1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/FunctionInfo.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 using namespace llvm; 39 40 namespace { 41 enum { 42 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 43 }; 44 45 /// Indicates which operator an operand allows (for the few operands that may 46 /// only reference a certain operator). 47 enum OperatorConstraint { 48 OC_None = 0, // No constraint 49 OC_CatchPad, // Must be CatchPadInst 50 OC_CleanupPad // Must be CleanupPadInst 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty, 97 OperatorConstraint OC = OC_None); 98 99 bool assignValue(Value *V, unsigned Idx); 100 101 /// Once all constants are read, this method bulk resolves any forward 102 /// references. 103 void resolveConstantForwardRefs(); 104 }; 105 106 class BitcodeReaderMDValueList { 107 unsigned NumFwdRefs; 108 bool AnyFwdRefs; 109 unsigned MinFwdRef; 110 unsigned MaxFwdRef; 111 std::vector<TrackingMDRef> MDValuePtrs; 112 113 LLVMContext &Context; 114 public: 115 BitcodeReaderMDValueList(LLVMContext &C) 116 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 117 118 // vector compatibility methods 119 unsigned size() const { return MDValuePtrs.size(); } 120 void resize(unsigned N) { MDValuePtrs.resize(N); } 121 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 122 void clear() { MDValuePtrs.clear(); } 123 Metadata *back() const { return MDValuePtrs.back(); } 124 void pop_back() { MDValuePtrs.pop_back(); } 125 bool empty() const { return MDValuePtrs.empty(); } 126 127 Metadata *operator[](unsigned i) const { 128 assert(i < MDValuePtrs.size()); 129 return MDValuePtrs[i]; 130 } 131 132 void shrinkTo(unsigned N) { 133 assert(N <= size() && "Invalid shrinkTo request!"); 134 MDValuePtrs.resize(N); 135 } 136 137 Metadata *getValueFwdRef(unsigned Idx); 138 void assignValue(Metadata *MD, unsigned Idx); 139 void tryToResolveCycles(); 140 }; 141 142 class BitcodeReader : public GVMaterializer { 143 LLVMContext &Context; 144 DiagnosticHandlerFunction DiagnosticHandler; 145 Module *TheModule = nullptr; 146 std::unique_ptr<MemoryBuffer> Buffer; 147 std::unique_ptr<BitstreamReader> StreamFile; 148 BitstreamCursor Stream; 149 // Next offset to start scanning for lazy parsing of function bodies. 150 uint64_t NextUnreadBit = 0; 151 // Last function offset found in the VST. 152 uint64_t LastFunctionBlockBit = 0; 153 bool SeenValueSymbolTable = false; 154 uint64_t VSTOffset = 0; 155 // Contains an arbitrary and optional string identifying the bitcode producer 156 std::string ProducerIdentification; 157 158 std::vector<Type*> TypeList; 159 BitcodeReaderValueList ValueList; 160 BitcodeReaderMDValueList MDValueList; 161 std::vector<Comdat *> ComdatList; 162 SmallVector<Instruction *, 64> InstructionList; 163 164 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 165 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 166 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 167 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 168 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 169 170 SmallVector<Instruction*, 64> InstsWithTBAATag; 171 172 /// The set of attributes by index. Index zero in the file is for null, and 173 /// is thus not represented here. As such all indices are off by one. 174 std::vector<AttributeSet> MAttributes; 175 176 /// The set of attribute groups. 177 std::map<unsigned, AttributeSet> MAttributeGroups; 178 179 /// While parsing a function body, this is a list of the basic blocks for the 180 /// function. 181 std::vector<BasicBlock*> FunctionBBs; 182 183 // When reading the module header, this list is populated with functions that 184 // have bodies later in the file. 185 std::vector<Function*> FunctionsWithBodies; 186 187 // When intrinsic functions are encountered which require upgrading they are 188 // stored here with their replacement function. 189 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 190 UpgradedIntrinsicMap UpgradedIntrinsics; 191 192 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 193 DenseMap<unsigned, unsigned> MDKindMap; 194 195 // Several operations happen after the module header has been read, but 196 // before function bodies are processed. This keeps track of whether 197 // we've done this yet. 198 bool SeenFirstFunctionBody = false; 199 200 /// When function bodies are initially scanned, this map contains info about 201 /// where to find deferred function body in the stream. 202 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 203 204 /// When Metadata block is initially scanned when parsing the module, we may 205 /// choose to defer parsing of the metadata. This vector contains info about 206 /// which Metadata blocks are deferred. 207 std::vector<uint64_t> DeferredMetadataInfo; 208 209 /// These are basic blocks forward-referenced by block addresses. They are 210 /// inserted lazily into functions when they're loaded. The basic block ID is 211 /// its index into the vector. 212 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 213 std::deque<Function *> BasicBlockFwdRefQueue; 214 215 /// Indicates that we are using a new encoding for instruction operands where 216 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 217 /// instruction number, for a more compact encoding. Some instruction 218 /// operands are not relative to the instruction ID: basic block numbers, and 219 /// types. Once the old style function blocks have been phased out, we would 220 /// not need this flag. 221 bool UseRelativeIDs = false; 222 223 /// True if all functions will be materialized, negating the need to process 224 /// (e.g.) blockaddress forward references. 225 bool WillMaterializeAllForwardRefs = false; 226 227 /// Functions that have block addresses taken. This is usually empty. 228 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 229 230 /// True if any Metadata block has been materialized. 231 bool IsMetadataMaterialized = false; 232 233 bool StripDebugInfo = false; 234 235 /// Functions that need to be matched with subprograms when upgrading old 236 /// metadata. 237 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 238 239 std::vector<std::string> BundleTags; 240 241 public: 242 std::error_code error(BitcodeError E, const Twine &Message); 243 std::error_code error(BitcodeError E); 244 std::error_code error(const Twine &Message); 245 246 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 247 DiagnosticHandlerFunction DiagnosticHandler); 248 BitcodeReader(LLVMContext &Context, 249 DiagnosticHandlerFunction DiagnosticHandler); 250 ~BitcodeReader() override { freeState(); } 251 252 std::error_code materializeForwardReferencedFunctions(); 253 254 void freeState(); 255 256 void releaseBuffer(); 257 258 bool isDematerializable(const GlobalValue *GV) const override; 259 std::error_code materialize(GlobalValue *GV) override; 260 std::error_code materializeModule(Module *M) override; 261 std::vector<StructType *> getIdentifiedStructTypes() const override; 262 void dematerialize(GlobalValue *GV) override; 263 264 /// \brief Main interface to parsing a bitcode buffer. 265 /// \returns true if an error occurred. 266 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 267 Module *M, 268 bool ShouldLazyLoadMetadata = false); 269 270 /// \brief Cheap mechanism to just extract module triple 271 /// \returns true if an error occurred. 272 ErrorOr<std::string> parseTriple(); 273 274 /// Cheap mechanism to just extract the identification block out of bitcode. 275 ErrorOr<std::string> parseIdentificationBlock(); 276 277 static uint64_t decodeSignRotatedValue(uint64_t V); 278 279 /// Materialize any deferred Metadata block. 280 std::error_code materializeMetadata() override; 281 282 void setStripDebugInfo() override; 283 284 private: 285 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 286 // ProducerIdentification data member, and do some basic enforcement on the 287 // "epoch" encoded in the bitcode. 288 std::error_code parseBitcodeVersion(); 289 290 std::vector<StructType *> IdentifiedStructTypes; 291 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 292 StructType *createIdentifiedStructType(LLVMContext &Context); 293 294 Type *getTypeByID(unsigned ID); 295 Value *getFnValueByID(unsigned ID, Type *Ty, 296 OperatorConstraint OC = OC_None) { 297 if (Ty && Ty->isMetadataTy()) 298 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 299 return ValueList.getValueFwdRef(ID, Ty, OC); 300 } 301 Metadata *getFnMetadataByID(unsigned ID) { 302 return MDValueList.getValueFwdRef(ID); 303 } 304 BasicBlock *getBasicBlock(unsigned ID) const { 305 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 306 return FunctionBBs[ID]; 307 } 308 AttributeSet getAttributes(unsigned i) const { 309 if (i-1 < MAttributes.size()) 310 return MAttributes[i-1]; 311 return AttributeSet(); 312 } 313 314 /// Read a value/type pair out of the specified record from slot 'Slot'. 315 /// Increment Slot past the number of slots used in the record. Return true on 316 /// failure. 317 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 318 unsigned InstNum, Value *&ResVal) { 319 if (Slot == Record.size()) return true; 320 unsigned ValNo = (unsigned)Record[Slot++]; 321 // Adjust the ValNo, if it was encoded relative to the InstNum. 322 if (UseRelativeIDs) 323 ValNo = InstNum - ValNo; 324 if (ValNo < InstNum) { 325 // If this is not a forward reference, just return the value we already 326 // have. 327 ResVal = getFnValueByID(ValNo, nullptr); 328 return ResVal == nullptr; 329 } 330 if (Slot == Record.size()) 331 return true; 332 333 unsigned TypeNo = (unsigned)Record[Slot++]; 334 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 335 return ResVal == nullptr; 336 } 337 338 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 339 /// past the number of slots used by the value in the record. Return true if 340 /// there is an error. 341 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 342 unsigned InstNum, Type *Ty, Value *&ResVal, 343 OperatorConstraint OC = OC_None) { 344 if (getValue(Record, Slot, InstNum, Ty, ResVal, OC)) 345 return true; 346 // All values currently take a single record slot. 347 ++Slot; 348 return false; 349 } 350 351 /// Like popValue, but does not increment the Slot number. 352 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 353 unsigned InstNum, Type *Ty, Value *&ResVal, 354 OperatorConstraint OC = OC_None) { 355 ResVal = getValue(Record, Slot, InstNum, Ty, OC); 356 return ResVal == nullptr; 357 } 358 359 /// Version of getValue that returns ResVal directly, or 0 if there is an 360 /// error. 361 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 362 unsigned InstNum, Type *Ty, OperatorConstraint OC = OC_None) { 363 if (Slot == Record.size()) return nullptr; 364 unsigned ValNo = (unsigned)Record[Slot]; 365 // Adjust the ValNo, if it was encoded relative to the InstNum. 366 if (UseRelativeIDs) 367 ValNo = InstNum - ValNo; 368 return getFnValueByID(ValNo, Ty, OC); 369 } 370 371 /// Like getValue, but decodes signed VBRs. 372 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 373 unsigned InstNum, Type *Ty, 374 OperatorConstraint OC = OC_None) { 375 if (Slot == Record.size()) return nullptr; 376 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 377 // Adjust the ValNo, if it was encoded relative to the InstNum. 378 if (UseRelativeIDs) 379 ValNo = InstNum - ValNo; 380 return getFnValueByID(ValNo, Ty, OC); 381 } 382 383 /// Converts alignment exponent (i.e. power of two (or zero)) to the 384 /// corresponding alignment to use. If alignment is too large, returns 385 /// a corresponding error code. 386 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 387 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 388 std::error_code parseModule(uint64_t ResumeBit, 389 bool ShouldLazyLoadMetadata = false); 390 std::error_code parseAttributeBlock(); 391 std::error_code parseAttributeGroupBlock(); 392 std::error_code parseTypeTable(); 393 std::error_code parseTypeTableBody(); 394 std::error_code parseOperandBundleTags(); 395 396 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 397 unsigned NameIndex, Triple &TT); 398 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 399 std::error_code parseConstants(); 400 std::error_code rememberAndSkipFunctionBodies(); 401 std::error_code rememberAndSkipFunctionBody(); 402 /// Save the positions of the Metadata blocks and skip parsing the blocks. 403 std::error_code rememberAndSkipMetadata(); 404 std::error_code parseFunctionBody(Function *F); 405 std::error_code globalCleanup(); 406 std::error_code resolveGlobalAndAliasInits(); 407 std::error_code parseMetadata(); 408 std::error_code parseMetadataKinds(); 409 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 410 std::error_code parseMetadataAttachment(Function &F); 411 ErrorOr<std::string> parseModuleTriple(); 412 std::error_code parseUseLists(); 413 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 414 std::error_code initStreamFromBuffer(); 415 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 416 std::error_code findFunctionInStream( 417 Function *F, 418 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 419 }; 420 421 /// Class to manage reading and parsing function summary index bitcode 422 /// files/sections. 423 class FunctionIndexBitcodeReader { 424 DiagnosticHandlerFunction DiagnosticHandler; 425 426 /// Eventually points to the function index built during parsing. 427 FunctionInfoIndex *TheIndex = nullptr; 428 429 std::unique_ptr<MemoryBuffer> Buffer; 430 std::unique_ptr<BitstreamReader> StreamFile; 431 BitstreamCursor Stream; 432 433 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 434 /// 435 /// If false, the summary section is fully parsed into the index during 436 /// the initial parse. Otherwise, if true, the caller is expected to 437 /// invoke \a readFunctionSummary for each summary needed, and the summary 438 /// section is thus parsed lazily. 439 bool IsLazy = false; 440 441 /// Used to indicate whether caller only wants to check for the presence 442 /// of the function summary bitcode section. All blocks are skipped, 443 /// but the SeenFuncSummary boolean is set. 444 bool CheckFuncSummaryPresenceOnly = false; 445 446 /// Indicates whether we have encountered a function summary section 447 /// yet during parsing, used when checking if file contains function 448 /// summary section. 449 bool SeenFuncSummary = false; 450 451 /// \brief Map populated during function summary section parsing, and 452 /// consumed during ValueSymbolTable parsing. 453 /// 454 /// Used to correlate summary records with VST entries. For the per-module 455 /// index this maps the ValueID to the parsed function summary, and 456 /// for the combined index this maps the summary record's bitcode 457 /// offset to the function summary (since in the combined index the 458 /// VST records do not hold value IDs but rather hold the function 459 /// summary record offset). 460 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap; 461 462 /// Map populated during module path string table parsing, from the 463 /// module ID to a string reference owned by the index's module 464 /// path string table, used to correlate with combined index function 465 /// summary records. 466 DenseMap<uint64_t, StringRef> ModuleIdMap; 467 468 public: 469 std::error_code error(BitcodeError E, const Twine &Message); 470 std::error_code error(BitcodeError E); 471 std::error_code error(const Twine &Message); 472 473 FunctionIndexBitcodeReader(MemoryBuffer *Buffer, 474 DiagnosticHandlerFunction DiagnosticHandler, 475 bool IsLazy = false, 476 bool CheckFuncSummaryPresenceOnly = false); 477 FunctionIndexBitcodeReader(DiagnosticHandlerFunction DiagnosticHandler, 478 bool IsLazy = false, 479 bool CheckFuncSummaryPresenceOnly = false); 480 ~FunctionIndexBitcodeReader() { freeState(); } 481 482 void freeState(); 483 484 void releaseBuffer(); 485 486 /// Check if the parser has encountered a function summary section. 487 bool foundFuncSummary() { return SeenFuncSummary; } 488 489 /// \brief Main interface to parsing a bitcode buffer. 490 /// \returns true if an error occurred. 491 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 492 FunctionInfoIndex *I); 493 494 /// \brief Interface for parsing a function summary lazily. 495 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer, 496 FunctionInfoIndex *I, 497 size_t FunctionSummaryOffset); 498 499 private: 500 std::error_code parseModule(); 501 std::error_code parseValueSymbolTable(); 502 std::error_code parseEntireSummary(); 503 std::error_code parseModuleStringTable(); 504 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 505 std::error_code initStreamFromBuffer(); 506 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 507 }; 508 } // namespace 509 510 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 511 DiagnosticSeverity Severity, 512 const Twine &Msg) 513 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 514 515 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 516 517 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 518 std::error_code EC, const Twine &Message) { 519 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 520 DiagnosticHandler(DI); 521 return EC; 522 } 523 524 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 525 std::error_code EC) { 526 return error(DiagnosticHandler, EC, EC.message()); 527 } 528 529 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 530 const Twine &Message) { 531 return error(DiagnosticHandler, 532 make_error_code(BitcodeError::CorruptedBitcode), Message); 533 } 534 535 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 536 if (!ProducerIdentification.empty()) { 537 return ::error(DiagnosticHandler, make_error_code(E), 538 Message + " (Producer: '" + ProducerIdentification + 539 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 540 } 541 return ::error(DiagnosticHandler, make_error_code(E), Message); 542 } 543 544 std::error_code BitcodeReader::error(const Twine &Message) { 545 if (!ProducerIdentification.empty()) { 546 return ::error(DiagnosticHandler, 547 make_error_code(BitcodeError::CorruptedBitcode), 548 Message + " (Producer: '" + ProducerIdentification + 549 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 550 } 551 return ::error(DiagnosticHandler, 552 make_error_code(BitcodeError::CorruptedBitcode), Message); 553 } 554 555 std::error_code BitcodeReader::error(BitcodeError E) { 556 return ::error(DiagnosticHandler, make_error_code(E)); 557 } 558 559 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 560 LLVMContext &C) { 561 if (F) 562 return F; 563 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 564 } 565 566 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context, 567 DiagnosticHandlerFunction DiagnosticHandler) 568 : Context(Context), 569 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 570 Buffer(Buffer), ValueList(Context), MDValueList(Context) {} 571 572 BitcodeReader::BitcodeReader(LLVMContext &Context, 573 DiagnosticHandlerFunction DiagnosticHandler) 574 : Context(Context), 575 DiagnosticHandler(getDiagHandler(DiagnosticHandler, Context)), 576 Buffer(nullptr), ValueList(Context), MDValueList(Context) {} 577 578 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 579 if (WillMaterializeAllForwardRefs) 580 return std::error_code(); 581 582 // Prevent recursion. 583 WillMaterializeAllForwardRefs = true; 584 585 while (!BasicBlockFwdRefQueue.empty()) { 586 Function *F = BasicBlockFwdRefQueue.front(); 587 BasicBlockFwdRefQueue.pop_front(); 588 assert(F && "Expected valid function"); 589 if (!BasicBlockFwdRefs.count(F)) 590 // Already materialized. 591 continue; 592 593 // Check for a function that isn't materializable to prevent an infinite 594 // loop. When parsing a blockaddress stored in a global variable, there 595 // isn't a trivial way to check if a function will have a body without a 596 // linear search through FunctionsWithBodies, so just check it here. 597 if (!F->isMaterializable()) 598 return error("Never resolved function from blockaddress"); 599 600 // Try to materialize F. 601 if (std::error_code EC = materialize(F)) 602 return EC; 603 } 604 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 605 606 // Reset state. 607 WillMaterializeAllForwardRefs = false; 608 return std::error_code(); 609 } 610 611 void BitcodeReader::freeState() { 612 Buffer = nullptr; 613 std::vector<Type*>().swap(TypeList); 614 ValueList.clear(); 615 MDValueList.clear(); 616 std::vector<Comdat *>().swap(ComdatList); 617 618 std::vector<AttributeSet>().swap(MAttributes); 619 std::vector<BasicBlock*>().swap(FunctionBBs); 620 std::vector<Function*>().swap(FunctionsWithBodies); 621 DeferredFunctionInfo.clear(); 622 DeferredMetadataInfo.clear(); 623 MDKindMap.clear(); 624 625 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 626 BasicBlockFwdRefQueue.clear(); 627 } 628 629 //===----------------------------------------------------------------------===// 630 // Helper functions to implement forward reference resolution, etc. 631 //===----------------------------------------------------------------------===// 632 633 /// Convert a string from a record into an std::string, return true on failure. 634 template <typename StrTy> 635 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 636 StrTy &Result) { 637 if (Idx > Record.size()) 638 return true; 639 640 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 641 Result += (char)Record[i]; 642 return false; 643 } 644 645 static bool hasImplicitComdat(size_t Val) { 646 switch (Val) { 647 default: 648 return false; 649 case 1: // Old WeakAnyLinkage 650 case 4: // Old LinkOnceAnyLinkage 651 case 10: // Old WeakODRLinkage 652 case 11: // Old LinkOnceODRLinkage 653 return true; 654 } 655 } 656 657 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 658 switch (Val) { 659 default: // Map unknown/new linkages to external 660 case 0: 661 return GlobalValue::ExternalLinkage; 662 case 2: 663 return GlobalValue::AppendingLinkage; 664 case 3: 665 return GlobalValue::InternalLinkage; 666 case 5: 667 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 668 case 6: 669 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 670 case 7: 671 return GlobalValue::ExternalWeakLinkage; 672 case 8: 673 return GlobalValue::CommonLinkage; 674 case 9: 675 return GlobalValue::PrivateLinkage; 676 case 12: 677 return GlobalValue::AvailableExternallyLinkage; 678 case 13: 679 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 680 case 14: 681 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 682 case 15: 683 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 684 case 1: // Old value with implicit comdat. 685 case 16: 686 return GlobalValue::WeakAnyLinkage; 687 case 10: // Old value with implicit comdat. 688 case 17: 689 return GlobalValue::WeakODRLinkage; 690 case 4: // Old value with implicit comdat. 691 case 18: 692 return GlobalValue::LinkOnceAnyLinkage; 693 case 11: // Old value with implicit comdat. 694 case 19: 695 return GlobalValue::LinkOnceODRLinkage; 696 } 697 } 698 699 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 700 switch (Val) { 701 default: // Map unknown visibilities to default. 702 case 0: return GlobalValue::DefaultVisibility; 703 case 1: return GlobalValue::HiddenVisibility; 704 case 2: return GlobalValue::ProtectedVisibility; 705 } 706 } 707 708 static GlobalValue::DLLStorageClassTypes 709 getDecodedDLLStorageClass(unsigned Val) { 710 switch (Val) { 711 default: // Map unknown values to default. 712 case 0: return GlobalValue::DefaultStorageClass; 713 case 1: return GlobalValue::DLLImportStorageClass; 714 case 2: return GlobalValue::DLLExportStorageClass; 715 } 716 } 717 718 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 719 switch (Val) { 720 case 0: return GlobalVariable::NotThreadLocal; 721 default: // Map unknown non-zero value to general dynamic. 722 case 1: return GlobalVariable::GeneralDynamicTLSModel; 723 case 2: return GlobalVariable::LocalDynamicTLSModel; 724 case 3: return GlobalVariable::InitialExecTLSModel; 725 case 4: return GlobalVariable::LocalExecTLSModel; 726 } 727 } 728 729 static int getDecodedCastOpcode(unsigned Val) { 730 switch (Val) { 731 default: return -1; 732 case bitc::CAST_TRUNC : return Instruction::Trunc; 733 case bitc::CAST_ZEXT : return Instruction::ZExt; 734 case bitc::CAST_SEXT : return Instruction::SExt; 735 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 736 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 737 case bitc::CAST_UITOFP : return Instruction::UIToFP; 738 case bitc::CAST_SITOFP : return Instruction::SIToFP; 739 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 740 case bitc::CAST_FPEXT : return Instruction::FPExt; 741 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 742 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 743 case bitc::CAST_BITCAST : return Instruction::BitCast; 744 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 745 } 746 } 747 748 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 749 bool IsFP = Ty->isFPOrFPVectorTy(); 750 // BinOps are only valid for int/fp or vector of int/fp types 751 if (!IsFP && !Ty->isIntOrIntVectorTy()) 752 return -1; 753 754 switch (Val) { 755 default: 756 return -1; 757 case bitc::BINOP_ADD: 758 return IsFP ? Instruction::FAdd : Instruction::Add; 759 case bitc::BINOP_SUB: 760 return IsFP ? Instruction::FSub : Instruction::Sub; 761 case bitc::BINOP_MUL: 762 return IsFP ? Instruction::FMul : Instruction::Mul; 763 case bitc::BINOP_UDIV: 764 return IsFP ? -1 : Instruction::UDiv; 765 case bitc::BINOP_SDIV: 766 return IsFP ? Instruction::FDiv : Instruction::SDiv; 767 case bitc::BINOP_UREM: 768 return IsFP ? -1 : Instruction::URem; 769 case bitc::BINOP_SREM: 770 return IsFP ? Instruction::FRem : Instruction::SRem; 771 case bitc::BINOP_SHL: 772 return IsFP ? -1 : Instruction::Shl; 773 case bitc::BINOP_LSHR: 774 return IsFP ? -1 : Instruction::LShr; 775 case bitc::BINOP_ASHR: 776 return IsFP ? -1 : Instruction::AShr; 777 case bitc::BINOP_AND: 778 return IsFP ? -1 : Instruction::And; 779 case bitc::BINOP_OR: 780 return IsFP ? -1 : Instruction::Or; 781 case bitc::BINOP_XOR: 782 return IsFP ? -1 : Instruction::Xor; 783 } 784 } 785 786 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 787 switch (Val) { 788 default: return AtomicRMWInst::BAD_BINOP; 789 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 790 case bitc::RMW_ADD: return AtomicRMWInst::Add; 791 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 792 case bitc::RMW_AND: return AtomicRMWInst::And; 793 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 794 case bitc::RMW_OR: return AtomicRMWInst::Or; 795 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 796 case bitc::RMW_MAX: return AtomicRMWInst::Max; 797 case bitc::RMW_MIN: return AtomicRMWInst::Min; 798 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 799 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 800 } 801 } 802 803 static AtomicOrdering getDecodedOrdering(unsigned Val) { 804 switch (Val) { 805 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 806 case bitc::ORDERING_UNORDERED: return Unordered; 807 case bitc::ORDERING_MONOTONIC: return Monotonic; 808 case bitc::ORDERING_ACQUIRE: return Acquire; 809 case bitc::ORDERING_RELEASE: return Release; 810 case bitc::ORDERING_ACQREL: return AcquireRelease; 811 default: // Map unknown orderings to sequentially-consistent. 812 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 813 } 814 } 815 816 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 817 switch (Val) { 818 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 819 default: // Map unknown scopes to cross-thread. 820 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 821 } 822 } 823 824 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 825 switch (Val) { 826 default: // Map unknown selection kinds to any. 827 case bitc::COMDAT_SELECTION_KIND_ANY: 828 return Comdat::Any; 829 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 830 return Comdat::ExactMatch; 831 case bitc::COMDAT_SELECTION_KIND_LARGEST: 832 return Comdat::Largest; 833 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 834 return Comdat::NoDuplicates; 835 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 836 return Comdat::SameSize; 837 } 838 } 839 840 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 841 FastMathFlags FMF; 842 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 843 FMF.setUnsafeAlgebra(); 844 if (0 != (Val & FastMathFlags::NoNaNs)) 845 FMF.setNoNaNs(); 846 if (0 != (Val & FastMathFlags::NoInfs)) 847 FMF.setNoInfs(); 848 if (0 != (Val & FastMathFlags::NoSignedZeros)) 849 FMF.setNoSignedZeros(); 850 if (0 != (Val & FastMathFlags::AllowReciprocal)) 851 FMF.setAllowReciprocal(); 852 return FMF; 853 } 854 855 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 856 switch (Val) { 857 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 858 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 859 } 860 } 861 862 namespace llvm { 863 namespace { 864 /// \brief A class for maintaining the slot number definition 865 /// as a placeholder for the actual definition for forward constants defs. 866 class ConstantPlaceHolder : public ConstantExpr { 867 void operator=(const ConstantPlaceHolder &) = delete; 868 869 public: 870 // allocate space for exactly one operand 871 void *operator new(size_t s) { return User::operator new(s, 1); } 872 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 873 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 874 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 875 } 876 877 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 878 static bool classof(const Value *V) { 879 return isa<ConstantExpr>(V) && 880 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 881 } 882 883 /// Provide fast operand accessors 884 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 885 }; 886 } 887 888 // FIXME: can we inherit this from ConstantExpr? 889 template <> 890 struct OperandTraits<ConstantPlaceHolder> : 891 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 892 }; 893 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 894 } 895 896 bool BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 897 if (Idx == size()) { 898 push_back(V); 899 return false; 900 } 901 902 if (Idx >= size()) 903 resize(Idx+1); 904 905 WeakVH &OldV = ValuePtrs[Idx]; 906 if (!OldV) { 907 OldV = V; 908 return false; 909 } 910 911 // Handle constants and non-constants (e.g. instrs) differently for 912 // efficiency. 913 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 914 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 915 OldV = V; 916 } else { 917 // If there was a forward reference to this value, replace it. 918 Value *PrevVal = OldV; 919 // Check operator constraints. We only put cleanuppads or catchpads in 920 // the forward value map if the value is constrained to match. 921 if (CatchPadInst *CatchPad = dyn_cast<CatchPadInst>(PrevVal)) { 922 if (!isa<CatchPadInst>(V)) 923 return true; 924 // Delete the dummy basic block that was created with the sentinel 925 // catchpad. 926 BasicBlock *DummyBlock = CatchPad->getUnwindDest(); 927 assert(DummyBlock == CatchPad->getNormalDest()); 928 CatchPad->dropAllReferences(); 929 delete DummyBlock; 930 } else if (isa<CleanupPadInst>(PrevVal)) { 931 if (!isa<CleanupPadInst>(V)) 932 return true; 933 } 934 OldV->replaceAllUsesWith(V); 935 delete PrevVal; 936 } 937 938 return false; 939 } 940 941 942 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 943 Type *Ty) { 944 if (Idx >= size()) 945 resize(Idx + 1); 946 947 if (Value *V = ValuePtrs[Idx]) { 948 if (Ty != V->getType()) 949 report_fatal_error("Type mismatch in constant table!"); 950 return cast<Constant>(V); 951 } 952 953 // Create and return a placeholder, which will later be RAUW'd. 954 Constant *C = new ConstantPlaceHolder(Ty, Context); 955 ValuePtrs[Idx] = C; 956 return C; 957 } 958 959 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty, 960 OperatorConstraint OC) { 961 // Bail out for a clearly invalid value. This would make us call resize(0) 962 if (Idx == UINT_MAX) 963 return nullptr; 964 965 if (Idx >= size()) 966 resize(Idx + 1); 967 968 if (Value *V = ValuePtrs[Idx]) { 969 // If the types don't match, it's invalid. 970 if (Ty && Ty != V->getType()) 971 return nullptr; 972 if (!OC) 973 return V; 974 // Use dyn_cast to enforce operator constraints 975 switch (OC) { 976 case OC_CatchPad: 977 return dyn_cast<CatchPadInst>(V); 978 case OC_CleanupPad: 979 return dyn_cast<CleanupPadInst>(V); 980 default: 981 llvm_unreachable("Unexpected operator constraint"); 982 } 983 } 984 985 // No type specified, must be invalid reference. 986 if (!Ty) return nullptr; 987 988 // Create and return a placeholder, which will later be RAUW'd. 989 Value *V; 990 switch (OC) { 991 case OC_None: 992 V = new Argument(Ty); 993 break; 994 case OC_CatchPad: { 995 BasicBlock *BB = BasicBlock::Create(Context); 996 V = CatchPadInst::Create(BB, BB, {}); 997 break; 998 } 999 default: 1000 assert(OC == OC_CleanupPad && "unexpected operator constraint"); 1001 V = CleanupPadInst::Create(Context, {}); 1002 break; 1003 } 1004 1005 ValuePtrs[Idx] = V; 1006 return V; 1007 } 1008 1009 /// Once all constants are read, this method bulk resolves any forward 1010 /// references. The idea behind this is that we sometimes get constants (such 1011 /// as large arrays) which reference *many* forward ref constants. Replacing 1012 /// each of these causes a lot of thrashing when building/reuniquing the 1013 /// constant. Instead of doing this, we look at all the uses and rewrite all 1014 /// the place holders at once for any constant that uses a placeholder. 1015 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1016 // Sort the values by-pointer so that they are efficient to look up with a 1017 // binary search. 1018 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1019 1020 SmallVector<Constant*, 64> NewOps; 1021 1022 while (!ResolveConstants.empty()) { 1023 Value *RealVal = operator[](ResolveConstants.back().second); 1024 Constant *Placeholder = ResolveConstants.back().first; 1025 ResolveConstants.pop_back(); 1026 1027 // Loop over all users of the placeholder, updating them to reference the 1028 // new value. If they reference more than one placeholder, update them all 1029 // at once. 1030 while (!Placeholder->use_empty()) { 1031 auto UI = Placeholder->user_begin(); 1032 User *U = *UI; 1033 1034 // If the using object isn't uniqued, just update the operands. This 1035 // handles instructions and initializers for global variables. 1036 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1037 UI.getUse().set(RealVal); 1038 continue; 1039 } 1040 1041 // Otherwise, we have a constant that uses the placeholder. Replace that 1042 // constant with a new constant that has *all* placeholder uses updated. 1043 Constant *UserC = cast<Constant>(U); 1044 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1045 I != E; ++I) { 1046 Value *NewOp; 1047 if (!isa<ConstantPlaceHolder>(*I)) { 1048 // Not a placeholder reference. 1049 NewOp = *I; 1050 } else if (*I == Placeholder) { 1051 // Common case is that it just references this one placeholder. 1052 NewOp = RealVal; 1053 } else { 1054 // Otherwise, look up the placeholder in ResolveConstants. 1055 ResolveConstantsTy::iterator It = 1056 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1057 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1058 0)); 1059 assert(It != ResolveConstants.end() && It->first == *I); 1060 NewOp = operator[](It->second); 1061 } 1062 1063 NewOps.push_back(cast<Constant>(NewOp)); 1064 } 1065 1066 // Make the new constant. 1067 Constant *NewC; 1068 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1069 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1070 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1071 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1072 } else if (isa<ConstantVector>(UserC)) { 1073 NewC = ConstantVector::get(NewOps); 1074 } else { 1075 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1076 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1077 } 1078 1079 UserC->replaceAllUsesWith(NewC); 1080 UserC->destroyConstant(); 1081 NewOps.clear(); 1082 } 1083 1084 // Update all ValueHandles, they should be the only users at this point. 1085 Placeholder->replaceAllUsesWith(RealVal); 1086 delete Placeholder; 1087 } 1088 } 1089 1090 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) { 1091 if (Idx == size()) { 1092 push_back(MD); 1093 return; 1094 } 1095 1096 if (Idx >= size()) 1097 resize(Idx+1); 1098 1099 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 1100 if (!OldMD) { 1101 OldMD.reset(MD); 1102 return; 1103 } 1104 1105 // If there was a forward reference to this value, replace it. 1106 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1107 PrevMD->replaceAllUsesWith(MD); 1108 --NumFwdRefs; 1109 } 1110 1111 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 1112 if (Idx >= size()) 1113 resize(Idx + 1); 1114 1115 if (Metadata *MD = MDValuePtrs[Idx]) 1116 return MD; 1117 1118 // Track forward refs to be resolved later. 1119 if (AnyFwdRefs) { 1120 MinFwdRef = std::min(MinFwdRef, Idx); 1121 MaxFwdRef = std::max(MaxFwdRef, Idx); 1122 } else { 1123 AnyFwdRefs = true; 1124 MinFwdRef = MaxFwdRef = Idx; 1125 } 1126 ++NumFwdRefs; 1127 1128 // Create and return a placeholder, which will later be RAUW'd. 1129 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1130 MDValuePtrs[Idx].reset(MD); 1131 return MD; 1132 } 1133 1134 void BitcodeReaderMDValueList::tryToResolveCycles() { 1135 if (!AnyFwdRefs) 1136 // Nothing to do. 1137 return; 1138 1139 if (NumFwdRefs) 1140 // Still forward references... can't resolve cycles. 1141 return; 1142 1143 // Resolve any cycles. 1144 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1145 auto &MD = MDValuePtrs[I]; 1146 auto *N = dyn_cast_or_null<MDNode>(MD); 1147 if (!N) 1148 continue; 1149 1150 assert(!N->isTemporary() && "Unexpected forward reference"); 1151 N->resolveCycles(); 1152 } 1153 1154 // Make sure we return early again until there's another forward ref. 1155 AnyFwdRefs = false; 1156 } 1157 1158 Type *BitcodeReader::getTypeByID(unsigned ID) { 1159 // The type table size is always specified correctly. 1160 if (ID >= TypeList.size()) 1161 return nullptr; 1162 1163 if (Type *Ty = TypeList[ID]) 1164 return Ty; 1165 1166 // If we have a forward reference, the only possible case is when it is to a 1167 // named struct. Just create a placeholder for now. 1168 return TypeList[ID] = createIdentifiedStructType(Context); 1169 } 1170 1171 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1172 StringRef Name) { 1173 auto *Ret = StructType::create(Context, Name); 1174 IdentifiedStructTypes.push_back(Ret); 1175 return Ret; 1176 } 1177 1178 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1179 auto *Ret = StructType::create(Context); 1180 IdentifiedStructTypes.push_back(Ret); 1181 return Ret; 1182 } 1183 1184 1185 //===----------------------------------------------------------------------===// 1186 // Functions for parsing blocks from the bitcode file 1187 //===----------------------------------------------------------------------===// 1188 1189 1190 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1191 /// been decoded from the given integer. This function must stay in sync with 1192 /// 'encodeLLVMAttributesForBitcode'. 1193 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1194 uint64_t EncodedAttrs) { 1195 // FIXME: Remove in 4.0. 1196 1197 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1198 // the bits above 31 down by 11 bits. 1199 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1200 assert((!Alignment || isPowerOf2_32(Alignment)) && 1201 "Alignment must be a power of two."); 1202 1203 if (Alignment) 1204 B.addAlignmentAttr(Alignment); 1205 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1206 (EncodedAttrs & 0xffff)); 1207 } 1208 1209 std::error_code BitcodeReader::parseAttributeBlock() { 1210 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1211 return error("Invalid record"); 1212 1213 if (!MAttributes.empty()) 1214 return error("Invalid multiple blocks"); 1215 1216 SmallVector<uint64_t, 64> Record; 1217 1218 SmallVector<AttributeSet, 8> Attrs; 1219 1220 // Read all the records. 1221 while (1) { 1222 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1223 1224 switch (Entry.Kind) { 1225 case BitstreamEntry::SubBlock: // Handled for us already. 1226 case BitstreamEntry::Error: 1227 return error("Malformed block"); 1228 case BitstreamEntry::EndBlock: 1229 return std::error_code(); 1230 case BitstreamEntry::Record: 1231 // The interesting case. 1232 break; 1233 } 1234 1235 // Read a record. 1236 Record.clear(); 1237 switch (Stream.readRecord(Entry.ID, Record)) { 1238 default: // Default behavior: ignore. 1239 break; 1240 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1241 // FIXME: Remove in 4.0. 1242 if (Record.size() & 1) 1243 return error("Invalid record"); 1244 1245 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1246 AttrBuilder B; 1247 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1248 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1249 } 1250 1251 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1252 Attrs.clear(); 1253 break; 1254 } 1255 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1256 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1257 Attrs.push_back(MAttributeGroups[Record[i]]); 1258 1259 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1260 Attrs.clear(); 1261 break; 1262 } 1263 } 1264 } 1265 } 1266 1267 // Returns Attribute::None on unrecognized codes. 1268 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1269 switch (Code) { 1270 default: 1271 return Attribute::None; 1272 case bitc::ATTR_KIND_ALIGNMENT: 1273 return Attribute::Alignment; 1274 case bitc::ATTR_KIND_ALWAYS_INLINE: 1275 return Attribute::AlwaysInline; 1276 case bitc::ATTR_KIND_ARGMEMONLY: 1277 return Attribute::ArgMemOnly; 1278 case bitc::ATTR_KIND_BUILTIN: 1279 return Attribute::Builtin; 1280 case bitc::ATTR_KIND_BY_VAL: 1281 return Attribute::ByVal; 1282 case bitc::ATTR_KIND_IN_ALLOCA: 1283 return Attribute::InAlloca; 1284 case bitc::ATTR_KIND_COLD: 1285 return Attribute::Cold; 1286 case bitc::ATTR_KIND_CONVERGENT: 1287 return Attribute::Convergent; 1288 case bitc::ATTR_KIND_INLINE_HINT: 1289 return Attribute::InlineHint; 1290 case bitc::ATTR_KIND_IN_REG: 1291 return Attribute::InReg; 1292 case bitc::ATTR_KIND_JUMP_TABLE: 1293 return Attribute::JumpTable; 1294 case bitc::ATTR_KIND_MIN_SIZE: 1295 return Attribute::MinSize; 1296 case bitc::ATTR_KIND_NAKED: 1297 return Attribute::Naked; 1298 case bitc::ATTR_KIND_NEST: 1299 return Attribute::Nest; 1300 case bitc::ATTR_KIND_NO_ALIAS: 1301 return Attribute::NoAlias; 1302 case bitc::ATTR_KIND_NO_BUILTIN: 1303 return Attribute::NoBuiltin; 1304 case bitc::ATTR_KIND_NO_CAPTURE: 1305 return Attribute::NoCapture; 1306 case bitc::ATTR_KIND_NO_DUPLICATE: 1307 return Attribute::NoDuplicate; 1308 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1309 return Attribute::NoImplicitFloat; 1310 case bitc::ATTR_KIND_NO_INLINE: 1311 return Attribute::NoInline; 1312 case bitc::ATTR_KIND_NO_RECURSE: 1313 return Attribute::NoRecurse; 1314 case bitc::ATTR_KIND_NON_LAZY_BIND: 1315 return Attribute::NonLazyBind; 1316 case bitc::ATTR_KIND_NON_NULL: 1317 return Attribute::NonNull; 1318 case bitc::ATTR_KIND_DEREFERENCEABLE: 1319 return Attribute::Dereferenceable; 1320 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1321 return Attribute::DereferenceableOrNull; 1322 case bitc::ATTR_KIND_NO_RED_ZONE: 1323 return Attribute::NoRedZone; 1324 case bitc::ATTR_KIND_NO_RETURN: 1325 return Attribute::NoReturn; 1326 case bitc::ATTR_KIND_NO_UNWIND: 1327 return Attribute::NoUnwind; 1328 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1329 return Attribute::OptimizeForSize; 1330 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1331 return Attribute::OptimizeNone; 1332 case bitc::ATTR_KIND_READ_NONE: 1333 return Attribute::ReadNone; 1334 case bitc::ATTR_KIND_READ_ONLY: 1335 return Attribute::ReadOnly; 1336 case bitc::ATTR_KIND_RETURNED: 1337 return Attribute::Returned; 1338 case bitc::ATTR_KIND_RETURNS_TWICE: 1339 return Attribute::ReturnsTwice; 1340 case bitc::ATTR_KIND_S_EXT: 1341 return Attribute::SExt; 1342 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1343 return Attribute::StackAlignment; 1344 case bitc::ATTR_KIND_STACK_PROTECT: 1345 return Attribute::StackProtect; 1346 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1347 return Attribute::StackProtectReq; 1348 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1349 return Attribute::StackProtectStrong; 1350 case bitc::ATTR_KIND_SAFESTACK: 1351 return Attribute::SafeStack; 1352 case bitc::ATTR_KIND_STRUCT_RET: 1353 return Attribute::StructRet; 1354 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1355 return Attribute::SanitizeAddress; 1356 case bitc::ATTR_KIND_SANITIZE_THREAD: 1357 return Attribute::SanitizeThread; 1358 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1359 return Attribute::SanitizeMemory; 1360 case bitc::ATTR_KIND_UW_TABLE: 1361 return Attribute::UWTable; 1362 case bitc::ATTR_KIND_Z_EXT: 1363 return Attribute::ZExt; 1364 } 1365 } 1366 1367 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1368 unsigned &Alignment) { 1369 // Note: Alignment in bitcode files is incremented by 1, so that zero 1370 // can be used for default alignment. 1371 if (Exponent > Value::MaxAlignmentExponent + 1) 1372 return error("Invalid alignment value"); 1373 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1374 return std::error_code(); 1375 } 1376 1377 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1378 Attribute::AttrKind *Kind) { 1379 *Kind = getAttrFromCode(Code); 1380 if (*Kind == Attribute::None) 1381 return error(BitcodeError::CorruptedBitcode, 1382 "Unknown attribute kind (" + Twine(Code) + ")"); 1383 return std::error_code(); 1384 } 1385 1386 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1387 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1388 return error("Invalid record"); 1389 1390 if (!MAttributeGroups.empty()) 1391 return error("Invalid multiple blocks"); 1392 1393 SmallVector<uint64_t, 64> Record; 1394 1395 // Read all the records. 1396 while (1) { 1397 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1398 1399 switch (Entry.Kind) { 1400 case BitstreamEntry::SubBlock: // Handled for us already. 1401 case BitstreamEntry::Error: 1402 return error("Malformed block"); 1403 case BitstreamEntry::EndBlock: 1404 return std::error_code(); 1405 case BitstreamEntry::Record: 1406 // The interesting case. 1407 break; 1408 } 1409 1410 // Read a record. 1411 Record.clear(); 1412 switch (Stream.readRecord(Entry.ID, Record)) { 1413 default: // Default behavior: ignore. 1414 break; 1415 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1416 if (Record.size() < 3) 1417 return error("Invalid record"); 1418 1419 uint64_t GrpID = Record[0]; 1420 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1421 1422 AttrBuilder B; 1423 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1424 if (Record[i] == 0) { // Enum attribute 1425 Attribute::AttrKind Kind; 1426 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1427 return EC; 1428 1429 B.addAttribute(Kind); 1430 } else if (Record[i] == 1) { // Integer attribute 1431 Attribute::AttrKind Kind; 1432 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1433 return EC; 1434 if (Kind == Attribute::Alignment) 1435 B.addAlignmentAttr(Record[++i]); 1436 else if (Kind == Attribute::StackAlignment) 1437 B.addStackAlignmentAttr(Record[++i]); 1438 else if (Kind == Attribute::Dereferenceable) 1439 B.addDereferenceableAttr(Record[++i]); 1440 else if (Kind == Attribute::DereferenceableOrNull) 1441 B.addDereferenceableOrNullAttr(Record[++i]); 1442 } else { // String attribute 1443 assert((Record[i] == 3 || Record[i] == 4) && 1444 "Invalid attribute group entry"); 1445 bool HasValue = (Record[i++] == 4); 1446 SmallString<64> KindStr; 1447 SmallString<64> ValStr; 1448 1449 while (Record[i] != 0 && i != e) 1450 KindStr += Record[i++]; 1451 assert(Record[i] == 0 && "Kind string not null terminated"); 1452 1453 if (HasValue) { 1454 // Has a value associated with it. 1455 ++i; // Skip the '0' that terminates the "kind" string. 1456 while (Record[i] != 0 && i != e) 1457 ValStr += Record[i++]; 1458 assert(Record[i] == 0 && "Value string not null terminated"); 1459 } 1460 1461 B.addAttribute(KindStr.str(), ValStr.str()); 1462 } 1463 } 1464 1465 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1466 break; 1467 } 1468 } 1469 } 1470 } 1471 1472 std::error_code BitcodeReader::parseTypeTable() { 1473 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1474 return error("Invalid record"); 1475 1476 return parseTypeTableBody(); 1477 } 1478 1479 std::error_code BitcodeReader::parseTypeTableBody() { 1480 if (!TypeList.empty()) 1481 return error("Invalid multiple blocks"); 1482 1483 SmallVector<uint64_t, 64> Record; 1484 unsigned NumRecords = 0; 1485 1486 SmallString<64> TypeName; 1487 1488 // Read all the records for this type table. 1489 while (1) { 1490 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1491 1492 switch (Entry.Kind) { 1493 case BitstreamEntry::SubBlock: // Handled for us already. 1494 case BitstreamEntry::Error: 1495 return error("Malformed block"); 1496 case BitstreamEntry::EndBlock: 1497 if (NumRecords != TypeList.size()) 1498 return error("Malformed block"); 1499 return std::error_code(); 1500 case BitstreamEntry::Record: 1501 // The interesting case. 1502 break; 1503 } 1504 1505 // Read a record. 1506 Record.clear(); 1507 Type *ResultTy = nullptr; 1508 switch (Stream.readRecord(Entry.ID, Record)) { 1509 default: 1510 return error("Invalid value"); 1511 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1512 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1513 // type list. This allows us to reserve space. 1514 if (Record.size() < 1) 1515 return error("Invalid record"); 1516 TypeList.resize(Record[0]); 1517 continue; 1518 case bitc::TYPE_CODE_VOID: // VOID 1519 ResultTy = Type::getVoidTy(Context); 1520 break; 1521 case bitc::TYPE_CODE_HALF: // HALF 1522 ResultTy = Type::getHalfTy(Context); 1523 break; 1524 case bitc::TYPE_CODE_FLOAT: // FLOAT 1525 ResultTy = Type::getFloatTy(Context); 1526 break; 1527 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1528 ResultTy = Type::getDoubleTy(Context); 1529 break; 1530 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1531 ResultTy = Type::getX86_FP80Ty(Context); 1532 break; 1533 case bitc::TYPE_CODE_FP128: // FP128 1534 ResultTy = Type::getFP128Ty(Context); 1535 break; 1536 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1537 ResultTy = Type::getPPC_FP128Ty(Context); 1538 break; 1539 case bitc::TYPE_CODE_LABEL: // LABEL 1540 ResultTy = Type::getLabelTy(Context); 1541 break; 1542 case bitc::TYPE_CODE_METADATA: // METADATA 1543 ResultTy = Type::getMetadataTy(Context); 1544 break; 1545 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1546 ResultTy = Type::getX86_MMXTy(Context); 1547 break; 1548 case bitc::TYPE_CODE_TOKEN: // TOKEN 1549 ResultTy = Type::getTokenTy(Context); 1550 break; 1551 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1552 if (Record.size() < 1) 1553 return error("Invalid record"); 1554 1555 uint64_t NumBits = Record[0]; 1556 if (NumBits < IntegerType::MIN_INT_BITS || 1557 NumBits > IntegerType::MAX_INT_BITS) 1558 return error("Bitwidth for integer type out of range"); 1559 ResultTy = IntegerType::get(Context, NumBits); 1560 break; 1561 } 1562 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1563 // [pointee type, address space] 1564 if (Record.size() < 1) 1565 return error("Invalid record"); 1566 unsigned AddressSpace = 0; 1567 if (Record.size() == 2) 1568 AddressSpace = Record[1]; 1569 ResultTy = getTypeByID(Record[0]); 1570 if (!ResultTy || 1571 !PointerType::isValidElementType(ResultTy)) 1572 return error("Invalid type"); 1573 ResultTy = PointerType::get(ResultTy, AddressSpace); 1574 break; 1575 } 1576 case bitc::TYPE_CODE_FUNCTION_OLD: { 1577 // FIXME: attrid is dead, remove it in LLVM 4.0 1578 // FUNCTION: [vararg, attrid, retty, paramty x N] 1579 if (Record.size() < 3) 1580 return error("Invalid record"); 1581 SmallVector<Type*, 8> ArgTys; 1582 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1583 if (Type *T = getTypeByID(Record[i])) 1584 ArgTys.push_back(T); 1585 else 1586 break; 1587 } 1588 1589 ResultTy = getTypeByID(Record[2]); 1590 if (!ResultTy || ArgTys.size() < Record.size()-3) 1591 return error("Invalid type"); 1592 1593 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1594 break; 1595 } 1596 case bitc::TYPE_CODE_FUNCTION: { 1597 // FUNCTION: [vararg, retty, paramty x N] 1598 if (Record.size() < 2) 1599 return error("Invalid record"); 1600 SmallVector<Type*, 8> ArgTys; 1601 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1602 if (Type *T = getTypeByID(Record[i])) { 1603 if (!FunctionType::isValidArgumentType(T)) 1604 return error("Invalid function argument type"); 1605 ArgTys.push_back(T); 1606 } 1607 else 1608 break; 1609 } 1610 1611 ResultTy = getTypeByID(Record[1]); 1612 if (!ResultTy || ArgTys.size() < Record.size()-2) 1613 return error("Invalid type"); 1614 1615 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1616 break; 1617 } 1618 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1619 if (Record.size() < 1) 1620 return error("Invalid record"); 1621 SmallVector<Type*, 8> EltTys; 1622 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1623 if (Type *T = getTypeByID(Record[i])) 1624 EltTys.push_back(T); 1625 else 1626 break; 1627 } 1628 if (EltTys.size() != Record.size()-1) 1629 return error("Invalid type"); 1630 ResultTy = StructType::get(Context, EltTys, Record[0]); 1631 break; 1632 } 1633 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1634 if (convertToString(Record, 0, TypeName)) 1635 return error("Invalid record"); 1636 continue; 1637 1638 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1639 if (Record.size() < 1) 1640 return error("Invalid record"); 1641 1642 if (NumRecords >= TypeList.size()) 1643 return error("Invalid TYPE table"); 1644 1645 // Check to see if this was forward referenced, if so fill in the temp. 1646 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1647 if (Res) { 1648 Res->setName(TypeName); 1649 TypeList[NumRecords] = nullptr; 1650 } else // Otherwise, create a new struct. 1651 Res = createIdentifiedStructType(Context, TypeName); 1652 TypeName.clear(); 1653 1654 SmallVector<Type*, 8> EltTys; 1655 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1656 if (Type *T = getTypeByID(Record[i])) 1657 EltTys.push_back(T); 1658 else 1659 break; 1660 } 1661 if (EltTys.size() != Record.size()-1) 1662 return error("Invalid record"); 1663 Res->setBody(EltTys, Record[0]); 1664 ResultTy = Res; 1665 break; 1666 } 1667 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1668 if (Record.size() != 1) 1669 return error("Invalid record"); 1670 1671 if (NumRecords >= TypeList.size()) 1672 return error("Invalid TYPE table"); 1673 1674 // Check to see if this was forward referenced, if so fill in the temp. 1675 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1676 if (Res) { 1677 Res->setName(TypeName); 1678 TypeList[NumRecords] = nullptr; 1679 } else // Otherwise, create a new struct with no body. 1680 Res = createIdentifiedStructType(Context, TypeName); 1681 TypeName.clear(); 1682 ResultTy = Res; 1683 break; 1684 } 1685 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1686 if (Record.size() < 2) 1687 return error("Invalid record"); 1688 ResultTy = getTypeByID(Record[1]); 1689 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1690 return error("Invalid type"); 1691 ResultTy = ArrayType::get(ResultTy, Record[0]); 1692 break; 1693 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1694 if (Record.size() < 2) 1695 return error("Invalid record"); 1696 if (Record[0] == 0) 1697 return error("Invalid vector length"); 1698 ResultTy = getTypeByID(Record[1]); 1699 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1700 return error("Invalid type"); 1701 ResultTy = VectorType::get(ResultTy, Record[0]); 1702 break; 1703 } 1704 1705 if (NumRecords >= TypeList.size()) 1706 return error("Invalid TYPE table"); 1707 if (TypeList[NumRecords]) 1708 return error( 1709 "Invalid TYPE table: Only named structs can be forward referenced"); 1710 assert(ResultTy && "Didn't read a type?"); 1711 TypeList[NumRecords++] = ResultTy; 1712 } 1713 } 1714 1715 std::error_code BitcodeReader::parseOperandBundleTags() { 1716 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1717 return error("Invalid record"); 1718 1719 if (!BundleTags.empty()) 1720 return error("Invalid multiple blocks"); 1721 1722 SmallVector<uint64_t, 64> Record; 1723 1724 while (1) { 1725 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1726 1727 switch (Entry.Kind) { 1728 case BitstreamEntry::SubBlock: // Handled for us already. 1729 case BitstreamEntry::Error: 1730 return error("Malformed block"); 1731 case BitstreamEntry::EndBlock: 1732 return std::error_code(); 1733 case BitstreamEntry::Record: 1734 // The interesting case. 1735 break; 1736 } 1737 1738 // Tags are implicitly mapped to integers by their order. 1739 1740 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1741 return error("Invalid record"); 1742 1743 // OPERAND_BUNDLE_TAG: [strchr x N] 1744 BundleTags.emplace_back(); 1745 if (convertToString(Record, 0, BundleTags.back())) 1746 return error("Invalid record"); 1747 Record.clear(); 1748 } 1749 } 1750 1751 /// Associate a value with its name from the given index in the provided record. 1752 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1753 unsigned NameIndex, Triple &TT) { 1754 SmallString<128> ValueName; 1755 if (convertToString(Record, NameIndex, ValueName)) 1756 return error("Invalid record"); 1757 unsigned ValueID = Record[0]; 1758 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1759 return error("Invalid record"); 1760 Value *V = ValueList[ValueID]; 1761 1762 StringRef NameStr(ValueName.data(), ValueName.size()); 1763 if (NameStr.find_first_of(0) != StringRef::npos) 1764 return error("Invalid value name"); 1765 V->setName(NameStr); 1766 auto *GO = dyn_cast<GlobalObject>(V); 1767 if (GO) { 1768 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1769 if (TT.isOSBinFormatMachO()) 1770 GO->setComdat(nullptr); 1771 else 1772 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1773 } 1774 } 1775 return V; 1776 } 1777 1778 /// Parse the value symbol table at either the current parsing location or 1779 /// at the given bit offset if provided. 1780 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1781 uint64_t CurrentBit; 1782 // Pass in the Offset to distinguish between calling for the module-level 1783 // VST (where we want to jump to the VST offset) and the function-level 1784 // VST (where we don't). 1785 if (Offset > 0) { 1786 // Save the current parsing location so we can jump back at the end 1787 // of the VST read. 1788 CurrentBit = Stream.GetCurrentBitNo(); 1789 Stream.JumpToBit(Offset * 32); 1790 #ifndef NDEBUG 1791 // Do some checking if we are in debug mode. 1792 BitstreamEntry Entry = Stream.advance(); 1793 assert(Entry.Kind == BitstreamEntry::SubBlock); 1794 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1795 #else 1796 // In NDEBUG mode ignore the output so we don't get an unused variable 1797 // warning. 1798 Stream.advance(); 1799 #endif 1800 } 1801 1802 // Compute the delta between the bitcode indices in the VST (the word offset 1803 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1804 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1805 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1806 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1807 // just before entering the VST subblock because: 1) the EnterSubBlock 1808 // changes the AbbrevID width; 2) the VST block is nested within the same 1809 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1810 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1811 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1812 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1813 unsigned FuncBitcodeOffsetDelta = 1814 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1815 1816 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1817 return error("Invalid record"); 1818 1819 SmallVector<uint64_t, 64> Record; 1820 1821 Triple TT(TheModule->getTargetTriple()); 1822 1823 // Read all the records for this value table. 1824 SmallString<128> ValueName; 1825 while (1) { 1826 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1827 1828 switch (Entry.Kind) { 1829 case BitstreamEntry::SubBlock: // Handled for us already. 1830 case BitstreamEntry::Error: 1831 return error("Malformed block"); 1832 case BitstreamEntry::EndBlock: 1833 if (Offset > 0) 1834 Stream.JumpToBit(CurrentBit); 1835 return std::error_code(); 1836 case BitstreamEntry::Record: 1837 // The interesting case. 1838 break; 1839 } 1840 1841 // Read a record. 1842 Record.clear(); 1843 switch (Stream.readRecord(Entry.ID, Record)) { 1844 default: // Default behavior: unknown type. 1845 break; 1846 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1847 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1848 if (std::error_code EC = ValOrErr.getError()) 1849 return EC; 1850 ValOrErr.get(); 1851 break; 1852 } 1853 case bitc::VST_CODE_FNENTRY: { 1854 // VST_FNENTRY: [valueid, offset, namechar x N] 1855 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1856 if (std::error_code EC = ValOrErr.getError()) 1857 return EC; 1858 Value *V = ValOrErr.get(); 1859 1860 auto *GO = dyn_cast<GlobalObject>(V); 1861 if (!GO) { 1862 // If this is an alias, need to get the actual Function object 1863 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1864 auto *GA = dyn_cast<GlobalAlias>(V); 1865 if (GA) 1866 GO = GA->getBaseObject(); 1867 assert(GO); 1868 } 1869 1870 uint64_t FuncWordOffset = Record[1]; 1871 Function *F = dyn_cast<Function>(GO); 1872 assert(F); 1873 uint64_t FuncBitOffset = FuncWordOffset * 32; 1874 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1875 // Set the LastFunctionBlockBit to point to the last function block. 1876 // Later when parsing is resumed after function materialization, 1877 // we can simply skip that last function block. 1878 if (FuncBitOffset > LastFunctionBlockBit) 1879 LastFunctionBlockBit = FuncBitOffset; 1880 break; 1881 } 1882 case bitc::VST_CODE_BBENTRY: { 1883 if (convertToString(Record, 1, ValueName)) 1884 return error("Invalid record"); 1885 BasicBlock *BB = getBasicBlock(Record[0]); 1886 if (!BB) 1887 return error("Invalid record"); 1888 1889 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1890 ValueName.clear(); 1891 break; 1892 } 1893 } 1894 } 1895 } 1896 1897 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1898 std::error_code 1899 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1900 if (Record.size() < 2) 1901 return error("Invalid record"); 1902 1903 unsigned Kind = Record[0]; 1904 SmallString<8> Name(Record.begin() + 1, Record.end()); 1905 1906 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1907 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1908 return error("Conflicting METADATA_KIND records"); 1909 return std::error_code(); 1910 } 1911 1912 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1913 1914 std::error_code BitcodeReader::parseMetadata() { 1915 IsMetadataMaterialized = true; 1916 unsigned NextMDValueNo = MDValueList.size(); 1917 1918 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1919 return error("Invalid record"); 1920 1921 SmallVector<uint64_t, 64> Record; 1922 1923 auto getMD = 1924 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1925 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1926 if (ID) 1927 return getMD(ID - 1); 1928 return nullptr; 1929 }; 1930 auto getMDString = [&](unsigned ID) -> MDString *{ 1931 // This requires that the ID is not really a forward reference. In 1932 // particular, the MDString must already have been resolved. 1933 return cast_or_null<MDString>(getMDOrNull(ID)); 1934 }; 1935 1936 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1937 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1938 1939 // Read all the records. 1940 while (1) { 1941 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1942 1943 switch (Entry.Kind) { 1944 case BitstreamEntry::SubBlock: // Handled for us already. 1945 case BitstreamEntry::Error: 1946 return error("Malformed block"); 1947 case BitstreamEntry::EndBlock: 1948 MDValueList.tryToResolveCycles(); 1949 return std::error_code(); 1950 case BitstreamEntry::Record: 1951 // The interesting case. 1952 break; 1953 } 1954 1955 // Read a record. 1956 Record.clear(); 1957 unsigned Code = Stream.readRecord(Entry.ID, Record); 1958 bool IsDistinct = false; 1959 switch (Code) { 1960 default: // Default behavior: ignore. 1961 break; 1962 case bitc::METADATA_NAME: { 1963 // Read name of the named metadata. 1964 SmallString<8> Name(Record.begin(), Record.end()); 1965 Record.clear(); 1966 Code = Stream.ReadCode(); 1967 1968 unsigned NextBitCode = Stream.readRecord(Code, Record); 1969 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1970 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1971 1972 // Read named metadata elements. 1973 unsigned Size = Record.size(); 1974 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1975 for (unsigned i = 0; i != Size; ++i) { 1976 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1977 if (!MD) 1978 return error("Invalid record"); 1979 NMD->addOperand(MD); 1980 } 1981 break; 1982 } 1983 case bitc::METADATA_OLD_FN_NODE: { 1984 // FIXME: Remove in 4.0. 1985 // This is a LocalAsMetadata record, the only type of function-local 1986 // metadata. 1987 if (Record.size() % 2 == 1) 1988 return error("Invalid record"); 1989 1990 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1991 // to be legal, but there's no upgrade path. 1992 auto dropRecord = [&] { 1993 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++); 1994 }; 1995 if (Record.size() != 2) { 1996 dropRecord(); 1997 break; 1998 } 1999 2000 Type *Ty = getTypeByID(Record[0]); 2001 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2002 dropRecord(); 2003 break; 2004 } 2005 2006 MDValueList.assignValue( 2007 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2008 NextMDValueNo++); 2009 break; 2010 } 2011 case bitc::METADATA_OLD_NODE: { 2012 // FIXME: Remove in 4.0. 2013 if (Record.size() % 2 == 1) 2014 return error("Invalid record"); 2015 2016 unsigned Size = Record.size(); 2017 SmallVector<Metadata *, 8> Elts; 2018 for (unsigned i = 0; i != Size; i += 2) { 2019 Type *Ty = getTypeByID(Record[i]); 2020 if (!Ty) 2021 return error("Invalid record"); 2022 if (Ty->isMetadataTy()) 2023 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 2024 else if (!Ty->isVoidTy()) { 2025 auto *MD = 2026 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2027 assert(isa<ConstantAsMetadata>(MD) && 2028 "Expected non-function-local metadata"); 2029 Elts.push_back(MD); 2030 } else 2031 Elts.push_back(nullptr); 2032 } 2033 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++); 2034 break; 2035 } 2036 case bitc::METADATA_VALUE: { 2037 if (Record.size() != 2) 2038 return error("Invalid record"); 2039 2040 Type *Ty = getTypeByID(Record[0]); 2041 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2042 return error("Invalid record"); 2043 2044 MDValueList.assignValue( 2045 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2046 NextMDValueNo++); 2047 break; 2048 } 2049 case bitc::METADATA_DISTINCT_NODE: 2050 IsDistinct = true; 2051 // fallthrough... 2052 case bitc::METADATA_NODE: { 2053 SmallVector<Metadata *, 8> Elts; 2054 Elts.reserve(Record.size()); 2055 for (unsigned ID : Record) 2056 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 2057 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2058 : MDNode::get(Context, Elts), 2059 NextMDValueNo++); 2060 break; 2061 } 2062 case bitc::METADATA_LOCATION: { 2063 if (Record.size() != 5) 2064 return error("Invalid record"); 2065 2066 unsigned Line = Record[1]; 2067 unsigned Column = Record[2]; 2068 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 2069 Metadata *InlinedAt = 2070 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 2071 MDValueList.assignValue( 2072 GET_OR_DISTINCT(DILocation, Record[0], 2073 (Context, Line, Column, Scope, InlinedAt)), 2074 NextMDValueNo++); 2075 break; 2076 } 2077 case bitc::METADATA_GENERIC_DEBUG: { 2078 if (Record.size() < 4) 2079 return error("Invalid record"); 2080 2081 unsigned Tag = Record[1]; 2082 unsigned Version = Record[2]; 2083 2084 if (Tag >= 1u << 16 || Version != 0) 2085 return error("Invalid record"); 2086 2087 auto *Header = getMDString(Record[3]); 2088 SmallVector<Metadata *, 8> DwarfOps; 2089 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2090 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 2091 : nullptr); 2092 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 2093 (Context, Tag, Header, DwarfOps)), 2094 NextMDValueNo++); 2095 break; 2096 } 2097 case bitc::METADATA_SUBRANGE: { 2098 if (Record.size() != 3) 2099 return error("Invalid record"); 2100 2101 MDValueList.assignValue( 2102 GET_OR_DISTINCT(DISubrange, Record[0], 2103 (Context, Record[1], unrotateSign(Record[2]))), 2104 NextMDValueNo++); 2105 break; 2106 } 2107 case bitc::METADATA_ENUMERATOR: { 2108 if (Record.size() != 3) 2109 return error("Invalid record"); 2110 2111 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 2112 (Context, unrotateSign(Record[1]), 2113 getMDString(Record[2]))), 2114 NextMDValueNo++); 2115 break; 2116 } 2117 case bitc::METADATA_BASIC_TYPE: { 2118 if (Record.size() != 6) 2119 return error("Invalid record"); 2120 2121 MDValueList.assignValue( 2122 GET_OR_DISTINCT(DIBasicType, Record[0], 2123 (Context, Record[1], getMDString(Record[2]), 2124 Record[3], Record[4], Record[5])), 2125 NextMDValueNo++); 2126 break; 2127 } 2128 case bitc::METADATA_DERIVED_TYPE: { 2129 if (Record.size() != 12) 2130 return error("Invalid record"); 2131 2132 MDValueList.assignValue( 2133 GET_OR_DISTINCT(DIDerivedType, Record[0], 2134 (Context, Record[1], getMDString(Record[2]), 2135 getMDOrNull(Record[3]), Record[4], 2136 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2137 Record[7], Record[8], Record[9], Record[10], 2138 getMDOrNull(Record[11]))), 2139 NextMDValueNo++); 2140 break; 2141 } 2142 case bitc::METADATA_COMPOSITE_TYPE: { 2143 if (Record.size() != 16) 2144 return error("Invalid record"); 2145 2146 MDValueList.assignValue( 2147 GET_OR_DISTINCT(DICompositeType, Record[0], 2148 (Context, Record[1], getMDString(Record[2]), 2149 getMDOrNull(Record[3]), Record[4], 2150 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2151 Record[7], Record[8], Record[9], Record[10], 2152 getMDOrNull(Record[11]), Record[12], 2153 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2154 getMDString(Record[15]))), 2155 NextMDValueNo++); 2156 break; 2157 } 2158 case bitc::METADATA_SUBROUTINE_TYPE: { 2159 if (Record.size() != 3) 2160 return error("Invalid record"); 2161 2162 MDValueList.assignValue( 2163 GET_OR_DISTINCT(DISubroutineType, Record[0], 2164 (Context, Record[1], getMDOrNull(Record[2]))), 2165 NextMDValueNo++); 2166 break; 2167 } 2168 2169 case bitc::METADATA_MODULE: { 2170 if (Record.size() != 6) 2171 return error("Invalid record"); 2172 2173 MDValueList.assignValue( 2174 GET_OR_DISTINCT(DIModule, Record[0], 2175 (Context, getMDOrNull(Record[1]), 2176 getMDString(Record[2]), getMDString(Record[3]), 2177 getMDString(Record[4]), getMDString(Record[5]))), 2178 NextMDValueNo++); 2179 break; 2180 } 2181 2182 case bitc::METADATA_FILE: { 2183 if (Record.size() != 3) 2184 return error("Invalid record"); 2185 2186 MDValueList.assignValue( 2187 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2188 getMDString(Record[2]))), 2189 NextMDValueNo++); 2190 break; 2191 } 2192 case bitc::METADATA_COMPILE_UNIT: { 2193 if (Record.size() < 14 || Record.size() > 15) 2194 return error("Invalid record"); 2195 2196 // Ignore Record[1], which indicates whether this compile unit is 2197 // distinct. It's always distinct. 2198 MDValueList.assignValue( 2199 DICompileUnit::getDistinct( 2200 Context, Record[1], getMDOrNull(Record[2]), 2201 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2202 Record[6], getMDString(Record[7]), Record[8], 2203 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2204 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2205 getMDOrNull(Record[13]), Record.size() == 14 ? 0 : Record[14]), 2206 NextMDValueNo++); 2207 break; 2208 } 2209 case bitc::METADATA_SUBPROGRAM: { 2210 if (Record.size() != 18 && Record.size() != 19) 2211 return error("Invalid record"); 2212 2213 bool HasFn = Record.size() == 19; 2214 DISubprogram *SP = GET_OR_DISTINCT( 2215 DISubprogram, 2216 Record[0] || Record[8], // All definitions should be distinct. 2217 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2218 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2219 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2220 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2221 Record[14], getMDOrNull(Record[15 + HasFn]), 2222 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2223 MDValueList.assignValue(SP, NextMDValueNo++); 2224 2225 // Upgrade sp->function mapping to function->sp mapping. 2226 if (HasFn && Record[15]) { 2227 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2228 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2229 if (F->isMaterializable()) 2230 // Defer until materialized; unmaterialized functions may not have 2231 // metadata. 2232 FunctionsWithSPs[F] = SP; 2233 else if (!F->empty()) 2234 F->setSubprogram(SP); 2235 } 2236 } 2237 break; 2238 } 2239 case bitc::METADATA_LEXICAL_BLOCK: { 2240 if (Record.size() != 5) 2241 return error("Invalid record"); 2242 2243 MDValueList.assignValue( 2244 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2245 (Context, getMDOrNull(Record[1]), 2246 getMDOrNull(Record[2]), Record[3], Record[4])), 2247 NextMDValueNo++); 2248 break; 2249 } 2250 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2251 if (Record.size() != 4) 2252 return error("Invalid record"); 2253 2254 MDValueList.assignValue( 2255 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2256 (Context, getMDOrNull(Record[1]), 2257 getMDOrNull(Record[2]), Record[3])), 2258 NextMDValueNo++); 2259 break; 2260 } 2261 case bitc::METADATA_NAMESPACE: { 2262 if (Record.size() != 5) 2263 return error("Invalid record"); 2264 2265 MDValueList.assignValue( 2266 GET_OR_DISTINCT(DINamespace, Record[0], 2267 (Context, getMDOrNull(Record[1]), 2268 getMDOrNull(Record[2]), getMDString(Record[3]), 2269 Record[4])), 2270 NextMDValueNo++); 2271 break; 2272 } 2273 case bitc::METADATA_TEMPLATE_TYPE: { 2274 if (Record.size() != 3) 2275 return error("Invalid record"); 2276 2277 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2278 Record[0], 2279 (Context, getMDString(Record[1]), 2280 getMDOrNull(Record[2]))), 2281 NextMDValueNo++); 2282 break; 2283 } 2284 case bitc::METADATA_TEMPLATE_VALUE: { 2285 if (Record.size() != 5) 2286 return error("Invalid record"); 2287 2288 MDValueList.assignValue( 2289 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2290 (Context, Record[1], getMDString(Record[2]), 2291 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2292 NextMDValueNo++); 2293 break; 2294 } 2295 case bitc::METADATA_GLOBAL_VAR: { 2296 if (Record.size() != 11) 2297 return error("Invalid record"); 2298 2299 MDValueList.assignValue( 2300 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2301 (Context, getMDOrNull(Record[1]), 2302 getMDString(Record[2]), getMDString(Record[3]), 2303 getMDOrNull(Record[4]), Record[5], 2304 getMDOrNull(Record[6]), Record[7], Record[8], 2305 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2306 NextMDValueNo++); 2307 break; 2308 } 2309 case bitc::METADATA_LOCAL_VAR: { 2310 // 10th field is for the obseleted 'inlinedAt:' field. 2311 if (Record.size() < 8 || Record.size() > 10) 2312 return error("Invalid record"); 2313 2314 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2315 // DW_TAG_arg_variable. 2316 bool HasTag = Record.size() > 8; 2317 MDValueList.assignValue( 2318 GET_OR_DISTINCT(DILocalVariable, Record[0], 2319 (Context, getMDOrNull(Record[1 + HasTag]), 2320 getMDString(Record[2 + HasTag]), 2321 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2322 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2323 Record[7 + HasTag])), 2324 NextMDValueNo++); 2325 break; 2326 } 2327 case bitc::METADATA_EXPRESSION: { 2328 if (Record.size() < 1) 2329 return error("Invalid record"); 2330 2331 MDValueList.assignValue( 2332 GET_OR_DISTINCT(DIExpression, Record[0], 2333 (Context, makeArrayRef(Record).slice(1))), 2334 NextMDValueNo++); 2335 break; 2336 } 2337 case bitc::METADATA_OBJC_PROPERTY: { 2338 if (Record.size() != 8) 2339 return error("Invalid record"); 2340 2341 MDValueList.assignValue( 2342 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2343 (Context, getMDString(Record[1]), 2344 getMDOrNull(Record[2]), Record[3], 2345 getMDString(Record[4]), getMDString(Record[5]), 2346 Record[6], getMDOrNull(Record[7]))), 2347 NextMDValueNo++); 2348 break; 2349 } 2350 case bitc::METADATA_IMPORTED_ENTITY: { 2351 if (Record.size() != 6) 2352 return error("Invalid record"); 2353 2354 MDValueList.assignValue( 2355 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2356 (Context, Record[1], getMDOrNull(Record[2]), 2357 getMDOrNull(Record[3]), Record[4], 2358 getMDString(Record[5]))), 2359 NextMDValueNo++); 2360 break; 2361 } 2362 case bitc::METADATA_STRING: { 2363 std::string String(Record.begin(), Record.end()); 2364 llvm::UpgradeMDStringConstant(String); 2365 Metadata *MD = MDString::get(Context, String); 2366 MDValueList.assignValue(MD, NextMDValueNo++); 2367 break; 2368 } 2369 case bitc::METADATA_KIND: { 2370 // Support older bitcode files that had METADATA_KIND records in a 2371 // block with METADATA_BLOCK_ID. 2372 if (std::error_code EC = parseMetadataKindRecord(Record)) 2373 return EC; 2374 break; 2375 } 2376 } 2377 } 2378 #undef GET_OR_DISTINCT 2379 } 2380 2381 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2382 std::error_code BitcodeReader::parseMetadataKinds() { 2383 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2384 return error("Invalid record"); 2385 2386 SmallVector<uint64_t, 64> Record; 2387 2388 // Read all the records. 2389 while (1) { 2390 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2391 2392 switch (Entry.Kind) { 2393 case BitstreamEntry::SubBlock: // Handled for us already. 2394 case BitstreamEntry::Error: 2395 return error("Malformed block"); 2396 case BitstreamEntry::EndBlock: 2397 return std::error_code(); 2398 case BitstreamEntry::Record: 2399 // The interesting case. 2400 break; 2401 } 2402 2403 // Read a record. 2404 Record.clear(); 2405 unsigned Code = Stream.readRecord(Entry.ID, Record); 2406 switch (Code) { 2407 default: // Default behavior: ignore. 2408 break; 2409 case bitc::METADATA_KIND: { 2410 if (std::error_code EC = parseMetadataKindRecord(Record)) 2411 return EC; 2412 break; 2413 } 2414 } 2415 } 2416 } 2417 2418 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2419 /// encoding. 2420 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2421 if ((V & 1) == 0) 2422 return V >> 1; 2423 if (V != 1) 2424 return -(V >> 1); 2425 // There is no such thing as -0 with integers. "-0" really means MININT. 2426 return 1ULL << 63; 2427 } 2428 2429 /// Resolve all of the initializers for global values and aliases that we can. 2430 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2431 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2432 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2433 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2434 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2435 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2436 2437 GlobalInitWorklist.swap(GlobalInits); 2438 AliasInitWorklist.swap(AliasInits); 2439 FunctionPrefixWorklist.swap(FunctionPrefixes); 2440 FunctionPrologueWorklist.swap(FunctionPrologues); 2441 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2442 2443 while (!GlobalInitWorklist.empty()) { 2444 unsigned ValID = GlobalInitWorklist.back().second; 2445 if (ValID >= ValueList.size()) { 2446 // Not ready to resolve this yet, it requires something later in the file. 2447 GlobalInits.push_back(GlobalInitWorklist.back()); 2448 } else { 2449 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2450 GlobalInitWorklist.back().first->setInitializer(C); 2451 else 2452 return error("Expected a constant"); 2453 } 2454 GlobalInitWorklist.pop_back(); 2455 } 2456 2457 while (!AliasInitWorklist.empty()) { 2458 unsigned ValID = AliasInitWorklist.back().second; 2459 if (ValID >= ValueList.size()) { 2460 AliasInits.push_back(AliasInitWorklist.back()); 2461 } else { 2462 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2463 if (!C) 2464 return error("Expected a constant"); 2465 GlobalAlias *Alias = AliasInitWorklist.back().first; 2466 if (C->getType() != Alias->getType()) 2467 return error("Alias and aliasee types don't match"); 2468 Alias->setAliasee(C); 2469 } 2470 AliasInitWorklist.pop_back(); 2471 } 2472 2473 while (!FunctionPrefixWorklist.empty()) { 2474 unsigned ValID = FunctionPrefixWorklist.back().second; 2475 if (ValID >= ValueList.size()) { 2476 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2477 } else { 2478 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2479 FunctionPrefixWorklist.back().first->setPrefixData(C); 2480 else 2481 return error("Expected a constant"); 2482 } 2483 FunctionPrefixWorklist.pop_back(); 2484 } 2485 2486 while (!FunctionPrologueWorklist.empty()) { 2487 unsigned ValID = FunctionPrologueWorklist.back().second; 2488 if (ValID >= ValueList.size()) { 2489 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2490 } else { 2491 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2492 FunctionPrologueWorklist.back().first->setPrologueData(C); 2493 else 2494 return error("Expected a constant"); 2495 } 2496 FunctionPrologueWorklist.pop_back(); 2497 } 2498 2499 while (!FunctionPersonalityFnWorklist.empty()) { 2500 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2501 if (ValID >= ValueList.size()) { 2502 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2503 } else { 2504 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2505 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2506 else 2507 return error("Expected a constant"); 2508 } 2509 FunctionPersonalityFnWorklist.pop_back(); 2510 } 2511 2512 return std::error_code(); 2513 } 2514 2515 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2516 SmallVector<uint64_t, 8> Words(Vals.size()); 2517 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2518 BitcodeReader::decodeSignRotatedValue); 2519 2520 return APInt(TypeBits, Words); 2521 } 2522 2523 std::error_code BitcodeReader::parseConstants() { 2524 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2525 return error("Invalid record"); 2526 2527 SmallVector<uint64_t, 64> Record; 2528 2529 // Read all the records for this value table. 2530 Type *CurTy = Type::getInt32Ty(Context); 2531 unsigned NextCstNo = ValueList.size(); 2532 while (1) { 2533 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2534 2535 switch (Entry.Kind) { 2536 case BitstreamEntry::SubBlock: // Handled for us already. 2537 case BitstreamEntry::Error: 2538 return error("Malformed block"); 2539 case BitstreamEntry::EndBlock: 2540 if (NextCstNo != ValueList.size()) 2541 return error("Invalid ronstant reference"); 2542 2543 // Once all the constants have been read, go through and resolve forward 2544 // references. 2545 ValueList.resolveConstantForwardRefs(); 2546 return std::error_code(); 2547 case BitstreamEntry::Record: 2548 // The interesting case. 2549 break; 2550 } 2551 2552 // Read a record. 2553 Record.clear(); 2554 Value *V = nullptr; 2555 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2556 switch (BitCode) { 2557 default: // Default behavior: unknown constant 2558 case bitc::CST_CODE_UNDEF: // UNDEF 2559 V = UndefValue::get(CurTy); 2560 break; 2561 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2562 if (Record.empty()) 2563 return error("Invalid record"); 2564 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2565 return error("Invalid record"); 2566 CurTy = TypeList[Record[0]]; 2567 continue; // Skip the ValueList manipulation. 2568 case bitc::CST_CODE_NULL: // NULL 2569 V = Constant::getNullValue(CurTy); 2570 break; 2571 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2572 if (!CurTy->isIntegerTy() || Record.empty()) 2573 return error("Invalid record"); 2574 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2575 break; 2576 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2577 if (!CurTy->isIntegerTy() || Record.empty()) 2578 return error("Invalid record"); 2579 2580 APInt VInt = 2581 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2582 V = ConstantInt::get(Context, VInt); 2583 2584 break; 2585 } 2586 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2587 if (Record.empty()) 2588 return error("Invalid record"); 2589 if (CurTy->isHalfTy()) 2590 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2591 APInt(16, (uint16_t)Record[0]))); 2592 else if (CurTy->isFloatTy()) 2593 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2594 APInt(32, (uint32_t)Record[0]))); 2595 else if (CurTy->isDoubleTy()) 2596 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2597 APInt(64, Record[0]))); 2598 else if (CurTy->isX86_FP80Ty()) { 2599 // Bits are not stored the same way as a normal i80 APInt, compensate. 2600 uint64_t Rearrange[2]; 2601 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2602 Rearrange[1] = Record[0] >> 48; 2603 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2604 APInt(80, Rearrange))); 2605 } else if (CurTy->isFP128Ty()) 2606 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2607 APInt(128, Record))); 2608 else if (CurTy->isPPC_FP128Ty()) 2609 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2610 APInt(128, Record))); 2611 else 2612 V = UndefValue::get(CurTy); 2613 break; 2614 } 2615 2616 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2617 if (Record.empty()) 2618 return error("Invalid record"); 2619 2620 unsigned Size = Record.size(); 2621 SmallVector<Constant*, 16> Elts; 2622 2623 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2624 for (unsigned i = 0; i != Size; ++i) 2625 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2626 STy->getElementType(i))); 2627 V = ConstantStruct::get(STy, Elts); 2628 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2629 Type *EltTy = ATy->getElementType(); 2630 for (unsigned i = 0; i != Size; ++i) 2631 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2632 V = ConstantArray::get(ATy, Elts); 2633 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2634 Type *EltTy = VTy->getElementType(); 2635 for (unsigned i = 0; i != Size; ++i) 2636 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2637 V = ConstantVector::get(Elts); 2638 } else { 2639 V = UndefValue::get(CurTy); 2640 } 2641 break; 2642 } 2643 case bitc::CST_CODE_STRING: // STRING: [values] 2644 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2645 if (Record.empty()) 2646 return error("Invalid record"); 2647 2648 SmallString<16> Elts(Record.begin(), Record.end()); 2649 V = ConstantDataArray::getString(Context, Elts, 2650 BitCode == bitc::CST_CODE_CSTRING); 2651 break; 2652 } 2653 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2654 if (Record.empty()) 2655 return error("Invalid record"); 2656 2657 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2658 unsigned Size = Record.size(); 2659 2660 if (EltTy->isIntegerTy(8)) { 2661 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2662 if (isa<VectorType>(CurTy)) 2663 V = ConstantDataVector::get(Context, Elts); 2664 else 2665 V = ConstantDataArray::get(Context, Elts); 2666 } else if (EltTy->isIntegerTy(16)) { 2667 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2668 if (isa<VectorType>(CurTy)) 2669 V = ConstantDataVector::get(Context, Elts); 2670 else 2671 V = ConstantDataArray::get(Context, Elts); 2672 } else if (EltTy->isIntegerTy(32)) { 2673 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2674 if (isa<VectorType>(CurTy)) 2675 V = ConstantDataVector::get(Context, Elts); 2676 else 2677 V = ConstantDataArray::get(Context, Elts); 2678 } else if (EltTy->isIntegerTy(64)) { 2679 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2680 if (isa<VectorType>(CurTy)) 2681 V = ConstantDataVector::get(Context, Elts); 2682 else 2683 V = ConstantDataArray::get(Context, Elts); 2684 } else if (EltTy->isFloatTy()) { 2685 SmallVector<float, 16> Elts(Size); 2686 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2687 if (isa<VectorType>(CurTy)) 2688 V = ConstantDataVector::get(Context, Elts); 2689 else 2690 V = ConstantDataArray::get(Context, Elts); 2691 } else if (EltTy->isDoubleTy()) { 2692 SmallVector<double, 16> Elts(Size); 2693 std::transform(Record.begin(), Record.end(), Elts.begin(), 2694 BitsToDouble); 2695 if (isa<VectorType>(CurTy)) 2696 V = ConstantDataVector::get(Context, Elts); 2697 else 2698 V = ConstantDataArray::get(Context, Elts); 2699 } else { 2700 return error("Invalid type for value"); 2701 } 2702 break; 2703 } 2704 2705 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2706 if (Record.size() < 3) 2707 return error("Invalid record"); 2708 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2709 if (Opc < 0) { 2710 V = UndefValue::get(CurTy); // Unknown binop. 2711 } else { 2712 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2713 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2714 unsigned Flags = 0; 2715 if (Record.size() >= 4) { 2716 if (Opc == Instruction::Add || 2717 Opc == Instruction::Sub || 2718 Opc == Instruction::Mul || 2719 Opc == Instruction::Shl) { 2720 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2721 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2722 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2723 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2724 } else if (Opc == Instruction::SDiv || 2725 Opc == Instruction::UDiv || 2726 Opc == Instruction::LShr || 2727 Opc == Instruction::AShr) { 2728 if (Record[3] & (1 << bitc::PEO_EXACT)) 2729 Flags |= SDivOperator::IsExact; 2730 } 2731 } 2732 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2733 } 2734 break; 2735 } 2736 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2737 if (Record.size() < 3) 2738 return error("Invalid record"); 2739 int Opc = getDecodedCastOpcode(Record[0]); 2740 if (Opc < 0) { 2741 V = UndefValue::get(CurTy); // Unknown cast. 2742 } else { 2743 Type *OpTy = getTypeByID(Record[1]); 2744 if (!OpTy) 2745 return error("Invalid record"); 2746 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2747 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2748 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2749 } 2750 break; 2751 } 2752 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2753 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2754 unsigned OpNum = 0; 2755 Type *PointeeType = nullptr; 2756 if (Record.size() % 2) 2757 PointeeType = getTypeByID(Record[OpNum++]); 2758 SmallVector<Constant*, 16> Elts; 2759 while (OpNum != Record.size()) { 2760 Type *ElTy = getTypeByID(Record[OpNum++]); 2761 if (!ElTy) 2762 return error("Invalid record"); 2763 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2764 } 2765 2766 if (PointeeType && 2767 PointeeType != 2768 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2769 ->getElementType()) 2770 return error("Explicit gep operator type does not match pointee type " 2771 "of pointer operand"); 2772 2773 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2774 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2775 BitCode == 2776 bitc::CST_CODE_CE_INBOUNDS_GEP); 2777 break; 2778 } 2779 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2780 if (Record.size() < 3) 2781 return error("Invalid record"); 2782 2783 Type *SelectorTy = Type::getInt1Ty(Context); 2784 2785 // The selector might be an i1 or an <n x i1> 2786 // Get the type from the ValueList before getting a forward ref. 2787 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2788 if (Value *V = ValueList[Record[0]]) 2789 if (SelectorTy != V->getType()) 2790 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2791 2792 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2793 SelectorTy), 2794 ValueList.getConstantFwdRef(Record[1],CurTy), 2795 ValueList.getConstantFwdRef(Record[2],CurTy)); 2796 break; 2797 } 2798 case bitc::CST_CODE_CE_EXTRACTELT 2799 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2800 if (Record.size() < 3) 2801 return error("Invalid record"); 2802 VectorType *OpTy = 2803 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2804 if (!OpTy) 2805 return error("Invalid record"); 2806 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2807 Constant *Op1 = nullptr; 2808 if (Record.size() == 4) { 2809 Type *IdxTy = getTypeByID(Record[2]); 2810 if (!IdxTy) 2811 return error("Invalid record"); 2812 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2813 } else // TODO: Remove with llvm 4.0 2814 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2815 if (!Op1) 2816 return error("Invalid record"); 2817 V = ConstantExpr::getExtractElement(Op0, Op1); 2818 break; 2819 } 2820 case bitc::CST_CODE_CE_INSERTELT 2821 : { // CE_INSERTELT: [opval, opval, opty, opval] 2822 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2823 if (Record.size() < 3 || !OpTy) 2824 return error("Invalid record"); 2825 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2826 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2827 OpTy->getElementType()); 2828 Constant *Op2 = nullptr; 2829 if (Record.size() == 4) { 2830 Type *IdxTy = getTypeByID(Record[2]); 2831 if (!IdxTy) 2832 return error("Invalid record"); 2833 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2834 } else // TODO: Remove with llvm 4.0 2835 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2836 if (!Op2) 2837 return error("Invalid record"); 2838 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2839 break; 2840 } 2841 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2842 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2843 if (Record.size() < 3 || !OpTy) 2844 return error("Invalid record"); 2845 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2846 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2847 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2848 OpTy->getNumElements()); 2849 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2850 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2851 break; 2852 } 2853 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2854 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2855 VectorType *OpTy = 2856 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2857 if (Record.size() < 4 || !RTy || !OpTy) 2858 return error("Invalid record"); 2859 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2860 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2861 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2862 RTy->getNumElements()); 2863 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2864 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2865 break; 2866 } 2867 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2868 if (Record.size() < 4) 2869 return error("Invalid record"); 2870 Type *OpTy = getTypeByID(Record[0]); 2871 if (!OpTy) 2872 return error("Invalid record"); 2873 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2874 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2875 2876 if (OpTy->isFPOrFPVectorTy()) 2877 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2878 else 2879 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2880 break; 2881 } 2882 // This maintains backward compatibility, pre-asm dialect keywords. 2883 // FIXME: Remove with the 4.0 release. 2884 case bitc::CST_CODE_INLINEASM_OLD: { 2885 if (Record.size() < 2) 2886 return error("Invalid record"); 2887 std::string AsmStr, ConstrStr; 2888 bool HasSideEffects = Record[0] & 1; 2889 bool IsAlignStack = Record[0] >> 1; 2890 unsigned AsmStrSize = Record[1]; 2891 if (2+AsmStrSize >= Record.size()) 2892 return error("Invalid record"); 2893 unsigned ConstStrSize = Record[2+AsmStrSize]; 2894 if (3+AsmStrSize+ConstStrSize > Record.size()) 2895 return error("Invalid record"); 2896 2897 for (unsigned i = 0; i != AsmStrSize; ++i) 2898 AsmStr += (char)Record[2+i]; 2899 for (unsigned i = 0; i != ConstStrSize; ++i) 2900 ConstrStr += (char)Record[3+AsmStrSize+i]; 2901 PointerType *PTy = cast<PointerType>(CurTy); 2902 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2903 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2904 break; 2905 } 2906 // This version adds support for the asm dialect keywords (e.g., 2907 // inteldialect). 2908 case bitc::CST_CODE_INLINEASM: { 2909 if (Record.size() < 2) 2910 return error("Invalid record"); 2911 std::string AsmStr, ConstrStr; 2912 bool HasSideEffects = Record[0] & 1; 2913 bool IsAlignStack = (Record[0] >> 1) & 1; 2914 unsigned AsmDialect = Record[0] >> 2; 2915 unsigned AsmStrSize = Record[1]; 2916 if (2+AsmStrSize >= Record.size()) 2917 return error("Invalid record"); 2918 unsigned ConstStrSize = Record[2+AsmStrSize]; 2919 if (3+AsmStrSize+ConstStrSize > Record.size()) 2920 return error("Invalid record"); 2921 2922 for (unsigned i = 0; i != AsmStrSize; ++i) 2923 AsmStr += (char)Record[2+i]; 2924 for (unsigned i = 0; i != ConstStrSize; ++i) 2925 ConstrStr += (char)Record[3+AsmStrSize+i]; 2926 PointerType *PTy = cast<PointerType>(CurTy); 2927 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2928 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2929 InlineAsm::AsmDialect(AsmDialect)); 2930 break; 2931 } 2932 case bitc::CST_CODE_BLOCKADDRESS:{ 2933 if (Record.size() < 3) 2934 return error("Invalid record"); 2935 Type *FnTy = getTypeByID(Record[0]); 2936 if (!FnTy) 2937 return error("Invalid record"); 2938 Function *Fn = 2939 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2940 if (!Fn) 2941 return error("Invalid record"); 2942 2943 // Don't let Fn get dematerialized. 2944 BlockAddressesTaken.insert(Fn); 2945 2946 // If the function is already parsed we can insert the block address right 2947 // away. 2948 BasicBlock *BB; 2949 unsigned BBID = Record[2]; 2950 if (!BBID) 2951 // Invalid reference to entry block. 2952 return error("Invalid ID"); 2953 if (!Fn->empty()) { 2954 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2955 for (size_t I = 0, E = BBID; I != E; ++I) { 2956 if (BBI == BBE) 2957 return error("Invalid ID"); 2958 ++BBI; 2959 } 2960 BB = &*BBI; 2961 } else { 2962 // Otherwise insert a placeholder and remember it so it can be inserted 2963 // when the function is parsed. 2964 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2965 if (FwdBBs.empty()) 2966 BasicBlockFwdRefQueue.push_back(Fn); 2967 if (FwdBBs.size() < BBID + 1) 2968 FwdBBs.resize(BBID + 1); 2969 if (!FwdBBs[BBID]) 2970 FwdBBs[BBID] = BasicBlock::Create(Context); 2971 BB = FwdBBs[BBID]; 2972 } 2973 V = BlockAddress::get(Fn, BB); 2974 break; 2975 } 2976 } 2977 2978 if (ValueList.assignValue(V, NextCstNo)) 2979 return error("Invalid forward reference"); 2980 ++NextCstNo; 2981 } 2982 } 2983 2984 std::error_code BitcodeReader::parseUseLists() { 2985 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2986 return error("Invalid record"); 2987 2988 // Read all the records. 2989 SmallVector<uint64_t, 64> Record; 2990 while (1) { 2991 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2992 2993 switch (Entry.Kind) { 2994 case BitstreamEntry::SubBlock: // Handled for us already. 2995 case BitstreamEntry::Error: 2996 return error("Malformed block"); 2997 case BitstreamEntry::EndBlock: 2998 return std::error_code(); 2999 case BitstreamEntry::Record: 3000 // The interesting case. 3001 break; 3002 } 3003 3004 // Read a use list record. 3005 Record.clear(); 3006 bool IsBB = false; 3007 switch (Stream.readRecord(Entry.ID, Record)) { 3008 default: // Default behavior: unknown type. 3009 break; 3010 case bitc::USELIST_CODE_BB: 3011 IsBB = true; 3012 // fallthrough 3013 case bitc::USELIST_CODE_DEFAULT: { 3014 unsigned RecordLength = Record.size(); 3015 if (RecordLength < 3) 3016 // Records should have at least an ID and two indexes. 3017 return error("Invalid record"); 3018 unsigned ID = Record.back(); 3019 Record.pop_back(); 3020 3021 Value *V; 3022 if (IsBB) { 3023 assert(ID < FunctionBBs.size() && "Basic block not found"); 3024 V = FunctionBBs[ID]; 3025 } else 3026 V = ValueList[ID]; 3027 unsigned NumUses = 0; 3028 SmallDenseMap<const Use *, unsigned, 16> Order; 3029 for (const Use &U : V->uses()) { 3030 if (++NumUses > Record.size()) 3031 break; 3032 Order[&U] = Record[NumUses - 1]; 3033 } 3034 if (Order.size() != Record.size() || NumUses > Record.size()) 3035 // Mismatches can happen if the functions are being materialized lazily 3036 // (out-of-order), or a value has been upgraded. 3037 break; 3038 3039 V->sortUseList([&](const Use &L, const Use &R) { 3040 return Order.lookup(&L) < Order.lookup(&R); 3041 }); 3042 break; 3043 } 3044 } 3045 } 3046 } 3047 3048 /// When we see the block for metadata, remember where it is and then skip it. 3049 /// This lets us lazily deserialize the metadata. 3050 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3051 // Save the current stream state. 3052 uint64_t CurBit = Stream.GetCurrentBitNo(); 3053 DeferredMetadataInfo.push_back(CurBit); 3054 3055 // Skip over the block for now. 3056 if (Stream.SkipBlock()) 3057 return error("Invalid record"); 3058 return std::error_code(); 3059 } 3060 3061 std::error_code BitcodeReader::materializeMetadata() { 3062 for (uint64_t BitPos : DeferredMetadataInfo) { 3063 // Move the bit stream to the saved position. 3064 Stream.JumpToBit(BitPos); 3065 if (std::error_code EC = parseMetadata()) 3066 return EC; 3067 } 3068 DeferredMetadataInfo.clear(); 3069 return std::error_code(); 3070 } 3071 3072 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3073 3074 /// When we see the block for a function body, remember where it is and then 3075 /// skip it. This lets us lazily deserialize the functions. 3076 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3077 // Get the function we are talking about. 3078 if (FunctionsWithBodies.empty()) 3079 return error("Insufficient function protos"); 3080 3081 Function *Fn = FunctionsWithBodies.back(); 3082 FunctionsWithBodies.pop_back(); 3083 3084 // Save the current stream state. 3085 uint64_t CurBit = Stream.GetCurrentBitNo(); 3086 assert( 3087 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3088 "Mismatch between VST and scanned function offsets"); 3089 DeferredFunctionInfo[Fn] = CurBit; 3090 3091 // Skip over the function block for now. 3092 if (Stream.SkipBlock()) 3093 return error("Invalid record"); 3094 return std::error_code(); 3095 } 3096 3097 std::error_code BitcodeReader::globalCleanup() { 3098 // Patch the initializers for globals and aliases up. 3099 resolveGlobalAndAliasInits(); 3100 if (!GlobalInits.empty() || !AliasInits.empty()) 3101 return error("Malformed global initializer set"); 3102 3103 // Look for intrinsic functions which need to be upgraded at some point 3104 for (Function &F : *TheModule) { 3105 Function *NewFn; 3106 if (UpgradeIntrinsicFunction(&F, NewFn)) 3107 UpgradedIntrinsics[&F] = NewFn; 3108 } 3109 3110 // Look for global variables which need to be renamed. 3111 for (GlobalVariable &GV : TheModule->globals()) 3112 UpgradeGlobalVariable(&GV); 3113 3114 // Force deallocation of memory for these vectors to favor the client that 3115 // want lazy deserialization. 3116 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3117 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3118 return std::error_code(); 3119 } 3120 3121 /// Support for lazy parsing of function bodies. This is required if we 3122 /// either have an old bitcode file without a VST forward declaration record, 3123 /// or if we have an anonymous function being materialized, since anonymous 3124 /// functions do not have a name and are therefore not in the VST. 3125 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3126 Stream.JumpToBit(NextUnreadBit); 3127 3128 if (Stream.AtEndOfStream()) 3129 return error("Could not find function in stream"); 3130 3131 if (!SeenFirstFunctionBody) 3132 return error("Trying to materialize functions before seeing function blocks"); 3133 3134 // An old bitcode file with the symbol table at the end would have 3135 // finished the parse greedily. 3136 assert(SeenValueSymbolTable); 3137 3138 SmallVector<uint64_t, 64> Record; 3139 3140 while (1) { 3141 BitstreamEntry Entry = Stream.advance(); 3142 switch (Entry.Kind) { 3143 default: 3144 return error("Expect SubBlock"); 3145 case BitstreamEntry::SubBlock: 3146 switch (Entry.ID) { 3147 default: 3148 return error("Expect function block"); 3149 case bitc::FUNCTION_BLOCK_ID: 3150 if (std::error_code EC = rememberAndSkipFunctionBody()) 3151 return EC; 3152 NextUnreadBit = Stream.GetCurrentBitNo(); 3153 return std::error_code(); 3154 } 3155 } 3156 } 3157 } 3158 3159 std::error_code BitcodeReader::parseBitcodeVersion() { 3160 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3161 return error("Invalid record"); 3162 3163 // Read all the records. 3164 SmallVector<uint64_t, 64> Record; 3165 while (1) { 3166 BitstreamEntry Entry = Stream.advance(); 3167 3168 switch (Entry.Kind) { 3169 default: 3170 case BitstreamEntry::Error: 3171 return error("Malformed block"); 3172 case BitstreamEntry::EndBlock: 3173 return std::error_code(); 3174 case BitstreamEntry::Record: 3175 // The interesting case. 3176 break; 3177 } 3178 3179 // Read a record. 3180 Record.clear(); 3181 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3182 switch (BitCode) { 3183 default: // Default behavior: reject 3184 return error("Invalid value"); 3185 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3186 // N] 3187 convertToString(Record, 0, ProducerIdentification); 3188 break; 3189 } 3190 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3191 unsigned epoch = (unsigned)Record[0]; 3192 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3193 return error( 3194 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3195 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3196 } 3197 } 3198 } 3199 } 3200 } 3201 3202 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3203 bool ShouldLazyLoadMetadata) { 3204 if (ResumeBit) 3205 Stream.JumpToBit(ResumeBit); 3206 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3207 return error("Invalid record"); 3208 3209 SmallVector<uint64_t, 64> Record; 3210 std::vector<std::string> SectionTable; 3211 std::vector<std::string> GCTable; 3212 3213 // Read all the records for this module. 3214 while (1) { 3215 BitstreamEntry Entry = Stream.advance(); 3216 3217 switch (Entry.Kind) { 3218 case BitstreamEntry::Error: 3219 return error("Malformed block"); 3220 case BitstreamEntry::EndBlock: 3221 return globalCleanup(); 3222 3223 case BitstreamEntry::SubBlock: 3224 switch (Entry.ID) { 3225 default: // Skip unknown content. 3226 if (Stream.SkipBlock()) 3227 return error("Invalid record"); 3228 break; 3229 case bitc::BLOCKINFO_BLOCK_ID: 3230 if (Stream.ReadBlockInfoBlock()) 3231 return error("Malformed block"); 3232 break; 3233 case bitc::PARAMATTR_BLOCK_ID: 3234 if (std::error_code EC = parseAttributeBlock()) 3235 return EC; 3236 break; 3237 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3238 if (std::error_code EC = parseAttributeGroupBlock()) 3239 return EC; 3240 break; 3241 case bitc::TYPE_BLOCK_ID_NEW: 3242 if (std::error_code EC = parseTypeTable()) 3243 return EC; 3244 break; 3245 case bitc::VALUE_SYMTAB_BLOCK_ID: 3246 if (!SeenValueSymbolTable) { 3247 // Either this is an old form VST without function index and an 3248 // associated VST forward declaration record (which would have caused 3249 // the VST to be jumped to and parsed before it was encountered 3250 // normally in the stream), or there were no function blocks to 3251 // trigger an earlier parsing of the VST. 3252 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3253 if (std::error_code EC = parseValueSymbolTable()) 3254 return EC; 3255 SeenValueSymbolTable = true; 3256 } else { 3257 // We must have had a VST forward declaration record, which caused 3258 // the parser to jump to and parse the VST earlier. 3259 assert(VSTOffset > 0); 3260 if (Stream.SkipBlock()) 3261 return error("Invalid record"); 3262 } 3263 break; 3264 case bitc::CONSTANTS_BLOCK_ID: 3265 if (std::error_code EC = parseConstants()) 3266 return EC; 3267 if (std::error_code EC = resolveGlobalAndAliasInits()) 3268 return EC; 3269 break; 3270 case bitc::METADATA_BLOCK_ID: 3271 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3272 if (std::error_code EC = rememberAndSkipMetadata()) 3273 return EC; 3274 break; 3275 } 3276 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3277 if (std::error_code EC = parseMetadata()) 3278 return EC; 3279 break; 3280 case bitc::METADATA_KIND_BLOCK_ID: 3281 if (std::error_code EC = parseMetadataKinds()) 3282 return EC; 3283 break; 3284 case bitc::FUNCTION_BLOCK_ID: 3285 // If this is the first function body we've seen, reverse the 3286 // FunctionsWithBodies list. 3287 if (!SeenFirstFunctionBody) { 3288 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3289 if (std::error_code EC = globalCleanup()) 3290 return EC; 3291 SeenFirstFunctionBody = true; 3292 } 3293 3294 if (VSTOffset > 0) { 3295 // If we have a VST forward declaration record, make sure we 3296 // parse the VST now if we haven't already. It is needed to 3297 // set up the DeferredFunctionInfo vector for lazy reading. 3298 if (!SeenValueSymbolTable) { 3299 if (std::error_code EC = 3300 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3301 return EC; 3302 SeenValueSymbolTable = true; 3303 // Fall through so that we record the NextUnreadBit below. 3304 // This is necessary in case we have an anonymous function that 3305 // is later materialized. Since it will not have a VST entry we 3306 // need to fall back to the lazy parse to find its offset. 3307 } else { 3308 // If we have a VST forward declaration record, but have already 3309 // parsed the VST (just above, when the first function body was 3310 // encountered here), then we are resuming the parse after 3311 // materializing functions. The ResumeBit points to the 3312 // start of the last function block recorded in the 3313 // DeferredFunctionInfo map. Skip it. 3314 if (Stream.SkipBlock()) 3315 return error("Invalid record"); 3316 continue; 3317 } 3318 } 3319 3320 // Support older bitcode files that did not have the function 3321 // index in the VST, nor a VST forward declaration record, as 3322 // well as anonymous functions that do not have VST entries. 3323 // Build the DeferredFunctionInfo vector on the fly. 3324 if (std::error_code EC = rememberAndSkipFunctionBody()) 3325 return EC; 3326 3327 // Suspend parsing when we reach the function bodies. Subsequent 3328 // materialization calls will resume it when necessary. If the bitcode 3329 // file is old, the symbol table will be at the end instead and will not 3330 // have been seen yet. In this case, just finish the parse now. 3331 if (SeenValueSymbolTable) { 3332 NextUnreadBit = Stream.GetCurrentBitNo(); 3333 return std::error_code(); 3334 } 3335 break; 3336 case bitc::USELIST_BLOCK_ID: 3337 if (std::error_code EC = parseUseLists()) 3338 return EC; 3339 break; 3340 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3341 if (std::error_code EC = parseOperandBundleTags()) 3342 return EC; 3343 break; 3344 } 3345 continue; 3346 3347 case BitstreamEntry::Record: 3348 // The interesting case. 3349 break; 3350 } 3351 3352 3353 // Read a record. 3354 auto BitCode = Stream.readRecord(Entry.ID, Record); 3355 switch (BitCode) { 3356 default: break; // Default behavior, ignore unknown content. 3357 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3358 if (Record.size() < 1) 3359 return error("Invalid record"); 3360 // Only version #0 and #1 are supported so far. 3361 unsigned module_version = Record[0]; 3362 switch (module_version) { 3363 default: 3364 return error("Invalid value"); 3365 case 0: 3366 UseRelativeIDs = false; 3367 break; 3368 case 1: 3369 UseRelativeIDs = true; 3370 break; 3371 } 3372 break; 3373 } 3374 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3375 std::string S; 3376 if (convertToString(Record, 0, S)) 3377 return error("Invalid record"); 3378 TheModule->setTargetTriple(S); 3379 break; 3380 } 3381 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3382 std::string S; 3383 if (convertToString(Record, 0, S)) 3384 return error("Invalid record"); 3385 TheModule->setDataLayout(S); 3386 break; 3387 } 3388 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3389 std::string S; 3390 if (convertToString(Record, 0, S)) 3391 return error("Invalid record"); 3392 TheModule->setModuleInlineAsm(S); 3393 break; 3394 } 3395 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3396 // FIXME: Remove in 4.0. 3397 std::string S; 3398 if (convertToString(Record, 0, S)) 3399 return error("Invalid record"); 3400 // Ignore value. 3401 break; 3402 } 3403 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3404 std::string S; 3405 if (convertToString(Record, 0, S)) 3406 return error("Invalid record"); 3407 SectionTable.push_back(S); 3408 break; 3409 } 3410 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3411 std::string S; 3412 if (convertToString(Record, 0, S)) 3413 return error("Invalid record"); 3414 GCTable.push_back(S); 3415 break; 3416 } 3417 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3418 if (Record.size() < 2) 3419 return error("Invalid record"); 3420 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3421 unsigned ComdatNameSize = Record[1]; 3422 std::string ComdatName; 3423 ComdatName.reserve(ComdatNameSize); 3424 for (unsigned i = 0; i != ComdatNameSize; ++i) 3425 ComdatName += (char)Record[2 + i]; 3426 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3427 C->setSelectionKind(SK); 3428 ComdatList.push_back(C); 3429 break; 3430 } 3431 // GLOBALVAR: [pointer type, isconst, initid, 3432 // linkage, alignment, section, visibility, threadlocal, 3433 // unnamed_addr, externally_initialized, dllstorageclass, 3434 // comdat] 3435 case bitc::MODULE_CODE_GLOBALVAR: { 3436 if (Record.size() < 6) 3437 return error("Invalid record"); 3438 Type *Ty = getTypeByID(Record[0]); 3439 if (!Ty) 3440 return error("Invalid record"); 3441 bool isConstant = Record[1] & 1; 3442 bool explicitType = Record[1] & 2; 3443 unsigned AddressSpace; 3444 if (explicitType) { 3445 AddressSpace = Record[1] >> 2; 3446 } else { 3447 if (!Ty->isPointerTy()) 3448 return error("Invalid type for value"); 3449 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3450 Ty = cast<PointerType>(Ty)->getElementType(); 3451 } 3452 3453 uint64_t RawLinkage = Record[3]; 3454 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3455 unsigned Alignment; 3456 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3457 return EC; 3458 std::string Section; 3459 if (Record[5]) { 3460 if (Record[5]-1 >= SectionTable.size()) 3461 return error("Invalid ID"); 3462 Section = SectionTable[Record[5]-1]; 3463 } 3464 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3465 // Local linkage must have default visibility. 3466 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3467 // FIXME: Change to an error if non-default in 4.0. 3468 Visibility = getDecodedVisibility(Record[6]); 3469 3470 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3471 if (Record.size() > 7) 3472 TLM = getDecodedThreadLocalMode(Record[7]); 3473 3474 bool UnnamedAddr = false; 3475 if (Record.size() > 8) 3476 UnnamedAddr = Record[8]; 3477 3478 bool ExternallyInitialized = false; 3479 if (Record.size() > 9) 3480 ExternallyInitialized = Record[9]; 3481 3482 GlobalVariable *NewGV = 3483 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3484 TLM, AddressSpace, ExternallyInitialized); 3485 NewGV->setAlignment(Alignment); 3486 if (!Section.empty()) 3487 NewGV->setSection(Section); 3488 NewGV->setVisibility(Visibility); 3489 NewGV->setUnnamedAddr(UnnamedAddr); 3490 3491 if (Record.size() > 10) 3492 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3493 else 3494 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3495 3496 ValueList.push_back(NewGV); 3497 3498 // Remember which value to use for the global initializer. 3499 if (unsigned InitID = Record[2]) 3500 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3501 3502 if (Record.size() > 11) { 3503 if (unsigned ComdatID = Record[11]) { 3504 if (ComdatID > ComdatList.size()) 3505 return error("Invalid global variable comdat ID"); 3506 NewGV->setComdat(ComdatList[ComdatID - 1]); 3507 } 3508 } else if (hasImplicitComdat(RawLinkage)) { 3509 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3510 } 3511 break; 3512 } 3513 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3514 // alignment, section, visibility, gc, unnamed_addr, 3515 // prologuedata, dllstorageclass, comdat, prefixdata] 3516 case bitc::MODULE_CODE_FUNCTION: { 3517 if (Record.size() < 8) 3518 return error("Invalid record"); 3519 Type *Ty = getTypeByID(Record[0]); 3520 if (!Ty) 3521 return error("Invalid record"); 3522 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3523 Ty = PTy->getElementType(); 3524 auto *FTy = dyn_cast<FunctionType>(Ty); 3525 if (!FTy) 3526 return error("Invalid type for value"); 3527 auto CC = static_cast<CallingConv::ID>(Record[1]); 3528 if (CC & ~CallingConv::MaxID) 3529 return error("Invalid calling convention ID"); 3530 3531 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3532 "", TheModule); 3533 3534 Func->setCallingConv(CC); 3535 bool isProto = Record[2]; 3536 uint64_t RawLinkage = Record[3]; 3537 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3538 Func->setAttributes(getAttributes(Record[4])); 3539 3540 unsigned Alignment; 3541 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3542 return EC; 3543 Func->setAlignment(Alignment); 3544 if (Record[6]) { 3545 if (Record[6]-1 >= SectionTable.size()) 3546 return error("Invalid ID"); 3547 Func->setSection(SectionTable[Record[6]-1]); 3548 } 3549 // Local linkage must have default visibility. 3550 if (!Func->hasLocalLinkage()) 3551 // FIXME: Change to an error if non-default in 4.0. 3552 Func->setVisibility(getDecodedVisibility(Record[7])); 3553 if (Record.size() > 8 && Record[8]) { 3554 if (Record[8]-1 >= GCTable.size()) 3555 return error("Invalid ID"); 3556 Func->setGC(GCTable[Record[8]-1].c_str()); 3557 } 3558 bool UnnamedAddr = false; 3559 if (Record.size() > 9) 3560 UnnamedAddr = Record[9]; 3561 Func->setUnnamedAddr(UnnamedAddr); 3562 if (Record.size() > 10 && Record[10] != 0) 3563 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3564 3565 if (Record.size() > 11) 3566 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3567 else 3568 upgradeDLLImportExportLinkage(Func, RawLinkage); 3569 3570 if (Record.size() > 12) { 3571 if (unsigned ComdatID = Record[12]) { 3572 if (ComdatID > ComdatList.size()) 3573 return error("Invalid function comdat ID"); 3574 Func->setComdat(ComdatList[ComdatID - 1]); 3575 } 3576 } else if (hasImplicitComdat(RawLinkage)) { 3577 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3578 } 3579 3580 if (Record.size() > 13 && Record[13] != 0) 3581 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3582 3583 if (Record.size() > 14 && Record[14] != 0) 3584 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3585 3586 ValueList.push_back(Func); 3587 3588 // If this is a function with a body, remember the prototype we are 3589 // creating now, so that we can match up the body with them later. 3590 if (!isProto) { 3591 Func->setIsMaterializable(true); 3592 FunctionsWithBodies.push_back(Func); 3593 DeferredFunctionInfo[Func] = 0; 3594 } 3595 break; 3596 } 3597 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3598 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3599 case bitc::MODULE_CODE_ALIAS: 3600 case bitc::MODULE_CODE_ALIAS_OLD: { 3601 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3602 if (Record.size() < (3 + (unsigned)NewRecord)) 3603 return error("Invalid record"); 3604 unsigned OpNum = 0; 3605 Type *Ty = getTypeByID(Record[OpNum++]); 3606 if (!Ty) 3607 return error("Invalid record"); 3608 3609 unsigned AddrSpace; 3610 if (!NewRecord) { 3611 auto *PTy = dyn_cast<PointerType>(Ty); 3612 if (!PTy) 3613 return error("Invalid type for value"); 3614 Ty = PTy->getElementType(); 3615 AddrSpace = PTy->getAddressSpace(); 3616 } else { 3617 AddrSpace = Record[OpNum++]; 3618 } 3619 3620 auto Val = Record[OpNum++]; 3621 auto Linkage = Record[OpNum++]; 3622 auto *NewGA = GlobalAlias::create( 3623 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3624 // Old bitcode files didn't have visibility field. 3625 // Local linkage must have default visibility. 3626 if (OpNum != Record.size()) { 3627 auto VisInd = OpNum++; 3628 if (!NewGA->hasLocalLinkage()) 3629 // FIXME: Change to an error if non-default in 4.0. 3630 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3631 } 3632 if (OpNum != Record.size()) 3633 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3634 else 3635 upgradeDLLImportExportLinkage(NewGA, Linkage); 3636 if (OpNum != Record.size()) 3637 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3638 if (OpNum != Record.size()) 3639 NewGA->setUnnamedAddr(Record[OpNum++]); 3640 ValueList.push_back(NewGA); 3641 AliasInits.push_back(std::make_pair(NewGA, Val)); 3642 break; 3643 } 3644 /// MODULE_CODE_PURGEVALS: [numvals] 3645 case bitc::MODULE_CODE_PURGEVALS: 3646 // Trim down the value list to the specified size. 3647 if (Record.size() < 1 || Record[0] > ValueList.size()) 3648 return error("Invalid record"); 3649 ValueList.shrinkTo(Record[0]); 3650 break; 3651 /// MODULE_CODE_VSTOFFSET: [offset] 3652 case bitc::MODULE_CODE_VSTOFFSET: 3653 if (Record.size() < 1) 3654 return error("Invalid record"); 3655 VSTOffset = Record[0]; 3656 break; 3657 } 3658 Record.clear(); 3659 } 3660 } 3661 3662 /// Helper to read the header common to all bitcode files. 3663 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3664 // Sniff for the signature. 3665 if (Stream.Read(8) != 'B' || 3666 Stream.Read(8) != 'C' || 3667 Stream.Read(4) != 0x0 || 3668 Stream.Read(4) != 0xC || 3669 Stream.Read(4) != 0xE || 3670 Stream.Read(4) != 0xD) 3671 return false; 3672 return true; 3673 } 3674 3675 std::error_code 3676 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3677 Module *M, bool ShouldLazyLoadMetadata) { 3678 TheModule = M; 3679 3680 if (std::error_code EC = initStream(std::move(Streamer))) 3681 return EC; 3682 3683 // Sniff for the signature. 3684 if (!hasValidBitcodeHeader(Stream)) 3685 return error("Invalid bitcode signature"); 3686 3687 // We expect a number of well-defined blocks, though we don't necessarily 3688 // need to understand them all. 3689 while (1) { 3690 if (Stream.AtEndOfStream()) { 3691 // We didn't really read a proper Module. 3692 return error("Malformed IR file"); 3693 } 3694 3695 BitstreamEntry Entry = 3696 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3697 3698 if (Entry.Kind != BitstreamEntry::SubBlock) 3699 return error("Malformed block"); 3700 3701 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3702 parseBitcodeVersion(); 3703 continue; 3704 } 3705 3706 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3707 return parseModule(0, ShouldLazyLoadMetadata); 3708 3709 if (Stream.SkipBlock()) 3710 return error("Invalid record"); 3711 } 3712 } 3713 3714 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3715 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3716 return error("Invalid record"); 3717 3718 SmallVector<uint64_t, 64> Record; 3719 3720 std::string Triple; 3721 // Read all the records for this module. 3722 while (1) { 3723 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3724 3725 switch (Entry.Kind) { 3726 case BitstreamEntry::SubBlock: // Handled for us already. 3727 case BitstreamEntry::Error: 3728 return error("Malformed block"); 3729 case BitstreamEntry::EndBlock: 3730 return Triple; 3731 case BitstreamEntry::Record: 3732 // The interesting case. 3733 break; 3734 } 3735 3736 // Read a record. 3737 switch (Stream.readRecord(Entry.ID, Record)) { 3738 default: break; // Default behavior, ignore unknown content. 3739 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3740 std::string S; 3741 if (convertToString(Record, 0, S)) 3742 return error("Invalid record"); 3743 Triple = S; 3744 break; 3745 } 3746 } 3747 Record.clear(); 3748 } 3749 llvm_unreachable("Exit infinite loop"); 3750 } 3751 3752 ErrorOr<std::string> BitcodeReader::parseTriple() { 3753 if (std::error_code EC = initStream(nullptr)) 3754 return EC; 3755 3756 // Sniff for the signature. 3757 if (!hasValidBitcodeHeader(Stream)) 3758 return error("Invalid bitcode signature"); 3759 3760 // We expect a number of well-defined blocks, though we don't necessarily 3761 // need to understand them all. 3762 while (1) { 3763 BitstreamEntry Entry = Stream.advance(); 3764 3765 switch (Entry.Kind) { 3766 case BitstreamEntry::Error: 3767 return error("Malformed block"); 3768 case BitstreamEntry::EndBlock: 3769 return std::error_code(); 3770 3771 case BitstreamEntry::SubBlock: 3772 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3773 return parseModuleTriple(); 3774 3775 // Ignore other sub-blocks. 3776 if (Stream.SkipBlock()) 3777 return error("Malformed block"); 3778 continue; 3779 3780 case BitstreamEntry::Record: 3781 Stream.skipRecord(Entry.ID); 3782 continue; 3783 } 3784 } 3785 } 3786 3787 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3788 if (std::error_code EC = initStream(nullptr)) 3789 return EC; 3790 3791 // Sniff for the signature. 3792 if (!hasValidBitcodeHeader(Stream)) 3793 return error("Invalid bitcode signature"); 3794 3795 // We expect a number of well-defined blocks, though we don't necessarily 3796 // need to understand them all. 3797 while (1) { 3798 BitstreamEntry Entry = Stream.advance(); 3799 switch (Entry.Kind) { 3800 case BitstreamEntry::Error: 3801 return error("Malformed block"); 3802 case BitstreamEntry::EndBlock: 3803 return std::error_code(); 3804 3805 case BitstreamEntry::SubBlock: 3806 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3807 if (std::error_code EC = parseBitcodeVersion()) 3808 return EC; 3809 return ProducerIdentification; 3810 } 3811 // Ignore other sub-blocks. 3812 if (Stream.SkipBlock()) 3813 return error("Malformed block"); 3814 continue; 3815 case BitstreamEntry::Record: 3816 Stream.skipRecord(Entry.ID); 3817 continue; 3818 } 3819 } 3820 } 3821 3822 /// Parse metadata attachments. 3823 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3824 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3825 return error("Invalid record"); 3826 3827 SmallVector<uint64_t, 64> Record; 3828 while (1) { 3829 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3830 3831 switch (Entry.Kind) { 3832 case BitstreamEntry::SubBlock: // Handled for us already. 3833 case BitstreamEntry::Error: 3834 return error("Malformed block"); 3835 case BitstreamEntry::EndBlock: 3836 return std::error_code(); 3837 case BitstreamEntry::Record: 3838 // The interesting case. 3839 break; 3840 } 3841 3842 // Read a metadata attachment record. 3843 Record.clear(); 3844 switch (Stream.readRecord(Entry.ID, Record)) { 3845 default: // Default behavior: ignore. 3846 break; 3847 case bitc::METADATA_ATTACHMENT: { 3848 unsigned RecordLength = Record.size(); 3849 if (Record.empty()) 3850 return error("Invalid record"); 3851 if (RecordLength % 2 == 0) { 3852 // A function attachment. 3853 for (unsigned I = 0; I != RecordLength; I += 2) { 3854 auto K = MDKindMap.find(Record[I]); 3855 if (K == MDKindMap.end()) 3856 return error("Invalid ID"); 3857 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3858 F.setMetadata(K->second, cast<MDNode>(MD)); 3859 } 3860 continue; 3861 } 3862 3863 // An instruction attachment. 3864 Instruction *Inst = InstructionList[Record[0]]; 3865 for (unsigned i = 1; i != RecordLength; i = i+2) { 3866 unsigned Kind = Record[i]; 3867 DenseMap<unsigned, unsigned>::iterator I = 3868 MDKindMap.find(Kind); 3869 if (I == MDKindMap.end()) 3870 return error("Invalid ID"); 3871 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3872 if (isa<LocalAsMetadata>(Node)) 3873 // Drop the attachment. This used to be legal, but there's no 3874 // upgrade path. 3875 break; 3876 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3877 if (I->second == LLVMContext::MD_tbaa) 3878 InstsWithTBAATag.push_back(Inst); 3879 } 3880 break; 3881 } 3882 } 3883 } 3884 } 3885 3886 static std::error_code typeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3887 Type *ValType, Type *PtrType) { 3888 if (!isa<PointerType>(PtrType)) 3889 return error(DH, "Load/Store operand is not a pointer type"); 3890 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3891 3892 if (ValType && ValType != ElemType) 3893 return error(DH, "Explicit load/store type does not match pointee type of " 3894 "pointer operand"); 3895 if (!PointerType::isLoadableOrStorableType(ElemType)) 3896 return error(DH, "Cannot load/store from pointer"); 3897 return std::error_code(); 3898 } 3899 3900 /// Lazily parse the specified function body block. 3901 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3902 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3903 return error("Invalid record"); 3904 3905 InstructionList.clear(); 3906 unsigned ModuleValueListSize = ValueList.size(); 3907 unsigned ModuleMDValueListSize = MDValueList.size(); 3908 3909 // Add all the function arguments to the value table. 3910 for (Argument &I : F->args()) 3911 ValueList.push_back(&I); 3912 3913 unsigned NextValueNo = ValueList.size(); 3914 BasicBlock *CurBB = nullptr; 3915 unsigned CurBBNo = 0; 3916 3917 DebugLoc LastLoc; 3918 auto getLastInstruction = [&]() -> Instruction * { 3919 if (CurBB && !CurBB->empty()) 3920 return &CurBB->back(); 3921 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3922 !FunctionBBs[CurBBNo - 1]->empty()) 3923 return &FunctionBBs[CurBBNo - 1]->back(); 3924 return nullptr; 3925 }; 3926 3927 std::vector<OperandBundleDef> OperandBundles; 3928 3929 // Read all the records. 3930 SmallVector<uint64_t, 64> Record; 3931 while (1) { 3932 BitstreamEntry Entry = Stream.advance(); 3933 3934 switch (Entry.Kind) { 3935 case BitstreamEntry::Error: 3936 return error("Malformed block"); 3937 case BitstreamEntry::EndBlock: 3938 goto OutOfRecordLoop; 3939 3940 case BitstreamEntry::SubBlock: 3941 switch (Entry.ID) { 3942 default: // Skip unknown content. 3943 if (Stream.SkipBlock()) 3944 return error("Invalid record"); 3945 break; 3946 case bitc::CONSTANTS_BLOCK_ID: 3947 if (std::error_code EC = parseConstants()) 3948 return EC; 3949 NextValueNo = ValueList.size(); 3950 break; 3951 case bitc::VALUE_SYMTAB_BLOCK_ID: 3952 if (std::error_code EC = parseValueSymbolTable()) 3953 return EC; 3954 break; 3955 case bitc::METADATA_ATTACHMENT_ID: 3956 if (std::error_code EC = parseMetadataAttachment(*F)) 3957 return EC; 3958 break; 3959 case bitc::METADATA_BLOCK_ID: 3960 if (std::error_code EC = parseMetadata()) 3961 return EC; 3962 break; 3963 case bitc::USELIST_BLOCK_ID: 3964 if (std::error_code EC = parseUseLists()) 3965 return EC; 3966 break; 3967 } 3968 continue; 3969 3970 case BitstreamEntry::Record: 3971 // The interesting case. 3972 break; 3973 } 3974 3975 // Read a record. 3976 Record.clear(); 3977 Instruction *I = nullptr; 3978 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3979 switch (BitCode) { 3980 default: // Default behavior: reject 3981 return error("Invalid value"); 3982 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3983 if (Record.size() < 1 || Record[0] == 0) 3984 return error("Invalid record"); 3985 // Create all the basic blocks for the function. 3986 FunctionBBs.resize(Record[0]); 3987 3988 // See if anything took the address of blocks in this function. 3989 auto BBFRI = BasicBlockFwdRefs.find(F); 3990 if (BBFRI == BasicBlockFwdRefs.end()) { 3991 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3992 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3993 } else { 3994 auto &BBRefs = BBFRI->second; 3995 // Check for invalid basic block references. 3996 if (BBRefs.size() > FunctionBBs.size()) 3997 return error("Invalid ID"); 3998 assert(!BBRefs.empty() && "Unexpected empty array"); 3999 assert(!BBRefs.front() && "Invalid reference to entry block"); 4000 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4001 ++I) 4002 if (I < RE && BBRefs[I]) { 4003 BBRefs[I]->insertInto(F); 4004 FunctionBBs[I] = BBRefs[I]; 4005 } else { 4006 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4007 } 4008 4009 // Erase from the table. 4010 BasicBlockFwdRefs.erase(BBFRI); 4011 } 4012 4013 CurBB = FunctionBBs[0]; 4014 continue; 4015 } 4016 4017 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4018 // This record indicates that the last instruction is at the same 4019 // location as the previous instruction with a location. 4020 I = getLastInstruction(); 4021 4022 if (!I) 4023 return error("Invalid record"); 4024 I->setDebugLoc(LastLoc); 4025 I = nullptr; 4026 continue; 4027 4028 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4029 I = getLastInstruction(); 4030 if (!I || Record.size() < 4) 4031 return error("Invalid record"); 4032 4033 unsigned Line = Record[0], Col = Record[1]; 4034 unsigned ScopeID = Record[2], IAID = Record[3]; 4035 4036 MDNode *Scope = nullptr, *IA = nullptr; 4037 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 4038 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 4039 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4040 I->setDebugLoc(LastLoc); 4041 I = nullptr; 4042 continue; 4043 } 4044 4045 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4046 unsigned OpNum = 0; 4047 Value *LHS, *RHS; 4048 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4049 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4050 OpNum+1 > Record.size()) 4051 return error("Invalid record"); 4052 4053 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4054 if (Opc == -1) 4055 return error("Invalid record"); 4056 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4057 InstructionList.push_back(I); 4058 if (OpNum < Record.size()) { 4059 if (Opc == Instruction::Add || 4060 Opc == Instruction::Sub || 4061 Opc == Instruction::Mul || 4062 Opc == Instruction::Shl) { 4063 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4064 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4065 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4066 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4067 } else if (Opc == Instruction::SDiv || 4068 Opc == Instruction::UDiv || 4069 Opc == Instruction::LShr || 4070 Opc == Instruction::AShr) { 4071 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4072 cast<BinaryOperator>(I)->setIsExact(true); 4073 } else if (isa<FPMathOperator>(I)) { 4074 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4075 if (FMF.any()) 4076 I->setFastMathFlags(FMF); 4077 } 4078 4079 } 4080 break; 4081 } 4082 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4083 unsigned OpNum = 0; 4084 Value *Op; 4085 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4086 OpNum+2 != Record.size()) 4087 return error("Invalid record"); 4088 4089 Type *ResTy = getTypeByID(Record[OpNum]); 4090 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4091 if (Opc == -1 || !ResTy) 4092 return error("Invalid record"); 4093 Instruction *Temp = nullptr; 4094 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4095 if (Temp) { 4096 InstructionList.push_back(Temp); 4097 CurBB->getInstList().push_back(Temp); 4098 } 4099 } else { 4100 auto CastOp = (Instruction::CastOps)Opc; 4101 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4102 return error("Invalid cast"); 4103 I = CastInst::Create(CastOp, Op, ResTy); 4104 } 4105 InstructionList.push_back(I); 4106 break; 4107 } 4108 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4109 case bitc::FUNC_CODE_INST_GEP_OLD: 4110 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4111 unsigned OpNum = 0; 4112 4113 Type *Ty; 4114 bool InBounds; 4115 4116 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4117 InBounds = Record[OpNum++]; 4118 Ty = getTypeByID(Record[OpNum++]); 4119 } else { 4120 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4121 Ty = nullptr; 4122 } 4123 4124 Value *BasePtr; 4125 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4126 return error("Invalid record"); 4127 4128 if (!Ty) 4129 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4130 ->getElementType(); 4131 else if (Ty != 4132 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4133 ->getElementType()) 4134 return error( 4135 "Explicit gep type does not match pointee type of pointer operand"); 4136 4137 SmallVector<Value*, 16> GEPIdx; 4138 while (OpNum != Record.size()) { 4139 Value *Op; 4140 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4141 return error("Invalid record"); 4142 GEPIdx.push_back(Op); 4143 } 4144 4145 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4146 4147 InstructionList.push_back(I); 4148 if (InBounds) 4149 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4150 break; 4151 } 4152 4153 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4154 // EXTRACTVAL: [opty, opval, n x indices] 4155 unsigned OpNum = 0; 4156 Value *Agg; 4157 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4158 return error("Invalid record"); 4159 4160 unsigned RecSize = Record.size(); 4161 if (OpNum == RecSize) 4162 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4163 4164 SmallVector<unsigned, 4> EXTRACTVALIdx; 4165 Type *CurTy = Agg->getType(); 4166 for (; OpNum != RecSize; ++OpNum) { 4167 bool IsArray = CurTy->isArrayTy(); 4168 bool IsStruct = CurTy->isStructTy(); 4169 uint64_t Index = Record[OpNum]; 4170 4171 if (!IsStruct && !IsArray) 4172 return error("EXTRACTVAL: Invalid type"); 4173 if ((unsigned)Index != Index) 4174 return error("Invalid value"); 4175 if (IsStruct && Index >= CurTy->subtypes().size()) 4176 return error("EXTRACTVAL: Invalid struct index"); 4177 if (IsArray && Index >= CurTy->getArrayNumElements()) 4178 return error("EXTRACTVAL: Invalid array index"); 4179 EXTRACTVALIdx.push_back((unsigned)Index); 4180 4181 if (IsStruct) 4182 CurTy = CurTy->subtypes()[Index]; 4183 else 4184 CurTy = CurTy->subtypes()[0]; 4185 } 4186 4187 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4188 InstructionList.push_back(I); 4189 break; 4190 } 4191 4192 case bitc::FUNC_CODE_INST_INSERTVAL: { 4193 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4194 unsigned OpNum = 0; 4195 Value *Agg; 4196 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4197 return error("Invalid record"); 4198 Value *Val; 4199 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4200 return error("Invalid record"); 4201 4202 unsigned RecSize = Record.size(); 4203 if (OpNum == RecSize) 4204 return error("INSERTVAL: Invalid instruction with 0 indices"); 4205 4206 SmallVector<unsigned, 4> INSERTVALIdx; 4207 Type *CurTy = Agg->getType(); 4208 for (; OpNum != RecSize; ++OpNum) { 4209 bool IsArray = CurTy->isArrayTy(); 4210 bool IsStruct = CurTy->isStructTy(); 4211 uint64_t Index = Record[OpNum]; 4212 4213 if (!IsStruct && !IsArray) 4214 return error("INSERTVAL: Invalid type"); 4215 if ((unsigned)Index != Index) 4216 return error("Invalid value"); 4217 if (IsStruct && Index >= CurTy->subtypes().size()) 4218 return error("INSERTVAL: Invalid struct index"); 4219 if (IsArray && Index >= CurTy->getArrayNumElements()) 4220 return error("INSERTVAL: Invalid array index"); 4221 4222 INSERTVALIdx.push_back((unsigned)Index); 4223 if (IsStruct) 4224 CurTy = CurTy->subtypes()[Index]; 4225 else 4226 CurTy = CurTy->subtypes()[0]; 4227 } 4228 4229 if (CurTy != Val->getType()) 4230 return error("Inserted value type doesn't match aggregate type"); 4231 4232 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4233 InstructionList.push_back(I); 4234 break; 4235 } 4236 4237 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4238 // obsolete form of select 4239 // handles select i1 ... in old bitcode 4240 unsigned OpNum = 0; 4241 Value *TrueVal, *FalseVal, *Cond; 4242 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4243 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4244 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4245 return error("Invalid record"); 4246 4247 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4248 InstructionList.push_back(I); 4249 break; 4250 } 4251 4252 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4253 // new form of select 4254 // handles select i1 or select [N x i1] 4255 unsigned OpNum = 0; 4256 Value *TrueVal, *FalseVal, *Cond; 4257 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4258 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4259 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4260 return error("Invalid record"); 4261 4262 // select condition can be either i1 or [N x i1] 4263 if (VectorType* vector_type = 4264 dyn_cast<VectorType>(Cond->getType())) { 4265 // expect <n x i1> 4266 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4267 return error("Invalid type for value"); 4268 } else { 4269 // expect i1 4270 if (Cond->getType() != Type::getInt1Ty(Context)) 4271 return error("Invalid type for value"); 4272 } 4273 4274 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4275 InstructionList.push_back(I); 4276 break; 4277 } 4278 4279 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4280 unsigned OpNum = 0; 4281 Value *Vec, *Idx; 4282 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4283 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4284 return error("Invalid record"); 4285 if (!Vec->getType()->isVectorTy()) 4286 return error("Invalid type for value"); 4287 I = ExtractElementInst::Create(Vec, Idx); 4288 InstructionList.push_back(I); 4289 break; 4290 } 4291 4292 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4293 unsigned OpNum = 0; 4294 Value *Vec, *Elt, *Idx; 4295 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4296 return error("Invalid record"); 4297 if (!Vec->getType()->isVectorTy()) 4298 return error("Invalid type for value"); 4299 if (popValue(Record, OpNum, NextValueNo, 4300 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4301 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4302 return error("Invalid record"); 4303 I = InsertElementInst::Create(Vec, Elt, Idx); 4304 InstructionList.push_back(I); 4305 break; 4306 } 4307 4308 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4309 unsigned OpNum = 0; 4310 Value *Vec1, *Vec2, *Mask; 4311 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4312 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4313 return error("Invalid record"); 4314 4315 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4316 return error("Invalid record"); 4317 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4318 return error("Invalid type for value"); 4319 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4320 InstructionList.push_back(I); 4321 break; 4322 } 4323 4324 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4325 // Old form of ICmp/FCmp returning bool 4326 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4327 // both legal on vectors but had different behaviour. 4328 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4329 // FCmp/ICmp returning bool or vector of bool 4330 4331 unsigned OpNum = 0; 4332 Value *LHS, *RHS; 4333 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4334 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4335 return error("Invalid record"); 4336 4337 unsigned PredVal = Record[OpNum]; 4338 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4339 FastMathFlags FMF; 4340 if (IsFP && Record.size() > OpNum+1) 4341 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4342 4343 if (OpNum+1 != Record.size()) 4344 return error("Invalid record"); 4345 4346 if (LHS->getType()->isFPOrFPVectorTy()) 4347 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4348 else 4349 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4350 4351 if (FMF.any()) 4352 I->setFastMathFlags(FMF); 4353 InstructionList.push_back(I); 4354 break; 4355 } 4356 4357 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4358 { 4359 unsigned Size = Record.size(); 4360 if (Size == 0) { 4361 I = ReturnInst::Create(Context); 4362 InstructionList.push_back(I); 4363 break; 4364 } 4365 4366 unsigned OpNum = 0; 4367 Value *Op = nullptr; 4368 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4369 return error("Invalid record"); 4370 if (OpNum != Record.size()) 4371 return error("Invalid record"); 4372 4373 I = ReturnInst::Create(Context, Op); 4374 InstructionList.push_back(I); 4375 break; 4376 } 4377 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4378 if (Record.size() != 1 && Record.size() != 3) 4379 return error("Invalid record"); 4380 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4381 if (!TrueDest) 4382 return error("Invalid record"); 4383 4384 if (Record.size() == 1) { 4385 I = BranchInst::Create(TrueDest); 4386 InstructionList.push_back(I); 4387 } 4388 else { 4389 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4390 Value *Cond = getValue(Record, 2, NextValueNo, 4391 Type::getInt1Ty(Context)); 4392 if (!FalseDest || !Cond) 4393 return error("Invalid record"); 4394 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4395 InstructionList.push_back(I); 4396 } 4397 break; 4398 } 4399 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4400 if (Record.size() != 1 && Record.size() != 2) 4401 return error("Invalid record"); 4402 unsigned Idx = 0; 4403 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, 4404 Type::getTokenTy(Context), OC_CleanupPad); 4405 if (!CleanupPad) 4406 return error("Invalid record"); 4407 BasicBlock *UnwindDest = nullptr; 4408 if (Record.size() == 2) { 4409 UnwindDest = getBasicBlock(Record[Idx++]); 4410 if (!UnwindDest) 4411 return error("Invalid record"); 4412 } 4413 4414 I = CleanupReturnInst::Create(cast<CleanupPadInst>(CleanupPad), 4415 UnwindDest); 4416 InstructionList.push_back(I); 4417 break; 4418 } 4419 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4420 if (Record.size() != 2) 4421 return error("Invalid record"); 4422 unsigned Idx = 0; 4423 Value *CatchPad = getValue(Record, Idx++, NextValueNo, 4424 Type::getTokenTy(Context), OC_CatchPad); 4425 if (!CatchPad) 4426 return error("Invalid record"); 4427 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4428 if (!BB) 4429 return error("Invalid record"); 4430 4431 I = CatchReturnInst::Create(cast<CatchPadInst>(CatchPad), BB); 4432 InstructionList.push_back(I); 4433 break; 4434 } 4435 case bitc::FUNC_CODE_INST_CATCHPAD: { // CATCHPAD: [bb#,bb#,num,(ty,val)*] 4436 if (Record.size() < 3) 4437 return error("Invalid record"); 4438 unsigned Idx = 0; 4439 BasicBlock *NormalBB = getBasicBlock(Record[Idx++]); 4440 if (!NormalBB) 4441 return error("Invalid record"); 4442 BasicBlock *UnwindBB = getBasicBlock(Record[Idx++]); 4443 if (!UnwindBB) 4444 return error("Invalid record"); 4445 unsigned NumArgOperands = Record[Idx++]; 4446 SmallVector<Value *, 2> Args; 4447 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4448 Value *Val; 4449 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4450 return error("Invalid record"); 4451 Args.push_back(Val); 4452 } 4453 if (Record.size() != Idx) 4454 return error("Invalid record"); 4455 4456 I = CatchPadInst::Create(NormalBB, UnwindBB, Args); 4457 InstructionList.push_back(I); 4458 break; 4459 } 4460 case bitc::FUNC_CODE_INST_TERMINATEPAD: { // TERMINATEPAD: [bb#,num,(ty,val)*] 4461 if (Record.size() < 1) 4462 return error("Invalid record"); 4463 unsigned Idx = 0; 4464 bool HasUnwindDest = !!Record[Idx++]; 4465 BasicBlock *UnwindDest = nullptr; 4466 if (HasUnwindDest) { 4467 if (Idx == Record.size()) 4468 return error("Invalid record"); 4469 UnwindDest = getBasicBlock(Record[Idx++]); 4470 if (!UnwindDest) 4471 return error("Invalid record"); 4472 } 4473 unsigned NumArgOperands = Record[Idx++]; 4474 SmallVector<Value *, 2> Args; 4475 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4476 Value *Val; 4477 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4478 return error("Invalid record"); 4479 Args.push_back(Val); 4480 } 4481 if (Record.size() != Idx) 4482 return error("Invalid record"); 4483 4484 I = TerminatePadInst::Create(Context, UnwindDest, Args); 4485 InstructionList.push_back(I); 4486 break; 4487 } 4488 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // CLEANUPPAD: [num,(ty,val)*] 4489 if (Record.size() < 1) 4490 return error("Invalid record"); 4491 unsigned Idx = 0; 4492 unsigned NumArgOperands = Record[Idx++]; 4493 SmallVector<Value *, 2> Args; 4494 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4495 Value *Val; 4496 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4497 return error("Invalid record"); 4498 Args.push_back(Val); 4499 } 4500 if (Record.size() != Idx) 4501 return error("Invalid record"); 4502 4503 I = CleanupPadInst::Create(Context, Args); 4504 InstructionList.push_back(I); 4505 break; 4506 } 4507 case bitc::FUNC_CODE_INST_CATCHENDPAD: { // CATCHENDPADINST: [bb#] or [] 4508 if (Record.size() > 1) 4509 return error("Invalid record"); 4510 BasicBlock *BB = nullptr; 4511 if (Record.size() == 1) { 4512 BB = getBasicBlock(Record[0]); 4513 if (!BB) 4514 return error("Invalid record"); 4515 } 4516 I = CatchEndPadInst::Create(Context, BB); 4517 InstructionList.push_back(I); 4518 break; 4519 } 4520 case bitc::FUNC_CODE_INST_CLEANUPENDPAD: { // CLEANUPENDPADINST: [val] or [val,bb#] 4521 if (Record.size() != 1 && Record.size() != 2) 4522 return error("Invalid record"); 4523 unsigned Idx = 0; 4524 Value *CleanupPad = getValue(Record, Idx++, NextValueNo, 4525 Type::getTokenTy(Context), OC_CleanupPad); 4526 if (!CleanupPad) 4527 return error("Invalid record"); 4528 4529 BasicBlock *BB = nullptr; 4530 if (Record.size() == 2) { 4531 BB = getBasicBlock(Record[Idx++]); 4532 if (!BB) 4533 return error("Invalid record"); 4534 } 4535 I = CleanupEndPadInst::Create(cast<CleanupPadInst>(CleanupPad), BB); 4536 InstructionList.push_back(I); 4537 break; 4538 } 4539 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4540 // Check magic 4541 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4542 // "New" SwitchInst format with case ranges. The changes to write this 4543 // format were reverted but we still recognize bitcode that uses it. 4544 // Hopefully someday we will have support for case ranges and can use 4545 // this format again. 4546 4547 Type *OpTy = getTypeByID(Record[1]); 4548 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4549 4550 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4551 BasicBlock *Default = getBasicBlock(Record[3]); 4552 if (!OpTy || !Cond || !Default) 4553 return error("Invalid record"); 4554 4555 unsigned NumCases = Record[4]; 4556 4557 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4558 InstructionList.push_back(SI); 4559 4560 unsigned CurIdx = 5; 4561 for (unsigned i = 0; i != NumCases; ++i) { 4562 SmallVector<ConstantInt*, 1> CaseVals; 4563 unsigned NumItems = Record[CurIdx++]; 4564 for (unsigned ci = 0; ci != NumItems; ++ci) { 4565 bool isSingleNumber = Record[CurIdx++]; 4566 4567 APInt Low; 4568 unsigned ActiveWords = 1; 4569 if (ValueBitWidth > 64) 4570 ActiveWords = Record[CurIdx++]; 4571 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4572 ValueBitWidth); 4573 CurIdx += ActiveWords; 4574 4575 if (!isSingleNumber) { 4576 ActiveWords = 1; 4577 if (ValueBitWidth > 64) 4578 ActiveWords = Record[CurIdx++]; 4579 APInt High = readWideAPInt( 4580 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4581 CurIdx += ActiveWords; 4582 4583 // FIXME: It is not clear whether values in the range should be 4584 // compared as signed or unsigned values. The partially 4585 // implemented changes that used this format in the past used 4586 // unsigned comparisons. 4587 for ( ; Low.ule(High); ++Low) 4588 CaseVals.push_back(ConstantInt::get(Context, Low)); 4589 } else 4590 CaseVals.push_back(ConstantInt::get(Context, Low)); 4591 } 4592 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4593 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4594 cve = CaseVals.end(); cvi != cve; ++cvi) 4595 SI->addCase(*cvi, DestBB); 4596 } 4597 I = SI; 4598 break; 4599 } 4600 4601 // Old SwitchInst format without case ranges. 4602 4603 if (Record.size() < 3 || (Record.size() & 1) == 0) 4604 return error("Invalid record"); 4605 Type *OpTy = getTypeByID(Record[0]); 4606 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4607 BasicBlock *Default = getBasicBlock(Record[2]); 4608 if (!OpTy || !Cond || !Default) 4609 return error("Invalid record"); 4610 unsigned NumCases = (Record.size()-3)/2; 4611 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4612 InstructionList.push_back(SI); 4613 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4614 ConstantInt *CaseVal = 4615 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4616 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4617 if (!CaseVal || !DestBB) { 4618 delete SI; 4619 return error("Invalid record"); 4620 } 4621 SI->addCase(CaseVal, DestBB); 4622 } 4623 I = SI; 4624 break; 4625 } 4626 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4627 if (Record.size() < 2) 4628 return error("Invalid record"); 4629 Type *OpTy = getTypeByID(Record[0]); 4630 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4631 if (!OpTy || !Address) 4632 return error("Invalid record"); 4633 unsigned NumDests = Record.size()-2; 4634 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4635 InstructionList.push_back(IBI); 4636 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4637 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4638 IBI->addDestination(DestBB); 4639 } else { 4640 delete IBI; 4641 return error("Invalid record"); 4642 } 4643 } 4644 I = IBI; 4645 break; 4646 } 4647 4648 case bitc::FUNC_CODE_INST_INVOKE: { 4649 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4650 if (Record.size() < 4) 4651 return error("Invalid record"); 4652 unsigned OpNum = 0; 4653 AttributeSet PAL = getAttributes(Record[OpNum++]); 4654 unsigned CCInfo = Record[OpNum++]; 4655 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4656 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4657 4658 FunctionType *FTy = nullptr; 4659 if (CCInfo >> 13 & 1 && 4660 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4661 return error("Explicit invoke type is not a function type"); 4662 4663 Value *Callee; 4664 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4665 return error("Invalid record"); 4666 4667 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4668 if (!CalleeTy) 4669 return error("Callee is not a pointer"); 4670 if (!FTy) { 4671 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4672 if (!FTy) 4673 return error("Callee is not of pointer to function type"); 4674 } else if (CalleeTy->getElementType() != FTy) 4675 return error("Explicit invoke type does not match pointee type of " 4676 "callee operand"); 4677 if (Record.size() < FTy->getNumParams() + OpNum) 4678 return error("Insufficient operands to call"); 4679 4680 SmallVector<Value*, 16> Ops; 4681 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4682 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4683 FTy->getParamType(i))); 4684 if (!Ops.back()) 4685 return error("Invalid record"); 4686 } 4687 4688 if (!FTy->isVarArg()) { 4689 if (Record.size() != OpNum) 4690 return error("Invalid record"); 4691 } else { 4692 // Read type/value pairs for varargs params. 4693 while (OpNum != Record.size()) { 4694 Value *Op; 4695 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4696 return error("Invalid record"); 4697 Ops.push_back(Op); 4698 } 4699 } 4700 4701 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4702 OperandBundles.clear(); 4703 InstructionList.push_back(I); 4704 cast<InvokeInst>(I)->setCallingConv( 4705 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4706 cast<InvokeInst>(I)->setAttributes(PAL); 4707 break; 4708 } 4709 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4710 unsigned Idx = 0; 4711 Value *Val = nullptr; 4712 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4713 return error("Invalid record"); 4714 I = ResumeInst::Create(Val); 4715 InstructionList.push_back(I); 4716 break; 4717 } 4718 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4719 I = new UnreachableInst(Context); 4720 InstructionList.push_back(I); 4721 break; 4722 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4723 if (Record.size() < 1 || ((Record.size()-1)&1)) 4724 return error("Invalid record"); 4725 Type *Ty = getTypeByID(Record[0]); 4726 if (!Ty) 4727 return error("Invalid record"); 4728 4729 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4730 InstructionList.push_back(PN); 4731 4732 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4733 Value *V; 4734 // With the new function encoding, it is possible that operands have 4735 // negative IDs (for forward references). Use a signed VBR 4736 // representation to keep the encoding small. 4737 if (UseRelativeIDs) 4738 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4739 else 4740 V = getValue(Record, 1+i, NextValueNo, Ty); 4741 BasicBlock *BB = getBasicBlock(Record[2+i]); 4742 if (!V || !BB) 4743 return error("Invalid record"); 4744 PN->addIncoming(V, BB); 4745 } 4746 I = PN; 4747 break; 4748 } 4749 4750 case bitc::FUNC_CODE_INST_LANDINGPAD: 4751 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4752 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4753 unsigned Idx = 0; 4754 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4755 if (Record.size() < 3) 4756 return error("Invalid record"); 4757 } else { 4758 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4759 if (Record.size() < 4) 4760 return error("Invalid record"); 4761 } 4762 Type *Ty = getTypeByID(Record[Idx++]); 4763 if (!Ty) 4764 return error("Invalid record"); 4765 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4766 Value *PersFn = nullptr; 4767 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4768 return error("Invalid record"); 4769 4770 if (!F->hasPersonalityFn()) 4771 F->setPersonalityFn(cast<Constant>(PersFn)); 4772 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4773 return error("Personality function mismatch"); 4774 } 4775 4776 bool IsCleanup = !!Record[Idx++]; 4777 unsigned NumClauses = Record[Idx++]; 4778 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4779 LP->setCleanup(IsCleanup); 4780 for (unsigned J = 0; J != NumClauses; ++J) { 4781 LandingPadInst::ClauseType CT = 4782 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4783 Value *Val; 4784 4785 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4786 delete LP; 4787 return error("Invalid record"); 4788 } 4789 4790 assert((CT != LandingPadInst::Catch || 4791 !isa<ArrayType>(Val->getType())) && 4792 "Catch clause has a invalid type!"); 4793 assert((CT != LandingPadInst::Filter || 4794 isa<ArrayType>(Val->getType())) && 4795 "Filter clause has invalid type!"); 4796 LP->addClause(cast<Constant>(Val)); 4797 } 4798 4799 I = LP; 4800 InstructionList.push_back(I); 4801 break; 4802 } 4803 4804 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4805 if (Record.size() != 4) 4806 return error("Invalid record"); 4807 uint64_t AlignRecord = Record[3]; 4808 const uint64_t InAllocaMask = uint64_t(1) << 5; 4809 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4810 // Reserve bit 7 for SwiftError flag. 4811 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4812 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4813 bool InAlloca = AlignRecord & InAllocaMask; 4814 Type *Ty = getTypeByID(Record[0]); 4815 if ((AlignRecord & ExplicitTypeMask) == 0) { 4816 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4817 if (!PTy) 4818 return error("Old-style alloca with a non-pointer type"); 4819 Ty = PTy->getElementType(); 4820 } 4821 Type *OpTy = getTypeByID(Record[1]); 4822 Value *Size = getFnValueByID(Record[2], OpTy); 4823 unsigned Align; 4824 if (std::error_code EC = 4825 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4826 return EC; 4827 } 4828 if (!Ty || !Size) 4829 return error("Invalid record"); 4830 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4831 AI->setUsedWithInAlloca(InAlloca); 4832 I = AI; 4833 InstructionList.push_back(I); 4834 break; 4835 } 4836 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4837 unsigned OpNum = 0; 4838 Value *Op; 4839 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4840 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4841 return error("Invalid record"); 4842 4843 Type *Ty = nullptr; 4844 if (OpNum + 3 == Record.size()) 4845 Ty = getTypeByID(Record[OpNum++]); 4846 if (std::error_code EC = 4847 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4848 return EC; 4849 if (!Ty) 4850 Ty = cast<PointerType>(Op->getType())->getElementType(); 4851 4852 unsigned Align; 4853 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4854 return EC; 4855 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4856 4857 InstructionList.push_back(I); 4858 break; 4859 } 4860 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4861 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4862 unsigned OpNum = 0; 4863 Value *Op; 4864 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4865 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4866 return error("Invalid record"); 4867 4868 Type *Ty = nullptr; 4869 if (OpNum + 5 == Record.size()) 4870 Ty = getTypeByID(Record[OpNum++]); 4871 if (std::error_code EC = 4872 typeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4873 return EC; 4874 if (!Ty) 4875 Ty = cast<PointerType>(Op->getType())->getElementType(); 4876 4877 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4878 if (Ordering == NotAtomic || Ordering == Release || 4879 Ordering == AcquireRelease) 4880 return error("Invalid record"); 4881 if (Ordering != NotAtomic && Record[OpNum] == 0) 4882 return error("Invalid record"); 4883 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4884 4885 unsigned Align; 4886 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4887 return EC; 4888 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4889 4890 InstructionList.push_back(I); 4891 break; 4892 } 4893 case bitc::FUNC_CODE_INST_STORE: 4894 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4895 unsigned OpNum = 0; 4896 Value *Val, *Ptr; 4897 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4898 (BitCode == bitc::FUNC_CODE_INST_STORE 4899 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4900 : popValue(Record, OpNum, NextValueNo, 4901 cast<PointerType>(Ptr->getType())->getElementType(), 4902 Val)) || 4903 OpNum + 2 != Record.size()) 4904 return error("Invalid record"); 4905 4906 if (std::error_code EC = typeCheckLoadStoreInst( 4907 DiagnosticHandler, Val->getType(), Ptr->getType())) 4908 return EC; 4909 unsigned Align; 4910 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4911 return EC; 4912 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4913 InstructionList.push_back(I); 4914 break; 4915 } 4916 case bitc::FUNC_CODE_INST_STOREATOMIC: 4917 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4918 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4919 unsigned OpNum = 0; 4920 Value *Val, *Ptr; 4921 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4922 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4923 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4924 : popValue(Record, OpNum, NextValueNo, 4925 cast<PointerType>(Ptr->getType())->getElementType(), 4926 Val)) || 4927 OpNum + 4 != Record.size()) 4928 return error("Invalid record"); 4929 4930 if (std::error_code EC = typeCheckLoadStoreInst( 4931 DiagnosticHandler, Val->getType(), Ptr->getType())) 4932 return EC; 4933 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4934 if (Ordering == NotAtomic || Ordering == Acquire || 4935 Ordering == AcquireRelease) 4936 return error("Invalid record"); 4937 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4938 if (Ordering != NotAtomic && Record[OpNum] == 0) 4939 return error("Invalid record"); 4940 4941 unsigned Align; 4942 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4943 return EC; 4944 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4945 InstructionList.push_back(I); 4946 break; 4947 } 4948 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4949 case bitc::FUNC_CODE_INST_CMPXCHG: { 4950 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4951 // failureordering?, isweak?] 4952 unsigned OpNum = 0; 4953 Value *Ptr, *Cmp, *New; 4954 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4955 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4956 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4957 : popValue(Record, OpNum, NextValueNo, 4958 cast<PointerType>(Ptr->getType())->getElementType(), 4959 Cmp)) || 4960 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4961 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4962 return error("Invalid record"); 4963 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4964 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4965 return error("Invalid record"); 4966 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4967 4968 if (std::error_code EC = typeCheckLoadStoreInst( 4969 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 4970 return EC; 4971 AtomicOrdering FailureOrdering; 4972 if (Record.size() < 7) 4973 FailureOrdering = 4974 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4975 else 4976 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4977 4978 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4979 SynchScope); 4980 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4981 4982 if (Record.size() < 8) { 4983 // Before weak cmpxchgs existed, the instruction simply returned the 4984 // value loaded from memory, so bitcode files from that era will be 4985 // expecting the first component of a modern cmpxchg. 4986 CurBB->getInstList().push_back(I); 4987 I = ExtractValueInst::Create(I, 0); 4988 } else { 4989 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4990 } 4991 4992 InstructionList.push_back(I); 4993 break; 4994 } 4995 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4996 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4997 unsigned OpNum = 0; 4998 Value *Ptr, *Val; 4999 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5000 popValue(Record, OpNum, NextValueNo, 5001 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5002 OpNum+4 != Record.size()) 5003 return error("Invalid record"); 5004 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5005 if (Operation < AtomicRMWInst::FIRST_BINOP || 5006 Operation > AtomicRMWInst::LAST_BINOP) 5007 return error("Invalid record"); 5008 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5009 if (Ordering == NotAtomic || Ordering == Unordered) 5010 return error("Invalid record"); 5011 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5012 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5013 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5014 InstructionList.push_back(I); 5015 break; 5016 } 5017 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5018 if (2 != Record.size()) 5019 return error("Invalid record"); 5020 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5021 if (Ordering == NotAtomic || Ordering == Unordered || 5022 Ordering == Monotonic) 5023 return error("Invalid record"); 5024 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5025 I = new FenceInst(Context, Ordering, SynchScope); 5026 InstructionList.push_back(I); 5027 break; 5028 } 5029 case bitc::FUNC_CODE_INST_CALL: { 5030 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 5031 if (Record.size() < 3) 5032 return error("Invalid record"); 5033 5034 unsigned OpNum = 0; 5035 AttributeSet PAL = getAttributes(Record[OpNum++]); 5036 unsigned CCInfo = Record[OpNum++]; 5037 5038 FunctionType *FTy = nullptr; 5039 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5040 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5041 return error("Explicit call type is not a function type"); 5042 5043 Value *Callee; 5044 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5045 return error("Invalid record"); 5046 5047 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5048 if (!OpTy) 5049 return error("Callee is not a pointer type"); 5050 if (!FTy) { 5051 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5052 if (!FTy) 5053 return error("Callee is not of pointer to function type"); 5054 } else if (OpTy->getElementType() != FTy) 5055 return error("Explicit call type does not match pointee type of " 5056 "callee operand"); 5057 if (Record.size() < FTy->getNumParams() + OpNum) 5058 return error("Insufficient operands to call"); 5059 5060 SmallVector<Value*, 16> Args; 5061 // Read the fixed params. 5062 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5063 if (FTy->getParamType(i)->isLabelTy()) 5064 Args.push_back(getBasicBlock(Record[OpNum])); 5065 else 5066 Args.push_back(getValue(Record, OpNum, NextValueNo, 5067 FTy->getParamType(i))); 5068 if (!Args.back()) 5069 return error("Invalid record"); 5070 } 5071 5072 // Read type/value pairs for varargs params. 5073 if (!FTy->isVarArg()) { 5074 if (OpNum != Record.size()) 5075 return error("Invalid record"); 5076 } else { 5077 while (OpNum != Record.size()) { 5078 Value *Op; 5079 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5080 return error("Invalid record"); 5081 Args.push_back(Op); 5082 } 5083 } 5084 5085 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5086 OperandBundles.clear(); 5087 InstructionList.push_back(I); 5088 cast<CallInst>(I)->setCallingConv( 5089 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5090 CallInst::TailCallKind TCK = CallInst::TCK_None; 5091 if (CCInfo & 1 << bitc::CALL_TAIL) 5092 TCK = CallInst::TCK_Tail; 5093 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5094 TCK = CallInst::TCK_MustTail; 5095 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5096 TCK = CallInst::TCK_NoTail; 5097 cast<CallInst>(I)->setTailCallKind(TCK); 5098 cast<CallInst>(I)->setAttributes(PAL); 5099 break; 5100 } 5101 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5102 if (Record.size() < 3) 5103 return error("Invalid record"); 5104 Type *OpTy = getTypeByID(Record[0]); 5105 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5106 Type *ResTy = getTypeByID(Record[2]); 5107 if (!OpTy || !Op || !ResTy) 5108 return error("Invalid record"); 5109 I = new VAArgInst(Op, ResTy); 5110 InstructionList.push_back(I); 5111 break; 5112 } 5113 5114 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5115 // A call or an invoke can be optionally prefixed with some variable 5116 // number of operand bundle blocks. These blocks are read into 5117 // OperandBundles and consumed at the next call or invoke instruction. 5118 5119 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5120 return error("Invalid record"); 5121 5122 std::vector<Value *> Inputs; 5123 5124 unsigned OpNum = 1; 5125 while (OpNum != Record.size()) { 5126 Value *Op; 5127 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5128 return error("Invalid record"); 5129 Inputs.push_back(Op); 5130 } 5131 5132 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5133 continue; 5134 } 5135 } 5136 5137 // Add instruction to end of current BB. If there is no current BB, reject 5138 // this file. 5139 if (!CurBB) { 5140 delete I; 5141 return error("Invalid instruction with no BB"); 5142 } 5143 if (!OperandBundles.empty()) { 5144 delete I; 5145 return error("Operand bundles found with no consumer"); 5146 } 5147 CurBB->getInstList().push_back(I); 5148 5149 // If this was a terminator instruction, move to the next block. 5150 if (isa<TerminatorInst>(I)) { 5151 ++CurBBNo; 5152 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5153 } 5154 5155 // Non-void values get registered in the value table for future use. 5156 if (I && !I->getType()->isVoidTy()) 5157 if (ValueList.assignValue(I, NextValueNo++)) 5158 return error("Invalid forward reference"); 5159 } 5160 5161 OutOfRecordLoop: 5162 5163 if (!OperandBundles.empty()) 5164 return error("Operand bundles found with no consumer"); 5165 5166 // Check the function list for unresolved values. 5167 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5168 if (!A->getParent()) { 5169 // We found at least one unresolved value. Nuke them all to avoid leaks. 5170 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5171 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5172 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5173 delete A; 5174 } 5175 } 5176 return error("Never resolved value found in function"); 5177 } 5178 } 5179 5180 // FIXME: Check for unresolved forward-declared metadata references 5181 // and clean up leaks. 5182 5183 // Trim the value list down to the size it was before we parsed this function. 5184 ValueList.shrinkTo(ModuleValueListSize); 5185 MDValueList.shrinkTo(ModuleMDValueListSize); 5186 std::vector<BasicBlock*>().swap(FunctionBBs); 5187 return std::error_code(); 5188 } 5189 5190 /// Find the function body in the bitcode stream 5191 std::error_code BitcodeReader::findFunctionInStream( 5192 Function *F, 5193 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5194 while (DeferredFunctionInfoIterator->second == 0) { 5195 // This is the fallback handling for the old format bitcode that 5196 // didn't contain the function index in the VST, or when we have 5197 // an anonymous function which would not have a VST entry. 5198 // Assert that we have one of those two cases. 5199 assert(VSTOffset == 0 || !F->hasName()); 5200 // Parse the next body in the stream and set its position in the 5201 // DeferredFunctionInfo map. 5202 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5203 return EC; 5204 } 5205 return std::error_code(); 5206 } 5207 5208 //===----------------------------------------------------------------------===// 5209 // GVMaterializer implementation 5210 //===----------------------------------------------------------------------===// 5211 5212 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5213 5214 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5215 if (std::error_code EC = materializeMetadata()) 5216 return EC; 5217 5218 Function *F = dyn_cast<Function>(GV); 5219 // If it's not a function or is already material, ignore the request. 5220 if (!F || !F->isMaterializable()) 5221 return std::error_code(); 5222 5223 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5224 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5225 // If its position is recorded as 0, its body is somewhere in the stream 5226 // but we haven't seen it yet. 5227 if (DFII->second == 0) 5228 if (std::error_code EC = findFunctionInStream(F, DFII)) 5229 return EC; 5230 5231 // Move the bit stream to the saved position of the deferred function body. 5232 Stream.JumpToBit(DFII->second); 5233 5234 if (std::error_code EC = parseFunctionBody(F)) 5235 return EC; 5236 F->setIsMaterializable(false); 5237 5238 if (StripDebugInfo) 5239 stripDebugInfo(*F); 5240 5241 // Upgrade any old intrinsic calls in the function. 5242 for (auto &I : UpgradedIntrinsics) { 5243 for (auto UI = I.first->user_begin(), UE = I.first->user_end(); UI != UE;) { 5244 User *U = *UI; 5245 ++UI; 5246 if (CallInst *CI = dyn_cast<CallInst>(U)) 5247 UpgradeIntrinsicCall(CI, I.second); 5248 } 5249 } 5250 5251 // Finish fn->subprogram upgrade for materialized functions. 5252 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5253 F->setSubprogram(SP); 5254 5255 // Bring in any functions that this function forward-referenced via 5256 // blockaddresses. 5257 return materializeForwardReferencedFunctions(); 5258 } 5259 5260 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 5261 const Function *F = dyn_cast<Function>(GV); 5262 if (!F || F->isDeclaration()) 5263 return false; 5264 5265 // Dematerializing F would leave dangling references that wouldn't be 5266 // reconnected on re-materialization. 5267 if (BlockAddressesTaken.count(F)) 5268 return false; 5269 5270 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 5271 } 5272 5273 void BitcodeReader::dematerialize(GlobalValue *GV) { 5274 Function *F = dyn_cast<Function>(GV); 5275 // If this function isn't dematerializable, this is a noop. 5276 if (!F || !isDematerializable(F)) 5277 return; 5278 5279 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 5280 5281 // Just forget the function body, we can remat it later. 5282 F->dropAllReferences(); 5283 F->setIsMaterializable(true); 5284 } 5285 5286 std::error_code BitcodeReader::materializeModule(Module *M) { 5287 assert(M == TheModule && 5288 "Can only Materialize the Module this BitcodeReader is attached to."); 5289 5290 if (std::error_code EC = materializeMetadata()) 5291 return EC; 5292 5293 // Promise to materialize all forward references. 5294 WillMaterializeAllForwardRefs = true; 5295 5296 // Iterate over the module, deserializing any functions that are still on 5297 // disk. 5298 for (Function &F : *TheModule) { 5299 if (std::error_code EC = materialize(&F)) 5300 return EC; 5301 } 5302 // At this point, if there are any function bodies, parse the rest of 5303 // the bits in the module past the last function block we have recorded 5304 // through either lazy scanning or the VST. 5305 if (LastFunctionBlockBit || NextUnreadBit) 5306 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5307 : NextUnreadBit); 5308 5309 // Check that all block address forward references got resolved (as we 5310 // promised above). 5311 if (!BasicBlockFwdRefs.empty()) 5312 return error("Never resolved function from blockaddress"); 5313 5314 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5315 // delete the old functions to clean up. We can't do this unless the entire 5316 // module is materialized because there could always be another function body 5317 // with calls to the old function. 5318 for (auto &I : UpgradedIntrinsics) { 5319 for (auto *U : I.first->users()) { 5320 if (CallInst *CI = dyn_cast<CallInst>(U)) 5321 UpgradeIntrinsicCall(CI, I.second); 5322 } 5323 if (!I.first->use_empty()) 5324 I.first->replaceAllUsesWith(I.second); 5325 I.first->eraseFromParent(); 5326 } 5327 UpgradedIntrinsics.clear(); 5328 5329 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5330 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5331 5332 UpgradeDebugInfo(*M); 5333 return std::error_code(); 5334 } 5335 5336 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5337 return IdentifiedStructTypes; 5338 } 5339 5340 std::error_code 5341 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5342 if (Streamer) 5343 return initLazyStream(std::move(Streamer)); 5344 return initStreamFromBuffer(); 5345 } 5346 5347 std::error_code BitcodeReader::initStreamFromBuffer() { 5348 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5349 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5350 5351 if (Buffer->getBufferSize() & 3) 5352 return error("Invalid bitcode signature"); 5353 5354 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5355 // The magic number is 0x0B17C0DE stored in little endian. 5356 if (isBitcodeWrapper(BufPtr, BufEnd)) 5357 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5358 return error("Invalid bitcode wrapper header"); 5359 5360 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5361 Stream.init(&*StreamFile); 5362 5363 return std::error_code(); 5364 } 5365 5366 std::error_code 5367 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5368 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5369 // see it. 5370 auto OwnedBytes = 5371 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5372 StreamingMemoryObject &Bytes = *OwnedBytes; 5373 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5374 Stream.init(&*StreamFile); 5375 5376 unsigned char buf[16]; 5377 if (Bytes.readBytes(buf, 16, 0) != 16) 5378 return error("Invalid bitcode signature"); 5379 5380 if (!isBitcode(buf, buf + 16)) 5381 return error("Invalid bitcode signature"); 5382 5383 if (isBitcodeWrapper(buf, buf + 4)) { 5384 const unsigned char *bitcodeStart = buf; 5385 const unsigned char *bitcodeEnd = buf + 16; 5386 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5387 Bytes.dropLeadingBytes(bitcodeStart - buf); 5388 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5389 } 5390 return std::error_code(); 5391 } 5392 5393 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E, 5394 const Twine &Message) { 5395 return ::error(DiagnosticHandler, make_error_code(E), Message); 5396 } 5397 5398 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) { 5399 return ::error(DiagnosticHandler, 5400 make_error_code(BitcodeError::CorruptedBitcode), Message); 5401 } 5402 5403 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) { 5404 return ::error(DiagnosticHandler, make_error_code(E)); 5405 } 5406 5407 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5408 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5409 bool IsLazy, bool CheckFuncSummaryPresenceOnly) 5410 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5411 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5412 5413 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5414 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5415 bool CheckFuncSummaryPresenceOnly) 5416 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5417 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5418 5419 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; } 5420 5421 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5422 5423 // Specialized value symbol table parser used when reading function index 5424 // blocks where we don't actually create global values. 5425 // At the end of this routine the function index is populated with a map 5426 // from function name to FunctionInfo. The function info contains 5427 // the function block's bitcode offset as well as the offset into the 5428 // function summary section. 5429 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() { 5430 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5431 return error("Invalid record"); 5432 5433 SmallVector<uint64_t, 64> Record; 5434 5435 // Read all the records for this value table. 5436 SmallString<128> ValueName; 5437 while (1) { 5438 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5439 5440 switch (Entry.Kind) { 5441 case BitstreamEntry::SubBlock: // Handled for us already. 5442 case BitstreamEntry::Error: 5443 return error("Malformed block"); 5444 case BitstreamEntry::EndBlock: 5445 return std::error_code(); 5446 case BitstreamEntry::Record: 5447 // The interesting case. 5448 break; 5449 } 5450 5451 // Read a record. 5452 Record.clear(); 5453 switch (Stream.readRecord(Entry.ID, Record)) { 5454 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5455 break; 5456 case bitc::VST_CODE_FNENTRY: { 5457 // VST_FNENTRY: [valueid, offset, namechar x N] 5458 if (convertToString(Record, 2, ValueName)) 5459 return error("Invalid record"); 5460 unsigned ValueID = Record[0]; 5461 uint64_t FuncOffset = Record[1]; 5462 std::unique_ptr<FunctionInfo> FuncInfo = 5463 llvm::make_unique<FunctionInfo>(FuncOffset); 5464 if (foundFuncSummary() && !IsLazy) { 5465 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5466 SummaryMap.find(ValueID); 5467 assert(SMI != SummaryMap.end() && "Summary info not found"); 5468 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5469 } 5470 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5471 5472 ValueName.clear(); 5473 break; 5474 } 5475 case bitc::VST_CODE_COMBINED_FNENTRY: { 5476 // VST_FNENTRY: [offset, namechar x N] 5477 if (convertToString(Record, 1, ValueName)) 5478 return error("Invalid record"); 5479 uint64_t FuncSummaryOffset = Record[0]; 5480 std::unique_ptr<FunctionInfo> FuncInfo = 5481 llvm::make_unique<FunctionInfo>(FuncSummaryOffset); 5482 if (foundFuncSummary() && !IsLazy) { 5483 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5484 SummaryMap.find(FuncSummaryOffset); 5485 assert(SMI != SummaryMap.end() && "Summary info not found"); 5486 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5487 } 5488 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5489 5490 ValueName.clear(); 5491 break; 5492 } 5493 } 5494 } 5495 } 5496 5497 // Parse just the blocks needed for function index building out of the module. 5498 // At the end of this routine the function Index is populated with a map 5499 // from function name to FunctionInfo. The function info contains 5500 // either the parsed function summary information (when parsing summaries 5501 // eagerly), or just to the function summary record's offset 5502 // if parsing lazily (IsLazy). 5503 std::error_code FunctionIndexBitcodeReader::parseModule() { 5504 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5505 return error("Invalid record"); 5506 5507 // Read the function index for this module. 5508 while (1) { 5509 BitstreamEntry Entry = Stream.advance(); 5510 5511 switch (Entry.Kind) { 5512 case BitstreamEntry::Error: 5513 return error("Malformed block"); 5514 case BitstreamEntry::EndBlock: 5515 return std::error_code(); 5516 5517 case BitstreamEntry::SubBlock: 5518 if (CheckFuncSummaryPresenceOnly) { 5519 if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) 5520 SeenFuncSummary = true; 5521 if (Stream.SkipBlock()) 5522 return error("Invalid record"); 5523 // No need to parse the rest since we found the summary. 5524 return std::error_code(); 5525 } 5526 switch (Entry.ID) { 5527 default: // Skip unknown content. 5528 if (Stream.SkipBlock()) 5529 return error("Invalid record"); 5530 break; 5531 case bitc::BLOCKINFO_BLOCK_ID: 5532 // Need to parse these to get abbrev ids (e.g. for VST) 5533 if (Stream.ReadBlockInfoBlock()) 5534 return error("Malformed block"); 5535 break; 5536 case bitc::VALUE_SYMTAB_BLOCK_ID: 5537 if (std::error_code EC = parseValueSymbolTable()) 5538 return EC; 5539 break; 5540 case bitc::FUNCTION_SUMMARY_BLOCK_ID: 5541 SeenFuncSummary = true; 5542 if (IsLazy) { 5543 // Lazy parsing of summary info, skip it. 5544 if (Stream.SkipBlock()) 5545 return error("Invalid record"); 5546 } else if (std::error_code EC = parseEntireSummary()) 5547 return EC; 5548 break; 5549 case bitc::MODULE_STRTAB_BLOCK_ID: 5550 if (std::error_code EC = parseModuleStringTable()) 5551 return EC; 5552 break; 5553 } 5554 continue; 5555 5556 case BitstreamEntry::Record: 5557 Stream.skipRecord(Entry.ID); 5558 continue; 5559 } 5560 } 5561 } 5562 5563 // Eagerly parse the entire function summary block (i.e. for all functions 5564 // in the index). This populates the FunctionSummary objects in 5565 // the index. 5566 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() { 5567 if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID)) 5568 return error("Invalid record"); 5569 5570 SmallVector<uint64_t, 64> Record; 5571 5572 while (1) { 5573 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5574 5575 switch (Entry.Kind) { 5576 case BitstreamEntry::SubBlock: // Handled for us already. 5577 case BitstreamEntry::Error: 5578 return error("Malformed block"); 5579 case BitstreamEntry::EndBlock: 5580 return std::error_code(); 5581 case BitstreamEntry::Record: 5582 // The interesting case. 5583 break; 5584 } 5585 5586 // Read a record. The record format depends on whether this 5587 // is a per-module index or a combined index file. In the per-module 5588 // case the records contain the associated value's ID for correlation 5589 // with VST entries. In the combined index the correlation is done 5590 // via the bitcode offset of the summary records (which were saved 5591 // in the combined index VST entries). The records also contain 5592 // information used for ThinLTO renaming and importing. 5593 Record.clear(); 5594 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5595 switch (Stream.readRecord(Entry.ID, Record)) { 5596 default: // Default behavior: ignore. 5597 break; 5598 // FS_PERMODULE_ENTRY: [valueid, islocal, instcount] 5599 case bitc::FS_CODE_PERMODULE_ENTRY: { 5600 unsigned ValueID = Record[0]; 5601 bool IsLocal = Record[1]; 5602 unsigned InstCount = Record[2]; 5603 std::unique_ptr<FunctionSummary> FS = 5604 llvm::make_unique<FunctionSummary>(InstCount); 5605 FS->setLocalFunction(IsLocal); 5606 // The module path string ref set in the summary must be owned by the 5607 // index's module string table. Since we don't have a module path 5608 // string table section in the per-module index, we create a single 5609 // module path string table entry with an empty (0) ID to take 5610 // ownership. 5611 FS->setModulePath( 5612 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5613 SummaryMap[ValueID] = std::move(FS); 5614 } 5615 // FS_COMBINED_ENTRY: [modid, instcount] 5616 case bitc::FS_CODE_COMBINED_ENTRY: { 5617 uint64_t ModuleId = Record[0]; 5618 unsigned InstCount = Record[1]; 5619 std::unique_ptr<FunctionSummary> FS = 5620 llvm::make_unique<FunctionSummary>(InstCount); 5621 FS->setModulePath(ModuleIdMap[ModuleId]); 5622 SummaryMap[CurRecordBit] = std::move(FS); 5623 } 5624 } 5625 } 5626 llvm_unreachable("Exit infinite loop"); 5627 } 5628 5629 // Parse the module string table block into the Index. 5630 // This populates the ModulePathStringTable map in the index. 5631 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() { 5632 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5633 return error("Invalid record"); 5634 5635 SmallVector<uint64_t, 64> Record; 5636 5637 SmallString<128> ModulePath; 5638 while (1) { 5639 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5640 5641 switch (Entry.Kind) { 5642 case BitstreamEntry::SubBlock: // Handled for us already. 5643 case BitstreamEntry::Error: 5644 return error("Malformed block"); 5645 case BitstreamEntry::EndBlock: 5646 return std::error_code(); 5647 case BitstreamEntry::Record: 5648 // The interesting case. 5649 break; 5650 } 5651 5652 Record.clear(); 5653 switch (Stream.readRecord(Entry.ID, Record)) { 5654 default: // Default behavior: ignore. 5655 break; 5656 case bitc::MST_CODE_ENTRY: { 5657 // MST_ENTRY: [modid, namechar x N] 5658 if (convertToString(Record, 1, ModulePath)) 5659 return error("Invalid record"); 5660 uint64_t ModuleId = Record[0]; 5661 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId); 5662 ModuleIdMap[ModuleId] = ModulePathInMap; 5663 ModulePath.clear(); 5664 break; 5665 } 5666 } 5667 } 5668 llvm_unreachable("Exit infinite loop"); 5669 } 5670 5671 // Parse the function info index from the bitcode streamer into the given index. 5672 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto( 5673 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) { 5674 TheIndex = I; 5675 5676 if (std::error_code EC = initStream(std::move(Streamer))) 5677 return EC; 5678 5679 // Sniff for the signature. 5680 if (!hasValidBitcodeHeader(Stream)) 5681 return error("Invalid bitcode signature"); 5682 5683 // We expect a number of well-defined blocks, though we don't necessarily 5684 // need to understand them all. 5685 while (1) { 5686 if (Stream.AtEndOfStream()) { 5687 // We didn't really read a proper Module block. 5688 return error("Malformed block"); 5689 } 5690 5691 BitstreamEntry Entry = 5692 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5693 5694 if (Entry.Kind != BitstreamEntry::SubBlock) 5695 return error("Malformed block"); 5696 5697 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5698 // building the function summary index. 5699 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5700 return parseModule(); 5701 5702 if (Stream.SkipBlock()) 5703 return error("Invalid record"); 5704 } 5705 } 5706 5707 // Parse the function information at the given offset in the buffer into 5708 // the index. Used to support lazy parsing of function summaries from the 5709 // combined index during importing. 5710 // TODO: This function is not yet complete as it won't have a consumer 5711 // until ThinLTO function importing is added. 5712 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary( 5713 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I, 5714 size_t FunctionSummaryOffset) { 5715 TheIndex = I; 5716 5717 if (std::error_code EC = initStream(std::move(Streamer))) 5718 return EC; 5719 5720 // Sniff for the signature. 5721 if (!hasValidBitcodeHeader(Stream)) 5722 return error("Invalid bitcode signature"); 5723 5724 Stream.JumpToBit(FunctionSummaryOffset); 5725 5726 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5727 5728 switch (Entry.Kind) { 5729 default: 5730 return error("Malformed block"); 5731 case BitstreamEntry::Record: 5732 // The expected case. 5733 break; 5734 } 5735 5736 // TODO: Read a record. This interface will be completed when ThinLTO 5737 // importing is added so that it can be tested. 5738 SmallVector<uint64_t, 64> Record; 5739 switch (Stream.readRecord(Entry.ID, Record)) { 5740 case bitc::FS_CODE_COMBINED_ENTRY: 5741 default: 5742 return error("Invalid record"); 5743 } 5744 5745 return std::error_code(); 5746 } 5747 5748 std::error_code 5749 FunctionIndexBitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5750 if (Streamer) 5751 return initLazyStream(std::move(Streamer)); 5752 return initStreamFromBuffer(); 5753 } 5754 5755 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() { 5756 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 5757 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 5758 5759 if (Buffer->getBufferSize() & 3) 5760 return error("Invalid bitcode signature"); 5761 5762 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5763 // The magic number is 0x0B17C0DE stored in little endian. 5764 if (isBitcodeWrapper(BufPtr, BufEnd)) 5765 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5766 return error("Invalid bitcode wrapper header"); 5767 5768 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5769 Stream.init(&*StreamFile); 5770 5771 return std::error_code(); 5772 } 5773 5774 std::error_code FunctionIndexBitcodeReader::initLazyStream( 5775 std::unique_ptr<DataStreamer> Streamer) { 5776 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5777 // see it. 5778 auto OwnedBytes = 5779 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5780 StreamingMemoryObject &Bytes = *OwnedBytes; 5781 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5782 Stream.init(&*StreamFile); 5783 5784 unsigned char buf[16]; 5785 if (Bytes.readBytes(buf, 16, 0) != 16) 5786 return error("Invalid bitcode signature"); 5787 5788 if (!isBitcode(buf, buf + 16)) 5789 return error("Invalid bitcode signature"); 5790 5791 if (isBitcodeWrapper(buf, buf + 4)) { 5792 const unsigned char *bitcodeStart = buf; 5793 const unsigned char *bitcodeEnd = buf + 16; 5794 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5795 Bytes.dropLeadingBytes(bitcodeStart - buf); 5796 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5797 } 5798 return std::error_code(); 5799 } 5800 5801 namespace { 5802 class BitcodeErrorCategoryType : public std::error_category { 5803 const char *name() const LLVM_NOEXCEPT override { 5804 return "llvm.bitcode"; 5805 } 5806 std::string message(int IE) const override { 5807 BitcodeError E = static_cast<BitcodeError>(IE); 5808 switch (E) { 5809 case BitcodeError::InvalidBitcodeSignature: 5810 return "Invalid bitcode signature"; 5811 case BitcodeError::CorruptedBitcode: 5812 return "Corrupted bitcode"; 5813 } 5814 llvm_unreachable("Unknown error type!"); 5815 } 5816 }; 5817 } 5818 5819 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5820 5821 const std::error_category &llvm::BitcodeErrorCategory() { 5822 return *ErrorCategory; 5823 } 5824 5825 //===----------------------------------------------------------------------===// 5826 // External interface 5827 //===----------------------------------------------------------------------===// 5828 5829 static ErrorOr<std::unique_ptr<Module>> 5830 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 5831 BitcodeReader *R, LLVMContext &Context, 5832 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 5833 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5834 M->setMaterializer(R); 5835 5836 auto cleanupOnError = [&](std::error_code EC) { 5837 R->releaseBuffer(); // Never take ownership on error. 5838 return EC; 5839 }; 5840 5841 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5842 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 5843 ShouldLazyLoadMetadata)) 5844 return cleanupOnError(EC); 5845 5846 if (MaterializeAll) { 5847 // Read in the entire module, and destroy the BitcodeReader. 5848 if (std::error_code EC = M->materializeAllPermanently()) 5849 return cleanupOnError(EC); 5850 } else { 5851 // Resolve forward references from blockaddresses. 5852 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 5853 return cleanupOnError(EC); 5854 } 5855 return std::move(M); 5856 } 5857 5858 /// \brief Get a lazy one-at-time loading module from bitcode. 5859 /// 5860 /// This isn't always used in a lazy context. In particular, it's also used by 5861 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 5862 /// in forward-referenced functions from block address references. 5863 /// 5864 /// \param[in] MaterializeAll Set to \c true if we should materialize 5865 /// everything. 5866 static ErrorOr<std::unique_ptr<Module>> 5867 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 5868 LLVMContext &Context, bool MaterializeAll, 5869 DiagnosticHandlerFunction DiagnosticHandler, 5870 bool ShouldLazyLoadMetadata = false) { 5871 BitcodeReader *R = 5872 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 5873 5874 ErrorOr<std::unique_ptr<Module>> Ret = 5875 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 5876 MaterializeAll, ShouldLazyLoadMetadata); 5877 if (!Ret) 5878 return Ret; 5879 5880 Buffer.release(); // The BitcodeReader owns it now. 5881 return Ret; 5882 } 5883 5884 ErrorOr<std::unique_ptr<Module>> llvm::getLazyBitcodeModule( 5885 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5886 DiagnosticHandlerFunction DiagnosticHandler, bool ShouldLazyLoadMetadata) { 5887 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 5888 DiagnosticHandler, ShouldLazyLoadMetadata); 5889 } 5890 5891 ErrorOr<std::unique_ptr<Module>> llvm::getStreamedBitcodeModule( 5892 StringRef Name, std::unique_ptr<DataStreamer> Streamer, 5893 LLVMContext &Context, DiagnosticHandlerFunction DiagnosticHandler) { 5894 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5895 BitcodeReader *R = new BitcodeReader(Context, DiagnosticHandler); 5896 5897 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 5898 false); 5899 } 5900 5901 ErrorOr<std::unique_ptr<Module>> 5902 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 5903 DiagnosticHandlerFunction DiagnosticHandler) { 5904 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5905 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true, 5906 DiagnosticHandler); 5907 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5908 // written. We must defer until the Module has been fully materialized. 5909 } 5910 5911 std::string 5912 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 5913 DiagnosticHandlerFunction DiagnosticHandler) { 5914 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5915 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 5916 DiagnosticHandler); 5917 ErrorOr<std::string> Triple = R->parseTriple(); 5918 if (Triple.getError()) 5919 return ""; 5920 return Triple.get(); 5921 } 5922 5923 std::string 5924 llvm::getBitcodeProducerString(MemoryBufferRef Buffer, LLVMContext &Context, 5925 DiagnosticHandlerFunction DiagnosticHandler) { 5926 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5927 BitcodeReader R(Buf.release(), Context, DiagnosticHandler); 5928 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 5929 if (ProducerString.getError()) 5930 return ""; 5931 return ProducerString.get(); 5932 } 5933 5934 // Parse the specified bitcode buffer, returning the function info index. 5935 // If IsLazy is false, parse the entire function summary into 5936 // the index. Otherwise skip the function summary section, and only create 5937 // an index object with a map from function name to function summary offset. 5938 // The index is used to perform lazy function summary reading later. 5939 ErrorOr<std::unique_ptr<FunctionInfoIndex>> 5940 llvm::getFunctionInfoIndex(MemoryBufferRef Buffer, 5941 DiagnosticHandlerFunction DiagnosticHandler, 5942 const Module *ExportingModule, bool IsLazy) { 5943 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5944 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 5945 5946 std::unique_ptr<FunctionInfoIndex> Index = 5947 llvm::make_unique<FunctionInfoIndex>(ExportingModule); 5948 5949 auto cleanupOnError = [&](std::error_code EC) { 5950 R.releaseBuffer(); // Never take ownership on error. 5951 return EC; 5952 }; 5953 5954 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 5955 return cleanupOnError(EC); 5956 5957 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5958 return std::move(Index); 5959 } 5960 5961 // Check if the given bitcode buffer contains a function summary block. 5962 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer, 5963 DiagnosticHandlerFunction DiagnosticHandler) { 5964 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5965 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 5966 5967 auto cleanupOnError = [&](std::error_code EC) { 5968 R.releaseBuffer(); // Never take ownership on error. 5969 return false; 5970 }; 5971 5972 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 5973 return cleanupOnError(EC); 5974 5975 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5976 return R.foundFuncSummary(); 5977 } 5978 5979 // This method supports lazy reading of function summary data from the combined 5980 // index during ThinLTO function importing. When reading the combined index 5981 // file, getFunctionInfoIndex is first invoked with IsLazy=true. 5982 // Then this method is called for each function considered for importing, 5983 // to parse the summary information for the given function name into 5984 // the index. 5985 std::error_code llvm::readFunctionSummary( 5986 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5987 StringRef FunctionName, std::unique_ptr<FunctionInfoIndex> Index) { 5988 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5989 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 5990 5991 auto cleanupOnError = [&](std::error_code EC) { 5992 R.releaseBuffer(); // Never take ownership on error. 5993 return EC; 5994 }; 5995 5996 // Lookup the given function name in the FunctionMap, which may 5997 // contain a list of function infos in the case of a COMDAT. Walk through 5998 // and parse each function summary info at the function summary offset 5999 // recorded when parsing the value symbol table. 6000 for (const auto &FI : Index->getFunctionInfoList(FunctionName)) { 6001 size_t FunctionSummaryOffset = FI->bitcodeIndex(); 6002 if (std::error_code EC = 6003 R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset)) 6004 return cleanupOnError(EC); 6005 } 6006 6007 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 6008 return std::error_code(); 6009 } 6010