1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Bitcode/ReaderWriter.h"
11 #include "llvm/ADT/STLExtras.h"
12 #include "llvm/ADT/SmallString.h"
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/Triple.h"
15 #include "llvm/Bitcode/BitstreamReader.h"
16 #include "llvm/Bitcode/LLVMBitCodes.h"
17 #include "llvm/IR/AutoUpgrade.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfo.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/GVMaterializer.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/OperandTraits.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/FunctionInfo.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Support/DataStream.h"
33 #include "llvm/Support/ManagedStatic.h"
34 #include "llvm/Support/MathExtras.h"
35 #include "llvm/Support/MemoryBuffer.h"
36 #include "llvm/Support/raw_ostream.h"
37 #include <deque>
38 using namespace llvm;
39 
40 namespace {
41 enum {
42   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
43 };
44 
45 /// Indicates which operator an operand allows (for the few operands that may
46 /// only reference a certain operator).
47 enum OperatorConstraint {
48   OC_None = 0,  // No constraint
49   OC_CatchPad,  // Must be CatchPadInst
50   OC_CleanupPad // Must be CleanupPadInst
51 };
52 
53 class BitcodeReaderValueList {
54   std::vector<WeakVH> ValuePtrs;
55 
56   /// As we resolve forward-referenced constants, we add information about them
57   /// to this vector.  This allows us to resolve them in bulk instead of
58   /// resolving each reference at a time.  See the code in
59   /// ResolveConstantForwardRefs for more information about this.
60   ///
61   /// The key of this vector is the placeholder constant, the value is the slot
62   /// number that holds the resolved value.
63   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
64   ResolveConstantsTy ResolveConstants;
65   LLVMContext &Context;
66 public:
67   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
68   ~BitcodeReaderValueList() {
69     assert(ResolveConstants.empty() && "Constants not resolved?");
70   }
71 
72   // vector compatibility methods
73   unsigned size() const { return ValuePtrs.size(); }
74   void resize(unsigned N) { ValuePtrs.resize(N); }
75   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
76 
77   void clear() {
78     assert(ResolveConstants.empty() && "Constants not resolved?");
79     ValuePtrs.clear();
80   }
81 
82   Value *operator[](unsigned i) const {
83     assert(i < ValuePtrs.size());
84     return ValuePtrs[i];
85   }
86 
87   Value *back() const { return ValuePtrs.back(); }
88     void pop_back() { ValuePtrs.pop_back(); }
89   bool empty() const { return ValuePtrs.empty(); }
90   void shrinkTo(unsigned N) {
91     assert(N <= size() && "Invalid shrinkTo request!");
92     ValuePtrs.resize(N);
93   }
94 
95   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
96   Value *getValueFwdRef(unsigned Idx, Type *Ty,
97                         OperatorConstraint OC = OC_None);
98 
99   bool assignValue(Value *V, unsigned Idx);
100 
101   /// Once all constants are read, this method bulk resolves any forward
102   /// references.
103   void resolveConstantForwardRefs();
104 };
105 
106 class BitcodeReaderMDValueList {
107   unsigned NumFwdRefs;
108   bool AnyFwdRefs;
109   unsigned MinFwdRef;
110   unsigned MaxFwdRef;
111   std::vector<TrackingMDRef> MDValuePtrs;
112 
113   LLVMContext &Context;
114 public:
115   BitcodeReaderMDValueList(LLVMContext &C)
116       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
117 
118   // vector compatibility methods
119   unsigned size() const       { return MDValuePtrs.size(); }
120   void resize(unsigned N)     { MDValuePtrs.resize(N); }
121   void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); }
122   void clear()                { MDValuePtrs.clear();  }
123   Metadata *back() const      { return MDValuePtrs.back(); }
124   void pop_back()             { MDValuePtrs.pop_back(); }
125   bool empty() const          { return MDValuePtrs.empty(); }
126 
127   Metadata *operator[](unsigned i) const {
128     assert(i < MDValuePtrs.size());
129     return MDValuePtrs[i];
130   }
131 
132   void shrinkTo(unsigned N) {
133     assert(N <= size() && "Invalid shrinkTo request!");
134     MDValuePtrs.resize(N);
135   }
136 
137   Metadata *getValueFwdRef(unsigned Idx);
138   void assignValue(Metadata *MD, unsigned Idx);
139   void tryToResolveCycles();
140 };
141 
142 class BitcodeReader : public GVMaterializer {
143   LLVMContext &Context;
144   DiagnosticHandlerFunction DiagnosticHandler;
145   Module *TheModule = nullptr;
146   std::unique_ptr<MemoryBuffer> Buffer;
147   std::unique_ptr<BitstreamReader> StreamFile;
148   BitstreamCursor Stream;
149   uint64_t NextUnreadBit = 0;
150   bool SeenValueSymbolTable = false;
151   unsigned VSTOffset = 0;
152 
153   std::vector<Type*> TypeList;
154   BitcodeReaderValueList ValueList;
155   BitcodeReaderMDValueList MDValueList;
156   std::vector<Comdat *> ComdatList;
157   SmallVector<Instruction *, 64> InstructionList;
158 
159   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
160   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits;
161   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
162   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
163   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
164 
165   SmallVector<Instruction*, 64> InstsWithTBAATag;
166 
167   /// The set of attributes by index.  Index zero in the file is for null, and
168   /// is thus not represented here.  As such all indices are off by one.
169   std::vector<AttributeSet> MAttributes;
170 
171   /// The set of attribute groups.
172   std::map<unsigned, AttributeSet> MAttributeGroups;
173 
174   /// While parsing a function body, this is a list of the basic blocks for the
175   /// function.
176   std::vector<BasicBlock*> FunctionBBs;
177 
178   // When reading the module header, this list is populated with functions that
179   // have bodies later in the file.
180   std::vector<Function*> FunctionsWithBodies;
181 
182   // When intrinsic functions are encountered which require upgrading they are
183   // stored here with their replacement function.
184   typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap;
185   UpgradedIntrinsicMap UpgradedIntrinsics;
186 
187   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
188   DenseMap<unsigned, unsigned> MDKindMap;
189 
190   // Several operations happen after the module header has been read, but
191   // before function bodies are processed. This keeps track of whether
192   // we've done this yet.
193   bool SeenFirstFunctionBody = false;
194 
195   /// When function bodies are initially scanned, this map contains info about
196   /// where to find deferred function body in the stream.
197   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
198 
199   /// When Metadata block is initially scanned when parsing the module, we may
200   /// choose to defer parsing of the metadata. This vector contains info about
201   /// which Metadata blocks are deferred.
202   std::vector<uint64_t> DeferredMetadataInfo;
203 
204   /// These are basic blocks forward-referenced by block addresses.  They are
205   /// inserted lazily into functions when they're loaded.  The basic block ID is
206   /// its index into the vector.
207   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
208   std::deque<Function *> BasicBlockFwdRefQueue;
209 
210   /// Indicates that we are using a new encoding for instruction operands where
211   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
212   /// instruction number, for a more compact encoding.  Some instruction
213   /// operands are not relative to the instruction ID: basic block numbers, and
214   /// types. Once the old style function blocks have been phased out, we would
215   /// not need this flag.
216   bool UseRelativeIDs = false;
217 
218   /// True if all functions will be materialized, negating the need to process
219   /// (e.g.) blockaddress forward references.
220   bool WillMaterializeAllForwardRefs = false;
221 
222   /// Functions that have block addresses taken.  This is usually empty.
223   SmallPtrSet<const Function *, 4> BlockAddressesTaken;
224 
225   /// True if any Metadata block has been materialized.
226   bool IsMetadataMaterialized = false;
227 
228   bool StripDebugInfo = false;
229 
230   std::vector<std::string> BundleTags;
231 
232 public:
233   std::error_code error(BitcodeError E, const Twine &Message);
234   std::error_code error(BitcodeError E);
235   std::error_code error(const Twine &Message);
236 
237   BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context,
238                 DiagnosticHandlerFunction DiagnosticHandler);
239   BitcodeReader(LLVMContext &Context,
240                 DiagnosticHandlerFunction DiagnosticHandler);
241   ~BitcodeReader() override { freeState(); }
242 
243   std::error_code materializeForwardReferencedFunctions();
244 
245   void freeState();
246 
247   void releaseBuffer();
248 
249   bool isDematerializable(const GlobalValue *GV) const override;
250   std::error_code materialize(GlobalValue *GV) override;
251   std::error_code materializeModule(Module *M) override;
252   std::vector<StructType *> getIdentifiedStructTypes() const override;
253   void dematerialize(GlobalValue *GV) override;
254 
255   /// \brief Main interface to parsing a bitcode buffer.
256   /// \returns true if an error occurred.
257   std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
258                                    Module *M,
259                                    bool ShouldLazyLoadMetadata = false);
260 
261   /// \brief Cheap mechanism to just extract module triple
262   /// \returns true if an error occurred.
263   ErrorOr<std::string> parseTriple();
264 
265   static uint64_t decodeSignRotatedValue(uint64_t V);
266 
267   /// Materialize any deferred Metadata block.
268   std::error_code materializeMetadata() override;
269 
270   void setStripDebugInfo() override;
271 
272 private:
273   std::vector<StructType *> IdentifiedStructTypes;
274   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
275   StructType *createIdentifiedStructType(LLVMContext &Context);
276 
277   Type *getTypeByID(unsigned ID);
278   Value *getFnValueByID(unsigned ID, Type *Ty,
279                         OperatorConstraint OC = OC_None) {
280     if (Ty && Ty->isMetadataTy())
281       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
282     return ValueList.getValueFwdRef(ID, Ty, OC);
283   }
284   Metadata *getFnMetadataByID(unsigned ID) {
285     return MDValueList.getValueFwdRef(ID);
286   }
287   BasicBlock *getBasicBlock(unsigned ID) const {
288     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
289     return FunctionBBs[ID];
290   }
291   AttributeSet getAttributes(unsigned i) const {
292     if (i-1 < MAttributes.size())
293       return MAttributes[i-1];
294     return AttributeSet();
295   }
296 
297   /// Read a value/type pair out of the specified record from slot 'Slot'.
298   /// Increment Slot past the number of slots used in the record. Return true on
299   /// failure.
300   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
301                         unsigned InstNum, Value *&ResVal) {
302     if (Slot == Record.size()) return true;
303     unsigned ValNo = (unsigned)Record[Slot++];
304     // Adjust the ValNo, if it was encoded relative to the InstNum.
305     if (UseRelativeIDs)
306       ValNo = InstNum - ValNo;
307     if (ValNo < InstNum) {
308       // If this is not a forward reference, just return the value we already
309       // have.
310       ResVal = getFnValueByID(ValNo, nullptr);
311       return ResVal == nullptr;
312     }
313     if (Slot == Record.size())
314       return true;
315 
316     unsigned TypeNo = (unsigned)Record[Slot++];
317     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
318     return ResVal == nullptr;
319   }
320 
321   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
322   /// past the number of slots used by the value in the record. Return true if
323   /// there is an error.
324   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
325                 unsigned InstNum, Type *Ty, Value *&ResVal,
326                 OperatorConstraint OC = OC_None) {
327     if (getValue(Record, Slot, InstNum, Ty, ResVal, OC))
328       return true;
329     // All values currently take a single record slot.
330     ++Slot;
331     return false;
332   }
333 
334   /// Like popValue, but does not increment the Slot number.
335   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
336                 unsigned InstNum, Type *Ty, Value *&ResVal,
337                 OperatorConstraint OC = OC_None) {
338     ResVal = getValue(Record, Slot, InstNum, Ty, OC);
339     return ResVal == nullptr;
340   }
341 
342   /// Version of getValue that returns ResVal directly, or 0 if there is an
343   /// error.
344   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
345                   unsigned InstNum, Type *Ty, OperatorConstraint OC = OC_None) {
346     if (Slot == Record.size()) return nullptr;
347     unsigned ValNo = (unsigned)Record[Slot];
348     // Adjust the ValNo, if it was encoded relative to the InstNum.
349     if (UseRelativeIDs)
350       ValNo = InstNum - ValNo;
351     return getFnValueByID(ValNo, Ty, OC);
352   }
353 
354   /// Like getValue, but decodes signed VBRs.
355   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
356                         unsigned InstNum, Type *Ty,
357                         OperatorConstraint OC = OC_None) {
358     if (Slot == Record.size()) return nullptr;
359     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
360     // Adjust the ValNo, if it was encoded relative to the InstNum.
361     if (UseRelativeIDs)
362       ValNo = InstNum - ValNo;
363     return getFnValueByID(ValNo, Ty, OC);
364   }
365 
366   /// Converts alignment exponent (i.e. power of two (or zero)) to the
367   /// corresponding alignment to use. If alignment is too large, returns
368   /// a corresponding error code.
369   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
370   std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
371   std::error_code parseModule(bool Resume, bool ShouldLazyLoadMetadata = false);
372   std::error_code parseAttributeBlock();
373   std::error_code parseAttributeGroupBlock();
374   std::error_code parseTypeTable();
375   std::error_code parseTypeTableBody();
376   std::error_code parseOperandBundleTags();
377 
378   ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
379                                unsigned NameIndex, Triple &TT);
380   std::error_code parseValueSymbolTable(unsigned Offset = 0);
381   std::error_code parseConstants();
382   std::error_code rememberAndSkipFunctionBody();
383   /// Save the positions of the Metadata blocks and skip parsing the blocks.
384   std::error_code rememberAndSkipMetadata();
385   std::error_code parseFunctionBody(Function *F);
386   std::error_code globalCleanup();
387   std::error_code resolveGlobalAndAliasInits();
388   std::error_code parseMetadata();
389   std::error_code parseMetadataAttachment(Function &F);
390   ErrorOr<std::string> parseModuleTriple();
391   std::error_code parseUseLists();
392   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
393   std::error_code initStreamFromBuffer();
394   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
395   std::error_code findFunctionInStream(
396       Function *F,
397       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
398 };
399 
400 /// Class to manage reading and parsing function summary index bitcode
401 /// files/sections.
402 class FunctionIndexBitcodeReader {
403   LLVMContext &Context;
404   DiagnosticHandlerFunction DiagnosticHandler;
405 
406   /// Eventually points to the function index built during parsing.
407   FunctionInfoIndex *TheIndex = nullptr;
408 
409   std::unique_ptr<MemoryBuffer> Buffer;
410   std::unique_ptr<BitstreamReader> StreamFile;
411   BitstreamCursor Stream;
412 
413   /// \brief Used to indicate whether we are doing lazy parsing of summary data.
414   ///
415   /// If false, the summary section is fully parsed into the index during
416   /// the initial parse. Otherwise, if true, the caller is expected to
417   /// invoke \a readFunctionSummary for each summary needed, and the summary
418   /// section is thus parsed lazily.
419   bool IsLazy = false;
420 
421   /// Used to indicate whether caller only wants to check for the presence
422   /// of the function summary bitcode section. All blocks are skipped,
423   /// but the SeenFuncSummary boolean is set.
424   bool CheckFuncSummaryPresenceOnly = false;
425 
426   /// Indicates whether we have encountered a function summary section
427   /// yet during parsing, used when checking if file contains function
428   /// summary section.
429   bool SeenFuncSummary = false;
430 
431   /// \brief Map populated during function summary section parsing, and
432   /// consumed during ValueSymbolTable parsing.
433   ///
434   /// Used to correlate summary records with VST entries. For the per-module
435   /// index this maps the ValueID to the parsed function summary, and
436   /// for the combined index this maps the summary record's bitcode
437   /// offset to the function summary (since in the combined index the
438   /// VST records do not hold value IDs but rather hold the function
439   /// summary record offset).
440   DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap;
441 
442   /// Map populated during module path string table parsing, from the
443   /// module ID to a string reference owned by the index's module
444   /// path string table, used to correlate with combined index function
445   /// summary records.
446   DenseMap<uint64_t, StringRef> ModuleIdMap;
447 
448  public:
449   std::error_code error(BitcodeError E, const Twine &Message);
450   std::error_code error(BitcodeError E);
451   std::error_code error(const Twine &Message);
452 
453   FunctionIndexBitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context,
454                              DiagnosticHandlerFunction DiagnosticHandler,
455                              bool IsLazy = false,
456                              bool CheckFuncSummaryPresenceOnly = false);
457   FunctionIndexBitcodeReader(LLVMContext &Context,
458                              DiagnosticHandlerFunction DiagnosticHandler,
459                              bool IsLazy = false,
460                              bool CheckFuncSummaryPresenceOnly = false);
461   ~FunctionIndexBitcodeReader() { freeState(); }
462 
463   void freeState();
464 
465   void releaseBuffer();
466 
467   /// Check if the parser has encountered a function summary section.
468   bool foundFuncSummary() { return SeenFuncSummary; }
469 
470   /// \brief Main interface to parsing a bitcode buffer.
471   /// \returns true if an error occurred.
472   std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
473                                         FunctionInfoIndex *I);
474 
475   /// \brief Interface for parsing a function summary lazily.
476   std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer,
477                                        FunctionInfoIndex *I,
478                                        size_t FunctionSummaryOffset);
479 
480  private:
481   std::error_code parseModule();
482   std::error_code parseValueSymbolTable();
483   std::error_code parseEntireSummary();
484   std::error_code parseModuleStringTable();
485   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
486   std::error_code initStreamFromBuffer();
487   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
488 };
489 } // namespace
490 
491 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
492                                              DiagnosticSeverity Severity,
493                                              const Twine &Msg)
494     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
495 
496 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
497 
498 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
499                              std::error_code EC, const Twine &Message) {
500   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
501   DiagnosticHandler(DI);
502   return EC;
503 }
504 
505 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
506                              std::error_code EC) {
507   return error(DiagnosticHandler, EC, EC.message());
508 }
509 
510 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
511                              const Twine &Message) {
512   return error(DiagnosticHandler,
513                make_error_code(BitcodeError::CorruptedBitcode), Message);
514 }
515 
516 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
517   return ::error(DiagnosticHandler, make_error_code(E), Message);
518 }
519 
520 std::error_code BitcodeReader::error(const Twine &Message) {
521   return ::error(DiagnosticHandler,
522                  make_error_code(BitcodeError::CorruptedBitcode), Message);
523 }
524 
525 std::error_code BitcodeReader::error(BitcodeError E) {
526   return ::error(DiagnosticHandler, make_error_code(E));
527 }
528 
529 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F,
530                                                 LLVMContext &C) {
531   if (F)
532     return F;
533   return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); };
534 }
535 
536 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context,
537                              DiagnosticHandlerFunction DiagnosticHandler)
538     : Context(Context),
539       DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)),
540       Buffer(Buffer), ValueList(Context), MDValueList(Context) {}
541 
542 BitcodeReader::BitcodeReader(LLVMContext &Context,
543                              DiagnosticHandlerFunction DiagnosticHandler)
544     : Context(Context),
545       DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)),
546       Buffer(nullptr), ValueList(Context), MDValueList(Context) {}
547 
548 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
549   if (WillMaterializeAllForwardRefs)
550     return std::error_code();
551 
552   // Prevent recursion.
553   WillMaterializeAllForwardRefs = true;
554 
555   while (!BasicBlockFwdRefQueue.empty()) {
556     Function *F = BasicBlockFwdRefQueue.front();
557     BasicBlockFwdRefQueue.pop_front();
558     assert(F && "Expected valid function");
559     if (!BasicBlockFwdRefs.count(F))
560       // Already materialized.
561       continue;
562 
563     // Check for a function that isn't materializable to prevent an infinite
564     // loop.  When parsing a blockaddress stored in a global variable, there
565     // isn't a trivial way to check if a function will have a body without a
566     // linear search through FunctionsWithBodies, so just check it here.
567     if (!F->isMaterializable())
568       return error("Never resolved function from blockaddress");
569 
570     // Try to materialize F.
571     if (std::error_code EC = materialize(F))
572       return EC;
573   }
574   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
575 
576   // Reset state.
577   WillMaterializeAllForwardRefs = false;
578   return std::error_code();
579 }
580 
581 void BitcodeReader::freeState() {
582   Buffer = nullptr;
583   std::vector<Type*>().swap(TypeList);
584   ValueList.clear();
585   MDValueList.clear();
586   std::vector<Comdat *>().swap(ComdatList);
587 
588   std::vector<AttributeSet>().swap(MAttributes);
589   std::vector<BasicBlock*>().swap(FunctionBBs);
590   std::vector<Function*>().swap(FunctionsWithBodies);
591   DeferredFunctionInfo.clear();
592   DeferredMetadataInfo.clear();
593   MDKindMap.clear();
594 
595   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
596   BasicBlockFwdRefQueue.clear();
597 }
598 
599 //===----------------------------------------------------------------------===//
600 //  Helper functions to implement forward reference resolution, etc.
601 //===----------------------------------------------------------------------===//
602 
603 /// Convert a string from a record into an std::string, return true on failure.
604 template <typename StrTy>
605 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
606                             StrTy &Result) {
607   if (Idx > Record.size())
608     return true;
609 
610   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
611     Result += (char)Record[i];
612   return false;
613 }
614 
615 static bool hasImplicitComdat(size_t Val) {
616   switch (Val) {
617   default:
618     return false;
619   case 1:  // Old WeakAnyLinkage
620   case 4:  // Old LinkOnceAnyLinkage
621   case 10: // Old WeakODRLinkage
622   case 11: // Old LinkOnceODRLinkage
623     return true;
624   }
625 }
626 
627 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
628   switch (Val) {
629   default: // Map unknown/new linkages to external
630   case 0:
631     return GlobalValue::ExternalLinkage;
632   case 2:
633     return GlobalValue::AppendingLinkage;
634   case 3:
635     return GlobalValue::InternalLinkage;
636   case 5:
637     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
638   case 6:
639     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
640   case 7:
641     return GlobalValue::ExternalWeakLinkage;
642   case 8:
643     return GlobalValue::CommonLinkage;
644   case 9:
645     return GlobalValue::PrivateLinkage;
646   case 12:
647     return GlobalValue::AvailableExternallyLinkage;
648   case 13:
649     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
650   case 14:
651     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
652   case 15:
653     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
654   case 1: // Old value with implicit comdat.
655   case 16:
656     return GlobalValue::WeakAnyLinkage;
657   case 10: // Old value with implicit comdat.
658   case 17:
659     return GlobalValue::WeakODRLinkage;
660   case 4: // Old value with implicit comdat.
661   case 18:
662     return GlobalValue::LinkOnceAnyLinkage;
663   case 11: // Old value with implicit comdat.
664   case 19:
665     return GlobalValue::LinkOnceODRLinkage;
666   }
667 }
668 
669 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
670   switch (Val) {
671   default: // Map unknown visibilities to default.
672   case 0: return GlobalValue::DefaultVisibility;
673   case 1: return GlobalValue::HiddenVisibility;
674   case 2: return GlobalValue::ProtectedVisibility;
675   }
676 }
677 
678 static GlobalValue::DLLStorageClassTypes
679 getDecodedDLLStorageClass(unsigned Val) {
680   switch (Val) {
681   default: // Map unknown values to default.
682   case 0: return GlobalValue::DefaultStorageClass;
683   case 1: return GlobalValue::DLLImportStorageClass;
684   case 2: return GlobalValue::DLLExportStorageClass;
685   }
686 }
687 
688 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
689   switch (Val) {
690     case 0: return GlobalVariable::NotThreadLocal;
691     default: // Map unknown non-zero value to general dynamic.
692     case 1: return GlobalVariable::GeneralDynamicTLSModel;
693     case 2: return GlobalVariable::LocalDynamicTLSModel;
694     case 3: return GlobalVariable::InitialExecTLSModel;
695     case 4: return GlobalVariable::LocalExecTLSModel;
696   }
697 }
698 
699 static int getDecodedCastOpcode(unsigned Val) {
700   switch (Val) {
701   default: return -1;
702   case bitc::CAST_TRUNC   : return Instruction::Trunc;
703   case bitc::CAST_ZEXT    : return Instruction::ZExt;
704   case bitc::CAST_SEXT    : return Instruction::SExt;
705   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
706   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
707   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
708   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
709   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
710   case bitc::CAST_FPEXT   : return Instruction::FPExt;
711   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
712   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
713   case bitc::CAST_BITCAST : return Instruction::BitCast;
714   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
715   }
716 }
717 
718 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
719   bool IsFP = Ty->isFPOrFPVectorTy();
720   // BinOps are only valid for int/fp or vector of int/fp types
721   if (!IsFP && !Ty->isIntOrIntVectorTy())
722     return -1;
723 
724   switch (Val) {
725   default:
726     return -1;
727   case bitc::BINOP_ADD:
728     return IsFP ? Instruction::FAdd : Instruction::Add;
729   case bitc::BINOP_SUB:
730     return IsFP ? Instruction::FSub : Instruction::Sub;
731   case bitc::BINOP_MUL:
732     return IsFP ? Instruction::FMul : Instruction::Mul;
733   case bitc::BINOP_UDIV:
734     return IsFP ? -1 : Instruction::UDiv;
735   case bitc::BINOP_SDIV:
736     return IsFP ? Instruction::FDiv : Instruction::SDiv;
737   case bitc::BINOP_UREM:
738     return IsFP ? -1 : Instruction::URem;
739   case bitc::BINOP_SREM:
740     return IsFP ? Instruction::FRem : Instruction::SRem;
741   case bitc::BINOP_SHL:
742     return IsFP ? -1 : Instruction::Shl;
743   case bitc::BINOP_LSHR:
744     return IsFP ? -1 : Instruction::LShr;
745   case bitc::BINOP_ASHR:
746     return IsFP ? -1 : Instruction::AShr;
747   case bitc::BINOP_AND:
748     return IsFP ? -1 : Instruction::And;
749   case bitc::BINOP_OR:
750     return IsFP ? -1 : Instruction::Or;
751   case bitc::BINOP_XOR:
752     return IsFP ? -1 : Instruction::Xor;
753   }
754 }
755 
756 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
757   switch (Val) {
758   default: return AtomicRMWInst::BAD_BINOP;
759   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
760   case bitc::RMW_ADD: return AtomicRMWInst::Add;
761   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
762   case bitc::RMW_AND: return AtomicRMWInst::And;
763   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
764   case bitc::RMW_OR: return AtomicRMWInst::Or;
765   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
766   case bitc::RMW_MAX: return AtomicRMWInst::Max;
767   case bitc::RMW_MIN: return AtomicRMWInst::Min;
768   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
769   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
770   }
771 }
772 
773 static AtomicOrdering getDecodedOrdering(unsigned Val) {
774   switch (Val) {
775   case bitc::ORDERING_NOTATOMIC: return NotAtomic;
776   case bitc::ORDERING_UNORDERED: return Unordered;
777   case bitc::ORDERING_MONOTONIC: return Monotonic;
778   case bitc::ORDERING_ACQUIRE: return Acquire;
779   case bitc::ORDERING_RELEASE: return Release;
780   case bitc::ORDERING_ACQREL: return AcquireRelease;
781   default: // Map unknown orderings to sequentially-consistent.
782   case bitc::ORDERING_SEQCST: return SequentiallyConsistent;
783   }
784 }
785 
786 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
787   switch (Val) {
788   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
789   default: // Map unknown scopes to cross-thread.
790   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
791   }
792 }
793 
794 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
795   switch (Val) {
796   default: // Map unknown selection kinds to any.
797   case bitc::COMDAT_SELECTION_KIND_ANY:
798     return Comdat::Any;
799   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
800     return Comdat::ExactMatch;
801   case bitc::COMDAT_SELECTION_KIND_LARGEST:
802     return Comdat::Largest;
803   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
804     return Comdat::NoDuplicates;
805   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
806     return Comdat::SameSize;
807   }
808 }
809 
810 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
811   FastMathFlags FMF;
812   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
813     FMF.setUnsafeAlgebra();
814   if (0 != (Val & FastMathFlags::NoNaNs))
815     FMF.setNoNaNs();
816   if (0 != (Val & FastMathFlags::NoInfs))
817     FMF.setNoInfs();
818   if (0 != (Val & FastMathFlags::NoSignedZeros))
819     FMF.setNoSignedZeros();
820   if (0 != (Val & FastMathFlags::AllowReciprocal))
821     FMF.setAllowReciprocal();
822   return FMF;
823 }
824 
825 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
826   switch (Val) {
827   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
828   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
829   }
830 }
831 
832 namespace llvm {
833 namespace {
834 /// \brief A class for maintaining the slot number definition
835 /// as a placeholder for the actual definition for forward constants defs.
836 class ConstantPlaceHolder : public ConstantExpr {
837   void operator=(const ConstantPlaceHolder &) = delete;
838 
839 public:
840   // allocate space for exactly one operand
841   void *operator new(size_t s) { return User::operator new(s, 1); }
842   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
843       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
844     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
845   }
846 
847   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
848   static bool classof(const Value *V) {
849     return isa<ConstantExpr>(V) &&
850            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
851   }
852 
853   /// Provide fast operand accessors
854   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
855 };
856 }
857 
858 // FIXME: can we inherit this from ConstantExpr?
859 template <>
860 struct OperandTraits<ConstantPlaceHolder> :
861   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
862 };
863 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
864 }
865 
866 bool BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
867   if (Idx == size()) {
868     push_back(V);
869     return false;
870   }
871 
872   if (Idx >= size())
873     resize(Idx+1);
874 
875   WeakVH &OldV = ValuePtrs[Idx];
876   if (!OldV) {
877     OldV = V;
878     return false;
879   }
880 
881   // Handle constants and non-constants (e.g. instrs) differently for
882   // efficiency.
883   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
884     ResolveConstants.push_back(std::make_pair(PHC, Idx));
885     OldV = V;
886   } else {
887     // If there was a forward reference to this value, replace it.
888     Value *PrevVal = OldV;
889     // Check operator constraints.  We only put cleanuppads or catchpads in
890     // the forward value map if the value is constrained to match.
891     if (CatchPadInst *CatchPad = dyn_cast<CatchPadInst>(PrevVal)) {
892       if (!isa<CatchPadInst>(V))
893         return true;
894       // Delete the dummy basic block that was created with the sentinel
895       // catchpad.
896       BasicBlock *DummyBlock = CatchPad->getUnwindDest();
897       assert(DummyBlock == CatchPad->getNormalDest());
898       CatchPad->dropAllReferences();
899       delete DummyBlock;
900     } else if (isa<CleanupPadInst>(PrevVal)) {
901       if (!isa<CleanupPadInst>(V))
902         return true;
903     }
904     OldV->replaceAllUsesWith(V);
905     delete PrevVal;
906   }
907 
908   return false;
909 }
910 
911 
912 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
913                                                     Type *Ty) {
914   if (Idx >= size())
915     resize(Idx + 1);
916 
917   if (Value *V = ValuePtrs[Idx]) {
918     if (Ty != V->getType())
919       report_fatal_error("Type mismatch in constant table!");
920     return cast<Constant>(V);
921   }
922 
923   // Create and return a placeholder, which will later be RAUW'd.
924   Constant *C = new ConstantPlaceHolder(Ty, Context);
925   ValuePtrs[Idx] = C;
926   return C;
927 }
928 
929 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty,
930                                               OperatorConstraint OC) {
931   // Bail out for a clearly invalid value. This would make us call resize(0)
932   if (Idx == UINT_MAX)
933     return nullptr;
934 
935   if (Idx >= size())
936     resize(Idx + 1);
937 
938   if (Value *V = ValuePtrs[Idx]) {
939     // If the types don't match, it's invalid.
940     if (Ty && Ty != V->getType())
941       return nullptr;
942     if (!OC)
943       return V;
944     // Use dyn_cast to enforce operator constraints
945     switch (OC) {
946     case OC_CatchPad:
947       return dyn_cast<CatchPadInst>(V);
948     case OC_CleanupPad:
949       return dyn_cast<CleanupPadInst>(V);
950     default:
951       llvm_unreachable("Unexpected operator constraint");
952     }
953   }
954 
955   // No type specified, must be invalid reference.
956   if (!Ty) return nullptr;
957 
958   // Create and return a placeholder, which will later be RAUW'd.
959   Value *V;
960   switch (OC) {
961   case OC_None:
962     V = new Argument(Ty);
963     break;
964   case OC_CatchPad: {
965     BasicBlock *BB = BasicBlock::Create(Context);
966     V = CatchPadInst::Create(BB, BB, {});
967     break;
968   }
969   default:
970     assert(OC == OC_CleanupPad && "unexpected operator constraint");
971     V = CleanupPadInst::Create(Context, {});
972     break;
973   }
974 
975   ValuePtrs[Idx] = V;
976   return V;
977 }
978 
979 /// Once all constants are read, this method bulk resolves any forward
980 /// references.  The idea behind this is that we sometimes get constants (such
981 /// as large arrays) which reference *many* forward ref constants.  Replacing
982 /// each of these causes a lot of thrashing when building/reuniquing the
983 /// constant.  Instead of doing this, we look at all the uses and rewrite all
984 /// the place holders at once for any constant that uses a placeholder.
985 void BitcodeReaderValueList::resolveConstantForwardRefs() {
986   // Sort the values by-pointer so that they are efficient to look up with a
987   // binary search.
988   std::sort(ResolveConstants.begin(), ResolveConstants.end());
989 
990   SmallVector<Constant*, 64> NewOps;
991 
992   while (!ResolveConstants.empty()) {
993     Value *RealVal = operator[](ResolveConstants.back().second);
994     Constant *Placeholder = ResolveConstants.back().first;
995     ResolveConstants.pop_back();
996 
997     // Loop over all users of the placeholder, updating them to reference the
998     // new value.  If they reference more than one placeholder, update them all
999     // at once.
1000     while (!Placeholder->use_empty()) {
1001       auto UI = Placeholder->user_begin();
1002       User *U = *UI;
1003 
1004       // If the using object isn't uniqued, just update the operands.  This
1005       // handles instructions and initializers for global variables.
1006       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
1007         UI.getUse().set(RealVal);
1008         continue;
1009       }
1010 
1011       // Otherwise, we have a constant that uses the placeholder.  Replace that
1012       // constant with a new constant that has *all* placeholder uses updated.
1013       Constant *UserC = cast<Constant>(U);
1014       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
1015            I != E; ++I) {
1016         Value *NewOp;
1017         if (!isa<ConstantPlaceHolder>(*I)) {
1018           // Not a placeholder reference.
1019           NewOp = *I;
1020         } else if (*I == Placeholder) {
1021           // Common case is that it just references this one placeholder.
1022           NewOp = RealVal;
1023         } else {
1024           // Otherwise, look up the placeholder in ResolveConstants.
1025           ResolveConstantsTy::iterator It =
1026             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1027                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1028                                                             0));
1029           assert(It != ResolveConstants.end() && It->first == *I);
1030           NewOp = operator[](It->second);
1031         }
1032 
1033         NewOps.push_back(cast<Constant>(NewOp));
1034       }
1035 
1036       // Make the new constant.
1037       Constant *NewC;
1038       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1039         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1040       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1041         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1042       } else if (isa<ConstantVector>(UserC)) {
1043         NewC = ConstantVector::get(NewOps);
1044       } else {
1045         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1046         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1047       }
1048 
1049       UserC->replaceAllUsesWith(NewC);
1050       UserC->destroyConstant();
1051       NewOps.clear();
1052     }
1053 
1054     // Update all ValueHandles, they should be the only users at this point.
1055     Placeholder->replaceAllUsesWith(RealVal);
1056     delete Placeholder;
1057   }
1058 }
1059 
1060 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) {
1061   if (Idx == size()) {
1062     push_back(MD);
1063     return;
1064   }
1065 
1066   if (Idx >= size())
1067     resize(Idx+1);
1068 
1069   TrackingMDRef &OldMD = MDValuePtrs[Idx];
1070   if (!OldMD) {
1071     OldMD.reset(MD);
1072     return;
1073   }
1074 
1075   // If there was a forward reference to this value, replace it.
1076   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1077   PrevMD->replaceAllUsesWith(MD);
1078   --NumFwdRefs;
1079 }
1080 
1081 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
1082   if (Idx >= size())
1083     resize(Idx + 1);
1084 
1085   if (Metadata *MD = MDValuePtrs[Idx])
1086     return MD;
1087 
1088   // Track forward refs to be resolved later.
1089   if (AnyFwdRefs) {
1090     MinFwdRef = std::min(MinFwdRef, Idx);
1091     MaxFwdRef = std::max(MaxFwdRef, Idx);
1092   } else {
1093     AnyFwdRefs = true;
1094     MinFwdRef = MaxFwdRef = Idx;
1095   }
1096   ++NumFwdRefs;
1097 
1098   // Create and return a placeholder, which will later be RAUW'd.
1099   Metadata *MD = MDNode::getTemporary(Context, None).release();
1100   MDValuePtrs[Idx].reset(MD);
1101   return MD;
1102 }
1103 
1104 void BitcodeReaderMDValueList::tryToResolveCycles() {
1105   if (!AnyFwdRefs)
1106     // Nothing to do.
1107     return;
1108 
1109   if (NumFwdRefs)
1110     // Still forward references... can't resolve cycles.
1111     return;
1112 
1113   // Resolve any cycles.
1114   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1115     auto &MD = MDValuePtrs[I];
1116     auto *N = dyn_cast_or_null<MDNode>(MD);
1117     if (!N)
1118       continue;
1119 
1120     assert(!N->isTemporary() && "Unexpected forward reference");
1121     N->resolveCycles();
1122   }
1123 
1124   // Make sure we return early again until there's another forward ref.
1125   AnyFwdRefs = false;
1126 }
1127 
1128 Type *BitcodeReader::getTypeByID(unsigned ID) {
1129   // The type table size is always specified correctly.
1130   if (ID >= TypeList.size())
1131     return nullptr;
1132 
1133   if (Type *Ty = TypeList[ID])
1134     return Ty;
1135 
1136   // If we have a forward reference, the only possible case is when it is to a
1137   // named struct.  Just create a placeholder for now.
1138   return TypeList[ID] = createIdentifiedStructType(Context);
1139 }
1140 
1141 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1142                                                       StringRef Name) {
1143   auto *Ret = StructType::create(Context, Name);
1144   IdentifiedStructTypes.push_back(Ret);
1145   return Ret;
1146 }
1147 
1148 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1149   auto *Ret = StructType::create(Context);
1150   IdentifiedStructTypes.push_back(Ret);
1151   return Ret;
1152 }
1153 
1154 
1155 //===----------------------------------------------------------------------===//
1156 //  Functions for parsing blocks from the bitcode file
1157 //===----------------------------------------------------------------------===//
1158 
1159 
1160 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1161 /// been decoded from the given integer. This function must stay in sync with
1162 /// 'encodeLLVMAttributesForBitcode'.
1163 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1164                                            uint64_t EncodedAttrs) {
1165   // FIXME: Remove in 4.0.
1166 
1167   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1168   // the bits above 31 down by 11 bits.
1169   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1170   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1171          "Alignment must be a power of two.");
1172 
1173   if (Alignment)
1174     B.addAlignmentAttr(Alignment);
1175   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1176                 (EncodedAttrs & 0xffff));
1177 }
1178 
1179 std::error_code BitcodeReader::parseAttributeBlock() {
1180   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1181     return error("Invalid record");
1182 
1183   if (!MAttributes.empty())
1184     return error("Invalid multiple blocks");
1185 
1186   SmallVector<uint64_t, 64> Record;
1187 
1188   SmallVector<AttributeSet, 8> Attrs;
1189 
1190   // Read all the records.
1191   while (1) {
1192     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1193 
1194     switch (Entry.Kind) {
1195     case BitstreamEntry::SubBlock: // Handled for us already.
1196     case BitstreamEntry::Error:
1197       return error("Malformed block");
1198     case BitstreamEntry::EndBlock:
1199       return std::error_code();
1200     case BitstreamEntry::Record:
1201       // The interesting case.
1202       break;
1203     }
1204 
1205     // Read a record.
1206     Record.clear();
1207     switch (Stream.readRecord(Entry.ID, Record)) {
1208     default:  // Default behavior: ignore.
1209       break;
1210     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1211       // FIXME: Remove in 4.0.
1212       if (Record.size() & 1)
1213         return error("Invalid record");
1214 
1215       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1216         AttrBuilder B;
1217         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1218         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1219       }
1220 
1221       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1222       Attrs.clear();
1223       break;
1224     }
1225     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1226       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1227         Attrs.push_back(MAttributeGroups[Record[i]]);
1228 
1229       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1230       Attrs.clear();
1231       break;
1232     }
1233     }
1234   }
1235 }
1236 
1237 // Returns Attribute::None on unrecognized codes.
1238 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1239   switch (Code) {
1240   default:
1241     return Attribute::None;
1242   case bitc::ATTR_KIND_ALIGNMENT:
1243     return Attribute::Alignment;
1244   case bitc::ATTR_KIND_ALWAYS_INLINE:
1245     return Attribute::AlwaysInline;
1246   case bitc::ATTR_KIND_ARGMEMONLY:
1247     return Attribute::ArgMemOnly;
1248   case bitc::ATTR_KIND_BUILTIN:
1249     return Attribute::Builtin;
1250   case bitc::ATTR_KIND_BY_VAL:
1251     return Attribute::ByVal;
1252   case bitc::ATTR_KIND_IN_ALLOCA:
1253     return Attribute::InAlloca;
1254   case bitc::ATTR_KIND_COLD:
1255     return Attribute::Cold;
1256   case bitc::ATTR_KIND_CONVERGENT:
1257     return Attribute::Convergent;
1258   case bitc::ATTR_KIND_INLINE_HINT:
1259     return Attribute::InlineHint;
1260   case bitc::ATTR_KIND_IN_REG:
1261     return Attribute::InReg;
1262   case bitc::ATTR_KIND_JUMP_TABLE:
1263     return Attribute::JumpTable;
1264   case bitc::ATTR_KIND_MIN_SIZE:
1265     return Attribute::MinSize;
1266   case bitc::ATTR_KIND_NAKED:
1267     return Attribute::Naked;
1268   case bitc::ATTR_KIND_NEST:
1269     return Attribute::Nest;
1270   case bitc::ATTR_KIND_NO_ALIAS:
1271     return Attribute::NoAlias;
1272   case bitc::ATTR_KIND_NO_BUILTIN:
1273     return Attribute::NoBuiltin;
1274   case bitc::ATTR_KIND_NO_CAPTURE:
1275     return Attribute::NoCapture;
1276   case bitc::ATTR_KIND_NO_DUPLICATE:
1277     return Attribute::NoDuplicate;
1278   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1279     return Attribute::NoImplicitFloat;
1280   case bitc::ATTR_KIND_NO_INLINE:
1281     return Attribute::NoInline;
1282   case bitc::ATTR_KIND_NON_LAZY_BIND:
1283     return Attribute::NonLazyBind;
1284   case bitc::ATTR_KIND_NON_NULL:
1285     return Attribute::NonNull;
1286   case bitc::ATTR_KIND_DEREFERENCEABLE:
1287     return Attribute::Dereferenceable;
1288   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1289     return Attribute::DereferenceableOrNull;
1290   case bitc::ATTR_KIND_NO_RED_ZONE:
1291     return Attribute::NoRedZone;
1292   case bitc::ATTR_KIND_NO_RETURN:
1293     return Attribute::NoReturn;
1294   case bitc::ATTR_KIND_NO_UNWIND:
1295     return Attribute::NoUnwind;
1296   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1297     return Attribute::OptimizeForSize;
1298   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1299     return Attribute::OptimizeNone;
1300   case bitc::ATTR_KIND_READ_NONE:
1301     return Attribute::ReadNone;
1302   case bitc::ATTR_KIND_READ_ONLY:
1303     return Attribute::ReadOnly;
1304   case bitc::ATTR_KIND_RETURNED:
1305     return Attribute::Returned;
1306   case bitc::ATTR_KIND_RETURNS_TWICE:
1307     return Attribute::ReturnsTwice;
1308   case bitc::ATTR_KIND_S_EXT:
1309     return Attribute::SExt;
1310   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1311     return Attribute::StackAlignment;
1312   case bitc::ATTR_KIND_STACK_PROTECT:
1313     return Attribute::StackProtect;
1314   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1315     return Attribute::StackProtectReq;
1316   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1317     return Attribute::StackProtectStrong;
1318   case bitc::ATTR_KIND_SAFESTACK:
1319     return Attribute::SafeStack;
1320   case bitc::ATTR_KIND_STRUCT_RET:
1321     return Attribute::StructRet;
1322   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1323     return Attribute::SanitizeAddress;
1324   case bitc::ATTR_KIND_SANITIZE_THREAD:
1325     return Attribute::SanitizeThread;
1326   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1327     return Attribute::SanitizeMemory;
1328   case bitc::ATTR_KIND_UW_TABLE:
1329     return Attribute::UWTable;
1330   case bitc::ATTR_KIND_Z_EXT:
1331     return Attribute::ZExt;
1332   }
1333 }
1334 
1335 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1336                                                    unsigned &Alignment) {
1337   // Note: Alignment in bitcode files is incremented by 1, so that zero
1338   // can be used for default alignment.
1339   if (Exponent > Value::MaxAlignmentExponent + 1)
1340     return error("Invalid alignment value");
1341   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1342   return std::error_code();
1343 }
1344 
1345 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1346                                              Attribute::AttrKind *Kind) {
1347   *Kind = getAttrFromCode(Code);
1348   if (*Kind == Attribute::None)
1349     return error(BitcodeError::CorruptedBitcode,
1350                  "Unknown attribute kind (" + Twine(Code) + ")");
1351   return std::error_code();
1352 }
1353 
1354 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1355   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1356     return error("Invalid record");
1357 
1358   if (!MAttributeGroups.empty())
1359     return error("Invalid multiple blocks");
1360 
1361   SmallVector<uint64_t, 64> Record;
1362 
1363   // Read all the records.
1364   while (1) {
1365     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1366 
1367     switch (Entry.Kind) {
1368     case BitstreamEntry::SubBlock: // Handled for us already.
1369     case BitstreamEntry::Error:
1370       return error("Malformed block");
1371     case BitstreamEntry::EndBlock:
1372       return std::error_code();
1373     case BitstreamEntry::Record:
1374       // The interesting case.
1375       break;
1376     }
1377 
1378     // Read a record.
1379     Record.clear();
1380     switch (Stream.readRecord(Entry.ID, Record)) {
1381     default:  // Default behavior: ignore.
1382       break;
1383     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1384       if (Record.size() < 3)
1385         return error("Invalid record");
1386 
1387       uint64_t GrpID = Record[0];
1388       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1389 
1390       AttrBuilder B;
1391       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1392         if (Record[i] == 0) {        // Enum attribute
1393           Attribute::AttrKind Kind;
1394           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1395             return EC;
1396 
1397           B.addAttribute(Kind);
1398         } else if (Record[i] == 1) { // Integer attribute
1399           Attribute::AttrKind Kind;
1400           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1401             return EC;
1402           if (Kind == Attribute::Alignment)
1403             B.addAlignmentAttr(Record[++i]);
1404           else if (Kind == Attribute::StackAlignment)
1405             B.addStackAlignmentAttr(Record[++i]);
1406           else if (Kind == Attribute::Dereferenceable)
1407             B.addDereferenceableAttr(Record[++i]);
1408           else if (Kind == Attribute::DereferenceableOrNull)
1409             B.addDereferenceableOrNullAttr(Record[++i]);
1410         } else {                     // String attribute
1411           assert((Record[i] == 3 || Record[i] == 4) &&
1412                  "Invalid attribute group entry");
1413           bool HasValue = (Record[i++] == 4);
1414           SmallString<64> KindStr;
1415           SmallString<64> ValStr;
1416 
1417           while (Record[i] != 0 && i != e)
1418             KindStr += Record[i++];
1419           assert(Record[i] == 0 && "Kind string not null terminated");
1420 
1421           if (HasValue) {
1422             // Has a value associated with it.
1423             ++i; // Skip the '0' that terminates the "kind" string.
1424             while (Record[i] != 0 && i != e)
1425               ValStr += Record[i++];
1426             assert(Record[i] == 0 && "Value string not null terminated");
1427           }
1428 
1429           B.addAttribute(KindStr.str(), ValStr.str());
1430         }
1431       }
1432 
1433       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1434       break;
1435     }
1436     }
1437   }
1438 }
1439 
1440 std::error_code BitcodeReader::parseTypeTable() {
1441   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1442     return error("Invalid record");
1443 
1444   return parseTypeTableBody();
1445 }
1446 
1447 std::error_code BitcodeReader::parseTypeTableBody() {
1448   if (!TypeList.empty())
1449     return error("Invalid multiple blocks");
1450 
1451   SmallVector<uint64_t, 64> Record;
1452   unsigned NumRecords = 0;
1453 
1454   SmallString<64> TypeName;
1455 
1456   // Read all the records for this type table.
1457   while (1) {
1458     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1459 
1460     switch (Entry.Kind) {
1461     case BitstreamEntry::SubBlock: // Handled for us already.
1462     case BitstreamEntry::Error:
1463       return error("Malformed block");
1464     case BitstreamEntry::EndBlock:
1465       if (NumRecords != TypeList.size())
1466         return error("Malformed block");
1467       return std::error_code();
1468     case BitstreamEntry::Record:
1469       // The interesting case.
1470       break;
1471     }
1472 
1473     // Read a record.
1474     Record.clear();
1475     Type *ResultTy = nullptr;
1476     switch (Stream.readRecord(Entry.ID, Record)) {
1477     default:
1478       return error("Invalid value");
1479     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1480       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1481       // type list.  This allows us to reserve space.
1482       if (Record.size() < 1)
1483         return error("Invalid record");
1484       TypeList.resize(Record[0]);
1485       continue;
1486     case bitc::TYPE_CODE_VOID:      // VOID
1487       ResultTy = Type::getVoidTy(Context);
1488       break;
1489     case bitc::TYPE_CODE_HALF:     // HALF
1490       ResultTy = Type::getHalfTy(Context);
1491       break;
1492     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1493       ResultTy = Type::getFloatTy(Context);
1494       break;
1495     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1496       ResultTy = Type::getDoubleTy(Context);
1497       break;
1498     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1499       ResultTy = Type::getX86_FP80Ty(Context);
1500       break;
1501     case bitc::TYPE_CODE_FP128:     // FP128
1502       ResultTy = Type::getFP128Ty(Context);
1503       break;
1504     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1505       ResultTy = Type::getPPC_FP128Ty(Context);
1506       break;
1507     case bitc::TYPE_CODE_LABEL:     // LABEL
1508       ResultTy = Type::getLabelTy(Context);
1509       break;
1510     case bitc::TYPE_CODE_METADATA:  // METADATA
1511       ResultTy = Type::getMetadataTy(Context);
1512       break;
1513     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1514       ResultTy = Type::getX86_MMXTy(Context);
1515       break;
1516     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1517       ResultTy = Type::getTokenTy(Context);
1518       break;
1519     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1520       if (Record.size() < 1)
1521         return error("Invalid record");
1522 
1523       uint64_t NumBits = Record[0];
1524       if (NumBits < IntegerType::MIN_INT_BITS ||
1525           NumBits > IntegerType::MAX_INT_BITS)
1526         return error("Bitwidth for integer type out of range");
1527       ResultTy = IntegerType::get(Context, NumBits);
1528       break;
1529     }
1530     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1531                                     //          [pointee type, address space]
1532       if (Record.size() < 1)
1533         return error("Invalid record");
1534       unsigned AddressSpace = 0;
1535       if (Record.size() == 2)
1536         AddressSpace = Record[1];
1537       ResultTy = getTypeByID(Record[0]);
1538       if (!ResultTy ||
1539           !PointerType::isValidElementType(ResultTy))
1540         return error("Invalid type");
1541       ResultTy = PointerType::get(ResultTy, AddressSpace);
1542       break;
1543     }
1544     case bitc::TYPE_CODE_FUNCTION_OLD: {
1545       // FIXME: attrid is dead, remove it in LLVM 4.0
1546       // FUNCTION: [vararg, attrid, retty, paramty x N]
1547       if (Record.size() < 3)
1548         return error("Invalid record");
1549       SmallVector<Type*, 8> ArgTys;
1550       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1551         if (Type *T = getTypeByID(Record[i]))
1552           ArgTys.push_back(T);
1553         else
1554           break;
1555       }
1556 
1557       ResultTy = getTypeByID(Record[2]);
1558       if (!ResultTy || ArgTys.size() < Record.size()-3)
1559         return error("Invalid type");
1560 
1561       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1562       break;
1563     }
1564     case bitc::TYPE_CODE_FUNCTION: {
1565       // FUNCTION: [vararg, retty, paramty x N]
1566       if (Record.size() < 2)
1567         return error("Invalid record");
1568       SmallVector<Type*, 8> ArgTys;
1569       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1570         if (Type *T = getTypeByID(Record[i])) {
1571           if (!FunctionType::isValidArgumentType(T))
1572             return error("Invalid function argument type");
1573           ArgTys.push_back(T);
1574         }
1575         else
1576           break;
1577       }
1578 
1579       ResultTy = getTypeByID(Record[1]);
1580       if (!ResultTy || ArgTys.size() < Record.size()-2)
1581         return error("Invalid type");
1582 
1583       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1584       break;
1585     }
1586     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1587       if (Record.size() < 1)
1588         return error("Invalid record");
1589       SmallVector<Type*, 8> EltTys;
1590       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1591         if (Type *T = getTypeByID(Record[i]))
1592           EltTys.push_back(T);
1593         else
1594           break;
1595       }
1596       if (EltTys.size() != Record.size()-1)
1597         return error("Invalid type");
1598       ResultTy = StructType::get(Context, EltTys, Record[0]);
1599       break;
1600     }
1601     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1602       if (convertToString(Record, 0, TypeName))
1603         return error("Invalid record");
1604       continue;
1605 
1606     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1607       if (Record.size() < 1)
1608         return error("Invalid record");
1609 
1610       if (NumRecords >= TypeList.size())
1611         return error("Invalid TYPE table");
1612 
1613       // Check to see if this was forward referenced, if so fill in the temp.
1614       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1615       if (Res) {
1616         Res->setName(TypeName);
1617         TypeList[NumRecords] = nullptr;
1618       } else  // Otherwise, create a new struct.
1619         Res = createIdentifiedStructType(Context, TypeName);
1620       TypeName.clear();
1621 
1622       SmallVector<Type*, 8> EltTys;
1623       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1624         if (Type *T = getTypeByID(Record[i]))
1625           EltTys.push_back(T);
1626         else
1627           break;
1628       }
1629       if (EltTys.size() != Record.size()-1)
1630         return error("Invalid record");
1631       Res->setBody(EltTys, Record[0]);
1632       ResultTy = Res;
1633       break;
1634     }
1635     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1636       if (Record.size() != 1)
1637         return error("Invalid record");
1638 
1639       if (NumRecords >= TypeList.size())
1640         return error("Invalid TYPE table");
1641 
1642       // Check to see if this was forward referenced, if so fill in the temp.
1643       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1644       if (Res) {
1645         Res->setName(TypeName);
1646         TypeList[NumRecords] = nullptr;
1647       } else  // Otherwise, create a new struct with no body.
1648         Res = createIdentifiedStructType(Context, TypeName);
1649       TypeName.clear();
1650       ResultTy = Res;
1651       break;
1652     }
1653     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1654       if (Record.size() < 2)
1655         return error("Invalid record");
1656       ResultTy = getTypeByID(Record[1]);
1657       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1658         return error("Invalid type");
1659       ResultTy = ArrayType::get(ResultTy, Record[0]);
1660       break;
1661     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1662       if (Record.size() < 2)
1663         return error("Invalid record");
1664       if (Record[0] == 0)
1665         return error("Invalid vector length");
1666       ResultTy = getTypeByID(Record[1]);
1667       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1668         return error("Invalid type");
1669       ResultTy = VectorType::get(ResultTy, Record[0]);
1670       break;
1671     }
1672 
1673     if (NumRecords >= TypeList.size())
1674       return error("Invalid TYPE table");
1675     if (TypeList[NumRecords])
1676       return error(
1677           "Invalid TYPE table: Only named structs can be forward referenced");
1678     assert(ResultTy && "Didn't read a type?");
1679     TypeList[NumRecords++] = ResultTy;
1680   }
1681 }
1682 
1683 std::error_code BitcodeReader::parseOperandBundleTags() {
1684   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1685     return error("Invalid record");
1686 
1687   if (!BundleTags.empty())
1688     return error("Invalid multiple blocks");
1689 
1690   SmallVector<uint64_t, 64> Record;
1691 
1692   while (1) {
1693     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1694 
1695     switch (Entry.Kind) {
1696     case BitstreamEntry::SubBlock: // Handled for us already.
1697     case BitstreamEntry::Error:
1698       return error("Malformed block");
1699     case BitstreamEntry::EndBlock:
1700       return std::error_code();
1701     case BitstreamEntry::Record:
1702       // The interesting case.
1703       break;
1704     }
1705 
1706     // Tags are implicitly mapped to integers by their order.
1707 
1708     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1709       return error("Invalid record");
1710 
1711     // OPERAND_BUNDLE_TAG: [strchr x N]
1712     BundleTags.emplace_back();
1713     if (convertToString(Record, 0, BundleTags.back()))
1714       return error("Invalid record");
1715     Record.clear();
1716   }
1717 }
1718 
1719 /// Associate a value with its name from the given index in the provided record.
1720 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1721                                             unsigned NameIndex, Triple &TT) {
1722   SmallString<128> ValueName;
1723   if (convertToString(Record, NameIndex, ValueName))
1724     return error("Invalid record");
1725   unsigned ValueID = Record[0];
1726   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1727     return error("Invalid record");
1728   Value *V = ValueList[ValueID];
1729 
1730   V->setName(StringRef(ValueName.data(), ValueName.size()));
1731   auto *GO = dyn_cast<GlobalObject>(V);
1732   if (GO) {
1733     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1734       if (TT.isOSBinFormatMachO())
1735         GO->setComdat(nullptr);
1736       else
1737         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1738     }
1739   }
1740   return V;
1741 }
1742 
1743 /// Parse the value symbol table at either the current parsing location or
1744 /// at the given bit offset if provided.
1745 std::error_code BitcodeReader::parseValueSymbolTable(unsigned Offset) {
1746   uint64_t CurrentBit;
1747   // Pass in the Offset to distinguish between calling for the module-level
1748   // VST (where we want to jump to the VST offset) and the function-level
1749   // VST (where we don't).
1750   if (Offset > 0) {
1751     // Save the current parsing location so we can jump back at the end
1752     // of the VST read.
1753     CurrentBit = Stream.GetCurrentBitNo();
1754     Stream.JumpToBit(Offset * 32);
1755 #ifndef NDEBUG
1756     // Do some checking if we are in debug mode.
1757     BitstreamEntry Entry = Stream.advance();
1758     assert(Entry.Kind == BitstreamEntry::SubBlock);
1759     assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1760 #else
1761     // In NDEBUG mode ignore the output so we don't get an unused variable
1762     // warning.
1763     Stream.advance();
1764 #endif
1765   }
1766 
1767   // Compute the delta between the bitcode indices in the VST (the word offset
1768   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1769   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1770   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1771   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1772   // just before entering the VST subblock because: 1) the EnterSubBlock
1773   // changes the AbbrevID width; 2) the VST block is nested within the same
1774   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1775   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1776   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1777   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1778   unsigned FuncBitcodeOffsetDelta =
1779       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1780 
1781   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1782     return error("Invalid record");
1783 
1784   SmallVector<uint64_t, 64> Record;
1785 
1786   Triple TT(TheModule->getTargetTriple());
1787 
1788   // Read all the records for this value table.
1789   SmallString<128> ValueName;
1790   while (1) {
1791     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1792 
1793     switch (Entry.Kind) {
1794     case BitstreamEntry::SubBlock: // Handled for us already.
1795     case BitstreamEntry::Error:
1796       return error("Malformed block");
1797     case BitstreamEntry::EndBlock:
1798       if (Offset > 0)
1799         Stream.JumpToBit(CurrentBit);
1800       return std::error_code();
1801     case BitstreamEntry::Record:
1802       // The interesting case.
1803       break;
1804     }
1805 
1806     // Read a record.
1807     Record.clear();
1808     switch (Stream.readRecord(Entry.ID, Record)) {
1809     default:  // Default behavior: unknown type.
1810       break;
1811     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
1812       ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
1813       if (std::error_code EC = ValOrErr.getError())
1814         return EC;
1815       ValOrErr.get();
1816       break;
1817     }
1818     case bitc::VST_CODE_FNENTRY: {
1819       // VST_FNENTRY: [valueid, offset, namechar x N]
1820       ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
1821       if (std::error_code EC = ValOrErr.getError())
1822         return EC;
1823       Value *V = ValOrErr.get();
1824 
1825       auto *GO = dyn_cast<GlobalObject>(V);
1826       if (!GO) {
1827         // If this is an alias, need to get the actual Function object
1828         // it aliases, in order to set up the DeferredFunctionInfo entry below.
1829         auto *GA = dyn_cast<GlobalAlias>(V);
1830         if (GA)
1831           GO = GA->getBaseObject();
1832         assert(GO);
1833       }
1834 
1835       uint64_t FuncWordOffset = Record[1];
1836       Function *F = dyn_cast<Function>(GO);
1837       assert(F);
1838       uint64_t FuncBitOffset = FuncWordOffset * 32;
1839       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1840       // Set the NextUnreadBit to point to the last function block.
1841       // Later when parsing is resumed after function materialization,
1842       // we can simply skip that last function block.
1843       if (FuncBitOffset > NextUnreadBit)
1844         NextUnreadBit = FuncBitOffset;
1845       break;
1846     }
1847     case bitc::VST_CODE_BBENTRY: {
1848       if (convertToString(Record, 1, ValueName))
1849         return error("Invalid record");
1850       BasicBlock *BB = getBasicBlock(Record[0]);
1851       if (!BB)
1852         return error("Invalid record");
1853 
1854       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1855       ValueName.clear();
1856       break;
1857     }
1858     }
1859   }
1860 }
1861 
1862 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
1863 
1864 std::error_code BitcodeReader::parseMetadata() {
1865   IsMetadataMaterialized = true;
1866   unsigned NextMDValueNo = MDValueList.size();
1867 
1868   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
1869     return error("Invalid record");
1870 
1871   SmallVector<uint64_t, 64> Record;
1872 
1873   auto getMD =
1874       [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); };
1875   auto getMDOrNull = [&](unsigned ID) -> Metadata *{
1876     if (ID)
1877       return getMD(ID - 1);
1878     return nullptr;
1879   };
1880   auto getMDString = [&](unsigned ID) -> MDString *{
1881     // This requires that the ID is not really a forward reference.  In
1882     // particular, the MDString must already have been resolved.
1883     return cast_or_null<MDString>(getMDOrNull(ID));
1884   };
1885 
1886 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS)                                 \
1887   (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS)
1888 
1889   // Read all the records.
1890   while (1) {
1891     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1892 
1893     switch (Entry.Kind) {
1894     case BitstreamEntry::SubBlock: // Handled for us already.
1895     case BitstreamEntry::Error:
1896       return error("Malformed block");
1897     case BitstreamEntry::EndBlock:
1898       MDValueList.tryToResolveCycles();
1899       return std::error_code();
1900     case BitstreamEntry::Record:
1901       // The interesting case.
1902       break;
1903     }
1904 
1905     // Read a record.
1906     Record.clear();
1907     unsigned Code = Stream.readRecord(Entry.ID, Record);
1908     bool IsDistinct = false;
1909     switch (Code) {
1910     default:  // Default behavior: ignore.
1911       break;
1912     case bitc::METADATA_NAME: {
1913       // Read name of the named metadata.
1914       SmallString<8> Name(Record.begin(), Record.end());
1915       Record.clear();
1916       Code = Stream.ReadCode();
1917 
1918       unsigned NextBitCode = Stream.readRecord(Code, Record);
1919       if (NextBitCode != bitc::METADATA_NAMED_NODE)
1920         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
1921 
1922       // Read named metadata elements.
1923       unsigned Size = Record.size();
1924       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
1925       for (unsigned i = 0; i != Size; ++i) {
1926         MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i]));
1927         if (!MD)
1928           return error("Invalid record");
1929         NMD->addOperand(MD);
1930       }
1931       break;
1932     }
1933     case bitc::METADATA_OLD_FN_NODE: {
1934       // FIXME: Remove in 4.0.
1935       // This is a LocalAsMetadata record, the only type of function-local
1936       // metadata.
1937       if (Record.size() % 2 == 1)
1938         return error("Invalid record");
1939 
1940       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
1941       // to be legal, but there's no upgrade path.
1942       auto dropRecord = [&] {
1943         MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++);
1944       };
1945       if (Record.size() != 2) {
1946         dropRecord();
1947         break;
1948       }
1949 
1950       Type *Ty = getTypeByID(Record[0]);
1951       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
1952         dropRecord();
1953         break;
1954       }
1955 
1956       MDValueList.assignValue(
1957           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
1958           NextMDValueNo++);
1959       break;
1960     }
1961     case bitc::METADATA_OLD_NODE: {
1962       // FIXME: Remove in 4.0.
1963       if (Record.size() % 2 == 1)
1964         return error("Invalid record");
1965 
1966       unsigned Size = Record.size();
1967       SmallVector<Metadata *, 8> Elts;
1968       for (unsigned i = 0; i != Size; i += 2) {
1969         Type *Ty = getTypeByID(Record[i]);
1970         if (!Ty)
1971           return error("Invalid record");
1972         if (Ty->isMetadataTy())
1973           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
1974         else if (!Ty->isVoidTy()) {
1975           auto *MD =
1976               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
1977           assert(isa<ConstantAsMetadata>(MD) &&
1978                  "Expected non-function-local metadata");
1979           Elts.push_back(MD);
1980         } else
1981           Elts.push_back(nullptr);
1982       }
1983       MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++);
1984       break;
1985     }
1986     case bitc::METADATA_VALUE: {
1987       if (Record.size() != 2)
1988         return error("Invalid record");
1989 
1990       Type *Ty = getTypeByID(Record[0]);
1991       if (Ty->isMetadataTy() || Ty->isVoidTy())
1992         return error("Invalid record");
1993 
1994       MDValueList.assignValue(
1995           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
1996           NextMDValueNo++);
1997       break;
1998     }
1999     case bitc::METADATA_DISTINCT_NODE:
2000       IsDistinct = true;
2001       // fallthrough...
2002     case bitc::METADATA_NODE: {
2003       SmallVector<Metadata *, 8> Elts;
2004       Elts.reserve(Record.size());
2005       for (unsigned ID : Record)
2006         Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr);
2007       MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2008                                          : MDNode::get(Context, Elts),
2009                               NextMDValueNo++);
2010       break;
2011     }
2012     case bitc::METADATA_LOCATION: {
2013       if (Record.size() != 5)
2014         return error("Invalid record");
2015 
2016       unsigned Line = Record[1];
2017       unsigned Column = Record[2];
2018       MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3]));
2019       Metadata *InlinedAt =
2020           Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr;
2021       MDValueList.assignValue(
2022           GET_OR_DISTINCT(DILocation, Record[0],
2023                           (Context, Line, Column, Scope, InlinedAt)),
2024           NextMDValueNo++);
2025       break;
2026     }
2027     case bitc::METADATA_GENERIC_DEBUG: {
2028       if (Record.size() < 4)
2029         return error("Invalid record");
2030 
2031       unsigned Tag = Record[1];
2032       unsigned Version = Record[2];
2033 
2034       if (Tag >= 1u << 16 || Version != 0)
2035         return error("Invalid record");
2036 
2037       auto *Header = getMDString(Record[3]);
2038       SmallVector<Metadata *, 8> DwarfOps;
2039       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2040         DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1)
2041                                      : nullptr);
2042       MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0],
2043                                               (Context, Tag, Header, DwarfOps)),
2044                               NextMDValueNo++);
2045       break;
2046     }
2047     case bitc::METADATA_SUBRANGE: {
2048       if (Record.size() != 3)
2049         return error("Invalid record");
2050 
2051       MDValueList.assignValue(
2052           GET_OR_DISTINCT(DISubrange, Record[0],
2053                           (Context, Record[1], unrotateSign(Record[2]))),
2054           NextMDValueNo++);
2055       break;
2056     }
2057     case bitc::METADATA_ENUMERATOR: {
2058       if (Record.size() != 3)
2059         return error("Invalid record");
2060 
2061       MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0],
2062                                               (Context, unrotateSign(Record[1]),
2063                                                getMDString(Record[2]))),
2064                               NextMDValueNo++);
2065       break;
2066     }
2067     case bitc::METADATA_BASIC_TYPE: {
2068       if (Record.size() != 6)
2069         return error("Invalid record");
2070 
2071       MDValueList.assignValue(
2072           GET_OR_DISTINCT(DIBasicType, Record[0],
2073                           (Context, Record[1], getMDString(Record[2]),
2074                            Record[3], Record[4], Record[5])),
2075           NextMDValueNo++);
2076       break;
2077     }
2078     case bitc::METADATA_DERIVED_TYPE: {
2079       if (Record.size() != 12)
2080         return error("Invalid record");
2081 
2082       MDValueList.assignValue(
2083           GET_OR_DISTINCT(DIDerivedType, Record[0],
2084                           (Context, Record[1], getMDString(Record[2]),
2085                            getMDOrNull(Record[3]), Record[4],
2086                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2087                            Record[7], Record[8], Record[9], Record[10],
2088                            getMDOrNull(Record[11]))),
2089           NextMDValueNo++);
2090       break;
2091     }
2092     case bitc::METADATA_COMPOSITE_TYPE: {
2093       if (Record.size() != 16)
2094         return error("Invalid record");
2095 
2096       MDValueList.assignValue(
2097           GET_OR_DISTINCT(DICompositeType, Record[0],
2098                           (Context, Record[1], getMDString(Record[2]),
2099                            getMDOrNull(Record[3]), Record[4],
2100                            getMDOrNull(Record[5]), getMDOrNull(Record[6]),
2101                            Record[7], Record[8], Record[9], Record[10],
2102                            getMDOrNull(Record[11]), Record[12],
2103                            getMDOrNull(Record[13]), getMDOrNull(Record[14]),
2104                            getMDString(Record[15]))),
2105           NextMDValueNo++);
2106       break;
2107     }
2108     case bitc::METADATA_SUBROUTINE_TYPE: {
2109       if (Record.size() != 3)
2110         return error("Invalid record");
2111 
2112       MDValueList.assignValue(
2113           GET_OR_DISTINCT(DISubroutineType, Record[0],
2114                           (Context, Record[1], getMDOrNull(Record[2]))),
2115           NextMDValueNo++);
2116       break;
2117     }
2118 
2119     case bitc::METADATA_MODULE: {
2120       if (Record.size() != 6)
2121         return error("Invalid record");
2122 
2123       MDValueList.assignValue(
2124           GET_OR_DISTINCT(DIModule, Record[0],
2125                           (Context, getMDOrNull(Record[1]),
2126                           getMDString(Record[2]), getMDString(Record[3]),
2127                           getMDString(Record[4]), getMDString(Record[5]))),
2128           NextMDValueNo++);
2129       break;
2130     }
2131 
2132     case bitc::METADATA_FILE: {
2133       if (Record.size() != 3)
2134         return error("Invalid record");
2135 
2136       MDValueList.assignValue(
2137           GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]),
2138                                               getMDString(Record[2]))),
2139           NextMDValueNo++);
2140       break;
2141     }
2142     case bitc::METADATA_COMPILE_UNIT: {
2143       if (Record.size() < 14 || Record.size() > 15)
2144         return error("Invalid record");
2145 
2146       // Ignore Record[1], which indicates whether this compile unit is
2147       // distinct.  It's always distinct.
2148       MDValueList.assignValue(
2149           DICompileUnit::getDistinct(
2150               Context, Record[1], getMDOrNull(Record[2]),
2151               getMDString(Record[3]), Record[4], getMDString(Record[5]),
2152               Record[6], getMDString(Record[7]), Record[8],
2153               getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2154               getMDOrNull(Record[11]), getMDOrNull(Record[12]),
2155               getMDOrNull(Record[13]), Record.size() == 14 ? 0 : Record[14]),
2156           NextMDValueNo++);
2157       break;
2158     }
2159     case bitc::METADATA_SUBPROGRAM: {
2160       if (Record.size() != 19)
2161         return error("Invalid record");
2162 
2163       MDValueList.assignValue(
2164           GET_OR_DISTINCT(
2165               DISubprogram,
2166               Record[0] || Record[8], // All definitions should be distinct.
2167               (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
2168                getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2169                getMDOrNull(Record[6]), Record[7], Record[8], Record[9],
2170                getMDOrNull(Record[10]), Record[11], Record[12], Record[13],
2171                Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]),
2172                getMDOrNull(Record[17]), getMDOrNull(Record[18]))),
2173           NextMDValueNo++);
2174       break;
2175     }
2176     case bitc::METADATA_LEXICAL_BLOCK: {
2177       if (Record.size() != 5)
2178         return error("Invalid record");
2179 
2180       MDValueList.assignValue(
2181           GET_OR_DISTINCT(DILexicalBlock, Record[0],
2182                           (Context, getMDOrNull(Record[1]),
2183                            getMDOrNull(Record[2]), Record[3], Record[4])),
2184           NextMDValueNo++);
2185       break;
2186     }
2187     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2188       if (Record.size() != 4)
2189         return error("Invalid record");
2190 
2191       MDValueList.assignValue(
2192           GET_OR_DISTINCT(DILexicalBlockFile, Record[0],
2193                           (Context, getMDOrNull(Record[1]),
2194                            getMDOrNull(Record[2]), Record[3])),
2195           NextMDValueNo++);
2196       break;
2197     }
2198     case bitc::METADATA_NAMESPACE: {
2199       if (Record.size() != 5)
2200         return error("Invalid record");
2201 
2202       MDValueList.assignValue(
2203           GET_OR_DISTINCT(DINamespace, Record[0],
2204                           (Context, getMDOrNull(Record[1]),
2205                            getMDOrNull(Record[2]), getMDString(Record[3]),
2206                            Record[4])),
2207           NextMDValueNo++);
2208       break;
2209     }
2210     case bitc::METADATA_TEMPLATE_TYPE: {
2211       if (Record.size() != 3)
2212         return error("Invalid record");
2213 
2214       MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2215                                               Record[0],
2216                                               (Context, getMDString(Record[1]),
2217                                                getMDOrNull(Record[2]))),
2218                               NextMDValueNo++);
2219       break;
2220     }
2221     case bitc::METADATA_TEMPLATE_VALUE: {
2222       if (Record.size() != 5)
2223         return error("Invalid record");
2224 
2225       MDValueList.assignValue(
2226           GET_OR_DISTINCT(DITemplateValueParameter, Record[0],
2227                           (Context, Record[1], getMDString(Record[2]),
2228                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2229           NextMDValueNo++);
2230       break;
2231     }
2232     case bitc::METADATA_GLOBAL_VAR: {
2233       if (Record.size() != 11)
2234         return error("Invalid record");
2235 
2236       MDValueList.assignValue(
2237           GET_OR_DISTINCT(DIGlobalVariable, Record[0],
2238                           (Context, getMDOrNull(Record[1]),
2239                            getMDString(Record[2]), getMDString(Record[3]),
2240                            getMDOrNull(Record[4]), Record[5],
2241                            getMDOrNull(Record[6]), Record[7], Record[8],
2242                            getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
2243           NextMDValueNo++);
2244       break;
2245     }
2246     case bitc::METADATA_LOCAL_VAR: {
2247       // 10th field is for the obseleted 'inlinedAt:' field.
2248       if (Record.size() < 8 || Record.size() > 10)
2249         return error("Invalid record");
2250 
2251       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2252       // DW_TAG_arg_variable.
2253       bool HasTag = Record.size() > 8;
2254       MDValueList.assignValue(
2255           GET_OR_DISTINCT(DILocalVariable, Record[0],
2256                           (Context, getMDOrNull(Record[1 + HasTag]),
2257                            getMDString(Record[2 + HasTag]),
2258                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2259                            getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag],
2260                            Record[7 + HasTag])),
2261           NextMDValueNo++);
2262       break;
2263     }
2264     case bitc::METADATA_EXPRESSION: {
2265       if (Record.size() < 1)
2266         return error("Invalid record");
2267 
2268       MDValueList.assignValue(
2269           GET_OR_DISTINCT(DIExpression, Record[0],
2270                           (Context, makeArrayRef(Record).slice(1))),
2271           NextMDValueNo++);
2272       break;
2273     }
2274     case bitc::METADATA_OBJC_PROPERTY: {
2275       if (Record.size() != 8)
2276         return error("Invalid record");
2277 
2278       MDValueList.assignValue(
2279           GET_OR_DISTINCT(DIObjCProperty, Record[0],
2280                           (Context, getMDString(Record[1]),
2281                            getMDOrNull(Record[2]), Record[3],
2282                            getMDString(Record[4]), getMDString(Record[5]),
2283                            Record[6], getMDOrNull(Record[7]))),
2284           NextMDValueNo++);
2285       break;
2286     }
2287     case bitc::METADATA_IMPORTED_ENTITY: {
2288       if (Record.size() != 6)
2289         return error("Invalid record");
2290 
2291       MDValueList.assignValue(
2292           GET_OR_DISTINCT(DIImportedEntity, Record[0],
2293                           (Context, Record[1], getMDOrNull(Record[2]),
2294                            getMDOrNull(Record[3]), Record[4],
2295                            getMDString(Record[5]))),
2296           NextMDValueNo++);
2297       break;
2298     }
2299     case bitc::METADATA_STRING: {
2300       std::string String(Record.begin(), Record.end());
2301       llvm::UpgradeMDStringConstant(String);
2302       Metadata *MD = MDString::get(Context, String);
2303       MDValueList.assignValue(MD, NextMDValueNo++);
2304       break;
2305     }
2306     case bitc::METADATA_KIND: {
2307       if (Record.size() < 2)
2308         return error("Invalid record");
2309 
2310       unsigned Kind = Record[0];
2311       SmallString<8> Name(Record.begin()+1, Record.end());
2312 
2313       unsigned NewKind = TheModule->getMDKindID(Name.str());
2314       if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
2315         return error("Conflicting METADATA_KIND records");
2316       break;
2317     }
2318     }
2319   }
2320 #undef GET_OR_DISTINCT
2321 }
2322 
2323 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2324 /// encoding.
2325 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2326   if ((V & 1) == 0)
2327     return V >> 1;
2328   if (V != 1)
2329     return -(V >> 1);
2330   // There is no such thing as -0 with integers.  "-0" really means MININT.
2331   return 1ULL << 63;
2332 }
2333 
2334 /// Resolve all of the initializers for global values and aliases that we can.
2335 std::error_code BitcodeReader::resolveGlobalAndAliasInits() {
2336   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2337   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
2338   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2339   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2340   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2341 
2342   GlobalInitWorklist.swap(GlobalInits);
2343   AliasInitWorklist.swap(AliasInits);
2344   FunctionPrefixWorklist.swap(FunctionPrefixes);
2345   FunctionPrologueWorklist.swap(FunctionPrologues);
2346   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2347 
2348   while (!GlobalInitWorklist.empty()) {
2349     unsigned ValID = GlobalInitWorklist.back().second;
2350     if (ValID >= ValueList.size()) {
2351       // Not ready to resolve this yet, it requires something later in the file.
2352       GlobalInits.push_back(GlobalInitWorklist.back());
2353     } else {
2354       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2355         GlobalInitWorklist.back().first->setInitializer(C);
2356       else
2357         return error("Expected a constant");
2358     }
2359     GlobalInitWorklist.pop_back();
2360   }
2361 
2362   while (!AliasInitWorklist.empty()) {
2363     unsigned ValID = AliasInitWorklist.back().second;
2364     if (ValID >= ValueList.size()) {
2365       AliasInits.push_back(AliasInitWorklist.back());
2366     } else {
2367       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2368       if (!C)
2369         return error("Expected a constant");
2370       GlobalAlias *Alias = AliasInitWorklist.back().first;
2371       if (C->getType() != Alias->getType())
2372         return error("Alias and aliasee types don't match");
2373       Alias->setAliasee(C);
2374     }
2375     AliasInitWorklist.pop_back();
2376   }
2377 
2378   while (!FunctionPrefixWorklist.empty()) {
2379     unsigned ValID = FunctionPrefixWorklist.back().second;
2380     if (ValID >= ValueList.size()) {
2381       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2382     } else {
2383       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2384         FunctionPrefixWorklist.back().first->setPrefixData(C);
2385       else
2386         return error("Expected a constant");
2387     }
2388     FunctionPrefixWorklist.pop_back();
2389   }
2390 
2391   while (!FunctionPrologueWorklist.empty()) {
2392     unsigned ValID = FunctionPrologueWorklist.back().second;
2393     if (ValID >= ValueList.size()) {
2394       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2395     } else {
2396       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2397         FunctionPrologueWorklist.back().first->setPrologueData(C);
2398       else
2399         return error("Expected a constant");
2400     }
2401     FunctionPrologueWorklist.pop_back();
2402   }
2403 
2404   while (!FunctionPersonalityFnWorklist.empty()) {
2405     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2406     if (ValID >= ValueList.size()) {
2407       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2408     } else {
2409       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2410         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2411       else
2412         return error("Expected a constant");
2413     }
2414     FunctionPersonalityFnWorklist.pop_back();
2415   }
2416 
2417   return std::error_code();
2418 }
2419 
2420 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2421   SmallVector<uint64_t, 8> Words(Vals.size());
2422   std::transform(Vals.begin(), Vals.end(), Words.begin(),
2423                  BitcodeReader::decodeSignRotatedValue);
2424 
2425   return APInt(TypeBits, Words);
2426 }
2427 
2428 std::error_code BitcodeReader::parseConstants() {
2429   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2430     return error("Invalid record");
2431 
2432   SmallVector<uint64_t, 64> Record;
2433 
2434   // Read all the records for this value table.
2435   Type *CurTy = Type::getInt32Ty(Context);
2436   unsigned NextCstNo = ValueList.size();
2437   while (1) {
2438     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2439 
2440     switch (Entry.Kind) {
2441     case BitstreamEntry::SubBlock: // Handled for us already.
2442     case BitstreamEntry::Error:
2443       return error("Malformed block");
2444     case BitstreamEntry::EndBlock:
2445       if (NextCstNo != ValueList.size())
2446         return error("Invalid ronstant reference");
2447 
2448       // Once all the constants have been read, go through and resolve forward
2449       // references.
2450       ValueList.resolveConstantForwardRefs();
2451       return std::error_code();
2452     case BitstreamEntry::Record:
2453       // The interesting case.
2454       break;
2455     }
2456 
2457     // Read a record.
2458     Record.clear();
2459     Value *V = nullptr;
2460     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2461     switch (BitCode) {
2462     default:  // Default behavior: unknown constant
2463     case bitc::CST_CODE_UNDEF:     // UNDEF
2464       V = UndefValue::get(CurTy);
2465       break;
2466     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2467       if (Record.empty())
2468         return error("Invalid record");
2469       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2470         return error("Invalid record");
2471       CurTy = TypeList[Record[0]];
2472       continue;  // Skip the ValueList manipulation.
2473     case bitc::CST_CODE_NULL:      // NULL
2474       V = Constant::getNullValue(CurTy);
2475       break;
2476     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2477       if (!CurTy->isIntegerTy() || Record.empty())
2478         return error("Invalid record");
2479       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2480       break;
2481     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2482       if (!CurTy->isIntegerTy() || Record.empty())
2483         return error("Invalid record");
2484 
2485       APInt VInt =
2486           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2487       V = ConstantInt::get(Context, VInt);
2488 
2489       break;
2490     }
2491     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2492       if (Record.empty())
2493         return error("Invalid record");
2494       if (CurTy->isHalfTy())
2495         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
2496                                              APInt(16, (uint16_t)Record[0])));
2497       else if (CurTy->isFloatTy())
2498         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
2499                                              APInt(32, (uint32_t)Record[0])));
2500       else if (CurTy->isDoubleTy())
2501         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
2502                                              APInt(64, Record[0])));
2503       else if (CurTy->isX86_FP80Ty()) {
2504         // Bits are not stored the same way as a normal i80 APInt, compensate.
2505         uint64_t Rearrange[2];
2506         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2507         Rearrange[1] = Record[0] >> 48;
2508         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
2509                                              APInt(80, Rearrange)));
2510       } else if (CurTy->isFP128Ty())
2511         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2512                                              APInt(128, Record)));
2513       else if (CurTy->isPPC_FP128Ty())
2514         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2515                                              APInt(128, Record)));
2516       else
2517         V = UndefValue::get(CurTy);
2518       break;
2519     }
2520 
2521     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2522       if (Record.empty())
2523         return error("Invalid record");
2524 
2525       unsigned Size = Record.size();
2526       SmallVector<Constant*, 16> Elts;
2527 
2528       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2529         for (unsigned i = 0; i != Size; ++i)
2530           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2531                                                      STy->getElementType(i)));
2532         V = ConstantStruct::get(STy, Elts);
2533       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2534         Type *EltTy = ATy->getElementType();
2535         for (unsigned i = 0; i != Size; ++i)
2536           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2537         V = ConstantArray::get(ATy, Elts);
2538       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2539         Type *EltTy = VTy->getElementType();
2540         for (unsigned i = 0; i != Size; ++i)
2541           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2542         V = ConstantVector::get(Elts);
2543       } else {
2544         V = UndefValue::get(CurTy);
2545       }
2546       break;
2547     }
2548     case bitc::CST_CODE_STRING:    // STRING: [values]
2549     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2550       if (Record.empty())
2551         return error("Invalid record");
2552 
2553       SmallString<16> Elts(Record.begin(), Record.end());
2554       V = ConstantDataArray::getString(Context, Elts,
2555                                        BitCode == bitc::CST_CODE_CSTRING);
2556       break;
2557     }
2558     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2559       if (Record.empty())
2560         return error("Invalid record");
2561 
2562       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2563       unsigned Size = Record.size();
2564 
2565       if (EltTy->isIntegerTy(8)) {
2566         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2567         if (isa<VectorType>(CurTy))
2568           V = ConstantDataVector::get(Context, Elts);
2569         else
2570           V = ConstantDataArray::get(Context, Elts);
2571       } else if (EltTy->isIntegerTy(16)) {
2572         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2573         if (isa<VectorType>(CurTy))
2574           V = ConstantDataVector::get(Context, Elts);
2575         else
2576           V = ConstantDataArray::get(Context, Elts);
2577       } else if (EltTy->isIntegerTy(32)) {
2578         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2579         if (isa<VectorType>(CurTy))
2580           V = ConstantDataVector::get(Context, Elts);
2581         else
2582           V = ConstantDataArray::get(Context, Elts);
2583       } else if (EltTy->isIntegerTy(64)) {
2584         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2585         if (isa<VectorType>(CurTy))
2586           V = ConstantDataVector::get(Context, Elts);
2587         else
2588           V = ConstantDataArray::get(Context, Elts);
2589       } else if (EltTy->isFloatTy()) {
2590         SmallVector<float, 16> Elts(Size);
2591         std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat);
2592         if (isa<VectorType>(CurTy))
2593           V = ConstantDataVector::get(Context, Elts);
2594         else
2595           V = ConstantDataArray::get(Context, Elts);
2596       } else if (EltTy->isDoubleTy()) {
2597         SmallVector<double, 16> Elts(Size);
2598         std::transform(Record.begin(), Record.end(), Elts.begin(),
2599                        BitsToDouble);
2600         if (isa<VectorType>(CurTy))
2601           V = ConstantDataVector::get(Context, Elts);
2602         else
2603           V = ConstantDataArray::get(Context, Elts);
2604       } else {
2605         return error("Invalid type for value");
2606       }
2607       break;
2608     }
2609 
2610     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2611       if (Record.size() < 3)
2612         return error("Invalid record");
2613       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2614       if (Opc < 0) {
2615         V = UndefValue::get(CurTy);  // Unknown binop.
2616       } else {
2617         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2618         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2619         unsigned Flags = 0;
2620         if (Record.size() >= 4) {
2621           if (Opc == Instruction::Add ||
2622               Opc == Instruction::Sub ||
2623               Opc == Instruction::Mul ||
2624               Opc == Instruction::Shl) {
2625             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2626               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2627             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2628               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2629           } else if (Opc == Instruction::SDiv ||
2630                      Opc == Instruction::UDiv ||
2631                      Opc == Instruction::LShr ||
2632                      Opc == Instruction::AShr) {
2633             if (Record[3] & (1 << bitc::PEO_EXACT))
2634               Flags |= SDivOperator::IsExact;
2635           }
2636         }
2637         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2638       }
2639       break;
2640     }
2641     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2642       if (Record.size() < 3)
2643         return error("Invalid record");
2644       int Opc = getDecodedCastOpcode(Record[0]);
2645       if (Opc < 0) {
2646         V = UndefValue::get(CurTy);  // Unknown cast.
2647       } else {
2648         Type *OpTy = getTypeByID(Record[1]);
2649         if (!OpTy)
2650           return error("Invalid record");
2651         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2652         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2653         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2654       }
2655       break;
2656     }
2657     case bitc::CST_CODE_CE_INBOUNDS_GEP:
2658     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
2659       unsigned OpNum = 0;
2660       Type *PointeeType = nullptr;
2661       if (Record.size() % 2)
2662         PointeeType = getTypeByID(Record[OpNum++]);
2663       SmallVector<Constant*, 16> Elts;
2664       while (OpNum != Record.size()) {
2665         Type *ElTy = getTypeByID(Record[OpNum++]);
2666         if (!ElTy)
2667           return error("Invalid record");
2668         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2669       }
2670 
2671       if (PointeeType &&
2672           PointeeType !=
2673               cast<SequentialType>(Elts[0]->getType()->getScalarType())
2674                   ->getElementType())
2675         return error("Explicit gep operator type does not match pointee type "
2676                      "of pointer operand");
2677 
2678       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2679       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2680                                          BitCode ==
2681                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
2682       break;
2683     }
2684     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2685       if (Record.size() < 3)
2686         return error("Invalid record");
2687 
2688       Type *SelectorTy = Type::getInt1Ty(Context);
2689 
2690       // The selector might be an i1 or an <n x i1>
2691       // Get the type from the ValueList before getting a forward ref.
2692       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2693         if (Value *V = ValueList[Record[0]])
2694           if (SelectorTy != V->getType())
2695             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2696 
2697       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2698                                                               SelectorTy),
2699                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2700                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2701       break;
2702     }
2703     case bitc::CST_CODE_CE_EXTRACTELT
2704         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2705       if (Record.size() < 3)
2706         return error("Invalid record");
2707       VectorType *OpTy =
2708         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2709       if (!OpTy)
2710         return error("Invalid record");
2711       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2712       Constant *Op1 = nullptr;
2713       if (Record.size() == 4) {
2714         Type *IdxTy = getTypeByID(Record[2]);
2715         if (!IdxTy)
2716           return error("Invalid record");
2717         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2718       } else // TODO: Remove with llvm 4.0
2719         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2720       if (!Op1)
2721         return error("Invalid record");
2722       V = ConstantExpr::getExtractElement(Op0, Op1);
2723       break;
2724     }
2725     case bitc::CST_CODE_CE_INSERTELT
2726         : { // CE_INSERTELT: [opval, opval, opty, opval]
2727       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2728       if (Record.size() < 3 || !OpTy)
2729         return error("Invalid record");
2730       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2731       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2732                                                   OpTy->getElementType());
2733       Constant *Op2 = nullptr;
2734       if (Record.size() == 4) {
2735         Type *IdxTy = getTypeByID(Record[2]);
2736         if (!IdxTy)
2737           return error("Invalid record");
2738         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2739       } else // TODO: Remove with llvm 4.0
2740         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2741       if (!Op2)
2742         return error("Invalid record");
2743       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2744       break;
2745     }
2746     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2747       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2748       if (Record.size() < 3 || !OpTy)
2749         return error("Invalid record");
2750       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2751       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2752       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2753                                                  OpTy->getNumElements());
2754       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2755       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2756       break;
2757     }
2758     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2759       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2760       VectorType *OpTy =
2761         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2762       if (Record.size() < 4 || !RTy || !OpTy)
2763         return error("Invalid record");
2764       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2765       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2766       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2767                                                  RTy->getNumElements());
2768       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2769       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2770       break;
2771     }
2772     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2773       if (Record.size() < 4)
2774         return error("Invalid record");
2775       Type *OpTy = getTypeByID(Record[0]);
2776       if (!OpTy)
2777         return error("Invalid record");
2778       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2779       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2780 
2781       if (OpTy->isFPOrFPVectorTy())
2782         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2783       else
2784         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2785       break;
2786     }
2787     // This maintains backward compatibility, pre-asm dialect keywords.
2788     // FIXME: Remove with the 4.0 release.
2789     case bitc::CST_CODE_INLINEASM_OLD: {
2790       if (Record.size() < 2)
2791         return error("Invalid record");
2792       std::string AsmStr, ConstrStr;
2793       bool HasSideEffects = Record[0] & 1;
2794       bool IsAlignStack = Record[0] >> 1;
2795       unsigned AsmStrSize = Record[1];
2796       if (2+AsmStrSize >= Record.size())
2797         return error("Invalid record");
2798       unsigned ConstStrSize = Record[2+AsmStrSize];
2799       if (3+AsmStrSize+ConstStrSize > Record.size())
2800         return error("Invalid record");
2801 
2802       for (unsigned i = 0; i != AsmStrSize; ++i)
2803         AsmStr += (char)Record[2+i];
2804       for (unsigned i = 0; i != ConstStrSize; ++i)
2805         ConstrStr += (char)Record[3+AsmStrSize+i];
2806       PointerType *PTy = cast<PointerType>(CurTy);
2807       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2808                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2809       break;
2810     }
2811     // This version adds support for the asm dialect keywords (e.g.,
2812     // inteldialect).
2813     case bitc::CST_CODE_INLINEASM: {
2814       if (Record.size() < 2)
2815         return error("Invalid record");
2816       std::string AsmStr, ConstrStr;
2817       bool HasSideEffects = Record[0] & 1;
2818       bool IsAlignStack = (Record[0] >> 1) & 1;
2819       unsigned AsmDialect = Record[0] >> 2;
2820       unsigned AsmStrSize = Record[1];
2821       if (2+AsmStrSize >= Record.size())
2822         return error("Invalid record");
2823       unsigned ConstStrSize = Record[2+AsmStrSize];
2824       if (3+AsmStrSize+ConstStrSize > Record.size())
2825         return error("Invalid record");
2826 
2827       for (unsigned i = 0; i != AsmStrSize; ++i)
2828         AsmStr += (char)Record[2+i];
2829       for (unsigned i = 0; i != ConstStrSize; ++i)
2830         ConstrStr += (char)Record[3+AsmStrSize+i];
2831       PointerType *PTy = cast<PointerType>(CurTy);
2832       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2833                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2834                          InlineAsm::AsmDialect(AsmDialect));
2835       break;
2836     }
2837     case bitc::CST_CODE_BLOCKADDRESS:{
2838       if (Record.size() < 3)
2839         return error("Invalid record");
2840       Type *FnTy = getTypeByID(Record[0]);
2841       if (!FnTy)
2842         return error("Invalid record");
2843       Function *Fn =
2844         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2845       if (!Fn)
2846         return error("Invalid record");
2847 
2848       // Don't let Fn get dematerialized.
2849       BlockAddressesTaken.insert(Fn);
2850 
2851       // If the function is already parsed we can insert the block address right
2852       // away.
2853       BasicBlock *BB;
2854       unsigned BBID = Record[2];
2855       if (!BBID)
2856         // Invalid reference to entry block.
2857         return error("Invalid ID");
2858       if (!Fn->empty()) {
2859         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2860         for (size_t I = 0, E = BBID; I != E; ++I) {
2861           if (BBI == BBE)
2862             return error("Invalid ID");
2863           ++BBI;
2864         }
2865         BB = BBI;
2866       } else {
2867         // Otherwise insert a placeholder and remember it so it can be inserted
2868         // when the function is parsed.
2869         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2870         if (FwdBBs.empty())
2871           BasicBlockFwdRefQueue.push_back(Fn);
2872         if (FwdBBs.size() < BBID + 1)
2873           FwdBBs.resize(BBID + 1);
2874         if (!FwdBBs[BBID])
2875           FwdBBs[BBID] = BasicBlock::Create(Context);
2876         BB = FwdBBs[BBID];
2877       }
2878       V = BlockAddress::get(Fn, BB);
2879       break;
2880     }
2881     }
2882 
2883     if (ValueList.assignValue(V, NextCstNo))
2884       return error("Invalid forward reference");
2885     ++NextCstNo;
2886   }
2887 }
2888 
2889 std::error_code BitcodeReader::parseUseLists() {
2890   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2891     return error("Invalid record");
2892 
2893   // Read all the records.
2894   SmallVector<uint64_t, 64> Record;
2895   while (1) {
2896     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2897 
2898     switch (Entry.Kind) {
2899     case BitstreamEntry::SubBlock: // Handled for us already.
2900     case BitstreamEntry::Error:
2901       return error("Malformed block");
2902     case BitstreamEntry::EndBlock:
2903       return std::error_code();
2904     case BitstreamEntry::Record:
2905       // The interesting case.
2906       break;
2907     }
2908 
2909     // Read a use list record.
2910     Record.clear();
2911     bool IsBB = false;
2912     switch (Stream.readRecord(Entry.ID, Record)) {
2913     default:  // Default behavior: unknown type.
2914       break;
2915     case bitc::USELIST_CODE_BB:
2916       IsBB = true;
2917       // fallthrough
2918     case bitc::USELIST_CODE_DEFAULT: {
2919       unsigned RecordLength = Record.size();
2920       if (RecordLength < 3)
2921         // Records should have at least an ID and two indexes.
2922         return error("Invalid record");
2923       unsigned ID = Record.back();
2924       Record.pop_back();
2925 
2926       Value *V;
2927       if (IsBB) {
2928         assert(ID < FunctionBBs.size() && "Basic block not found");
2929         V = FunctionBBs[ID];
2930       } else
2931         V = ValueList[ID];
2932       unsigned NumUses = 0;
2933       SmallDenseMap<const Use *, unsigned, 16> Order;
2934       for (const Use &U : V->uses()) {
2935         if (++NumUses > Record.size())
2936           break;
2937         Order[&U] = Record[NumUses - 1];
2938       }
2939       if (Order.size() != Record.size() || NumUses > Record.size())
2940         // Mismatches can happen if the functions are being materialized lazily
2941         // (out-of-order), or a value has been upgraded.
2942         break;
2943 
2944       V->sortUseList([&](const Use &L, const Use &R) {
2945         return Order.lookup(&L) < Order.lookup(&R);
2946       });
2947       break;
2948     }
2949     }
2950   }
2951 }
2952 
2953 /// When we see the block for metadata, remember where it is and then skip it.
2954 /// This lets us lazily deserialize the metadata.
2955 std::error_code BitcodeReader::rememberAndSkipMetadata() {
2956   // Save the current stream state.
2957   uint64_t CurBit = Stream.GetCurrentBitNo();
2958   DeferredMetadataInfo.push_back(CurBit);
2959 
2960   // Skip over the block for now.
2961   if (Stream.SkipBlock())
2962     return error("Invalid record");
2963   return std::error_code();
2964 }
2965 
2966 std::error_code BitcodeReader::materializeMetadata() {
2967   for (uint64_t BitPos : DeferredMetadataInfo) {
2968     // Move the bit stream to the saved position.
2969     Stream.JumpToBit(BitPos);
2970     if (std::error_code EC = parseMetadata())
2971       return EC;
2972   }
2973   DeferredMetadataInfo.clear();
2974   return std::error_code();
2975 }
2976 
2977 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2978 
2979 /// When we see the block for a function body, remember where it is and then
2980 /// skip it.  This lets us lazily deserialize the functions.
2981 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
2982   // Get the function we are talking about.
2983   if (FunctionsWithBodies.empty())
2984     return error("Insufficient function protos");
2985 
2986   Function *Fn = FunctionsWithBodies.back();
2987   FunctionsWithBodies.pop_back();
2988 
2989   // Save the current stream state.
2990   uint64_t CurBit = Stream.GetCurrentBitNo();
2991   DeferredFunctionInfo[Fn] = CurBit;
2992 
2993   // Skip over the function block for now.
2994   if (Stream.SkipBlock())
2995     return error("Invalid record");
2996   return std::error_code();
2997 }
2998 
2999 std::error_code BitcodeReader::globalCleanup() {
3000   // Patch the initializers for globals and aliases up.
3001   resolveGlobalAndAliasInits();
3002   if (!GlobalInits.empty() || !AliasInits.empty())
3003     return error("Malformed global initializer set");
3004 
3005   // Look for intrinsic functions which need to be upgraded at some point
3006   for (Function &F : *TheModule) {
3007     Function *NewFn;
3008     if (UpgradeIntrinsicFunction(&F, NewFn))
3009       UpgradedIntrinsics[&F] = NewFn;
3010   }
3011 
3012   // Look for global variables which need to be renamed.
3013   for (GlobalVariable &GV : TheModule->globals())
3014     UpgradeGlobalVariable(&GV);
3015 
3016   // Force deallocation of memory for these vectors to favor the client that
3017   // want lazy deserialization.
3018   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3019   std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
3020   return std::error_code();
3021 }
3022 
3023 std::error_code BitcodeReader::parseModule(bool Resume,
3024                                            bool ShouldLazyLoadMetadata) {
3025   if (Resume)
3026     Stream.JumpToBit(NextUnreadBit);
3027   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3028     return error("Invalid record");
3029 
3030   SmallVector<uint64_t, 64> Record;
3031   std::vector<std::string> SectionTable;
3032   std::vector<std::string> GCTable;
3033 
3034   // Read all the records for this module.
3035   while (1) {
3036     BitstreamEntry Entry = Stream.advance();
3037 
3038     switch (Entry.Kind) {
3039     case BitstreamEntry::Error:
3040       return error("Malformed block");
3041     case BitstreamEntry::EndBlock:
3042       return globalCleanup();
3043 
3044     case BitstreamEntry::SubBlock:
3045       switch (Entry.ID) {
3046       default:  // Skip unknown content.
3047         if (Stream.SkipBlock())
3048           return error("Invalid record");
3049         break;
3050       case bitc::BLOCKINFO_BLOCK_ID:
3051         if (Stream.ReadBlockInfoBlock())
3052           return error("Malformed block");
3053         break;
3054       case bitc::PARAMATTR_BLOCK_ID:
3055         if (std::error_code EC = parseAttributeBlock())
3056           return EC;
3057         break;
3058       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3059         if (std::error_code EC = parseAttributeGroupBlock())
3060           return EC;
3061         break;
3062       case bitc::TYPE_BLOCK_ID_NEW:
3063         if (std::error_code EC = parseTypeTable())
3064           return EC;
3065         break;
3066       case bitc::VALUE_SYMTAB_BLOCK_ID:
3067         if (!SeenValueSymbolTable) {
3068           // Either this is an old form VST without function index and an
3069           // associated VST forward declaration record (which would have caused
3070           // the VST to be jumped to and parsed before it was encountered
3071           // normally in the stream), or there were no function blocks to
3072           // trigger an earlier parsing of the VST.
3073           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3074           if (std::error_code EC = parseValueSymbolTable())
3075             return EC;
3076           SeenValueSymbolTable = true;
3077         } else {
3078           // We must have had a VST forward declaration record, which caused
3079           // the parser to jump to and parse the VST earlier.
3080           assert(VSTOffset > 0);
3081           if (Stream.SkipBlock())
3082             return error("Invalid record");
3083         }
3084         break;
3085       case bitc::CONSTANTS_BLOCK_ID:
3086         if (std::error_code EC = parseConstants())
3087           return EC;
3088         if (std::error_code EC = resolveGlobalAndAliasInits())
3089           return EC;
3090         break;
3091       case bitc::METADATA_BLOCK_ID:
3092         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3093           if (std::error_code EC = rememberAndSkipMetadata())
3094             return EC;
3095           break;
3096         }
3097         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3098         if (std::error_code EC = parseMetadata())
3099           return EC;
3100         break;
3101       case bitc::FUNCTION_BLOCK_ID:
3102         // If this is the first function body we've seen, reverse the
3103         // FunctionsWithBodies list.
3104         if (!SeenFirstFunctionBody) {
3105           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3106           if (std::error_code EC = globalCleanup())
3107             return EC;
3108           SeenFirstFunctionBody = true;
3109         }
3110 
3111         if (VSTOffset > 0) {
3112           // If we have a VST forward declaration record, make sure we
3113           // parse the VST now if we haven't already. It is needed to
3114           // set up the DeferredFunctionInfo vector for lazy reading.
3115           if (!SeenValueSymbolTable) {
3116             if (std::error_code EC =
3117                     BitcodeReader::parseValueSymbolTable(VSTOffset))
3118               return EC;
3119             SeenValueSymbolTable = true;
3120             return std::error_code();
3121           } else {
3122             // If we have a VST forward declaration record, but have already
3123             // parsed the VST (just above, when the first function body was
3124             // encountered here), then we are resuming the parse after
3125             // materializing functions. The NextUnreadBit points to the start
3126             // of the last function block recorded in the VST (set when
3127             // parsing the VST function entries). Skip it.
3128             if (Stream.SkipBlock())
3129               return error("Invalid record");
3130             continue;
3131           }
3132         }
3133 
3134         // Support older bitcode files that did not have the function
3135         // index in the VST, nor a VST forward declaration record.
3136         // Build the DeferredFunctionInfo vector on the fly.
3137         if (std::error_code EC = rememberAndSkipFunctionBody())
3138           return EC;
3139         // Suspend parsing when we reach the function bodies. Subsequent
3140         // materialization calls will resume it when necessary. If the bitcode
3141         // file is old, the symbol table will be at the end instead and will not
3142         // have been seen yet. In this case, just finish the parse now.
3143         if (SeenValueSymbolTable) {
3144           NextUnreadBit = Stream.GetCurrentBitNo();
3145           return std::error_code();
3146         }
3147         break;
3148       case bitc::USELIST_BLOCK_ID:
3149         if (std::error_code EC = parseUseLists())
3150           return EC;
3151         break;
3152       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3153         if (std::error_code EC = parseOperandBundleTags())
3154           return EC;
3155         break;
3156       }
3157       continue;
3158 
3159     case BitstreamEntry::Record:
3160       // The interesting case.
3161       break;
3162     }
3163 
3164 
3165     // Read a record.
3166     auto BitCode = Stream.readRecord(Entry.ID, Record);
3167     switch (BitCode) {
3168     default: break;  // Default behavior, ignore unknown content.
3169     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
3170       if (Record.size() < 1)
3171         return error("Invalid record");
3172       // Only version #0 and #1 are supported so far.
3173       unsigned module_version = Record[0];
3174       switch (module_version) {
3175         default:
3176           return error("Invalid value");
3177         case 0:
3178           UseRelativeIDs = false;
3179           break;
3180         case 1:
3181           UseRelativeIDs = true;
3182           break;
3183       }
3184       break;
3185     }
3186     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3187       std::string S;
3188       if (convertToString(Record, 0, S))
3189         return error("Invalid record");
3190       TheModule->setTargetTriple(S);
3191       break;
3192     }
3193     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3194       std::string S;
3195       if (convertToString(Record, 0, S))
3196         return error("Invalid record");
3197       TheModule->setDataLayout(S);
3198       break;
3199     }
3200     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3201       std::string S;
3202       if (convertToString(Record, 0, S))
3203         return error("Invalid record");
3204       TheModule->setModuleInlineAsm(S);
3205       break;
3206     }
3207     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3208       // FIXME: Remove in 4.0.
3209       std::string S;
3210       if (convertToString(Record, 0, S))
3211         return error("Invalid record");
3212       // Ignore value.
3213       break;
3214     }
3215     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3216       std::string S;
3217       if (convertToString(Record, 0, S))
3218         return error("Invalid record");
3219       SectionTable.push_back(S);
3220       break;
3221     }
3222     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3223       std::string S;
3224       if (convertToString(Record, 0, S))
3225         return error("Invalid record");
3226       GCTable.push_back(S);
3227       break;
3228     }
3229     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
3230       if (Record.size() < 2)
3231         return error("Invalid record");
3232       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3233       unsigned ComdatNameSize = Record[1];
3234       std::string ComdatName;
3235       ComdatName.reserve(ComdatNameSize);
3236       for (unsigned i = 0; i != ComdatNameSize; ++i)
3237         ComdatName += (char)Record[2 + i];
3238       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
3239       C->setSelectionKind(SK);
3240       ComdatList.push_back(C);
3241       break;
3242     }
3243     // GLOBALVAR: [pointer type, isconst, initid,
3244     //             linkage, alignment, section, visibility, threadlocal,
3245     //             unnamed_addr, externally_initialized, dllstorageclass,
3246     //             comdat]
3247     case bitc::MODULE_CODE_GLOBALVAR: {
3248       if (Record.size() < 6)
3249         return error("Invalid record");
3250       Type *Ty = getTypeByID(Record[0]);
3251       if (!Ty)
3252         return error("Invalid record");
3253       bool isConstant = Record[1] & 1;
3254       bool explicitType = Record[1] & 2;
3255       unsigned AddressSpace;
3256       if (explicitType) {
3257         AddressSpace = Record[1] >> 2;
3258       } else {
3259         if (!Ty->isPointerTy())
3260           return error("Invalid type for value");
3261         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3262         Ty = cast<PointerType>(Ty)->getElementType();
3263       }
3264 
3265       uint64_t RawLinkage = Record[3];
3266       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3267       unsigned Alignment;
3268       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
3269         return EC;
3270       std::string Section;
3271       if (Record[5]) {
3272         if (Record[5]-1 >= SectionTable.size())
3273           return error("Invalid ID");
3274         Section = SectionTable[Record[5]-1];
3275       }
3276       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3277       // Local linkage must have default visibility.
3278       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3279         // FIXME: Change to an error if non-default in 4.0.
3280         Visibility = getDecodedVisibility(Record[6]);
3281 
3282       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3283       if (Record.size() > 7)
3284         TLM = getDecodedThreadLocalMode(Record[7]);
3285 
3286       bool UnnamedAddr = false;
3287       if (Record.size() > 8)
3288         UnnamedAddr = Record[8];
3289 
3290       bool ExternallyInitialized = false;
3291       if (Record.size() > 9)
3292         ExternallyInitialized = Record[9];
3293 
3294       GlobalVariable *NewGV =
3295         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
3296                            TLM, AddressSpace, ExternallyInitialized);
3297       NewGV->setAlignment(Alignment);
3298       if (!Section.empty())
3299         NewGV->setSection(Section);
3300       NewGV->setVisibility(Visibility);
3301       NewGV->setUnnamedAddr(UnnamedAddr);
3302 
3303       if (Record.size() > 10)
3304         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3305       else
3306         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3307 
3308       ValueList.push_back(NewGV);
3309 
3310       // Remember which value to use for the global initializer.
3311       if (unsigned InitID = Record[2])
3312         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
3313 
3314       if (Record.size() > 11) {
3315         if (unsigned ComdatID = Record[11]) {
3316           if (ComdatID > ComdatList.size())
3317             return error("Invalid global variable comdat ID");
3318           NewGV->setComdat(ComdatList[ComdatID - 1]);
3319         }
3320       } else if (hasImplicitComdat(RawLinkage)) {
3321         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3322       }
3323       break;
3324     }
3325     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
3326     //             alignment, section, visibility, gc, unnamed_addr,
3327     //             prologuedata, dllstorageclass, comdat, prefixdata]
3328     case bitc::MODULE_CODE_FUNCTION: {
3329       if (Record.size() < 8)
3330         return error("Invalid record");
3331       Type *Ty = getTypeByID(Record[0]);
3332       if (!Ty)
3333         return error("Invalid record");
3334       if (auto *PTy = dyn_cast<PointerType>(Ty))
3335         Ty = PTy->getElementType();
3336       auto *FTy = dyn_cast<FunctionType>(Ty);
3337       if (!FTy)
3338         return error("Invalid type for value");
3339 
3340       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3341                                         "", TheModule);
3342 
3343       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
3344       bool isProto = Record[2];
3345       uint64_t RawLinkage = Record[3];
3346       Func->setLinkage(getDecodedLinkage(RawLinkage));
3347       Func->setAttributes(getAttributes(Record[4]));
3348 
3349       unsigned Alignment;
3350       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
3351         return EC;
3352       Func->setAlignment(Alignment);
3353       if (Record[6]) {
3354         if (Record[6]-1 >= SectionTable.size())
3355           return error("Invalid ID");
3356         Func->setSection(SectionTable[Record[6]-1]);
3357       }
3358       // Local linkage must have default visibility.
3359       if (!Func->hasLocalLinkage())
3360         // FIXME: Change to an error if non-default in 4.0.
3361         Func->setVisibility(getDecodedVisibility(Record[7]));
3362       if (Record.size() > 8 && Record[8]) {
3363         if (Record[8]-1 >= GCTable.size())
3364           return error("Invalid ID");
3365         Func->setGC(GCTable[Record[8]-1].c_str());
3366       }
3367       bool UnnamedAddr = false;
3368       if (Record.size() > 9)
3369         UnnamedAddr = Record[9];
3370       Func->setUnnamedAddr(UnnamedAddr);
3371       if (Record.size() > 10 && Record[10] != 0)
3372         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
3373 
3374       if (Record.size() > 11)
3375         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3376       else
3377         upgradeDLLImportExportLinkage(Func, RawLinkage);
3378 
3379       if (Record.size() > 12) {
3380         if (unsigned ComdatID = Record[12]) {
3381           if (ComdatID > ComdatList.size())
3382             return error("Invalid function comdat ID");
3383           Func->setComdat(ComdatList[ComdatID - 1]);
3384         }
3385       } else if (hasImplicitComdat(RawLinkage)) {
3386         Func->setComdat(reinterpret_cast<Comdat *>(1));
3387       }
3388 
3389       if (Record.size() > 13 && Record[13] != 0)
3390         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
3391 
3392       if (Record.size() > 14 && Record[14] != 0)
3393         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3394 
3395       ValueList.push_back(Func);
3396 
3397       // If this is a function with a body, remember the prototype we are
3398       // creating now, so that we can match up the body with them later.
3399       if (!isProto) {
3400         Func->setIsMaterializable(true);
3401         FunctionsWithBodies.push_back(Func);
3402         DeferredFunctionInfo[Func] = 0;
3403       }
3404       break;
3405     }
3406     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
3407     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3408     case bitc::MODULE_CODE_ALIAS:
3409     case bitc::MODULE_CODE_ALIAS_OLD: {
3410       bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS;
3411       if (Record.size() < (3 + (unsigned)NewRecord))
3412         return error("Invalid record");
3413       unsigned OpNum = 0;
3414       Type *Ty = getTypeByID(Record[OpNum++]);
3415       if (!Ty)
3416         return error("Invalid record");
3417 
3418       unsigned AddrSpace;
3419       if (!NewRecord) {
3420         auto *PTy = dyn_cast<PointerType>(Ty);
3421         if (!PTy)
3422           return error("Invalid type for value");
3423         Ty = PTy->getElementType();
3424         AddrSpace = PTy->getAddressSpace();
3425       } else {
3426         AddrSpace = Record[OpNum++];
3427       }
3428 
3429       auto Val = Record[OpNum++];
3430       auto Linkage = Record[OpNum++];
3431       auto *NewGA = GlobalAlias::create(
3432           Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule);
3433       // Old bitcode files didn't have visibility field.
3434       // Local linkage must have default visibility.
3435       if (OpNum != Record.size()) {
3436         auto VisInd = OpNum++;
3437         if (!NewGA->hasLocalLinkage())
3438           // FIXME: Change to an error if non-default in 4.0.
3439           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3440       }
3441       if (OpNum != Record.size())
3442         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3443       else
3444         upgradeDLLImportExportLinkage(NewGA, Linkage);
3445       if (OpNum != Record.size())
3446         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3447       if (OpNum != Record.size())
3448         NewGA->setUnnamedAddr(Record[OpNum++]);
3449       ValueList.push_back(NewGA);
3450       AliasInits.push_back(std::make_pair(NewGA, Val));
3451       break;
3452     }
3453     /// MODULE_CODE_PURGEVALS: [numvals]
3454     case bitc::MODULE_CODE_PURGEVALS:
3455       // Trim down the value list to the specified size.
3456       if (Record.size() < 1 || Record[0] > ValueList.size())
3457         return error("Invalid record");
3458       ValueList.shrinkTo(Record[0]);
3459       break;
3460     /// MODULE_CODE_VSTOFFSET: [offset]
3461     case bitc::MODULE_CODE_VSTOFFSET:
3462       if (Record.size() < 1)
3463         return error("Invalid record");
3464       VSTOffset = Record[0];
3465       break;
3466     }
3467     Record.clear();
3468   }
3469 }
3470 
3471 /// Helper to read the header common to all bitcode files.
3472 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
3473   // Sniff for the signature.
3474   if (Stream.Read(8) != 'B' ||
3475       Stream.Read(8) != 'C' ||
3476       Stream.Read(4) != 0x0 ||
3477       Stream.Read(4) != 0xC ||
3478       Stream.Read(4) != 0xE ||
3479       Stream.Read(4) != 0xD)
3480     return false;
3481   return true;
3482 }
3483 
3484 std::error_code
3485 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
3486                                 Module *M, bool ShouldLazyLoadMetadata) {
3487   TheModule = M;
3488 
3489   if (std::error_code EC = initStream(std::move(Streamer)))
3490     return EC;
3491 
3492   // Sniff for the signature.
3493   if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature");
3494 
3495   // We expect a number of well-defined blocks, though we don't necessarily
3496   // need to understand them all.
3497   while (1) {
3498     if (Stream.AtEndOfStream()) {
3499       // We didn't really read a proper Module.
3500       return error("Malformed IR file");
3501     }
3502 
3503     BitstreamEntry Entry =
3504       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
3505 
3506     if (Entry.Kind != BitstreamEntry::SubBlock)
3507       return error("Malformed block");
3508 
3509     if (Entry.ID == bitc::MODULE_BLOCK_ID)
3510       return parseModule(false, ShouldLazyLoadMetadata);
3511 
3512     if (Stream.SkipBlock())
3513       return error("Invalid record");
3514   }
3515 }
3516 
3517 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
3518   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3519     return error("Invalid record");
3520 
3521   SmallVector<uint64_t, 64> Record;
3522 
3523   std::string Triple;
3524   // Read all the records for this module.
3525   while (1) {
3526     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3527 
3528     switch (Entry.Kind) {
3529     case BitstreamEntry::SubBlock: // Handled for us already.
3530     case BitstreamEntry::Error:
3531       return error("Malformed block");
3532     case BitstreamEntry::EndBlock:
3533       return Triple;
3534     case BitstreamEntry::Record:
3535       // The interesting case.
3536       break;
3537     }
3538 
3539     // Read a record.
3540     switch (Stream.readRecord(Entry.ID, Record)) {
3541     default: break;  // Default behavior, ignore unknown content.
3542     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3543       std::string S;
3544       if (convertToString(Record, 0, S))
3545         return error("Invalid record");
3546       Triple = S;
3547       break;
3548     }
3549     }
3550     Record.clear();
3551   }
3552   llvm_unreachable("Exit infinite loop");
3553 }
3554 
3555 ErrorOr<std::string> BitcodeReader::parseTriple() {
3556   if (std::error_code EC = initStream(nullptr))
3557     return EC;
3558 
3559   // Sniff for the signature.
3560   if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature");
3561 
3562   // We expect a number of well-defined blocks, though we don't necessarily
3563   // need to understand them all.
3564   while (1) {
3565     BitstreamEntry Entry = Stream.advance();
3566 
3567     switch (Entry.Kind) {
3568     case BitstreamEntry::Error:
3569       return error("Malformed block");
3570     case BitstreamEntry::EndBlock:
3571       return std::error_code();
3572 
3573     case BitstreamEntry::SubBlock:
3574       if (Entry.ID == bitc::MODULE_BLOCK_ID)
3575         return parseModuleTriple();
3576 
3577       // Ignore other sub-blocks.
3578       if (Stream.SkipBlock())
3579         return error("Malformed block");
3580       continue;
3581 
3582     case BitstreamEntry::Record:
3583       Stream.skipRecord(Entry.ID);
3584       continue;
3585     }
3586   }
3587 }
3588 
3589 /// Parse metadata attachments.
3590 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
3591   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
3592     return error("Invalid record");
3593 
3594   SmallVector<uint64_t, 64> Record;
3595   while (1) {
3596     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3597 
3598     switch (Entry.Kind) {
3599     case BitstreamEntry::SubBlock: // Handled for us already.
3600     case BitstreamEntry::Error:
3601       return error("Malformed block");
3602     case BitstreamEntry::EndBlock:
3603       return std::error_code();
3604     case BitstreamEntry::Record:
3605       // The interesting case.
3606       break;
3607     }
3608 
3609     // Read a metadata attachment record.
3610     Record.clear();
3611     switch (Stream.readRecord(Entry.ID, Record)) {
3612     default:  // Default behavior: ignore.
3613       break;
3614     case bitc::METADATA_ATTACHMENT: {
3615       unsigned RecordLength = Record.size();
3616       if (Record.empty())
3617         return error("Invalid record");
3618       if (RecordLength % 2 == 0) {
3619         // A function attachment.
3620         for (unsigned I = 0; I != RecordLength; I += 2) {
3621           auto K = MDKindMap.find(Record[I]);
3622           if (K == MDKindMap.end())
3623             return error("Invalid ID");
3624           Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]);
3625           F.setMetadata(K->second, cast<MDNode>(MD));
3626         }
3627         continue;
3628       }
3629 
3630       // An instruction attachment.
3631       Instruction *Inst = InstructionList[Record[0]];
3632       for (unsigned i = 1; i != RecordLength; i = i+2) {
3633         unsigned Kind = Record[i];
3634         DenseMap<unsigned, unsigned>::iterator I =
3635           MDKindMap.find(Kind);
3636         if (I == MDKindMap.end())
3637           return error("Invalid ID");
3638         Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]);
3639         if (isa<LocalAsMetadata>(Node))
3640           // Drop the attachment.  This used to be legal, but there's no
3641           // upgrade path.
3642           break;
3643         Inst->setMetadata(I->second, cast<MDNode>(Node));
3644         if (I->second == LLVMContext::MD_tbaa)
3645           InstsWithTBAATag.push_back(Inst);
3646       }
3647       break;
3648     }
3649     }
3650   }
3651 }
3652 
3653 static std::error_code typeCheckLoadStoreInst(DiagnosticHandlerFunction DH,
3654                                               Type *ValType, Type *PtrType) {
3655   if (!isa<PointerType>(PtrType))
3656     return error(DH, "Load/Store operand is not a pointer type");
3657   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3658 
3659   if (ValType && ValType != ElemType)
3660     return error(DH, "Explicit load/store type does not match pointee type of "
3661                      "pointer operand");
3662   if (!PointerType::isLoadableOrStorableType(ElemType))
3663     return error(DH, "Cannot load/store from pointer");
3664   return std::error_code();
3665 }
3666 
3667 /// Lazily parse the specified function body block.
3668 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
3669   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3670     return error("Invalid record");
3671 
3672   InstructionList.clear();
3673   unsigned ModuleValueListSize = ValueList.size();
3674   unsigned ModuleMDValueListSize = MDValueList.size();
3675 
3676   // Add all the function arguments to the value table.
3677   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
3678     ValueList.push_back(I);
3679 
3680   unsigned NextValueNo = ValueList.size();
3681   BasicBlock *CurBB = nullptr;
3682   unsigned CurBBNo = 0;
3683 
3684   DebugLoc LastLoc;
3685   auto getLastInstruction = [&]() -> Instruction * {
3686     if (CurBB && !CurBB->empty())
3687       return &CurBB->back();
3688     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3689              !FunctionBBs[CurBBNo - 1]->empty())
3690       return &FunctionBBs[CurBBNo - 1]->back();
3691     return nullptr;
3692   };
3693 
3694   std::vector<OperandBundleDef> OperandBundles;
3695 
3696   // Read all the records.
3697   SmallVector<uint64_t, 64> Record;
3698   while (1) {
3699     BitstreamEntry Entry = Stream.advance();
3700 
3701     switch (Entry.Kind) {
3702     case BitstreamEntry::Error:
3703       return error("Malformed block");
3704     case BitstreamEntry::EndBlock:
3705       goto OutOfRecordLoop;
3706 
3707     case BitstreamEntry::SubBlock:
3708       switch (Entry.ID) {
3709       default:  // Skip unknown content.
3710         if (Stream.SkipBlock())
3711           return error("Invalid record");
3712         break;
3713       case bitc::CONSTANTS_BLOCK_ID:
3714         if (std::error_code EC = parseConstants())
3715           return EC;
3716         NextValueNo = ValueList.size();
3717         break;
3718       case bitc::VALUE_SYMTAB_BLOCK_ID:
3719         if (std::error_code EC = parseValueSymbolTable())
3720           return EC;
3721         break;
3722       case bitc::METADATA_ATTACHMENT_ID:
3723         if (std::error_code EC = parseMetadataAttachment(*F))
3724           return EC;
3725         break;
3726       case bitc::METADATA_BLOCK_ID:
3727         if (std::error_code EC = parseMetadata())
3728           return EC;
3729         break;
3730       case bitc::USELIST_BLOCK_ID:
3731         if (std::error_code EC = parseUseLists())
3732           return EC;
3733         break;
3734       }
3735       continue;
3736 
3737     case BitstreamEntry::Record:
3738       // The interesting case.
3739       break;
3740     }
3741 
3742     // Read a record.
3743     Record.clear();
3744     Instruction *I = nullptr;
3745     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3746     switch (BitCode) {
3747     default: // Default behavior: reject
3748       return error("Invalid value");
3749     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3750       if (Record.size() < 1 || Record[0] == 0)
3751         return error("Invalid record");
3752       // Create all the basic blocks for the function.
3753       FunctionBBs.resize(Record[0]);
3754 
3755       // See if anything took the address of blocks in this function.
3756       auto BBFRI = BasicBlockFwdRefs.find(F);
3757       if (BBFRI == BasicBlockFwdRefs.end()) {
3758         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3759           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3760       } else {
3761         auto &BBRefs = BBFRI->second;
3762         // Check for invalid basic block references.
3763         if (BBRefs.size() > FunctionBBs.size())
3764           return error("Invalid ID");
3765         assert(!BBRefs.empty() && "Unexpected empty array");
3766         assert(!BBRefs.front() && "Invalid reference to entry block");
3767         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3768              ++I)
3769           if (I < RE && BBRefs[I]) {
3770             BBRefs[I]->insertInto(F);
3771             FunctionBBs[I] = BBRefs[I];
3772           } else {
3773             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3774           }
3775 
3776         // Erase from the table.
3777         BasicBlockFwdRefs.erase(BBFRI);
3778       }
3779 
3780       CurBB = FunctionBBs[0];
3781       continue;
3782     }
3783 
3784     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3785       // This record indicates that the last instruction is at the same
3786       // location as the previous instruction with a location.
3787       I = getLastInstruction();
3788 
3789       if (!I)
3790         return error("Invalid record");
3791       I->setDebugLoc(LastLoc);
3792       I = nullptr;
3793       continue;
3794 
3795     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3796       I = getLastInstruction();
3797       if (!I || Record.size() < 4)
3798         return error("Invalid record");
3799 
3800       unsigned Line = Record[0], Col = Record[1];
3801       unsigned ScopeID = Record[2], IAID = Record[3];
3802 
3803       MDNode *Scope = nullptr, *IA = nullptr;
3804       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
3805       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
3806       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
3807       I->setDebugLoc(LastLoc);
3808       I = nullptr;
3809       continue;
3810     }
3811 
3812     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3813       unsigned OpNum = 0;
3814       Value *LHS, *RHS;
3815       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3816           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3817           OpNum+1 > Record.size())
3818         return error("Invalid record");
3819 
3820       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3821       if (Opc == -1)
3822         return error("Invalid record");
3823       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3824       InstructionList.push_back(I);
3825       if (OpNum < Record.size()) {
3826         if (Opc == Instruction::Add ||
3827             Opc == Instruction::Sub ||
3828             Opc == Instruction::Mul ||
3829             Opc == Instruction::Shl) {
3830           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3831             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3832           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3833             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3834         } else if (Opc == Instruction::SDiv ||
3835                    Opc == Instruction::UDiv ||
3836                    Opc == Instruction::LShr ||
3837                    Opc == Instruction::AShr) {
3838           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3839             cast<BinaryOperator>(I)->setIsExact(true);
3840         } else if (isa<FPMathOperator>(I)) {
3841           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3842           if (FMF.any())
3843             I->setFastMathFlags(FMF);
3844         }
3845 
3846       }
3847       break;
3848     }
3849     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3850       unsigned OpNum = 0;
3851       Value *Op;
3852       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3853           OpNum+2 != Record.size())
3854         return error("Invalid record");
3855 
3856       Type *ResTy = getTypeByID(Record[OpNum]);
3857       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3858       if (Opc == -1 || !ResTy)
3859         return error("Invalid record");
3860       Instruction *Temp = nullptr;
3861       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3862         if (Temp) {
3863           InstructionList.push_back(Temp);
3864           CurBB->getInstList().push_back(Temp);
3865         }
3866       } else {
3867         I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
3868       }
3869       InstructionList.push_back(I);
3870       break;
3871     }
3872     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3873     case bitc::FUNC_CODE_INST_GEP_OLD:
3874     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3875       unsigned OpNum = 0;
3876 
3877       Type *Ty;
3878       bool InBounds;
3879 
3880       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3881         InBounds = Record[OpNum++];
3882         Ty = getTypeByID(Record[OpNum++]);
3883       } else {
3884         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3885         Ty = nullptr;
3886       }
3887 
3888       Value *BasePtr;
3889       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3890         return error("Invalid record");
3891 
3892       if (!Ty)
3893         Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
3894                  ->getElementType();
3895       else if (Ty !=
3896                cast<SequentialType>(BasePtr->getType()->getScalarType())
3897                    ->getElementType())
3898         return error(
3899             "Explicit gep type does not match pointee type of pointer operand");
3900 
3901       SmallVector<Value*, 16> GEPIdx;
3902       while (OpNum != Record.size()) {
3903         Value *Op;
3904         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3905           return error("Invalid record");
3906         GEPIdx.push_back(Op);
3907       }
3908 
3909       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3910 
3911       InstructionList.push_back(I);
3912       if (InBounds)
3913         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3914       break;
3915     }
3916 
3917     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3918                                        // EXTRACTVAL: [opty, opval, n x indices]
3919       unsigned OpNum = 0;
3920       Value *Agg;
3921       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3922         return error("Invalid record");
3923 
3924       unsigned RecSize = Record.size();
3925       if (OpNum == RecSize)
3926         return error("EXTRACTVAL: Invalid instruction with 0 indices");
3927 
3928       SmallVector<unsigned, 4> EXTRACTVALIdx;
3929       Type *CurTy = Agg->getType();
3930       for (; OpNum != RecSize; ++OpNum) {
3931         bool IsArray = CurTy->isArrayTy();
3932         bool IsStruct = CurTy->isStructTy();
3933         uint64_t Index = Record[OpNum];
3934 
3935         if (!IsStruct && !IsArray)
3936           return error("EXTRACTVAL: Invalid type");
3937         if ((unsigned)Index != Index)
3938           return error("Invalid value");
3939         if (IsStruct && Index >= CurTy->subtypes().size())
3940           return error("EXTRACTVAL: Invalid struct index");
3941         if (IsArray && Index >= CurTy->getArrayNumElements())
3942           return error("EXTRACTVAL: Invalid array index");
3943         EXTRACTVALIdx.push_back((unsigned)Index);
3944 
3945         if (IsStruct)
3946           CurTy = CurTy->subtypes()[Index];
3947         else
3948           CurTy = CurTy->subtypes()[0];
3949       }
3950 
3951       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3952       InstructionList.push_back(I);
3953       break;
3954     }
3955 
3956     case bitc::FUNC_CODE_INST_INSERTVAL: {
3957                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
3958       unsigned OpNum = 0;
3959       Value *Agg;
3960       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3961         return error("Invalid record");
3962       Value *Val;
3963       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3964         return error("Invalid record");
3965 
3966       unsigned RecSize = Record.size();
3967       if (OpNum == RecSize)
3968         return error("INSERTVAL: Invalid instruction with 0 indices");
3969 
3970       SmallVector<unsigned, 4> INSERTVALIdx;
3971       Type *CurTy = Agg->getType();
3972       for (; OpNum != RecSize; ++OpNum) {
3973         bool IsArray = CurTy->isArrayTy();
3974         bool IsStruct = CurTy->isStructTy();
3975         uint64_t Index = Record[OpNum];
3976 
3977         if (!IsStruct && !IsArray)
3978           return error("INSERTVAL: Invalid type");
3979         if ((unsigned)Index != Index)
3980           return error("Invalid value");
3981         if (IsStruct && Index >= CurTy->subtypes().size())
3982           return error("INSERTVAL: Invalid struct index");
3983         if (IsArray && Index >= CurTy->getArrayNumElements())
3984           return error("INSERTVAL: Invalid array index");
3985 
3986         INSERTVALIdx.push_back((unsigned)Index);
3987         if (IsStruct)
3988           CurTy = CurTy->subtypes()[Index];
3989         else
3990           CurTy = CurTy->subtypes()[0];
3991       }
3992 
3993       if (CurTy != Val->getType())
3994         return error("Inserted value type doesn't match aggregate type");
3995 
3996       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3997       InstructionList.push_back(I);
3998       break;
3999     }
4000 
4001     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4002       // obsolete form of select
4003       // handles select i1 ... in old bitcode
4004       unsigned OpNum = 0;
4005       Value *TrueVal, *FalseVal, *Cond;
4006       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4007           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4008           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4009         return error("Invalid record");
4010 
4011       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4012       InstructionList.push_back(I);
4013       break;
4014     }
4015 
4016     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4017       // new form of select
4018       // handles select i1 or select [N x i1]
4019       unsigned OpNum = 0;
4020       Value *TrueVal, *FalseVal, *Cond;
4021       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4022           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4023           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4024         return error("Invalid record");
4025 
4026       // select condition can be either i1 or [N x i1]
4027       if (VectorType* vector_type =
4028           dyn_cast<VectorType>(Cond->getType())) {
4029         // expect <n x i1>
4030         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4031           return error("Invalid type for value");
4032       } else {
4033         // expect i1
4034         if (Cond->getType() != Type::getInt1Ty(Context))
4035           return error("Invalid type for value");
4036       }
4037 
4038       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4039       InstructionList.push_back(I);
4040       break;
4041     }
4042 
4043     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4044       unsigned OpNum = 0;
4045       Value *Vec, *Idx;
4046       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4047           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4048         return error("Invalid record");
4049       if (!Vec->getType()->isVectorTy())
4050         return error("Invalid type for value");
4051       I = ExtractElementInst::Create(Vec, Idx);
4052       InstructionList.push_back(I);
4053       break;
4054     }
4055 
4056     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4057       unsigned OpNum = 0;
4058       Value *Vec, *Elt, *Idx;
4059       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4060         return error("Invalid record");
4061       if (!Vec->getType()->isVectorTy())
4062         return error("Invalid type for value");
4063       if (popValue(Record, OpNum, NextValueNo,
4064                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4065           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4066         return error("Invalid record");
4067       I = InsertElementInst::Create(Vec, Elt, Idx);
4068       InstructionList.push_back(I);
4069       break;
4070     }
4071 
4072     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4073       unsigned OpNum = 0;
4074       Value *Vec1, *Vec2, *Mask;
4075       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4076           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4077         return error("Invalid record");
4078 
4079       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4080         return error("Invalid record");
4081       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4082         return error("Invalid type for value");
4083       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4084       InstructionList.push_back(I);
4085       break;
4086     }
4087 
4088     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4089       // Old form of ICmp/FCmp returning bool
4090       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4091       // both legal on vectors but had different behaviour.
4092     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4093       // FCmp/ICmp returning bool or vector of bool
4094 
4095       unsigned OpNum = 0;
4096       Value *LHS, *RHS;
4097       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4098           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4099         return error("Invalid record");
4100 
4101       unsigned PredVal = Record[OpNum];
4102       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4103       FastMathFlags FMF;
4104       if (IsFP && Record.size() > OpNum+1)
4105         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4106 
4107       if (OpNum+1 != Record.size())
4108         return error("Invalid record");
4109 
4110       if (LHS->getType()->isFPOrFPVectorTy())
4111         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4112       else
4113         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4114 
4115       if (FMF.any())
4116         I->setFastMathFlags(FMF);
4117       InstructionList.push_back(I);
4118       break;
4119     }
4120 
4121     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4122       {
4123         unsigned Size = Record.size();
4124         if (Size == 0) {
4125           I = ReturnInst::Create(Context);
4126           InstructionList.push_back(I);
4127           break;
4128         }
4129 
4130         unsigned OpNum = 0;
4131         Value *Op = nullptr;
4132         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4133           return error("Invalid record");
4134         if (OpNum != Record.size())
4135           return error("Invalid record");
4136 
4137         I = ReturnInst::Create(Context, Op);
4138         InstructionList.push_back(I);
4139         break;
4140       }
4141     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4142       if (Record.size() != 1 && Record.size() != 3)
4143         return error("Invalid record");
4144       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4145       if (!TrueDest)
4146         return error("Invalid record");
4147 
4148       if (Record.size() == 1) {
4149         I = BranchInst::Create(TrueDest);
4150         InstructionList.push_back(I);
4151       }
4152       else {
4153         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4154         Value *Cond = getValue(Record, 2, NextValueNo,
4155                                Type::getInt1Ty(Context));
4156         if (!FalseDest || !Cond)
4157           return error("Invalid record");
4158         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4159         InstructionList.push_back(I);
4160       }
4161       break;
4162     }
4163     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4164       if (Record.size() != 1 && Record.size() != 2)
4165         return error("Invalid record");
4166       unsigned Idx = 0;
4167       Value *CleanupPad = getValue(Record, Idx++, NextValueNo,
4168                                    Type::getTokenTy(Context), OC_CleanupPad);
4169       if (!CleanupPad)
4170         return error("Invalid record");
4171       BasicBlock *UnwindDest = nullptr;
4172       if (Record.size() == 2) {
4173         UnwindDest = getBasicBlock(Record[Idx++]);
4174         if (!UnwindDest)
4175           return error("Invalid record");
4176       }
4177 
4178       I = CleanupReturnInst::Create(cast<CleanupPadInst>(CleanupPad),
4179                                     UnwindDest);
4180       InstructionList.push_back(I);
4181       break;
4182     }
4183     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4184       if (Record.size() != 2)
4185         return error("Invalid record");
4186       unsigned Idx = 0;
4187       Value *CatchPad = getValue(Record, Idx++, NextValueNo,
4188                                  Type::getTokenTy(Context), OC_CatchPad);
4189       if (!CatchPad)
4190         return error("Invalid record");
4191       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4192       if (!BB)
4193         return error("Invalid record");
4194 
4195       I = CatchReturnInst::Create(cast<CatchPadInst>(CatchPad), BB);
4196       InstructionList.push_back(I);
4197       break;
4198     }
4199     case bitc::FUNC_CODE_INST_CATCHPAD: { // CATCHPAD: [bb#,bb#,num,(ty,val)*]
4200       if (Record.size() < 3)
4201         return error("Invalid record");
4202       unsigned Idx = 0;
4203       BasicBlock *NormalBB = getBasicBlock(Record[Idx++]);
4204       if (!NormalBB)
4205         return error("Invalid record");
4206       BasicBlock *UnwindBB = getBasicBlock(Record[Idx++]);
4207       if (!UnwindBB)
4208         return error("Invalid record");
4209       unsigned NumArgOperands = Record[Idx++];
4210       SmallVector<Value *, 2> Args;
4211       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4212         Value *Val;
4213         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4214           return error("Invalid record");
4215         Args.push_back(Val);
4216       }
4217       if (Record.size() != Idx)
4218         return error("Invalid record");
4219 
4220       I = CatchPadInst::Create(NormalBB, UnwindBB, Args);
4221       InstructionList.push_back(I);
4222       break;
4223     }
4224     case bitc::FUNC_CODE_INST_TERMINATEPAD: { // TERMINATEPAD: [bb#,num,(ty,val)*]
4225       if (Record.size() < 1)
4226         return error("Invalid record");
4227       unsigned Idx = 0;
4228       bool HasUnwindDest = !!Record[Idx++];
4229       BasicBlock *UnwindDest = nullptr;
4230       if (HasUnwindDest) {
4231         if (Idx == Record.size())
4232           return error("Invalid record");
4233         UnwindDest = getBasicBlock(Record[Idx++]);
4234         if (!UnwindDest)
4235           return error("Invalid record");
4236       }
4237       unsigned NumArgOperands = Record[Idx++];
4238       SmallVector<Value *, 2> Args;
4239       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4240         Value *Val;
4241         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4242           return error("Invalid record");
4243         Args.push_back(Val);
4244       }
4245       if (Record.size() != Idx)
4246         return error("Invalid record");
4247 
4248       I = TerminatePadInst::Create(Context, UnwindDest, Args);
4249       InstructionList.push_back(I);
4250       break;
4251     }
4252     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // CLEANUPPAD: [num,(ty,val)*]
4253       if (Record.size() < 1)
4254         return error("Invalid record");
4255       unsigned Idx = 0;
4256       unsigned NumArgOperands = Record[Idx++];
4257       SmallVector<Value *, 2> Args;
4258       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4259         Value *Val;
4260         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4261           return error("Invalid record");
4262         Args.push_back(Val);
4263       }
4264       if (Record.size() != Idx)
4265         return error("Invalid record");
4266 
4267       I = CleanupPadInst::Create(Context, Args);
4268       InstructionList.push_back(I);
4269       break;
4270     }
4271     case bitc::FUNC_CODE_INST_CATCHENDPAD: { // CATCHENDPADINST: [bb#] or []
4272       if (Record.size() > 1)
4273         return error("Invalid record");
4274       BasicBlock *BB = nullptr;
4275       if (Record.size() == 1) {
4276         BB = getBasicBlock(Record[0]);
4277         if (!BB)
4278           return error("Invalid record");
4279       }
4280       I = CatchEndPadInst::Create(Context, BB);
4281       InstructionList.push_back(I);
4282       break;
4283     }
4284     case bitc::FUNC_CODE_INST_CLEANUPENDPAD: { // CLEANUPENDPADINST: [val] or [val,bb#]
4285       if (Record.size() != 1 && Record.size() != 2)
4286         return error("Invalid record");
4287       unsigned Idx = 0;
4288       Value *CleanupPad = getValue(Record, Idx++, NextValueNo,
4289                                    Type::getTokenTy(Context), OC_CleanupPad);
4290       if (!CleanupPad)
4291         return error("Invalid record");
4292 
4293       BasicBlock *BB = nullptr;
4294       if (Record.size() == 2) {
4295         BB = getBasicBlock(Record[Idx++]);
4296         if (!BB)
4297           return error("Invalid record");
4298       }
4299       I = CleanupEndPadInst::Create(cast<CleanupPadInst>(CleanupPad), BB);
4300       InstructionList.push_back(I);
4301       break;
4302     }
4303     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4304       // Check magic
4305       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4306         // "New" SwitchInst format with case ranges. The changes to write this
4307         // format were reverted but we still recognize bitcode that uses it.
4308         // Hopefully someday we will have support for case ranges and can use
4309         // this format again.
4310 
4311         Type *OpTy = getTypeByID(Record[1]);
4312         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4313 
4314         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4315         BasicBlock *Default = getBasicBlock(Record[3]);
4316         if (!OpTy || !Cond || !Default)
4317           return error("Invalid record");
4318 
4319         unsigned NumCases = Record[4];
4320 
4321         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4322         InstructionList.push_back(SI);
4323 
4324         unsigned CurIdx = 5;
4325         for (unsigned i = 0; i != NumCases; ++i) {
4326           SmallVector<ConstantInt*, 1> CaseVals;
4327           unsigned NumItems = Record[CurIdx++];
4328           for (unsigned ci = 0; ci != NumItems; ++ci) {
4329             bool isSingleNumber = Record[CurIdx++];
4330 
4331             APInt Low;
4332             unsigned ActiveWords = 1;
4333             if (ValueBitWidth > 64)
4334               ActiveWords = Record[CurIdx++];
4335             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4336                                 ValueBitWidth);
4337             CurIdx += ActiveWords;
4338 
4339             if (!isSingleNumber) {
4340               ActiveWords = 1;
4341               if (ValueBitWidth > 64)
4342                 ActiveWords = Record[CurIdx++];
4343               APInt High = readWideAPInt(
4344                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4345               CurIdx += ActiveWords;
4346 
4347               // FIXME: It is not clear whether values in the range should be
4348               // compared as signed or unsigned values. The partially
4349               // implemented changes that used this format in the past used
4350               // unsigned comparisons.
4351               for ( ; Low.ule(High); ++Low)
4352                 CaseVals.push_back(ConstantInt::get(Context, Low));
4353             } else
4354               CaseVals.push_back(ConstantInt::get(Context, Low));
4355           }
4356           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4357           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4358                  cve = CaseVals.end(); cvi != cve; ++cvi)
4359             SI->addCase(*cvi, DestBB);
4360         }
4361         I = SI;
4362         break;
4363       }
4364 
4365       // Old SwitchInst format without case ranges.
4366 
4367       if (Record.size() < 3 || (Record.size() & 1) == 0)
4368         return error("Invalid record");
4369       Type *OpTy = getTypeByID(Record[0]);
4370       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4371       BasicBlock *Default = getBasicBlock(Record[2]);
4372       if (!OpTy || !Cond || !Default)
4373         return error("Invalid record");
4374       unsigned NumCases = (Record.size()-3)/2;
4375       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4376       InstructionList.push_back(SI);
4377       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4378         ConstantInt *CaseVal =
4379           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4380         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4381         if (!CaseVal || !DestBB) {
4382           delete SI;
4383           return error("Invalid record");
4384         }
4385         SI->addCase(CaseVal, DestBB);
4386       }
4387       I = SI;
4388       break;
4389     }
4390     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4391       if (Record.size() < 2)
4392         return error("Invalid record");
4393       Type *OpTy = getTypeByID(Record[0]);
4394       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4395       if (!OpTy || !Address)
4396         return error("Invalid record");
4397       unsigned NumDests = Record.size()-2;
4398       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4399       InstructionList.push_back(IBI);
4400       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4401         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4402           IBI->addDestination(DestBB);
4403         } else {
4404           delete IBI;
4405           return error("Invalid record");
4406         }
4407       }
4408       I = IBI;
4409       break;
4410     }
4411 
4412     case bitc::FUNC_CODE_INST_INVOKE: {
4413       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4414       if (Record.size() < 4)
4415         return error("Invalid record");
4416       unsigned OpNum = 0;
4417       AttributeSet PAL = getAttributes(Record[OpNum++]);
4418       unsigned CCInfo = Record[OpNum++];
4419       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4420       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4421 
4422       FunctionType *FTy = nullptr;
4423       if (CCInfo >> 13 & 1 &&
4424           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4425         return error("Explicit invoke type is not a function type");
4426 
4427       Value *Callee;
4428       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4429         return error("Invalid record");
4430 
4431       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4432       if (!CalleeTy)
4433         return error("Callee is not a pointer");
4434       if (!FTy) {
4435         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4436         if (!FTy)
4437           return error("Callee is not of pointer to function type");
4438       } else if (CalleeTy->getElementType() != FTy)
4439         return error("Explicit invoke type does not match pointee type of "
4440                      "callee operand");
4441       if (Record.size() < FTy->getNumParams() + OpNum)
4442         return error("Insufficient operands to call");
4443 
4444       SmallVector<Value*, 16> Ops;
4445       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4446         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4447                                FTy->getParamType(i)));
4448         if (!Ops.back())
4449           return error("Invalid record");
4450       }
4451 
4452       if (!FTy->isVarArg()) {
4453         if (Record.size() != OpNum)
4454           return error("Invalid record");
4455       } else {
4456         // Read type/value pairs for varargs params.
4457         while (OpNum != Record.size()) {
4458           Value *Op;
4459           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4460             return error("Invalid record");
4461           Ops.push_back(Op);
4462         }
4463       }
4464 
4465       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4466       OperandBundles.clear();
4467       InstructionList.push_back(I);
4468       cast<InvokeInst>(I)
4469           ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo));
4470       cast<InvokeInst>(I)->setAttributes(PAL);
4471       break;
4472     }
4473     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4474       unsigned Idx = 0;
4475       Value *Val = nullptr;
4476       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4477         return error("Invalid record");
4478       I = ResumeInst::Create(Val);
4479       InstructionList.push_back(I);
4480       break;
4481     }
4482     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4483       I = new UnreachableInst(Context);
4484       InstructionList.push_back(I);
4485       break;
4486     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4487       if (Record.size() < 1 || ((Record.size()-1)&1))
4488         return error("Invalid record");
4489       Type *Ty = getTypeByID(Record[0]);
4490       if (!Ty)
4491         return error("Invalid record");
4492 
4493       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4494       InstructionList.push_back(PN);
4495 
4496       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4497         Value *V;
4498         // With the new function encoding, it is possible that operands have
4499         // negative IDs (for forward references).  Use a signed VBR
4500         // representation to keep the encoding small.
4501         if (UseRelativeIDs)
4502           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4503         else
4504           V = getValue(Record, 1+i, NextValueNo, Ty);
4505         BasicBlock *BB = getBasicBlock(Record[2+i]);
4506         if (!V || !BB)
4507           return error("Invalid record");
4508         PN->addIncoming(V, BB);
4509       }
4510       I = PN;
4511       break;
4512     }
4513 
4514     case bitc::FUNC_CODE_INST_LANDINGPAD:
4515     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4516       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4517       unsigned Idx = 0;
4518       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4519         if (Record.size() < 3)
4520           return error("Invalid record");
4521       } else {
4522         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4523         if (Record.size() < 4)
4524           return error("Invalid record");
4525       }
4526       Type *Ty = getTypeByID(Record[Idx++]);
4527       if (!Ty)
4528         return error("Invalid record");
4529       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4530         Value *PersFn = nullptr;
4531         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4532           return error("Invalid record");
4533 
4534         if (!F->hasPersonalityFn())
4535           F->setPersonalityFn(cast<Constant>(PersFn));
4536         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4537           return error("Personality function mismatch");
4538       }
4539 
4540       bool IsCleanup = !!Record[Idx++];
4541       unsigned NumClauses = Record[Idx++];
4542       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4543       LP->setCleanup(IsCleanup);
4544       for (unsigned J = 0; J != NumClauses; ++J) {
4545         LandingPadInst::ClauseType CT =
4546           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4547         Value *Val;
4548 
4549         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4550           delete LP;
4551           return error("Invalid record");
4552         }
4553 
4554         assert((CT != LandingPadInst::Catch ||
4555                 !isa<ArrayType>(Val->getType())) &&
4556                "Catch clause has a invalid type!");
4557         assert((CT != LandingPadInst::Filter ||
4558                 isa<ArrayType>(Val->getType())) &&
4559                "Filter clause has invalid type!");
4560         LP->addClause(cast<Constant>(Val));
4561       }
4562 
4563       I = LP;
4564       InstructionList.push_back(I);
4565       break;
4566     }
4567 
4568     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4569       if (Record.size() != 4)
4570         return error("Invalid record");
4571       uint64_t AlignRecord = Record[3];
4572       const uint64_t InAllocaMask = uint64_t(1) << 5;
4573       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4574       // Reserve bit 7 for SwiftError flag.
4575       // const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4576       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask;
4577       bool InAlloca = AlignRecord & InAllocaMask;
4578       Type *Ty = getTypeByID(Record[0]);
4579       if ((AlignRecord & ExplicitTypeMask) == 0) {
4580         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4581         if (!PTy)
4582           return error("Old-style alloca with a non-pointer type");
4583         Ty = PTy->getElementType();
4584       }
4585       Type *OpTy = getTypeByID(Record[1]);
4586       Value *Size = getFnValueByID(Record[2], OpTy);
4587       unsigned Align;
4588       if (std::error_code EC =
4589               parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4590         return EC;
4591       }
4592       if (!Ty || !Size)
4593         return error("Invalid record");
4594       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
4595       AI->setUsedWithInAlloca(InAlloca);
4596       I = AI;
4597       InstructionList.push_back(I);
4598       break;
4599     }
4600     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4601       unsigned OpNum = 0;
4602       Value *Op;
4603       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4604           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4605         return error("Invalid record");
4606 
4607       Type *Ty = nullptr;
4608       if (OpNum + 3 == Record.size())
4609         Ty = getTypeByID(Record[OpNum++]);
4610       if (std::error_code EC =
4611               typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType()))
4612         return EC;
4613       if (!Ty)
4614         Ty = cast<PointerType>(Op->getType())->getElementType();
4615 
4616       unsigned Align;
4617       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4618         return EC;
4619       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4620 
4621       InstructionList.push_back(I);
4622       break;
4623     }
4624     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4625        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
4626       unsigned OpNum = 0;
4627       Value *Op;
4628       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4629           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4630         return error("Invalid record");
4631 
4632       Type *Ty = nullptr;
4633       if (OpNum + 5 == Record.size())
4634         Ty = getTypeByID(Record[OpNum++]);
4635       if (std::error_code EC =
4636               typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType()))
4637         return EC;
4638       if (!Ty)
4639         Ty = cast<PointerType>(Op->getType())->getElementType();
4640 
4641       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4642       if (Ordering == NotAtomic || Ordering == Release ||
4643           Ordering == AcquireRelease)
4644         return error("Invalid record");
4645       if (Ordering != NotAtomic && Record[OpNum] == 0)
4646         return error("Invalid record");
4647       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4648 
4649       unsigned Align;
4650       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4651         return EC;
4652       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
4653 
4654       InstructionList.push_back(I);
4655       break;
4656     }
4657     case bitc::FUNC_CODE_INST_STORE:
4658     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4659       unsigned OpNum = 0;
4660       Value *Val, *Ptr;
4661       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4662           (BitCode == bitc::FUNC_CODE_INST_STORE
4663                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4664                : popValue(Record, OpNum, NextValueNo,
4665                           cast<PointerType>(Ptr->getType())->getElementType(),
4666                           Val)) ||
4667           OpNum + 2 != Record.size())
4668         return error("Invalid record");
4669 
4670       if (std::error_code EC = typeCheckLoadStoreInst(
4671               DiagnosticHandler, Val->getType(), Ptr->getType()))
4672         return EC;
4673       unsigned Align;
4674       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4675         return EC;
4676       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4677       InstructionList.push_back(I);
4678       break;
4679     }
4680     case bitc::FUNC_CODE_INST_STOREATOMIC:
4681     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4682       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
4683       unsigned OpNum = 0;
4684       Value *Val, *Ptr;
4685       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4686           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4687                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4688                : popValue(Record, OpNum, NextValueNo,
4689                           cast<PointerType>(Ptr->getType())->getElementType(),
4690                           Val)) ||
4691           OpNum + 4 != Record.size())
4692         return error("Invalid record");
4693 
4694       if (std::error_code EC = typeCheckLoadStoreInst(
4695               DiagnosticHandler, Val->getType(), Ptr->getType()))
4696         return EC;
4697       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4698       if (Ordering == NotAtomic || Ordering == Acquire ||
4699           Ordering == AcquireRelease)
4700         return error("Invalid record");
4701       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4702       if (Ordering != NotAtomic && Record[OpNum] == 0)
4703         return error("Invalid record");
4704 
4705       unsigned Align;
4706       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
4707         return EC;
4708       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
4709       InstructionList.push_back(I);
4710       break;
4711     }
4712     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4713     case bitc::FUNC_CODE_INST_CMPXCHG: {
4714       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
4715       //          failureordering?, isweak?]
4716       unsigned OpNum = 0;
4717       Value *Ptr, *Cmp, *New;
4718       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4719           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4720                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4721                : popValue(Record, OpNum, NextValueNo,
4722                           cast<PointerType>(Ptr->getType())->getElementType(),
4723                           Cmp)) ||
4724           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4725           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4726         return error("Invalid record");
4727       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4728       if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered)
4729         return error("Invalid record");
4730       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
4731 
4732       if (std::error_code EC = typeCheckLoadStoreInst(
4733               DiagnosticHandler, Cmp->getType(), Ptr->getType()))
4734         return EC;
4735       AtomicOrdering FailureOrdering;
4736       if (Record.size() < 7)
4737         FailureOrdering =
4738             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4739       else
4740         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4741 
4742       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4743                                 SynchScope);
4744       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4745 
4746       if (Record.size() < 8) {
4747         // Before weak cmpxchgs existed, the instruction simply returned the
4748         // value loaded from memory, so bitcode files from that era will be
4749         // expecting the first component of a modern cmpxchg.
4750         CurBB->getInstList().push_back(I);
4751         I = ExtractValueInst::Create(I, 0);
4752       } else {
4753         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4754       }
4755 
4756       InstructionList.push_back(I);
4757       break;
4758     }
4759     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4760       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
4761       unsigned OpNum = 0;
4762       Value *Ptr, *Val;
4763       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4764           popValue(Record, OpNum, NextValueNo,
4765                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4766           OpNum+4 != Record.size())
4767         return error("Invalid record");
4768       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4769       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4770           Operation > AtomicRMWInst::LAST_BINOP)
4771         return error("Invalid record");
4772       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4773       if (Ordering == NotAtomic || Ordering == Unordered)
4774         return error("Invalid record");
4775       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
4776       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
4777       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4778       InstructionList.push_back(I);
4779       break;
4780     }
4781     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
4782       if (2 != Record.size())
4783         return error("Invalid record");
4784       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4785       if (Ordering == NotAtomic || Ordering == Unordered ||
4786           Ordering == Monotonic)
4787         return error("Invalid record");
4788       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
4789       I = new FenceInst(Context, Ordering, SynchScope);
4790       InstructionList.push_back(I);
4791       break;
4792     }
4793     case bitc::FUNC_CODE_INST_CALL: {
4794       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
4795       if (Record.size() < 3)
4796         return error("Invalid record");
4797 
4798       unsigned OpNum = 0;
4799       AttributeSet PAL = getAttributes(Record[OpNum++]);
4800       unsigned CCInfo = Record[OpNum++];
4801 
4802       FunctionType *FTy = nullptr;
4803       if (CCInfo >> 15 & 1 &&
4804           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4805         return error("Explicit call type is not a function type");
4806 
4807       Value *Callee;
4808       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4809         return error("Invalid record");
4810 
4811       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4812       if (!OpTy)
4813         return error("Callee is not a pointer type");
4814       if (!FTy) {
4815         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4816         if (!FTy)
4817           return error("Callee is not of pointer to function type");
4818       } else if (OpTy->getElementType() != FTy)
4819         return error("Explicit call type does not match pointee type of "
4820                      "callee operand");
4821       if (Record.size() < FTy->getNumParams() + OpNum)
4822         return error("Insufficient operands to call");
4823 
4824       SmallVector<Value*, 16> Args;
4825       // Read the fixed params.
4826       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4827         if (FTy->getParamType(i)->isLabelTy())
4828           Args.push_back(getBasicBlock(Record[OpNum]));
4829         else
4830           Args.push_back(getValue(Record, OpNum, NextValueNo,
4831                                   FTy->getParamType(i)));
4832         if (!Args.back())
4833           return error("Invalid record");
4834       }
4835 
4836       // Read type/value pairs for varargs params.
4837       if (!FTy->isVarArg()) {
4838         if (OpNum != Record.size())
4839           return error("Invalid record");
4840       } else {
4841         while (OpNum != Record.size()) {
4842           Value *Op;
4843           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4844             return error("Invalid record");
4845           Args.push_back(Op);
4846         }
4847       }
4848 
4849       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
4850       OperandBundles.clear();
4851       InstructionList.push_back(I);
4852       cast<CallInst>(I)->setCallingConv(
4853           static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1));
4854       CallInst::TailCallKind TCK = CallInst::TCK_None;
4855       if (CCInfo & 1)
4856         TCK = CallInst::TCK_Tail;
4857       if (CCInfo & (1 << 14))
4858         TCK = CallInst::TCK_MustTail;
4859       cast<CallInst>(I)->setTailCallKind(TCK);
4860       cast<CallInst>(I)->setAttributes(PAL);
4861       break;
4862     }
4863     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4864       if (Record.size() < 3)
4865         return error("Invalid record");
4866       Type *OpTy = getTypeByID(Record[0]);
4867       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4868       Type *ResTy = getTypeByID(Record[2]);
4869       if (!OpTy || !Op || !ResTy)
4870         return error("Invalid record");
4871       I = new VAArgInst(Op, ResTy);
4872       InstructionList.push_back(I);
4873       break;
4874     }
4875 
4876     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
4877       // A call or an invoke can be optionally prefixed with some variable
4878       // number of operand bundle blocks.  These blocks are read into
4879       // OperandBundles and consumed at the next call or invoke instruction.
4880 
4881       if (Record.size() < 1 || Record[0] >= BundleTags.size())
4882         return error("Invalid record");
4883 
4884       OperandBundles.emplace_back();
4885       OperandBundles.back().Tag = BundleTags[Record[0]];
4886 
4887       std::vector<Value *> &Inputs = OperandBundles.back().Inputs;
4888 
4889       unsigned OpNum = 1;
4890       while (OpNum != Record.size()) {
4891         Value *Op;
4892         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4893           return error("Invalid record");
4894         Inputs.push_back(Op);
4895       }
4896 
4897       continue;
4898     }
4899     }
4900 
4901     // Add instruction to end of current BB.  If there is no current BB, reject
4902     // this file.
4903     if (!CurBB) {
4904       delete I;
4905       return error("Invalid instruction with no BB");
4906     }
4907     if (!OperandBundles.empty()) {
4908       delete I;
4909       return error("Operand bundles found with no consumer");
4910     }
4911     CurBB->getInstList().push_back(I);
4912 
4913     // If this was a terminator instruction, move to the next block.
4914     if (isa<TerminatorInst>(I)) {
4915       ++CurBBNo;
4916       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4917     }
4918 
4919     // Non-void values get registered in the value table for future use.
4920     if (I && !I->getType()->isVoidTy())
4921       if (ValueList.assignValue(I, NextValueNo++))
4922         return error("Invalid forward reference");
4923   }
4924 
4925 OutOfRecordLoop:
4926 
4927   if (!OperandBundles.empty())
4928     return error("Operand bundles found with no consumer");
4929 
4930   // Check the function list for unresolved values.
4931   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4932     if (!A->getParent()) {
4933       // We found at least one unresolved value.  Nuke them all to avoid leaks.
4934       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4935         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4936           A->replaceAllUsesWith(UndefValue::get(A->getType()));
4937           delete A;
4938         }
4939       }
4940       return error("Never resolved value found in function");
4941     }
4942   }
4943 
4944   // FIXME: Check for unresolved forward-declared metadata references
4945   // and clean up leaks.
4946 
4947   // Trim the value list down to the size it was before we parsed this function.
4948   ValueList.shrinkTo(ModuleValueListSize);
4949   MDValueList.shrinkTo(ModuleMDValueListSize);
4950   std::vector<BasicBlock*>().swap(FunctionBBs);
4951   return std::error_code();
4952 }
4953 
4954 /// Find the function body in the bitcode stream
4955 std::error_code BitcodeReader::findFunctionInStream(
4956     Function *F,
4957     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4958   while (DeferredFunctionInfoIterator->second == 0) {
4959     // This is the fallback handling for the old format bitcode that
4960     // didn't contain the function index in the VST. Assert if we end up
4961     // here for the new format (which is the only time the VSTOffset would
4962     // be non-zero).
4963     assert(VSTOffset == 0);
4964     if (Stream.AtEndOfStream())
4965       return error("Could not find function in stream");
4966     // ParseModule will parse the next body in the stream and set its
4967     // position in the DeferredFunctionInfo map.
4968     if (std::error_code EC = parseModule(true))
4969       return EC;
4970   }
4971   return std::error_code();
4972 }
4973 
4974 //===----------------------------------------------------------------------===//
4975 // GVMaterializer implementation
4976 //===----------------------------------------------------------------------===//
4977 
4978 void BitcodeReader::releaseBuffer() { Buffer.release(); }
4979 
4980 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
4981   if (std::error_code EC = materializeMetadata())
4982     return EC;
4983 
4984   Function *F = dyn_cast<Function>(GV);
4985   // If it's not a function or is already material, ignore the request.
4986   if (!F || !F->isMaterializable())
4987     return std::error_code();
4988 
4989   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4990   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
4991   // If its position is recorded as 0, its body is somewhere in the stream
4992   // but we haven't seen it yet.
4993   if (DFII->second == 0)
4994     if (std::error_code EC = findFunctionInStream(F, DFII))
4995       return EC;
4996 
4997   // Move the bit stream to the saved position of the deferred function body.
4998   Stream.JumpToBit(DFII->second);
4999 
5000   if (std::error_code EC = parseFunctionBody(F))
5001     return EC;
5002   F->setIsMaterializable(false);
5003 
5004   if (StripDebugInfo)
5005     stripDebugInfo(*F);
5006 
5007   // Upgrade any old intrinsic calls in the function.
5008   for (auto &I : UpgradedIntrinsics) {
5009     for (auto UI = I.first->user_begin(), UE = I.first->user_end(); UI != UE;) {
5010       User *U = *UI;
5011       ++UI;
5012       if (CallInst *CI = dyn_cast<CallInst>(U))
5013         UpgradeIntrinsicCall(CI, I.second);
5014     }
5015   }
5016 
5017   // Bring in any functions that this function forward-referenced via
5018   // blockaddresses.
5019   return materializeForwardReferencedFunctions();
5020 }
5021 
5022 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
5023   const Function *F = dyn_cast<Function>(GV);
5024   if (!F || F->isDeclaration())
5025     return false;
5026 
5027   // Dematerializing F would leave dangling references that wouldn't be
5028   // reconnected on re-materialization.
5029   if (BlockAddressesTaken.count(F))
5030     return false;
5031 
5032   return DeferredFunctionInfo.count(const_cast<Function*>(F));
5033 }
5034 
5035 void BitcodeReader::dematerialize(GlobalValue *GV) {
5036   Function *F = dyn_cast<Function>(GV);
5037   // If this function isn't dematerializable, this is a noop.
5038   if (!F || !isDematerializable(F))
5039     return;
5040 
5041   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
5042 
5043   // Just forget the function body, we can remat it later.
5044   F->dropAllReferences();
5045   F->setIsMaterializable(true);
5046 }
5047 
5048 std::error_code BitcodeReader::materializeModule(Module *M) {
5049   assert(M == TheModule &&
5050          "Can only Materialize the Module this BitcodeReader is attached to.");
5051 
5052   if (std::error_code EC = materializeMetadata())
5053     return EC;
5054 
5055   // Promise to materialize all forward references.
5056   WillMaterializeAllForwardRefs = true;
5057 
5058   // Iterate over the module, deserializing any functions that are still on
5059   // disk.
5060   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
5061        F != E; ++F) {
5062     if (std::error_code EC = materialize(F))
5063       return EC;
5064   }
5065   // At this point, if there are any function bodies, the current bit is
5066   // pointing to the END_BLOCK record after them. Now make sure the rest
5067   // of the bits in the module have been read.
5068   if (NextUnreadBit)
5069     parseModule(true);
5070 
5071   // Check that all block address forward references got resolved (as we
5072   // promised above).
5073   if (!BasicBlockFwdRefs.empty())
5074     return error("Never resolved function from blockaddress");
5075 
5076   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5077   // delete the old functions to clean up. We can't do this unless the entire
5078   // module is materialized because there could always be another function body
5079   // with calls to the old function.
5080   for (auto &I : UpgradedIntrinsics) {
5081     for (auto *U : I.first->users()) {
5082       if (CallInst *CI = dyn_cast<CallInst>(U))
5083         UpgradeIntrinsicCall(CI, I.second);
5084     }
5085     if (!I.first->use_empty())
5086       I.first->replaceAllUsesWith(I.second);
5087     I.first->eraseFromParent();
5088   }
5089   UpgradedIntrinsics.clear();
5090 
5091   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
5092     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
5093 
5094   UpgradeDebugInfo(*M);
5095   return std::error_code();
5096 }
5097 
5098 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5099   return IdentifiedStructTypes;
5100 }
5101 
5102 std::error_code
5103 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
5104   if (Streamer)
5105     return initLazyStream(std::move(Streamer));
5106   return initStreamFromBuffer();
5107 }
5108 
5109 std::error_code BitcodeReader::initStreamFromBuffer() {
5110   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
5111   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
5112 
5113   if (Buffer->getBufferSize() & 3)
5114     return error("Invalid bitcode signature");
5115 
5116   // If we have a wrapper header, parse it and ignore the non-bc file contents.
5117   // The magic number is 0x0B17C0DE stored in little endian.
5118   if (isBitcodeWrapper(BufPtr, BufEnd))
5119     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5120       return error("Invalid bitcode wrapper header");
5121 
5122   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5123   Stream.init(&*StreamFile);
5124 
5125   return std::error_code();
5126 }
5127 
5128 std::error_code
5129 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
5130   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5131   // see it.
5132   auto OwnedBytes =
5133       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5134   StreamingMemoryObject &Bytes = *OwnedBytes;
5135   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5136   Stream.init(&*StreamFile);
5137 
5138   unsigned char buf[16];
5139   if (Bytes.readBytes(buf, 16, 0) != 16)
5140     return error("Invalid bitcode signature");
5141 
5142   if (!isBitcode(buf, buf + 16))
5143     return error("Invalid bitcode signature");
5144 
5145   if (isBitcodeWrapper(buf, buf + 4)) {
5146     const unsigned char *bitcodeStart = buf;
5147     const unsigned char *bitcodeEnd = buf + 16;
5148     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5149     Bytes.dropLeadingBytes(bitcodeStart - buf);
5150     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5151   }
5152   return std::error_code();
5153 }
5154 
5155 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E,
5156                                                   const Twine &Message) {
5157   return ::error(DiagnosticHandler, make_error_code(E), Message);
5158 }
5159 
5160 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) {
5161   return ::error(DiagnosticHandler,
5162                  make_error_code(BitcodeError::CorruptedBitcode), Message);
5163 }
5164 
5165 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) {
5166   return ::error(DiagnosticHandler, make_error_code(E));
5167 }
5168 
5169 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader(
5170     MemoryBuffer *Buffer, LLVMContext &Context,
5171     DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy,
5172     bool CheckFuncSummaryPresenceOnly)
5173     : Context(Context),
5174       DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)),
5175       Buffer(Buffer),
5176       IsLazy(IsLazy),
5177       CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {}
5178 
5179 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader(
5180     LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler,
5181     bool IsLazy, bool CheckFuncSummaryPresenceOnly)
5182     : Context(Context),
5183       DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)),
5184       Buffer(nullptr),
5185       IsLazy(IsLazy),
5186       CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {}
5187 
5188 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; }
5189 
5190 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
5191 
5192 // Specialized value symbol table parser used when reading function index
5193 // blocks where we don't actually create global values.
5194 // At the end of this routine the function index is populated with a map
5195 // from function name to FunctionInfo. The function info contains
5196 // the function block's bitcode offset as well as the offset into the
5197 // function summary section.
5198 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() {
5199   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5200     return error("Invalid record");
5201 
5202   SmallVector<uint64_t, 64> Record;
5203 
5204   // Read all the records for this value table.
5205   SmallString<128> ValueName;
5206   while (1) {
5207     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5208 
5209     switch (Entry.Kind) {
5210       case BitstreamEntry::SubBlock:  // Handled for us already.
5211       case BitstreamEntry::Error:
5212         return error("Malformed block");
5213       case BitstreamEntry::EndBlock:
5214         return std::error_code();
5215       case BitstreamEntry::Record:
5216         // The interesting case.
5217         break;
5218     }
5219 
5220     // Read a record.
5221     Record.clear();
5222     switch (Stream.readRecord(Entry.ID, Record)) {
5223       default:  // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5224         break;
5225       case bitc::VST_CODE_FNENTRY: {
5226         // VST_FNENTRY: [valueid, offset, namechar x N]
5227         if (convertToString(Record, 2, ValueName))
5228           return error("Invalid record");
5229         unsigned ValueID = Record[0];
5230         uint64_t FuncOffset = Record[1];
5231         std::unique_ptr<FunctionInfo> FuncInfo =
5232             llvm::make_unique<FunctionInfo>(FuncOffset);
5233         if (foundFuncSummary() && !IsLazy) {
5234           DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI =
5235               SummaryMap.find(ValueID);
5236           assert(SMI != SummaryMap.end() && "Summary info not found");
5237           FuncInfo->setFunctionSummary(std::move(SMI->second));
5238         }
5239         TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo));
5240 
5241         ValueName.clear();
5242         break;
5243       }
5244       case bitc::VST_CODE_COMBINED_FNENTRY: {
5245         // VST_FNENTRY: [offset, namechar x N]
5246         if (convertToString(Record, 1, ValueName))
5247           return error("Invalid record");
5248         uint64_t FuncSummaryOffset = Record[0];
5249         std::unique_ptr<FunctionInfo> FuncInfo =
5250             llvm::make_unique<FunctionInfo>(FuncSummaryOffset);
5251         if (foundFuncSummary() && !IsLazy) {
5252           DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI =
5253               SummaryMap.find(FuncSummaryOffset);
5254           assert(SMI != SummaryMap.end() && "Summary info not found");
5255           FuncInfo->setFunctionSummary(std::move(SMI->second));
5256         }
5257         TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo));
5258 
5259         ValueName.clear();
5260         break;
5261       }
5262     }
5263   }
5264 }
5265 
5266 // Parse just the blocks needed for function index building out of the module.
5267 // At the end of this routine the function Index is populated with a map
5268 // from function name to FunctionInfo. The function info contains
5269 // either the parsed function summary information (when parsing summaries
5270 // eagerly), or just to the function summary record's offset
5271 // if parsing lazily (IsLazy).
5272 std::error_code FunctionIndexBitcodeReader::parseModule() {
5273   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5274     return error("Invalid record");
5275 
5276   // Read the function index for this module.
5277   while (1) {
5278     BitstreamEntry Entry = Stream.advance();
5279 
5280     switch (Entry.Kind) {
5281       case BitstreamEntry::Error:
5282         return error("Malformed block");
5283       case BitstreamEntry::EndBlock:
5284         return std::error_code();
5285 
5286       case BitstreamEntry::SubBlock:
5287         if (CheckFuncSummaryPresenceOnly) {
5288           if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID)
5289             SeenFuncSummary = true;
5290           if (Stream.SkipBlock()) return error("Invalid record");
5291           // No need to parse the rest since we found the summary.
5292           return std::error_code();
5293         }
5294         switch (Entry.ID) {
5295           default:  // Skip unknown content.
5296             if (Stream.SkipBlock()) return error("Invalid record");
5297             break;
5298           case bitc::BLOCKINFO_BLOCK_ID:
5299             // Need to parse these to get abbrev ids (e.g. for VST)
5300             if (Stream.ReadBlockInfoBlock()) return error("Malformed block");
5301             break;
5302           case bitc::VALUE_SYMTAB_BLOCK_ID:
5303             if (std::error_code EC = parseValueSymbolTable()) return EC;
5304             break;
5305           case bitc::FUNCTION_SUMMARY_BLOCK_ID:
5306             SeenFuncSummary = true;
5307             if (IsLazy) {
5308               // Lazy parsing of summary info, skip it.
5309               if (Stream.SkipBlock()) return error("Invalid record");
5310             } else if (std::error_code EC = parseEntireSummary())
5311               return EC;
5312             break;
5313           case bitc::MODULE_STRTAB_BLOCK_ID:
5314             if (std::error_code EC = parseModuleStringTable()) return EC;
5315             break;
5316         }
5317         continue;
5318 
5319       case BitstreamEntry::Record:
5320         Stream.skipRecord(Entry.ID);
5321         continue;
5322     }
5323   }
5324 }
5325 
5326 // Eagerly parse the entire function summary block (i.e. for all functions
5327 // in the index). This populates the FunctionSummary objects in
5328 // the index.
5329 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() {
5330   if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID))
5331     return error("Invalid record");
5332 
5333   SmallVector<uint64_t, 64> Record;
5334 
5335   while (1) {
5336     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5337 
5338     switch (Entry.Kind) {
5339       case BitstreamEntry::SubBlock:  // Handled for us already.
5340       case BitstreamEntry::Error:
5341         return error("Malformed block");
5342       case BitstreamEntry::EndBlock:
5343         return std::error_code();
5344       case BitstreamEntry::Record:
5345         // The interesting case.
5346         break;
5347     }
5348 
5349     // Read a record. The record format depends on whether this
5350     // is a per-module index or a combined index file. In the per-module
5351     // case the records contain the associated value's ID for correlation
5352     // with VST entries. In the combined index the correlation is done
5353     // via the bitcode offset of the summary records (which were saved
5354     // in the combined index VST entries). The records also contain
5355     // information used for ThinLTO renaming and importing.
5356     Record.clear();
5357     uint64_t CurRecordBit = Stream.GetCurrentBitNo();
5358     switch (Stream.readRecord(Entry.ID, Record)) {
5359       default:  // Default behavior: ignore.
5360         break;
5361       // FS_PERMODULE_ENTRY: [valueid, islocal, instcount]
5362       case bitc::FS_CODE_PERMODULE_ENTRY: {
5363         unsigned ValueID = Record[0];
5364         bool IsLocal = Record[1];
5365         unsigned InstCount = Record[2];
5366         std::unique_ptr<FunctionSummary> FS =
5367             llvm::make_unique<FunctionSummary>(InstCount);
5368         FS->setLocalFunction(IsLocal);
5369         // The module path string ref set in the summary must be owned by the
5370         // index's module string table. Since we don't have a module path
5371         // string table section in the per-module index, we create a single
5372         // module path string table entry with an empty (0) ID to take
5373         // ownership.
5374         FS->setModulePath(
5375             TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0));
5376         SummaryMap[ValueID] = std::move(FS);
5377       }
5378       // FS_COMBINED_ENTRY: [modid, instcount]
5379       case bitc::FS_CODE_COMBINED_ENTRY: {
5380         uint64_t ModuleId = Record[0];
5381         unsigned InstCount = Record[1];
5382         std::unique_ptr<FunctionSummary> FS =
5383             llvm::make_unique<FunctionSummary>(InstCount);
5384         FS->setModulePath(ModuleIdMap[ModuleId]);
5385         SummaryMap[CurRecordBit] = std::move(FS);
5386       }
5387     }
5388   }
5389   llvm_unreachable("Exit infinite loop");
5390 }
5391 
5392 // Parse the  module string table block into the Index.
5393 // This populates the ModulePathStringTable map in the index.
5394 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() {
5395   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5396     return error("Invalid record");
5397 
5398   SmallVector<uint64_t, 64> Record;
5399 
5400   SmallString<128> ModulePath;
5401   while (1) {
5402     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5403 
5404     switch (Entry.Kind) {
5405       case BitstreamEntry::SubBlock:  // Handled for us already.
5406       case BitstreamEntry::Error:
5407         return error("Malformed block");
5408       case BitstreamEntry::EndBlock:
5409         return std::error_code();
5410       case BitstreamEntry::Record:
5411         // The interesting case.
5412         break;
5413     }
5414 
5415     Record.clear();
5416     switch (Stream.readRecord(Entry.ID, Record)) {
5417       default:  // Default behavior: ignore.
5418         break;
5419       case bitc::MST_CODE_ENTRY: {
5420         // MST_ENTRY: [modid, namechar x N]
5421         if (convertToString(Record, 1, ModulePath))
5422           return error("Invalid record");
5423         uint64_t ModuleId = Record[0];
5424         StringRef ModulePathInMap =
5425             TheIndex->addModulePath(ModulePath, ModuleId);
5426         ModuleIdMap[ModuleId] = ModulePathInMap;
5427         ModulePath.clear();
5428         break;
5429       }
5430     }
5431   }
5432   llvm_unreachable("Exit infinite loop");
5433 }
5434 
5435 // Parse the function info index from the bitcode streamer into the given index.
5436 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto(
5437     std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) {
5438   TheIndex = I;
5439 
5440   if (std::error_code EC = initStream(std::move(Streamer))) return EC;
5441 
5442   // Sniff for the signature.
5443   if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature");
5444 
5445   // We expect a number of well-defined blocks, though we don't necessarily
5446   // need to understand them all.
5447   while (1) {
5448     if (Stream.AtEndOfStream()) {
5449       // We didn't really read a proper Module block.
5450       return error("Malformed block");
5451     }
5452 
5453     BitstreamEntry Entry =
5454         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
5455 
5456     if (Entry.Kind != BitstreamEntry::SubBlock) return error("Malformed block");
5457 
5458     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
5459     // building the function summary index.
5460     if (Entry.ID == bitc::MODULE_BLOCK_ID) return parseModule();
5461 
5462     if (Stream.SkipBlock()) return error("Invalid record");
5463   }
5464 }
5465 
5466 // Parse the function information at the given offset in the buffer into
5467 // the index. Used to support lazy parsing of function summaries from the
5468 // combined index during importing.
5469 // TODO: This function is not yet complete as it won't have a consumer
5470 // until ThinLTO function importing is added.
5471 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary(
5472     std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I,
5473     size_t FunctionSummaryOffset) {
5474   TheIndex = I;
5475 
5476   if (std::error_code EC = initStream(std::move(Streamer))) return EC;
5477 
5478   // Sniff for the signature.
5479   if (!hasValidBitcodeHeader(Stream)) return error("Invalid bitcode signature");
5480 
5481   Stream.JumpToBit(FunctionSummaryOffset);
5482 
5483   BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5484 
5485   switch (Entry.Kind) {
5486     default:
5487       return error("Malformed block");
5488     case BitstreamEntry::Record:
5489       // The expected case.
5490       break;
5491   }
5492 
5493   // TODO: Read a record. This interface will be completed when ThinLTO
5494   // importing is added so that it can be tested.
5495   SmallVector<uint64_t, 64> Record;
5496   switch (Stream.readRecord(Entry.ID, Record)) {
5497     default:
5498       return error("Invalid record");
5499   }
5500 
5501   return std::error_code();
5502 }
5503 
5504 std::error_code FunctionIndexBitcodeReader::initStream(
5505     std::unique_ptr<DataStreamer> Streamer) {
5506   if (Streamer) return initLazyStream(std::move(Streamer));
5507   return initStreamFromBuffer();
5508 }
5509 
5510 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() {
5511   const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart();
5512   const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize();
5513 
5514   if (Buffer->getBufferSize() & 3) return error("Invalid bitcode signature");
5515 
5516   // If we have a wrapper header, parse it and ignore the non-bc file contents.
5517   // The magic number is 0x0B17C0DE stored in little endian.
5518   if (isBitcodeWrapper(BufPtr, BufEnd))
5519     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5520       return error("Invalid bitcode wrapper header");
5521 
5522   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5523   Stream.init(&*StreamFile);
5524 
5525   return std::error_code();
5526 }
5527 
5528 std::error_code FunctionIndexBitcodeReader::initLazyStream(
5529     std::unique_ptr<DataStreamer> Streamer) {
5530   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5531   // see it.
5532   auto OwnedBytes =
5533       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5534   StreamingMemoryObject &Bytes = *OwnedBytes;
5535   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5536   Stream.init(&*StreamFile);
5537 
5538   unsigned char buf[16];
5539   if (Bytes.readBytes(buf, 16, 0) != 16)
5540     return error("Invalid bitcode signature");
5541 
5542   if (!isBitcode(buf, buf + 16)) return error("Invalid bitcode signature");
5543 
5544   if (isBitcodeWrapper(buf, buf + 4)) {
5545     const unsigned char *bitcodeStart = buf;
5546     const unsigned char *bitcodeEnd = buf + 16;
5547     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5548     Bytes.dropLeadingBytes(bitcodeStart - buf);
5549     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5550   }
5551   return std::error_code();
5552 }
5553 
5554 namespace {
5555 class BitcodeErrorCategoryType : public std::error_category {
5556   const char *name() const LLVM_NOEXCEPT override {
5557     return "llvm.bitcode";
5558   }
5559   std::string message(int IE) const override {
5560     BitcodeError E = static_cast<BitcodeError>(IE);
5561     switch (E) {
5562     case BitcodeError::InvalidBitcodeSignature:
5563       return "Invalid bitcode signature";
5564     case BitcodeError::CorruptedBitcode:
5565       return "Corrupted bitcode";
5566     }
5567     llvm_unreachable("Unknown error type!");
5568   }
5569 };
5570 }
5571 
5572 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
5573 
5574 const std::error_category &llvm::BitcodeErrorCategory() {
5575   return *ErrorCategory;
5576 }
5577 
5578 //===----------------------------------------------------------------------===//
5579 // External interface
5580 //===----------------------------------------------------------------------===//
5581 
5582 static ErrorOr<std::unique_ptr<Module>>
5583 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name,
5584                      BitcodeReader *R, LLVMContext &Context,
5585                      bool MaterializeAll, bool ShouldLazyLoadMetadata) {
5586   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
5587   M->setMaterializer(R);
5588 
5589   auto cleanupOnError = [&](std::error_code EC) {
5590     R->releaseBuffer(); // Never take ownership on error.
5591     return EC;
5592   };
5593 
5594   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
5595   if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(),
5596                                                ShouldLazyLoadMetadata))
5597     return cleanupOnError(EC);
5598 
5599   if (MaterializeAll) {
5600     // Read in the entire module, and destroy the BitcodeReader.
5601     if (std::error_code EC = M->materializeAllPermanently())
5602       return cleanupOnError(EC);
5603   } else {
5604     // Resolve forward references from blockaddresses.
5605     if (std::error_code EC = R->materializeForwardReferencedFunctions())
5606       return cleanupOnError(EC);
5607   }
5608   return std::move(M);
5609 }
5610 
5611 /// \brief Get a lazy one-at-time loading module from bitcode.
5612 ///
5613 /// This isn't always used in a lazy context.  In particular, it's also used by
5614 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
5615 /// in forward-referenced functions from block address references.
5616 ///
5617 /// \param[in] MaterializeAll Set to \c true if we should materialize
5618 /// everything.
5619 static ErrorOr<std::unique_ptr<Module>>
5620 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
5621                          LLVMContext &Context, bool MaterializeAll,
5622                          DiagnosticHandlerFunction DiagnosticHandler,
5623                          bool ShouldLazyLoadMetadata = false) {
5624   BitcodeReader *R =
5625       new BitcodeReader(Buffer.get(), Context, DiagnosticHandler);
5626 
5627   ErrorOr<std::unique_ptr<Module>> Ret =
5628       getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context,
5629                            MaterializeAll, ShouldLazyLoadMetadata);
5630   if (!Ret)
5631     return Ret;
5632 
5633   Buffer.release(); // The BitcodeReader owns it now.
5634   return Ret;
5635 }
5636 
5637 ErrorOr<std::unique_ptr<Module>> llvm::getLazyBitcodeModule(
5638     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
5639     DiagnosticHandlerFunction DiagnosticHandler, bool ShouldLazyLoadMetadata) {
5640   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
5641                                   DiagnosticHandler, ShouldLazyLoadMetadata);
5642 }
5643 
5644 ErrorOr<std::unique_ptr<Module>> llvm::getStreamedBitcodeModule(
5645     StringRef Name, std::unique_ptr<DataStreamer> Streamer,
5646     LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler) {
5647   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
5648   BitcodeReader *R = new BitcodeReader(Context, DiagnosticHandler);
5649 
5650   return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false,
5651                               false);
5652 }
5653 
5654 ErrorOr<std::unique_ptr<Module>>
5655 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
5656                        DiagnosticHandlerFunction DiagnosticHandler) {
5657   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5658   return getLazyBitcodeModuleImpl(std::move(Buf), Context, true,
5659                                   DiagnosticHandler);
5660   // TODO: Restore the use-lists to the in-memory state when the bitcode was
5661   // written.  We must defer until the Module has been fully materialized.
5662 }
5663 
5664 std::string
5665 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context,
5666                              DiagnosticHandlerFunction DiagnosticHandler) {
5667   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5668   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context,
5669                                             DiagnosticHandler);
5670   ErrorOr<std::string> Triple = R->parseTriple();
5671   if (Triple.getError())
5672     return "";
5673   return Triple.get();
5674 }
5675 
5676 // Parse the specified bitcode buffer, returning the function info index.
5677 // If IsLazy is false, parse the entire function summary into
5678 // the index. Otherwise skip the function summary section, and only create
5679 // an index object with a map from function name to function summary offset.
5680 // The index is used to perform lazy function summary reading later.
5681 ErrorOr<std::unique_ptr<FunctionInfoIndex>> llvm::getFunctionInfoIndex(
5682     MemoryBufferRef Buffer, LLVMContext &Context,
5683     DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy) {
5684   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5685   FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler, IsLazy);
5686 
5687   std::unique_ptr<FunctionInfoIndex> Index =
5688       llvm::make_unique<FunctionInfoIndex>();
5689 
5690   auto cleanupOnError = [&](std::error_code EC) {
5691     R.releaseBuffer();  // Never take ownership on error.
5692     return EC;
5693   };
5694 
5695   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
5696     return cleanupOnError(EC);
5697 
5698   Buf.release();  // The FunctionIndexBitcodeReader owns it now.
5699   return std::move(Index);
5700 }
5701 
5702 // Check if the given bitcode buffer contains a function summary block.
5703 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer, LLVMContext &Context,
5704                               DiagnosticHandlerFunction DiagnosticHandler) {
5705   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5706   FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler, false,
5707                                true);
5708 
5709   auto cleanupOnError = [&](std::error_code EC) {
5710     R.releaseBuffer();  // Never take ownership on error.
5711     return false;
5712   };
5713 
5714   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
5715     return cleanupOnError(EC);
5716 
5717   Buf.release();  // The FunctionIndexBitcodeReader owns it now.
5718   return R.foundFuncSummary();
5719 }
5720 
5721 // This method supports lazy reading of function summary data from the combined
5722 // index during ThinLTO function importing. When reading the combined index
5723 // file, getFunctionInfoIndex is first invoked with IsLazy=true.
5724 // Then this method is called for each function considered for importing,
5725 // to parse the summary information for the given function name into
5726 // the index.
5727 std::error_code llvm::readFunctionSummary(
5728     MemoryBufferRef Buffer, LLVMContext &Context,
5729     DiagnosticHandlerFunction DiagnosticHandler, StringRef FunctionName,
5730     std::unique_ptr<FunctionInfoIndex> Index) {
5731   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
5732   FunctionIndexBitcodeReader R(Buf.get(), Context, DiagnosticHandler);
5733 
5734   auto cleanupOnError = [&](std::error_code EC) {
5735     R.releaseBuffer();  // Never take ownership on error.
5736     return EC;
5737   };
5738 
5739   // Lookup the given function name in the FunctionMap, which may
5740   // contain a list of function infos in the case of a COMDAT. Walk through
5741   // and parse each function summary info at the function summary offset
5742   // recorded when parsing the value symbol table.
5743   for (const auto &FI : Index->getFunctionInfoList(FunctionName)) {
5744     size_t FunctionSummaryOffset = FI->bitcodeIndex();
5745     if (std::error_code EC =
5746             R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset))
5747       return cleanupOnError(EC);
5748   }
5749 
5750   Buf.release();  // The FunctionIndexBitcodeReader owns it now.
5751   return std::error_code();
5752 }
5753