::Error: 1300 return Error("Malformed block"); 1301 case BitstreamEntry::EndBlock: 1302 if (NumRecords != TypeList.size()) 1303 return Error("Malformed block"); 1304 return std::error_code(); 1305 case BitstreamEntry::Record: 1306 // The interesting case. 1307 break; 1308 } 1309 1310 // Read a record. 1311 Record.clear(); 1312 Type *ResultTy = nullptr; 1313 switch (Stream.readRecord(Entry.ID, Record)) { 1314 default: 1315 return Error("Invalid value"); 1316 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1317 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1318 // type list. This allows us to reserve space. 1319 if (Record.size() < 1) 1320 return Error("Invalid record"); 1321 TypeList.resize(Record[0]); 1322 continue; 1323 case bitc::TYPE_CODE_VOID: // VOID 1324 ResultTy = Type::getVoidTy(Context); 1325 break; 1326 case bitc::TYPE_CODE_HALF: // HALF 1327 ResultTy = Type::getHalfTy(Context); 1328 break; 1329 case bitc::TYPE_CODE_FLOAT: // FLOAT 1330 ResultTy = Type::getFloatTy(Context); 1331 break; 1332 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1333 ResultTy = Type::getDoubleTy(Context); 1334 break; 1335 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1336 ResultTy = Type::getX86_FP80Ty(Context); 1337 break; 1338 case bitc::TYPE_CODE_FP128: // FP128 1339 ResultTy = Type::getFP128Ty(Context); 1340 break; 1341 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1342 ResultTy = Type::getPPC_FP128Ty(Context); 1343 break; 1344 case bitc::TYPE_CODE_LABEL: // LABEL 1345 ResultTy = Type::getLabelTy(Context); 1346 break; 1347 case bitc::TYPE_CODE_METADATA: // METADATA 1348 ResultTy = Type::getMetadataTy(Context); 1349 break; 1350 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1351 ResultTy = Type::getX86_MMXTy(Context); 1352 break; 1353 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1354 if (Record.size() < 1) 1355 return Error("Invalid record"); 1356 1357 uint64_t NumBits = Record[0]; 1358 if (NumBits < IntegerType::MIN_INT_BITS || 1359 NumBits > IntegerType::MAX_INT_BITS) 1360 return Error("Bitwidth for integer type out of range"); 1361 ResultTy = IntegerType::get(Context, NumBits); 1362 break; 1363 } 1364 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1365 // [pointee type, address space] 1366 if (Record.size() < 1) 1367 return Error("Invalid record"); 1368 unsigned AddressSpace = 0; 1369 if (Record.size() == 2) 1370 AddressSpace = Record[1]; 1371 ResultTy = getTypeByID(Record[0]); 1372 if (!ResultTy || 1373 !PointerType::isValidElementType(ResultTy)) 1374 return Error("Invalid type"); 1375 ResultTy = PointerType::get(ResultTy, AddressSpace); 1376 break; 1377 } 1378 case bitc::TYPE_CODE_FUNCTION_OLD: { 1379 // FIXME: attrid is dead, remove it in LLVM 4.0 1380 // FUNCTION: [vararg, attrid, retty, paramty x N] 1381 if (Record.size() < 3) 1382 return Error("Invalid record"); 1383 SmallVector<Type*, 8> ArgTys; 1384 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1385 if (Type *T = getTypeByID(Record[i])) 1386 ArgTys.push_back(T); 1387 else 1388 break; 1389 } 1390 1391 ResultTy = getTypeByID(Record[2]); 1392 if (!ResultTy || ArgTys.size() < Record.size()-3) 1393 return Error("Invalid type"); 1394 1395 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1396 break; 1397 } 1398 case bitc::TYPE_CODE_FUNCTION: { 1399 // FUNCTION: [vararg, retty, paramty x N] 1400 if (Record.size() < 2) 1401 return Error("Invalid record"); 1402 SmallVector<Type*, 8> ArgTys; 1403 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1404 if (Type *T = getTypeByID(Record[i])) { 1405 if (!FunctionType::isValidArgumentType(T)) 1406 return Error("Invalid function argument type"); 1407 ArgTys.push_back(T); 1408 } 1409 else 1410 break; 1411 } 1412 1413 ResultTy = getTypeByID(Record[1]); 1414 if (!ResultTy || ArgTys.size() < Record.size()-2) 1415 return Error("Invalid type"); 1416 1417 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1418 break; 1419 } 1420 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1421 if (Record.size() < 1) 1422 return Error("Invalid record"); 1423 SmallVector<Type*, 8> EltTys; 1424 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1425 if (Type *T = getTypeByID(Record[i])) 1426 EltTys.push_back(T); 1427 else 1428 break; 1429 } 1430 if (EltTys.size() != Record.size()-1) 1431 return Error("Invalid type"); 1432 ResultTy = StructType::get(Context, EltTys, Record[0]); 1433 break; 1434 } 1435 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1436 if (ConvertToString(Record, 0, TypeName)) 1437 return Error("Invalid record"); 1438 continue; 1439 1440 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1441 if (Record.size() < 1) 1442 return Error("Invalid record"); 1443 1444 if (NumRecords >= TypeList.size()) 1445 return Error("Invalid TYPE table"); 1446 1447 // Check to see if this was forward referenced, if so fill in the temp. 1448 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1449 if (Res) { 1450 Res->setName(TypeName); 1451 TypeList[NumRecords] = nullptr; 1452 } else // Otherwise, create a new struct. 1453 Res = createIdentifiedStructType(Context, TypeName); 1454 TypeName.clear(); 1455 1456 SmallVector<Type*, 8> EltTys; 1457 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1458 if (Type *T = getTypeByID(Record[i])) 1459 EltTys.push_back(T); 1460 else 1461 break; 1462 } 1463 if (EltTys.size() != Record.size()-1) 1464 return Error("Invalid record"); 1465 Res->setBody(EltTys, Record[0]); 1466 ResultTy = Res; 1467 break; 1468 } 1469 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1470 if (Record.size() != 1) 1471 return Error("Invalid record"); 1472 1473 if (NumRecords >= TypeList.size()) 1474 return Error("Invalid TYPE table"); 1475 1476 // Check to see if this was forward referenced, if so fill in the temp. 1477 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1478 if (Res) { 1479 Res->setName(TypeName); 1480 TypeList[NumRecords] = nullptr; 1481 } else // Otherwise, create a new struct with no body. 1482 Res = createIdentifiedStructType(Context, TypeName); 1483 TypeName.clear(); 1484 ResultTy = Res; 1485 break; 1486 } 1487 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1488 if (Record.size() < 2) 1489 return Error("Invalid record"); 1490 ResultTy = getTypeByID(Record[1]); 1491 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1492 return Error("Invalid type"); 1493 ResultTy = ArrayType::get(ResultTy, Record[0]); 1494 break; 1495 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1496 if (Record.size() < 2) 1497 return Error("Invalid record"); 1498 if (Record[0] == 0) 1499 return Error("Invalid vector length"); 1500 ResultTy = getTypeByID(Record[1]); 1501 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1502 return Error("Invalid type"); 1503 ResultTy = VectorType::get(ResultTy, Record[0]); 1504 break; 1505 } 1506 1507 if (NumRecords >= TypeList.size()) 1508 return Error("Invalid TYPE table"); 1509 if (TypeList[NumRecords]) 1510 return Error( 1511 "Invalid TYPE table: Only named structs can be forward referenced"); 1512 assert(ResultTy && "Didn't read a type?"); 1513 TypeList[NumRecords++] = ResultTy; 1514 } 1515 } 1516 1517 std::error_code BitcodeReader::ParseValueSymbolTable() { 1518 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1519 return Error("Invalid record"); 1520 1521 SmallVector<uint64_t, 64> Record; 1522 1523 Triple TT(TheModule->getTargetTriple()); 1524 1525 // Read all the records for this value table. 1526 SmallString<128> ValueName; 1527 while (1) { 1528 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1529 1530 switch (Entry.Kind) { 1531 case BitstreamEntry::SubBlock: // Handled for us already. 1532 case BitstreamEntry::Error: 1533 return Error("Malformed block"); 1534 case BitstreamEntry::EndBlock: 1535 return std::error_code(); 1536 case BitstreamEntry::Record: 1537 // The interesting case. 1538 break; 1539 } 1540 1541 // Read a record. 1542 Record.clear(); 1543 switch (Stream.readRecord(Entry.ID, Record)) { 1544 default: // Default behavior: unknown type. 1545 break; 1546 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1547 if (ConvertToString(Record, 1, ValueName)) 1548 return Error("Invalid record"); 1549 unsigned ValueID = Record[0]; 1550 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1551 return Error("Invalid record"); 1552 Value *V = ValueList[ValueID]; 1553 1554 V->setName(StringRef(ValueName.data(), ValueName.size())); 1555 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1556 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1557 if (TT.isOSBinFormatMachO()) 1558 GO->setComdat(nullptr); 1559 else 1560 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1561 } 1562 } 1563 ValueName.clear(); 1564 break; 1565 } 1566 case bitc::VST_CODE_BBENTRY: { 1567 if (ConvertToString(Record, 1, ValueName)) 1568 return Error("Invalid record"); 1569 BasicBlock *BB = getBasicBlock(Record[0]); 1570 if (!BB) 1571 return Error("Invalid record"); 1572 1573 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1574 ValueName.clear(); 1575 break; 1576 } 1577 } 1578 } 1579 } 1580 1581 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1582 1583 std::error_code BitcodeReader::ParseMetadata() { 1584 IsMetadataMaterialized = true; 1585 unsigned NextMDValueNo = MDValueList.size(); 1586 1587 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1588 return Error("Invalid record"); 1589 1590 SmallVector<uint64_t, 64> Record; 1591 1592 auto getMD = 1593 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1594 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1595 if (ID) 1596 return getMD(ID - 1); 1597 return nullptr; 1598 }; 1599 auto getMDString = [&](unsigned ID) -> MDString *{ 1600 // This requires that the ID is not really a forward reference. In 1601 // particular, the MDString must already have been resolved. 1602 return cast_or_null<MDString>(getMDOrNull(ID)); 1603 }; 1604 1605 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1606 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1607 1608 // Read all the records. 1609 while (1) { 1610 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1611 1612 switch (Entry.Kind) { 1613 case BitstreamEntry::SubBlock: // Handled for us already. 1614 case BitstreamEntry::Error: 1615 return Error("Malformed block"); 1616 case BitstreamEntry::EndBlock: 1617 MDValueList.tryToResolveCycles(); 1618 return std::error_code(); 1619 case BitstreamEntry::Record: 1620 // The interesting case. 1621 break; 1622 } 1623 1624 // Read a record. 1625 Record.clear(); 1626 unsigned Code = Stream.readRecord(Entry.ID, Record); 1627 bool IsDistinct = false; 1628 switch (Code) { 1629 default: // Default behavior: ignore. 1630 break; 1631 case bitc::METADATA_NAME: { 1632 // Read name of the named metadata. 1633 SmallString<8> Name(Record.begin(), Record.end()); 1634 Record.clear(); 1635 Code = Stream.ReadCode(); 1636 1637 unsigned NextBitCode = Stream.readRecord(Code, Record); 1638 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1639 return Error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1640 1641 // Read named metadata elements. 1642 unsigned Size = Record.size(); 1643 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1644 for (unsigned i = 0; i != Size; ++i) { 1645 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1646 if (!MD) 1647 return Error("Invalid record"); 1648 NMD->addOperand(MD); 1649 } 1650 break; 1651 } 1652 case bitc::METADATA_OLD_FN_NODE: { 1653 // FIXME: Remove in 4.0. 1654 // This is a LocalAsMetadata record, the only type of function-local 1655 // metadata. 1656 if (Record.size() % 2 == 1) 1657 return Error("Invalid record"); 1658 1659 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1660 // to be legal, but there's no upgrade path. 1661 auto dropRecord = [&] { 1662 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1663 }; 1664 if (Record.size() != 2) { 1665 dropRecord(); 1666 break; 1667 } 1668 1669 Type *Ty = getTypeByID(Record[0]); 1670 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1671 dropRecord(); 1672 break; 1673 } 1674 1675 MDValueList.AssignValue( 1676 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1677 NextMDValueNo++); 1678 break; 1679 } 1680 case bitc::METADATA_OLD_NODE: { 1681 // FIXME: Remove in 4.0. 1682 if (Record.size() % 2 == 1) 1683 return Error("Invalid record"); 1684 1685 unsigned Size = Record.size(); 1686 SmallVector<Metadata *, 8> Elts; 1687 for (unsigned i = 0; i != Size; i += 2) { 1688 Type *Ty = getTypeByID(Record[i]); 1689 if (!Ty) 1690 return Error("Invalid record"); 1691 if (Ty->isMetadataTy()) 1692 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1693 else if (!Ty->isVoidTy()) { 1694 auto *MD = 1695 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1696 assert(isa<ConstantAsMetadata>(MD) && 1697 "Expected non-function-local metadata"); 1698 Elts.push_back(MD); 1699 } else 1700 Elts.push_back(nullptr); 1701 } 1702 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1703 break; 1704 } 1705 case bitc::METADATA_VALUE: { 1706 if (Record.size() != 2) 1707 return Error("Invalid record"); 1708 1709 Type *Ty = getTypeByID(Record[0]); 1710 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1711 return Error("Invalid record"); 1712 1713 MDValueList.AssignValue( 1714 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1715 NextMDValueNo++); 1716 break; 1717 } 1718 case bitc::METADATA_DISTINCT_NODE: 1719 IsDistinct = true; 1720 // fallthrough... 1721 case bitc::METADATA_NODE: { 1722 SmallVector<Metadata *, 8> Elts; 1723 Elts.reserve(Record.size()); 1724 for (unsigned ID : Record) 1725 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1726 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1727 : MDNode::get(Context, Elts), 1728 NextMDValueNo++); 1729 break; 1730 } 1731 case bitc::METADATA_LOCATION: { 1732 if (Record.size() != 5) 1733 return Error("Invalid record"); 1734 1735 unsigned Line = Record[1]; 1736 unsigned Column = Record[2]; 1737 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1738 Metadata *InlinedAt = 1739 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1740 MDValueList.AssignValue( 1741 GET_OR_DISTINCT(DILocation, Record[0], 1742 (Context, Line, Column, Scope, InlinedAt)), 1743 NextMDValueNo++); 1744 break; 1745 } 1746 case bitc::METADATA_GENERIC_DEBUG: { 1747 if (Record.size() < 4) 1748 return Error("Invalid record"); 1749 1750 unsigned Tag = Record[1]; 1751 unsigned Version = Record[2]; 1752 1753 if (Tag >= 1u << 16 || Version != 0) 1754 return Error("Invalid record"); 1755 1756 auto *Header = getMDString(Record[3]); 1757 SmallVector<Metadata *, 8> DwarfOps; 1758 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1759 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1760 : nullptr); 1761 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 1762 (Context, Tag, Header, DwarfOps)), 1763 NextMDValueNo++); 1764 break; 1765 } 1766 case bitc::METADATA_SUBRANGE: { 1767 if (Record.size() != 3) 1768 return Error("Invalid record"); 1769 1770 MDValueList.AssignValue( 1771 GET_OR_DISTINCT(DISubrange, Record[0], 1772 (Context, Record[1], unrotateSign(Record[2]))), 1773 NextMDValueNo++); 1774 break; 1775 } 1776 case bitc::METADATA_ENUMERATOR: { 1777 if (Record.size() != 3) 1778 return Error("Invalid record"); 1779 1780 MDValueList.AssignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 1781 (Context, unrotateSign(Record[1]), 1782 getMDString(Record[2]))), 1783 NextMDValueNo++); 1784 break; 1785 } 1786 case bitc::METADATA_BASIC_TYPE: { 1787 if (Record.size() != 6) 1788 return Error("Invalid record"); 1789 1790 MDValueList.AssignValue( 1791 GET_OR_DISTINCT(DIBasicType, Record[0], 1792 (Context, Record[1], getMDString(Record[2]), 1793 Record[3], Record[4], Record[5])), 1794 NextMDValueNo++); 1795 break; 1796 } 1797 case bitc::METADATA_DERIVED_TYPE: { 1798 if (Record.size() != 12) 1799 return Error("Invalid record"); 1800 1801 MDValueList.AssignValue( 1802 GET_OR_DISTINCT(DIDerivedType, Record[0], 1803 (Context, Record[1], getMDString(Record[2]), 1804 getMDOrNull(Record[3]), Record[4], 1805 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1806 Record[7], Record[8], Record[9], Record[10], 1807 getMDOrNull(Record[11]))), 1808 NextMDValueNo++); 1809 break; 1810 } 1811 case bitc::METADATA_COMPOSITE_TYPE: { 1812 if (Record.size() != 16) 1813 return Error("Invalid record"); 1814 1815 MDValueList.AssignValue( 1816 GET_OR_DISTINCT(DICompositeType, Record[0], 1817 (Context, Record[1], getMDString(Record[2]), 1818 getMDOrNull(Record[3]), Record[4], 1819 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1820 Record[7], Record[8], Record[9], Record[10], 1821 getMDOrNull(Record[11]), Record[12], 1822 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1823 getMDString(Record[15]))), 1824 NextMDValueNo++); 1825 break; 1826 } 1827 case bitc::METADATA_SUBROUTINE_TYPE: { 1828 if (Record.size() != 3) 1829 return Error("Invalid record"); 1830 1831 MDValueList.AssignValue( 1832 GET_OR_DISTINCT(DISubroutineType, Record[0], 1833 (Context, Record[1], getMDOrNull(Record[2]))), 1834 NextMDValueNo++); 1835 break; 1836 } 1837 case bitc::METADATA_FILE: { 1838 if (Record.size() != 3) 1839 return Error("Invalid record"); 1840 1841 MDValueList.AssignValue( 1842 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 1843 getMDString(Record[2]))), 1844 NextMDValueNo++); 1845 break; 1846 } 1847 case bitc::METADATA_COMPILE_UNIT: { 1848 if (Record.size() < 14 || Record.size() > 15) 1849 return Error("Invalid record"); 1850 1851 MDValueList.AssignValue( 1852 GET_OR_DISTINCT(DICompileUnit, Record[0], 1853 (Context, Record[1], getMDOrNull(Record[2]), 1854 getMDString(Record[3]), Record[4], 1855 getMDString(Record[5]), Record[6], 1856 getMDString(Record[7]), Record[8], 1857 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1858 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1859 getMDOrNull(Record[13]), 1860 Record.size() == 14 ? 0 : Record[14])), 1861 NextMDValueNo++); 1862 break; 1863 } 1864 case bitc::METADATA_SUBPROGRAM: { 1865 if (Record.size() != 19) 1866 return Error("Invalid record"); 1867 1868 MDValueList.AssignValue( 1869 GET_OR_DISTINCT( 1870 DISubprogram, Record[0], 1871 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1872 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1873 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1874 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1875 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1876 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1877 NextMDValueNo++); 1878 break; 1879 } 1880 case bitc::METADATA_LEXICAL_BLOCK: { 1881 if (Record.size() != 5) 1882 return Error("Invalid record"); 1883 1884 MDValueList.AssignValue( 1885 GET_OR_DISTINCT(DILexicalBlock, Record[0], 1886 (Context, getMDOrNull(Record[1]), 1887 getMDOrNull(Record[2]), Record[3], Record[4])), 1888 NextMDValueNo++); 1889 break; 1890 } 1891 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1892 if (Record.size() != 4) 1893 return Error("Invalid record"); 1894 1895 MDValueList.AssignValue( 1896 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 1897 (Context, getMDOrNull(Record[1]), 1898 getMDOrNull(Record[2]), Record[3])), 1899 NextMDValueNo++); 1900 break; 1901 } 1902 case bitc::METADATA_NAMESPACE: { 1903 if (Record.size() != 5) 1904 return Error("Invalid record"); 1905 1906 MDValueList.AssignValue( 1907 GET_OR_DISTINCT(DINamespace, Record[0], 1908 (Context, getMDOrNull(Record[1]), 1909 getMDOrNull(Record[2]), getMDString(Record[3]), 1910 Record[4])), 1911 NextMDValueNo++); 1912 break; 1913 } 1914 case bitc::METADATA_TEMPLATE_TYPE: { 1915 if (Record.size() != 3) 1916 return Error("Invalid record"); 1917 1918 MDValueList.AssignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 1919 Record[0], 1920 (Context, getMDString(Record[1]), 1921 getMDOrNull(Record[2]))), 1922 NextMDValueNo++); 1923 break; 1924 } 1925 case bitc::METADATA_TEMPLATE_VALUE: { 1926 if (Record.size() != 5) 1927 return Error("Invalid record"); 1928 1929 MDValueList.AssignValue( 1930 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 1931 (Context, Record[1], getMDString(Record[2]), 1932 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1933 NextMDValueNo++); 1934 break; 1935 } 1936 case bitc::METADATA_GLOBAL_VAR: { 1937 if (Record.size() != 11) 1938 return Error("Invalid record"); 1939 1940 MDValueList.AssignValue( 1941 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 1942 (Context, getMDOrNull(Record[1]), 1943 getMDString(Record[2]), getMDString(Record[3]), 1944 getMDOrNull(Record[4]), Record[5], 1945 getMDOrNull(Record[6]), Record[7], Record[8], 1946 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1947 NextMDValueNo++); 1948 break; 1949 } 1950 case bitc::METADATA_LOCAL_VAR: { 1951 // 10th field is for the obseleted 'inlinedAt:' field. 1952 if (Record.size() != 9 && Record.size() != 10) 1953 return Error("Invalid record"); 1954 1955 MDValueList.AssignValue( 1956 GET_OR_DISTINCT(DILocalVariable, Record[0], 1957 (Context, Record[1], getMDOrNull(Record[2]), 1958 getMDString(Record[3]), getMDOrNull(Record[4]), 1959 Record[5], getMDOrNull(Record[6]), Record[7], 1960 Record[8])), 1961 NextMDValueNo++); 1962 break; 1963 } 1964 case bitc::METADATA_EXPRESSION: { 1965 if (Record.size() < 1) 1966 return Error("Invalid record"); 1967 1968 MDValueList.AssignValue( 1969 GET_OR_DISTINCT(DIExpression, Record[0], 1970 (Context, makeArrayRef(Record).slice(1))), 1971 NextMDValueNo++); 1972 break; 1973 } 1974 case bitc::METADATA_OBJC_PROPERTY: { 1975 if (Record.size() != 8) 1976 return Error("Invalid record"); 1977 1978 MDValueList.AssignValue( 1979 GET_OR_DISTINCT(DIObjCProperty, Record[0], 1980 (Context, getMDString(Record[1]), 1981 getMDOrNull(Record[2]), Record[3], 1982 getMDString(Record[4]), getMDString(Record[5]), 1983 Record[6], getMDOrNull(Record[7]))), 1984 NextMDValueNo++); 1985 break; 1986 } 1987 case bitc::METADATA_IMPORTED_ENTITY: { 1988 if (Record.size() != 6) 1989 return Error("Invalid record"); 1990 1991 MDValueList.AssignValue( 1992 GET_OR_DISTINCT(DIImportedEntity, Record[0], 1993 (Context, Record[1], getMDOrNull(Record[2]), 1994 getMDOrNull(Record[3]), Record[4], 1995 getMDString(Record[5]))), 1996 NextMDValueNo++); 1997 break; 1998 } 1999 case bitc::METADATA_STRING: { 2000 std::string String(Record.begin(), Record.end()); 2001 llvm::UpgradeMDStringConstant(String); 2002 Metadata *MD = MDString::get(Context, String); 2003 MDValueList.AssignValue(MD, NextMDValueNo++); 2004 break; 2005 } 2006 case bitc::METADATA_KIND: { 2007 if (Record.size() < 2) 2008 return Error("Invalid record"); 2009 2010 unsigned Kind = Record[0]; 2011 SmallString<8> Name(Record.begin()+1, Record.end()); 2012 2013 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2014 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2015 return Error("Conflicting METADATA_KIND records"); 2016 break; 2017 } 2018 } 2019 } 2020 #undef GET_OR_DISTINCT 2021 } 2022 2023 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 2024 /// the LSB for dense VBR encoding. 2025 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2026 if ((V & 1) == 0) 2027 return V >> 1; 2028 if (V != 1) 2029 return -(V >> 1); 2030 // There is no such thing as -0 with integers. "-0" really means MININT. 2031 return 1ULL << 63; 2032 } 2033 2034 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 2035 /// values and aliases that we can. 2036 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 2037 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2038 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2039 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2040 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2041 2042 GlobalInitWorklist.swap(GlobalInits); 2043 AliasInitWorklist.swap(AliasInits); 2044 FunctionPrefixWorklist.swap(FunctionPrefixes); 2045 FunctionPrologueWorklist.swap(FunctionPrologues); 2046 2047 while (!GlobalInitWorklist.empty()) { 2048 unsigned ValID = GlobalInitWorklist.back().second; 2049 if (ValID >= ValueList.size()) { 2050 // Not ready to resolve this yet, it requires something later in the file. 2051 GlobalInits.push_back(GlobalInitWorklist.back()); 2052 } else { 2053 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2054 GlobalInitWorklist.back().first->setInitializer(C); 2055 else 2056 return Error("Expected a constant"); 2057 } 2058 GlobalInitWorklist.pop_back(); 2059 } 2060 2061 while (!AliasInitWorklist.empty()) { 2062 unsigned ValID = AliasInitWorklist.back().second; 2063 if (ValID >= ValueList.size()) { 2064 AliasInits.push_back(AliasInitWorklist.back()); 2065 } else { 2066 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2067 if (!C) 2068 return Error("Expected a constant"); 2069 GlobalAlias *Alias = AliasInitWorklist.back().first; 2070 if (C->getType() != Alias->getType()) 2071 return Error("Alias and aliasee types don't match"); 2072 Alias->setAliasee(C); 2073 } 2074 AliasInitWorklist.pop_back(); 2075 } 2076 2077 while (!FunctionPrefixWorklist.empty()) { 2078 unsigned ValID = FunctionPrefixWorklist.back().second; 2079 if (ValID >= ValueList.size()) { 2080 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2081 } else { 2082 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2083 FunctionPrefixWorklist.back().first->setPrefixData(C); 2084 else 2085 return Error("Expected a constant"); 2086 } 2087 FunctionPrefixWorklist.pop_back(); 2088 } 2089 2090 while (!FunctionPrologueWorklist.empty()) { 2091 unsigned ValID = FunctionPrologueWorklist.back().second; 2092 if (ValID >= ValueList.size()) { 2093 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2094 } else { 2095 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2096 FunctionPrologueWorklist.back().first->setPrologueData(C); 2097 else 2098 return Error("Expected a constant"); 2099 } 2100 FunctionPrologueWorklist.pop_back(); 2101 } 2102 2103 return std::error_code(); 2104 } 2105 2106 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2107 SmallVector<uint64_t, 8> Words(Vals.size()); 2108 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2109 BitcodeReader::decodeSignRotatedValue); 2110 2111 return APInt(TypeBits, Words); 2112 } 2113 2114 std::error_code BitcodeReader::ParseConstants() { 2115 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2116 return Error("Invalid record"); 2117 2118 SmallVector<uint64_t, 64> Record; 2119 2120 // Read all the records for this value table. 2121 Type *CurTy = Type::getInt32Ty(Context); 2122 unsigned NextCstNo = ValueList.size(); 2123 while (1) { 2124 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2125 2126 switch (Entry.Kind) { 2127 case BitstreamEntry::SubBlock: // Handled for us already. 2128 case BitstreamEntry::Error: 2129 return Error("Malformed block"); 2130 case BitstreamEntry::EndBlock: 2131 if (NextCstNo != ValueList.size()) 2132 return Error("Invalid ronstant reference"); 2133 2134 // Once all the constants have been read, go through and resolve forward 2135 // references. 2136 ValueList.ResolveConstantForwardRefs(); 2137 return std::error_code(); 2138 case BitstreamEntry::Record: 2139 // The interesting case. 2140 break; 2141 } 2142 2143 // Read a record. 2144 Record.clear(); 2145 Value *V = nullptr; 2146 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2147 switch (BitCode) { 2148 default: // Default behavior: unknown constant 2149 case bitc::CST_CODE_UNDEF: // UNDEF 2150 V = UndefValue::get(CurTy); 2151 break; 2152 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2153 if (Record.empty()) 2154 return Error("Invalid record"); 2155 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2156 return Error("Invalid record"); 2157 CurTy = TypeList[Record[0]]; 2158 continue; // Skip the ValueList manipulation. 2159 case bitc::CST_CODE_NULL: // NULL 2160 V = Constant::getNullValue(CurTy); 2161 break; 2162 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2163 if (!CurTy->isIntegerTy() || Record.empty()) 2164 return Error("Invalid record"); 2165 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2166 break; 2167 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2168 if (!CurTy->isIntegerTy() || Record.empty()) 2169 return Error("Invalid record"); 2170 2171 APInt VInt = ReadWideAPInt(Record, 2172 cast<IntegerType>(CurTy)->getBitWidth()); 2173 V = ConstantInt::get(Context, VInt); 2174 2175 break; 2176 } 2177 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2178 if (Record.empty()) 2179 return Error("Invalid record"); 2180 if (CurTy->isHalfTy()) 2181 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2182 APInt(16, (uint16_t)Record[0]))); 2183 else if (CurTy->isFloatTy()) 2184 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2185 APInt(32, (uint32_t)Record[0]))); 2186 else if (CurTy->isDoubleTy()) 2187 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2188 APInt(64, Record[0]))); 2189 else if (CurTy->isX86_FP80Ty()) { 2190 // Bits are not stored the same way as a normal i80 APInt, compensate. 2191 uint64_t Rearrange[2]; 2192 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2193 Rearrange[1] = Record[0] >> 48; 2194 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2195 APInt(80, Rearrange))); 2196 } else if (CurTy->isFP128Ty()) 2197 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2198 APInt(128, Record))); 2199 else if (CurTy->isPPC_FP128Ty()) 2200 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2201 APInt(128, Record))); 2202 else 2203 V = UndefValue::get(CurTy); 2204 break; 2205 } 2206 2207 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2208 if (Record.empty()) 2209 return Error("Invalid record"); 2210 2211 unsigned Size = Record.size(); 2212 SmallVector<Constant*, 16> Elts; 2213 2214 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2215 for (unsigned i = 0; i != Size; ++i) 2216 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2217 STy->getElementType(i))); 2218 V = ConstantStruct::get(STy, Elts); 2219 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2220 Type *EltTy = ATy->getElementType(); 2221 for (unsigned i = 0; i != Size; ++i) 2222 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2223 V = ConstantArray::get(ATy, Elts); 2224 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2225 Type *EltTy = VTy->getElementType(); 2226 for (unsigned i = 0; i != Size; ++i) 2227 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2228 V = ConstantVector::get(Elts); 2229 } else { 2230 V = UndefValue::get(CurTy); 2231 } 2232 break; 2233 } 2234 case bitc::CST_CODE_STRING: // STRING: [values] 2235 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2236 if (Record.empty()) 2237 return Error("Invalid record"); 2238 2239 SmallString<16> Elts(Record.begin(), Record.end()); 2240 V = ConstantDataArray::getString(Context, Elts, 2241 BitCode == bitc::CST_CODE_CSTRING); 2242 break; 2243 } 2244 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2245 if (Record.empty()) 2246 return Error("Invalid record"); 2247 2248 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2249 unsigned Size = Record.size(); 2250 2251 if (EltTy->isIntegerTy(8)) { 2252 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2253 if (isa<VectorType>(CurTy)) 2254 V = ConstantDataVector::get(Context, Elts); 2255 else 2256 V = ConstantDataArray::get(Context, Elts); 2257 } else if (EltTy->isIntegerTy(16)) { 2258 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2259 if (isa<VectorType>(CurTy)) 2260 V = ConstantDataVector::get(Context, Elts); 2261 else 2262 V = ConstantDataArray::get(Context, Elts); 2263 } else if (EltTy->isIntegerTy(32)) { 2264 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2265 if (isa<VectorType>(CurTy)) 2266 V = ConstantDataVector::get(Context, Elts); 2267 else 2268 V = ConstantDataArray::get(Context, Elts); 2269 } else if (EltTy->isIntegerTy(64)) { 2270 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2271 if (isa<VectorType>(CurTy)) 2272 V = ConstantDataVector::get(Context, Elts); 2273 else 2274 V = ConstantDataArray::get(Context, Elts); 2275 } else if (EltTy->isFloatTy()) { 2276 SmallVector<float, 16> Elts(Size); 2277 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2278 if (isa<VectorType>(CurTy)) 2279 V = ConstantDataVector::get(Context, Elts); 2280 else 2281 V = ConstantDataArray::get(Context, Elts); 2282 } else if (EltTy->isDoubleTy()) { 2283 SmallVector<double, 16> Elts(Size); 2284 std::transform(Record.begin(), Record.end(), Elts.begin(), 2285 BitsToDouble); 2286 if (isa<VectorType>(CurTy)) 2287 V = ConstantDataVector::get(Context, Elts); 2288 else 2289 V = ConstantDataArray::get(Context, Elts); 2290 } else { 2291 return Error("Invalid type for value"); 2292 } 2293 break; 2294 } 2295 2296 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2297 if (Record.size() < 3) 2298 return Error("Invalid record"); 2299 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 2300 if (Opc < 0) { 2301 V = UndefValue::get(CurTy); // Unknown binop. 2302 } else { 2303 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2304 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2305 unsigned Flags = 0; 2306 if (Record.size() >= 4) { 2307 if (Opc == Instruction::Add || 2308 Opc == Instruction::Sub || 2309 Opc == Instruction::Mul || 2310 Opc == Instruction::Shl) { 2311 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2312 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2313 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2314 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2315 } else if (Opc == Instruction::SDiv || 2316 Opc == Instruction::UDiv || 2317 Opc == Instruction::LShr || 2318 Opc == Instruction::AShr) { 2319 if (Record[3] & (1 << bitc::PEO_EXACT)) 2320 Flags |= SDivOperator::IsExact; 2321 } 2322 } 2323 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2324 } 2325 break; 2326 } 2327 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2328 if (Record.size() < 3) 2329 return Error("Invalid record"); 2330 int Opc = GetDecodedCastOpcode(Record[0]); 2331 if (Opc < 0) { 2332 V = UndefValue::get(CurTy); // Unknown cast. 2333 } else { 2334 Type *OpTy = getTypeByID(Record[1]); 2335 if (!OpTy) 2336 return Error("Invalid record"); 2337 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2338 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2339 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2340 } 2341 break; 2342 } 2343 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2344 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2345 unsigned OpNum = 0; 2346 Type *PointeeType = nullptr; 2347 if (Record.size() % 2) 2348 PointeeType = getTypeByID(Record[OpNum++]); 2349 SmallVector<Constant*, 16> Elts; 2350 while (OpNum != Record.size()) { 2351 Type *ElTy = getTypeByID(Record[OpNum++]); 2352 if (!ElTy) 2353 return Error("Invalid record"); 2354 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2355 } 2356 2357 if (PointeeType && 2358 PointeeType != 2359 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2360 ->getElementType()) 2361 return Error("Explicit gep operator type does not match pointee type " 2362 "of pointer operand"); 2363 2364 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2365 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2366 BitCode == 2367 bitc::CST_CODE_CE_INBOUNDS_GEP); 2368 break; 2369 } 2370 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2371 if (Record.size() < 3) 2372 return Error("Invalid record"); 2373 2374 Type *SelectorTy = Type::getInt1Ty(Context); 2375 2376 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2377 // vector. Otherwise, it must be a single bit. 2378 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2379 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2380 VTy->getNumElements()); 2381 2382 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2383 SelectorTy), 2384 ValueList.getConstantFwdRef(Record[1],CurTy), 2385 ValueList.getConstantFwdRef(Record[2],CurTy)); 2386 break; 2387 } 2388 case bitc::CST_CODE_CE_EXTRACTELT 2389 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2390 if (Record.size() < 3) 2391 return Error("Invalid record"); 2392 VectorType *OpTy = 2393 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2394 if (!OpTy) 2395 return Error("Invalid record"); 2396 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2397 Constant *Op1 = nullptr; 2398 if (Record.size() == 4) { 2399 Type *IdxTy = getTypeByID(Record[2]); 2400 if (!IdxTy) 2401 return Error("Invalid record"); 2402 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2403 } else // TODO: Remove with llvm 4.0 2404 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2405 if (!Op1) 2406 return Error("Invalid record"); 2407 V = ConstantExpr::getExtractElement(Op0, Op1); 2408 break; 2409 } 2410 case bitc::CST_CODE_CE_INSERTELT 2411 : { // CE_INSERTELT: [opval, opval, opty, opval] 2412 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2413 if (Record.size() < 3 || !OpTy) 2414 return Error("Invalid record"); 2415 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2416 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2417 OpTy->getElementType()); 2418 Constant *Op2 = nullptr; 2419 if (Record.size() == 4) { 2420 Type *IdxTy = getTypeByID(Record[2]); 2421 if (!IdxTy) 2422 return Error("Invalid record"); 2423 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2424 } else // TODO: Remove with llvm 4.0 2425 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2426 if (!Op2) 2427 return Error("Invalid record"); 2428 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2429 break; 2430 } 2431 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2432 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2433 if (Record.size() < 3 || !OpTy) 2434 return Error("Invalid record"); 2435 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2436 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2437 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2438 OpTy->getNumElements()); 2439 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2440 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2441 break; 2442 } 2443 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2444 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2445 VectorType *OpTy = 2446 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2447 if (Record.size() < 4 || !RTy || !OpTy) 2448 return Error("Invalid record"); 2449 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2450 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2451 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2452 RTy->getNumElements()); 2453 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2454 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2455 break; 2456 } 2457 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2458 if (Record.size() < 4) 2459 return Error("Invalid record"); 2460 Type *OpTy = getTypeByID(Record[0]); 2461 if (!OpTy) 2462 return Error("Invalid record"); 2463 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2464 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2465 2466 if (OpTy->isFPOrFPVectorTy()) 2467 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2468 else 2469 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2470 break; 2471 } 2472 // This maintains backward compatibility, pre-asm dialect keywords. 2473 // FIXME: Remove with the 4.0 release. 2474 case bitc::CST_CODE_INLINEASM_OLD: { 2475 if (Record.size() < 2) 2476 return Error("Invalid record"); 2477 std::string AsmStr, ConstrStr; 2478 bool HasSideEffects = Record[0] & 1; 2479 bool IsAlignStack = Record[0] >> 1; 2480 unsigned AsmStrSize = Record[1]; 2481 if (2+AsmStrSize >= Record.size()) 2482 return Error("Invalid record"); 2483 unsigned ConstStrSize = Record[2+AsmStrSize]; 2484 if (3+AsmStrSize+ConstStrSize > Record.size()) 2485 return Error("Invalid record"); 2486 2487 for (unsigned i = 0; i != AsmStrSize; ++i) 2488 AsmStr += (char)Record[2+i]; 2489 for (unsigned i = 0; i != ConstStrSize; ++i) 2490 ConstrStr += (char)Record[3+AsmStrSize+i]; 2491 PointerType *PTy = cast<PointerType>(CurTy); 2492 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2493 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2494 break; 2495 } 2496 // This version adds support for the asm dialect keywords (e.g., 2497 // inteldialect). 2498 case bitc::CST_CODE_INLINEASM: { 2499 if (Record.size() < 2) 2500 return Error("Invalid record"); 2501 std::string AsmStr, ConstrStr; 2502 bool HasSideEffects = Record[0] & 1; 2503 bool IsAlignStack = (Record[0] >> 1) & 1; 2504 unsigned AsmDialect = Record[0] >> 2; 2505 unsigned AsmStrSize = Record[1]; 2506 if (2+AsmStrSize >= Record.size()) 2507 return Error("Invalid record"); 2508 unsigned ConstStrSize = Record[2+AsmStrSize]; 2509 if (3+AsmStrSize+ConstStrSize > Record.size()) 2510 return Error("Invalid record"); 2511 2512 for (unsigned i = 0; i != AsmStrSize; ++i) 2513 AsmStr += (char)Record[2+i]; 2514 for (unsigned i = 0; i != ConstStrSize; ++i) 2515 ConstrStr += (char)Record[3+AsmStrSize+i]; 2516 PointerType *PTy = cast<PointerType>(CurTy); 2517 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2518 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2519 InlineAsm::AsmDialect(AsmDialect)); 2520 break; 2521 } 2522 case bitc::CST_CODE_BLOCKADDRESS:{ 2523 if (Record.size() < 3) 2524 return Error("Invalid record"); 2525 Type *FnTy = getTypeByID(Record[0]); 2526 if (!FnTy) 2527 return Error("Invalid record"); 2528 Function *Fn = 2529 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2530 if (!Fn) 2531 return Error("Invalid record"); 2532 2533 // Don't let Fn get dematerialized. 2534 BlockAddressesTaken.insert(Fn); 2535 2536 // If the function is already parsed we can insert the block address right 2537 // away. 2538 BasicBlock *BB; 2539 unsigned BBID = Record[2]; 2540 if (!BBID) 2541 // Invalid reference to entry block. 2542 return Error("Invalid ID"); 2543 if (!Fn->empty()) { 2544 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2545 for (size_t I = 0, E = BBID; I != E; ++I) { 2546 if (BBI == BBE) 2547 return Error("Invalid ID"); 2548 ++BBI; 2549 } 2550 BB = BBI; 2551 } else { 2552 // Otherwise insert a placeholder and remember it so it can be inserted 2553 // when the function is parsed. 2554 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2555 if (FwdBBs.empty()) 2556 BasicBlockFwdRefQueue.push_back(Fn); 2557 if (FwdBBs.size() < BBID + 1) 2558 FwdBBs.resize(BBID + 1); 2559 if (!FwdBBs[BBID]) 2560 FwdBBs[BBID] = BasicBlock::Create(Context); 2561 BB = FwdBBs[BBID]; 2562 } 2563 V = BlockAddress::get(Fn, BB); 2564 break; 2565 } 2566 } 2567 2568 ValueList.AssignValue(V, NextCstNo); 2569 ++NextCstNo; 2570 } 2571 } 2572 2573 std::error_code BitcodeReader::ParseUseLists() { 2574 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2575 return Error("Invalid record"); 2576 2577 // Read all the records. 2578 SmallVector<uint64_t, 64> Record; 2579 while (1) { 2580 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2581 2582 switch (Entry.Kind) { 2583 case BitstreamEntry::SubBlock: // Handled for us already. 2584 case BitstreamEntry::Error: 2585 return Error("Malformed block"); 2586 case BitstreamEntry::EndBlock: 2587 return std::error_code(); 2588 case BitstreamEntry::Record: 2589 // The interesting case. 2590 break; 2591 } 2592 2593 // Read a use list record. 2594 Record.clear(); 2595 bool IsBB = false; 2596 switch (Stream.readRecord(Entry.ID, Record)) { 2597 default: // Default behavior: unknown type. 2598 break; 2599 case bitc::USELIST_CODE_BB: 2600 IsBB = true; 2601 // fallthrough 2602 case bitc::USELIST_CODE_DEFAULT: { 2603 unsigned RecordLength = Record.size(); 2604 if (RecordLength < 3) 2605 // Records should have at least an ID and two indexes. 2606 return Error("Invalid record"); 2607 unsigned ID = Record.back(); 2608 Record.pop_back(); 2609 2610 Value *V; 2611 if (IsBB) { 2612 assert(ID < FunctionBBs.size() && "Basic block not found"); 2613 V = FunctionBBs[ID]; 2614 } else 2615 V = ValueList[ID]; 2616 unsigned NumUses = 0; 2617 SmallDenseMap<const Use *, unsigned, 16> Order; 2618 for (const Use &U : V->uses()) { 2619 if (++NumUses > Record.size()) 2620 break; 2621 Order[&U] = Record[NumUses - 1]; 2622 } 2623 if (Order.size() != Record.size() || NumUses > Record.size()) 2624 // Mismatches can happen if the functions are being materialized lazily 2625 // (out-of-order), or a value has been upgraded. 2626 break; 2627 2628 V->sortUseList([&](const Use &L, const Use &R) { 2629 return Order.lookup(&L) < Order.lookup(&R); 2630 }); 2631 break; 2632 } 2633 } 2634 } 2635 } 2636 2637 /// When we see the block for metadata, remember where it is and then skip it. 2638 /// This lets us lazily deserialize the metadata. 2639 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2640 // Save the current stream state. 2641 uint64_t CurBit = Stream.GetCurrentBitNo(); 2642 DeferredMetadataInfo.push_back(CurBit); 2643 2644 // Skip over the block for now. 2645 if (Stream.SkipBlock()) 2646 return Error("Invalid record"); 2647 return std::error_code(); 2648 } 2649 2650 std::error_code BitcodeReader::materializeMetadata() { 2651 for (uint64_t BitPos : DeferredMetadataInfo) { 2652 // Move the bit stream to the saved position. 2653 Stream.JumpToBit(BitPos); 2654 if (std::error_code EC = ParseMetadata()) 2655 return EC; 2656 } 2657 DeferredMetadataInfo.clear(); 2658 return std::error_code(); 2659 } 2660 2661 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2662 2663 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2664 /// remember where it is and then skip it. This lets us lazily deserialize the 2665 /// functions. 2666 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2667 // Get the function we are talking about. 2668 if (FunctionsWithBodies.empty()) 2669 return Error("Insufficient function protos"); 2670 2671 Function *Fn = FunctionsWithBodies.back(); 2672 FunctionsWithBodies.pop_back(); 2673 2674 // Save the current stream state. 2675 uint64_t CurBit = Stream.GetCurrentBitNo(); 2676 DeferredFunctionInfo[Fn] = CurBit; 2677 2678 // Skip over the function block for now. 2679 if (Stream.SkipBlock()) 2680 return Error("Invalid record"); 2681 return std::error_code(); 2682 } 2683 2684 std::error_code BitcodeReader::GlobalCleanup() { 2685 // Patch the initializers for globals and aliases up. 2686 ResolveGlobalAndAliasInits(); 2687 if (!GlobalInits.empty() || !AliasInits.empty()) 2688 return Error("Malformed global initializer set"); 2689 2690 // Look for intrinsic functions which need to be upgraded at some point 2691 for (Function &F : *TheModule) { 2692 Function *NewFn; 2693 if (UpgradeIntrinsicFunction(&F, NewFn)) 2694 UpgradedIntrinsics.push_back(std::make_pair(&F, NewFn)); 2695 } 2696 2697 // Look for global variables which need to be renamed. 2698 for (GlobalVariable &GV : TheModule->globals()) 2699 UpgradeGlobalVariable(&GV); 2700 2701 // Force deallocation of memory for these vectors to favor the client that 2702 // want lazy deserialization. 2703 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2704 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2705 return std::error_code(); 2706 } 2707 2708 std::error_code BitcodeReader::ParseModule(bool Resume, 2709 bool ShouldLazyLoadMetadata) { 2710 if (Resume) 2711 Stream.JumpToBit(NextUnreadBit); 2712 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2713 return Error("Invalid record"); 2714 2715 SmallVector<uint64_t, 64> Record; 2716 std::vector<std::string> SectionTable; 2717 std::vector<std::string> GCTable; 2718 2719 // Read all the records for this module. 2720 while (1) { 2721 BitstreamEntry Entry = Stream.advance(); 2722 2723 switch (Entry.Kind) { 2724 case BitstreamEntry::Error: 2725 return Error("Malformed block"); 2726 case BitstreamEntry::EndBlock: 2727 return GlobalCleanup(); 2728 2729 case BitstreamEntry::SubBlock: 2730 switch (Entry.ID) { 2731 default: // Skip unknown content. 2732 if (Stream.SkipBlock()) 2733 return Error("Invalid record"); 2734 break; 2735 case bitc::BLOCKINFO_BLOCK_ID: 2736 if (Stream.ReadBlockInfoBlock()) 2737 return Error("Malformed block"); 2738 break; 2739 case bitc::PARAMATTR_BLOCK_ID: 2740 if (std::error_code EC = ParseAttributeBlock()) 2741 return EC; 2742 break; 2743 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2744 if (std::error_code EC = ParseAttributeGroupBlock()) 2745 return EC; 2746 break; 2747 case bitc::TYPE_BLOCK_ID_NEW: 2748 if (std::error_code EC = ParseTypeTable()) 2749 return EC; 2750 break; 2751 case bitc::VALUE_SYMTAB_BLOCK_ID: 2752 if (std::error_code EC = ParseValueSymbolTable()) 2753 return EC; 2754 SeenValueSymbolTable = true; 2755 break; 2756 case bitc::CONSTANTS_BLOCK_ID: 2757 if (std::error_code EC = ParseConstants()) 2758 return EC; 2759 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2760 return EC; 2761 break; 2762 case bitc::METADATA_BLOCK_ID: 2763 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2764 if (std::error_code EC = rememberAndSkipMetadata()) 2765 return EC; 2766 break; 2767 } 2768 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2769 if (std::error_code EC = ParseMetadata()) 2770 return EC; 2771 break; 2772 case bitc::FUNCTION_BLOCK_ID: 2773 // If this is the first function body we've seen, reverse the 2774 // FunctionsWithBodies list. 2775 if (!SeenFirstFunctionBody) { 2776 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2777 if (std::error_code EC = GlobalCleanup()) 2778 return EC; 2779 SeenFirstFunctionBody = true; 2780 } 2781 2782 if (std::error_code EC = RememberAndSkipFunctionBody()) 2783 return EC; 2784 // For streaming bitcode, suspend parsing when we reach the function 2785 // bodies. Subsequent materialization calls will resume it when 2786 // necessary. For streaming, the function bodies must be at the end of 2787 // the bitcode. If the bitcode file is old, the symbol table will be 2788 // at the end instead and will not have been seen yet. In this case, 2789 // just finish the parse now. 2790 if (Streamer && SeenValueSymbolTable) { 2791 NextUnreadBit = Stream.GetCurrentBitNo(); 2792 return std::error_code(); 2793 } 2794 break; 2795 case bitc::USELIST_BLOCK_ID: 2796 if (std::error_code EC = ParseUseLists()) 2797 return EC; 2798 break; 2799 } 2800 continue; 2801 2802 case BitstreamEntry::Record: 2803 // The interesting case. 2804 break; 2805 } 2806 2807 2808 // Read a record. 2809 switch (Stream.readRecord(Entry.ID, Record)) { 2810 default: break; // Default behavior, ignore unknown content. 2811 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2812 if (Record.size() < 1) 2813 return Error("Invalid record"); 2814 // Only version #0 and #1 are supported so far. 2815 unsigned module_version = Record[0]; 2816 switch (module_version) { 2817 default: 2818 return Error("Invalid value"); 2819 case 0: 2820 UseRelativeIDs = false; 2821 break; 2822 case 1: 2823 UseRelativeIDs = true; 2824 break; 2825 } 2826 break; 2827 } 2828 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2829 std::string S; 2830 if (ConvertToString(Record, 0, S)) 2831 return Error("Invalid record"); 2832 TheModule->setTargetTriple(S); 2833 break; 2834 } 2835 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2836 std::string S; 2837 if (ConvertToString(Record, 0, S)) 2838 return Error("Invalid record"); 2839 TheModule->setDataLayout(S); 2840 break; 2841 } 2842 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2843 std::string S; 2844 if (ConvertToString(Record, 0, S)) 2845 return Error("Invalid record"); 2846 TheModule->setModuleInlineAsm(S); 2847 break; 2848 } 2849 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2850 // FIXME: Remove in 4.0. 2851 std::string S; 2852 if (ConvertToString(Record, 0, S)) 2853 return Error("Invalid record"); 2854 // Ignore value. 2855 break; 2856 } 2857 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2858 std::string S; 2859 if (ConvertToString(Record, 0, S)) 2860 return Error("Invalid record"); 2861 SectionTable.push_back(S); 2862 break; 2863 } 2864 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2865 std::string S; 2866 if (ConvertToString(Record, 0, S)) 2867 return Error("Invalid record"); 2868 GCTable.push_back(S); 2869 break; 2870 } 2871 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2872 if (Record.size() < 2) 2873 return Error("Invalid record"); 2874 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2875 unsigned ComdatNameSize = Record[1]; 2876 std::string ComdatName; 2877 ComdatName.reserve(ComdatNameSize); 2878 for (unsigned i = 0; i != ComdatNameSize; ++i) 2879 ComdatName += (char)Record[2 + i]; 2880 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2881 C->setSelectionKind(SK); 2882 ComdatList.push_back(C); 2883 break; 2884 } 2885 // GLOBALVAR: [pointer type, isconst, initid, 2886 // linkage, alignment, section, visibility, threadlocal, 2887 // unnamed_addr, externally_initialized, dllstorageclass, 2888 // comdat] 2889 case bitc::MODULE_CODE_GLOBALVAR: { 2890 if (Record.size() < 6) 2891 return Error("Invalid record"); 2892 Type *Ty = getTypeByID(Record[0]); 2893 if (!Ty) 2894 return Error("Invalid record"); 2895 bool isConstant = Record[1] & 1; 2896 bool explicitType = Record[1] & 2; 2897 unsigned AddressSpace; 2898 if (explicitType) { 2899 AddressSpace = Record[1] >> 2; 2900 } else { 2901 if (!Ty->isPointerTy()) 2902 return Error("Invalid type for value"); 2903 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2904 Ty = cast<PointerType>(Ty)->getElementType(); 2905 } 2906 2907 uint64_t RawLinkage = Record[3]; 2908 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2909 unsigned Alignment; 2910 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2911 return EC; 2912 std::string Section; 2913 if (Record[5]) { 2914 if (Record[5]-1 >= SectionTable.size()) 2915 return Error("Invalid ID"); 2916 Section = SectionTable[Record[5]-1]; 2917 } 2918 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2919 // Local linkage must have default visibility. 2920 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2921 // FIXME: Change to an error if non-default in 4.0. 2922 Visibility = GetDecodedVisibility(Record[6]); 2923 2924 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2925 if (Record.size() > 7) 2926 TLM = GetDecodedThreadLocalMode(Record[7]); 2927 2928 bool UnnamedAddr = false; 2929 if (Record.size() > 8) 2930 UnnamedAddr = Record[8]; 2931 2932 bool ExternallyInitialized = false; 2933 if (Record.size() > 9) 2934 ExternallyInitialized = Record[9]; 2935 2936 GlobalVariable *NewGV = 2937 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2938 TLM, AddressSpace, ExternallyInitialized); 2939 NewGV->setAlignment(Alignment); 2940 if (!Section.empty()) 2941 NewGV->setSection(Section); 2942 NewGV->setVisibility(Visibility); 2943 NewGV->setUnnamedAddr(UnnamedAddr); 2944 2945 if (Record.size() > 10) 2946 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2947 else 2948 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2949 2950 ValueList.push_back(NewGV); 2951 2952 // Remember which value to use for the global initializer. 2953 if (unsigned InitID = Record[2]) 2954 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2955 2956 if (Record.size() > 11) { 2957 if (unsigned ComdatID = Record[11]) { 2958 if (ComdatID > ComdatList.size()) 2959 return Error("Invalid global variable comdat ID"); 2960 NewGV->setComdat(ComdatList[ComdatID - 1]); 2961 } 2962 } else if (hasImplicitComdat(RawLinkage)) { 2963 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2964 } 2965 break; 2966 } 2967 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2968 // alignment, section, visibility, gc, unnamed_addr, 2969 // prologuedata, dllstorageclass, comdat, prefixdata] 2970 case bitc::MODULE_CODE_FUNCTION: { 2971 if (Record.size() < 8) 2972 return Error("Invalid record"); 2973 Type *Ty = getTypeByID(Record[0]); 2974 if (!Ty) 2975 return Error("Invalid record"); 2976 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2977 Ty = PTy->getElementType(); 2978 auto *FTy = dyn_cast<FunctionType>(Ty); 2979 if (!FTy) 2980 return Error("Invalid type for value"); 2981 2982 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2983 "", TheModule); 2984 2985 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2986 bool isProto = Record[2]; 2987 uint64_t RawLinkage = Record[3]; 2988 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2989 Func->setAttributes(getAttributes(Record[4])); 2990 2991 unsigned Alignment; 2992 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 2993 return EC; 2994 Func->setAlignment(Alignment); 2995 if (Record[6]) { 2996 if (Record[6]-1 >= SectionTable.size()) 2997 return Error("Invalid ID"); 2998 Func->setSection(SectionTable[Record[6]-1]); 2999 } 3000 // Local linkage must have default visibility. 3001 if (!Func->hasLocalLinkage()) 3002 // FIXME: Change to an error if non-default in 4.0. 3003 Func->setVisibility(GetDecodedVisibility(Record[7])); 3004 if (Record.size() > 8 && Record[8]) { 3005 if (Record[8]-1 >= GCTable.size()) 3006 return Error("Invalid ID"); 3007 Func->setGC(GCTable[Record[8]-1].c_str()); 3008 } 3009 bool UnnamedAddr = false; 3010 if (Record.size() > 9) 3011 UnnamedAddr = Record[9]; 3012 Func->setUnnamedAddr(UnnamedAddr); 3013 if (Record.size() > 10 && Record[10] != 0) 3014 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3015 3016 if (Record.size() > 11) 3017 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 3018 else 3019 UpgradeDLLImportExportLinkage(Func, RawLinkage); 3020 3021 if (Record.size() > 12) { 3022 if (unsigned ComdatID = Record[12]) { 3023 if (ComdatID > ComdatList.size()) 3024 return Error("Invalid function comdat ID"); 3025 Func->setComdat(ComdatList[ComdatID - 1]); 3026 } 3027 } else if (hasImplicitComdat(RawLinkage)) { 3028 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3029 } 3030 3031 if (Record.size() > 13 && Record[13] != 0) 3032 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3033 3034 ValueList.push_back(Func); 3035 3036 // If this is a function with a body, remember the prototype we are 3037 // creating now, so that we can match up the body with them later. 3038 if (!isProto) { 3039 Func->setIsMaterializable(true); 3040 FunctionsWithBodies.push_back(Func); 3041 if (Streamer) 3042 DeferredFunctionInfo[Func] = 0; 3043 } 3044 break; 3045 } 3046 // ALIAS: [alias type, aliasee val#, linkage] 3047 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 3048 case bitc::MODULE_CODE_ALIAS: { 3049 if (Record.size() < 3) 3050 return Error("Invalid record"); 3051 Type *Ty = getTypeByID(Record[0]); 3052 if (!Ty) 3053 return Error("Invalid record"); 3054 auto *PTy = dyn_cast<PointerType>(Ty); 3055 if (!PTy) 3056 return Error("Invalid type for value"); 3057 3058 auto *NewGA = 3059 GlobalAlias::create(PTy, getDecodedLinkage(Record[2]), "", TheModule); 3060 // Old bitcode files didn't have visibility field. 3061 // Local linkage must have default visibility. 3062 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3063 // FIXME: Change to an error if non-default in 4.0. 3064 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 3065 if (Record.size() > 4) 3066 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 3067 else 3068 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 3069 if (Record.size() > 5) 3070 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 3071 if (Record.size() > 6) 3072 NewGA->setUnnamedAddr(Record[6]); 3073 ValueList.push_back(NewGA); 3074 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3075 break; 3076 } 3077 /// MODULE_CODE_PURGEVALS: [numvals] 3078 case bitc::MODULE_CODE_PURGEVALS: 3079 // Trim down the value list to the specified size. 3080 if (Record.size() < 1 || Record[0] > ValueList.size()) 3081 return Error("Invalid record"); 3082 ValueList.shrinkTo(Record[0]); 3083 break; 3084 } 3085 Record.clear(); 3086 } 3087 } 3088 3089 std::error_code BitcodeReader::ParseBitcodeInto(Module *M, 3090 bool ShouldLazyLoadMetadata) { 3091 TheModule = nullptr; 3092 3093 if (std::error_code EC = InitStream()) 3094 return EC; 3095 3096 // Sniff for the signature. 3097 if (Stream.Read(8) != 'B' || 3098 Stream.Read(8) != 'C' || 3099 Stream.Read(4) != 0x0 || 3100 Stream.Read(4) != 0xC || 3101 Stream.Read(4) != 0xE || 3102 Stream.Read(4) != 0xD) 3103 return Error("Invalid bitcode signature"); 3104 3105 // We expect a number of well-defined blocks, though we don't necessarily 3106 // need to understand them all. 3107 while (1) { 3108 if (Stream.AtEndOfStream()) { 3109 if (TheModule) 3110 return std::error_code(); 3111 // We didn't really read a proper Module. 3112 return Error("Malformed IR file"); 3113 } 3114 3115 BitstreamEntry Entry = 3116 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3117 3118 switch (Entry.Kind) { 3119 case BitstreamEntry::Error: 3120 return Error("Malformed block"); 3121 case BitstreamEntry::EndBlock: 3122 return std::error_code(); 3123 3124 case BitstreamEntry::SubBlock: 3125 switch (Entry.ID) { 3126 case bitc::BLOCKINFO_BLOCK_ID: 3127 if (Stream.ReadBlockInfoBlock()) 3128 return Error("Malformed block"); 3129 break; 3130 case bitc::MODULE_BLOCK_ID: 3131 // Reject multiple MODULE_BLOCK's in a single bitstream. 3132 if (TheModule) 3133 return Error("Invalid multiple blocks"); 3134 TheModule = M; 3135 if (std::error_code EC = ParseModule(false, ShouldLazyLoadMetadata)) 3136 return EC; 3137 if (Streamer) 3138 return std::error_code(); 3139 break; 3140 default: 3141 if (Stream.SkipBlock()) 3142 return Error("Invalid record"); 3143 break; 3144 } 3145 continue; 3146 case BitstreamEntry::Record: 3147 // There should be no records in the top-level of blocks. 3148 3149 // The ranlib in Xcode 4 will align archive members by appending newlines 3150 // to the end of them. If this file size is a multiple of 4 but not 8, we 3151 // have to read and ignore these final 4 bytes :-( 3152 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 3153 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 3154 Stream.AtEndOfStream()) 3155 return std::error_code(); 3156 3157 return Error("Invalid record"); 3158 } 3159 } 3160 } 3161 3162 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3163 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3164 return Error("Invalid record"); 3165 3166 SmallVector<uint64_t, 64> Record; 3167 3168 std::string Triple; 3169 // Read all the records for this module. 3170 while (1) { 3171 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3172 3173 switch (Entry.Kind) { 3174 case BitstreamEntry::SubBlock: // Handled for us already. 3175 case BitstreamEntry::Error: 3176 return Error("Malformed block"); 3177 case BitstreamEntry::EndBlock: 3178 return Triple; 3179 case BitstreamEntry::Record: 3180 // The interesting case. 3181 break; 3182 } 3183 3184 // Read a record. 3185 switch (Stream.readRecord(Entry.ID, Record)) { 3186 default: break; // Default behavior, ignore unknown content. 3187 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3188 std::string S; 3189 if (ConvertToString(Record, 0, S)) 3190 return Error("Invalid record"); 3191 Triple = S; 3192 break; 3193 } 3194 } 3195 Record.clear(); 3196 } 3197 llvm_unreachable("Exit infinite loop"); 3198 } 3199 3200 ErrorOr<std::string> BitcodeReader::parseTriple() { 3201 if (std::error_code EC = InitStream()) 3202 return EC; 3203 3204 // Sniff for the signature. 3205 if (Stream.Read(8) != 'B' || 3206 Stream.Read(8) != 'C' || 3207 Stream.Read(4) != 0x0 || 3208 Stream.Read(4) != 0xC || 3209 Stream.Read(4) != 0xE || 3210 Stream.Read(4) != 0xD) 3211 return Error("Invalid bitcode signature"); 3212 3213 // We expect a number of well-defined blocks, though we don't necessarily 3214 // need to understand them all. 3215 while (1) { 3216 BitstreamEntry Entry = Stream.advance(); 3217 3218 switch (Entry.Kind) { 3219 case BitstreamEntry::Error: 3220 return Error("Malformed block"); 3221 case BitstreamEntry::EndBlock: 3222 return std::error_code(); 3223 3224 case BitstreamEntry::SubBlock: 3225 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3226 return parseModuleTriple(); 3227 3228 // Ignore other sub-blocks. 3229 if (Stream.SkipBlock()) 3230 return Error("Malformed block"); 3231 continue; 3232 3233 case BitstreamEntry::Record: 3234 Stream.skipRecord(Entry.ID); 3235 continue; 3236 } 3237 } 3238 } 3239 3240 /// ParseMetadataAttachment - Parse metadata attachments. 3241 std::error_code BitcodeReader::ParseMetadataAttachment(Function &F) { 3242 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3243 return Error("Invalid record"); 3244 3245 SmallVector<uint64_t, 64> Record; 3246 while (1) { 3247 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3248 3249 switch (Entry.Kind) { 3250 case BitstreamEntry::SubBlock: // Handled for us already. 3251 case BitstreamEntry::Error: 3252 return Error("Malformed block"); 3253 case BitstreamEntry::EndBlock: 3254 return std::error_code(); 3255 case BitstreamEntry::Record: 3256 // The interesting case. 3257 break; 3258 } 3259 3260 // Read a metadata attachment record. 3261 Record.clear(); 3262 switch (Stream.readRecord(Entry.ID, Record)) { 3263 default: // Default behavior: ignore. 3264 break; 3265 case bitc::METADATA_ATTACHMENT: { 3266 unsigned RecordLength = Record.size(); 3267 if (Record.empty()) 3268 return Error("Invalid record"); 3269 if (RecordLength % 2 == 0) { 3270 // A function attachment. 3271 for (unsigned I = 0; I != RecordLength; I += 2) { 3272 auto K = MDKindMap.find(Record[I]); 3273 if (K == MDKindMap.end()) 3274 return Error("Invalid ID"); 3275 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3276 F.setMetadata(K->second, cast<MDNode>(MD)); 3277 } 3278 continue; 3279 } 3280 3281 // An instruction attachment. 3282 Instruction *Inst = InstructionList[Record[0]]; 3283 for (unsigned i = 1; i != RecordLength; i = i+2) { 3284 unsigned Kind = Record[i]; 3285 DenseMap<unsigned, unsigned>::iterator I = 3286 MDKindMap.find(Kind); 3287 if (I == MDKindMap.end()) 3288 return Error("Invalid ID"); 3289 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3290 if (isa<LocalAsMetadata>(Node)) 3291 // Drop the attachment. This used to be legal, but there's no 3292 // upgrade path. 3293 break; 3294 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3295 if (I->second == LLVMContext::MD_tbaa) 3296 InstsWithTBAATag.push_back(Inst); 3297 } 3298 break; 3299 } 3300 } 3301 } 3302 } 3303 3304 static std::error_code TypeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3305 Type *ValType, Type *PtrType) { 3306 if (!isa<PointerType>(PtrType)) 3307 return Error(DH, "Load/Store operand is not a pointer type"); 3308 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3309 3310 if (ValType && ValType != ElemType) 3311 return Error(DH, "Explicit load/store type does not match pointee type of " 3312 "pointer operand"); 3313 if (!PointerType::isLoadableOrStorableType(ElemType)) 3314 return Error(DH, "Cannot load/store from pointer"); 3315 return std::error_code(); 3316 } 3317 3318 /// ParseFunctionBody - Lazily parse the specified function body block. 3319 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 3320 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3321 return Error("Invalid record"); 3322 3323 InstructionList.clear(); 3324 unsigned ModuleValueListSize = ValueList.size(); 3325 unsigned ModuleMDValueListSize = MDValueList.size(); 3326 3327 // Add all the function arguments to the value table. 3328 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3329 ValueList.push_back(I); 3330 3331 unsigned NextValueNo = ValueList.size(); 3332 BasicBlock *CurBB = nullptr; 3333 unsigned CurBBNo = 0; 3334 3335 DebugLoc LastLoc; 3336 auto getLastInstruction = [&]() -> Instruction * { 3337 if (CurBB && !CurBB->empty()) 3338 return &CurBB->back(); 3339 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3340 !FunctionBBs[CurBBNo - 1]->empty()) 3341 return &FunctionBBs[CurBBNo - 1]->back(); 3342 return nullptr; 3343 }; 3344 3345 // Read all the records. 3346 SmallVector<uint64_t, 64> Record; 3347 while (1) { 3348 BitstreamEntry Entry = Stream.advance(); 3349 3350 switch (Entry.Kind) { 3351 case BitstreamEntry::Error: 3352 return Error("Malformed block"); 3353 case BitstreamEntry::EndBlock: 3354 goto OutOfRecordLoop; 3355 3356 case BitstreamEntry::SubBlock: 3357 switch (Entry.ID) { 3358 default: // Skip unknown content. 3359 if (Stream.SkipBlock()) 3360 return Error("Invalid record"); 3361 break; 3362 case bitc::CONSTANTS_BLOCK_ID: 3363 if (std::error_code EC = ParseConstants()) 3364 return EC; 3365 NextValueNo = ValueList.size(); 3366 break; 3367 case bitc::VALUE_SYMTAB_BLOCK_ID: 3368 if (std::error_code EC = ParseValueSymbolTable()) 3369 return EC; 3370 break; 3371 case bitc::METADATA_ATTACHMENT_ID: 3372 if (std::error_code EC = ParseMetadataAttachment(*F)) 3373 return EC; 3374 break; 3375 case bitc::METADATA_BLOCK_ID: 3376 if (std::error_code EC = ParseMetadata()) 3377 return EC; 3378 break; 3379 case bitc::USELIST_BLOCK_ID: 3380 if (std::error_code EC = ParseUseLists()) 3381 return EC; 3382 break; 3383 } 3384 continue; 3385 3386 case BitstreamEntry::Record: 3387 // The interesting case. 3388 break; 3389 } 3390 3391 // Read a record. 3392 Record.clear(); 3393 Instruction *I = nullptr; 3394 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3395 switch (BitCode) { 3396 default: // Default behavior: reject 3397 return Error("Invalid value"); 3398 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3399 if (Record.size() < 1 || Record[0] == 0) 3400 return Error("Invalid record"); 3401 // Create all the basic blocks for the function. 3402 FunctionBBs.resize(Record[0]); 3403 3404 // See if anything took the address of blocks in this function. 3405 auto BBFRI = BasicBlockFwdRefs.find(F); 3406 if (BBFRI == BasicBlockFwdRefs.end()) { 3407 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3408 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3409 } else { 3410 auto &BBRefs = BBFRI->second; 3411 // Check for invalid basic block references. 3412 if (BBRefs.size() > FunctionBBs.size()) 3413 return Error("Invalid ID"); 3414 assert(!BBRefs.empty() && "Unexpected empty array"); 3415 assert(!BBRefs.front() && "Invalid reference to entry block"); 3416 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3417 ++I) 3418 if (I < RE && BBRefs[I]) { 3419 BBRefs[I]->insertInto(F); 3420 FunctionBBs[I] = BBRefs[I]; 3421 } else { 3422 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3423 } 3424 3425 // Erase from the table. 3426 BasicBlockFwdRefs.erase(BBFRI); 3427 } 3428 3429 CurBB = FunctionBBs[0]; 3430 continue; 3431 } 3432 3433 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3434 // This record indicates that the last instruction is at the same 3435 // location as the previous instruction with a location. 3436 I = getLastInstruction(); 3437 3438 if (!I) 3439 return Error("Invalid record"); 3440 I->setDebugLoc(LastLoc); 3441 I = nullptr; 3442 continue; 3443 3444 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3445 I = getLastInstruction(); 3446 if (!I || Record.size() < 4) 3447 return Error("Invalid record"); 3448 3449 unsigned Line = Record[0], Col = Record[1]; 3450 unsigned ScopeID = Record[2], IAID = Record[3]; 3451 3452 MDNode *Scope = nullptr, *IA = nullptr; 3453 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3454 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3455 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3456 I->setDebugLoc(LastLoc); 3457 I = nullptr; 3458 continue; 3459 } 3460 3461 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3462 unsigned OpNum = 0; 3463 Value *LHS, *RHS; 3464 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3465 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3466 OpNum+1 > Record.size()) 3467 return Error("Invalid record"); 3468 3469 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3470 if (Opc == -1) 3471 return Error("Invalid record"); 3472 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3473 InstructionList.push_back(I); 3474 if (OpNum < Record.size()) { 3475 if (Opc == Instruction::Add || 3476 Opc == Instruction::Sub || 3477 Opc == Instruction::Mul || 3478 Opc == Instruction::Shl) { 3479 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3480 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3481 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3482 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3483 } else if (Opc == Instruction::SDiv || 3484 Opc == Instruction::UDiv || 3485 Opc == Instruction::LShr || 3486 Opc == Instruction::AShr) { 3487 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3488 cast<BinaryOperator>(I)->setIsExact(true); 3489 } else if (isa<FPMathOperator>(I)) { 3490 FastMathFlags FMF; 3491 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3492 FMF.setUnsafeAlgebra(); 3493 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3494 FMF.setNoNaNs(); 3495 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3496 FMF.setNoInfs(); 3497 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3498 FMF.setNoSignedZeros(); 3499 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3500 FMF.setAllowReciprocal(); 3501 if (FMF.any()) 3502 I->setFastMathFlags(FMF); 3503 } 3504 3505 } 3506 break; 3507 } 3508 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3509 unsigned OpNum = 0; 3510 Value *Op; 3511 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3512 OpNum+2 != Record.size()) 3513 return Error("Invalid record"); 3514 3515 Type *ResTy = getTypeByID(Record[OpNum]); 3516 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 3517 if (Opc == -1 || !ResTy) 3518 return Error("Invalid record"); 3519 Instruction *Temp = nullptr; 3520 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3521 if (Temp) { 3522 InstructionList.push_back(Temp); 3523 CurBB->getInstList().push_back(Temp); 3524 } 3525 } else { 3526 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3527 } 3528 InstructionList.push_back(I); 3529 break; 3530 } 3531 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3532 case bitc::FUNC_CODE_INST_GEP_OLD: 3533 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3534 unsigned OpNum = 0; 3535 3536 Type *Ty; 3537 bool InBounds; 3538 3539 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3540 InBounds = Record[OpNum++]; 3541 Ty = getTypeByID(Record[OpNum++]); 3542 } else { 3543 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3544 Ty = nullptr; 3545 } 3546 3547 Value *BasePtr; 3548 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3549 return Error("Invalid record"); 3550 3551 if (!Ty) 3552 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 3553 ->getElementType(); 3554 else if (Ty != 3555 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3556 ->getElementType()) 3557 return Error( 3558 "Explicit gep type does not match pointee type of pointer operand"); 3559 3560 SmallVector<Value*, 16> GEPIdx; 3561 while (OpNum != Record.size()) { 3562 Value *Op; 3563 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3564 return Error("Invalid record"); 3565 GEPIdx.push_back(Op); 3566 } 3567 3568 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3569 3570 InstructionList.push_back(I); 3571 if (InBounds) 3572 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3573 break; 3574 } 3575 3576 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3577 // EXTRACTVAL: [opty, opval, n x indices] 3578 unsigned OpNum = 0; 3579 Value *Agg; 3580 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3581 return Error("Invalid record"); 3582 3583 unsigned RecSize = Record.size(); 3584 if (OpNum == RecSize) 3585 return Error("EXTRACTVAL: Invalid instruction with 0 indices"); 3586 3587 SmallVector<unsigned, 4> EXTRACTVALIdx; 3588 Type *CurTy = Agg->getType(); 3589 for (; OpNum != RecSize; ++OpNum) { 3590 bool IsArray = CurTy->isArrayTy(); 3591 bool IsStruct = CurTy->isStructTy(); 3592 uint64_t Index = Record[OpNum]; 3593 3594 if (!IsStruct && !IsArray) 3595 return Error("EXTRACTVAL: Invalid type"); 3596 if ((unsigned)Index != Index) 3597 return Error("Invalid value"); 3598 if (IsStruct && Index >= CurTy->subtypes().size()) 3599 return Error("EXTRACTVAL: Invalid struct index"); 3600 if (IsArray && Index >= CurTy->getArrayNumElements()) 3601 return Error("EXTRACTVAL: Invalid array index"); 3602 EXTRACTVALIdx.push_back((unsigned)Index); 3603 3604 if (IsStruct) 3605 CurTy = CurTy->subtypes()[Index]; 3606 else 3607 CurTy = CurTy->subtypes()[0]; 3608 } 3609 3610 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3611 InstructionList.push_back(I); 3612 break; 3613 } 3614 3615 case bitc::FUNC_CODE_INST_INSERTVAL: { 3616 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3617 unsigned OpNum = 0; 3618 Value *Agg; 3619 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3620 return Error("Invalid record"); 3621 Value *Val; 3622 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3623 return Error("Invalid record"); 3624 3625 unsigned RecSize = Record.size(); 3626 if (OpNum == RecSize) 3627 return Error("INSERTVAL: Invalid instruction with 0 indices"); 3628 3629 SmallVector<unsigned, 4> INSERTVALIdx; 3630 Type *CurTy = Agg->getType(); 3631 for (; OpNum != RecSize; ++OpNum) { 3632 bool IsArray = CurTy->isArrayTy(); 3633 bool IsStruct = CurTy->isStructTy(); 3634 uint64_t Index = Record[OpNum]; 3635 3636 if (!IsStruct && !IsArray) 3637 return Error("INSERTVAL: Invalid type"); 3638 if ((unsigned)Index != Index) 3639 return Error("Invalid value"); 3640 if (IsStruct && Index >= CurTy->subtypes().size()) 3641 return Error("INSERTVAL: Invalid struct index"); 3642 if (IsArray && Index >= CurTy->getArrayNumElements()) 3643 return Error("INSERTVAL: Invalid array index"); 3644 3645 INSERTVALIdx.push_back((unsigned)Index); 3646 if (IsStruct) 3647 CurTy = CurTy->subtypes()[Index]; 3648 else 3649 CurTy = CurTy->subtypes()[0]; 3650 } 3651 3652 if (CurTy != Val->getType()) 3653 return Error("Inserted value type doesn't match aggregate type"); 3654 3655 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3656 InstructionList.push_back(I); 3657 break; 3658 } 3659 3660 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3661 // obsolete form of select 3662 // handles select i1 ... in old bitcode 3663 unsigned OpNum = 0; 3664 Value *TrueVal, *FalseVal, *Cond; 3665 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3666 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3667 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3668 return Error("Invalid record"); 3669 3670 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3671 InstructionList.push_back(I); 3672 break; 3673 } 3674 3675 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3676 // new form of select 3677 // handles select i1 or select [N x i1] 3678 unsigned OpNum = 0; 3679 Value *TrueVal, *FalseVal, *Cond; 3680 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3681 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3682 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3683 return Error("Invalid record"); 3684 3685 // select condition can be either i1 or [N x i1] 3686 if (VectorType* vector_type = 3687 dyn_cast<VectorType>(Cond->getType())) { 3688 // expect <n x i1> 3689 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3690 return Error("Invalid type for value"); 3691 } else { 3692 // expect i1 3693 if (Cond->getType() != Type::getInt1Ty(Context)) 3694 return Error("Invalid type for value"); 3695 } 3696 3697 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3698 InstructionList.push_back(I); 3699 break; 3700 } 3701 3702 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3703 unsigned OpNum = 0; 3704 Value *Vec, *Idx; 3705 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3706 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3707 return Error("Invalid record"); 3708 if (!Vec->getType()->isVectorTy()) 3709 return Error("Invalid type for value"); 3710 I = ExtractElementInst::Create(Vec, Idx); 3711 InstructionList.push_back(I); 3712 break; 3713 } 3714 3715 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3716 unsigned OpNum = 0; 3717 Value *Vec, *Elt, *Idx; 3718 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3719 return Error("Invalid record"); 3720 if (!Vec->getType()->isVectorTy()) 3721 return Error("Invalid type for value"); 3722 if (popValue(Record, OpNum, NextValueNo, 3723 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3724 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3725 return Error("Invalid record"); 3726 I = InsertElementInst::Create(Vec, Elt, Idx); 3727 InstructionList.push_back(I); 3728 break; 3729 } 3730 3731 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3732 unsigned OpNum = 0; 3733 Value *Vec1, *Vec2, *Mask; 3734 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3735 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3736 return Error("Invalid record"); 3737 3738 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3739 return Error("Invalid record"); 3740 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3741 return Error("Invalid type for value"); 3742 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3743 InstructionList.push_back(I); 3744 break; 3745 } 3746 3747 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3748 // Old form of ICmp/FCmp returning bool 3749 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3750 // both legal on vectors but had different behaviour. 3751 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3752 // FCmp/ICmp returning bool or vector of bool 3753 3754 unsigned OpNum = 0; 3755 Value *LHS, *RHS; 3756 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3757 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3758 OpNum+1 != Record.size()) 3759 return Error("Invalid record"); 3760 3761 if (LHS->getType()->isFPOrFPVectorTy()) 3762 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3763 else 3764 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3765 InstructionList.push_back(I); 3766 break; 3767 } 3768 3769 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3770 { 3771 unsigned Size = Record.size(); 3772 if (Size == 0) { 3773 I = ReturnInst::Create(Context); 3774 InstructionList.push_back(I); 3775 break; 3776 } 3777 3778 unsigned OpNum = 0; 3779 Value *Op = nullptr; 3780 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3781 return Error("Invalid record"); 3782 if (OpNum != Record.size()) 3783 return Error("Invalid record"); 3784 3785 I = ReturnInst::Create(Context, Op); 3786 InstructionList.push_back(I); 3787 break; 3788 } 3789 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3790 if (Record.size() != 1 && Record.size() != 3) 3791 return Error("Invalid record"); 3792 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3793 if (!TrueDest) 3794 return Error("Invalid record"); 3795 3796 if (Record.size() == 1) { 3797 I = BranchInst::Create(TrueDest); 3798 InstructionList.push_back(I); 3799 } 3800 else { 3801 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3802 Value *Cond = getValue(Record, 2, NextValueNo, 3803 Type::getInt1Ty(Context)); 3804 if (!FalseDest || !Cond) 3805 return Error("Invalid record"); 3806 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3807 InstructionList.push_back(I); 3808 } 3809 break; 3810 } 3811 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3812 // Check magic 3813 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3814 // "New" SwitchInst format with case ranges. The changes to write this 3815 // format were reverted but we still recognize bitcode that uses it. 3816 // Hopefully someday we will have support for case ranges and can use 3817 // this format again. 3818 3819 Type *OpTy = getTypeByID(Record[1]); 3820 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3821 3822 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3823 BasicBlock *Default = getBasicBlock(Record[3]); 3824 if (!OpTy || !Cond || !Default) 3825 return Error("Invalid record"); 3826 3827 unsigned NumCases = Record[4]; 3828 3829 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3830 InstructionList.push_back(SI); 3831 3832 unsigned CurIdx = 5; 3833 for (unsigned i = 0; i != NumCases; ++i) { 3834 SmallVector<ConstantInt*, 1> CaseVals; 3835 unsigned NumItems = Record[CurIdx++]; 3836 for (unsigned ci = 0; ci != NumItems; ++ci) { 3837 bool isSingleNumber = Record[CurIdx++]; 3838 3839 APInt Low; 3840 unsigned ActiveWords = 1; 3841 if (ValueBitWidth > 64) 3842 ActiveWords = Record[CurIdx++]; 3843 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3844 ValueBitWidth); 3845 CurIdx += ActiveWords; 3846 3847 if (!isSingleNumber) { 3848 ActiveWords = 1; 3849 if (ValueBitWidth > 64) 3850 ActiveWords = Record[CurIdx++]; 3851 APInt High = 3852 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3853 ValueBitWidth); 3854 CurIdx += ActiveWords; 3855 3856 // FIXME: It is not clear whether values in the range should be 3857 // compared as signed or unsigned values. The partially 3858 // implemented changes that used this format in the past used 3859 // unsigned comparisons. 3860 for ( ; Low.ule(High); ++Low) 3861 CaseVals.push_back(ConstantInt::get(Context, Low)); 3862 } else 3863 CaseVals.push_back(ConstantInt::get(Context, Low)); 3864 } 3865 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3866 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3867 cve = CaseVals.end(); cvi != cve; ++cvi) 3868 SI->addCase(*cvi, DestBB); 3869 } 3870 I = SI; 3871 break; 3872 } 3873 3874 // Old SwitchInst format without case ranges. 3875 3876 if (Record.size() < 3 || (Record.size() & 1) == 0) 3877 return Error("Invalid record"); 3878 Type *OpTy = getTypeByID(Record[0]); 3879 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3880 BasicBlock *Default = getBasicBlock(Record[2]); 3881 if (!OpTy || !Cond || !Default) 3882 return Error("Invalid record"); 3883 unsigned NumCases = (Record.size()-3)/2; 3884 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3885 InstructionList.push_back(SI); 3886 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3887 ConstantInt *CaseVal = 3888 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3889 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3890 if (!CaseVal || !DestBB) { 3891 delete SI; 3892 return Error("Invalid record"); 3893 } 3894 SI->addCase(CaseVal, DestBB); 3895 } 3896 I = SI; 3897 break; 3898 } 3899 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3900 if (Record.size() < 2) 3901 return Error("Invalid record"); 3902 Type *OpTy = getTypeByID(Record[0]); 3903 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3904 if (!OpTy || !Address) 3905 return Error("Invalid record"); 3906 unsigned NumDests = Record.size()-2; 3907 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3908 InstructionList.push_back(IBI); 3909 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3910 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3911 IBI->addDestination(DestBB); 3912 } else { 3913 delete IBI; 3914 return Error("Invalid record"); 3915 } 3916 } 3917 I = IBI; 3918 break; 3919 } 3920 3921 case bitc::FUNC_CODE_INST_INVOKE: { 3922 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3923 if (Record.size() < 4) 3924 return Error("Invalid record"); 3925 unsigned OpNum = 0; 3926 AttributeSet PAL = getAttributes(Record[OpNum++]); 3927 unsigned CCInfo = Record[OpNum++]; 3928 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3929 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3930 3931 FunctionType *FTy = nullptr; 3932 if (CCInfo >> 13 & 1 && 3933 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3934 return Error("Explicit invoke type is not a function type"); 3935 3936 Value *Callee; 3937 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3938 return Error("Invalid record"); 3939 3940 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3941 if (!CalleeTy) 3942 return Error("Callee is not a pointer"); 3943 if (!FTy) { 3944 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3945 if (!FTy) 3946 return Error("Callee is not of pointer to function type"); 3947 } else if (CalleeTy->getElementType() != FTy) 3948 return Error("Explicit invoke type does not match pointee type of " 3949 "callee operand"); 3950 if (Record.size() < FTy->getNumParams() + OpNum) 3951 return Error("Insufficient operands to call"); 3952 3953 SmallVector<Value*, 16> Ops; 3954 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3955 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3956 FTy->getParamType(i))); 3957 if (!Ops.back()) 3958 return Error("Invalid record"); 3959 } 3960 3961 if (!FTy->isVarArg()) { 3962 if (Record.size() != OpNum) 3963 return Error("Invalid record"); 3964 } else { 3965 // Read type/value pairs for varargs params. 3966 while (OpNum != Record.size()) { 3967 Value *Op; 3968 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3969 return Error("Invalid record"); 3970 Ops.push_back(Op); 3971 } 3972 } 3973 3974 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3975 InstructionList.push_back(I); 3976 cast<InvokeInst>(I) 3977 ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo)); 3978 cast<InvokeInst>(I)->setAttributes(PAL); 3979 break; 3980 } 3981 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3982 unsigned Idx = 0; 3983 Value *Val = nullptr; 3984 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3985 return Error("Invalid record"); 3986 I = ResumeInst::Create(Val); 3987 InstructionList.push_back(I); 3988 break; 3989 } 3990 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3991 I = new UnreachableInst(Context); 3992 InstructionList.push_back(I); 3993 break; 3994 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3995 if (Record.size() < 1 || ((Record.size()-1)&1)) 3996 return Error("Invalid record"); 3997 Type *Ty = getTypeByID(Record[0]); 3998 if (!Ty) 3999 return Error("Invalid record"); 4000 4001 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4002 InstructionList.push_back(PN); 4003 4004 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4005 Value *V; 4006 // With the new function encoding, it is possible that operands have 4007 // negative IDs (for forward references). Use a signed VBR 4008 // representation to keep the encoding small. 4009 if (UseRelativeIDs) 4010 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4011 else 4012 V = getValue(Record, 1+i, NextValueNo, Ty); 4013 BasicBlock *BB = getBasicBlock(Record[2+i]); 4014 if (!V || !BB) 4015 return Error("Invalid record"); 4016 PN->addIncoming(V, BB); 4017 } 4018 I = PN; 4019 break; 4020 } 4021 4022 case bitc::FUNC_CODE_INST_LANDINGPAD: { 4023 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4024 unsigned Idx = 0; 4025 if (Record.size() < 4) 4026 return Error("Invalid record"); 4027 Type *Ty = getTypeByID(Record[Idx++]); 4028 if (!Ty) 4029 return Error("Invalid record"); 4030 Value *PersFn = nullptr; 4031 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4032 return Error("Invalid record"); 4033 4034 bool IsCleanup = !!Record[Idx++]; 4035 unsigned NumClauses = Record[Idx++]; 4036 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 4037 LP->setCleanup(IsCleanup); 4038 for (unsigned J = 0; J != NumClauses; ++J) { 4039 LandingPadInst::ClauseType CT = 4040 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4041 Value *Val; 4042 4043 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4044 delete LP; 4045 return Error("Invalid record"); 4046 } 4047 4048 assert((CT != LandingPadInst::Catch || 4049 !isa<ArrayType>(Val->getType())) && 4050 "Catch clause has a invalid type!"); 4051 assert((CT != LandingPadInst::Filter || 4052 isa<ArrayType>(Val->getType())) && 4053 "Filter clause has invalid type!"); 4054 LP->addClause(cast<Constant>(Val)); 4055 } 4056 4057 I = LP; 4058 InstructionList.push_back(I); 4059 break; 4060 } 4061 4062 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4063 if (Record.size() != 4) 4064 return Error("Invalid record"); 4065 uint64_t AlignRecord = Record[3]; 4066 const uint64_t InAllocaMask = uint64_t(1) << 5; 4067 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4068 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4069 bool InAlloca = AlignRecord & InAllocaMask; 4070 Type *Ty = getTypeByID(Record[0]); 4071 if ((AlignRecord & ExplicitTypeMask) == 0) { 4072 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4073 if (!PTy) 4074 return Error("Old-style alloca with a non-pointer type"); 4075 Ty = PTy->getElementType(); 4076 } 4077 Type *OpTy = getTypeByID(Record[1]); 4078 Value *Size = getFnValueByID(Record[2], OpTy); 4079 unsigned Align; 4080 if (std::error_code EC = 4081 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4082 return EC; 4083 } 4084 if (!Ty || !Size) 4085 return Error("Invalid record"); 4086 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4087 AI->setUsedWithInAlloca(InAlloca); 4088 I = AI; 4089 InstructionList.push_back(I); 4090 break; 4091 } 4092 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4093 unsigned OpNum = 0; 4094 Value *Op; 4095 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4096 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4097 return Error("Invalid record"); 4098 4099 Type *Ty = nullptr; 4100 if (OpNum + 3 == Record.size()) 4101 Ty = getTypeByID(Record[OpNum++]); 4102 if (std::error_code EC = 4103 TypeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4104 return EC; 4105 if (!Ty) 4106 Ty = cast<PointerType>(Op->getType())->getElementType(); 4107 4108 unsigned Align; 4109 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4110 return EC; 4111 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4112 4113 InstructionList.push_back(I); 4114 break; 4115 } 4116 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4117 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4118 unsigned OpNum = 0; 4119 Value *Op; 4120 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4121 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4122 return Error("Invalid record"); 4123 4124 Type *Ty = nullptr; 4125 if (OpNum + 5 == Record.size()) 4126 Ty = getTypeByID(Record[OpNum++]); 4127 if (std::error_code EC = 4128 TypeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4129 return EC; 4130 if (!Ty) 4131 Ty = cast<PointerType>(Op->getType())->getElementType(); 4132 4133 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4134 if (Ordering == NotAtomic || Ordering == Release || 4135 Ordering == AcquireRelease) 4136 return Error("Invalid record"); 4137 if (Ordering != NotAtomic && Record[OpNum] == 0) 4138 return Error("Invalid record"); 4139 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4140 4141 unsigned Align; 4142 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4143 return EC; 4144 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4145 4146 InstructionList.push_back(I); 4147 break; 4148 } 4149 case bitc::FUNC_CODE_INST_STORE: 4150 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4151 unsigned OpNum = 0; 4152 Value *Val, *Ptr; 4153 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4154 (BitCode == bitc::FUNC_CODE_INST_STORE 4155 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4156 : popValue(Record, OpNum, NextValueNo, 4157 cast<PointerType>(Ptr->getType())->getElementType(), 4158 Val)) || 4159 OpNum + 2 != Record.size()) 4160 return Error("Invalid record"); 4161 4162 if (std::error_code EC = TypeCheckLoadStoreInst( 4163 DiagnosticHandler, Val->getType(), Ptr->getType())) 4164 return EC; 4165 unsigned Align; 4166 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4167 return EC; 4168 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4169 InstructionList.push_back(I); 4170 break; 4171 } 4172 case bitc::FUNC_CODE_INST_STOREATOMIC: 4173 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4174 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4175 unsigned OpNum = 0; 4176 Value *Val, *Ptr; 4177 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4178 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4179 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4180 : popValue(Record, OpNum, NextValueNo, 4181 cast<PointerType>(Ptr->getType())->getElementType(), 4182 Val)) || 4183 OpNum + 4 != Record.size()) 4184 return Error("Invalid record"); 4185 4186 if (std::error_code EC = TypeCheckLoadStoreInst( 4187 DiagnosticHandler, Val->getType(), Ptr->getType())) 4188 return EC; 4189 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4190 if (Ordering == NotAtomic || Ordering == Acquire || 4191 Ordering == AcquireRelease) 4192 return Error("Invalid record"); 4193 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4194 if (Ordering != NotAtomic && Record[OpNum] == 0) 4195 return Error("Invalid record"); 4196 4197 unsigned Align; 4198 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4199 return EC; 4200 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4201 InstructionList.push_back(I); 4202 break; 4203 } 4204 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4205 case bitc::FUNC_CODE_INST_CMPXCHG: { 4206 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4207 // failureordering?, isweak?] 4208 unsigned OpNum = 0; 4209 Value *Ptr, *Cmp, *New; 4210 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4211 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4212 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4213 : popValue(Record, OpNum, NextValueNo, 4214 cast<PointerType>(Ptr->getType())->getElementType(), 4215 Cmp)) || 4216 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4217 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4218 return Error("Invalid record"); 4219 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 4220 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4221 return Error("Invalid record"); 4222 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 4223 4224 if (std::error_code EC = TypeCheckLoadStoreInst( 4225 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 4226 return EC; 4227 AtomicOrdering FailureOrdering; 4228 if (Record.size() < 7) 4229 FailureOrdering = 4230 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4231 else 4232 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 4233 4234 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4235 SynchScope); 4236 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4237 4238 if (Record.size() < 8) { 4239 // Before weak cmpxchgs existed, the instruction simply returned the 4240 // value loaded from memory, so bitcode files from that era will be 4241 // expecting the first component of a modern cmpxchg. 4242 CurBB->getInstList().push_back(I); 4243 I = ExtractValueInst::Create(I, 0); 4244 } else { 4245 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4246 } 4247 4248 InstructionList.push_back(I); 4249 break; 4250 } 4251 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4252 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4253 unsigned OpNum = 0; 4254 Value *Ptr, *Val; 4255 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4256 popValue(Record, OpNum, NextValueNo, 4257 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4258 OpNum+4 != Record.size()) 4259 return Error("Invalid record"); 4260 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 4261 if (Operation < AtomicRMWInst::FIRST_BINOP || 4262 Operation > AtomicRMWInst::LAST_BINOP) 4263 return Error("Invalid record"); 4264 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4265 if (Ordering == NotAtomic || Ordering == Unordered) 4266 return Error("Invalid record"); 4267 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4268 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4269 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4270 InstructionList.push_back(I); 4271 break; 4272 } 4273 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4274 if (2 != Record.size()) 4275 return Error("Invalid record"); 4276 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 4277 if (Ordering == NotAtomic || Ordering == Unordered || 4278 Ordering == Monotonic) 4279 return Error("Invalid record"); 4280 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 4281 I = new FenceInst(Context, Ordering, SynchScope); 4282 InstructionList.push_back(I); 4283 break; 4284 } 4285 case bitc::FUNC_CODE_INST_CALL: { 4286 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4287 if (Record.size() < 3) 4288 return Error("Invalid record"); 4289 4290 unsigned OpNum = 0; 4291 AttributeSet PAL = getAttributes(Record[OpNum++]); 4292 unsigned CCInfo = Record[OpNum++]; 4293 4294 FunctionType *FTy = nullptr; 4295 if (CCInfo >> 15 & 1 && 4296 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4297 return Error("Explicit call type is not a function type"); 4298 4299 Value *Callee; 4300 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4301 return Error("Invalid record"); 4302 4303 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4304 if (!OpTy) 4305 return Error("Callee is not a pointer type"); 4306 if (!FTy) { 4307 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4308 if (!FTy) 4309 return Error("Callee is not of pointer to function type"); 4310 } else if (OpTy->getElementType() != FTy) 4311 return Error("Explicit call type does not match pointee type of " 4312 "callee operand"); 4313 if (Record.size() < FTy->getNumParams() + OpNum) 4314 return Error("Insufficient operands to call"); 4315 4316 SmallVector<Value*, 16> Args; 4317 // Read the fixed params. 4318 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4319 if (FTy->getParamType(i)->isLabelTy()) 4320 Args.push_back(getBasicBlock(Record[OpNum])); 4321 else 4322 Args.push_back(getValue(Record, OpNum, NextValueNo, 4323 FTy->getParamType(i))); 4324 if (!Args.back()) 4325 return Error("Invalid record"); 4326 } 4327 4328 // Read type/value pairs for varargs params. 4329 if (!FTy->isVarArg()) { 4330 if (OpNum != Record.size()) 4331 return Error("Invalid record"); 4332 } else { 4333 while (OpNum != Record.size()) { 4334 Value *Op; 4335 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4336 return Error("Invalid record"); 4337 Args.push_back(Op); 4338 } 4339 } 4340 4341 I = CallInst::Create(FTy, Callee, Args); 4342 InstructionList.push_back(I); 4343 cast<CallInst>(I)->setCallingConv( 4344 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4345 CallInst::TailCallKind TCK = CallInst::TCK_None; 4346 if (CCInfo & 1) 4347 TCK = CallInst::TCK_Tail; 4348 if (CCInfo & (1 << 14)) 4349 TCK = CallInst::TCK_MustTail; 4350 cast<CallInst>(I)->setTailCallKind(TCK); 4351 cast<CallInst>(I)->setAttributes(PAL); 4352 break; 4353 } 4354 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4355 if (Record.size() < 3) 4356 return Error("Invalid record"); 4357 Type *OpTy = getTypeByID(Record[0]); 4358 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4359 Type *ResTy = getTypeByID(Record[2]); 4360 if (!OpTy || !Op || !ResTy) 4361 return Error("Invalid record"); 4362 I = new VAArgInst(Op, ResTy); 4363 InstructionList.push_back(I); 4364 break; 4365 } 4366 } 4367 4368 // Add instruction to end of current BB. If there is no current BB, reject 4369 // this file. 4370 if (!CurBB) { 4371 delete I; 4372 return Error("Invalid instruction with no BB"); 4373 } 4374 CurBB->getInstList().push_back(I); 4375 4376 // If this was a terminator instruction, move to the next block. 4377 if (isa<TerminatorInst>(I)) { 4378 ++CurBBNo; 4379 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4380 } 4381 4382 // Non-void values get registered in the value table for future use. 4383 if (I && !I->getType()->isVoidTy()) 4384 ValueList.AssignValue(I, NextValueNo++); 4385 } 4386 4387 OutOfRecordLoop: 4388 4389 // Check the function list for unresolved values. 4390 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4391 if (!A->getParent()) { 4392 // We found at least one unresolved value. Nuke them all to avoid leaks. 4393 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4394 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4395 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4396 delete A; 4397 } 4398 } 4399 return Error("Never resolved value found in function"); 4400 } 4401 } 4402 4403 // FIXME: Check for unresolved forward-declared metadata references 4404 // and clean up leaks. 4405 4406 // Trim the value list down to the size it was before we parsed this function. 4407 ValueList.shrinkTo(ModuleValueListSize); 4408 MDValueList.shrinkTo(ModuleMDValueListSize); 4409 std::vector<BasicBlock*>().swap(FunctionBBs); 4410 return std::error_code(); 4411 } 4412 4413 /// Find the function body in the bitcode stream 4414 std::error_code BitcodeReader::FindFunctionInStream( 4415 Function *F, 4416 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4417 while (DeferredFunctionInfoIterator->second == 0) { 4418 if (Stream.AtEndOfStream()) 4419 return Error("Could not find function in stream"); 4420 // ParseModule will parse the next body in the stream and set its 4421 // position in the DeferredFunctionInfo map. 4422 if (std::error_code EC = ParseModule(true)) 4423 return EC; 4424 } 4425 return std::error_code(); 4426 } 4427 4428 //===----------------------------------------------------------------------===// 4429 // GVMaterializer implementation 4430 //===----------------------------------------------------------------------===// 4431 4432 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4433 4434 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4435 if (std::error_code EC = materializeMetadata()) 4436 return EC; 4437 4438 Function *F = dyn_cast<Function>(GV); 4439 // If it's not a function or is already material, ignore the request. 4440 if (!F || !F->isMaterializable()) 4441 return std::error_code(); 4442 4443 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4444 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4445 // If its position is recorded as 0, its body is somewhere in the stream 4446 // but we haven't seen it yet. 4447 if (DFII->second == 0 && Streamer) 4448 if (std::error_code EC = FindFunctionInStream(F, DFII)) 4449 return EC; 4450 4451 // Move the bit stream to the saved position of the deferred function body. 4452 Stream.JumpToBit(DFII->second); 4453 4454 if (std::error_code EC = ParseFunctionBody(F)) 4455 return EC; 4456 F->setIsMaterializable(false); 4457 4458 if (StripDebugInfo) 4459 stripDebugInfo(*F); 4460 4461 // Upgrade any old intrinsic calls in the function. 4462 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 4463 E = UpgradedIntrinsics.end(); I != E; ++I) { 4464 if (I->first != I->second) { 4465 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4466 UI != UE;) { 4467 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4468 UpgradeIntrinsicCall(CI, I->second); 4469 } 4470 } 4471 } 4472 4473 // Bring in any functions that this function forward-referenced via 4474 // blockaddresses. 4475 return materializeForwardReferencedFunctions(); 4476 } 4477 4478 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4479 const Function *F = dyn_cast<Function>(GV); 4480 if (!F || F->isDeclaration()) 4481 return false; 4482 4483 // Dematerializing F would leave dangling references that wouldn't be 4484 // reconnected on re-materialization. 4485 if (BlockAddressesTaken.count(F)) 4486 return false; 4487 4488 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4489 } 4490 4491 void BitcodeReader::dematerialize(GlobalValue *GV) { 4492 Function *F = dyn_cast<Function>(GV); 4493 // If this function isn't dematerializable, this is a noop. 4494 if (!F || !isDematerializable(F)) 4495 return; 4496 4497 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4498 4499 // Just forget the function body, we can remat it later. 4500 F->dropAllReferences(); 4501 F->setIsMaterializable(true); 4502 } 4503 4504 std::error_code BitcodeReader::materializeModule(Module *M) { 4505 assert(M == TheModule && 4506 "Can only Materialize the Module this BitcodeReader is attached to."); 4507 4508 if (std::error_code EC = materializeMetadata()) 4509 return EC; 4510 4511 // Promise to materialize all forward references. 4512 WillMaterializeAllForwardRefs = true; 4513 4514 // Iterate over the module, deserializing any functions that are still on 4515 // disk. 4516 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4517 F != E; ++F) { 4518 if (std::error_code EC = materialize(F)) 4519 return EC; 4520 } 4521 // At this point, if there are any function bodies, the current bit is 4522 // pointing to the END_BLOCK record after them. Now make sure the rest 4523 // of the bits in the module have been read. 4524 if (NextUnreadBit) 4525 ParseModule(true); 4526 4527 // Check that all block address forward references got resolved (as we 4528 // promised above). 4529 if (!BasicBlockFwdRefs.empty()) 4530 return Error("Never resolved function from blockaddress"); 4531 4532 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4533 // delete the old functions to clean up. We can't do this unless the entire 4534 // module is materialized because there could always be another function body 4535 // with calls to the old function. 4536 for (std::vector<std::pair<Function*, Function*> >::iterator I = 4537 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 4538 if (I->first != I->second) { 4539 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4540 UI != UE;) { 4541 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4542 UpgradeIntrinsicCall(CI, I->second); 4543 } 4544 if (!I->first->use_empty()) 4545 I->first->replaceAllUsesWith(I->second); 4546 I->first->eraseFromParent(); 4547 } 4548 } 4549 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 4550 4551 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4552 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4553 4554 UpgradeDebugInfo(*M); 4555 return std::error_code(); 4556 } 4557 4558 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4559 return IdentifiedStructTypes; 4560 } 4561 4562 std::error_code BitcodeReader::InitStream() { 4563 if (Streamer) 4564 return InitLazyStream(); 4565 return InitStreamFromBuffer(); 4566 } 4567 4568 std::error_code BitcodeReader::InitStreamFromBuffer() { 4569 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4570 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4571 4572 if (Buffer->getBufferSize() & 3) 4573 return Error("Invalid bitcode signature"); 4574 4575 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4576 // The magic number is 0x0B17C0DE stored in little endian. 4577 if (isBitcodeWrapper(BufPtr, BufEnd)) 4578 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4579 return Error("Invalid bitcode wrapper header"); 4580 4581 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4582 Stream.init(&*StreamFile); 4583 4584 return std::error_code(); 4585 } 4586 4587 std::error_code BitcodeReader::InitLazyStream() { 4588 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4589 // see it. 4590 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(Streamer); 4591 StreamingMemoryObject &Bytes = *OwnedBytes; 4592 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4593 Stream.init(&*StreamFile); 4594 4595 unsigned char buf[16]; 4596 if (Bytes.readBytes(buf, 16, 0) != 16) 4597 return Error("Invalid bitcode signature"); 4598 4599 if (!isBitcode(buf, buf + 16)) 4600 return Error("Invalid bitcode signature"); 4601 4602 if (isBitcodeWrapper(buf, buf + 4)) { 4603 const unsigned char *bitcodeStart = buf; 4604 const unsigned char *bitcodeEnd = buf + 16; 4605 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4606 Bytes.dropLeadingBytes(bitcodeStart - buf); 4607 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4608 } 4609 return std::error_code(); 4610 } 4611 4612 namespace { 4613 class BitcodeErrorCategoryType : public std::error_category { 4614 const char *name() const LLVM_NOEXCEPT override { 4615 return "llvm.bitcode"; 4616 } 4617 std::string message(int IE) const override { 4618 BitcodeError E = static_cast<BitcodeError>(IE); 4619 switch (E) { 4620 case BitcodeError::InvalidBitcodeSignature: 4621 return "Invalid bitcode signature"; 4622 case BitcodeError::CorruptedBitcode: 4623 return "Corrupted bitcode"; 4624 } 4625 llvm_unreachable("Unknown error type!"); 4626 } 4627 }; 4628 } 4629 4630 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4631 4632 const std::error_category &llvm::BitcodeErrorCategory() { 4633 return *ErrorCategory; 4634 } 4635 4636 //===----------------------------------------------------------------------===// 4637 // External interface 4638 //===----------------------------------------------------------------------===// 4639 4640 /// \brief Get a lazy one-at-time loading module from bitcode. 4641 /// 4642 /// This isn't always used in a lazy context. In particular, it's also used by 4643 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4644 /// in forward-referenced functions from block address references. 4645 /// 4646 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 4647 /// materialize everything -- in particular, if this isn't truly lazy. 4648 static ErrorOr<Module *> 4649 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4650 LLVMContext &Context, bool WillMaterializeAll, 4651 DiagnosticHandlerFunction DiagnosticHandler, 4652 bool ShouldLazyLoadMetadata = false) { 4653 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 4654 BitcodeReader *R = 4655 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4656 M->setMaterializer(R); 4657 4658 auto cleanupOnError = [&](std::error_code EC) { 4659 R->releaseBuffer(); // Never take ownership on error. 4660 delete M; // Also deletes R. 4661 return EC; 4662 }; 4663 4664 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4665 if (std::error_code EC = R->ParseBitcodeInto(M, ShouldLazyLoadMetadata)) 4666 return cleanupOnError(EC); 4667 4668 if (!WillMaterializeAll) 4669 // Resolve forward references from blockaddresses. 4670 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4671 return cleanupOnError(EC); 4672 4673 Buffer.release(); // The BitcodeReader owns it now. 4674 return M; 4675 } 4676 4677 ErrorOr<Module *> 4678 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 4679 LLVMContext &Context, 4680 DiagnosticHandlerFunction DiagnosticHandler, 4681 bool ShouldLazyLoadMetadata) { 4682 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4683 DiagnosticHandler, ShouldLazyLoadMetadata); 4684 } 4685 4686 ErrorOr<std::unique_ptr<Module>> 4687 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 4688 LLVMContext &Context, 4689 DiagnosticHandlerFunction DiagnosticHandler) { 4690 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4691 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4692 M->setMaterializer(R); 4693 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 4694 return EC; 4695 return std::move(M); 4696 } 4697 4698 ErrorOr<Module *> 4699 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4700 DiagnosticHandlerFunction DiagnosticHandler) { 4701 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4702 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4703 std::move(Buf), Context, true, DiagnosticHandler); 4704 if (!ModuleOrErr) 4705 return ModuleOrErr; 4706 Module *M = ModuleOrErr.get(); 4707 // Read in the entire module, and destroy the BitcodeReader. 4708 if (std::error_code EC = M->materializeAllPermanently()) { 4709 delete M; 4710 return EC; 4711 } 4712 4713 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4714 // written. We must defer until the Module has been fully materialized. 4715 4716 return M; 4717 } 4718 4719 std::string 4720 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4721 DiagnosticHandlerFunction DiagnosticHandler) { 4722 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4723 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4724 DiagnosticHandler); 4725 ErrorOr<std::string> Triple = R->parseTriple(); 4726 if (Triple.getError()) 4727 return ""; 4728 return Triple.get(); 4729 } 4730