1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/Verifier.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/ManagedStatic.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <deque> 78 #include <map> 79 #include <memory> 80 #include <set> 81 #include <string> 82 #include <system_error> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 static cl::opt<bool> PrintSummaryGUIDs( 90 "print-summary-global-ids", cl::init(false), cl::Hidden, 91 cl::desc( 92 "Print the global id for each value when reading the module summary")); 93 94 namespace { 95 96 enum { 97 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 98 }; 99 100 } // end anonymous namespace 101 102 static Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 108 if (!Stream.canSkipToPos(4)) 109 return createStringError(std::errc::illegal_byte_sequence, 110 "file too small to contain bitcode header"); 111 for (unsigned C : {'B', 'C'}) 112 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 113 if (Res.get() != C) 114 return createStringError(std::errc::illegal_byte_sequence, 115 "file doesn't start with bitcode header"); 116 } else 117 return Res.takeError(); 118 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 119 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 120 if (Res.get() != C) 121 return createStringError(std::errc::illegal_byte_sequence, 122 "file doesn't start with bitcode header"); 123 } else 124 return Res.takeError(); 125 return Error::success(); 126 } 127 128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 129 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 130 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 131 132 if (Buffer.getBufferSize() & 3) 133 return error("Invalid bitcode signature"); 134 135 // If we have a wrapper header, parse it and ignore the non-bc file contents. 136 // The magic number is 0x0B17C0DE stored in little endian. 137 if (isBitcodeWrapper(BufPtr, BufEnd)) 138 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 139 return error("Invalid bitcode wrapper header"); 140 141 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 142 if (Error Err = hasInvalidBitcodeHeader(Stream)) 143 return std::move(Err); 144 145 return std::move(Stream); 146 } 147 148 /// Convert a string from a record into an std::string, return true on failure. 149 template <typename StrTy> 150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 Result.append(Record.begin() + Idx, Record.end()); 156 return false; 157 } 158 159 // Strip all the TBAA attachment for the module. 160 static void stripTBAA(Module *M) { 161 for (auto &F : *M) { 162 if (F.isMaterializable()) 163 continue; 164 for (auto &I : instructions(F)) 165 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 166 } 167 } 168 169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 170 /// "epoch" encoded in the bitcode, and return the producer name if any. 171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 172 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 173 return std::move(Err); 174 175 // Read all the records. 176 SmallVector<uint64_t, 64> Record; 177 178 std::string ProducerIdentification; 179 180 while (true) { 181 BitstreamEntry Entry; 182 if (Error E = Stream.advance().moveInto(Entry)) 183 return std::move(E); 184 185 switch (Entry.Kind) { 186 default: 187 case BitstreamEntry::Error: 188 return error("Malformed block"); 189 case BitstreamEntry::EndBlock: 190 return ProducerIdentification; 191 case BitstreamEntry::Record: 192 // The interesting case. 193 break; 194 } 195 196 // Read a record. 197 Record.clear(); 198 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 199 if (!MaybeBitCode) 200 return MaybeBitCode.takeError(); 201 switch (MaybeBitCode.get()) { 202 default: // Default behavior: reject 203 return error("Invalid value"); 204 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 205 convertToString(Record, 0, ProducerIdentification); 206 break; 207 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 208 unsigned epoch = (unsigned)Record[0]; 209 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 210 return error( 211 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 212 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 213 } 214 } 215 } 216 } 217 } 218 219 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 220 // We expect a number of well-defined blocks, though we don't necessarily 221 // need to understand them all. 222 while (true) { 223 if (Stream.AtEndOfStream()) 224 return ""; 225 226 BitstreamEntry Entry; 227 if (Error E = Stream.advance().moveInto(Entry)) 228 return std::move(E); 229 230 switch (Entry.Kind) { 231 case BitstreamEntry::EndBlock: 232 case BitstreamEntry::Error: 233 return error("Malformed block"); 234 235 case BitstreamEntry::SubBlock: 236 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 237 return readIdentificationBlock(Stream); 238 239 // Ignore other sub-blocks. 240 if (Error Err = Stream.SkipBlock()) 241 return std::move(Err); 242 continue; 243 case BitstreamEntry::Record: 244 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 245 return std::move(E); 246 continue; 247 } 248 } 249 } 250 251 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 252 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 253 return std::move(Err); 254 255 SmallVector<uint64_t, 64> Record; 256 // Read all the records for this module. 257 258 while (true) { 259 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 260 if (!MaybeEntry) 261 return MaybeEntry.takeError(); 262 BitstreamEntry Entry = MaybeEntry.get(); 263 264 switch (Entry.Kind) { 265 case BitstreamEntry::SubBlock: // Handled for us already. 266 case BitstreamEntry::Error: 267 return error("Malformed block"); 268 case BitstreamEntry::EndBlock: 269 return false; 270 case BitstreamEntry::Record: 271 // The interesting case. 272 break; 273 } 274 275 // Read a record. 276 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 277 if (!MaybeRecord) 278 return MaybeRecord.takeError(); 279 switch (MaybeRecord.get()) { 280 default: 281 break; // Default behavior, ignore unknown content. 282 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 283 std::string S; 284 if (convertToString(Record, 0, S)) 285 return error("Invalid record"); 286 // Check for the i386 and other (x86_64, ARM) conventions 287 if (S.find("__DATA,__objc_catlist") != std::string::npos || 288 S.find("__OBJC,__category") != std::string::npos) 289 return true; 290 break; 291 } 292 } 293 Record.clear(); 294 } 295 llvm_unreachable("Exit infinite loop"); 296 } 297 298 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 299 // We expect a number of well-defined blocks, though we don't necessarily 300 // need to understand them all. 301 while (true) { 302 BitstreamEntry Entry; 303 if (Error E = Stream.advance().moveInto(Entry)) 304 return std::move(E); 305 306 switch (Entry.Kind) { 307 case BitstreamEntry::Error: 308 return error("Malformed block"); 309 case BitstreamEntry::EndBlock: 310 return false; 311 312 case BitstreamEntry::SubBlock: 313 if (Entry.ID == bitc::MODULE_BLOCK_ID) 314 return hasObjCCategoryInModule(Stream); 315 316 // Ignore other sub-blocks. 317 if (Error Err = Stream.SkipBlock()) 318 return std::move(Err); 319 continue; 320 321 case BitstreamEntry::Record: 322 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 323 return std::move(E); 324 continue; 325 } 326 } 327 } 328 329 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 330 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 331 return std::move(Err); 332 333 SmallVector<uint64_t, 64> Record; 334 335 std::string Triple; 336 337 // Read all the records for this module. 338 while (true) { 339 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 340 if (!MaybeEntry) 341 return MaybeEntry.takeError(); 342 BitstreamEntry Entry = MaybeEntry.get(); 343 344 switch (Entry.Kind) { 345 case BitstreamEntry::SubBlock: // Handled for us already. 346 case BitstreamEntry::Error: 347 return error("Malformed block"); 348 case BitstreamEntry::EndBlock: 349 return Triple; 350 case BitstreamEntry::Record: 351 // The interesting case. 352 break; 353 } 354 355 // Read a record. 356 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 357 if (!MaybeRecord) 358 return MaybeRecord.takeError(); 359 switch (MaybeRecord.get()) { 360 default: break; // Default behavior, ignore unknown content. 361 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 362 std::string S; 363 if (convertToString(Record, 0, S)) 364 return error("Invalid record"); 365 Triple = S; 366 break; 367 } 368 } 369 Record.clear(); 370 } 371 llvm_unreachable("Exit infinite loop"); 372 } 373 374 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 375 // We expect a number of well-defined blocks, though we don't necessarily 376 // need to understand them all. 377 while (true) { 378 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 379 if (!MaybeEntry) 380 return MaybeEntry.takeError(); 381 BitstreamEntry Entry = MaybeEntry.get(); 382 383 switch (Entry.Kind) { 384 case BitstreamEntry::Error: 385 return error("Malformed block"); 386 case BitstreamEntry::EndBlock: 387 return ""; 388 389 case BitstreamEntry::SubBlock: 390 if (Entry.ID == bitc::MODULE_BLOCK_ID) 391 return readModuleTriple(Stream); 392 393 // Ignore other sub-blocks. 394 if (Error Err = Stream.SkipBlock()) 395 return std::move(Err); 396 continue; 397 398 case BitstreamEntry::Record: 399 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 400 continue; 401 else 402 return Skipped.takeError(); 403 } 404 } 405 } 406 407 namespace { 408 409 class BitcodeReaderBase { 410 protected: 411 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 412 : Stream(std::move(Stream)), Strtab(Strtab) { 413 this->Stream.setBlockInfo(&BlockInfo); 414 } 415 416 BitstreamBlockInfo BlockInfo; 417 BitstreamCursor Stream; 418 StringRef Strtab; 419 420 /// In version 2 of the bitcode we store names of global values and comdats in 421 /// a string table rather than in the VST. 422 bool UseStrtab = false; 423 424 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 425 426 /// If this module uses a string table, pop the reference to the string table 427 /// and return the referenced string and the rest of the record. Otherwise 428 /// just return the record itself. 429 std::pair<StringRef, ArrayRef<uint64_t>> 430 readNameFromStrtab(ArrayRef<uint64_t> Record); 431 432 bool readBlockInfo(); 433 434 // Contains an arbitrary and optional string identifying the bitcode producer 435 std::string ProducerIdentification; 436 437 Error error(const Twine &Message); 438 }; 439 440 } // end anonymous namespace 441 442 Error BitcodeReaderBase::error(const Twine &Message) { 443 std::string FullMsg = Message.str(); 444 if (!ProducerIdentification.empty()) 445 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 446 LLVM_VERSION_STRING "')"; 447 return ::error(FullMsg); 448 } 449 450 Expected<unsigned> 451 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 452 if (Record.empty()) 453 return error("Invalid record"); 454 unsigned ModuleVersion = Record[0]; 455 if (ModuleVersion > 2) 456 return error("Invalid value"); 457 UseStrtab = ModuleVersion >= 2; 458 return ModuleVersion; 459 } 460 461 std::pair<StringRef, ArrayRef<uint64_t>> 462 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 463 if (!UseStrtab) 464 return {"", Record}; 465 // Invalid reference. Let the caller complain about the record being empty. 466 if (Record[0] + Record[1] > Strtab.size()) 467 return {"", {}}; 468 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 469 } 470 471 namespace { 472 473 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 474 LLVMContext &Context; 475 Module *TheModule = nullptr; 476 // Next offset to start scanning for lazy parsing of function bodies. 477 uint64_t NextUnreadBit = 0; 478 // Last function offset found in the VST. 479 uint64_t LastFunctionBlockBit = 0; 480 bool SeenValueSymbolTable = false; 481 uint64_t VSTOffset = 0; 482 483 std::vector<std::string> SectionTable; 484 std::vector<std::string> GCTable; 485 486 std::vector<Type*> TypeList; 487 DenseMap<Function *, FunctionType *> FunctionTypes; 488 BitcodeReaderValueList ValueList; 489 Optional<MetadataLoader> MDLoader; 490 std::vector<Comdat *> ComdatList; 491 DenseSet<GlobalObject *> ImplicitComdatObjects; 492 SmallVector<Instruction *, 64> InstructionList; 493 494 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 495 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 496 497 struct FunctionOperandInfo { 498 Function *F; 499 unsigned PersonalityFn; 500 unsigned Prefix; 501 unsigned Prologue; 502 }; 503 std::vector<FunctionOperandInfo> FunctionOperands; 504 505 /// The set of attributes by index. Index zero in the file is for null, and 506 /// is thus not represented here. As such all indices are off by one. 507 std::vector<AttributeList> MAttributes; 508 509 /// The set of attribute groups. 510 std::map<unsigned, AttributeList> MAttributeGroups; 511 512 /// While parsing a function body, this is a list of the basic blocks for the 513 /// function. 514 std::vector<BasicBlock*> FunctionBBs; 515 516 // When reading the module header, this list is populated with functions that 517 // have bodies later in the file. 518 std::vector<Function*> FunctionsWithBodies; 519 520 // When intrinsic functions are encountered which require upgrading they are 521 // stored here with their replacement function. 522 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 523 UpdatedIntrinsicMap UpgradedIntrinsics; 524 // Intrinsics which were remangled because of types rename 525 UpdatedIntrinsicMap RemangledIntrinsics; 526 527 // Several operations happen after the module header has been read, but 528 // before function bodies are processed. This keeps track of whether 529 // we've done this yet. 530 bool SeenFirstFunctionBody = false; 531 532 /// When function bodies are initially scanned, this map contains info about 533 /// where to find deferred function body in the stream. 534 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 535 536 /// When Metadata block is initially scanned when parsing the module, we may 537 /// choose to defer parsing of the metadata. This vector contains info about 538 /// which Metadata blocks are deferred. 539 std::vector<uint64_t> DeferredMetadataInfo; 540 541 /// These are basic blocks forward-referenced by block addresses. They are 542 /// inserted lazily into functions when they're loaded. The basic block ID is 543 /// its index into the vector. 544 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 545 std::deque<Function *> BasicBlockFwdRefQueue; 546 547 /// Indicates that we are using a new encoding for instruction operands where 548 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 549 /// instruction number, for a more compact encoding. Some instruction 550 /// operands are not relative to the instruction ID: basic block numbers, and 551 /// types. Once the old style function blocks have been phased out, we would 552 /// not need this flag. 553 bool UseRelativeIDs = false; 554 555 /// True if all functions will be materialized, negating the need to process 556 /// (e.g.) blockaddress forward references. 557 bool WillMaterializeAllForwardRefs = false; 558 559 bool StripDebugInfo = false; 560 TBAAVerifier TBAAVerifyHelper; 561 562 std::vector<std::string> BundleTags; 563 SmallVector<SyncScope::ID, 8> SSIDs; 564 565 public: 566 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 567 StringRef ProducerIdentification, LLVMContext &Context); 568 569 Error materializeForwardReferencedFunctions(); 570 571 Error materialize(GlobalValue *GV) override; 572 Error materializeModule() override; 573 std::vector<StructType *> getIdentifiedStructTypes() const override; 574 575 /// Main interface to parsing a bitcode buffer. 576 /// \returns true if an error occurred. 577 Error parseBitcodeInto( 578 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 579 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 580 581 static uint64_t decodeSignRotatedValue(uint64_t V); 582 583 /// Materialize any deferred Metadata block. 584 Error materializeMetadata() override; 585 586 void setStripDebugInfo() override; 587 588 private: 589 std::vector<StructType *> IdentifiedStructTypes; 590 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 591 StructType *createIdentifiedStructType(LLVMContext &Context); 592 593 Type *getTypeByID(unsigned ID); 594 595 Value *getFnValueByID(unsigned ID, Type *Ty) { 596 if (Ty && Ty->isMetadataTy()) 597 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 598 return ValueList.getValueFwdRef(ID, Ty); 599 } 600 601 Metadata *getFnMetadataByID(unsigned ID) { 602 return MDLoader->getMetadataFwdRefOrLoad(ID); 603 } 604 605 BasicBlock *getBasicBlock(unsigned ID) const { 606 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 607 return FunctionBBs[ID]; 608 } 609 610 AttributeList getAttributes(unsigned i) const { 611 if (i-1 < MAttributes.size()) 612 return MAttributes[i-1]; 613 return AttributeList(); 614 } 615 616 /// Read a value/type pair out of the specified record from slot 'Slot'. 617 /// Increment Slot past the number of slots used in the record. Return true on 618 /// failure. 619 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 620 unsigned InstNum, Value *&ResVal) { 621 if (Slot == Record.size()) return true; 622 unsigned ValNo = (unsigned)Record[Slot++]; 623 // Adjust the ValNo, if it was encoded relative to the InstNum. 624 if (UseRelativeIDs) 625 ValNo = InstNum - ValNo; 626 if (ValNo < InstNum) { 627 // If this is not a forward reference, just return the value we already 628 // have. 629 ResVal = getFnValueByID(ValNo, nullptr); 630 return ResVal == nullptr; 631 } 632 if (Slot == Record.size()) 633 return true; 634 635 unsigned TypeNo = (unsigned)Record[Slot++]; 636 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 637 return ResVal == nullptr; 638 } 639 640 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 641 /// past the number of slots used by the value in the record. Return true if 642 /// there is an error. 643 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 644 unsigned InstNum, Type *Ty, Value *&ResVal) { 645 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 646 return true; 647 // All values currently take a single record slot. 648 ++Slot; 649 return false; 650 } 651 652 /// Like popValue, but does not increment the Slot number. 653 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 654 unsigned InstNum, Type *Ty, Value *&ResVal) { 655 ResVal = getValue(Record, Slot, InstNum, Ty); 656 return ResVal == nullptr; 657 } 658 659 /// Version of getValue that returns ResVal directly, or 0 if there is an 660 /// error. 661 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 662 unsigned InstNum, Type *Ty) { 663 if (Slot == Record.size()) return nullptr; 664 unsigned ValNo = (unsigned)Record[Slot]; 665 // Adjust the ValNo, if it was encoded relative to the InstNum. 666 if (UseRelativeIDs) 667 ValNo = InstNum - ValNo; 668 return getFnValueByID(ValNo, Ty); 669 } 670 671 /// Like getValue, but decodes signed VBRs. 672 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 673 unsigned InstNum, Type *Ty) { 674 if (Slot == Record.size()) return nullptr; 675 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 676 // Adjust the ValNo, if it was encoded relative to the InstNum. 677 if (UseRelativeIDs) 678 ValNo = InstNum - ValNo; 679 return getFnValueByID(ValNo, Ty); 680 } 681 682 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 683 /// corresponding argument's pointee type. Also upgrades intrinsics that now 684 /// require an elementtype attribute. 685 void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys); 686 687 /// Converts alignment exponent (i.e. power of two (or zero)) to the 688 /// corresponding alignment to use. If alignment is too large, returns 689 /// a corresponding error code. 690 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 691 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 692 Error parseModule( 693 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 694 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 695 696 Error parseComdatRecord(ArrayRef<uint64_t> Record); 697 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 698 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 699 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 700 ArrayRef<uint64_t> Record); 701 702 Error parseAttributeBlock(); 703 Error parseAttributeGroupBlock(); 704 Error parseTypeTable(); 705 Error parseTypeTableBody(); 706 Error parseOperandBundleTags(); 707 Error parseSyncScopeNames(); 708 709 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 710 unsigned NameIndex, Triple &TT); 711 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 712 ArrayRef<uint64_t> Record); 713 Error parseValueSymbolTable(uint64_t Offset = 0); 714 Error parseGlobalValueSymbolTable(); 715 Error parseConstants(); 716 Error rememberAndSkipFunctionBodies(); 717 Error rememberAndSkipFunctionBody(); 718 /// Save the positions of the Metadata blocks and skip parsing the blocks. 719 Error rememberAndSkipMetadata(); 720 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 721 Error parseFunctionBody(Function *F); 722 Error globalCleanup(); 723 Error resolveGlobalAndIndirectSymbolInits(); 724 Error parseUseLists(); 725 Error findFunctionInStream( 726 Function *F, 727 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 728 729 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 730 }; 731 732 /// Class to manage reading and parsing function summary index bitcode 733 /// files/sections. 734 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 735 /// The module index built during parsing. 736 ModuleSummaryIndex &TheIndex; 737 738 /// Indicates whether we have encountered a global value summary section 739 /// yet during parsing. 740 bool SeenGlobalValSummary = false; 741 742 /// Indicates whether we have already parsed the VST, used for error checking. 743 bool SeenValueSymbolTable = false; 744 745 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 746 /// Used to enable on-demand parsing of the VST. 747 uint64_t VSTOffset = 0; 748 749 // Map to save ValueId to ValueInfo association that was recorded in the 750 // ValueSymbolTable. It is used after the VST is parsed to convert 751 // call graph edges read from the function summary from referencing 752 // callees by their ValueId to using the ValueInfo instead, which is how 753 // they are recorded in the summary index being built. 754 // We save a GUID which refers to the same global as the ValueInfo, but 755 // ignoring the linkage, i.e. for values other than local linkage they are 756 // identical. 757 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 758 ValueIdToValueInfoMap; 759 760 /// Map populated during module path string table parsing, from the 761 /// module ID to a string reference owned by the index's module 762 /// path string table, used to correlate with combined index 763 /// summary records. 764 DenseMap<uint64_t, StringRef> ModuleIdMap; 765 766 /// Original source file name recorded in a bitcode record. 767 std::string SourceFileName; 768 769 /// The string identifier given to this module by the client, normally the 770 /// path to the bitcode file. 771 StringRef ModulePath; 772 773 /// For per-module summary indexes, the unique numerical identifier given to 774 /// this module by the client. 775 unsigned ModuleId; 776 777 public: 778 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 779 ModuleSummaryIndex &TheIndex, 780 StringRef ModulePath, unsigned ModuleId); 781 782 Error parseModule(); 783 784 private: 785 void setValueGUID(uint64_t ValueID, StringRef ValueName, 786 GlobalValue::LinkageTypes Linkage, 787 StringRef SourceFileName); 788 Error parseValueSymbolTable( 789 uint64_t Offset, 790 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 791 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 792 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 793 bool IsOldProfileFormat, 794 bool HasProfile, 795 bool HasRelBF); 796 Error parseEntireSummary(unsigned ID); 797 Error parseModuleStringTable(); 798 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 799 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 800 TypeIdCompatibleVtableInfo &TypeId); 801 std::vector<FunctionSummary::ParamAccess> 802 parseParamAccesses(ArrayRef<uint64_t> Record); 803 804 std::pair<ValueInfo, GlobalValue::GUID> 805 getValueInfoFromValueId(unsigned ValueId); 806 807 void addThisModule(); 808 ModuleSummaryIndex::ModuleInfo *getThisModule(); 809 }; 810 811 } // end anonymous namespace 812 813 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 814 Error Err) { 815 if (Err) { 816 std::error_code EC; 817 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 818 EC = EIB.convertToErrorCode(); 819 Ctx.emitError(EIB.message()); 820 }); 821 return EC; 822 } 823 return std::error_code(); 824 } 825 826 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 827 StringRef ProducerIdentification, 828 LLVMContext &Context) 829 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 830 ValueList(Context, Stream.SizeInBytes()) { 831 this->ProducerIdentification = std::string(ProducerIdentification); 832 } 833 834 Error BitcodeReader::materializeForwardReferencedFunctions() { 835 if (WillMaterializeAllForwardRefs) 836 return Error::success(); 837 838 // Prevent recursion. 839 WillMaterializeAllForwardRefs = true; 840 841 while (!BasicBlockFwdRefQueue.empty()) { 842 Function *F = BasicBlockFwdRefQueue.front(); 843 BasicBlockFwdRefQueue.pop_front(); 844 assert(F && "Expected valid function"); 845 if (!BasicBlockFwdRefs.count(F)) 846 // Already materialized. 847 continue; 848 849 // Check for a function that isn't materializable to prevent an infinite 850 // loop. When parsing a blockaddress stored in a global variable, there 851 // isn't a trivial way to check if a function will have a body without a 852 // linear search through FunctionsWithBodies, so just check it here. 853 if (!F->isMaterializable()) 854 return error("Never resolved function from blockaddress"); 855 856 // Try to materialize F. 857 if (Error Err = materialize(F)) 858 return Err; 859 } 860 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 861 862 // Reset state. 863 WillMaterializeAllForwardRefs = false; 864 return Error::success(); 865 } 866 867 //===----------------------------------------------------------------------===// 868 // Helper functions to implement forward reference resolution, etc. 869 //===----------------------------------------------------------------------===// 870 871 static bool hasImplicitComdat(size_t Val) { 872 switch (Val) { 873 default: 874 return false; 875 case 1: // Old WeakAnyLinkage 876 case 4: // Old LinkOnceAnyLinkage 877 case 10: // Old WeakODRLinkage 878 case 11: // Old LinkOnceODRLinkage 879 return true; 880 } 881 } 882 883 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 884 switch (Val) { 885 default: // Map unknown/new linkages to external 886 case 0: 887 return GlobalValue::ExternalLinkage; 888 case 2: 889 return GlobalValue::AppendingLinkage; 890 case 3: 891 return GlobalValue::InternalLinkage; 892 case 5: 893 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 894 case 6: 895 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 896 case 7: 897 return GlobalValue::ExternalWeakLinkage; 898 case 8: 899 return GlobalValue::CommonLinkage; 900 case 9: 901 return GlobalValue::PrivateLinkage; 902 case 12: 903 return GlobalValue::AvailableExternallyLinkage; 904 case 13: 905 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 906 case 14: 907 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 908 case 15: 909 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 910 case 1: // Old value with implicit comdat. 911 case 16: 912 return GlobalValue::WeakAnyLinkage; 913 case 10: // Old value with implicit comdat. 914 case 17: 915 return GlobalValue::WeakODRLinkage; 916 case 4: // Old value with implicit comdat. 917 case 18: 918 return GlobalValue::LinkOnceAnyLinkage; 919 case 11: // Old value with implicit comdat. 920 case 19: 921 return GlobalValue::LinkOnceODRLinkage; 922 } 923 } 924 925 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 926 FunctionSummary::FFlags Flags; 927 Flags.ReadNone = RawFlags & 0x1; 928 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 929 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 930 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 931 Flags.NoInline = (RawFlags >> 4) & 0x1; 932 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 933 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 934 Flags.MayThrow = (RawFlags >> 7) & 0x1; 935 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 936 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 937 return Flags; 938 } 939 940 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 941 // 942 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 943 // visibility: [8, 10). 944 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 945 uint64_t Version) { 946 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 947 // like getDecodedLinkage() above. Any future change to the linkage enum and 948 // to getDecodedLinkage() will need to be taken into account here as above. 949 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 950 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 951 RawFlags = RawFlags >> 4; 952 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 953 // The Live flag wasn't introduced until version 3. For dead stripping 954 // to work correctly on earlier versions, we must conservatively treat all 955 // values as live. 956 bool Live = (RawFlags & 0x2) || Version < 3; 957 bool Local = (RawFlags & 0x4); 958 bool AutoHide = (RawFlags & 0x8); 959 960 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 961 Live, Local, AutoHide); 962 } 963 964 // Decode the flags for GlobalVariable in the summary 965 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 966 return GlobalVarSummary::GVarFlags( 967 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 968 (RawFlags & 0x4) ? true : false, 969 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 970 } 971 972 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 973 switch (Val) { 974 default: // Map unknown visibilities to default. 975 case 0: return GlobalValue::DefaultVisibility; 976 case 1: return GlobalValue::HiddenVisibility; 977 case 2: return GlobalValue::ProtectedVisibility; 978 } 979 } 980 981 static GlobalValue::DLLStorageClassTypes 982 getDecodedDLLStorageClass(unsigned Val) { 983 switch (Val) { 984 default: // Map unknown values to default. 985 case 0: return GlobalValue::DefaultStorageClass; 986 case 1: return GlobalValue::DLLImportStorageClass; 987 case 2: return GlobalValue::DLLExportStorageClass; 988 } 989 } 990 991 static bool getDecodedDSOLocal(unsigned Val) { 992 switch(Val) { 993 default: // Map unknown values to preemptable. 994 case 0: return false; 995 case 1: return true; 996 } 997 } 998 999 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1000 switch (Val) { 1001 case 0: return GlobalVariable::NotThreadLocal; 1002 default: // Map unknown non-zero value to general dynamic. 1003 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1004 case 2: return GlobalVariable::LocalDynamicTLSModel; 1005 case 3: return GlobalVariable::InitialExecTLSModel; 1006 case 4: return GlobalVariable::LocalExecTLSModel; 1007 } 1008 } 1009 1010 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1011 switch (Val) { 1012 default: // Map unknown to UnnamedAddr::None. 1013 case 0: return GlobalVariable::UnnamedAddr::None; 1014 case 1: return GlobalVariable::UnnamedAddr::Global; 1015 case 2: return GlobalVariable::UnnamedAddr::Local; 1016 } 1017 } 1018 1019 static int getDecodedCastOpcode(unsigned Val) { 1020 switch (Val) { 1021 default: return -1; 1022 case bitc::CAST_TRUNC : return Instruction::Trunc; 1023 case bitc::CAST_ZEXT : return Instruction::ZExt; 1024 case bitc::CAST_SEXT : return Instruction::SExt; 1025 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1026 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1027 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1028 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1029 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1030 case bitc::CAST_FPEXT : return Instruction::FPExt; 1031 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1032 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1033 case bitc::CAST_BITCAST : return Instruction::BitCast; 1034 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1035 } 1036 } 1037 1038 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1039 bool IsFP = Ty->isFPOrFPVectorTy(); 1040 // UnOps are only valid for int/fp or vector of int/fp types 1041 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1042 return -1; 1043 1044 switch (Val) { 1045 default: 1046 return -1; 1047 case bitc::UNOP_FNEG: 1048 return IsFP ? Instruction::FNeg : -1; 1049 } 1050 } 1051 1052 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1053 bool IsFP = Ty->isFPOrFPVectorTy(); 1054 // BinOps are only valid for int/fp or vector of int/fp types 1055 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1056 return -1; 1057 1058 switch (Val) { 1059 default: 1060 return -1; 1061 case bitc::BINOP_ADD: 1062 return IsFP ? Instruction::FAdd : Instruction::Add; 1063 case bitc::BINOP_SUB: 1064 return IsFP ? Instruction::FSub : Instruction::Sub; 1065 case bitc::BINOP_MUL: 1066 return IsFP ? Instruction::FMul : Instruction::Mul; 1067 case bitc::BINOP_UDIV: 1068 return IsFP ? -1 : Instruction::UDiv; 1069 case bitc::BINOP_SDIV: 1070 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1071 case bitc::BINOP_UREM: 1072 return IsFP ? -1 : Instruction::URem; 1073 case bitc::BINOP_SREM: 1074 return IsFP ? Instruction::FRem : Instruction::SRem; 1075 case bitc::BINOP_SHL: 1076 return IsFP ? -1 : Instruction::Shl; 1077 case bitc::BINOP_LSHR: 1078 return IsFP ? -1 : Instruction::LShr; 1079 case bitc::BINOP_ASHR: 1080 return IsFP ? -1 : Instruction::AShr; 1081 case bitc::BINOP_AND: 1082 return IsFP ? -1 : Instruction::And; 1083 case bitc::BINOP_OR: 1084 return IsFP ? -1 : Instruction::Or; 1085 case bitc::BINOP_XOR: 1086 return IsFP ? -1 : Instruction::Xor; 1087 } 1088 } 1089 1090 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1091 switch (Val) { 1092 default: return AtomicRMWInst::BAD_BINOP; 1093 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1094 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1095 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1096 case bitc::RMW_AND: return AtomicRMWInst::And; 1097 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1098 case bitc::RMW_OR: return AtomicRMWInst::Or; 1099 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1100 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1101 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1102 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1103 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1104 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1105 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1106 } 1107 } 1108 1109 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1110 switch (Val) { 1111 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1112 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1113 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1114 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1115 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1116 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1117 default: // Map unknown orderings to sequentially-consistent. 1118 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1119 } 1120 } 1121 1122 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1123 switch (Val) { 1124 default: // Map unknown selection kinds to any. 1125 case bitc::COMDAT_SELECTION_KIND_ANY: 1126 return Comdat::Any; 1127 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1128 return Comdat::ExactMatch; 1129 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1130 return Comdat::Largest; 1131 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1132 return Comdat::NoDeduplicate; 1133 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1134 return Comdat::SameSize; 1135 } 1136 } 1137 1138 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1139 FastMathFlags FMF; 1140 if (0 != (Val & bitc::UnsafeAlgebra)) 1141 FMF.setFast(); 1142 if (0 != (Val & bitc::AllowReassoc)) 1143 FMF.setAllowReassoc(); 1144 if (0 != (Val & bitc::NoNaNs)) 1145 FMF.setNoNaNs(); 1146 if (0 != (Val & bitc::NoInfs)) 1147 FMF.setNoInfs(); 1148 if (0 != (Val & bitc::NoSignedZeros)) 1149 FMF.setNoSignedZeros(); 1150 if (0 != (Val & bitc::AllowReciprocal)) 1151 FMF.setAllowReciprocal(); 1152 if (0 != (Val & bitc::AllowContract)) 1153 FMF.setAllowContract(true); 1154 if (0 != (Val & bitc::ApproxFunc)) 1155 FMF.setApproxFunc(); 1156 return FMF; 1157 } 1158 1159 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1160 switch (Val) { 1161 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1162 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1163 } 1164 } 1165 1166 Type *BitcodeReader::getTypeByID(unsigned ID) { 1167 // The type table size is always specified correctly. 1168 if (ID >= TypeList.size()) 1169 return nullptr; 1170 1171 if (Type *Ty = TypeList[ID]) 1172 return Ty; 1173 1174 // If we have a forward reference, the only possible case is when it is to a 1175 // named struct. Just create a placeholder for now. 1176 return TypeList[ID] = createIdentifiedStructType(Context); 1177 } 1178 1179 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1180 StringRef Name) { 1181 auto *Ret = StructType::create(Context, Name); 1182 IdentifiedStructTypes.push_back(Ret); 1183 return Ret; 1184 } 1185 1186 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1187 auto *Ret = StructType::create(Context); 1188 IdentifiedStructTypes.push_back(Ret); 1189 return Ret; 1190 } 1191 1192 //===----------------------------------------------------------------------===// 1193 // Functions for parsing blocks from the bitcode file 1194 //===----------------------------------------------------------------------===// 1195 1196 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1197 switch (Val) { 1198 case Attribute::EndAttrKinds: 1199 case Attribute::EmptyKey: 1200 case Attribute::TombstoneKey: 1201 llvm_unreachable("Synthetic enumerators which should never get here"); 1202 1203 case Attribute::None: return 0; 1204 case Attribute::ZExt: return 1 << 0; 1205 case Attribute::SExt: return 1 << 1; 1206 case Attribute::NoReturn: return 1 << 2; 1207 case Attribute::InReg: return 1 << 3; 1208 case Attribute::StructRet: return 1 << 4; 1209 case Attribute::NoUnwind: return 1 << 5; 1210 case Attribute::NoAlias: return 1 << 6; 1211 case Attribute::ByVal: return 1 << 7; 1212 case Attribute::Nest: return 1 << 8; 1213 case Attribute::ReadNone: return 1 << 9; 1214 case Attribute::ReadOnly: return 1 << 10; 1215 case Attribute::NoInline: return 1 << 11; 1216 case Attribute::AlwaysInline: return 1 << 12; 1217 case Attribute::OptimizeForSize: return 1 << 13; 1218 case Attribute::StackProtect: return 1 << 14; 1219 case Attribute::StackProtectReq: return 1 << 15; 1220 case Attribute::Alignment: return 31 << 16; 1221 case Attribute::NoCapture: return 1 << 21; 1222 case Attribute::NoRedZone: return 1 << 22; 1223 case Attribute::NoImplicitFloat: return 1 << 23; 1224 case Attribute::Naked: return 1 << 24; 1225 case Attribute::InlineHint: return 1 << 25; 1226 case Attribute::StackAlignment: return 7 << 26; 1227 case Attribute::ReturnsTwice: return 1 << 29; 1228 case Attribute::UWTable: return 1 << 30; 1229 case Attribute::NonLazyBind: return 1U << 31; 1230 case Attribute::SanitizeAddress: return 1ULL << 32; 1231 case Attribute::MinSize: return 1ULL << 33; 1232 case Attribute::NoDuplicate: return 1ULL << 34; 1233 case Attribute::StackProtectStrong: return 1ULL << 35; 1234 case Attribute::SanitizeThread: return 1ULL << 36; 1235 case Attribute::SanitizeMemory: return 1ULL << 37; 1236 case Attribute::NoBuiltin: return 1ULL << 38; 1237 case Attribute::Returned: return 1ULL << 39; 1238 case Attribute::Cold: return 1ULL << 40; 1239 case Attribute::Builtin: return 1ULL << 41; 1240 case Attribute::OptimizeNone: return 1ULL << 42; 1241 case Attribute::InAlloca: return 1ULL << 43; 1242 case Attribute::NonNull: return 1ULL << 44; 1243 case Attribute::JumpTable: return 1ULL << 45; 1244 case Attribute::Convergent: return 1ULL << 46; 1245 case Attribute::SafeStack: return 1ULL << 47; 1246 case Attribute::NoRecurse: return 1ULL << 48; 1247 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1248 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1249 case Attribute::SwiftSelf: return 1ULL << 51; 1250 case Attribute::SwiftError: return 1ULL << 52; 1251 case Attribute::WriteOnly: return 1ULL << 53; 1252 case Attribute::Speculatable: return 1ULL << 54; 1253 case Attribute::StrictFP: return 1ULL << 55; 1254 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1255 case Attribute::NoCfCheck: return 1ULL << 57; 1256 case Attribute::OptForFuzzing: return 1ULL << 58; 1257 case Attribute::ShadowCallStack: return 1ULL << 59; 1258 case Attribute::SpeculativeLoadHardening: 1259 return 1ULL << 60; 1260 case Attribute::ImmArg: 1261 return 1ULL << 61; 1262 case Attribute::WillReturn: 1263 return 1ULL << 62; 1264 case Attribute::NoFree: 1265 return 1ULL << 63; 1266 default: 1267 // Other attributes are not supported in the raw format, 1268 // as we ran out of space. 1269 return 0; 1270 } 1271 llvm_unreachable("Unsupported attribute type"); 1272 } 1273 1274 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1275 if (!Val) return; 1276 1277 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1278 I = Attribute::AttrKind(I + 1)) { 1279 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1280 if (I == Attribute::Alignment) 1281 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1282 else if (I == Attribute::StackAlignment) 1283 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1284 else if (Attribute::isTypeAttrKind(I)) 1285 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1286 else 1287 B.addAttribute(I); 1288 } 1289 } 1290 } 1291 1292 /// This fills an AttrBuilder object with the LLVM attributes that have 1293 /// been decoded from the given integer. This function must stay in sync with 1294 /// 'encodeLLVMAttributesForBitcode'. 1295 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1296 uint64_t EncodedAttrs) { 1297 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1298 // the bits above 31 down by 11 bits. 1299 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1300 assert((!Alignment || isPowerOf2_32(Alignment)) && 1301 "Alignment must be a power of two."); 1302 1303 if (Alignment) 1304 B.addAlignmentAttr(Alignment); 1305 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1306 (EncodedAttrs & 0xffff)); 1307 } 1308 1309 Error BitcodeReader::parseAttributeBlock() { 1310 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1311 return Err; 1312 1313 if (!MAttributes.empty()) 1314 return error("Invalid multiple blocks"); 1315 1316 SmallVector<uint64_t, 64> Record; 1317 1318 SmallVector<AttributeList, 8> Attrs; 1319 1320 // Read all the records. 1321 while (true) { 1322 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1323 if (!MaybeEntry) 1324 return MaybeEntry.takeError(); 1325 BitstreamEntry Entry = MaybeEntry.get(); 1326 1327 switch (Entry.Kind) { 1328 case BitstreamEntry::SubBlock: // Handled for us already. 1329 case BitstreamEntry::Error: 1330 return error("Malformed block"); 1331 case BitstreamEntry::EndBlock: 1332 return Error::success(); 1333 case BitstreamEntry::Record: 1334 // The interesting case. 1335 break; 1336 } 1337 1338 // Read a record. 1339 Record.clear(); 1340 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1341 if (!MaybeRecord) 1342 return MaybeRecord.takeError(); 1343 switch (MaybeRecord.get()) { 1344 default: // Default behavior: ignore. 1345 break; 1346 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1347 // Deprecated, but still needed to read old bitcode files. 1348 if (Record.size() & 1) 1349 return error("Invalid record"); 1350 1351 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1352 AttrBuilder B; 1353 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1354 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1355 } 1356 1357 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1358 Attrs.clear(); 1359 break; 1360 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1361 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1362 Attrs.push_back(MAttributeGroups[Record[i]]); 1363 1364 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1365 Attrs.clear(); 1366 break; 1367 } 1368 } 1369 } 1370 1371 // Returns Attribute::None on unrecognized codes. 1372 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1373 switch (Code) { 1374 default: 1375 return Attribute::None; 1376 case bitc::ATTR_KIND_ALIGNMENT: 1377 return Attribute::Alignment; 1378 case bitc::ATTR_KIND_ALWAYS_INLINE: 1379 return Attribute::AlwaysInline; 1380 case bitc::ATTR_KIND_ARGMEMONLY: 1381 return Attribute::ArgMemOnly; 1382 case bitc::ATTR_KIND_BUILTIN: 1383 return Attribute::Builtin; 1384 case bitc::ATTR_KIND_BY_VAL: 1385 return Attribute::ByVal; 1386 case bitc::ATTR_KIND_IN_ALLOCA: 1387 return Attribute::InAlloca; 1388 case bitc::ATTR_KIND_COLD: 1389 return Attribute::Cold; 1390 case bitc::ATTR_KIND_CONVERGENT: 1391 return Attribute::Convergent; 1392 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1393 return Attribute::DisableSanitizerInstrumentation; 1394 case bitc::ATTR_KIND_ELEMENTTYPE: 1395 return Attribute::ElementType; 1396 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1397 return Attribute::InaccessibleMemOnly; 1398 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1399 return Attribute::InaccessibleMemOrArgMemOnly; 1400 case bitc::ATTR_KIND_INLINE_HINT: 1401 return Attribute::InlineHint; 1402 case bitc::ATTR_KIND_IN_REG: 1403 return Attribute::InReg; 1404 case bitc::ATTR_KIND_JUMP_TABLE: 1405 return Attribute::JumpTable; 1406 case bitc::ATTR_KIND_MIN_SIZE: 1407 return Attribute::MinSize; 1408 case bitc::ATTR_KIND_NAKED: 1409 return Attribute::Naked; 1410 case bitc::ATTR_KIND_NEST: 1411 return Attribute::Nest; 1412 case bitc::ATTR_KIND_NO_ALIAS: 1413 return Attribute::NoAlias; 1414 case bitc::ATTR_KIND_NO_BUILTIN: 1415 return Attribute::NoBuiltin; 1416 case bitc::ATTR_KIND_NO_CALLBACK: 1417 return Attribute::NoCallback; 1418 case bitc::ATTR_KIND_NO_CAPTURE: 1419 return Attribute::NoCapture; 1420 case bitc::ATTR_KIND_NO_DUPLICATE: 1421 return Attribute::NoDuplicate; 1422 case bitc::ATTR_KIND_NOFREE: 1423 return Attribute::NoFree; 1424 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1425 return Attribute::NoImplicitFloat; 1426 case bitc::ATTR_KIND_NO_INLINE: 1427 return Attribute::NoInline; 1428 case bitc::ATTR_KIND_NO_RECURSE: 1429 return Attribute::NoRecurse; 1430 case bitc::ATTR_KIND_NO_MERGE: 1431 return Attribute::NoMerge; 1432 case bitc::ATTR_KIND_NON_LAZY_BIND: 1433 return Attribute::NonLazyBind; 1434 case bitc::ATTR_KIND_NON_NULL: 1435 return Attribute::NonNull; 1436 case bitc::ATTR_KIND_DEREFERENCEABLE: 1437 return Attribute::Dereferenceable; 1438 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1439 return Attribute::DereferenceableOrNull; 1440 case bitc::ATTR_KIND_ALLOC_SIZE: 1441 return Attribute::AllocSize; 1442 case bitc::ATTR_KIND_NO_RED_ZONE: 1443 return Attribute::NoRedZone; 1444 case bitc::ATTR_KIND_NO_RETURN: 1445 return Attribute::NoReturn; 1446 case bitc::ATTR_KIND_NOSYNC: 1447 return Attribute::NoSync; 1448 case bitc::ATTR_KIND_NOCF_CHECK: 1449 return Attribute::NoCfCheck; 1450 case bitc::ATTR_KIND_NO_PROFILE: 1451 return Attribute::NoProfile; 1452 case bitc::ATTR_KIND_NO_UNWIND: 1453 return Attribute::NoUnwind; 1454 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1455 return Attribute::NoSanitizeCoverage; 1456 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1457 return Attribute::NullPointerIsValid; 1458 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1459 return Attribute::OptForFuzzing; 1460 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1461 return Attribute::OptimizeForSize; 1462 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1463 return Attribute::OptimizeNone; 1464 case bitc::ATTR_KIND_READ_NONE: 1465 return Attribute::ReadNone; 1466 case bitc::ATTR_KIND_READ_ONLY: 1467 return Attribute::ReadOnly; 1468 case bitc::ATTR_KIND_RETURNED: 1469 return Attribute::Returned; 1470 case bitc::ATTR_KIND_RETURNS_TWICE: 1471 return Attribute::ReturnsTwice; 1472 case bitc::ATTR_KIND_S_EXT: 1473 return Attribute::SExt; 1474 case bitc::ATTR_KIND_SPECULATABLE: 1475 return Attribute::Speculatable; 1476 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1477 return Attribute::StackAlignment; 1478 case bitc::ATTR_KIND_STACK_PROTECT: 1479 return Attribute::StackProtect; 1480 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1481 return Attribute::StackProtectReq; 1482 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1483 return Attribute::StackProtectStrong; 1484 case bitc::ATTR_KIND_SAFESTACK: 1485 return Attribute::SafeStack; 1486 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1487 return Attribute::ShadowCallStack; 1488 case bitc::ATTR_KIND_STRICT_FP: 1489 return Attribute::StrictFP; 1490 case bitc::ATTR_KIND_STRUCT_RET: 1491 return Attribute::StructRet; 1492 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1493 return Attribute::SanitizeAddress; 1494 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1495 return Attribute::SanitizeHWAddress; 1496 case bitc::ATTR_KIND_SANITIZE_THREAD: 1497 return Attribute::SanitizeThread; 1498 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1499 return Attribute::SanitizeMemory; 1500 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1501 return Attribute::SpeculativeLoadHardening; 1502 case bitc::ATTR_KIND_SWIFT_ERROR: 1503 return Attribute::SwiftError; 1504 case bitc::ATTR_KIND_SWIFT_SELF: 1505 return Attribute::SwiftSelf; 1506 case bitc::ATTR_KIND_SWIFT_ASYNC: 1507 return Attribute::SwiftAsync; 1508 case bitc::ATTR_KIND_UW_TABLE: 1509 return Attribute::UWTable; 1510 case bitc::ATTR_KIND_VSCALE_RANGE: 1511 return Attribute::VScaleRange; 1512 case bitc::ATTR_KIND_WILLRETURN: 1513 return Attribute::WillReturn; 1514 case bitc::ATTR_KIND_WRITEONLY: 1515 return Attribute::WriteOnly; 1516 case bitc::ATTR_KIND_Z_EXT: 1517 return Attribute::ZExt; 1518 case bitc::ATTR_KIND_IMMARG: 1519 return Attribute::ImmArg; 1520 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1521 return Attribute::SanitizeMemTag; 1522 case bitc::ATTR_KIND_PREALLOCATED: 1523 return Attribute::Preallocated; 1524 case bitc::ATTR_KIND_NOUNDEF: 1525 return Attribute::NoUndef; 1526 case bitc::ATTR_KIND_BYREF: 1527 return Attribute::ByRef; 1528 case bitc::ATTR_KIND_MUSTPROGRESS: 1529 return Attribute::MustProgress; 1530 case bitc::ATTR_KIND_HOT: 1531 return Attribute::Hot; 1532 } 1533 } 1534 1535 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1536 MaybeAlign &Alignment) { 1537 // Note: Alignment in bitcode files is incremented by 1, so that zero 1538 // can be used for default alignment. 1539 if (Exponent > Value::MaxAlignmentExponent + 1) 1540 return error("Invalid alignment value"); 1541 Alignment = decodeMaybeAlign(Exponent); 1542 return Error::success(); 1543 } 1544 1545 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1546 *Kind = getAttrFromCode(Code); 1547 if (*Kind == Attribute::None) 1548 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1549 return Error::success(); 1550 } 1551 1552 Error BitcodeReader::parseAttributeGroupBlock() { 1553 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1554 return Err; 1555 1556 if (!MAttributeGroups.empty()) 1557 return error("Invalid multiple blocks"); 1558 1559 SmallVector<uint64_t, 64> Record; 1560 1561 // Read all the records. 1562 while (true) { 1563 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1564 if (!MaybeEntry) 1565 return MaybeEntry.takeError(); 1566 BitstreamEntry Entry = MaybeEntry.get(); 1567 1568 switch (Entry.Kind) { 1569 case BitstreamEntry::SubBlock: // Handled for us already. 1570 case BitstreamEntry::Error: 1571 return error("Malformed block"); 1572 case BitstreamEntry::EndBlock: 1573 return Error::success(); 1574 case BitstreamEntry::Record: 1575 // The interesting case. 1576 break; 1577 } 1578 1579 // Read a record. 1580 Record.clear(); 1581 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1582 if (!MaybeRecord) 1583 return MaybeRecord.takeError(); 1584 switch (MaybeRecord.get()) { 1585 default: // Default behavior: ignore. 1586 break; 1587 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1588 if (Record.size() < 3) 1589 return error("Invalid record"); 1590 1591 uint64_t GrpID = Record[0]; 1592 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1593 1594 AttrBuilder B; 1595 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1596 if (Record[i] == 0) { // Enum attribute 1597 Attribute::AttrKind Kind; 1598 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1599 return Err; 1600 1601 // Upgrade old-style byval attribute to one with a type, even if it's 1602 // nullptr. We will have to insert the real type when we associate 1603 // this AttributeList with a function. 1604 if (Kind == Attribute::ByVal) 1605 B.addByValAttr(nullptr); 1606 else if (Kind == Attribute::StructRet) 1607 B.addStructRetAttr(nullptr); 1608 else if (Kind == Attribute::InAlloca) 1609 B.addInAllocaAttr(nullptr); 1610 else if (Attribute::isEnumAttrKind(Kind)) 1611 B.addAttribute(Kind); 1612 else 1613 return error("Not an enum attribute"); 1614 } else if (Record[i] == 1) { // Integer attribute 1615 Attribute::AttrKind Kind; 1616 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1617 return Err; 1618 if (!Attribute::isIntAttrKind(Kind)) 1619 return error("Not an int attribute"); 1620 if (Kind == Attribute::Alignment) 1621 B.addAlignmentAttr(Record[++i]); 1622 else if (Kind == Attribute::StackAlignment) 1623 B.addStackAlignmentAttr(Record[++i]); 1624 else if (Kind == Attribute::Dereferenceable) 1625 B.addDereferenceableAttr(Record[++i]); 1626 else if (Kind == Attribute::DereferenceableOrNull) 1627 B.addDereferenceableOrNullAttr(Record[++i]); 1628 else if (Kind == Attribute::AllocSize) 1629 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1630 else if (Kind == Attribute::VScaleRange) 1631 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1632 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1633 bool HasValue = (Record[i++] == 4); 1634 SmallString<64> KindStr; 1635 SmallString<64> ValStr; 1636 1637 while (Record[i] != 0 && i != e) 1638 KindStr += Record[i++]; 1639 assert(Record[i] == 0 && "Kind string not null terminated"); 1640 1641 if (HasValue) { 1642 // Has a value associated with it. 1643 ++i; // Skip the '0' that terminates the "kind" string. 1644 while (Record[i] != 0 && i != e) 1645 ValStr += Record[i++]; 1646 assert(Record[i] == 0 && "Value string not null terminated"); 1647 } 1648 1649 B.addAttribute(KindStr.str(), ValStr.str()); 1650 } else { 1651 assert((Record[i] == 5 || Record[i] == 6) && 1652 "Invalid attribute group entry"); 1653 bool HasType = Record[i] == 6; 1654 Attribute::AttrKind Kind; 1655 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1656 return Err; 1657 if (!Attribute::isTypeAttrKind(Kind)) 1658 return error("Not a type attribute"); 1659 1660 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 1661 } 1662 } 1663 1664 UpgradeAttributes(B); 1665 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1666 break; 1667 } 1668 } 1669 } 1670 } 1671 1672 Error BitcodeReader::parseTypeTable() { 1673 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1674 return Err; 1675 1676 return parseTypeTableBody(); 1677 } 1678 1679 Error BitcodeReader::parseTypeTableBody() { 1680 if (!TypeList.empty()) 1681 return error("Invalid multiple blocks"); 1682 1683 SmallVector<uint64_t, 64> Record; 1684 unsigned NumRecords = 0; 1685 1686 SmallString<64> TypeName; 1687 1688 // Read all the records for this type table. 1689 while (true) { 1690 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1691 if (!MaybeEntry) 1692 return MaybeEntry.takeError(); 1693 BitstreamEntry Entry = MaybeEntry.get(); 1694 1695 switch (Entry.Kind) { 1696 case BitstreamEntry::SubBlock: // Handled for us already. 1697 case BitstreamEntry::Error: 1698 return error("Malformed block"); 1699 case BitstreamEntry::EndBlock: 1700 if (NumRecords != TypeList.size()) 1701 return error("Malformed block"); 1702 return Error::success(); 1703 case BitstreamEntry::Record: 1704 // The interesting case. 1705 break; 1706 } 1707 1708 // Read a record. 1709 Record.clear(); 1710 Type *ResultTy = nullptr; 1711 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1712 if (!MaybeRecord) 1713 return MaybeRecord.takeError(); 1714 switch (MaybeRecord.get()) { 1715 default: 1716 return error("Invalid value"); 1717 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1718 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1719 // type list. This allows us to reserve space. 1720 if (Record.empty()) 1721 return error("Invalid record"); 1722 TypeList.resize(Record[0]); 1723 continue; 1724 case bitc::TYPE_CODE_VOID: // VOID 1725 ResultTy = Type::getVoidTy(Context); 1726 break; 1727 case bitc::TYPE_CODE_HALF: // HALF 1728 ResultTy = Type::getHalfTy(Context); 1729 break; 1730 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1731 ResultTy = Type::getBFloatTy(Context); 1732 break; 1733 case bitc::TYPE_CODE_FLOAT: // FLOAT 1734 ResultTy = Type::getFloatTy(Context); 1735 break; 1736 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1737 ResultTy = Type::getDoubleTy(Context); 1738 break; 1739 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1740 ResultTy = Type::getX86_FP80Ty(Context); 1741 break; 1742 case bitc::TYPE_CODE_FP128: // FP128 1743 ResultTy = Type::getFP128Ty(Context); 1744 break; 1745 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1746 ResultTy = Type::getPPC_FP128Ty(Context); 1747 break; 1748 case bitc::TYPE_CODE_LABEL: // LABEL 1749 ResultTy = Type::getLabelTy(Context); 1750 break; 1751 case bitc::TYPE_CODE_METADATA: // METADATA 1752 ResultTy = Type::getMetadataTy(Context); 1753 break; 1754 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1755 ResultTy = Type::getX86_MMXTy(Context); 1756 break; 1757 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1758 ResultTy = Type::getX86_AMXTy(Context); 1759 break; 1760 case bitc::TYPE_CODE_TOKEN: // TOKEN 1761 ResultTy = Type::getTokenTy(Context); 1762 break; 1763 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1764 if (Record.empty()) 1765 return error("Invalid record"); 1766 1767 uint64_t NumBits = Record[0]; 1768 if (NumBits < IntegerType::MIN_INT_BITS || 1769 NumBits > IntegerType::MAX_INT_BITS) 1770 return error("Bitwidth for integer type out of range"); 1771 ResultTy = IntegerType::get(Context, NumBits); 1772 break; 1773 } 1774 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1775 // [pointee type, address space] 1776 if (Record.empty()) 1777 return error("Invalid record"); 1778 unsigned AddressSpace = 0; 1779 if (Record.size() == 2) 1780 AddressSpace = Record[1]; 1781 ResultTy = getTypeByID(Record[0]); 1782 if (!ResultTy || 1783 !PointerType::isValidElementType(ResultTy)) 1784 return error("Invalid type"); 1785 ResultTy = PointerType::get(ResultTy, AddressSpace); 1786 break; 1787 } 1788 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1789 if (Record.size() != 1) 1790 return error("Invalid record"); 1791 if (Context.supportsTypedPointers()) 1792 return error( 1793 "Opaque pointers are only supported in -opaque-pointers mode"); 1794 unsigned AddressSpace = Record[0]; 1795 ResultTy = PointerType::get(Context, AddressSpace); 1796 break; 1797 } 1798 case bitc::TYPE_CODE_FUNCTION_OLD: { 1799 // Deprecated, but still needed to read old bitcode files. 1800 // FUNCTION: [vararg, attrid, retty, paramty x N] 1801 if (Record.size() < 3) 1802 return error("Invalid record"); 1803 SmallVector<Type*, 8> ArgTys; 1804 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1805 if (Type *T = getTypeByID(Record[i])) 1806 ArgTys.push_back(T); 1807 else 1808 break; 1809 } 1810 1811 ResultTy = getTypeByID(Record[2]); 1812 if (!ResultTy || ArgTys.size() < Record.size()-3) 1813 return error("Invalid type"); 1814 1815 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1816 break; 1817 } 1818 case bitc::TYPE_CODE_FUNCTION: { 1819 // FUNCTION: [vararg, retty, paramty x N] 1820 if (Record.size() < 2) 1821 return error("Invalid record"); 1822 SmallVector<Type*, 8> ArgTys; 1823 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1824 if (Type *T = getTypeByID(Record[i])) { 1825 if (!FunctionType::isValidArgumentType(T)) 1826 return error("Invalid function argument type"); 1827 ArgTys.push_back(T); 1828 } 1829 else 1830 break; 1831 } 1832 1833 ResultTy = getTypeByID(Record[1]); 1834 if (!ResultTy || ArgTys.size() < Record.size()-2) 1835 return error("Invalid type"); 1836 1837 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1838 break; 1839 } 1840 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1841 if (Record.empty()) 1842 return error("Invalid record"); 1843 SmallVector<Type*, 8> EltTys; 1844 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1845 if (Type *T = getTypeByID(Record[i])) 1846 EltTys.push_back(T); 1847 else 1848 break; 1849 } 1850 if (EltTys.size() != Record.size()-1) 1851 return error("Invalid type"); 1852 ResultTy = StructType::get(Context, EltTys, Record[0]); 1853 break; 1854 } 1855 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1856 if (convertToString(Record, 0, TypeName)) 1857 return error("Invalid record"); 1858 continue; 1859 1860 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1861 if (Record.empty()) 1862 return error("Invalid record"); 1863 1864 if (NumRecords >= TypeList.size()) 1865 return error("Invalid TYPE table"); 1866 1867 // Check to see if this was forward referenced, if so fill in the temp. 1868 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1869 if (Res) { 1870 Res->setName(TypeName); 1871 TypeList[NumRecords] = nullptr; 1872 } else // Otherwise, create a new struct. 1873 Res = createIdentifiedStructType(Context, TypeName); 1874 TypeName.clear(); 1875 1876 SmallVector<Type*, 8> EltTys; 1877 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1878 if (Type *T = getTypeByID(Record[i])) 1879 EltTys.push_back(T); 1880 else 1881 break; 1882 } 1883 if (EltTys.size() != Record.size()-1) 1884 return error("Invalid record"); 1885 Res->setBody(EltTys, Record[0]); 1886 ResultTy = Res; 1887 break; 1888 } 1889 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1890 if (Record.size() != 1) 1891 return error("Invalid record"); 1892 1893 if (NumRecords >= TypeList.size()) 1894 return error("Invalid TYPE table"); 1895 1896 // Check to see if this was forward referenced, if so fill in the temp. 1897 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1898 if (Res) { 1899 Res->setName(TypeName); 1900 TypeList[NumRecords] = nullptr; 1901 } else // Otherwise, create a new struct with no body. 1902 Res = createIdentifiedStructType(Context, TypeName); 1903 TypeName.clear(); 1904 ResultTy = Res; 1905 break; 1906 } 1907 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1908 if (Record.size() < 2) 1909 return error("Invalid record"); 1910 ResultTy = getTypeByID(Record[1]); 1911 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1912 return error("Invalid type"); 1913 ResultTy = ArrayType::get(ResultTy, Record[0]); 1914 break; 1915 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1916 // [numelts, eltty, scalable] 1917 if (Record.size() < 2) 1918 return error("Invalid record"); 1919 if (Record[0] == 0) 1920 return error("Invalid vector length"); 1921 ResultTy = getTypeByID(Record[1]); 1922 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 1923 return error("Invalid type"); 1924 bool Scalable = Record.size() > 2 ? Record[2] : false; 1925 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1926 break; 1927 } 1928 1929 if (NumRecords >= TypeList.size()) 1930 return error("Invalid TYPE table"); 1931 if (TypeList[NumRecords]) 1932 return error( 1933 "Invalid TYPE table: Only named structs can be forward referenced"); 1934 assert(ResultTy && "Didn't read a type?"); 1935 TypeList[NumRecords++] = ResultTy; 1936 } 1937 } 1938 1939 Error BitcodeReader::parseOperandBundleTags() { 1940 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1941 return Err; 1942 1943 if (!BundleTags.empty()) 1944 return error("Invalid multiple blocks"); 1945 1946 SmallVector<uint64_t, 64> Record; 1947 1948 while (true) { 1949 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1950 if (!MaybeEntry) 1951 return MaybeEntry.takeError(); 1952 BitstreamEntry Entry = MaybeEntry.get(); 1953 1954 switch (Entry.Kind) { 1955 case BitstreamEntry::SubBlock: // Handled for us already. 1956 case BitstreamEntry::Error: 1957 return error("Malformed block"); 1958 case BitstreamEntry::EndBlock: 1959 return Error::success(); 1960 case BitstreamEntry::Record: 1961 // The interesting case. 1962 break; 1963 } 1964 1965 // Tags are implicitly mapped to integers by their order. 1966 1967 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1968 if (!MaybeRecord) 1969 return MaybeRecord.takeError(); 1970 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1971 return error("Invalid record"); 1972 1973 // OPERAND_BUNDLE_TAG: [strchr x N] 1974 BundleTags.emplace_back(); 1975 if (convertToString(Record, 0, BundleTags.back())) 1976 return error("Invalid record"); 1977 Record.clear(); 1978 } 1979 } 1980 1981 Error BitcodeReader::parseSyncScopeNames() { 1982 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1983 return Err; 1984 1985 if (!SSIDs.empty()) 1986 return error("Invalid multiple synchronization scope names blocks"); 1987 1988 SmallVector<uint64_t, 64> Record; 1989 while (true) { 1990 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1991 if (!MaybeEntry) 1992 return MaybeEntry.takeError(); 1993 BitstreamEntry Entry = MaybeEntry.get(); 1994 1995 switch (Entry.Kind) { 1996 case BitstreamEntry::SubBlock: // Handled for us already. 1997 case BitstreamEntry::Error: 1998 return error("Malformed block"); 1999 case BitstreamEntry::EndBlock: 2000 if (SSIDs.empty()) 2001 return error("Invalid empty synchronization scope names block"); 2002 return Error::success(); 2003 case BitstreamEntry::Record: 2004 // The interesting case. 2005 break; 2006 } 2007 2008 // Synchronization scope names are implicitly mapped to synchronization 2009 // scope IDs by their order. 2010 2011 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2012 if (!MaybeRecord) 2013 return MaybeRecord.takeError(); 2014 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2015 return error("Invalid record"); 2016 2017 SmallString<16> SSN; 2018 if (convertToString(Record, 0, SSN)) 2019 return error("Invalid record"); 2020 2021 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2022 Record.clear(); 2023 } 2024 } 2025 2026 /// Associate a value with its name from the given index in the provided record. 2027 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2028 unsigned NameIndex, Triple &TT) { 2029 SmallString<128> ValueName; 2030 if (convertToString(Record, NameIndex, ValueName)) 2031 return error("Invalid record"); 2032 unsigned ValueID = Record[0]; 2033 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2034 return error("Invalid record"); 2035 Value *V = ValueList[ValueID]; 2036 2037 StringRef NameStr(ValueName.data(), ValueName.size()); 2038 if (NameStr.find_first_of(0) != StringRef::npos) 2039 return error("Invalid value name"); 2040 V->setName(NameStr); 2041 auto *GO = dyn_cast<GlobalObject>(V); 2042 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2043 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2044 return V; 2045 } 2046 2047 /// Helper to note and return the current location, and jump to the given 2048 /// offset. 2049 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2050 BitstreamCursor &Stream) { 2051 // Save the current parsing location so we can jump back at the end 2052 // of the VST read. 2053 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2054 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2055 return std::move(JumpFailed); 2056 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2057 if (!MaybeEntry) 2058 return MaybeEntry.takeError(); 2059 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2060 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2061 return CurrentBit; 2062 } 2063 2064 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2065 Function *F, 2066 ArrayRef<uint64_t> Record) { 2067 // Note that we subtract 1 here because the offset is relative to one word 2068 // before the start of the identification or module block, which was 2069 // historically always the start of the regular bitcode header. 2070 uint64_t FuncWordOffset = Record[1] - 1; 2071 uint64_t FuncBitOffset = FuncWordOffset * 32; 2072 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2073 // Set the LastFunctionBlockBit to point to the last function block. 2074 // Later when parsing is resumed after function materialization, 2075 // we can simply skip that last function block. 2076 if (FuncBitOffset > LastFunctionBlockBit) 2077 LastFunctionBlockBit = FuncBitOffset; 2078 } 2079 2080 /// Read a new-style GlobalValue symbol table. 2081 Error BitcodeReader::parseGlobalValueSymbolTable() { 2082 unsigned FuncBitcodeOffsetDelta = 2083 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2084 2085 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2086 return Err; 2087 2088 SmallVector<uint64_t, 64> Record; 2089 while (true) { 2090 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2091 if (!MaybeEntry) 2092 return MaybeEntry.takeError(); 2093 BitstreamEntry Entry = MaybeEntry.get(); 2094 2095 switch (Entry.Kind) { 2096 case BitstreamEntry::SubBlock: 2097 case BitstreamEntry::Error: 2098 return error("Malformed block"); 2099 case BitstreamEntry::EndBlock: 2100 return Error::success(); 2101 case BitstreamEntry::Record: 2102 break; 2103 } 2104 2105 Record.clear(); 2106 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2107 if (!MaybeRecord) 2108 return MaybeRecord.takeError(); 2109 switch (MaybeRecord.get()) { 2110 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2111 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2112 cast<Function>(ValueList[Record[0]]), Record); 2113 break; 2114 } 2115 } 2116 } 2117 2118 /// Parse the value symbol table at either the current parsing location or 2119 /// at the given bit offset if provided. 2120 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2121 uint64_t CurrentBit; 2122 // Pass in the Offset to distinguish between calling for the module-level 2123 // VST (where we want to jump to the VST offset) and the function-level 2124 // VST (where we don't). 2125 if (Offset > 0) { 2126 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2127 if (!MaybeCurrentBit) 2128 return MaybeCurrentBit.takeError(); 2129 CurrentBit = MaybeCurrentBit.get(); 2130 // If this module uses a string table, read this as a module-level VST. 2131 if (UseStrtab) { 2132 if (Error Err = parseGlobalValueSymbolTable()) 2133 return Err; 2134 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2135 return JumpFailed; 2136 return Error::success(); 2137 } 2138 // Otherwise, the VST will be in a similar format to a function-level VST, 2139 // and will contain symbol names. 2140 } 2141 2142 // Compute the delta between the bitcode indices in the VST (the word offset 2143 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2144 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2145 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2146 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2147 // just before entering the VST subblock because: 1) the EnterSubBlock 2148 // changes the AbbrevID width; 2) the VST block is nested within the same 2149 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2150 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2151 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2152 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2153 unsigned FuncBitcodeOffsetDelta = 2154 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2155 2156 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2157 return Err; 2158 2159 SmallVector<uint64_t, 64> Record; 2160 2161 Triple TT(TheModule->getTargetTriple()); 2162 2163 // Read all the records for this value table. 2164 SmallString<128> ValueName; 2165 2166 while (true) { 2167 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2168 if (!MaybeEntry) 2169 return MaybeEntry.takeError(); 2170 BitstreamEntry Entry = MaybeEntry.get(); 2171 2172 switch (Entry.Kind) { 2173 case BitstreamEntry::SubBlock: // Handled for us already. 2174 case BitstreamEntry::Error: 2175 return error("Malformed block"); 2176 case BitstreamEntry::EndBlock: 2177 if (Offset > 0) 2178 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2179 return JumpFailed; 2180 return Error::success(); 2181 case BitstreamEntry::Record: 2182 // The interesting case. 2183 break; 2184 } 2185 2186 // Read a record. 2187 Record.clear(); 2188 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2189 if (!MaybeRecord) 2190 return MaybeRecord.takeError(); 2191 switch (MaybeRecord.get()) { 2192 default: // Default behavior: unknown type. 2193 break; 2194 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2195 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2196 if (Error Err = ValOrErr.takeError()) 2197 return Err; 2198 ValOrErr.get(); 2199 break; 2200 } 2201 case bitc::VST_CODE_FNENTRY: { 2202 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2203 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2204 if (Error Err = ValOrErr.takeError()) 2205 return Err; 2206 Value *V = ValOrErr.get(); 2207 2208 // Ignore function offsets emitted for aliases of functions in older 2209 // versions of LLVM. 2210 if (auto *F = dyn_cast<Function>(V)) 2211 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2212 break; 2213 } 2214 case bitc::VST_CODE_BBENTRY: { 2215 if (convertToString(Record, 1, ValueName)) 2216 return error("Invalid record"); 2217 BasicBlock *BB = getBasicBlock(Record[0]); 2218 if (!BB) 2219 return error("Invalid record"); 2220 2221 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2222 ValueName.clear(); 2223 break; 2224 } 2225 } 2226 } 2227 } 2228 2229 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2230 /// encoding. 2231 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2232 if ((V & 1) == 0) 2233 return V >> 1; 2234 if (V != 1) 2235 return -(V >> 1); 2236 // There is no such thing as -0 with integers. "-0" really means MININT. 2237 return 1ULL << 63; 2238 } 2239 2240 /// Resolve all of the initializers for global values and aliases that we can. 2241 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2242 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2243 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2244 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2245 2246 GlobalInitWorklist.swap(GlobalInits); 2247 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2248 FunctionOperandWorklist.swap(FunctionOperands); 2249 2250 while (!GlobalInitWorklist.empty()) { 2251 unsigned ValID = GlobalInitWorklist.back().second; 2252 if (ValID >= ValueList.size()) { 2253 // Not ready to resolve this yet, it requires something later in the file. 2254 GlobalInits.push_back(GlobalInitWorklist.back()); 2255 } else { 2256 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2257 GlobalInitWorklist.back().first->setInitializer(C); 2258 else 2259 return error("Expected a constant"); 2260 } 2261 GlobalInitWorklist.pop_back(); 2262 } 2263 2264 while (!IndirectSymbolInitWorklist.empty()) { 2265 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2266 if (ValID >= ValueList.size()) { 2267 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2268 } else { 2269 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2270 if (!C) 2271 return error("Expected a constant"); 2272 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2273 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2274 if (C->getType() != GV->getType()) 2275 return error("Alias and aliasee types don't match"); 2276 GA->setAliasee(C); 2277 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2278 Type *ResolverFTy = 2279 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2280 // Transparently fix up the type for compatiblity with older bitcode 2281 GI->setResolver( 2282 ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo())); 2283 } else { 2284 return error("Expected an alias or an ifunc"); 2285 } 2286 } 2287 IndirectSymbolInitWorklist.pop_back(); 2288 } 2289 2290 while (!FunctionOperandWorklist.empty()) { 2291 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2292 if (Info.PersonalityFn) { 2293 unsigned ValID = Info.PersonalityFn - 1; 2294 if (ValID < ValueList.size()) { 2295 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2296 Info.F->setPersonalityFn(C); 2297 else 2298 return error("Expected a constant"); 2299 Info.PersonalityFn = 0; 2300 } 2301 } 2302 if (Info.Prefix) { 2303 unsigned ValID = Info.Prefix - 1; 2304 if (ValID < ValueList.size()) { 2305 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2306 Info.F->setPrefixData(C); 2307 else 2308 return error("Expected a constant"); 2309 Info.Prefix = 0; 2310 } 2311 } 2312 if (Info.Prologue) { 2313 unsigned ValID = Info.Prologue - 1; 2314 if (ValID < ValueList.size()) { 2315 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2316 Info.F->setPrologueData(C); 2317 else 2318 return error("Expected a constant"); 2319 Info.Prologue = 0; 2320 } 2321 } 2322 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2323 FunctionOperands.push_back(Info); 2324 FunctionOperandWorklist.pop_back(); 2325 } 2326 2327 return Error::success(); 2328 } 2329 2330 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2331 SmallVector<uint64_t, 8> Words(Vals.size()); 2332 transform(Vals, Words.begin(), 2333 BitcodeReader::decodeSignRotatedValue); 2334 2335 return APInt(TypeBits, Words); 2336 } 2337 2338 Error BitcodeReader::parseConstants() { 2339 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2340 return Err; 2341 2342 SmallVector<uint64_t, 64> Record; 2343 2344 // Read all the records for this value table. 2345 Type *CurTy = Type::getInt32Ty(Context); 2346 unsigned NextCstNo = ValueList.size(); 2347 2348 struct DelayedShufTy { 2349 VectorType *OpTy; 2350 VectorType *RTy; 2351 uint64_t Op0Idx; 2352 uint64_t Op1Idx; 2353 uint64_t Op2Idx; 2354 unsigned CstNo; 2355 }; 2356 std::vector<DelayedShufTy> DelayedShuffles; 2357 struct DelayedSelTy { 2358 Type *OpTy; 2359 uint64_t Op0Idx; 2360 uint64_t Op1Idx; 2361 uint64_t Op2Idx; 2362 unsigned CstNo; 2363 }; 2364 std::vector<DelayedSelTy> DelayedSelectors; 2365 2366 while (true) { 2367 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2368 if (!MaybeEntry) 2369 return MaybeEntry.takeError(); 2370 BitstreamEntry Entry = MaybeEntry.get(); 2371 2372 switch (Entry.Kind) { 2373 case BitstreamEntry::SubBlock: // Handled for us already. 2374 case BitstreamEntry::Error: 2375 return error("Malformed block"); 2376 case BitstreamEntry::EndBlock: 2377 // Once all the constants have been read, go through and resolve forward 2378 // references. 2379 // 2380 // We have to treat shuffles specially because they don't have three 2381 // operands anymore. We need to convert the shuffle mask into an array, 2382 // and we can't convert a forward reference. 2383 for (auto &DelayedShuffle : DelayedShuffles) { 2384 VectorType *OpTy = DelayedShuffle.OpTy; 2385 VectorType *RTy = DelayedShuffle.RTy; 2386 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2387 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2388 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2389 uint64_t CstNo = DelayedShuffle.CstNo; 2390 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2391 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2392 Type *ShufTy = 2393 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2394 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2395 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2396 return error("Invalid shufflevector operands"); 2397 SmallVector<int, 16> Mask; 2398 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2399 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2400 ValueList.assignValue(V, CstNo); 2401 } 2402 for (auto &DelayedSelector : DelayedSelectors) { 2403 Type *OpTy = DelayedSelector.OpTy; 2404 Type *SelectorTy = Type::getInt1Ty(Context); 2405 uint64_t Op0Idx = DelayedSelector.Op0Idx; 2406 uint64_t Op1Idx = DelayedSelector.Op1Idx; 2407 uint64_t Op2Idx = DelayedSelector.Op2Idx; 2408 uint64_t CstNo = DelayedSelector.CstNo; 2409 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2410 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy); 2411 // The selector might be an i1 or an <n x i1> 2412 // Get the type from the ValueList before getting a forward ref. 2413 if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) { 2414 Value *V = ValueList[Op0Idx]; 2415 assert(V); 2416 if (SelectorTy != V->getType()) 2417 SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount()); 2418 } 2419 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, SelectorTy); 2420 Value *V = ConstantExpr::getSelect(Op0, Op1, Op2); 2421 ValueList.assignValue(V, CstNo); 2422 } 2423 2424 if (NextCstNo != ValueList.size()) 2425 return error("Invalid constant reference"); 2426 2427 ValueList.resolveConstantForwardRefs(); 2428 return Error::success(); 2429 case BitstreamEntry::Record: 2430 // The interesting case. 2431 break; 2432 } 2433 2434 // Read a record. 2435 Record.clear(); 2436 Type *VoidType = Type::getVoidTy(Context); 2437 Value *V = nullptr; 2438 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2439 if (!MaybeBitCode) 2440 return MaybeBitCode.takeError(); 2441 switch (unsigned BitCode = MaybeBitCode.get()) { 2442 default: // Default behavior: unknown constant 2443 case bitc::CST_CODE_UNDEF: // UNDEF 2444 V = UndefValue::get(CurTy); 2445 break; 2446 case bitc::CST_CODE_POISON: // POISON 2447 V = PoisonValue::get(CurTy); 2448 break; 2449 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2450 if (Record.empty()) 2451 return error("Invalid record"); 2452 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2453 return error("Invalid record"); 2454 if (TypeList[Record[0]] == VoidType) 2455 return error("Invalid constant type"); 2456 CurTy = TypeList[Record[0]]; 2457 continue; // Skip the ValueList manipulation. 2458 case bitc::CST_CODE_NULL: // NULL 2459 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2460 return error("Invalid type for a constant null value"); 2461 V = Constant::getNullValue(CurTy); 2462 break; 2463 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2464 if (!CurTy->isIntegerTy() || Record.empty()) 2465 return error("Invalid record"); 2466 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2467 break; 2468 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2469 if (!CurTy->isIntegerTy() || Record.empty()) 2470 return error("Invalid record"); 2471 2472 APInt VInt = 2473 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2474 V = ConstantInt::get(Context, VInt); 2475 2476 break; 2477 } 2478 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2479 if (Record.empty()) 2480 return error("Invalid record"); 2481 if (CurTy->isHalfTy()) 2482 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2483 APInt(16, (uint16_t)Record[0]))); 2484 else if (CurTy->isBFloatTy()) 2485 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2486 APInt(16, (uint32_t)Record[0]))); 2487 else if (CurTy->isFloatTy()) 2488 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2489 APInt(32, (uint32_t)Record[0]))); 2490 else if (CurTy->isDoubleTy()) 2491 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2492 APInt(64, Record[0]))); 2493 else if (CurTy->isX86_FP80Ty()) { 2494 // Bits are not stored the same way as a normal i80 APInt, compensate. 2495 uint64_t Rearrange[2]; 2496 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2497 Rearrange[1] = Record[0] >> 48; 2498 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2499 APInt(80, Rearrange))); 2500 } else if (CurTy->isFP128Ty()) 2501 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2502 APInt(128, Record))); 2503 else if (CurTy->isPPC_FP128Ty()) 2504 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2505 APInt(128, Record))); 2506 else 2507 V = UndefValue::get(CurTy); 2508 break; 2509 } 2510 2511 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2512 if (Record.empty()) 2513 return error("Invalid record"); 2514 2515 unsigned Size = Record.size(); 2516 SmallVector<Constant*, 16> Elts; 2517 2518 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2519 for (unsigned i = 0; i != Size; ++i) 2520 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2521 STy->getElementType(i))); 2522 V = ConstantStruct::get(STy, Elts); 2523 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2524 Type *EltTy = ATy->getElementType(); 2525 for (unsigned i = 0; i != Size; ++i) 2526 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2527 V = ConstantArray::get(ATy, Elts); 2528 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2529 Type *EltTy = VTy->getElementType(); 2530 for (unsigned i = 0; i != Size; ++i) 2531 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2532 V = ConstantVector::get(Elts); 2533 } else { 2534 V = UndefValue::get(CurTy); 2535 } 2536 break; 2537 } 2538 case bitc::CST_CODE_STRING: // STRING: [values] 2539 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2540 if (Record.empty()) 2541 return error("Invalid record"); 2542 2543 SmallString<16> Elts(Record.begin(), Record.end()); 2544 V = ConstantDataArray::getString(Context, Elts, 2545 BitCode == bitc::CST_CODE_CSTRING); 2546 break; 2547 } 2548 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2549 if (Record.empty()) 2550 return error("Invalid record"); 2551 2552 Type *EltTy; 2553 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2554 EltTy = Array->getElementType(); 2555 else 2556 EltTy = cast<VectorType>(CurTy)->getElementType(); 2557 if (EltTy->isIntegerTy(8)) { 2558 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2559 if (isa<VectorType>(CurTy)) 2560 V = ConstantDataVector::get(Context, Elts); 2561 else 2562 V = ConstantDataArray::get(Context, Elts); 2563 } else if (EltTy->isIntegerTy(16)) { 2564 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2565 if (isa<VectorType>(CurTy)) 2566 V = ConstantDataVector::get(Context, Elts); 2567 else 2568 V = ConstantDataArray::get(Context, Elts); 2569 } else if (EltTy->isIntegerTy(32)) { 2570 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2571 if (isa<VectorType>(CurTy)) 2572 V = ConstantDataVector::get(Context, Elts); 2573 else 2574 V = ConstantDataArray::get(Context, Elts); 2575 } else if (EltTy->isIntegerTy(64)) { 2576 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2577 if (isa<VectorType>(CurTy)) 2578 V = ConstantDataVector::get(Context, Elts); 2579 else 2580 V = ConstantDataArray::get(Context, Elts); 2581 } else if (EltTy->isHalfTy()) { 2582 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2583 if (isa<VectorType>(CurTy)) 2584 V = ConstantDataVector::getFP(EltTy, Elts); 2585 else 2586 V = ConstantDataArray::getFP(EltTy, Elts); 2587 } else if (EltTy->isBFloatTy()) { 2588 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2589 if (isa<VectorType>(CurTy)) 2590 V = ConstantDataVector::getFP(EltTy, Elts); 2591 else 2592 V = ConstantDataArray::getFP(EltTy, Elts); 2593 } else if (EltTy->isFloatTy()) { 2594 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2595 if (isa<VectorType>(CurTy)) 2596 V = ConstantDataVector::getFP(EltTy, Elts); 2597 else 2598 V = ConstantDataArray::getFP(EltTy, Elts); 2599 } else if (EltTy->isDoubleTy()) { 2600 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2601 if (isa<VectorType>(CurTy)) 2602 V = ConstantDataVector::getFP(EltTy, Elts); 2603 else 2604 V = ConstantDataArray::getFP(EltTy, Elts); 2605 } else { 2606 return error("Invalid type for value"); 2607 } 2608 break; 2609 } 2610 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2611 if (Record.size() < 2) 2612 return error("Invalid record"); 2613 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2614 if (Opc < 0) { 2615 V = UndefValue::get(CurTy); // Unknown unop. 2616 } else { 2617 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2618 unsigned Flags = 0; 2619 V = ConstantExpr::get(Opc, LHS, Flags); 2620 } 2621 break; 2622 } 2623 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2624 if (Record.size() < 3) 2625 return error("Invalid record"); 2626 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2627 if (Opc < 0) { 2628 V = UndefValue::get(CurTy); // Unknown binop. 2629 } else { 2630 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2631 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2632 unsigned Flags = 0; 2633 if (Record.size() >= 4) { 2634 if (Opc == Instruction::Add || 2635 Opc == Instruction::Sub || 2636 Opc == Instruction::Mul || 2637 Opc == Instruction::Shl) { 2638 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2639 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2640 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2641 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2642 } else if (Opc == Instruction::SDiv || 2643 Opc == Instruction::UDiv || 2644 Opc == Instruction::LShr || 2645 Opc == Instruction::AShr) { 2646 if (Record[3] & (1 << bitc::PEO_EXACT)) 2647 Flags |= SDivOperator::IsExact; 2648 } 2649 } 2650 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2651 } 2652 break; 2653 } 2654 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2655 if (Record.size() < 3) 2656 return error("Invalid record"); 2657 int Opc = getDecodedCastOpcode(Record[0]); 2658 if (Opc < 0) { 2659 V = UndefValue::get(CurTy); // Unknown cast. 2660 } else { 2661 Type *OpTy = getTypeByID(Record[1]); 2662 if (!OpTy) 2663 return error("Invalid record"); 2664 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2665 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2666 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2667 } 2668 break; 2669 } 2670 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2671 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2672 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2673 // operands] 2674 unsigned OpNum = 0; 2675 Type *PointeeType = nullptr; 2676 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2677 Record.size() % 2) 2678 PointeeType = getTypeByID(Record[OpNum++]); 2679 2680 bool InBounds = false; 2681 Optional<unsigned> InRangeIndex; 2682 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2683 uint64_t Op = Record[OpNum++]; 2684 InBounds = Op & 1; 2685 InRangeIndex = Op >> 1; 2686 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2687 InBounds = true; 2688 2689 SmallVector<Constant*, 16> Elts; 2690 Type *Elt0FullTy = nullptr; 2691 while (OpNum != Record.size()) { 2692 if (!Elt0FullTy) 2693 Elt0FullTy = getTypeByID(Record[OpNum]); 2694 Type *ElTy = getTypeByID(Record[OpNum++]); 2695 if (!ElTy) 2696 return error("Invalid record"); 2697 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2698 } 2699 2700 if (Elts.size() < 1) 2701 return error("Invalid gep with no operands"); 2702 2703 PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType()); 2704 if (!PointeeType) 2705 PointeeType = OrigPtrTy->getElementType(); 2706 else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 2707 return error("Explicit gep operator type does not match pointee type " 2708 "of pointer operand"); 2709 2710 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2711 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2712 InBounds, InRangeIndex); 2713 break; 2714 } 2715 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2716 if (Record.size() < 3) 2717 return error("Invalid record"); 2718 2719 DelayedSelectors.push_back( 2720 {CurTy, Record[0], Record[1], Record[2], NextCstNo}); 2721 (void)ValueList.getConstantFwdRef(NextCstNo, CurTy); 2722 ++NextCstNo; 2723 continue; 2724 } 2725 case bitc::CST_CODE_CE_EXTRACTELT 2726 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2727 if (Record.size() < 3) 2728 return error("Invalid record"); 2729 VectorType *OpTy = 2730 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2731 if (!OpTy) 2732 return error("Invalid record"); 2733 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2734 Constant *Op1 = nullptr; 2735 if (Record.size() == 4) { 2736 Type *IdxTy = getTypeByID(Record[2]); 2737 if (!IdxTy) 2738 return error("Invalid record"); 2739 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2740 } else { 2741 // Deprecated, but still needed to read old bitcode files. 2742 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2743 } 2744 if (!Op1) 2745 return error("Invalid record"); 2746 V = ConstantExpr::getExtractElement(Op0, Op1); 2747 break; 2748 } 2749 case bitc::CST_CODE_CE_INSERTELT 2750 : { // CE_INSERTELT: [opval, opval, opty, opval] 2751 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2752 if (Record.size() < 3 || !OpTy) 2753 return error("Invalid record"); 2754 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2755 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2756 OpTy->getElementType()); 2757 Constant *Op2 = nullptr; 2758 if (Record.size() == 4) { 2759 Type *IdxTy = getTypeByID(Record[2]); 2760 if (!IdxTy) 2761 return error("Invalid record"); 2762 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2763 } else { 2764 // Deprecated, but still needed to read old bitcode files. 2765 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2766 } 2767 if (!Op2) 2768 return error("Invalid record"); 2769 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2770 break; 2771 } 2772 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2773 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2774 if (Record.size() < 3 || !OpTy) 2775 return error("Invalid record"); 2776 DelayedShuffles.push_back( 2777 {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2778 ++NextCstNo; 2779 continue; 2780 } 2781 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2782 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2783 VectorType *OpTy = 2784 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2785 if (Record.size() < 4 || !RTy || !OpTy) 2786 return error("Invalid record"); 2787 DelayedShuffles.push_back( 2788 {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2789 ++NextCstNo; 2790 continue; 2791 } 2792 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2793 if (Record.size() < 4) 2794 return error("Invalid record"); 2795 Type *OpTy = getTypeByID(Record[0]); 2796 if (!OpTy) 2797 return error("Invalid record"); 2798 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2799 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2800 2801 if (OpTy->isFPOrFPVectorTy()) 2802 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2803 else 2804 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2805 break; 2806 } 2807 // This maintains backward compatibility, pre-asm dialect keywords. 2808 // Deprecated, but still needed to read old bitcode files. 2809 case bitc::CST_CODE_INLINEASM_OLD: { 2810 if (Record.size() < 2) 2811 return error("Invalid record"); 2812 std::string AsmStr, ConstrStr; 2813 bool HasSideEffects = Record[0] & 1; 2814 bool IsAlignStack = Record[0] >> 1; 2815 unsigned AsmStrSize = Record[1]; 2816 if (2+AsmStrSize >= Record.size()) 2817 return error("Invalid record"); 2818 unsigned ConstStrSize = Record[2+AsmStrSize]; 2819 if (3+AsmStrSize+ConstStrSize > Record.size()) 2820 return error("Invalid record"); 2821 2822 for (unsigned i = 0; i != AsmStrSize; ++i) 2823 AsmStr += (char)Record[2+i]; 2824 for (unsigned i = 0; i != ConstStrSize; ++i) 2825 ConstrStr += (char)Record[3+AsmStrSize+i]; 2826 UpgradeInlineAsmString(&AsmStr); 2827 V = InlineAsm::get( 2828 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2829 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2830 break; 2831 } 2832 // This version adds support for the asm dialect keywords (e.g., 2833 // inteldialect). 2834 case bitc::CST_CODE_INLINEASM_OLD2: { 2835 if (Record.size() < 2) 2836 return error("Invalid record"); 2837 std::string AsmStr, ConstrStr; 2838 bool HasSideEffects = Record[0] & 1; 2839 bool IsAlignStack = (Record[0] >> 1) & 1; 2840 unsigned AsmDialect = Record[0] >> 2; 2841 unsigned AsmStrSize = Record[1]; 2842 if (2+AsmStrSize >= Record.size()) 2843 return error("Invalid record"); 2844 unsigned ConstStrSize = Record[2+AsmStrSize]; 2845 if (3+AsmStrSize+ConstStrSize > Record.size()) 2846 return error("Invalid record"); 2847 2848 for (unsigned i = 0; i != AsmStrSize; ++i) 2849 AsmStr += (char)Record[2+i]; 2850 for (unsigned i = 0; i != ConstStrSize; ++i) 2851 ConstrStr += (char)Record[3+AsmStrSize+i]; 2852 UpgradeInlineAsmString(&AsmStr); 2853 V = InlineAsm::get( 2854 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2855 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2856 InlineAsm::AsmDialect(AsmDialect)); 2857 break; 2858 } 2859 // This version adds support for the unwind keyword. 2860 case bitc::CST_CODE_INLINEASM: { 2861 if (Record.size() < 2) 2862 return error("Invalid record"); 2863 std::string AsmStr, ConstrStr; 2864 bool HasSideEffects = Record[0] & 1; 2865 bool IsAlignStack = (Record[0] >> 1) & 1; 2866 unsigned AsmDialect = (Record[0] >> 2) & 1; 2867 bool CanThrow = (Record[0] >> 3) & 1; 2868 unsigned AsmStrSize = Record[1]; 2869 if (2 + AsmStrSize >= Record.size()) 2870 return error("Invalid record"); 2871 unsigned ConstStrSize = Record[2 + AsmStrSize]; 2872 if (3 + AsmStrSize + ConstStrSize > Record.size()) 2873 return error("Invalid record"); 2874 2875 for (unsigned i = 0; i != AsmStrSize; ++i) 2876 AsmStr += (char)Record[2 + i]; 2877 for (unsigned i = 0; i != ConstStrSize; ++i) 2878 ConstrStr += (char)Record[3 + AsmStrSize + i]; 2879 UpgradeInlineAsmString(&AsmStr); 2880 V = InlineAsm::get( 2881 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2882 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2883 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2884 break; 2885 } 2886 case bitc::CST_CODE_BLOCKADDRESS:{ 2887 if (Record.size() < 3) 2888 return error("Invalid record"); 2889 Type *FnTy = getTypeByID(Record[0]); 2890 if (!FnTy) 2891 return error("Invalid record"); 2892 Function *Fn = 2893 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2894 if (!Fn) 2895 return error("Invalid record"); 2896 2897 // If the function is already parsed we can insert the block address right 2898 // away. 2899 BasicBlock *BB; 2900 unsigned BBID = Record[2]; 2901 if (!BBID) 2902 // Invalid reference to entry block. 2903 return error("Invalid ID"); 2904 if (!Fn->empty()) { 2905 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2906 for (size_t I = 0, E = BBID; I != E; ++I) { 2907 if (BBI == BBE) 2908 return error("Invalid ID"); 2909 ++BBI; 2910 } 2911 BB = &*BBI; 2912 } else { 2913 // Otherwise insert a placeholder and remember it so it can be inserted 2914 // when the function is parsed. 2915 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2916 if (FwdBBs.empty()) 2917 BasicBlockFwdRefQueue.push_back(Fn); 2918 if (FwdBBs.size() < BBID + 1) 2919 FwdBBs.resize(BBID + 1); 2920 if (!FwdBBs[BBID]) 2921 FwdBBs[BBID] = BasicBlock::Create(Context); 2922 BB = FwdBBs[BBID]; 2923 } 2924 V = BlockAddress::get(Fn, BB); 2925 break; 2926 } 2927 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 2928 if (Record.size() < 2) 2929 return error("Invalid record"); 2930 Type *GVTy = getTypeByID(Record[0]); 2931 if (!GVTy) 2932 return error("Invalid record"); 2933 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2934 ValueList.getConstantFwdRef(Record[1], GVTy)); 2935 if (!GV) 2936 return error("Invalid record"); 2937 2938 V = DSOLocalEquivalent::get(GV); 2939 break; 2940 } 2941 case bitc::CST_CODE_NO_CFI_VALUE: { 2942 if (Record.size() < 2) 2943 return error("Invalid record"); 2944 Type *GVTy = getTypeByID(Record[0]); 2945 if (!GVTy) 2946 return error("Invalid record"); 2947 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2948 ValueList.getConstantFwdRef(Record[1], GVTy)); 2949 if (!GV) 2950 return error("Invalid record"); 2951 V = NoCFIValue::get(GV); 2952 break; 2953 } 2954 } 2955 2956 ValueList.assignValue(V, NextCstNo); 2957 ++NextCstNo; 2958 } 2959 } 2960 2961 Error BitcodeReader::parseUseLists() { 2962 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2963 return Err; 2964 2965 // Read all the records. 2966 SmallVector<uint64_t, 64> Record; 2967 2968 while (true) { 2969 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2970 if (!MaybeEntry) 2971 return MaybeEntry.takeError(); 2972 BitstreamEntry Entry = MaybeEntry.get(); 2973 2974 switch (Entry.Kind) { 2975 case BitstreamEntry::SubBlock: // Handled for us already. 2976 case BitstreamEntry::Error: 2977 return error("Malformed block"); 2978 case BitstreamEntry::EndBlock: 2979 return Error::success(); 2980 case BitstreamEntry::Record: 2981 // The interesting case. 2982 break; 2983 } 2984 2985 // Read a use list record. 2986 Record.clear(); 2987 bool IsBB = false; 2988 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2989 if (!MaybeRecord) 2990 return MaybeRecord.takeError(); 2991 switch (MaybeRecord.get()) { 2992 default: // Default behavior: unknown type. 2993 break; 2994 case bitc::USELIST_CODE_BB: 2995 IsBB = true; 2996 LLVM_FALLTHROUGH; 2997 case bitc::USELIST_CODE_DEFAULT: { 2998 unsigned RecordLength = Record.size(); 2999 if (RecordLength < 3) 3000 // Records should have at least an ID and two indexes. 3001 return error("Invalid record"); 3002 unsigned ID = Record.pop_back_val(); 3003 3004 Value *V; 3005 if (IsBB) { 3006 assert(ID < FunctionBBs.size() && "Basic block not found"); 3007 V = FunctionBBs[ID]; 3008 } else 3009 V = ValueList[ID]; 3010 unsigned NumUses = 0; 3011 SmallDenseMap<const Use *, unsigned, 16> Order; 3012 for (const Use &U : V->materialized_uses()) { 3013 if (++NumUses > Record.size()) 3014 break; 3015 Order[&U] = Record[NumUses - 1]; 3016 } 3017 if (Order.size() != Record.size() || NumUses > Record.size()) 3018 // Mismatches can happen if the functions are being materialized lazily 3019 // (out-of-order), or a value has been upgraded. 3020 break; 3021 3022 V->sortUseList([&](const Use &L, const Use &R) { 3023 return Order.lookup(&L) < Order.lookup(&R); 3024 }); 3025 break; 3026 } 3027 } 3028 } 3029 } 3030 3031 /// When we see the block for metadata, remember where it is and then skip it. 3032 /// This lets us lazily deserialize the metadata. 3033 Error BitcodeReader::rememberAndSkipMetadata() { 3034 // Save the current stream state. 3035 uint64_t CurBit = Stream.GetCurrentBitNo(); 3036 DeferredMetadataInfo.push_back(CurBit); 3037 3038 // Skip over the block for now. 3039 if (Error Err = Stream.SkipBlock()) 3040 return Err; 3041 return Error::success(); 3042 } 3043 3044 Error BitcodeReader::materializeMetadata() { 3045 for (uint64_t BitPos : DeferredMetadataInfo) { 3046 // Move the bit stream to the saved position. 3047 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3048 return JumpFailed; 3049 if (Error Err = MDLoader->parseModuleMetadata()) 3050 return Err; 3051 } 3052 3053 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3054 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3055 // multiple times. 3056 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3057 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3058 NamedMDNode *LinkerOpts = 3059 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3060 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3061 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3062 } 3063 } 3064 3065 DeferredMetadataInfo.clear(); 3066 return Error::success(); 3067 } 3068 3069 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3070 3071 /// When we see the block for a function body, remember where it is and then 3072 /// skip it. This lets us lazily deserialize the functions. 3073 Error BitcodeReader::rememberAndSkipFunctionBody() { 3074 // Get the function we are talking about. 3075 if (FunctionsWithBodies.empty()) 3076 return error("Insufficient function protos"); 3077 3078 Function *Fn = FunctionsWithBodies.back(); 3079 FunctionsWithBodies.pop_back(); 3080 3081 // Save the current stream state. 3082 uint64_t CurBit = Stream.GetCurrentBitNo(); 3083 assert( 3084 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3085 "Mismatch between VST and scanned function offsets"); 3086 DeferredFunctionInfo[Fn] = CurBit; 3087 3088 // Skip over the function block for now. 3089 if (Error Err = Stream.SkipBlock()) 3090 return Err; 3091 return Error::success(); 3092 } 3093 3094 Error BitcodeReader::globalCleanup() { 3095 // Patch the initializers for globals and aliases up. 3096 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3097 return Err; 3098 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3099 return error("Malformed global initializer set"); 3100 3101 // Look for intrinsic functions which need to be upgraded at some point 3102 // and functions that need to have their function attributes upgraded. 3103 for (Function &F : *TheModule) { 3104 MDLoader->upgradeDebugIntrinsics(F); 3105 Function *NewFn; 3106 if (UpgradeIntrinsicFunction(&F, NewFn)) 3107 UpgradedIntrinsics[&F] = NewFn; 3108 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3109 // Some types could be renamed during loading if several modules are 3110 // loaded in the same LLVMContext (LTO scenario). In this case we should 3111 // remangle intrinsics names as well. 3112 RemangledIntrinsics[&F] = Remangled.getValue(); 3113 // Look for functions that rely on old function attribute behavior. 3114 UpgradeFunctionAttributes(F); 3115 } 3116 3117 // Look for global variables which need to be renamed. 3118 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3119 for (GlobalVariable &GV : TheModule->globals()) 3120 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3121 UpgradedVariables.emplace_back(&GV, Upgraded); 3122 for (auto &Pair : UpgradedVariables) { 3123 Pair.first->eraseFromParent(); 3124 TheModule->getGlobalList().push_back(Pair.second); 3125 } 3126 3127 // Force deallocation of memory for these vectors to favor the client that 3128 // want lazy deserialization. 3129 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3130 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3131 return Error::success(); 3132 } 3133 3134 /// Support for lazy parsing of function bodies. This is required if we 3135 /// either have an old bitcode file without a VST forward declaration record, 3136 /// or if we have an anonymous function being materialized, since anonymous 3137 /// functions do not have a name and are therefore not in the VST. 3138 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3139 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3140 return JumpFailed; 3141 3142 if (Stream.AtEndOfStream()) 3143 return error("Could not find function in stream"); 3144 3145 if (!SeenFirstFunctionBody) 3146 return error("Trying to materialize functions before seeing function blocks"); 3147 3148 // An old bitcode file with the symbol table at the end would have 3149 // finished the parse greedily. 3150 assert(SeenValueSymbolTable); 3151 3152 SmallVector<uint64_t, 64> Record; 3153 3154 while (true) { 3155 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3156 if (!MaybeEntry) 3157 return MaybeEntry.takeError(); 3158 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3159 3160 switch (Entry.Kind) { 3161 default: 3162 return error("Expect SubBlock"); 3163 case BitstreamEntry::SubBlock: 3164 switch (Entry.ID) { 3165 default: 3166 return error("Expect function block"); 3167 case bitc::FUNCTION_BLOCK_ID: 3168 if (Error Err = rememberAndSkipFunctionBody()) 3169 return Err; 3170 NextUnreadBit = Stream.GetCurrentBitNo(); 3171 return Error::success(); 3172 } 3173 } 3174 } 3175 } 3176 3177 bool BitcodeReaderBase::readBlockInfo() { 3178 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3179 Stream.ReadBlockInfoBlock(); 3180 if (!MaybeNewBlockInfo) 3181 return true; // FIXME Handle the error. 3182 Optional<BitstreamBlockInfo> NewBlockInfo = 3183 std::move(MaybeNewBlockInfo.get()); 3184 if (!NewBlockInfo) 3185 return true; 3186 BlockInfo = std::move(*NewBlockInfo); 3187 return false; 3188 } 3189 3190 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3191 // v1: [selection_kind, name] 3192 // v2: [strtab_offset, strtab_size, selection_kind] 3193 StringRef Name; 3194 std::tie(Name, Record) = readNameFromStrtab(Record); 3195 3196 if (Record.empty()) 3197 return error("Invalid record"); 3198 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3199 std::string OldFormatName; 3200 if (!UseStrtab) { 3201 if (Record.size() < 2) 3202 return error("Invalid record"); 3203 unsigned ComdatNameSize = Record[1]; 3204 OldFormatName.reserve(ComdatNameSize); 3205 for (unsigned i = 0; i != ComdatNameSize; ++i) 3206 OldFormatName += (char)Record[2 + i]; 3207 Name = OldFormatName; 3208 } 3209 Comdat *C = TheModule->getOrInsertComdat(Name); 3210 C->setSelectionKind(SK); 3211 ComdatList.push_back(C); 3212 return Error::success(); 3213 } 3214 3215 static void inferDSOLocal(GlobalValue *GV) { 3216 // infer dso_local from linkage and visibility if it is not encoded. 3217 if (GV->hasLocalLinkage() || 3218 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3219 GV->setDSOLocal(true); 3220 } 3221 3222 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3223 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3224 // visibility, threadlocal, unnamed_addr, externally_initialized, 3225 // dllstorageclass, comdat, attributes, preemption specifier, 3226 // partition strtab offset, partition strtab size] (name in VST) 3227 // v2: [strtab_offset, strtab_size, v1] 3228 StringRef Name; 3229 std::tie(Name, Record) = readNameFromStrtab(Record); 3230 3231 if (Record.size() < 6) 3232 return error("Invalid record"); 3233 Type *Ty = getTypeByID(Record[0]); 3234 if (!Ty) 3235 return error("Invalid record"); 3236 bool isConstant = Record[1] & 1; 3237 bool explicitType = Record[1] & 2; 3238 unsigned AddressSpace; 3239 if (explicitType) { 3240 AddressSpace = Record[1] >> 2; 3241 } else { 3242 if (!Ty->isPointerTy()) 3243 return error("Invalid type for value"); 3244 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3245 Ty = cast<PointerType>(Ty)->getElementType(); 3246 } 3247 3248 uint64_t RawLinkage = Record[3]; 3249 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3250 MaybeAlign Alignment; 3251 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3252 return Err; 3253 std::string Section; 3254 if (Record[5]) { 3255 if (Record[5] - 1 >= SectionTable.size()) 3256 return error("Invalid ID"); 3257 Section = SectionTable[Record[5] - 1]; 3258 } 3259 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3260 // Local linkage must have default visibility. 3261 // auto-upgrade `hidden` and `protected` for old bitcode. 3262 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3263 Visibility = getDecodedVisibility(Record[6]); 3264 3265 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3266 if (Record.size() > 7) 3267 TLM = getDecodedThreadLocalMode(Record[7]); 3268 3269 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3270 if (Record.size() > 8) 3271 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3272 3273 bool ExternallyInitialized = false; 3274 if (Record.size() > 9) 3275 ExternallyInitialized = Record[9]; 3276 3277 GlobalVariable *NewGV = 3278 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3279 nullptr, TLM, AddressSpace, ExternallyInitialized); 3280 NewGV->setAlignment(Alignment); 3281 if (!Section.empty()) 3282 NewGV->setSection(Section); 3283 NewGV->setVisibility(Visibility); 3284 NewGV->setUnnamedAddr(UnnamedAddr); 3285 3286 if (Record.size() > 10) 3287 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3288 else 3289 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3290 3291 ValueList.push_back(NewGV); 3292 3293 // Remember which value to use for the global initializer. 3294 if (unsigned InitID = Record[2]) 3295 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3296 3297 if (Record.size() > 11) { 3298 if (unsigned ComdatID = Record[11]) { 3299 if (ComdatID > ComdatList.size()) 3300 return error("Invalid global variable comdat ID"); 3301 NewGV->setComdat(ComdatList[ComdatID - 1]); 3302 } 3303 } else if (hasImplicitComdat(RawLinkage)) { 3304 ImplicitComdatObjects.insert(NewGV); 3305 } 3306 3307 if (Record.size() > 12) { 3308 auto AS = getAttributes(Record[12]).getFnAttrs(); 3309 NewGV->setAttributes(AS); 3310 } 3311 3312 if (Record.size() > 13) { 3313 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3314 } 3315 inferDSOLocal(NewGV); 3316 3317 // Check whether we have enough values to read a partition name. 3318 if (Record.size() > 15) 3319 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3320 3321 return Error::success(); 3322 } 3323 3324 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3325 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3326 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3327 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3328 // v2: [strtab_offset, strtab_size, v1] 3329 StringRef Name; 3330 std::tie(Name, Record) = readNameFromStrtab(Record); 3331 3332 if (Record.size() < 8) 3333 return error("Invalid record"); 3334 Type *FTy = getTypeByID(Record[0]); 3335 if (!FTy) 3336 return error("Invalid record"); 3337 if (auto *PTy = dyn_cast<PointerType>(FTy)) 3338 FTy = PTy->getElementType(); 3339 3340 if (!isa<FunctionType>(FTy)) 3341 return error("Invalid type for value"); 3342 auto CC = static_cast<CallingConv::ID>(Record[1]); 3343 if (CC & ~CallingConv::MaxID) 3344 return error("Invalid calling convention ID"); 3345 3346 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3347 if (Record.size() > 16) 3348 AddrSpace = Record[16]; 3349 3350 Function *Func = 3351 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3352 AddrSpace, Name, TheModule); 3353 3354 assert(Func->getFunctionType() == FTy && 3355 "Incorrect fully specified type provided for function"); 3356 FunctionTypes[Func] = cast<FunctionType>(FTy); 3357 3358 Func->setCallingConv(CC); 3359 bool isProto = Record[2]; 3360 uint64_t RawLinkage = Record[3]; 3361 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3362 Func->setAttributes(getAttributes(Record[4])); 3363 3364 // Upgrade any old-style byval or sret without a type by propagating the 3365 // argument's pointee type. There should be no opaque pointers where the byval 3366 // type is implicit. 3367 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3368 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3369 Attribute::InAlloca}) { 3370 if (!Func->hasParamAttribute(i, Kind)) 3371 continue; 3372 3373 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3374 continue; 3375 3376 Func->removeParamAttr(i, Kind); 3377 3378 Type *PTy = cast<FunctionType>(FTy)->getParamType(i); 3379 Type *PtrEltTy = cast<PointerType>(PTy)->getElementType(); 3380 Attribute NewAttr; 3381 switch (Kind) { 3382 case Attribute::ByVal: 3383 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3384 break; 3385 case Attribute::StructRet: 3386 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3387 break; 3388 case Attribute::InAlloca: 3389 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3390 break; 3391 default: 3392 llvm_unreachable("not an upgraded type attribute"); 3393 } 3394 3395 Func->addParamAttr(i, NewAttr); 3396 } 3397 } 3398 3399 MaybeAlign Alignment; 3400 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3401 return Err; 3402 Func->setAlignment(Alignment); 3403 if (Record[6]) { 3404 if (Record[6] - 1 >= SectionTable.size()) 3405 return error("Invalid ID"); 3406 Func->setSection(SectionTable[Record[6] - 1]); 3407 } 3408 // Local linkage must have default visibility. 3409 // auto-upgrade `hidden` and `protected` for old bitcode. 3410 if (!Func->hasLocalLinkage()) 3411 Func->setVisibility(getDecodedVisibility(Record[7])); 3412 if (Record.size() > 8 && Record[8]) { 3413 if (Record[8] - 1 >= GCTable.size()) 3414 return error("Invalid ID"); 3415 Func->setGC(GCTable[Record[8] - 1]); 3416 } 3417 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3418 if (Record.size() > 9) 3419 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3420 Func->setUnnamedAddr(UnnamedAddr); 3421 3422 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 3423 if (Record.size() > 10) 3424 OperandInfo.Prologue = Record[10]; 3425 3426 if (Record.size() > 11) 3427 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3428 else 3429 upgradeDLLImportExportLinkage(Func, RawLinkage); 3430 3431 if (Record.size() > 12) { 3432 if (unsigned ComdatID = Record[12]) { 3433 if (ComdatID > ComdatList.size()) 3434 return error("Invalid function comdat ID"); 3435 Func->setComdat(ComdatList[ComdatID - 1]); 3436 } 3437 } else if (hasImplicitComdat(RawLinkage)) { 3438 ImplicitComdatObjects.insert(Func); 3439 } 3440 3441 if (Record.size() > 13) 3442 OperandInfo.Prefix = Record[13]; 3443 3444 if (Record.size() > 14) 3445 OperandInfo.PersonalityFn = Record[14]; 3446 3447 if (Record.size() > 15) { 3448 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3449 } 3450 inferDSOLocal(Func); 3451 3452 // Record[16] is the address space number. 3453 3454 // Check whether we have enough values to read a partition name. Also make 3455 // sure Strtab has enough values. 3456 if (Record.size() > 18 && Strtab.data() && 3457 Record[17] + Record[18] <= Strtab.size()) { 3458 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3459 } 3460 3461 ValueList.push_back(Func); 3462 3463 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 3464 FunctionOperands.push_back(OperandInfo); 3465 3466 // If this is a function with a body, remember the prototype we are 3467 // creating now, so that we can match up the body with them later. 3468 if (!isProto) { 3469 Func->setIsMaterializable(true); 3470 FunctionsWithBodies.push_back(Func); 3471 DeferredFunctionInfo[Func] = 0; 3472 } 3473 return Error::success(); 3474 } 3475 3476 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3477 unsigned BitCode, ArrayRef<uint64_t> Record) { 3478 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3479 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3480 // dllstorageclass, threadlocal, unnamed_addr, 3481 // preemption specifier] (name in VST) 3482 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3483 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3484 // preemption specifier] (name in VST) 3485 // v2: [strtab_offset, strtab_size, v1] 3486 StringRef Name; 3487 std::tie(Name, Record) = readNameFromStrtab(Record); 3488 3489 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3490 if (Record.size() < (3 + (unsigned)NewRecord)) 3491 return error("Invalid record"); 3492 unsigned OpNum = 0; 3493 Type *Ty = getTypeByID(Record[OpNum++]); 3494 if (!Ty) 3495 return error("Invalid record"); 3496 3497 unsigned AddrSpace; 3498 if (!NewRecord) { 3499 auto *PTy = dyn_cast<PointerType>(Ty); 3500 if (!PTy) 3501 return error("Invalid type for value"); 3502 Ty = PTy->getElementType(); 3503 AddrSpace = PTy->getAddressSpace(); 3504 } else { 3505 AddrSpace = Record[OpNum++]; 3506 } 3507 3508 auto Val = Record[OpNum++]; 3509 auto Linkage = Record[OpNum++]; 3510 GlobalValue *NewGA; 3511 if (BitCode == bitc::MODULE_CODE_ALIAS || 3512 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3513 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3514 TheModule); 3515 else 3516 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3517 nullptr, TheModule); 3518 3519 // Local linkage must have default visibility. 3520 // auto-upgrade `hidden` and `protected` for old bitcode. 3521 if (OpNum != Record.size()) { 3522 auto VisInd = OpNum++; 3523 if (!NewGA->hasLocalLinkage()) 3524 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3525 } 3526 if (BitCode == bitc::MODULE_CODE_ALIAS || 3527 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3528 if (OpNum != Record.size()) 3529 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3530 else 3531 upgradeDLLImportExportLinkage(NewGA, Linkage); 3532 if (OpNum != Record.size()) 3533 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3534 if (OpNum != Record.size()) 3535 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3536 } 3537 if (OpNum != Record.size()) 3538 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3539 inferDSOLocal(NewGA); 3540 3541 // Check whether we have enough values to read a partition name. 3542 if (OpNum + 1 < Record.size()) { 3543 NewGA->setPartition( 3544 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3545 OpNum += 2; 3546 } 3547 3548 ValueList.push_back(NewGA); 3549 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3550 return Error::success(); 3551 } 3552 3553 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3554 bool ShouldLazyLoadMetadata, 3555 DataLayoutCallbackTy DataLayoutCallback) { 3556 if (ResumeBit) { 3557 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3558 return JumpFailed; 3559 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3560 return Err; 3561 3562 SmallVector<uint64_t, 64> Record; 3563 3564 // Parts of bitcode parsing depend on the datalayout. Make sure we 3565 // finalize the datalayout before we run any of that code. 3566 bool ResolvedDataLayout = false; 3567 auto ResolveDataLayout = [&] { 3568 if (ResolvedDataLayout) 3569 return; 3570 3571 // datalayout and triple can't be parsed after this point. 3572 ResolvedDataLayout = true; 3573 3574 // Upgrade data layout string. 3575 std::string DL = llvm::UpgradeDataLayoutString( 3576 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3577 TheModule->setDataLayout(DL); 3578 3579 if (auto LayoutOverride = 3580 DataLayoutCallback(TheModule->getTargetTriple())) 3581 TheModule->setDataLayout(*LayoutOverride); 3582 }; 3583 3584 // Read all the records for this module. 3585 while (true) { 3586 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3587 if (!MaybeEntry) 3588 return MaybeEntry.takeError(); 3589 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3590 3591 switch (Entry.Kind) { 3592 case BitstreamEntry::Error: 3593 return error("Malformed block"); 3594 case BitstreamEntry::EndBlock: 3595 ResolveDataLayout(); 3596 return globalCleanup(); 3597 3598 case BitstreamEntry::SubBlock: 3599 switch (Entry.ID) { 3600 default: // Skip unknown content. 3601 if (Error Err = Stream.SkipBlock()) 3602 return Err; 3603 break; 3604 case bitc::BLOCKINFO_BLOCK_ID: 3605 if (readBlockInfo()) 3606 return error("Malformed block"); 3607 break; 3608 case bitc::PARAMATTR_BLOCK_ID: 3609 if (Error Err = parseAttributeBlock()) 3610 return Err; 3611 break; 3612 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3613 if (Error Err = parseAttributeGroupBlock()) 3614 return Err; 3615 break; 3616 case bitc::TYPE_BLOCK_ID_NEW: 3617 if (Error Err = parseTypeTable()) 3618 return Err; 3619 break; 3620 case bitc::VALUE_SYMTAB_BLOCK_ID: 3621 if (!SeenValueSymbolTable) { 3622 // Either this is an old form VST without function index and an 3623 // associated VST forward declaration record (which would have caused 3624 // the VST to be jumped to and parsed before it was encountered 3625 // normally in the stream), or there were no function blocks to 3626 // trigger an earlier parsing of the VST. 3627 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3628 if (Error Err = parseValueSymbolTable()) 3629 return Err; 3630 SeenValueSymbolTable = true; 3631 } else { 3632 // We must have had a VST forward declaration record, which caused 3633 // the parser to jump to and parse the VST earlier. 3634 assert(VSTOffset > 0); 3635 if (Error Err = Stream.SkipBlock()) 3636 return Err; 3637 } 3638 break; 3639 case bitc::CONSTANTS_BLOCK_ID: 3640 if (Error Err = parseConstants()) 3641 return Err; 3642 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3643 return Err; 3644 break; 3645 case bitc::METADATA_BLOCK_ID: 3646 if (ShouldLazyLoadMetadata) { 3647 if (Error Err = rememberAndSkipMetadata()) 3648 return Err; 3649 break; 3650 } 3651 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3652 if (Error Err = MDLoader->parseModuleMetadata()) 3653 return Err; 3654 break; 3655 case bitc::METADATA_KIND_BLOCK_ID: 3656 if (Error Err = MDLoader->parseMetadataKinds()) 3657 return Err; 3658 break; 3659 case bitc::FUNCTION_BLOCK_ID: 3660 ResolveDataLayout(); 3661 3662 // If this is the first function body we've seen, reverse the 3663 // FunctionsWithBodies list. 3664 if (!SeenFirstFunctionBody) { 3665 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3666 if (Error Err = globalCleanup()) 3667 return Err; 3668 SeenFirstFunctionBody = true; 3669 } 3670 3671 if (VSTOffset > 0) { 3672 // If we have a VST forward declaration record, make sure we 3673 // parse the VST now if we haven't already. It is needed to 3674 // set up the DeferredFunctionInfo vector for lazy reading. 3675 if (!SeenValueSymbolTable) { 3676 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3677 return Err; 3678 SeenValueSymbolTable = true; 3679 // Fall through so that we record the NextUnreadBit below. 3680 // This is necessary in case we have an anonymous function that 3681 // is later materialized. Since it will not have a VST entry we 3682 // need to fall back to the lazy parse to find its offset. 3683 } else { 3684 // If we have a VST forward declaration record, but have already 3685 // parsed the VST (just above, when the first function body was 3686 // encountered here), then we are resuming the parse after 3687 // materializing functions. The ResumeBit points to the 3688 // start of the last function block recorded in the 3689 // DeferredFunctionInfo map. Skip it. 3690 if (Error Err = Stream.SkipBlock()) 3691 return Err; 3692 continue; 3693 } 3694 } 3695 3696 // Support older bitcode files that did not have the function 3697 // index in the VST, nor a VST forward declaration record, as 3698 // well as anonymous functions that do not have VST entries. 3699 // Build the DeferredFunctionInfo vector on the fly. 3700 if (Error Err = rememberAndSkipFunctionBody()) 3701 return Err; 3702 3703 // Suspend parsing when we reach the function bodies. Subsequent 3704 // materialization calls will resume it when necessary. If the bitcode 3705 // file is old, the symbol table will be at the end instead and will not 3706 // have been seen yet. In this case, just finish the parse now. 3707 if (SeenValueSymbolTable) { 3708 NextUnreadBit = Stream.GetCurrentBitNo(); 3709 // After the VST has been parsed, we need to make sure intrinsic name 3710 // are auto-upgraded. 3711 return globalCleanup(); 3712 } 3713 break; 3714 case bitc::USELIST_BLOCK_ID: 3715 if (Error Err = parseUseLists()) 3716 return Err; 3717 break; 3718 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3719 if (Error Err = parseOperandBundleTags()) 3720 return Err; 3721 break; 3722 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3723 if (Error Err = parseSyncScopeNames()) 3724 return Err; 3725 break; 3726 } 3727 continue; 3728 3729 case BitstreamEntry::Record: 3730 // The interesting case. 3731 break; 3732 } 3733 3734 // Read a record. 3735 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3736 if (!MaybeBitCode) 3737 return MaybeBitCode.takeError(); 3738 switch (unsigned BitCode = MaybeBitCode.get()) { 3739 default: break; // Default behavior, ignore unknown content. 3740 case bitc::MODULE_CODE_VERSION: { 3741 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3742 if (!VersionOrErr) 3743 return VersionOrErr.takeError(); 3744 UseRelativeIDs = *VersionOrErr >= 1; 3745 break; 3746 } 3747 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3748 if (ResolvedDataLayout) 3749 return error("target triple too late in module"); 3750 std::string S; 3751 if (convertToString(Record, 0, S)) 3752 return error("Invalid record"); 3753 TheModule->setTargetTriple(S); 3754 break; 3755 } 3756 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3757 if (ResolvedDataLayout) 3758 return error("datalayout too late in module"); 3759 std::string S; 3760 if (convertToString(Record, 0, S)) 3761 return error("Invalid record"); 3762 TheModule->setDataLayout(S); 3763 break; 3764 } 3765 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3766 std::string S; 3767 if (convertToString(Record, 0, S)) 3768 return error("Invalid record"); 3769 TheModule->setModuleInlineAsm(S); 3770 break; 3771 } 3772 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3773 // Deprecated, but still needed to read old bitcode files. 3774 std::string S; 3775 if (convertToString(Record, 0, S)) 3776 return error("Invalid record"); 3777 // Ignore value. 3778 break; 3779 } 3780 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3781 std::string S; 3782 if (convertToString(Record, 0, S)) 3783 return error("Invalid record"); 3784 SectionTable.push_back(S); 3785 break; 3786 } 3787 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3788 std::string S; 3789 if (convertToString(Record, 0, S)) 3790 return error("Invalid record"); 3791 GCTable.push_back(S); 3792 break; 3793 } 3794 case bitc::MODULE_CODE_COMDAT: 3795 if (Error Err = parseComdatRecord(Record)) 3796 return Err; 3797 break; 3798 case bitc::MODULE_CODE_GLOBALVAR: 3799 if (Error Err = parseGlobalVarRecord(Record)) 3800 return Err; 3801 break; 3802 case bitc::MODULE_CODE_FUNCTION: 3803 ResolveDataLayout(); 3804 if (Error Err = parseFunctionRecord(Record)) 3805 return Err; 3806 break; 3807 case bitc::MODULE_CODE_IFUNC: 3808 case bitc::MODULE_CODE_ALIAS: 3809 case bitc::MODULE_CODE_ALIAS_OLD: 3810 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3811 return Err; 3812 break; 3813 /// MODULE_CODE_VSTOFFSET: [offset] 3814 case bitc::MODULE_CODE_VSTOFFSET: 3815 if (Record.empty()) 3816 return error("Invalid record"); 3817 // Note that we subtract 1 here because the offset is relative to one word 3818 // before the start of the identification or module block, which was 3819 // historically always the start of the regular bitcode header. 3820 VSTOffset = Record[0] - 1; 3821 break; 3822 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3823 case bitc::MODULE_CODE_SOURCE_FILENAME: 3824 SmallString<128> ValueName; 3825 if (convertToString(Record, 0, ValueName)) 3826 return error("Invalid record"); 3827 TheModule->setSourceFileName(ValueName); 3828 break; 3829 } 3830 Record.clear(); 3831 } 3832 } 3833 3834 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3835 bool IsImporting, 3836 DataLayoutCallbackTy DataLayoutCallback) { 3837 TheModule = M; 3838 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3839 [&](unsigned ID) { return getTypeByID(ID); }); 3840 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3841 } 3842 3843 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3844 if (!isa<PointerType>(PtrType)) 3845 return error("Load/Store operand is not a pointer type"); 3846 3847 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 3848 return error("Explicit load/store type does not match pointee " 3849 "type of pointer operand"); 3850 if (!PointerType::isLoadableOrStorableType(ValType)) 3851 return error("Cannot load/store from pointer"); 3852 return Error::success(); 3853 } 3854 3855 void BitcodeReader::propagateAttributeTypes(CallBase *CB, 3856 ArrayRef<Type *> ArgsTys) { 3857 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3858 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3859 Attribute::InAlloca}) { 3860 if (!CB->paramHasAttr(i, Kind)) 3861 continue; 3862 3863 CB->removeParamAttr(i, Kind); 3864 3865 Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType(); 3866 Attribute NewAttr; 3867 switch (Kind) { 3868 case Attribute::ByVal: 3869 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3870 break; 3871 case Attribute::StructRet: 3872 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3873 break; 3874 case Attribute::InAlloca: 3875 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3876 break; 3877 default: 3878 llvm_unreachable("not an upgraded type attribute"); 3879 } 3880 3881 CB->addParamAttr(i, NewAttr); 3882 } 3883 } 3884 3885 switch (CB->getIntrinsicID()) { 3886 case Intrinsic::preserve_array_access_index: 3887 case Intrinsic::preserve_struct_access_index: 3888 if (!CB->getAttributes().getParamElementType(0)) { 3889 Type *ElTy = cast<PointerType>(ArgsTys[0])->getElementType(); 3890 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 3891 CB->addParamAttr(0, NewAttr); 3892 } 3893 break; 3894 default: 3895 break; 3896 } 3897 } 3898 3899 /// Lazily parse the specified function body block. 3900 Error BitcodeReader::parseFunctionBody(Function *F) { 3901 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3902 return Err; 3903 3904 // Unexpected unresolved metadata when parsing function. 3905 if (MDLoader->hasFwdRefs()) 3906 return error("Invalid function metadata: incoming forward references"); 3907 3908 InstructionList.clear(); 3909 unsigned ModuleValueListSize = ValueList.size(); 3910 unsigned ModuleMDLoaderSize = MDLoader->size(); 3911 3912 // Add all the function arguments to the value table. 3913 #ifndef NDEBUG 3914 unsigned ArgNo = 0; 3915 FunctionType *FTy = FunctionTypes[F]; 3916 #endif 3917 for (Argument &I : F->args()) { 3918 assert(I.getType() == FTy->getParamType(ArgNo++) && 3919 "Incorrect fully specified type for Function Argument"); 3920 ValueList.push_back(&I); 3921 } 3922 unsigned NextValueNo = ValueList.size(); 3923 BasicBlock *CurBB = nullptr; 3924 unsigned CurBBNo = 0; 3925 3926 DebugLoc LastLoc; 3927 auto getLastInstruction = [&]() -> Instruction * { 3928 if (CurBB && !CurBB->empty()) 3929 return &CurBB->back(); 3930 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3931 !FunctionBBs[CurBBNo - 1]->empty()) 3932 return &FunctionBBs[CurBBNo - 1]->back(); 3933 return nullptr; 3934 }; 3935 3936 std::vector<OperandBundleDef> OperandBundles; 3937 3938 // Read all the records. 3939 SmallVector<uint64_t, 64> Record; 3940 3941 while (true) { 3942 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3943 if (!MaybeEntry) 3944 return MaybeEntry.takeError(); 3945 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3946 3947 switch (Entry.Kind) { 3948 case BitstreamEntry::Error: 3949 return error("Malformed block"); 3950 case BitstreamEntry::EndBlock: 3951 goto OutOfRecordLoop; 3952 3953 case BitstreamEntry::SubBlock: 3954 switch (Entry.ID) { 3955 default: // Skip unknown content. 3956 if (Error Err = Stream.SkipBlock()) 3957 return Err; 3958 break; 3959 case bitc::CONSTANTS_BLOCK_ID: 3960 if (Error Err = parseConstants()) 3961 return Err; 3962 NextValueNo = ValueList.size(); 3963 break; 3964 case bitc::VALUE_SYMTAB_BLOCK_ID: 3965 if (Error Err = parseValueSymbolTable()) 3966 return Err; 3967 break; 3968 case bitc::METADATA_ATTACHMENT_ID: 3969 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3970 return Err; 3971 break; 3972 case bitc::METADATA_BLOCK_ID: 3973 assert(DeferredMetadataInfo.empty() && 3974 "Must read all module-level metadata before function-level"); 3975 if (Error Err = MDLoader->parseFunctionMetadata()) 3976 return Err; 3977 break; 3978 case bitc::USELIST_BLOCK_ID: 3979 if (Error Err = parseUseLists()) 3980 return Err; 3981 break; 3982 } 3983 continue; 3984 3985 case BitstreamEntry::Record: 3986 // The interesting case. 3987 break; 3988 } 3989 3990 // Read a record. 3991 Record.clear(); 3992 Instruction *I = nullptr; 3993 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3994 if (!MaybeBitCode) 3995 return MaybeBitCode.takeError(); 3996 switch (unsigned BitCode = MaybeBitCode.get()) { 3997 default: // Default behavior: reject 3998 return error("Invalid value"); 3999 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4000 if (Record.empty() || Record[0] == 0) 4001 return error("Invalid record"); 4002 // Create all the basic blocks for the function. 4003 FunctionBBs.resize(Record[0]); 4004 4005 // See if anything took the address of blocks in this function. 4006 auto BBFRI = BasicBlockFwdRefs.find(F); 4007 if (BBFRI == BasicBlockFwdRefs.end()) { 4008 for (BasicBlock *&BB : FunctionBBs) 4009 BB = BasicBlock::Create(Context, "", F); 4010 } else { 4011 auto &BBRefs = BBFRI->second; 4012 // Check for invalid basic block references. 4013 if (BBRefs.size() > FunctionBBs.size()) 4014 return error("Invalid ID"); 4015 assert(!BBRefs.empty() && "Unexpected empty array"); 4016 assert(!BBRefs.front() && "Invalid reference to entry block"); 4017 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4018 ++I) 4019 if (I < RE && BBRefs[I]) { 4020 BBRefs[I]->insertInto(F); 4021 FunctionBBs[I] = BBRefs[I]; 4022 } else { 4023 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4024 } 4025 4026 // Erase from the table. 4027 BasicBlockFwdRefs.erase(BBFRI); 4028 } 4029 4030 CurBB = FunctionBBs[0]; 4031 continue; 4032 } 4033 4034 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4035 // This record indicates that the last instruction is at the same 4036 // location as the previous instruction with a location. 4037 I = getLastInstruction(); 4038 4039 if (!I) 4040 return error("Invalid record"); 4041 I->setDebugLoc(LastLoc); 4042 I = nullptr; 4043 continue; 4044 4045 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4046 I = getLastInstruction(); 4047 if (!I || Record.size() < 4) 4048 return error("Invalid record"); 4049 4050 unsigned Line = Record[0], Col = Record[1]; 4051 unsigned ScopeID = Record[2], IAID = Record[3]; 4052 bool isImplicitCode = Record.size() == 5 && Record[4]; 4053 4054 MDNode *Scope = nullptr, *IA = nullptr; 4055 if (ScopeID) { 4056 Scope = dyn_cast_or_null<MDNode>( 4057 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4058 if (!Scope) 4059 return error("Invalid record"); 4060 } 4061 if (IAID) { 4062 IA = dyn_cast_or_null<MDNode>( 4063 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4064 if (!IA) 4065 return error("Invalid record"); 4066 } 4067 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4068 isImplicitCode); 4069 I->setDebugLoc(LastLoc); 4070 I = nullptr; 4071 continue; 4072 } 4073 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4074 unsigned OpNum = 0; 4075 Value *LHS; 4076 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4077 OpNum+1 > Record.size()) 4078 return error("Invalid record"); 4079 4080 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4081 if (Opc == -1) 4082 return error("Invalid record"); 4083 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4084 InstructionList.push_back(I); 4085 if (OpNum < Record.size()) { 4086 if (isa<FPMathOperator>(I)) { 4087 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4088 if (FMF.any()) 4089 I->setFastMathFlags(FMF); 4090 } 4091 } 4092 break; 4093 } 4094 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4095 unsigned OpNum = 0; 4096 Value *LHS, *RHS; 4097 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4098 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4099 OpNum+1 > Record.size()) 4100 return error("Invalid record"); 4101 4102 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4103 if (Opc == -1) 4104 return error("Invalid record"); 4105 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4106 InstructionList.push_back(I); 4107 if (OpNum < Record.size()) { 4108 if (Opc == Instruction::Add || 4109 Opc == Instruction::Sub || 4110 Opc == Instruction::Mul || 4111 Opc == Instruction::Shl) { 4112 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4113 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4114 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4115 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4116 } else if (Opc == Instruction::SDiv || 4117 Opc == Instruction::UDiv || 4118 Opc == Instruction::LShr || 4119 Opc == Instruction::AShr) { 4120 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4121 cast<BinaryOperator>(I)->setIsExact(true); 4122 } else if (isa<FPMathOperator>(I)) { 4123 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4124 if (FMF.any()) 4125 I->setFastMathFlags(FMF); 4126 } 4127 4128 } 4129 break; 4130 } 4131 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4132 unsigned OpNum = 0; 4133 Value *Op; 4134 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4135 OpNum+2 != Record.size()) 4136 return error("Invalid record"); 4137 4138 Type *ResTy = getTypeByID(Record[OpNum]); 4139 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4140 if (Opc == -1 || !ResTy) 4141 return error("Invalid record"); 4142 Instruction *Temp = nullptr; 4143 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4144 if (Temp) { 4145 InstructionList.push_back(Temp); 4146 assert(CurBB && "No current BB?"); 4147 CurBB->getInstList().push_back(Temp); 4148 } 4149 } else { 4150 auto CastOp = (Instruction::CastOps)Opc; 4151 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4152 return error("Invalid cast"); 4153 I = CastInst::Create(CastOp, Op, ResTy); 4154 } 4155 InstructionList.push_back(I); 4156 break; 4157 } 4158 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4159 case bitc::FUNC_CODE_INST_GEP_OLD: 4160 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4161 unsigned OpNum = 0; 4162 4163 Type *Ty; 4164 bool InBounds; 4165 4166 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4167 InBounds = Record[OpNum++]; 4168 Ty = getTypeByID(Record[OpNum++]); 4169 } else { 4170 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4171 Ty = nullptr; 4172 } 4173 4174 Value *BasePtr; 4175 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4176 return error("Invalid record"); 4177 4178 if (!Ty) { 4179 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 4180 ->getElementType(); 4181 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4182 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4183 return error( 4184 "Explicit gep type does not match pointee type of pointer operand"); 4185 } 4186 4187 SmallVector<Value*, 16> GEPIdx; 4188 while (OpNum != Record.size()) { 4189 Value *Op; 4190 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4191 return error("Invalid record"); 4192 GEPIdx.push_back(Op); 4193 } 4194 4195 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4196 4197 InstructionList.push_back(I); 4198 if (InBounds) 4199 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4200 break; 4201 } 4202 4203 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4204 // EXTRACTVAL: [opty, opval, n x indices] 4205 unsigned OpNum = 0; 4206 Value *Agg; 4207 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4208 return error("Invalid record"); 4209 Type *Ty = Agg->getType(); 4210 4211 unsigned RecSize = Record.size(); 4212 if (OpNum == RecSize) 4213 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4214 4215 SmallVector<unsigned, 4> EXTRACTVALIdx; 4216 for (; OpNum != RecSize; ++OpNum) { 4217 bool IsArray = Ty->isArrayTy(); 4218 bool IsStruct = Ty->isStructTy(); 4219 uint64_t Index = Record[OpNum]; 4220 4221 if (!IsStruct && !IsArray) 4222 return error("EXTRACTVAL: Invalid type"); 4223 if ((unsigned)Index != Index) 4224 return error("Invalid value"); 4225 if (IsStruct && Index >= Ty->getStructNumElements()) 4226 return error("EXTRACTVAL: Invalid struct index"); 4227 if (IsArray && Index >= Ty->getArrayNumElements()) 4228 return error("EXTRACTVAL: Invalid array index"); 4229 EXTRACTVALIdx.push_back((unsigned)Index); 4230 4231 if (IsStruct) 4232 Ty = Ty->getStructElementType(Index); 4233 else 4234 Ty = Ty->getArrayElementType(); 4235 } 4236 4237 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4238 InstructionList.push_back(I); 4239 break; 4240 } 4241 4242 case bitc::FUNC_CODE_INST_INSERTVAL: { 4243 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4244 unsigned OpNum = 0; 4245 Value *Agg; 4246 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4247 return error("Invalid record"); 4248 Value *Val; 4249 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4250 return error("Invalid record"); 4251 4252 unsigned RecSize = Record.size(); 4253 if (OpNum == RecSize) 4254 return error("INSERTVAL: Invalid instruction with 0 indices"); 4255 4256 SmallVector<unsigned, 4> INSERTVALIdx; 4257 Type *CurTy = Agg->getType(); 4258 for (; OpNum != RecSize; ++OpNum) { 4259 bool IsArray = CurTy->isArrayTy(); 4260 bool IsStruct = CurTy->isStructTy(); 4261 uint64_t Index = Record[OpNum]; 4262 4263 if (!IsStruct && !IsArray) 4264 return error("INSERTVAL: Invalid type"); 4265 if ((unsigned)Index != Index) 4266 return error("Invalid value"); 4267 if (IsStruct && Index >= CurTy->getStructNumElements()) 4268 return error("INSERTVAL: Invalid struct index"); 4269 if (IsArray && Index >= CurTy->getArrayNumElements()) 4270 return error("INSERTVAL: Invalid array index"); 4271 4272 INSERTVALIdx.push_back((unsigned)Index); 4273 if (IsStruct) 4274 CurTy = CurTy->getStructElementType(Index); 4275 else 4276 CurTy = CurTy->getArrayElementType(); 4277 } 4278 4279 if (CurTy != Val->getType()) 4280 return error("Inserted value type doesn't match aggregate type"); 4281 4282 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4283 InstructionList.push_back(I); 4284 break; 4285 } 4286 4287 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4288 // obsolete form of select 4289 // handles select i1 ... in old bitcode 4290 unsigned OpNum = 0; 4291 Value *TrueVal, *FalseVal, *Cond; 4292 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4293 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4294 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4295 return error("Invalid record"); 4296 4297 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4298 InstructionList.push_back(I); 4299 break; 4300 } 4301 4302 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4303 // new form of select 4304 // handles select i1 or select [N x i1] 4305 unsigned OpNum = 0; 4306 Value *TrueVal, *FalseVal, *Cond; 4307 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4308 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4309 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4310 return error("Invalid record"); 4311 4312 // select condition can be either i1 or [N x i1] 4313 if (VectorType* vector_type = 4314 dyn_cast<VectorType>(Cond->getType())) { 4315 // expect <n x i1> 4316 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4317 return error("Invalid type for value"); 4318 } else { 4319 // expect i1 4320 if (Cond->getType() != Type::getInt1Ty(Context)) 4321 return error("Invalid type for value"); 4322 } 4323 4324 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4325 InstructionList.push_back(I); 4326 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4327 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4328 if (FMF.any()) 4329 I->setFastMathFlags(FMF); 4330 } 4331 break; 4332 } 4333 4334 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4335 unsigned OpNum = 0; 4336 Value *Vec, *Idx; 4337 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4338 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4339 return error("Invalid record"); 4340 if (!Vec->getType()->isVectorTy()) 4341 return error("Invalid type for value"); 4342 I = ExtractElementInst::Create(Vec, Idx); 4343 InstructionList.push_back(I); 4344 break; 4345 } 4346 4347 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4348 unsigned OpNum = 0; 4349 Value *Vec, *Elt, *Idx; 4350 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4351 return error("Invalid record"); 4352 if (!Vec->getType()->isVectorTy()) 4353 return error("Invalid type for value"); 4354 if (popValue(Record, OpNum, NextValueNo, 4355 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4356 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4357 return error("Invalid record"); 4358 I = InsertElementInst::Create(Vec, Elt, Idx); 4359 InstructionList.push_back(I); 4360 break; 4361 } 4362 4363 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4364 unsigned OpNum = 0; 4365 Value *Vec1, *Vec2, *Mask; 4366 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4367 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4368 return error("Invalid record"); 4369 4370 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4371 return error("Invalid record"); 4372 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4373 return error("Invalid type for value"); 4374 4375 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4376 InstructionList.push_back(I); 4377 break; 4378 } 4379 4380 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4381 // Old form of ICmp/FCmp returning bool 4382 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4383 // both legal on vectors but had different behaviour. 4384 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4385 // FCmp/ICmp returning bool or vector of bool 4386 4387 unsigned OpNum = 0; 4388 Value *LHS, *RHS; 4389 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4390 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4391 return error("Invalid record"); 4392 4393 if (OpNum >= Record.size()) 4394 return error( 4395 "Invalid record: operand number exceeded available operands"); 4396 4397 unsigned PredVal = Record[OpNum]; 4398 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4399 FastMathFlags FMF; 4400 if (IsFP && Record.size() > OpNum+1) 4401 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4402 4403 if (OpNum+1 != Record.size()) 4404 return error("Invalid record"); 4405 4406 if (LHS->getType()->isFPOrFPVectorTy()) 4407 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4408 else 4409 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4410 4411 if (FMF.any()) 4412 I->setFastMathFlags(FMF); 4413 InstructionList.push_back(I); 4414 break; 4415 } 4416 4417 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4418 { 4419 unsigned Size = Record.size(); 4420 if (Size == 0) { 4421 I = ReturnInst::Create(Context); 4422 InstructionList.push_back(I); 4423 break; 4424 } 4425 4426 unsigned OpNum = 0; 4427 Value *Op = nullptr; 4428 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4429 return error("Invalid record"); 4430 if (OpNum != Record.size()) 4431 return error("Invalid record"); 4432 4433 I = ReturnInst::Create(Context, Op); 4434 InstructionList.push_back(I); 4435 break; 4436 } 4437 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4438 if (Record.size() != 1 && Record.size() != 3) 4439 return error("Invalid record"); 4440 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4441 if (!TrueDest) 4442 return error("Invalid record"); 4443 4444 if (Record.size() == 1) { 4445 I = BranchInst::Create(TrueDest); 4446 InstructionList.push_back(I); 4447 } 4448 else { 4449 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4450 Value *Cond = getValue(Record, 2, NextValueNo, 4451 Type::getInt1Ty(Context)); 4452 if (!FalseDest || !Cond) 4453 return error("Invalid record"); 4454 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4455 InstructionList.push_back(I); 4456 } 4457 break; 4458 } 4459 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4460 if (Record.size() != 1 && Record.size() != 2) 4461 return error("Invalid record"); 4462 unsigned Idx = 0; 4463 Value *CleanupPad = 4464 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4465 if (!CleanupPad) 4466 return error("Invalid record"); 4467 BasicBlock *UnwindDest = nullptr; 4468 if (Record.size() == 2) { 4469 UnwindDest = getBasicBlock(Record[Idx++]); 4470 if (!UnwindDest) 4471 return error("Invalid record"); 4472 } 4473 4474 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4475 InstructionList.push_back(I); 4476 break; 4477 } 4478 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4479 if (Record.size() != 2) 4480 return error("Invalid record"); 4481 unsigned Idx = 0; 4482 Value *CatchPad = 4483 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4484 if (!CatchPad) 4485 return error("Invalid record"); 4486 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4487 if (!BB) 4488 return error("Invalid record"); 4489 4490 I = CatchReturnInst::Create(CatchPad, BB); 4491 InstructionList.push_back(I); 4492 break; 4493 } 4494 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4495 // We must have, at minimum, the outer scope and the number of arguments. 4496 if (Record.size() < 2) 4497 return error("Invalid record"); 4498 4499 unsigned Idx = 0; 4500 4501 Value *ParentPad = 4502 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4503 4504 unsigned NumHandlers = Record[Idx++]; 4505 4506 SmallVector<BasicBlock *, 2> Handlers; 4507 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4508 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4509 if (!BB) 4510 return error("Invalid record"); 4511 Handlers.push_back(BB); 4512 } 4513 4514 BasicBlock *UnwindDest = nullptr; 4515 if (Idx + 1 == Record.size()) { 4516 UnwindDest = getBasicBlock(Record[Idx++]); 4517 if (!UnwindDest) 4518 return error("Invalid record"); 4519 } 4520 4521 if (Record.size() != Idx) 4522 return error("Invalid record"); 4523 4524 auto *CatchSwitch = 4525 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4526 for (BasicBlock *Handler : Handlers) 4527 CatchSwitch->addHandler(Handler); 4528 I = CatchSwitch; 4529 InstructionList.push_back(I); 4530 break; 4531 } 4532 case bitc::FUNC_CODE_INST_CATCHPAD: 4533 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4534 // We must have, at minimum, the outer scope and the number of arguments. 4535 if (Record.size() < 2) 4536 return error("Invalid record"); 4537 4538 unsigned Idx = 0; 4539 4540 Value *ParentPad = 4541 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4542 4543 unsigned NumArgOperands = Record[Idx++]; 4544 4545 SmallVector<Value *, 2> Args; 4546 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4547 Value *Val; 4548 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4549 return error("Invalid record"); 4550 Args.push_back(Val); 4551 } 4552 4553 if (Record.size() != Idx) 4554 return error("Invalid record"); 4555 4556 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4557 I = CleanupPadInst::Create(ParentPad, Args); 4558 else 4559 I = CatchPadInst::Create(ParentPad, Args); 4560 InstructionList.push_back(I); 4561 break; 4562 } 4563 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4564 // Check magic 4565 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4566 // "New" SwitchInst format with case ranges. The changes to write this 4567 // format were reverted but we still recognize bitcode that uses it. 4568 // Hopefully someday we will have support for case ranges and can use 4569 // this format again. 4570 4571 Type *OpTy = getTypeByID(Record[1]); 4572 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4573 4574 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4575 BasicBlock *Default = getBasicBlock(Record[3]); 4576 if (!OpTy || !Cond || !Default) 4577 return error("Invalid record"); 4578 4579 unsigned NumCases = Record[4]; 4580 4581 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4582 InstructionList.push_back(SI); 4583 4584 unsigned CurIdx = 5; 4585 for (unsigned i = 0; i != NumCases; ++i) { 4586 SmallVector<ConstantInt*, 1> CaseVals; 4587 unsigned NumItems = Record[CurIdx++]; 4588 for (unsigned ci = 0; ci != NumItems; ++ci) { 4589 bool isSingleNumber = Record[CurIdx++]; 4590 4591 APInt Low; 4592 unsigned ActiveWords = 1; 4593 if (ValueBitWidth > 64) 4594 ActiveWords = Record[CurIdx++]; 4595 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4596 ValueBitWidth); 4597 CurIdx += ActiveWords; 4598 4599 if (!isSingleNumber) { 4600 ActiveWords = 1; 4601 if (ValueBitWidth > 64) 4602 ActiveWords = Record[CurIdx++]; 4603 APInt High = readWideAPInt( 4604 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4605 CurIdx += ActiveWords; 4606 4607 // FIXME: It is not clear whether values in the range should be 4608 // compared as signed or unsigned values. The partially 4609 // implemented changes that used this format in the past used 4610 // unsigned comparisons. 4611 for ( ; Low.ule(High); ++Low) 4612 CaseVals.push_back(ConstantInt::get(Context, Low)); 4613 } else 4614 CaseVals.push_back(ConstantInt::get(Context, Low)); 4615 } 4616 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4617 for (ConstantInt *Cst : CaseVals) 4618 SI->addCase(Cst, DestBB); 4619 } 4620 I = SI; 4621 break; 4622 } 4623 4624 // Old SwitchInst format without case ranges. 4625 4626 if (Record.size() < 3 || (Record.size() & 1) == 0) 4627 return error("Invalid record"); 4628 Type *OpTy = getTypeByID(Record[0]); 4629 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4630 BasicBlock *Default = getBasicBlock(Record[2]); 4631 if (!OpTy || !Cond || !Default) 4632 return error("Invalid record"); 4633 unsigned NumCases = (Record.size()-3)/2; 4634 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4635 InstructionList.push_back(SI); 4636 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4637 ConstantInt *CaseVal = 4638 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4639 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4640 if (!CaseVal || !DestBB) { 4641 delete SI; 4642 return error("Invalid record"); 4643 } 4644 SI->addCase(CaseVal, DestBB); 4645 } 4646 I = SI; 4647 break; 4648 } 4649 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4650 if (Record.size() < 2) 4651 return error("Invalid record"); 4652 Type *OpTy = getTypeByID(Record[0]); 4653 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4654 if (!OpTy || !Address) 4655 return error("Invalid record"); 4656 unsigned NumDests = Record.size()-2; 4657 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4658 InstructionList.push_back(IBI); 4659 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4660 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4661 IBI->addDestination(DestBB); 4662 } else { 4663 delete IBI; 4664 return error("Invalid record"); 4665 } 4666 } 4667 I = IBI; 4668 break; 4669 } 4670 4671 case bitc::FUNC_CODE_INST_INVOKE: { 4672 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4673 if (Record.size() < 4) 4674 return error("Invalid record"); 4675 unsigned OpNum = 0; 4676 AttributeList PAL = getAttributes(Record[OpNum++]); 4677 unsigned CCInfo = Record[OpNum++]; 4678 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4679 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4680 4681 FunctionType *FTy = nullptr; 4682 if ((CCInfo >> 13) & 1) { 4683 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4684 if (!FTy) 4685 return error("Explicit invoke type is not a function type"); 4686 } 4687 4688 Value *Callee; 4689 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4690 return error("Invalid record"); 4691 4692 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4693 if (!CalleeTy) 4694 return error("Callee is not a pointer"); 4695 if (!FTy) { 4696 FTy = dyn_cast<FunctionType>( 4697 cast<PointerType>(Callee->getType())->getElementType()); 4698 if (!FTy) 4699 return error("Callee is not of pointer to function type"); 4700 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 4701 return error("Explicit invoke type does not match pointee type of " 4702 "callee operand"); 4703 if (Record.size() < FTy->getNumParams() + OpNum) 4704 return error("Insufficient operands to call"); 4705 4706 SmallVector<Value*, 16> Ops; 4707 SmallVector<Type *, 16> ArgsTys; 4708 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4709 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4710 FTy->getParamType(i))); 4711 ArgsTys.push_back(FTy->getParamType(i)); 4712 if (!Ops.back()) 4713 return error("Invalid record"); 4714 } 4715 4716 if (!FTy->isVarArg()) { 4717 if (Record.size() != OpNum) 4718 return error("Invalid record"); 4719 } else { 4720 // Read type/value pairs for varargs params. 4721 while (OpNum != Record.size()) { 4722 Value *Op; 4723 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4724 return error("Invalid record"); 4725 Ops.push_back(Op); 4726 ArgsTys.push_back(Op->getType()); 4727 } 4728 } 4729 4730 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4731 OperandBundles); 4732 OperandBundles.clear(); 4733 InstructionList.push_back(I); 4734 cast<InvokeInst>(I)->setCallingConv( 4735 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4736 cast<InvokeInst>(I)->setAttributes(PAL); 4737 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 4738 4739 break; 4740 } 4741 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4742 unsigned Idx = 0; 4743 Value *Val = nullptr; 4744 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4745 return error("Invalid record"); 4746 I = ResumeInst::Create(Val); 4747 InstructionList.push_back(I); 4748 break; 4749 } 4750 case bitc::FUNC_CODE_INST_CALLBR: { 4751 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4752 unsigned OpNum = 0; 4753 AttributeList PAL = getAttributes(Record[OpNum++]); 4754 unsigned CCInfo = Record[OpNum++]; 4755 4756 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4757 unsigned NumIndirectDests = Record[OpNum++]; 4758 SmallVector<BasicBlock *, 16> IndirectDests; 4759 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4760 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4761 4762 FunctionType *FTy = nullptr; 4763 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4764 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4765 if (!FTy) 4766 return error("Explicit call type is not a function type"); 4767 } 4768 4769 Value *Callee; 4770 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4771 return error("Invalid record"); 4772 4773 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4774 if (!OpTy) 4775 return error("Callee is not a pointer type"); 4776 if (!FTy) { 4777 FTy = dyn_cast<FunctionType>( 4778 cast<PointerType>(Callee->getType())->getElementType()); 4779 if (!FTy) 4780 return error("Callee is not of pointer to function type"); 4781 } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy) 4782 return error("Explicit call type does not match pointee type of " 4783 "callee operand"); 4784 if (Record.size() < FTy->getNumParams() + OpNum) 4785 return error("Insufficient operands to call"); 4786 4787 SmallVector<Value*, 16> Args; 4788 // Read the fixed params. 4789 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4790 if (FTy->getParamType(i)->isLabelTy()) 4791 Args.push_back(getBasicBlock(Record[OpNum])); 4792 else 4793 Args.push_back(getValue(Record, OpNum, NextValueNo, 4794 FTy->getParamType(i))); 4795 if (!Args.back()) 4796 return error("Invalid record"); 4797 } 4798 4799 // Read type/value pairs for varargs params. 4800 if (!FTy->isVarArg()) { 4801 if (OpNum != Record.size()) 4802 return error("Invalid record"); 4803 } else { 4804 while (OpNum != Record.size()) { 4805 Value *Op; 4806 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4807 return error("Invalid record"); 4808 Args.push_back(Op); 4809 } 4810 } 4811 4812 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4813 OperandBundles); 4814 OperandBundles.clear(); 4815 InstructionList.push_back(I); 4816 cast<CallBrInst>(I)->setCallingConv( 4817 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4818 cast<CallBrInst>(I)->setAttributes(PAL); 4819 break; 4820 } 4821 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4822 I = new UnreachableInst(Context); 4823 InstructionList.push_back(I); 4824 break; 4825 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4826 if (Record.empty()) 4827 return error("Invalid record"); 4828 // The first record specifies the type. 4829 Type *Ty = getTypeByID(Record[0]); 4830 if (!Ty) 4831 return error("Invalid record"); 4832 4833 // Phi arguments are pairs of records of [value, basic block]. 4834 // There is an optional final record for fast-math-flags if this phi has a 4835 // floating-point type. 4836 size_t NumArgs = (Record.size() - 1) / 2; 4837 PHINode *PN = PHINode::Create(Ty, NumArgs); 4838 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4839 return error("Invalid record"); 4840 InstructionList.push_back(PN); 4841 4842 for (unsigned i = 0; i != NumArgs; i++) { 4843 Value *V; 4844 // With the new function encoding, it is possible that operands have 4845 // negative IDs (for forward references). Use a signed VBR 4846 // representation to keep the encoding small. 4847 if (UseRelativeIDs) 4848 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4849 else 4850 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4851 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4852 if (!V || !BB) 4853 return error("Invalid record"); 4854 PN->addIncoming(V, BB); 4855 } 4856 I = PN; 4857 4858 // If there are an even number of records, the final record must be FMF. 4859 if (Record.size() % 2 == 0) { 4860 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4861 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4862 if (FMF.any()) 4863 I->setFastMathFlags(FMF); 4864 } 4865 4866 break; 4867 } 4868 4869 case bitc::FUNC_CODE_INST_LANDINGPAD: 4870 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4871 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4872 unsigned Idx = 0; 4873 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4874 if (Record.size() < 3) 4875 return error("Invalid record"); 4876 } else { 4877 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4878 if (Record.size() < 4) 4879 return error("Invalid record"); 4880 } 4881 Type *Ty = getTypeByID(Record[Idx++]); 4882 if (!Ty) 4883 return error("Invalid record"); 4884 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4885 Value *PersFn = nullptr; 4886 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4887 return error("Invalid record"); 4888 4889 if (!F->hasPersonalityFn()) 4890 F->setPersonalityFn(cast<Constant>(PersFn)); 4891 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4892 return error("Personality function mismatch"); 4893 } 4894 4895 bool IsCleanup = !!Record[Idx++]; 4896 unsigned NumClauses = Record[Idx++]; 4897 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4898 LP->setCleanup(IsCleanup); 4899 for (unsigned J = 0; J != NumClauses; ++J) { 4900 LandingPadInst::ClauseType CT = 4901 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4902 Value *Val; 4903 4904 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4905 delete LP; 4906 return error("Invalid record"); 4907 } 4908 4909 assert((CT != LandingPadInst::Catch || 4910 !isa<ArrayType>(Val->getType())) && 4911 "Catch clause has a invalid type!"); 4912 assert((CT != LandingPadInst::Filter || 4913 isa<ArrayType>(Val->getType())) && 4914 "Filter clause has invalid type!"); 4915 LP->addClause(cast<Constant>(Val)); 4916 } 4917 4918 I = LP; 4919 InstructionList.push_back(I); 4920 break; 4921 } 4922 4923 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4924 if (Record.size() != 4) 4925 return error("Invalid record"); 4926 using APV = AllocaPackedValues; 4927 const uint64_t Rec = Record[3]; 4928 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 4929 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 4930 Type *Ty = getTypeByID(Record[0]); 4931 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 4932 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4933 if (!PTy) 4934 return error("Old-style alloca with a non-pointer type"); 4935 Ty = PTy->getElementType(); 4936 } 4937 Type *OpTy = getTypeByID(Record[1]); 4938 Value *Size = getFnValueByID(Record[2], OpTy); 4939 MaybeAlign Align; 4940 uint64_t AlignExp = 4941 Bitfield::get<APV::AlignLower>(Rec) | 4942 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 4943 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 4944 return Err; 4945 } 4946 if (!Ty || !Size) 4947 return error("Invalid record"); 4948 4949 // FIXME: Make this an optional field. 4950 const DataLayout &DL = TheModule->getDataLayout(); 4951 unsigned AS = DL.getAllocaAddrSpace(); 4952 4953 SmallPtrSet<Type *, 4> Visited; 4954 if (!Align && !Ty->isSized(&Visited)) 4955 return error("alloca of unsized type"); 4956 if (!Align) 4957 Align = DL.getPrefTypeAlign(Ty); 4958 4959 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4960 AI->setUsedWithInAlloca(InAlloca); 4961 AI->setSwiftError(SwiftError); 4962 I = AI; 4963 InstructionList.push_back(I); 4964 break; 4965 } 4966 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4967 unsigned OpNum = 0; 4968 Value *Op; 4969 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4970 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4971 return error("Invalid record"); 4972 4973 if (!isa<PointerType>(Op->getType())) 4974 return error("Load operand is not a pointer type"); 4975 4976 Type *Ty = nullptr; 4977 if (OpNum + 3 == Record.size()) { 4978 Ty = getTypeByID(Record[OpNum++]); 4979 } else { 4980 Ty = cast<PointerType>(Op->getType())->getElementType(); 4981 } 4982 4983 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4984 return Err; 4985 4986 MaybeAlign Align; 4987 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4988 return Err; 4989 SmallPtrSet<Type *, 4> Visited; 4990 if (!Align && !Ty->isSized(&Visited)) 4991 return error("load of unsized type"); 4992 if (!Align) 4993 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4994 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4995 InstructionList.push_back(I); 4996 break; 4997 } 4998 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4999 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5000 unsigned OpNum = 0; 5001 Value *Op; 5002 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5003 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5004 return error("Invalid record"); 5005 5006 if (!isa<PointerType>(Op->getType())) 5007 return error("Load operand is not a pointer type"); 5008 5009 Type *Ty = nullptr; 5010 if (OpNum + 5 == Record.size()) { 5011 Ty = getTypeByID(Record[OpNum++]); 5012 } else { 5013 Ty = cast<PointerType>(Op->getType())->getElementType(); 5014 } 5015 5016 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5017 return Err; 5018 5019 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5020 if (Ordering == AtomicOrdering::NotAtomic || 5021 Ordering == AtomicOrdering::Release || 5022 Ordering == AtomicOrdering::AcquireRelease) 5023 return error("Invalid record"); 5024 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5025 return error("Invalid record"); 5026 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5027 5028 MaybeAlign Align; 5029 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5030 return Err; 5031 if (!Align) 5032 return error("Alignment missing from atomic load"); 5033 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5034 InstructionList.push_back(I); 5035 break; 5036 } 5037 case bitc::FUNC_CODE_INST_STORE: 5038 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5039 unsigned OpNum = 0; 5040 Value *Val, *Ptr; 5041 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5042 (BitCode == bitc::FUNC_CODE_INST_STORE 5043 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5044 : popValue(Record, OpNum, NextValueNo, 5045 cast<PointerType>(Ptr->getType())->getElementType(), 5046 Val)) || 5047 OpNum + 2 != Record.size()) 5048 return error("Invalid record"); 5049 5050 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5051 return Err; 5052 MaybeAlign Align; 5053 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5054 return Err; 5055 SmallPtrSet<Type *, 4> Visited; 5056 if (!Align && !Val->getType()->isSized(&Visited)) 5057 return error("store of unsized type"); 5058 if (!Align) 5059 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5060 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5061 InstructionList.push_back(I); 5062 break; 5063 } 5064 case bitc::FUNC_CODE_INST_STOREATOMIC: 5065 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5066 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5067 unsigned OpNum = 0; 5068 Value *Val, *Ptr; 5069 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5070 !isa<PointerType>(Ptr->getType()) || 5071 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5072 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5073 : popValue(Record, OpNum, NextValueNo, 5074 cast<PointerType>(Ptr->getType())->getElementType(), 5075 Val)) || 5076 OpNum + 4 != Record.size()) 5077 return error("Invalid record"); 5078 5079 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5080 return Err; 5081 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5082 if (Ordering == AtomicOrdering::NotAtomic || 5083 Ordering == AtomicOrdering::Acquire || 5084 Ordering == AtomicOrdering::AcquireRelease) 5085 return error("Invalid record"); 5086 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5087 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5088 return error("Invalid record"); 5089 5090 MaybeAlign Align; 5091 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5092 return Err; 5093 if (!Align) 5094 return error("Alignment missing from atomic store"); 5095 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5096 InstructionList.push_back(I); 5097 break; 5098 } 5099 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5100 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5101 // failure_ordering?, weak?] 5102 const size_t NumRecords = Record.size(); 5103 unsigned OpNum = 0; 5104 Value *Ptr = nullptr; 5105 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5106 return error("Invalid record"); 5107 5108 if (!isa<PointerType>(Ptr->getType())) 5109 return error("Cmpxchg operand is not a pointer type"); 5110 5111 Value *Cmp = nullptr; 5112 if (popValue(Record, OpNum, NextValueNo, 5113 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5114 Cmp)) 5115 return error("Invalid record"); 5116 5117 Value *New = nullptr; 5118 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5119 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5120 return error("Invalid record"); 5121 5122 const AtomicOrdering SuccessOrdering = 5123 getDecodedOrdering(Record[OpNum + 1]); 5124 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5125 SuccessOrdering == AtomicOrdering::Unordered) 5126 return error("Invalid record"); 5127 5128 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5129 5130 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5131 return Err; 5132 5133 const AtomicOrdering FailureOrdering = 5134 NumRecords < 7 5135 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5136 : getDecodedOrdering(Record[OpNum + 3]); 5137 5138 if (FailureOrdering == AtomicOrdering::NotAtomic || 5139 FailureOrdering == AtomicOrdering::Unordered) 5140 return error("Invalid record"); 5141 5142 const Align Alignment( 5143 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5144 5145 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5146 FailureOrdering, SSID); 5147 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5148 5149 if (NumRecords < 8) { 5150 // Before weak cmpxchgs existed, the instruction simply returned the 5151 // value loaded from memory, so bitcode files from that era will be 5152 // expecting the first component of a modern cmpxchg. 5153 CurBB->getInstList().push_back(I); 5154 I = ExtractValueInst::Create(I, 0); 5155 } else { 5156 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5157 } 5158 5159 InstructionList.push_back(I); 5160 break; 5161 } 5162 case bitc::FUNC_CODE_INST_CMPXCHG: { 5163 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5164 // failure_ordering, weak, align?] 5165 const size_t NumRecords = Record.size(); 5166 unsigned OpNum = 0; 5167 Value *Ptr = nullptr; 5168 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5169 return error("Invalid record"); 5170 5171 if (!isa<PointerType>(Ptr->getType())) 5172 return error("Cmpxchg operand is not a pointer type"); 5173 5174 Value *Cmp = nullptr; 5175 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp)) 5176 return error("Invalid record"); 5177 5178 Value *Val = nullptr; 5179 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val)) 5180 return error("Invalid record"); 5181 5182 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5183 return error("Invalid record"); 5184 5185 const bool IsVol = Record[OpNum]; 5186 5187 const AtomicOrdering SuccessOrdering = 5188 getDecodedOrdering(Record[OpNum + 1]); 5189 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5190 return error("Invalid cmpxchg success ordering"); 5191 5192 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5193 5194 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5195 return Err; 5196 5197 const AtomicOrdering FailureOrdering = 5198 getDecodedOrdering(Record[OpNum + 3]); 5199 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5200 return error("Invalid cmpxchg failure ordering"); 5201 5202 const bool IsWeak = Record[OpNum + 4]; 5203 5204 MaybeAlign Alignment; 5205 5206 if (NumRecords == (OpNum + 6)) { 5207 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5208 return Err; 5209 } 5210 if (!Alignment) 5211 Alignment = 5212 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5213 5214 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5215 FailureOrdering, SSID); 5216 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5217 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5218 5219 InstructionList.push_back(I); 5220 break; 5221 } 5222 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5223 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5224 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5225 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5226 const size_t NumRecords = Record.size(); 5227 unsigned OpNum = 0; 5228 5229 Value *Ptr = nullptr; 5230 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5231 return error("Invalid record"); 5232 5233 if (!isa<PointerType>(Ptr->getType())) 5234 return error("Invalid record"); 5235 5236 Value *Val = nullptr; 5237 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5238 if (popValue(Record, OpNum, NextValueNo, 5239 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5240 Val)) 5241 return error("Invalid record"); 5242 } else { 5243 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 5244 return error("Invalid record"); 5245 } 5246 5247 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5248 return error("Invalid record"); 5249 5250 const AtomicRMWInst::BinOp Operation = 5251 getDecodedRMWOperation(Record[OpNum]); 5252 if (Operation < AtomicRMWInst::FIRST_BINOP || 5253 Operation > AtomicRMWInst::LAST_BINOP) 5254 return error("Invalid record"); 5255 5256 const bool IsVol = Record[OpNum + 1]; 5257 5258 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5259 if (Ordering == AtomicOrdering::NotAtomic || 5260 Ordering == AtomicOrdering::Unordered) 5261 return error("Invalid record"); 5262 5263 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5264 5265 MaybeAlign Alignment; 5266 5267 if (NumRecords == (OpNum + 5)) { 5268 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5269 return Err; 5270 } 5271 5272 if (!Alignment) 5273 Alignment = 5274 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5275 5276 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5277 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5278 5279 InstructionList.push_back(I); 5280 break; 5281 } 5282 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5283 if (2 != Record.size()) 5284 return error("Invalid record"); 5285 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5286 if (Ordering == AtomicOrdering::NotAtomic || 5287 Ordering == AtomicOrdering::Unordered || 5288 Ordering == AtomicOrdering::Monotonic) 5289 return error("Invalid record"); 5290 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5291 I = new FenceInst(Context, Ordering, SSID); 5292 InstructionList.push_back(I); 5293 break; 5294 } 5295 case bitc::FUNC_CODE_INST_CALL: { 5296 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5297 if (Record.size() < 3) 5298 return error("Invalid record"); 5299 5300 unsigned OpNum = 0; 5301 AttributeList PAL = getAttributes(Record[OpNum++]); 5302 unsigned CCInfo = Record[OpNum++]; 5303 5304 FastMathFlags FMF; 5305 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5306 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5307 if (!FMF.any()) 5308 return error("Fast math flags indicator set for call with no FMF"); 5309 } 5310 5311 FunctionType *FTy = nullptr; 5312 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5313 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 5314 if (!FTy) 5315 return error("Explicit call type is not a function type"); 5316 } 5317 5318 Value *Callee; 5319 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5320 return error("Invalid record"); 5321 5322 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5323 if (!OpTy) 5324 return error("Callee is not a pointer type"); 5325 if (!FTy) { 5326 FTy = dyn_cast<FunctionType>( 5327 cast<PointerType>(Callee->getType())->getElementType()); 5328 if (!FTy) 5329 return error("Callee is not of pointer to function type"); 5330 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5331 return error("Explicit call type does not match pointee type of " 5332 "callee operand"); 5333 if (Record.size() < FTy->getNumParams() + OpNum) 5334 return error("Insufficient operands to call"); 5335 5336 SmallVector<Value*, 16> Args; 5337 SmallVector<Type *, 16> ArgsTys; 5338 // Read the fixed params. 5339 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5340 if (FTy->getParamType(i)->isLabelTy()) 5341 Args.push_back(getBasicBlock(Record[OpNum])); 5342 else 5343 Args.push_back(getValue(Record, OpNum, NextValueNo, 5344 FTy->getParamType(i))); 5345 ArgsTys.push_back(FTy->getParamType(i)); 5346 if (!Args.back()) 5347 return error("Invalid record"); 5348 } 5349 5350 // Read type/value pairs for varargs params. 5351 if (!FTy->isVarArg()) { 5352 if (OpNum != Record.size()) 5353 return error("Invalid record"); 5354 } else { 5355 while (OpNum != Record.size()) { 5356 Value *Op; 5357 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5358 return error("Invalid record"); 5359 Args.push_back(Op); 5360 ArgsTys.push_back(Op->getType()); 5361 } 5362 } 5363 5364 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5365 OperandBundles.clear(); 5366 InstructionList.push_back(I); 5367 cast<CallInst>(I)->setCallingConv( 5368 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5369 CallInst::TailCallKind TCK = CallInst::TCK_None; 5370 if (CCInfo & 1 << bitc::CALL_TAIL) 5371 TCK = CallInst::TCK_Tail; 5372 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5373 TCK = CallInst::TCK_MustTail; 5374 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5375 TCK = CallInst::TCK_NoTail; 5376 cast<CallInst>(I)->setTailCallKind(TCK); 5377 cast<CallInst>(I)->setAttributes(PAL); 5378 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 5379 if (FMF.any()) { 5380 if (!isa<FPMathOperator>(I)) 5381 return error("Fast-math-flags specified for call without " 5382 "floating-point scalar or vector return type"); 5383 I->setFastMathFlags(FMF); 5384 } 5385 break; 5386 } 5387 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5388 if (Record.size() < 3) 5389 return error("Invalid record"); 5390 Type *OpTy = getTypeByID(Record[0]); 5391 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5392 Type *ResTy = getTypeByID(Record[2]); 5393 if (!OpTy || !Op || !ResTy) 5394 return error("Invalid record"); 5395 I = new VAArgInst(Op, ResTy); 5396 InstructionList.push_back(I); 5397 break; 5398 } 5399 5400 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5401 // A call or an invoke can be optionally prefixed with some variable 5402 // number of operand bundle blocks. These blocks are read into 5403 // OperandBundles and consumed at the next call or invoke instruction. 5404 5405 if (Record.empty() || Record[0] >= BundleTags.size()) 5406 return error("Invalid record"); 5407 5408 std::vector<Value *> Inputs; 5409 5410 unsigned OpNum = 1; 5411 while (OpNum != Record.size()) { 5412 Value *Op; 5413 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5414 return error("Invalid record"); 5415 Inputs.push_back(Op); 5416 } 5417 5418 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5419 continue; 5420 } 5421 5422 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5423 unsigned OpNum = 0; 5424 Value *Op = nullptr; 5425 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5426 return error("Invalid record"); 5427 if (OpNum != Record.size()) 5428 return error("Invalid record"); 5429 5430 I = new FreezeInst(Op); 5431 InstructionList.push_back(I); 5432 break; 5433 } 5434 } 5435 5436 // Add instruction to end of current BB. If there is no current BB, reject 5437 // this file. 5438 if (!CurBB) { 5439 I->deleteValue(); 5440 return error("Invalid instruction with no BB"); 5441 } 5442 if (!OperandBundles.empty()) { 5443 I->deleteValue(); 5444 return error("Operand bundles found with no consumer"); 5445 } 5446 CurBB->getInstList().push_back(I); 5447 5448 // If this was a terminator instruction, move to the next block. 5449 if (I->isTerminator()) { 5450 ++CurBBNo; 5451 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5452 } 5453 5454 // Non-void values get registered in the value table for future use. 5455 if (!I->getType()->isVoidTy()) 5456 ValueList.assignValue(I, NextValueNo++); 5457 } 5458 5459 OutOfRecordLoop: 5460 5461 if (!OperandBundles.empty()) 5462 return error("Operand bundles found with no consumer"); 5463 5464 // Check the function list for unresolved values. 5465 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5466 if (!A->getParent()) { 5467 // We found at least one unresolved value. Nuke them all to avoid leaks. 5468 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5469 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5470 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5471 delete A; 5472 } 5473 } 5474 return error("Never resolved value found in function"); 5475 } 5476 } 5477 5478 // Unexpected unresolved metadata about to be dropped. 5479 if (MDLoader->hasFwdRefs()) 5480 return error("Invalid function metadata: outgoing forward refs"); 5481 5482 // Trim the value list down to the size it was before we parsed this function. 5483 ValueList.shrinkTo(ModuleValueListSize); 5484 MDLoader->shrinkTo(ModuleMDLoaderSize); 5485 std::vector<BasicBlock*>().swap(FunctionBBs); 5486 return Error::success(); 5487 } 5488 5489 /// Find the function body in the bitcode stream 5490 Error BitcodeReader::findFunctionInStream( 5491 Function *F, 5492 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5493 while (DeferredFunctionInfoIterator->second == 0) { 5494 // This is the fallback handling for the old format bitcode that 5495 // didn't contain the function index in the VST, or when we have 5496 // an anonymous function which would not have a VST entry. 5497 // Assert that we have one of those two cases. 5498 assert(VSTOffset == 0 || !F->hasName()); 5499 // Parse the next body in the stream and set its position in the 5500 // DeferredFunctionInfo map. 5501 if (Error Err = rememberAndSkipFunctionBodies()) 5502 return Err; 5503 } 5504 return Error::success(); 5505 } 5506 5507 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5508 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5509 return SyncScope::ID(Val); 5510 if (Val >= SSIDs.size()) 5511 return SyncScope::System; // Map unknown synchronization scopes to system. 5512 return SSIDs[Val]; 5513 } 5514 5515 //===----------------------------------------------------------------------===// 5516 // GVMaterializer implementation 5517 //===----------------------------------------------------------------------===// 5518 5519 Error BitcodeReader::materialize(GlobalValue *GV) { 5520 Function *F = dyn_cast<Function>(GV); 5521 // If it's not a function or is already material, ignore the request. 5522 if (!F || !F->isMaterializable()) 5523 return Error::success(); 5524 5525 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5526 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5527 // If its position is recorded as 0, its body is somewhere in the stream 5528 // but we haven't seen it yet. 5529 if (DFII->second == 0) 5530 if (Error Err = findFunctionInStream(F, DFII)) 5531 return Err; 5532 5533 // Materialize metadata before parsing any function bodies. 5534 if (Error Err = materializeMetadata()) 5535 return Err; 5536 5537 // Move the bit stream to the saved position of the deferred function body. 5538 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5539 return JumpFailed; 5540 if (Error Err = parseFunctionBody(F)) 5541 return Err; 5542 F->setIsMaterializable(false); 5543 5544 if (StripDebugInfo) 5545 stripDebugInfo(*F); 5546 5547 // Upgrade any old intrinsic calls in the function. 5548 for (auto &I : UpgradedIntrinsics) { 5549 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 5550 if (CallInst *CI = dyn_cast<CallInst>(U)) 5551 UpgradeIntrinsicCall(CI, I.second); 5552 } 5553 5554 // Update calls to the remangled intrinsics 5555 for (auto &I : RemangledIntrinsics) 5556 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 5557 // Don't expect any other users than call sites 5558 cast<CallBase>(U)->setCalledFunction(I.second); 5559 5560 // Finish fn->subprogram upgrade for materialized functions. 5561 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5562 F->setSubprogram(SP); 5563 5564 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5565 if (!MDLoader->isStrippingTBAA()) { 5566 for (auto &I : instructions(F)) { 5567 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5568 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5569 continue; 5570 MDLoader->setStripTBAA(true); 5571 stripTBAA(F->getParent()); 5572 } 5573 } 5574 5575 for (auto &I : instructions(F)) { 5576 // "Upgrade" older incorrect branch weights by dropping them. 5577 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5578 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5579 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5580 StringRef ProfName = MDS->getString(); 5581 // Check consistency of !prof branch_weights metadata. 5582 if (!ProfName.equals("branch_weights")) 5583 continue; 5584 unsigned ExpectedNumOperands = 0; 5585 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5586 ExpectedNumOperands = BI->getNumSuccessors(); 5587 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5588 ExpectedNumOperands = SI->getNumSuccessors(); 5589 else if (isa<CallInst>(&I)) 5590 ExpectedNumOperands = 1; 5591 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5592 ExpectedNumOperands = IBI->getNumDestinations(); 5593 else if (isa<SelectInst>(&I)) 5594 ExpectedNumOperands = 2; 5595 else 5596 continue; // ignore and continue. 5597 5598 // If branch weight doesn't match, just strip branch weight. 5599 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5600 I.setMetadata(LLVMContext::MD_prof, nullptr); 5601 } 5602 } 5603 5604 // Remove incompatible attributes on function calls. 5605 if (auto *CI = dyn_cast<CallBase>(&I)) { 5606 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 5607 CI->getFunctionType()->getReturnType())); 5608 5609 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 5610 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 5611 CI->getArgOperand(ArgNo)->getType())); 5612 } 5613 } 5614 5615 // Look for functions that rely on old function attribute behavior. 5616 UpgradeFunctionAttributes(*F); 5617 5618 // Bring in any functions that this function forward-referenced via 5619 // blockaddresses. 5620 return materializeForwardReferencedFunctions(); 5621 } 5622 5623 Error BitcodeReader::materializeModule() { 5624 if (Error Err = materializeMetadata()) 5625 return Err; 5626 5627 // Promise to materialize all forward references. 5628 WillMaterializeAllForwardRefs = true; 5629 5630 // Iterate over the module, deserializing any functions that are still on 5631 // disk. 5632 for (Function &F : *TheModule) { 5633 if (Error Err = materialize(&F)) 5634 return Err; 5635 } 5636 // At this point, if there are any function bodies, parse the rest of 5637 // the bits in the module past the last function block we have recorded 5638 // through either lazy scanning or the VST. 5639 if (LastFunctionBlockBit || NextUnreadBit) 5640 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5641 ? LastFunctionBlockBit 5642 : NextUnreadBit)) 5643 return Err; 5644 5645 // Check that all block address forward references got resolved (as we 5646 // promised above). 5647 if (!BasicBlockFwdRefs.empty()) 5648 return error("Never resolved function from blockaddress"); 5649 5650 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5651 // delete the old functions to clean up. We can't do this unless the entire 5652 // module is materialized because there could always be another function body 5653 // with calls to the old function. 5654 for (auto &I : UpgradedIntrinsics) { 5655 for (auto *U : I.first->users()) { 5656 if (CallInst *CI = dyn_cast<CallInst>(U)) 5657 UpgradeIntrinsicCall(CI, I.second); 5658 } 5659 if (!I.first->use_empty()) 5660 I.first->replaceAllUsesWith(I.second); 5661 I.first->eraseFromParent(); 5662 } 5663 UpgradedIntrinsics.clear(); 5664 // Do the same for remangled intrinsics 5665 for (auto &I : RemangledIntrinsics) { 5666 I.first->replaceAllUsesWith(I.second); 5667 I.first->eraseFromParent(); 5668 } 5669 RemangledIntrinsics.clear(); 5670 5671 UpgradeDebugInfo(*TheModule); 5672 5673 UpgradeModuleFlags(*TheModule); 5674 5675 UpgradeARCRuntime(*TheModule); 5676 5677 return Error::success(); 5678 } 5679 5680 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5681 return IdentifiedStructTypes; 5682 } 5683 5684 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5685 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5686 StringRef ModulePath, unsigned ModuleId) 5687 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5688 ModulePath(ModulePath), ModuleId(ModuleId) {} 5689 5690 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5691 TheIndex.addModule(ModulePath, ModuleId); 5692 } 5693 5694 ModuleSummaryIndex::ModuleInfo * 5695 ModuleSummaryIndexBitcodeReader::getThisModule() { 5696 return TheIndex.getModule(ModulePath); 5697 } 5698 5699 std::pair<ValueInfo, GlobalValue::GUID> 5700 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5701 auto VGI = ValueIdToValueInfoMap[ValueId]; 5702 assert(VGI.first); 5703 return VGI; 5704 } 5705 5706 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5707 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5708 StringRef SourceFileName) { 5709 std::string GlobalId = 5710 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5711 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5712 auto OriginalNameID = ValueGUID; 5713 if (GlobalValue::isLocalLinkage(Linkage)) 5714 OriginalNameID = GlobalValue::getGUID(ValueName); 5715 if (PrintSummaryGUIDs) 5716 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5717 << ValueName << "\n"; 5718 5719 // UseStrtab is false for legacy summary formats and value names are 5720 // created on stack. In that case we save the name in a string saver in 5721 // the index so that the value name can be recorded. 5722 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5723 TheIndex.getOrInsertValueInfo( 5724 ValueGUID, 5725 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5726 OriginalNameID); 5727 } 5728 5729 // Specialized value symbol table parser used when reading module index 5730 // blocks where we don't actually create global values. The parsed information 5731 // is saved in the bitcode reader for use when later parsing summaries. 5732 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5733 uint64_t Offset, 5734 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5735 // With a strtab the VST is not required to parse the summary. 5736 if (UseStrtab) 5737 return Error::success(); 5738 5739 assert(Offset > 0 && "Expected non-zero VST offset"); 5740 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5741 if (!MaybeCurrentBit) 5742 return MaybeCurrentBit.takeError(); 5743 uint64_t CurrentBit = MaybeCurrentBit.get(); 5744 5745 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5746 return Err; 5747 5748 SmallVector<uint64_t, 64> Record; 5749 5750 // Read all the records for this value table. 5751 SmallString<128> ValueName; 5752 5753 while (true) { 5754 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5755 if (!MaybeEntry) 5756 return MaybeEntry.takeError(); 5757 BitstreamEntry Entry = MaybeEntry.get(); 5758 5759 switch (Entry.Kind) { 5760 case BitstreamEntry::SubBlock: // Handled for us already. 5761 case BitstreamEntry::Error: 5762 return error("Malformed block"); 5763 case BitstreamEntry::EndBlock: 5764 // Done parsing VST, jump back to wherever we came from. 5765 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5766 return JumpFailed; 5767 return Error::success(); 5768 case BitstreamEntry::Record: 5769 // The interesting case. 5770 break; 5771 } 5772 5773 // Read a record. 5774 Record.clear(); 5775 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5776 if (!MaybeRecord) 5777 return MaybeRecord.takeError(); 5778 switch (MaybeRecord.get()) { 5779 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5780 break; 5781 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5782 if (convertToString(Record, 1, ValueName)) 5783 return error("Invalid record"); 5784 unsigned ValueID = Record[0]; 5785 assert(!SourceFileName.empty()); 5786 auto VLI = ValueIdToLinkageMap.find(ValueID); 5787 assert(VLI != ValueIdToLinkageMap.end() && 5788 "No linkage found for VST entry?"); 5789 auto Linkage = VLI->second; 5790 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5791 ValueName.clear(); 5792 break; 5793 } 5794 case bitc::VST_CODE_FNENTRY: { 5795 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5796 if (convertToString(Record, 2, ValueName)) 5797 return error("Invalid record"); 5798 unsigned ValueID = Record[0]; 5799 assert(!SourceFileName.empty()); 5800 auto VLI = ValueIdToLinkageMap.find(ValueID); 5801 assert(VLI != ValueIdToLinkageMap.end() && 5802 "No linkage found for VST entry?"); 5803 auto Linkage = VLI->second; 5804 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5805 ValueName.clear(); 5806 break; 5807 } 5808 case bitc::VST_CODE_COMBINED_ENTRY: { 5809 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5810 unsigned ValueID = Record[0]; 5811 GlobalValue::GUID RefGUID = Record[1]; 5812 // The "original name", which is the second value of the pair will be 5813 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5814 ValueIdToValueInfoMap[ValueID] = 5815 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5816 break; 5817 } 5818 } 5819 } 5820 } 5821 5822 // Parse just the blocks needed for building the index out of the module. 5823 // At the end of this routine the module Index is populated with a map 5824 // from global value id to GlobalValueSummary objects. 5825 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5826 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5827 return Err; 5828 5829 SmallVector<uint64_t, 64> Record; 5830 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5831 unsigned ValueId = 0; 5832 5833 // Read the index for this module. 5834 while (true) { 5835 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5836 if (!MaybeEntry) 5837 return MaybeEntry.takeError(); 5838 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5839 5840 switch (Entry.Kind) { 5841 case BitstreamEntry::Error: 5842 return error("Malformed block"); 5843 case BitstreamEntry::EndBlock: 5844 return Error::success(); 5845 5846 case BitstreamEntry::SubBlock: 5847 switch (Entry.ID) { 5848 default: // Skip unknown content. 5849 if (Error Err = Stream.SkipBlock()) 5850 return Err; 5851 break; 5852 case bitc::BLOCKINFO_BLOCK_ID: 5853 // Need to parse these to get abbrev ids (e.g. for VST) 5854 if (readBlockInfo()) 5855 return error("Malformed block"); 5856 break; 5857 case bitc::VALUE_SYMTAB_BLOCK_ID: 5858 // Should have been parsed earlier via VSTOffset, unless there 5859 // is no summary section. 5860 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5861 !SeenGlobalValSummary) && 5862 "Expected early VST parse via VSTOffset record"); 5863 if (Error Err = Stream.SkipBlock()) 5864 return Err; 5865 break; 5866 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5867 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5868 // Add the module if it is a per-module index (has a source file name). 5869 if (!SourceFileName.empty()) 5870 addThisModule(); 5871 assert(!SeenValueSymbolTable && 5872 "Already read VST when parsing summary block?"); 5873 // We might not have a VST if there were no values in the 5874 // summary. An empty summary block generated when we are 5875 // performing ThinLTO compiles so we don't later invoke 5876 // the regular LTO process on them. 5877 if (VSTOffset > 0) { 5878 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5879 return Err; 5880 SeenValueSymbolTable = true; 5881 } 5882 SeenGlobalValSummary = true; 5883 if (Error Err = parseEntireSummary(Entry.ID)) 5884 return Err; 5885 break; 5886 case bitc::MODULE_STRTAB_BLOCK_ID: 5887 if (Error Err = parseModuleStringTable()) 5888 return Err; 5889 break; 5890 } 5891 continue; 5892 5893 case BitstreamEntry::Record: { 5894 Record.clear(); 5895 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5896 if (!MaybeBitCode) 5897 return MaybeBitCode.takeError(); 5898 switch (MaybeBitCode.get()) { 5899 default: 5900 break; // Default behavior, ignore unknown content. 5901 case bitc::MODULE_CODE_VERSION: { 5902 if (Error Err = parseVersionRecord(Record).takeError()) 5903 return Err; 5904 break; 5905 } 5906 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5907 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5908 SmallString<128> ValueName; 5909 if (convertToString(Record, 0, ValueName)) 5910 return error("Invalid record"); 5911 SourceFileName = ValueName.c_str(); 5912 break; 5913 } 5914 /// MODULE_CODE_HASH: [5*i32] 5915 case bitc::MODULE_CODE_HASH: { 5916 if (Record.size() != 5) 5917 return error("Invalid hash length " + Twine(Record.size()).str()); 5918 auto &Hash = getThisModule()->second.second; 5919 int Pos = 0; 5920 for (auto &Val : Record) { 5921 assert(!(Val >> 32) && "Unexpected high bits set"); 5922 Hash[Pos++] = Val; 5923 } 5924 break; 5925 } 5926 /// MODULE_CODE_VSTOFFSET: [offset] 5927 case bitc::MODULE_CODE_VSTOFFSET: 5928 if (Record.empty()) 5929 return error("Invalid record"); 5930 // Note that we subtract 1 here because the offset is relative to one 5931 // word before the start of the identification or module block, which 5932 // was historically always the start of the regular bitcode header. 5933 VSTOffset = Record[0] - 1; 5934 break; 5935 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5936 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5937 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5938 // v2: [strtab offset, strtab size, v1] 5939 case bitc::MODULE_CODE_GLOBALVAR: 5940 case bitc::MODULE_CODE_FUNCTION: 5941 case bitc::MODULE_CODE_ALIAS: { 5942 StringRef Name; 5943 ArrayRef<uint64_t> GVRecord; 5944 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5945 if (GVRecord.size() <= 3) 5946 return error("Invalid record"); 5947 uint64_t RawLinkage = GVRecord[3]; 5948 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5949 if (!UseStrtab) { 5950 ValueIdToLinkageMap[ValueId++] = Linkage; 5951 break; 5952 } 5953 5954 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5955 break; 5956 } 5957 } 5958 } 5959 continue; 5960 } 5961 } 5962 } 5963 5964 std::vector<ValueInfo> 5965 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5966 std::vector<ValueInfo> Ret; 5967 Ret.reserve(Record.size()); 5968 for (uint64_t RefValueId : Record) 5969 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5970 return Ret; 5971 } 5972 5973 std::vector<FunctionSummary::EdgeTy> 5974 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5975 bool IsOldProfileFormat, 5976 bool HasProfile, bool HasRelBF) { 5977 std::vector<FunctionSummary::EdgeTy> Ret; 5978 Ret.reserve(Record.size()); 5979 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5980 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5981 uint64_t RelBF = 0; 5982 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5983 if (IsOldProfileFormat) { 5984 I += 1; // Skip old callsitecount field 5985 if (HasProfile) 5986 I += 1; // Skip old profilecount field 5987 } else if (HasProfile) 5988 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5989 else if (HasRelBF) 5990 RelBF = Record[++I]; 5991 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5992 } 5993 return Ret; 5994 } 5995 5996 static void 5997 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5998 WholeProgramDevirtResolution &Wpd) { 5999 uint64_t ArgNum = Record[Slot++]; 6000 WholeProgramDevirtResolution::ByArg &B = 6001 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 6002 Slot += ArgNum; 6003 6004 B.TheKind = 6005 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 6006 B.Info = Record[Slot++]; 6007 B.Byte = Record[Slot++]; 6008 B.Bit = Record[Slot++]; 6009 } 6010 6011 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 6012 StringRef Strtab, size_t &Slot, 6013 TypeIdSummary &TypeId) { 6014 uint64_t Id = Record[Slot++]; 6015 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 6016 6017 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 6018 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 6019 static_cast<size_t>(Record[Slot + 1])}; 6020 Slot += 2; 6021 6022 uint64_t ResByArgNum = Record[Slot++]; 6023 for (uint64_t I = 0; I != ResByArgNum; ++I) 6024 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 6025 } 6026 6027 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6028 StringRef Strtab, 6029 ModuleSummaryIndex &TheIndex) { 6030 size_t Slot = 0; 6031 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6032 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6033 Slot += 2; 6034 6035 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6036 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6037 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6038 TypeId.TTRes.SizeM1 = Record[Slot++]; 6039 TypeId.TTRes.BitMask = Record[Slot++]; 6040 TypeId.TTRes.InlineBits = Record[Slot++]; 6041 6042 while (Slot < Record.size()) 6043 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6044 } 6045 6046 std::vector<FunctionSummary::ParamAccess> 6047 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6048 auto ReadRange = [&]() { 6049 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6050 BitcodeReader::decodeSignRotatedValue(Record.front())); 6051 Record = Record.drop_front(); 6052 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6053 BitcodeReader::decodeSignRotatedValue(Record.front())); 6054 Record = Record.drop_front(); 6055 ConstantRange Range{Lower, Upper}; 6056 assert(!Range.isFullSet()); 6057 assert(!Range.isUpperSignWrapped()); 6058 return Range; 6059 }; 6060 6061 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6062 while (!Record.empty()) { 6063 PendingParamAccesses.emplace_back(); 6064 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6065 ParamAccess.ParamNo = Record.front(); 6066 Record = Record.drop_front(); 6067 ParamAccess.Use = ReadRange(); 6068 ParamAccess.Calls.resize(Record.front()); 6069 Record = Record.drop_front(); 6070 for (auto &Call : ParamAccess.Calls) { 6071 Call.ParamNo = Record.front(); 6072 Record = Record.drop_front(); 6073 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6074 Record = Record.drop_front(); 6075 Call.Offsets = ReadRange(); 6076 } 6077 } 6078 return PendingParamAccesses; 6079 } 6080 6081 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6082 ArrayRef<uint64_t> Record, size_t &Slot, 6083 TypeIdCompatibleVtableInfo &TypeId) { 6084 uint64_t Offset = Record[Slot++]; 6085 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6086 TypeId.push_back({Offset, Callee}); 6087 } 6088 6089 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6090 ArrayRef<uint64_t> Record) { 6091 size_t Slot = 0; 6092 TypeIdCompatibleVtableInfo &TypeId = 6093 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6094 {Strtab.data() + Record[Slot], 6095 static_cast<size_t>(Record[Slot + 1])}); 6096 Slot += 2; 6097 6098 while (Slot < Record.size()) 6099 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6100 } 6101 6102 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6103 unsigned WOCnt) { 6104 // Readonly and writeonly refs are in the end of the refs list. 6105 assert(ROCnt + WOCnt <= Refs.size()); 6106 unsigned FirstWORef = Refs.size() - WOCnt; 6107 unsigned RefNo = FirstWORef - ROCnt; 6108 for (; RefNo < FirstWORef; ++RefNo) 6109 Refs[RefNo].setReadOnly(); 6110 for (; RefNo < Refs.size(); ++RefNo) 6111 Refs[RefNo].setWriteOnly(); 6112 } 6113 6114 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6115 // objects in the index. 6116 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6117 if (Error Err = Stream.EnterSubBlock(ID)) 6118 return Err; 6119 SmallVector<uint64_t, 64> Record; 6120 6121 // Parse version 6122 { 6123 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6124 if (!MaybeEntry) 6125 return MaybeEntry.takeError(); 6126 BitstreamEntry Entry = MaybeEntry.get(); 6127 6128 if (Entry.Kind != BitstreamEntry::Record) 6129 return error("Invalid Summary Block: record for version expected"); 6130 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6131 if (!MaybeRecord) 6132 return MaybeRecord.takeError(); 6133 if (MaybeRecord.get() != bitc::FS_VERSION) 6134 return error("Invalid Summary Block: version expected"); 6135 } 6136 const uint64_t Version = Record[0]; 6137 const bool IsOldProfileFormat = Version == 1; 6138 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6139 return error("Invalid summary version " + Twine(Version) + 6140 ". Version should be in the range [1-" + 6141 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6142 "]."); 6143 Record.clear(); 6144 6145 // Keep around the last seen summary to be used when we see an optional 6146 // "OriginalName" attachement. 6147 GlobalValueSummary *LastSeenSummary = nullptr; 6148 GlobalValue::GUID LastSeenGUID = 0; 6149 6150 // We can expect to see any number of type ID information records before 6151 // each function summary records; these variables store the information 6152 // collected so far so that it can be used to create the summary object. 6153 std::vector<GlobalValue::GUID> PendingTypeTests; 6154 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6155 PendingTypeCheckedLoadVCalls; 6156 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6157 PendingTypeCheckedLoadConstVCalls; 6158 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6159 6160 while (true) { 6161 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6162 if (!MaybeEntry) 6163 return MaybeEntry.takeError(); 6164 BitstreamEntry Entry = MaybeEntry.get(); 6165 6166 switch (Entry.Kind) { 6167 case BitstreamEntry::SubBlock: // Handled for us already. 6168 case BitstreamEntry::Error: 6169 return error("Malformed block"); 6170 case BitstreamEntry::EndBlock: 6171 return Error::success(); 6172 case BitstreamEntry::Record: 6173 // The interesting case. 6174 break; 6175 } 6176 6177 // Read a record. The record format depends on whether this 6178 // is a per-module index or a combined index file. In the per-module 6179 // case the records contain the associated value's ID for correlation 6180 // with VST entries. In the combined index the correlation is done 6181 // via the bitcode offset of the summary records (which were saved 6182 // in the combined index VST entries). The records also contain 6183 // information used for ThinLTO renaming and importing. 6184 Record.clear(); 6185 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6186 if (!MaybeBitCode) 6187 return MaybeBitCode.takeError(); 6188 switch (unsigned BitCode = MaybeBitCode.get()) { 6189 default: // Default behavior: ignore. 6190 break; 6191 case bitc::FS_FLAGS: { // [flags] 6192 TheIndex.setFlags(Record[0]); 6193 break; 6194 } 6195 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6196 uint64_t ValueID = Record[0]; 6197 GlobalValue::GUID RefGUID = Record[1]; 6198 ValueIdToValueInfoMap[ValueID] = 6199 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6200 break; 6201 } 6202 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6203 // numrefs x valueid, n x (valueid)] 6204 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6205 // numrefs x valueid, 6206 // n x (valueid, hotness)] 6207 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6208 // numrefs x valueid, 6209 // n x (valueid, relblockfreq)] 6210 case bitc::FS_PERMODULE: 6211 case bitc::FS_PERMODULE_RELBF: 6212 case bitc::FS_PERMODULE_PROFILE: { 6213 unsigned ValueID = Record[0]; 6214 uint64_t RawFlags = Record[1]; 6215 unsigned InstCount = Record[2]; 6216 uint64_t RawFunFlags = 0; 6217 unsigned NumRefs = Record[3]; 6218 unsigned NumRORefs = 0, NumWORefs = 0; 6219 int RefListStartIndex = 4; 6220 if (Version >= 4) { 6221 RawFunFlags = Record[3]; 6222 NumRefs = Record[4]; 6223 RefListStartIndex = 5; 6224 if (Version >= 5) { 6225 NumRORefs = Record[5]; 6226 RefListStartIndex = 6; 6227 if (Version >= 7) { 6228 NumWORefs = Record[6]; 6229 RefListStartIndex = 7; 6230 } 6231 } 6232 } 6233 6234 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6235 // The module path string ref set in the summary must be owned by the 6236 // index's module string table. Since we don't have a module path 6237 // string table section in the per-module index, we create a single 6238 // module path string table entry with an empty (0) ID to take 6239 // ownership. 6240 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6241 assert(Record.size() >= RefListStartIndex + NumRefs && 6242 "Record size inconsistent with number of references"); 6243 std::vector<ValueInfo> Refs = makeRefList( 6244 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6245 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6246 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6247 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6248 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6249 IsOldProfileFormat, HasProfile, HasRelBF); 6250 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6251 auto FS = std::make_unique<FunctionSummary>( 6252 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6253 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6254 std::move(PendingTypeTestAssumeVCalls), 6255 std::move(PendingTypeCheckedLoadVCalls), 6256 std::move(PendingTypeTestAssumeConstVCalls), 6257 std::move(PendingTypeCheckedLoadConstVCalls), 6258 std::move(PendingParamAccesses)); 6259 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6260 FS->setModulePath(getThisModule()->first()); 6261 FS->setOriginalName(VIAndOriginalGUID.second); 6262 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6263 break; 6264 } 6265 // FS_ALIAS: [valueid, flags, valueid] 6266 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6267 // they expect all aliasee summaries to be available. 6268 case bitc::FS_ALIAS: { 6269 unsigned ValueID = Record[0]; 6270 uint64_t RawFlags = Record[1]; 6271 unsigned AliaseeID = Record[2]; 6272 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6273 auto AS = std::make_unique<AliasSummary>(Flags); 6274 // The module path string ref set in the summary must be owned by the 6275 // index's module string table. Since we don't have a module path 6276 // string table section in the per-module index, we create a single 6277 // module path string table entry with an empty (0) ID to take 6278 // ownership. 6279 AS->setModulePath(getThisModule()->first()); 6280 6281 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6282 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6283 if (!AliaseeInModule) 6284 return error("Alias expects aliasee summary to be parsed"); 6285 AS->setAliasee(AliaseeVI, AliaseeInModule); 6286 6287 auto GUID = getValueInfoFromValueId(ValueID); 6288 AS->setOriginalName(GUID.second); 6289 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6290 break; 6291 } 6292 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6293 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6294 unsigned ValueID = Record[0]; 6295 uint64_t RawFlags = Record[1]; 6296 unsigned RefArrayStart = 2; 6297 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6298 /* WriteOnly */ false, 6299 /* Constant */ false, 6300 GlobalObject::VCallVisibilityPublic); 6301 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6302 if (Version >= 5) { 6303 GVF = getDecodedGVarFlags(Record[2]); 6304 RefArrayStart = 3; 6305 } 6306 std::vector<ValueInfo> Refs = 6307 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6308 auto FS = 6309 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6310 FS->setModulePath(getThisModule()->first()); 6311 auto GUID = getValueInfoFromValueId(ValueID); 6312 FS->setOriginalName(GUID.second); 6313 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6314 break; 6315 } 6316 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6317 // numrefs, numrefs x valueid, 6318 // n x (valueid, offset)] 6319 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6320 unsigned ValueID = Record[0]; 6321 uint64_t RawFlags = Record[1]; 6322 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6323 unsigned NumRefs = Record[3]; 6324 unsigned RefListStartIndex = 4; 6325 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6326 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6327 std::vector<ValueInfo> Refs = makeRefList( 6328 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6329 VTableFuncList VTableFuncs; 6330 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6331 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6332 uint64_t Offset = Record[++I]; 6333 VTableFuncs.push_back({Callee, Offset}); 6334 } 6335 auto VS = 6336 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6337 VS->setModulePath(getThisModule()->first()); 6338 VS->setVTableFuncs(VTableFuncs); 6339 auto GUID = getValueInfoFromValueId(ValueID); 6340 VS->setOriginalName(GUID.second); 6341 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6342 break; 6343 } 6344 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6345 // numrefs x valueid, n x (valueid)] 6346 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6347 // numrefs x valueid, n x (valueid, hotness)] 6348 case bitc::FS_COMBINED: 6349 case bitc::FS_COMBINED_PROFILE: { 6350 unsigned ValueID = Record[0]; 6351 uint64_t ModuleId = Record[1]; 6352 uint64_t RawFlags = Record[2]; 6353 unsigned InstCount = Record[3]; 6354 uint64_t RawFunFlags = 0; 6355 uint64_t EntryCount = 0; 6356 unsigned NumRefs = Record[4]; 6357 unsigned NumRORefs = 0, NumWORefs = 0; 6358 int RefListStartIndex = 5; 6359 6360 if (Version >= 4) { 6361 RawFunFlags = Record[4]; 6362 RefListStartIndex = 6; 6363 size_t NumRefsIndex = 5; 6364 if (Version >= 5) { 6365 unsigned NumRORefsOffset = 1; 6366 RefListStartIndex = 7; 6367 if (Version >= 6) { 6368 NumRefsIndex = 6; 6369 EntryCount = Record[5]; 6370 RefListStartIndex = 8; 6371 if (Version >= 7) { 6372 RefListStartIndex = 9; 6373 NumWORefs = Record[8]; 6374 NumRORefsOffset = 2; 6375 } 6376 } 6377 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6378 } 6379 NumRefs = Record[NumRefsIndex]; 6380 } 6381 6382 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6383 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6384 assert(Record.size() >= RefListStartIndex + NumRefs && 6385 "Record size inconsistent with number of references"); 6386 std::vector<ValueInfo> Refs = makeRefList( 6387 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6388 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6389 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6390 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6391 IsOldProfileFormat, HasProfile, false); 6392 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6393 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6394 auto FS = std::make_unique<FunctionSummary>( 6395 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6396 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6397 std::move(PendingTypeTestAssumeVCalls), 6398 std::move(PendingTypeCheckedLoadVCalls), 6399 std::move(PendingTypeTestAssumeConstVCalls), 6400 std::move(PendingTypeCheckedLoadConstVCalls), 6401 std::move(PendingParamAccesses)); 6402 LastSeenSummary = FS.get(); 6403 LastSeenGUID = VI.getGUID(); 6404 FS->setModulePath(ModuleIdMap[ModuleId]); 6405 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6406 break; 6407 } 6408 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6409 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6410 // they expect all aliasee summaries to be available. 6411 case bitc::FS_COMBINED_ALIAS: { 6412 unsigned ValueID = Record[0]; 6413 uint64_t ModuleId = Record[1]; 6414 uint64_t RawFlags = Record[2]; 6415 unsigned AliaseeValueId = Record[3]; 6416 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6417 auto AS = std::make_unique<AliasSummary>(Flags); 6418 LastSeenSummary = AS.get(); 6419 AS->setModulePath(ModuleIdMap[ModuleId]); 6420 6421 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6422 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6423 AS->setAliasee(AliaseeVI, AliaseeInModule); 6424 6425 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6426 LastSeenGUID = VI.getGUID(); 6427 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6428 break; 6429 } 6430 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6431 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6432 unsigned ValueID = Record[0]; 6433 uint64_t ModuleId = Record[1]; 6434 uint64_t RawFlags = Record[2]; 6435 unsigned RefArrayStart = 3; 6436 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6437 /* WriteOnly */ false, 6438 /* Constant */ false, 6439 GlobalObject::VCallVisibilityPublic); 6440 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6441 if (Version >= 5) { 6442 GVF = getDecodedGVarFlags(Record[3]); 6443 RefArrayStart = 4; 6444 } 6445 std::vector<ValueInfo> Refs = 6446 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6447 auto FS = 6448 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6449 LastSeenSummary = FS.get(); 6450 FS->setModulePath(ModuleIdMap[ModuleId]); 6451 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6452 LastSeenGUID = VI.getGUID(); 6453 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6454 break; 6455 } 6456 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6457 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6458 uint64_t OriginalName = Record[0]; 6459 if (!LastSeenSummary) 6460 return error("Name attachment that does not follow a combined record"); 6461 LastSeenSummary->setOriginalName(OriginalName); 6462 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6463 // Reset the LastSeenSummary 6464 LastSeenSummary = nullptr; 6465 LastSeenGUID = 0; 6466 break; 6467 } 6468 case bitc::FS_TYPE_TESTS: 6469 assert(PendingTypeTests.empty()); 6470 llvm::append_range(PendingTypeTests, Record); 6471 break; 6472 6473 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6474 assert(PendingTypeTestAssumeVCalls.empty()); 6475 for (unsigned I = 0; I != Record.size(); I += 2) 6476 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6477 break; 6478 6479 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6480 assert(PendingTypeCheckedLoadVCalls.empty()); 6481 for (unsigned I = 0; I != Record.size(); I += 2) 6482 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6483 break; 6484 6485 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6486 PendingTypeTestAssumeConstVCalls.push_back( 6487 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6488 break; 6489 6490 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6491 PendingTypeCheckedLoadConstVCalls.push_back( 6492 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6493 break; 6494 6495 case bitc::FS_CFI_FUNCTION_DEFS: { 6496 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6497 for (unsigned I = 0; I != Record.size(); I += 2) 6498 CfiFunctionDefs.insert( 6499 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6500 break; 6501 } 6502 6503 case bitc::FS_CFI_FUNCTION_DECLS: { 6504 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6505 for (unsigned I = 0; I != Record.size(); I += 2) 6506 CfiFunctionDecls.insert( 6507 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6508 break; 6509 } 6510 6511 case bitc::FS_TYPE_ID: 6512 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6513 break; 6514 6515 case bitc::FS_TYPE_ID_METADATA: 6516 parseTypeIdCompatibleVtableSummaryRecord(Record); 6517 break; 6518 6519 case bitc::FS_BLOCK_COUNT: 6520 TheIndex.addBlockCount(Record[0]); 6521 break; 6522 6523 case bitc::FS_PARAM_ACCESS: { 6524 PendingParamAccesses = parseParamAccesses(Record); 6525 break; 6526 } 6527 } 6528 } 6529 llvm_unreachable("Exit infinite loop"); 6530 } 6531 6532 // Parse the module string table block into the Index. 6533 // This populates the ModulePathStringTable map in the index. 6534 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6535 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6536 return Err; 6537 6538 SmallVector<uint64_t, 64> Record; 6539 6540 SmallString<128> ModulePath; 6541 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6542 6543 while (true) { 6544 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6545 if (!MaybeEntry) 6546 return MaybeEntry.takeError(); 6547 BitstreamEntry Entry = MaybeEntry.get(); 6548 6549 switch (Entry.Kind) { 6550 case BitstreamEntry::SubBlock: // Handled for us already. 6551 case BitstreamEntry::Error: 6552 return error("Malformed block"); 6553 case BitstreamEntry::EndBlock: 6554 return Error::success(); 6555 case BitstreamEntry::Record: 6556 // The interesting case. 6557 break; 6558 } 6559 6560 Record.clear(); 6561 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6562 if (!MaybeRecord) 6563 return MaybeRecord.takeError(); 6564 switch (MaybeRecord.get()) { 6565 default: // Default behavior: ignore. 6566 break; 6567 case bitc::MST_CODE_ENTRY: { 6568 // MST_ENTRY: [modid, namechar x N] 6569 uint64_t ModuleId = Record[0]; 6570 6571 if (convertToString(Record, 1, ModulePath)) 6572 return error("Invalid record"); 6573 6574 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6575 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6576 6577 ModulePath.clear(); 6578 break; 6579 } 6580 /// MST_CODE_HASH: [5*i32] 6581 case bitc::MST_CODE_HASH: { 6582 if (Record.size() != 5) 6583 return error("Invalid hash length " + Twine(Record.size()).str()); 6584 if (!LastSeenModule) 6585 return error("Invalid hash that does not follow a module path"); 6586 int Pos = 0; 6587 for (auto &Val : Record) { 6588 assert(!(Val >> 32) && "Unexpected high bits set"); 6589 LastSeenModule->second.second[Pos++] = Val; 6590 } 6591 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6592 LastSeenModule = nullptr; 6593 break; 6594 } 6595 } 6596 } 6597 llvm_unreachable("Exit infinite loop"); 6598 } 6599 6600 namespace { 6601 6602 // FIXME: This class is only here to support the transition to llvm::Error. It 6603 // will be removed once this transition is complete. Clients should prefer to 6604 // deal with the Error value directly, rather than converting to error_code. 6605 class BitcodeErrorCategoryType : public std::error_category { 6606 const char *name() const noexcept override { 6607 return "llvm.bitcode"; 6608 } 6609 6610 std::string message(int IE) const override { 6611 BitcodeError E = static_cast<BitcodeError>(IE); 6612 switch (E) { 6613 case BitcodeError::CorruptedBitcode: 6614 return "Corrupted bitcode"; 6615 } 6616 llvm_unreachable("Unknown error type!"); 6617 } 6618 }; 6619 6620 } // end anonymous namespace 6621 6622 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6623 6624 const std::error_category &llvm::BitcodeErrorCategory() { 6625 return *ErrorCategory; 6626 } 6627 6628 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6629 unsigned Block, unsigned RecordID) { 6630 if (Error Err = Stream.EnterSubBlock(Block)) 6631 return std::move(Err); 6632 6633 StringRef Strtab; 6634 while (true) { 6635 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6636 if (!MaybeEntry) 6637 return MaybeEntry.takeError(); 6638 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6639 6640 switch (Entry.Kind) { 6641 case BitstreamEntry::EndBlock: 6642 return Strtab; 6643 6644 case BitstreamEntry::Error: 6645 return error("Malformed block"); 6646 6647 case BitstreamEntry::SubBlock: 6648 if (Error Err = Stream.SkipBlock()) 6649 return std::move(Err); 6650 break; 6651 6652 case BitstreamEntry::Record: 6653 StringRef Blob; 6654 SmallVector<uint64_t, 1> Record; 6655 Expected<unsigned> MaybeRecord = 6656 Stream.readRecord(Entry.ID, Record, &Blob); 6657 if (!MaybeRecord) 6658 return MaybeRecord.takeError(); 6659 if (MaybeRecord.get() == RecordID) 6660 Strtab = Blob; 6661 break; 6662 } 6663 } 6664 } 6665 6666 //===----------------------------------------------------------------------===// 6667 // External interface 6668 //===----------------------------------------------------------------------===// 6669 6670 Expected<std::vector<BitcodeModule>> 6671 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6672 auto FOrErr = getBitcodeFileContents(Buffer); 6673 if (!FOrErr) 6674 return FOrErr.takeError(); 6675 return std::move(FOrErr->Mods); 6676 } 6677 6678 Expected<BitcodeFileContents> 6679 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6680 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6681 if (!StreamOrErr) 6682 return StreamOrErr.takeError(); 6683 BitstreamCursor &Stream = *StreamOrErr; 6684 6685 BitcodeFileContents F; 6686 while (true) { 6687 uint64_t BCBegin = Stream.getCurrentByteNo(); 6688 6689 // We may be consuming bitcode from a client that leaves garbage at the end 6690 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6691 // the end that there cannot possibly be another module, stop looking. 6692 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6693 return F; 6694 6695 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6696 if (!MaybeEntry) 6697 return MaybeEntry.takeError(); 6698 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6699 6700 switch (Entry.Kind) { 6701 case BitstreamEntry::EndBlock: 6702 case BitstreamEntry::Error: 6703 return error("Malformed block"); 6704 6705 case BitstreamEntry::SubBlock: { 6706 uint64_t IdentificationBit = -1ull; 6707 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6708 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6709 if (Error Err = Stream.SkipBlock()) 6710 return std::move(Err); 6711 6712 { 6713 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6714 if (!MaybeEntry) 6715 return MaybeEntry.takeError(); 6716 Entry = MaybeEntry.get(); 6717 } 6718 6719 if (Entry.Kind != BitstreamEntry::SubBlock || 6720 Entry.ID != bitc::MODULE_BLOCK_ID) 6721 return error("Malformed block"); 6722 } 6723 6724 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6725 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6726 if (Error Err = Stream.SkipBlock()) 6727 return std::move(Err); 6728 6729 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6730 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6731 Buffer.getBufferIdentifier(), IdentificationBit, 6732 ModuleBit}); 6733 continue; 6734 } 6735 6736 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6737 Expected<StringRef> Strtab = 6738 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6739 if (!Strtab) 6740 return Strtab.takeError(); 6741 // This string table is used by every preceding bitcode module that does 6742 // not have its own string table. A bitcode file may have multiple 6743 // string tables if it was created by binary concatenation, for example 6744 // with "llvm-cat -b". 6745 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 6746 if (!I.Strtab.empty()) 6747 break; 6748 I.Strtab = *Strtab; 6749 } 6750 // Similarly, the string table is used by every preceding symbol table; 6751 // normally there will be just one unless the bitcode file was created 6752 // by binary concatenation. 6753 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6754 F.StrtabForSymtab = *Strtab; 6755 continue; 6756 } 6757 6758 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6759 Expected<StringRef> SymtabOrErr = 6760 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6761 if (!SymtabOrErr) 6762 return SymtabOrErr.takeError(); 6763 6764 // We can expect the bitcode file to have multiple symbol tables if it 6765 // was created by binary concatenation. In that case we silently 6766 // ignore any subsequent symbol tables, which is fine because this is a 6767 // low level function. The client is expected to notice that the number 6768 // of modules in the symbol table does not match the number of modules 6769 // in the input file and regenerate the symbol table. 6770 if (F.Symtab.empty()) 6771 F.Symtab = *SymtabOrErr; 6772 continue; 6773 } 6774 6775 if (Error Err = Stream.SkipBlock()) 6776 return std::move(Err); 6777 continue; 6778 } 6779 case BitstreamEntry::Record: 6780 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 6781 return std::move(E); 6782 continue; 6783 } 6784 } 6785 } 6786 6787 /// Get a lazy one-at-time loading module from bitcode. 6788 /// 6789 /// This isn't always used in a lazy context. In particular, it's also used by 6790 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6791 /// in forward-referenced functions from block address references. 6792 /// 6793 /// \param[in] MaterializeAll Set to \c true if we should materialize 6794 /// everything. 6795 Expected<std::unique_ptr<Module>> 6796 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6797 bool ShouldLazyLoadMetadata, bool IsImporting, 6798 DataLayoutCallbackTy DataLayoutCallback) { 6799 BitstreamCursor Stream(Buffer); 6800 6801 std::string ProducerIdentification; 6802 if (IdentificationBit != -1ull) { 6803 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6804 return std::move(JumpFailed); 6805 if (Error E = 6806 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 6807 return std::move(E); 6808 } 6809 6810 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6811 return std::move(JumpFailed); 6812 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6813 Context); 6814 6815 std::unique_ptr<Module> M = 6816 std::make_unique<Module>(ModuleIdentifier, Context); 6817 M->setMaterializer(R); 6818 6819 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6820 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6821 IsImporting, DataLayoutCallback)) 6822 return std::move(Err); 6823 6824 if (MaterializeAll) { 6825 // Read in the entire module, and destroy the BitcodeReader. 6826 if (Error Err = M->materializeAll()) 6827 return std::move(Err); 6828 } else { 6829 // Resolve forward references from blockaddresses. 6830 if (Error Err = R->materializeForwardReferencedFunctions()) 6831 return std::move(Err); 6832 } 6833 return std::move(M); 6834 } 6835 6836 Expected<std::unique_ptr<Module>> 6837 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6838 bool IsImporting) { 6839 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6840 [](StringRef) { return None; }); 6841 } 6842 6843 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6844 // We don't use ModuleIdentifier here because the client may need to control the 6845 // module path used in the combined summary (e.g. when reading summaries for 6846 // regular LTO modules). 6847 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6848 StringRef ModulePath, uint64_t ModuleId) { 6849 BitstreamCursor Stream(Buffer); 6850 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6851 return JumpFailed; 6852 6853 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6854 ModulePath, ModuleId); 6855 return R.parseModule(); 6856 } 6857 6858 // Parse the specified bitcode buffer, returning the function info index. 6859 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6860 BitstreamCursor Stream(Buffer); 6861 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6862 return std::move(JumpFailed); 6863 6864 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6865 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6866 ModuleIdentifier, 0); 6867 6868 if (Error Err = R.parseModule()) 6869 return std::move(Err); 6870 6871 return std::move(Index); 6872 } 6873 6874 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6875 unsigned ID) { 6876 if (Error Err = Stream.EnterSubBlock(ID)) 6877 return std::move(Err); 6878 SmallVector<uint64_t, 64> Record; 6879 6880 while (true) { 6881 BitstreamEntry Entry; 6882 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 6883 return std::move(E); 6884 6885 switch (Entry.Kind) { 6886 case BitstreamEntry::SubBlock: // Handled for us already. 6887 case BitstreamEntry::Error: 6888 return error("Malformed block"); 6889 case BitstreamEntry::EndBlock: 6890 // If no flags record found, conservatively return true to mimic 6891 // behavior before this flag was added. 6892 return true; 6893 case BitstreamEntry::Record: 6894 // The interesting case. 6895 break; 6896 } 6897 6898 // Look for the FS_FLAGS record. 6899 Record.clear(); 6900 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6901 if (!MaybeBitCode) 6902 return MaybeBitCode.takeError(); 6903 switch (MaybeBitCode.get()) { 6904 default: // Default behavior: ignore. 6905 break; 6906 case bitc::FS_FLAGS: { // [flags] 6907 uint64_t Flags = Record[0]; 6908 // Scan flags. 6909 assert(Flags <= 0x7f && "Unexpected bits in flag"); 6910 6911 return Flags & 0x8; 6912 } 6913 } 6914 } 6915 llvm_unreachable("Exit infinite loop"); 6916 } 6917 6918 // Check if the given bitcode buffer contains a global value summary block. 6919 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6920 BitstreamCursor Stream(Buffer); 6921 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6922 return std::move(JumpFailed); 6923 6924 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6925 return std::move(Err); 6926 6927 while (true) { 6928 llvm::BitstreamEntry Entry; 6929 if (Error E = Stream.advance().moveInto(Entry)) 6930 return std::move(E); 6931 6932 switch (Entry.Kind) { 6933 case BitstreamEntry::Error: 6934 return error("Malformed block"); 6935 case BitstreamEntry::EndBlock: 6936 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6937 /*EnableSplitLTOUnit=*/false}; 6938 6939 case BitstreamEntry::SubBlock: 6940 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6941 Expected<bool> EnableSplitLTOUnit = 6942 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6943 if (!EnableSplitLTOUnit) 6944 return EnableSplitLTOUnit.takeError(); 6945 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6946 *EnableSplitLTOUnit}; 6947 } 6948 6949 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6950 Expected<bool> EnableSplitLTOUnit = 6951 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6952 if (!EnableSplitLTOUnit) 6953 return EnableSplitLTOUnit.takeError(); 6954 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6955 *EnableSplitLTOUnit}; 6956 } 6957 6958 // Ignore other sub-blocks. 6959 if (Error Err = Stream.SkipBlock()) 6960 return std::move(Err); 6961 continue; 6962 6963 case BitstreamEntry::Record: 6964 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6965 continue; 6966 else 6967 return StreamFailed.takeError(); 6968 } 6969 } 6970 } 6971 6972 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6973 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6974 if (!MsOrErr) 6975 return MsOrErr.takeError(); 6976 6977 if (MsOrErr->size() != 1) 6978 return error("Expected a single module"); 6979 6980 return (*MsOrErr)[0]; 6981 } 6982 6983 Expected<std::unique_ptr<Module>> 6984 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6985 bool ShouldLazyLoadMetadata, bool IsImporting) { 6986 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6987 if (!BM) 6988 return BM.takeError(); 6989 6990 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6991 } 6992 6993 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6994 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6995 bool ShouldLazyLoadMetadata, bool IsImporting) { 6996 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6997 IsImporting); 6998 if (MOrErr) 6999 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 7000 return MOrErr; 7001 } 7002 7003 Expected<std::unique_ptr<Module>> 7004 BitcodeModule::parseModule(LLVMContext &Context, 7005 DataLayoutCallbackTy DataLayoutCallback) { 7006 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 7007 // TODO: Restore the use-lists to the in-memory state when the bitcode was 7008 // written. We must defer until the Module has been fully materialized. 7009 } 7010 7011 Expected<std::unique_ptr<Module>> 7012 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 7013 DataLayoutCallbackTy DataLayoutCallback) { 7014 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7015 if (!BM) 7016 return BM.takeError(); 7017 7018 return BM->parseModule(Context, DataLayoutCallback); 7019 } 7020 7021 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7022 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7023 if (!StreamOrErr) 7024 return StreamOrErr.takeError(); 7025 7026 return readTriple(*StreamOrErr); 7027 } 7028 7029 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7030 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7031 if (!StreamOrErr) 7032 return StreamOrErr.takeError(); 7033 7034 return hasObjCCategory(*StreamOrErr); 7035 } 7036 7037 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7038 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7039 if (!StreamOrErr) 7040 return StreamOrErr.takeError(); 7041 7042 return readIdentificationCode(*StreamOrErr); 7043 } 7044 7045 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7046 ModuleSummaryIndex &CombinedIndex, 7047 uint64_t ModuleId) { 7048 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7049 if (!BM) 7050 return BM.takeError(); 7051 7052 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7053 } 7054 7055 Expected<std::unique_ptr<ModuleSummaryIndex>> 7056 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7057 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7058 if (!BM) 7059 return BM.takeError(); 7060 7061 return BM->getSummary(); 7062 } 7063 7064 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7065 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7066 if (!BM) 7067 return BM.takeError(); 7068 7069 return BM->getLTOInfo(); 7070 } 7071 7072 Expected<std::unique_ptr<ModuleSummaryIndex>> 7073 llvm::getModuleSummaryIndexForFile(StringRef Path, 7074 bool IgnoreEmptyThinLTOIndexFile) { 7075 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7076 MemoryBuffer::getFileOrSTDIN(Path); 7077 if (!FileOrErr) 7078 return errorCodeToError(FileOrErr.getError()); 7079 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7080 return nullptr; 7081 return getModuleSummaryIndex(**FileOrErr); 7082 } 7083