1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/DataStream.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <deque> 40 41 using namespace llvm; 42 43 static cl::opt<bool> PrintSummaryGUIDs( 44 "print-summary-global-ids", cl::init(false), cl::Hidden, 45 cl::desc( 46 "Print the global id for each value when reading the module summary")); 47 48 namespace { 49 enum { 50 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty); 97 98 void assignValue(Value *V, unsigned Idx); 99 100 /// Once all constants are read, this method bulk resolves any forward 101 /// references. 102 void resolveConstantForwardRefs(); 103 }; 104 105 class BitcodeReaderMetadataList { 106 unsigned NumFwdRefs; 107 bool AnyFwdRefs; 108 unsigned MinFwdRef; 109 unsigned MaxFwdRef; 110 111 /// Array of metadata references. 112 /// 113 /// Don't use std::vector here. Some versions of libc++ copy (instead of 114 /// move) on resize, and TrackingMDRef is very expensive to copy. 115 SmallVector<TrackingMDRef, 1> MetadataPtrs; 116 117 LLVMContext &Context; 118 public: 119 BitcodeReaderMetadataList(LLVMContext &C) 120 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 121 122 // vector compatibility methods 123 unsigned size() const { return MetadataPtrs.size(); } 124 void resize(unsigned N) { MetadataPtrs.resize(N); } 125 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 126 void clear() { MetadataPtrs.clear(); } 127 Metadata *back() const { return MetadataPtrs.back(); } 128 void pop_back() { MetadataPtrs.pop_back(); } 129 bool empty() const { return MetadataPtrs.empty(); } 130 131 Metadata *operator[](unsigned i) const { 132 assert(i < MetadataPtrs.size()); 133 return MetadataPtrs[i]; 134 } 135 136 void shrinkTo(unsigned N) { 137 assert(N <= size() && "Invalid shrinkTo request!"); 138 assert(!AnyFwdRefs && "Unexpected forward refs"); 139 MetadataPtrs.resize(N); 140 } 141 142 Metadata *getMetadataFwdRef(unsigned Idx); 143 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 144 void assignValue(Metadata *MD, unsigned Idx); 145 void tryToResolveCycles(); 146 bool hasFwdRefs() const { return AnyFwdRefs; } 147 }; 148 149 class BitcodeReader : public GVMaterializer { 150 LLVMContext &Context; 151 Module *TheModule = nullptr; 152 std::unique_ptr<MemoryBuffer> Buffer; 153 std::unique_ptr<BitstreamReader> StreamFile; 154 BitstreamCursor Stream; 155 // Next offset to start scanning for lazy parsing of function bodies. 156 uint64_t NextUnreadBit = 0; 157 // Last function offset found in the VST. 158 uint64_t LastFunctionBlockBit = 0; 159 bool SeenValueSymbolTable = false; 160 uint64_t VSTOffset = 0; 161 // Contains an arbitrary and optional string identifying the bitcode producer 162 std::string ProducerIdentification; 163 164 std::vector<Type*> TypeList; 165 BitcodeReaderValueList ValueList; 166 BitcodeReaderMetadataList MetadataList; 167 std::vector<Comdat *> ComdatList; 168 SmallVector<Instruction *, 64> InstructionList; 169 170 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 171 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 172 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 173 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 174 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 175 176 SmallVector<Instruction*, 64> InstsWithTBAATag; 177 178 bool HasSeenOldLoopTags = false; 179 180 /// The set of attributes by index. Index zero in the file is for null, and 181 /// is thus not represented here. As such all indices are off by one. 182 std::vector<AttributeSet> MAttributes; 183 184 /// The set of attribute groups. 185 std::map<unsigned, AttributeSet> MAttributeGroups; 186 187 /// While parsing a function body, this is a list of the basic blocks for the 188 /// function. 189 std::vector<BasicBlock*> FunctionBBs; 190 191 // When reading the module header, this list is populated with functions that 192 // have bodies later in the file. 193 std::vector<Function*> FunctionsWithBodies; 194 195 // When intrinsic functions are encountered which require upgrading they are 196 // stored here with their replacement function. 197 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 198 UpgradedIntrinsicMap UpgradedIntrinsics; 199 200 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 201 DenseMap<unsigned, unsigned> MDKindMap; 202 203 // Several operations happen after the module header has been read, but 204 // before function bodies are processed. This keeps track of whether 205 // we've done this yet. 206 bool SeenFirstFunctionBody = false; 207 208 /// When function bodies are initially scanned, this map contains info about 209 /// where to find deferred function body in the stream. 210 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 211 212 /// When Metadata block is initially scanned when parsing the module, we may 213 /// choose to defer parsing of the metadata. This vector contains info about 214 /// which Metadata blocks are deferred. 215 std::vector<uint64_t> DeferredMetadataInfo; 216 217 /// These are basic blocks forward-referenced by block addresses. They are 218 /// inserted lazily into functions when they're loaded. The basic block ID is 219 /// its index into the vector. 220 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 221 std::deque<Function *> BasicBlockFwdRefQueue; 222 223 /// Indicates that we are using a new encoding for instruction operands where 224 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 225 /// instruction number, for a more compact encoding. Some instruction 226 /// operands are not relative to the instruction ID: basic block numbers, and 227 /// types. Once the old style function blocks have been phased out, we would 228 /// not need this flag. 229 bool UseRelativeIDs = false; 230 231 /// True if all functions will be materialized, negating the need to process 232 /// (e.g.) blockaddress forward references. 233 bool WillMaterializeAllForwardRefs = false; 234 235 /// True if any Metadata block has been materialized. 236 bool IsMetadataMaterialized = false; 237 238 bool StripDebugInfo = false; 239 240 /// Functions that need to be matched with subprograms when upgrading old 241 /// metadata. 242 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 243 244 std::vector<std::string> BundleTags; 245 246 public: 247 std::error_code error(BitcodeError E, const Twine &Message); 248 std::error_code error(BitcodeError E); 249 std::error_code error(const Twine &Message); 250 251 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 252 BitcodeReader(LLVMContext &Context); 253 ~BitcodeReader() override { freeState(); } 254 255 std::error_code materializeForwardReferencedFunctions(); 256 257 void freeState(); 258 259 void releaseBuffer(); 260 261 std::error_code materialize(GlobalValue *GV) override; 262 std::error_code materializeModule() override; 263 std::vector<StructType *> getIdentifiedStructTypes() const override; 264 265 /// \brief Main interface to parsing a bitcode buffer. 266 /// \returns true if an error occurred. 267 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 268 Module *M, 269 bool ShouldLazyLoadMetadata = false); 270 271 /// \brief Cheap mechanism to just extract module triple 272 /// \returns true if an error occurred. 273 ErrorOr<std::string> parseTriple(); 274 275 /// Cheap mechanism to just extract the identification block out of bitcode. 276 ErrorOr<std::string> parseIdentificationBlock(); 277 278 static uint64_t decodeSignRotatedValue(uint64_t V); 279 280 /// Materialize any deferred Metadata block. 281 std::error_code materializeMetadata() override; 282 283 void setStripDebugInfo() override; 284 285 private: 286 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 287 // ProducerIdentification data member, and do some basic enforcement on the 288 // "epoch" encoded in the bitcode. 289 std::error_code parseBitcodeVersion(); 290 291 std::vector<StructType *> IdentifiedStructTypes; 292 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 293 StructType *createIdentifiedStructType(LLVMContext &Context); 294 295 Type *getTypeByID(unsigned ID); 296 Value *getFnValueByID(unsigned ID, Type *Ty) { 297 if (Ty && Ty->isMetadataTy()) 298 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 299 return ValueList.getValueFwdRef(ID, Ty); 300 } 301 Metadata *getFnMetadataByID(unsigned ID) { 302 return MetadataList.getMetadataFwdRef(ID); 303 } 304 BasicBlock *getBasicBlock(unsigned ID) const { 305 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 306 return FunctionBBs[ID]; 307 } 308 AttributeSet getAttributes(unsigned i) const { 309 if (i-1 < MAttributes.size()) 310 return MAttributes[i-1]; 311 return AttributeSet(); 312 } 313 314 /// Read a value/type pair out of the specified record from slot 'Slot'. 315 /// Increment Slot past the number of slots used in the record. Return true on 316 /// failure. 317 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 318 unsigned InstNum, Value *&ResVal) { 319 if (Slot == Record.size()) return true; 320 unsigned ValNo = (unsigned)Record[Slot++]; 321 // Adjust the ValNo, if it was encoded relative to the InstNum. 322 if (UseRelativeIDs) 323 ValNo = InstNum - ValNo; 324 if (ValNo < InstNum) { 325 // If this is not a forward reference, just return the value we already 326 // have. 327 ResVal = getFnValueByID(ValNo, nullptr); 328 return ResVal == nullptr; 329 } 330 if (Slot == Record.size()) 331 return true; 332 333 unsigned TypeNo = (unsigned)Record[Slot++]; 334 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 335 return ResVal == nullptr; 336 } 337 338 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 339 /// past the number of slots used by the value in the record. Return true if 340 /// there is an error. 341 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 342 unsigned InstNum, Type *Ty, Value *&ResVal) { 343 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 344 return true; 345 // All values currently take a single record slot. 346 ++Slot; 347 return false; 348 } 349 350 /// Like popValue, but does not increment the Slot number. 351 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 352 unsigned InstNum, Type *Ty, Value *&ResVal) { 353 ResVal = getValue(Record, Slot, InstNum, Ty); 354 return ResVal == nullptr; 355 } 356 357 /// Version of getValue that returns ResVal directly, or 0 if there is an 358 /// error. 359 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 360 unsigned InstNum, Type *Ty) { 361 if (Slot == Record.size()) return nullptr; 362 unsigned ValNo = (unsigned)Record[Slot]; 363 // Adjust the ValNo, if it was encoded relative to the InstNum. 364 if (UseRelativeIDs) 365 ValNo = InstNum - ValNo; 366 return getFnValueByID(ValNo, Ty); 367 } 368 369 /// Like getValue, but decodes signed VBRs. 370 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 371 unsigned InstNum, Type *Ty) { 372 if (Slot == Record.size()) return nullptr; 373 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 374 // Adjust the ValNo, if it was encoded relative to the InstNum. 375 if (UseRelativeIDs) 376 ValNo = InstNum - ValNo; 377 return getFnValueByID(ValNo, Ty); 378 } 379 380 /// Converts alignment exponent (i.e. power of two (or zero)) to the 381 /// corresponding alignment to use. If alignment is too large, returns 382 /// a corresponding error code. 383 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 384 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 385 std::error_code parseModule(uint64_t ResumeBit, 386 bool ShouldLazyLoadMetadata = false); 387 std::error_code parseAttributeBlock(); 388 std::error_code parseAttributeGroupBlock(); 389 std::error_code parseTypeTable(); 390 std::error_code parseTypeTableBody(); 391 std::error_code parseOperandBundleTags(); 392 393 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 394 unsigned NameIndex, Triple &TT); 395 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 396 std::error_code parseConstants(); 397 std::error_code rememberAndSkipFunctionBodies(); 398 std::error_code rememberAndSkipFunctionBody(); 399 /// Save the positions of the Metadata blocks and skip parsing the blocks. 400 std::error_code rememberAndSkipMetadata(); 401 std::error_code parseFunctionBody(Function *F); 402 std::error_code globalCleanup(); 403 std::error_code resolveGlobalAndIndirectSymbolInits(); 404 std::error_code parseMetadata(bool ModuleLevel = false); 405 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 406 StringRef Blob, 407 unsigned &NextMetadataNo); 408 std::error_code parseMetadataKinds(); 409 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 410 std::error_code parseMetadataAttachment(Function &F); 411 ErrorOr<std::string> parseModuleTriple(); 412 std::error_code parseUseLists(); 413 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 414 std::error_code initStreamFromBuffer(); 415 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 416 std::error_code findFunctionInStream( 417 Function *F, 418 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 419 }; 420 421 /// Class to manage reading and parsing function summary index bitcode 422 /// files/sections. 423 class ModuleSummaryIndexBitcodeReader { 424 DiagnosticHandlerFunction DiagnosticHandler; 425 426 /// Eventually points to the module index built during parsing. 427 ModuleSummaryIndex *TheIndex = nullptr; 428 429 std::unique_ptr<MemoryBuffer> Buffer; 430 std::unique_ptr<BitstreamReader> StreamFile; 431 BitstreamCursor Stream; 432 433 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 434 /// 435 /// If false, the summary section is fully parsed into the index during 436 /// the initial parse. Otherwise, if true, the caller is expected to 437 /// invoke \a readGlobalValueSummary for each summary needed, and the summary 438 /// section is thus parsed lazily. 439 bool IsLazy = false; 440 441 /// Used to indicate whether caller only wants to check for the presence 442 /// of the global value summary bitcode section. All blocks are skipped, 443 /// but the SeenGlobalValSummary boolean is set. 444 bool CheckGlobalValSummaryPresenceOnly = false; 445 446 /// Indicates whether we have encountered a global value summary section 447 /// yet during parsing, used when checking if file contains global value 448 /// summary section. 449 bool SeenGlobalValSummary = false; 450 451 /// Indicates whether we have already parsed the VST, used for error checking. 452 bool SeenValueSymbolTable = false; 453 454 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 455 /// Used to enable on-demand parsing of the VST. 456 uint64_t VSTOffset = 0; 457 458 // Map to save ValueId to GUID association that was recorded in the 459 // ValueSymbolTable. It is used after the VST is parsed to convert 460 // call graph edges read from the function summary from referencing 461 // callees by their ValueId to using the GUID instead, which is how 462 // they are recorded in the summary index being built. 463 DenseMap<unsigned, GlobalValue::GUID> ValueIdToCallGraphGUIDMap; 464 465 /// Map to save the association between summary offset in the VST to the 466 /// GlobalValueInfo object created when parsing it. Used to access the 467 /// info object when parsing the summary section. 468 DenseMap<uint64_t, GlobalValueInfo *> SummaryOffsetToInfoMap; 469 470 /// Map populated during module path string table parsing, from the 471 /// module ID to a string reference owned by the index's module 472 /// path string table, used to correlate with combined index 473 /// summary records. 474 DenseMap<uint64_t, StringRef> ModuleIdMap; 475 476 /// Original source file name recorded in a bitcode record. 477 std::string SourceFileName; 478 479 public: 480 std::error_code error(BitcodeError E, const Twine &Message); 481 std::error_code error(BitcodeError E); 482 std::error_code error(const Twine &Message); 483 484 ModuleSummaryIndexBitcodeReader( 485 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 486 bool IsLazy = false, bool CheckGlobalValSummaryPresenceOnly = false); 487 ModuleSummaryIndexBitcodeReader( 488 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy = false, 489 bool CheckGlobalValSummaryPresenceOnly = false); 490 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 491 492 void freeState(); 493 494 void releaseBuffer(); 495 496 /// Check if the parser has encountered a summary section. 497 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 498 499 /// \brief Main interface to parsing a bitcode buffer. 500 /// \returns true if an error occurred. 501 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 502 ModuleSummaryIndex *I); 503 504 /// \brief Interface for parsing a summary lazily. 505 std::error_code 506 parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer, 507 ModuleSummaryIndex *I, size_t SummaryOffset); 508 509 private: 510 std::error_code parseModule(); 511 std::error_code parseValueSymbolTable( 512 uint64_t Offset, 513 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 514 std::error_code parseEntireSummary(); 515 std::error_code parseModuleStringTable(); 516 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 517 std::error_code initStreamFromBuffer(); 518 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 519 GlobalValue::GUID getGUIDFromValueId(unsigned ValueId); 520 GlobalValueInfo *getInfoFromSummaryOffset(uint64_t Offset); 521 }; 522 } // end anonymous namespace 523 524 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 525 DiagnosticSeverity Severity, 526 const Twine &Msg) 527 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 528 529 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 530 531 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 532 std::error_code EC, const Twine &Message) { 533 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 534 DiagnosticHandler(DI); 535 return EC; 536 } 537 538 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 539 std::error_code EC) { 540 return error(DiagnosticHandler, EC, EC.message()); 541 } 542 543 static std::error_code error(LLVMContext &Context, std::error_code EC, 544 const Twine &Message) { 545 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 546 Message); 547 } 548 549 static std::error_code error(LLVMContext &Context, std::error_code EC) { 550 return error(Context, EC, EC.message()); 551 } 552 553 static std::error_code error(LLVMContext &Context, const Twine &Message) { 554 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 555 Message); 556 } 557 558 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 559 if (!ProducerIdentification.empty()) { 560 return ::error(Context, make_error_code(E), 561 Message + " (Producer: '" + ProducerIdentification + 562 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 563 } 564 return ::error(Context, make_error_code(E), Message); 565 } 566 567 std::error_code BitcodeReader::error(const Twine &Message) { 568 if (!ProducerIdentification.empty()) { 569 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 570 Message + " (Producer: '" + ProducerIdentification + 571 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 572 } 573 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 574 Message); 575 } 576 577 std::error_code BitcodeReader::error(BitcodeError E) { 578 return ::error(Context, make_error_code(E)); 579 } 580 581 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 582 : Context(Context), Buffer(Buffer), ValueList(Context), 583 MetadataList(Context) {} 584 585 BitcodeReader::BitcodeReader(LLVMContext &Context) 586 : Context(Context), Buffer(nullptr), ValueList(Context), 587 MetadataList(Context) {} 588 589 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 590 if (WillMaterializeAllForwardRefs) 591 return std::error_code(); 592 593 // Prevent recursion. 594 WillMaterializeAllForwardRefs = true; 595 596 while (!BasicBlockFwdRefQueue.empty()) { 597 Function *F = BasicBlockFwdRefQueue.front(); 598 BasicBlockFwdRefQueue.pop_front(); 599 assert(F && "Expected valid function"); 600 if (!BasicBlockFwdRefs.count(F)) 601 // Already materialized. 602 continue; 603 604 // Check for a function that isn't materializable to prevent an infinite 605 // loop. When parsing a blockaddress stored in a global variable, there 606 // isn't a trivial way to check if a function will have a body without a 607 // linear search through FunctionsWithBodies, so just check it here. 608 if (!F->isMaterializable()) 609 return error("Never resolved function from blockaddress"); 610 611 // Try to materialize F. 612 if (std::error_code EC = materialize(F)) 613 return EC; 614 } 615 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 616 617 // Reset state. 618 WillMaterializeAllForwardRefs = false; 619 return std::error_code(); 620 } 621 622 void BitcodeReader::freeState() { 623 Buffer = nullptr; 624 std::vector<Type*>().swap(TypeList); 625 ValueList.clear(); 626 MetadataList.clear(); 627 std::vector<Comdat *>().swap(ComdatList); 628 629 std::vector<AttributeSet>().swap(MAttributes); 630 std::vector<BasicBlock*>().swap(FunctionBBs); 631 std::vector<Function*>().swap(FunctionsWithBodies); 632 DeferredFunctionInfo.clear(); 633 DeferredMetadataInfo.clear(); 634 MDKindMap.clear(); 635 636 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 637 BasicBlockFwdRefQueue.clear(); 638 } 639 640 //===----------------------------------------------------------------------===// 641 // Helper functions to implement forward reference resolution, etc. 642 //===----------------------------------------------------------------------===// 643 644 /// Convert a string from a record into an std::string, return true on failure. 645 template <typename StrTy> 646 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 647 StrTy &Result) { 648 if (Idx > Record.size()) 649 return true; 650 651 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 652 Result += (char)Record[i]; 653 return false; 654 } 655 656 static bool hasImplicitComdat(size_t Val) { 657 switch (Val) { 658 default: 659 return false; 660 case 1: // Old WeakAnyLinkage 661 case 4: // Old LinkOnceAnyLinkage 662 case 10: // Old WeakODRLinkage 663 case 11: // Old LinkOnceODRLinkage 664 return true; 665 } 666 } 667 668 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 669 switch (Val) { 670 default: // Map unknown/new linkages to external 671 case 0: 672 return GlobalValue::ExternalLinkage; 673 case 2: 674 return GlobalValue::AppendingLinkage; 675 case 3: 676 return GlobalValue::InternalLinkage; 677 case 5: 678 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 679 case 6: 680 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 681 case 7: 682 return GlobalValue::ExternalWeakLinkage; 683 case 8: 684 return GlobalValue::CommonLinkage; 685 case 9: 686 return GlobalValue::PrivateLinkage; 687 case 12: 688 return GlobalValue::AvailableExternallyLinkage; 689 case 13: 690 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 691 case 14: 692 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 693 case 15: 694 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 695 case 1: // Old value with implicit comdat. 696 case 16: 697 return GlobalValue::WeakAnyLinkage; 698 case 10: // Old value with implicit comdat. 699 case 17: 700 return GlobalValue::WeakODRLinkage; 701 case 4: // Old value with implicit comdat. 702 case 18: 703 return GlobalValue::LinkOnceAnyLinkage; 704 case 11: // Old value with implicit comdat. 705 case 19: 706 return GlobalValue::LinkOnceODRLinkage; 707 } 708 } 709 710 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 711 switch (Val) { 712 default: // Map unknown visibilities to default. 713 case 0: return GlobalValue::DefaultVisibility; 714 case 1: return GlobalValue::HiddenVisibility; 715 case 2: return GlobalValue::ProtectedVisibility; 716 } 717 } 718 719 static GlobalValue::DLLStorageClassTypes 720 getDecodedDLLStorageClass(unsigned Val) { 721 switch (Val) { 722 default: // Map unknown values to default. 723 case 0: return GlobalValue::DefaultStorageClass; 724 case 1: return GlobalValue::DLLImportStorageClass; 725 case 2: return GlobalValue::DLLExportStorageClass; 726 } 727 } 728 729 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 730 switch (Val) { 731 case 0: return GlobalVariable::NotThreadLocal; 732 default: // Map unknown non-zero value to general dynamic. 733 case 1: return GlobalVariable::GeneralDynamicTLSModel; 734 case 2: return GlobalVariable::LocalDynamicTLSModel; 735 case 3: return GlobalVariable::InitialExecTLSModel; 736 case 4: return GlobalVariable::LocalExecTLSModel; 737 } 738 } 739 740 static int getDecodedCastOpcode(unsigned Val) { 741 switch (Val) { 742 default: return -1; 743 case bitc::CAST_TRUNC : return Instruction::Trunc; 744 case bitc::CAST_ZEXT : return Instruction::ZExt; 745 case bitc::CAST_SEXT : return Instruction::SExt; 746 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 747 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 748 case bitc::CAST_UITOFP : return Instruction::UIToFP; 749 case bitc::CAST_SITOFP : return Instruction::SIToFP; 750 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 751 case bitc::CAST_FPEXT : return Instruction::FPExt; 752 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 753 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 754 case bitc::CAST_BITCAST : return Instruction::BitCast; 755 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 756 } 757 } 758 759 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 760 bool IsFP = Ty->isFPOrFPVectorTy(); 761 // BinOps are only valid for int/fp or vector of int/fp types 762 if (!IsFP && !Ty->isIntOrIntVectorTy()) 763 return -1; 764 765 switch (Val) { 766 default: 767 return -1; 768 case bitc::BINOP_ADD: 769 return IsFP ? Instruction::FAdd : Instruction::Add; 770 case bitc::BINOP_SUB: 771 return IsFP ? Instruction::FSub : Instruction::Sub; 772 case bitc::BINOP_MUL: 773 return IsFP ? Instruction::FMul : Instruction::Mul; 774 case bitc::BINOP_UDIV: 775 return IsFP ? -1 : Instruction::UDiv; 776 case bitc::BINOP_SDIV: 777 return IsFP ? Instruction::FDiv : Instruction::SDiv; 778 case bitc::BINOP_UREM: 779 return IsFP ? -1 : Instruction::URem; 780 case bitc::BINOP_SREM: 781 return IsFP ? Instruction::FRem : Instruction::SRem; 782 case bitc::BINOP_SHL: 783 return IsFP ? -1 : Instruction::Shl; 784 case bitc::BINOP_LSHR: 785 return IsFP ? -1 : Instruction::LShr; 786 case bitc::BINOP_ASHR: 787 return IsFP ? -1 : Instruction::AShr; 788 case bitc::BINOP_AND: 789 return IsFP ? -1 : Instruction::And; 790 case bitc::BINOP_OR: 791 return IsFP ? -1 : Instruction::Or; 792 case bitc::BINOP_XOR: 793 return IsFP ? -1 : Instruction::Xor; 794 } 795 } 796 797 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 798 switch (Val) { 799 default: return AtomicRMWInst::BAD_BINOP; 800 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 801 case bitc::RMW_ADD: return AtomicRMWInst::Add; 802 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 803 case bitc::RMW_AND: return AtomicRMWInst::And; 804 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 805 case bitc::RMW_OR: return AtomicRMWInst::Or; 806 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 807 case bitc::RMW_MAX: return AtomicRMWInst::Max; 808 case bitc::RMW_MIN: return AtomicRMWInst::Min; 809 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 810 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 811 } 812 } 813 814 static AtomicOrdering getDecodedOrdering(unsigned Val) { 815 switch (Val) { 816 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 817 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 818 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 819 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 820 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 821 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 822 default: // Map unknown orderings to sequentially-consistent. 823 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 824 } 825 } 826 827 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 828 switch (Val) { 829 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 830 default: // Map unknown scopes to cross-thread. 831 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 832 } 833 } 834 835 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 836 switch (Val) { 837 default: // Map unknown selection kinds to any. 838 case bitc::COMDAT_SELECTION_KIND_ANY: 839 return Comdat::Any; 840 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 841 return Comdat::ExactMatch; 842 case bitc::COMDAT_SELECTION_KIND_LARGEST: 843 return Comdat::Largest; 844 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 845 return Comdat::NoDuplicates; 846 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 847 return Comdat::SameSize; 848 } 849 } 850 851 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 852 FastMathFlags FMF; 853 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 854 FMF.setUnsafeAlgebra(); 855 if (0 != (Val & FastMathFlags::NoNaNs)) 856 FMF.setNoNaNs(); 857 if (0 != (Val & FastMathFlags::NoInfs)) 858 FMF.setNoInfs(); 859 if (0 != (Val & FastMathFlags::NoSignedZeros)) 860 FMF.setNoSignedZeros(); 861 if (0 != (Val & FastMathFlags::AllowReciprocal)) 862 FMF.setAllowReciprocal(); 863 return FMF; 864 } 865 866 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 867 switch (Val) { 868 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 869 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 870 } 871 } 872 873 namespace llvm { 874 namespace { 875 /// \brief A class for maintaining the slot number definition 876 /// as a placeholder for the actual definition for forward constants defs. 877 class ConstantPlaceHolder : public ConstantExpr { 878 void operator=(const ConstantPlaceHolder &) = delete; 879 880 public: 881 // allocate space for exactly one operand 882 void *operator new(size_t s) { return User::operator new(s, 1); } 883 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 884 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 885 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 886 } 887 888 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 889 static bool classof(const Value *V) { 890 return isa<ConstantExpr>(V) && 891 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 892 } 893 894 /// Provide fast operand accessors 895 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 896 }; 897 } // end anonymous namespace 898 899 // FIXME: can we inherit this from ConstantExpr? 900 template <> 901 struct OperandTraits<ConstantPlaceHolder> : 902 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 903 }; 904 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 905 } // end namespace llvm 906 907 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 908 if (Idx == size()) { 909 push_back(V); 910 return; 911 } 912 913 if (Idx >= size()) 914 resize(Idx+1); 915 916 WeakVH &OldV = ValuePtrs[Idx]; 917 if (!OldV) { 918 OldV = V; 919 return; 920 } 921 922 // Handle constants and non-constants (e.g. instrs) differently for 923 // efficiency. 924 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 925 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 926 OldV = V; 927 } else { 928 // If there was a forward reference to this value, replace it. 929 Value *PrevVal = OldV; 930 OldV->replaceAllUsesWith(V); 931 delete PrevVal; 932 } 933 } 934 935 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 936 Type *Ty) { 937 if (Idx >= size()) 938 resize(Idx + 1); 939 940 if (Value *V = ValuePtrs[Idx]) { 941 if (Ty != V->getType()) 942 report_fatal_error("Type mismatch in constant table!"); 943 return cast<Constant>(V); 944 } 945 946 // Create and return a placeholder, which will later be RAUW'd. 947 Constant *C = new ConstantPlaceHolder(Ty, Context); 948 ValuePtrs[Idx] = C; 949 return C; 950 } 951 952 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 953 // Bail out for a clearly invalid value. This would make us call resize(0) 954 if (Idx == UINT_MAX) 955 return nullptr; 956 957 if (Idx >= size()) 958 resize(Idx + 1); 959 960 if (Value *V = ValuePtrs[Idx]) { 961 // If the types don't match, it's invalid. 962 if (Ty && Ty != V->getType()) 963 return nullptr; 964 return V; 965 } 966 967 // No type specified, must be invalid reference. 968 if (!Ty) return nullptr; 969 970 // Create and return a placeholder, which will later be RAUW'd. 971 Value *V = new Argument(Ty); 972 ValuePtrs[Idx] = V; 973 return V; 974 } 975 976 /// Once all constants are read, this method bulk resolves any forward 977 /// references. The idea behind this is that we sometimes get constants (such 978 /// as large arrays) which reference *many* forward ref constants. Replacing 979 /// each of these causes a lot of thrashing when building/reuniquing the 980 /// constant. Instead of doing this, we look at all the uses and rewrite all 981 /// the place holders at once for any constant that uses a placeholder. 982 void BitcodeReaderValueList::resolveConstantForwardRefs() { 983 // Sort the values by-pointer so that they are efficient to look up with a 984 // binary search. 985 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 986 987 SmallVector<Constant*, 64> NewOps; 988 989 while (!ResolveConstants.empty()) { 990 Value *RealVal = operator[](ResolveConstants.back().second); 991 Constant *Placeholder = ResolveConstants.back().first; 992 ResolveConstants.pop_back(); 993 994 // Loop over all users of the placeholder, updating them to reference the 995 // new value. If they reference more than one placeholder, update them all 996 // at once. 997 while (!Placeholder->use_empty()) { 998 auto UI = Placeholder->user_begin(); 999 User *U = *UI; 1000 1001 // If the using object isn't uniqued, just update the operands. This 1002 // handles instructions and initializers for global variables. 1003 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1004 UI.getUse().set(RealVal); 1005 continue; 1006 } 1007 1008 // Otherwise, we have a constant that uses the placeholder. Replace that 1009 // constant with a new constant that has *all* placeholder uses updated. 1010 Constant *UserC = cast<Constant>(U); 1011 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1012 I != E; ++I) { 1013 Value *NewOp; 1014 if (!isa<ConstantPlaceHolder>(*I)) { 1015 // Not a placeholder reference. 1016 NewOp = *I; 1017 } else if (*I == Placeholder) { 1018 // Common case is that it just references this one placeholder. 1019 NewOp = RealVal; 1020 } else { 1021 // Otherwise, look up the placeholder in ResolveConstants. 1022 ResolveConstantsTy::iterator It = 1023 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1024 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1025 0)); 1026 assert(It != ResolveConstants.end() && It->first == *I); 1027 NewOp = operator[](It->second); 1028 } 1029 1030 NewOps.push_back(cast<Constant>(NewOp)); 1031 } 1032 1033 // Make the new constant. 1034 Constant *NewC; 1035 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1036 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1037 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1038 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1039 } else if (isa<ConstantVector>(UserC)) { 1040 NewC = ConstantVector::get(NewOps); 1041 } else { 1042 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1043 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1044 } 1045 1046 UserC->replaceAllUsesWith(NewC); 1047 UserC->destroyConstant(); 1048 NewOps.clear(); 1049 } 1050 1051 // Update all ValueHandles, they should be the only users at this point. 1052 Placeholder->replaceAllUsesWith(RealVal); 1053 delete Placeholder; 1054 } 1055 } 1056 1057 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1058 if (Idx == size()) { 1059 push_back(MD); 1060 return; 1061 } 1062 1063 if (Idx >= size()) 1064 resize(Idx+1); 1065 1066 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1067 if (!OldMD) { 1068 OldMD.reset(MD); 1069 return; 1070 } 1071 1072 // If there was a forward reference to this value, replace it. 1073 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1074 PrevMD->replaceAllUsesWith(MD); 1075 --NumFwdRefs; 1076 } 1077 1078 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1079 if (Idx >= size()) 1080 resize(Idx + 1); 1081 1082 if (Metadata *MD = MetadataPtrs[Idx]) 1083 return MD; 1084 1085 // Track forward refs to be resolved later. 1086 if (AnyFwdRefs) { 1087 MinFwdRef = std::min(MinFwdRef, Idx); 1088 MaxFwdRef = std::max(MaxFwdRef, Idx); 1089 } else { 1090 AnyFwdRefs = true; 1091 MinFwdRef = MaxFwdRef = Idx; 1092 } 1093 ++NumFwdRefs; 1094 1095 // Create and return a placeholder, which will later be RAUW'd. 1096 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1097 MetadataPtrs[Idx].reset(MD); 1098 return MD; 1099 } 1100 1101 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1102 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1103 } 1104 1105 void BitcodeReaderMetadataList::tryToResolveCycles() { 1106 if (!AnyFwdRefs) 1107 // Nothing to do. 1108 return; 1109 1110 if (NumFwdRefs) 1111 // Still forward references... can't resolve cycles. 1112 return; 1113 1114 // Resolve any cycles. 1115 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1116 auto &MD = MetadataPtrs[I]; 1117 auto *N = dyn_cast_or_null<MDNode>(MD); 1118 if (!N) 1119 continue; 1120 1121 assert(!N->isTemporary() && "Unexpected forward reference"); 1122 N->resolveCycles(); 1123 } 1124 1125 // Make sure we return early again until there's another forward ref. 1126 AnyFwdRefs = false; 1127 } 1128 1129 Type *BitcodeReader::getTypeByID(unsigned ID) { 1130 // The type table size is always specified correctly. 1131 if (ID >= TypeList.size()) 1132 return nullptr; 1133 1134 if (Type *Ty = TypeList[ID]) 1135 return Ty; 1136 1137 // If we have a forward reference, the only possible case is when it is to a 1138 // named struct. Just create a placeholder for now. 1139 return TypeList[ID] = createIdentifiedStructType(Context); 1140 } 1141 1142 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1143 StringRef Name) { 1144 auto *Ret = StructType::create(Context, Name); 1145 IdentifiedStructTypes.push_back(Ret); 1146 return Ret; 1147 } 1148 1149 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1150 auto *Ret = StructType::create(Context); 1151 IdentifiedStructTypes.push_back(Ret); 1152 return Ret; 1153 } 1154 1155 //===----------------------------------------------------------------------===// 1156 // Functions for parsing blocks from the bitcode file 1157 //===----------------------------------------------------------------------===// 1158 1159 1160 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1161 /// been decoded from the given integer. This function must stay in sync with 1162 /// 'encodeLLVMAttributesForBitcode'. 1163 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1164 uint64_t EncodedAttrs) { 1165 // FIXME: Remove in 4.0. 1166 1167 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1168 // the bits above 31 down by 11 bits. 1169 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1170 assert((!Alignment || isPowerOf2_32(Alignment)) && 1171 "Alignment must be a power of two."); 1172 1173 if (Alignment) 1174 B.addAlignmentAttr(Alignment); 1175 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1176 (EncodedAttrs & 0xffff)); 1177 } 1178 1179 std::error_code BitcodeReader::parseAttributeBlock() { 1180 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1181 return error("Invalid record"); 1182 1183 if (!MAttributes.empty()) 1184 return error("Invalid multiple blocks"); 1185 1186 SmallVector<uint64_t, 64> Record; 1187 1188 SmallVector<AttributeSet, 8> Attrs; 1189 1190 // Read all the records. 1191 while (1) { 1192 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1193 1194 switch (Entry.Kind) { 1195 case BitstreamEntry::SubBlock: // Handled for us already. 1196 case BitstreamEntry::Error: 1197 return error("Malformed block"); 1198 case BitstreamEntry::EndBlock: 1199 return std::error_code(); 1200 case BitstreamEntry::Record: 1201 // The interesting case. 1202 break; 1203 } 1204 1205 // Read a record. 1206 Record.clear(); 1207 switch (Stream.readRecord(Entry.ID, Record)) { 1208 default: // Default behavior: ignore. 1209 break; 1210 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1211 // FIXME: Remove in 4.0. 1212 if (Record.size() & 1) 1213 return error("Invalid record"); 1214 1215 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1216 AttrBuilder B; 1217 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1218 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1219 } 1220 1221 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1222 Attrs.clear(); 1223 break; 1224 } 1225 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1226 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1227 Attrs.push_back(MAttributeGroups[Record[i]]); 1228 1229 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1230 Attrs.clear(); 1231 break; 1232 } 1233 } 1234 } 1235 } 1236 1237 // Returns Attribute::None on unrecognized codes. 1238 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1239 switch (Code) { 1240 default: 1241 return Attribute::None; 1242 case bitc::ATTR_KIND_ALIGNMENT: 1243 return Attribute::Alignment; 1244 case bitc::ATTR_KIND_ALWAYS_INLINE: 1245 return Attribute::AlwaysInline; 1246 case bitc::ATTR_KIND_ARGMEMONLY: 1247 return Attribute::ArgMemOnly; 1248 case bitc::ATTR_KIND_BUILTIN: 1249 return Attribute::Builtin; 1250 case bitc::ATTR_KIND_BY_VAL: 1251 return Attribute::ByVal; 1252 case bitc::ATTR_KIND_IN_ALLOCA: 1253 return Attribute::InAlloca; 1254 case bitc::ATTR_KIND_COLD: 1255 return Attribute::Cold; 1256 case bitc::ATTR_KIND_CONVERGENT: 1257 return Attribute::Convergent; 1258 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1259 return Attribute::InaccessibleMemOnly; 1260 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1261 return Attribute::InaccessibleMemOrArgMemOnly; 1262 case bitc::ATTR_KIND_INLINE_HINT: 1263 return Attribute::InlineHint; 1264 case bitc::ATTR_KIND_IN_REG: 1265 return Attribute::InReg; 1266 case bitc::ATTR_KIND_JUMP_TABLE: 1267 return Attribute::JumpTable; 1268 case bitc::ATTR_KIND_MIN_SIZE: 1269 return Attribute::MinSize; 1270 case bitc::ATTR_KIND_NAKED: 1271 return Attribute::Naked; 1272 case bitc::ATTR_KIND_NEST: 1273 return Attribute::Nest; 1274 case bitc::ATTR_KIND_NO_ALIAS: 1275 return Attribute::NoAlias; 1276 case bitc::ATTR_KIND_NO_BUILTIN: 1277 return Attribute::NoBuiltin; 1278 case bitc::ATTR_KIND_NO_CAPTURE: 1279 return Attribute::NoCapture; 1280 case bitc::ATTR_KIND_NO_DUPLICATE: 1281 return Attribute::NoDuplicate; 1282 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1283 return Attribute::NoImplicitFloat; 1284 case bitc::ATTR_KIND_NO_INLINE: 1285 return Attribute::NoInline; 1286 case bitc::ATTR_KIND_NO_RECURSE: 1287 return Attribute::NoRecurse; 1288 case bitc::ATTR_KIND_NON_LAZY_BIND: 1289 return Attribute::NonLazyBind; 1290 case bitc::ATTR_KIND_NON_NULL: 1291 return Attribute::NonNull; 1292 case bitc::ATTR_KIND_DEREFERENCEABLE: 1293 return Attribute::Dereferenceable; 1294 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1295 return Attribute::DereferenceableOrNull; 1296 case bitc::ATTR_KIND_ALLOC_SIZE: 1297 return Attribute::AllocSize; 1298 case bitc::ATTR_KIND_NO_RED_ZONE: 1299 return Attribute::NoRedZone; 1300 case bitc::ATTR_KIND_NO_RETURN: 1301 return Attribute::NoReturn; 1302 case bitc::ATTR_KIND_NO_UNWIND: 1303 return Attribute::NoUnwind; 1304 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1305 return Attribute::OptimizeForSize; 1306 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1307 return Attribute::OptimizeNone; 1308 case bitc::ATTR_KIND_READ_NONE: 1309 return Attribute::ReadNone; 1310 case bitc::ATTR_KIND_READ_ONLY: 1311 return Attribute::ReadOnly; 1312 case bitc::ATTR_KIND_RETURNED: 1313 return Attribute::Returned; 1314 case bitc::ATTR_KIND_RETURNS_TWICE: 1315 return Attribute::ReturnsTwice; 1316 case bitc::ATTR_KIND_S_EXT: 1317 return Attribute::SExt; 1318 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1319 return Attribute::StackAlignment; 1320 case bitc::ATTR_KIND_STACK_PROTECT: 1321 return Attribute::StackProtect; 1322 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1323 return Attribute::StackProtectReq; 1324 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1325 return Attribute::StackProtectStrong; 1326 case bitc::ATTR_KIND_SAFESTACK: 1327 return Attribute::SafeStack; 1328 case bitc::ATTR_KIND_STRUCT_RET: 1329 return Attribute::StructRet; 1330 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1331 return Attribute::SanitizeAddress; 1332 case bitc::ATTR_KIND_SANITIZE_THREAD: 1333 return Attribute::SanitizeThread; 1334 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1335 return Attribute::SanitizeMemory; 1336 case bitc::ATTR_KIND_SWIFT_ERROR: 1337 return Attribute::SwiftError; 1338 case bitc::ATTR_KIND_SWIFT_SELF: 1339 return Attribute::SwiftSelf; 1340 case bitc::ATTR_KIND_UW_TABLE: 1341 return Attribute::UWTable; 1342 case bitc::ATTR_KIND_Z_EXT: 1343 return Attribute::ZExt; 1344 } 1345 } 1346 1347 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1348 unsigned &Alignment) { 1349 // Note: Alignment in bitcode files is incremented by 1, so that zero 1350 // can be used for default alignment. 1351 if (Exponent > Value::MaxAlignmentExponent + 1) 1352 return error("Invalid alignment value"); 1353 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1354 return std::error_code(); 1355 } 1356 1357 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1358 Attribute::AttrKind *Kind) { 1359 *Kind = getAttrFromCode(Code); 1360 if (*Kind == Attribute::None) 1361 return error(BitcodeError::CorruptedBitcode, 1362 "Unknown attribute kind (" + Twine(Code) + ")"); 1363 return std::error_code(); 1364 } 1365 1366 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1367 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1368 return error("Invalid record"); 1369 1370 if (!MAttributeGroups.empty()) 1371 return error("Invalid multiple blocks"); 1372 1373 SmallVector<uint64_t, 64> Record; 1374 1375 // Read all the records. 1376 while (1) { 1377 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1378 1379 switch (Entry.Kind) { 1380 case BitstreamEntry::SubBlock: // Handled for us already. 1381 case BitstreamEntry::Error: 1382 return error("Malformed block"); 1383 case BitstreamEntry::EndBlock: 1384 return std::error_code(); 1385 case BitstreamEntry::Record: 1386 // The interesting case. 1387 break; 1388 } 1389 1390 // Read a record. 1391 Record.clear(); 1392 switch (Stream.readRecord(Entry.ID, Record)) { 1393 default: // Default behavior: ignore. 1394 break; 1395 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1396 if (Record.size() < 3) 1397 return error("Invalid record"); 1398 1399 uint64_t GrpID = Record[0]; 1400 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1401 1402 AttrBuilder B; 1403 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1404 if (Record[i] == 0) { // Enum attribute 1405 Attribute::AttrKind Kind; 1406 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1407 return EC; 1408 1409 B.addAttribute(Kind); 1410 } else if (Record[i] == 1) { // Integer attribute 1411 Attribute::AttrKind Kind; 1412 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1413 return EC; 1414 if (Kind == Attribute::Alignment) 1415 B.addAlignmentAttr(Record[++i]); 1416 else if (Kind == Attribute::StackAlignment) 1417 B.addStackAlignmentAttr(Record[++i]); 1418 else if (Kind == Attribute::Dereferenceable) 1419 B.addDereferenceableAttr(Record[++i]); 1420 else if (Kind == Attribute::DereferenceableOrNull) 1421 B.addDereferenceableOrNullAttr(Record[++i]); 1422 else if (Kind == Attribute::AllocSize) 1423 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1424 } else { // String attribute 1425 assert((Record[i] == 3 || Record[i] == 4) && 1426 "Invalid attribute group entry"); 1427 bool HasValue = (Record[i++] == 4); 1428 SmallString<64> KindStr; 1429 SmallString<64> ValStr; 1430 1431 while (Record[i] != 0 && i != e) 1432 KindStr += Record[i++]; 1433 assert(Record[i] == 0 && "Kind string not null terminated"); 1434 1435 if (HasValue) { 1436 // Has a value associated with it. 1437 ++i; // Skip the '0' that terminates the "kind" string. 1438 while (Record[i] != 0 && i != e) 1439 ValStr += Record[i++]; 1440 assert(Record[i] == 0 && "Value string not null terminated"); 1441 } 1442 1443 B.addAttribute(KindStr.str(), ValStr.str()); 1444 } 1445 } 1446 1447 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1448 break; 1449 } 1450 } 1451 } 1452 } 1453 1454 std::error_code BitcodeReader::parseTypeTable() { 1455 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1456 return error("Invalid record"); 1457 1458 return parseTypeTableBody(); 1459 } 1460 1461 std::error_code BitcodeReader::parseTypeTableBody() { 1462 if (!TypeList.empty()) 1463 return error("Invalid multiple blocks"); 1464 1465 SmallVector<uint64_t, 64> Record; 1466 unsigned NumRecords = 0; 1467 1468 SmallString<64> TypeName; 1469 1470 // Read all the records for this type table. 1471 while (1) { 1472 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1473 1474 switch (Entry.Kind) { 1475 case BitstreamEntry::SubBlock: // Handled for us already. 1476 case BitstreamEntry::Error: 1477 return error("Malformed block"); 1478 case BitstreamEntry::EndBlock: 1479 if (NumRecords != TypeList.size()) 1480 return error("Malformed block"); 1481 return std::error_code(); 1482 case BitstreamEntry::Record: 1483 // The interesting case. 1484 break; 1485 } 1486 1487 // Read a record. 1488 Record.clear(); 1489 Type *ResultTy = nullptr; 1490 switch (Stream.readRecord(Entry.ID, Record)) { 1491 default: 1492 return error("Invalid value"); 1493 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1494 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1495 // type list. This allows us to reserve space. 1496 if (Record.size() < 1) 1497 return error("Invalid record"); 1498 TypeList.resize(Record[0]); 1499 continue; 1500 case bitc::TYPE_CODE_VOID: // VOID 1501 ResultTy = Type::getVoidTy(Context); 1502 break; 1503 case bitc::TYPE_CODE_HALF: // HALF 1504 ResultTy = Type::getHalfTy(Context); 1505 break; 1506 case bitc::TYPE_CODE_FLOAT: // FLOAT 1507 ResultTy = Type::getFloatTy(Context); 1508 break; 1509 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1510 ResultTy = Type::getDoubleTy(Context); 1511 break; 1512 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1513 ResultTy = Type::getX86_FP80Ty(Context); 1514 break; 1515 case bitc::TYPE_CODE_FP128: // FP128 1516 ResultTy = Type::getFP128Ty(Context); 1517 break; 1518 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1519 ResultTy = Type::getPPC_FP128Ty(Context); 1520 break; 1521 case bitc::TYPE_CODE_LABEL: // LABEL 1522 ResultTy = Type::getLabelTy(Context); 1523 break; 1524 case bitc::TYPE_CODE_METADATA: // METADATA 1525 ResultTy = Type::getMetadataTy(Context); 1526 break; 1527 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1528 ResultTy = Type::getX86_MMXTy(Context); 1529 break; 1530 case bitc::TYPE_CODE_TOKEN: // TOKEN 1531 ResultTy = Type::getTokenTy(Context); 1532 break; 1533 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1534 if (Record.size() < 1) 1535 return error("Invalid record"); 1536 1537 uint64_t NumBits = Record[0]; 1538 if (NumBits < IntegerType::MIN_INT_BITS || 1539 NumBits > IntegerType::MAX_INT_BITS) 1540 return error("Bitwidth for integer type out of range"); 1541 ResultTy = IntegerType::get(Context, NumBits); 1542 break; 1543 } 1544 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1545 // [pointee type, address space] 1546 if (Record.size() < 1) 1547 return error("Invalid record"); 1548 unsigned AddressSpace = 0; 1549 if (Record.size() == 2) 1550 AddressSpace = Record[1]; 1551 ResultTy = getTypeByID(Record[0]); 1552 if (!ResultTy || 1553 !PointerType::isValidElementType(ResultTy)) 1554 return error("Invalid type"); 1555 ResultTy = PointerType::get(ResultTy, AddressSpace); 1556 break; 1557 } 1558 case bitc::TYPE_CODE_FUNCTION_OLD: { 1559 // FIXME: attrid is dead, remove it in LLVM 4.0 1560 // FUNCTION: [vararg, attrid, retty, paramty x N] 1561 if (Record.size() < 3) 1562 return error("Invalid record"); 1563 SmallVector<Type*, 8> ArgTys; 1564 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1565 if (Type *T = getTypeByID(Record[i])) 1566 ArgTys.push_back(T); 1567 else 1568 break; 1569 } 1570 1571 ResultTy = getTypeByID(Record[2]); 1572 if (!ResultTy || ArgTys.size() < Record.size()-3) 1573 return error("Invalid type"); 1574 1575 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1576 break; 1577 } 1578 case bitc::TYPE_CODE_FUNCTION: { 1579 // FUNCTION: [vararg, retty, paramty x N] 1580 if (Record.size() < 2) 1581 return error("Invalid record"); 1582 SmallVector<Type*, 8> ArgTys; 1583 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1584 if (Type *T = getTypeByID(Record[i])) { 1585 if (!FunctionType::isValidArgumentType(T)) 1586 return error("Invalid function argument type"); 1587 ArgTys.push_back(T); 1588 } 1589 else 1590 break; 1591 } 1592 1593 ResultTy = getTypeByID(Record[1]); 1594 if (!ResultTy || ArgTys.size() < Record.size()-2) 1595 return error("Invalid type"); 1596 1597 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1598 break; 1599 } 1600 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1601 if (Record.size() < 1) 1602 return error("Invalid record"); 1603 SmallVector<Type*, 8> EltTys; 1604 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1605 if (Type *T = getTypeByID(Record[i])) 1606 EltTys.push_back(T); 1607 else 1608 break; 1609 } 1610 if (EltTys.size() != Record.size()-1) 1611 return error("Invalid type"); 1612 ResultTy = StructType::get(Context, EltTys, Record[0]); 1613 break; 1614 } 1615 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1616 if (convertToString(Record, 0, TypeName)) 1617 return error("Invalid record"); 1618 continue; 1619 1620 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1621 if (Record.size() < 1) 1622 return error("Invalid record"); 1623 1624 if (NumRecords >= TypeList.size()) 1625 return error("Invalid TYPE table"); 1626 1627 // Check to see if this was forward referenced, if so fill in the temp. 1628 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1629 if (Res) { 1630 Res->setName(TypeName); 1631 TypeList[NumRecords] = nullptr; 1632 } else // Otherwise, create a new struct. 1633 Res = createIdentifiedStructType(Context, TypeName); 1634 TypeName.clear(); 1635 1636 SmallVector<Type*, 8> EltTys; 1637 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1638 if (Type *T = getTypeByID(Record[i])) 1639 EltTys.push_back(T); 1640 else 1641 break; 1642 } 1643 if (EltTys.size() != Record.size()-1) 1644 return error("Invalid record"); 1645 Res->setBody(EltTys, Record[0]); 1646 ResultTy = Res; 1647 break; 1648 } 1649 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1650 if (Record.size() != 1) 1651 return error("Invalid record"); 1652 1653 if (NumRecords >= TypeList.size()) 1654 return error("Invalid TYPE table"); 1655 1656 // Check to see if this was forward referenced, if so fill in the temp. 1657 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1658 if (Res) { 1659 Res->setName(TypeName); 1660 TypeList[NumRecords] = nullptr; 1661 } else // Otherwise, create a new struct with no body. 1662 Res = createIdentifiedStructType(Context, TypeName); 1663 TypeName.clear(); 1664 ResultTy = Res; 1665 break; 1666 } 1667 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1668 if (Record.size() < 2) 1669 return error("Invalid record"); 1670 ResultTy = getTypeByID(Record[1]); 1671 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1672 return error("Invalid type"); 1673 ResultTy = ArrayType::get(ResultTy, Record[0]); 1674 break; 1675 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1676 if (Record.size() < 2) 1677 return error("Invalid record"); 1678 if (Record[0] == 0) 1679 return error("Invalid vector length"); 1680 ResultTy = getTypeByID(Record[1]); 1681 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1682 return error("Invalid type"); 1683 ResultTy = VectorType::get(ResultTy, Record[0]); 1684 break; 1685 } 1686 1687 if (NumRecords >= TypeList.size()) 1688 return error("Invalid TYPE table"); 1689 if (TypeList[NumRecords]) 1690 return error( 1691 "Invalid TYPE table: Only named structs can be forward referenced"); 1692 assert(ResultTy && "Didn't read a type?"); 1693 TypeList[NumRecords++] = ResultTy; 1694 } 1695 } 1696 1697 std::error_code BitcodeReader::parseOperandBundleTags() { 1698 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1699 return error("Invalid record"); 1700 1701 if (!BundleTags.empty()) 1702 return error("Invalid multiple blocks"); 1703 1704 SmallVector<uint64_t, 64> Record; 1705 1706 while (1) { 1707 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1708 1709 switch (Entry.Kind) { 1710 case BitstreamEntry::SubBlock: // Handled for us already. 1711 case BitstreamEntry::Error: 1712 return error("Malformed block"); 1713 case BitstreamEntry::EndBlock: 1714 return std::error_code(); 1715 case BitstreamEntry::Record: 1716 // The interesting case. 1717 break; 1718 } 1719 1720 // Tags are implicitly mapped to integers by their order. 1721 1722 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1723 return error("Invalid record"); 1724 1725 // OPERAND_BUNDLE_TAG: [strchr x N] 1726 BundleTags.emplace_back(); 1727 if (convertToString(Record, 0, BundleTags.back())) 1728 return error("Invalid record"); 1729 Record.clear(); 1730 } 1731 } 1732 1733 /// Associate a value with its name from the given index in the provided record. 1734 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1735 unsigned NameIndex, Triple &TT) { 1736 SmallString<128> ValueName; 1737 if (convertToString(Record, NameIndex, ValueName)) 1738 return error("Invalid record"); 1739 unsigned ValueID = Record[0]; 1740 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1741 return error("Invalid record"); 1742 Value *V = ValueList[ValueID]; 1743 1744 StringRef NameStr(ValueName.data(), ValueName.size()); 1745 if (NameStr.find_first_of(0) != StringRef::npos) 1746 return error("Invalid value name"); 1747 V->setName(NameStr); 1748 auto *GO = dyn_cast<GlobalObject>(V); 1749 if (GO) { 1750 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1751 if (TT.isOSBinFormatMachO()) 1752 GO->setComdat(nullptr); 1753 else 1754 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1755 } 1756 } 1757 return V; 1758 } 1759 1760 /// Helper to note and return the current location, and jump to the given 1761 /// offset. 1762 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1763 BitstreamCursor &Stream) { 1764 // Save the current parsing location so we can jump back at the end 1765 // of the VST read. 1766 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1767 Stream.JumpToBit(Offset * 32); 1768 #ifndef NDEBUG 1769 // Do some checking if we are in debug mode. 1770 BitstreamEntry Entry = Stream.advance(); 1771 assert(Entry.Kind == BitstreamEntry::SubBlock); 1772 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1773 #else 1774 // In NDEBUG mode ignore the output so we don't get an unused variable 1775 // warning. 1776 Stream.advance(); 1777 #endif 1778 return CurrentBit; 1779 } 1780 1781 /// Parse the value symbol table at either the current parsing location or 1782 /// at the given bit offset if provided. 1783 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1784 uint64_t CurrentBit; 1785 // Pass in the Offset to distinguish between calling for the module-level 1786 // VST (where we want to jump to the VST offset) and the function-level 1787 // VST (where we don't). 1788 if (Offset > 0) 1789 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1790 1791 // Compute the delta between the bitcode indices in the VST (the word offset 1792 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1793 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1794 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1795 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1796 // just before entering the VST subblock because: 1) the EnterSubBlock 1797 // changes the AbbrevID width; 2) the VST block is nested within the same 1798 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1799 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1800 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1801 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1802 unsigned FuncBitcodeOffsetDelta = 1803 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1804 1805 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1806 return error("Invalid record"); 1807 1808 SmallVector<uint64_t, 64> Record; 1809 1810 Triple TT(TheModule->getTargetTriple()); 1811 1812 // Read all the records for this value table. 1813 SmallString<128> ValueName; 1814 while (1) { 1815 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1816 1817 switch (Entry.Kind) { 1818 case BitstreamEntry::SubBlock: // Handled for us already. 1819 case BitstreamEntry::Error: 1820 return error("Malformed block"); 1821 case BitstreamEntry::EndBlock: 1822 if (Offset > 0) 1823 Stream.JumpToBit(CurrentBit); 1824 return std::error_code(); 1825 case BitstreamEntry::Record: 1826 // The interesting case. 1827 break; 1828 } 1829 1830 // Read a record. 1831 Record.clear(); 1832 switch (Stream.readRecord(Entry.ID, Record)) { 1833 default: // Default behavior: unknown type. 1834 break; 1835 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1836 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1837 if (std::error_code EC = ValOrErr.getError()) 1838 return EC; 1839 ValOrErr.get(); 1840 break; 1841 } 1842 case bitc::VST_CODE_FNENTRY: { 1843 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1844 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1845 if (std::error_code EC = ValOrErr.getError()) 1846 return EC; 1847 Value *V = ValOrErr.get(); 1848 1849 auto *GO = dyn_cast<GlobalObject>(V); 1850 if (!GO) { 1851 // If this is an alias, need to get the actual Function object 1852 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1853 auto *GA = dyn_cast<GlobalAlias>(V); 1854 if (GA) 1855 GO = GA->getBaseObject(); 1856 assert(GO); 1857 } 1858 1859 uint64_t FuncWordOffset = Record[1]; 1860 Function *F = dyn_cast<Function>(GO); 1861 assert(F); 1862 uint64_t FuncBitOffset = FuncWordOffset * 32; 1863 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1864 // Set the LastFunctionBlockBit to point to the last function block. 1865 // Later when parsing is resumed after function materialization, 1866 // we can simply skip that last function block. 1867 if (FuncBitOffset > LastFunctionBlockBit) 1868 LastFunctionBlockBit = FuncBitOffset; 1869 break; 1870 } 1871 case bitc::VST_CODE_BBENTRY: { 1872 if (convertToString(Record, 1, ValueName)) 1873 return error("Invalid record"); 1874 BasicBlock *BB = getBasicBlock(Record[0]); 1875 if (!BB) 1876 return error("Invalid record"); 1877 1878 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1879 ValueName.clear(); 1880 break; 1881 } 1882 } 1883 } 1884 } 1885 1886 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1887 std::error_code 1888 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1889 if (Record.size() < 2) 1890 return error("Invalid record"); 1891 1892 unsigned Kind = Record[0]; 1893 SmallString<8> Name(Record.begin() + 1, Record.end()); 1894 1895 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1896 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1897 return error("Conflicting METADATA_KIND records"); 1898 return std::error_code(); 1899 } 1900 1901 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1902 1903 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 1904 StringRef Blob, 1905 unsigned &NextMetadataNo) { 1906 // All the MDStrings in the block are emitted together in a single 1907 // record. The strings are concatenated and stored in a blob along with 1908 // their sizes. 1909 if (Record.size() != 2) 1910 return error("Invalid record: metadata strings layout"); 1911 1912 unsigned NumStrings = Record[0]; 1913 unsigned StringsOffset = Record[1]; 1914 if (!NumStrings) 1915 return error("Invalid record: metadata strings with no strings"); 1916 if (StringsOffset > Blob.size()) 1917 return error("Invalid record: metadata strings corrupt offset"); 1918 1919 StringRef Lengths = Blob.slice(0, StringsOffset); 1920 SimpleBitstreamCursor R(*StreamFile); 1921 R.jumpToPointer(Lengths.begin()); 1922 1923 // Ensure that Blob doesn't get invalidated, even if this is reading from 1924 // a StreamingMemoryObject with corrupt data. 1925 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 1926 1927 StringRef Strings = Blob.drop_front(StringsOffset); 1928 do { 1929 if (R.AtEndOfStream()) 1930 return error("Invalid record: metadata strings bad length"); 1931 1932 unsigned Size = R.ReadVBR(6); 1933 if (Strings.size() < Size) 1934 return error("Invalid record: metadata strings truncated chars"); 1935 1936 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 1937 NextMetadataNo++); 1938 Strings = Strings.drop_front(Size); 1939 } while (--NumStrings); 1940 1941 return std::error_code(); 1942 } 1943 1944 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1945 /// module level metadata. 1946 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1947 IsMetadataMaterialized = true; 1948 unsigned NextMetadataNo = MetadataList.size(); 1949 1950 if (!ModuleLevel && MetadataList.hasFwdRefs()) 1951 return error("Invalid metadata: fwd refs into function blocks"); 1952 1953 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1954 return error("Invalid record"); 1955 1956 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 1957 SmallVector<uint64_t, 64> Record; 1958 1959 auto getMD = [&](unsigned ID) -> Metadata * { 1960 return MetadataList.getMetadataFwdRef(ID); 1961 }; 1962 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1963 if (ID) 1964 return getMD(ID - 1); 1965 return nullptr; 1966 }; 1967 auto getMDString = [&](unsigned ID) -> MDString *{ 1968 // This requires that the ID is not really a forward reference. In 1969 // particular, the MDString must already have been resolved. 1970 return cast_or_null<MDString>(getMDOrNull(ID)); 1971 }; 1972 1973 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1974 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1975 1976 // Read all the records. 1977 while (1) { 1978 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1979 1980 switch (Entry.Kind) { 1981 case BitstreamEntry::SubBlock: // Handled for us already. 1982 case BitstreamEntry::Error: 1983 return error("Malformed block"); 1984 case BitstreamEntry::EndBlock: 1985 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 1986 for (auto CU_SP : CUSubprograms) 1987 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 1988 for (auto &Op : SPs->operands()) 1989 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 1990 SP->replaceOperandWith(7, CU_SP.first); 1991 1992 MetadataList.tryToResolveCycles(); 1993 return std::error_code(); 1994 case BitstreamEntry::Record: 1995 // The interesting case. 1996 break; 1997 } 1998 1999 // Read a record. 2000 Record.clear(); 2001 StringRef Blob; 2002 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2003 bool IsDistinct = false; 2004 switch (Code) { 2005 default: // Default behavior: ignore. 2006 break; 2007 case bitc::METADATA_NAME: { 2008 // Read name of the named metadata. 2009 SmallString<8> Name(Record.begin(), Record.end()); 2010 Record.clear(); 2011 Code = Stream.ReadCode(); 2012 2013 unsigned NextBitCode = Stream.readRecord(Code, Record); 2014 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2015 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2016 2017 // Read named metadata elements. 2018 unsigned Size = Record.size(); 2019 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2020 for (unsigned i = 0; i != Size; ++i) { 2021 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2022 if (!MD) 2023 return error("Invalid record"); 2024 NMD->addOperand(MD); 2025 } 2026 break; 2027 } 2028 case bitc::METADATA_OLD_FN_NODE: { 2029 // FIXME: Remove in 4.0. 2030 // This is a LocalAsMetadata record, the only type of function-local 2031 // metadata. 2032 if (Record.size() % 2 == 1) 2033 return error("Invalid record"); 2034 2035 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2036 // to be legal, but there's no upgrade path. 2037 auto dropRecord = [&] { 2038 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2039 }; 2040 if (Record.size() != 2) { 2041 dropRecord(); 2042 break; 2043 } 2044 2045 Type *Ty = getTypeByID(Record[0]); 2046 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2047 dropRecord(); 2048 break; 2049 } 2050 2051 MetadataList.assignValue( 2052 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2053 NextMetadataNo++); 2054 break; 2055 } 2056 case bitc::METADATA_OLD_NODE: { 2057 // FIXME: Remove in 4.0. 2058 if (Record.size() % 2 == 1) 2059 return error("Invalid record"); 2060 2061 unsigned Size = Record.size(); 2062 SmallVector<Metadata *, 8> Elts; 2063 for (unsigned i = 0; i != Size; i += 2) { 2064 Type *Ty = getTypeByID(Record[i]); 2065 if (!Ty) 2066 return error("Invalid record"); 2067 if (Ty->isMetadataTy()) 2068 Elts.push_back(MetadataList.getMetadataFwdRef(Record[i + 1])); 2069 else if (!Ty->isVoidTy()) { 2070 auto *MD = 2071 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2072 assert(isa<ConstantAsMetadata>(MD) && 2073 "Expected non-function-local metadata"); 2074 Elts.push_back(MD); 2075 } else 2076 Elts.push_back(nullptr); 2077 } 2078 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2079 break; 2080 } 2081 case bitc::METADATA_VALUE: { 2082 if (Record.size() != 2) 2083 return error("Invalid record"); 2084 2085 Type *Ty = getTypeByID(Record[0]); 2086 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2087 return error("Invalid record"); 2088 2089 MetadataList.assignValue( 2090 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2091 NextMetadataNo++); 2092 break; 2093 } 2094 case bitc::METADATA_DISTINCT_NODE: 2095 IsDistinct = true; 2096 // fallthrough... 2097 case bitc::METADATA_NODE: { 2098 SmallVector<Metadata *, 8> Elts; 2099 Elts.reserve(Record.size()); 2100 for (unsigned ID : Record) 2101 Elts.push_back(ID ? MetadataList.getMetadataFwdRef(ID - 1) : nullptr); 2102 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2103 : MDNode::get(Context, Elts), 2104 NextMetadataNo++); 2105 break; 2106 } 2107 case bitc::METADATA_LOCATION: { 2108 if (Record.size() != 5) 2109 return error("Invalid record"); 2110 2111 unsigned Line = Record[1]; 2112 unsigned Column = Record[2]; 2113 MDNode *Scope = MetadataList.getMDNodeFwdRefOrNull(Record[3]); 2114 if (!Scope) 2115 return error("Invalid record"); 2116 Metadata *InlinedAt = 2117 Record[4] ? MetadataList.getMetadataFwdRef(Record[4] - 1) : nullptr; 2118 MetadataList.assignValue( 2119 GET_OR_DISTINCT(DILocation, Record[0], 2120 (Context, Line, Column, Scope, InlinedAt)), 2121 NextMetadataNo++); 2122 break; 2123 } 2124 case bitc::METADATA_GENERIC_DEBUG: { 2125 if (Record.size() < 4) 2126 return error("Invalid record"); 2127 2128 unsigned Tag = Record[1]; 2129 unsigned Version = Record[2]; 2130 2131 if (Tag >= 1u << 16 || Version != 0) 2132 return error("Invalid record"); 2133 2134 auto *Header = getMDString(Record[3]); 2135 SmallVector<Metadata *, 8> DwarfOps; 2136 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2137 DwarfOps.push_back(Record[I] 2138 ? MetadataList.getMetadataFwdRef(Record[I] - 1) 2139 : nullptr); 2140 MetadataList.assignValue( 2141 GET_OR_DISTINCT(GenericDINode, Record[0], 2142 (Context, Tag, Header, DwarfOps)), 2143 NextMetadataNo++); 2144 break; 2145 } 2146 case bitc::METADATA_SUBRANGE: { 2147 if (Record.size() != 3) 2148 return error("Invalid record"); 2149 2150 MetadataList.assignValue( 2151 GET_OR_DISTINCT(DISubrange, Record[0], 2152 (Context, Record[1], unrotateSign(Record[2]))), 2153 NextMetadataNo++); 2154 break; 2155 } 2156 case bitc::METADATA_ENUMERATOR: { 2157 if (Record.size() != 3) 2158 return error("Invalid record"); 2159 2160 MetadataList.assignValue( 2161 GET_OR_DISTINCT( 2162 DIEnumerator, Record[0], 2163 (Context, unrotateSign(Record[1]), getMDString(Record[2]))), 2164 NextMetadataNo++); 2165 break; 2166 } 2167 case bitc::METADATA_BASIC_TYPE: { 2168 if (Record.size() != 6) 2169 return error("Invalid record"); 2170 2171 MetadataList.assignValue( 2172 GET_OR_DISTINCT(DIBasicType, Record[0], 2173 (Context, Record[1], getMDString(Record[2]), 2174 Record[3], Record[4], Record[5])), 2175 NextMetadataNo++); 2176 break; 2177 } 2178 case bitc::METADATA_DERIVED_TYPE: { 2179 if (Record.size() != 12) 2180 return error("Invalid record"); 2181 2182 MetadataList.assignValue( 2183 GET_OR_DISTINCT(DIDerivedType, Record[0], 2184 (Context, Record[1], getMDString(Record[2]), 2185 getMDOrNull(Record[3]), Record[4], 2186 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2187 Record[7], Record[8], Record[9], Record[10], 2188 getMDOrNull(Record[11]))), 2189 NextMetadataNo++); 2190 break; 2191 } 2192 case bitc::METADATA_COMPOSITE_TYPE: { 2193 if (Record.size() != 16) 2194 return error("Invalid record"); 2195 2196 // If we have a UUID and this is not a forward declaration, lookup the 2197 // mapping. 2198 bool IsDistinct = Record[0]; 2199 unsigned Tag = Record[1]; 2200 MDString *Name = getMDString(Record[2]); 2201 Metadata *File = getMDOrNull(Record[3]); 2202 unsigned Line = Record[4]; 2203 Metadata *Scope = getMDOrNull(Record[5]); 2204 Metadata *BaseType = getMDOrNull(Record[6]); 2205 uint64_t SizeInBits = Record[7]; 2206 uint64_t AlignInBits = Record[8]; 2207 uint64_t OffsetInBits = Record[9]; 2208 unsigned Flags = Record[10]; 2209 Metadata *Elements = getMDOrNull(Record[11]); 2210 unsigned RuntimeLang = Record[12]; 2211 Metadata *VTableHolder = getMDOrNull(Record[13]); 2212 Metadata *TemplateParams = getMDOrNull(Record[14]); 2213 auto *Identifier = getMDString(Record[15]); 2214 DICompositeType *CT = nullptr; 2215 if (Identifier) 2216 CT = DICompositeType::buildODRType( 2217 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2218 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2219 VTableHolder, TemplateParams); 2220 2221 // Create a node if we didn't get a lazy ODR type. 2222 if (!CT) 2223 CT = GET_OR_DISTINCT(DICompositeType, IsDistinct, 2224 (Context, Tag, Name, File, Line, Scope, BaseType, 2225 SizeInBits, AlignInBits, OffsetInBits, Flags, 2226 Elements, RuntimeLang, VTableHolder, 2227 TemplateParams, Identifier)); 2228 2229 MetadataList.assignValue(CT, NextMetadataNo++); 2230 break; 2231 } 2232 case bitc::METADATA_SUBROUTINE_TYPE: { 2233 if (Record.size() != 3) 2234 return error("Invalid record"); 2235 2236 MetadataList.assignValue( 2237 GET_OR_DISTINCT(DISubroutineType, Record[0], 2238 (Context, Record[1], getMDOrNull(Record[2]))), 2239 NextMetadataNo++); 2240 break; 2241 } 2242 2243 case bitc::METADATA_MODULE: { 2244 if (Record.size() != 6) 2245 return error("Invalid record"); 2246 2247 MetadataList.assignValue( 2248 GET_OR_DISTINCT(DIModule, Record[0], 2249 (Context, getMDOrNull(Record[1]), 2250 getMDString(Record[2]), getMDString(Record[3]), 2251 getMDString(Record[4]), getMDString(Record[5]))), 2252 NextMetadataNo++); 2253 break; 2254 } 2255 2256 case bitc::METADATA_FILE: { 2257 if (Record.size() != 3) 2258 return error("Invalid record"); 2259 2260 MetadataList.assignValue( 2261 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2262 getMDString(Record[2]))), 2263 NextMetadataNo++); 2264 break; 2265 } 2266 case bitc::METADATA_COMPILE_UNIT: { 2267 if (Record.size() < 14 || Record.size() > 16) 2268 return error("Invalid record"); 2269 2270 // Ignore Record[0], which indicates whether this compile unit is 2271 // distinct. It's always distinct. 2272 auto *CU = DICompileUnit::getDistinct( 2273 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2274 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2275 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2276 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2277 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2278 Record.size() <= 14 ? 0 : Record[14]); 2279 2280 MetadataList.assignValue(CU, NextMetadataNo++); 2281 2282 // Move the Upgrade the list of subprograms. 2283 if (Metadata *SPs = getMDOrNull(Record[11])) 2284 CUSubprograms.push_back({CU, SPs}); 2285 break; 2286 } 2287 case bitc::METADATA_SUBPROGRAM: { 2288 if (Record.size() != 18 && Record.size() != 19) 2289 return error("Invalid record"); 2290 2291 // Version 1 has a Function as Record[15]. 2292 // Version 2 has removed Record[15]. 2293 // Version 3 has the Unit as Record[15]. 2294 Metadata *CUorFn = getMDOrNull(Record[15]); 2295 unsigned Offset = Record.size() == 19 ? 1 : 0; 2296 bool HasFn = Offset && dyn_cast_or_null<ConstantAsMetadata>(CUorFn); 2297 bool HasCU = Offset && !HasFn; 2298 DISubprogram *SP = GET_OR_DISTINCT( 2299 DISubprogram, 2300 Record[0] || Record[8], // All definitions should be distinct. 2301 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2302 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2303 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2304 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2305 Record[14], HasCU ? CUorFn : nullptr, 2306 getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]), 2307 getMDOrNull(Record[17 + Offset]))); 2308 MetadataList.assignValue(SP, NextMetadataNo++); 2309 2310 // Upgrade sp->function mapping to function->sp mapping. 2311 if (HasFn) { 2312 if (auto *CMD = dyn_cast<ConstantAsMetadata>(CUorFn)) 2313 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2314 if (F->isMaterializable()) 2315 // Defer until materialized; unmaterialized functions may not have 2316 // metadata. 2317 FunctionsWithSPs[F] = SP; 2318 else if (!F->empty()) 2319 F->setSubprogram(SP); 2320 } 2321 } 2322 break; 2323 } 2324 case bitc::METADATA_LEXICAL_BLOCK: { 2325 if (Record.size() != 5) 2326 return error("Invalid record"); 2327 2328 MetadataList.assignValue( 2329 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2330 (Context, getMDOrNull(Record[1]), 2331 getMDOrNull(Record[2]), Record[3], Record[4])), 2332 NextMetadataNo++); 2333 break; 2334 } 2335 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2336 if (Record.size() != 4) 2337 return error("Invalid record"); 2338 2339 MetadataList.assignValue( 2340 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2341 (Context, getMDOrNull(Record[1]), 2342 getMDOrNull(Record[2]), Record[3])), 2343 NextMetadataNo++); 2344 break; 2345 } 2346 case bitc::METADATA_NAMESPACE: { 2347 if (Record.size() != 5) 2348 return error("Invalid record"); 2349 2350 MetadataList.assignValue( 2351 GET_OR_DISTINCT(DINamespace, Record[0], 2352 (Context, getMDOrNull(Record[1]), 2353 getMDOrNull(Record[2]), getMDString(Record[3]), 2354 Record[4])), 2355 NextMetadataNo++); 2356 break; 2357 } 2358 case bitc::METADATA_MACRO: { 2359 if (Record.size() != 5) 2360 return error("Invalid record"); 2361 2362 MetadataList.assignValue( 2363 GET_OR_DISTINCT(DIMacro, Record[0], 2364 (Context, Record[1], Record[2], 2365 getMDString(Record[3]), getMDString(Record[4]))), 2366 NextMetadataNo++); 2367 break; 2368 } 2369 case bitc::METADATA_MACRO_FILE: { 2370 if (Record.size() != 5) 2371 return error("Invalid record"); 2372 2373 MetadataList.assignValue( 2374 GET_OR_DISTINCT(DIMacroFile, Record[0], 2375 (Context, Record[1], Record[2], 2376 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2377 NextMetadataNo++); 2378 break; 2379 } 2380 case bitc::METADATA_TEMPLATE_TYPE: { 2381 if (Record.size() != 3) 2382 return error("Invalid record"); 2383 2384 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2385 Record[0], 2386 (Context, getMDString(Record[1]), 2387 getMDOrNull(Record[2]))), 2388 NextMetadataNo++); 2389 break; 2390 } 2391 case bitc::METADATA_TEMPLATE_VALUE: { 2392 if (Record.size() != 5) 2393 return error("Invalid record"); 2394 2395 MetadataList.assignValue( 2396 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2397 (Context, Record[1], getMDString(Record[2]), 2398 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2399 NextMetadataNo++); 2400 break; 2401 } 2402 case bitc::METADATA_GLOBAL_VAR: { 2403 if (Record.size() != 11) 2404 return error("Invalid record"); 2405 2406 MetadataList.assignValue( 2407 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2408 (Context, getMDOrNull(Record[1]), 2409 getMDString(Record[2]), getMDString(Record[3]), 2410 getMDOrNull(Record[4]), Record[5], 2411 getMDOrNull(Record[6]), Record[7], Record[8], 2412 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2413 NextMetadataNo++); 2414 break; 2415 } 2416 case bitc::METADATA_LOCAL_VAR: { 2417 // 10th field is for the obseleted 'inlinedAt:' field. 2418 if (Record.size() < 8 || Record.size() > 10) 2419 return error("Invalid record"); 2420 2421 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2422 // DW_TAG_arg_variable. 2423 bool HasTag = Record.size() > 8; 2424 MetadataList.assignValue( 2425 GET_OR_DISTINCT(DILocalVariable, Record[0], 2426 (Context, getMDOrNull(Record[1 + HasTag]), 2427 getMDString(Record[2 + HasTag]), 2428 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2429 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2430 Record[7 + HasTag])), 2431 NextMetadataNo++); 2432 break; 2433 } 2434 case bitc::METADATA_EXPRESSION: { 2435 if (Record.size() < 1) 2436 return error("Invalid record"); 2437 2438 MetadataList.assignValue( 2439 GET_OR_DISTINCT(DIExpression, Record[0], 2440 (Context, makeArrayRef(Record).slice(1))), 2441 NextMetadataNo++); 2442 break; 2443 } 2444 case bitc::METADATA_OBJC_PROPERTY: { 2445 if (Record.size() != 8) 2446 return error("Invalid record"); 2447 2448 MetadataList.assignValue( 2449 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2450 (Context, getMDString(Record[1]), 2451 getMDOrNull(Record[2]), Record[3], 2452 getMDString(Record[4]), getMDString(Record[5]), 2453 Record[6], getMDOrNull(Record[7]))), 2454 NextMetadataNo++); 2455 break; 2456 } 2457 case bitc::METADATA_IMPORTED_ENTITY: { 2458 if (Record.size() != 6) 2459 return error("Invalid record"); 2460 2461 MetadataList.assignValue( 2462 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2463 (Context, Record[1], getMDOrNull(Record[2]), 2464 getMDOrNull(Record[3]), Record[4], 2465 getMDString(Record[5]))), 2466 NextMetadataNo++); 2467 break; 2468 } 2469 case bitc::METADATA_STRING_OLD: { 2470 std::string String(Record.begin(), Record.end()); 2471 2472 // Test for upgrading !llvm.loop. 2473 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2474 2475 Metadata *MD = MDString::get(Context, String); 2476 MetadataList.assignValue(MD, NextMetadataNo++); 2477 break; 2478 } 2479 case bitc::METADATA_STRINGS: 2480 if (std::error_code EC = 2481 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2482 return EC; 2483 break; 2484 case bitc::METADATA_KIND: { 2485 // Support older bitcode files that had METADATA_KIND records in a 2486 // block with METADATA_BLOCK_ID. 2487 if (std::error_code EC = parseMetadataKindRecord(Record)) 2488 return EC; 2489 break; 2490 } 2491 } 2492 } 2493 #undef GET_OR_DISTINCT 2494 } 2495 2496 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2497 std::error_code BitcodeReader::parseMetadataKinds() { 2498 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2499 return error("Invalid record"); 2500 2501 SmallVector<uint64_t, 64> Record; 2502 2503 // Read all the records. 2504 while (1) { 2505 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2506 2507 switch (Entry.Kind) { 2508 case BitstreamEntry::SubBlock: // Handled for us already. 2509 case BitstreamEntry::Error: 2510 return error("Malformed block"); 2511 case BitstreamEntry::EndBlock: 2512 return std::error_code(); 2513 case BitstreamEntry::Record: 2514 // The interesting case. 2515 break; 2516 } 2517 2518 // Read a record. 2519 Record.clear(); 2520 unsigned Code = Stream.readRecord(Entry.ID, Record); 2521 switch (Code) { 2522 default: // Default behavior: ignore. 2523 break; 2524 case bitc::METADATA_KIND: { 2525 if (std::error_code EC = parseMetadataKindRecord(Record)) 2526 return EC; 2527 break; 2528 } 2529 } 2530 } 2531 } 2532 2533 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2534 /// encoding. 2535 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2536 if ((V & 1) == 0) 2537 return V >> 1; 2538 if (V != 1) 2539 return -(V >> 1); 2540 // There is no such thing as -0 with integers. "-0" really means MININT. 2541 return 1ULL << 63; 2542 } 2543 2544 /// Resolve all of the initializers for global values and aliases that we can. 2545 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2546 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2547 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2548 IndirectSymbolInitWorklist; 2549 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2550 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2551 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2552 2553 GlobalInitWorklist.swap(GlobalInits); 2554 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2555 FunctionPrefixWorklist.swap(FunctionPrefixes); 2556 FunctionPrologueWorklist.swap(FunctionPrologues); 2557 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2558 2559 while (!GlobalInitWorklist.empty()) { 2560 unsigned ValID = GlobalInitWorklist.back().second; 2561 if (ValID >= ValueList.size()) { 2562 // Not ready to resolve this yet, it requires something later in the file. 2563 GlobalInits.push_back(GlobalInitWorklist.back()); 2564 } else { 2565 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2566 GlobalInitWorklist.back().first->setInitializer(C); 2567 else 2568 return error("Expected a constant"); 2569 } 2570 GlobalInitWorklist.pop_back(); 2571 } 2572 2573 while (!IndirectSymbolInitWorklist.empty()) { 2574 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2575 if (ValID >= ValueList.size()) { 2576 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2577 } else { 2578 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2579 if (!C) 2580 return error("Expected a constant"); 2581 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2582 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2583 return error("Alias and aliasee types don't match"); 2584 GIS->setIndirectSymbol(C); 2585 } 2586 IndirectSymbolInitWorklist.pop_back(); 2587 } 2588 2589 while (!FunctionPrefixWorklist.empty()) { 2590 unsigned ValID = FunctionPrefixWorklist.back().second; 2591 if (ValID >= ValueList.size()) { 2592 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2593 } else { 2594 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2595 FunctionPrefixWorklist.back().first->setPrefixData(C); 2596 else 2597 return error("Expected a constant"); 2598 } 2599 FunctionPrefixWorklist.pop_back(); 2600 } 2601 2602 while (!FunctionPrologueWorklist.empty()) { 2603 unsigned ValID = FunctionPrologueWorklist.back().second; 2604 if (ValID >= ValueList.size()) { 2605 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2606 } else { 2607 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2608 FunctionPrologueWorklist.back().first->setPrologueData(C); 2609 else 2610 return error("Expected a constant"); 2611 } 2612 FunctionPrologueWorklist.pop_back(); 2613 } 2614 2615 while (!FunctionPersonalityFnWorklist.empty()) { 2616 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2617 if (ValID >= ValueList.size()) { 2618 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2619 } else { 2620 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2621 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2622 else 2623 return error("Expected a constant"); 2624 } 2625 FunctionPersonalityFnWorklist.pop_back(); 2626 } 2627 2628 return std::error_code(); 2629 } 2630 2631 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2632 SmallVector<uint64_t, 8> Words(Vals.size()); 2633 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2634 BitcodeReader::decodeSignRotatedValue); 2635 2636 return APInt(TypeBits, Words); 2637 } 2638 2639 std::error_code BitcodeReader::parseConstants() { 2640 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2641 return error("Invalid record"); 2642 2643 SmallVector<uint64_t, 64> Record; 2644 2645 // Read all the records for this value table. 2646 Type *CurTy = Type::getInt32Ty(Context); 2647 unsigned NextCstNo = ValueList.size(); 2648 while (1) { 2649 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2650 2651 switch (Entry.Kind) { 2652 case BitstreamEntry::SubBlock: // Handled for us already. 2653 case BitstreamEntry::Error: 2654 return error("Malformed block"); 2655 case BitstreamEntry::EndBlock: 2656 if (NextCstNo != ValueList.size()) 2657 return error("Invalid constant reference"); 2658 2659 // Once all the constants have been read, go through and resolve forward 2660 // references. 2661 ValueList.resolveConstantForwardRefs(); 2662 return std::error_code(); 2663 case BitstreamEntry::Record: 2664 // The interesting case. 2665 break; 2666 } 2667 2668 // Read a record. 2669 Record.clear(); 2670 Value *V = nullptr; 2671 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2672 switch (BitCode) { 2673 default: // Default behavior: unknown constant 2674 case bitc::CST_CODE_UNDEF: // UNDEF 2675 V = UndefValue::get(CurTy); 2676 break; 2677 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2678 if (Record.empty()) 2679 return error("Invalid record"); 2680 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2681 return error("Invalid record"); 2682 CurTy = TypeList[Record[0]]; 2683 continue; // Skip the ValueList manipulation. 2684 case bitc::CST_CODE_NULL: // NULL 2685 V = Constant::getNullValue(CurTy); 2686 break; 2687 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2688 if (!CurTy->isIntegerTy() || Record.empty()) 2689 return error("Invalid record"); 2690 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2691 break; 2692 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2693 if (!CurTy->isIntegerTy() || Record.empty()) 2694 return error("Invalid record"); 2695 2696 APInt VInt = 2697 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2698 V = ConstantInt::get(Context, VInt); 2699 2700 break; 2701 } 2702 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2703 if (Record.empty()) 2704 return error("Invalid record"); 2705 if (CurTy->isHalfTy()) 2706 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2707 APInt(16, (uint16_t)Record[0]))); 2708 else if (CurTy->isFloatTy()) 2709 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2710 APInt(32, (uint32_t)Record[0]))); 2711 else if (CurTy->isDoubleTy()) 2712 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2713 APInt(64, Record[0]))); 2714 else if (CurTy->isX86_FP80Ty()) { 2715 // Bits are not stored the same way as a normal i80 APInt, compensate. 2716 uint64_t Rearrange[2]; 2717 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2718 Rearrange[1] = Record[0] >> 48; 2719 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2720 APInt(80, Rearrange))); 2721 } else if (CurTy->isFP128Ty()) 2722 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2723 APInt(128, Record))); 2724 else if (CurTy->isPPC_FP128Ty()) 2725 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2726 APInt(128, Record))); 2727 else 2728 V = UndefValue::get(CurTy); 2729 break; 2730 } 2731 2732 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2733 if (Record.empty()) 2734 return error("Invalid record"); 2735 2736 unsigned Size = Record.size(); 2737 SmallVector<Constant*, 16> Elts; 2738 2739 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2740 for (unsigned i = 0; i != Size; ++i) 2741 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2742 STy->getElementType(i))); 2743 V = ConstantStruct::get(STy, Elts); 2744 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2745 Type *EltTy = ATy->getElementType(); 2746 for (unsigned i = 0; i != Size; ++i) 2747 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2748 V = ConstantArray::get(ATy, Elts); 2749 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2750 Type *EltTy = VTy->getElementType(); 2751 for (unsigned i = 0; i != Size; ++i) 2752 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2753 V = ConstantVector::get(Elts); 2754 } else { 2755 V = UndefValue::get(CurTy); 2756 } 2757 break; 2758 } 2759 case bitc::CST_CODE_STRING: // STRING: [values] 2760 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2761 if (Record.empty()) 2762 return error("Invalid record"); 2763 2764 SmallString<16> Elts(Record.begin(), Record.end()); 2765 V = ConstantDataArray::getString(Context, Elts, 2766 BitCode == bitc::CST_CODE_CSTRING); 2767 break; 2768 } 2769 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2770 if (Record.empty()) 2771 return error("Invalid record"); 2772 2773 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2774 if (EltTy->isIntegerTy(8)) { 2775 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2776 if (isa<VectorType>(CurTy)) 2777 V = ConstantDataVector::get(Context, Elts); 2778 else 2779 V = ConstantDataArray::get(Context, Elts); 2780 } else if (EltTy->isIntegerTy(16)) { 2781 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2782 if (isa<VectorType>(CurTy)) 2783 V = ConstantDataVector::get(Context, Elts); 2784 else 2785 V = ConstantDataArray::get(Context, Elts); 2786 } else if (EltTy->isIntegerTy(32)) { 2787 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2788 if (isa<VectorType>(CurTy)) 2789 V = ConstantDataVector::get(Context, Elts); 2790 else 2791 V = ConstantDataArray::get(Context, Elts); 2792 } else if (EltTy->isIntegerTy(64)) { 2793 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2794 if (isa<VectorType>(CurTy)) 2795 V = ConstantDataVector::get(Context, Elts); 2796 else 2797 V = ConstantDataArray::get(Context, Elts); 2798 } else if (EltTy->isHalfTy()) { 2799 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2800 if (isa<VectorType>(CurTy)) 2801 V = ConstantDataVector::getFP(Context, Elts); 2802 else 2803 V = ConstantDataArray::getFP(Context, Elts); 2804 } else if (EltTy->isFloatTy()) { 2805 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2806 if (isa<VectorType>(CurTy)) 2807 V = ConstantDataVector::getFP(Context, Elts); 2808 else 2809 V = ConstantDataArray::getFP(Context, Elts); 2810 } else if (EltTy->isDoubleTy()) { 2811 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2812 if (isa<VectorType>(CurTy)) 2813 V = ConstantDataVector::getFP(Context, Elts); 2814 else 2815 V = ConstantDataArray::getFP(Context, Elts); 2816 } else { 2817 return error("Invalid type for value"); 2818 } 2819 break; 2820 } 2821 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2822 if (Record.size() < 3) 2823 return error("Invalid record"); 2824 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2825 if (Opc < 0) { 2826 V = UndefValue::get(CurTy); // Unknown binop. 2827 } else { 2828 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2829 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2830 unsigned Flags = 0; 2831 if (Record.size() >= 4) { 2832 if (Opc == Instruction::Add || 2833 Opc == Instruction::Sub || 2834 Opc == Instruction::Mul || 2835 Opc == Instruction::Shl) { 2836 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2837 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2838 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2839 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2840 } else if (Opc == Instruction::SDiv || 2841 Opc == Instruction::UDiv || 2842 Opc == Instruction::LShr || 2843 Opc == Instruction::AShr) { 2844 if (Record[3] & (1 << bitc::PEO_EXACT)) 2845 Flags |= SDivOperator::IsExact; 2846 } 2847 } 2848 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2849 } 2850 break; 2851 } 2852 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2853 if (Record.size() < 3) 2854 return error("Invalid record"); 2855 int Opc = getDecodedCastOpcode(Record[0]); 2856 if (Opc < 0) { 2857 V = UndefValue::get(CurTy); // Unknown cast. 2858 } else { 2859 Type *OpTy = getTypeByID(Record[1]); 2860 if (!OpTy) 2861 return error("Invalid record"); 2862 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2863 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2864 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2865 } 2866 break; 2867 } 2868 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2869 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2870 unsigned OpNum = 0; 2871 Type *PointeeType = nullptr; 2872 if (Record.size() % 2) 2873 PointeeType = getTypeByID(Record[OpNum++]); 2874 SmallVector<Constant*, 16> Elts; 2875 while (OpNum != Record.size()) { 2876 Type *ElTy = getTypeByID(Record[OpNum++]); 2877 if (!ElTy) 2878 return error("Invalid record"); 2879 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2880 } 2881 2882 if (PointeeType && 2883 PointeeType != 2884 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2885 ->getElementType()) 2886 return error("Explicit gep operator type does not match pointee type " 2887 "of pointer operand"); 2888 2889 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2890 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2891 BitCode == 2892 bitc::CST_CODE_CE_INBOUNDS_GEP); 2893 break; 2894 } 2895 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2896 if (Record.size() < 3) 2897 return error("Invalid record"); 2898 2899 Type *SelectorTy = Type::getInt1Ty(Context); 2900 2901 // The selector might be an i1 or an <n x i1> 2902 // Get the type from the ValueList before getting a forward ref. 2903 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2904 if (Value *V = ValueList[Record[0]]) 2905 if (SelectorTy != V->getType()) 2906 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2907 2908 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2909 SelectorTy), 2910 ValueList.getConstantFwdRef(Record[1],CurTy), 2911 ValueList.getConstantFwdRef(Record[2],CurTy)); 2912 break; 2913 } 2914 case bitc::CST_CODE_CE_EXTRACTELT 2915 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2916 if (Record.size() < 3) 2917 return error("Invalid record"); 2918 VectorType *OpTy = 2919 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2920 if (!OpTy) 2921 return error("Invalid record"); 2922 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2923 Constant *Op1 = nullptr; 2924 if (Record.size() == 4) { 2925 Type *IdxTy = getTypeByID(Record[2]); 2926 if (!IdxTy) 2927 return error("Invalid record"); 2928 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2929 } else // TODO: Remove with llvm 4.0 2930 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2931 if (!Op1) 2932 return error("Invalid record"); 2933 V = ConstantExpr::getExtractElement(Op0, Op1); 2934 break; 2935 } 2936 case bitc::CST_CODE_CE_INSERTELT 2937 : { // CE_INSERTELT: [opval, opval, opty, opval] 2938 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2939 if (Record.size() < 3 || !OpTy) 2940 return error("Invalid record"); 2941 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2942 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2943 OpTy->getElementType()); 2944 Constant *Op2 = nullptr; 2945 if (Record.size() == 4) { 2946 Type *IdxTy = getTypeByID(Record[2]); 2947 if (!IdxTy) 2948 return error("Invalid record"); 2949 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2950 } else // TODO: Remove with llvm 4.0 2951 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2952 if (!Op2) 2953 return error("Invalid record"); 2954 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2955 break; 2956 } 2957 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2958 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2959 if (Record.size() < 3 || !OpTy) 2960 return error("Invalid record"); 2961 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2962 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2963 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2964 OpTy->getNumElements()); 2965 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2966 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2967 break; 2968 } 2969 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2970 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2971 VectorType *OpTy = 2972 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2973 if (Record.size() < 4 || !RTy || !OpTy) 2974 return error("Invalid record"); 2975 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2976 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2977 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2978 RTy->getNumElements()); 2979 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2980 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2981 break; 2982 } 2983 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2984 if (Record.size() < 4) 2985 return error("Invalid record"); 2986 Type *OpTy = getTypeByID(Record[0]); 2987 if (!OpTy) 2988 return error("Invalid record"); 2989 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2990 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2991 2992 if (OpTy->isFPOrFPVectorTy()) 2993 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2994 else 2995 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2996 break; 2997 } 2998 // This maintains backward compatibility, pre-asm dialect keywords. 2999 // FIXME: Remove with the 4.0 release. 3000 case bitc::CST_CODE_INLINEASM_OLD: { 3001 if (Record.size() < 2) 3002 return error("Invalid record"); 3003 std::string AsmStr, ConstrStr; 3004 bool HasSideEffects = Record[0] & 1; 3005 bool IsAlignStack = Record[0] >> 1; 3006 unsigned AsmStrSize = Record[1]; 3007 if (2+AsmStrSize >= Record.size()) 3008 return error("Invalid record"); 3009 unsigned ConstStrSize = Record[2+AsmStrSize]; 3010 if (3+AsmStrSize+ConstStrSize > Record.size()) 3011 return error("Invalid record"); 3012 3013 for (unsigned i = 0; i != AsmStrSize; ++i) 3014 AsmStr += (char)Record[2+i]; 3015 for (unsigned i = 0; i != ConstStrSize; ++i) 3016 ConstrStr += (char)Record[3+AsmStrSize+i]; 3017 PointerType *PTy = cast<PointerType>(CurTy); 3018 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3019 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3020 break; 3021 } 3022 // This version adds support for the asm dialect keywords (e.g., 3023 // inteldialect). 3024 case bitc::CST_CODE_INLINEASM: { 3025 if (Record.size() < 2) 3026 return error("Invalid record"); 3027 std::string AsmStr, ConstrStr; 3028 bool HasSideEffects = Record[0] & 1; 3029 bool IsAlignStack = (Record[0] >> 1) & 1; 3030 unsigned AsmDialect = Record[0] >> 2; 3031 unsigned AsmStrSize = Record[1]; 3032 if (2+AsmStrSize >= Record.size()) 3033 return error("Invalid record"); 3034 unsigned ConstStrSize = Record[2+AsmStrSize]; 3035 if (3+AsmStrSize+ConstStrSize > Record.size()) 3036 return error("Invalid record"); 3037 3038 for (unsigned i = 0; i != AsmStrSize; ++i) 3039 AsmStr += (char)Record[2+i]; 3040 for (unsigned i = 0; i != ConstStrSize; ++i) 3041 ConstrStr += (char)Record[3+AsmStrSize+i]; 3042 PointerType *PTy = cast<PointerType>(CurTy); 3043 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3044 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3045 InlineAsm::AsmDialect(AsmDialect)); 3046 break; 3047 } 3048 case bitc::CST_CODE_BLOCKADDRESS:{ 3049 if (Record.size() < 3) 3050 return error("Invalid record"); 3051 Type *FnTy = getTypeByID(Record[0]); 3052 if (!FnTy) 3053 return error("Invalid record"); 3054 Function *Fn = 3055 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3056 if (!Fn) 3057 return error("Invalid record"); 3058 3059 // If the function is already parsed we can insert the block address right 3060 // away. 3061 BasicBlock *BB; 3062 unsigned BBID = Record[2]; 3063 if (!BBID) 3064 // Invalid reference to entry block. 3065 return error("Invalid ID"); 3066 if (!Fn->empty()) { 3067 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3068 for (size_t I = 0, E = BBID; I != E; ++I) { 3069 if (BBI == BBE) 3070 return error("Invalid ID"); 3071 ++BBI; 3072 } 3073 BB = &*BBI; 3074 } else { 3075 // Otherwise insert a placeholder and remember it so it can be inserted 3076 // when the function is parsed. 3077 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3078 if (FwdBBs.empty()) 3079 BasicBlockFwdRefQueue.push_back(Fn); 3080 if (FwdBBs.size() < BBID + 1) 3081 FwdBBs.resize(BBID + 1); 3082 if (!FwdBBs[BBID]) 3083 FwdBBs[BBID] = BasicBlock::Create(Context); 3084 BB = FwdBBs[BBID]; 3085 } 3086 V = BlockAddress::get(Fn, BB); 3087 break; 3088 } 3089 } 3090 3091 ValueList.assignValue(V, NextCstNo); 3092 ++NextCstNo; 3093 } 3094 } 3095 3096 std::error_code BitcodeReader::parseUseLists() { 3097 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3098 return error("Invalid record"); 3099 3100 // Read all the records. 3101 SmallVector<uint64_t, 64> Record; 3102 while (1) { 3103 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3104 3105 switch (Entry.Kind) { 3106 case BitstreamEntry::SubBlock: // Handled for us already. 3107 case BitstreamEntry::Error: 3108 return error("Malformed block"); 3109 case BitstreamEntry::EndBlock: 3110 return std::error_code(); 3111 case BitstreamEntry::Record: 3112 // The interesting case. 3113 break; 3114 } 3115 3116 // Read a use list record. 3117 Record.clear(); 3118 bool IsBB = false; 3119 switch (Stream.readRecord(Entry.ID, Record)) { 3120 default: // Default behavior: unknown type. 3121 break; 3122 case bitc::USELIST_CODE_BB: 3123 IsBB = true; 3124 // fallthrough 3125 case bitc::USELIST_CODE_DEFAULT: { 3126 unsigned RecordLength = Record.size(); 3127 if (RecordLength < 3) 3128 // Records should have at least an ID and two indexes. 3129 return error("Invalid record"); 3130 unsigned ID = Record.back(); 3131 Record.pop_back(); 3132 3133 Value *V; 3134 if (IsBB) { 3135 assert(ID < FunctionBBs.size() && "Basic block not found"); 3136 V = FunctionBBs[ID]; 3137 } else 3138 V = ValueList[ID]; 3139 unsigned NumUses = 0; 3140 SmallDenseMap<const Use *, unsigned, 16> Order; 3141 for (const Use &U : V->materialized_uses()) { 3142 if (++NumUses > Record.size()) 3143 break; 3144 Order[&U] = Record[NumUses - 1]; 3145 } 3146 if (Order.size() != Record.size() || NumUses > Record.size()) 3147 // Mismatches can happen if the functions are being materialized lazily 3148 // (out-of-order), or a value has been upgraded. 3149 break; 3150 3151 V->sortUseList([&](const Use &L, const Use &R) { 3152 return Order.lookup(&L) < Order.lookup(&R); 3153 }); 3154 break; 3155 } 3156 } 3157 } 3158 } 3159 3160 /// When we see the block for metadata, remember where it is and then skip it. 3161 /// This lets us lazily deserialize the metadata. 3162 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3163 // Save the current stream state. 3164 uint64_t CurBit = Stream.GetCurrentBitNo(); 3165 DeferredMetadataInfo.push_back(CurBit); 3166 3167 // Skip over the block for now. 3168 if (Stream.SkipBlock()) 3169 return error("Invalid record"); 3170 return std::error_code(); 3171 } 3172 3173 std::error_code BitcodeReader::materializeMetadata() { 3174 for (uint64_t BitPos : DeferredMetadataInfo) { 3175 // Move the bit stream to the saved position. 3176 Stream.JumpToBit(BitPos); 3177 if (std::error_code EC = parseMetadata(true)) 3178 return EC; 3179 } 3180 DeferredMetadataInfo.clear(); 3181 return std::error_code(); 3182 } 3183 3184 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3185 3186 /// When we see the block for a function body, remember where it is and then 3187 /// skip it. This lets us lazily deserialize the functions. 3188 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3189 // Get the function we are talking about. 3190 if (FunctionsWithBodies.empty()) 3191 return error("Insufficient function protos"); 3192 3193 Function *Fn = FunctionsWithBodies.back(); 3194 FunctionsWithBodies.pop_back(); 3195 3196 // Save the current stream state. 3197 uint64_t CurBit = Stream.GetCurrentBitNo(); 3198 assert( 3199 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3200 "Mismatch between VST and scanned function offsets"); 3201 DeferredFunctionInfo[Fn] = CurBit; 3202 3203 // Skip over the function block for now. 3204 if (Stream.SkipBlock()) 3205 return error("Invalid record"); 3206 return std::error_code(); 3207 } 3208 3209 std::error_code BitcodeReader::globalCleanup() { 3210 // Patch the initializers for globals and aliases up. 3211 resolveGlobalAndIndirectSymbolInits(); 3212 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3213 return error("Malformed global initializer set"); 3214 3215 // Look for intrinsic functions which need to be upgraded at some point 3216 for (Function &F : *TheModule) { 3217 Function *NewFn; 3218 if (UpgradeIntrinsicFunction(&F, NewFn)) 3219 UpgradedIntrinsics[&F] = NewFn; 3220 } 3221 3222 // Look for global variables which need to be renamed. 3223 for (GlobalVariable &GV : TheModule->globals()) 3224 UpgradeGlobalVariable(&GV); 3225 3226 // Force deallocation of memory for these vectors to favor the client that 3227 // want lazy deserialization. 3228 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3229 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3230 IndirectSymbolInits); 3231 return std::error_code(); 3232 } 3233 3234 /// Support for lazy parsing of function bodies. This is required if we 3235 /// either have an old bitcode file without a VST forward declaration record, 3236 /// or if we have an anonymous function being materialized, since anonymous 3237 /// functions do not have a name and are therefore not in the VST. 3238 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3239 Stream.JumpToBit(NextUnreadBit); 3240 3241 if (Stream.AtEndOfStream()) 3242 return error("Could not find function in stream"); 3243 3244 if (!SeenFirstFunctionBody) 3245 return error("Trying to materialize functions before seeing function blocks"); 3246 3247 // An old bitcode file with the symbol table at the end would have 3248 // finished the parse greedily. 3249 assert(SeenValueSymbolTable); 3250 3251 SmallVector<uint64_t, 64> Record; 3252 3253 while (1) { 3254 BitstreamEntry Entry = Stream.advance(); 3255 switch (Entry.Kind) { 3256 default: 3257 return error("Expect SubBlock"); 3258 case BitstreamEntry::SubBlock: 3259 switch (Entry.ID) { 3260 default: 3261 return error("Expect function block"); 3262 case bitc::FUNCTION_BLOCK_ID: 3263 if (std::error_code EC = rememberAndSkipFunctionBody()) 3264 return EC; 3265 NextUnreadBit = Stream.GetCurrentBitNo(); 3266 return std::error_code(); 3267 } 3268 } 3269 } 3270 } 3271 3272 std::error_code BitcodeReader::parseBitcodeVersion() { 3273 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3274 return error("Invalid record"); 3275 3276 // Read all the records. 3277 SmallVector<uint64_t, 64> Record; 3278 while (1) { 3279 BitstreamEntry Entry = Stream.advance(); 3280 3281 switch (Entry.Kind) { 3282 default: 3283 case BitstreamEntry::Error: 3284 return error("Malformed block"); 3285 case BitstreamEntry::EndBlock: 3286 return std::error_code(); 3287 case BitstreamEntry::Record: 3288 // The interesting case. 3289 break; 3290 } 3291 3292 // Read a record. 3293 Record.clear(); 3294 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3295 switch (BitCode) { 3296 default: // Default behavior: reject 3297 return error("Invalid value"); 3298 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3299 // N] 3300 convertToString(Record, 0, ProducerIdentification); 3301 break; 3302 } 3303 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3304 unsigned epoch = (unsigned)Record[0]; 3305 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3306 return error( 3307 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3308 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3309 } 3310 } 3311 } 3312 } 3313 } 3314 3315 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3316 bool ShouldLazyLoadMetadata) { 3317 if (ResumeBit) 3318 Stream.JumpToBit(ResumeBit); 3319 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3320 return error("Invalid record"); 3321 3322 SmallVector<uint64_t, 64> Record; 3323 std::vector<std::string> SectionTable; 3324 std::vector<std::string> GCTable; 3325 3326 // Read all the records for this module. 3327 while (1) { 3328 BitstreamEntry Entry = Stream.advance(); 3329 3330 switch (Entry.Kind) { 3331 case BitstreamEntry::Error: 3332 return error("Malformed block"); 3333 case BitstreamEntry::EndBlock: 3334 return globalCleanup(); 3335 3336 case BitstreamEntry::SubBlock: 3337 switch (Entry.ID) { 3338 default: // Skip unknown content. 3339 if (Stream.SkipBlock()) 3340 return error("Invalid record"); 3341 break; 3342 case bitc::BLOCKINFO_BLOCK_ID: 3343 if (Stream.ReadBlockInfoBlock()) 3344 return error("Malformed block"); 3345 break; 3346 case bitc::PARAMATTR_BLOCK_ID: 3347 if (std::error_code EC = parseAttributeBlock()) 3348 return EC; 3349 break; 3350 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3351 if (std::error_code EC = parseAttributeGroupBlock()) 3352 return EC; 3353 break; 3354 case bitc::TYPE_BLOCK_ID_NEW: 3355 if (std::error_code EC = parseTypeTable()) 3356 return EC; 3357 break; 3358 case bitc::VALUE_SYMTAB_BLOCK_ID: 3359 if (!SeenValueSymbolTable) { 3360 // Either this is an old form VST without function index and an 3361 // associated VST forward declaration record (which would have caused 3362 // the VST to be jumped to and parsed before it was encountered 3363 // normally in the stream), or there were no function blocks to 3364 // trigger an earlier parsing of the VST. 3365 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3366 if (std::error_code EC = parseValueSymbolTable()) 3367 return EC; 3368 SeenValueSymbolTable = true; 3369 } else { 3370 // We must have had a VST forward declaration record, which caused 3371 // the parser to jump to and parse the VST earlier. 3372 assert(VSTOffset > 0); 3373 if (Stream.SkipBlock()) 3374 return error("Invalid record"); 3375 } 3376 break; 3377 case bitc::CONSTANTS_BLOCK_ID: 3378 if (std::error_code EC = parseConstants()) 3379 return EC; 3380 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3381 return EC; 3382 break; 3383 case bitc::METADATA_BLOCK_ID: 3384 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3385 if (std::error_code EC = rememberAndSkipMetadata()) 3386 return EC; 3387 break; 3388 } 3389 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3390 if (std::error_code EC = parseMetadata(true)) 3391 return EC; 3392 break; 3393 case bitc::METADATA_KIND_BLOCK_ID: 3394 if (std::error_code EC = parseMetadataKinds()) 3395 return EC; 3396 break; 3397 case bitc::FUNCTION_BLOCK_ID: 3398 // If this is the first function body we've seen, reverse the 3399 // FunctionsWithBodies list. 3400 if (!SeenFirstFunctionBody) { 3401 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3402 if (std::error_code EC = globalCleanup()) 3403 return EC; 3404 SeenFirstFunctionBody = true; 3405 } 3406 3407 if (VSTOffset > 0) { 3408 // If we have a VST forward declaration record, make sure we 3409 // parse the VST now if we haven't already. It is needed to 3410 // set up the DeferredFunctionInfo vector for lazy reading. 3411 if (!SeenValueSymbolTable) { 3412 if (std::error_code EC = 3413 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3414 return EC; 3415 SeenValueSymbolTable = true; 3416 // Fall through so that we record the NextUnreadBit below. 3417 // This is necessary in case we have an anonymous function that 3418 // is later materialized. Since it will not have a VST entry we 3419 // need to fall back to the lazy parse to find its offset. 3420 } else { 3421 // If we have a VST forward declaration record, but have already 3422 // parsed the VST (just above, when the first function body was 3423 // encountered here), then we are resuming the parse after 3424 // materializing functions. The ResumeBit points to the 3425 // start of the last function block recorded in the 3426 // DeferredFunctionInfo map. Skip it. 3427 if (Stream.SkipBlock()) 3428 return error("Invalid record"); 3429 continue; 3430 } 3431 } 3432 3433 // Support older bitcode files that did not have the function 3434 // index in the VST, nor a VST forward declaration record, as 3435 // well as anonymous functions that do not have VST entries. 3436 // Build the DeferredFunctionInfo vector on the fly. 3437 if (std::error_code EC = rememberAndSkipFunctionBody()) 3438 return EC; 3439 3440 // Suspend parsing when we reach the function bodies. Subsequent 3441 // materialization calls will resume it when necessary. If the bitcode 3442 // file is old, the symbol table will be at the end instead and will not 3443 // have been seen yet. In this case, just finish the parse now. 3444 if (SeenValueSymbolTable) { 3445 NextUnreadBit = Stream.GetCurrentBitNo(); 3446 return std::error_code(); 3447 } 3448 break; 3449 case bitc::USELIST_BLOCK_ID: 3450 if (std::error_code EC = parseUseLists()) 3451 return EC; 3452 break; 3453 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3454 if (std::error_code EC = parseOperandBundleTags()) 3455 return EC; 3456 break; 3457 } 3458 continue; 3459 3460 case BitstreamEntry::Record: 3461 // The interesting case. 3462 break; 3463 } 3464 3465 // Read a record. 3466 auto BitCode = Stream.readRecord(Entry.ID, Record); 3467 switch (BitCode) { 3468 default: break; // Default behavior, ignore unknown content. 3469 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3470 if (Record.size() < 1) 3471 return error("Invalid record"); 3472 // Only version #0 and #1 are supported so far. 3473 unsigned module_version = Record[0]; 3474 switch (module_version) { 3475 default: 3476 return error("Invalid value"); 3477 case 0: 3478 UseRelativeIDs = false; 3479 break; 3480 case 1: 3481 UseRelativeIDs = true; 3482 break; 3483 } 3484 break; 3485 } 3486 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3487 std::string S; 3488 if (convertToString(Record, 0, S)) 3489 return error("Invalid record"); 3490 TheModule->setTargetTriple(S); 3491 break; 3492 } 3493 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3494 std::string S; 3495 if (convertToString(Record, 0, S)) 3496 return error("Invalid record"); 3497 TheModule->setDataLayout(S); 3498 break; 3499 } 3500 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3501 std::string S; 3502 if (convertToString(Record, 0, S)) 3503 return error("Invalid record"); 3504 TheModule->setModuleInlineAsm(S); 3505 break; 3506 } 3507 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3508 // FIXME: Remove in 4.0. 3509 std::string S; 3510 if (convertToString(Record, 0, S)) 3511 return error("Invalid record"); 3512 // Ignore value. 3513 break; 3514 } 3515 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3516 std::string S; 3517 if (convertToString(Record, 0, S)) 3518 return error("Invalid record"); 3519 SectionTable.push_back(S); 3520 break; 3521 } 3522 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3523 std::string S; 3524 if (convertToString(Record, 0, S)) 3525 return error("Invalid record"); 3526 GCTable.push_back(S); 3527 break; 3528 } 3529 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3530 if (Record.size() < 2) 3531 return error("Invalid record"); 3532 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3533 unsigned ComdatNameSize = Record[1]; 3534 std::string ComdatName; 3535 ComdatName.reserve(ComdatNameSize); 3536 for (unsigned i = 0; i != ComdatNameSize; ++i) 3537 ComdatName += (char)Record[2 + i]; 3538 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3539 C->setSelectionKind(SK); 3540 ComdatList.push_back(C); 3541 break; 3542 } 3543 // GLOBALVAR: [pointer type, isconst, initid, 3544 // linkage, alignment, section, visibility, threadlocal, 3545 // unnamed_addr, externally_initialized, dllstorageclass, 3546 // comdat] 3547 case bitc::MODULE_CODE_GLOBALVAR: { 3548 if (Record.size() < 6) 3549 return error("Invalid record"); 3550 Type *Ty = getTypeByID(Record[0]); 3551 if (!Ty) 3552 return error("Invalid record"); 3553 bool isConstant = Record[1] & 1; 3554 bool explicitType = Record[1] & 2; 3555 unsigned AddressSpace; 3556 if (explicitType) { 3557 AddressSpace = Record[1] >> 2; 3558 } else { 3559 if (!Ty->isPointerTy()) 3560 return error("Invalid type for value"); 3561 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3562 Ty = cast<PointerType>(Ty)->getElementType(); 3563 } 3564 3565 uint64_t RawLinkage = Record[3]; 3566 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3567 unsigned Alignment; 3568 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3569 return EC; 3570 std::string Section; 3571 if (Record[5]) { 3572 if (Record[5]-1 >= SectionTable.size()) 3573 return error("Invalid ID"); 3574 Section = SectionTable[Record[5]-1]; 3575 } 3576 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3577 // Local linkage must have default visibility. 3578 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3579 // FIXME: Change to an error if non-default in 4.0. 3580 Visibility = getDecodedVisibility(Record[6]); 3581 3582 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3583 if (Record.size() > 7) 3584 TLM = getDecodedThreadLocalMode(Record[7]); 3585 3586 bool UnnamedAddr = false; 3587 if (Record.size() > 8) 3588 UnnamedAddr = Record[8]; 3589 3590 bool ExternallyInitialized = false; 3591 if (Record.size() > 9) 3592 ExternallyInitialized = Record[9]; 3593 3594 GlobalVariable *NewGV = 3595 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3596 TLM, AddressSpace, ExternallyInitialized); 3597 NewGV->setAlignment(Alignment); 3598 if (!Section.empty()) 3599 NewGV->setSection(Section); 3600 NewGV->setVisibility(Visibility); 3601 NewGV->setUnnamedAddr(UnnamedAddr); 3602 3603 if (Record.size() > 10) 3604 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3605 else 3606 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3607 3608 ValueList.push_back(NewGV); 3609 3610 // Remember which value to use for the global initializer. 3611 if (unsigned InitID = Record[2]) 3612 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3613 3614 if (Record.size() > 11) { 3615 if (unsigned ComdatID = Record[11]) { 3616 if (ComdatID > ComdatList.size()) 3617 return error("Invalid global variable comdat ID"); 3618 NewGV->setComdat(ComdatList[ComdatID - 1]); 3619 } 3620 } else if (hasImplicitComdat(RawLinkage)) { 3621 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3622 } 3623 break; 3624 } 3625 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3626 // alignment, section, visibility, gc, unnamed_addr, 3627 // prologuedata, dllstorageclass, comdat, prefixdata] 3628 case bitc::MODULE_CODE_FUNCTION: { 3629 if (Record.size() < 8) 3630 return error("Invalid record"); 3631 Type *Ty = getTypeByID(Record[0]); 3632 if (!Ty) 3633 return error("Invalid record"); 3634 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3635 Ty = PTy->getElementType(); 3636 auto *FTy = dyn_cast<FunctionType>(Ty); 3637 if (!FTy) 3638 return error("Invalid type for value"); 3639 auto CC = static_cast<CallingConv::ID>(Record[1]); 3640 if (CC & ~CallingConv::MaxID) 3641 return error("Invalid calling convention ID"); 3642 3643 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3644 "", TheModule); 3645 3646 Func->setCallingConv(CC); 3647 bool isProto = Record[2]; 3648 uint64_t RawLinkage = Record[3]; 3649 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3650 Func->setAttributes(getAttributes(Record[4])); 3651 3652 unsigned Alignment; 3653 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3654 return EC; 3655 Func->setAlignment(Alignment); 3656 if (Record[6]) { 3657 if (Record[6]-1 >= SectionTable.size()) 3658 return error("Invalid ID"); 3659 Func->setSection(SectionTable[Record[6]-1]); 3660 } 3661 // Local linkage must have default visibility. 3662 if (!Func->hasLocalLinkage()) 3663 // FIXME: Change to an error if non-default in 4.0. 3664 Func->setVisibility(getDecodedVisibility(Record[7])); 3665 if (Record.size() > 8 && Record[8]) { 3666 if (Record[8]-1 >= GCTable.size()) 3667 return error("Invalid ID"); 3668 Func->setGC(GCTable[Record[8]-1].c_str()); 3669 } 3670 bool UnnamedAddr = false; 3671 if (Record.size() > 9) 3672 UnnamedAddr = Record[9]; 3673 Func->setUnnamedAddr(UnnamedAddr); 3674 if (Record.size() > 10 && Record[10] != 0) 3675 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3676 3677 if (Record.size() > 11) 3678 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3679 else 3680 upgradeDLLImportExportLinkage(Func, RawLinkage); 3681 3682 if (Record.size() > 12) { 3683 if (unsigned ComdatID = Record[12]) { 3684 if (ComdatID > ComdatList.size()) 3685 return error("Invalid function comdat ID"); 3686 Func->setComdat(ComdatList[ComdatID - 1]); 3687 } 3688 } else if (hasImplicitComdat(RawLinkage)) { 3689 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3690 } 3691 3692 if (Record.size() > 13 && Record[13] != 0) 3693 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3694 3695 if (Record.size() > 14 && Record[14] != 0) 3696 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3697 3698 ValueList.push_back(Func); 3699 3700 // If this is a function with a body, remember the prototype we are 3701 // creating now, so that we can match up the body with them later. 3702 if (!isProto) { 3703 Func->setIsMaterializable(true); 3704 FunctionsWithBodies.push_back(Func); 3705 DeferredFunctionInfo[Func] = 0; 3706 } 3707 break; 3708 } 3709 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3710 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3711 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3712 case bitc::MODULE_CODE_IFUNC: 3713 case bitc::MODULE_CODE_ALIAS: 3714 case bitc::MODULE_CODE_ALIAS_OLD: { 3715 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3716 if (Record.size() < (3 + (unsigned)NewRecord)) 3717 return error("Invalid record"); 3718 unsigned OpNum = 0; 3719 Type *Ty = getTypeByID(Record[OpNum++]); 3720 if (!Ty) 3721 return error("Invalid record"); 3722 3723 unsigned AddrSpace; 3724 if (!NewRecord) { 3725 auto *PTy = dyn_cast<PointerType>(Ty); 3726 if (!PTy) 3727 return error("Invalid type for value"); 3728 Ty = PTy->getElementType(); 3729 AddrSpace = PTy->getAddressSpace(); 3730 } else { 3731 AddrSpace = Record[OpNum++]; 3732 } 3733 3734 auto Val = Record[OpNum++]; 3735 auto Linkage = Record[OpNum++]; 3736 GlobalIndirectSymbol *NewGA; 3737 if (BitCode == bitc::MODULE_CODE_ALIAS || 3738 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3739 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3740 "", TheModule); 3741 else 3742 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3743 "", nullptr, TheModule); 3744 // Old bitcode files didn't have visibility field. 3745 // Local linkage must have default visibility. 3746 if (OpNum != Record.size()) { 3747 auto VisInd = OpNum++; 3748 if (!NewGA->hasLocalLinkage()) 3749 // FIXME: Change to an error if non-default in 4.0. 3750 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3751 } 3752 if (OpNum != Record.size()) 3753 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3754 else 3755 upgradeDLLImportExportLinkage(NewGA, Linkage); 3756 if (OpNum != Record.size()) 3757 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3758 if (OpNum != Record.size()) 3759 NewGA->setUnnamedAddr(Record[OpNum++]); 3760 ValueList.push_back(NewGA); 3761 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3762 break; 3763 } 3764 /// MODULE_CODE_PURGEVALS: [numvals] 3765 case bitc::MODULE_CODE_PURGEVALS: 3766 // Trim down the value list to the specified size. 3767 if (Record.size() < 1 || Record[0] > ValueList.size()) 3768 return error("Invalid record"); 3769 ValueList.shrinkTo(Record[0]); 3770 break; 3771 /// MODULE_CODE_VSTOFFSET: [offset] 3772 case bitc::MODULE_CODE_VSTOFFSET: 3773 if (Record.size() < 1) 3774 return error("Invalid record"); 3775 VSTOffset = Record[0]; 3776 break; 3777 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3778 case bitc::MODULE_CODE_SOURCE_FILENAME: 3779 SmallString<128> ValueName; 3780 if (convertToString(Record, 0, ValueName)) 3781 return error("Invalid record"); 3782 TheModule->setSourceFileName(ValueName); 3783 break; 3784 } 3785 Record.clear(); 3786 } 3787 } 3788 3789 /// Helper to read the header common to all bitcode files. 3790 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3791 // Sniff for the signature. 3792 if (Stream.Read(8) != 'B' || 3793 Stream.Read(8) != 'C' || 3794 Stream.Read(4) != 0x0 || 3795 Stream.Read(4) != 0xC || 3796 Stream.Read(4) != 0xE || 3797 Stream.Read(4) != 0xD) 3798 return false; 3799 return true; 3800 } 3801 3802 std::error_code 3803 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3804 Module *M, bool ShouldLazyLoadMetadata) { 3805 TheModule = M; 3806 3807 if (std::error_code EC = initStream(std::move(Streamer))) 3808 return EC; 3809 3810 // Sniff for the signature. 3811 if (!hasValidBitcodeHeader(Stream)) 3812 return error("Invalid bitcode signature"); 3813 3814 // We expect a number of well-defined blocks, though we don't necessarily 3815 // need to understand them all. 3816 while (1) { 3817 if (Stream.AtEndOfStream()) { 3818 // We didn't really read a proper Module. 3819 return error("Malformed IR file"); 3820 } 3821 3822 BitstreamEntry Entry = 3823 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3824 3825 if (Entry.Kind != BitstreamEntry::SubBlock) 3826 return error("Malformed block"); 3827 3828 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3829 parseBitcodeVersion(); 3830 continue; 3831 } 3832 3833 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3834 return parseModule(0, ShouldLazyLoadMetadata); 3835 3836 if (Stream.SkipBlock()) 3837 return error("Invalid record"); 3838 } 3839 } 3840 3841 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3842 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3843 return error("Invalid record"); 3844 3845 SmallVector<uint64_t, 64> Record; 3846 3847 std::string Triple; 3848 // Read all the records for this module. 3849 while (1) { 3850 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3851 3852 switch (Entry.Kind) { 3853 case BitstreamEntry::SubBlock: // Handled for us already. 3854 case BitstreamEntry::Error: 3855 return error("Malformed block"); 3856 case BitstreamEntry::EndBlock: 3857 return Triple; 3858 case BitstreamEntry::Record: 3859 // The interesting case. 3860 break; 3861 } 3862 3863 // Read a record. 3864 switch (Stream.readRecord(Entry.ID, Record)) { 3865 default: break; // Default behavior, ignore unknown content. 3866 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3867 std::string S; 3868 if (convertToString(Record, 0, S)) 3869 return error("Invalid record"); 3870 Triple = S; 3871 break; 3872 } 3873 } 3874 Record.clear(); 3875 } 3876 llvm_unreachable("Exit infinite loop"); 3877 } 3878 3879 ErrorOr<std::string> BitcodeReader::parseTriple() { 3880 if (std::error_code EC = initStream(nullptr)) 3881 return EC; 3882 3883 // Sniff for the signature. 3884 if (!hasValidBitcodeHeader(Stream)) 3885 return error("Invalid bitcode signature"); 3886 3887 // We expect a number of well-defined blocks, though we don't necessarily 3888 // need to understand them all. 3889 while (1) { 3890 BitstreamEntry Entry = Stream.advance(); 3891 3892 switch (Entry.Kind) { 3893 case BitstreamEntry::Error: 3894 return error("Malformed block"); 3895 case BitstreamEntry::EndBlock: 3896 return std::error_code(); 3897 3898 case BitstreamEntry::SubBlock: 3899 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3900 return parseModuleTriple(); 3901 3902 // Ignore other sub-blocks. 3903 if (Stream.SkipBlock()) 3904 return error("Malformed block"); 3905 continue; 3906 3907 case BitstreamEntry::Record: 3908 Stream.skipRecord(Entry.ID); 3909 continue; 3910 } 3911 } 3912 } 3913 3914 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3915 if (std::error_code EC = initStream(nullptr)) 3916 return EC; 3917 3918 // Sniff for the signature. 3919 if (!hasValidBitcodeHeader(Stream)) 3920 return error("Invalid bitcode signature"); 3921 3922 // We expect a number of well-defined blocks, though we don't necessarily 3923 // need to understand them all. 3924 while (1) { 3925 BitstreamEntry Entry = Stream.advance(); 3926 switch (Entry.Kind) { 3927 case BitstreamEntry::Error: 3928 return error("Malformed block"); 3929 case BitstreamEntry::EndBlock: 3930 return std::error_code(); 3931 3932 case BitstreamEntry::SubBlock: 3933 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3934 if (std::error_code EC = parseBitcodeVersion()) 3935 return EC; 3936 return ProducerIdentification; 3937 } 3938 // Ignore other sub-blocks. 3939 if (Stream.SkipBlock()) 3940 return error("Malformed block"); 3941 continue; 3942 case BitstreamEntry::Record: 3943 Stream.skipRecord(Entry.ID); 3944 continue; 3945 } 3946 } 3947 } 3948 3949 /// Parse metadata attachments. 3950 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3951 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3952 return error("Invalid record"); 3953 3954 SmallVector<uint64_t, 64> Record; 3955 while (1) { 3956 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3957 3958 switch (Entry.Kind) { 3959 case BitstreamEntry::SubBlock: // Handled for us already. 3960 case BitstreamEntry::Error: 3961 return error("Malformed block"); 3962 case BitstreamEntry::EndBlock: 3963 return std::error_code(); 3964 case BitstreamEntry::Record: 3965 // The interesting case. 3966 break; 3967 } 3968 3969 // Read a metadata attachment record. 3970 Record.clear(); 3971 switch (Stream.readRecord(Entry.ID, Record)) { 3972 default: // Default behavior: ignore. 3973 break; 3974 case bitc::METADATA_ATTACHMENT: { 3975 unsigned RecordLength = Record.size(); 3976 if (Record.empty()) 3977 return error("Invalid record"); 3978 if (RecordLength % 2 == 0) { 3979 // A function attachment. 3980 for (unsigned I = 0; I != RecordLength; I += 2) { 3981 auto K = MDKindMap.find(Record[I]); 3982 if (K == MDKindMap.end()) 3983 return error("Invalid ID"); 3984 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 3985 if (!MD) 3986 return error("Invalid metadata attachment"); 3987 F.setMetadata(K->second, MD); 3988 } 3989 continue; 3990 } 3991 3992 // An instruction attachment. 3993 Instruction *Inst = InstructionList[Record[0]]; 3994 for (unsigned i = 1; i != RecordLength; i = i+2) { 3995 unsigned Kind = Record[i]; 3996 DenseMap<unsigned, unsigned>::iterator I = 3997 MDKindMap.find(Kind); 3998 if (I == MDKindMap.end()) 3999 return error("Invalid ID"); 4000 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4001 if (isa<LocalAsMetadata>(Node)) 4002 // Drop the attachment. This used to be legal, but there's no 4003 // upgrade path. 4004 break; 4005 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4006 if (!MD) 4007 return error("Invalid metadata attachment"); 4008 4009 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4010 MD = upgradeInstructionLoopAttachment(*MD); 4011 4012 Inst->setMetadata(I->second, MD); 4013 if (I->second == LLVMContext::MD_tbaa) { 4014 InstsWithTBAATag.push_back(Inst); 4015 continue; 4016 } 4017 } 4018 break; 4019 } 4020 } 4021 } 4022 } 4023 4024 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4025 LLVMContext &Context = PtrType->getContext(); 4026 if (!isa<PointerType>(PtrType)) 4027 return error(Context, "Load/Store operand is not a pointer type"); 4028 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4029 4030 if (ValType && ValType != ElemType) 4031 return error(Context, "Explicit load/store type does not match pointee " 4032 "type of pointer operand"); 4033 if (!PointerType::isLoadableOrStorableType(ElemType)) 4034 return error(Context, "Cannot load/store from pointer"); 4035 return std::error_code(); 4036 } 4037 4038 /// Lazily parse the specified function body block. 4039 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4040 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4041 return error("Invalid record"); 4042 4043 // Unexpected unresolved metadata when parsing function. 4044 if (MetadataList.hasFwdRefs()) 4045 return error("Invalid function metadata: incoming forward references"); 4046 4047 InstructionList.clear(); 4048 unsigned ModuleValueListSize = ValueList.size(); 4049 unsigned ModuleMetadataListSize = MetadataList.size(); 4050 4051 // Add all the function arguments to the value table. 4052 for (Argument &I : F->args()) 4053 ValueList.push_back(&I); 4054 4055 unsigned NextValueNo = ValueList.size(); 4056 BasicBlock *CurBB = nullptr; 4057 unsigned CurBBNo = 0; 4058 4059 DebugLoc LastLoc; 4060 auto getLastInstruction = [&]() -> Instruction * { 4061 if (CurBB && !CurBB->empty()) 4062 return &CurBB->back(); 4063 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4064 !FunctionBBs[CurBBNo - 1]->empty()) 4065 return &FunctionBBs[CurBBNo - 1]->back(); 4066 return nullptr; 4067 }; 4068 4069 std::vector<OperandBundleDef> OperandBundles; 4070 4071 // Read all the records. 4072 SmallVector<uint64_t, 64> Record; 4073 while (1) { 4074 BitstreamEntry Entry = Stream.advance(); 4075 4076 switch (Entry.Kind) { 4077 case BitstreamEntry::Error: 4078 return error("Malformed block"); 4079 case BitstreamEntry::EndBlock: 4080 goto OutOfRecordLoop; 4081 4082 case BitstreamEntry::SubBlock: 4083 switch (Entry.ID) { 4084 default: // Skip unknown content. 4085 if (Stream.SkipBlock()) 4086 return error("Invalid record"); 4087 break; 4088 case bitc::CONSTANTS_BLOCK_ID: 4089 if (std::error_code EC = parseConstants()) 4090 return EC; 4091 NextValueNo = ValueList.size(); 4092 break; 4093 case bitc::VALUE_SYMTAB_BLOCK_ID: 4094 if (std::error_code EC = parseValueSymbolTable()) 4095 return EC; 4096 break; 4097 case bitc::METADATA_ATTACHMENT_ID: 4098 if (std::error_code EC = parseMetadataAttachment(*F)) 4099 return EC; 4100 break; 4101 case bitc::METADATA_BLOCK_ID: 4102 if (std::error_code EC = parseMetadata()) 4103 return EC; 4104 break; 4105 case bitc::USELIST_BLOCK_ID: 4106 if (std::error_code EC = parseUseLists()) 4107 return EC; 4108 break; 4109 } 4110 continue; 4111 4112 case BitstreamEntry::Record: 4113 // The interesting case. 4114 break; 4115 } 4116 4117 // Read a record. 4118 Record.clear(); 4119 Instruction *I = nullptr; 4120 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4121 switch (BitCode) { 4122 default: // Default behavior: reject 4123 return error("Invalid value"); 4124 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4125 if (Record.size() < 1 || Record[0] == 0) 4126 return error("Invalid record"); 4127 // Create all the basic blocks for the function. 4128 FunctionBBs.resize(Record[0]); 4129 4130 // See if anything took the address of blocks in this function. 4131 auto BBFRI = BasicBlockFwdRefs.find(F); 4132 if (BBFRI == BasicBlockFwdRefs.end()) { 4133 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4134 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4135 } else { 4136 auto &BBRefs = BBFRI->second; 4137 // Check for invalid basic block references. 4138 if (BBRefs.size() > FunctionBBs.size()) 4139 return error("Invalid ID"); 4140 assert(!BBRefs.empty() && "Unexpected empty array"); 4141 assert(!BBRefs.front() && "Invalid reference to entry block"); 4142 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4143 ++I) 4144 if (I < RE && BBRefs[I]) { 4145 BBRefs[I]->insertInto(F); 4146 FunctionBBs[I] = BBRefs[I]; 4147 } else { 4148 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4149 } 4150 4151 // Erase from the table. 4152 BasicBlockFwdRefs.erase(BBFRI); 4153 } 4154 4155 CurBB = FunctionBBs[0]; 4156 continue; 4157 } 4158 4159 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4160 // This record indicates that the last instruction is at the same 4161 // location as the previous instruction with a location. 4162 I = getLastInstruction(); 4163 4164 if (!I) 4165 return error("Invalid record"); 4166 I->setDebugLoc(LastLoc); 4167 I = nullptr; 4168 continue; 4169 4170 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4171 I = getLastInstruction(); 4172 if (!I || Record.size() < 4) 4173 return error("Invalid record"); 4174 4175 unsigned Line = Record[0], Col = Record[1]; 4176 unsigned ScopeID = Record[2], IAID = Record[3]; 4177 4178 MDNode *Scope = nullptr, *IA = nullptr; 4179 if (ScopeID) { 4180 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4181 if (!Scope) 4182 return error("Invalid record"); 4183 } 4184 if (IAID) { 4185 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4186 if (!IA) 4187 return error("Invalid record"); 4188 } 4189 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4190 I->setDebugLoc(LastLoc); 4191 I = nullptr; 4192 continue; 4193 } 4194 4195 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4196 unsigned OpNum = 0; 4197 Value *LHS, *RHS; 4198 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4199 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4200 OpNum+1 > Record.size()) 4201 return error("Invalid record"); 4202 4203 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4204 if (Opc == -1) 4205 return error("Invalid record"); 4206 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4207 InstructionList.push_back(I); 4208 if (OpNum < Record.size()) { 4209 if (Opc == Instruction::Add || 4210 Opc == Instruction::Sub || 4211 Opc == Instruction::Mul || 4212 Opc == Instruction::Shl) { 4213 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4214 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4215 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4216 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4217 } else if (Opc == Instruction::SDiv || 4218 Opc == Instruction::UDiv || 4219 Opc == Instruction::LShr || 4220 Opc == Instruction::AShr) { 4221 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4222 cast<BinaryOperator>(I)->setIsExact(true); 4223 } else if (isa<FPMathOperator>(I)) { 4224 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4225 if (FMF.any()) 4226 I->setFastMathFlags(FMF); 4227 } 4228 4229 } 4230 break; 4231 } 4232 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4233 unsigned OpNum = 0; 4234 Value *Op; 4235 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4236 OpNum+2 != Record.size()) 4237 return error("Invalid record"); 4238 4239 Type *ResTy = getTypeByID(Record[OpNum]); 4240 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4241 if (Opc == -1 || !ResTy) 4242 return error("Invalid record"); 4243 Instruction *Temp = nullptr; 4244 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4245 if (Temp) { 4246 InstructionList.push_back(Temp); 4247 CurBB->getInstList().push_back(Temp); 4248 } 4249 } else { 4250 auto CastOp = (Instruction::CastOps)Opc; 4251 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4252 return error("Invalid cast"); 4253 I = CastInst::Create(CastOp, Op, ResTy); 4254 } 4255 InstructionList.push_back(I); 4256 break; 4257 } 4258 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4259 case bitc::FUNC_CODE_INST_GEP_OLD: 4260 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4261 unsigned OpNum = 0; 4262 4263 Type *Ty; 4264 bool InBounds; 4265 4266 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4267 InBounds = Record[OpNum++]; 4268 Ty = getTypeByID(Record[OpNum++]); 4269 } else { 4270 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4271 Ty = nullptr; 4272 } 4273 4274 Value *BasePtr; 4275 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4276 return error("Invalid record"); 4277 4278 if (!Ty) 4279 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4280 ->getElementType(); 4281 else if (Ty != 4282 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4283 ->getElementType()) 4284 return error( 4285 "Explicit gep type does not match pointee type of pointer operand"); 4286 4287 SmallVector<Value*, 16> GEPIdx; 4288 while (OpNum != Record.size()) { 4289 Value *Op; 4290 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4291 return error("Invalid record"); 4292 GEPIdx.push_back(Op); 4293 } 4294 4295 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4296 4297 InstructionList.push_back(I); 4298 if (InBounds) 4299 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4300 break; 4301 } 4302 4303 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4304 // EXTRACTVAL: [opty, opval, n x indices] 4305 unsigned OpNum = 0; 4306 Value *Agg; 4307 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4308 return error("Invalid record"); 4309 4310 unsigned RecSize = Record.size(); 4311 if (OpNum == RecSize) 4312 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4313 4314 SmallVector<unsigned, 4> EXTRACTVALIdx; 4315 Type *CurTy = Agg->getType(); 4316 for (; OpNum != RecSize; ++OpNum) { 4317 bool IsArray = CurTy->isArrayTy(); 4318 bool IsStruct = CurTy->isStructTy(); 4319 uint64_t Index = Record[OpNum]; 4320 4321 if (!IsStruct && !IsArray) 4322 return error("EXTRACTVAL: Invalid type"); 4323 if ((unsigned)Index != Index) 4324 return error("Invalid value"); 4325 if (IsStruct && Index >= CurTy->subtypes().size()) 4326 return error("EXTRACTVAL: Invalid struct index"); 4327 if (IsArray && Index >= CurTy->getArrayNumElements()) 4328 return error("EXTRACTVAL: Invalid array index"); 4329 EXTRACTVALIdx.push_back((unsigned)Index); 4330 4331 if (IsStruct) 4332 CurTy = CurTy->subtypes()[Index]; 4333 else 4334 CurTy = CurTy->subtypes()[0]; 4335 } 4336 4337 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4338 InstructionList.push_back(I); 4339 break; 4340 } 4341 4342 case bitc::FUNC_CODE_INST_INSERTVAL: { 4343 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4344 unsigned OpNum = 0; 4345 Value *Agg; 4346 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4347 return error("Invalid record"); 4348 Value *Val; 4349 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4350 return error("Invalid record"); 4351 4352 unsigned RecSize = Record.size(); 4353 if (OpNum == RecSize) 4354 return error("INSERTVAL: Invalid instruction with 0 indices"); 4355 4356 SmallVector<unsigned, 4> INSERTVALIdx; 4357 Type *CurTy = Agg->getType(); 4358 for (; OpNum != RecSize; ++OpNum) { 4359 bool IsArray = CurTy->isArrayTy(); 4360 bool IsStruct = CurTy->isStructTy(); 4361 uint64_t Index = Record[OpNum]; 4362 4363 if (!IsStruct && !IsArray) 4364 return error("INSERTVAL: Invalid type"); 4365 if ((unsigned)Index != Index) 4366 return error("Invalid value"); 4367 if (IsStruct && Index >= CurTy->subtypes().size()) 4368 return error("INSERTVAL: Invalid struct index"); 4369 if (IsArray && Index >= CurTy->getArrayNumElements()) 4370 return error("INSERTVAL: Invalid array index"); 4371 4372 INSERTVALIdx.push_back((unsigned)Index); 4373 if (IsStruct) 4374 CurTy = CurTy->subtypes()[Index]; 4375 else 4376 CurTy = CurTy->subtypes()[0]; 4377 } 4378 4379 if (CurTy != Val->getType()) 4380 return error("Inserted value type doesn't match aggregate type"); 4381 4382 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4383 InstructionList.push_back(I); 4384 break; 4385 } 4386 4387 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4388 // obsolete form of select 4389 // handles select i1 ... in old bitcode 4390 unsigned OpNum = 0; 4391 Value *TrueVal, *FalseVal, *Cond; 4392 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4393 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4394 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4395 return error("Invalid record"); 4396 4397 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4398 InstructionList.push_back(I); 4399 break; 4400 } 4401 4402 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4403 // new form of select 4404 // handles select i1 or select [N x i1] 4405 unsigned OpNum = 0; 4406 Value *TrueVal, *FalseVal, *Cond; 4407 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4408 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4409 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4410 return error("Invalid record"); 4411 4412 // select condition can be either i1 or [N x i1] 4413 if (VectorType* vector_type = 4414 dyn_cast<VectorType>(Cond->getType())) { 4415 // expect <n x i1> 4416 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4417 return error("Invalid type for value"); 4418 } else { 4419 // expect i1 4420 if (Cond->getType() != Type::getInt1Ty(Context)) 4421 return error("Invalid type for value"); 4422 } 4423 4424 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4425 InstructionList.push_back(I); 4426 break; 4427 } 4428 4429 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4430 unsigned OpNum = 0; 4431 Value *Vec, *Idx; 4432 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4433 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4434 return error("Invalid record"); 4435 if (!Vec->getType()->isVectorTy()) 4436 return error("Invalid type for value"); 4437 I = ExtractElementInst::Create(Vec, Idx); 4438 InstructionList.push_back(I); 4439 break; 4440 } 4441 4442 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4443 unsigned OpNum = 0; 4444 Value *Vec, *Elt, *Idx; 4445 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4446 return error("Invalid record"); 4447 if (!Vec->getType()->isVectorTy()) 4448 return error("Invalid type for value"); 4449 if (popValue(Record, OpNum, NextValueNo, 4450 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4451 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4452 return error("Invalid record"); 4453 I = InsertElementInst::Create(Vec, Elt, Idx); 4454 InstructionList.push_back(I); 4455 break; 4456 } 4457 4458 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4459 unsigned OpNum = 0; 4460 Value *Vec1, *Vec2, *Mask; 4461 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4462 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4463 return error("Invalid record"); 4464 4465 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4466 return error("Invalid record"); 4467 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4468 return error("Invalid type for value"); 4469 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4470 InstructionList.push_back(I); 4471 break; 4472 } 4473 4474 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4475 // Old form of ICmp/FCmp returning bool 4476 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4477 // both legal on vectors but had different behaviour. 4478 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4479 // FCmp/ICmp returning bool or vector of bool 4480 4481 unsigned OpNum = 0; 4482 Value *LHS, *RHS; 4483 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4484 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4485 return error("Invalid record"); 4486 4487 unsigned PredVal = Record[OpNum]; 4488 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4489 FastMathFlags FMF; 4490 if (IsFP && Record.size() > OpNum+1) 4491 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4492 4493 if (OpNum+1 != Record.size()) 4494 return error("Invalid record"); 4495 4496 if (LHS->getType()->isFPOrFPVectorTy()) 4497 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4498 else 4499 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4500 4501 if (FMF.any()) 4502 I->setFastMathFlags(FMF); 4503 InstructionList.push_back(I); 4504 break; 4505 } 4506 4507 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4508 { 4509 unsigned Size = Record.size(); 4510 if (Size == 0) { 4511 I = ReturnInst::Create(Context); 4512 InstructionList.push_back(I); 4513 break; 4514 } 4515 4516 unsigned OpNum = 0; 4517 Value *Op = nullptr; 4518 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4519 return error("Invalid record"); 4520 if (OpNum != Record.size()) 4521 return error("Invalid record"); 4522 4523 I = ReturnInst::Create(Context, Op); 4524 InstructionList.push_back(I); 4525 break; 4526 } 4527 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4528 if (Record.size() != 1 && Record.size() != 3) 4529 return error("Invalid record"); 4530 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4531 if (!TrueDest) 4532 return error("Invalid record"); 4533 4534 if (Record.size() == 1) { 4535 I = BranchInst::Create(TrueDest); 4536 InstructionList.push_back(I); 4537 } 4538 else { 4539 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4540 Value *Cond = getValue(Record, 2, NextValueNo, 4541 Type::getInt1Ty(Context)); 4542 if (!FalseDest || !Cond) 4543 return error("Invalid record"); 4544 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4545 InstructionList.push_back(I); 4546 } 4547 break; 4548 } 4549 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4550 if (Record.size() != 1 && Record.size() != 2) 4551 return error("Invalid record"); 4552 unsigned Idx = 0; 4553 Value *CleanupPad = 4554 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4555 if (!CleanupPad) 4556 return error("Invalid record"); 4557 BasicBlock *UnwindDest = nullptr; 4558 if (Record.size() == 2) { 4559 UnwindDest = getBasicBlock(Record[Idx++]); 4560 if (!UnwindDest) 4561 return error("Invalid record"); 4562 } 4563 4564 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4565 InstructionList.push_back(I); 4566 break; 4567 } 4568 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4569 if (Record.size() != 2) 4570 return error("Invalid record"); 4571 unsigned Idx = 0; 4572 Value *CatchPad = 4573 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4574 if (!CatchPad) 4575 return error("Invalid record"); 4576 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4577 if (!BB) 4578 return error("Invalid record"); 4579 4580 I = CatchReturnInst::Create(CatchPad, BB); 4581 InstructionList.push_back(I); 4582 break; 4583 } 4584 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4585 // We must have, at minimum, the outer scope and the number of arguments. 4586 if (Record.size() < 2) 4587 return error("Invalid record"); 4588 4589 unsigned Idx = 0; 4590 4591 Value *ParentPad = 4592 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4593 4594 unsigned NumHandlers = Record[Idx++]; 4595 4596 SmallVector<BasicBlock *, 2> Handlers; 4597 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4598 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4599 if (!BB) 4600 return error("Invalid record"); 4601 Handlers.push_back(BB); 4602 } 4603 4604 BasicBlock *UnwindDest = nullptr; 4605 if (Idx + 1 == Record.size()) { 4606 UnwindDest = getBasicBlock(Record[Idx++]); 4607 if (!UnwindDest) 4608 return error("Invalid record"); 4609 } 4610 4611 if (Record.size() != Idx) 4612 return error("Invalid record"); 4613 4614 auto *CatchSwitch = 4615 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4616 for (BasicBlock *Handler : Handlers) 4617 CatchSwitch->addHandler(Handler); 4618 I = CatchSwitch; 4619 InstructionList.push_back(I); 4620 break; 4621 } 4622 case bitc::FUNC_CODE_INST_CATCHPAD: 4623 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4624 // We must have, at minimum, the outer scope and the number of arguments. 4625 if (Record.size() < 2) 4626 return error("Invalid record"); 4627 4628 unsigned Idx = 0; 4629 4630 Value *ParentPad = 4631 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4632 4633 unsigned NumArgOperands = Record[Idx++]; 4634 4635 SmallVector<Value *, 2> Args; 4636 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4637 Value *Val; 4638 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4639 return error("Invalid record"); 4640 Args.push_back(Val); 4641 } 4642 4643 if (Record.size() != Idx) 4644 return error("Invalid record"); 4645 4646 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4647 I = CleanupPadInst::Create(ParentPad, Args); 4648 else 4649 I = CatchPadInst::Create(ParentPad, Args); 4650 InstructionList.push_back(I); 4651 break; 4652 } 4653 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4654 // Check magic 4655 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4656 // "New" SwitchInst format with case ranges. The changes to write this 4657 // format were reverted but we still recognize bitcode that uses it. 4658 // Hopefully someday we will have support for case ranges and can use 4659 // this format again. 4660 4661 Type *OpTy = getTypeByID(Record[1]); 4662 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4663 4664 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4665 BasicBlock *Default = getBasicBlock(Record[3]); 4666 if (!OpTy || !Cond || !Default) 4667 return error("Invalid record"); 4668 4669 unsigned NumCases = Record[4]; 4670 4671 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4672 InstructionList.push_back(SI); 4673 4674 unsigned CurIdx = 5; 4675 for (unsigned i = 0; i != NumCases; ++i) { 4676 SmallVector<ConstantInt*, 1> CaseVals; 4677 unsigned NumItems = Record[CurIdx++]; 4678 for (unsigned ci = 0; ci != NumItems; ++ci) { 4679 bool isSingleNumber = Record[CurIdx++]; 4680 4681 APInt Low; 4682 unsigned ActiveWords = 1; 4683 if (ValueBitWidth > 64) 4684 ActiveWords = Record[CurIdx++]; 4685 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4686 ValueBitWidth); 4687 CurIdx += ActiveWords; 4688 4689 if (!isSingleNumber) { 4690 ActiveWords = 1; 4691 if (ValueBitWidth > 64) 4692 ActiveWords = Record[CurIdx++]; 4693 APInt High = readWideAPInt( 4694 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4695 CurIdx += ActiveWords; 4696 4697 // FIXME: It is not clear whether values in the range should be 4698 // compared as signed or unsigned values. The partially 4699 // implemented changes that used this format in the past used 4700 // unsigned comparisons. 4701 for ( ; Low.ule(High); ++Low) 4702 CaseVals.push_back(ConstantInt::get(Context, Low)); 4703 } else 4704 CaseVals.push_back(ConstantInt::get(Context, Low)); 4705 } 4706 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4707 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4708 cve = CaseVals.end(); cvi != cve; ++cvi) 4709 SI->addCase(*cvi, DestBB); 4710 } 4711 I = SI; 4712 break; 4713 } 4714 4715 // Old SwitchInst format without case ranges. 4716 4717 if (Record.size() < 3 || (Record.size() & 1) == 0) 4718 return error("Invalid record"); 4719 Type *OpTy = getTypeByID(Record[0]); 4720 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4721 BasicBlock *Default = getBasicBlock(Record[2]); 4722 if (!OpTy || !Cond || !Default) 4723 return error("Invalid record"); 4724 unsigned NumCases = (Record.size()-3)/2; 4725 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4726 InstructionList.push_back(SI); 4727 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4728 ConstantInt *CaseVal = 4729 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4730 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4731 if (!CaseVal || !DestBB) { 4732 delete SI; 4733 return error("Invalid record"); 4734 } 4735 SI->addCase(CaseVal, DestBB); 4736 } 4737 I = SI; 4738 break; 4739 } 4740 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4741 if (Record.size() < 2) 4742 return error("Invalid record"); 4743 Type *OpTy = getTypeByID(Record[0]); 4744 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4745 if (!OpTy || !Address) 4746 return error("Invalid record"); 4747 unsigned NumDests = Record.size()-2; 4748 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4749 InstructionList.push_back(IBI); 4750 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4751 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4752 IBI->addDestination(DestBB); 4753 } else { 4754 delete IBI; 4755 return error("Invalid record"); 4756 } 4757 } 4758 I = IBI; 4759 break; 4760 } 4761 4762 case bitc::FUNC_CODE_INST_INVOKE: { 4763 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4764 if (Record.size() < 4) 4765 return error("Invalid record"); 4766 unsigned OpNum = 0; 4767 AttributeSet PAL = getAttributes(Record[OpNum++]); 4768 unsigned CCInfo = Record[OpNum++]; 4769 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4770 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4771 4772 FunctionType *FTy = nullptr; 4773 if (CCInfo >> 13 & 1 && 4774 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4775 return error("Explicit invoke type is not a function type"); 4776 4777 Value *Callee; 4778 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4779 return error("Invalid record"); 4780 4781 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4782 if (!CalleeTy) 4783 return error("Callee is not a pointer"); 4784 if (!FTy) { 4785 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4786 if (!FTy) 4787 return error("Callee is not of pointer to function type"); 4788 } else if (CalleeTy->getElementType() != FTy) 4789 return error("Explicit invoke type does not match pointee type of " 4790 "callee operand"); 4791 if (Record.size() < FTy->getNumParams() + OpNum) 4792 return error("Insufficient operands to call"); 4793 4794 SmallVector<Value*, 16> Ops; 4795 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4796 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4797 FTy->getParamType(i))); 4798 if (!Ops.back()) 4799 return error("Invalid record"); 4800 } 4801 4802 if (!FTy->isVarArg()) { 4803 if (Record.size() != OpNum) 4804 return error("Invalid record"); 4805 } else { 4806 // Read type/value pairs for varargs params. 4807 while (OpNum != Record.size()) { 4808 Value *Op; 4809 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4810 return error("Invalid record"); 4811 Ops.push_back(Op); 4812 } 4813 } 4814 4815 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4816 OperandBundles.clear(); 4817 InstructionList.push_back(I); 4818 cast<InvokeInst>(I)->setCallingConv( 4819 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4820 cast<InvokeInst>(I)->setAttributes(PAL); 4821 break; 4822 } 4823 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4824 unsigned Idx = 0; 4825 Value *Val = nullptr; 4826 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4827 return error("Invalid record"); 4828 I = ResumeInst::Create(Val); 4829 InstructionList.push_back(I); 4830 break; 4831 } 4832 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4833 I = new UnreachableInst(Context); 4834 InstructionList.push_back(I); 4835 break; 4836 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4837 if (Record.size() < 1 || ((Record.size()-1)&1)) 4838 return error("Invalid record"); 4839 Type *Ty = getTypeByID(Record[0]); 4840 if (!Ty) 4841 return error("Invalid record"); 4842 4843 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4844 InstructionList.push_back(PN); 4845 4846 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4847 Value *V; 4848 // With the new function encoding, it is possible that operands have 4849 // negative IDs (for forward references). Use a signed VBR 4850 // representation to keep the encoding small. 4851 if (UseRelativeIDs) 4852 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4853 else 4854 V = getValue(Record, 1+i, NextValueNo, Ty); 4855 BasicBlock *BB = getBasicBlock(Record[2+i]); 4856 if (!V || !BB) 4857 return error("Invalid record"); 4858 PN->addIncoming(V, BB); 4859 } 4860 I = PN; 4861 break; 4862 } 4863 4864 case bitc::FUNC_CODE_INST_LANDINGPAD: 4865 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4866 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4867 unsigned Idx = 0; 4868 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4869 if (Record.size() < 3) 4870 return error("Invalid record"); 4871 } else { 4872 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4873 if (Record.size() < 4) 4874 return error("Invalid record"); 4875 } 4876 Type *Ty = getTypeByID(Record[Idx++]); 4877 if (!Ty) 4878 return error("Invalid record"); 4879 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4880 Value *PersFn = nullptr; 4881 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4882 return error("Invalid record"); 4883 4884 if (!F->hasPersonalityFn()) 4885 F->setPersonalityFn(cast<Constant>(PersFn)); 4886 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4887 return error("Personality function mismatch"); 4888 } 4889 4890 bool IsCleanup = !!Record[Idx++]; 4891 unsigned NumClauses = Record[Idx++]; 4892 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4893 LP->setCleanup(IsCleanup); 4894 for (unsigned J = 0; J != NumClauses; ++J) { 4895 LandingPadInst::ClauseType CT = 4896 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4897 Value *Val; 4898 4899 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4900 delete LP; 4901 return error("Invalid record"); 4902 } 4903 4904 assert((CT != LandingPadInst::Catch || 4905 !isa<ArrayType>(Val->getType())) && 4906 "Catch clause has a invalid type!"); 4907 assert((CT != LandingPadInst::Filter || 4908 isa<ArrayType>(Val->getType())) && 4909 "Filter clause has invalid type!"); 4910 LP->addClause(cast<Constant>(Val)); 4911 } 4912 4913 I = LP; 4914 InstructionList.push_back(I); 4915 break; 4916 } 4917 4918 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4919 if (Record.size() != 4) 4920 return error("Invalid record"); 4921 uint64_t AlignRecord = Record[3]; 4922 const uint64_t InAllocaMask = uint64_t(1) << 5; 4923 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4924 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4925 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4926 SwiftErrorMask; 4927 bool InAlloca = AlignRecord & InAllocaMask; 4928 bool SwiftError = AlignRecord & SwiftErrorMask; 4929 Type *Ty = getTypeByID(Record[0]); 4930 if ((AlignRecord & ExplicitTypeMask) == 0) { 4931 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4932 if (!PTy) 4933 return error("Old-style alloca with a non-pointer type"); 4934 Ty = PTy->getElementType(); 4935 } 4936 Type *OpTy = getTypeByID(Record[1]); 4937 Value *Size = getFnValueByID(Record[2], OpTy); 4938 unsigned Align; 4939 if (std::error_code EC = 4940 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4941 return EC; 4942 } 4943 if (!Ty || !Size) 4944 return error("Invalid record"); 4945 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4946 AI->setUsedWithInAlloca(InAlloca); 4947 AI->setSwiftError(SwiftError); 4948 I = AI; 4949 InstructionList.push_back(I); 4950 break; 4951 } 4952 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4953 unsigned OpNum = 0; 4954 Value *Op; 4955 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4956 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4957 return error("Invalid record"); 4958 4959 Type *Ty = nullptr; 4960 if (OpNum + 3 == Record.size()) 4961 Ty = getTypeByID(Record[OpNum++]); 4962 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4963 return EC; 4964 if (!Ty) 4965 Ty = cast<PointerType>(Op->getType())->getElementType(); 4966 4967 unsigned Align; 4968 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4969 return EC; 4970 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4971 4972 InstructionList.push_back(I); 4973 break; 4974 } 4975 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4976 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4977 unsigned OpNum = 0; 4978 Value *Op; 4979 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4980 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4981 return error("Invalid record"); 4982 4983 Type *Ty = nullptr; 4984 if (OpNum + 5 == Record.size()) 4985 Ty = getTypeByID(Record[OpNum++]); 4986 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4987 return EC; 4988 if (!Ty) 4989 Ty = cast<PointerType>(Op->getType())->getElementType(); 4990 4991 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4992 if (Ordering == AtomicOrdering::NotAtomic || 4993 Ordering == AtomicOrdering::Release || 4994 Ordering == AtomicOrdering::AcquireRelease) 4995 return error("Invalid record"); 4996 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4997 return error("Invalid record"); 4998 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4999 5000 unsigned Align; 5001 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5002 return EC; 5003 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5004 5005 InstructionList.push_back(I); 5006 break; 5007 } 5008 case bitc::FUNC_CODE_INST_STORE: 5009 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5010 unsigned OpNum = 0; 5011 Value *Val, *Ptr; 5012 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5013 (BitCode == bitc::FUNC_CODE_INST_STORE 5014 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5015 : popValue(Record, OpNum, NextValueNo, 5016 cast<PointerType>(Ptr->getType())->getElementType(), 5017 Val)) || 5018 OpNum + 2 != Record.size()) 5019 return error("Invalid record"); 5020 5021 if (std::error_code EC = 5022 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5023 return EC; 5024 unsigned Align; 5025 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5026 return EC; 5027 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5028 InstructionList.push_back(I); 5029 break; 5030 } 5031 case bitc::FUNC_CODE_INST_STOREATOMIC: 5032 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5033 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5034 unsigned OpNum = 0; 5035 Value *Val, *Ptr; 5036 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5037 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5038 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5039 : popValue(Record, OpNum, NextValueNo, 5040 cast<PointerType>(Ptr->getType())->getElementType(), 5041 Val)) || 5042 OpNum + 4 != Record.size()) 5043 return error("Invalid record"); 5044 5045 if (std::error_code EC = 5046 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5047 return EC; 5048 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5049 if (Ordering == AtomicOrdering::NotAtomic || 5050 Ordering == AtomicOrdering::Acquire || 5051 Ordering == AtomicOrdering::AcquireRelease) 5052 return error("Invalid record"); 5053 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5054 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5055 return error("Invalid record"); 5056 5057 unsigned Align; 5058 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5059 return EC; 5060 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5061 InstructionList.push_back(I); 5062 break; 5063 } 5064 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5065 case bitc::FUNC_CODE_INST_CMPXCHG: { 5066 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5067 // failureordering?, isweak?] 5068 unsigned OpNum = 0; 5069 Value *Ptr, *Cmp, *New; 5070 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5071 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5072 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5073 : popValue(Record, OpNum, NextValueNo, 5074 cast<PointerType>(Ptr->getType())->getElementType(), 5075 Cmp)) || 5076 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5077 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5078 return error("Invalid record"); 5079 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5080 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5081 SuccessOrdering == AtomicOrdering::Unordered) 5082 return error("Invalid record"); 5083 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5084 5085 if (std::error_code EC = 5086 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5087 return EC; 5088 AtomicOrdering FailureOrdering; 5089 if (Record.size() < 7) 5090 FailureOrdering = 5091 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5092 else 5093 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5094 5095 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5096 SynchScope); 5097 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5098 5099 if (Record.size() < 8) { 5100 // Before weak cmpxchgs existed, the instruction simply returned the 5101 // value loaded from memory, so bitcode files from that era will be 5102 // expecting the first component of a modern cmpxchg. 5103 CurBB->getInstList().push_back(I); 5104 I = ExtractValueInst::Create(I, 0); 5105 } else { 5106 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5107 } 5108 5109 InstructionList.push_back(I); 5110 break; 5111 } 5112 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5113 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5114 unsigned OpNum = 0; 5115 Value *Ptr, *Val; 5116 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5117 popValue(Record, OpNum, NextValueNo, 5118 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5119 OpNum+4 != Record.size()) 5120 return error("Invalid record"); 5121 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5122 if (Operation < AtomicRMWInst::FIRST_BINOP || 5123 Operation > AtomicRMWInst::LAST_BINOP) 5124 return error("Invalid record"); 5125 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5126 if (Ordering == AtomicOrdering::NotAtomic || 5127 Ordering == AtomicOrdering::Unordered) 5128 return error("Invalid record"); 5129 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5130 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5131 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5132 InstructionList.push_back(I); 5133 break; 5134 } 5135 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5136 if (2 != Record.size()) 5137 return error("Invalid record"); 5138 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5139 if (Ordering == AtomicOrdering::NotAtomic || 5140 Ordering == AtomicOrdering::Unordered || 5141 Ordering == AtomicOrdering::Monotonic) 5142 return error("Invalid record"); 5143 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5144 I = new FenceInst(Context, Ordering, SynchScope); 5145 InstructionList.push_back(I); 5146 break; 5147 } 5148 case bitc::FUNC_CODE_INST_CALL: { 5149 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5150 if (Record.size() < 3) 5151 return error("Invalid record"); 5152 5153 unsigned OpNum = 0; 5154 AttributeSet PAL = getAttributes(Record[OpNum++]); 5155 unsigned CCInfo = Record[OpNum++]; 5156 5157 FastMathFlags FMF; 5158 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5159 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5160 if (!FMF.any()) 5161 return error("Fast math flags indicator set for call with no FMF"); 5162 } 5163 5164 FunctionType *FTy = nullptr; 5165 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5166 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5167 return error("Explicit call type is not a function type"); 5168 5169 Value *Callee; 5170 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5171 return error("Invalid record"); 5172 5173 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5174 if (!OpTy) 5175 return error("Callee is not a pointer type"); 5176 if (!FTy) { 5177 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5178 if (!FTy) 5179 return error("Callee is not of pointer to function type"); 5180 } else if (OpTy->getElementType() != FTy) 5181 return error("Explicit call type does not match pointee type of " 5182 "callee operand"); 5183 if (Record.size() < FTy->getNumParams() + OpNum) 5184 return error("Insufficient operands to call"); 5185 5186 SmallVector<Value*, 16> Args; 5187 // Read the fixed params. 5188 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5189 if (FTy->getParamType(i)->isLabelTy()) 5190 Args.push_back(getBasicBlock(Record[OpNum])); 5191 else 5192 Args.push_back(getValue(Record, OpNum, NextValueNo, 5193 FTy->getParamType(i))); 5194 if (!Args.back()) 5195 return error("Invalid record"); 5196 } 5197 5198 // Read type/value pairs for varargs params. 5199 if (!FTy->isVarArg()) { 5200 if (OpNum != Record.size()) 5201 return error("Invalid record"); 5202 } else { 5203 while (OpNum != Record.size()) { 5204 Value *Op; 5205 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5206 return error("Invalid record"); 5207 Args.push_back(Op); 5208 } 5209 } 5210 5211 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5212 OperandBundles.clear(); 5213 InstructionList.push_back(I); 5214 cast<CallInst>(I)->setCallingConv( 5215 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5216 CallInst::TailCallKind TCK = CallInst::TCK_None; 5217 if (CCInfo & 1 << bitc::CALL_TAIL) 5218 TCK = CallInst::TCK_Tail; 5219 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5220 TCK = CallInst::TCK_MustTail; 5221 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5222 TCK = CallInst::TCK_NoTail; 5223 cast<CallInst>(I)->setTailCallKind(TCK); 5224 cast<CallInst>(I)->setAttributes(PAL); 5225 if (FMF.any()) { 5226 if (!isa<FPMathOperator>(I)) 5227 return error("Fast-math-flags specified for call without " 5228 "floating-point scalar or vector return type"); 5229 I->setFastMathFlags(FMF); 5230 } 5231 break; 5232 } 5233 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5234 if (Record.size() < 3) 5235 return error("Invalid record"); 5236 Type *OpTy = getTypeByID(Record[0]); 5237 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5238 Type *ResTy = getTypeByID(Record[2]); 5239 if (!OpTy || !Op || !ResTy) 5240 return error("Invalid record"); 5241 I = new VAArgInst(Op, ResTy); 5242 InstructionList.push_back(I); 5243 break; 5244 } 5245 5246 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5247 // A call or an invoke can be optionally prefixed with some variable 5248 // number of operand bundle blocks. These blocks are read into 5249 // OperandBundles and consumed at the next call or invoke instruction. 5250 5251 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5252 return error("Invalid record"); 5253 5254 std::vector<Value *> Inputs; 5255 5256 unsigned OpNum = 1; 5257 while (OpNum != Record.size()) { 5258 Value *Op; 5259 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5260 return error("Invalid record"); 5261 Inputs.push_back(Op); 5262 } 5263 5264 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5265 continue; 5266 } 5267 } 5268 5269 // Add instruction to end of current BB. If there is no current BB, reject 5270 // this file. 5271 if (!CurBB) { 5272 delete I; 5273 return error("Invalid instruction with no BB"); 5274 } 5275 if (!OperandBundles.empty()) { 5276 delete I; 5277 return error("Operand bundles found with no consumer"); 5278 } 5279 CurBB->getInstList().push_back(I); 5280 5281 // If this was a terminator instruction, move to the next block. 5282 if (isa<TerminatorInst>(I)) { 5283 ++CurBBNo; 5284 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5285 } 5286 5287 // Non-void values get registered in the value table for future use. 5288 if (I && !I->getType()->isVoidTy()) 5289 ValueList.assignValue(I, NextValueNo++); 5290 } 5291 5292 OutOfRecordLoop: 5293 5294 if (!OperandBundles.empty()) 5295 return error("Operand bundles found with no consumer"); 5296 5297 // Check the function list for unresolved values. 5298 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5299 if (!A->getParent()) { 5300 // We found at least one unresolved value. Nuke them all to avoid leaks. 5301 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5302 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5303 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5304 delete A; 5305 } 5306 } 5307 return error("Never resolved value found in function"); 5308 } 5309 } 5310 5311 // Unexpected unresolved metadata about to be dropped. 5312 if (MetadataList.hasFwdRefs()) 5313 return error("Invalid function metadata: outgoing forward refs"); 5314 5315 // Trim the value list down to the size it was before we parsed this function. 5316 ValueList.shrinkTo(ModuleValueListSize); 5317 MetadataList.shrinkTo(ModuleMetadataListSize); 5318 std::vector<BasicBlock*>().swap(FunctionBBs); 5319 return std::error_code(); 5320 } 5321 5322 /// Find the function body in the bitcode stream 5323 std::error_code BitcodeReader::findFunctionInStream( 5324 Function *F, 5325 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5326 while (DeferredFunctionInfoIterator->second == 0) { 5327 // This is the fallback handling for the old format bitcode that 5328 // didn't contain the function index in the VST, or when we have 5329 // an anonymous function which would not have a VST entry. 5330 // Assert that we have one of those two cases. 5331 assert(VSTOffset == 0 || !F->hasName()); 5332 // Parse the next body in the stream and set its position in the 5333 // DeferredFunctionInfo map. 5334 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5335 return EC; 5336 } 5337 return std::error_code(); 5338 } 5339 5340 //===----------------------------------------------------------------------===// 5341 // GVMaterializer implementation 5342 //===----------------------------------------------------------------------===// 5343 5344 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5345 5346 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5347 if (std::error_code EC = materializeMetadata()) 5348 return EC; 5349 5350 Function *F = dyn_cast<Function>(GV); 5351 // If it's not a function or is already material, ignore the request. 5352 if (!F || !F->isMaterializable()) 5353 return std::error_code(); 5354 5355 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5356 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5357 // If its position is recorded as 0, its body is somewhere in the stream 5358 // but we haven't seen it yet. 5359 if (DFII->second == 0) 5360 if (std::error_code EC = findFunctionInStream(F, DFII)) 5361 return EC; 5362 5363 // Move the bit stream to the saved position of the deferred function body. 5364 Stream.JumpToBit(DFII->second); 5365 5366 if (std::error_code EC = parseFunctionBody(F)) 5367 return EC; 5368 F->setIsMaterializable(false); 5369 5370 if (StripDebugInfo) 5371 stripDebugInfo(*F); 5372 5373 // Upgrade any old intrinsic calls in the function. 5374 for (auto &I : UpgradedIntrinsics) { 5375 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5376 UI != UE;) { 5377 User *U = *UI; 5378 ++UI; 5379 if (CallInst *CI = dyn_cast<CallInst>(U)) 5380 UpgradeIntrinsicCall(CI, I.second); 5381 } 5382 } 5383 5384 // Finish fn->subprogram upgrade for materialized functions. 5385 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5386 F->setSubprogram(SP); 5387 5388 // Bring in any functions that this function forward-referenced via 5389 // blockaddresses. 5390 return materializeForwardReferencedFunctions(); 5391 } 5392 5393 std::error_code BitcodeReader::materializeModule() { 5394 if (std::error_code EC = materializeMetadata()) 5395 return EC; 5396 5397 // Promise to materialize all forward references. 5398 WillMaterializeAllForwardRefs = true; 5399 5400 // Iterate over the module, deserializing any functions that are still on 5401 // disk. 5402 for (Function &F : *TheModule) { 5403 if (std::error_code EC = materialize(&F)) 5404 return EC; 5405 } 5406 // At this point, if there are any function bodies, parse the rest of 5407 // the bits in the module past the last function block we have recorded 5408 // through either lazy scanning or the VST. 5409 if (LastFunctionBlockBit || NextUnreadBit) 5410 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5411 : NextUnreadBit); 5412 5413 // Check that all block address forward references got resolved (as we 5414 // promised above). 5415 if (!BasicBlockFwdRefs.empty()) 5416 return error("Never resolved function from blockaddress"); 5417 5418 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5419 // to prevent this instructions with TBAA tags should be upgraded first. 5420 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5421 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5422 5423 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5424 // delete the old functions to clean up. We can't do this unless the entire 5425 // module is materialized because there could always be another function body 5426 // with calls to the old function. 5427 for (auto &I : UpgradedIntrinsics) { 5428 for (auto *U : I.first->users()) { 5429 if (CallInst *CI = dyn_cast<CallInst>(U)) 5430 UpgradeIntrinsicCall(CI, I.second); 5431 } 5432 if (!I.first->use_empty()) 5433 I.first->replaceAllUsesWith(I.second); 5434 I.first->eraseFromParent(); 5435 } 5436 UpgradedIntrinsics.clear(); 5437 5438 UpgradeDebugInfo(*TheModule); 5439 return std::error_code(); 5440 } 5441 5442 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5443 return IdentifiedStructTypes; 5444 } 5445 5446 std::error_code 5447 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5448 if (Streamer) 5449 return initLazyStream(std::move(Streamer)); 5450 return initStreamFromBuffer(); 5451 } 5452 5453 std::error_code BitcodeReader::initStreamFromBuffer() { 5454 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5455 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5456 5457 if (Buffer->getBufferSize() & 3) 5458 return error("Invalid bitcode signature"); 5459 5460 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5461 // The magic number is 0x0B17C0DE stored in little endian. 5462 if (isBitcodeWrapper(BufPtr, BufEnd)) 5463 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5464 return error("Invalid bitcode wrapper header"); 5465 5466 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5467 Stream.init(&*StreamFile); 5468 5469 return std::error_code(); 5470 } 5471 5472 std::error_code 5473 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5474 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5475 // see it. 5476 auto OwnedBytes = 5477 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5478 StreamingMemoryObject &Bytes = *OwnedBytes; 5479 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5480 Stream.init(&*StreamFile); 5481 5482 unsigned char buf[16]; 5483 if (Bytes.readBytes(buf, 16, 0) != 16) 5484 return error("Invalid bitcode signature"); 5485 5486 if (!isBitcode(buf, buf + 16)) 5487 return error("Invalid bitcode signature"); 5488 5489 if (isBitcodeWrapper(buf, buf + 4)) { 5490 const unsigned char *bitcodeStart = buf; 5491 const unsigned char *bitcodeEnd = buf + 16; 5492 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5493 Bytes.dropLeadingBytes(bitcodeStart - buf); 5494 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5495 } 5496 return std::error_code(); 5497 } 5498 5499 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5500 const Twine &Message) { 5501 return ::error(DiagnosticHandler, make_error_code(E), Message); 5502 } 5503 5504 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5505 return ::error(DiagnosticHandler, 5506 make_error_code(BitcodeError::CorruptedBitcode), Message); 5507 } 5508 5509 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5510 return ::error(DiagnosticHandler, make_error_code(E)); 5511 } 5512 5513 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5514 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5515 bool IsLazy, bool CheckGlobalValSummaryPresenceOnly) 5516 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5517 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5518 5519 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5520 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5521 bool CheckGlobalValSummaryPresenceOnly) 5522 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5523 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5524 5525 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5526 5527 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5528 5529 GlobalValue::GUID 5530 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5531 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5532 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5533 return VGI->second; 5534 } 5535 5536 GlobalValueInfo * 5537 ModuleSummaryIndexBitcodeReader::getInfoFromSummaryOffset(uint64_t Offset) { 5538 auto I = SummaryOffsetToInfoMap.find(Offset); 5539 assert(I != SummaryOffsetToInfoMap.end()); 5540 return I->second; 5541 } 5542 5543 // Specialized value symbol table parser used when reading module index 5544 // blocks where we don't actually create global values. 5545 // At the end of this routine the module index is populated with a map 5546 // from global value name to GlobalValueInfo. The global value info contains 5547 // the function block's bitcode offset (if applicable), or the offset into the 5548 // summary section for the combined index. 5549 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5550 uint64_t Offset, 5551 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5552 assert(Offset > 0 && "Expected non-zero VST offset"); 5553 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5554 5555 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5556 return error("Invalid record"); 5557 5558 SmallVector<uint64_t, 64> Record; 5559 5560 // Read all the records for this value table. 5561 SmallString<128> ValueName; 5562 while (1) { 5563 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5564 5565 switch (Entry.Kind) { 5566 case BitstreamEntry::SubBlock: // Handled for us already. 5567 case BitstreamEntry::Error: 5568 return error("Malformed block"); 5569 case BitstreamEntry::EndBlock: 5570 // Done parsing VST, jump back to wherever we came from. 5571 Stream.JumpToBit(CurrentBit); 5572 return std::error_code(); 5573 case BitstreamEntry::Record: 5574 // The interesting case. 5575 break; 5576 } 5577 5578 // Read a record. 5579 Record.clear(); 5580 switch (Stream.readRecord(Entry.ID, Record)) { 5581 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5582 break; 5583 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5584 if (convertToString(Record, 1, ValueName)) 5585 return error("Invalid record"); 5586 unsigned ValueID = Record[0]; 5587 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5588 llvm::make_unique<GlobalValueInfo>(); 5589 assert(!SourceFileName.empty()); 5590 auto VLI = ValueIdToLinkageMap.find(ValueID); 5591 assert(VLI != ValueIdToLinkageMap.end() && 5592 "No linkage found for VST entry?"); 5593 std::string GlobalId = GlobalValue::getGlobalIdentifier( 5594 ValueName, VLI->second, SourceFileName); 5595 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5596 if (PrintSummaryGUIDs) 5597 dbgs() << "GUID " << ValueGUID << " is " << ValueName << "\n"; 5598 TheIndex->addGlobalValueInfo(ValueGUID, std::move(GlobalValInfo)); 5599 ValueIdToCallGraphGUIDMap[ValueID] = ValueGUID; 5600 ValueName.clear(); 5601 break; 5602 } 5603 case bitc::VST_CODE_FNENTRY: { 5604 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5605 if (convertToString(Record, 2, ValueName)) 5606 return error("Invalid record"); 5607 unsigned ValueID = Record[0]; 5608 uint64_t FuncOffset = Record[1]; 5609 assert(!IsLazy && "Lazy summary read only supported for combined index"); 5610 std::unique_ptr<GlobalValueInfo> FuncInfo = 5611 llvm::make_unique<GlobalValueInfo>(FuncOffset); 5612 assert(!SourceFileName.empty()); 5613 auto VLI = ValueIdToLinkageMap.find(ValueID); 5614 assert(VLI != ValueIdToLinkageMap.end() && 5615 "No linkage found for VST entry?"); 5616 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5617 ValueName, VLI->second, SourceFileName); 5618 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5619 if (PrintSummaryGUIDs) 5620 dbgs() << "GUID " << FunctionGUID << " is " << ValueName << "\n"; 5621 TheIndex->addGlobalValueInfo(FunctionGUID, std::move(FuncInfo)); 5622 ValueIdToCallGraphGUIDMap[ValueID] = FunctionGUID; 5623 5624 ValueName.clear(); 5625 break; 5626 } 5627 case bitc::VST_CODE_COMBINED_GVDEFENTRY: { 5628 // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid] 5629 unsigned ValueID = Record[0]; 5630 uint64_t GlobalValSummaryOffset = Record[1]; 5631 GlobalValue::GUID GlobalValGUID = Record[2]; 5632 std::unique_ptr<GlobalValueInfo> GlobalValInfo = 5633 llvm::make_unique<GlobalValueInfo>(GlobalValSummaryOffset); 5634 SummaryOffsetToInfoMap[GlobalValSummaryOffset] = GlobalValInfo.get(); 5635 TheIndex->addGlobalValueInfo(GlobalValGUID, std::move(GlobalValInfo)); 5636 ValueIdToCallGraphGUIDMap[ValueID] = GlobalValGUID; 5637 break; 5638 } 5639 case bitc::VST_CODE_COMBINED_ENTRY: { 5640 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5641 unsigned ValueID = Record[0]; 5642 GlobalValue::GUID RefGUID = Record[1]; 5643 ValueIdToCallGraphGUIDMap[ValueID] = RefGUID; 5644 break; 5645 } 5646 } 5647 } 5648 } 5649 5650 // Parse just the blocks needed for building the index out of the module. 5651 // At the end of this routine the module Index is populated with a map 5652 // from global value name to GlobalValueInfo. The global value info contains 5653 // either the parsed summary information (when parsing summaries 5654 // eagerly), or just to the summary record's offset 5655 // if parsing lazily (IsLazy). 5656 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5657 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5658 return error("Invalid record"); 5659 5660 SmallVector<uint64_t, 64> Record; 5661 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5662 unsigned ValueId = 0; 5663 5664 // Read the index for this module. 5665 while (1) { 5666 BitstreamEntry Entry = Stream.advance(); 5667 5668 switch (Entry.Kind) { 5669 case BitstreamEntry::Error: 5670 return error("Malformed block"); 5671 case BitstreamEntry::EndBlock: 5672 return std::error_code(); 5673 5674 case BitstreamEntry::SubBlock: 5675 if (CheckGlobalValSummaryPresenceOnly) { 5676 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5677 SeenGlobalValSummary = true; 5678 // No need to parse the rest since we found the summary. 5679 return std::error_code(); 5680 } 5681 if (Stream.SkipBlock()) 5682 return error("Invalid record"); 5683 continue; 5684 } 5685 switch (Entry.ID) { 5686 default: // Skip unknown content. 5687 if (Stream.SkipBlock()) 5688 return error("Invalid record"); 5689 break; 5690 case bitc::BLOCKINFO_BLOCK_ID: 5691 // Need to parse these to get abbrev ids (e.g. for VST) 5692 if (Stream.ReadBlockInfoBlock()) 5693 return error("Malformed block"); 5694 break; 5695 case bitc::VALUE_SYMTAB_BLOCK_ID: 5696 // Should have been parsed earlier via VSTOffset, unless there 5697 // is no summary section. 5698 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5699 !SeenGlobalValSummary) && 5700 "Expected early VST parse via VSTOffset record"); 5701 if (Stream.SkipBlock()) 5702 return error("Invalid record"); 5703 break; 5704 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5705 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5706 assert(!SeenValueSymbolTable && 5707 "Already read VST when parsing summary block?"); 5708 if (std::error_code EC = 5709 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5710 return EC; 5711 SeenValueSymbolTable = true; 5712 SeenGlobalValSummary = true; 5713 if (IsLazy) { 5714 // Lazy parsing of summary info, skip it. 5715 if (Stream.SkipBlock()) 5716 return error("Invalid record"); 5717 } else if (std::error_code EC = parseEntireSummary()) 5718 return EC; 5719 break; 5720 case bitc::MODULE_STRTAB_BLOCK_ID: 5721 if (std::error_code EC = parseModuleStringTable()) 5722 return EC; 5723 break; 5724 } 5725 continue; 5726 5727 case BitstreamEntry::Record: { 5728 Record.clear(); 5729 auto BitCode = Stream.readRecord(Entry.ID, Record); 5730 switch (BitCode) { 5731 default: 5732 break; // Default behavior, ignore unknown content. 5733 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5734 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5735 SmallString<128> ValueName; 5736 if (convertToString(Record, 0, ValueName)) 5737 return error("Invalid record"); 5738 SourceFileName = ValueName.c_str(); 5739 break; 5740 } 5741 /// MODULE_CODE_HASH: [5*i32] 5742 case bitc::MODULE_CODE_HASH: { 5743 if (Record.size() != 5) 5744 return error("Invalid hash length " + Twine(Record.size()).str()); 5745 if (!TheIndex) 5746 break; 5747 if (TheIndex->modulePaths().empty()) 5748 // Does not have any summary emitted. 5749 break; 5750 if (TheIndex->modulePaths().size() != 1) 5751 return error("Don't expect multiple modules defined?"); 5752 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5753 int Pos = 0; 5754 for (auto &Val : Record) { 5755 assert(!(Val >> 32) && "Unexpected high bits set"); 5756 Hash[Pos++] = Val; 5757 } 5758 break; 5759 } 5760 /// MODULE_CODE_VSTOFFSET: [offset] 5761 case bitc::MODULE_CODE_VSTOFFSET: 5762 if (Record.size() < 1) 5763 return error("Invalid record"); 5764 VSTOffset = Record[0]; 5765 break; 5766 // GLOBALVAR: [pointer type, isconst, initid, 5767 // linkage, alignment, section, visibility, threadlocal, 5768 // unnamed_addr, externally_initialized, dllstorageclass, 5769 // comdat] 5770 case bitc::MODULE_CODE_GLOBALVAR: { 5771 if (Record.size() < 6) 5772 return error("Invalid record"); 5773 uint64_t RawLinkage = Record[3]; 5774 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5775 ValueIdToLinkageMap[ValueId++] = Linkage; 5776 break; 5777 } 5778 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5779 // alignment, section, visibility, gc, unnamed_addr, 5780 // prologuedata, dllstorageclass, comdat, prefixdata] 5781 case bitc::MODULE_CODE_FUNCTION: { 5782 if (Record.size() < 8) 5783 return error("Invalid record"); 5784 uint64_t RawLinkage = Record[3]; 5785 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5786 ValueIdToLinkageMap[ValueId++] = Linkage; 5787 break; 5788 } 5789 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5790 // dllstorageclass] 5791 case bitc::MODULE_CODE_ALIAS: { 5792 if (Record.size() < 6) 5793 return error("Invalid record"); 5794 uint64_t RawLinkage = Record[3]; 5795 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5796 ValueIdToLinkageMap[ValueId++] = Linkage; 5797 break; 5798 } 5799 } 5800 } 5801 continue; 5802 } 5803 } 5804 } 5805 5806 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5807 // objects in the index. 5808 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 5809 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 5810 return error("Invalid record"); 5811 5812 SmallVector<uint64_t, 64> Record; 5813 5814 bool Combined = false; 5815 while (1) { 5816 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5817 5818 switch (Entry.Kind) { 5819 case BitstreamEntry::SubBlock: // Handled for us already. 5820 case BitstreamEntry::Error: 5821 return error("Malformed block"); 5822 case BitstreamEntry::EndBlock: 5823 // For a per-module index, remove any entries that still have empty 5824 // summaries. The VST parsing creates entries eagerly for all symbols, 5825 // but not all have associated summaries (e.g. it doesn't know how to 5826 // distinguish between VST_CODE_ENTRY for function declarations vs global 5827 // variables with initializers that end up with a summary). Remove those 5828 // entries now so that we don't need to rely on the combined index merger 5829 // to clean them up (especially since that may not run for the first 5830 // module's index if we merge into that). 5831 if (!Combined) 5832 TheIndex->removeEmptySummaryEntries(); 5833 return std::error_code(); 5834 case BitstreamEntry::Record: 5835 // The interesting case. 5836 break; 5837 } 5838 5839 // Read a record. The record format depends on whether this 5840 // is a per-module index or a combined index file. In the per-module 5841 // case the records contain the associated value's ID for correlation 5842 // with VST entries. In the combined index the correlation is done 5843 // via the bitcode offset of the summary records (which were saved 5844 // in the combined index VST entries). The records also contain 5845 // information used for ThinLTO renaming and importing. 5846 Record.clear(); 5847 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5848 auto BitCode = Stream.readRecord(Entry.ID, Record); 5849 switch (BitCode) { 5850 default: // Default behavior: ignore. 5851 break; 5852 // FS_PERMODULE: [valueid, linkage, instcount, numrefs, numrefs x valueid, 5853 // n x (valueid, callsitecount)] 5854 // FS_PERMODULE_PROFILE: [valueid, linkage, instcount, numrefs, 5855 // numrefs x valueid, 5856 // n x (valueid, callsitecount, profilecount)] 5857 case bitc::FS_PERMODULE: 5858 case bitc::FS_PERMODULE_PROFILE: { 5859 unsigned ValueID = Record[0]; 5860 uint64_t RawLinkage = Record[1]; 5861 unsigned InstCount = Record[2]; 5862 unsigned NumRefs = Record[3]; 5863 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5864 getDecodedLinkage(RawLinkage), InstCount); 5865 // The module path string ref set in the summary must be owned by the 5866 // index's module string table. Since we don't have a module path 5867 // string table section in the per-module index, we create a single 5868 // module path string table entry with an empty (0) ID to take 5869 // ownership. 5870 FS->setModulePath( 5871 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5872 static int RefListStartIndex = 4; 5873 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5874 assert(Record.size() >= RefListStartIndex + NumRefs && 5875 "Record size inconsistent with number of references"); 5876 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5877 unsigned RefValueId = Record[I]; 5878 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5879 FS->addRefEdge(RefGUID); 5880 } 5881 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5882 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5883 ++I) { 5884 unsigned CalleeValueId = Record[I]; 5885 unsigned CallsiteCount = Record[++I]; 5886 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5887 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId); 5888 FS->addCallGraphEdge(CalleeGUID, 5889 CalleeInfo(CallsiteCount, ProfileCount)); 5890 } 5891 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5892 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5893 assert(!Info->summary() && "Expected a single summary per VST entry"); 5894 Info->setSummary(std::move(FS)); 5895 break; 5896 } 5897 // FS_ALIAS: [valueid, linkage, valueid] 5898 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5899 // they expect all aliasee summaries to be available. 5900 case bitc::FS_ALIAS: { 5901 unsigned ValueID = Record[0]; 5902 uint64_t RawLinkage = Record[1]; 5903 unsigned AliaseeID = Record[2]; 5904 std::unique_ptr<AliasSummary> AS = 5905 llvm::make_unique<AliasSummary>(getDecodedLinkage(RawLinkage)); 5906 // The module path string ref set in the summary must be owned by the 5907 // index's module string table. Since we don't have a module path 5908 // string table section in the per-module index, we create a single 5909 // module path string table entry with an empty (0) ID to take 5910 // ownership. 5911 AS->setModulePath( 5912 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5913 5914 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID); 5915 auto *AliaseeInfo = TheIndex->getGlobalValueInfo(AliaseeGUID); 5916 if (!AliaseeInfo->summary()) 5917 return error("Alias expects aliasee summary to be parsed"); 5918 AS->setAliasee(AliaseeInfo->summary()); 5919 5920 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5921 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5922 assert(!Info->summary() && "Expected a single summary per VST entry"); 5923 Info->setSummary(std::move(AS)); 5924 break; 5925 } 5926 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, linkage, n x valueid] 5927 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5928 unsigned ValueID = Record[0]; 5929 uint64_t RawLinkage = Record[1]; 5930 std::unique_ptr<GlobalVarSummary> FS = 5931 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 5932 FS->setModulePath( 5933 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 5934 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 5935 unsigned RefValueId = Record[I]; 5936 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5937 FS->addRefEdge(RefGUID); 5938 } 5939 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID); 5940 auto *Info = TheIndex->getGlobalValueInfo(GUID); 5941 assert(!Info->summary() && "Expected a single summary per VST entry"); 5942 Info->setSummary(std::move(FS)); 5943 break; 5944 } 5945 // FS_COMBINED: [modid, linkage, instcount, numrefs, numrefs x valueid, 5946 // n x (valueid, callsitecount)] 5947 // FS_COMBINED_PROFILE: [modid, linkage, instcount, numrefs, 5948 // numrefs x valueid, 5949 // n x (valueid, callsitecount, profilecount)] 5950 case bitc::FS_COMBINED: 5951 case bitc::FS_COMBINED_PROFILE: { 5952 uint64_t ModuleId = Record[0]; 5953 uint64_t RawLinkage = Record[1]; 5954 unsigned InstCount = Record[2]; 5955 unsigned NumRefs = Record[3]; 5956 std::unique_ptr<FunctionSummary> FS = llvm::make_unique<FunctionSummary>( 5957 getDecodedLinkage(RawLinkage), InstCount); 5958 FS->setModulePath(ModuleIdMap[ModuleId]); 5959 static int RefListStartIndex = 4; 5960 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5961 assert(Record.size() >= RefListStartIndex + NumRefs && 5962 "Record size inconsistent with number of references"); 5963 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 5964 unsigned RefValueId = Record[I]; 5965 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 5966 FS->addRefEdge(RefGUID); 5967 } 5968 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5969 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 5970 ++I) { 5971 unsigned CalleeValueId = Record[I]; 5972 unsigned CallsiteCount = Record[++I]; 5973 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 5974 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId); 5975 FS->addCallGraphEdge(CalleeGUID, 5976 CalleeInfo(CallsiteCount, ProfileCount)); 5977 } 5978 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 5979 assert(!Info->summary() && "Expected a single summary per VST entry"); 5980 Info->setSummary(std::move(FS)); 5981 Combined = true; 5982 break; 5983 } 5984 // FS_COMBINED_ALIAS: [modid, linkage, offset] 5985 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5986 // they expect all aliasee summaries to be available. 5987 case bitc::FS_COMBINED_ALIAS: { 5988 uint64_t ModuleId = Record[0]; 5989 uint64_t RawLinkage = Record[1]; 5990 uint64_t AliaseeSummaryOffset = Record[2]; 5991 std::unique_ptr<AliasSummary> AS = 5992 llvm::make_unique<AliasSummary>(getDecodedLinkage(RawLinkage)); 5993 AS->setModulePath(ModuleIdMap[ModuleId]); 5994 5995 auto *AliaseeInfo = getInfoFromSummaryOffset(AliaseeSummaryOffset); 5996 if (!AliaseeInfo->summary()) 5997 return error("Alias expects aliasee summary to be parsed"); 5998 AS->setAliasee(AliaseeInfo->summary()); 5999 6000 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 6001 assert(!Info->summary() && "Expected a single summary per VST entry"); 6002 Info->setSummary(std::move(AS)); 6003 Combined = true; 6004 break; 6005 } 6006 // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, linkage, n x valueid] 6007 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6008 uint64_t ModuleId = Record[0]; 6009 uint64_t RawLinkage = Record[1]; 6010 std::unique_ptr<GlobalVarSummary> FS = 6011 llvm::make_unique<GlobalVarSummary>(getDecodedLinkage(RawLinkage)); 6012 FS->setModulePath(ModuleIdMap[ModuleId]); 6013 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6014 unsigned RefValueId = Record[I]; 6015 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId); 6016 FS->addRefEdge(RefGUID); 6017 } 6018 auto *Info = getInfoFromSummaryOffset(CurRecordBit); 6019 assert(!Info->summary() && "Expected a single summary per VST entry"); 6020 Info->setSummary(std::move(FS)); 6021 Combined = true; 6022 break; 6023 } 6024 } 6025 } 6026 llvm_unreachable("Exit infinite loop"); 6027 } 6028 6029 // Parse the module string table block into the Index. 6030 // This populates the ModulePathStringTable map in the index. 6031 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6032 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6033 return error("Invalid record"); 6034 6035 SmallVector<uint64_t, 64> Record; 6036 6037 SmallString<128> ModulePath; 6038 ModulePathStringTableTy::iterator LastSeenModulePath; 6039 while (1) { 6040 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6041 6042 switch (Entry.Kind) { 6043 case BitstreamEntry::SubBlock: // Handled for us already. 6044 case BitstreamEntry::Error: 6045 return error("Malformed block"); 6046 case BitstreamEntry::EndBlock: 6047 return std::error_code(); 6048 case BitstreamEntry::Record: 6049 // The interesting case. 6050 break; 6051 } 6052 6053 Record.clear(); 6054 switch (Stream.readRecord(Entry.ID, Record)) { 6055 default: // Default behavior: ignore. 6056 break; 6057 case bitc::MST_CODE_ENTRY: { 6058 // MST_ENTRY: [modid, namechar x N] 6059 uint64_t ModuleId = Record[0]; 6060 6061 if (convertToString(Record, 1, ModulePath)) 6062 return error("Invalid record"); 6063 6064 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6065 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6066 6067 ModulePath.clear(); 6068 break; 6069 } 6070 /// MST_CODE_HASH: [5*i32] 6071 case bitc::MST_CODE_HASH: { 6072 if (Record.size() != 5) 6073 return error("Invalid hash length " + Twine(Record.size()).str()); 6074 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6075 return error("Invalid hash that does not follow a module path"); 6076 int Pos = 0; 6077 for (auto &Val : Record) { 6078 assert(!(Val >> 32) && "Unexpected high bits set"); 6079 LastSeenModulePath->second.second[Pos++] = Val; 6080 } 6081 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6082 LastSeenModulePath = TheIndex->modulePaths().end(); 6083 break; 6084 } 6085 } 6086 } 6087 llvm_unreachable("Exit infinite loop"); 6088 } 6089 6090 // Parse the function info index from the bitcode streamer into the given index. 6091 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6092 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6093 TheIndex = I; 6094 6095 if (std::error_code EC = initStream(std::move(Streamer))) 6096 return EC; 6097 6098 // Sniff for the signature. 6099 if (!hasValidBitcodeHeader(Stream)) 6100 return error("Invalid bitcode signature"); 6101 6102 // We expect a number of well-defined blocks, though we don't necessarily 6103 // need to understand them all. 6104 while (1) { 6105 if (Stream.AtEndOfStream()) { 6106 // We didn't really read a proper Module block. 6107 return error("Malformed block"); 6108 } 6109 6110 BitstreamEntry Entry = 6111 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6112 6113 if (Entry.Kind != BitstreamEntry::SubBlock) 6114 return error("Malformed block"); 6115 6116 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6117 // building the function summary index. 6118 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6119 return parseModule(); 6120 6121 if (Stream.SkipBlock()) 6122 return error("Invalid record"); 6123 } 6124 } 6125 6126 // Parse the summary information at the given offset in the buffer into 6127 // the index. Used to support lazy parsing of summaries from the 6128 // combined index during importing. 6129 // TODO: This function is not yet complete as it won't have a consumer 6130 // until ThinLTO function importing is added. 6131 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary( 6132 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I, 6133 size_t SummaryOffset) { 6134 TheIndex = I; 6135 6136 if (std::error_code EC = initStream(std::move(Streamer))) 6137 return EC; 6138 6139 // Sniff for the signature. 6140 if (!hasValidBitcodeHeader(Stream)) 6141 return error("Invalid bitcode signature"); 6142 6143 Stream.JumpToBit(SummaryOffset); 6144 6145 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6146 6147 switch (Entry.Kind) { 6148 default: 6149 return error("Malformed block"); 6150 case BitstreamEntry::Record: 6151 // The expected case. 6152 break; 6153 } 6154 6155 // TODO: Read a record. This interface will be completed when ThinLTO 6156 // importing is added so that it can be tested. 6157 SmallVector<uint64_t, 64> Record; 6158 switch (Stream.readRecord(Entry.ID, Record)) { 6159 case bitc::FS_COMBINED: 6160 case bitc::FS_COMBINED_PROFILE: 6161 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: 6162 default: 6163 return error("Invalid record"); 6164 } 6165 6166 return std::error_code(); 6167 } 6168 6169 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6170 std::unique_ptr<DataStreamer> Streamer) { 6171 if (Streamer) 6172 return initLazyStream(std::move(Streamer)); 6173 return initStreamFromBuffer(); 6174 } 6175 6176 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6177 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6178 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6179 6180 if (Buffer->getBufferSize() & 3) 6181 return error("Invalid bitcode signature"); 6182 6183 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6184 // The magic number is 0x0B17C0DE stored in little endian. 6185 if (isBitcodeWrapper(BufPtr, BufEnd)) 6186 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6187 return error("Invalid bitcode wrapper header"); 6188 6189 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6190 Stream.init(&*StreamFile); 6191 6192 return std::error_code(); 6193 } 6194 6195 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6196 std::unique_ptr<DataStreamer> Streamer) { 6197 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6198 // see it. 6199 auto OwnedBytes = 6200 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6201 StreamingMemoryObject &Bytes = *OwnedBytes; 6202 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6203 Stream.init(&*StreamFile); 6204 6205 unsigned char buf[16]; 6206 if (Bytes.readBytes(buf, 16, 0) != 16) 6207 return error("Invalid bitcode signature"); 6208 6209 if (!isBitcode(buf, buf + 16)) 6210 return error("Invalid bitcode signature"); 6211 6212 if (isBitcodeWrapper(buf, buf + 4)) { 6213 const unsigned char *bitcodeStart = buf; 6214 const unsigned char *bitcodeEnd = buf + 16; 6215 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6216 Bytes.dropLeadingBytes(bitcodeStart - buf); 6217 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6218 } 6219 return std::error_code(); 6220 } 6221 6222 namespace { 6223 class BitcodeErrorCategoryType : public std::error_category { 6224 const char *name() const LLVM_NOEXCEPT override { 6225 return "llvm.bitcode"; 6226 } 6227 std::string message(int IE) const override { 6228 BitcodeError E = static_cast<BitcodeError>(IE); 6229 switch (E) { 6230 case BitcodeError::InvalidBitcodeSignature: 6231 return "Invalid bitcode signature"; 6232 case BitcodeError::CorruptedBitcode: 6233 return "Corrupted bitcode"; 6234 } 6235 llvm_unreachable("Unknown error type!"); 6236 } 6237 }; 6238 } // end anonymous namespace 6239 6240 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6241 6242 const std::error_category &llvm::BitcodeErrorCategory() { 6243 return *ErrorCategory; 6244 } 6245 6246 //===----------------------------------------------------------------------===// 6247 // External interface 6248 //===----------------------------------------------------------------------===// 6249 6250 static ErrorOr<std::unique_ptr<Module>> 6251 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6252 BitcodeReader *R, LLVMContext &Context, 6253 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6254 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6255 M->setMaterializer(R); 6256 6257 auto cleanupOnError = [&](std::error_code EC) { 6258 R->releaseBuffer(); // Never take ownership on error. 6259 return EC; 6260 }; 6261 6262 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6263 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6264 ShouldLazyLoadMetadata)) 6265 return cleanupOnError(EC); 6266 6267 if (MaterializeAll) { 6268 // Read in the entire module, and destroy the BitcodeReader. 6269 if (std::error_code EC = M->materializeAll()) 6270 return cleanupOnError(EC); 6271 } else { 6272 // Resolve forward references from blockaddresses. 6273 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6274 return cleanupOnError(EC); 6275 } 6276 return std::move(M); 6277 } 6278 6279 /// \brief Get a lazy one-at-time loading module from bitcode. 6280 /// 6281 /// This isn't always used in a lazy context. In particular, it's also used by 6282 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6283 /// in forward-referenced functions from block address references. 6284 /// 6285 /// \param[in] MaterializeAll Set to \c true if we should materialize 6286 /// everything. 6287 static ErrorOr<std::unique_ptr<Module>> 6288 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6289 LLVMContext &Context, bool MaterializeAll, 6290 bool ShouldLazyLoadMetadata = false) { 6291 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6292 6293 ErrorOr<std::unique_ptr<Module>> Ret = 6294 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6295 MaterializeAll, ShouldLazyLoadMetadata); 6296 if (!Ret) 6297 return Ret; 6298 6299 Buffer.release(); // The BitcodeReader owns it now. 6300 return Ret; 6301 } 6302 6303 ErrorOr<std::unique_ptr<Module>> 6304 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6305 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6306 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6307 ShouldLazyLoadMetadata); 6308 } 6309 6310 ErrorOr<std::unique_ptr<Module>> 6311 llvm::getStreamedBitcodeModule(StringRef Name, 6312 std::unique_ptr<DataStreamer> Streamer, 6313 LLVMContext &Context) { 6314 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6315 BitcodeReader *R = new BitcodeReader(Context); 6316 6317 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6318 false); 6319 } 6320 6321 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6322 LLVMContext &Context) { 6323 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6324 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6325 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6326 // written. We must defer until the Module has been fully materialized. 6327 } 6328 6329 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6330 LLVMContext &Context) { 6331 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6332 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6333 ErrorOr<std::string> Triple = R->parseTriple(); 6334 if (Triple.getError()) 6335 return ""; 6336 return Triple.get(); 6337 } 6338 6339 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6340 LLVMContext &Context) { 6341 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6342 BitcodeReader R(Buf.release(), Context); 6343 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6344 if (ProducerString.getError()) 6345 return ""; 6346 return ProducerString.get(); 6347 } 6348 6349 // Parse the specified bitcode buffer, returning the function info index. 6350 // If IsLazy is false, parse the entire function summary into 6351 // the index. Otherwise skip the function summary section, and only create 6352 // an index object with a map from function name to function summary offset. 6353 // The index is used to perform lazy function summary reading later. 6354 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6355 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6356 DiagnosticHandlerFunction DiagnosticHandler, 6357 bool IsLazy) { 6358 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6359 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 6360 6361 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6362 6363 auto cleanupOnError = [&](std::error_code EC) { 6364 R.releaseBuffer(); // Never take ownership on error. 6365 return EC; 6366 }; 6367 6368 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6369 return cleanupOnError(EC); 6370 6371 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6372 return std::move(Index); 6373 } 6374 6375 // Check if the given bitcode buffer contains a global value summary block. 6376 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6377 DiagnosticHandlerFunction DiagnosticHandler) { 6378 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6379 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 6380 6381 auto cleanupOnError = [&](std::error_code EC) { 6382 R.releaseBuffer(); // Never take ownership on error. 6383 return false; 6384 }; 6385 6386 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6387 return cleanupOnError(EC); 6388 6389 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6390 return R.foundGlobalValSummary(); 6391 } 6392 6393 // This method supports lazy reading of summary data from the combined 6394 // index during ThinLTO function importing. When reading the combined index 6395 // file, getModuleSummaryIndex is first invoked with IsLazy=true. 6396 // Then this method is called for each value considered for importing, 6397 // to parse the summary information for the given value name into 6398 // the index. 6399 std::error_code llvm::readGlobalValueSummary( 6400 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 6401 StringRef ValueName, std::unique_ptr<ModuleSummaryIndex> Index) { 6402 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6403 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6404 6405 auto cleanupOnError = [&](std::error_code EC) { 6406 R.releaseBuffer(); // Never take ownership on error. 6407 return EC; 6408 }; 6409 6410 // Lookup the given value name in the GlobalValueMap, which may 6411 // contain a list of global value infos in the case of a COMDAT. Walk through 6412 // and parse each summary info at the summary offset 6413 // recorded when parsing the value symbol table. 6414 for (const auto &FI : Index->getGlobalValueInfoList(ValueName)) { 6415 size_t SummaryOffset = FI->bitcodeIndex(); 6416 if (std::error_code EC = 6417 R.parseGlobalValueSummary(nullptr, Index.get(), SummaryOffset)) 6418 return cleanupOnError(EC); 6419 } 6420 6421 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6422 return std::error_code(); 6423 } 6424