1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 // Strip all the TBAA attachment for the module. 162 static void stripTBAA(Module *M) { 163 for (auto &F : *M) { 164 if (F.isMaterializable()) 165 continue; 166 for (auto &I : instructions(F)) 167 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 168 } 169 } 170 171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 172 /// "epoch" encoded in the bitcode, and return the producer name if any. 173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 174 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 175 return std::move(Err); 176 177 // Read all the records. 178 SmallVector<uint64_t, 64> Record; 179 180 std::string ProducerIdentification; 181 182 while (true) { 183 BitstreamEntry Entry; 184 if (Expected<BitstreamEntry> Res = Stream.advance()) 185 Entry = Res.get(); 186 else 187 return Res.takeError(); 188 189 switch (Entry.Kind) { 190 default: 191 case BitstreamEntry::Error: 192 return error("Malformed block"); 193 case BitstreamEntry::EndBlock: 194 return ProducerIdentification; 195 case BitstreamEntry::Record: 196 // The interesting case. 197 break; 198 } 199 200 // Read a record. 201 Record.clear(); 202 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 203 if (!MaybeBitCode) 204 return MaybeBitCode.takeError(); 205 switch (MaybeBitCode.get()) { 206 default: // Default behavior: reject 207 return error("Invalid value"); 208 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 209 convertToString(Record, 0, ProducerIdentification); 210 break; 211 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 212 unsigned epoch = (unsigned)Record[0]; 213 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 214 return error( 215 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 216 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 217 } 218 } 219 } 220 } 221 } 222 223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 224 // We expect a number of well-defined blocks, though we don't necessarily 225 // need to understand them all. 226 while (true) { 227 if (Stream.AtEndOfStream()) 228 return ""; 229 230 BitstreamEntry Entry; 231 if (Expected<BitstreamEntry> Res = Stream.advance()) 232 Entry = std::move(Res.get()); 233 else 234 return Res.takeError(); 235 236 switch (Entry.Kind) { 237 case BitstreamEntry::EndBlock: 238 case BitstreamEntry::Error: 239 return error("Malformed block"); 240 241 case BitstreamEntry::SubBlock: 242 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 243 return readIdentificationBlock(Stream); 244 245 // Ignore other sub-blocks. 246 if (Error Err = Stream.SkipBlock()) 247 return std::move(Err); 248 continue; 249 case BitstreamEntry::Record: 250 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 251 continue; 252 else 253 return Skipped.takeError(); 254 } 255 } 256 } 257 258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 259 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 260 return std::move(Err); 261 262 SmallVector<uint64_t, 64> Record; 263 // Read all the records for this module. 264 265 while (true) { 266 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 267 if (!MaybeEntry) 268 return MaybeEntry.takeError(); 269 BitstreamEntry Entry = MaybeEntry.get(); 270 271 switch (Entry.Kind) { 272 case BitstreamEntry::SubBlock: // Handled for us already. 273 case BitstreamEntry::Error: 274 return error("Malformed block"); 275 case BitstreamEntry::EndBlock: 276 return false; 277 case BitstreamEntry::Record: 278 // The interesting case. 279 break; 280 } 281 282 // Read a record. 283 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 284 if (!MaybeRecord) 285 return MaybeRecord.takeError(); 286 switch (MaybeRecord.get()) { 287 default: 288 break; // Default behavior, ignore unknown content. 289 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 290 std::string S; 291 if (convertToString(Record, 0, S)) 292 return error("Invalid record"); 293 // Check for the i386 and other (x86_64, ARM) conventions 294 if (S.find("__DATA,__objc_catlist") != std::string::npos || 295 S.find("__OBJC,__category") != std::string::npos) 296 return true; 297 break; 298 } 299 } 300 Record.clear(); 301 } 302 llvm_unreachable("Exit infinite loop"); 303 } 304 305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 306 // We expect a number of well-defined blocks, though we don't necessarily 307 // need to understand them all. 308 while (true) { 309 BitstreamEntry Entry; 310 if (Expected<BitstreamEntry> Res = Stream.advance()) 311 Entry = std::move(Res.get()); 312 else 313 return Res.takeError(); 314 315 switch (Entry.Kind) { 316 case BitstreamEntry::Error: 317 return error("Malformed block"); 318 case BitstreamEntry::EndBlock: 319 return false; 320 321 case BitstreamEntry::SubBlock: 322 if (Entry.ID == bitc::MODULE_BLOCK_ID) 323 return hasObjCCategoryInModule(Stream); 324 325 // Ignore other sub-blocks. 326 if (Error Err = Stream.SkipBlock()) 327 return std::move(Err); 328 continue; 329 330 case BitstreamEntry::Record: 331 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 332 continue; 333 else 334 return Skipped.takeError(); 335 } 336 } 337 } 338 339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 340 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 341 return std::move(Err); 342 343 SmallVector<uint64_t, 64> Record; 344 345 std::string Triple; 346 347 // Read all the records for this module. 348 while (true) { 349 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 350 if (!MaybeEntry) 351 return MaybeEntry.takeError(); 352 BitstreamEntry Entry = MaybeEntry.get(); 353 354 switch (Entry.Kind) { 355 case BitstreamEntry::SubBlock: // Handled for us already. 356 case BitstreamEntry::Error: 357 return error("Malformed block"); 358 case BitstreamEntry::EndBlock: 359 return Triple; 360 case BitstreamEntry::Record: 361 // The interesting case. 362 break; 363 } 364 365 // Read a record. 366 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 367 if (!MaybeRecord) 368 return MaybeRecord.takeError(); 369 switch (MaybeRecord.get()) { 370 default: break; // Default behavior, ignore unknown content. 371 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 372 std::string S; 373 if (convertToString(Record, 0, S)) 374 return error("Invalid record"); 375 Triple = S; 376 break; 377 } 378 } 379 Record.clear(); 380 } 381 llvm_unreachable("Exit infinite loop"); 382 } 383 384 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 385 // We expect a number of well-defined blocks, though we don't necessarily 386 // need to understand them all. 387 while (true) { 388 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 389 if (!MaybeEntry) 390 return MaybeEntry.takeError(); 391 BitstreamEntry Entry = MaybeEntry.get(); 392 393 switch (Entry.Kind) { 394 case BitstreamEntry::Error: 395 return error("Malformed block"); 396 case BitstreamEntry::EndBlock: 397 return ""; 398 399 case BitstreamEntry::SubBlock: 400 if (Entry.ID == bitc::MODULE_BLOCK_ID) 401 return readModuleTriple(Stream); 402 403 // Ignore other sub-blocks. 404 if (Error Err = Stream.SkipBlock()) 405 return std::move(Err); 406 continue; 407 408 case BitstreamEntry::Record: 409 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 410 continue; 411 else 412 return Skipped.takeError(); 413 } 414 } 415 } 416 417 namespace { 418 419 class BitcodeReaderBase { 420 protected: 421 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 422 : Stream(std::move(Stream)), Strtab(Strtab) { 423 this->Stream.setBlockInfo(&BlockInfo); 424 } 425 426 BitstreamBlockInfo BlockInfo; 427 BitstreamCursor Stream; 428 StringRef Strtab; 429 430 /// In version 2 of the bitcode we store names of global values and comdats in 431 /// a string table rather than in the VST. 432 bool UseStrtab = false; 433 434 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 435 436 /// If this module uses a string table, pop the reference to the string table 437 /// and return the referenced string and the rest of the record. Otherwise 438 /// just return the record itself. 439 std::pair<StringRef, ArrayRef<uint64_t>> 440 readNameFromStrtab(ArrayRef<uint64_t> Record); 441 442 bool readBlockInfo(); 443 444 // Contains an arbitrary and optional string identifying the bitcode producer 445 std::string ProducerIdentification; 446 447 Error error(const Twine &Message); 448 }; 449 450 } // end anonymous namespace 451 452 Error BitcodeReaderBase::error(const Twine &Message) { 453 std::string FullMsg = Message.str(); 454 if (!ProducerIdentification.empty()) 455 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 456 LLVM_VERSION_STRING "')"; 457 return ::error(FullMsg); 458 } 459 460 Expected<unsigned> 461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 462 if (Record.empty()) 463 return error("Invalid record"); 464 unsigned ModuleVersion = Record[0]; 465 if (ModuleVersion > 2) 466 return error("Invalid value"); 467 UseStrtab = ModuleVersion >= 2; 468 return ModuleVersion; 469 } 470 471 std::pair<StringRef, ArrayRef<uint64_t>> 472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 473 if (!UseStrtab) 474 return {"", Record}; 475 // Invalid reference. Let the caller complain about the record being empty. 476 if (Record[0] + Record[1] > Strtab.size()) 477 return {"", {}}; 478 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 479 } 480 481 namespace { 482 483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 484 LLVMContext &Context; 485 Module *TheModule = nullptr; 486 // Next offset to start scanning for lazy parsing of function bodies. 487 uint64_t NextUnreadBit = 0; 488 // Last function offset found in the VST. 489 uint64_t LastFunctionBlockBit = 0; 490 bool SeenValueSymbolTable = false; 491 uint64_t VSTOffset = 0; 492 493 std::vector<std::string> SectionTable; 494 std::vector<std::string> GCTable; 495 496 std::vector<Type*> TypeList; 497 BitcodeReaderValueList ValueList; 498 Optional<MetadataLoader> MDLoader; 499 std::vector<Comdat *> ComdatList; 500 SmallVector<Instruction *, 64> InstructionList; 501 502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 504 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 506 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 507 508 /// The set of attributes by index. Index zero in the file is for null, and 509 /// is thus not represented here. As such all indices are off by one. 510 std::vector<AttributeList> MAttributes; 511 512 /// The set of attribute groups. 513 std::map<unsigned, AttributeList> MAttributeGroups; 514 515 /// While parsing a function body, this is a list of the basic blocks for the 516 /// function. 517 std::vector<BasicBlock*> FunctionBBs; 518 519 // When reading the module header, this list is populated with functions that 520 // have bodies later in the file. 521 std::vector<Function*> FunctionsWithBodies; 522 523 // When intrinsic functions are encountered which require upgrading they are 524 // stored here with their replacement function. 525 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 526 UpdatedIntrinsicMap UpgradedIntrinsics; 527 // Intrinsics which were remangled because of types rename 528 UpdatedIntrinsicMap RemangledIntrinsics; 529 530 // Several operations happen after the module header has been read, but 531 // before function bodies are processed. This keeps track of whether 532 // we've done this yet. 533 bool SeenFirstFunctionBody = false; 534 535 /// When function bodies are initially scanned, this map contains info about 536 /// where to find deferred function body in the stream. 537 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 538 539 /// When Metadata block is initially scanned when parsing the module, we may 540 /// choose to defer parsing of the metadata. This vector contains info about 541 /// which Metadata blocks are deferred. 542 std::vector<uint64_t> DeferredMetadataInfo; 543 544 /// These are basic blocks forward-referenced by block addresses. They are 545 /// inserted lazily into functions when they're loaded. The basic block ID is 546 /// its index into the vector. 547 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 548 std::deque<Function *> BasicBlockFwdRefQueue; 549 550 /// Indicates that we are using a new encoding for instruction operands where 551 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 552 /// instruction number, for a more compact encoding. Some instruction 553 /// operands are not relative to the instruction ID: basic block numbers, and 554 /// types. Once the old style function blocks have been phased out, we would 555 /// not need this flag. 556 bool UseRelativeIDs = false; 557 558 /// True if all functions will be materialized, negating the need to process 559 /// (e.g.) blockaddress forward references. 560 bool WillMaterializeAllForwardRefs = false; 561 562 bool StripDebugInfo = false; 563 TBAAVerifier TBAAVerifyHelper; 564 565 std::vector<std::string> BundleTags; 566 SmallVector<SyncScope::ID, 8> SSIDs; 567 568 public: 569 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 570 StringRef ProducerIdentification, LLVMContext &Context); 571 572 Error materializeForwardReferencedFunctions(); 573 574 Error materialize(GlobalValue *GV) override; 575 Error materializeModule() override; 576 std::vector<StructType *> getIdentifiedStructTypes() const override; 577 578 /// Main interface to parsing a bitcode buffer. 579 /// \returns true if an error occurred. 580 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 581 bool IsImporting = false); 582 583 static uint64_t decodeSignRotatedValue(uint64_t V); 584 585 /// Materialize any deferred Metadata block. 586 Error materializeMetadata() override; 587 588 void setStripDebugInfo() override; 589 590 private: 591 std::vector<StructType *> IdentifiedStructTypes; 592 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 593 StructType *createIdentifiedStructType(LLVMContext &Context); 594 595 Type *getTypeByID(unsigned ID); 596 597 Value *getFnValueByID(unsigned ID, Type *Ty) { 598 if (Ty && Ty->isMetadataTy()) 599 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 600 return ValueList.getValueFwdRef(ID, Ty); 601 } 602 603 Metadata *getFnMetadataByID(unsigned ID) { 604 return MDLoader->getMetadataFwdRefOrLoad(ID); 605 } 606 607 BasicBlock *getBasicBlock(unsigned ID) const { 608 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 609 return FunctionBBs[ID]; 610 } 611 612 AttributeList getAttributes(unsigned i) const { 613 if (i-1 < MAttributes.size()) 614 return MAttributes[i-1]; 615 return AttributeList(); 616 } 617 618 /// Read a value/type pair out of the specified record from slot 'Slot'. 619 /// Increment Slot past the number of slots used in the record. Return true on 620 /// failure. 621 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 622 unsigned InstNum, Value *&ResVal) { 623 if (Slot == Record.size()) return true; 624 unsigned ValNo = (unsigned)Record[Slot++]; 625 // Adjust the ValNo, if it was encoded relative to the InstNum. 626 if (UseRelativeIDs) 627 ValNo = InstNum - ValNo; 628 if (ValNo < InstNum) { 629 // If this is not a forward reference, just return the value we already 630 // have. 631 ResVal = getFnValueByID(ValNo, nullptr); 632 return ResVal == nullptr; 633 } 634 if (Slot == Record.size()) 635 return true; 636 637 unsigned TypeNo = (unsigned)Record[Slot++]; 638 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 639 return ResVal == nullptr; 640 } 641 642 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 643 /// past the number of slots used by the value in the record. Return true if 644 /// there is an error. 645 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 646 unsigned InstNum, Type *Ty, Value *&ResVal) { 647 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 648 return true; 649 // All values currently take a single record slot. 650 ++Slot; 651 return false; 652 } 653 654 /// Like popValue, but does not increment the Slot number. 655 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 656 unsigned InstNum, Type *Ty, Value *&ResVal) { 657 ResVal = getValue(Record, Slot, InstNum, Ty); 658 return ResVal == nullptr; 659 } 660 661 /// Version of getValue that returns ResVal directly, or 0 if there is an 662 /// error. 663 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 664 unsigned InstNum, Type *Ty) { 665 if (Slot == Record.size()) return nullptr; 666 unsigned ValNo = (unsigned)Record[Slot]; 667 // Adjust the ValNo, if it was encoded relative to the InstNum. 668 if (UseRelativeIDs) 669 ValNo = InstNum - ValNo; 670 return getFnValueByID(ValNo, Ty); 671 } 672 673 /// Like getValue, but decodes signed VBRs. 674 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 675 unsigned InstNum, Type *Ty) { 676 if (Slot == Record.size()) return nullptr; 677 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 678 // Adjust the ValNo, if it was encoded relative to the InstNum. 679 if (UseRelativeIDs) 680 ValNo = InstNum - ValNo; 681 return getFnValueByID(ValNo, Ty); 682 } 683 684 /// Upgrades old-style typeless byval attributes by adding the corresponding 685 /// argument's pointee type. 686 void propagateByValTypes(CallBase *CB); 687 688 /// Converts alignment exponent (i.e. power of two (or zero)) to the 689 /// corresponding alignment to use. If alignment is too large, returns 690 /// a corresponding error code. 691 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 692 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 693 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 694 695 Error parseComdatRecord(ArrayRef<uint64_t> Record); 696 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 697 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 698 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 699 ArrayRef<uint64_t> Record); 700 701 Error parseAttributeBlock(); 702 Error parseAttributeGroupBlock(); 703 Error parseTypeTable(); 704 Error parseTypeTableBody(); 705 Error parseOperandBundleTags(); 706 Error parseSyncScopeNames(); 707 708 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 709 unsigned NameIndex, Triple &TT); 710 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 711 ArrayRef<uint64_t> Record); 712 Error parseValueSymbolTable(uint64_t Offset = 0); 713 Error parseGlobalValueSymbolTable(); 714 Error parseConstants(); 715 Error rememberAndSkipFunctionBodies(); 716 Error rememberAndSkipFunctionBody(); 717 /// Save the positions of the Metadata blocks and skip parsing the blocks. 718 Error rememberAndSkipMetadata(); 719 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 720 Error parseFunctionBody(Function *F); 721 Error globalCleanup(); 722 Error resolveGlobalAndIndirectSymbolInits(); 723 Error parseUseLists(); 724 Error findFunctionInStream( 725 Function *F, 726 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 727 728 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 729 }; 730 731 /// Class to manage reading and parsing function summary index bitcode 732 /// files/sections. 733 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 734 /// The module index built during parsing. 735 ModuleSummaryIndex &TheIndex; 736 737 /// Indicates whether we have encountered a global value summary section 738 /// yet during parsing. 739 bool SeenGlobalValSummary = false; 740 741 /// Indicates whether we have already parsed the VST, used for error checking. 742 bool SeenValueSymbolTable = false; 743 744 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 745 /// Used to enable on-demand parsing of the VST. 746 uint64_t VSTOffset = 0; 747 748 // Map to save ValueId to ValueInfo association that was recorded in the 749 // ValueSymbolTable. It is used after the VST is parsed to convert 750 // call graph edges read from the function summary from referencing 751 // callees by their ValueId to using the ValueInfo instead, which is how 752 // they are recorded in the summary index being built. 753 // We save a GUID which refers to the same global as the ValueInfo, but 754 // ignoring the linkage, i.e. for values other than local linkage they are 755 // identical. 756 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 757 ValueIdToValueInfoMap; 758 759 /// Map populated during module path string table parsing, from the 760 /// module ID to a string reference owned by the index's module 761 /// path string table, used to correlate with combined index 762 /// summary records. 763 DenseMap<uint64_t, StringRef> ModuleIdMap; 764 765 /// Original source file name recorded in a bitcode record. 766 std::string SourceFileName; 767 768 /// The string identifier given to this module by the client, normally the 769 /// path to the bitcode file. 770 StringRef ModulePath; 771 772 /// For per-module summary indexes, the unique numerical identifier given to 773 /// this module by the client. 774 unsigned ModuleId; 775 776 public: 777 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 778 ModuleSummaryIndex &TheIndex, 779 StringRef ModulePath, unsigned ModuleId); 780 781 Error parseModule(); 782 783 private: 784 void setValueGUID(uint64_t ValueID, StringRef ValueName, 785 GlobalValue::LinkageTypes Linkage, 786 StringRef SourceFileName); 787 Error parseValueSymbolTable( 788 uint64_t Offset, 789 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 790 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 791 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 792 bool IsOldProfileFormat, 793 bool HasProfile, 794 bool HasRelBF); 795 Error parseEntireSummary(unsigned ID); 796 Error parseModuleStringTable(); 797 798 std::pair<ValueInfo, GlobalValue::GUID> 799 getValueInfoFromValueId(unsigned ValueId); 800 801 void addThisModule(); 802 ModuleSummaryIndex::ModuleInfo *getThisModule(); 803 }; 804 805 } // end anonymous namespace 806 807 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 808 Error Err) { 809 if (Err) { 810 std::error_code EC; 811 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 812 EC = EIB.convertToErrorCode(); 813 Ctx.emitError(EIB.message()); 814 }); 815 return EC; 816 } 817 return std::error_code(); 818 } 819 820 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 821 StringRef ProducerIdentification, 822 LLVMContext &Context) 823 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 824 ValueList(Context) { 825 this->ProducerIdentification = ProducerIdentification; 826 } 827 828 Error BitcodeReader::materializeForwardReferencedFunctions() { 829 if (WillMaterializeAllForwardRefs) 830 return Error::success(); 831 832 // Prevent recursion. 833 WillMaterializeAllForwardRefs = true; 834 835 while (!BasicBlockFwdRefQueue.empty()) { 836 Function *F = BasicBlockFwdRefQueue.front(); 837 BasicBlockFwdRefQueue.pop_front(); 838 assert(F && "Expected valid function"); 839 if (!BasicBlockFwdRefs.count(F)) 840 // Already materialized. 841 continue; 842 843 // Check for a function that isn't materializable to prevent an infinite 844 // loop. When parsing a blockaddress stored in a global variable, there 845 // isn't a trivial way to check if a function will have a body without a 846 // linear search through FunctionsWithBodies, so just check it here. 847 if (!F->isMaterializable()) 848 return error("Never resolved function from blockaddress"); 849 850 // Try to materialize F. 851 if (Error Err = materialize(F)) 852 return Err; 853 } 854 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 855 856 // Reset state. 857 WillMaterializeAllForwardRefs = false; 858 return Error::success(); 859 } 860 861 //===----------------------------------------------------------------------===// 862 // Helper functions to implement forward reference resolution, etc. 863 //===----------------------------------------------------------------------===// 864 865 static bool hasImplicitComdat(size_t Val) { 866 switch (Val) { 867 default: 868 return false; 869 case 1: // Old WeakAnyLinkage 870 case 4: // Old LinkOnceAnyLinkage 871 case 10: // Old WeakODRLinkage 872 case 11: // Old LinkOnceODRLinkage 873 return true; 874 } 875 } 876 877 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 878 switch (Val) { 879 default: // Map unknown/new linkages to external 880 case 0: 881 return GlobalValue::ExternalLinkage; 882 case 2: 883 return GlobalValue::AppendingLinkage; 884 case 3: 885 return GlobalValue::InternalLinkage; 886 case 5: 887 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 888 case 6: 889 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 890 case 7: 891 return GlobalValue::ExternalWeakLinkage; 892 case 8: 893 return GlobalValue::CommonLinkage; 894 case 9: 895 return GlobalValue::PrivateLinkage; 896 case 12: 897 return GlobalValue::AvailableExternallyLinkage; 898 case 13: 899 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 900 case 14: 901 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 902 case 15: 903 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 904 case 1: // Old value with implicit comdat. 905 case 16: 906 return GlobalValue::WeakAnyLinkage; 907 case 10: // Old value with implicit comdat. 908 case 17: 909 return GlobalValue::WeakODRLinkage; 910 case 4: // Old value with implicit comdat. 911 case 18: 912 return GlobalValue::LinkOnceAnyLinkage; 913 case 11: // Old value with implicit comdat. 914 case 19: 915 return GlobalValue::LinkOnceODRLinkage; 916 } 917 } 918 919 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 920 FunctionSummary::FFlags Flags; 921 Flags.ReadNone = RawFlags & 0x1; 922 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 923 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 924 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 925 Flags.NoInline = (RawFlags >> 4) & 0x1; 926 return Flags; 927 } 928 929 /// Decode the flags for GlobalValue in the summary. 930 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 931 uint64_t Version) { 932 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 933 // like getDecodedLinkage() above. Any future change to the linkage enum and 934 // to getDecodedLinkage() will need to be taken into account here as above. 935 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 936 RawFlags = RawFlags >> 4; 937 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 938 // The Live flag wasn't introduced until version 3. For dead stripping 939 // to work correctly on earlier versions, we must conservatively treat all 940 // values as live. 941 bool Live = (RawFlags & 0x2) || Version < 3; 942 bool Local = (RawFlags & 0x4); 943 bool AutoHide = (RawFlags & 0x8); 944 945 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 946 } 947 948 // Decode the flags for GlobalVariable in the summary 949 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 950 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false); 951 } 952 953 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 954 switch (Val) { 955 default: // Map unknown visibilities to default. 956 case 0: return GlobalValue::DefaultVisibility; 957 case 1: return GlobalValue::HiddenVisibility; 958 case 2: return GlobalValue::ProtectedVisibility; 959 } 960 } 961 962 static GlobalValue::DLLStorageClassTypes 963 getDecodedDLLStorageClass(unsigned Val) { 964 switch (Val) { 965 default: // Map unknown values to default. 966 case 0: return GlobalValue::DefaultStorageClass; 967 case 1: return GlobalValue::DLLImportStorageClass; 968 case 2: return GlobalValue::DLLExportStorageClass; 969 } 970 } 971 972 static bool getDecodedDSOLocal(unsigned Val) { 973 switch(Val) { 974 default: // Map unknown values to preemptable. 975 case 0: return false; 976 case 1: return true; 977 } 978 } 979 980 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 981 switch (Val) { 982 case 0: return GlobalVariable::NotThreadLocal; 983 default: // Map unknown non-zero value to general dynamic. 984 case 1: return GlobalVariable::GeneralDynamicTLSModel; 985 case 2: return GlobalVariable::LocalDynamicTLSModel; 986 case 3: return GlobalVariable::InitialExecTLSModel; 987 case 4: return GlobalVariable::LocalExecTLSModel; 988 } 989 } 990 991 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 992 switch (Val) { 993 default: // Map unknown to UnnamedAddr::None. 994 case 0: return GlobalVariable::UnnamedAddr::None; 995 case 1: return GlobalVariable::UnnamedAddr::Global; 996 case 2: return GlobalVariable::UnnamedAddr::Local; 997 } 998 } 999 1000 static int getDecodedCastOpcode(unsigned Val) { 1001 switch (Val) { 1002 default: return -1; 1003 case bitc::CAST_TRUNC : return Instruction::Trunc; 1004 case bitc::CAST_ZEXT : return Instruction::ZExt; 1005 case bitc::CAST_SEXT : return Instruction::SExt; 1006 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1007 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1008 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1009 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1010 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1011 case bitc::CAST_FPEXT : return Instruction::FPExt; 1012 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1013 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1014 case bitc::CAST_BITCAST : return Instruction::BitCast; 1015 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1016 } 1017 } 1018 1019 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1020 bool IsFP = Ty->isFPOrFPVectorTy(); 1021 // UnOps are only valid for int/fp or vector of int/fp types 1022 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1023 return -1; 1024 1025 switch (Val) { 1026 default: 1027 return -1; 1028 case bitc::UNOP_NEG: 1029 return IsFP ? Instruction::FNeg : -1; 1030 } 1031 } 1032 1033 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1034 bool IsFP = Ty->isFPOrFPVectorTy(); 1035 // BinOps are only valid for int/fp or vector of int/fp types 1036 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1037 return -1; 1038 1039 switch (Val) { 1040 default: 1041 return -1; 1042 case bitc::BINOP_ADD: 1043 return IsFP ? Instruction::FAdd : Instruction::Add; 1044 case bitc::BINOP_SUB: 1045 return IsFP ? Instruction::FSub : Instruction::Sub; 1046 case bitc::BINOP_MUL: 1047 return IsFP ? Instruction::FMul : Instruction::Mul; 1048 case bitc::BINOP_UDIV: 1049 return IsFP ? -1 : Instruction::UDiv; 1050 case bitc::BINOP_SDIV: 1051 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1052 case bitc::BINOP_UREM: 1053 return IsFP ? -1 : Instruction::URem; 1054 case bitc::BINOP_SREM: 1055 return IsFP ? Instruction::FRem : Instruction::SRem; 1056 case bitc::BINOP_SHL: 1057 return IsFP ? -1 : Instruction::Shl; 1058 case bitc::BINOP_LSHR: 1059 return IsFP ? -1 : Instruction::LShr; 1060 case bitc::BINOP_ASHR: 1061 return IsFP ? -1 : Instruction::AShr; 1062 case bitc::BINOP_AND: 1063 return IsFP ? -1 : Instruction::And; 1064 case bitc::BINOP_OR: 1065 return IsFP ? -1 : Instruction::Or; 1066 case bitc::BINOP_XOR: 1067 return IsFP ? -1 : Instruction::Xor; 1068 } 1069 } 1070 1071 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1072 switch (Val) { 1073 default: return AtomicRMWInst::BAD_BINOP; 1074 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1075 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1076 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1077 case bitc::RMW_AND: return AtomicRMWInst::And; 1078 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1079 case bitc::RMW_OR: return AtomicRMWInst::Or; 1080 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1081 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1082 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1083 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1084 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1085 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1086 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1087 } 1088 } 1089 1090 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1091 switch (Val) { 1092 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1093 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1094 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1095 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1096 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1097 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1098 default: // Map unknown orderings to sequentially-consistent. 1099 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1100 } 1101 } 1102 1103 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1104 switch (Val) { 1105 default: // Map unknown selection kinds to any. 1106 case bitc::COMDAT_SELECTION_KIND_ANY: 1107 return Comdat::Any; 1108 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1109 return Comdat::ExactMatch; 1110 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1111 return Comdat::Largest; 1112 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1113 return Comdat::NoDuplicates; 1114 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1115 return Comdat::SameSize; 1116 } 1117 } 1118 1119 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1120 FastMathFlags FMF; 1121 if (0 != (Val & bitc::UnsafeAlgebra)) 1122 FMF.setFast(); 1123 if (0 != (Val & bitc::AllowReassoc)) 1124 FMF.setAllowReassoc(); 1125 if (0 != (Val & bitc::NoNaNs)) 1126 FMF.setNoNaNs(); 1127 if (0 != (Val & bitc::NoInfs)) 1128 FMF.setNoInfs(); 1129 if (0 != (Val & bitc::NoSignedZeros)) 1130 FMF.setNoSignedZeros(); 1131 if (0 != (Val & bitc::AllowReciprocal)) 1132 FMF.setAllowReciprocal(); 1133 if (0 != (Val & bitc::AllowContract)) 1134 FMF.setAllowContract(true); 1135 if (0 != (Val & bitc::ApproxFunc)) 1136 FMF.setApproxFunc(); 1137 return FMF; 1138 } 1139 1140 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1141 switch (Val) { 1142 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1143 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1144 } 1145 } 1146 1147 Type *BitcodeReader::getTypeByID(unsigned ID) { 1148 // The type table size is always specified correctly. 1149 if (ID >= TypeList.size()) 1150 return nullptr; 1151 1152 if (Type *Ty = TypeList[ID]) 1153 return Ty; 1154 1155 // If we have a forward reference, the only possible case is when it is to a 1156 // named struct. Just create a placeholder for now. 1157 return TypeList[ID] = createIdentifiedStructType(Context); 1158 } 1159 1160 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1161 StringRef Name) { 1162 auto *Ret = StructType::create(Context, Name); 1163 IdentifiedStructTypes.push_back(Ret); 1164 return Ret; 1165 } 1166 1167 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1168 auto *Ret = StructType::create(Context); 1169 IdentifiedStructTypes.push_back(Ret); 1170 return Ret; 1171 } 1172 1173 //===----------------------------------------------------------------------===// 1174 // Functions for parsing blocks from the bitcode file 1175 //===----------------------------------------------------------------------===// 1176 1177 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1178 switch (Val) { 1179 case Attribute::EndAttrKinds: 1180 llvm_unreachable("Synthetic enumerators which should never get here"); 1181 1182 case Attribute::None: return 0; 1183 case Attribute::ZExt: return 1 << 0; 1184 case Attribute::SExt: return 1 << 1; 1185 case Attribute::NoReturn: return 1 << 2; 1186 case Attribute::InReg: return 1 << 3; 1187 case Attribute::StructRet: return 1 << 4; 1188 case Attribute::NoUnwind: return 1 << 5; 1189 case Attribute::NoAlias: return 1 << 6; 1190 case Attribute::ByVal: return 1 << 7; 1191 case Attribute::Nest: return 1 << 8; 1192 case Attribute::ReadNone: return 1 << 9; 1193 case Attribute::ReadOnly: return 1 << 10; 1194 case Attribute::NoInline: return 1 << 11; 1195 case Attribute::AlwaysInline: return 1 << 12; 1196 case Attribute::OptimizeForSize: return 1 << 13; 1197 case Attribute::StackProtect: return 1 << 14; 1198 case Attribute::StackProtectReq: return 1 << 15; 1199 case Attribute::Alignment: return 31 << 16; 1200 case Attribute::NoCapture: return 1 << 21; 1201 case Attribute::NoRedZone: return 1 << 22; 1202 case Attribute::NoImplicitFloat: return 1 << 23; 1203 case Attribute::Naked: return 1 << 24; 1204 case Attribute::InlineHint: return 1 << 25; 1205 case Attribute::StackAlignment: return 7 << 26; 1206 case Attribute::ReturnsTwice: return 1 << 29; 1207 case Attribute::UWTable: return 1 << 30; 1208 case Attribute::NonLazyBind: return 1U << 31; 1209 case Attribute::SanitizeAddress: return 1ULL << 32; 1210 case Attribute::MinSize: return 1ULL << 33; 1211 case Attribute::NoDuplicate: return 1ULL << 34; 1212 case Attribute::StackProtectStrong: return 1ULL << 35; 1213 case Attribute::SanitizeThread: return 1ULL << 36; 1214 case Attribute::SanitizeMemory: return 1ULL << 37; 1215 case Attribute::NoBuiltin: return 1ULL << 38; 1216 case Attribute::Returned: return 1ULL << 39; 1217 case Attribute::Cold: return 1ULL << 40; 1218 case Attribute::Builtin: return 1ULL << 41; 1219 case Attribute::OptimizeNone: return 1ULL << 42; 1220 case Attribute::InAlloca: return 1ULL << 43; 1221 case Attribute::NonNull: return 1ULL << 44; 1222 case Attribute::JumpTable: return 1ULL << 45; 1223 case Attribute::Convergent: return 1ULL << 46; 1224 case Attribute::SafeStack: return 1ULL << 47; 1225 case Attribute::NoRecurse: return 1ULL << 48; 1226 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1227 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1228 case Attribute::SwiftSelf: return 1ULL << 51; 1229 case Attribute::SwiftError: return 1ULL << 52; 1230 case Attribute::WriteOnly: return 1ULL << 53; 1231 case Attribute::Speculatable: return 1ULL << 54; 1232 case Attribute::StrictFP: return 1ULL << 55; 1233 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1234 case Attribute::NoCfCheck: return 1ULL << 57; 1235 case Attribute::OptForFuzzing: return 1ULL << 58; 1236 case Attribute::ShadowCallStack: return 1ULL << 59; 1237 case Attribute::SpeculativeLoadHardening: 1238 return 1ULL << 60; 1239 case Attribute::ImmArg: 1240 return 1ULL << 61; 1241 case Attribute::Dereferenceable: 1242 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1243 break; 1244 case Attribute::DereferenceableOrNull: 1245 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1246 "format"); 1247 break; 1248 case Attribute::ArgMemOnly: 1249 llvm_unreachable("argmemonly attribute not supported in raw format"); 1250 break; 1251 case Attribute::AllocSize: 1252 llvm_unreachable("allocsize not supported in raw format"); 1253 break; 1254 } 1255 llvm_unreachable("Unsupported attribute type"); 1256 } 1257 1258 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1259 if (!Val) return; 1260 1261 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1262 I = Attribute::AttrKind(I + 1)) { 1263 if (I == Attribute::Dereferenceable || 1264 I == Attribute::DereferenceableOrNull || 1265 I == Attribute::ArgMemOnly || 1266 I == Attribute::AllocSize) 1267 continue; 1268 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1269 if (I == Attribute::Alignment) 1270 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1271 else if (I == Attribute::StackAlignment) 1272 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1273 else 1274 B.addAttribute(I); 1275 } 1276 } 1277 } 1278 1279 /// This fills an AttrBuilder object with the LLVM attributes that have 1280 /// been decoded from the given integer. This function must stay in sync with 1281 /// 'encodeLLVMAttributesForBitcode'. 1282 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1283 uint64_t EncodedAttrs) { 1284 // FIXME: Remove in 4.0. 1285 1286 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1287 // the bits above 31 down by 11 bits. 1288 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1289 assert((!Alignment || isPowerOf2_32(Alignment)) && 1290 "Alignment must be a power of two."); 1291 1292 if (Alignment) 1293 B.addAlignmentAttr(Alignment); 1294 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1295 (EncodedAttrs & 0xffff)); 1296 } 1297 1298 Error BitcodeReader::parseAttributeBlock() { 1299 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1300 return Err; 1301 1302 if (!MAttributes.empty()) 1303 return error("Invalid multiple blocks"); 1304 1305 SmallVector<uint64_t, 64> Record; 1306 1307 SmallVector<AttributeList, 8> Attrs; 1308 1309 // Read all the records. 1310 while (true) { 1311 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1312 if (!MaybeEntry) 1313 return MaybeEntry.takeError(); 1314 BitstreamEntry Entry = MaybeEntry.get(); 1315 1316 switch (Entry.Kind) { 1317 case BitstreamEntry::SubBlock: // Handled for us already. 1318 case BitstreamEntry::Error: 1319 return error("Malformed block"); 1320 case BitstreamEntry::EndBlock: 1321 return Error::success(); 1322 case BitstreamEntry::Record: 1323 // The interesting case. 1324 break; 1325 } 1326 1327 // Read a record. 1328 Record.clear(); 1329 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1330 if (!MaybeRecord) 1331 return MaybeRecord.takeError(); 1332 switch (MaybeRecord.get()) { 1333 default: // Default behavior: ignore. 1334 break; 1335 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1336 // FIXME: Remove in 4.0. 1337 if (Record.size() & 1) 1338 return error("Invalid record"); 1339 1340 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1341 AttrBuilder B; 1342 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1343 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1344 } 1345 1346 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1347 Attrs.clear(); 1348 break; 1349 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1350 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1351 Attrs.push_back(MAttributeGroups[Record[i]]); 1352 1353 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1354 Attrs.clear(); 1355 break; 1356 } 1357 } 1358 } 1359 1360 // Returns Attribute::None on unrecognized codes. 1361 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1362 switch (Code) { 1363 default: 1364 return Attribute::None; 1365 case bitc::ATTR_KIND_ALIGNMENT: 1366 return Attribute::Alignment; 1367 case bitc::ATTR_KIND_ALWAYS_INLINE: 1368 return Attribute::AlwaysInline; 1369 case bitc::ATTR_KIND_ARGMEMONLY: 1370 return Attribute::ArgMemOnly; 1371 case bitc::ATTR_KIND_BUILTIN: 1372 return Attribute::Builtin; 1373 case bitc::ATTR_KIND_BY_VAL: 1374 return Attribute::ByVal; 1375 case bitc::ATTR_KIND_IN_ALLOCA: 1376 return Attribute::InAlloca; 1377 case bitc::ATTR_KIND_COLD: 1378 return Attribute::Cold; 1379 case bitc::ATTR_KIND_CONVERGENT: 1380 return Attribute::Convergent; 1381 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1382 return Attribute::InaccessibleMemOnly; 1383 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1384 return Attribute::InaccessibleMemOrArgMemOnly; 1385 case bitc::ATTR_KIND_INLINE_HINT: 1386 return Attribute::InlineHint; 1387 case bitc::ATTR_KIND_IN_REG: 1388 return Attribute::InReg; 1389 case bitc::ATTR_KIND_JUMP_TABLE: 1390 return Attribute::JumpTable; 1391 case bitc::ATTR_KIND_MIN_SIZE: 1392 return Attribute::MinSize; 1393 case bitc::ATTR_KIND_NAKED: 1394 return Attribute::Naked; 1395 case bitc::ATTR_KIND_NEST: 1396 return Attribute::Nest; 1397 case bitc::ATTR_KIND_NO_ALIAS: 1398 return Attribute::NoAlias; 1399 case bitc::ATTR_KIND_NO_BUILTIN: 1400 return Attribute::NoBuiltin; 1401 case bitc::ATTR_KIND_NO_CAPTURE: 1402 return Attribute::NoCapture; 1403 case bitc::ATTR_KIND_NO_DUPLICATE: 1404 return Attribute::NoDuplicate; 1405 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1406 return Attribute::NoImplicitFloat; 1407 case bitc::ATTR_KIND_NO_INLINE: 1408 return Attribute::NoInline; 1409 case bitc::ATTR_KIND_NO_RECURSE: 1410 return Attribute::NoRecurse; 1411 case bitc::ATTR_KIND_NON_LAZY_BIND: 1412 return Attribute::NonLazyBind; 1413 case bitc::ATTR_KIND_NON_NULL: 1414 return Attribute::NonNull; 1415 case bitc::ATTR_KIND_DEREFERENCEABLE: 1416 return Attribute::Dereferenceable; 1417 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1418 return Attribute::DereferenceableOrNull; 1419 case bitc::ATTR_KIND_ALLOC_SIZE: 1420 return Attribute::AllocSize; 1421 case bitc::ATTR_KIND_NO_RED_ZONE: 1422 return Attribute::NoRedZone; 1423 case bitc::ATTR_KIND_NO_RETURN: 1424 return Attribute::NoReturn; 1425 case bitc::ATTR_KIND_NOCF_CHECK: 1426 return Attribute::NoCfCheck; 1427 case bitc::ATTR_KIND_NO_UNWIND: 1428 return Attribute::NoUnwind; 1429 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1430 return Attribute::OptForFuzzing; 1431 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1432 return Attribute::OptimizeForSize; 1433 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1434 return Attribute::OptimizeNone; 1435 case bitc::ATTR_KIND_READ_NONE: 1436 return Attribute::ReadNone; 1437 case bitc::ATTR_KIND_READ_ONLY: 1438 return Attribute::ReadOnly; 1439 case bitc::ATTR_KIND_RETURNED: 1440 return Attribute::Returned; 1441 case bitc::ATTR_KIND_RETURNS_TWICE: 1442 return Attribute::ReturnsTwice; 1443 case bitc::ATTR_KIND_S_EXT: 1444 return Attribute::SExt; 1445 case bitc::ATTR_KIND_SPECULATABLE: 1446 return Attribute::Speculatable; 1447 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1448 return Attribute::StackAlignment; 1449 case bitc::ATTR_KIND_STACK_PROTECT: 1450 return Attribute::StackProtect; 1451 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1452 return Attribute::StackProtectReq; 1453 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1454 return Attribute::StackProtectStrong; 1455 case bitc::ATTR_KIND_SAFESTACK: 1456 return Attribute::SafeStack; 1457 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1458 return Attribute::ShadowCallStack; 1459 case bitc::ATTR_KIND_STRICT_FP: 1460 return Attribute::StrictFP; 1461 case bitc::ATTR_KIND_STRUCT_RET: 1462 return Attribute::StructRet; 1463 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1464 return Attribute::SanitizeAddress; 1465 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1466 return Attribute::SanitizeHWAddress; 1467 case bitc::ATTR_KIND_SANITIZE_THREAD: 1468 return Attribute::SanitizeThread; 1469 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1470 return Attribute::SanitizeMemory; 1471 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1472 return Attribute::SpeculativeLoadHardening; 1473 case bitc::ATTR_KIND_SWIFT_ERROR: 1474 return Attribute::SwiftError; 1475 case bitc::ATTR_KIND_SWIFT_SELF: 1476 return Attribute::SwiftSelf; 1477 case bitc::ATTR_KIND_UW_TABLE: 1478 return Attribute::UWTable; 1479 case bitc::ATTR_KIND_WRITEONLY: 1480 return Attribute::WriteOnly; 1481 case bitc::ATTR_KIND_Z_EXT: 1482 return Attribute::ZExt; 1483 case bitc::ATTR_KIND_IMMARG: 1484 return Attribute::ImmArg; 1485 } 1486 } 1487 1488 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1489 unsigned &Alignment) { 1490 // Note: Alignment in bitcode files is incremented by 1, so that zero 1491 // can be used for default alignment. 1492 if (Exponent > Value::MaxAlignmentExponent + 1) 1493 return error("Invalid alignment value"); 1494 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1495 return Error::success(); 1496 } 1497 1498 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1499 *Kind = getAttrFromCode(Code); 1500 if (*Kind == Attribute::None) 1501 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1502 return Error::success(); 1503 } 1504 1505 Error BitcodeReader::parseAttributeGroupBlock() { 1506 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1507 return Err; 1508 1509 if (!MAttributeGroups.empty()) 1510 return error("Invalid multiple blocks"); 1511 1512 SmallVector<uint64_t, 64> Record; 1513 1514 // Read all the records. 1515 while (true) { 1516 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1517 if (!MaybeEntry) 1518 return MaybeEntry.takeError(); 1519 BitstreamEntry Entry = MaybeEntry.get(); 1520 1521 switch (Entry.Kind) { 1522 case BitstreamEntry::SubBlock: // Handled for us already. 1523 case BitstreamEntry::Error: 1524 return error("Malformed block"); 1525 case BitstreamEntry::EndBlock: 1526 return Error::success(); 1527 case BitstreamEntry::Record: 1528 // The interesting case. 1529 break; 1530 } 1531 1532 // Read a record. 1533 Record.clear(); 1534 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1535 if (!MaybeRecord) 1536 return MaybeRecord.takeError(); 1537 switch (MaybeRecord.get()) { 1538 default: // Default behavior: ignore. 1539 break; 1540 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1541 if (Record.size() < 3) 1542 return error("Invalid record"); 1543 1544 uint64_t GrpID = Record[0]; 1545 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1546 1547 AttrBuilder B; 1548 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1549 if (Record[i] == 0) { // Enum attribute 1550 Attribute::AttrKind Kind; 1551 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1552 return Err; 1553 1554 // Upgrade old-style byval attribute to one with a type, even if it's 1555 // nullptr. We will have to insert the real type when we associate 1556 // this AttributeList with a function. 1557 if (Kind == Attribute::ByVal) 1558 B.addByValAttr(nullptr); 1559 1560 B.addAttribute(Kind); 1561 } else if (Record[i] == 1) { // Integer attribute 1562 Attribute::AttrKind Kind; 1563 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1564 return Err; 1565 if (Kind == Attribute::Alignment) 1566 B.addAlignmentAttr(Record[++i]); 1567 else if (Kind == Attribute::StackAlignment) 1568 B.addStackAlignmentAttr(Record[++i]); 1569 else if (Kind == Attribute::Dereferenceable) 1570 B.addDereferenceableAttr(Record[++i]); 1571 else if (Kind == Attribute::DereferenceableOrNull) 1572 B.addDereferenceableOrNullAttr(Record[++i]); 1573 else if (Kind == Attribute::AllocSize) 1574 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1575 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1576 bool HasValue = (Record[i++] == 4); 1577 SmallString<64> KindStr; 1578 SmallString<64> ValStr; 1579 1580 while (Record[i] != 0 && i != e) 1581 KindStr += Record[i++]; 1582 assert(Record[i] == 0 && "Kind string not null terminated"); 1583 1584 if (HasValue) { 1585 // Has a value associated with it. 1586 ++i; // Skip the '0' that terminates the "kind" string. 1587 while (Record[i] != 0 && i != e) 1588 ValStr += Record[i++]; 1589 assert(Record[i] == 0 && "Value string not null terminated"); 1590 } 1591 1592 B.addAttribute(KindStr.str(), ValStr.str()); 1593 } else { 1594 assert((Record[i] == 5 || Record[i] == 6) && 1595 "Invalid attribute group entry"); 1596 bool HasType = Record[i] == 6; 1597 Attribute::AttrKind Kind; 1598 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1599 return Err; 1600 if (Kind == Attribute::ByVal) 1601 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1602 } 1603 } 1604 1605 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1606 break; 1607 } 1608 } 1609 } 1610 } 1611 1612 Error BitcodeReader::parseTypeTable() { 1613 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1614 return Err; 1615 1616 return parseTypeTableBody(); 1617 } 1618 1619 Error BitcodeReader::parseTypeTableBody() { 1620 if (!TypeList.empty()) 1621 return error("Invalid multiple blocks"); 1622 1623 SmallVector<uint64_t, 64> Record; 1624 unsigned NumRecords = 0; 1625 1626 SmallString<64> TypeName; 1627 1628 // Read all the records for this type table. 1629 while (true) { 1630 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1631 if (!MaybeEntry) 1632 return MaybeEntry.takeError(); 1633 BitstreamEntry Entry = MaybeEntry.get(); 1634 1635 switch (Entry.Kind) { 1636 case BitstreamEntry::SubBlock: // Handled for us already. 1637 case BitstreamEntry::Error: 1638 return error("Malformed block"); 1639 case BitstreamEntry::EndBlock: 1640 if (NumRecords != TypeList.size()) 1641 return error("Malformed block"); 1642 return Error::success(); 1643 case BitstreamEntry::Record: 1644 // The interesting case. 1645 break; 1646 } 1647 1648 // Read a record. 1649 Record.clear(); 1650 Type *ResultTy = nullptr; 1651 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1652 if (!MaybeRecord) 1653 return MaybeRecord.takeError(); 1654 switch (MaybeRecord.get()) { 1655 default: 1656 return error("Invalid value"); 1657 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1658 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1659 // type list. This allows us to reserve space. 1660 if (Record.size() < 1) 1661 return error("Invalid record"); 1662 TypeList.resize(Record[0]); 1663 continue; 1664 case bitc::TYPE_CODE_VOID: // VOID 1665 ResultTy = Type::getVoidTy(Context); 1666 break; 1667 case bitc::TYPE_CODE_HALF: // HALF 1668 ResultTy = Type::getHalfTy(Context); 1669 break; 1670 case bitc::TYPE_CODE_FLOAT: // FLOAT 1671 ResultTy = Type::getFloatTy(Context); 1672 break; 1673 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1674 ResultTy = Type::getDoubleTy(Context); 1675 break; 1676 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1677 ResultTy = Type::getX86_FP80Ty(Context); 1678 break; 1679 case bitc::TYPE_CODE_FP128: // FP128 1680 ResultTy = Type::getFP128Ty(Context); 1681 break; 1682 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1683 ResultTy = Type::getPPC_FP128Ty(Context); 1684 break; 1685 case bitc::TYPE_CODE_LABEL: // LABEL 1686 ResultTy = Type::getLabelTy(Context); 1687 break; 1688 case bitc::TYPE_CODE_METADATA: // METADATA 1689 ResultTy = Type::getMetadataTy(Context); 1690 break; 1691 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1692 ResultTy = Type::getX86_MMXTy(Context); 1693 break; 1694 case bitc::TYPE_CODE_TOKEN: // TOKEN 1695 ResultTy = Type::getTokenTy(Context); 1696 break; 1697 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1698 if (Record.size() < 1) 1699 return error("Invalid record"); 1700 1701 uint64_t NumBits = Record[0]; 1702 if (NumBits < IntegerType::MIN_INT_BITS || 1703 NumBits > IntegerType::MAX_INT_BITS) 1704 return error("Bitwidth for integer type out of range"); 1705 ResultTy = IntegerType::get(Context, NumBits); 1706 break; 1707 } 1708 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1709 // [pointee type, address space] 1710 if (Record.size() < 1) 1711 return error("Invalid record"); 1712 unsigned AddressSpace = 0; 1713 if (Record.size() == 2) 1714 AddressSpace = Record[1]; 1715 ResultTy = getTypeByID(Record[0]); 1716 if (!ResultTy || 1717 !PointerType::isValidElementType(ResultTy)) 1718 return error("Invalid type"); 1719 ResultTy = PointerType::get(ResultTy, AddressSpace); 1720 break; 1721 } 1722 case bitc::TYPE_CODE_FUNCTION_OLD: { 1723 // FIXME: attrid is dead, remove it in LLVM 4.0 1724 // FUNCTION: [vararg, attrid, retty, paramty x N] 1725 if (Record.size() < 3) 1726 return error("Invalid record"); 1727 SmallVector<Type*, 8> ArgTys; 1728 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1729 if (Type *T = getTypeByID(Record[i])) 1730 ArgTys.push_back(T); 1731 else 1732 break; 1733 } 1734 1735 ResultTy = getTypeByID(Record[2]); 1736 if (!ResultTy || ArgTys.size() < Record.size()-3) 1737 return error("Invalid type"); 1738 1739 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1740 break; 1741 } 1742 case bitc::TYPE_CODE_FUNCTION: { 1743 // FUNCTION: [vararg, retty, paramty x N] 1744 if (Record.size() < 2) 1745 return error("Invalid record"); 1746 SmallVector<Type*, 8> ArgTys; 1747 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1748 if (Type *T = getTypeByID(Record[i])) { 1749 if (!FunctionType::isValidArgumentType(T)) 1750 return error("Invalid function argument type"); 1751 ArgTys.push_back(T); 1752 } 1753 else 1754 break; 1755 } 1756 1757 ResultTy = getTypeByID(Record[1]); 1758 if (!ResultTy || ArgTys.size() < Record.size()-2) 1759 return error("Invalid type"); 1760 1761 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1762 break; 1763 } 1764 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1765 if (Record.size() < 1) 1766 return error("Invalid record"); 1767 SmallVector<Type*, 8> EltTys; 1768 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1769 if (Type *T = getTypeByID(Record[i])) 1770 EltTys.push_back(T); 1771 else 1772 break; 1773 } 1774 if (EltTys.size() != Record.size()-1) 1775 return error("Invalid type"); 1776 ResultTy = StructType::get(Context, EltTys, Record[0]); 1777 break; 1778 } 1779 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1780 if (convertToString(Record, 0, TypeName)) 1781 return error("Invalid record"); 1782 continue; 1783 1784 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1785 if (Record.size() < 1) 1786 return error("Invalid record"); 1787 1788 if (NumRecords >= TypeList.size()) 1789 return error("Invalid TYPE table"); 1790 1791 // Check to see if this was forward referenced, if so fill in the temp. 1792 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1793 if (Res) { 1794 Res->setName(TypeName); 1795 TypeList[NumRecords] = nullptr; 1796 } else // Otherwise, create a new struct. 1797 Res = createIdentifiedStructType(Context, TypeName); 1798 TypeName.clear(); 1799 1800 SmallVector<Type*, 8> EltTys; 1801 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1802 if (Type *T = getTypeByID(Record[i])) 1803 EltTys.push_back(T); 1804 else 1805 break; 1806 } 1807 if (EltTys.size() != Record.size()-1) 1808 return error("Invalid record"); 1809 Res->setBody(EltTys, Record[0]); 1810 ResultTy = Res; 1811 break; 1812 } 1813 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1814 if (Record.size() != 1) 1815 return error("Invalid record"); 1816 1817 if (NumRecords >= TypeList.size()) 1818 return error("Invalid TYPE table"); 1819 1820 // Check to see if this was forward referenced, if so fill in the temp. 1821 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1822 if (Res) { 1823 Res->setName(TypeName); 1824 TypeList[NumRecords] = nullptr; 1825 } else // Otherwise, create a new struct with no body. 1826 Res = createIdentifiedStructType(Context, TypeName); 1827 TypeName.clear(); 1828 ResultTy = Res; 1829 break; 1830 } 1831 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1832 if (Record.size() < 2) 1833 return error("Invalid record"); 1834 ResultTy = getTypeByID(Record[1]); 1835 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1836 return error("Invalid type"); 1837 ResultTy = ArrayType::get(ResultTy, Record[0]); 1838 break; 1839 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1840 if (Record.size() < 2) 1841 return error("Invalid record"); 1842 if (Record[0] == 0) 1843 return error("Invalid vector length"); 1844 ResultTy = getTypeByID(Record[1]); 1845 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1846 return error("Invalid type"); 1847 ResultTy = VectorType::get(ResultTy, Record[0]); 1848 break; 1849 } 1850 1851 if (NumRecords >= TypeList.size()) 1852 return error("Invalid TYPE table"); 1853 if (TypeList[NumRecords]) 1854 return error( 1855 "Invalid TYPE table: Only named structs can be forward referenced"); 1856 assert(ResultTy && "Didn't read a type?"); 1857 TypeList[NumRecords++] = ResultTy; 1858 } 1859 } 1860 1861 Error BitcodeReader::parseOperandBundleTags() { 1862 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1863 return Err; 1864 1865 if (!BundleTags.empty()) 1866 return error("Invalid multiple blocks"); 1867 1868 SmallVector<uint64_t, 64> Record; 1869 1870 while (true) { 1871 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1872 if (!MaybeEntry) 1873 return MaybeEntry.takeError(); 1874 BitstreamEntry Entry = MaybeEntry.get(); 1875 1876 switch (Entry.Kind) { 1877 case BitstreamEntry::SubBlock: // Handled for us already. 1878 case BitstreamEntry::Error: 1879 return error("Malformed block"); 1880 case BitstreamEntry::EndBlock: 1881 return Error::success(); 1882 case BitstreamEntry::Record: 1883 // The interesting case. 1884 break; 1885 } 1886 1887 // Tags are implicitly mapped to integers by their order. 1888 1889 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1890 if (!MaybeRecord) 1891 return MaybeRecord.takeError(); 1892 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1893 return error("Invalid record"); 1894 1895 // OPERAND_BUNDLE_TAG: [strchr x N] 1896 BundleTags.emplace_back(); 1897 if (convertToString(Record, 0, BundleTags.back())) 1898 return error("Invalid record"); 1899 Record.clear(); 1900 } 1901 } 1902 1903 Error BitcodeReader::parseSyncScopeNames() { 1904 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1905 return Err; 1906 1907 if (!SSIDs.empty()) 1908 return error("Invalid multiple synchronization scope names blocks"); 1909 1910 SmallVector<uint64_t, 64> Record; 1911 while (true) { 1912 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1913 if (!MaybeEntry) 1914 return MaybeEntry.takeError(); 1915 BitstreamEntry Entry = MaybeEntry.get(); 1916 1917 switch (Entry.Kind) { 1918 case BitstreamEntry::SubBlock: // Handled for us already. 1919 case BitstreamEntry::Error: 1920 return error("Malformed block"); 1921 case BitstreamEntry::EndBlock: 1922 if (SSIDs.empty()) 1923 return error("Invalid empty synchronization scope names block"); 1924 return Error::success(); 1925 case BitstreamEntry::Record: 1926 // The interesting case. 1927 break; 1928 } 1929 1930 // Synchronization scope names are implicitly mapped to synchronization 1931 // scope IDs by their order. 1932 1933 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1934 if (!MaybeRecord) 1935 return MaybeRecord.takeError(); 1936 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 1937 return error("Invalid record"); 1938 1939 SmallString<16> SSN; 1940 if (convertToString(Record, 0, SSN)) 1941 return error("Invalid record"); 1942 1943 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1944 Record.clear(); 1945 } 1946 } 1947 1948 /// Associate a value with its name from the given index in the provided record. 1949 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1950 unsigned NameIndex, Triple &TT) { 1951 SmallString<128> ValueName; 1952 if (convertToString(Record, NameIndex, ValueName)) 1953 return error("Invalid record"); 1954 unsigned ValueID = Record[0]; 1955 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1956 return error("Invalid record"); 1957 Value *V = ValueList[ValueID]; 1958 1959 StringRef NameStr(ValueName.data(), ValueName.size()); 1960 if (NameStr.find_first_of(0) != StringRef::npos) 1961 return error("Invalid value name"); 1962 V->setName(NameStr); 1963 auto *GO = dyn_cast<GlobalObject>(V); 1964 if (GO) { 1965 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1966 if (TT.supportsCOMDAT()) 1967 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1968 else 1969 GO->setComdat(nullptr); 1970 } 1971 } 1972 return V; 1973 } 1974 1975 /// Helper to note and return the current location, and jump to the given 1976 /// offset. 1977 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 1978 BitstreamCursor &Stream) { 1979 // Save the current parsing location so we can jump back at the end 1980 // of the VST read. 1981 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1982 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 1983 return std::move(JumpFailed); 1984 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 1985 if (!MaybeEntry) 1986 return MaybeEntry.takeError(); 1987 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 1988 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1989 return CurrentBit; 1990 } 1991 1992 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1993 Function *F, 1994 ArrayRef<uint64_t> Record) { 1995 // Note that we subtract 1 here because the offset is relative to one word 1996 // before the start of the identification or module block, which was 1997 // historically always the start of the regular bitcode header. 1998 uint64_t FuncWordOffset = Record[1] - 1; 1999 uint64_t FuncBitOffset = FuncWordOffset * 32; 2000 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2001 // Set the LastFunctionBlockBit to point to the last function block. 2002 // Later when parsing is resumed after function materialization, 2003 // we can simply skip that last function block. 2004 if (FuncBitOffset > LastFunctionBlockBit) 2005 LastFunctionBlockBit = FuncBitOffset; 2006 } 2007 2008 /// Read a new-style GlobalValue symbol table. 2009 Error BitcodeReader::parseGlobalValueSymbolTable() { 2010 unsigned FuncBitcodeOffsetDelta = 2011 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2012 2013 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2014 return Err; 2015 2016 SmallVector<uint64_t, 64> Record; 2017 while (true) { 2018 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2019 if (!MaybeEntry) 2020 return MaybeEntry.takeError(); 2021 BitstreamEntry Entry = MaybeEntry.get(); 2022 2023 switch (Entry.Kind) { 2024 case BitstreamEntry::SubBlock: 2025 case BitstreamEntry::Error: 2026 return error("Malformed block"); 2027 case BitstreamEntry::EndBlock: 2028 return Error::success(); 2029 case BitstreamEntry::Record: 2030 break; 2031 } 2032 2033 Record.clear(); 2034 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2035 if (!MaybeRecord) 2036 return MaybeRecord.takeError(); 2037 switch (MaybeRecord.get()) { 2038 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2039 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2040 cast<Function>(ValueList[Record[0]]), Record); 2041 break; 2042 } 2043 } 2044 } 2045 2046 /// Parse the value symbol table at either the current parsing location or 2047 /// at the given bit offset if provided. 2048 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2049 uint64_t CurrentBit; 2050 // Pass in the Offset to distinguish between calling for the module-level 2051 // VST (where we want to jump to the VST offset) and the function-level 2052 // VST (where we don't). 2053 if (Offset > 0) { 2054 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2055 if (!MaybeCurrentBit) 2056 return MaybeCurrentBit.takeError(); 2057 CurrentBit = MaybeCurrentBit.get(); 2058 // If this module uses a string table, read this as a module-level VST. 2059 if (UseStrtab) { 2060 if (Error Err = parseGlobalValueSymbolTable()) 2061 return Err; 2062 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2063 return JumpFailed; 2064 return Error::success(); 2065 } 2066 // Otherwise, the VST will be in a similar format to a function-level VST, 2067 // and will contain symbol names. 2068 } 2069 2070 // Compute the delta between the bitcode indices in the VST (the word offset 2071 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2072 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2073 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2074 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2075 // just before entering the VST subblock because: 1) the EnterSubBlock 2076 // changes the AbbrevID width; 2) the VST block is nested within the same 2077 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2078 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2079 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2080 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2081 unsigned FuncBitcodeOffsetDelta = 2082 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2083 2084 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2085 return Err; 2086 2087 SmallVector<uint64_t, 64> Record; 2088 2089 Triple TT(TheModule->getTargetTriple()); 2090 2091 // Read all the records for this value table. 2092 SmallString<128> ValueName; 2093 2094 while (true) { 2095 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2096 if (!MaybeEntry) 2097 return MaybeEntry.takeError(); 2098 BitstreamEntry Entry = MaybeEntry.get(); 2099 2100 switch (Entry.Kind) { 2101 case BitstreamEntry::SubBlock: // Handled for us already. 2102 case BitstreamEntry::Error: 2103 return error("Malformed block"); 2104 case BitstreamEntry::EndBlock: 2105 if (Offset > 0) 2106 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2107 return JumpFailed; 2108 return Error::success(); 2109 case BitstreamEntry::Record: 2110 // The interesting case. 2111 break; 2112 } 2113 2114 // Read a record. 2115 Record.clear(); 2116 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2117 if (!MaybeRecord) 2118 return MaybeRecord.takeError(); 2119 switch (MaybeRecord.get()) { 2120 default: // Default behavior: unknown type. 2121 break; 2122 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2123 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2124 if (Error Err = ValOrErr.takeError()) 2125 return Err; 2126 ValOrErr.get(); 2127 break; 2128 } 2129 case bitc::VST_CODE_FNENTRY: { 2130 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2131 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2132 if (Error Err = ValOrErr.takeError()) 2133 return Err; 2134 Value *V = ValOrErr.get(); 2135 2136 // Ignore function offsets emitted for aliases of functions in older 2137 // versions of LLVM. 2138 if (auto *F = dyn_cast<Function>(V)) 2139 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2140 break; 2141 } 2142 case bitc::VST_CODE_BBENTRY: { 2143 if (convertToString(Record, 1, ValueName)) 2144 return error("Invalid record"); 2145 BasicBlock *BB = getBasicBlock(Record[0]); 2146 if (!BB) 2147 return error("Invalid record"); 2148 2149 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2150 ValueName.clear(); 2151 break; 2152 } 2153 } 2154 } 2155 } 2156 2157 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2158 /// encoding. 2159 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2160 if ((V & 1) == 0) 2161 return V >> 1; 2162 if (V != 1) 2163 return -(V >> 1); 2164 // There is no such thing as -0 with integers. "-0" really means MININT. 2165 return 1ULL << 63; 2166 } 2167 2168 /// Resolve all of the initializers for global values and aliases that we can. 2169 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2170 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2171 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2172 IndirectSymbolInitWorklist; 2173 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2174 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2175 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2176 2177 GlobalInitWorklist.swap(GlobalInits); 2178 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2179 FunctionPrefixWorklist.swap(FunctionPrefixes); 2180 FunctionPrologueWorklist.swap(FunctionPrologues); 2181 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2182 2183 while (!GlobalInitWorklist.empty()) { 2184 unsigned ValID = GlobalInitWorklist.back().second; 2185 if (ValID >= ValueList.size()) { 2186 // Not ready to resolve this yet, it requires something later in the file. 2187 GlobalInits.push_back(GlobalInitWorklist.back()); 2188 } else { 2189 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2190 GlobalInitWorklist.back().first->setInitializer(C); 2191 else 2192 return error("Expected a constant"); 2193 } 2194 GlobalInitWorklist.pop_back(); 2195 } 2196 2197 while (!IndirectSymbolInitWorklist.empty()) { 2198 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2199 if (ValID >= ValueList.size()) { 2200 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2201 } else { 2202 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2203 if (!C) 2204 return error("Expected a constant"); 2205 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2206 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2207 return error("Alias and aliasee types don't match"); 2208 GIS->setIndirectSymbol(C); 2209 } 2210 IndirectSymbolInitWorklist.pop_back(); 2211 } 2212 2213 while (!FunctionPrefixWorklist.empty()) { 2214 unsigned ValID = FunctionPrefixWorklist.back().second; 2215 if (ValID >= ValueList.size()) { 2216 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2217 } else { 2218 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2219 FunctionPrefixWorklist.back().first->setPrefixData(C); 2220 else 2221 return error("Expected a constant"); 2222 } 2223 FunctionPrefixWorklist.pop_back(); 2224 } 2225 2226 while (!FunctionPrologueWorklist.empty()) { 2227 unsigned ValID = FunctionPrologueWorklist.back().second; 2228 if (ValID >= ValueList.size()) { 2229 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2230 } else { 2231 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2232 FunctionPrologueWorklist.back().first->setPrologueData(C); 2233 else 2234 return error("Expected a constant"); 2235 } 2236 FunctionPrologueWorklist.pop_back(); 2237 } 2238 2239 while (!FunctionPersonalityFnWorklist.empty()) { 2240 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2241 if (ValID >= ValueList.size()) { 2242 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2243 } else { 2244 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2245 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2246 else 2247 return error("Expected a constant"); 2248 } 2249 FunctionPersonalityFnWorklist.pop_back(); 2250 } 2251 2252 return Error::success(); 2253 } 2254 2255 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2256 SmallVector<uint64_t, 8> Words(Vals.size()); 2257 transform(Vals, Words.begin(), 2258 BitcodeReader::decodeSignRotatedValue); 2259 2260 return APInt(TypeBits, Words); 2261 } 2262 2263 Error BitcodeReader::parseConstants() { 2264 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2265 return Err; 2266 2267 SmallVector<uint64_t, 64> Record; 2268 2269 // Read all the records for this value table. 2270 Type *CurTy = Type::getInt32Ty(Context); 2271 unsigned NextCstNo = ValueList.size(); 2272 2273 while (true) { 2274 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2275 if (!MaybeEntry) 2276 return MaybeEntry.takeError(); 2277 BitstreamEntry Entry = MaybeEntry.get(); 2278 2279 switch (Entry.Kind) { 2280 case BitstreamEntry::SubBlock: // Handled for us already. 2281 case BitstreamEntry::Error: 2282 return error("Malformed block"); 2283 case BitstreamEntry::EndBlock: 2284 if (NextCstNo != ValueList.size()) 2285 return error("Invalid constant reference"); 2286 2287 // Once all the constants have been read, go through and resolve forward 2288 // references. 2289 ValueList.resolveConstantForwardRefs(); 2290 return Error::success(); 2291 case BitstreamEntry::Record: 2292 // The interesting case. 2293 break; 2294 } 2295 2296 // Read a record. 2297 Record.clear(); 2298 Type *VoidType = Type::getVoidTy(Context); 2299 Value *V = nullptr; 2300 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2301 if (!MaybeBitCode) 2302 return MaybeBitCode.takeError(); 2303 switch (unsigned BitCode = MaybeBitCode.get()) { 2304 default: // Default behavior: unknown constant 2305 case bitc::CST_CODE_UNDEF: // UNDEF 2306 V = UndefValue::get(CurTy); 2307 break; 2308 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2309 if (Record.empty()) 2310 return error("Invalid record"); 2311 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2312 return error("Invalid record"); 2313 if (TypeList[Record[0]] == VoidType) 2314 return error("Invalid constant type"); 2315 CurTy = TypeList[Record[0]]; 2316 continue; // Skip the ValueList manipulation. 2317 case bitc::CST_CODE_NULL: // NULL 2318 V = Constant::getNullValue(CurTy); 2319 break; 2320 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2321 if (!CurTy->isIntegerTy() || Record.empty()) 2322 return error("Invalid record"); 2323 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2324 break; 2325 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2326 if (!CurTy->isIntegerTy() || Record.empty()) 2327 return error("Invalid record"); 2328 2329 APInt VInt = 2330 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2331 V = ConstantInt::get(Context, VInt); 2332 2333 break; 2334 } 2335 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2336 if (Record.empty()) 2337 return error("Invalid record"); 2338 if (CurTy->isHalfTy()) 2339 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2340 APInt(16, (uint16_t)Record[0]))); 2341 else if (CurTy->isFloatTy()) 2342 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2343 APInt(32, (uint32_t)Record[0]))); 2344 else if (CurTy->isDoubleTy()) 2345 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2346 APInt(64, Record[0]))); 2347 else if (CurTy->isX86_FP80Ty()) { 2348 // Bits are not stored the same way as a normal i80 APInt, compensate. 2349 uint64_t Rearrange[2]; 2350 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2351 Rearrange[1] = Record[0] >> 48; 2352 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2353 APInt(80, Rearrange))); 2354 } else if (CurTy->isFP128Ty()) 2355 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2356 APInt(128, Record))); 2357 else if (CurTy->isPPC_FP128Ty()) 2358 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2359 APInt(128, Record))); 2360 else 2361 V = UndefValue::get(CurTy); 2362 break; 2363 } 2364 2365 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2366 if (Record.empty()) 2367 return error("Invalid record"); 2368 2369 unsigned Size = Record.size(); 2370 SmallVector<Constant*, 16> Elts; 2371 2372 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2373 for (unsigned i = 0; i != Size; ++i) 2374 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2375 STy->getElementType(i))); 2376 V = ConstantStruct::get(STy, Elts); 2377 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2378 Type *EltTy = ATy->getElementType(); 2379 for (unsigned i = 0; i != Size; ++i) 2380 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2381 V = ConstantArray::get(ATy, Elts); 2382 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2383 Type *EltTy = VTy->getElementType(); 2384 for (unsigned i = 0; i != Size; ++i) 2385 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2386 V = ConstantVector::get(Elts); 2387 } else { 2388 V = UndefValue::get(CurTy); 2389 } 2390 break; 2391 } 2392 case bitc::CST_CODE_STRING: // STRING: [values] 2393 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2394 if (Record.empty()) 2395 return error("Invalid record"); 2396 2397 SmallString<16> Elts(Record.begin(), Record.end()); 2398 V = ConstantDataArray::getString(Context, Elts, 2399 BitCode == bitc::CST_CODE_CSTRING); 2400 break; 2401 } 2402 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2403 if (Record.empty()) 2404 return error("Invalid record"); 2405 2406 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2407 if (EltTy->isIntegerTy(8)) { 2408 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2409 if (isa<VectorType>(CurTy)) 2410 V = ConstantDataVector::get(Context, Elts); 2411 else 2412 V = ConstantDataArray::get(Context, Elts); 2413 } else if (EltTy->isIntegerTy(16)) { 2414 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2415 if (isa<VectorType>(CurTy)) 2416 V = ConstantDataVector::get(Context, Elts); 2417 else 2418 V = ConstantDataArray::get(Context, Elts); 2419 } else if (EltTy->isIntegerTy(32)) { 2420 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2421 if (isa<VectorType>(CurTy)) 2422 V = ConstantDataVector::get(Context, Elts); 2423 else 2424 V = ConstantDataArray::get(Context, Elts); 2425 } else if (EltTy->isIntegerTy(64)) { 2426 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2427 if (isa<VectorType>(CurTy)) 2428 V = ConstantDataVector::get(Context, Elts); 2429 else 2430 V = ConstantDataArray::get(Context, Elts); 2431 } else if (EltTy->isHalfTy()) { 2432 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2433 if (isa<VectorType>(CurTy)) 2434 V = ConstantDataVector::getFP(Context, Elts); 2435 else 2436 V = ConstantDataArray::getFP(Context, Elts); 2437 } else if (EltTy->isFloatTy()) { 2438 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2439 if (isa<VectorType>(CurTy)) 2440 V = ConstantDataVector::getFP(Context, Elts); 2441 else 2442 V = ConstantDataArray::getFP(Context, Elts); 2443 } else if (EltTy->isDoubleTy()) { 2444 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2445 if (isa<VectorType>(CurTy)) 2446 V = ConstantDataVector::getFP(Context, Elts); 2447 else 2448 V = ConstantDataArray::getFP(Context, Elts); 2449 } else { 2450 return error("Invalid type for value"); 2451 } 2452 break; 2453 } 2454 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2455 if (Record.size() < 2) 2456 return error("Invalid record"); 2457 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2458 if (Opc < 0) { 2459 V = UndefValue::get(CurTy); // Unknown unop. 2460 } else { 2461 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2462 unsigned Flags = 0; 2463 V = ConstantExpr::get(Opc, LHS, Flags); 2464 } 2465 break; 2466 } 2467 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2468 if (Record.size() < 3) 2469 return error("Invalid record"); 2470 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2471 if (Opc < 0) { 2472 V = UndefValue::get(CurTy); // Unknown binop. 2473 } else { 2474 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2475 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2476 unsigned Flags = 0; 2477 if (Record.size() >= 4) { 2478 if (Opc == Instruction::Add || 2479 Opc == Instruction::Sub || 2480 Opc == Instruction::Mul || 2481 Opc == Instruction::Shl) { 2482 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2483 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2484 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2485 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2486 } else if (Opc == Instruction::SDiv || 2487 Opc == Instruction::UDiv || 2488 Opc == Instruction::LShr || 2489 Opc == Instruction::AShr) { 2490 if (Record[3] & (1 << bitc::PEO_EXACT)) 2491 Flags |= SDivOperator::IsExact; 2492 } 2493 } 2494 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2495 } 2496 break; 2497 } 2498 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2499 if (Record.size() < 3) 2500 return error("Invalid record"); 2501 int Opc = getDecodedCastOpcode(Record[0]); 2502 if (Opc < 0) { 2503 V = UndefValue::get(CurTy); // Unknown cast. 2504 } else { 2505 Type *OpTy = getTypeByID(Record[1]); 2506 if (!OpTy) 2507 return error("Invalid record"); 2508 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2509 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2510 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2511 } 2512 break; 2513 } 2514 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2515 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2516 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2517 // operands] 2518 unsigned OpNum = 0; 2519 Type *PointeeType = nullptr; 2520 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2521 Record.size() % 2) 2522 PointeeType = getTypeByID(Record[OpNum++]); 2523 2524 bool InBounds = false; 2525 Optional<unsigned> InRangeIndex; 2526 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2527 uint64_t Op = Record[OpNum++]; 2528 InBounds = Op & 1; 2529 InRangeIndex = Op >> 1; 2530 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2531 InBounds = true; 2532 2533 SmallVector<Constant*, 16> Elts; 2534 while (OpNum != Record.size()) { 2535 Type *ElTy = getTypeByID(Record[OpNum++]); 2536 if (!ElTy) 2537 return error("Invalid record"); 2538 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2539 } 2540 2541 if (Elts.size() < 1) 2542 return error("Invalid gep with no operands"); 2543 2544 Type *ImplicitPointeeType = 2545 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2546 ->getElementType(); 2547 if (!PointeeType) 2548 PointeeType = ImplicitPointeeType; 2549 else if (PointeeType != ImplicitPointeeType) 2550 return error("Explicit gep operator type does not match pointee type " 2551 "of pointer operand"); 2552 2553 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2554 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2555 InBounds, InRangeIndex); 2556 break; 2557 } 2558 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2559 if (Record.size() < 3) 2560 return error("Invalid record"); 2561 2562 Type *SelectorTy = Type::getInt1Ty(Context); 2563 2564 // The selector might be an i1 or an <n x i1> 2565 // Get the type from the ValueList before getting a forward ref. 2566 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2567 if (Value *V = ValueList[Record[0]]) 2568 if (SelectorTy != V->getType()) 2569 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2570 2571 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2572 SelectorTy), 2573 ValueList.getConstantFwdRef(Record[1],CurTy), 2574 ValueList.getConstantFwdRef(Record[2],CurTy)); 2575 break; 2576 } 2577 case bitc::CST_CODE_CE_EXTRACTELT 2578 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2579 if (Record.size() < 3) 2580 return error("Invalid record"); 2581 VectorType *OpTy = 2582 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2583 if (!OpTy) 2584 return error("Invalid record"); 2585 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2586 Constant *Op1 = nullptr; 2587 if (Record.size() == 4) { 2588 Type *IdxTy = getTypeByID(Record[2]); 2589 if (!IdxTy) 2590 return error("Invalid record"); 2591 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2592 } else // TODO: Remove with llvm 4.0 2593 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2594 if (!Op1) 2595 return error("Invalid record"); 2596 V = ConstantExpr::getExtractElement(Op0, Op1); 2597 break; 2598 } 2599 case bitc::CST_CODE_CE_INSERTELT 2600 : { // CE_INSERTELT: [opval, opval, opty, opval] 2601 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2602 if (Record.size() < 3 || !OpTy) 2603 return error("Invalid record"); 2604 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2605 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2606 OpTy->getElementType()); 2607 Constant *Op2 = nullptr; 2608 if (Record.size() == 4) { 2609 Type *IdxTy = getTypeByID(Record[2]); 2610 if (!IdxTy) 2611 return error("Invalid record"); 2612 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2613 } else // TODO: Remove with llvm 4.0 2614 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2615 if (!Op2) 2616 return error("Invalid record"); 2617 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2618 break; 2619 } 2620 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2621 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2622 if (Record.size() < 3 || !OpTy) 2623 return error("Invalid record"); 2624 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2625 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2626 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2627 OpTy->getNumElements()); 2628 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2629 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2630 break; 2631 } 2632 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2633 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2634 VectorType *OpTy = 2635 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2636 if (Record.size() < 4 || !RTy || !OpTy) 2637 return error("Invalid record"); 2638 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2639 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2640 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2641 RTy->getNumElements()); 2642 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2643 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2644 break; 2645 } 2646 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2647 if (Record.size() < 4) 2648 return error("Invalid record"); 2649 Type *OpTy = getTypeByID(Record[0]); 2650 if (!OpTy) 2651 return error("Invalid record"); 2652 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2653 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2654 2655 if (OpTy->isFPOrFPVectorTy()) 2656 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2657 else 2658 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2659 break; 2660 } 2661 // This maintains backward compatibility, pre-asm dialect keywords. 2662 // FIXME: Remove with the 4.0 release. 2663 case bitc::CST_CODE_INLINEASM_OLD: { 2664 if (Record.size() < 2) 2665 return error("Invalid record"); 2666 std::string AsmStr, ConstrStr; 2667 bool HasSideEffects = Record[0] & 1; 2668 bool IsAlignStack = Record[0] >> 1; 2669 unsigned AsmStrSize = Record[1]; 2670 if (2+AsmStrSize >= Record.size()) 2671 return error("Invalid record"); 2672 unsigned ConstStrSize = Record[2+AsmStrSize]; 2673 if (3+AsmStrSize+ConstStrSize > Record.size()) 2674 return error("Invalid record"); 2675 2676 for (unsigned i = 0; i != AsmStrSize; ++i) 2677 AsmStr += (char)Record[2+i]; 2678 for (unsigned i = 0; i != ConstStrSize; ++i) 2679 ConstrStr += (char)Record[3+AsmStrSize+i]; 2680 PointerType *PTy = cast<PointerType>(CurTy); 2681 UpgradeInlineAsmString(&AsmStr); 2682 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2683 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2684 break; 2685 } 2686 // This version adds support for the asm dialect keywords (e.g., 2687 // inteldialect). 2688 case bitc::CST_CODE_INLINEASM: { 2689 if (Record.size() < 2) 2690 return error("Invalid record"); 2691 std::string AsmStr, ConstrStr; 2692 bool HasSideEffects = Record[0] & 1; 2693 bool IsAlignStack = (Record[0] >> 1) & 1; 2694 unsigned AsmDialect = Record[0] >> 2; 2695 unsigned AsmStrSize = Record[1]; 2696 if (2+AsmStrSize >= Record.size()) 2697 return error("Invalid record"); 2698 unsigned ConstStrSize = Record[2+AsmStrSize]; 2699 if (3+AsmStrSize+ConstStrSize > Record.size()) 2700 return error("Invalid record"); 2701 2702 for (unsigned i = 0; i != AsmStrSize; ++i) 2703 AsmStr += (char)Record[2+i]; 2704 for (unsigned i = 0; i != ConstStrSize; ++i) 2705 ConstrStr += (char)Record[3+AsmStrSize+i]; 2706 PointerType *PTy = cast<PointerType>(CurTy); 2707 UpgradeInlineAsmString(&AsmStr); 2708 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2709 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2710 InlineAsm::AsmDialect(AsmDialect)); 2711 break; 2712 } 2713 case bitc::CST_CODE_BLOCKADDRESS:{ 2714 if (Record.size() < 3) 2715 return error("Invalid record"); 2716 Type *FnTy = getTypeByID(Record[0]); 2717 if (!FnTy) 2718 return error("Invalid record"); 2719 Function *Fn = 2720 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2721 if (!Fn) 2722 return error("Invalid record"); 2723 2724 // If the function is already parsed we can insert the block address right 2725 // away. 2726 BasicBlock *BB; 2727 unsigned BBID = Record[2]; 2728 if (!BBID) 2729 // Invalid reference to entry block. 2730 return error("Invalid ID"); 2731 if (!Fn->empty()) { 2732 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2733 for (size_t I = 0, E = BBID; I != E; ++I) { 2734 if (BBI == BBE) 2735 return error("Invalid ID"); 2736 ++BBI; 2737 } 2738 BB = &*BBI; 2739 } else { 2740 // Otherwise insert a placeholder and remember it so it can be inserted 2741 // when the function is parsed. 2742 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2743 if (FwdBBs.empty()) 2744 BasicBlockFwdRefQueue.push_back(Fn); 2745 if (FwdBBs.size() < BBID + 1) 2746 FwdBBs.resize(BBID + 1); 2747 if (!FwdBBs[BBID]) 2748 FwdBBs[BBID] = BasicBlock::Create(Context); 2749 BB = FwdBBs[BBID]; 2750 } 2751 V = BlockAddress::get(Fn, BB); 2752 break; 2753 } 2754 } 2755 2756 ValueList.assignValue(V, NextCstNo); 2757 ++NextCstNo; 2758 } 2759 } 2760 2761 Error BitcodeReader::parseUseLists() { 2762 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2763 return Err; 2764 2765 // Read all the records. 2766 SmallVector<uint64_t, 64> Record; 2767 2768 while (true) { 2769 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2770 if (!MaybeEntry) 2771 return MaybeEntry.takeError(); 2772 BitstreamEntry Entry = MaybeEntry.get(); 2773 2774 switch (Entry.Kind) { 2775 case BitstreamEntry::SubBlock: // Handled for us already. 2776 case BitstreamEntry::Error: 2777 return error("Malformed block"); 2778 case BitstreamEntry::EndBlock: 2779 return Error::success(); 2780 case BitstreamEntry::Record: 2781 // The interesting case. 2782 break; 2783 } 2784 2785 // Read a use list record. 2786 Record.clear(); 2787 bool IsBB = false; 2788 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2789 if (!MaybeRecord) 2790 return MaybeRecord.takeError(); 2791 switch (MaybeRecord.get()) { 2792 default: // Default behavior: unknown type. 2793 break; 2794 case bitc::USELIST_CODE_BB: 2795 IsBB = true; 2796 LLVM_FALLTHROUGH; 2797 case bitc::USELIST_CODE_DEFAULT: { 2798 unsigned RecordLength = Record.size(); 2799 if (RecordLength < 3) 2800 // Records should have at least an ID and two indexes. 2801 return error("Invalid record"); 2802 unsigned ID = Record.back(); 2803 Record.pop_back(); 2804 2805 Value *V; 2806 if (IsBB) { 2807 assert(ID < FunctionBBs.size() && "Basic block not found"); 2808 V = FunctionBBs[ID]; 2809 } else 2810 V = ValueList[ID]; 2811 unsigned NumUses = 0; 2812 SmallDenseMap<const Use *, unsigned, 16> Order; 2813 for (const Use &U : V->materialized_uses()) { 2814 if (++NumUses > Record.size()) 2815 break; 2816 Order[&U] = Record[NumUses - 1]; 2817 } 2818 if (Order.size() != Record.size() || NumUses > Record.size()) 2819 // Mismatches can happen if the functions are being materialized lazily 2820 // (out-of-order), or a value has been upgraded. 2821 break; 2822 2823 V->sortUseList([&](const Use &L, const Use &R) { 2824 return Order.lookup(&L) < Order.lookup(&R); 2825 }); 2826 break; 2827 } 2828 } 2829 } 2830 } 2831 2832 /// When we see the block for metadata, remember where it is and then skip it. 2833 /// This lets us lazily deserialize the metadata. 2834 Error BitcodeReader::rememberAndSkipMetadata() { 2835 // Save the current stream state. 2836 uint64_t CurBit = Stream.GetCurrentBitNo(); 2837 DeferredMetadataInfo.push_back(CurBit); 2838 2839 // Skip over the block for now. 2840 if (Error Err = Stream.SkipBlock()) 2841 return Err; 2842 return Error::success(); 2843 } 2844 2845 Error BitcodeReader::materializeMetadata() { 2846 for (uint64_t BitPos : DeferredMetadataInfo) { 2847 // Move the bit stream to the saved position. 2848 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2849 return JumpFailed; 2850 if (Error Err = MDLoader->parseModuleMetadata()) 2851 return Err; 2852 } 2853 2854 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2855 // metadata. 2856 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2857 NamedMDNode *LinkerOpts = 2858 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2859 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2860 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2861 } 2862 2863 DeferredMetadataInfo.clear(); 2864 return Error::success(); 2865 } 2866 2867 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2868 2869 /// When we see the block for a function body, remember where it is and then 2870 /// skip it. This lets us lazily deserialize the functions. 2871 Error BitcodeReader::rememberAndSkipFunctionBody() { 2872 // Get the function we are talking about. 2873 if (FunctionsWithBodies.empty()) 2874 return error("Insufficient function protos"); 2875 2876 Function *Fn = FunctionsWithBodies.back(); 2877 FunctionsWithBodies.pop_back(); 2878 2879 // Save the current stream state. 2880 uint64_t CurBit = Stream.GetCurrentBitNo(); 2881 assert( 2882 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2883 "Mismatch between VST and scanned function offsets"); 2884 DeferredFunctionInfo[Fn] = CurBit; 2885 2886 // Skip over the function block for now. 2887 if (Error Err = Stream.SkipBlock()) 2888 return Err; 2889 return Error::success(); 2890 } 2891 2892 Error BitcodeReader::globalCleanup() { 2893 // Patch the initializers for globals and aliases up. 2894 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2895 return Err; 2896 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2897 return error("Malformed global initializer set"); 2898 2899 // Look for intrinsic functions which need to be upgraded at some point 2900 for (Function &F : *TheModule) { 2901 MDLoader->upgradeDebugIntrinsics(F); 2902 Function *NewFn; 2903 if (UpgradeIntrinsicFunction(&F, NewFn)) 2904 UpgradedIntrinsics[&F] = NewFn; 2905 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2906 // Some types could be renamed during loading if several modules are 2907 // loaded in the same LLVMContext (LTO scenario). In this case we should 2908 // remangle intrinsics names as well. 2909 RemangledIntrinsics[&F] = Remangled.getValue(); 2910 } 2911 2912 // Look for global variables which need to be renamed. 2913 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 2914 for (GlobalVariable &GV : TheModule->globals()) 2915 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 2916 UpgradedVariables.emplace_back(&GV, Upgraded); 2917 for (auto &Pair : UpgradedVariables) { 2918 Pair.first->eraseFromParent(); 2919 TheModule->getGlobalList().push_back(Pair.second); 2920 } 2921 2922 // Force deallocation of memory for these vectors to favor the client that 2923 // want lazy deserialization. 2924 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2925 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2926 IndirectSymbolInits); 2927 return Error::success(); 2928 } 2929 2930 /// Support for lazy parsing of function bodies. This is required if we 2931 /// either have an old bitcode file without a VST forward declaration record, 2932 /// or if we have an anonymous function being materialized, since anonymous 2933 /// functions do not have a name and are therefore not in the VST. 2934 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2935 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 2936 return JumpFailed; 2937 2938 if (Stream.AtEndOfStream()) 2939 return error("Could not find function in stream"); 2940 2941 if (!SeenFirstFunctionBody) 2942 return error("Trying to materialize functions before seeing function blocks"); 2943 2944 // An old bitcode file with the symbol table at the end would have 2945 // finished the parse greedily. 2946 assert(SeenValueSymbolTable); 2947 2948 SmallVector<uint64_t, 64> Record; 2949 2950 while (true) { 2951 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 2952 if (!MaybeEntry) 2953 return MaybeEntry.takeError(); 2954 llvm::BitstreamEntry Entry = MaybeEntry.get(); 2955 2956 switch (Entry.Kind) { 2957 default: 2958 return error("Expect SubBlock"); 2959 case BitstreamEntry::SubBlock: 2960 switch (Entry.ID) { 2961 default: 2962 return error("Expect function block"); 2963 case bitc::FUNCTION_BLOCK_ID: 2964 if (Error Err = rememberAndSkipFunctionBody()) 2965 return Err; 2966 NextUnreadBit = Stream.GetCurrentBitNo(); 2967 return Error::success(); 2968 } 2969 } 2970 } 2971 } 2972 2973 bool BitcodeReaderBase::readBlockInfo() { 2974 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 2975 Stream.ReadBlockInfoBlock(); 2976 if (!MaybeNewBlockInfo) 2977 return true; // FIXME Handle the error. 2978 Optional<BitstreamBlockInfo> NewBlockInfo = 2979 std::move(MaybeNewBlockInfo.get()); 2980 if (!NewBlockInfo) 2981 return true; 2982 BlockInfo = std::move(*NewBlockInfo); 2983 return false; 2984 } 2985 2986 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2987 // v1: [selection_kind, name] 2988 // v2: [strtab_offset, strtab_size, selection_kind] 2989 StringRef Name; 2990 std::tie(Name, Record) = readNameFromStrtab(Record); 2991 2992 if (Record.empty()) 2993 return error("Invalid record"); 2994 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2995 std::string OldFormatName; 2996 if (!UseStrtab) { 2997 if (Record.size() < 2) 2998 return error("Invalid record"); 2999 unsigned ComdatNameSize = Record[1]; 3000 OldFormatName.reserve(ComdatNameSize); 3001 for (unsigned i = 0; i != ComdatNameSize; ++i) 3002 OldFormatName += (char)Record[2 + i]; 3003 Name = OldFormatName; 3004 } 3005 Comdat *C = TheModule->getOrInsertComdat(Name); 3006 C->setSelectionKind(SK); 3007 ComdatList.push_back(C); 3008 return Error::success(); 3009 } 3010 3011 static void inferDSOLocal(GlobalValue *GV) { 3012 // infer dso_local from linkage and visibility if it is not encoded. 3013 if (GV->hasLocalLinkage() || 3014 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3015 GV->setDSOLocal(true); 3016 } 3017 3018 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3019 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3020 // visibility, threadlocal, unnamed_addr, externally_initialized, 3021 // dllstorageclass, comdat, attributes, preemption specifier, 3022 // partition strtab offset, partition strtab size] (name in VST) 3023 // v2: [strtab_offset, strtab_size, v1] 3024 StringRef Name; 3025 std::tie(Name, Record) = readNameFromStrtab(Record); 3026 3027 if (Record.size() < 6) 3028 return error("Invalid record"); 3029 Type *Ty = getTypeByID(Record[0]); 3030 if (!Ty) 3031 return error("Invalid record"); 3032 bool isConstant = Record[1] & 1; 3033 bool explicitType = Record[1] & 2; 3034 unsigned AddressSpace; 3035 if (explicitType) { 3036 AddressSpace = Record[1] >> 2; 3037 } else { 3038 if (!Ty->isPointerTy()) 3039 return error("Invalid type for value"); 3040 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3041 Ty = cast<PointerType>(Ty)->getElementType(); 3042 } 3043 3044 uint64_t RawLinkage = Record[3]; 3045 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3046 unsigned Alignment; 3047 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3048 return Err; 3049 std::string Section; 3050 if (Record[5]) { 3051 if (Record[5] - 1 >= SectionTable.size()) 3052 return error("Invalid ID"); 3053 Section = SectionTable[Record[5] - 1]; 3054 } 3055 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3056 // Local linkage must have default visibility. 3057 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3058 // FIXME: Change to an error if non-default in 4.0. 3059 Visibility = getDecodedVisibility(Record[6]); 3060 3061 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3062 if (Record.size() > 7) 3063 TLM = getDecodedThreadLocalMode(Record[7]); 3064 3065 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3066 if (Record.size() > 8) 3067 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3068 3069 bool ExternallyInitialized = false; 3070 if (Record.size() > 9) 3071 ExternallyInitialized = Record[9]; 3072 3073 GlobalVariable *NewGV = 3074 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3075 nullptr, TLM, AddressSpace, ExternallyInitialized); 3076 NewGV->setAlignment(Alignment); 3077 if (!Section.empty()) 3078 NewGV->setSection(Section); 3079 NewGV->setVisibility(Visibility); 3080 NewGV->setUnnamedAddr(UnnamedAddr); 3081 3082 if (Record.size() > 10) 3083 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3084 else 3085 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3086 3087 ValueList.push_back(NewGV); 3088 3089 // Remember which value to use for the global initializer. 3090 if (unsigned InitID = Record[2]) 3091 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3092 3093 if (Record.size() > 11) { 3094 if (unsigned ComdatID = Record[11]) { 3095 if (ComdatID > ComdatList.size()) 3096 return error("Invalid global variable comdat ID"); 3097 NewGV->setComdat(ComdatList[ComdatID - 1]); 3098 } 3099 } else if (hasImplicitComdat(RawLinkage)) { 3100 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3101 } 3102 3103 if (Record.size() > 12) { 3104 auto AS = getAttributes(Record[12]).getFnAttributes(); 3105 NewGV->setAttributes(AS); 3106 } 3107 3108 if (Record.size() > 13) { 3109 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3110 } 3111 inferDSOLocal(NewGV); 3112 3113 // Check whether we have enough values to read a partition name. 3114 if (Record.size() > 15) 3115 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3116 3117 return Error::success(); 3118 } 3119 3120 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3121 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3122 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3123 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3124 // v2: [strtab_offset, strtab_size, v1] 3125 StringRef Name; 3126 std::tie(Name, Record) = readNameFromStrtab(Record); 3127 3128 if (Record.size() < 8) 3129 return error("Invalid record"); 3130 Type *Ty = getTypeByID(Record[0]); 3131 if (!Ty) 3132 return error("Invalid record"); 3133 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3134 Ty = PTy->getElementType(); 3135 auto *FTy = dyn_cast<FunctionType>(Ty); 3136 if (!FTy) 3137 return error("Invalid type for value"); 3138 auto CC = static_cast<CallingConv::ID>(Record[1]); 3139 if (CC & ~CallingConv::MaxID) 3140 return error("Invalid calling convention ID"); 3141 3142 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3143 if (Record.size() > 16) 3144 AddrSpace = Record[16]; 3145 3146 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3147 AddrSpace, Name, TheModule); 3148 3149 Func->setCallingConv(CC); 3150 bool isProto = Record[2]; 3151 uint64_t RawLinkage = Record[3]; 3152 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3153 Func->setAttributes(getAttributes(Record[4])); 3154 3155 // Upgrade any old-style byval without a type by propagating the argument's 3156 // pointee type. There should be no opaque pointers where the byval type is 3157 // implicit. 3158 for (auto &Arg : Func->args()) { 3159 if (Arg.hasByValAttr() && 3160 !Arg.getAttribute(Attribute::ByVal).getValueAsType()) { 3161 Arg.removeAttr(Attribute::ByVal); 3162 Arg.addAttr(Attribute::getWithByValType( 3163 Context, Arg.getType()->getPointerElementType())); 3164 } 3165 } 3166 3167 unsigned Alignment; 3168 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3169 return Err; 3170 Func->setAlignment(Alignment); 3171 if (Record[6]) { 3172 if (Record[6] - 1 >= SectionTable.size()) 3173 return error("Invalid ID"); 3174 Func->setSection(SectionTable[Record[6] - 1]); 3175 } 3176 // Local linkage must have default visibility. 3177 if (!Func->hasLocalLinkage()) 3178 // FIXME: Change to an error if non-default in 4.0. 3179 Func->setVisibility(getDecodedVisibility(Record[7])); 3180 if (Record.size() > 8 && Record[8]) { 3181 if (Record[8] - 1 >= GCTable.size()) 3182 return error("Invalid ID"); 3183 Func->setGC(GCTable[Record[8] - 1]); 3184 } 3185 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3186 if (Record.size() > 9) 3187 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3188 Func->setUnnamedAddr(UnnamedAddr); 3189 if (Record.size() > 10 && Record[10] != 0) 3190 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3191 3192 if (Record.size() > 11) 3193 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3194 else 3195 upgradeDLLImportExportLinkage(Func, RawLinkage); 3196 3197 if (Record.size() > 12) { 3198 if (unsigned ComdatID = Record[12]) { 3199 if (ComdatID > ComdatList.size()) 3200 return error("Invalid function comdat ID"); 3201 Func->setComdat(ComdatList[ComdatID - 1]); 3202 } 3203 } else if (hasImplicitComdat(RawLinkage)) { 3204 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3205 } 3206 3207 if (Record.size() > 13 && Record[13] != 0) 3208 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3209 3210 if (Record.size() > 14 && Record[14] != 0) 3211 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3212 3213 if (Record.size() > 15) { 3214 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3215 } 3216 inferDSOLocal(Func); 3217 3218 // Record[16] is the address space number. 3219 3220 // Check whether we have enough values to read a partition name. 3221 if (Record.size() > 18) 3222 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3223 3224 ValueList.push_back(Func); 3225 3226 // If this is a function with a body, remember the prototype we are 3227 // creating now, so that we can match up the body with them later. 3228 if (!isProto) { 3229 Func->setIsMaterializable(true); 3230 FunctionsWithBodies.push_back(Func); 3231 DeferredFunctionInfo[Func] = 0; 3232 } 3233 return Error::success(); 3234 } 3235 3236 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3237 unsigned BitCode, ArrayRef<uint64_t> Record) { 3238 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3239 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3240 // dllstorageclass, threadlocal, unnamed_addr, 3241 // preemption specifier] (name in VST) 3242 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3243 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3244 // preemption specifier] (name in VST) 3245 // v2: [strtab_offset, strtab_size, v1] 3246 StringRef Name; 3247 std::tie(Name, Record) = readNameFromStrtab(Record); 3248 3249 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3250 if (Record.size() < (3 + (unsigned)NewRecord)) 3251 return error("Invalid record"); 3252 unsigned OpNum = 0; 3253 Type *Ty = getTypeByID(Record[OpNum++]); 3254 if (!Ty) 3255 return error("Invalid record"); 3256 3257 unsigned AddrSpace; 3258 if (!NewRecord) { 3259 auto *PTy = dyn_cast<PointerType>(Ty); 3260 if (!PTy) 3261 return error("Invalid type for value"); 3262 Ty = PTy->getElementType(); 3263 AddrSpace = PTy->getAddressSpace(); 3264 } else { 3265 AddrSpace = Record[OpNum++]; 3266 } 3267 3268 auto Val = Record[OpNum++]; 3269 auto Linkage = Record[OpNum++]; 3270 GlobalIndirectSymbol *NewGA; 3271 if (BitCode == bitc::MODULE_CODE_ALIAS || 3272 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3273 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3274 TheModule); 3275 else 3276 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3277 nullptr, TheModule); 3278 // Old bitcode files didn't have visibility field. 3279 // Local linkage must have default visibility. 3280 if (OpNum != Record.size()) { 3281 auto VisInd = OpNum++; 3282 if (!NewGA->hasLocalLinkage()) 3283 // FIXME: Change to an error if non-default in 4.0. 3284 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3285 } 3286 if (BitCode == bitc::MODULE_CODE_ALIAS || 3287 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3288 if (OpNum != Record.size()) 3289 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3290 else 3291 upgradeDLLImportExportLinkage(NewGA, Linkage); 3292 if (OpNum != Record.size()) 3293 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3294 if (OpNum != Record.size()) 3295 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3296 } 3297 if (OpNum != Record.size()) 3298 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3299 inferDSOLocal(NewGA); 3300 3301 // Check whether we have enough values to read a partition name. 3302 if (OpNum + 1 < Record.size()) { 3303 NewGA->setPartition( 3304 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3305 OpNum += 2; 3306 } 3307 3308 ValueList.push_back(NewGA); 3309 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3310 return Error::success(); 3311 } 3312 3313 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3314 bool ShouldLazyLoadMetadata) { 3315 if (ResumeBit) { 3316 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3317 return JumpFailed; 3318 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3319 return Err; 3320 3321 SmallVector<uint64_t, 64> Record; 3322 3323 // Read all the records for this module. 3324 while (true) { 3325 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3326 if (!MaybeEntry) 3327 return MaybeEntry.takeError(); 3328 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3329 3330 switch (Entry.Kind) { 3331 case BitstreamEntry::Error: 3332 return error("Malformed block"); 3333 case BitstreamEntry::EndBlock: 3334 return globalCleanup(); 3335 3336 case BitstreamEntry::SubBlock: 3337 switch (Entry.ID) { 3338 default: // Skip unknown content. 3339 if (Error Err = Stream.SkipBlock()) 3340 return Err; 3341 break; 3342 case bitc::BLOCKINFO_BLOCK_ID: 3343 if (readBlockInfo()) 3344 return error("Malformed block"); 3345 break; 3346 case bitc::PARAMATTR_BLOCK_ID: 3347 if (Error Err = parseAttributeBlock()) 3348 return Err; 3349 break; 3350 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3351 if (Error Err = parseAttributeGroupBlock()) 3352 return Err; 3353 break; 3354 case bitc::TYPE_BLOCK_ID_NEW: 3355 if (Error Err = parseTypeTable()) 3356 return Err; 3357 break; 3358 case bitc::VALUE_SYMTAB_BLOCK_ID: 3359 if (!SeenValueSymbolTable) { 3360 // Either this is an old form VST without function index and an 3361 // associated VST forward declaration record (which would have caused 3362 // the VST to be jumped to and parsed before it was encountered 3363 // normally in the stream), or there were no function blocks to 3364 // trigger an earlier parsing of the VST. 3365 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3366 if (Error Err = parseValueSymbolTable()) 3367 return Err; 3368 SeenValueSymbolTable = true; 3369 } else { 3370 // We must have had a VST forward declaration record, which caused 3371 // the parser to jump to and parse the VST earlier. 3372 assert(VSTOffset > 0); 3373 if (Error Err = Stream.SkipBlock()) 3374 return Err; 3375 } 3376 break; 3377 case bitc::CONSTANTS_BLOCK_ID: 3378 if (Error Err = parseConstants()) 3379 return Err; 3380 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3381 return Err; 3382 break; 3383 case bitc::METADATA_BLOCK_ID: 3384 if (ShouldLazyLoadMetadata) { 3385 if (Error Err = rememberAndSkipMetadata()) 3386 return Err; 3387 break; 3388 } 3389 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3390 if (Error Err = MDLoader->parseModuleMetadata()) 3391 return Err; 3392 break; 3393 case bitc::METADATA_KIND_BLOCK_ID: 3394 if (Error Err = MDLoader->parseMetadataKinds()) 3395 return Err; 3396 break; 3397 case bitc::FUNCTION_BLOCK_ID: 3398 // If this is the first function body we've seen, reverse the 3399 // FunctionsWithBodies list. 3400 if (!SeenFirstFunctionBody) { 3401 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3402 if (Error Err = globalCleanup()) 3403 return Err; 3404 SeenFirstFunctionBody = true; 3405 } 3406 3407 if (VSTOffset > 0) { 3408 // If we have a VST forward declaration record, make sure we 3409 // parse the VST now if we haven't already. It is needed to 3410 // set up the DeferredFunctionInfo vector for lazy reading. 3411 if (!SeenValueSymbolTable) { 3412 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3413 return Err; 3414 SeenValueSymbolTable = true; 3415 // Fall through so that we record the NextUnreadBit below. 3416 // This is necessary in case we have an anonymous function that 3417 // is later materialized. Since it will not have a VST entry we 3418 // need to fall back to the lazy parse to find its offset. 3419 } else { 3420 // If we have a VST forward declaration record, but have already 3421 // parsed the VST (just above, when the first function body was 3422 // encountered here), then we are resuming the parse after 3423 // materializing functions. The ResumeBit points to the 3424 // start of the last function block recorded in the 3425 // DeferredFunctionInfo map. Skip it. 3426 if (Error Err = Stream.SkipBlock()) 3427 return Err; 3428 continue; 3429 } 3430 } 3431 3432 // Support older bitcode files that did not have the function 3433 // index in the VST, nor a VST forward declaration record, as 3434 // well as anonymous functions that do not have VST entries. 3435 // Build the DeferredFunctionInfo vector on the fly. 3436 if (Error Err = rememberAndSkipFunctionBody()) 3437 return Err; 3438 3439 // Suspend parsing when we reach the function bodies. Subsequent 3440 // materialization calls will resume it when necessary. If the bitcode 3441 // file is old, the symbol table will be at the end instead and will not 3442 // have been seen yet. In this case, just finish the parse now. 3443 if (SeenValueSymbolTable) { 3444 NextUnreadBit = Stream.GetCurrentBitNo(); 3445 // After the VST has been parsed, we need to make sure intrinsic name 3446 // are auto-upgraded. 3447 return globalCleanup(); 3448 } 3449 break; 3450 case bitc::USELIST_BLOCK_ID: 3451 if (Error Err = parseUseLists()) 3452 return Err; 3453 break; 3454 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3455 if (Error Err = parseOperandBundleTags()) 3456 return Err; 3457 break; 3458 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3459 if (Error Err = parseSyncScopeNames()) 3460 return Err; 3461 break; 3462 } 3463 continue; 3464 3465 case BitstreamEntry::Record: 3466 // The interesting case. 3467 break; 3468 } 3469 3470 // Read a record. 3471 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3472 if (!MaybeBitCode) 3473 return MaybeBitCode.takeError(); 3474 switch (unsigned BitCode = MaybeBitCode.get()) { 3475 default: break; // Default behavior, ignore unknown content. 3476 case bitc::MODULE_CODE_VERSION: { 3477 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3478 if (!VersionOrErr) 3479 return VersionOrErr.takeError(); 3480 UseRelativeIDs = *VersionOrErr >= 1; 3481 break; 3482 } 3483 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3484 std::string S; 3485 if (convertToString(Record, 0, S)) 3486 return error("Invalid record"); 3487 TheModule->setTargetTriple(S); 3488 break; 3489 } 3490 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3491 std::string S; 3492 if (convertToString(Record, 0, S)) 3493 return error("Invalid record"); 3494 TheModule->setDataLayout(S); 3495 break; 3496 } 3497 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3498 std::string S; 3499 if (convertToString(Record, 0, S)) 3500 return error("Invalid record"); 3501 TheModule->setModuleInlineAsm(S); 3502 break; 3503 } 3504 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3505 // FIXME: Remove in 4.0. 3506 std::string S; 3507 if (convertToString(Record, 0, S)) 3508 return error("Invalid record"); 3509 // Ignore value. 3510 break; 3511 } 3512 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3513 std::string S; 3514 if (convertToString(Record, 0, S)) 3515 return error("Invalid record"); 3516 SectionTable.push_back(S); 3517 break; 3518 } 3519 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3520 std::string S; 3521 if (convertToString(Record, 0, S)) 3522 return error("Invalid record"); 3523 GCTable.push_back(S); 3524 break; 3525 } 3526 case bitc::MODULE_CODE_COMDAT: 3527 if (Error Err = parseComdatRecord(Record)) 3528 return Err; 3529 break; 3530 case bitc::MODULE_CODE_GLOBALVAR: 3531 if (Error Err = parseGlobalVarRecord(Record)) 3532 return Err; 3533 break; 3534 case bitc::MODULE_CODE_FUNCTION: 3535 if (Error Err = parseFunctionRecord(Record)) 3536 return Err; 3537 break; 3538 case bitc::MODULE_CODE_IFUNC: 3539 case bitc::MODULE_CODE_ALIAS: 3540 case bitc::MODULE_CODE_ALIAS_OLD: 3541 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3542 return Err; 3543 break; 3544 /// MODULE_CODE_VSTOFFSET: [offset] 3545 case bitc::MODULE_CODE_VSTOFFSET: 3546 if (Record.size() < 1) 3547 return error("Invalid record"); 3548 // Note that we subtract 1 here because the offset is relative to one word 3549 // before the start of the identification or module block, which was 3550 // historically always the start of the regular bitcode header. 3551 VSTOffset = Record[0] - 1; 3552 break; 3553 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3554 case bitc::MODULE_CODE_SOURCE_FILENAME: 3555 SmallString<128> ValueName; 3556 if (convertToString(Record, 0, ValueName)) 3557 return error("Invalid record"); 3558 TheModule->setSourceFileName(ValueName); 3559 break; 3560 } 3561 Record.clear(); 3562 } 3563 } 3564 3565 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3566 bool IsImporting) { 3567 TheModule = M; 3568 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3569 [&](unsigned ID) { return getTypeByID(ID); }); 3570 return parseModule(0, ShouldLazyLoadMetadata); 3571 } 3572 3573 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3574 if (!isa<PointerType>(PtrType)) 3575 return error("Load/Store operand is not a pointer type"); 3576 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3577 3578 if (ValType && ValType != ElemType) 3579 return error("Explicit load/store type does not match pointee " 3580 "type of pointer operand"); 3581 if (!PointerType::isLoadableOrStorableType(ElemType)) 3582 return error("Cannot load/store from pointer"); 3583 return Error::success(); 3584 } 3585 3586 void BitcodeReader::propagateByValTypes(CallBase *CB) { 3587 for (unsigned i = 0; i < CB->getNumArgOperands(); ++i) { 3588 if (CB->paramHasAttr(i, Attribute::ByVal) && 3589 !CB->getAttribute(i, Attribute::ByVal).getValueAsType()) { 3590 CB->removeParamAttr(i, Attribute::ByVal); 3591 CB->addParamAttr( 3592 i, Attribute::getWithByValType( 3593 Context, 3594 CB->getArgOperand(i)->getType()->getPointerElementType())); 3595 } 3596 } 3597 } 3598 3599 /// Lazily parse the specified function body block. 3600 Error BitcodeReader::parseFunctionBody(Function *F) { 3601 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3602 return Err; 3603 3604 // Unexpected unresolved metadata when parsing function. 3605 if (MDLoader->hasFwdRefs()) 3606 return error("Invalid function metadata: incoming forward references"); 3607 3608 InstructionList.clear(); 3609 unsigned ModuleValueListSize = ValueList.size(); 3610 unsigned ModuleMDLoaderSize = MDLoader->size(); 3611 3612 // Add all the function arguments to the value table. 3613 for (Argument &I : F->args()) 3614 ValueList.push_back(&I); 3615 3616 unsigned NextValueNo = ValueList.size(); 3617 BasicBlock *CurBB = nullptr; 3618 unsigned CurBBNo = 0; 3619 3620 DebugLoc LastLoc; 3621 auto getLastInstruction = [&]() -> Instruction * { 3622 if (CurBB && !CurBB->empty()) 3623 return &CurBB->back(); 3624 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3625 !FunctionBBs[CurBBNo - 1]->empty()) 3626 return &FunctionBBs[CurBBNo - 1]->back(); 3627 return nullptr; 3628 }; 3629 3630 std::vector<OperandBundleDef> OperandBundles; 3631 3632 // Read all the records. 3633 SmallVector<uint64_t, 64> Record; 3634 3635 while (true) { 3636 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3637 if (!MaybeEntry) 3638 return MaybeEntry.takeError(); 3639 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3640 3641 switch (Entry.Kind) { 3642 case BitstreamEntry::Error: 3643 return error("Malformed block"); 3644 case BitstreamEntry::EndBlock: 3645 goto OutOfRecordLoop; 3646 3647 case BitstreamEntry::SubBlock: 3648 switch (Entry.ID) { 3649 default: // Skip unknown content. 3650 if (Error Err = Stream.SkipBlock()) 3651 return Err; 3652 break; 3653 case bitc::CONSTANTS_BLOCK_ID: 3654 if (Error Err = parseConstants()) 3655 return Err; 3656 NextValueNo = ValueList.size(); 3657 break; 3658 case bitc::VALUE_SYMTAB_BLOCK_ID: 3659 if (Error Err = parseValueSymbolTable()) 3660 return Err; 3661 break; 3662 case bitc::METADATA_ATTACHMENT_ID: 3663 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3664 return Err; 3665 break; 3666 case bitc::METADATA_BLOCK_ID: 3667 assert(DeferredMetadataInfo.empty() && 3668 "Must read all module-level metadata before function-level"); 3669 if (Error Err = MDLoader->parseFunctionMetadata()) 3670 return Err; 3671 break; 3672 case bitc::USELIST_BLOCK_ID: 3673 if (Error Err = parseUseLists()) 3674 return Err; 3675 break; 3676 } 3677 continue; 3678 3679 case BitstreamEntry::Record: 3680 // The interesting case. 3681 break; 3682 } 3683 3684 // Read a record. 3685 Record.clear(); 3686 Instruction *I = nullptr; 3687 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3688 if (!MaybeBitCode) 3689 return MaybeBitCode.takeError(); 3690 switch (unsigned BitCode = MaybeBitCode.get()) { 3691 default: // Default behavior: reject 3692 return error("Invalid value"); 3693 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3694 if (Record.size() < 1 || Record[0] == 0) 3695 return error("Invalid record"); 3696 // Create all the basic blocks for the function. 3697 FunctionBBs.resize(Record[0]); 3698 3699 // See if anything took the address of blocks in this function. 3700 auto BBFRI = BasicBlockFwdRefs.find(F); 3701 if (BBFRI == BasicBlockFwdRefs.end()) { 3702 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3703 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3704 } else { 3705 auto &BBRefs = BBFRI->second; 3706 // Check for invalid basic block references. 3707 if (BBRefs.size() > FunctionBBs.size()) 3708 return error("Invalid ID"); 3709 assert(!BBRefs.empty() && "Unexpected empty array"); 3710 assert(!BBRefs.front() && "Invalid reference to entry block"); 3711 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3712 ++I) 3713 if (I < RE && BBRefs[I]) { 3714 BBRefs[I]->insertInto(F); 3715 FunctionBBs[I] = BBRefs[I]; 3716 } else { 3717 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3718 } 3719 3720 // Erase from the table. 3721 BasicBlockFwdRefs.erase(BBFRI); 3722 } 3723 3724 CurBB = FunctionBBs[0]; 3725 continue; 3726 } 3727 3728 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3729 // This record indicates that the last instruction is at the same 3730 // location as the previous instruction with a location. 3731 I = getLastInstruction(); 3732 3733 if (!I) 3734 return error("Invalid record"); 3735 I->setDebugLoc(LastLoc); 3736 I = nullptr; 3737 continue; 3738 3739 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3740 I = getLastInstruction(); 3741 if (!I || Record.size() < 4) 3742 return error("Invalid record"); 3743 3744 unsigned Line = Record[0], Col = Record[1]; 3745 unsigned ScopeID = Record[2], IAID = Record[3]; 3746 bool isImplicitCode = Record.size() == 5 && Record[4]; 3747 3748 MDNode *Scope = nullptr, *IA = nullptr; 3749 if (ScopeID) { 3750 Scope = dyn_cast_or_null<MDNode>( 3751 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3752 if (!Scope) 3753 return error("Invalid record"); 3754 } 3755 if (IAID) { 3756 IA = dyn_cast_or_null<MDNode>( 3757 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3758 if (!IA) 3759 return error("Invalid record"); 3760 } 3761 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3762 I->setDebugLoc(LastLoc); 3763 I = nullptr; 3764 continue; 3765 } 3766 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3767 unsigned OpNum = 0; 3768 Value *LHS; 3769 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3770 OpNum+1 > Record.size()) 3771 return error("Invalid record"); 3772 3773 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3774 if (Opc == -1) 3775 return error("Invalid record"); 3776 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3777 InstructionList.push_back(I); 3778 if (OpNum < Record.size()) { 3779 if (isa<FPMathOperator>(I)) { 3780 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3781 if (FMF.any()) 3782 I->setFastMathFlags(FMF); 3783 } 3784 } 3785 break; 3786 } 3787 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3788 unsigned OpNum = 0; 3789 Value *LHS, *RHS; 3790 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3791 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3792 OpNum+1 > Record.size()) 3793 return error("Invalid record"); 3794 3795 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3796 if (Opc == -1) 3797 return error("Invalid record"); 3798 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3799 InstructionList.push_back(I); 3800 if (OpNum < Record.size()) { 3801 if (Opc == Instruction::Add || 3802 Opc == Instruction::Sub || 3803 Opc == Instruction::Mul || 3804 Opc == Instruction::Shl) { 3805 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3806 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3807 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3808 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3809 } else if (Opc == Instruction::SDiv || 3810 Opc == Instruction::UDiv || 3811 Opc == Instruction::LShr || 3812 Opc == Instruction::AShr) { 3813 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3814 cast<BinaryOperator>(I)->setIsExact(true); 3815 } else if (isa<FPMathOperator>(I)) { 3816 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3817 if (FMF.any()) 3818 I->setFastMathFlags(FMF); 3819 } 3820 3821 } 3822 break; 3823 } 3824 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3825 unsigned OpNum = 0; 3826 Value *Op; 3827 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3828 OpNum+2 != Record.size()) 3829 return error("Invalid record"); 3830 3831 Type *ResTy = getTypeByID(Record[OpNum]); 3832 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3833 if (Opc == -1 || !ResTy) 3834 return error("Invalid record"); 3835 Instruction *Temp = nullptr; 3836 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3837 if (Temp) { 3838 InstructionList.push_back(Temp); 3839 CurBB->getInstList().push_back(Temp); 3840 } 3841 } else { 3842 auto CastOp = (Instruction::CastOps)Opc; 3843 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3844 return error("Invalid cast"); 3845 I = CastInst::Create(CastOp, Op, ResTy); 3846 } 3847 InstructionList.push_back(I); 3848 break; 3849 } 3850 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3851 case bitc::FUNC_CODE_INST_GEP_OLD: 3852 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3853 unsigned OpNum = 0; 3854 3855 Type *Ty; 3856 bool InBounds; 3857 3858 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3859 InBounds = Record[OpNum++]; 3860 Ty = getTypeByID(Record[OpNum++]); 3861 } else { 3862 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3863 Ty = nullptr; 3864 } 3865 3866 Value *BasePtr; 3867 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3868 return error("Invalid record"); 3869 3870 if (!Ty) 3871 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3872 ->getElementType(); 3873 else if (Ty != 3874 cast<PointerType>(BasePtr->getType()->getScalarType()) 3875 ->getElementType()) 3876 return error( 3877 "Explicit gep type does not match pointee type of pointer operand"); 3878 3879 SmallVector<Value*, 16> GEPIdx; 3880 while (OpNum != Record.size()) { 3881 Value *Op; 3882 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3883 return error("Invalid record"); 3884 GEPIdx.push_back(Op); 3885 } 3886 3887 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3888 3889 InstructionList.push_back(I); 3890 if (InBounds) 3891 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3892 break; 3893 } 3894 3895 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3896 // EXTRACTVAL: [opty, opval, n x indices] 3897 unsigned OpNum = 0; 3898 Value *Agg; 3899 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3900 return error("Invalid record"); 3901 3902 unsigned RecSize = Record.size(); 3903 if (OpNum == RecSize) 3904 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3905 3906 SmallVector<unsigned, 4> EXTRACTVALIdx; 3907 Type *CurTy = Agg->getType(); 3908 for (; OpNum != RecSize; ++OpNum) { 3909 bool IsArray = CurTy->isArrayTy(); 3910 bool IsStruct = CurTy->isStructTy(); 3911 uint64_t Index = Record[OpNum]; 3912 3913 if (!IsStruct && !IsArray) 3914 return error("EXTRACTVAL: Invalid type"); 3915 if ((unsigned)Index != Index) 3916 return error("Invalid value"); 3917 if (IsStruct && Index >= CurTy->getStructNumElements()) 3918 return error("EXTRACTVAL: Invalid struct index"); 3919 if (IsArray && Index >= CurTy->getArrayNumElements()) 3920 return error("EXTRACTVAL: Invalid array index"); 3921 EXTRACTVALIdx.push_back((unsigned)Index); 3922 3923 if (IsStruct) 3924 CurTy = CurTy->getStructElementType(Index); 3925 else 3926 CurTy = CurTy->getArrayElementType(); 3927 } 3928 3929 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3930 InstructionList.push_back(I); 3931 break; 3932 } 3933 3934 case bitc::FUNC_CODE_INST_INSERTVAL: { 3935 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3936 unsigned OpNum = 0; 3937 Value *Agg; 3938 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3939 return error("Invalid record"); 3940 Value *Val; 3941 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3942 return error("Invalid record"); 3943 3944 unsigned RecSize = Record.size(); 3945 if (OpNum == RecSize) 3946 return error("INSERTVAL: Invalid instruction with 0 indices"); 3947 3948 SmallVector<unsigned, 4> INSERTVALIdx; 3949 Type *CurTy = Agg->getType(); 3950 for (; OpNum != RecSize; ++OpNum) { 3951 bool IsArray = CurTy->isArrayTy(); 3952 bool IsStruct = CurTy->isStructTy(); 3953 uint64_t Index = Record[OpNum]; 3954 3955 if (!IsStruct && !IsArray) 3956 return error("INSERTVAL: Invalid type"); 3957 if ((unsigned)Index != Index) 3958 return error("Invalid value"); 3959 if (IsStruct && Index >= CurTy->getStructNumElements()) 3960 return error("INSERTVAL: Invalid struct index"); 3961 if (IsArray && Index >= CurTy->getArrayNumElements()) 3962 return error("INSERTVAL: Invalid array index"); 3963 3964 INSERTVALIdx.push_back((unsigned)Index); 3965 if (IsStruct) 3966 CurTy = CurTy->getStructElementType(Index); 3967 else 3968 CurTy = CurTy->getArrayElementType(); 3969 } 3970 3971 if (CurTy != Val->getType()) 3972 return error("Inserted value type doesn't match aggregate type"); 3973 3974 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3975 InstructionList.push_back(I); 3976 break; 3977 } 3978 3979 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3980 // obsolete form of select 3981 // handles select i1 ... in old bitcode 3982 unsigned OpNum = 0; 3983 Value *TrueVal, *FalseVal, *Cond; 3984 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3985 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3986 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3987 return error("Invalid record"); 3988 3989 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3990 InstructionList.push_back(I); 3991 break; 3992 } 3993 3994 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3995 // new form of select 3996 // handles select i1 or select [N x i1] 3997 unsigned OpNum = 0; 3998 Value *TrueVal, *FalseVal, *Cond; 3999 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4000 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4001 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4002 return error("Invalid record"); 4003 4004 // select condition can be either i1 or [N x i1] 4005 if (VectorType* vector_type = 4006 dyn_cast<VectorType>(Cond->getType())) { 4007 // expect <n x i1> 4008 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4009 return error("Invalid type for value"); 4010 } else { 4011 // expect i1 4012 if (Cond->getType() != Type::getInt1Ty(Context)) 4013 return error("Invalid type for value"); 4014 } 4015 4016 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4017 InstructionList.push_back(I); 4018 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4019 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4020 if (FMF.any()) 4021 I->setFastMathFlags(FMF); 4022 } 4023 break; 4024 } 4025 4026 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4027 unsigned OpNum = 0; 4028 Value *Vec, *Idx; 4029 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4030 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4031 return error("Invalid record"); 4032 if (!Vec->getType()->isVectorTy()) 4033 return error("Invalid type for value"); 4034 I = ExtractElementInst::Create(Vec, Idx); 4035 InstructionList.push_back(I); 4036 break; 4037 } 4038 4039 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4040 unsigned OpNum = 0; 4041 Value *Vec, *Elt, *Idx; 4042 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4043 return error("Invalid record"); 4044 if (!Vec->getType()->isVectorTy()) 4045 return error("Invalid type for value"); 4046 if (popValue(Record, OpNum, NextValueNo, 4047 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4048 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4049 return error("Invalid record"); 4050 I = InsertElementInst::Create(Vec, Elt, Idx); 4051 InstructionList.push_back(I); 4052 break; 4053 } 4054 4055 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4056 unsigned OpNum = 0; 4057 Value *Vec1, *Vec2, *Mask; 4058 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4059 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4060 return error("Invalid record"); 4061 4062 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4063 return error("Invalid record"); 4064 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4065 return error("Invalid type for value"); 4066 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4067 InstructionList.push_back(I); 4068 break; 4069 } 4070 4071 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4072 // Old form of ICmp/FCmp returning bool 4073 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4074 // both legal on vectors but had different behaviour. 4075 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4076 // FCmp/ICmp returning bool or vector of bool 4077 4078 unsigned OpNum = 0; 4079 Value *LHS, *RHS; 4080 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4081 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4082 return error("Invalid record"); 4083 4084 unsigned PredVal = Record[OpNum]; 4085 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4086 FastMathFlags FMF; 4087 if (IsFP && Record.size() > OpNum+1) 4088 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4089 4090 if (OpNum+1 != Record.size()) 4091 return error("Invalid record"); 4092 4093 if (LHS->getType()->isFPOrFPVectorTy()) 4094 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4095 else 4096 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4097 4098 if (FMF.any()) 4099 I->setFastMathFlags(FMF); 4100 InstructionList.push_back(I); 4101 break; 4102 } 4103 4104 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4105 { 4106 unsigned Size = Record.size(); 4107 if (Size == 0) { 4108 I = ReturnInst::Create(Context); 4109 InstructionList.push_back(I); 4110 break; 4111 } 4112 4113 unsigned OpNum = 0; 4114 Value *Op = nullptr; 4115 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4116 return error("Invalid record"); 4117 if (OpNum != Record.size()) 4118 return error("Invalid record"); 4119 4120 I = ReturnInst::Create(Context, Op); 4121 InstructionList.push_back(I); 4122 break; 4123 } 4124 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4125 if (Record.size() != 1 && Record.size() != 3) 4126 return error("Invalid record"); 4127 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4128 if (!TrueDest) 4129 return error("Invalid record"); 4130 4131 if (Record.size() == 1) { 4132 I = BranchInst::Create(TrueDest); 4133 InstructionList.push_back(I); 4134 } 4135 else { 4136 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4137 Value *Cond = getValue(Record, 2, NextValueNo, 4138 Type::getInt1Ty(Context)); 4139 if (!FalseDest || !Cond) 4140 return error("Invalid record"); 4141 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4142 InstructionList.push_back(I); 4143 } 4144 break; 4145 } 4146 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4147 if (Record.size() != 1 && Record.size() != 2) 4148 return error("Invalid record"); 4149 unsigned Idx = 0; 4150 Value *CleanupPad = 4151 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4152 if (!CleanupPad) 4153 return error("Invalid record"); 4154 BasicBlock *UnwindDest = nullptr; 4155 if (Record.size() == 2) { 4156 UnwindDest = getBasicBlock(Record[Idx++]); 4157 if (!UnwindDest) 4158 return error("Invalid record"); 4159 } 4160 4161 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4162 InstructionList.push_back(I); 4163 break; 4164 } 4165 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4166 if (Record.size() != 2) 4167 return error("Invalid record"); 4168 unsigned Idx = 0; 4169 Value *CatchPad = 4170 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4171 if (!CatchPad) 4172 return error("Invalid record"); 4173 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4174 if (!BB) 4175 return error("Invalid record"); 4176 4177 I = CatchReturnInst::Create(CatchPad, BB); 4178 InstructionList.push_back(I); 4179 break; 4180 } 4181 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4182 // We must have, at minimum, the outer scope and the number of arguments. 4183 if (Record.size() < 2) 4184 return error("Invalid record"); 4185 4186 unsigned Idx = 0; 4187 4188 Value *ParentPad = 4189 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4190 4191 unsigned NumHandlers = Record[Idx++]; 4192 4193 SmallVector<BasicBlock *, 2> Handlers; 4194 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4195 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4196 if (!BB) 4197 return error("Invalid record"); 4198 Handlers.push_back(BB); 4199 } 4200 4201 BasicBlock *UnwindDest = nullptr; 4202 if (Idx + 1 == Record.size()) { 4203 UnwindDest = getBasicBlock(Record[Idx++]); 4204 if (!UnwindDest) 4205 return error("Invalid record"); 4206 } 4207 4208 if (Record.size() != Idx) 4209 return error("Invalid record"); 4210 4211 auto *CatchSwitch = 4212 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4213 for (BasicBlock *Handler : Handlers) 4214 CatchSwitch->addHandler(Handler); 4215 I = CatchSwitch; 4216 InstructionList.push_back(I); 4217 break; 4218 } 4219 case bitc::FUNC_CODE_INST_CATCHPAD: 4220 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4221 // We must have, at minimum, the outer scope and the number of arguments. 4222 if (Record.size() < 2) 4223 return error("Invalid record"); 4224 4225 unsigned Idx = 0; 4226 4227 Value *ParentPad = 4228 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4229 4230 unsigned NumArgOperands = Record[Idx++]; 4231 4232 SmallVector<Value *, 2> Args; 4233 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4234 Value *Val; 4235 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4236 return error("Invalid record"); 4237 Args.push_back(Val); 4238 } 4239 4240 if (Record.size() != Idx) 4241 return error("Invalid record"); 4242 4243 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4244 I = CleanupPadInst::Create(ParentPad, Args); 4245 else 4246 I = CatchPadInst::Create(ParentPad, Args); 4247 InstructionList.push_back(I); 4248 break; 4249 } 4250 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4251 // Check magic 4252 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4253 // "New" SwitchInst format with case ranges. The changes to write this 4254 // format were reverted but we still recognize bitcode that uses it. 4255 // Hopefully someday we will have support for case ranges and can use 4256 // this format again. 4257 4258 Type *OpTy = getTypeByID(Record[1]); 4259 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4260 4261 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4262 BasicBlock *Default = getBasicBlock(Record[3]); 4263 if (!OpTy || !Cond || !Default) 4264 return error("Invalid record"); 4265 4266 unsigned NumCases = Record[4]; 4267 4268 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4269 InstructionList.push_back(SI); 4270 4271 unsigned CurIdx = 5; 4272 for (unsigned i = 0; i != NumCases; ++i) { 4273 SmallVector<ConstantInt*, 1> CaseVals; 4274 unsigned NumItems = Record[CurIdx++]; 4275 for (unsigned ci = 0; ci != NumItems; ++ci) { 4276 bool isSingleNumber = Record[CurIdx++]; 4277 4278 APInt Low; 4279 unsigned ActiveWords = 1; 4280 if (ValueBitWidth > 64) 4281 ActiveWords = Record[CurIdx++]; 4282 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4283 ValueBitWidth); 4284 CurIdx += ActiveWords; 4285 4286 if (!isSingleNumber) { 4287 ActiveWords = 1; 4288 if (ValueBitWidth > 64) 4289 ActiveWords = Record[CurIdx++]; 4290 APInt High = readWideAPInt( 4291 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4292 CurIdx += ActiveWords; 4293 4294 // FIXME: It is not clear whether values in the range should be 4295 // compared as signed or unsigned values. The partially 4296 // implemented changes that used this format in the past used 4297 // unsigned comparisons. 4298 for ( ; Low.ule(High); ++Low) 4299 CaseVals.push_back(ConstantInt::get(Context, Low)); 4300 } else 4301 CaseVals.push_back(ConstantInt::get(Context, Low)); 4302 } 4303 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4304 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4305 cve = CaseVals.end(); cvi != cve; ++cvi) 4306 SI->addCase(*cvi, DestBB); 4307 } 4308 I = SI; 4309 break; 4310 } 4311 4312 // Old SwitchInst format without case ranges. 4313 4314 if (Record.size() < 3 || (Record.size() & 1) == 0) 4315 return error("Invalid record"); 4316 Type *OpTy = getTypeByID(Record[0]); 4317 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4318 BasicBlock *Default = getBasicBlock(Record[2]); 4319 if (!OpTy || !Cond || !Default) 4320 return error("Invalid record"); 4321 unsigned NumCases = (Record.size()-3)/2; 4322 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4323 InstructionList.push_back(SI); 4324 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4325 ConstantInt *CaseVal = 4326 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4327 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4328 if (!CaseVal || !DestBB) { 4329 delete SI; 4330 return error("Invalid record"); 4331 } 4332 SI->addCase(CaseVal, DestBB); 4333 } 4334 I = SI; 4335 break; 4336 } 4337 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4338 if (Record.size() < 2) 4339 return error("Invalid record"); 4340 Type *OpTy = getTypeByID(Record[0]); 4341 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4342 if (!OpTy || !Address) 4343 return error("Invalid record"); 4344 unsigned NumDests = Record.size()-2; 4345 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4346 InstructionList.push_back(IBI); 4347 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4348 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4349 IBI->addDestination(DestBB); 4350 } else { 4351 delete IBI; 4352 return error("Invalid record"); 4353 } 4354 } 4355 I = IBI; 4356 break; 4357 } 4358 4359 case bitc::FUNC_CODE_INST_INVOKE: { 4360 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4361 if (Record.size() < 4) 4362 return error("Invalid record"); 4363 unsigned OpNum = 0; 4364 AttributeList PAL = getAttributes(Record[OpNum++]); 4365 unsigned CCInfo = Record[OpNum++]; 4366 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4367 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4368 4369 FunctionType *FTy = nullptr; 4370 if (CCInfo >> 13 & 1 && 4371 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4372 return error("Explicit invoke type is not a function type"); 4373 4374 Value *Callee; 4375 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4376 return error("Invalid record"); 4377 4378 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4379 if (!CalleeTy) 4380 return error("Callee is not a pointer"); 4381 if (!FTy) { 4382 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4383 if (!FTy) 4384 return error("Callee is not of pointer to function type"); 4385 } else if (CalleeTy->getElementType() != FTy) 4386 return error("Explicit invoke type does not match pointee type of " 4387 "callee operand"); 4388 if (Record.size() < FTy->getNumParams() + OpNum) 4389 return error("Insufficient operands to call"); 4390 4391 SmallVector<Value*, 16> Ops; 4392 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4393 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4394 FTy->getParamType(i))); 4395 if (!Ops.back()) 4396 return error("Invalid record"); 4397 } 4398 4399 if (!FTy->isVarArg()) { 4400 if (Record.size() != OpNum) 4401 return error("Invalid record"); 4402 } else { 4403 // Read type/value pairs for varargs params. 4404 while (OpNum != Record.size()) { 4405 Value *Op; 4406 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4407 return error("Invalid record"); 4408 Ops.push_back(Op); 4409 } 4410 } 4411 4412 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4413 OperandBundles); 4414 OperandBundles.clear(); 4415 InstructionList.push_back(I); 4416 cast<InvokeInst>(I)->setCallingConv( 4417 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4418 cast<InvokeInst>(I)->setAttributes(PAL); 4419 propagateByValTypes(cast<CallBase>(I)); 4420 4421 break; 4422 } 4423 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4424 unsigned Idx = 0; 4425 Value *Val = nullptr; 4426 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4427 return error("Invalid record"); 4428 I = ResumeInst::Create(Val); 4429 InstructionList.push_back(I); 4430 break; 4431 } 4432 case bitc::FUNC_CODE_INST_CALLBR: { 4433 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4434 unsigned OpNum = 0; 4435 AttributeList PAL = getAttributes(Record[OpNum++]); 4436 unsigned CCInfo = Record[OpNum++]; 4437 4438 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4439 unsigned NumIndirectDests = Record[OpNum++]; 4440 SmallVector<BasicBlock *, 16> IndirectDests; 4441 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4442 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4443 4444 FunctionType *FTy = nullptr; 4445 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4446 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4447 return error("Explicit call type is not a function type"); 4448 4449 Value *Callee; 4450 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4451 return error("Invalid record"); 4452 4453 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4454 if (!OpTy) 4455 return error("Callee is not a pointer type"); 4456 if (!FTy) { 4457 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4458 if (!FTy) 4459 return error("Callee is not of pointer to function type"); 4460 } else if (OpTy->getElementType() != FTy) 4461 return error("Explicit call type does not match pointee type of " 4462 "callee operand"); 4463 if (Record.size() < FTy->getNumParams() + OpNum) 4464 return error("Insufficient operands to call"); 4465 4466 SmallVector<Value*, 16> Args; 4467 // Read the fixed params. 4468 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4469 if (FTy->getParamType(i)->isLabelTy()) 4470 Args.push_back(getBasicBlock(Record[OpNum])); 4471 else 4472 Args.push_back(getValue(Record, OpNum, NextValueNo, 4473 FTy->getParamType(i))); 4474 if (!Args.back()) 4475 return error("Invalid record"); 4476 } 4477 4478 // Read type/value pairs for varargs params. 4479 if (!FTy->isVarArg()) { 4480 if (OpNum != Record.size()) 4481 return error("Invalid record"); 4482 } else { 4483 while (OpNum != Record.size()) { 4484 Value *Op; 4485 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4486 return error("Invalid record"); 4487 Args.push_back(Op); 4488 } 4489 } 4490 4491 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4492 OperandBundles); 4493 OperandBundles.clear(); 4494 InstructionList.push_back(I); 4495 cast<CallBrInst>(I)->setCallingConv( 4496 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4497 cast<CallBrInst>(I)->setAttributes(PAL); 4498 break; 4499 } 4500 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4501 I = new UnreachableInst(Context); 4502 InstructionList.push_back(I); 4503 break; 4504 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4505 if (Record.size() < 1 || ((Record.size()-1)&1)) 4506 return error("Invalid record"); 4507 Type *Ty = getTypeByID(Record[0]); 4508 if (!Ty) 4509 return error("Invalid record"); 4510 4511 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4512 InstructionList.push_back(PN); 4513 4514 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4515 Value *V; 4516 // With the new function encoding, it is possible that operands have 4517 // negative IDs (for forward references). Use a signed VBR 4518 // representation to keep the encoding small. 4519 if (UseRelativeIDs) 4520 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4521 else 4522 V = getValue(Record, 1+i, NextValueNo, Ty); 4523 BasicBlock *BB = getBasicBlock(Record[2+i]); 4524 if (!V || !BB) 4525 return error("Invalid record"); 4526 PN->addIncoming(V, BB); 4527 } 4528 I = PN; 4529 break; 4530 } 4531 4532 case bitc::FUNC_CODE_INST_LANDINGPAD: 4533 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4534 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4535 unsigned Idx = 0; 4536 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4537 if (Record.size() < 3) 4538 return error("Invalid record"); 4539 } else { 4540 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4541 if (Record.size() < 4) 4542 return error("Invalid record"); 4543 } 4544 Type *Ty = getTypeByID(Record[Idx++]); 4545 if (!Ty) 4546 return error("Invalid record"); 4547 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4548 Value *PersFn = nullptr; 4549 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4550 return error("Invalid record"); 4551 4552 if (!F->hasPersonalityFn()) 4553 F->setPersonalityFn(cast<Constant>(PersFn)); 4554 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4555 return error("Personality function mismatch"); 4556 } 4557 4558 bool IsCleanup = !!Record[Idx++]; 4559 unsigned NumClauses = Record[Idx++]; 4560 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4561 LP->setCleanup(IsCleanup); 4562 for (unsigned J = 0; J != NumClauses; ++J) { 4563 LandingPadInst::ClauseType CT = 4564 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4565 Value *Val; 4566 4567 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4568 delete LP; 4569 return error("Invalid record"); 4570 } 4571 4572 assert((CT != LandingPadInst::Catch || 4573 !isa<ArrayType>(Val->getType())) && 4574 "Catch clause has a invalid type!"); 4575 assert((CT != LandingPadInst::Filter || 4576 isa<ArrayType>(Val->getType())) && 4577 "Filter clause has invalid type!"); 4578 LP->addClause(cast<Constant>(Val)); 4579 } 4580 4581 I = LP; 4582 InstructionList.push_back(I); 4583 break; 4584 } 4585 4586 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4587 if (Record.size() != 4) 4588 return error("Invalid record"); 4589 uint64_t AlignRecord = Record[3]; 4590 const uint64_t InAllocaMask = uint64_t(1) << 5; 4591 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4592 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4593 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4594 SwiftErrorMask; 4595 bool InAlloca = AlignRecord & InAllocaMask; 4596 bool SwiftError = AlignRecord & SwiftErrorMask; 4597 Type *Ty = getTypeByID(Record[0]); 4598 if ((AlignRecord & ExplicitTypeMask) == 0) { 4599 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4600 if (!PTy) 4601 return error("Old-style alloca with a non-pointer type"); 4602 Ty = PTy->getElementType(); 4603 } 4604 Type *OpTy = getTypeByID(Record[1]); 4605 Value *Size = getFnValueByID(Record[2], OpTy); 4606 unsigned Align; 4607 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4608 return Err; 4609 } 4610 if (!Ty || !Size) 4611 return error("Invalid record"); 4612 4613 // FIXME: Make this an optional field. 4614 const DataLayout &DL = TheModule->getDataLayout(); 4615 unsigned AS = DL.getAllocaAddrSpace(); 4616 4617 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4618 AI->setUsedWithInAlloca(InAlloca); 4619 AI->setSwiftError(SwiftError); 4620 I = AI; 4621 InstructionList.push_back(I); 4622 break; 4623 } 4624 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4625 unsigned OpNum = 0; 4626 Value *Op; 4627 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4628 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4629 return error("Invalid record"); 4630 4631 Type *Ty = nullptr; 4632 if (OpNum + 3 == Record.size()) 4633 Ty = getTypeByID(Record[OpNum++]); 4634 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4635 return Err; 4636 if (!Ty) 4637 Ty = cast<PointerType>(Op->getType())->getElementType(); 4638 4639 unsigned Align; 4640 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4641 return Err; 4642 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4643 4644 InstructionList.push_back(I); 4645 break; 4646 } 4647 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4648 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4649 unsigned OpNum = 0; 4650 Value *Op; 4651 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4652 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4653 return error("Invalid record"); 4654 4655 Type *Ty = nullptr; 4656 if (OpNum + 5 == Record.size()) 4657 Ty = getTypeByID(Record[OpNum++]); 4658 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4659 return Err; 4660 if (!Ty) 4661 Ty = cast<PointerType>(Op->getType())->getElementType(); 4662 4663 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4664 if (Ordering == AtomicOrdering::NotAtomic || 4665 Ordering == AtomicOrdering::Release || 4666 Ordering == AtomicOrdering::AcquireRelease) 4667 return error("Invalid record"); 4668 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4669 return error("Invalid record"); 4670 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4671 4672 unsigned Align; 4673 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4674 return Err; 4675 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID); 4676 4677 InstructionList.push_back(I); 4678 break; 4679 } 4680 case bitc::FUNC_CODE_INST_STORE: 4681 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4682 unsigned OpNum = 0; 4683 Value *Val, *Ptr; 4684 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4685 (BitCode == bitc::FUNC_CODE_INST_STORE 4686 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4687 : popValue(Record, OpNum, NextValueNo, 4688 cast<PointerType>(Ptr->getType())->getElementType(), 4689 Val)) || 4690 OpNum + 2 != Record.size()) 4691 return error("Invalid record"); 4692 4693 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4694 return Err; 4695 unsigned Align; 4696 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4697 return Err; 4698 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4699 InstructionList.push_back(I); 4700 break; 4701 } 4702 case bitc::FUNC_CODE_INST_STOREATOMIC: 4703 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4704 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4705 unsigned OpNum = 0; 4706 Value *Val, *Ptr; 4707 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4708 !isa<PointerType>(Ptr->getType()) || 4709 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4710 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4711 : popValue(Record, OpNum, NextValueNo, 4712 cast<PointerType>(Ptr->getType())->getElementType(), 4713 Val)) || 4714 OpNum + 4 != Record.size()) 4715 return error("Invalid record"); 4716 4717 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4718 return Err; 4719 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4720 if (Ordering == AtomicOrdering::NotAtomic || 4721 Ordering == AtomicOrdering::Acquire || 4722 Ordering == AtomicOrdering::AcquireRelease) 4723 return error("Invalid record"); 4724 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4725 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4726 return error("Invalid record"); 4727 4728 unsigned Align; 4729 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4730 return Err; 4731 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4732 InstructionList.push_back(I); 4733 break; 4734 } 4735 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4736 case bitc::FUNC_CODE_INST_CMPXCHG: { 4737 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4738 // failureordering?, isweak?] 4739 unsigned OpNum = 0; 4740 Value *Ptr, *Cmp, *New; 4741 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4742 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4743 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4744 : popValue(Record, OpNum, NextValueNo, 4745 cast<PointerType>(Ptr->getType())->getElementType(), 4746 Cmp)) || 4747 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4748 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4749 return error("Invalid record"); 4750 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4751 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4752 SuccessOrdering == AtomicOrdering::Unordered) 4753 return error("Invalid record"); 4754 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4755 4756 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4757 return Err; 4758 AtomicOrdering FailureOrdering; 4759 if (Record.size() < 7) 4760 FailureOrdering = 4761 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4762 else 4763 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4764 4765 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4766 SSID); 4767 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4768 4769 if (Record.size() < 8) { 4770 // Before weak cmpxchgs existed, the instruction simply returned the 4771 // value loaded from memory, so bitcode files from that era will be 4772 // expecting the first component of a modern cmpxchg. 4773 CurBB->getInstList().push_back(I); 4774 I = ExtractValueInst::Create(I, 0); 4775 } else { 4776 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4777 } 4778 4779 InstructionList.push_back(I); 4780 break; 4781 } 4782 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4783 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4784 unsigned OpNum = 0; 4785 Value *Ptr, *Val; 4786 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4787 !isa<PointerType>(Ptr->getType()) || 4788 popValue(Record, OpNum, NextValueNo, 4789 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4790 OpNum+4 != Record.size()) 4791 return error("Invalid record"); 4792 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4793 if (Operation < AtomicRMWInst::FIRST_BINOP || 4794 Operation > AtomicRMWInst::LAST_BINOP) 4795 return error("Invalid record"); 4796 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4797 if (Ordering == AtomicOrdering::NotAtomic || 4798 Ordering == AtomicOrdering::Unordered) 4799 return error("Invalid record"); 4800 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4801 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4802 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4803 InstructionList.push_back(I); 4804 break; 4805 } 4806 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4807 if (2 != Record.size()) 4808 return error("Invalid record"); 4809 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4810 if (Ordering == AtomicOrdering::NotAtomic || 4811 Ordering == AtomicOrdering::Unordered || 4812 Ordering == AtomicOrdering::Monotonic) 4813 return error("Invalid record"); 4814 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4815 I = new FenceInst(Context, Ordering, SSID); 4816 InstructionList.push_back(I); 4817 break; 4818 } 4819 case bitc::FUNC_CODE_INST_CALL: { 4820 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4821 if (Record.size() < 3) 4822 return error("Invalid record"); 4823 4824 unsigned OpNum = 0; 4825 AttributeList PAL = getAttributes(Record[OpNum++]); 4826 unsigned CCInfo = Record[OpNum++]; 4827 4828 FastMathFlags FMF; 4829 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4830 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4831 if (!FMF.any()) 4832 return error("Fast math flags indicator set for call with no FMF"); 4833 } 4834 4835 FunctionType *FTy = nullptr; 4836 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4837 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4838 return error("Explicit call type is not a function type"); 4839 4840 Value *Callee; 4841 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4842 return error("Invalid record"); 4843 4844 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4845 if (!OpTy) 4846 return error("Callee is not a pointer type"); 4847 if (!FTy) { 4848 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4849 if (!FTy) 4850 return error("Callee is not of pointer to function type"); 4851 } else if (OpTy->getElementType() != FTy) 4852 return error("Explicit call type does not match pointee type of " 4853 "callee operand"); 4854 if (Record.size() < FTy->getNumParams() + OpNum) 4855 return error("Insufficient operands to call"); 4856 4857 SmallVector<Value*, 16> Args; 4858 // Read the fixed params. 4859 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4860 if (FTy->getParamType(i)->isLabelTy()) 4861 Args.push_back(getBasicBlock(Record[OpNum])); 4862 else 4863 Args.push_back(getValue(Record, OpNum, NextValueNo, 4864 FTy->getParamType(i))); 4865 if (!Args.back()) 4866 return error("Invalid record"); 4867 } 4868 4869 // Read type/value pairs for varargs params. 4870 if (!FTy->isVarArg()) { 4871 if (OpNum != Record.size()) 4872 return error("Invalid record"); 4873 } else { 4874 while (OpNum != Record.size()) { 4875 Value *Op; 4876 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4877 return error("Invalid record"); 4878 Args.push_back(Op); 4879 } 4880 } 4881 4882 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4883 OperandBundles.clear(); 4884 InstructionList.push_back(I); 4885 cast<CallInst>(I)->setCallingConv( 4886 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4887 CallInst::TailCallKind TCK = CallInst::TCK_None; 4888 if (CCInfo & 1 << bitc::CALL_TAIL) 4889 TCK = CallInst::TCK_Tail; 4890 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4891 TCK = CallInst::TCK_MustTail; 4892 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4893 TCK = CallInst::TCK_NoTail; 4894 cast<CallInst>(I)->setTailCallKind(TCK); 4895 cast<CallInst>(I)->setAttributes(PAL); 4896 propagateByValTypes(cast<CallBase>(I)); 4897 if (FMF.any()) { 4898 if (!isa<FPMathOperator>(I)) 4899 return error("Fast-math-flags specified for call without " 4900 "floating-point scalar or vector return type"); 4901 I->setFastMathFlags(FMF); 4902 } 4903 break; 4904 } 4905 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4906 if (Record.size() < 3) 4907 return error("Invalid record"); 4908 Type *OpTy = getTypeByID(Record[0]); 4909 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4910 Type *ResTy = getTypeByID(Record[2]); 4911 if (!OpTy || !Op || !ResTy) 4912 return error("Invalid record"); 4913 I = new VAArgInst(Op, ResTy); 4914 InstructionList.push_back(I); 4915 break; 4916 } 4917 4918 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4919 // A call or an invoke can be optionally prefixed with some variable 4920 // number of operand bundle blocks. These blocks are read into 4921 // OperandBundles and consumed at the next call or invoke instruction. 4922 4923 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4924 return error("Invalid record"); 4925 4926 std::vector<Value *> Inputs; 4927 4928 unsigned OpNum = 1; 4929 while (OpNum != Record.size()) { 4930 Value *Op; 4931 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4932 return error("Invalid record"); 4933 Inputs.push_back(Op); 4934 } 4935 4936 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4937 continue; 4938 } 4939 } 4940 4941 // Add instruction to end of current BB. If there is no current BB, reject 4942 // this file. 4943 if (!CurBB) { 4944 I->deleteValue(); 4945 return error("Invalid instruction with no BB"); 4946 } 4947 if (!OperandBundles.empty()) { 4948 I->deleteValue(); 4949 return error("Operand bundles found with no consumer"); 4950 } 4951 CurBB->getInstList().push_back(I); 4952 4953 // If this was a terminator instruction, move to the next block. 4954 if (I->isTerminator()) { 4955 ++CurBBNo; 4956 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4957 } 4958 4959 // Non-void values get registered in the value table for future use. 4960 if (I && !I->getType()->isVoidTy()) 4961 ValueList.assignValue(I, NextValueNo++); 4962 } 4963 4964 OutOfRecordLoop: 4965 4966 if (!OperandBundles.empty()) 4967 return error("Operand bundles found with no consumer"); 4968 4969 // Check the function list for unresolved values. 4970 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4971 if (!A->getParent()) { 4972 // We found at least one unresolved value. Nuke them all to avoid leaks. 4973 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4974 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4975 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4976 delete A; 4977 } 4978 } 4979 return error("Never resolved value found in function"); 4980 } 4981 } 4982 4983 // Unexpected unresolved metadata about to be dropped. 4984 if (MDLoader->hasFwdRefs()) 4985 return error("Invalid function metadata: outgoing forward refs"); 4986 4987 // Trim the value list down to the size it was before we parsed this function. 4988 ValueList.shrinkTo(ModuleValueListSize); 4989 MDLoader->shrinkTo(ModuleMDLoaderSize); 4990 std::vector<BasicBlock*>().swap(FunctionBBs); 4991 return Error::success(); 4992 } 4993 4994 /// Find the function body in the bitcode stream 4995 Error BitcodeReader::findFunctionInStream( 4996 Function *F, 4997 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4998 while (DeferredFunctionInfoIterator->second == 0) { 4999 // This is the fallback handling for the old format bitcode that 5000 // didn't contain the function index in the VST, or when we have 5001 // an anonymous function which would not have a VST entry. 5002 // Assert that we have one of those two cases. 5003 assert(VSTOffset == 0 || !F->hasName()); 5004 // Parse the next body in the stream and set its position in the 5005 // DeferredFunctionInfo map. 5006 if (Error Err = rememberAndSkipFunctionBodies()) 5007 return Err; 5008 } 5009 return Error::success(); 5010 } 5011 5012 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5013 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5014 return SyncScope::ID(Val); 5015 if (Val >= SSIDs.size()) 5016 return SyncScope::System; // Map unknown synchronization scopes to system. 5017 return SSIDs[Val]; 5018 } 5019 5020 //===----------------------------------------------------------------------===// 5021 // GVMaterializer implementation 5022 //===----------------------------------------------------------------------===// 5023 5024 Error BitcodeReader::materialize(GlobalValue *GV) { 5025 Function *F = dyn_cast<Function>(GV); 5026 // If it's not a function or is already material, ignore the request. 5027 if (!F || !F->isMaterializable()) 5028 return Error::success(); 5029 5030 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5031 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5032 // If its position is recorded as 0, its body is somewhere in the stream 5033 // but we haven't seen it yet. 5034 if (DFII->second == 0) 5035 if (Error Err = findFunctionInStream(F, DFII)) 5036 return Err; 5037 5038 // Materialize metadata before parsing any function bodies. 5039 if (Error Err = materializeMetadata()) 5040 return Err; 5041 5042 // Move the bit stream to the saved position of the deferred function body. 5043 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5044 return JumpFailed; 5045 if (Error Err = parseFunctionBody(F)) 5046 return Err; 5047 F->setIsMaterializable(false); 5048 5049 if (StripDebugInfo) 5050 stripDebugInfo(*F); 5051 5052 // Upgrade any old intrinsic calls in the function. 5053 for (auto &I : UpgradedIntrinsics) { 5054 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5055 UI != UE;) { 5056 User *U = *UI; 5057 ++UI; 5058 if (CallInst *CI = dyn_cast<CallInst>(U)) 5059 UpgradeIntrinsicCall(CI, I.second); 5060 } 5061 } 5062 5063 // Update calls to the remangled intrinsics 5064 for (auto &I : RemangledIntrinsics) 5065 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5066 UI != UE;) 5067 // Don't expect any other users than call sites 5068 CallSite(*UI++).setCalledFunction(I.second); 5069 5070 // Finish fn->subprogram upgrade for materialized functions. 5071 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5072 F->setSubprogram(SP); 5073 5074 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5075 if (!MDLoader->isStrippingTBAA()) { 5076 for (auto &I : instructions(F)) { 5077 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5078 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5079 continue; 5080 MDLoader->setStripTBAA(true); 5081 stripTBAA(F->getParent()); 5082 } 5083 } 5084 5085 // Bring in any functions that this function forward-referenced via 5086 // blockaddresses. 5087 return materializeForwardReferencedFunctions(); 5088 } 5089 5090 Error BitcodeReader::materializeModule() { 5091 if (Error Err = materializeMetadata()) 5092 return Err; 5093 5094 // Promise to materialize all forward references. 5095 WillMaterializeAllForwardRefs = true; 5096 5097 // Iterate over the module, deserializing any functions that are still on 5098 // disk. 5099 for (Function &F : *TheModule) { 5100 if (Error Err = materialize(&F)) 5101 return Err; 5102 } 5103 // At this point, if there are any function bodies, parse the rest of 5104 // the bits in the module past the last function block we have recorded 5105 // through either lazy scanning or the VST. 5106 if (LastFunctionBlockBit || NextUnreadBit) 5107 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5108 ? LastFunctionBlockBit 5109 : NextUnreadBit)) 5110 return Err; 5111 5112 // Check that all block address forward references got resolved (as we 5113 // promised above). 5114 if (!BasicBlockFwdRefs.empty()) 5115 return error("Never resolved function from blockaddress"); 5116 5117 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5118 // delete the old functions to clean up. We can't do this unless the entire 5119 // module is materialized because there could always be another function body 5120 // with calls to the old function. 5121 for (auto &I : UpgradedIntrinsics) { 5122 for (auto *U : I.first->users()) { 5123 if (CallInst *CI = dyn_cast<CallInst>(U)) 5124 UpgradeIntrinsicCall(CI, I.second); 5125 } 5126 if (!I.first->use_empty()) 5127 I.first->replaceAllUsesWith(I.second); 5128 I.first->eraseFromParent(); 5129 } 5130 UpgradedIntrinsics.clear(); 5131 // Do the same for remangled intrinsics 5132 for (auto &I : RemangledIntrinsics) { 5133 I.first->replaceAllUsesWith(I.second); 5134 I.first->eraseFromParent(); 5135 } 5136 RemangledIntrinsics.clear(); 5137 5138 UpgradeDebugInfo(*TheModule); 5139 5140 UpgradeModuleFlags(*TheModule); 5141 5142 UpgradeRetainReleaseMarker(*TheModule); 5143 5144 return Error::success(); 5145 } 5146 5147 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5148 return IdentifiedStructTypes; 5149 } 5150 5151 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5152 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5153 StringRef ModulePath, unsigned ModuleId) 5154 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5155 ModulePath(ModulePath), ModuleId(ModuleId) {} 5156 5157 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5158 TheIndex.addModule(ModulePath, ModuleId); 5159 } 5160 5161 ModuleSummaryIndex::ModuleInfo * 5162 ModuleSummaryIndexBitcodeReader::getThisModule() { 5163 return TheIndex.getModule(ModulePath); 5164 } 5165 5166 std::pair<ValueInfo, GlobalValue::GUID> 5167 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5168 auto VGI = ValueIdToValueInfoMap[ValueId]; 5169 assert(VGI.first); 5170 return VGI; 5171 } 5172 5173 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5174 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5175 StringRef SourceFileName) { 5176 std::string GlobalId = 5177 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5178 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5179 auto OriginalNameID = ValueGUID; 5180 if (GlobalValue::isLocalLinkage(Linkage)) 5181 OriginalNameID = GlobalValue::getGUID(ValueName); 5182 if (PrintSummaryGUIDs) 5183 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5184 << ValueName << "\n"; 5185 5186 // UseStrtab is false for legacy summary formats and value names are 5187 // created on stack. In that case we save the name in a string saver in 5188 // the index so that the value name can be recorded. 5189 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5190 TheIndex.getOrInsertValueInfo( 5191 ValueGUID, 5192 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5193 OriginalNameID); 5194 } 5195 5196 // Specialized value symbol table parser used when reading module index 5197 // blocks where we don't actually create global values. The parsed information 5198 // is saved in the bitcode reader for use when later parsing summaries. 5199 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5200 uint64_t Offset, 5201 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5202 // With a strtab the VST is not required to parse the summary. 5203 if (UseStrtab) 5204 return Error::success(); 5205 5206 assert(Offset > 0 && "Expected non-zero VST offset"); 5207 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5208 if (!MaybeCurrentBit) 5209 return MaybeCurrentBit.takeError(); 5210 uint64_t CurrentBit = MaybeCurrentBit.get(); 5211 5212 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5213 return Err; 5214 5215 SmallVector<uint64_t, 64> Record; 5216 5217 // Read all the records for this value table. 5218 SmallString<128> ValueName; 5219 5220 while (true) { 5221 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5222 if (!MaybeEntry) 5223 return MaybeEntry.takeError(); 5224 BitstreamEntry Entry = MaybeEntry.get(); 5225 5226 switch (Entry.Kind) { 5227 case BitstreamEntry::SubBlock: // Handled for us already. 5228 case BitstreamEntry::Error: 5229 return error("Malformed block"); 5230 case BitstreamEntry::EndBlock: 5231 // Done parsing VST, jump back to wherever we came from. 5232 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5233 return JumpFailed; 5234 return Error::success(); 5235 case BitstreamEntry::Record: 5236 // The interesting case. 5237 break; 5238 } 5239 5240 // Read a record. 5241 Record.clear(); 5242 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5243 if (!MaybeRecord) 5244 return MaybeRecord.takeError(); 5245 switch (MaybeRecord.get()) { 5246 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5247 break; 5248 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5249 if (convertToString(Record, 1, ValueName)) 5250 return error("Invalid record"); 5251 unsigned ValueID = Record[0]; 5252 assert(!SourceFileName.empty()); 5253 auto VLI = ValueIdToLinkageMap.find(ValueID); 5254 assert(VLI != ValueIdToLinkageMap.end() && 5255 "No linkage found for VST entry?"); 5256 auto Linkage = VLI->second; 5257 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5258 ValueName.clear(); 5259 break; 5260 } 5261 case bitc::VST_CODE_FNENTRY: { 5262 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5263 if (convertToString(Record, 2, ValueName)) 5264 return error("Invalid record"); 5265 unsigned ValueID = Record[0]; 5266 assert(!SourceFileName.empty()); 5267 auto VLI = ValueIdToLinkageMap.find(ValueID); 5268 assert(VLI != ValueIdToLinkageMap.end() && 5269 "No linkage found for VST entry?"); 5270 auto Linkage = VLI->second; 5271 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5272 ValueName.clear(); 5273 break; 5274 } 5275 case bitc::VST_CODE_COMBINED_ENTRY: { 5276 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5277 unsigned ValueID = Record[0]; 5278 GlobalValue::GUID RefGUID = Record[1]; 5279 // The "original name", which is the second value of the pair will be 5280 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5281 ValueIdToValueInfoMap[ValueID] = 5282 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5283 break; 5284 } 5285 } 5286 } 5287 } 5288 5289 // Parse just the blocks needed for building the index out of the module. 5290 // At the end of this routine the module Index is populated with a map 5291 // from global value id to GlobalValueSummary objects. 5292 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5293 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5294 return Err; 5295 5296 SmallVector<uint64_t, 64> Record; 5297 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5298 unsigned ValueId = 0; 5299 5300 // Read the index for this module. 5301 while (true) { 5302 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5303 if (!MaybeEntry) 5304 return MaybeEntry.takeError(); 5305 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5306 5307 switch (Entry.Kind) { 5308 case BitstreamEntry::Error: 5309 return error("Malformed block"); 5310 case BitstreamEntry::EndBlock: 5311 return Error::success(); 5312 5313 case BitstreamEntry::SubBlock: 5314 switch (Entry.ID) { 5315 default: // Skip unknown content. 5316 if (Error Err = Stream.SkipBlock()) 5317 return Err; 5318 break; 5319 case bitc::BLOCKINFO_BLOCK_ID: 5320 // Need to parse these to get abbrev ids (e.g. for VST) 5321 if (readBlockInfo()) 5322 return error("Malformed block"); 5323 break; 5324 case bitc::VALUE_SYMTAB_BLOCK_ID: 5325 // Should have been parsed earlier via VSTOffset, unless there 5326 // is no summary section. 5327 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5328 !SeenGlobalValSummary) && 5329 "Expected early VST parse via VSTOffset record"); 5330 if (Error Err = Stream.SkipBlock()) 5331 return Err; 5332 break; 5333 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5334 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5335 // Add the module if it is a per-module index (has a source file name). 5336 if (!SourceFileName.empty()) 5337 addThisModule(); 5338 assert(!SeenValueSymbolTable && 5339 "Already read VST when parsing summary block?"); 5340 // We might not have a VST if there were no values in the 5341 // summary. An empty summary block generated when we are 5342 // performing ThinLTO compiles so we don't later invoke 5343 // the regular LTO process on them. 5344 if (VSTOffset > 0) { 5345 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5346 return Err; 5347 SeenValueSymbolTable = true; 5348 } 5349 SeenGlobalValSummary = true; 5350 if (Error Err = parseEntireSummary(Entry.ID)) 5351 return Err; 5352 break; 5353 case bitc::MODULE_STRTAB_BLOCK_ID: 5354 if (Error Err = parseModuleStringTable()) 5355 return Err; 5356 break; 5357 } 5358 continue; 5359 5360 case BitstreamEntry::Record: { 5361 Record.clear(); 5362 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5363 if (!MaybeBitCode) 5364 return MaybeBitCode.takeError(); 5365 switch (MaybeBitCode.get()) { 5366 default: 5367 break; // Default behavior, ignore unknown content. 5368 case bitc::MODULE_CODE_VERSION: { 5369 if (Error Err = parseVersionRecord(Record).takeError()) 5370 return Err; 5371 break; 5372 } 5373 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5374 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5375 SmallString<128> ValueName; 5376 if (convertToString(Record, 0, ValueName)) 5377 return error("Invalid record"); 5378 SourceFileName = ValueName.c_str(); 5379 break; 5380 } 5381 /// MODULE_CODE_HASH: [5*i32] 5382 case bitc::MODULE_CODE_HASH: { 5383 if (Record.size() != 5) 5384 return error("Invalid hash length " + Twine(Record.size()).str()); 5385 auto &Hash = getThisModule()->second.second; 5386 int Pos = 0; 5387 for (auto &Val : Record) { 5388 assert(!(Val >> 32) && "Unexpected high bits set"); 5389 Hash[Pos++] = Val; 5390 } 5391 break; 5392 } 5393 /// MODULE_CODE_VSTOFFSET: [offset] 5394 case bitc::MODULE_CODE_VSTOFFSET: 5395 if (Record.size() < 1) 5396 return error("Invalid record"); 5397 // Note that we subtract 1 here because the offset is relative to one 5398 // word before the start of the identification or module block, which 5399 // was historically always the start of the regular bitcode header. 5400 VSTOffset = Record[0] - 1; 5401 break; 5402 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5403 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5404 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5405 // v2: [strtab offset, strtab size, v1] 5406 case bitc::MODULE_CODE_GLOBALVAR: 5407 case bitc::MODULE_CODE_FUNCTION: 5408 case bitc::MODULE_CODE_ALIAS: { 5409 StringRef Name; 5410 ArrayRef<uint64_t> GVRecord; 5411 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5412 if (GVRecord.size() <= 3) 5413 return error("Invalid record"); 5414 uint64_t RawLinkage = GVRecord[3]; 5415 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5416 if (!UseStrtab) { 5417 ValueIdToLinkageMap[ValueId++] = Linkage; 5418 break; 5419 } 5420 5421 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5422 break; 5423 } 5424 } 5425 } 5426 continue; 5427 } 5428 } 5429 } 5430 5431 std::vector<ValueInfo> 5432 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5433 std::vector<ValueInfo> Ret; 5434 Ret.reserve(Record.size()); 5435 for (uint64_t RefValueId : Record) 5436 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5437 return Ret; 5438 } 5439 5440 std::vector<FunctionSummary::EdgeTy> 5441 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5442 bool IsOldProfileFormat, 5443 bool HasProfile, bool HasRelBF) { 5444 std::vector<FunctionSummary::EdgeTy> Ret; 5445 Ret.reserve(Record.size()); 5446 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5447 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5448 uint64_t RelBF = 0; 5449 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5450 if (IsOldProfileFormat) { 5451 I += 1; // Skip old callsitecount field 5452 if (HasProfile) 5453 I += 1; // Skip old profilecount field 5454 } else if (HasProfile) 5455 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5456 else if (HasRelBF) 5457 RelBF = Record[++I]; 5458 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5459 } 5460 return Ret; 5461 } 5462 5463 static void 5464 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5465 WholeProgramDevirtResolution &Wpd) { 5466 uint64_t ArgNum = Record[Slot++]; 5467 WholeProgramDevirtResolution::ByArg &B = 5468 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5469 Slot += ArgNum; 5470 5471 B.TheKind = 5472 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5473 B.Info = Record[Slot++]; 5474 B.Byte = Record[Slot++]; 5475 B.Bit = Record[Slot++]; 5476 } 5477 5478 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5479 StringRef Strtab, size_t &Slot, 5480 TypeIdSummary &TypeId) { 5481 uint64_t Id = Record[Slot++]; 5482 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5483 5484 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5485 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5486 static_cast<size_t>(Record[Slot + 1])}; 5487 Slot += 2; 5488 5489 uint64_t ResByArgNum = Record[Slot++]; 5490 for (uint64_t I = 0; I != ResByArgNum; ++I) 5491 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5492 } 5493 5494 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5495 StringRef Strtab, 5496 ModuleSummaryIndex &TheIndex) { 5497 size_t Slot = 0; 5498 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5499 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5500 Slot += 2; 5501 5502 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5503 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5504 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5505 TypeId.TTRes.SizeM1 = Record[Slot++]; 5506 TypeId.TTRes.BitMask = Record[Slot++]; 5507 TypeId.TTRes.InlineBits = Record[Slot++]; 5508 5509 while (Slot < Record.size()) 5510 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5511 } 5512 5513 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) { 5514 // Read-only refs are in the end of the refs list. 5515 for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo) 5516 Refs[RefNo].setReadOnly(); 5517 } 5518 5519 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5520 // objects in the index. 5521 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5522 if (Error Err = Stream.EnterSubBlock(ID)) 5523 return Err; 5524 SmallVector<uint64_t, 64> Record; 5525 5526 // Parse version 5527 { 5528 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5529 if (!MaybeEntry) 5530 return MaybeEntry.takeError(); 5531 BitstreamEntry Entry = MaybeEntry.get(); 5532 5533 if (Entry.Kind != BitstreamEntry::Record) 5534 return error("Invalid Summary Block: record for version expected"); 5535 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5536 if (!MaybeRecord) 5537 return MaybeRecord.takeError(); 5538 if (MaybeRecord.get() != bitc::FS_VERSION) 5539 return error("Invalid Summary Block: version expected"); 5540 } 5541 const uint64_t Version = Record[0]; 5542 const bool IsOldProfileFormat = Version == 1; 5543 if (Version < 1 || Version > 6) 5544 return error("Invalid summary version " + Twine(Version) + 5545 ". Version should be in the range [1-6]."); 5546 Record.clear(); 5547 5548 // Keep around the last seen summary to be used when we see an optional 5549 // "OriginalName" attachement. 5550 GlobalValueSummary *LastSeenSummary = nullptr; 5551 GlobalValue::GUID LastSeenGUID = 0; 5552 5553 // We can expect to see any number of type ID information records before 5554 // each function summary records; these variables store the information 5555 // collected so far so that it can be used to create the summary object. 5556 std::vector<GlobalValue::GUID> PendingTypeTests; 5557 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5558 PendingTypeCheckedLoadVCalls; 5559 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5560 PendingTypeCheckedLoadConstVCalls; 5561 5562 while (true) { 5563 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5564 if (!MaybeEntry) 5565 return MaybeEntry.takeError(); 5566 BitstreamEntry Entry = MaybeEntry.get(); 5567 5568 switch (Entry.Kind) { 5569 case BitstreamEntry::SubBlock: // Handled for us already. 5570 case BitstreamEntry::Error: 5571 return error("Malformed block"); 5572 case BitstreamEntry::EndBlock: 5573 return Error::success(); 5574 case BitstreamEntry::Record: 5575 // The interesting case. 5576 break; 5577 } 5578 5579 // Read a record. The record format depends on whether this 5580 // is a per-module index or a combined index file. In the per-module 5581 // case the records contain the associated value's ID for correlation 5582 // with VST entries. In the combined index the correlation is done 5583 // via the bitcode offset of the summary records (which were saved 5584 // in the combined index VST entries). The records also contain 5585 // information used for ThinLTO renaming and importing. 5586 Record.clear(); 5587 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5588 if (!MaybeBitCode) 5589 return MaybeBitCode.takeError(); 5590 switch (unsigned BitCode = MaybeBitCode.get()) { 5591 default: // Default behavior: ignore. 5592 break; 5593 case bitc::FS_FLAGS: { // [flags] 5594 uint64_t Flags = Record[0]; 5595 // Scan flags. 5596 assert(Flags <= 0x1f && "Unexpected bits in flag"); 5597 5598 // 1 bit: WithGlobalValueDeadStripping flag. 5599 // Set on combined index only. 5600 if (Flags & 0x1) 5601 TheIndex.setWithGlobalValueDeadStripping(); 5602 // 1 bit: SkipModuleByDistributedBackend flag. 5603 // Set on combined index only. 5604 if (Flags & 0x2) 5605 TheIndex.setSkipModuleByDistributedBackend(); 5606 // 1 bit: HasSyntheticEntryCounts flag. 5607 // Set on combined index only. 5608 if (Flags & 0x4) 5609 TheIndex.setHasSyntheticEntryCounts(); 5610 // 1 bit: DisableSplitLTOUnit flag. 5611 // Set on per module indexes. It is up to the client to validate 5612 // the consistency of this flag across modules being linked. 5613 if (Flags & 0x8) 5614 TheIndex.setEnableSplitLTOUnit(); 5615 // 1 bit: PartiallySplitLTOUnits flag. 5616 // Set on combined index only. 5617 if (Flags & 0x10) 5618 TheIndex.setPartiallySplitLTOUnits(); 5619 break; 5620 } 5621 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5622 uint64_t ValueID = Record[0]; 5623 GlobalValue::GUID RefGUID = Record[1]; 5624 ValueIdToValueInfoMap[ValueID] = 5625 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5626 break; 5627 } 5628 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5629 // numrefs x valueid, n x (valueid)] 5630 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5631 // numrefs x valueid, 5632 // n x (valueid, hotness)] 5633 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5634 // numrefs x valueid, 5635 // n x (valueid, relblockfreq)] 5636 case bitc::FS_PERMODULE: 5637 case bitc::FS_PERMODULE_RELBF: 5638 case bitc::FS_PERMODULE_PROFILE: { 5639 unsigned ValueID = Record[0]; 5640 uint64_t RawFlags = Record[1]; 5641 unsigned InstCount = Record[2]; 5642 uint64_t RawFunFlags = 0; 5643 unsigned NumRefs = Record[3]; 5644 unsigned NumImmutableRefs = 0; 5645 int RefListStartIndex = 4; 5646 if (Version >= 4) { 5647 RawFunFlags = Record[3]; 5648 NumRefs = Record[4]; 5649 RefListStartIndex = 5; 5650 if (Version >= 5) { 5651 NumImmutableRefs = Record[5]; 5652 RefListStartIndex = 6; 5653 } 5654 } 5655 5656 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5657 // The module path string ref set in the summary must be owned by the 5658 // index's module string table. Since we don't have a module path 5659 // string table section in the per-module index, we create a single 5660 // module path string table entry with an empty (0) ID to take 5661 // ownership. 5662 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5663 assert(Record.size() >= RefListStartIndex + NumRefs && 5664 "Record size inconsistent with number of references"); 5665 std::vector<ValueInfo> Refs = makeRefList( 5666 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5667 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5668 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5669 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5670 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5671 IsOldProfileFormat, HasProfile, HasRelBF); 5672 setImmutableRefs(Refs, NumImmutableRefs); 5673 auto FS = llvm::make_unique<FunctionSummary>( 5674 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5675 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5676 std::move(PendingTypeTestAssumeVCalls), 5677 std::move(PendingTypeCheckedLoadVCalls), 5678 std::move(PendingTypeTestAssumeConstVCalls), 5679 std::move(PendingTypeCheckedLoadConstVCalls)); 5680 PendingTypeTests.clear(); 5681 PendingTypeTestAssumeVCalls.clear(); 5682 PendingTypeCheckedLoadVCalls.clear(); 5683 PendingTypeTestAssumeConstVCalls.clear(); 5684 PendingTypeCheckedLoadConstVCalls.clear(); 5685 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5686 FS->setModulePath(getThisModule()->first()); 5687 FS->setOriginalName(VIAndOriginalGUID.second); 5688 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5689 break; 5690 } 5691 // FS_ALIAS: [valueid, flags, valueid] 5692 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5693 // they expect all aliasee summaries to be available. 5694 case bitc::FS_ALIAS: { 5695 unsigned ValueID = Record[0]; 5696 uint64_t RawFlags = Record[1]; 5697 unsigned AliaseeID = Record[2]; 5698 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5699 auto AS = llvm::make_unique<AliasSummary>(Flags); 5700 // The module path string ref set in the summary must be owned by the 5701 // index's module string table. Since we don't have a module path 5702 // string table section in the per-module index, we create a single 5703 // module path string table entry with an empty (0) ID to take 5704 // ownership. 5705 AS->setModulePath(getThisModule()->first()); 5706 5707 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5708 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5709 if (!AliaseeInModule) 5710 return error("Alias expects aliasee summary to be parsed"); 5711 AS->setAliasee(AliaseeVI, AliaseeInModule); 5712 5713 auto GUID = getValueInfoFromValueId(ValueID); 5714 AS->setOriginalName(GUID.second); 5715 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5716 break; 5717 } 5718 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5719 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5720 unsigned ValueID = Record[0]; 5721 uint64_t RawFlags = Record[1]; 5722 unsigned RefArrayStart = 2; 5723 GlobalVarSummary::GVarFlags GVF; 5724 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5725 if (Version >= 5) { 5726 GVF = getDecodedGVarFlags(Record[2]); 5727 RefArrayStart = 3; 5728 } 5729 std::vector<ValueInfo> Refs = 5730 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5731 auto FS = 5732 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5733 FS->setModulePath(getThisModule()->first()); 5734 auto GUID = getValueInfoFromValueId(ValueID); 5735 FS->setOriginalName(GUID.second); 5736 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5737 break; 5738 } 5739 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5740 // numrefs x valueid, n x (valueid)] 5741 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5742 // numrefs x valueid, n x (valueid, hotness)] 5743 case bitc::FS_COMBINED: 5744 case bitc::FS_COMBINED_PROFILE: { 5745 unsigned ValueID = Record[0]; 5746 uint64_t ModuleId = Record[1]; 5747 uint64_t RawFlags = Record[2]; 5748 unsigned InstCount = Record[3]; 5749 uint64_t RawFunFlags = 0; 5750 uint64_t EntryCount = 0; 5751 unsigned NumRefs = Record[4]; 5752 unsigned NumImmutableRefs = 0; 5753 int RefListStartIndex = 5; 5754 5755 if (Version >= 4) { 5756 RawFunFlags = Record[4]; 5757 RefListStartIndex = 6; 5758 size_t NumRefsIndex = 5; 5759 if (Version >= 5) { 5760 RefListStartIndex = 7; 5761 if (Version >= 6) { 5762 NumRefsIndex = 6; 5763 EntryCount = Record[5]; 5764 RefListStartIndex = 8; 5765 } 5766 NumImmutableRefs = Record[RefListStartIndex - 1]; 5767 } 5768 NumRefs = Record[NumRefsIndex]; 5769 } 5770 5771 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5772 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5773 assert(Record.size() >= RefListStartIndex + NumRefs && 5774 "Record size inconsistent with number of references"); 5775 std::vector<ValueInfo> Refs = makeRefList( 5776 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5777 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5778 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5779 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5780 IsOldProfileFormat, HasProfile, false); 5781 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5782 setImmutableRefs(Refs, NumImmutableRefs); 5783 auto FS = llvm::make_unique<FunctionSummary>( 5784 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 5785 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 5786 std::move(PendingTypeTestAssumeVCalls), 5787 std::move(PendingTypeCheckedLoadVCalls), 5788 std::move(PendingTypeTestAssumeConstVCalls), 5789 std::move(PendingTypeCheckedLoadConstVCalls)); 5790 PendingTypeTests.clear(); 5791 PendingTypeTestAssumeVCalls.clear(); 5792 PendingTypeCheckedLoadVCalls.clear(); 5793 PendingTypeTestAssumeConstVCalls.clear(); 5794 PendingTypeCheckedLoadConstVCalls.clear(); 5795 LastSeenSummary = FS.get(); 5796 LastSeenGUID = VI.getGUID(); 5797 FS->setModulePath(ModuleIdMap[ModuleId]); 5798 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5799 break; 5800 } 5801 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5802 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5803 // they expect all aliasee summaries to be available. 5804 case bitc::FS_COMBINED_ALIAS: { 5805 unsigned ValueID = Record[0]; 5806 uint64_t ModuleId = Record[1]; 5807 uint64_t RawFlags = Record[2]; 5808 unsigned AliaseeValueId = Record[3]; 5809 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5810 auto AS = llvm::make_unique<AliasSummary>(Flags); 5811 LastSeenSummary = AS.get(); 5812 AS->setModulePath(ModuleIdMap[ModuleId]); 5813 5814 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 5815 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 5816 AS->setAliasee(AliaseeVI, AliaseeInModule); 5817 5818 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5819 LastSeenGUID = VI.getGUID(); 5820 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5821 break; 5822 } 5823 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5824 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5825 unsigned ValueID = Record[0]; 5826 uint64_t ModuleId = Record[1]; 5827 uint64_t RawFlags = Record[2]; 5828 unsigned RefArrayStart = 3; 5829 GlobalVarSummary::GVarFlags GVF; 5830 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5831 if (Version >= 5) { 5832 GVF = getDecodedGVarFlags(Record[3]); 5833 RefArrayStart = 4; 5834 } 5835 std::vector<ValueInfo> Refs = 5836 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5837 auto FS = 5838 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5839 LastSeenSummary = FS.get(); 5840 FS->setModulePath(ModuleIdMap[ModuleId]); 5841 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5842 LastSeenGUID = VI.getGUID(); 5843 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5844 break; 5845 } 5846 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5847 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5848 uint64_t OriginalName = Record[0]; 5849 if (!LastSeenSummary) 5850 return error("Name attachment that does not follow a combined record"); 5851 LastSeenSummary->setOriginalName(OriginalName); 5852 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5853 // Reset the LastSeenSummary 5854 LastSeenSummary = nullptr; 5855 LastSeenGUID = 0; 5856 break; 5857 } 5858 case bitc::FS_TYPE_TESTS: 5859 assert(PendingTypeTests.empty()); 5860 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5861 Record.end()); 5862 break; 5863 5864 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5865 assert(PendingTypeTestAssumeVCalls.empty()); 5866 for (unsigned I = 0; I != Record.size(); I += 2) 5867 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5868 break; 5869 5870 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5871 assert(PendingTypeCheckedLoadVCalls.empty()); 5872 for (unsigned I = 0; I != Record.size(); I += 2) 5873 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5874 break; 5875 5876 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5877 PendingTypeTestAssumeConstVCalls.push_back( 5878 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5879 break; 5880 5881 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5882 PendingTypeCheckedLoadConstVCalls.push_back( 5883 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5884 break; 5885 5886 case bitc::FS_CFI_FUNCTION_DEFS: { 5887 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5888 for (unsigned I = 0; I != Record.size(); I += 2) 5889 CfiFunctionDefs.insert( 5890 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5891 break; 5892 } 5893 5894 case bitc::FS_CFI_FUNCTION_DECLS: { 5895 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5896 for (unsigned I = 0; I != Record.size(); I += 2) 5897 CfiFunctionDecls.insert( 5898 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5899 break; 5900 } 5901 5902 case bitc::FS_TYPE_ID: 5903 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 5904 break; 5905 } 5906 } 5907 llvm_unreachable("Exit infinite loop"); 5908 } 5909 5910 // Parse the module string table block into the Index. 5911 // This populates the ModulePathStringTable map in the index. 5912 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5913 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5914 return Err; 5915 5916 SmallVector<uint64_t, 64> Record; 5917 5918 SmallString<128> ModulePath; 5919 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5920 5921 while (true) { 5922 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5923 if (!MaybeEntry) 5924 return MaybeEntry.takeError(); 5925 BitstreamEntry Entry = MaybeEntry.get(); 5926 5927 switch (Entry.Kind) { 5928 case BitstreamEntry::SubBlock: // Handled for us already. 5929 case BitstreamEntry::Error: 5930 return error("Malformed block"); 5931 case BitstreamEntry::EndBlock: 5932 return Error::success(); 5933 case BitstreamEntry::Record: 5934 // The interesting case. 5935 break; 5936 } 5937 5938 Record.clear(); 5939 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5940 if (!MaybeRecord) 5941 return MaybeRecord.takeError(); 5942 switch (MaybeRecord.get()) { 5943 default: // Default behavior: ignore. 5944 break; 5945 case bitc::MST_CODE_ENTRY: { 5946 // MST_ENTRY: [modid, namechar x N] 5947 uint64_t ModuleId = Record[0]; 5948 5949 if (convertToString(Record, 1, ModulePath)) 5950 return error("Invalid record"); 5951 5952 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5953 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5954 5955 ModulePath.clear(); 5956 break; 5957 } 5958 /// MST_CODE_HASH: [5*i32] 5959 case bitc::MST_CODE_HASH: { 5960 if (Record.size() != 5) 5961 return error("Invalid hash length " + Twine(Record.size()).str()); 5962 if (!LastSeenModule) 5963 return error("Invalid hash that does not follow a module path"); 5964 int Pos = 0; 5965 for (auto &Val : Record) { 5966 assert(!(Val >> 32) && "Unexpected high bits set"); 5967 LastSeenModule->second.second[Pos++] = Val; 5968 } 5969 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5970 LastSeenModule = nullptr; 5971 break; 5972 } 5973 } 5974 } 5975 llvm_unreachable("Exit infinite loop"); 5976 } 5977 5978 namespace { 5979 5980 // FIXME: This class is only here to support the transition to llvm::Error. It 5981 // will be removed once this transition is complete. Clients should prefer to 5982 // deal with the Error value directly, rather than converting to error_code. 5983 class BitcodeErrorCategoryType : public std::error_category { 5984 const char *name() const noexcept override { 5985 return "llvm.bitcode"; 5986 } 5987 5988 std::string message(int IE) const override { 5989 BitcodeError E = static_cast<BitcodeError>(IE); 5990 switch (E) { 5991 case BitcodeError::CorruptedBitcode: 5992 return "Corrupted bitcode"; 5993 } 5994 llvm_unreachable("Unknown error type!"); 5995 } 5996 }; 5997 5998 } // end anonymous namespace 5999 6000 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6001 6002 const std::error_category &llvm::BitcodeErrorCategory() { 6003 return *ErrorCategory; 6004 } 6005 6006 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6007 unsigned Block, unsigned RecordID) { 6008 if (Error Err = Stream.EnterSubBlock(Block)) 6009 return std::move(Err); 6010 6011 StringRef Strtab; 6012 while (true) { 6013 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6014 if (!MaybeEntry) 6015 return MaybeEntry.takeError(); 6016 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6017 6018 switch (Entry.Kind) { 6019 case BitstreamEntry::EndBlock: 6020 return Strtab; 6021 6022 case BitstreamEntry::Error: 6023 return error("Malformed block"); 6024 6025 case BitstreamEntry::SubBlock: 6026 if (Error Err = Stream.SkipBlock()) 6027 return std::move(Err); 6028 break; 6029 6030 case BitstreamEntry::Record: 6031 StringRef Blob; 6032 SmallVector<uint64_t, 1> Record; 6033 Expected<unsigned> MaybeRecord = 6034 Stream.readRecord(Entry.ID, Record, &Blob); 6035 if (!MaybeRecord) 6036 return MaybeRecord.takeError(); 6037 if (MaybeRecord.get() == RecordID) 6038 Strtab = Blob; 6039 break; 6040 } 6041 } 6042 } 6043 6044 //===----------------------------------------------------------------------===// 6045 // External interface 6046 //===----------------------------------------------------------------------===// 6047 6048 Expected<std::vector<BitcodeModule>> 6049 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6050 auto FOrErr = getBitcodeFileContents(Buffer); 6051 if (!FOrErr) 6052 return FOrErr.takeError(); 6053 return std::move(FOrErr->Mods); 6054 } 6055 6056 Expected<BitcodeFileContents> 6057 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6058 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6059 if (!StreamOrErr) 6060 return StreamOrErr.takeError(); 6061 BitstreamCursor &Stream = *StreamOrErr; 6062 6063 BitcodeFileContents F; 6064 while (true) { 6065 uint64_t BCBegin = Stream.getCurrentByteNo(); 6066 6067 // We may be consuming bitcode from a client that leaves garbage at the end 6068 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6069 // the end that there cannot possibly be another module, stop looking. 6070 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6071 return F; 6072 6073 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6074 if (!MaybeEntry) 6075 return MaybeEntry.takeError(); 6076 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6077 6078 switch (Entry.Kind) { 6079 case BitstreamEntry::EndBlock: 6080 case BitstreamEntry::Error: 6081 return error("Malformed block"); 6082 6083 case BitstreamEntry::SubBlock: { 6084 uint64_t IdentificationBit = -1ull; 6085 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6086 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6087 if (Error Err = Stream.SkipBlock()) 6088 return std::move(Err); 6089 6090 { 6091 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6092 if (!MaybeEntry) 6093 return MaybeEntry.takeError(); 6094 Entry = MaybeEntry.get(); 6095 } 6096 6097 if (Entry.Kind != BitstreamEntry::SubBlock || 6098 Entry.ID != bitc::MODULE_BLOCK_ID) 6099 return error("Malformed block"); 6100 } 6101 6102 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6103 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6104 if (Error Err = Stream.SkipBlock()) 6105 return std::move(Err); 6106 6107 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6108 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6109 Buffer.getBufferIdentifier(), IdentificationBit, 6110 ModuleBit}); 6111 continue; 6112 } 6113 6114 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6115 Expected<StringRef> Strtab = 6116 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6117 if (!Strtab) 6118 return Strtab.takeError(); 6119 // This string table is used by every preceding bitcode module that does 6120 // not have its own string table. A bitcode file may have multiple 6121 // string tables if it was created by binary concatenation, for example 6122 // with "llvm-cat -b". 6123 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6124 if (!I->Strtab.empty()) 6125 break; 6126 I->Strtab = *Strtab; 6127 } 6128 // Similarly, the string table is used by every preceding symbol table; 6129 // normally there will be just one unless the bitcode file was created 6130 // by binary concatenation. 6131 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6132 F.StrtabForSymtab = *Strtab; 6133 continue; 6134 } 6135 6136 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6137 Expected<StringRef> SymtabOrErr = 6138 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6139 if (!SymtabOrErr) 6140 return SymtabOrErr.takeError(); 6141 6142 // We can expect the bitcode file to have multiple symbol tables if it 6143 // was created by binary concatenation. In that case we silently 6144 // ignore any subsequent symbol tables, which is fine because this is a 6145 // low level function. The client is expected to notice that the number 6146 // of modules in the symbol table does not match the number of modules 6147 // in the input file and regenerate the symbol table. 6148 if (F.Symtab.empty()) 6149 F.Symtab = *SymtabOrErr; 6150 continue; 6151 } 6152 6153 if (Error Err = Stream.SkipBlock()) 6154 return std::move(Err); 6155 continue; 6156 } 6157 case BitstreamEntry::Record: 6158 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6159 continue; 6160 else 6161 return StreamFailed.takeError(); 6162 } 6163 } 6164 } 6165 6166 /// Get a lazy one-at-time loading module from bitcode. 6167 /// 6168 /// This isn't always used in a lazy context. In particular, it's also used by 6169 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6170 /// in forward-referenced functions from block address references. 6171 /// 6172 /// \param[in] MaterializeAll Set to \c true if we should materialize 6173 /// everything. 6174 Expected<std::unique_ptr<Module>> 6175 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6176 bool ShouldLazyLoadMetadata, bool IsImporting) { 6177 BitstreamCursor Stream(Buffer); 6178 6179 std::string ProducerIdentification; 6180 if (IdentificationBit != -1ull) { 6181 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6182 return std::move(JumpFailed); 6183 Expected<std::string> ProducerIdentificationOrErr = 6184 readIdentificationBlock(Stream); 6185 if (!ProducerIdentificationOrErr) 6186 return ProducerIdentificationOrErr.takeError(); 6187 6188 ProducerIdentification = *ProducerIdentificationOrErr; 6189 } 6190 6191 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6192 return std::move(JumpFailed); 6193 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6194 Context); 6195 6196 std::unique_ptr<Module> M = 6197 llvm::make_unique<Module>(ModuleIdentifier, Context); 6198 M->setMaterializer(R); 6199 6200 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6201 if (Error Err = 6202 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 6203 return std::move(Err); 6204 6205 if (MaterializeAll) { 6206 // Read in the entire module, and destroy the BitcodeReader. 6207 if (Error Err = M->materializeAll()) 6208 return std::move(Err); 6209 } else { 6210 // Resolve forward references from blockaddresses. 6211 if (Error Err = R->materializeForwardReferencedFunctions()) 6212 return std::move(Err); 6213 } 6214 return std::move(M); 6215 } 6216 6217 Expected<std::unique_ptr<Module>> 6218 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6219 bool IsImporting) { 6220 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 6221 } 6222 6223 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6224 // We don't use ModuleIdentifier here because the client may need to control the 6225 // module path used in the combined summary (e.g. when reading summaries for 6226 // regular LTO modules). 6227 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6228 StringRef ModulePath, uint64_t ModuleId) { 6229 BitstreamCursor Stream(Buffer); 6230 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6231 return JumpFailed; 6232 6233 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6234 ModulePath, ModuleId); 6235 return R.parseModule(); 6236 } 6237 6238 // Parse the specified bitcode buffer, returning the function info index. 6239 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6240 BitstreamCursor Stream(Buffer); 6241 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6242 return std::move(JumpFailed); 6243 6244 auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6245 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6246 ModuleIdentifier, 0); 6247 6248 if (Error Err = R.parseModule()) 6249 return std::move(Err); 6250 6251 return std::move(Index); 6252 } 6253 6254 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6255 unsigned ID) { 6256 if (Error Err = Stream.EnterSubBlock(ID)) 6257 return std::move(Err); 6258 SmallVector<uint64_t, 64> Record; 6259 6260 while (true) { 6261 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6262 if (!MaybeEntry) 6263 return MaybeEntry.takeError(); 6264 BitstreamEntry Entry = MaybeEntry.get(); 6265 6266 switch (Entry.Kind) { 6267 case BitstreamEntry::SubBlock: // Handled for us already. 6268 case BitstreamEntry::Error: 6269 return error("Malformed block"); 6270 case BitstreamEntry::EndBlock: 6271 // If no flags record found, conservatively return true to mimic 6272 // behavior before this flag was added. 6273 return true; 6274 case BitstreamEntry::Record: 6275 // The interesting case. 6276 break; 6277 } 6278 6279 // Look for the FS_FLAGS record. 6280 Record.clear(); 6281 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6282 if (!MaybeBitCode) 6283 return MaybeBitCode.takeError(); 6284 switch (MaybeBitCode.get()) { 6285 default: // Default behavior: ignore. 6286 break; 6287 case bitc::FS_FLAGS: { // [flags] 6288 uint64_t Flags = Record[0]; 6289 // Scan flags. 6290 assert(Flags <= 0x1f && "Unexpected bits in flag"); 6291 6292 return Flags & 0x8; 6293 } 6294 } 6295 } 6296 llvm_unreachable("Exit infinite loop"); 6297 } 6298 6299 // Check if the given bitcode buffer contains a global value summary block. 6300 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6301 BitstreamCursor Stream(Buffer); 6302 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6303 return std::move(JumpFailed); 6304 6305 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6306 return std::move(Err); 6307 6308 while (true) { 6309 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6310 if (!MaybeEntry) 6311 return MaybeEntry.takeError(); 6312 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6313 6314 switch (Entry.Kind) { 6315 case BitstreamEntry::Error: 6316 return error("Malformed block"); 6317 case BitstreamEntry::EndBlock: 6318 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6319 /*EnableSplitLTOUnit=*/false}; 6320 6321 case BitstreamEntry::SubBlock: 6322 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6323 Expected<bool> EnableSplitLTOUnit = 6324 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6325 if (!EnableSplitLTOUnit) 6326 return EnableSplitLTOUnit.takeError(); 6327 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6328 *EnableSplitLTOUnit}; 6329 } 6330 6331 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6332 Expected<bool> EnableSplitLTOUnit = 6333 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6334 if (!EnableSplitLTOUnit) 6335 return EnableSplitLTOUnit.takeError(); 6336 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6337 *EnableSplitLTOUnit}; 6338 } 6339 6340 // Ignore other sub-blocks. 6341 if (Error Err = Stream.SkipBlock()) 6342 return std::move(Err); 6343 continue; 6344 6345 case BitstreamEntry::Record: 6346 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6347 continue; 6348 else 6349 return StreamFailed.takeError(); 6350 } 6351 } 6352 } 6353 6354 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6355 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6356 if (!MsOrErr) 6357 return MsOrErr.takeError(); 6358 6359 if (MsOrErr->size() != 1) 6360 return error("Expected a single module"); 6361 6362 return (*MsOrErr)[0]; 6363 } 6364 6365 Expected<std::unique_ptr<Module>> 6366 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6367 bool ShouldLazyLoadMetadata, bool IsImporting) { 6368 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6369 if (!BM) 6370 return BM.takeError(); 6371 6372 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6373 } 6374 6375 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6376 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6377 bool ShouldLazyLoadMetadata, bool IsImporting) { 6378 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6379 IsImporting); 6380 if (MOrErr) 6381 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6382 return MOrErr; 6383 } 6384 6385 Expected<std::unique_ptr<Module>> 6386 BitcodeModule::parseModule(LLVMContext &Context) { 6387 return getModuleImpl(Context, true, false, false); 6388 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6389 // written. We must defer until the Module has been fully materialized. 6390 } 6391 6392 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6393 LLVMContext &Context) { 6394 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6395 if (!BM) 6396 return BM.takeError(); 6397 6398 return BM->parseModule(Context); 6399 } 6400 6401 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6402 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6403 if (!StreamOrErr) 6404 return StreamOrErr.takeError(); 6405 6406 return readTriple(*StreamOrErr); 6407 } 6408 6409 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6410 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6411 if (!StreamOrErr) 6412 return StreamOrErr.takeError(); 6413 6414 return hasObjCCategory(*StreamOrErr); 6415 } 6416 6417 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6418 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6419 if (!StreamOrErr) 6420 return StreamOrErr.takeError(); 6421 6422 return readIdentificationCode(*StreamOrErr); 6423 } 6424 6425 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6426 ModuleSummaryIndex &CombinedIndex, 6427 uint64_t ModuleId) { 6428 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6429 if (!BM) 6430 return BM.takeError(); 6431 6432 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6433 } 6434 6435 Expected<std::unique_ptr<ModuleSummaryIndex>> 6436 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6437 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6438 if (!BM) 6439 return BM.takeError(); 6440 6441 return BM->getSummary(); 6442 } 6443 6444 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6445 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6446 if (!BM) 6447 return BM.takeError(); 6448 6449 return BM->getLTOInfo(); 6450 } 6451 6452 Expected<std::unique_ptr<ModuleSummaryIndex>> 6453 llvm::getModuleSummaryIndexForFile(StringRef Path, 6454 bool IgnoreEmptyThinLTOIndexFile) { 6455 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6456 MemoryBuffer::getFileOrSTDIN(Path); 6457 if (!FileOrErr) 6458 return errorCodeToError(FileOrErr.getError()); 6459 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6460 return nullptr; 6461 return getModuleSummaryIndex(**FileOrErr); 6462 } 6463