1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 Result.append(Record.begin() + Idx, Record.end()); 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 static void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return std::move(Err); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry; 183 if (Expected<BitstreamEntry> Res = Stream.advance()) 184 Entry = Res.get(); 185 else 186 return Res.takeError(); 187 188 switch (Entry.Kind) { 189 default: 190 case BitstreamEntry::Error: 191 return error("Malformed block"); 192 case BitstreamEntry::EndBlock: 193 return ProducerIdentification; 194 case BitstreamEntry::Record: 195 // The interesting case. 196 break; 197 } 198 199 // Read a record. 200 Record.clear(); 201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 202 if (!MaybeBitCode) 203 return MaybeBitCode.takeError(); 204 switch (MaybeBitCode.get()) { 205 default: // Default behavior: reject 206 return error("Invalid value"); 207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 208 convertToString(Record, 0, ProducerIdentification); 209 break; 210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 211 unsigned epoch = (unsigned)Record[0]; 212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 213 return error( 214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 216 } 217 } 218 } 219 } 220 } 221 222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 223 // We expect a number of well-defined blocks, though we don't necessarily 224 // need to understand them all. 225 while (true) { 226 if (Stream.AtEndOfStream()) 227 return ""; 228 229 BitstreamEntry Entry; 230 if (Expected<BitstreamEntry> Res = Stream.advance()) 231 Entry = std::move(Res.get()); 232 else 233 return Res.takeError(); 234 235 switch (Entry.Kind) { 236 case BitstreamEntry::EndBlock: 237 case BitstreamEntry::Error: 238 return error("Malformed block"); 239 240 case BitstreamEntry::SubBlock: 241 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 242 return readIdentificationBlock(Stream); 243 244 // Ignore other sub-blocks. 245 if (Error Err = Stream.SkipBlock()) 246 return std::move(Err); 247 continue; 248 case BitstreamEntry::Record: 249 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 250 continue; 251 else 252 return Skipped.takeError(); 253 } 254 } 255 } 256 257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 259 return std::move(Err); 260 261 SmallVector<uint64_t, 64> Record; 262 // Read all the records for this module. 263 264 while (true) { 265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 266 if (!MaybeEntry) 267 return MaybeEntry.takeError(); 268 BitstreamEntry Entry = MaybeEntry.get(); 269 270 switch (Entry.Kind) { 271 case BitstreamEntry::SubBlock: // Handled for us already. 272 case BitstreamEntry::Error: 273 return error("Malformed block"); 274 case BitstreamEntry::EndBlock: 275 return false; 276 case BitstreamEntry::Record: 277 // The interesting case. 278 break; 279 } 280 281 // Read a record. 282 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 283 if (!MaybeRecord) 284 return MaybeRecord.takeError(); 285 switch (MaybeRecord.get()) { 286 default: 287 break; // Default behavior, ignore unknown content. 288 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 289 std::string S; 290 if (convertToString(Record, 0, S)) 291 return error("Invalid record"); 292 // Check for the i386 and other (x86_64, ARM) conventions 293 if (S.find("__DATA,__objc_catlist") != std::string::npos || 294 S.find("__OBJC,__category") != std::string::npos) 295 return true; 296 break; 297 } 298 } 299 Record.clear(); 300 } 301 llvm_unreachable("Exit infinite loop"); 302 } 303 304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 305 // We expect a number of well-defined blocks, though we don't necessarily 306 // need to understand them all. 307 while (true) { 308 BitstreamEntry Entry; 309 if (Expected<BitstreamEntry> Res = Stream.advance()) 310 Entry = std::move(Res.get()); 311 else 312 return Res.takeError(); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 331 continue; 332 else 333 return Skipped.takeError(); 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 bool readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 483 LLVMContext &Context; 484 Module *TheModule = nullptr; 485 // Next offset to start scanning for lazy parsing of function bodies. 486 uint64_t NextUnreadBit = 0; 487 // Last function offset found in the VST. 488 uint64_t LastFunctionBlockBit = 0; 489 bool SeenValueSymbolTable = false; 490 uint64_t VSTOffset = 0; 491 492 std::vector<std::string> SectionTable; 493 std::vector<std::string> GCTable; 494 495 std::vector<Type*> TypeList; 496 DenseMap<Function *, FunctionType *> FunctionTypes; 497 BitcodeReaderValueList ValueList; 498 Optional<MetadataLoader> MDLoader; 499 std::vector<Comdat *> ComdatList; 500 SmallVector<Instruction *, 64> InstructionList; 501 502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 504 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 506 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 507 508 /// The set of attributes by index. Index zero in the file is for null, and 509 /// is thus not represented here. As such all indices are off by one. 510 std::vector<AttributeList> MAttributes; 511 512 /// The set of attribute groups. 513 std::map<unsigned, AttributeList> MAttributeGroups; 514 515 /// While parsing a function body, this is a list of the basic blocks for the 516 /// function. 517 std::vector<BasicBlock*> FunctionBBs; 518 519 // When reading the module header, this list is populated with functions that 520 // have bodies later in the file. 521 std::vector<Function*> FunctionsWithBodies; 522 523 // When intrinsic functions are encountered which require upgrading they are 524 // stored here with their replacement function. 525 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 526 UpdatedIntrinsicMap UpgradedIntrinsics; 527 // Intrinsics which were remangled because of types rename 528 UpdatedIntrinsicMap RemangledIntrinsics; 529 530 // Several operations happen after the module header has been read, but 531 // before function bodies are processed. This keeps track of whether 532 // we've done this yet. 533 bool SeenFirstFunctionBody = false; 534 535 /// When function bodies are initially scanned, this map contains info about 536 /// where to find deferred function body in the stream. 537 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 538 539 /// When Metadata block is initially scanned when parsing the module, we may 540 /// choose to defer parsing of the metadata. This vector contains info about 541 /// which Metadata blocks are deferred. 542 std::vector<uint64_t> DeferredMetadataInfo; 543 544 /// These are basic blocks forward-referenced by block addresses. They are 545 /// inserted lazily into functions when they're loaded. The basic block ID is 546 /// its index into the vector. 547 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 548 std::deque<Function *> BasicBlockFwdRefQueue; 549 550 /// Indicates that we are using a new encoding for instruction operands where 551 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 552 /// instruction number, for a more compact encoding. Some instruction 553 /// operands are not relative to the instruction ID: basic block numbers, and 554 /// types. Once the old style function blocks have been phased out, we would 555 /// not need this flag. 556 bool UseRelativeIDs = false; 557 558 /// True if all functions will be materialized, negating the need to process 559 /// (e.g.) blockaddress forward references. 560 bool WillMaterializeAllForwardRefs = false; 561 562 bool StripDebugInfo = false; 563 TBAAVerifier TBAAVerifyHelper; 564 565 std::vector<std::string> BundleTags; 566 SmallVector<SyncScope::ID, 8> SSIDs; 567 568 public: 569 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 570 StringRef ProducerIdentification, LLVMContext &Context); 571 572 Error materializeForwardReferencedFunctions(); 573 574 Error materialize(GlobalValue *GV) override; 575 Error materializeModule() override; 576 std::vector<StructType *> getIdentifiedStructTypes() const override; 577 578 /// Main interface to parsing a bitcode buffer. 579 /// \returns true if an error occurred. 580 Error parseBitcodeInto( 581 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 582 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 Type *getTypeByID(unsigned ID); 597 598 Value *getFnValueByID(unsigned ID, Type *Ty) { 599 if (Ty && Ty->isMetadataTy()) 600 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 601 return ValueList.getValueFwdRef(ID, Ty); 602 } 603 604 Metadata *getFnMetadataByID(unsigned ID) { 605 return MDLoader->getMetadataFwdRefOrLoad(ID); 606 } 607 608 BasicBlock *getBasicBlock(unsigned ID) const { 609 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 610 return FunctionBBs[ID]; 611 } 612 613 AttributeList getAttributes(unsigned i) const { 614 if (i-1 < MAttributes.size()) 615 return MAttributes[i-1]; 616 return AttributeList(); 617 } 618 619 /// Read a value/type pair out of the specified record from slot 'Slot'. 620 /// Increment Slot past the number of slots used in the record. Return true on 621 /// failure. 622 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 623 unsigned InstNum, Value *&ResVal) { 624 if (Slot == Record.size()) return true; 625 unsigned ValNo = (unsigned)Record[Slot++]; 626 // Adjust the ValNo, if it was encoded relative to the InstNum. 627 if (UseRelativeIDs) 628 ValNo = InstNum - ValNo; 629 if (ValNo < InstNum) { 630 // If this is not a forward reference, just return the value we already 631 // have. 632 ResVal = getFnValueByID(ValNo, nullptr); 633 return ResVal == nullptr; 634 } 635 if (Slot == Record.size()) 636 return true; 637 638 unsigned TypeNo = (unsigned)Record[Slot++]; 639 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 640 return ResVal == nullptr; 641 } 642 643 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 644 /// past the number of slots used by the value in the record. Return true if 645 /// there is an error. 646 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 647 unsigned InstNum, Type *Ty, Value *&ResVal) { 648 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 649 return true; 650 // All values currently take a single record slot. 651 ++Slot; 652 return false; 653 } 654 655 /// Like popValue, but does not increment the Slot number. 656 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 657 unsigned InstNum, Type *Ty, Value *&ResVal) { 658 ResVal = getValue(Record, Slot, InstNum, Ty); 659 return ResVal == nullptr; 660 } 661 662 /// Version of getValue that returns ResVal directly, or 0 if there is an 663 /// error. 664 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 665 unsigned InstNum, Type *Ty) { 666 if (Slot == Record.size()) return nullptr; 667 unsigned ValNo = (unsigned)Record[Slot]; 668 // Adjust the ValNo, if it was encoded relative to the InstNum. 669 if (UseRelativeIDs) 670 ValNo = InstNum - ValNo; 671 return getFnValueByID(ValNo, Ty); 672 } 673 674 /// Like getValue, but decodes signed VBRs. 675 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 676 unsigned InstNum, Type *Ty) { 677 if (Slot == Record.size()) return nullptr; 678 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 679 // Adjust the ValNo, if it was encoded relative to the InstNum. 680 if (UseRelativeIDs) 681 ValNo = InstNum - ValNo; 682 return getFnValueByID(ValNo, Ty); 683 } 684 685 /// Upgrades old-style typeless byval or sret attributes by adding the 686 /// corresponding argument's pointee type. 687 void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsTys); 688 689 /// Converts alignment exponent (i.e. power of two (or zero)) to the 690 /// corresponding alignment to use. If alignment is too large, returns 691 /// a corresponding error code. 692 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 693 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 694 Error parseModule( 695 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 696 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 697 698 Error parseComdatRecord(ArrayRef<uint64_t> Record); 699 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 700 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 701 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 702 ArrayRef<uint64_t> Record); 703 704 Error parseAttributeBlock(); 705 Error parseAttributeGroupBlock(); 706 Error parseTypeTable(); 707 Error parseTypeTableBody(); 708 Error parseOperandBundleTags(); 709 Error parseSyncScopeNames(); 710 711 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 712 unsigned NameIndex, Triple &TT); 713 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 714 ArrayRef<uint64_t> Record); 715 Error parseValueSymbolTable(uint64_t Offset = 0); 716 Error parseGlobalValueSymbolTable(); 717 Error parseConstants(); 718 Error rememberAndSkipFunctionBodies(); 719 Error rememberAndSkipFunctionBody(); 720 /// Save the positions of the Metadata blocks and skip parsing the blocks. 721 Error rememberAndSkipMetadata(); 722 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 723 Error parseFunctionBody(Function *F); 724 Error globalCleanup(); 725 Error resolveGlobalAndIndirectSymbolInits(); 726 Error parseUseLists(); 727 Error findFunctionInStream( 728 Function *F, 729 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 730 731 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 732 }; 733 734 /// Class to manage reading and parsing function summary index bitcode 735 /// files/sections. 736 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 737 /// The module index built during parsing. 738 ModuleSummaryIndex &TheIndex; 739 740 /// Indicates whether we have encountered a global value summary section 741 /// yet during parsing. 742 bool SeenGlobalValSummary = false; 743 744 /// Indicates whether we have already parsed the VST, used for error checking. 745 bool SeenValueSymbolTable = false; 746 747 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 748 /// Used to enable on-demand parsing of the VST. 749 uint64_t VSTOffset = 0; 750 751 // Map to save ValueId to ValueInfo association that was recorded in the 752 // ValueSymbolTable. It is used after the VST is parsed to convert 753 // call graph edges read from the function summary from referencing 754 // callees by their ValueId to using the ValueInfo instead, which is how 755 // they are recorded in the summary index being built. 756 // We save a GUID which refers to the same global as the ValueInfo, but 757 // ignoring the linkage, i.e. for values other than local linkage they are 758 // identical. 759 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 760 ValueIdToValueInfoMap; 761 762 /// Map populated during module path string table parsing, from the 763 /// module ID to a string reference owned by the index's module 764 /// path string table, used to correlate with combined index 765 /// summary records. 766 DenseMap<uint64_t, StringRef> ModuleIdMap; 767 768 /// Original source file name recorded in a bitcode record. 769 std::string SourceFileName; 770 771 /// The string identifier given to this module by the client, normally the 772 /// path to the bitcode file. 773 StringRef ModulePath; 774 775 /// For per-module summary indexes, the unique numerical identifier given to 776 /// this module by the client. 777 unsigned ModuleId; 778 779 public: 780 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 781 ModuleSummaryIndex &TheIndex, 782 StringRef ModulePath, unsigned ModuleId); 783 784 Error parseModule(); 785 786 private: 787 void setValueGUID(uint64_t ValueID, StringRef ValueName, 788 GlobalValue::LinkageTypes Linkage, 789 StringRef SourceFileName); 790 Error parseValueSymbolTable( 791 uint64_t Offset, 792 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 793 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 794 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 795 bool IsOldProfileFormat, 796 bool HasProfile, 797 bool HasRelBF); 798 Error parseEntireSummary(unsigned ID); 799 Error parseModuleStringTable(); 800 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 801 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 802 TypeIdCompatibleVtableInfo &TypeId); 803 std::vector<FunctionSummary::ParamAccess> 804 parseParamAccesses(ArrayRef<uint64_t> Record); 805 806 std::pair<ValueInfo, GlobalValue::GUID> 807 getValueInfoFromValueId(unsigned ValueId); 808 809 void addThisModule(); 810 ModuleSummaryIndex::ModuleInfo *getThisModule(); 811 }; 812 813 } // end anonymous namespace 814 815 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 816 Error Err) { 817 if (Err) { 818 std::error_code EC; 819 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 820 EC = EIB.convertToErrorCode(); 821 Ctx.emitError(EIB.message()); 822 }); 823 return EC; 824 } 825 return std::error_code(); 826 } 827 828 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 829 StringRef ProducerIdentification, 830 LLVMContext &Context) 831 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 832 ValueList(Context, Stream.SizeInBytes()) { 833 this->ProducerIdentification = std::string(ProducerIdentification); 834 } 835 836 Error BitcodeReader::materializeForwardReferencedFunctions() { 837 if (WillMaterializeAllForwardRefs) 838 return Error::success(); 839 840 // Prevent recursion. 841 WillMaterializeAllForwardRefs = true; 842 843 while (!BasicBlockFwdRefQueue.empty()) { 844 Function *F = BasicBlockFwdRefQueue.front(); 845 BasicBlockFwdRefQueue.pop_front(); 846 assert(F && "Expected valid function"); 847 if (!BasicBlockFwdRefs.count(F)) 848 // Already materialized. 849 continue; 850 851 // Check for a function that isn't materializable to prevent an infinite 852 // loop. When parsing a blockaddress stored in a global variable, there 853 // isn't a trivial way to check if a function will have a body without a 854 // linear search through FunctionsWithBodies, so just check it here. 855 if (!F->isMaterializable()) 856 return error("Never resolved function from blockaddress"); 857 858 // Try to materialize F. 859 if (Error Err = materialize(F)) 860 return Err; 861 } 862 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 863 864 // Reset state. 865 WillMaterializeAllForwardRefs = false; 866 return Error::success(); 867 } 868 869 //===----------------------------------------------------------------------===// 870 // Helper functions to implement forward reference resolution, etc. 871 //===----------------------------------------------------------------------===// 872 873 static bool hasImplicitComdat(size_t Val) { 874 switch (Val) { 875 default: 876 return false; 877 case 1: // Old WeakAnyLinkage 878 case 4: // Old LinkOnceAnyLinkage 879 case 10: // Old WeakODRLinkage 880 case 11: // Old LinkOnceODRLinkage 881 return true; 882 } 883 } 884 885 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 886 switch (Val) { 887 default: // Map unknown/new linkages to external 888 case 0: 889 return GlobalValue::ExternalLinkage; 890 case 2: 891 return GlobalValue::AppendingLinkage; 892 case 3: 893 return GlobalValue::InternalLinkage; 894 case 5: 895 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 896 case 6: 897 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 898 case 7: 899 return GlobalValue::ExternalWeakLinkage; 900 case 8: 901 return GlobalValue::CommonLinkage; 902 case 9: 903 return GlobalValue::PrivateLinkage; 904 case 12: 905 return GlobalValue::AvailableExternallyLinkage; 906 case 13: 907 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 908 case 14: 909 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 910 case 15: 911 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 912 case 1: // Old value with implicit comdat. 913 case 16: 914 return GlobalValue::WeakAnyLinkage; 915 case 10: // Old value with implicit comdat. 916 case 17: 917 return GlobalValue::WeakODRLinkage; 918 case 4: // Old value with implicit comdat. 919 case 18: 920 return GlobalValue::LinkOnceAnyLinkage; 921 case 11: // Old value with implicit comdat. 922 case 19: 923 return GlobalValue::LinkOnceODRLinkage; 924 } 925 } 926 927 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 928 FunctionSummary::FFlags Flags; 929 Flags.ReadNone = RawFlags & 0x1; 930 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 931 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 932 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 933 Flags.NoInline = (RawFlags >> 4) & 0x1; 934 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 935 return Flags; 936 } 937 938 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 939 // 940 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 941 // visibility: [8, 10). 942 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 943 uint64_t Version) { 944 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 945 // like getDecodedLinkage() above. Any future change to the linkage enum and 946 // to getDecodedLinkage() will need to be taken into account here as above. 947 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 948 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 949 RawFlags = RawFlags >> 4; 950 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 951 // The Live flag wasn't introduced until version 3. For dead stripping 952 // to work correctly on earlier versions, we must conservatively treat all 953 // values as live. 954 bool Live = (RawFlags & 0x2) || Version < 3; 955 bool Local = (RawFlags & 0x4); 956 bool AutoHide = (RawFlags & 0x8); 957 958 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 959 Live, Local, AutoHide); 960 } 961 962 // Decode the flags for GlobalVariable in the summary 963 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 964 return GlobalVarSummary::GVarFlags( 965 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 966 (RawFlags & 0x4) ? true : false, 967 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 968 } 969 970 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 971 switch (Val) { 972 default: // Map unknown visibilities to default. 973 case 0: return GlobalValue::DefaultVisibility; 974 case 1: return GlobalValue::HiddenVisibility; 975 case 2: return GlobalValue::ProtectedVisibility; 976 } 977 } 978 979 static GlobalValue::DLLStorageClassTypes 980 getDecodedDLLStorageClass(unsigned Val) { 981 switch (Val) { 982 default: // Map unknown values to default. 983 case 0: return GlobalValue::DefaultStorageClass; 984 case 1: return GlobalValue::DLLImportStorageClass; 985 case 2: return GlobalValue::DLLExportStorageClass; 986 } 987 } 988 989 static bool getDecodedDSOLocal(unsigned Val) { 990 switch(Val) { 991 default: // Map unknown values to preemptable. 992 case 0: return false; 993 case 1: return true; 994 } 995 } 996 997 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 998 switch (Val) { 999 case 0: return GlobalVariable::NotThreadLocal; 1000 default: // Map unknown non-zero value to general dynamic. 1001 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1002 case 2: return GlobalVariable::LocalDynamicTLSModel; 1003 case 3: return GlobalVariable::InitialExecTLSModel; 1004 case 4: return GlobalVariable::LocalExecTLSModel; 1005 } 1006 } 1007 1008 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1009 switch (Val) { 1010 default: // Map unknown to UnnamedAddr::None. 1011 case 0: return GlobalVariable::UnnamedAddr::None; 1012 case 1: return GlobalVariable::UnnamedAddr::Global; 1013 case 2: return GlobalVariable::UnnamedAddr::Local; 1014 } 1015 } 1016 1017 static int getDecodedCastOpcode(unsigned Val) { 1018 switch (Val) { 1019 default: return -1; 1020 case bitc::CAST_TRUNC : return Instruction::Trunc; 1021 case bitc::CAST_ZEXT : return Instruction::ZExt; 1022 case bitc::CAST_SEXT : return Instruction::SExt; 1023 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1024 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1025 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1026 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1027 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1028 case bitc::CAST_FPEXT : return Instruction::FPExt; 1029 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1030 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1031 case bitc::CAST_BITCAST : return Instruction::BitCast; 1032 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1033 } 1034 } 1035 1036 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1037 bool IsFP = Ty->isFPOrFPVectorTy(); 1038 // UnOps are only valid for int/fp or vector of int/fp types 1039 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1040 return -1; 1041 1042 switch (Val) { 1043 default: 1044 return -1; 1045 case bitc::UNOP_FNEG: 1046 return IsFP ? Instruction::FNeg : -1; 1047 } 1048 } 1049 1050 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1051 bool IsFP = Ty->isFPOrFPVectorTy(); 1052 // BinOps are only valid for int/fp or vector of int/fp types 1053 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1054 return -1; 1055 1056 switch (Val) { 1057 default: 1058 return -1; 1059 case bitc::BINOP_ADD: 1060 return IsFP ? Instruction::FAdd : Instruction::Add; 1061 case bitc::BINOP_SUB: 1062 return IsFP ? Instruction::FSub : Instruction::Sub; 1063 case bitc::BINOP_MUL: 1064 return IsFP ? Instruction::FMul : Instruction::Mul; 1065 case bitc::BINOP_UDIV: 1066 return IsFP ? -1 : Instruction::UDiv; 1067 case bitc::BINOP_SDIV: 1068 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1069 case bitc::BINOP_UREM: 1070 return IsFP ? -1 : Instruction::URem; 1071 case bitc::BINOP_SREM: 1072 return IsFP ? Instruction::FRem : Instruction::SRem; 1073 case bitc::BINOP_SHL: 1074 return IsFP ? -1 : Instruction::Shl; 1075 case bitc::BINOP_LSHR: 1076 return IsFP ? -1 : Instruction::LShr; 1077 case bitc::BINOP_ASHR: 1078 return IsFP ? -1 : Instruction::AShr; 1079 case bitc::BINOP_AND: 1080 return IsFP ? -1 : Instruction::And; 1081 case bitc::BINOP_OR: 1082 return IsFP ? -1 : Instruction::Or; 1083 case bitc::BINOP_XOR: 1084 return IsFP ? -1 : Instruction::Xor; 1085 } 1086 } 1087 1088 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1089 switch (Val) { 1090 default: return AtomicRMWInst::BAD_BINOP; 1091 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1092 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1093 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1094 case bitc::RMW_AND: return AtomicRMWInst::And; 1095 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1096 case bitc::RMW_OR: return AtomicRMWInst::Or; 1097 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1098 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1099 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1100 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1101 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1102 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1103 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1104 } 1105 } 1106 1107 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1108 switch (Val) { 1109 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1110 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1111 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1112 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1113 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1114 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1115 default: // Map unknown orderings to sequentially-consistent. 1116 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1117 } 1118 } 1119 1120 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1121 switch (Val) { 1122 default: // Map unknown selection kinds to any. 1123 case bitc::COMDAT_SELECTION_KIND_ANY: 1124 return Comdat::Any; 1125 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1126 return Comdat::ExactMatch; 1127 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1128 return Comdat::Largest; 1129 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1130 return Comdat::NoDuplicates; 1131 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1132 return Comdat::SameSize; 1133 } 1134 } 1135 1136 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1137 FastMathFlags FMF; 1138 if (0 != (Val & bitc::UnsafeAlgebra)) 1139 FMF.setFast(); 1140 if (0 != (Val & bitc::AllowReassoc)) 1141 FMF.setAllowReassoc(); 1142 if (0 != (Val & bitc::NoNaNs)) 1143 FMF.setNoNaNs(); 1144 if (0 != (Val & bitc::NoInfs)) 1145 FMF.setNoInfs(); 1146 if (0 != (Val & bitc::NoSignedZeros)) 1147 FMF.setNoSignedZeros(); 1148 if (0 != (Val & bitc::AllowReciprocal)) 1149 FMF.setAllowReciprocal(); 1150 if (0 != (Val & bitc::AllowContract)) 1151 FMF.setAllowContract(true); 1152 if (0 != (Val & bitc::ApproxFunc)) 1153 FMF.setApproxFunc(); 1154 return FMF; 1155 } 1156 1157 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1158 switch (Val) { 1159 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1160 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1161 } 1162 } 1163 1164 Type *BitcodeReader::getTypeByID(unsigned ID) { 1165 // The type table size is always specified correctly. 1166 if (ID >= TypeList.size()) 1167 return nullptr; 1168 1169 if (Type *Ty = TypeList[ID]) 1170 return Ty; 1171 1172 // If we have a forward reference, the only possible case is when it is to a 1173 // named struct. Just create a placeholder for now. 1174 return TypeList[ID] = createIdentifiedStructType(Context); 1175 } 1176 1177 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1178 StringRef Name) { 1179 auto *Ret = StructType::create(Context, Name); 1180 IdentifiedStructTypes.push_back(Ret); 1181 return Ret; 1182 } 1183 1184 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1185 auto *Ret = StructType::create(Context); 1186 IdentifiedStructTypes.push_back(Ret); 1187 return Ret; 1188 } 1189 1190 //===----------------------------------------------------------------------===// 1191 // Functions for parsing blocks from the bitcode file 1192 //===----------------------------------------------------------------------===// 1193 1194 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1195 switch (Val) { 1196 case Attribute::EndAttrKinds: 1197 case Attribute::EmptyKey: 1198 case Attribute::TombstoneKey: 1199 llvm_unreachable("Synthetic enumerators which should never get here"); 1200 1201 case Attribute::None: return 0; 1202 case Attribute::ZExt: return 1 << 0; 1203 case Attribute::SExt: return 1 << 1; 1204 case Attribute::NoReturn: return 1 << 2; 1205 case Attribute::InReg: return 1 << 3; 1206 case Attribute::StructRet: return 1 << 4; 1207 case Attribute::NoUnwind: return 1 << 5; 1208 case Attribute::NoAlias: return 1 << 6; 1209 case Attribute::ByVal: return 1 << 7; 1210 case Attribute::Nest: return 1 << 8; 1211 case Attribute::ReadNone: return 1 << 9; 1212 case Attribute::ReadOnly: return 1 << 10; 1213 case Attribute::NoInline: return 1 << 11; 1214 case Attribute::AlwaysInline: return 1 << 12; 1215 case Attribute::OptimizeForSize: return 1 << 13; 1216 case Attribute::StackProtect: return 1 << 14; 1217 case Attribute::StackProtectReq: return 1 << 15; 1218 case Attribute::Alignment: return 31 << 16; 1219 case Attribute::NoCapture: return 1 << 21; 1220 case Attribute::NoRedZone: return 1 << 22; 1221 case Attribute::NoImplicitFloat: return 1 << 23; 1222 case Attribute::Naked: return 1 << 24; 1223 case Attribute::InlineHint: return 1 << 25; 1224 case Attribute::StackAlignment: return 7 << 26; 1225 case Attribute::ReturnsTwice: return 1 << 29; 1226 case Attribute::UWTable: return 1 << 30; 1227 case Attribute::NonLazyBind: return 1U << 31; 1228 case Attribute::SanitizeAddress: return 1ULL << 32; 1229 case Attribute::MinSize: return 1ULL << 33; 1230 case Attribute::NoDuplicate: return 1ULL << 34; 1231 case Attribute::StackProtectStrong: return 1ULL << 35; 1232 case Attribute::SanitizeThread: return 1ULL << 36; 1233 case Attribute::SanitizeMemory: return 1ULL << 37; 1234 case Attribute::NoBuiltin: return 1ULL << 38; 1235 case Attribute::Returned: return 1ULL << 39; 1236 case Attribute::Cold: return 1ULL << 40; 1237 case Attribute::Builtin: return 1ULL << 41; 1238 case Attribute::OptimizeNone: return 1ULL << 42; 1239 case Attribute::InAlloca: return 1ULL << 43; 1240 case Attribute::NonNull: return 1ULL << 44; 1241 case Attribute::JumpTable: return 1ULL << 45; 1242 case Attribute::Convergent: return 1ULL << 46; 1243 case Attribute::SafeStack: return 1ULL << 47; 1244 case Attribute::NoRecurse: return 1ULL << 48; 1245 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1246 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1247 case Attribute::SwiftSelf: return 1ULL << 51; 1248 case Attribute::SwiftError: return 1ULL << 52; 1249 case Attribute::WriteOnly: return 1ULL << 53; 1250 case Attribute::Speculatable: return 1ULL << 54; 1251 case Attribute::StrictFP: return 1ULL << 55; 1252 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1253 case Attribute::NoCfCheck: return 1ULL << 57; 1254 case Attribute::OptForFuzzing: return 1ULL << 58; 1255 case Attribute::ShadowCallStack: return 1ULL << 59; 1256 case Attribute::SpeculativeLoadHardening: 1257 return 1ULL << 60; 1258 case Attribute::ImmArg: 1259 return 1ULL << 61; 1260 case Attribute::WillReturn: 1261 return 1ULL << 62; 1262 case Attribute::NoFree: 1263 return 1ULL << 63; 1264 default: 1265 // Other attributes are not supported in the raw format, 1266 // as we ran out of space. 1267 return 0; 1268 } 1269 llvm_unreachable("Unsupported attribute type"); 1270 } 1271 1272 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1273 if (!Val) return; 1274 1275 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1276 I = Attribute::AttrKind(I + 1)) { 1277 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1278 if (I == Attribute::Alignment) 1279 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1280 else if (I == Attribute::StackAlignment) 1281 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1282 else 1283 B.addAttribute(I); 1284 } 1285 } 1286 } 1287 1288 /// This fills an AttrBuilder object with the LLVM attributes that have 1289 /// been decoded from the given integer. This function must stay in sync with 1290 /// 'encodeLLVMAttributesForBitcode'. 1291 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1292 uint64_t EncodedAttrs) { 1293 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1294 // the bits above 31 down by 11 bits. 1295 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1296 assert((!Alignment || isPowerOf2_32(Alignment)) && 1297 "Alignment must be a power of two."); 1298 1299 if (Alignment) 1300 B.addAlignmentAttr(Alignment); 1301 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1302 (EncodedAttrs & 0xffff)); 1303 } 1304 1305 Error BitcodeReader::parseAttributeBlock() { 1306 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1307 return Err; 1308 1309 if (!MAttributes.empty()) 1310 return error("Invalid multiple blocks"); 1311 1312 SmallVector<uint64_t, 64> Record; 1313 1314 SmallVector<AttributeList, 8> Attrs; 1315 1316 // Read all the records. 1317 while (true) { 1318 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1319 if (!MaybeEntry) 1320 return MaybeEntry.takeError(); 1321 BitstreamEntry Entry = MaybeEntry.get(); 1322 1323 switch (Entry.Kind) { 1324 case BitstreamEntry::SubBlock: // Handled for us already. 1325 case BitstreamEntry::Error: 1326 return error("Malformed block"); 1327 case BitstreamEntry::EndBlock: 1328 return Error::success(); 1329 case BitstreamEntry::Record: 1330 // The interesting case. 1331 break; 1332 } 1333 1334 // Read a record. 1335 Record.clear(); 1336 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1337 if (!MaybeRecord) 1338 return MaybeRecord.takeError(); 1339 switch (MaybeRecord.get()) { 1340 default: // Default behavior: ignore. 1341 break; 1342 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1343 // Deprecated, but still needed to read old bitcode files. 1344 if (Record.size() & 1) 1345 return error("Invalid record"); 1346 1347 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1348 AttrBuilder B; 1349 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1350 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1351 } 1352 1353 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1354 Attrs.clear(); 1355 break; 1356 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1357 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1358 Attrs.push_back(MAttributeGroups[Record[i]]); 1359 1360 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1361 Attrs.clear(); 1362 break; 1363 } 1364 } 1365 } 1366 1367 // Returns Attribute::None on unrecognized codes. 1368 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1369 switch (Code) { 1370 default: 1371 return Attribute::None; 1372 case bitc::ATTR_KIND_ALIGNMENT: 1373 return Attribute::Alignment; 1374 case bitc::ATTR_KIND_ALWAYS_INLINE: 1375 return Attribute::AlwaysInline; 1376 case bitc::ATTR_KIND_ARGMEMONLY: 1377 return Attribute::ArgMemOnly; 1378 case bitc::ATTR_KIND_BUILTIN: 1379 return Attribute::Builtin; 1380 case bitc::ATTR_KIND_BY_VAL: 1381 return Attribute::ByVal; 1382 case bitc::ATTR_KIND_IN_ALLOCA: 1383 return Attribute::InAlloca; 1384 case bitc::ATTR_KIND_COLD: 1385 return Attribute::Cold; 1386 case bitc::ATTR_KIND_CONVERGENT: 1387 return Attribute::Convergent; 1388 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1389 return Attribute::InaccessibleMemOnly; 1390 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1391 return Attribute::InaccessibleMemOrArgMemOnly; 1392 case bitc::ATTR_KIND_INLINE_HINT: 1393 return Attribute::InlineHint; 1394 case bitc::ATTR_KIND_IN_REG: 1395 return Attribute::InReg; 1396 case bitc::ATTR_KIND_JUMP_TABLE: 1397 return Attribute::JumpTable; 1398 case bitc::ATTR_KIND_MIN_SIZE: 1399 return Attribute::MinSize; 1400 case bitc::ATTR_KIND_NAKED: 1401 return Attribute::Naked; 1402 case bitc::ATTR_KIND_NEST: 1403 return Attribute::Nest; 1404 case bitc::ATTR_KIND_NO_ALIAS: 1405 return Attribute::NoAlias; 1406 case bitc::ATTR_KIND_NO_BUILTIN: 1407 return Attribute::NoBuiltin; 1408 case bitc::ATTR_KIND_NO_CALLBACK: 1409 return Attribute::NoCallback; 1410 case bitc::ATTR_KIND_NO_CAPTURE: 1411 return Attribute::NoCapture; 1412 case bitc::ATTR_KIND_NO_DUPLICATE: 1413 return Attribute::NoDuplicate; 1414 case bitc::ATTR_KIND_NOFREE: 1415 return Attribute::NoFree; 1416 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1417 return Attribute::NoImplicitFloat; 1418 case bitc::ATTR_KIND_NO_INLINE: 1419 return Attribute::NoInline; 1420 case bitc::ATTR_KIND_NO_RECURSE: 1421 return Attribute::NoRecurse; 1422 case bitc::ATTR_KIND_NO_MERGE: 1423 return Attribute::NoMerge; 1424 case bitc::ATTR_KIND_NON_LAZY_BIND: 1425 return Attribute::NonLazyBind; 1426 case bitc::ATTR_KIND_NON_NULL: 1427 return Attribute::NonNull; 1428 case bitc::ATTR_KIND_DEREFERENCEABLE: 1429 return Attribute::Dereferenceable; 1430 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1431 return Attribute::DereferenceableOrNull; 1432 case bitc::ATTR_KIND_ALLOC_SIZE: 1433 return Attribute::AllocSize; 1434 case bitc::ATTR_KIND_NO_RED_ZONE: 1435 return Attribute::NoRedZone; 1436 case bitc::ATTR_KIND_NO_RETURN: 1437 return Attribute::NoReturn; 1438 case bitc::ATTR_KIND_NOSYNC: 1439 return Attribute::NoSync; 1440 case bitc::ATTR_KIND_NOCF_CHECK: 1441 return Attribute::NoCfCheck; 1442 case bitc::ATTR_KIND_NO_PROFILE: 1443 return Attribute::NoProfile; 1444 case bitc::ATTR_KIND_NO_UNWIND: 1445 return Attribute::NoUnwind; 1446 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1447 return Attribute::NoSanitizeCoverage; 1448 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1449 return Attribute::NullPointerIsValid; 1450 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1451 return Attribute::OptForFuzzing; 1452 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1453 return Attribute::OptimizeForSize; 1454 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1455 return Attribute::OptimizeNone; 1456 case bitc::ATTR_KIND_READ_NONE: 1457 return Attribute::ReadNone; 1458 case bitc::ATTR_KIND_READ_ONLY: 1459 return Attribute::ReadOnly; 1460 case bitc::ATTR_KIND_RETURNED: 1461 return Attribute::Returned; 1462 case bitc::ATTR_KIND_RETURNS_TWICE: 1463 return Attribute::ReturnsTwice; 1464 case bitc::ATTR_KIND_S_EXT: 1465 return Attribute::SExt; 1466 case bitc::ATTR_KIND_SPECULATABLE: 1467 return Attribute::Speculatable; 1468 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1469 return Attribute::StackAlignment; 1470 case bitc::ATTR_KIND_STACK_PROTECT: 1471 return Attribute::StackProtect; 1472 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1473 return Attribute::StackProtectReq; 1474 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1475 return Attribute::StackProtectStrong; 1476 case bitc::ATTR_KIND_SAFESTACK: 1477 return Attribute::SafeStack; 1478 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1479 return Attribute::ShadowCallStack; 1480 case bitc::ATTR_KIND_STRICT_FP: 1481 return Attribute::StrictFP; 1482 case bitc::ATTR_KIND_STRUCT_RET: 1483 return Attribute::StructRet; 1484 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1485 return Attribute::SanitizeAddress; 1486 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1487 return Attribute::SanitizeHWAddress; 1488 case bitc::ATTR_KIND_SANITIZE_THREAD: 1489 return Attribute::SanitizeThread; 1490 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1491 return Attribute::SanitizeMemory; 1492 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1493 return Attribute::SpeculativeLoadHardening; 1494 case bitc::ATTR_KIND_SWIFT_ERROR: 1495 return Attribute::SwiftError; 1496 case bitc::ATTR_KIND_SWIFT_SELF: 1497 return Attribute::SwiftSelf; 1498 case bitc::ATTR_KIND_SWIFT_ASYNC: 1499 return Attribute::SwiftAsync; 1500 case bitc::ATTR_KIND_UW_TABLE: 1501 return Attribute::UWTable; 1502 case bitc::ATTR_KIND_VSCALE_RANGE: 1503 return Attribute::VScaleRange; 1504 case bitc::ATTR_KIND_WILLRETURN: 1505 return Attribute::WillReturn; 1506 case bitc::ATTR_KIND_WRITEONLY: 1507 return Attribute::WriteOnly; 1508 case bitc::ATTR_KIND_Z_EXT: 1509 return Attribute::ZExt; 1510 case bitc::ATTR_KIND_IMMARG: 1511 return Attribute::ImmArg; 1512 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1513 return Attribute::SanitizeMemTag; 1514 case bitc::ATTR_KIND_PREALLOCATED: 1515 return Attribute::Preallocated; 1516 case bitc::ATTR_KIND_NOUNDEF: 1517 return Attribute::NoUndef; 1518 case bitc::ATTR_KIND_BYREF: 1519 return Attribute::ByRef; 1520 case bitc::ATTR_KIND_MUSTPROGRESS: 1521 return Attribute::MustProgress; 1522 case bitc::ATTR_KIND_HOT: 1523 return Attribute::Hot; 1524 } 1525 } 1526 1527 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1528 MaybeAlign &Alignment) { 1529 // Note: Alignment in bitcode files is incremented by 1, so that zero 1530 // can be used for default alignment. 1531 if (Exponent > Value::MaxAlignmentExponent + 1) 1532 return error("Invalid alignment value"); 1533 Alignment = decodeMaybeAlign(Exponent); 1534 return Error::success(); 1535 } 1536 1537 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1538 *Kind = getAttrFromCode(Code); 1539 if (*Kind == Attribute::None) 1540 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1541 return Error::success(); 1542 } 1543 1544 Error BitcodeReader::parseAttributeGroupBlock() { 1545 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1546 return Err; 1547 1548 if (!MAttributeGroups.empty()) 1549 return error("Invalid multiple blocks"); 1550 1551 SmallVector<uint64_t, 64> Record; 1552 1553 // Read all the records. 1554 while (true) { 1555 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1556 if (!MaybeEntry) 1557 return MaybeEntry.takeError(); 1558 BitstreamEntry Entry = MaybeEntry.get(); 1559 1560 switch (Entry.Kind) { 1561 case BitstreamEntry::SubBlock: // Handled for us already. 1562 case BitstreamEntry::Error: 1563 return error("Malformed block"); 1564 case BitstreamEntry::EndBlock: 1565 return Error::success(); 1566 case BitstreamEntry::Record: 1567 // The interesting case. 1568 break; 1569 } 1570 1571 // Read a record. 1572 Record.clear(); 1573 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1574 if (!MaybeRecord) 1575 return MaybeRecord.takeError(); 1576 switch (MaybeRecord.get()) { 1577 default: // Default behavior: ignore. 1578 break; 1579 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1580 if (Record.size() < 3) 1581 return error("Invalid record"); 1582 1583 uint64_t GrpID = Record[0]; 1584 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1585 1586 AttrBuilder B; 1587 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1588 if (Record[i] == 0) { // Enum attribute 1589 Attribute::AttrKind Kind; 1590 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1591 return Err; 1592 1593 // Upgrade old-style byval attribute to one with a type, even if it's 1594 // nullptr. We will have to insert the real type when we associate 1595 // this AttributeList with a function. 1596 if (Kind == Attribute::ByVal) 1597 B.addByValAttr(nullptr); 1598 else if (Kind == Attribute::StructRet) 1599 B.addStructRetAttr(nullptr); 1600 else if (Kind == Attribute::InAlloca) 1601 B.addInAllocaAttr(nullptr); 1602 else if (Attribute::isEnumAttrKind(Kind)) 1603 B.addAttribute(Kind); 1604 else 1605 return error("Not an enum attribute"); 1606 } else if (Record[i] == 1) { // Integer attribute 1607 Attribute::AttrKind Kind; 1608 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1609 return Err; 1610 if (!Attribute::isIntAttrKind(Kind)) 1611 return error("Not an int attribute"); 1612 if (Kind == Attribute::Alignment) 1613 B.addAlignmentAttr(Record[++i]); 1614 else if (Kind == Attribute::StackAlignment) 1615 B.addStackAlignmentAttr(Record[++i]); 1616 else if (Kind == Attribute::Dereferenceable) 1617 B.addDereferenceableAttr(Record[++i]); 1618 else if (Kind == Attribute::DereferenceableOrNull) 1619 B.addDereferenceableOrNullAttr(Record[++i]); 1620 else if (Kind == Attribute::AllocSize) 1621 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1622 else if (Kind == Attribute::VScaleRange) 1623 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1624 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1625 bool HasValue = (Record[i++] == 4); 1626 SmallString<64> KindStr; 1627 SmallString<64> ValStr; 1628 1629 while (Record[i] != 0 && i != e) 1630 KindStr += Record[i++]; 1631 assert(Record[i] == 0 && "Kind string not null terminated"); 1632 1633 if (HasValue) { 1634 // Has a value associated with it. 1635 ++i; // Skip the '0' that terminates the "kind" string. 1636 while (Record[i] != 0 && i != e) 1637 ValStr += Record[i++]; 1638 assert(Record[i] == 0 && "Value string not null terminated"); 1639 } 1640 1641 B.addAttribute(KindStr.str(), ValStr.str()); 1642 } else { 1643 assert((Record[i] == 5 || Record[i] == 6) && 1644 "Invalid attribute group entry"); 1645 bool HasType = Record[i] == 6; 1646 Attribute::AttrKind Kind; 1647 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1648 return Err; 1649 if (!Attribute::isTypeAttrKind(Kind)) 1650 return error("Not a type attribute"); 1651 1652 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 1653 } 1654 } 1655 1656 UpgradeAttributes(B); 1657 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1658 break; 1659 } 1660 } 1661 } 1662 } 1663 1664 Error BitcodeReader::parseTypeTable() { 1665 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1666 return Err; 1667 1668 return parseTypeTableBody(); 1669 } 1670 1671 Error BitcodeReader::parseTypeTableBody() { 1672 if (!TypeList.empty()) 1673 return error("Invalid multiple blocks"); 1674 1675 SmallVector<uint64_t, 64> Record; 1676 unsigned NumRecords = 0; 1677 1678 SmallString<64> TypeName; 1679 1680 // Read all the records for this type table. 1681 while (true) { 1682 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1683 if (!MaybeEntry) 1684 return MaybeEntry.takeError(); 1685 BitstreamEntry Entry = MaybeEntry.get(); 1686 1687 switch (Entry.Kind) { 1688 case BitstreamEntry::SubBlock: // Handled for us already. 1689 case BitstreamEntry::Error: 1690 return error("Malformed block"); 1691 case BitstreamEntry::EndBlock: 1692 if (NumRecords != TypeList.size()) 1693 return error("Malformed block"); 1694 return Error::success(); 1695 case BitstreamEntry::Record: 1696 // The interesting case. 1697 break; 1698 } 1699 1700 // Read a record. 1701 Record.clear(); 1702 Type *ResultTy = nullptr; 1703 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1704 if (!MaybeRecord) 1705 return MaybeRecord.takeError(); 1706 switch (MaybeRecord.get()) { 1707 default: 1708 return error("Invalid value"); 1709 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1710 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1711 // type list. This allows us to reserve space. 1712 if (Record.empty()) 1713 return error("Invalid record"); 1714 TypeList.resize(Record[0]); 1715 continue; 1716 case bitc::TYPE_CODE_VOID: // VOID 1717 ResultTy = Type::getVoidTy(Context); 1718 break; 1719 case bitc::TYPE_CODE_HALF: // HALF 1720 ResultTy = Type::getHalfTy(Context); 1721 break; 1722 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1723 ResultTy = Type::getBFloatTy(Context); 1724 break; 1725 case bitc::TYPE_CODE_FLOAT: // FLOAT 1726 ResultTy = Type::getFloatTy(Context); 1727 break; 1728 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1729 ResultTy = Type::getDoubleTy(Context); 1730 break; 1731 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1732 ResultTy = Type::getX86_FP80Ty(Context); 1733 break; 1734 case bitc::TYPE_CODE_FP128: // FP128 1735 ResultTy = Type::getFP128Ty(Context); 1736 break; 1737 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1738 ResultTy = Type::getPPC_FP128Ty(Context); 1739 break; 1740 case bitc::TYPE_CODE_LABEL: // LABEL 1741 ResultTy = Type::getLabelTy(Context); 1742 break; 1743 case bitc::TYPE_CODE_METADATA: // METADATA 1744 ResultTy = Type::getMetadataTy(Context); 1745 break; 1746 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1747 ResultTy = Type::getX86_MMXTy(Context); 1748 break; 1749 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1750 ResultTy = Type::getX86_AMXTy(Context); 1751 break; 1752 case bitc::TYPE_CODE_TOKEN: // TOKEN 1753 ResultTy = Type::getTokenTy(Context); 1754 break; 1755 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1756 if (Record.empty()) 1757 return error("Invalid record"); 1758 1759 uint64_t NumBits = Record[0]; 1760 if (NumBits < IntegerType::MIN_INT_BITS || 1761 NumBits > IntegerType::MAX_INT_BITS) 1762 return error("Bitwidth for integer type out of range"); 1763 ResultTy = IntegerType::get(Context, NumBits); 1764 break; 1765 } 1766 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1767 // [pointee type, address space] 1768 if (Record.empty()) 1769 return error("Invalid record"); 1770 unsigned AddressSpace = 0; 1771 if (Record.size() == 2) 1772 AddressSpace = Record[1]; 1773 ResultTy = getTypeByID(Record[0]); 1774 if (!ResultTy || 1775 !PointerType::isValidElementType(ResultTy)) 1776 return error("Invalid type"); 1777 ResultTy = PointerType::get(ResultTy, AddressSpace); 1778 break; 1779 } 1780 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1781 if (Record.size() != 1) 1782 return error("Invalid record"); 1783 unsigned AddressSpace = Record[0]; 1784 ResultTy = PointerType::get(Context, AddressSpace); 1785 break; 1786 } 1787 case bitc::TYPE_CODE_FUNCTION_OLD: { 1788 // Deprecated, but still needed to read old bitcode files. 1789 // FUNCTION: [vararg, attrid, retty, paramty x N] 1790 if (Record.size() < 3) 1791 return error("Invalid record"); 1792 SmallVector<Type*, 8> ArgTys; 1793 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1794 if (Type *T = getTypeByID(Record[i])) 1795 ArgTys.push_back(T); 1796 else 1797 break; 1798 } 1799 1800 ResultTy = getTypeByID(Record[2]); 1801 if (!ResultTy || ArgTys.size() < Record.size()-3) 1802 return error("Invalid type"); 1803 1804 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1805 break; 1806 } 1807 case bitc::TYPE_CODE_FUNCTION: { 1808 // FUNCTION: [vararg, retty, paramty x N] 1809 if (Record.size() < 2) 1810 return error("Invalid record"); 1811 SmallVector<Type*, 8> ArgTys; 1812 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1813 if (Type *T = getTypeByID(Record[i])) { 1814 if (!FunctionType::isValidArgumentType(T)) 1815 return error("Invalid function argument type"); 1816 ArgTys.push_back(T); 1817 } 1818 else 1819 break; 1820 } 1821 1822 ResultTy = getTypeByID(Record[1]); 1823 if (!ResultTy || ArgTys.size() < Record.size()-2) 1824 return error("Invalid type"); 1825 1826 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1827 break; 1828 } 1829 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1830 if (Record.empty()) 1831 return error("Invalid record"); 1832 SmallVector<Type*, 8> EltTys; 1833 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1834 if (Type *T = getTypeByID(Record[i])) 1835 EltTys.push_back(T); 1836 else 1837 break; 1838 } 1839 if (EltTys.size() != Record.size()-1) 1840 return error("Invalid type"); 1841 ResultTy = StructType::get(Context, EltTys, Record[0]); 1842 break; 1843 } 1844 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1845 if (convertToString(Record, 0, TypeName)) 1846 return error("Invalid record"); 1847 continue; 1848 1849 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1850 if (Record.empty()) 1851 return error("Invalid record"); 1852 1853 if (NumRecords >= TypeList.size()) 1854 return error("Invalid TYPE table"); 1855 1856 // Check to see if this was forward referenced, if so fill in the temp. 1857 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1858 if (Res) { 1859 Res->setName(TypeName); 1860 TypeList[NumRecords] = nullptr; 1861 } else // Otherwise, create a new struct. 1862 Res = createIdentifiedStructType(Context, TypeName); 1863 TypeName.clear(); 1864 1865 SmallVector<Type*, 8> EltTys; 1866 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1867 if (Type *T = getTypeByID(Record[i])) 1868 EltTys.push_back(T); 1869 else 1870 break; 1871 } 1872 if (EltTys.size() != Record.size()-1) 1873 return error("Invalid record"); 1874 Res->setBody(EltTys, Record[0]); 1875 ResultTy = Res; 1876 break; 1877 } 1878 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1879 if (Record.size() != 1) 1880 return error("Invalid record"); 1881 1882 if (NumRecords >= TypeList.size()) 1883 return error("Invalid TYPE table"); 1884 1885 // Check to see if this was forward referenced, if so fill in the temp. 1886 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1887 if (Res) { 1888 Res->setName(TypeName); 1889 TypeList[NumRecords] = nullptr; 1890 } else // Otherwise, create a new struct with no body. 1891 Res = createIdentifiedStructType(Context, TypeName); 1892 TypeName.clear(); 1893 ResultTy = Res; 1894 break; 1895 } 1896 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1897 if (Record.size() < 2) 1898 return error("Invalid record"); 1899 ResultTy = getTypeByID(Record[1]); 1900 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1901 return error("Invalid type"); 1902 ResultTy = ArrayType::get(ResultTy, Record[0]); 1903 break; 1904 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1905 // [numelts, eltty, scalable] 1906 if (Record.size() < 2) 1907 return error("Invalid record"); 1908 if (Record[0] == 0) 1909 return error("Invalid vector length"); 1910 ResultTy = getTypeByID(Record[1]); 1911 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1912 return error("Invalid type"); 1913 bool Scalable = Record.size() > 2 ? Record[2] : false; 1914 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1915 break; 1916 } 1917 1918 if (NumRecords >= TypeList.size()) 1919 return error("Invalid TYPE table"); 1920 if (TypeList[NumRecords]) 1921 return error( 1922 "Invalid TYPE table: Only named structs can be forward referenced"); 1923 assert(ResultTy && "Didn't read a type?"); 1924 TypeList[NumRecords++] = ResultTy; 1925 } 1926 } 1927 1928 Error BitcodeReader::parseOperandBundleTags() { 1929 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1930 return Err; 1931 1932 if (!BundleTags.empty()) 1933 return error("Invalid multiple blocks"); 1934 1935 SmallVector<uint64_t, 64> Record; 1936 1937 while (true) { 1938 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1939 if (!MaybeEntry) 1940 return MaybeEntry.takeError(); 1941 BitstreamEntry Entry = MaybeEntry.get(); 1942 1943 switch (Entry.Kind) { 1944 case BitstreamEntry::SubBlock: // Handled for us already. 1945 case BitstreamEntry::Error: 1946 return error("Malformed block"); 1947 case BitstreamEntry::EndBlock: 1948 return Error::success(); 1949 case BitstreamEntry::Record: 1950 // The interesting case. 1951 break; 1952 } 1953 1954 // Tags are implicitly mapped to integers by their order. 1955 1956 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1957 if (!MaybeRecord) 1958 return MaybeRecord.takeError(); 1959 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1960 return error("Invalid record"); 1961 1962 // OPERAND_BUNDLE_TAG: [strchr x N] 1963 BundleTags.emplace_back(); 1964 if (convertToString(Record, 0, BundleTags.back())) 1965 return error("Invalid record"); 1966 Record.clear(); 1967 } 1968 } 1969 1970 Error BitcodeReader::parseSyncScopeNames() { 1971 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1972 return Err; 1973 1974 if (!SSIDs.empty()) 1975 return error("Invalid multiple synchronization scope names blocks"); 1976 1977 SmallVector<uint64_t, 64> Record; 1978 while (true) { 1979 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1980 if (!MaybeEntry) 1981 return MaybeEntry.takeError(); 1982 BitstreamEntry Entry = MaybeEntry.get(); 1983 1984 switch (Entry.Kind) { 1985 case BitstreamEntry::SubBlock: // Handled for us already. 1986 case BitstreamEntry::Error: 1987 return error("Malformed block"); 1988 case BitstreamEntry::EndBlock: 1989 if (SSIDs.empty()) 1990 return error("Invalid empty synchronization scope names block"); 1991 return Error::success(); 1992 case BitstreamEntry::Record: 1993 // The interesting case. 1994 break; 1995 } 1996 1997 // Synchronization scope names are implicitly mapped to synchronization 1998 // scope IDs by their order. 1999 2000 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2001 if (!MaybeRecord) 2002 return MaybeRecord.takeError(); 2003 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2004 return error("Invalid record"); 2005 2006 SmallString<16> SSN; 2007 if (convertToString(Record, 0, SSN)) 2008 return error("Invalid record"); 2009 2010 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2011 Record.clear(); 2012 } 2013 } 2014 2015 /// Associate a value with its name from the given index in the provided record. 2016 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2017 unsigned NameIndex, Triple &TT) { 2018 SmallString<128> ValueName; 2019 if (convertToString(Record, NameIndex, ValueName)) 2020 return error("Invalid record"); 2021 unsigned ValueID = Record[0]; 2022 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2023 return error("Invalid record"); 2024 Value *V = ValueList[ValueID]; 2025 2026 StringRef NameStr(ValueName.data(), ValueName.size()); 2027 if (NameStr.find_first_of(0) != StringRef::npos) 2028 return error("Invalid value name"); 2029 V->setName(NameStr); 2030 auto *GO = dyn_cast<GlobalObject>(V); 2031 if (GO) { 2032 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2033 if (TT.supportsCOMDAT()) 2034 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2035 else 2036 GO->setComdat(nullptr); 2037 } 2038 } 2039 return V; 2040 } 2041 2042 /// Helper to note and return the current location, and jump to the given 2043 /// offset. 2044 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2045 BitstreamCursor &Stream) { 2046 // Save the current parsing location so we can jump back at the end 2047 // of the VST read. 2048 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2049 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2050 return std::move(JumpFailed); 2051 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2052 if (!MaybeEntry) 2053 return MaybeEntry.takeError(); 2054 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2055 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2056 return CurrentBit; 2057 } 2058 2059 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2060 Function *F, 2061 ArrayRef<uint64_t> Record) { 2062 // Note that we subtract 1 here because the offset is relative to one word 2063 // before the start of the identification or module block, which was 2064 // historically always the start of the regular bitcode header. 2065 uint64_t FuncWordOffset = Record[1] - 1; 2066 uint64_t FuncBitOffset = FuncWordOffset * 32; 2067 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2068 // Set the LastFunctionBlockBit to point to the last function block. 2069 // Later when parsing is resumed after function materialization, 2070 // we can simply skip that last function block. 2071 if (FuncBitOffset > LastFunctionBlockBit) 2072 LastFunctionBlockBit = FuncBitOffset; 2073 } 2074 2075 /// Read a new-style GlobalValue symbol table. 2076 Error BitcodeReader::parseGlobalValueSymbolTable() { 2077 unsigned FuncBitcodeOffsetDelta = 2078 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2079 2080 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2081 return Err; 2082 2083 SmallVector<uint64_t, 64> Record; 2084 while (true) { 2085 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2086 if (!MaybeEntry) 2087 return MaybeEntry.takeError(); 2088 BitstreamEntry Entry = MaybeEntry.get(); 2089 2090 switch (Entry.Kind) { 2091 case BitstreamEntry::SubBlock: 2092 case BitstreamEntry::Error: 2093 return error("Malformed block"); 2094 case BitstreamEntry::EndBlock: 2095 return Error::success(); 2096 case BitstreamEntry::Record: 2097 break; 2098 } 2099 2100 Record.clear(); 2101 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2102 if (!MaybeRecord) 2103 return MaybeRecord.takeError(); 2104 switch (MaybeRecord.get()) { 2105 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2106 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2107 cast<Function>(ValueList[Record[0]]), Record); 2108 break; 2109 } 2110 } 2111 } 2112 2113 /// Parse the value symbol table at either the current parsing location or 2114 /// at the given bit offset if provided. 2115 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2116 uint64_t CurrentBit; 2117 // Pass in the Offset to distinguish between calling for the module-level 2118 // VST (where we want to jump to the VST offset) and the function-level 2119 // VST (where we don't). 2120 if (Offset > 0) { 2121 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2122 if (!MaybeCurrentBit) 2123 return MaybeCurrentBit.takeError(); 2124 CurrentBit = MaybeCurrentBit.get(); 2125 // If this module uses a string table, read this as a module-level VST. 2126 if (UseStrtab) { 2127 if (Error Err = parseGlobalValueSymbolTable()) 2128 return Err; 2129 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2130 return JumpFailed; 2131 return Error::success(); 2132 } 2133 // Otherwise, the VST will be in a similar format to a function-level VST, 2134 // and will contain symbol names. 2135 } 2136 2137 // Compute the delta between the bitcode indices in the VST (the word offset 2138 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2139 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2140 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2141 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2142 // just before entering the VST subblock because: 1) the EnterSubBlock 2143 // changes the AbbrevID width; 2) the VST block is nested within the same 2144 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2145 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2146 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2147 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2148 unsigned FuncBitcodeOffsetDelta = 2149 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2150 2151 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2152 return Err; 2153 2154 SmallVector<uint64_t, 64> Record; 2155 2156 Triple TT(TheModule->getTargetTriple()); 2157 2158 // Read all the records for this value table. 2159 SmallString<128> ValueName; 2160 2161 while (true) { 2162 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2163 if (!MaybeEntry) 2164 return MaybeEntry.takeError(); 2165 BitstreamEntry Entry = MaybeEntry.get(); 2166 2167 switch (Entry.Kind) { 2168 case BitstreamEntry::SubBlock: // Handled for us already. 2169 case BitstreamEntry::Error: 2170 return error("Malformed block"); 2171 case BitstreamEntry::EndBlock: 2172 if (Offset > 0) 2173 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2174 return JumpFailed; 2175 return Error::success(); 2176 case BitstreamEntry::Record: 2177 // The interesting case. 2178 break; 2179 } 2180 2181 // Read a record. 2182 Record.clear(); 2183 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2184 if (!MaybeRecord) 2185 return MaybeRecord.takeError(); 2186 switch (MaybeRecord.get()) { 2187 default: // Default behavior: unknown type. 2188 break; 2189 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2190 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2191 if (Error Err = ValOrErr.takeError()) 2192 return Err; 2193 ValOrErr.get(); 2194 break; 2195 } 2196 case bitc::VST_CODE_FNENTRY: { 2197 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2198 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2199 if (Error Err = ValOrErr.takeError()) 2200 return Err; 2201 Value *V = ValOrErr.get(); 2202 2203 // Ignore function offsets emitted for aliases of functions in older 2204 // versions of LLVM. 2205 if (auto *F = dyn_cast<Function>(V)) 2206 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2207 break; 2208 } 2209 case bitc::VST_CODE_BBENTRY: { 2210 if (convertToString(Record, 1, ValueName)) 2211 return error("Invalid record"); 2212 BasicBlock *BB = getBasicBlock(Record[0]); 2213 if (!BB) 2214 return error("Invalid record"); 2215 2216 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2217 ValueName.clear(); 2218 break; 2219 } 2220 } 2221 } 2222 } 2223 2224 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2225 /// encoding. 2226 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2227 if ((V & 1) == 0) 2228 return V >> 1; 2229 if (V != 1) 2230 return -(V >> 1); 2231 // There is no such thing as -0 with integers. "-0" really means MININT. 2232 return 1ULL << 63; 2233 } 2234 2235 /// Resolve all of the initializers for global values and aliases that we can. 2236 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2237 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2238 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2239 IndirectSymbolInitWorklist; 2240 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2241 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2242 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2243 2244 GlobalInitWorklist.swap(GlobalInits); 2245 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2246 FunctionPrefixWorklist.swap(FunctionPrefixes); 2247 FunctionPrologueWorklist.swap(FunctionPrologues); 2248 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2249 2250 while (!GlobalInitWorklist.empty()) { 2251 unsigned ValID = GlobalInitWorklist.back().second; 2252 if (ValID >= ValueList.size()) { 2253 // Not ready to resolve this yet, it requires something later in the file. 2254 GlobalInits.push_back(GlobalInitWorklist.back()); 2255 } else { 2256 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2257 GlobalInitWorklist.back().first->setInitializer(C); 2258 else 2259 return error("Expected a constant"); 2260 } 2261 GlobalInitWorklist.pop_back(); 2262 } 2263 2264 while (!IndirectSymbolInitWorklist.empty()) { 2265 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2266 if (ValID >= ValueList.size()) { 2267 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2268 } else { 2269 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2270 if (!C) 2271 return error("Expected a constant"); 2272 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2273 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2274 return error("Alias and aliasee types don't match"); 2275 GIS->setIndirectSymbol(C); 2276 } 2277 IndirectSymbolInitWorklist.pop_back(); 2278 } 2279 2280 while (!FunctionPrefixWorklist.empty()) { 2281 unsigned ValID = FunctionPrefixWorklist.back().second; 2282 if (ValID >= ValueList.size()) { 2283 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2284 } else { 2285 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2286 FunctionPrefixWorklist.back().first->setPrefixData(C); 2287 else 2288 return error("Expected a constant"); 2289 } 2290 FunctionPrefixWorklist.pop_back(); 2291 } 2292 2293 while (!FunctionPrologueWorklist.empty()) { 2294 unsigned ValID = FunctionPrologueWorklist.back().second; 2295 if (ValID >= ValueList.size()) { 2296 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2297 } else { 2298 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2299 FunctionPrologueWorklist.back().first->setPrologueData(C); 2300 else 2301 return error("Expected a constant"); 2302 } 2303 FunctionPrologueWorklist.pop_back(); 2304 } 2305 2306 while (!FunctionPersonalityFnWorklist.empty()) { 2307 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2308 if (ValID >= ValueList.size()) { 2309 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2310 } else { 2311 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2312 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2313 else 2314 return error("Expected a constant"); 2315 } 2316 FunctionPersonalityFnWorklist.pop_back(); 2317 } 2318 2319 return Error::success(); 2320 } 2321 2322 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2323 SmallVector<uint64_t, 8> Words(Vals.size()); 2324 transform(Vals, Words.begin(), 2325 BitcodeReader::decodeSignRotatedValue); 2326 2327 return APInt(TypeBits, Words); 2328 } 2329 2330 Error BitcodeReader::parseConstants() { 2331 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2332 return Err; 2333 2334 SmallVector<uint64_t, 64> Record; 2335 2336 // Read all the records for this value table. 2337 Type *CurTy = Type::getInt32Ty(Context); 2338 unsigned NextCstNo = ValueList.size(); 2339 2340 struct DelayedShufTy { 2341 VectorType *OpTy; 2342 VectorType *RTy; 2343 uint64_t Op0Idx; 2344 uint64_t Op1Idx; 2345 uint64_t Op2Idx; 2346 unsigned CstNo; 2347 }; 2348 std::vector<DelayedShufTy> DelayedShuffles; 2349 while (true) { 2350 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2351 if (!MaybeEntry) 2352 return MaybeEntry.takeError(); 2353 BitstreamEntry Entry = MaybeEntry.get(); 2354 2355 switch (Entry.Kind) { 2356 case BitstreamEntry::SubBlock: // Handled for us already. 2357 case BitstreamEntry::Error: 2358 return error("Malformed block"); 2359 case BitstreamEntry::EndBlock: 2360 // Once all the constants have been read, go through and resolve forward 2361 // references. 2362 // 2363 // We have to treat shuffles specially because they don't have three 2364 // operands anymore. We need to convert the shuffle mask into an array, 2365 // and we can't convert a forward reference. 2366 for (auto &DelayedShuffle : DelayedShuffles) { 2367 VectorType *OpTy = DelayedShuffle.OpTy; 2368 VectorType *RTy = DelayedShuffle.RTy; 2369 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2370 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2371 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2372 uint64_t CstNo = DelayedShuffle.CstNo; 2373 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2374 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2375 Type *ShufTy = 2376 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2377 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2378 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2379 return error("Invalid shufflevector operands"); 2380 SmallVector<int, 16> Mask; 2381 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2382 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2383 ValueList.assignValue(V, CstNo); 2384 } 2385 2386 if (NextCstNo != ValueList.size()) 2387 return error("Invalid constant reference"); 2388 2389 ValueList.resolveConstantForwardRefs(); 2390 return Error::success(); 2391 case BitstreamEntry::Record: 2392 // The interesting case. 2393 break; 2394 } 2395 2396 // Read a record. 2397 Record.clear(); 2398 Type *VoidType = Type::getVoidTy(Context); 2399 Value *V = nullptr; 2400 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2401 if (!MaybeBitCode) 2402 return MaybeBitCode.takeError(); 2403 switch (unsigned BitCode = MaybeBitCode.get()) { 2404 default: // Default behavior: unknown constant 2405 case bitc::CST_CODE_UNDEF: // UNDEF 2406 V = UndefValue::get(CurTy); 2407 break; 2408 case bitc::CST_CODE_POISON: // POISON 2409 V = PoisonValue::get(CurTy); 2410 break; 2411 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2412 if (Record.empty()) 2413 return error("Invalid record"); 2414 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2415 return error("Invalid record"); 2416 if (TypeList[Record[0]] == VoidType) 2417 return error("Invalid constant type"); 2418 CurTy = TypeList[Record[0]]; 2419 continue; // Skip the ValueList manipulation. 2420 case bitc::CST_CODE_NULL: // NULL 2421 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2422 return error("Invalid type for a constant null value"); 2423 V = Constant::getNullValue(CurTy); 2424 break; 2425 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2426 if (!CurTy->isIntegerTy() || Record.empty()) 2427 return error("Invalid record"); 2428 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2429 break; 2430 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2431 if (!CurTy->isIntegerTy() || Record.empty()) 2432 return error("Invalid record"); 2433 2434 APInt VInt = 2435 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2436 V = ConstantInt::get(Context, VInt); 2437 2438 break; 2439 } 2440 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2441 if (Record.empty()) 2442 return error("Invalid record"); 2443 if (CurTy->isHalfTy()) 2444 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2445 APInt(16, (uint16_t)Record[0]))); 2446 else if (CurTy->isBFloatTy()) 2447 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2448 APInt(16, (uint32_t)Record[0]))); 2449 else if (CurTy->isFloatTy()) 2450 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2451 APInt(32, (uint32_t)Record[0]))); 2452 else if (CurTy->isDoubleTy()) 2453 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2454 APInt(64, Record[0]))); 2455 else if (CurTy->isX86_FP80Ty()) { 2456 // Bits are not stored the same way as a normal i80 APInt, compensate. 2457 uint64_t Rearrange[2]; 2458 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2459 Rearrange[1] = Record[0] >> 48; 2460 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2461 APInt(80, Rearrange))); 2462 } else if (CurTy->isFP128Ty()) 2463 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2464 APInt(128, Record))); 2465 else if (CurTy->isPPC_FP128Ty()) 2466 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2467 APInt(128, Record))); 2468 else 2469 V = UndefValue::get(CurTy); 2470 break; 2471 } 2472 2473 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2474 if (Record.empty()) 2475 return error("Invalid record"); 2476 2477 unsigned Size = Record.size(); 2478 SmallVector<Constant*, 16> Elts; 2479 2480 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2481 for (unsigned i = 0; i != Size; ++i) 2482 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2483 STy->getElementType(i))); 2484 V = ConstantStruct::get(STy, Elts); 2485 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2486 Type *EltTy = ATy->getElementType(); 2487 for (unsigned i = 0; i != Size; ++i) 2488 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2489 V = ConstantArray::get(ATy, Elts); 2490 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2491 Type *EltTy = VTy->getElementType(); 2492 for (unsigned i = 0; i != Size; ++i) 2493 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2494 V = ConstantVector::get(Elts); 2495 } else { 2496 V = UndefValue::get(CurTy); 2497 } 2498 break; 2499 } 2500 case bitc::CST_CODE_STRING: // STRING: [values] 2501 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2502 if (Record.empty()) 2503 return error("Invalid record"); 2504 2505 SmallString<16> Elts(Record.begin(), Record.end()); 2506 V = ConstantDataArray::getString(Context, Elts, 2507 BitCode == bitc::CST_CODE_CSTRING); 2508 break; 2509 } 2510 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2511 if (Record.empty()) 2512 return error("Invalid record"); 2513 2514 Type *EltTy; 2515 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2516 EltTy = Array->getElementType(); 2517 else 2518 EltTy = cast<VectorType>(CurTy)->getElementType(); 2519 if (EltTy->isIntegerTy(8)) { 2520 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2521 if (isa<VectorType>(CurTy)) 2522 V = ConstantDataVector::get(Context, Elts); 2523 else 2524 V = ConstantDataArray::get(Context, Elts); 2525 } else if (EltTy->isIntegerTy(16)) { 2526 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2527 if (isa<VectorType>(CurTy)) 2528 V = ConstantDataVector::get(Context, Elts); 2529 else 2530 V = ConstantDataArray::get(Context, Elts); 2531 } else if (EltTy->isIntegerTy(32)) { 2532 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2533 if (isa<VectorType>(CurTy)) 2534 V = ConstantDataVector::get(Context, Elts); 2535 else 2536 V = ConstantDataArray::get(Context, Elts); 2537 } else if (EltTy->isIntegerTy(64)) { 2538 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2539 if (isa<VectorType>(CurTy)) 2540 V = ConstantDataVector::get(Context, Elts); 2541 else 2542 V = ConstantDataArray::get(Context, Elts); 2543 } else if (EltTy->isHalfTy()) { 2544 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2545 if (isa<VectorType>(CurTy)) 2546 V = ConstantDataVector::getFP(EltTy, Elts); 2547 else 2548 V = ConstantDataArray::getFP(EltTy, Elts); 2549 } else if (EltTy->isBFloatTy()) { 2550 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2551 if (isa<VectorType>(CurTy)) 2552 V = ConstantDataVector::getFP(EltTy, Elts); 2553 else 2554 V = ConstantDataArray::getFP(EltTy, Elts); 2555 } else if (EltTy->isFloatTy()) { 2556 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2557 if (isa<VectorType>(CurTy)) 2558 V = ConstantDataVector::getFP(EltTy, Elts); 2559 else 2560 V = ConstantDataArray::getFP(EltTy, Elts); 2561 } else if (EltTy->isDoubleTy()) { 2562 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2563 if (isa<VectorType>(CurTy)) 2564 V = ConstantDataVector::getFP(EltTy, Elts); 2565 else 2566 V = ConstantDataArray::getFP(EltTy, Elts); 2567 } else { 2568 return error("Invalid type for value"); 2569 } 2570 break; 2571 } 2572 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2573 if (Record.size() < 2) 2574 return error("Invalid record"); 2575 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2576 if (Opc < 0) { 2577 V = UndefValue::get(CurTy); // Unknown unop. 2578 } else { 2579 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2580 unsigned Flags = 0; 2581 V = ConstantExpr::get(Opc, LHS, Flags); 2582 } 2583 break; 2584 } 2585 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2586 if (Record.size() < 3) 2587 return error("Invalid record"); 2588 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2589 if (Opc < 0) { 2590 V = UndefValue::get(CurTy); // Unknown binop. 2591 } else { 2592 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2593 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2594 unsigned Flags = 0; 2595 if (Record.size() >= 4) { 2596 if (Opc == Instruction::Add || 2597 Opc == Instruction::Sub || 2598 Opc == Instruction::Mul || 2599 Opc == Instruction::Shl) { 2600 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2601 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2602 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2603 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2604 } else if (Opc == Instruction::SDiv || 2605 Opc == Instruction::UDiv || 2606 Opc == Instruction::LShr || 2607 Opc == Instruction::AShr) { 2608 if (Record[3] & (1 << bitc::PEO_EXACT)) 2609 Flags |= SDivOperator::IsExact; 2610 } 2611 } 2612 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2613 } 2614 break; 2615 } 2616 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2617 if (Record.size() < 3) 2618 return error("Invalid record"); 2619 int Opc = getDecodedCastOpcode(Record[0]); 2620 if (Opc < 0) { 2621 V = UndefValue::get(CurTy); // Unknown cast. 2622 } else { 2623 Type *OpTy = getTypeByID(Record[1]); 2624 if (!OpTy) 2625 return error("Invalid record"); 2626 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2627 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2628 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2629 } 2630 break; 2631 } 2632 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2633 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2634 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2635 // operands] 2636 unsigned OpNum = 0; 2637 Type *PointeeType = nullptr; 2638 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2639 Record.size() % 2) 2640 PointeeType = getTypeByID(Record[OpNum++]); 2641 2642 bool InBounds = false; 2643 Optional<unsigned> InRangeIndex; 2644 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2645 uint64_t Op = Record[OpNum++]; 2646 InBounds = Op & 1; 2647 InRangeIndex = Op >> 1; 2648 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2649 InBounds = true; 2650 2651 SmallVector<Constant*, 16> Elts; 2652 Type *Elt0FullTy = nullptr; 2653 while (OpNum != Record.size()) { 2654 if (!Elt0FullTy) 2655 Elt0FullTy = getTypeByID(Record[OpNum]); 2656 Type *ElTy = getTypeByID(Record[OpNum++]); 2657 if (!ElTy) 2658 return error("Invalid record"); 2659 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2660 } 2661 2662 if (Elts.size() < 1) 2663 return error("Invalid gep with no operands"); 2664 2665 PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType()); 2666 if (!PointeeType) 2667 PointeeType = OrigPtrTy->getElementType(); 2668 else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 2669 return error("Explicit gep operator type does not match pointee type " 2670 "of pointer operand"); 2671 2672 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2673 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2674 InBounds, InRangeIndex); 2675 break; 2676 } 2677 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2678 if (Record.size() < 3) 2679 return error("Invalid record"); 2680 2681 Type *SelectorTy = Type::getInt1Ty(Context); 2682 2683 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2684 // Get the type from the ValueList before getting a forward ref. 2685 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2686 if (Value *V = ValueList[Record[0]]) 2687 if (SelectorTy != V->getType()) 2688 SelectorTy = VectorType::get(SelectorTy, 2689 VTy->getElementCount()); 2690 2691 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2692 SelectorTy), 2693 ValueList.getConstantFwdRef(Record[1],CurTy), 2694 ValueList.getConstantFwdRef(Record[2],CurTy)); 2695 break; 2696 } 2697 case bitc::CST_CODE_CE_EXTRACTELT 2698 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2699 if (Record.size() < 3) 2700 return error("Invalid record"); 2701 VectorType *OpTy = 2702 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2703 if (!OpTy) 2704 return error("Invalid record"); 2705 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2706 Constant *Op1 = nullptr; 2707 if (Record.size() == 4) { 2708 Type *IdxTy = getTypeByID(Record[2]); 2709 if (!IdxTy) 2710 return error("Invalid record"); 2711 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2712 } else { 2713 // Deprecated, but still needed to read old bitcode files. 2714 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2715 } 2716 if (!Op1) 2717 return error("Invalid record"); 2718 V = ConstantExpr::getExtractElement(Op0, Op1); 2719 break; 2720 } 2721 case bitc::CST_CODE_CE_INSERTELT 2722 : { // CE_INSERTELT: [opval, opval, opty, opval] 2723 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2724 if (Record.size() < 3 || !OpTy) 2725 return error("Invalid record"); 2726 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2727 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2728 OpTy->getElementType()); 2729 Constant *Op2 = nullptr; 2730 if (Record.size() == 4) { 2731 Type *IdxTy = getTypeByID(Record[2]); 2732 if (!IdxTy) 2733 return error("Invalid record"); 2734 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2735 } else { 2736 // Deprecated, but still needed to read old bitcode files. 2737 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2738 } 2739 if (!Op2) 2740 return error("Invalid record"); 2741 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2742 break; 2743 } 2744 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2745 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2746 if (Record.size() < 3 || !OpTy) 2747 return error("Invalid record"); 2748 DelayedShuffles.push_back( 2749 {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2750 ++NextCstNo; 2751 continue; 2752 } 2753 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2754 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2755 VectorType *OpTy = 2756 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2757 if (Record.size() < 4 || !RTy || !OpTy) 2758 return error("Invalid record"); 2759 DelayedShuffles.push_back( 2760 {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2761 ++NextCstNo; 2762 continue; 2763 } 2764 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2765 if (Record.size() < 4) 2766 return error("Invalid record"); 2767 Type *OpTy = getTypeByID(Record[0]); 2768 if (!OpTy) 2769 return error("Invalid record"); 2770 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2771 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2772 2773 if (OpTy->isFPOrFPVectorTy()) 2774 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2775 else 2776 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2777 break; 2778 } 2779 // This maintains backward compatibility, pre-asm dialect keywords. 2780 // Deprecated, but still needed to read old bitcode files. 2781 case bitc::CST_CODE_INLINEASM_OLD: { 2782 if (Record.size() < 2) 2783 return error("Invalid record"); 2784 std::string AsmStr, ConstrStr; 2785 bool HasSideEffects = Record[0] & 1; 2786 bool IsAlignStack = Record[0] >> 1; 2787 unsigned AsmStrSize = Record[1]; 2788 if (2+AsmStrSize >= Record.size()) 2789 return error("Invalid record"); 2790 unsigned ConstStrSize = Record[2+AsmStrSize]; 2791 if (3+AsmStrSize+ConstStrSize > Record.size()) 2792 return error("Invalid record"); 2793 2794 for (unsigned i = 0; i != AsmStrSize; ++i) 2795 AsmStr += (char)Record[2+i]; 2796 for (unsigned i = 0; i != ConstStrSize; ++i) 2797 ConstrStr += (char)Record[3+AsmStrSize+i]; 2798 UpgradeInlineAsmString(&AsmStr); 2799 V = InlineAsm::get( 2800 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2801 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2802 break; 2803 } 2804 // This version adds support for the asm dialect keywords (e.g., 2805 // inteldialect). 2806 case bitc::CST_CODE_INLINEASM_OLD2: { 2807 if (Record.size() < 2) 2808 return error("Invalid record"); 2809 std::string AsmStr, ConstrStr; 2810 bool HasSideEffects = Record[0] & 1; 2811 bool IsAlignStack = (Record[0] >> 1) & 1; 2812 unsigned AsmDialect = Record[0] >> 2; 2813 unsigned AsmStrSize = Record[1]; 2814 if (2+AsmStrSize >= Record.size()) 2815 return error("Invalid record"); 2816 unsigned ConstStrSize = Record[2+AsmStrSize]; 2817 if (3+AsmStrSize+ConstStrSize > Record.size()) 2818 return error("Invalid record"); 2819 2820 for (unsigned i = 0; i != AsmStrSize; ++i) 2821 AsmStr += (char)Record[2+i]; 2822 for (unsigned i = 0; i != ConstStrSize; ++i) 2823 ConstrStr += (char)Record[3+AsmStrSize+i]; 2824 UpgradeInlineAsmString(&AsmStr); 2825 V = InlineAsm::get( 2826 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2827 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2828 InlineAsm::AsmDialect(AsmDialect)); 2829 break; 2830 } 2831 // This version adds support for the unwind keyword. 2832 case bitc::CST_CODE_INLINEASM: { 2833 if (Record.size() < 2) 2834 return error("Invalid record"); 2835 std::string AsmStr, ConstrStr; 2836 bool HasSideEffects = Record[0] & 1; 2837 bool IsAlignStack = (Record[0] >> 1) & 1; 2838 unsigned AsmDialect = (Record[0] >> 2) & 1; 2839 bool CanThrow = (Record[0] >> 3) & 1; 2840 unsigned AsmStrSize = Record[1]; 2841 if (2 + AsmStrSize >= Record.size()) 2842 return error("Invalid record"); 2843 unsigned ConstStrSize = Record[2 + AsmStrSize]; 2844 if (3 + AsmStrSize + ConstStrSize > Record.size()) 2845 return error("Invalid record"); 2846 2847 for (unsigned i = 0; i != AsmStrSize; ++i) 2848 AsmStr += (char)Record[2 + i]; 2849 for (unsigned i = 0; i != ConstStrSize; ++i) 2850 ConstrStr += (char)Record[3 + AsmStrSize + i]; 2851 UpgradeInlineAsmString(&AsmStr); 2852 V = InlineAsm::get( 2853 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2854 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2855 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2856 break; 2857 } 2858 case bitc::CST_CODE_BLOCKADDRESS:{ 2859 if (Record.size() < 3) 2860 return error("Invalid record"); 2861 Type *FnTy = getTypeByID(Record[0]); 2862 if (!FnTy) 2863 return error("Invalid record"); 2864 Function *Fn = 2865 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2866 if (!Fn) 2867 return error("Invalid record"); 2868 2869 // If the function is already parsed we can insert the block address right 2870 // away. 2871 BasicBlock *BB; 2872 unsigned BBID = Record[2]; 2873 if (!BBID) 2874 // Invalid reference to entry block. 2875 return error("Invalid ID"); 2876 if (!Fn->empty()) { 2877 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2878 for (size_t I = 0, E = BBID; I != E; ++I) { 2879 if (BBI == BBE) 2880 return error("Invalid ID"); 2881 ++BBI; 2882 } 2883 BB = &*BBI; 2884 } else { 2885 // Otherwise insert a placeholder and remember it so it can be inserted 2886 // when the function is parsed. 2887 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2888 if (FwdBBs.empty()) 2889 BasicBlockFwdRefQueue.push_back(Fn); 2890 if (FwdBBs.size() < BBID + 1) 2891 FwdBBs.resize(BBID + 1); 2892 if (!FwdBBs[BBID]) 2893 FwdBBs[BBID] = BasicBlock::Create(Context); 2894 BB = FwdBBs[BBID]; 2895 } 2896 V = BlockAddress::get(Fn, BB); 2897 break; 2898 } 2899 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 2900 if (Record.size() < 2) 2901 return error("Invalid record"); 2902 Type *GVTy = getTypeByID(Record[0]); 2903 if (!GVTy) 2904 return error("Invalid record"); 2905 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2906 ValueList.getConstantFwdRef(Record[1], GVTy)); 2907 if (!GV) 2908 return error("Invalid record"); 2909 2910 V = DSOLocalEquivalent::get(GV); 2911 break; 2912 } 2913 } 2914 2915 ValueList.assignValue(V, NextCstNo); 2916 ++NextCstNo; 2917 } 2918 } 2919 2920 Error BitcodeReader::parseUseLists() { 2921 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2922 return Err; 2923 2924 // Read all the records. 2925 SmallVector<uint64_t, 64> Record; 2926 2927 while (true) { 2928 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2929 if (!MaybeEntry) 2930 return MaybeEntry.takeError(); 2931 BitstreamEntry Entry = MaybeEntry.get(); 2932 2933 switch (Entry.Kind) { 2934 case BitstreamEntry::SubBlock: // Handled for us already. 2935 case BitstreamEntry::Error: 2936 return error("Malformed block"); 2937 case BitstreamEntry::EndBlock: 2938 return Error::success(); 2939 case BitstreamEntry::Record: 2940 // The interesting case. 2941 break; 2942 } 2943 2944 // Read a use list record. 2945 Record.clear(); 2946 bool IsBB = false; 2947 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2948 if (!MaybeRecord) 2949 return MaybeRecord.takeError(); 2950 switch (MaybeRecord.get()) { 2951 default: // Default behavior: unknown type. 2952 break; 2953 case bitc::USELIST_CODE_BB: 2954 IsBB = true; 2955 LLVM_FALLTHROUGH; 2956 case bitc::USELIST_CODE_DEFAULT: { 2957 unsigned RecordLength = Record.size(); 2958 if (RecordLength < 3) 2959 // Records should have at least an ID and two indexes. 2960 return error("Invalid record"); 2961 unsigned ID = Record.pop_back_val(); 2962 2963 Value *V; 2964 if (IsBB) { 2965 assert(ID < FunctionBBs.size() && "Basic block not found"); 2966 V = FunctionBBs[ID]; 2967 } else 2968 V = ValueList[ID]; 2969 unsigned NumUses = 0; 2970 SmallDenseMap<const Use *, unsigned, 16> Order; 2971 for (const Use &U : V->materialized_uses()) { 2972 if (++NumUses > Record.size()) 2973 break; 2974 Order[&U] = Record[NumUses - 1]; 2975 } 2976 if (Order.size() != Record.size() || NumUses > Record.size()) 2977 // Mismatches can happen if the functions are being materialized lazily 2978 // (out-of-order), or a value has been upgraded. 2979 break; 2980 2981 V->sortUseList([&](const Use &L, const Use &R) { 2982 return Order.lookup(&L) < Order.lookup(&R); 2983 }); 2984 break; 2985 } 2986 } 2987 } 2988 } 2989 2990 /// When we see the block for metadata, remember where it is and then skip it. 2991 /// This lets us lazily deserialize the metadata. 2992 Error BitcodeReader::rememberAndSkipMetadata() { 2993 // Save the current stream state. 2994 uint64_t CurBit = Stream.GetCurrentBitNo(); 2995 DeferredMetadataInfo.push_back(CurBit); 2996 2997 // Skip over the block for now. 2998 if (Error Err = Stream.SkipBlock()) 2999 return Err; 3000 return Error::success(); 3001 } 3002 3003 Error BitcodeReader::materializeMetadata() { 3004 for (uint64_t BitPos : DeferredMetadataInfo) { 3005 // Move the bit stream to the saved position. 3006 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3007 return JumpFailed; 3008 if (Error Err = MDLoader->parseModuleMetadata()) 3009 return Err; 3010 } 3011 3012 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3013 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3014 // multiple times. 3015 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3016 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3017 NamedMDNode *LinkerOpts = 3018 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3019 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3020 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3021 } 3022 } 3023 3024 DeferredMetadataInfo.clear(); 3025 return Error::success(); 3026 } 3027 3028 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3029 3030 /// When we see the block for a function body, remember where it is and then 3031 /// skip it. This lets us lazily deserialize the functions. 3032 Error BitcodeReader::rememberAndSkipFunctionBody() { 3033 // Get the function we are talking about. 3034 if (FunctionsWithBodies.empty()) 3035 return error("Insufficient function protos"); 3036 3037 Function *Fn = FunctionsWithBodies.back(); 3038 FunctionsWithBodies.pop_back(); 3039 3040 // Save the current stream state. 3041 uint64_t CurBit = Stream.GetCurrentBitNo(); 3042 assert( 3043 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3044 "Mismatch between VST and scanned function offsets"); 3045 DeferredFunctionInfo[Fn] = CurBit; 3046 3047 // Skip over the function block for now. 3048 if (Error Err = Stream.SkipBlock()) 3049 return Err; 3050 return Error::success(); 3051 } 3052 3053 Error BitcodeReader::globalCleanup() { 3054 // Patch the initializers for globals and aliases up. 3055 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3056 return Err; 3057 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3058 return error("Malformed global initializer set"); 3059 3060 // Look for intrinsic functions which need to be upgraded at some point 3061 // and functions that need to have their function attributes upgraded. 3062 for (Function &F : *TheModule) { 3063 MDLoader->upgradeDebugIntrinsics(F); 3064 Function *NewFn; 3065 if (UpgradeIntrinsicFunction(&F, NewFn)) 3066 UpgradedIntrinsics[&F] = NewFn; 3067 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3068 // Some types could be renamed during loading if several modules are 3069 // loaded in the same LLVMContext (LTO scenario). In this case we should 3070 // remangle intrinsics names as well. 3071 RemangledIntrinsics[&F] = Remangled.getValue(); 3072 // Look for functions that rely on old function attribute behavior. 3073 UpgradeFunctionAttributes(F); 3074 } 3075 3076 // Look for global variables which need to be renamed. 3077 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3078 for (GlobalVariable &GV : TheModule->globals()) 3079 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3080 UpgradedVariables.emplace_back(&GV, Upgraded); 3081 for (auto &Pair : UpgradedVariables) { 3082 Pair.first->eraseFromParent(); 3083 TheModule->getGlobalList().push_back(Pair.second); 3084 } 3085 3086 // Force deallocation of memory for these vectors to favor the client that 3087 // want lazy deserialization. 3088 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3089 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3090 IndirectSymbolInits); 3091 return Error::success(); 3092 } 3093 3094 /// Support for lazy parsing of function bodies. This is required if we 3095 /// either have an old bitcode file without a VST forward declaration record, 3096 /// or if we have an anonymous function being materialized, since anonymous 3097 /// functions do not have a name and are therefore not in the VST. 3098 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3099 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3100 return JumpFailed; 3101 3102 if (Stream.AtEndOfStream()) 3103 return error("Could not find function in stream"); 3104 3105 if (!SeenFirstFunctionBody) 3106 return error("Trying to materialize functions before seeing function blocks"); 3107 3108 // An old bitcode file with the symbol table at the end would have 3109 // finished the parse greedily. 3110 assert(SeenValueSymbolTable); 3111 3112 SmallVector<uint64_t, 64> Record; 3113 3114 while (true) { 3115 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3116 if (!MaybeEntry) 3117 return MaybeEntry.takeError(); 3118 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3119 3120 switch (Entry.Kind) { 3121 default: 3122 return error("Expect SubBlock"); 3123 case BitstreamEntry::SubBlock: 3124 switch (Entry.ID) { 3125 default: 3126 return error("Expect function block"); 3127 case bitc::FUNCTION_BLOCK_ID: 3128 if (Error Err = rememberAndSkipFunctionBody()) 3129 return Err; 3130 NextUnreadBit = Stream.GetCurrentBitNo(); 3131 return Error::success(); 3132 } 3133 } 3134 } 3135 } 3136 3137 bool BitcodeReaderBase::readBlockInfo() { 3138 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3139 Stream.ReadBlockInfoBlock(); 3140 if (!MaybeNewBlockInfo) 3141 return true; // FIXME Handle the error. 3142 Optional<BitstreamBlockInfo> NewBlockInfo = 3143 std::move(MaybeNewBlockInfo.get()); 3144 if (!NewBlockInfo) 3145 return true; 3146 BlockInfo = std::move(*NewBlockInfo); 3147 return false; 3148 } 3149 3150 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3151 // v1: [selection_kind, name] 3152 // v2: [strtab_offset, strtab_size, selection_kind] 3153 StringRef Name; 3154 std::tie(Name, Record) = readNameFromStrtab(Record); 3155 3156 if (Record.empty()) 3157 return error("Invalid record"); 3158 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3159 std::string OldFormatName; 3160 if (!UseStrtab) { 3161 if (Record.size() < 2) 3162 return error("Invalid record"); 3163 unsigned ComdatNameSize = Record[1]; 3164 OldFormatName.reserve(ComdatNameSize); 3165 for (unsigned i = 0; i != ComdatNameSize; ++i) 3166 OldFormatName += (char)Record[2 + i]; 3167 Name = OldFormatName; 3168 } 3169 Comdat *C = TheModule->getOrInsertComdat(Name); 3170 C->setSelectionKind(SK); 3171 ComdatList.push_back(C); 3172 return Error::success(); 3173 } 3174 3175 static void inferDSOLocal(GlobalValue *GV) { 3176 // infer dso_local from linkage and visibility if it is not encoded. 3177 if (GV->hasLocalLinkage() || 3178 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3179 GV->setDSOLocal(true); 3180 } 3181 3182 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3183 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3184 // visibility, threadlocal, unnamed_addr, externally_initialized, 3185 // dllstorageclass, comdat, attributes, preemption specifier, 3186 // partition strtab offset, partition strtab size] (name in VST) 3187 // v2: [strtab_offset, strtab_size, v1] 3188 StringRef Name; 3189 std::tie(Name, Record) = readNameFromStrtab(Record); 3190 3191 if (Record.size() < 6) 3192 return error("Invalid record"); 3193 Type *Ty = getTypeByID(Record[0]); 3194 if (!Ty) 3195 return error("Invalid record"); 3196 bool isConstant = Record[1] & 1; 3197 bool explicitType = Record[1] & 2; 3198 unsigned AddressSpace; 3199 if (explicitType) { 3200 AddressSpace = Record[1] >> 2; 3201 } else { 3202 if (!Ty->isPointerTy()) 3203 return error("Invalid type for value"); 3204 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3205 Ty = cast<PointerType>(Ty)->getElementType(); 3206 } 3207 3208 uint64_t RawLinkage = Record[3]; 3209 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3210 MaybeAlign Alignment; 3211 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3212 return Err; 3213 std::string Section; 3214 if (Record[5]) { 3215 if (Record[5] - 1 >= SectionTable.size()) 3216 return error("Invalid ID"); 3217 Section = SectionTable[Record[5] - 1]; 3218 } 3219 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3220 // Local linkage must have default visibility. 3221 // auto-upgrade `hidden` and `protected` for old bitcode. 3222 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3223 Visibility = getDecodedVisibility(Record[6]); 3224 3225 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3226 if (Record.size() > 7) 3227 TLM = getDecodedThreadLocalMode(Record[7]); 3228 3229 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3230 if (Record.size() > 8) 3231 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3232 3233 bool ExternallyInitialized = false; 3234 if (Record.size() > 9) 3235 ExternallyInitialized = Record[9]; 3236 3237 GlobalVariable *NewGV = 3238 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3239 nullptr, TLM, AddressSpace, ExternallyInitialized); 3240 NewGV->setAlignment(Alignment); 3241 if (!Section.empty()) 3242 NewGV->setSection(Section); 3243 NewGV->setVisibility(Visibility); 3244 NewGV->setUnnamedAddr(UnnamedAddr); 3245 3246 if (Record.size() > 10) 3247 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3248 else 3249 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3250 3251 ValueList.push_back(NewGV); 3252 3253 // Remember which value to use for the global initializer. 3254 if (unsigned InitID = Record[2]) 3255 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3256 3257 if (Record.size() > 11) { 3258 if (unsigned ComdatID = Record[11]) { 3259 if (ComdatID > ComdatList.size()) 3260 return error("Invalid global variable comdat ID"); 3261 NewGV->setComdat(ComdatList[ComdatID - 1]); 3262 } 3263 } else if (hasImplicitComdat(RawLinkage)) { 3264 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3265 } 3266 3267 if (Record.size() > 12) { 3268 auto AS = getAttributes(Record[12]).getFnAttributes(); 3269 NewGV->setAttributes(AS); 3270 } 3271 3272 if (Record.size() > 13) { 3273 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3274 } 3275 inferDSOLocal(NewGV); 3276 3277 // Check whether we have enough values to read a partition name. 3278 if (Record.size() > 15) 3279 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3280 3281 return Error::success(); 3282 } 3283 3284 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3285 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3286 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3287 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3288 // v2: [strtab_offset, strtab_size, v1] 3289 StringRef Name; 3290 std::tie(Name, Record) = readNameFromStrtab(Record); 3291 3292 if (Record.size() < 8) 3293 return error("Invalid record"); 3294 Type *FTy = getTypeByID(Record[0]); 3295 if (!FTy) 3296 return error("Invalid record"); 3297 if (auto *PTy = dyn_cast<PointerType>(FTy)) 3298 FTy = PTy->getElementType(); 3299 3300 if (!isa<FunctionType>(FTy)) 3301 return error("Invalid type for value"); 3302 auto CC = static_cast<CallingConv::ID>(Record[1]); 3303 if (CC & ~CallingConv::MaxID) 3304 return error("Invalid calling convention ID"); 3305 3306 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3307 if (Record.size() > 16) 3308 AddrSpace = Record[16]; 3309 3310 Function *Func = 3311 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3312 AddrSpace, Name, TheModule); 3313 3314 assert(Func->getFunctionType() == FTy && 3315 "Incorrect fully specified type provided for function"); 3316 FunctionTypes[Func] = cast<FunctionType>(FTy); 3317 3318 Func->setCallingConv(CC); 3319 bool isProto = Record[2]; 3320 uint64_t RawLinkage = Record[3]; 3321 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3322 Func->setAttributes(getAttributes(Record[4])); 3323 3324 // Upgrade any old-style byval or sret without a type by propagating the 3325 // argument's pointee type. There should be no opaque pointers where the byval 3326 // type is implicit. 3327 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3328 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3329 Attribute::InAlloca}) { 3330 if (!Func->hasParamAttribute(i, Kind)) 3331 continue; 3332 3333 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3334 continue; 3335 3336 Func->removeParamAttr(i, Kind); 3337 3338 Type *PTy = cast<FunctionType>(FTy)->getParamType(i); 3339 Type *PtrEltTy = cast<PointerType>(PTy)->getElementType(); 3340 Attribute NewAttr; 3341 switch (Kind) { 3342 case Attribute::ByVal: 3343 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3344 break; 3345 case Attribute::StructRet: 3346 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3347 break; 3348 case Attribute::InAlloca: 3349 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3350 break; 3351 default: 3352 llvm_unreachable("not an upgraded type attribute"); 3353 } 3354 3355 Func->addParamAttr(i, NewAttr); 3356 } 3357 } 3358 3359 MaybeAlign Alignment; 3360 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3361 return Err; 3362 Func->setAlignment(Alignment); 3363 if (Record[6]) { 3364 if (Record[6] - 1 >= SectionTable.size()) 3365 return error("Invalid ID"); 3366 Func->setSection(SectionTable[Record[6] - 1]); 3367 } 3368 // Local linkage must have default visibility. 3369 // auto-upgrade `hidden` and `protected` for old bitcode. 3370 if (!Func->hasLocalLinkage()) 3371 Func->setVisibility(getDecodedVisibility(Record[7])); 3372 if (Record.size() > 8 && Record[8]) { 3373 if (Record[8] - 1 >= GCTable.size()) 3374 return error("Invalid ID"); 3375 Func->setGC(GCTable[Record[8] - 1]); 3376 } 3377 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3378 if (Record.size() > 9) 3379 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3380 Func->setUnnamedAddr(UnnamedAddr); 3381 if (Record.size() > 10 && Record[10] != 0) 3382 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3383 3384 if (Record.size() > 11) 3385 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3386 else 3387 upgradeDLLImportExportLinkage(Func, RawLinkage); 3388 3389 if (Record.size() > 12) { 3390 if (unsigned ComdatID = Record[12]) { 3391 if (ComdatID > ComdatList.size()) 3392 return error("Invalid function comdat ID"); 3393 Func->setComdat(ComdatList[ComdatID - 1]); 3394 } 3395 } else if (hasImplicitComdat(RawLinkage)) { 3396 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3397 } 3398 3399 if (Record.size() > 13 && Record[13] != 0) 3400 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3401 3402 if (Record.size() > 14 && Record[14] != 0) 3403 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3404 3405 if (Record.size() > 15) { 3406 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3407 } 3408 inferDSOLocal(Func); 3409 3410 // Record[16] is the address space number. 3411 3412 // Check whether we have enough values to read a partition name. Also make 3413 // sure Strtab has enough values. 3414 if (Record.size() > 18 && Strtab.data() && 3415 Record[17] + Record[18] <= Strtab.size()) { 3416 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3417 } 3418 3419 ValueList.push_back(Func); 3420 3421 // If this is a function with a body, remember the prototype we are 3422 // creating now, so that we can match up the body with them later. 3423 if (!isProto) { 3424 Func->setIsMaterializable(true); 3425 FunctionsWithBodies.push_back(Func); 3426 DeferredFunctionInfo[Func] = 0; 3427 } 3428 return Error::success(); 3429 } 3430 3431 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3432 unsigned BitCode, ArrayRef<uint64_t> Record) { 3433 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3434 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3435 // dllstorageclass, threadlocal, unnamed_addr, 3436 // preemption specifier] (name in VST) 3437 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3438 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3439 // preemption specifier] (name in VST) 3440 // v2: [strtab_offset, strtab_size, v1] 3441 StringRef Name; 3442 std::tie(Name, Record) = readNameFromStrtab(Record); 3443 3444 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3445 if (Record.size() < (3 + (unsigned)NewRecord)) 3446 return error("Invalid record"); 3447 unsigned OpNum = 0; 3448 Type *Ty = getTypeByID(Record[OpNum++]); 3449 if (!Ty) 3450 return error("Invalid record"); 3451 3452 unsigned AddrSpace; 3453 if (!NewRecord) { 3454 auto *PTy = dyn_cast<PointerType>(Ty); 3455 if (!PTy) 3456 return error("Invalid type for value"); 3457 Ty = PTy->getElementType(); 3458 AddrSpace = PTy->getAddressSpace(); 3459 } else { 3460 AddrSpace = Record[OpNum++]; 3461 } 3462 3463 auto Val = Record[OpNum++]; 3464 auto Linkage = Record[OpNum++]; 3465 GlobalIndirectSymbol *NewGA; 3466 if (BitCode == bitc::MODULE_CODE_ALIAS || 3467 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3468 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3469 TheModule); 3470 else 3471 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3472 nullptr, TheModule); 3473 3474 // Local linkage must have default visibility. 3475 // auto-upgrade `hidden` and `protected` for old bitcode. 3476 if (OpNum != Record.size()) { 3477 auto VisInd = OpNum++; 3478 if (!NewGA->hasLocalLinkage()) 3479 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3480 } 3481 if (BitCode == bitc::MODULE_CODE_ALIAS || 3482 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3483 if (OpNum != Record.size()) 3484 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3485 else 3486 upgradeDLLImportExportLinkage(NewGA, Linkage); 3487 if (OpNum != Record.size()) 3488 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3489 if (OpNum != Record.size()) 3490 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3491 } 3492 if (OpNum != Record.size()) 3493 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3494 inferDSOLocal(NewGA); 3495 3496 // Check whether we have enough values to read a partition name. 3497 if (OpNum + 1 < Record.size()) { 3498 NewGA->setPartition( 3499 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3500 OpNum += 2; 3501 } 3502 3503 ValueList.push_back(NewGA); 3504 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3505 return Error::success(); 3506 } 3507 3508 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3509 bool ShouldLazyLoadMetadata, 3510 DataLayoutCallbackTy DataLayoutCallback) { 3511 if (ResumeBit) { 3512 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3513 return JumpFailed; 3514 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3515 return Err; 3516 3517 SmallVector<uint64_t, 64> Record; 3518 3519 // Parts of bitcode parsing depend on the datalayout. Make sure we 3520 // finalize the datalayout before we run any of that code. 3521 bool ResolvedDataLayout = false; 3522 auto ResolveDataLayout = [&] { 3523 if (ResolvedDataLayout) 3524 return; 3525 3526 // datalayout and triple can't be parsed after this point. 3527 ResolvedDataLayout = true; 3528 3529 // Upgrade data layout string. 3530 std::string DL = llvm::UpgradeDataLayoutString( 3531 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3532 TheModule->setDataLayout(DL); 3533 3534 if (auto LayoutOverride = 3535 DataLayoutCallback(TheModule->getTargetTriple())) 3536 TheModule->setDataLayout(*LayoutOverride); 3537 }; 3538 3539 // Read all the records for this module. 3540 while (true) { 3541 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3542 if (!MaybeEntry) 3543 return MaybeEntry.takeError(); 3544 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3545 3546 switch (Entry.Kind) { 3547 case BitstreamEntry::Error: 3548 return error("Malformed block"); 3549 case BitstreamEntry::EndBlock: 3550 ResolveDataLayout(); 3551 return globalCleanup(); 3552 3553 case BitstreamEntry::SubBlock: 3554 switch (Entry.ID) { 3555 default: // Skip unknown content. 3556 if (Error Err = Stream.SkipBlock()) 3557 return Err; 3558 break; 3559 case bitc::BLOCKINFO_BLOCK_ID: 3560 if (readBlockInfo()) 3561 return error("Malformed block"); 3562 break; 3563 case bitc::PARAMATTR_BLOCK_ID: 3564 if (Error Err = parseAttributeBlock()) 3565 return Err; 3566 break; 3567 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3568 if (Error Err = parseAttributeGroupBlock()) 3569 return Err; 3570 break; 3571 case bitc::TYPE_BLOCK_ID_NEW: 3572 if (Error Err = parseTypeTable()) 3573 return Err; 3574 break; 3575 case bitc::VALUE_SYMTAB_BLOCK_ID: 3576 if (!SeenValueSymbolTable) { 3577 // Either this is an old form VST without function index and an 3578 // associated VST forward declaration record (which would have caused 3579 // the VST to be jumped to and parsed before it was encountered 3580 // normally in the stream), or there were no function blocks to 3581 // trigger an earlier parsing of the VST. 3582 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3583 if (Error Err = parseValueSymbolTable()) 3584 return Err; 3585 SeenValueSymbolTable = true; 3586 } else { 3587 // We must have had a VST forward declaration record, which caused 3588 // the parser to jump to and parse the VST earlier. 3589 assert(VSTOffset > 0); 3590 if (Error Err = Stream.SkipBlock()) 3591 return Err; 3592 } 3593 break; 3594 case bitc::CONSTANTS_BLOCK_ID: 3595 if (Error Err = parseConstants()) 3596 return Err; 3597 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3598 return Err; 3599 break; 3600 case bitc::METADATA_BLOCK_ID: 3601 if (ShouldLazyLoadMetadata) { 3602 if (Error Err = rememberAndSkipMetadata()) 3603 return Err; 3604 break; 3605 } 3606 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3607 if (Error Err = MDLoader->parseModuleMetadata()) 3608 return Err; 3609 break; 3610 case bitc::METADATA_KIND_BLOCK_ID: 3611 if (Error Err = MDLoader->parseMetadataKinds()) 3612 return Err; 3613 break; 3614 case bitc::FUNCTION_BLOCK_ID: 3615 ResolveDataLayout(); 3616 3617 // If this is the first function body we've seen, reverse the 3618 // FunctionsWithBodies list. 3619 if (!SeenFirstFunctionBody) { 3620 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3621 if (Error Err = globalCleanup()) 3622 return Err; 3623 SeenFirstFunctionBody = true; 3624 } 3625 3626 if (VSTOffset > 0) { 3627 // If we have a VST forward declaration record, make sure we 3628 // parse the VST now if we haven't already. It is needed to 3629 // set up the DeferredFunctionInfo vector for lazy reading. 3630 if (!SeenValueSymbolTable) { 3631 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3632 return Err; 3633 SeenValueSymbolTable = true; 3634 // Fall through so that we record the NextUnreadBit below. 3635 // This is necessary in case we have an anonymous function that 3636 // is later materialized. Since it will not have a VST entry we 3637 // need to fall back to the lazy parse to find its offset. 3638 } else { 3639 // If we have a VST forward declaration record, but have already 3640 // parsed the VST (just above, when the first function body was 3641 // encountered here), then we are resuming the parse after 3642 // materializing functions. The ResumeBit points to the 3643 // start of the last function block recorded in the 3644 // DeferredFunctionInfo map. Skip it. 3645 if (Error Err = Stream.SkipBlock()) 3646 return Err; 3647 continue; 3648 } 3649 } 3650 3651 // Support older bitcode files that did not have the function 3652 // index in the VST, nor a VST forward declaration record, as 3653 // well as anonymous functions that do not have VST entries. 3654 // Build the DeferredFunctionInfo vector on the fly. 3655 if (Error Err = rememberAndSkipFunctionBody()) 3656 return Err; 3657 3658 // Suspend parsing when we reach the function bodies. Subsequent 3659 // materialization calls will resume it when necessary. If the bitcode 3660 // file is old, the symbol table will be at the end instead and will not 3661 // have been seen yet. In this case, just finish the parse now. 3662 if (SeenValueSymbolTable) { 3663 NextUnreadBit = Stream.GetCurrentBitNo(); 3664 // After the VST has been parsed, we need to make sure intrinsic name 3665 // are auto-upgraded. 3666 return globalCleanup(); 3667 } 3668 break; 3669 case bitc::USELIST_BLOCK_ID: 3670 if (Error Err = parseUseLists()) 3671 return Err; 3672 break; 3673 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3674 if (Error Err = parseOperandBundleTags()) 3675 return Err; 3676 break; 3677 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3678 if (Error Err = parseSyncScopeNames()) 3679 return Err; 3680 break; 3681 } 3682 continue; 3683 3684 case BitstreamEntry::Record: 3685 // The interesting case. 3686 break; 3687 } 3688 3689 // Read a record. 3690 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3691 if (!MaybeBitCode) 3692 return MaybeBitCode.takeError(); 3693 switch (unsigned BitCode = MaybeBitCode.get()) { 3694 default: break; // Default behavior, ignore unknown content. 3695 case bitc::MODULE_CODE_VERSION: { 3696 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3697 if (!VersionOrErr) 3698 return VersionOrErr.takeError(); 3699 UseRelativeIDs = *VersionOrErr >= 1; 3700 break; 3701 } 3702 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3703 if (ResolvedDataLayout) 3704 return error("target triple too late in module"); 3705 std::string S; 3706 if (convertToString(Record, 0, S)) 3707 return error("Invalid record"); 3708 TheModule->setTargetTriple(S); 3709 break; 3710 } 3711 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3712 if (ResolvedDataLayout) 3713 return error("datalayout too late in module"); 3714 std::string S; 3715 if (convertToString(Record, 0, S)) 3716 return error("Invalid record"); 3717 TheModule->setDataLayout(S); 3718 break; 3719 } 3720 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3721 std::string S; 3722 if (convertToString(Record, 0, S)) 3723 return error("Invalid record"); 3724 TheModule->setModuleInlineAsm(S); 3725 break; 3726 } 3727 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3728 // Deprecated, but still needed to read old bitcode files. 3729 std::string S; 3730 if (convertToString(Record, 0, S)) 3731 return error("Invalid record"); 3732 // Ignore value. 3733 break; 3734 } 3735 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3736 std::string S; 3737 if (convertToString(Record, 0, S)) 3738 return error("Invalid record"); 3739 SectionTable.push_back(S); 3740 break; 3741 } 3742 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3743 std::string S; 3744 if (convertToString(Record, 0, S)) 3745 return error("Invalid record"); 3746 GCTable.push_back(S); 3747 break; 3748 } 3749 case bitc::MODULE_CODE_COMDAT: 3750 if (Error Err = parseComdatRecord(Record)) 3751 return Err; 3752 break; 3753 case bitc::MODULE_CODE_GLOBALVAR: 3754 if (Error Err = parseGlobalVarRecord(Record)) 3755 return Err; 3756 break; 3757 case bitc::MODULE_CODE_FUNCTION: 3758 ResolveDataLayout(); 3759 if (Error Err = parseFunctionRecord(Record)) 3760 return Err; 3761 break; 3762 case bitc::MODULE_CODE_IFUNC: 3763 case bitc::MODULE_CODE_ALIAS: 3764 case bitc::MODULE_CODE_ALIAS_OLD: 3765 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3766 return Err; 3767 break; 3768 /// MODULE_CODE_VSTOFFSET: [offset] 3769 case bitc::MODULE_CODE_VSTOFFSET: 3770 if (Record.empty()) 3771 return error("Invalid record"); 3772 // Note that we subtract 1 here because the offset is relative to one word 3773 // before the start of the identification or module block, which was 3774 // historically always the start of the regular bitcode header. 3775 VSTOffset = Record[0] - 1; 3776 break; 3777 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3778 case bitc::MODULE_CODE_SOURCE_FILENAME: 3779 SmallString<128> ValueName; 3780 if (convertToString(Record, 0, ValueName)) 3781 return error("Invalid record"); 3782 TheModule->setSourceFileName(ValueName); 3783 break; 3784 } 3785 Record.clear(); 3786 } 3787 } 3788 3789 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3790 bool IsImporting, 3791 DataLayoutCallbackTy DataLayoutCallback) { 3792 TheModule = M; 3793 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3794 [&](unsigned ID) { return getTypeByID(ID); }); 3795 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3796 } 3797 3798 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3799 if (!isa<PointerType>(PtrType)) 3800 return error("Load/Store operand is not a pointer type"); 3801 3802 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 3803 return error("Explicit load/store type does not match pointee " 3804 "type of pointer operand"); 3805 if (!PointerType::isLoadableOrStorableType(ValType)) 3806 return error("Cannot load/store from pointer"); 3807 return Error::success(); 3808 } 3809 3810 void BitcodeReader::propagateByValSRetTypes(CallBase *CB, 3811 ArrayRef<Type *> ArgsTys) { 3812 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3813 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3814 Attribute::InAlloca}) { 3815 if (!CB->paramHasAttr(i, Kind)) 3816 continue; 3817 3818 CB->removeParamAttr(i, Kind); 3819 3820 Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType(); 3821 Attribute NewAttr; 3822 switch (Kind) { 3823 case Attribute::ByVal: 3824 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3825 break; 3826 case Attribute::StructRet: 3827 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3828 break; 3829 case Attribute::InAlloca: 3830 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3831 break; 3832 default: 3833 llvm_unreachable("not an upgraded type attribute"); 3834 } 3835 3836 CB->addParamAttr(i, NewAttr); 3837 } 3838 } 3839 } 3840 3841 /// Lazily parse the specified function body block. 3842 Error BitcodeReader::parseFunctionBody(Function *F) { 3843 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3844 return Err; 3845 3846 // Unexpected unresolved metadata when parsing function. 3847 if (MDLoader->hasFwdRefs()) 3848 return error("Invalid function metadata: incoming forward references"); 3849 3850 InstructionList.clear(); 3851 unsigned ModuleValueListSize = ValueList.size(); 3852 unsigned ModuleMDLoaderSize = MDLoader->size(); 3853 3854 // Add all the function arguments to the value table. 3855 #ifndef NDEBUG 3856 unsigned ArgNo = 0; 3857 FunctionType *FTy = FunctionTypes[F]; 3858 #endif 3859 for (Argument &I : F->args()) { 3860 assert(I.getType() == FTy->getParamType(ArgNo++) && 3861 "Incorrect fully specified type for Function Argument"); 3862 ValueList.push_back(&I); 3863 } 3864 unsigned NextValueNo = ValueList.size(); 3865 BasicBlock *CurBB = nullptr; 3866 unsigned CurBBNo = 0; 3867 3868 DebugLoc LastLoc; 3869 auto getLastInstruction = [&]() -> Instruction * { 3870 if (CurBB && !CurBB->empty()) 3871 return &CurBB->back(); 3872 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3873 !FunctionBBs[CurBBNo - 1]->empty()) 3874 return &FunctionBBs[CurBBNo - 1]->back(); 3875 return nullptr; 3876 }; 3877 3878 std::vector<OperandBundleDef> OperandBundles; 3879 3880 // Read all the records. 3881 SmallVector<uint64_t, 64> Record; 3882 3883 while (true) { 3884 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3885 if (!MaybeEntry) 3886 return MaybeEntry.takeError(); 3887 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3888 3889 switch (Entry.Kind) { 3890 case BitstreamEntry::Error: 3891 return error("Malformed block"); 3892 case BitstreamEntry::EndBlock: 3893 goto OutOfRecordLoop; 3894 3895 case BitstreamEntry::SubBlock: 3896 switch (Entry.ID) { 3897 default: // Skip unknown content. 3898 if (Error Err = Stream.SkipBlock()) 3899 return Err; 3900 break; 3901 case bitc::CONSTANTS_BLOCK_ID: 3902 if (Error Err = parseConstants()) 3903 return Err; 3904 NextValueNo = ValueList.size(); 3905 break; 3906 case bitc::VALUE_SYMTAB_BLOCK_ID: 3907 if (Error Err = parseValueSymbolTable()) 3908 return Err; 3909 break; 3910 case bitc::METADATA_ATTACHMENT_ID: 3911 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3912 return Err; 3913 break; 3914 case bitc::METADATA_BLOCK_ID: 3915 assert(DeferredMetadataInfo.empty() && 3916 "Must read all module-level metadata before function-level"); 3917 if (Error Err = MDLoader->parseFunctionMetadata()) 3918 return Err; 3919 break; 3920 case bitc::USELIST_BLOCK_ID: 3921 if (Error Err = parseUseLists()) 3922 return Err; 3923 break; 3924 } 3925 continue; 3926 3927 case BitstreamEntry::Record: 3928 // The interesting case. 3929 break; 3930 } 3931 3932 // Read a record. 3933 Record.clear(); 3934 Instruction *I = nullptr; 3935 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3936 if (!MaybeBitCode) 3937 return MaybeBitCode.takeError(); 3938 switch (unsigned BitCode = MaybeBitCode.get()) { 3939 default: // Default behavior: reject 3940 return error("Invalid value"); 3941 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3942 if (Record.empty() || Record[0] == 0) 3943 return error("Invalid record"); 3944 // Create all the basic blocks for the function. 3945 FunctionBBs.resize(Record[0]); 3946 3947 // See if anything took the address of blocks in this function. 3948 auto BBFRI = BasicBlockFwdRefs.find(F); 3949 if (BBFRI == BasicBlockFwdRefs.end()) { 3950 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3951 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3952 } else { 3953 auto &BBRefs = BBFRI->second; 3954 // Check for invalid basic block references. 3955 if (BBRefs.size() > FunctionBBs.size()) 3956 return error("Invalid ID"); 3957 assert(!BBRefs.empty() && "Unexpected empty array"); 3958 assert(!BBRefs.front() && "Invalid reference to entry block"); 3959 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3960 ++I) 3961 if (I < RE && BBRefs[I]) { 3962 BBRefs[I]->insertInto(F); 3963 FunctionBBs[I] = BBRefs[I]; 3964 } else { 3965 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3966 } 3967 3968 // Erase from the table. 3969 BasicBlockFwdRefs.erase(BBFRI); 3970 } 3971 3972 CurBB = FunctionBBs[0]; 3973 continue; 3974 } 3975 3976 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3977 // This record indicates that the last instruction is at the same 3978 // location as the previous instruction with a location. 3979 I = getLastInstruction(); 3980 3981 if (!I) 3982 return error("Invalid record"); 3983 I->setDebugLoc(LastLoc); 3984 I = nullptr; 3985 continue; 3986 3987 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3988 I = getLastInstruction(); 3989 if (!I || Record.size() < 4) 3990 return error("Invalid record"); 3991 3992 unsigned Line = Record[0], Col = Record[1]; 3993 unsigned ScopeID = Record[2], IAID = Record[3]; 3994 bool isImplicitCode = Record.size() == 5 && Record[4]; 3995 3996 MDNode *Scope = nullptr, *IA = nullptr; 3997 if (ScopeID) { 3998 Scope = dyn_cast_or_null<MDNode>( 3999 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4000 if (!Scope) 4001 return error("Invalid record"); 4002 } 4003 if (IAID) { 4004 IA = dyn_cast_or_null<MDNode>( 4005 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4006 if (!IA) 4007 return error("Invalid record"); 4008 } 4009 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4010 isImplicitCode); 4011 I->setDebugLoc(LastLoc); 4012 I = nullptr; 4013 continue; 4014 } 4015 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4016 unsigned OpNum = 0; 4017 Value *LHS; 4018 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4019 OpNum+1 > Record.size()) 4020 return error("Invalid record"); 4021 4022 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4023 if (Opc == -1) 4024 return error("Invalid record"); 4025 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4026 InstructionList.push_back(I); 4027 if (OpNum < Record.size()) { 4028 if (isa<FPMathOperator>(I)) { 4029 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4030 if (FMF.any()) 4031 I->setFastMathFlags(FMF); 4032 } 4033 } 4034 break; 4035 } 4036 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4037 unsigned OpNum = 0; 4038 Value *LHS, *RHS; 4039 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4040 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4041 OpNum+1 > Record.size()) 4042 return error("Invalid record"); 4043 4044 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4045 if (Opc == -1) 4046 return error("Invalid record"); 4047 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4048 InstructionList.push_back(I); 4049 if (OpNum < Record.size()) { 4050 if (Opc == Instruction::Add || 4051 Opc == Instruction::Sub || 4052 Opc == Instruction::Mul || 4053 Opc == Instruction::Shl) { 4054 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4055 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4056 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4057 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4058 } else if (Opc == Instruction::SDiv || 4059 Opc == Instruction::UDiv || 4060 Opc == Instruction::LShr || 4061 Opc == Instruction::AShr) { 4062 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4063 cast<BinaryOperator>(I)->setIsExact(true); 4064 } else if (isa<FPMathOperator>(I)) { 4065 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4066 if (FMF.any()) 4067 I->setFastMathFlags(FMF); 4068 } 4069 4070 } 4071 break; 4072 } 4073 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4074 unsigned OpNum = 0; 4075 Value *Op; 4076 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4077 OpNum+2 != Record.size()) 4078 return error("Invalid record"); 4079 4080 Type *ResTy = getTypeByID(Record[OpNum]); 4081 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4082 if (Opc == -1 || !ResTy) 4083 return error("Invalid record"); 4084 Instruction *Temp = nullptr; 4085 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4086 if (Temp) { 4087 InstructionList.push_back(Temp); 4088 assert(CurBB && "No current BB?"); 4089 CurBB->getInstList().push_back(Temp); 4090 } 4091 } else { 4092 auto CastOp = (Instruction::CastOps)Opc; 4093 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4094 return error("Invalid cast"); 4095 I = CastInst::Create(CastOp, Op, ResTy); 4096 } 4097 InstructionList.push_back(I); 4098 break; 4099 } 4100 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4101 case bitc::FUNC_CODE_INST_GEP_OLD: 4102 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4103 unsigned OpNum = 0; 4104 4105 Type *Ty; 4106 bool InBounds; 4107 4108 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4109 InBounds = Record[OpNum++]; 4110 Ty = getTypeByID(Record[OpNum++]); 4111 } else { 4112 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4113 Ty = nullptr; 4114 } 4115 4116 Value *BasePtr; 4117 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4118 return error("Invalid record"); 4119 4120 if (!Ty) { 4121 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 4122 ->getElementType(); 4123 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4124 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4125 return error( 4126 "Explicit gep type does not match pointee type of pointer operand"); 4127 } 4128 4129 SmallVector<Value*, 16> GEPIdx; 4130 while (OpNum != Record.size()) { 4131 Value *Op; 4132 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4133 return error("Invalid record"); 4134 GEPIdx.push_back(Op); 4135 } 4136 4137 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4138 4139 InstructionList.push_back(I); 4140 if (InBounds) 4141 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4142 break; 4143 } 4144 4145 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4146 // EXTRACTVAL: [opty, opval, n x indices] 4147 unsigned OpNum = 0; 4148 Value *Agg; 4149 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4150 return error("Invalid record"); 4151 Type *Ty = Agg->getType(); 4152 4153 unsigned RecSize = Record.size(); 4154 if (OpNum == RecSize) 4155 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4156 4157 SmallVector<unsigned, 4> EXTRACTVALIdx; 4158 for (; OpNum != RecSize; ++OpNum) { 4159 bool IsArray = Ty->isArrayTy(); 4160 bool IsStruct = Ty->isStructTy(); 4161 uint64_t Index = Record[OpNum]; 4162 4163 if (!IsStruct && !IsArray) 4164 return error("EXTRACTVAL: Invalid type"); 4165 if ((unsigned)Index != Index) 4166 return error("Invalid value"); 4167 if (IsStruct && Index >= Ty->getStructNumElements()) 4168 return error("EXTRACTVAL: Invalid struct index"); 4169 if (IsArray && Index >= Ty->getArrayNumElements()) 4170 return error("EXTRACTVAL: Invalid array index"); 4171 EXTRACTVALIdx.push_back((unsigned)Index); 4172 4173 if (IsStruct) 4174 Ty = Ty->getStructElementType(Index); 4175 else 4176 Ty = Ty->getArrayElementType(); 4177 } 4178 4179 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4180 InstructionList.push_back(I); 4181 break; 4182 } 4183 4184 case bitc::FUNC_CODE_INST_INSERTVAL: { 4185 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4186 unsigned OpNum = 0; 4187 Value *Agg; 4188 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4189 return error("Invalid record"); 4190 Value *Val; 4191 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4192 return error("Invalid record"); 4193 4194 unsigned RecSize = Record.size(); 4195 if (OpNum == RecSize) 4196 return error("INSERTVAL: Invalid instruction with 0 indices"); 4197 4198 SmallVector<unsigned, 4> INSERTVALIdx; 4199 Type *CurTy = Agg->getType(); 4200 for (; OpNum != RecSize; ++OpNum) { 4201 bool IsArray = CurTy->isArrayTy(); 4202 bool IsStruct = CurTy->isStructTy(); 4203 uint64_t Index = Record[OpNum]; 4204 4205 if (!IsStruct && !IsArray) 4206 return error("INSERTVAL: Invalid type"); 4207 if ((unsigned)Index != Index) 4208 return error("Invalid value"); 4209 if (IsStruct && Index >= CurTy->getStructNumElements()) 4210 return error("INSERTVAL: Invalid struct index"); 4211 if (IsArray && Index >= CurTy->getArrayNumElements()) 4212 return error("INSERTVAL: Invalid array index"); 4213 4214 INSERTVALIdx.push_back((unsigned)Index); 4215 if (IsStruct) 4216 CurTy = CurTy->getStructElementType(Index); 4217 else 4218 CurTy = CurTy->getArrayElementType(); 4219 } 4220 4221 if (CurTy != Val->getType()) 4222 return error("Inserted value type doesn't match aggregate type"); 4223 4224 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4225 InstructionList.push_back(I); 4226 break; 4227 } 4228 4229 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4230 // obsolete form of select 4231 // handles select i1 ... in old bitcode 4232 unsigned OpNum = 0; 4233 Value *TrueVal, *FalseVal, *Cond; 4234 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4235 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4236 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4237 return error("Invalid record"); 4238 4239 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4240 InstructionList.push_back(I); 4241 break; 4242 } 4243 4244 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4245 // new form of select 4246 // handles select i1 or select [N x i1] 4247 unsigned OpNum = 0; 4248 Value *TrueVal, *FalseVal, *Cond; 4249 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4250 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4251 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4252 return error("Invalid record"); 4253 4254 // select condition can be either i1 or [N x i1] 4255 if (VectorType* vector_type = 4256 dyn_cast<VectorType>(Cond->getType())) { 4257 // expect <n x i1> 4258 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4259 return error("Invalid type for value"); 4260 } else { 4261 // expect i1 4262 if (Cond->getType() != Type::getInt1Ty(Context)) 4263 return error("Invalid type for value"); 4264 } 4265 4266 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4267 InstructionList.push_back(I); 4268 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4269 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4270 if (FMF.any()) 4271 I->setFastMathFlags(FMF); 4272 } 4273 break; 4274 } 4275 4276 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4277 unsigned OpNum = 0; 4278 Value *Vec, *Idx; 4279 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4280 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4281 return error("Invalid record"); 4282 if (!Vec->getType()->isVectorTy()) 4283 return error("Invalid type for value"); 4284 I = ExtractElementInst::Create(Vec, Idx); 4285 InstructionList.push_back(I); 4286 break; 4287 } 4288 4289 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4290 unsigned OpNum = 0; 4291 Value *Vec, *Elt, *Idx; 4292 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4293 return error("Invalid record"); 4294 if (!Vec->getType()->isVectorTy()) 4295 return error("Invalid type for value"); 4296 if (popValue(Record, OpNum, NextValueNo, 4297 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4298 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4299 return error("Invalid record"); 4300 I = InsertElementInst::Create(Vec, Elt, Idx); 4301 InstructionList.push_back(I); 4302 break; 4303 } 4304 4305 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4306 unsigned OpNum = 0; 4307 Value *Vec1, *Vec2, *Mask; 4308 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4309 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4310 return error("Invalid record"); 4311 4312 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4313 return error("Invalid record"); 4314 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4315 return error("Invalid type for value"); 4316 4317 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4318 InstructionList.push_back(I); 4319 break; 4320 } 4321 4322 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4323 // Old form of ICmp/FCmp returning bool 4324 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4325 // both legal on vectors but had different behaviour. 4326 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4327 // FCmp/ICmp returning bool or vector of bool 4328 4329 unsigned OpNum = 0; 4330 Value *LHS, *RHS; 4331 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4332 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4333 return error("Invalid record"); 4334 4335 if (OpNum >= Record.size()) 4336 return error( 4337 "Invalid record: operand number exceeded available operands"); 4338 4339 unsigned PredVal = Record[OpNum]; 4340 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4341 FastMathFlags FMF; 4342 if (IsFP && Record.size() > OpNum+1) 4343 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4344 4345 if (OpNum+1 != Record.size()) 4346 return error("Invalid record"); 4347 4348 if (LHS->getType()->isFPOrFPVectorTy()) 4349 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4350 else 4351 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4352 4353 if (FMF.any()) 4354 I->setFastMathFlags(FMF); 4355 InstructionList.push_back(I); 4356 break; 4357 } 4358 4359 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4360 { 4361 unsigned Size = Record.size(); 4362 if (Size == 0) { 4363 I = ReturnInst::Create(Context); 4364 InstructionList.push_back(I); 4365 break; 4366 } 4367 4368 unsigned OpNum = 0; 4369 Value *Op = nullptr; 4370 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4371 return error("Invalid record"); 4372 if (OpNum != Record.size()) 4373 return error("Invalid record"); 4374 4375 I = ReturnInst::Create(Context, Op); 4376 InstructionList.push_back(I); 4377 break; 4378 } 4379 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4380 if (Record.size() != 1 && Record.size() != 3) 4381 return error("Invalid record"); 4382 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4383 if (!TrueDest) 4384 return error("Invalid record"); 4385 4386 if (Record.size() == 1) { 4387 I = BranchInst::Create(TrueDest); 4388 InstructionList.push_back(I); 4389 } 4390 else { 4391 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4392 Value *Cond = getValue(Record, 2, NextValueNo, 4393 Type::getInt1Ty(Context)); 4394 if (!FalseDest || !Cond) 4395 return error("Invalid record"); 4396 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4397 InstructionList.push_back(I); 4398 } 4399 break; 4400 } 4401 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4402 if (Record.size() != 1 && Record.size() != 2) 4403 return error("Invalid record"); 4404 unsigned Idx = 0; 4405 Value *CleanupPad = 4406 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4407 if (!CleanupPad) 4408 return error("Invalid record"); 4409 BasicBlock *UnwindDest = nullptr; 4410 if (Record.size() == 2) { 4411 UnwindDest = getBasicBlock(Record[Idx++]); 4412 if (!UnwindDest) 4413 return error("Invalid record"); 4414 } 4415 4416 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4417 InstructionList.push_back(I); 4418 break; 4419 } 4420 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4421 if (Record.size() != 2) 4422 return error("Invalid record"); 4423 unsigned Idx = 0; 4424 Value *CatchPad = 4425 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4426 if (!CatchPad) 4427 return error("Invalid record"); 4428 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4429 if (!BB) 4430 return error("Invalid record"); 4431 4432 I = CatchReturnInst::Create(CatchPad, BB); 4433 InstructionList.push_back(I); 4434 break; 4435 } 4436 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4437 // We must have, at minimum, the outer scope and the number of arguments. 4438 if (Record.size() < 2) 4439 return error("Invalid record"); 4440 4441 unsigned Idx = 0; 4442 4443 Value *ParentPad = 4444 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4445 4446 unsigned NumHandlers = Record[Idx++]; 4447 4448 SmallVector<BasicBlock *, 2> Handlers; 4449 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4450 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4451 if (!BB) 4452 return error("Invalid record"); 4453 Handlers.push_back(BB); 4454 } 4455 4456 BasicBlock *UnwindDest = nullptr; 4457 if (Idx + 1 == Record.size()) { 4458 UnwindDest = getBasicBlock(Record[Idx++]); 4459 if (!UnwindDest) 4460 return error("Invalid record"); 4461 } 4462 4463 if (Record.size() != Idx) 4464 return error("Invalid record"); 4465 4466 auto *CatchSwitch = 4467 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4468 for (BasicBlock *Handler : Handlers) 4469 CatchSwitch->addHandler(Handler); 4470 I = CatchSwitch; 4471 InstructionList.push_back(I); 4472 break; 4473 } 4474 case bitc::FUNC_CODE_INST_CATCHPAD: 4475 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4476 // We must have, at minimum, the outer scope and the number of arguments. 4477 if (Record.size() < 2) 4478 return error("Invalid record"); 4479 4480 unsigned Idx = 0; 4481 4482 Value *ParentPad = 4483 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4484 4485 unsigned NumArgOperands = Record[Idx++]; 4486 4487 SmallVector<Value *, 2> Args; 4488 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4489 Value *Val; 4490 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4491 return error("Invalid record"); 4492 Args.push_back(Val); 4493 } 4494 4495 if (Record.size() != Idx) 4496 return error("Invalid record"); 4497 4498 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4499 I = CleanupPadInst::Create(ParentPad, Args); 4500 else 4501 I = CatchPadInst::Create(ParentPad, Args); 4502 InstructionList.push_back(I); 4503 break; 4504 } 4505 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4506 // Check magic 4507 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4508 // "New" SwitchInst format with case ranges. The changes to write this 4509 // format were reverted but we still recognize bitcode that uses it. 4510 // Hopefully someday we will have support for case ranges and can use 4511 // this format again. 4512 4513 Type *OpTy = getTypeByID(Record[1]); 4514 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4515 4516 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4517 BasicBlock *Default = getBasicBlock(Record[3]); 4518 if (!OpTy || !Cond || !Default) 4519 return error("Invalid record"); 4520 4521 unsigned NumCases = Record[4]; 4522 4523 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4524 InstructionList.push_back(SI); 4525 4526 unsigned CurIdx = 5; 4527 for (unsigned i = 0; i != NumCases; ++i) { 4528 SmallVector<ConstantInt*, 1> CaseVals; 4529 unsigned NumItems = Record[CurIdx++]; 4530 for (unsigned ci = 0; ci != NumItems; ++ci) { 4531 bool isSingleNumber = Record[CurIdx++]; 4532 4533 APInt Low; 4534 unsigned ActiveWords = 1; 4535 if (ValueBitWidth > 64) 4536 ActiveWords = Record[CurIdx++]; 4537 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4538 ValueBitWidth); 4539 CurIdx += ActiveWords; 4540 4541 if (!isSingleNumber) { 4542 ActiveWords = 1; 4543 if (ValueBitWidth > 64) 4544 ActiveWords = Record[CurIdx++]; 4545 APInt High = readWideAPInt( 4546 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4547 CurIdx += ActiveWords; 4548 4549 // FIXME: It is not clear whether values in the range should be 4550 // compared as signed or unsigned values. The partially 4551 // implemented changes that used this format in the past used 4552 // unsigned comparisons. 4553 for ( ; Low.ule(High); ++Low) 4554 CaseVals.push_back(ConstantInt::get(Context, Low)); 4555 } else 4556 CaseVals.push_back(ConstantInt::get(Context, Low)); 4557 } 4558 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4559 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4560 cve = CaseVals.end(); cvi != cve; ++cvi) 4561 SI->addCase(*cvi, DestBB); 4562 } 4563 I = SI; 4564 break; 4565 } 4566 4567 // Old SwitchInst format without case ranges. 4568 4569 if (Record.size() < 3 || (Record.size() & 1) == 0) 4570 return error("Invalid record"); 4571 Type *OpTy = getTypeByID(Record[0]); 4572 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4573 BasicBlock *Default = getBasicBlock(Record[2]); 4574 if (!OpTy || !Cond || !Default) 4575 return error("Invalid record"); 4576 unsigned NumCases = (Record.size()-3)/2; 4577 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4578 InstructionList.push_back(SI); 4579 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4580 ConstantInt *CaseVal = 4581 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4582 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4583 if (!CaseVal || !DestBB) { 4584 delete SI; 4585 return error("Invalid record"); 4586 } 4587 SI->addCase(CaseVal, DestBB); 4588 } 4589 I = SI; 4590 break; 4591 } 4592 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4593 if (Record.size() < 2) 4594 return error("Invalid record"); 4595 Type *OpTy = getTypeByID(Record[0]); 4596 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4597 if (!OpTy || !Address) 4598 return error("Invalid record"); 4599 unsigned NumDests = Record.size()-2; 4600 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4601 InstructionList.push_back(IBI); 4602 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4603 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4604 IBI->addDestination(DestBB); 4605 } else { 4606 delete IBI; 4607 return error("Invalid record"); 4608 } 4609 } 4610 I = IBI; 4611 break; 4612 } 4613 4614 case bitc::FUNC_CODE_INST_INVOKE: { 4615 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4616 if (Record.size() < 4) 4617 return error("Invalid record"); 4618 unsigned OpNum = 0; 4619 AttributeList PAL = getAttributes(Record[OpNum++]); 4620 unsigned CCInfo = Record[OpNum++]; 4621 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4622 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4623 4624 FunctionType *FTy = nullptr; 4625 if ((CCInfo >> 13) & 1) { 4626 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4627 if (!FTy) 4628 return error("Explicit invoke type is not a function type"); 4629 } 4630 4631 Value *Callee; 4632 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4633 return error("Invalid record"); 4634 4635 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4636 if (!CalleeTy) 4637 return error("Callee is not a pointer"); 4638 if (!FTy) { 4639 FTy = dyn_cast<FunctionType>( 4640 cast<PointerType>(Callee->getType())->getElementType()); 4641 if (!FTy) 4642 return error("Callee is not of pointer to function type"); 4643 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 4644 return error("Explicit invoke type does not match pointee type of " 4645 "callee operand"); 4646 if (Record.size() < FTy->getNumParams() + OpNum) 4647 return error("Insufficient operands to call"); 4648 4649 SmallVector<Value*, 16> Ops; 4650 SmallVector<Type *, 16> ArgsTys; 4651 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4652 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4653 FTy->getParamType(i))); 4654 ArgsTys.push_back(FTy->getParamType(i)); 4655 if (!Ops.back()) 4656 return error("Invalid record"); 4657 } 4658 4659 if (!FTy->isVarArg()) { 4660 if (Record.size() != OpNum) 4661 return error("Invalid record"); 4662 } else { 4663 // Read type/value pairs for varargs params. 4664 while (OpNum != Record.size()) { 4665 Value *Op; 4666 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4667 return error("Invalid record"); 4668 Ops.push_back(Op); 4669 ArgsTys.push_back(Op->getType()); 4670 } 4671 } 4672 4673 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4674 OperandBundles); 4675 OperandBundles.clear(); 4676 InstructionList.push_back(I); 4677 cast<InvokeInst>(I)->setCallingConv( 4678 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4679 cast<InvokeInst>(I)->setAttributes(PAL); 4680 propagateByValSRetTypes(cast<CallBase>(I), ArgsTys); 4681 4682 break; 4683 } 4684 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4685 unsigned Idx = 0; 4686 Value *Val = nullptr; 4687 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4688 return error("Invalid record"); 4689 I = ResumeInst::Create(Val); 4690 InstructionList.push_back(I); 4691 break; 4692 } 4693 case bitc::FUNC_CODE_INST_CALLBR: { 4694 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4695 unsigned OpNum = 0; 4696 AttributeList PAL = getAttributes(Record[OpNum++]); 4697 unsigned CCInfo = Record[OpNum++]; 4698 4699 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4700 unsigned NumIndirectDests = Record[OpNum++]; 4701 SmallVector<BasicBlock *, 16> IndirectDests; 4702 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4703 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4704 4705 FunctionType *FTy = nullptr; 4706 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4707 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4708 if (!FTy) 4709 return error("Explicit call type is not a function type"); 4710 } 4711 4712 Value *Callee; 4713 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4714 return error("Invalid record"); 4715 4716 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4717 if (!OpTy) 4718 return error("Callee is not a pointer type"); 4719 if (!FTy) { 4720 FTy = dyn_cast<FunctionType>( 4721 cast<PointerType>(Callee->getType())->getElementType()); 4722 if (!FTy) 4723 return error("Callee is not of pointer to function type"); 4724 } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy) 4725 return error("Explicit call type does not match pointee type of " 4726 "callee operand"); 4727 if (Record.size() < FTy->getNumParams() + OpNum) 4728 return error("Insufficient operands to call"); 4729 4730 SmallVector<Value*, 16> Args; 4731 // Read the fixed params. 4732 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4733 if (FTy->getParamType(i)->isLabelTy()) 4734 Args.push_back(getBasicBlock(Record[OpNum])); 4735 else 4736 Args.push_back(getValue(Record, OpNum, NextValueNo, 4737 FTy->getParamType(i))); 4738 if (!Args.back()) 4739 return error("Invalid record"); 4740 } 4741 4742 // Read type/value pairs for varargs params. 4743 if (!FTy->isVarArg()) { 4744 if (OpNum != Record.size()) 4745 return error("Invalid record"); 4746 } else { 4747 while (OpNum != Record.size()) { 4748 Value *Op; 4749 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4750 return error("Invalid record"); 4751 Args.push_back(Op); 4752 } 4753 } 4754 4755 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4756 OperandBundles); 4757 OperandBundles.clear(); 4758 InstructionList.push_back(I); 4759 cast<CallBrInst>(I)->setCallingConv( 4760 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4761 cast<CallBrInst>(I)->setAttributes(PAL); 4762 break; 4763 } 4764 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4765 I = new UnreachableInst(Context); 4766 InstructionList.push_back(I); 4767 break; 4768 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4769 if (Record.empty()) 4770 return error("Invalid record"); 4771 // The first record specifies the type. 4772 Type *Ty = getTypeByID(Record[0]); 4773 if (!Ty) 4774 return error("Invalid record"); 4775 4776 // Phi arguments are pairs of records of [value, basic block]. 4777 // There is an optional final record for fast-math-flags if this phi has a 4778 // floating-point type. 4779 size_t NumArgs = (Record.size() - 1) / 2; 4780 PHINode *PN = PHINode::Create(Ty, NumArgs); 4781 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4782 return error("Invalid record"); 4783 InstructionList.push_back(PN); 4784 4785 for (unsigned i = 0; i != NumArgs; i++) { 4786 Value *V; 4787 // With the new function encoding, it is possible that operands have 4788 // negative IDs (for forward references). Use a signed VBR 4789 // representation to keep the encoding small. 4790 if (UseRelativeIDs) 4791 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4792 else 4793 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4794 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4795 if (!V || !BB) 4796 return error("Invalid record"); 4797 PN->addIncoming(V, BB); 4798 } 4799 I = PN; 4800 4801 // If there are an even number of records, the final record must be FMF. 4802 if (Record.size() % 2 == 0) { 4803 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4804 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4805 if (FMF.any()) 4806 I->setFastMathFlags(FMF); 4807 } 4808 4809 break; 4810 } 4811 4812 case bitc::FUNC_CODE_INST_LANDINGPAD: 4813 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4814 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4815 unsigned Idx = 0; 4816 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4817 if (Record.size() < 3) 4818 return error("Invalid record"); 4819 } else { 4820 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4821 if (Record.size() < 4) 4822 return error("Invalid record"); 4823 } 4824 Type *Ty = getTypeByID(Record[Idx++]); 4825 if (!Ty) 4826 return error("Invalid record"); 4827 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4828 Value *PersFn = nullptr; 4829 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4830 return error("Invalid record"); 4831 4832 if (!F->hasPersonalityFn()) 4833 F->setPersonalityFn(cast<Constant>(PersFn)); 4834 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4835 return error("Personality function mismatch"); 4836 } 4837 4838 bool IsCleanup = !!Record[Idx++]; 4839 unsigned NumClauses = Record[Idx++]; 4840 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4841 LP->setCleanup(IsCleanup); 4842 for (unsigned J = 0; J != NumClauses; ++J) { 4843 LandingPadInst::ClauseType CT = 4844 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4845 Value *Val; 4846 4847 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4848 delete LP; 4849 return error("Invalid record"); 4850 } 4851 4852 assert((CT != LandingPadInst::Catch || 4853 !isa<ArrayType>(Val->getType())) && 4854 "Catch clause has a invalid type!"); 4855 assert((CT != LandingPadInst::Filter || 4856 isa<ArrayType>(Val->getType())) && 4857 "Filter clause has invalid type!"); 4858 LP->addClause(cast<Constant>(Val)); 4859 } 4860 4861 I = LP; 4862 InstructionList.push_back(I); 4863 break; 4864 } 4865 4866 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4867 if (Record.size() != 4) 4868 return error("Invalid record"); 4869 using APV = AllocaPackedValues; 4870 const uint64_t Rec = Record[3]; 4871 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 4872 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 4873 Type *Ty = getTypeByID(Record[0]); 4874 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 4875 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4876 if (!PTy) 4877 return error("Old-style alloca with a non-pointer type"); 4878 Ty = PTy->getElementType(); 4879 } 4880 Type *OpTy = getTypeByID(Record[1]); 4881 Value *Size = getFnValueByID(Record[2], OpTy); 4882 MaybeAlign Align; 4883 if (Error Err = 4884 parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) { 4885 return Err; 4886 } 4887 if (!Ty || !Size) 4888 return error("Invalid record"); 4889 4890 // FIXME: Make this an optional field. 4891 const DataLayout &DL = TheModule->getDataLayout(); 4892 unsigned AS = DL.getAllocaAddrSpace(); 4893 4894 SmallPtrSet<Type *, 4> Visited; 4895 if (!Align && !Ty->isSized(&Visited)) 4896 return error("alloca of unsized type"); 4897 if (!Align) 4898 Align = DL.getPrefTypeAlign(Ty); 4899 4900 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4901 AI->setUsedWithInAlloca(InAlloca); 4902 AI->setSwiftError(SwiftError); 4903 I = AI; 4904 InstructionList.push_back(I); 4905 break; 4906 } 4907 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4908 unsigned OpNum = 0; 4909 Value *Op; 4910 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4911 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4912 return error("Invalid record"); 4913 4914 if (!isa<PointerType>(Op->getType())) 4915 return error("Load operand is not a pointer type"); 4916 4917 Type *Ty = nullptr; 4918 if (OpNum + 3 == Record.size()) { 4919 Ty = getTypeByID(Record[OpNum++]); 4920 } else { 4921 Ty = cast<PointerType>(Op->getType())->getElementType(); 4922 } 4923 4924 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4925 return Err; 4926 4927 MaybeAlign Align; 4928 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4929 return Err; 4930 SmallPtrSet<Type *, 4> Visited; 4931 if (!Align && !Ty->isSized(&Visited)) 4932 return error("load of unsized type"); 4933 if (!Align) 4934 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4935 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4936 InstructionList.push_back(I); 4937 break; 4938 } 4939 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4940 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4941 unsigned OpNum = 0; 4942 Value *Op; 4943 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4944 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4945 return error("Invalid record"); 4946 4947 if (!isa<PointerType>(Op->getType())) 4948 return error("Load operand is not a pointer type"); 4949 4950 Type *Ty = nullptr; 4951 if (OpNum + 5 == Record.size()) { 4952 Ty = getTypeByID(Record[OpNum++]); 4953 } else { 4954 Ty = cast<PointerType>(Op->getType())->getElementType(); 4955 } 4956 4957 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4958 return Err; 4959 4960 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4961 if (Ordering == AtomicOrdering::NotAtomic || 4962 Ordering == AtomicOrdering::Release || 4963 Ordering == AtomicOrdering::AcquireRelease) 4964 return error("Invalid record"); 4965 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4966 return error("Invalid record"); 4967 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4968 4969 MaybeAlign Align; 4970 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4971 return Err; 4972 if (!Align) 4973 return error("Alignment missing from atomic load"); 4974 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 4975 InstructionList.push_back(I); 4976 break; 4977 } 4978 case bitc::FUNC_CODE_INST_STORE: 4979 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4980 unsigned OpNum = 0; 4981 Value *Val, *Ptr; 4982 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4983 (BitCode == bitc::FUNC_CODE_INST_STORE 4984 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4985 : popValue(Record, OpNum, NextValueNo, 4986 cast<PointerType>(Ptr->getType())->getElementType(), 4987 Val)) || 4988 OpNum + 2 != Record.size()) 4989 return error("Invalid record"); 4990 4991 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4992 return Err; 4993 MaybeAlign Align; 4994 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4995 return Err; 4996 SmallPtrSet<Type *, 4> Visited; 4997 if (!Align && !Val->getType()->isSized(&Visited)) 4998 return error("store of unsized type"); 4999 if (!Align) 5000 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5001 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5002 InstructionList.push_back(I); 5003 break; 5004 } 5005 case bitc::FUNC_CODE_INST_STOREATOMIC: 5006 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5007 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5008 unsigned OpNum = 0; 5009 Value *Val, *Ptr; 5010 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5011 !isa<PointerType>(Ptr->getType()) || 5012 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5013 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5014 : popValue(Record, OpNum, NextValueNo, 5015 cast<PointerType>(Ptr->getType())->getElementType(), 5016 Val)) || 5017 OpNum + 4 != Record.size()) 5018 return error("Invalid record"); 5019 5020 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5021 return Err; 5022 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5023 if (Ordering == AtomicOrdering::NotAtomic || 5024 Ordering == AtomicOrdering::Acquire || 5025 Ordering == AtomicOrdering::AcquireRelease) 5026 return error("Invalid record"); 5027 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5028 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5029 return error("Invalid record"); 5030 5031 MaybeAlign Align; 5032 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5033 return Err; 5034 if (!Align) 5035 return error("Alignment missing from atomic store"); 5036 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5037 InstructionList.push_back(I); 5038 break; 5039 } 5040 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5041 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5042 // failure_ordering?, weak?] 5043 const size_t NumRecords = Record.size(); 5044 unsigned OpNum = 0; 5045 Value *Ptr = nullptr; 5046 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5047 return error("Invalid record"); 5048 5049 if (!isa<PointerType>(Ptr->getType())) 5050 return error("Cmpxchg operand is not a pointer type"); 5051 5052 Value *Cmp = nullptr; 5053 if (popValue(Record, OpNum, NextValueNo, 5054 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5055 Cmp)) 5056 return error("Invalid record"); 5057 5058 Value *New = nullptr; 5059 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5060 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5061 return error("Invalid record"); 5062 5063 const AtomicOrdering SuccessOrdering = 5064 getDecodedOrdering(Record[OpNum + 1]); 5065 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5066 SuccessOrdering == AtomicOrdering::Unordered) 5067 return error("Invalid record"); 5068 5069 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5070 5071 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5072 return Err; 5073 5074 const AtomicOrdering FailureOrdering = 5075 NumRecords < 7 5076 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5077 : getDecodedOrdering(Record[OpNum + 3]); 5078 5079 if (FailureOrdering == AtomicOrdering::NotAtomic || 5080 FailureOrdering == AtomicOrdering::Unordered) 5081 return error("Invalid record"); 5082 5083 const Align Alignment( 5084 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5085 5086 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5087 FailureOrdering, SSID); 5088 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5089 5090 if (NumRecords < 8) { 5091 // Before weak cmpxchgs existed, the instruction simply returned the 5092 // value loaded from memory, so bitcode files from that era will be 5093 // expecting the first component of a modern cmpxchg. 5094 CurBB->getInstList().push_back(I); 5095 I = ExtractValueInst::Create(I, 0); 5096 } else { 5097 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5098 } 5099 5100 InstructionList.push_back(I); 5101 break; 5102 } 5103 case bitc::FUNC_CODE_INST_CMPXCHG: { 5104 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5105 // failure_ordering, weak, align?] 5106 const size_t NumRecords = Record.size(); 5107 unsigned OpNum = 0; 5108 Value *Ptr = nullptr; 5109 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5110 return error("Invalid record"); 5111 5112 if (!isa<PointerType>(Ptr->getType())) 5113 return error("Cmpxchg operand is not a pointer type"); 5114 5115 Value *Cmp = nullptr; 5116 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp)) 5117 return error("Invalid record"); 5118 5119 Value *Val = nullptr; 5120 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val)) 5121 return error("Invalid record"); 5122 5123 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5124 return error("Invalid record"); 5125 5126 const bool IsVol = Record[OpNum]; 5127 5128 const AtomicOrdering SuccessOrdering = 5129 getDecodedOrdering(Record[OpNum + 1]); 5130 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5131 return error("Invalid cmpxchg success ordering"); 5132 5133 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5134 5135 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5136 return Err; 5137 5138 const AtomicOrdering FailureOrdering = 5139 getDecodedOrdering(Record[OpNum + 3]); 5140 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5141 return error("Invalid cmpxchg failure ordering"); 5142 5143 const bool IsWeak = Record[OpNum + 4]; 5144 5145 MaybeAlign Alignment; 5146 5147 if (NumRecords == (OpNum + 6)) { 5148 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5149 return Err; 5150 } 5151 if (!Alignment) 5152 Alignment = 5153 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5154 5155 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5156 FailureOrdering, SSID); 5157 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5158 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5159 5160 InstructionList.push_back(I); 5161 break; 5162 } 5163 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5164 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5165 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5166 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5167 const size_t NumRecords = Record.size(); 5168 unsigned OpNum = 0; 5169 5170 Value *Ptr = nullptr; 5171 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5172 return error("Invalid record"); 5173 5174 if (!isa<PointerType>(Ptr->getType())) 5175 return error("Invalid record"); 5176 5177 Value *Val = nullptr; 5178 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5179 if (popValue(Record, OpNum, NextValueNo, 5180 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5181 Val)) 5182 return error("Invalid record"); 5183 } else { 5184 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 5185 return error("Invalid record"); 5186 } 5187 5188 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5189 return error("Invalid record"); 5190 5191 const AtomicRMWInst::BinOp Operation = 5192 getDecodedRMWOperation(Record[OpNum]); 5193 if (Operation < AtomicRMWInst::FIRST_BINOP || 5194 Operation > AtomicRMWInst::LAST_BINOP) 5195 return error("Invalid record"); 5196 5197 const bool IsVol = Record[OpNum + 1]; 5198 5199 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5200 if (Ordering == AtomicOrdering::NotAtomic || 5201 Ordering == AtomicOrdering::Unordered) 5202 return error("Invalid record"); 5203 5204 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5205 5206 MaybeAlign Alignment; 5207 5208 if (NumRecords == (OpNum + 5)) { 5209 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5210 return Err; 5211 } 5212 5213 if (!Alignment) 5214 Alignment = 5215 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5216 5217 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5218 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5219 5220 InstructionList.push_back(I); 5221 break; 5222 } 5223 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5224 if (2 != Record.size()) 5225 return error("Invalid record"); 5226 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5227 if (Ordering == AtomicOrdering::NotAtomic || 5228 Ordering == AtomicOrdering::Unordered || 5229 Ordering == AtomicOrdering::Monotonic) 5230 return error("Invalid record"); 5231 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5232 I = new FenceInst(Context, Ordering, SSID); 5233 InstructionList.push_back(I); 5234 break; 5235 } 5236 case bitc::FUNC_CODE_INST_CALL: { 5237 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5238 if (Record.size() < 3) 5239 return error("Invalid record"); 5240 5241 unsigned OpNum = 0; 5242 AttributeList PAL = getAttributes(Record[OpNum++]); 5243 unsigned CCInfo = Record[OpNum++]; 5244 5245 FastMathFlags FMF; 5246 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5247 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5248 if (!FMF.any()) 5249 return error("Fast math flags indicator set for call with no FMF"); 5250 } 5251 5252 FunctionType *FTy = nullptr; 5253 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5254 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 5255 if (!FTy) 5256 return error("Explicit call type is not a function type"); 5257 } 5258 5259 Value *Callee; 5260 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5261 return error("Invalid record"); 5262 5263 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5264 if (!OpTy) 5265 return error("Callee is not a pointer type"); 5266 if (!FTy) { 5267 FTy = dyn_cast<FunctionType>( 5268 cast<PointerType>(Callee->getType())->getElementType()); 5269 if (!FTy) 5270 return error("Callee is not of pointer to function type"); 5271 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5272 return error("Explicit call type does not match pointee type of " 5273 "callee operand"); 5274 if (Record.size() < FTy->getNumParams() + OpNum) 5275 return error("Insufficient operands to call"); 5276 5277 SmallVector<Value*, 16> Args; 5278 SmallVector<Type *, 16> ArgsTys; 5279 // Read the fixed params. 5280 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5281 if (FTy->getParamType(i)->isLabelTy()) 5282 Args.push_back(getBasicBlock(Record[OpNum])); 5283 else 5284 Args.push_back(getValue(Record, OpNum, NextValueNo, 5285 FTy->getParamType(i))); 5286 ArgsTys.push_back(FTy->getParamType(i)); 5287 if (!Args.back()) 5288 return error("Invalid record"); 5289 } 5290 5291 // Read type/value pairs for varargs params. 5292 if (!FTy->isVarArg()) { 5293 if (OpNum != Record.size()) 5294 return error("Invalid record"); 5295 } else { 5296 while (OpNum != Record.size()) { 5297 Value *Op; 5298 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5299 return error("Invalid record"); 5300 Args.push_back(Op); 5301 ArgsTys.push_back(Op->getType()); 5302 } 5303 } 5304 5305 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5306 OperandBundles.clear(); 5307 InstructionList.push_back(I); 5308 cast<CallInst>(I)->setCallingConv( 5309 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5310 CallInst::TailCallKind TCK = CallInst::TCK_None; 5311 if (CCInfo & 1 << bitc::CALL_TAIL) 5312 TCK = CallInst::TCK_Tail; 5313 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5314 TCK = CallInst::TCK_MustTail; 5315 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5316 TCK = CallInst::TCK_NoTail; 5317 cast<CallInst>(I)->setTailCallKind(TCK); 5318 cast<CallInst>(I)->setAttributes(PAL); 5319 propagateByValSRetTypes(cast<CallBase>(I), ArgsTys); 5320 if (FMF.any()) { 5321 if (!isa<FPMathOperator>(I)) 5322 return error("Fast-math-flags specified for call without " 5323 "floating-point scalar or vector return type"); 5324 I->setFastMathFlags(FMF); 5325 } 5326 break; 5327 } 5328 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5329 if (Record.size() < 3) 5330 return error("Invalid record"); 5331 Type *OpTy = getTypeByID(Record[0]); 5332 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5333 Type *ResTy = getTypeByID(Record[2]); 5334 if (!OpTy || !Op || !ResTy) 5335 return error("Invalid record"); 5336 I = new VAArgInst(Op, ResTy); 5337 InstructionList.push_back(I); 5338 break; 5339 } 5340 5341 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5342 // A call or an invoke can be optionally prefixed with some variable 5343 // number of operand bundle blocks. These blocks are read into 5344 // OperandBundles and consumed at the next call or invoke instruction. 5345 5346 if (Record.empty() || Record[0] >= BundleTags.size()) 5347 return error("Invalid record"); 5348 5349 std::vector<Value *> Inputs; 5350 5351 unsigned OpNum = 1; 5352 while (OpNum != Record.size()) { 5353 Value *Op; 5354 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5355 return error("Invalid record"); 5356 Inputs.push_back(Op); 5357 } 5358 5359 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5360 continue; 5361 } 5362 5363 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5364 unsigned OpNum = 0; 5365 Value *Op = nullptr; 5366 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5367 return error("Invalid record"); 5368 if (OpNum != Record.size()) 5369 return error("Invalid record"); 5370 5371 I = new FreezeInst(Op); 5372 InstructionList.push_back(I); 5373 break; 5374 } 5375 } 5376 5377 // Add instruction to end of current BB. If there is no current BB, reject 5378 // this file. 5379 if (!CurBB) { 5380 I->deleteValue(); 5381 return error("Invalid instruction with no BB"); 5382 } 5383 if (!OperandBundles.empty()) { 5384 I->deleteValue(); 5385 return error("Operand bundles found with no consumer"); 5386 } 5387 CurBB->getInstList().push_back(I); 5388 5389 // If this was a terminator instruction, move to the next block. 5390 if (I->isTerminator()) { 5391 ++CurBBNo; 5392 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5393 } 5394 5395 // Non-void values get registered in the value table for future use. 5396 if (!I->getType()->isVoidTy()) 5397 ValueList.assignValue(I, NextValueNo++); 5398 } 5399 5400 OutOfRecordLoop: 5401 5402 if (!OperandBundles.empty()) 5403 return error("Operand bundles found with no consumer"); 5404 5405 // Check the function list for unresolved values. 5406 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5407 if (!A->getParent()) { 5408 // We found at least one unresolved value. Nuke them all to avoid leaks. 5409 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5410 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5411 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5412 delete A; 5413 } 5414 } 5415 return error("Never resolved value found in function"); 5416 } 5417 } 5418 5419 // Unexpected unresolved metadata about to be dropped. 5420 if (MDLoader->hasFwdRefs()) 5421 return error("Invalid function metadata: outgoing forward refs"); 5422 5423 // Trim the value list down to the size it was before we parsed this function. 5424 ValueList.shrinkTo(ModuleValueListSize); 5425 MDLoader->shrinkTo(ModuleMDLoaderSize); 5426 std::vector<BasicBlock*>().swap(FunctionBBs); 5427 return Error::success(); 5428 } 5429 5430 /// Find the function body in the bitcode stream 5431 Error BitcodeReader::findFunctionInStream( 5432 Function *F, 5433 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5434 while (DeferredFunctionInfoIterator->second == 0) { 5435 // This is the fallback handling for the old format bitcode that 5436 // didn't contain the function index in the VST, or when we have 5437 // an anonymous function which would not have a VST entry. 5438 // Assert that we have one of those two cases. 5439 assert(VSTOffset == 0 || !F->hasName()); 5440 // Parse the next body in the stream and set its position in the 5441 // DeferredFunctionInfo map. 5442 if (Error Err = rememberAndSkipFunctionBodies()) 5443 return Err; 5444 } 5445 return Error::success(); 5446 } 5447 5448 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5449 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5450 return SyncScope::ID(Val); 5451 if (Val >= SSIDs.size()) 5452 return SyncScope::System; // Map unknown synchronization scopes to system. 5453 return SSIDs[Val]; 5454 } 5455 5456 //===----------------------------------------------------------------------===// 5457 // GVMaterializer implementation 5458 //===----------------------------------------------------------------------===// 5459 5460 Error BitcodeReader::materialize(GlobalValue *GV) { 5461 Function *F = dyn_cast<Function>(GV); 5462 // If it's not a function or is already material, ignore the request. 5463 if (!F || !F->isMaterializable()) 5464 return Error::success(); 5465 5466 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5467 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5468 // If its position is recorded as 0, its body is somewhere in the stream 5469 // but we haven't seen it yet. 5470 if (DFII->second == 0) 5471 if (Error Err = findFunctionInStream(F, DFII)) 5472 return Err; 5473 5474 // Materialize metadata before parsing any function bodies. 5475 if (Error Err = materializeMetadata()) 5476 return Err; 5477 5478 // Move the bit stream to the saved position of the deferred function body. 5479 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5480 return JumpFailed; 5481 if (Error Err = parseFunctionBody(F)) 5482 return Err; 5483 F->setIsMaterializable(false); 5484 5485 if (StripDebugInfo) 5486 stripDebugInfo(*F); 5487 5488 // Upgrade any old intrinsic calls in the function. 5489 for (auto &I : UpgradedIntrinsics) { 5490 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5491 UI != UE;) { 5492 User *U = *UI; 5493 ++UI; 5494 if (CallInst *CI = dyn_cast<CallInst>(U)) 5495 UpgradeIntrinsicCall(CI, I.second); 5496 } 5497 } 5498 5499 // Update calls to the remangled intrinsics 5500 for (auto &I : RemangledIntrinsics) 5501 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5502 UI != UE;) 5503 // Don't expect any other users than call sites 5504 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5505 5506 // Finish fn->subprogram upgrade for materialized functions. 5507 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5508 F->setSubprogram(SP); 5509 5510 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5511 if (!MDLoader->isStrippingTBAA()) { 5512 for (auto &I : instructions(F)) { 5513 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5514 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5515 continue; 5516 MDLoader->setStripTBAA(true); 5517 stripTBAA(F->getParent()); 5518 } 5519 } 5520 5521 for (auto &I : instructions(F)) { 5522 // "Upgrade" older incorrect branch weights by dropping them. 5523 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5524 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5525 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5526 StringRef ProfName = MDS->getString(); 5527 // Check consistency of !prof branch_weights metadata. 5528 if (!ProfName.equals("branch_weights")) 5529 continue; 5530 unsigned ExpectedNumOperands = 0; 5531 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5532 ExpectedNumOperands = BI->getNumSuccessors(); 5533 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5534 ExpectedNumOperands = SI->getNumSuccessors(); 5535 else if (isa<CallInst>(&I)) 5536 ExpectedNumOperands = 1; 5537 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5538 ExpectedNumOperands = IBI->getNumDestinations(); 5539 else if (isa<SelectInst>(&I)) 5540 ExpectedNumOperands = 2; 5541 else 5542 continue; // ignore and continue. 5543 5544 // If branch weight doesn't match, just strip branch weight. 5545 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5546 I.setMetadata(LLVMContext::MD_prof, nullptr); 5547 } 5548 } 5549 5550 // Remove incompatible attributes on function calls. 5551 if (auto *CI = dyn_cast<CallBase>(&I)) { 5552 CI->removeAttributes(AttributeList::ReturnIndex, 5553 AttributeFuncs::typeIncompatible( 5554 CI->getFunctionType()->getReturnType())); 5555 5556 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 5557 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 5558 CI->getArgOperand(ArgNo)->getType())); 5559 } 5560 } 5561 5562 // Look for functions that rely on old function attribute behavior. 5563 UpgradeFunctionAttributes(*F); 5564 5565 // Bring in any functions that this function forward-referenced via 5566 // blockaddresses. 5567 return materializeForwardReferencedFunctions(); 5568 } 5569 5570 Error BitcodeReader::materializeModule() { 5571 if (Error Err = materializeMetadata()) 5572 return Err; 5573 5574 // Promise to materialize all forward references. 5575 WillMaterializeAllForwardRefs = true; 5576 5577 // Iterate over the module, deserializing any functions that are still on 5578 // disk. 5579 for (Function &F : *TheModule) { 5580 if (Error Err = materialize(&F)) 5581 return Err; 5582 } 5583 // At this point, if there are any function bodies, parse the rest of 5584 // the bits in the module past the last function block we have recorded 5585 // through either lazy scanning or the VST. 5586 if (LastFunctionBlockBit || NextUnreadBit) 5587 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5588 ? LastFunctionBlockBit 5589 : NextUnreadBit)) 5590 return Err; 5591 5592 // Check that all block address forward references got resolved (as we 5593 // promised above). 5594 if (!BasicBlockFwdRefs.empty()) 5595 return error("Never resolved function from blockaddress"); 5596 5597 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5598 // delete the old functions to clean up. We can't do this unless the entire 5599 // module is materialized because there could always be another function body 5600 // with calls to the old function. 5601 for (auto &I : UpgradedIntrinsics) { 5602 for (auto *U : I.first->users()) { 5603 if (CallInst *CI = dyn_cast<CallInst>(U)) 5604 UpgradeIntrinsicCall(CI, I.second); 5605 } 5606 if (!I.first->use_empty()) 5607 I.first->replaceAllUsesWith(I.second); 5608 I.first->eraseFromParent(); 5609 } 5610 UpgradedIntrinsics.clear(); 5611 // Do the same for remangled intrinsics 5612 for (auto &I : RemangledIntrinsics) { 5613 I.first->replaceAllUsesWith(I.second); 5614 I.first->eraseFromParent(); 5615 } 5616 RemangledIntrinsics.clear(); 5617 5618 UpgradeDebugInfo(*TheModule); 5619 5620 UpgradeModuleFlags(*TheModule); 5621 5622 UpgradeARCRuntime(*TheModule); 5623 5624 return Error::success(); 5625 } 5626 5627 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5628 return IdentifiedStructTypes; 5629 } 5630 5631 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5632 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5633 StringRef ModulePath, unsigned ModuleId) 5634 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5635 ModulePath(ModulePath), ModuleId(ModuleId) {} 5636 5637 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5638 TheIndex.addModule(ModulePath, ModuleId); 5639 } 5640 5641 ModuleSummaryIndex::ModuleInfo * 5642 ModuleSummaryIndexBitcodeReader::getThisModule() { 5643 return TheIndex.getModule(ModulePath); 5644 } 5645 5646 std::pair<ValueInfo, GlobalValue::GUID> 5647 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5648 auto VGI = ValueIdToValueInfoMap[ValueId]; 5649 assert(VGI.first); 5650 return VGI; 5651 } 5652 5653 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5654 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5655 StringRef SourceFileName) { 5656 std::string GlobalId = 5657 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5658 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5659 auto OriginalNameID = ValueGUID; 5660 if (GlobalValue::isLocalLinkage(Linkage)) 5661 OriginalNameID = GlobalValue::getGUID(ValueName); 5662 if (PrintSummaryGUIDs) 5663 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5664 << ValueName << "\n"; 5665 5666 // UseStrtab is false for legacy summary formats and value names are 5667 // created on stack. In that case we save the name in a string saver in 5668 // the index so that the value name can be recorded. 5669 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5670 TheIndex.getOrInsertValueInfo( 5671 ValueGUID, 5672 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5673 OriginalNameID); 5674 } 5675 5676 // Specialized value symbol table parser used when reading module index 5677 // blocks where we don't actually create global values. The parsed information 5678 // is saved in the bitcode reader for use when later parsing summaries. 5679 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5680 uint64_t Offset, 5681 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5682 // With a strtab the VST is not required to parse the summary. 5683 if (UseStrtab) 5684 return Error::success(); 5685 5686 assert(Offset > 0 && "Expected non-zero VST offset"); 5687 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5688 if (!MaybeCurrentBit) 5689 return MaybeCurrentBit.takeError(); 5690 uint64_t CurrentBit = MaybeCurrentBit.get(); 5691 5692 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5693 return Err; 5694 5695 SmallVector<uint64_t, 64> Record; 5696 5697 // Read all the records for this value table. 5698 SmallString<128> ValueName; 5699 5700 while (true) { 5701 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5702 if (!MaybeEntry) 5703 return MaybeEntry.takeError(); 5704 BitstreamEntry Entry = MaybeEntry.get(); 5705 5706 switch (Entry.Kind) { 5707 case BitstreamEntry::SubBlock: // Handled for us already. 5708 case BitstreamEntry::Error: 5709 return error("Malformed block"); 5710 case BitstreamEntry::EndBlock: 5711 // Done parsing VST, jump back to wherever we came from. 5712 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5713 return JumpFailed; 5714 return Error::success(); 5715 case BitstreamEntry::Record: 5716 // The interesting case. 5717 break; 5718 } 5719 5720 // Read a record. 5721 Record.clear(); 5722 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5723 if (!MaybeRecord) 5724 return MaybeRecord.takeError(); 5725 switch (MaybeRecord.get()) { 5726 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5727 break; 5728 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5729 if (convertToString(Record, 1, ValueName)) 5730 return error("Invalid record"); 5731 unsigned ValueID = Record[0]; 5732 assert(!SourceFileName.empty()); 5733 auto VLI = ValueIdToLinkageMap.find(ValueID); 5734 assert(VLI != ValueIdToLinkageMap.end() && 5735 "No linkage found for VST entry?"); 5736 auto Linkage = VLI->second; 5737 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5738 ValueName.clear(); 5739 break; 5740 } 5741 case bitc::VST_CODE_FNENTRY: { 5742 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5743 if (convertToString(Record, 2, ValueName)) 5744 return error("Invalid record"); 5745 unsigned ValueID = Record[0]; 5746 assert(!SourceFileName.empty()); 5747 auto VLI = ValueIdToLinkageMap.find(ValueID); 5748 assert(VLI != ValueIdToLinkageMap.end() && 5749 "No linkage found for VST entry?"); 5750 auto Linkage = VLI->second; 5751 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5752 ValueName.clear(); 5753 break; 5754 } 5755 case bitc::VST_CODE_COMBINED_ENTRY: { 5756 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5757 unsigned ValueID = Record[0]; 5758 GlobalValue::GUID RefGUID = Record[1]; 5759 // The "original name", which is the second value of the pair will be 5760 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5761 ValueIdToValueInfoMap[ValueID] = 5762 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5763 break; 5764 } 5765 } 5766 } 5767 } 5768 5769 // Parse just the blocks needed for building the index out of the module. 5770 // At the end of this routine the module Index is populated with a map 5771 // from global value id to GlobalValueSummary objects. 5772 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5773 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5774 return Err; 5775 5776 SmallVector<uint64_t, 64> Record; 5777 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5778 unsigned ValueId = 0; 5779 5780 // Read the index for this module. 5781 while (true) { 5782 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5783 if (!MaybeEntry) 5784 return MaybeEntry.takeError(); 5785 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5786 5787 switch (Entry.Kind) { 5788 case BitstreamEntry::Error: 5789 return error("Malformed block"); 5790 case BitstreamEntry::EndBlock: 5791 return Error::success(); 5792 5793 case BitstreamEntry::SubBlock: 5794 switch (Entry.ID) { 5795 default: // Skip unknown content. 5796 if (Error Err = Stream.SkipBlock()) 5797 return Err; 5798 break; 5799 case bitc::BLOCKINFO_BLOCK_ID: 5800 // Need to parse these to get abbrev ids (e.g. for VST) 5801 if (readBlockInfo()) 5802 return error("Malformed block"); 5803 break; 5804 case bitc::VALUE_SYMTAB_BLOCK_ID: 5805 // Should have been parsed earlier via VSTOffset, unless there 5806 // is no summary section. 5807 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5808 !SeenGlobalValSummary) && 5809 "Expected early VST parse via VSTOffset record"); 5810 if (Error Err = Stream.SkipBlock()) 5811 return Err; 5812 break; 5813 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5814 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5815 // Add the module if it is a per-module index (has a source file name). 5816 if (!SourceFileName.empty()) 5817 addThisModule(); 5818 assert(!SeenValueSymbolTable && 5819 "Already read VST when parsing summary block?"); 5820 // We might not have a VST if there were no values in the 5821 // summary. An empty summary block generated when we are 5822 // performing ThinLTO compiles so we don't later invoke 5823 // the regular LTO process on them. 5824 if (VSTOffset > 0) { 5825 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5826 return Err; 5827 SeenValueSymbolTable = true; 5828 } 5829 SeenGlobalValSummary = true; 5830 if (Error Err = parseEntireSummary(Entry.ID)) 5831 return Err; 5832 break; 5833 case bitc::MODULE_STRTAB_BLOCK_ID: 5834 if (Error Err = parseModuleStringTable()) 5835 return Err; 5836 break; 5837 } 5838 continue; 5839 5840 case BitstreamEntry::Record: { 5841 Record.clear(); 5842 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5843 if (!MaybeBitCode) 5844 return MaybeBitCode.takeError(); 5845 switch (MaybeBitCode.get()) { 5846 default: 5847 break; // Default behavior, ignore unknown content. 5848 case bitc::MODULE_CODE_VERSION: { 5849 if (Error Err = parseVersionRecord(Record).takeError()) 5850 return Err; 5851 break; 5852 } 5853 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5854 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5855 SmallString<128> ValueName; 5856 if (convertToString(Record, 0, ValueName)) 5857 return error("Invalid record"); 5858 SourceFileName = ValueName.c_str(); 5859 break; 5860 } 5861 /// MODULE_CODE_HASH: [5*i32] 5862 case bitc::MODULE_CODE_HASH: { 5863 if (Record.size() != 5) 5864 return error("Invalid hash length " + Twine(Record.size()).str()); 5865 auto &Hash = getThisModule()->second.second; 5866 int Pos = 0; 5867 for (auto &Val : Record) { 5868 assert(!(Val >> 32) && "Unexpected high bits set"); 5869 Hash[Pos++] = Val; 5870 } 5871 break; 5872 } 5873 /// MODULE_CODE_VSTOFFSET: [offset] 5874 case bitc::MODULE_CODE_VSTOFFSET: 5875 if (Record.empty()) 5876 return error("Invalid record"); 5877 // Note that we subtract 1 here because the offset is relative to one 5878 // word before the start of the identification or module block, which 5879 // was historically always the start of the regular bitcode header. 5880 VSTOffset = Record[0] - 1; 5881 break; 5882 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5883 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5884 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5885 // v2: [strtab offset, strtab size, v1] 5886 case bitc::MODULE_CODE_GLOBALVAR: 5887 case bitc::MODULE_CODE_FUNCTION: 5888 case bitc::MODULE_CODE_ALIAS: { 5889 StringRef Name; 5890 ArrayRef<uint64_t> GVRecord; 5891 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5892 if (GVRecord.size() <= 3) 5893 return error("Invalid record"); 5894 uint64_t RawLinkage = GVRecord[3]; 5895 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5896 if (!UseStrtab) { 5897 ValueIdToLinkageMap[ValueId++] = Linkage; 5898 break; 5899 } 5900 5901 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5902 break; 5903 } 5904 } 5905 } 5906 continue; 5907 } 5908 } 5909 } 5910 5911 std::vector<ValueInfo> 5912 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5913 std::vector<ValueInfo> Ret; 5914 Ret.reserve(Record.size()); 5915 for (uint64_t RefValueId : Record) 5916 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5917 return Ret; 5918 } 5919 5920 std::vector<FunctionSummary::EdgeTy> 5921 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5922 bool IsOldProfileFormat, 5923 bool HasProfile, bool HasRelBF) { 5924 std::vector<FunctionSummary::EdgeTy> Ret; 5925 Ret.reserve(Record.size()); 5926 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5927 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5928 uint64_t RelBF = 0; 5929 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5930 if (IsOldProfileFormat) { 5931 I += 1; // Skip old callsitecount field 5932 if (HasProfile) 5933 I += 1; // Skip old profilecount field 5934 } else if (HasProfile) 5935 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5936 else if (HasRelBF) 5937 RelBF = Record[++I]; 5938 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5939 } 5940 return Ret; 5941 } 5942 5943 static void 5944 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5945 WholeProgramDevirtResolution &Wpd) { 5946 uint64_t ArgNum = Record[Slot++]; 5947 WholeProgramDevirtResolution::ByArg &B = 5948 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5949 Slot += ArgNum; 5950 5951 B.TheKind = 5952 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5953 B.Info = Record[Slot++]; 5954 B.Byte = Record[Slot++]; 5955 B.Bit = Record[Slot++]; 5956 } 5957 5958 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5959 StringRef Strtab, size_t &Slot, 5960 TypeIdSummary &TypeId) { 5961 uint64_t Id = Record[Slot++]; 5962 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5963 5964 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5965 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5966 static_cast<size_t>(Record[Slot + 1])}; 5967 Slot += 2; 5968 5969 uint64_t ResByArgNum = Record[Slot++]; 5970 for (uint64_t I = 0; I != ResByArgNum; ++I) 5971 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5972 } 5973 5974 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5975 StringRef Strtab, 5976 ModuleSummaryIndex &TheIndex) { 5977 size_t Slot = 0; 5978 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5979 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5980 Slot += 2; 5981 5982 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5983 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5984 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5985 TypeId.TTRes.SizeM1 = Record[Slot++]; 5986 TypeId.TTRes.BitMask = Record[Slot++]; 5987 TypeId.TTRes.InlineBits = Record[Slot++]; 5988 5989 while (Slot < Record.size()) 5990 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5991 } 5992 5993 std::vector<FunctionSummary::ParamAccess> 5994 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 5995 auto ReadRange = [&]() { 5996 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 5997 BitcodeReader::decodeSignRotatedValue(Record.front())); 5998 Record = Record.drop_front(); 5999 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6000 BitcodeReader::decodeSignRotatedValue(Record.front())); 6001 Record = Record.drop_front(); 6002 ConstantRange Range{Lower, Upper}; 6003 assert(!Range.isFullSet()); 6004 assert(!Range.isUpperSignWrapped()); 6005 return Range; 6006 }; 6007 6008 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6009 while (!Record.empty()) { 6010 PendingParamAccesses.emplace_back(); 6011 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6012 ParamAccess.ParamNo = Record.front(); 6013 Record = Record.drop_front(); 6014 ParamAccess.Use = ReadRange(); 6015 ParamAccess.Calls.resize(Record.front()); 6016 Record = Record.drop_front(); 6017 for (auto &Call : ParamAccess.Calls) { 6018 Call.ParamNo = Record.front(); 6019 Record = Record.drop_front(); 6020 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6021 Record = Record.drop_front(); 6022 Call.Offsets = ReadRange(); 6023 } 6024 } 6025 return PendingParamAccesses; 6026 } 6027 6028 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6029 ArrayRef<uint64_t> Record, size_t &Slot, 6030 TypeIdCompatibleVtableInfo &TypeId) { 6031 uint64_t Offset = Record[Slot++]; 6032 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6033 TypeId.push_back({Offset, Callee}); 6034 } 6035 6036 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6037 ArrayRef<uint64_t> Record) { 6038 size_t Slot = 0; 6039 TypeIdCompatibleVtableInfo &TypeId = 6040 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6041 {Strtab.data() + Record[Slot], 6042 static_cast<size_t>(Record[Slot + 1])}); 6043 Slot += 2; 6044 6045 while (Slot < Record.size()) 6046 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6047 } 6048 6049 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6050 unsigned WOCnt) { 6051 // Readonly and writeonly refs are in the end of the refs list. 6052 assert(ROCnt + WOCnt <= Refs.size()); 6053 unsigned FirstWORef = Refs.size() - WOCnt; 6054 unsigned RefNo = FirstWORef - ROCnt; 6055 for (; RefNo < FirstWORef; ++RefNo) 6056 Refs[RefNo].setReadOnly(); 6057 for (; RefNo < Refs.size(); ++RefNo) 6058 Refs[RefNo].setWriteOnly(); 6059 } 6060 6061 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6062 // objects in the index. 6063 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6064 if (Error Err = Stream.EnterSubBlock(ID)) 6065 return Err; 6066 SmallVector<uint64_t, 64> Record; 6067 6068 // Parse version 6069 { 6070 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6071 if (!MaybeEntry) 6072 return MaybeEntry.takeError(); 6073 BitstreamEntry Entry = MaybeEntry.get(); 6074 6075 if (Entry.Kind != BitstreamEntry::Record) 6076 return error("Invalid Summary Block: record for version expected"); 6077 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6078 if (!MaybeRecord) 6079 return MaybeRecord.takeError(); 6080 if (MaybeRecord.get() != bitc::FS_VERSION) 6081 return error("Invalid Summary Block: version expected"); 6082 } 6083 const uint64_t Version = Record[0]; 6084 const bool IsOldProfileFormat = Version == 1; 6085 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6086 return error("Invalid summary version " + Twine(Version) + 6087 ". Version should be in the range [1-" + 6088 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6089 "]."); 6090 Record.clear(); 6091 6092 // Keep around the last seen summary to be used when we see an optional 6093 // "OriginalName" attachement. 6094 GlobalValueSummary *LastSeenSummary = nullptr; 6095 GlobalValue::GUID LastSeenGUID = 0; 6096 6097 // We can expect to see any number of type ID information records before 6098 // each function summary records; these variables store the information 6099 // collected so far so that it can be used to create the summary object. 6100 std::vector<GlobalValue::GUID> PendingTypeTests; 6101 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6102 PendingTypeCheckedLoadVCalls; 6103 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6104 PendingTypeCheckedLoadConstVCalls; 6105 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6106 6107 while (true) { 6108 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6109 if (!MaybeEntry) 6110 return MaybeEntry.takeError(); 6111 BitstreamEntry Entry = MaybeEntry.get(); 6112 6113 switch (Entry.Kind) { 6114 case BitstreamEntry::SubBlock: // Handled for us already. 6115 case BitstreamEntry::Error: 6116 return error("Malformed block"); 6117 case BitstreamEntry::EndBlock: 6118 return Error::success(); 6119 case BitstreamEntry::Record: 6120 // The interesting case. 6121 break; 6122 } 6123 6124 // Read a record. The record format depends on whether this 6125 // is a per-module index or a combined index file. In the per-module 6126 // case the records contain the associated value's ID for correlation 6127 // with VST entries. In the combined index the correlation is done 6128 // via the bitcode offset of the summary records (which were saved 6129 // in the combined index VST entries). The records also contain 6130 // information used for ThinLTO renaming and importing. 6131 Record.clear(); 6132 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6133 if (!MaybeBitCode) 6134 return MaybeBitCode.takeError(); 6135 switch (unsigned BitCode = MaybeBitCode.get()) { 6136 default: // Default behavior: ignore. 6137 break; 6138 case bitc::FS_FLAGS: { // [flags] 6139 TheIndex.setFlags(Record[0]); 6140 break; 6141 } 6142 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6143 uint64_t ValueID = Record[0]; 6144 GlobalValue::GUID RefGUID = Record[1]; 6145 ValueIdToValueInfoMap[ValueID] = 6146 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6147 break; 6148 } 6149 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6150 // numrefs x valueid, n x (valueid)] 6151 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6152 // numrefs x valueid, 6153 // n x (valueid, hotness)] 6154 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6155 // numrefs x valueid, 6156 // n x (valueid, relblockfreq)] 6157 case bitc::FS_PERMODULE: 6158 case bitc::FS_PERMODULE_RELBF: 6159 case bitc::FS_PERMODULE_PROFILE: { 6160 unsigned ValueID = Record[0]; 6161 uint64_t RawFlags = Record[1]; 6162 unsigned InstCount = Record[2]; 6163 uint64_t RawFunFlags = 0; 6164 unsigned NumRefs = Record[3]; 6165 unsigned NumRORefs = 0, NumWORefs = 0; 6166 int RefListStartIndex = 4; 6167 if (Version >= 4) { 6168 RawFunFlags = Record[3]; 6169 NumRefs = Record[4]; 6170 RefListStartIndex = 5; 6171 if (Version >= 5) { 6172 NumRORefs = Record[5]; 6173 RefListStartIndex = 6; 6174 if (Version >= 7) { 6175 NumWORefs = Record[6]; 6176 RefListStartIndex = 7; 6177 } 6178 } 6179 } 6180 6181 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6182 // The module path string ref set in the summary must be owned by the 6183 // index's module string table. Since we don't have a module path 6184 // string table section in the per-module index, we create a single 6185 // module path string table entry with an empty (0) ID to take 6186 // ownership. 6187 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6188 assert(Record.size() >= RefListStartIndex + NumRefs && 6189 "Record size inconsistent with number of references"); 6190 std::vector<ValueInfo> Refs = makeRefList( 6191 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6192 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6193 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6194 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6195 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6196 IsOldProfileFormat, HasProfile, HasRelBF); 6197 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6198 auto FS = std::make_unique<FunctionSummary>( 6199 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6200 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6201 std::move(PendingTypeTestAssumeVCalls), 6202 std::move(PendingTypeCheckedLoadVCalls), 6203 std::move(PendingTypeTestAssumeConstVCalls), 6204 std::move(PendingTypeCheckedLoadConstVCalls), 6205 std::move(PendingParamAccesses)); 6206 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6207 FS->setModulePath(getThisModule()->first()); 6208 FS->setOriginalName(VIAndOriginalGUID.second); 6209 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6210 break; 6211 } 6212 // FS_ALIAS: [valueid, flags, valueid] 6213 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6214 // they expect all aliasee summaries to be available. 6215 case bitc::FS_ALIAS: { 6216 unsigned ValueID = Record[0]; 6217 uint64_t RawFlags = Record[1]; 6218 unsigned AliaseeID = Record[2]; 6219 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6220 auto AS = std::make_unique<AliasSummary>(Flags); 6221 // The module path string ref set in the summary must be owned by the 6222 // index's module string table. Since we don't have a module path 6223 // string table section in the per-module index, we create a single 6224 // module path string table entry with an empty (0) ID to take 6225 // ownership. 6226 AS->setModulePath(getThisModule()->first()); 6227 6228 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6229 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6230 if (!AliaseeInModule) 6231 return error("Alias expects aliasee summary to be parsed"); 6232 AS->setAliasee(AliaseeVI, AliaseeInModule); 6233 6234 auto GUID = getValueInfoFromValueId(ValueID); 6235 AS->setOriginalName(GUID.second); 6236 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6237 break; 6238 } 6239 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6240 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6241 unsigned ValueID = Record[0]; 6242 uint64_t RawFlags = Record[1]; 6243 unsigned RefArrayStart = 2; 6244 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6245 /* WriteOnly */ false, 6246 /* Constant */ false, 6247 GlobalObject::VCallVisibilityPublic); 6248 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6249 if (Version >= 5) { 6250 GVF = getDecodedGVarFlags(Record[2]); 6251 RefArrayStart = 3; 6252 } 6253 std::vector<ValueInfo> Refs = 6254 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6255 auto FS = 6256 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6257 FS->setModulePath(getThisModule()->first()); 6258 auto GUID = getValueInfoFromValueId(ValueID); 6259 FS->setOriginalName(GUID.second); 6260 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6261 break; 6262 } 6263 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6264 // numrefs, numrefs x valueid, 6265 // n x (valueid, offset)] 6266 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6267 unsigned ValueID = Record[0]; 6268 uint64_t RawFlags = Record[1]; 6269 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6270 unsigned NumRefs = Record[3]; 6271 unsigned RefListStartIndex = 4; 6272 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6273 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6274 std::vector<ValueInfo> Refs = makeRefList( 6275 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6276 VTableFuncList VTableFuncs; 6277 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6278 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6279 uint64_t Offset = Record[++I]; 6280 VTableFuncs.push_back({Callee, Offset}); 6281 } 6282 auto VS = 6283 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6284 VS->setModulePath(getThisModule()->first()); 6285 VS->setVTableFuncs(VTableFuncs); 6286 auto GUID = getValueInfoFromValueId(ValueID); 6287 VS->setOriginalName(GUID.second); 6288 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6289 break; 6290 } 6291 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6292 // numrefs x valueid, n x (valueid)] 6293 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6294 // numrefs x valueid, n x (valueid, hotness)] 6295 case bitc::FS_COMBINED: 6296 case bitc::FS_COMBINED_PROFILE: { 6297 unsigned ValueID = Record[0]; 6298 uint64_t ModuleId = Record[1]; 6299 uint64_t RawFlags = Record[2]; 6300 unsigned InstCount = Record[3]; 6301 uint64_t RawFunFlags = 0; 6302 uint64_t EntryCount = 0; 6303 unsigned NumRefs = Record[4]; 6304 unsigned NumRORefs = 0, NumWORefs = 0; 6305 int RefListStartIndex = 5; 6306 6307 if (Version >= 4) { 6308 RawFunFlags = Record[4]; 6309 RefListStartIndex = 6; 6310 size_t NumRefsIndex = 5; 6311 if (Version >= 5) { 6312 unsigned NumRORefsOffset = 1; 6313 RefListStartIndex = 7; 6314 if (Version >= 6) { 6315 NumRefsIndex = 6; 6316 EntryCount = Record[5]; 6317 RefListStartIndex = 8; 6318 if (Version >= 7) { 6319 RefListStartIndex = 9; 6320 NumWORefs = Record[8]; 6321 NumRORefsOffset = 2; 6322 } 6323 } 6324 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6325 } 6326 NumRefs = Record[NumRefsIndex]; 6327 } 6328 6329 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6330 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6331 assert(Record.size() >= RefListStartIndex + NumRefs && 6332 "Record size inconsistent with number of references"); 6333 std::vector<ValueInfo> Refs = makeRefList( 6334 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6335 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6336 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6337 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6338 IsOldProfileFormat, HasProfile, false); 6339 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6340 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6341 auto FS = std::make_unique<FunctionSummary>( 6342 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6343 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6344 std::move(PendingTypeTestAssumeVCalls), 6345 std::move(PendingTypeCheckedLoadVCalls), 6346 std::move(PendingTypeTestAssumeConstVCalls), 6347 std::move(PendingTypeCheckedLoadConstVCalls), 6348 std::move(PendingParamAccesses)); 6349 LastSeenSummary = FS.get(); 6350 LastSeenGUID = VI.getGUID(); 6351 FS->setModulePath(ModuleIdMap[ModuleId]); 6352 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6353 break; 6354 } 6355 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6356 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6357 // they expect all aliasee summaries to be available. 6358 case bitc::FS_COMBINED_ALIAS: { 6359 unsigned ValueID = Record[0]; 6360 uint64_t ModuleId = Record[1]; 6361 uint64_t RawFlags = Record[2]; 6362 unsigned AliaseeValueId = Record[3]; 6363 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6364 auto AS = std::make_unique<AliasSummary>(Flags); 6365 LastSeenSummary = AS.get(); 6366 AS->setModulePath(ModuleIdMap[ModuleId]); 6367 6368 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6369 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6370 AS->setAliasee(AliaseeVI, AliaseeInModule); 6371 6372 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6373 LastSeenGUID = VI.getGUID(); 6374 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6375 break; 6376 } 6377 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6378 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6379 unsigned ValueID = Record[0]; 6380 uint64_t ModuleId = Record[1]; 6381 uint64_t RawFlags = Record[2]; 6382 unsigned RefArrayStart = 3; 6383 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6384 /* WriteOnly */ false, 6385 /* Constant */ false, 6386 GlobalObject::VCallVisibilityPublic); 6387 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6388 if (Version >= 5) { 6389 GVF = getDecodedGVarFlags(Record[3]); 6390 RefArrayStart = 4; 6391 } 6392 std::vector<ValueInfo> Refs = 6393 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6394 auto FS = 6395 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6396 LastSeenSummary = FS.get(); 6397 FS->setModulePath(ModuleIdMap[ModuleId]); 6398 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6399 LastSeenGUID = VI.getGUID(); 6400 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6401 break; 6402 } 6403 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6404 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6405 uint64_t OriginalName = Record[0]; 6406 if (!LastSeenSummary) 6407 return error("Name attachment that does not follow a combined record"); 6408 LastSeenSummary->setOriginalName(OriginalName); 6409 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6410 // Reset the LastSeenSummary 6411 LastSeenSummary = nullptr; 6412 LastSeenGUID = 0; 6413 break; 6414 } 6415 case bitc::FS_TYPE_TESTS: 6416 assert(PendingTypeTests.empty()); 6417 llvm::append_range(PendingTypeTests, Record); 6418 break; 6419 6420 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6421 assert(PendingTypeTestAssumeVCalls.empty()); 6422 for (unsigned I = 0; I != Record.size(); I += 2) 6423 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6424 break; 6425 6426 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6427 assert(PendingTypeCheckedLoadVCalls.empty()); 6428 for (unsigned I = 0; I != Record.size(); I += 2) 6429 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6430 break; 6431 6432 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6433 PendingTypeTestAssumeConstVCalls.push_back( 6434 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6435 break; 6436 6437 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6438 PendingTypeCheckedLoadConstVCalls.push_back( 6439 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6440 break; 6441 6442 case bitc::FS_CFI_FUNCTION_DEFS: { 6443 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6444 for (unsigned I = 0; I != Record.size(); I += 2) 6445 CfiFunctionDefs.insert( 6446 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6447 break; 6448 } 6449 6450 case bitc::FS_CFI_FUNCTION_DECLS: { 6451 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6452 for (unsigned I = 0; I != Record.size(); I += 2) 6453 CfiFunctionDecls.insert( 6454 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6455 break; 6456 } 6457 6458 case bitc::FS_TYPE_ID: 6459 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6460 break; 6461 6462 case bitc::FS_TYPE_ID_METADATA: 6463 parseTypeIdCompatibleVtableSummaryRecord(Record); 6464 break; 6465 6466 case bitc::FS_BLOCK_COUNT: 6467 TheIndex.addBlockCount(Record[0]); 6468 break; 6469 6470 case bitc::FS_PARAM_ACCESS: { 6471 PendingParamAccesses = parseParamAccesses(Record); 6472 break; 6473 } 6474 } 6475 } 6476 llvm_unreachable("Exit infinite loop"); 6477 } 6478 6479 // Parse the module string table block into the Index. 6480 // This populates the ModulePathStringTable map in the index. 6481 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6482 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6483 return Err; 6484 6485 SmallVector<uint64_t, 64> Record; 6486 6487 SmallString<128> ModulePath; 6488 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6489 6490 while (true) { 6491 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6492 if (!MaybeEntry) 6493 return MaybeEntry.takeError(); 6494 BitstreamEntry Entry = MaybeEntry.get(); 6495 6496 switch (Entry.Kind) { 6497 case BitstreamEntry::SubBlock: // Handled for us already. 6498 case BitstreamEntry::Error: 6499 return error("Malformed block"); 6500 case BitstreamEntry::EndBlock: 6501 return Error::success(); 6502 case BitstreamEntry::Record: 6503 // The interesting case. 6504 break; 6505 } 6506 6507 Record.clear(); 6508 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6509 if (!MaybeRecord) 6510 return MaybeRecord.takeError(); 6511 switch (MaybeRecord.get()) { 6512 default: // Default behavior: ignore. 6513 break; 6514 case bitc::MST_CODE_ENTRY: { 6515 // MST_ENTRY: [modid, namechar x N] 6516 uint64_t ModuleId = Record[0]; 6517 6518 if (convertToString(Record, 1, ModulePath)) 6519 return error("Invalid record"); 6520 6521 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6522 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6523 6524 ModulePath.clear(); 6525 break; 6526 } 6527 /// MST_CODE_HASH: [5*i32] 6528 case bitc::MST_CODE_HASH: { 6529 if (Record.size() != 5) 6530 return error("Invalid hash length " + Twine(Record.size()).str()); 6531 if (!LastSeenModule) 6532 return error("Invalid hash that does not follow a module path"); 6533 int Pos = 0; 6534 for (auto &Val : Record) { 6535 assert(!(Val >> 32) && "Unexpected high bits set"); 6536 LastSeenModule->second.second[Pos++] = Val; 6537 } 6538 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6539 LastSeenModule = nullptr; 6540 break; 6541 } 6542 } 6543 } 6544 llvm_unreachable("Exit infinite loop"); 6545 } 6546 6547 namespace { 6548 6549 // FIXME: This class is only here to support the transition to llvm::Error. It 6550 // will be removed once this transition is complete. Clients should prefer to 6551 // deal with the Error value directly, rather than converting to error_code. 6552 class BitcodeErrorCategoryType : public std::error_category { 6553 const char *name() const noexcept override { 6554 return "llvm.bitcode"; 6555 } 6556 6557 std::string message(int IE) const override { 6558 BitcodeError E = static_cast<BitcodeError>(IE); 6559 switch (E) { 6560 case BitcodeError::CorruptedBitcode: 6561 return "Corrupted bitcode"; 6562 } 6563 llvm_unreachable("Unknown error type!"); 6564 } 6565 }; 6566 6567 } // end anonymous namespace 6568 6569 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6570 6571 const std::error_category &llvm::BitcodeErrorCategory() { 6572 return *ErrorCategory; 6573 } 6574 6575 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6576 unsigned Block, unsigned RecordID) { 6577 if (Error Err = Stream.EnterSubBlock(Block)) 6578 return std::move(Err); 6579 6580 StringRef Strtab; 6581 while (true) { 6582 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6583 if (!MaybeEntry) 6584 return MaybeEntry.takeError(); 6585 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6586 6587 switch (Entry.Kind) { 6588 case BitstreamEntry::EndBlock: 6589 return Strtab; 6590 6591 case BitstreamEntry::Error: 6592 return error("Malformed block"); 6593 6594 case BitstreamEntry::SubBlock: 6595 if (Error Err = Stream.SkipBlock()) 6596 return std::move(Err); 6597 break; 6598 6599 case BitstreamEntry::Record: 6600 StringRef Blob; 6601 SmallVector<uint64_t, 1> Record; 6602 Expected<unsigned> MaybeRecord = 6603 Stream.readRecord(Entry.ID, Record, &Blob); 6604 if (!MaybeRecord) 6605 return MaybeRecord.takeError(); 6606 if (MaybeRecord.get() == RecordID) 6607 Strtab = Blob; 6608 break; 6609 } 6610 } 6611 } 6612 6613 //===----------------------------------------------------------------------===// 6614 // External interface 6615 //===----------------------------------------------------------------------===// 6616 6617 Expected<std::vector<BitcodeModule>> 6618 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6619 auto FOrErr = getBitcodeFileContents(Buffer); 6620 if (!FOrErr) 6621 return FOrErr.takeError(); 6622 return std::move(FOrErr->Mods); 6623 } 6624 6625 Expected<BitcodeFileContents> 6626 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6627 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6628 if (!StreamOrErr) 6629 return StreamOrErr.takeError(); 6630 BitstreamCursor &Stream = *StreamOrErr; 6631 6632 BitcodeFileContents F; 6633 while (true) { 6634 uint64_t BCBegin = Stream.getCurrentByteNo(); 6635 6636 // We may be consuming bitcode from a client that leaves garbage at the end 6637 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6638 // the end that there cannot possibly be another module, stop looking. 6639 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6640 return F; 6641 6642 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6643 if (!MaybeEntry) 6644 return MaybeEntry.takeError(); 6645 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6646 6647 switch (Entry.Kind) { 6648 case BitstreamEntry::EndBlock: 6649 case BitstreamEntry::Error: 6650 return error("Malformed block"); 6651 6652 case BitstreamEntry::SubBlock: { 6653 uint64_t IdentificationBit = -1ull; 6654 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6655 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6656 if (Error Err = Stream.SkipBlock()) 6657 return std::move(Err); 6658 6659 { 6660 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6661 if (!MaybeEntry) 6662 return MaybeEntry.takeError(); 6663 Entry = MaybeEntry.get(); 6664 } 6665 6666 if (Entry.Kind != BitstreamEntry::SubBlock || 6667 Entry.ID != bitc::MODULE_BLOCK_ID) 6668 return error("Malformed block"); 6669 } 6670 6671 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6672 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6673 if (Error Err = Stream.SkipBlock()) 6674 return std::move(Err); 6675 6676 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6677 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6678 Buffer.getBufferIdentifier(), IdentificationBit, 6679 ModuleBit}); 6680 continue; 6681 } 6682 6683 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6684 Expected<StringRef> Strtab = 6685 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6686 if (!Strtab) 6687 return Strtab.takeError(); 6688 // This string table is used by every preceding bitcode module that does 6689 // not have its own string table. A bitcode file may have multiple 6690 // string tables if it was created by binary concatenation, for example 6691 // with "llvm-cat -b". 6692 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6693 if (!I->Strtab.empty()) 6694 break; 6695 I->Strtab = *Strtab; 6696 } 6697 // Similarly, the string table is used by every preceding symbol table; 6698 // normally there will be just one unless the bitcode file was created 6699 // by binary concatenation. 6700 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6701 F.StrtabForSymtab = *Strtab; 6702 continue; 6703 } 6704 6705 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6706 Expected<StringRef> SymtabOrErr = 6707 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6708 if (!SymtabOrErr) 6709 return SymtabOrErr.takeError(); 6710 6711 // We can expect the bitcode file to have multiple symbol tables if it 6712 // was created by binary concatenation. In that case we silently 6713 // ignore any subsequent symbol tables, which is fine because this is a 6714 // low level function. The client is expected to notice that the number 6715 // of modules in the symbol table does not match the number of modules 6716 // in the input file and regenerate the symbol table. 6717 if (F.Symtab.empty()) 6718 F.Symtab = *SymtabOrErr; 6719 continue; 6720 } 6721 6722 if (Error Err = Stream.SkipBlock()) 6723 return std::move(Err); 6724 continue; 6725 } 6726 case BitstreamEntry::Record: 6727 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6728 continue; 6729 else 6730 return StreamFailed.takeError(); 6731 } 6732 } 6733 } 6734 6735 /// Get a lazy one-at-time loading module from bitcode. 6736 /// 6737 /// This isn't always used in a lazy context. In particular, it's also used by 6738 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6739 /// in forward-referenced functions from block address references. 6740 /// 6741 /// \param[in] MaterializeAll Set to \c true if we should materialize 6742 /// everything. 6743 Expected<std::unique_ptr<Module>> 6744 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6745 bool ShouldLazyLoadMetadata, bool IsImporting, 6746 DataLayoutCallbackTy DataLayoutCallback) { 6747 BitstreamCursor Stream(Buffer); 6748 6749 std::string ProducerIdentification; 6750 if (IdentificationBit != -1ull) { 6751 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6752 return std::move(JumpFailed); 6753 Expected<std::string> ProducerIdentificationOrErr = 6754 readIdentificationBlock(Stream); 6755 if (!ProducerIdentificationOrErr) 6756 return ProducerIdentificationOrErr.takeError(); 6757 6758 ProducerIdentification = *ProducerIdentificationOrErr; 6759 } 6760 6761 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6762 return std::move(JumpFailed); 6763 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6764 Context); 6765 6766 std::unique_ptr<Module> M = 6767 std::make_unique<Module>(ModuleIdentifier, Context); 6768 M->setMaterializer(R); 6769 6770 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6771 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6772 IsImporting, DataLayoutCallback)) 6773 return std::move(Err); 6774 6775 if (MaterializeAll) { 6776 // Read in the entire module, and destroy the BitcodeReader. 6777 if (Error Err = M->materializeAll()) 6778 return std::move(Err); 6779 } else { 6780 // Resolve forward references from blockaddresses. 6781 if (Error Err = R->materializeForwardReferencedFunctions()) 6782 return std::move(Err); 6783 } 6784 return std::move(M); 6785 } 6786 6787 Expected<std::unique_ptr<Module>> 6788 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6789 bool IsImporting) { 6790 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6791 [](StringRef) { return None; }); 6792 } 6793 6794 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6795 // We don't use ModuleIdentifier here because the client may need to control the 6796 // module path used in the combined summary (e.g. when reading summaries for 6797 // regular LTO modules). 6798 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6799 StringRef ModulePath, uint64_t ModuleId) { 6800 BitstreamCursor Stream(Buffer); 6801 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6802 return JumpFailed; 6803 6804 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6805 ModulePath, ModuleId); 6806 return R.parseModule(); 6807 } 6808 6809 // Parse the specified bitcode buffer, returning the function info index. 6810 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6811 BitstreamCursor Stream(Buffer); 6812 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6813 return std::move(JumpFailed); 6814 6815 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6816 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6817 ModuleIdentifier, 0); 6818 6819 if (Error Err = R.parseModule()) 6820 return std::move(Err); 6821 6822 return std::move(Index); 6823 } 6824 6825 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6826 unsigned ID) { 6827 if (Error Err = Stream.EnterSubBlock(ID)) 6828 return std::move(Err); 6829 SmallVector<uint64_t, 64> Record; 6830 6831 while (true) { 6832 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6833 if (!MaybeEntry) 6834 return MaybeEntry.takeError(); 6835 BitstreamEntry Entry = MaybeEntry.get(); 6836 6837 switch (Entry.Kind) { 6838 case BitstreamEntry::SubBlock: // Handled for us already. 6839 case BitstreamEntry::Error: 6840 return error("Malformed block"); 6841 case BitstreamEntry::EndBlock: 6842 // If no flags record found, conservatively return true to mimic 6843 // behavior before this flag was added. 6844 return true; 6845 case BitstreamEntry::Record: 6846 // The interesting case. 6847 break; 6848 } 6849 6850 // Look for the FS_FLAGS record. 6851 Record.clear(); 6852 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6853 if (!MaybeBitCode) 6854 return MaybeBitCode.takeError(); 6855 switch (MaybeBitCode.get()) { 6856 default: // Default behavior: ignore. 6857 break; 6858 case bitc::FS_FLAGS: { // [flags] 6859 uint64_t Flags = Record[0]; 6860 // Scan flags. 6861 assert(Flags <= 0x7f && "Unexpected bits in flag"); 6862 6863 return Flags & 0x8; 6864 } 6865 } 6866 } 6867 llvm_unreachable("Exit infinite loop"); 6868 } 6869 6870 // Check if the given bitcode buffer contains a global value summary block. 6871 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6872 BitstreamCursor Stream(Buffer); 6873 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6874 return std::move(JumpFailed); 6875 6876 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6877 return std::move(Err); 6878 6879 while (true) { 6880 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6881 if (!MaybeEntry) 6882 return MaybeEntry.takeError(); 6883 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6884 6885 switch (Entry.Kind) { 6886 case BitstreamEntry::Error: 6887 return error("Malformed block"); 6888 case BitstreamEntry::EndBlock: 6889 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6890 /*EnableSplitLTOUnit=*/false}; 6891 6892 case BitstreamEntry::SubBlock: 6893 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6894 Expected<bool> EnableSplitLTOUnit = 6895 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6896 if (!EnableSplitLTOUnit) 6897 return EnableSplitLTOUnit.takeError(); 6898 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6899 *EnableSplitLTOUnit}; 6900 } 6901 6902 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6903 Expected<bool> EnableSplitLTOUnit = 6904 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6905 if (!EnableSplitLTOUnit) 6906 return EnableSplitLTOUnit.takeError(); 6907 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6908 *EnableSplitLTOUnit}; 6909 } 6910 6911 // Ignore other sub-blocks. 6912 if (Error Err = Stream.SkipBlock()) 6913 return std::move(Err); 6914 continue; 6915 6916 case BitstreamEntry::Record: 6917 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6918 continue; 6919 else 6920 return StreamFailed.takeError(); 6921 } 6922 } 6923 } 6924 6925 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6926 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6927 if (!MsOrErr) 6928 return MsOrErr.takeError(); 6929 6930 if (MsOrErr->size() != 1) 6931 return error("Expected a single module"); 6932 6933 return (*MsOrErr)[0]; 6934 } 6935 6936 Expected<std::unique_ptr<Module>> 6937 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6938 bool ShouldLazyLoadMetadata, bool IsImporting) { 6939 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6940 if (!BM) 6941 return BM.takeError(); 6942 6943 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6944 } 6945 6946 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6947 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6948 bool ShouldLazyLoadMetadata, bool IsImporting) { 6949 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6950 IsImporting); 6951 if (MOrErr) 6952 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6953 return MOrErr; 6954 } 6955 6956 Expected<std::unique_ptr<Module>> 6957 BitcodeModule::parseModule(LLVMContext &Context, 6958 DataLayoutCallbackTy DataLayoutCallback) { 6959 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 6960 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6961 // written. We must defer until the Module has been fully materialized. 6962 } 6963 6964 Expected<std::unique_ptr<Module>> 6965 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 6966 DataLayoutCallbackTy DataLayoutCallback) { 6967 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6968 if (!BM) 6969 return BM.takeError(); 6970 6971 return BM->parseModule(Context, DataLayoutCallback); 6972 } 6973 6974 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6975 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6976 if (!StreamOrErr) 6977 return StreamOrErr.takeError(); 6978 6979 return readTriple(*StreamOrErr); 6980 } 6981 6982 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6983 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6984 if (!StreamOrErr) 6985 return StreamOrErr.takeError(); 6986 6987 return hasObjCCategory(*StreamOrErr); 6988 } 6989 6990 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6991 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6992 if (!StreamOrErr) 6993 return StreamOrErr.takeError(); 6994 6995 return readIdentificationCode(*StreamOrErr); 6996 } 6997 6998 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6999 ModuleSummaryIndex &CombinedIndex, 7000 uint64_t ModuleId) { 7001 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7002 if (!BM) 7003 return BM.takeError(); 7004 7005 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7006 } 7007 7008 Expected<std::unique_ptr<ModuleSummaryIndex>> 7009 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7010 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7011 if (!BM) 7012 return BM.takeError(); 7013 7014 return BM->getSummary(); 7015 } 7016 7017 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7018 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7019 if (!BM) 7020 return BM.takeError(); 7021 7022 return BM->getLTOInfo(); 7023 } 7024 7025 Expected<std::unique_ptr<ModuleSummaryIndex>> 7026 llvm::getModuleSummaryIndexForFile(StringRef Path, 7027 bool IgnoreEmptyThinLTOIndexFile) { 7028 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7029 MemoryBuffer::getFileOrSTDIN(Path); 7030 if (!FileOrErr) 7031 return errorCodeToError(FileOrErr.getError()); 7032 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7033 return nullptr; 7034 return getModuleSummaryIndex(**FileOrErr); 7035 } 7036