1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/FunctionInfo.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/DataStream.h" 33 #include "llvm/Support/ManagedStatic.h" 34 #include "llvm/Support/MathExtras.h" 35 #include "llvm/Support/MemoryBuffer.h" 36 #include "llvm/Support/raw_ostream.h" 37 #include <deque> 38 using namespace llvm; 39 40 namespace { 41 enum { 42 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 43 }; 44 45 class BitcodeReaderValueList { 46 std::vector<WeakVH> ValuePtrs; 47 48 /// As we resolve forward-referenced constants, we add information about them 49 /// to this vector. This allows us to resolve them in bulk instead of 50 /// resolving each reference at a time. See the code in 51 /// ResolveConstantForwardRefs for more information about this. 52 /// 53 /// The key of this vector is the placeholder constant, the value is the slot 54 /// number that holds the resolved value. 55 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 56 ResolveConstantsTy ResolveConstants; 57 LLVMContext &Context; 58 public: 59 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 60 ~BitcodeReaderValueList() { 61 assert(ResolveConstants.empty() && "Constants not resolved?"); 62 } 63 64 // vector compatibility methods 65 unsigned size() const { return ValuePtrs.size(); } 66 void resize(unsigned N) { ValuePtrs.resize(N); } 67 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 68 69 void clear() { 70 assert(ResolveConstants.empty() && "Constants not resolved?"); 71 ValuePtrs.clear(); 72 } 73 74 Value *operator[](unsigned i) const { 75 assert(i < ValuePtrs.size()); 76 return ValuePtrs[i]; 77 } 78 79 Value *back() const { return ValuePtrs.back(); } 80 void pop_back() { ValuePtrs.pop_back(); } 81 bool empty() const { return ValuePtrs.empty(); } 82 void shrinkTo(unsigned N) { 83 assert(N <= size() && "Invalid shrinkTo request!"); 84 ValuePtrs.resize(N); 85 } 86 87 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 88 Value *getValueFwdRef(unsigned Idx, Type *Ty); 89 90 void assignValue(Value *V, unsigned Idx); 91 92 /// Once all constants are read, this method bulk resolves any forward 93 /// references. 94 void resolveConstantForwardRefs(); 95 }; 96 97 class BitcodeReaderMDValueList { 98 unsigned NumFwdRefs; 99 bool AnyFwdRefs; 100 unsigned MinFwdRef; 101 unsigned MaxFwdRef; 102 std::vector<TrackingMDRef> MDValuePtrs; 103 104 LLVMContext &Context; 105 public: 106 BitcodeReaderMDValueList(LLVMContext &C) 107 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 108 109 // vector compatibility methods 110 unsigned size() const { return MDValuePtrs.size(); } 111 void resize(unsigned N) { MDValuePtrs.resize(N); } 112 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 113 void clear() { MDValuePtrs.clear(); } 114 Metadata *back() const { return MDValuePtrs.back(); } 115 void pop_back() { MDValuePtrs.pop_back(); } 116 bool empty() const { return MDValuePtrs.empty(); } 117 118 Metadata *operator[](unsigned i) const { 119 assert(i < MDValuePtrs.size()); 120 return MDValuePtrs[i]; 121 } 122 123 void shrinkTo(unsigned N) { 124 assert(N <= size() && "Invalid shrinkTo request!"); 125 MDValuePtrs.resize(N); 126 } 127 128 Metadata *getValueFwdRef(unsigned Idx); 129 void assignValue(Metadata *MD, unsigned Idx); 130 void tryToResolveCycles(); 131 }; 132 133 class BitcodeReader : public GVMaterializer { 134 LLVMContext &Context; 135 Module *TheModule = nullptr; 136 std::unique_ptr<MemoryBuffer> Buffer; 137 std::unique_ptr<BitstreamReader> StreamFile; 138 BitstreamCursor Stream; 139 // Next offset to start scanning for lazy parsing of function bodies. 140 uint64_t NextUnreadBit = 0; 141 // Last function offset found in the VST. 142 uint64_t LastFunctionBlockBit = 0; 143 bool SeenValueSymbolTable = false; 144 uint64_t VSTOffset = 0; 145 // Contains an arbitrary and optional string identifying the bitcode producer 146 std::string ProducerIdentification; 147 // Number of module level metadata records specified by the 148 // MODULE_CODE_METADATA_VALUES record. 149 unsigned NumModuleMDs = 0; 150 // Support older bitcode without the MODULE_CODE_METADATA_VALUES record. 151 bool SeenModuleValuesRecord = false; 152 153 std::vector<Type*> TypeList; 154 BitcodeReaderValueList ValueList; 155 BitcodeReaderMDValueList MDValueList; 156 std::vector<Comdat *> ComdatList; 157 SmallVector<Instruction *, 64> InstructionList; 158 159 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 160 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 161 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 162 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 163 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 164 165 SmallVector<Instruction*, 64> InstsWithTBAATag; 166 167 /// The set of attributes by index. Index zero in the file is for null, and 168 /// is thus not represented here. As such all indices are off by one. 169 std::vector<AttributeSet> MAttributes; 170 171 /// The set of attribute groups. 172 std::map<unsigned, AttributeSet> MAttributeGroups; 173 174 /// While parsing a function body, this is a list of the basic blocks for the 175 /// function. 176 std::vector<BasicBlock*> FunctionBBs; 177 178 // When reading the module header, this list is populated with functions that 179 // have bodies later in the file. 180 std::vector<Function*> FunctionsWithBodies; 181 182 // When intrinsic functions are encountered which require upgrading they are 183 // stored here with their replacement function. 184 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 185 UpgradedIntrinsicMap UpgradedIntrinsics; 186 187 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 188 DenseMap<unsigned, unsigned> MDKindMap; 189 190 // Several operations happen after the module header has been read, but 191 // before function bodies are processed. This keeps track of whether 192 // we've done this yet. 193 bool SeenFirstFunctionBody = false; 194 195 /// When function bodies are initially scanned, this map contains info about 196 /// where to find deferred function body in the stream. 197 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 198 199 /// When Metadata block is initially scanned when parsing the module, we may 200 /// choose to defer parsing of the metadata. This vector contains info about 201 /// which Metadata blocks are deferred. 202 std::vector<uint64_t> DeferredMetadataInfo; 203 204 /// These are basic blocks forward-referenced by block addresses. They are 205 /// inserted lazily into functions when they're loaded. The basic block ID is 206 /// its index into the vector. 207 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 208 std::deque<Function *> BasicBlockFwdRefQueue; 209 210 /// Indicates that we are using a new encoding for instruction operands where 211 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 212 /// instruction number, for a more compact encoding. Some instruction 213 /// operands are not relative to the instruction ID: basic block numbers, and 214 /// types. Once the old style function blocks have been phased out, we would 215 /// not need this flag. 216 bool UseRelativeIDs = false; 217 218 /// True if all functions will be materialized, negating the need to process 219 /// (e.g.) blockaddress forward references. 220 bool WillMaterializeAllForwardRefs = false; 221 222 /// True if any Metadata block has been materialized. 223 bool IsMetadataMaterialized = false; 224 225 bool StripDebugInfo = false; 226 227 /// Functions that need to be matched with subprograms when upgrading old 228 /// metadata. 229 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 230 231 std::vector<std::string> BundleTags; 232 233 public: 234 std::error_code error(BitcodeError E, const Twine &Message); 235 std::error_code error(BitcodeError E); 236 std::error_code error(const Twine &Message); 237 238 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 239 BitcodeReader(LLVMContext &Context); 240 ~BitcodeReader() override { freeState(); } 241 242 std::error_code materializeForwardReferencedFunctions(); 243 244 void freeState(); 245 246 void releaseBuffer(); 247 248 std::error_code materialize(GlobalValue *GV) override; 249 std::error_code materializeModule() override; 250 std::vector<StructType *> getIdentifiedStructTypes() const override; 251 252 /// \brief Main interface to parsing a bitcode buffer. 253 /// \returns true if an error occurred. 254 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 255 Module *M, 256 bool ShouldLazyLoadMetadata = false); 257 258 /// \brief Cheap mechanism to just extract module triple 259 /// \returns true if an error occurred. 260 ErrorOr<std::string> parseTriple(); 261 262 /// Cheap mechanism to just extract the identification block out of bitcode. 263 ErrorOr<std::string> parseIdentificationBlock(); 264 265 static uint64_t decodeSignRotatedValue(uint64_t V); 266 267 /// Materialize any deferred Metadata block. 268 std::error_code materializeMetadata() override; 269 270 void setStripDebugInfo() override; 271 272 /// Save the mapping between the metadata values and the corresponding 273 /// value id that were recorded in the MDValueList during parsing. If 274 /// OnlyTempMD is true, then only record those entries that are still 275 /// temporary metadata. This interface is used when metadata linking is 276 /// performed as a postpass, such as during function importing. 277 void saveMDValueList(DenseMap<const Metadata *, unsigned> &MDValueToValIDMap, 278 bool OnlyTempMD) override; 279 280 private: 281 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 282 // ProducerIdentification data member, and do some basic enforcement on the 283 // "epoch" encoded in the bitcode. 284 std::error_code parseBitcodeVersion(); 285 286 std::vector<StructType *> IdentifiedStructTypes; 287 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 288 StructType *createIdentifiedStructType(LLVMContext &Context); 289 290 Type *getTypeByID(unsigned ID); 291 Value *getFnValueByID(unsigned ID, Type *Ty) { 292 if (Ty && Ty->isMetadataTy()) 293 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 294 return ValueList.getValueFwdRef(ID, Ty); 295 } 296 Metadata *getFnMetadataByID(unsigned ID) { 297 return MDValueList.getValueFwdRef(ID); 298 } 299 BasicBlock *getBasicBlock(unsigned ID) const { 300 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 301 return FunctionBBs[ID]; 302 } 303 AttributeSet getAttributes(unsigned i) const { 304 if (i-1 < MAttributes.size()) 305 return MAttributes[i-1]; 306 return AttributeSet(); 307 } 308 309 /// Read a value/type pair out of the specified record from slot 'Slot'. 310 /// Increment Slot past the number of slots used in the record. Return true on 311 /// failure. 312 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 313 unsigned InstNum, Value *&ResVal) { 314 if (Slot == Record.size()) return true; 315 unsigned ValNo = (unsigned)Record[Slot++]; 316 // Adjust the ValNo, if it was encoded relative to the InstNum. 317 if (UseRelativeIDs) 318 ValNo = InstNum - ValNo; 319 if (ValNo < InstNum) { 320 // If this is not a forward reference, just return the value we already 321 // have. 322 ResVal = getFnValueByID(ValNo, nullptr); 323 return ResVal == nullptr; 324 } 325 if (Slot == Record.size()) 326 return true; 327 328 unsigned TypeNo = (unsigned)Record[Slot++]; 329 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 330 return ResVal == nullptr; 331 } 332 333 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 334 /// past the number of slots used by the value in the record. Return true if 335 /// there is an error. 336 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 337 unsigned InstNum, Type *Ty, Value *&ResVal) { 338 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 339 return true; 340 // All values currently take a single record slot. 341 ++Slot; 342 return false; 343 } 344 345 /// Like popValue, but does not increment the Slot number. 346 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 347 unsigned InstNum, Type *Ty, Value *&ResVal) { 348 ResVal = getValue(Record, Slot, InstNum, Ty); 349 return ResVal == nullptr; 350 } 351 352 /// Version of getValue that returns ResVal directly, or 0 if there is an 353 /// error. 354 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 355 unsigned InstNum, Type *Ty) { 356 if (Slot == Record.size()) return nullptr; 357 unsigned ValNo = (unsigned)Record[Slot]; 358 // Adjust the ValNo, if it was encoded relative to the InstNum. 359 if (UseRelativeIDs) 360 ValNo = InstNum - ValNo; 361 return getFnValueByID(ValNo, Ty); 362 } 363 364 /// Like getValue, but decodes signed VBRs. 365 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 366 unsigned InstNum, Type *Ty) { 367 if (Slot == Record.size()) return nullptr; 368 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 369 // Adjust the ValNo, if it was encoded relative to the InstNum. 370 if (UseRelativeIDs) 371 ValNo = InstNum - ValNo; 372 return getFnValueByID(ValNo, Ty); 373 } 374 375 /// Converts alignment exponent (i.e. power of two (or zero)) to the 376 /// corresponding alignment to use. If alignment is too large, returns 377 /// a corresponding error code. 378 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 379 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 380 std::error_code parseModule(uint64_t ResumeBit, 381 bool ShouldLazyLoadMetadata = false); 382 std::error_code parseAttributeBlock(); 383 std::error_code parseAttributeGroupBlock(); 384 std::error_code parseTypeTable(); 385 std::error_code parseTypeTableBody(); 386 std::error_code parseOperandBundleTags(); 387 388 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 389 unsigned NameIndex, Triple &TT); 390 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 391 std::error_code parseConstants(); 392 std::error_code rememberAndSkipFunctionBodies(); 393 std::error_code rememberAndSkipFunctionBody(); 394 /// Save the positions of the Metadata blocks and skip parsing the blocks. 395 std::error_code rememberAndSkipMetadata(); 396 std::error_code parseFunctionBody(Function *F); 397 std::error_code globalCleanup(); 398 std::error_code resolveGlobalAndAliasInits(); 399 std::error_code parseMetadata(bool ModuleLevel = false); 400 std::error_code parseMetadataKinds(); 401 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 402 std::error_code parseMetadataAttachment(Function &F); 403 ErrorOr<std::string> parseModuleTriple(); 404 std::error_code parseUseLists(); 405 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 406 std::error_code initStreamFromBuffer(); 407 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 408 std::error_code findFunctionInStream( 409 Function *F, 410 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 411 }; 412 413 /// Class to manage reading and parsing function summary index bitcode 414 /// files/sections. 415 class FunctionIndexBitcodeReader { 416 DiagnosticHandlerFunction DiagnosticHandler; 417 418 /// Eventually points to the function index built during parsing. 419 FunctionInfoIndex *TheIndex = nullptr; 420 421 std::unique_ptr<MemoryBuffer> Buffer; 422 std::unique_ptr<BitstreamReader> StreamFile; 423 BitstreamCursor Stream; 424 425 /// \brief Used to indicate whether we are doing lazy parsing of summary data. 426 /// 427 /// If false, the summary section is fully parsed into the index during 428 /// the initial parse. Otherwise, if true, the caller is expected to 429 /// invoke \a readFunctionSummary for each summary needed, and the summary 430 /// section is thus parsed lazily. 431 bool IsLazy = false; 432 433 /// Used to indicate whether caller only wants to check for the presence 434 /// of the function summary bitcode section. All blocks are skipped, 435 /// but the SeenFuncSummary boolean is set. 436 bool CheckFuncSummaryPresenceOnly = false; 437 438 /// Indicates whether we have encountered a function summary section 439 /// yet during parsing, used when checking if file contains function 440 /// summary section. 441 bool SeenFuncSummary = false; 442 443 /// \brief Map populated during function summary section parsing, and 444 /// consumed during ValueSymbolTable parsing. 445 /// 446 /// Used to correlate summary records with VST entries. For the per-module 447 /// index this maps the ValueID to the parsed function summary, and 448 /// for the combined index this maps the summary record's bitcode 449 /// offset to the function summary (since in the combined index the 450 /// VST records do not hold value IDs but rather hold the function 451 /// summary record offset). 452 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>> SummaryMap; 453 454 /// Map populated during module path string table parsing, from the 455 /// module ID to a string reference owned by the index's module 456 /// path string table, used to correlate with combined index function 457 /// summary records. 458 DenseMap<uint64_t, StringRef> ModuleIdMap; 459 460 public: 461 std::error_code error(BitcodeError E, const Twine &Message); 462 std::error_code error(BitcodeError E); 463 std::error_code error(const Twine &Message); 464 465 FunctionIndexBitcodeReader(MemoryBuffer *Buffer, 466 DiagnosticHandlerFunction DiagnosticHandler, 467 bool IsLazy = false, 468 bool CheckFuncSummaryPresenceOnly = false); 469 FunctionIndexBitcodeReader(DiagnosticHandlerFunction DiagnosticHandler, 470 bool IsLazy = false, 471 bool CheckFuncSummaryPresenceOnly = false); 472 ~FunctionIndexBitcodeReader() { freeState(); } 473 474 void freeState(); 475 476 void releaseBuffer(); 477 478 /// Check if the parser has encountered a function summary section. 479 bool foundFuncSummary() { return SeenFuncSummary; } 480 481 /// \brief Main interface to parsing a bitcode buffer. 482 /// \returns true if an error occurred. 483 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 484 FunctionInfoIndex *I); 485 486 /// \brief Interface for parsing a function summary lazily. 487 std::error_code parseFunctionSummary(std::unique_ptr<DataStreamer> Streamer, 488 FunctionInfoIndex *I, 489 size_t FunctionSummaryOffset); 490 491 private: 492 std::error_code parseModule(); 493 std::error_code parseValueSymbolTable(); 494 std::error_code parseEntireSummary(); 495 std::error_code parseModuleStringTable(); 496 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 497 std::error_code initStreamFromBuffer(); 498 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 499 }; 500 } // namespace 501 502 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 503 DiagnosticSeverity Severity, 504 const Twine &Msg) 505 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 506 507 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 508 509 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 510 std::error_code EC, const Twine &Message) { 511 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 512 DiagnosticHandler(DI); 513 return EC; 514 } 515 516 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 517 std::error_code EC) { 518 return error(DiagnosticHandler, EC, EC.message()); 519 } 520 521 static std::error_code error(LLVMContext &Context, std::error_code EC, 522 const Twine &Message) { 523 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 524 Message); 525 } 526 527 static std::error_code error(LLVMContext &Context, std::error_code EC) { 528 return error(Context, EC, EC.message()); 529 } 530 531 static std::error_code error(LLVMContext &Context, const Twine &Message) { 532 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 533 Message); 534 } 535 536 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 537 if (!ProducerIdentification.empty()) { 538 return ::error(Context, make_error_code(E), 539 Message + " (Producer: '" + ProducerIdentification + 540 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 541 } 542 return ::error(Context, make_error_code(E), Message); 543 } 544 545 std::error_code BitcodeReader::error(const Twine &Message) { 546 if (!ProducerIdentification.empty()) { 547 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 548 Message + " (Producer: '" + ProducerIdentification + 549 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 550 } 551 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 552 Message); 553 } 554 555 std::error_code BitcodeReader::error(BitcodeError E) { 556 return ::error(Context, make_error_code(E)); 557 } 558 559 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 560 : Context(Context), Buffer(Buffer), ValueList(Context), 561 MDValueList(Context) {} 562 563 BitcodeReader::BitcodeReader(LLVMContext &Context) 564 : Context(Context), Buffer(nullptr), ValueList(Context), 565 MDValueList(Context) {} 566 567 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 568 if (WillMaterializeAllForwardRefs) 569 return std::error_code(); 570 571 // Prevent recursion. 572 WillMaterializeAllForwardRefs = true; 573 574 while (!BasicBlockFwdRefQueue.empty()) { 575 Function *F = BasicBlockFwdRefQueue.front(); 576 BasicBlockFwdRefQueue.pop_front(); 577 assert(F && "Expected valid function"); 578 if (!BasicBlockFwdRefs.count(F)) 579 // Already materialized. 580 continue; 581 582 // Check for a function that isn't materializable to prevent an infinite 583 // loop. When parsing a blockaddress stored in a global variable, there 584 // isn't a trivial way to check if a function will have a body without a 585 // linear search through FunctionsWithBodies, so just check it here. 586 if (!F->isMaterializable()) 587 return error("Never resolved function from blockaddress"); 588 589 // Try to materialize F. 590 if (std::error_code EC = materialize(F)) 591 return EC; 592 } 593 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 594 595 // Reset state. 596 WillMaterializeAllForwardRefs = false; 597 return std::error_code(); 598 } 599 600 void BitcodeReader::freeState() { 601 Buffer = nullptr; 602 std::vector<Type*>().swap(TypeList); 603 ValueList.clear(); 604 MDValueList.clear(); 605 std::vector<Comdat *>().swap(ComdatList); 606 607 std::vector<AttributeSet>().swap(MAttributes); 608 std::vector<BasicBlock*>().swap(FunctionBBs); 609 std::vector<Function*>().swap(FunctionsWithBodies); 610 DeferredFunctionInfo.clear(); 611 DeferredMetadataInfo.clear(); 612 MDKindMap.clear(); 613 614 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 615 BasicBlockFwdRefQueue.clear(); 616 } 617 618 //===----------------------------------------------------------------------===// 619 // Helper functions to implement forward reference resolution, etc. 620 //===----------------------------------------------------------------------===// 621 622 /// Convert a string from a record into an std::string, return true on failure. 623 template <typename StrTy> 624 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 625 StrTy &Result) { 626 if (Idx > Record.size()) 627 return true; 628 629 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 630 Result += (char)Record[i]; 631 return false; 632 } 633 634 static bool hasImplicitComdat(size_t Val) { 635 switch (Val) { 636 default: 637 return false; 638 case 1: // Old WeakAnyLinkage 639 case 4: // Old LinkOnceAnyLinkage 640 case 10: // Old WeakODRLinkage 641 case 11: // Old LinkOnceODRLinkage 642 return true; 643 } 644 } 645 646 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 647 switch (Val) { 648 default: // Map unknown/new linkages to external 649 case 0: 650 return GlobalValue::ExternalLinkage; 651 case 2: 652 return GlobalValue::AppendingLinkage; 653 case 3: 654 return GlobalValue::InternalLinkage; 655 case 5: 656 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 657 case 6: 658 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 659 case 7: 660 return GlobalValue::ExternalWeakLinkage; 661 case 8: 662 return GlobalValue::CommonLinkage; 663 case 9: 664 return GlobalValue::PrivateLinkage; 665 case 12: 666 return GlobalValue::AvailableExternallyLinkage; 667 case 13: 668 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 669 case 14: 670 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 671 case 15: 672 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 673 case 1: // Old value with implicit comdat. 674 case 16: 675 return GlobalValue::WeakAnyLinkage; 676 case 10: // Old value with implicit comdat. 677 case 17: 678 return GlobalValue::WeakODRLinkage; 679 case 4: // Old value with implicit comdat. 680 case 18: 681 return GlobalValue::LinkOnceAnyLinkage; 682 case 11: // Old value with implicit comdat. 683 case 19: 684 return GlobalValue::LinkOnceODRLinkage; 685 } 686 } 687 688 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 689 switch (Val) { 690 default: // Map unknown visibilities to default. 691 case 0: return GlobalValue::DefaultVisibility; 692 case 1: return GlobalValue::HiddenVisibility; 693 case 2: return GlobalValue::ProtectedVisibility; 694 } 695 } 696 697 static GlobalValue::DLLStorageClassTypes 698 getDecodedDLLStorageClass(unsigned Val) { 699 switch (Val) { 700 default: // Map unknown values to default. 701 case 0: return GlobalValue::DefaultStorageClass; 702 case 1: return GlobalValue::DLLImportStorageClass; 703 case 2: return GlobalValue::DLLExportStorageClass; 704 } 705 } 706 707 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 708 switch (Val) { 709 case 0: return GlobalVariable::NotThreadLocal; 710 default: // Map unknown non-zero value to general dynamic. 711 case 1: return GlobalVariable::GeneralDynamicTLSModel; 712 case 2: return GlobalVariable::LocalDynamicTLSModel; 713 case 3: return GlobalVariable::InitialExecTLSModel; 714 case 4: return GlobalVariable::LocalExecTLSModel; 715 } 716 } 717 718 static int getDecodedCastOpcode(unsigned Val) { 719 switch (Val) { 720 default: return -1; 721 case bitc::CAST_TRUNC : return Instruction::Trunc; 722 case bitc::CAST_ZEXT : return Instruction::ZExt; 723 case bitc::CAST_SEXT : return Instruction::SExt; 724 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 725 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 726 case bitc::CAST_UITOFP : return Instruction::UIToFP; 727 case bitc::CAST_SITOFP : return Instruction::SIToFP; 728 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 729 case bitc::CAST_FPEXT : return Instruction::FPExt; 730 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 731 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 732 case bitc::CAST_BITCAST : return Instruction::BitCast; 733 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 734 } 735 } 736 737 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 738 bool IsFP = Ty->isFPOrFPVectorTy(); 739 // BinOps are only valid for int/fp or vector of int/fp types 740 if (!IsFP && !Ty->isIntOrIntVectorTy()) 741 return -1; 742 743 switch (Val) { 744 default: 745 return -1; 746 case bitc::BINOP_ADD: 747 return IsFP ? Instruction::FAdd : Instruction::Add; 748 case bitc::BINOP_SUB: 749 return IsFP ? Instruction::FSub : Instruction::Sub; 750 case bitc::BINOP_MUL: 751 return IsFP ? Instruction::FMul : Instruction::Mul; 752 case bitc::BINOP_UDIV: 753 return IsFP ? -1 : Instruction::UDiv; 754 case bitc::BINOP_SDIV: 755 return IsFP ? Instruction::FDiv : Instruction::SDiv; 756 case bitc::BINOP_UREM: 757 return IsFP ? -1 : Instruction::URem; 758 case bitc::BINOP_SREM: 759 return IsFP ? Instruction::FRem : Instruction::SRem; 760 case bitc::BINOP_SHL: 761 return IsFP ? -1 : Instruction::Shl; 762 case bitc::BINOP_LSHR: 763 return IsFP ? -1 : Instruction::LShr; 764 case bitc::BINOP_ASHR: 765 return IsFP ? -1 : Instruction::AShr; 766 case bitc::BINOP_AND: 767 return IsFP ? -1 : Instruction::And; 768 case bitc::BINOP_OR: 769 return IsFP ? -1 : Instruction::Or; 770 case bitc::BINOP_XOR: 771 return IsFP ? -1 : Instruction::Xor; 772 } 773 } 774 775 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 776 switch (Val) { 777 default: return AtomicRMWInst::BAD_BINOP; 778 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 779 case bitc::RMW_ADD: return AtomicRMWInst::Add; 780 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 781 case bitc::RMW_AND: return AtomicRMWInst::And; 782 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 783 case bitc::RMW_OR: return AtomicRMWInst::Or; 784 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 785 case bitc::RMW_MAX: return AtomicRMWInst::Max; 786 case bitc::RMW_MIN: return AtomicRMWInst::Min; 787 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 788 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 789 } 790 } 791 792 static AtomicOrdering getDecodedOrdering(unsigned Val) { 793 switch (Val) { 794 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 795 case bitc::ORDERING_UNORDERED: return Unordered; 796 case bitc::ORDERING_MONOTONIC: return Monotonic; 797 case bitc::ORDERING_ACQUIRE: return Acquire; 798 case bitc::ORDERING_RELEASE: return Release; 799 case bitc::ORDERING_ACQREL: return AcquireRelease; 800 default: // Map unknown orderings to sequentially-consistent. 801 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 802 } 803 } 804 805 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 806 switch (Val) { 807 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 808 default: // Map unknown scopes to cross-thread. 809 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 810 } 811 } 812 813 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 814 switch (Val) { 815 default: // Map unknown selection kinds to any. 816 case bitc::COMDAT_SELECTION_KIND_ANY: 817 return Comdat::Any; 818 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 819 return Comdat::ExactMatch; 820 case bitc::COMDAT_SELECTION_KIND_LARGEST: 821 return Comdat::Largest; 822 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 823 return Comdat::NoDuplicates; 824 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 825 return Comdat::SameSize; 826 } 827 } 828 829 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 830 FastMathFlags FMF; 831 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 832 FMF.setUnsafeAlgebra(); 833 if (0 != (Val & FastMathFlags::NoNaNs)) 834 FMF.setNoNaNs(); 835 if (0 != (Val & FastMathFlags::NoInfs)) 836 FMF.setNoInfs(); 837 if (0 != (Val & FastMathFlags::NoSignedZeros)) 838 FMF.setNoSignedZeros(); 839 if (0 != (Val & FastMathFlags::AllowReciprocal)) 840 FMF.setAllowReciprocal(); 841 return FMF; 842 } 843 844 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 845 switch (Val) { 846 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 847 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 848 } 849 } 850 851 namespace llvm { 852 namespace { 853 /// \brief A class for maintaining the slot number definition 854 /// as a placeholder for the actual definition for forward constants defs. 855 class ConstantPlaceHolder : public ConstantExpr { 856 void operator=(const ConstantPlaceHolder &) = delete; 857 858 public: 859 // allocate space for exactly one operand 860 void *operator new(size_t s) { return User::operator new(s, 1); } 861 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 862 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 863 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 864 } 865 866 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 867 static bool classof(const Value *V) { 868 return isa<ConstantExpr>(V) && 869 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 870 } 871 872 /// Provide fast operand accessors 873 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 874 }; 875 } 876 877 // FIXME: can we inherit this from ConstantExpr? 878 template <> 879 struct OperandTraits<ConstantPlaceHolder> : 880 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 881 }; 882 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 883 } 884 885 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 886 if (Idx == size()) { 887 push_back(V); 888 return; 889 } 890 891 if (Idx >= size()) 892 resize(Idx+1); 893 894 WeakVH &OldV = ValuePtrs[Idx]; 895 if (!OldV) { 896 OldV = V; 897 return; 898 } 899 900 // Handle constants and non-constants (e.g. instrs) differently for 901 // efficiency. 902 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 903 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 904 OldV = V; 905 } else { 906 // If there was a forward reference to this value, replace it. 907 Value *PrevVal = OldV; 908 OldV->replaceAllUsesWith(V); 909 delete PrevVal; 910 } 911 912 return; 913 } 914 915 916 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 917 Type *Ty) { 918 if (Idx >= size()) 919 resize(Idx + 1); 920 921 if (Value *V = ValuePtrs[Idx]) { 922 if (Ty != V->getType()) 923 report_fatal_error("Type mismatch in constant table!"); 924 return cast<Constant>(V); 925 } 926 927 // Create and return a placeholder, which will later be RAUW'd. 928 Constant *C = new ConstantPlaceHolder(Ty, Context); 929 ValuePtrs[Idx] = C; 930 return C; 931 } 932 933 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 934 // Bail out for a clearly invalid value. This would make us call resize(0) 935 if (Idx == UINT_MAX) 936 return nullptr; 937 938 if (Idx >= size()) 939 resize(Idx + 1); 940 941 if (Value *V = ValuePtrs[Idx]) { 942 // If the types don't match, it's invalid. 943 if (Ty && Ty != V->getType()) 944 return nullptr; 945 return V; 946 } 947 948 // No type specified, must be invalid reference. 949 if (!Ty) return nullptr; 950 951 // Create and return a placeholder, which will later be RAUW'd. 952 Value *V = new Argument(Ty); 953 ValuePtrs[Idx] = V; 954 return V; 955 } 956 957 /// Once all constants are read, this method bulk resolves any forward 958 /// references. The idea behind this is that we sometimes get constants (such 959 /// as large arrays) which reference *many* forward ref constants. Replacing 960 /// each of these causes a lot of thrashing when building/reuniquing the 961 /// constant. Instead of doing this, we look at all the uses and rewrite all 962 /// the place holders at once for any constant that uses a placeholder. 963 void BitcodeReaderValueList::resolveConstantForwardRefs() { 964 // Sort the values by-pointer so that they are efficient to look up with a 965 // binary search. 966 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 967 968 SmallVector<Constant*, 64> NewOps; 969 970 while (!ResolveConstants.empty()) { 971 Value *RealVal = operator[](ResolveConstants.back().second); 972 Constant *Placeholder = ResolveConstants.back().first; 973 ResolveConstants.pop_back(); 974 975 // Loop over all users of the placeholder, updating them to reference the 976 // new value. If they reference more than one placeholder, update them all 977 // at once. 978 while (!Placeholder->use_empty()) { 979 auto UI = Placeholder->user_begin(); 980 User *U = *UI; 981 982 // If the using object isn't uniqued, just update the operands. This 983 // handles instructions and initializers for global variables. 984 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 985 UI.getUse().set(RealVal); 986 continue; 987 } 988 989 // Otherwise, we have a constant that uses the placeholder. Replace that 990 // constant with a new constant that has *all* placeholder uses updated. 991 Constant *UserC = cast<Constant>(U); 992 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 993 I != E; ++I) { 994 Value *NewOp; 995 if (!isa<ConstantPlaceHolder>(*I)) { 996 // Not a placeholder reference. 997 NewOp = *I; 998 } else if (*I == Placeholder) { 999 // Common case is that it just references this one placeholder. 1000 NewOp = RealVal; 1001 } else { 1002 // Otherwise, look up the placeholder in ResolveConstants. 1003 ResolveConstantsTy::iterator It = 1004 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1005 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1006 0)); 1007 assert(It != ResolveConstants.end() && It->first == *I); 1008 NewOp = operator[](It->second); 1009 } 1010 1011 NewOps.push_back(cast<Constant>(NewOp)); 1012 } 1013 1014 // Make the new constant. 1015 Constant *NewC; 1016 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1017 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1018 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1019 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1020 } else if (isa<ConstantVector>(UserC)) { 1021 NewC = ConstantVector::get(NewOps); 1022 } else { 1023 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1024 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1025 } 1026 1027 UserC->replaceAllUsesWith(NewC); 1028 UserC->destroyConstant(); 1029 NewOps.clear(); 1030 } 1031 1032 // Update all ValueHandles, they should be the only users at this point. 1033 Placeholder->replaceAllUsesWith(RealVal); 1034 delete Placeholder; 1035 } 1036 } 1037 1038 void BitcodeReaderMDValueList::assignValue(Metadata *MD, unsigned Idx) { 1039 if (Idx == size()) { 1040 push_back(MD); 1041 return; 1042 } 1043 1044 if (Idx >= size()) 1045 resize(Idx+1); 1046 1047 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 1048 if (!OldMD) { 1049 OldMD.reset(MD); 1050 return; 1051 } 1052 1053 // If there was a forward reference to this value, replace it. 1054 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1055 PrevMD->replaceAllUsesWith(MD); 1056 --NumFwdRefs; 1057 } 1058 1059 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 1060 if (Idx >= size()) 1061 resize(Idx + 1); 1062 1063 if (Metadata *MD = MDValuePtrs[Idx]) 1064 return MD; 1065 1066 // Track forward refs to be resolved later. 1067 if (AnyFwdRefs) { 1068 MinFwdRef = std::min(MinFwdRef, Idx); 1069 MaxFwdRef = std::max(MaxFwdRef, Idx); 1070 } else { 1071 AnyFwdRefs = true; 1072 MinFwdRef = MaxFwdRef = Idx; 1073 } 1074 ++NumFwdRefs; 1075 1076 // Create and return a placeholder, which will later be RAUW'd. 1077 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1078 MDValuePtrs[Idx].reset(MD); 1079 return MD; 1080 } 1081 1082 void BitcodeReaderMDValueList::tryToResolveCycles() { 1083 if (!AnyFwdRefs) 1084 // Nothing to do. 1085 return; 1086 1087 if (NumFwdRefs) 1088 // Still forward references... can't resolve cycles. 1089 return; 1090 1091 // Resolve any cycles. 1092 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1093 auto &MD = MDValuePtrs[I]; 1094 auto *N = dyn_cast_or_null<MDNode>(MD); 1095 if (!N) 1096 continue; 1097 1098 assert(!N->isTemporary() && "Unexpected forward reference"); 1099 N->resolveCycles(); 1100 } 1101 1102 // Make sure we return early again until there's another forward ref. 1103 AnyFwdRefs = false; 1104 } 1105 1106 Type *BitcodeReader::getTypeByID(unsigned ID) { 1107 // The type table size is always specified correctly. 1108 if (ID >= TypeList.size()) 1109 return nullptr; 1110 1111 if (Type *Ty = TypeList[ID]) 1112 return Ty; 1113 1114 // If we have a forward reference, the only possible case is when it is to a 1115 // named struct. Just create a placeholder for now. 1116 return TypeList[ID] = createIdentifiedStructType(Context); 1117 } 1118 1119 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1120 StringRef Name) { 1121 auto *Ret = StructType::create(Context, Name); 1122 IdentifiedStructTypes.push_back(Ret); 1123 return Ret; 1124 } 1125 1126 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1127 auto *Ret = StructType::create(Context); 1128 IdentifiedStructTypes.push_back(Ret); 1129 return Ret; 1130 } 1131 1132 1133 //===----------------------------------------------------------------------===// 1134 // Functions for parsing blocks from the bitcode file 1135 //===----------------------------------------------------------------------===// 1136 1137 1138 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1139 /// been decoded from the given integer. This function must stay in sync with 1140 /// 'encodeLLVMAttributesForBitcode'. 1141 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1142 uint64_t EncodedAttrs) { 1143 // FIXME: Remove in 4.0. 1144 1145 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1146 // the bits above 31 down by 11 bits. 1147 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1148 assert((!Alignment || isPowerOf2_32(Alignment)) && 1149 "Alignment must be a power of two."); 1150 1151 if (Alignment) 1152 B.addAlignmentAttr(Alignment); 1153 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1154 (EncodedAttrs & 0xffff)); 1155 } 1156 1157 std::error_code BitcodeReader::parseAttributeBlock() { 1158 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1159 return error("Invalid record"); 1160 1161 if (!MAttributes.empty()) 1162 return error("Invalid multiple blocks"); 1163 1164 SmallVector<uint64_t, 64> Record; 1165 1166 SmallVector<AttributeSet, 8> Attrs; 1167 1168 // Read all the records. 1169 while (1) { 1170 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1171 1172 switch (Entry.Kind) { 1173 case BitstreamEntry::SubBlock: // Handled for us already. 1174 case BitstreamEntry::Error: 1175 return error("Malformed block"); 1176 case BitstreamEntry::EndBlock: 1177 return std::error_code(); 1178 case BitstreamEntry::Record: 1179 // The interesting case. 1180 break; 1181 } 1182 1183 // Read a record. 1184 Record.clear(); 1185 switch (Stream.readRecord(Entry.ID, Record)) { 1186 default: // Default behavior: ignore. 1187 break; 1188 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1189 // FIXME: Remove in 4.0. 1190 if (Record.size() & 1) 1191 return error("Invalid record"); 1192 1193 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1194 AttrBuilder B; 1195 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1196 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1197 } 1198 1199 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1200 Attrs.clear(); 1201 break; 1202 } 1203 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1204 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1205 Attrs.push_back(MAttributeGroups[Record[i]]); 1206 1207 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1208 Attrs.clear(); 1209 break; 1210 } 1211 } 1212 } 1213 } 1214 1215 // Returns Attribute::None on unrecognized codes. 1216 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1217 switch (Code) { 1218 default: 1219 return Attribute::None; 1220 case bitc::ATTR_KIND_ALIGNMENT: 1221 return Attribute::Alignment; 1222 case bitc::ATTR_KIND_ALWAYS_INLINE: 1223 return Attribute::AlwaysInline; 1224 case bitc::ATTR_KIND_ARGMEMONLY: 1225 return Attribute::ArgMemOnly; 1226 case bitc::ATTR_KIND_BUILTIN: 1227 return Attribute::Builtin; 1228 case bitc::ATTR_KIND_BY_VAL: 1229 return Attribute::ByVal; 1230 case bitc::ATTR_KIND_IN_ALLOCA: 1231 return Attribute::InAlloca; 1232 case bitc::ATTR_KIND_COLD: 1233 return Attribute::Cold; 1234 case bitc::ATTR_KIND_CONVERGENT: 1235 return Attribute::Convergent; 1236 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1237 return Attribute::InaccessibleMemOnly; 1238 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1239 return Attribute::InaccessibleMemOrArgMemOnly; 1240 case bitc::ATTR_KIND_INLINE_HINT: 1241 return Attribute::InlineHint; 1242 case bitc::ATTR_KIND_IN_REG: 1243 return Attribute::InReg; 1244 case bitc::ATTR_KIND_JUMP_TABLE: 1245 return Attribute::JumpTable; 1246 case bitc::ATTR_KIND_MIN_SIZE: 1247 return Attribute::MinSize; 1248 case bitc::ATTR_KIND_NAKED: 1249 return Attribute::Naked; 1250 case bitc::ATTR_KIND_NEST: 1251 return Attribute::Nest; 1252 case bitc::ATTR_KIND_NO_ALIAS: 1253 return Attribute::NoAlias; 1254 case bitc::ATTR_KIND_NO_BUILTIN: 1255 return Attribute::NoBuiltin; 1256 case bitc::ATTR_KIND_NO_CAPTURE: 1257 return Attribute::NoCapture; 1258 case bitc::ATTR_KIND_NO_DUPLICATE: 1259 return Attribute::NoDuplicate; 1260 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1261 return Attribute::NoImplicitFloat; 1262 case bitc::ATTR_KIND_NO_INLINE: 1263 return Attribute::NoInline; 1264 case bitc::ATTR_KIND_NO_RECURSE: 1265 return Attribute::NoRecurse; 1266 case bitc::ATTR_KIND_NON_LAZY_BIND: 1267 return Attribute::NonLazyBind; 1268 case bitc::ATTR_KIND_NON_NULL: 1269 return Attribute::NonNull; 1270 case bitc::ATTR_KIND_DEREFERENCEABLE: 1271 return Attribute::Dereferenceable; 1272 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1273 return Attribute::DereferenceableOrNull; 1274 case bitc::ATTR_KIND_NO_RED_ZONE: 1275 return Attribute::NoRedZone; 1276 case bitc::ATTR_KIND_NO_RETURN: 1277 return Attribute::NoReturn; 1278 case bitc::ATTR_KIND_NO_UNWIND: 1279 return Attribute::NoUnwind; 1280 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1281 return Attribute::OptimizeForSize; 1282 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1283 return Attribute::OptimizeNone; 1284 case bitc::ATTR_KIND_READ_NONE: 1285 return Attribute::ReadNone; 1286 case bitc::ATTR_KIND_READ_ONLY: 1287 return Attribute::ReadOnly; 1288 case bitc::ATTR_KIND_RETURNED: 1289 return Attribute::Returned; 1290 case bitc::ATTR_KIND_RETURNS_TWICE: 1291 return Attribute::ReturnsTwice; 1292 case bitc::ATTR_KIND_S_EXT: 1293 return Attribute::SExt; 1294 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1295 return Attribute::StackAlignment; 1296 case bitc::ATTR_KIND_STACK_PROTECT: 1297 return Attribute::StackProtect; 1298 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1299 return Attribute::StackProtectReq; 1300 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1301 return Attribute::StackProtectStrong; 1302 case bitc::ATTR_KIND_SAFESTACK: 1303 return Attribute::SafeStack; 1304 case bitc::ATTR_KIND_STRUCT_RET: 1305 return Attribute::StructRet; 1306 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1307 return Attribute::SanitizeAddress; 1308 case bitc::ATTR_KIND_SANITIZE_THREAD: 1309 return Attribute::SanitizeThread; 1310 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1311 return Attribute::SanitizeMemory; 1312 case bitc::ATTR_KIND_UW_TABLE: 1313 return Attribute::UWTable; 1314 case bitc::ATTR_KIND_Z_EXT: 1315 return Attribute::ZExt; 1316 } 1317 } 1318 1319 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1320 unsigned &Alignment) { 1321 // Note: Alignment in bitcode files is incremented by 1, so that zero 1322 // can be used for default alignment. 1323 if (Exponent > Value::MaxAlignmentExponent + 1) 1324 return error("Invalid alignment value"); 1325 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1326 return std::error_code(); 1327 } 1328 1329 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1330 Attribute::AttrKind *Kind) { 1331 *Kind = getAttrFromCode(Code); 1332 if (*Kind == Attribute::None) 1333 return error(BitcodeError::CorruptedBitcode, 1334 "Unknown attribute kind (" + Twine(Code) + ")"); 1335 return std::error_code(); 1336 } 1337 1338 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1339 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1340 return error("Invalid record"); 1341 1342 if (!MAttributeGroups.empty()) 1343 return error("Invalid multiple blocks"); 1344 1345 SmallVector<uint64_t, 64> Record; 1346 1347 // Read all the records. 1348 while (1) { 1349 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1350 1351 switch (Entry.Kind) { 1352 case BitstreamEntry::SubBlock: // Handled for us already. 1353 case BitstreamEntry::Error: 1354 return error("Malformed block"); 1355 case BitstreamEntry::EndBlock: 1356 return std::error_code(); 1357 case BitstreamEntry::Record: 1358 // The interesting case. 1359 break; 1360 } 1361 1362 // Read a record. 1363 Record.clear(); 1364 switch (Stream.readRecord(Entry.ID, Record)) { 1365 default: // Default behavior: ignore. 1366 break; 1367 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1368 if (Record.size() < 3) 1369 return error("Invalid record"); 1370 1371 uint64_t GrpID = Record[0]; 1372 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1373 1374 AttrBuilder B; 1375 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1376 if (Record[i] == 0) { // Enum attribute 1377 Attribute::AttrKind Kind; 1378 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1379 return EC; 1380 1381 B.addAttribute(Kind); 1382 } else if (Record[i] == 1) { // Integer attribute 1383 Attribute::AttrKind Kind; 1384 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1385 return EC; 1386 if (Kind == Attribute::Alignment) 1387 B.addAlignmentAttr(Record[++i]); 1388 else if (Kind == Attribute::StackAlignment) 1389 B.addStackAlignmentAttr(Record[++i]); 1390 else if (Kind == Attribute::Dereferenceable) 1391 B.addDereferenceableAttr(Record[++i]); 1392 else if (Kind == Attribute::DereferenceableOrNull) 1393 B.addDereferenceableOrNullAttr(Record[++i]); 1394 } else { // String attribute 1395 assert((Record[i] == 3 || Record[i] == 4) && 1396 "Invalid attribute group entry"); 1397 bool HasValue = (Record[i++] == 4); 1398 SmallString<64> KindStr; 1399 SmallString<64> ValStr; 1400 1401 while (Record[i] != 0 && i != e) 1402 KindStr += Record[i++]; 1403 assert(Record[i] == 0 && "Kind string not null terminated"); 1404 1405 if (HasValue) { 1406 // Has a value associated with it. 1407 ++i; // Skip the '0' that terminates the "kind" string. 1408 while (Record[i] != 0 && i != e) 1409 ValStr += Record[i++]; 1410 assert(Record[i] == 0 && "Value string not null terminated"); 1411 } 1412 1413 B.addAttribute(KindStr.str(), ValStr.str()); 1414 } 1415 } 1416 1417 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1418 break; 1419 } 1420 } 1421 } 1422 } 1423 1424 std::error_code BitcodeReader::parseTypeTable() { 1425 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1426 return error("Invalid record"); 1427 1428 return parseTypeTableBody(); 1429 } 1430 1431 std::error_code BitcodeReader::parseTypeTableBody() { 1432 if (!TypeList.empty()) 1433 return error("Invalid multiple blocks"); 1434 1435 SmallVector<uint64_t, 64> Record; 1436 unsigned NumRecords = 0; 1437 1438 SmallString<64> TypeName; 1439 1440 // Read all the records for this type table. 1441 while (1) { 1442 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1443 1444 switch (Entry.Kind) { 1445 case BitstreamEntry::SubBlock: // Handled for us already. 1446 case BitstreamEntry::Error: 1447 return error("Malformed block"); 1448 case BitstreamEntry::EndBlock: 1449 if (NumRecords != TypeList.size()) 1450 return error("Malformed block"); 1451 return std::error_code(); 1452 case BitstreamEntry::Record: 1453 // The interesting case. 1454 break; 1455 } 1456 1457 // Read a record. 1458 Record.clear(); 1459 Type *ResultTy = nullptr; 1460 switch (Stream.readRecord(Entry.ID, Record)) { 1461 default: 1462 return error("Invalid value"); 1463 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1464 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1465 // type list. This allows us to reserve space. 1466 if (Record.size() < 1) 1467 return error("Invalid record"); 1468 TypeList.resize(Record[0]); 1469 continue; 1470 case bitc::TYPE_CODE_VOID: // VOID 1471 ResultTy = Type::getVoidTy(Context); 1472 break; 1473 case bitc::TYPE_CODE_HALF: // HALF 1474 ResultTy = Type::getHalfTy(Context); 1475 break; 1476 case bitc::TYPE_CODE_FLOAT: // FLOAT 1477 ResultTy = Type::getFloatTy(Context); 1478 break; 1479 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1480 ResultTy = Type::getDoubleTy(Context); 1481 break; 1482 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1483 ResultTy = Type::getX86_FP80Ty(Context); 1484 break; 1485 case bitc::TYPE_CODE_FP128: // FP128 1486 ResultTy = Type::getFP128Ty(Context); 1487 break; 1488 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1489 ResultTy = Type::getPPC_FP128Ty(Context); 1490 break; 1491 case bitc::TYPE_CODE_LABEL: // LABEL 1492 ResultTy = Type::getLabelTy(Context); 1493 break; 1494 case bitc::TYPE_CODE_METADATA: // METADATA 1495 ResultTy = Type::getMetadataTy(Context); 1496 break; 1497 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1498 ResultTy = Type::getX86_MMXTy(Context); 1499 break; 1500 case bitc::TYPE_CODE_TOKEN: // TOKEN 1501 ResultTy = Type::getTokenTy(Context); 1502 break; 1503 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1504 if (Record.size() < 1) 1505 return error("Invalid record"); 1506 1507 uint64_t NumBits = Record[0]; 1508 if (NumBits < IntegerType::MIN_INT_BITS || 1509 NumBits > IntegerType::MAX_INT_BITS) 1510 return error("Bitwidth for integer type out of range"); 1511 ResultTy = IntegerType::get(Context, NumBits); 1512 break; 1513 } 1514 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1515 // [pointee type, address space] 1516 if (Record.size() < 1) 1517 return error("Invalid record"); 1518 unsigned AddressSpace = 0; 1519 if (Record.size() == 2) 1520 AddressSpace = Record[1]; 1521 ResultTy = getTypeByID(Record[0]); 1522 if (!ResultTy || 1523 !PointerType::isValidElementType(ResultTy)) 1524 return error("Invalid type"); 1525 ResultTy = PointerType::get(ResultTy, AddressSpace); 1526 break; 1527 } 1528 case bitc::TYPE_CODE_FUNCTION_OLD: { 1529 // FIXME: attrid is dead, remove it in LLVM 4.0 1530 // FUNCTION: [vararg, attrid, retty, paramty x N] 1531 if (Record.size() < 3) 1532 return error("Invalid record"); 1533 SmallVector<Type*, 8> ArgTys; 1534 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1535 if (Type *T = getTypeByID(Record[i])) 1536 ArgTys.push_back(T); 1537 else 1538 break; 1539 } 1540 1541 ResultTy = getTypeByID(Record[2]); 1542 if (!ResultTy || ArgTys.size() < Record.size()-3) 1543 return error("Invalid type"); 1544 1545 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1546 break; 1547 } 1548 case bitc::TYPE_CODE_FUNCTION: { 1549 // FUNCTION: [vararg, retty, paramty x N] 1550 if (Record.size() < 2) 1551 return error("Invalid record"); 1552 SmallVector<Type*, 8> ArgTys; 1553 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1554 if (Type *T = getTypeByID(Record[i])) { 1555 if (!FunctionType::isValidArgumentType(T)) 1556 return error("Invalid function argument type"); 1557 ArgTys.push_back(T); 1558 } 1559 else 1560 break; 1561 } 1562 1563 ResultTy = getTypeByID(Record[1]); 1564 if (!ResultTy || ArgTys.size() < Record.size()-2) 1565 return error("Invalid type"); 1566 1567 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1568 break; 1569 } 1570 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1571 if (Record.size() < 1) 1572 return error("Invalid record"); 1573 SmallVector<Type*, 8> EltTys; 1574 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1575 if (Type *T = getTypeByID(Record[i])) 1576 EltTys.push_back(T); 1577 else 1578 break; 1579 } 1580 if (EltTys.size() != Record.size()-1) 1581 return error("Invalid type"); 1582 ResultTy = StructType::get(Context, EltTys, Record[0]); 1583 break; 1584 } 1585 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1586 if (convertToString(Record, 0, TypeName)) 1587 return error("Invalid record"); 1588 continue; 1589 1590 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1591 if (Record.size() < 1) 1592 return error("Invalid record"); 1593 1594 if (NumRecords >= TypeList.size()) 1595 return error("Invalid TYPE table"); 1596 1597 // Check to see if this was forward referenced, if so fill in the temp. 1598 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1599 if (Res) { 1600 Res->setName(TypeName); 1601 TypeList[NumRecords] = nullptr; 1602 } else // Otherwise, create a new struct. 1603 Res = createIdentifiedStructType(Context, TypeName); 1604 TypeName.clear(); 1605 1606 SmallVector<Type*, 8> EltTys; 1607 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1608 if (Type *T = getTypeByID(Record[i])) 1609 EltTys.push_back(T); 1610 else 1611 break; 1612 } 1613 if (EltTys.size() != Record.size()-1) 1614 return error("Invalid record"); 1615 Res->setBody(EltTys, Record[0]); 1616 ResultTy = Res; 1617 break; 1618 } 1619 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1620 if (Record.size() != 1) 1621 return error("Invalid record"); 1622 1623 if (NumRecords >= TypeList.size()) 1624 return error("Invalid TYPE table"); 1625 1626 // Check to see if this was forward referenced, if so fill in the temp. 1627 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1628 if (Res) { 1629 Res->setName(TypeName); 1630 TypeList[NumRecords] = nullptr; 1631 } else // Otherwise, create a new struct with no body. 1632 Res = createIdentifiedStructType(Context, TypeName); 1633 TypeName.clear(); 1634 ResultTy = Res; 1635 break; 1636 } 1637 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1638 if (Record.size() < 2) 1639 return error("Invalid record"); 1640 ResultTy = getTypeByID(Record[1]); 1641 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1642 return error("Invalid type"); 1643 ResultTy = ArrayType::get(ResultTy, Record[0]); 1644 break; 1645 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1646 if (Record.size() < 2) 1647 return error("Invalid record"); 1648 if (Record[0] == 0) 1649 return error("Invalid vector length"); 1650 ResultTy = getTypeByID(Record[1]); 1651 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1652 return error("Invalid type"); 1653 ResultTy = VectorType::get(ResultTy, Record[0]); 1654 break; 1655 } 1656 1657 if (NumRecords >= TypeList.size()) 1658 return error("Invalid TYPE table"); 1659 if (TypeList[NumRecords]) 1660 return error( 1661 "Invalid TYPE table: Only named structs can be forward referenced"); 1662 assert(ResultTy && "Didn't read a type?"); 1663 TypeList[NumRecords++] = ResultTy; 1664 } 1665 } 1666 1667 std::error_code BitcodeReader::parseOperandBundleTags() { 1668 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1669 return error("Invalid record"); 1670 1671 if (!BundleTags.empty()) 1672 return error("Invalid multiple blocks"); 1673 1674 SmallVector<uint64_t, 64> Record; 1675 1676 while (1) { 1677 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1678 1679 switch (Entry.Kind) { 1680 case BitstreamEntry::SubBlock: // Handled for us already. 1681 case BitstreamEntry::Error: 1682 return error("Malformed block"); 1683 case BitstreamEntry::EndBlock: 1684 return std::error_code(); 1685 case BitstreamEntry::Record: 1686 // The interesting case. 1687 break; 1688 } 1689 1690 // Tags are implicitly mapped to integers by their order. 1691 1692 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1693 return error("Invalid record"); 1694 1695 // OPERAND_BUNDLE_TAG: [strchr x N] 1696 BundleTags.emplace_back(); 1697 if (convertToString(Record, 0, BundleTags.back())) 1698 return error("Invalid record"); 1699 Record.clear(); 1700 } 1701 } 1702 1703 /// Associate a value with its name from the given index in the provided record. 1704 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1705 unsigned NameIndex, Triple &TT) { 1706 SmallString<128> ValueName; 1707 if (convertToString(Record, NameIndex, ValueName)) 1708 return error("Invalid record"); 1709 unsigned ValueID = Record[0]; 1710 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1711 return error("Invalid record"); 1712 Value *V = ValueList[ValueID]; 1713 1714 StringRef NameStr(ValueName.data(), ValueName.size()); 1715 if (NameStr.find_first_of(0) != StringRef::npos) 1716 return error("Invalid value name"); 1717 V->setName(NameStr); 1718 auto *GO = dyn_cast<GlobalObject>(V); 1719 if (GO) { 1720 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1721 if (TT.isOSBinFormatMachO()) 1722 GO->setComdat(nullptr); 1723 else 1724 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1725 } 1726 } 1727 return V; 1728 } 1729 1730 /// Parse the value symbol table at either the current parsing location or 1731 /// at the given bit offset if provided. 1732 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1733 uint64_t CurrentBit; 1734 // Pass in the Offset to distinguish between calling for the module-level 1735 // VST (where we want to jump to the VST offset) and the function-level 1736 // VST (where we don't). 1737 if (Offset > 0) { 1738 // Save the current parsing location so we can jump back at the end 1739 // of the VST read. 1740 CurrentBit = Stream.GetCurrentBitNo(); 1741 Stream.JumpToBit(Offset * 32); 1742 #ifndef NDEBUG 1743 // Do some checking if we are in debug mode. 1744 BitstreamEntry Entry = Stream.advance(); 1745 assert(Entry.Kind == BitstreamEntry::SubBlock); 1746 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1747 #else 1748 // In NDEBUG mode ignore the output so we don't get an unused variable 1749 // warning. 1750 Stream.advance(); 1751 #endif 1752 } 1753 1754 // Compute the delta between the bitcode indices in the VST (the word offset 1755 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1756 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1757 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1758 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1759 // just before entering the VST subblock because: 1) the EnterSubBlock 1760 // changes the AbbrevID width; 2) the VST block is nested within the same 1761 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1762 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1763 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1764 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1765 unsigned FuncBitcodeOffsetDelta = 1766 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1767 1768 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1769 return error("Invalid record"); 1770 1771 SmallVector<uint64_t, 64> Record; 1772 1773 Triple TT(TheModule->getTargetTriple()); 1774 1775 // Read all the records for this value table. 1776 SmallString<128> ValueName; 1777 while (1) { 1778 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1779 1780 switch (Entry.Kind) { 1781 case BitstreamEntry::SubBlock: // Handled for us already. 1782 case BitstreamEntry::Error: 1783 return error("Malformed block"); 1784 case BitstreamEntry::EndBlock: 1785 if (Offset > 0) 1786 Stream.JumpToBit(CurrentBit); 1787 return std::error_code(); 1788 case BitstreamEntry::Record: 1789 // The interesting case. 1790 break; 1791 } 1792 1793 // Read a record. 1794 Record.clear(); 1795 switch (Stream.readRecord(Entry.ID, Record)) { 1796 default: // Default behavior: unknown type. 1797 break; 1798 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1799 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1800 if (std::error_code EC = ValOrErr.getError()) 1801 return EC; 1802 ValOrErr.get(); 1803 break; 1804 } 1805 case bitc::VST_CODE_FNENTRY: { 1806 // VST_FNENTRY: [valueid, offset, namechar x N] 1807 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1808 if (std::error_code EC = ValOrErr.getError()) 1809 return EC; 1810 Value *V = ValOrErr.get(); 1811 1812 auto *GO = dyn_cast<GlobalObject>(V); 1813 if (!GO) { 1814 // If this is an alias, need to get the actual Function object 1815 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1816 auto *GA = dyn_cast<GlobalAlias>(V); 1817 if (GA) 1818 GO = GA->getBaseObject(); 1819 assert(GO); 1820 } 1821 1822 uint64_t FuncWordOffset = Record[1]; 1823 Function *F = dyn_cast<Function>(GO); 1824 assert(F); 1825 uint64_t FuncBitOffset = FuncWordOffset * 32; 1826 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1827 // Set the LastFunctionBlockBit to point to the last function block. 1828 // Later when parsing is resumed after function materialization, 1829 // we can simply skip that last function block. 1830 if (FuncBitOffset > LastFunctionBlockBit) 1831 LastFunctionBlockBit = FuncBitOffset; 1832 break; 1833 } 1834 case bitc::VST_CODE_BBENTRY: { 1835 if (convertToString(Record, 1, ValueName)) 1836 return error("Invalid record"); 1837 BasicBlock *BB = getBasicBlock(Record[0]); 1838 if (!BB) 1839 return error("Invalid record"); 1840 1841 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1842 ValueName.clear(); 1843 break; 1844 } 1845 } 1846 } 1847 } 1848 1849 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 1850 std::error_code 1851 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 1852 if (Record.size() < 2) 1853 return error("Invalid record"); 1854 1855 unsigned Kind = Record[0]; 1856 SmallString<8> Name(Record.begin() + 1, Record.end()); 1857 1858 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1859 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1860 return error("Conflicting METADATA_KIND records"); 1861 return std::error_code(); 1862 } 1863 1864 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1865 1866 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 1867 /// module level metadata. 1868 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 1869 IsMetadataMaterialized = true; 1870 unsigned NextMDValueNo = MDValueList.size(); 1871 if (ModuleLevel && SeenModuleValuesRecord) { 1872 // Now that we are parsing the module level metadata, we want to restart 1873 // the numbering of the MD values, and replace temp MD created earlier 1874 // with their real values. If we saw a METADATA_VALUE record then we 1875 // would have set the MDValueList size to the number specified in that 1876 // record, to support parsing function-level metadata first, and we need 1877 // to reset back to 0 to fill the MDValueList in with the parsed module 1878 // The function-level metadata parsing should have reset the MDValueList 1879 // size back to the value reported by the METADATA_VALUE record, saved in 1880 // NumModuleMDs. 1881 assert(NumModuleMDs == MDValueList.size() && 1882 "Expected MDValueList to only contain module level values"); 1883 NextMDValueNo = 0; 1884 } 1885 1886 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1887 return error("Invalid record"); 1888 1889 SmallVector<uint64_t, 64> Record; 1890 1891 auto getMD = 1892 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1893 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1894 if (ID) 1895 return getMD(ID - 1); 1896 return nullptr; 1897 }; 1898 auto getMDString = [&](unsigned ID) -> MDString *{ 1899 // This requires that the ID is not really a forward reference. In 1900 // particular, the MDString must already have been resolved. 1901 return cast_or_null<MDString>(getMDOrNull(ID)); 1902 }; 1903 1904 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1905 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1906 1907 // Read all the records. 1908 while (1) { 1909 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1910 1911 switch (Entry.Kind) { 1912 case BitstreamEntry::SubBlock: // Handled for us already. 1913 case BitstreamEntry::Error: 1914 return error("Malformed block"); 1915 case BitstreamEntry::EndBlock: 1916 MDValueList.tryToResolveCycles(); 1917 assert((!(ModuleLevel && SeenModuleValuesRecord) || 1918 NumModuleMDs == MDValueList.size()) && 1919 "Inconsistent bitcode: METADATA_VALUES mismatch"); 1920 return std::error_code(); 1921 case BitstreamEntry::Record: 1922 // The interesting case. 1923 break; 1924 } 1925 1926 // Read a record. 1927 Record.clear(); 1928 unsigned Code = Stream.readRecord(Entry.ID, Record); 1929 bool IsDistinct = false; 1930 switch (Code) { 1931 default: // Default behavior: ignore. 1932 break; 1933 case bitc::METADATA_NAME: { 1934 // Read name of the named metadata. 1935 SmallString<8> Name(Record.begin(), Record.end()); 1936 Record.clear(); 1937 Code = Stream.ReadCode(); 1938 1939 unsigned NextBitCode = Stream.readRecord(Code, Record); 1940 if (NextBitCode != bitc::METADATA_NAMED_NODE) 1941 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 1942 1943 // Read named metadata elements. 1944 unsigned Size = Record.size(); 1945 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1946 for (unsigned i = 0; i != Size; ++i) { 1947 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1948 if (!MD) 1949 return error("Invalid record"); 1950 NMD->addOperand(MD); 1951 } 1952 break; 1953 } 1954 case bitc::METADATA_OLD_FN_NODE: { 1955 // FIXME: Remove in 4.0. 1956 // This is a LocalAsMetadata record, the only type of function-local 1957 // metadata. 1958 if (Record.size() % 2 == 1) 1959 return error("Invalid record"); 1960 1961 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1962 // to be legal, but there's no upgrade path. 1963 auto dropRecord = [&] { 1964 MDValueList.assignValue(MDNode::get(Context, None), NextMDValueNo++); 1965 }; 1966 if (Record.size() != 2) { 1967 dropRecord(); 1968 break; 1969 } 1970 1971 Type *Ty = getTypeByID(Record[0]); 1972 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1973 dropRecord(); 1974 break; 1975 } 1976 1977 MDValueList.assignValue( 1978 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1979 NextMDValueNo++); 1980 break; 1981 } 1982 case bitc::METADATA_OLD_NODE: { 1983 // FIXME: Remove in 4.0. 1984 if (Record.size() % 2 == 1) 1985 return error("Invalid record"); 1986 1987 unsigned Size = Record.size(); 1988 SmallVector<Metadata *, 8> Elts; 1989 for (unsigned i = 0; i != Size; i += 2) { 1990 Type *Ty = getTypeByID(Record[i]); 1991 if (!Ty) 1992 return error("Invalid record"); 1993 if (Ty->isMetadataTy()) 1994 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1995 else if (!Ty->isVoidTy()) { 1996 auto *MD = 1997 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1998 assert(isa<ConstantAsMetadata>(MD) && 1999 "Expected non-function-local metadata"); 2000 Elts.push_back(MD); 2001 } else 2002 Elts.push_back(nullptr); 2003 } 2004 MDValueList.assignValue(MDNode::get(Context, Elts), NextMDValueNo++); 2005 break; 2006 } 2007 case bitc::METADATA_VALUE: { 2008 if (Record.size() != 2) 2009 return error("Invalid record"); 2010 2011 Type *Ty = getTypeByID(Record[0]); 2012 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2013 return error("Invalid record"); 2014 2015 MDValueList.assignValue( 2016 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2017 NextMDValueNo++); 2018 break; 2019 } 2020 case bitc::METADATA_DISTINCT_NODE: 2021 IsDistinct = true; 2022 // fallthrough... 2023 case bitc::METADATA_NODE: { 2024 SmallVector<Metadata *, 8> Elts; 2025 Elts.reserve(Record.size()); 2026 for (unsigned ID : Record) 2027 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 2028 MDValueList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2029 : MDNode::get(Context, Elts), 2030 NextMDValueNo++); 2031 break; 2032 } 2033 case bitc::METADATA_LOCATION: { 2034 if (Record.size() != 5) 2035 return error("Invalid record"); 2036 2037 unsigned Line = Record[1]; 2038 unsigned Column = Record[2]; 2039 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 2040 Metadata *InlinedAt = 2041 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 2042 MDValueList.assignValue( 2043 GET_OR_DISTINCT(DILocation, Record[0], 2044 (Context, Line, Column, Scope, InlinedAt)), 2045 NextMDValueNo++); 2046 break; 2047 } 2048 case bitc::METADATA_GENERIC_DEBUG: { 2049 if (Record.size() < 4) 2050 return error("Invalid record"); 2051 2052 unsigned Tag = Record[1]; 2053 unsigned Version = Record[2]; 2054 2055 if (Tag >= 1u << 16 || Version != 0) 2056 return error("Invalid record"); 2057 2058 auto *Header = getMDString(Record[3]); 2059 SmallVector<Metadata *, 8> DwarfOps; 2060 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2061 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 2062 : nullptr); 2063 MDValueList.assignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 2064 (Context, Tag, Header, DwarfOps)), 2065 NextMDValueNo++); 2066 break; 2067 } 2068 case bitc::METADATA_SUBRANGE: { 2069 if (Record.size() != 3) 2070 return error("Invalid record"); 2071 2072 MDValueList.assignValue( 2073 GET_OR_DISTINCT(DISubrange, Record[0], 2074 (Context, Record[1], unrotateSign(Record[2]))), 2075 NextMDValueNo++); 2076 break; 2077 } 2078 case bitc::METADATA_ENUMERATOR: { 2079 if (Record.size() != 3) 2080 return error("Invalid record"); 2081 2082 MDValueList.assignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 2083 (Context, unrotateSign(Record[1]), 2084 getMDString(Record[2]))), 2085 NextMDValueNo++); 2086 break; 2087 } 2088 case bitc::METADATA_BASIC_TYPE: { 2089 if (Record.size() != 6) 2090 return error("Invalid record"); 2091 2092 MDValueList.assignValue( 2093 GET_OR_DISTINCT(DIBasicType, Record[0], 2094 (Context, Record[1], getMDString(Record[2]), 2095 Record[3], Record[4], Record[5])), 2096 NextMDValueNo++); 2097 break; 2098 } 2099 case bitc::METADATA_DERIVED_TYPE: { 2100 if (Record.size() != 12) 2101 return error("Invalid record"); 2102 2103 MDValueList.assignValue( 2104 GET_OR_DISTINCT(DIDerivedType, Record[0], 2105 (Context, Record[1], getMDString(Record[2]), 2106 getMDOrNull(Record[3]), Record[4], 2107 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2108 Record[7], Record[8], Record[9], Record[10], 2109 getMDOrNull(Record[11]))), 2110 NextMDValueNo++); 2111 break; 2112 } 2113 case bitc::METADATA_COMPOSITE_TYPE: { 2114 if (Record.size() != 16) 2115 return error("Invalid record"); 2116 2117 MDValueList.assignValue( 2118 GET_OR_DISTINCT(DICompositeType, Record[0], 2119 (Context, Record[1], getMDString(Record[2]), 2120 getMDOrNull(Record[3]), Record[4], 2121 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 2122 Record[7], Record[8], Record[9], Record[10], 2123 getMDOrNull(Record[11]), Record[12], 2124 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 2125 getMDString(Record[15]))), 2126 NextMDValueNo++); 2127 break; 2128 } 2129 case bitc::METADATA_SUBROUTINE_TYPE: { 2130 if (Record.size() != 3) 2131 return error("Invalid record"); 2132 2133 MDValueList.assignValue( 2134 GET_OR_DISTINCT(DISubroutineType, Record[0], 2135 (Context, Record[1], getMDOrNull(Record[2]))), 2136 NextMDValueNo++); 2137 break; 2138 } 2139 2140 case bitc::METADATA_MODULE: { 2141 if (Record.size() != 6) 2142 return error("Invalid record"); 2143 2144 MDValueList.assignValue( 2145 GET_OR_DISTINCT(DIModule, Record[0], 2146 (Context, getMDOrNull(Record[1]), 2147 getMDString(Record[2]), getMDString(Record[3]), 2148 getMDString(Record[4]), getMDString(Record[5]))), 2149 NextMDValueNo++); 2150 break; 2151 } 2152 2153 case bitc::METADATA_FILE: { 2154 if (Record.size() != 3) 2155 return error("Invalid record"); 2156 2157 MDValueList.assignValue( 2158 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 2159 getMDString(Record[2]))), 2160 NextMDValueNo++); 2161 break; 2162 } 2163 case bitc::METADATA_COMPILE_UNIT: { 2164 if (Record.size() < 14 || Record.size() > 16) 2165 return error("Invalid record"); 2166 2167 // Ignore Record[0], which indicates whether this compile unit is 2168 // distinct. It's always distinct. 2169 MDValueList.assignValue( 2170 DICompileUnit::getDistinct( 2171 Context, Record[1], getMDOrNull(Record[2]), 2172 getMDString(Record[3]), Record[4], getMDString(Record[5]), 2173 Record[6], getMDString(Record[7]), Record[8], 2174 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2175 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 2176 getMDOrNull(Record[13]), 2177 Record.size() <= 15 ? 0 : getMDOrNull(Record[15]), 2178 Record.size() <= 14 ? 0 : Record[14]), 2179 NextMDValueNo++); 2180 break; 2181 } 2182 case bitc::METADATA_SUBPROGRAM: { 2183 if (Record.size() != 18 && Record.size() != 19) 2184 return error("Invalid record"); 2185 2186 bool HasFn = Record.size() == 19; 2187 DISubprogram *SP = GET_OR_DISTINCT( 2188 DISubprogram, 2189 Record[0] || Record[8], // All definitions should be distinct. 2190 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 2191 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2192 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2193 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 2194 Record[14], getMDOrNull(Record[15 + HasFn]), 2195 getMDOrNull(Record[16 + HasFn]), getMDOrNull(Record[17 + HasFn]))); 2196 MDValueList.assignValue(SP, NextMDValueNo++); 2197 2198 // Upgrade sp->function mapping to function->sp mapping. 2199 if (HasFn && Record[15]) { 2200 if (auto *CMD = dyn_cast<ConstantAsMetadata>(getMDOrNull(Record[15]))) 2201 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2202 if (F->isMaterializable()) 2203 // Defer until materialized; unmaterialized functions may not have 2204 // metadata. 2205 FunctionsWithSPs[F] = SP; 2206 else if (!F->empty()) 2207 F->setSubprogram(SP); 2208 } 2209 } 2210 break; 2211 } 2212 case bitc::METADATA_LEXICAL_BLOCK: { 2213 if (Record.size() != 5) 2214 return error("Invalid record"); 2215 2216 MDValueList.assignValue( 2217 GET_OR_DISTINCT(DILexicalBlock, Record[0], 2218 (Context, getMDOrNull(Record[1]), 2219 getMDOrNull(Record[2]), Record[3], Record[4])), 2220 NextMDValueNo++); 2221 break; 2222 } 2223 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2224 if (Record.size() != 4) 2225 return error("Invalid record"); 2226 2227 MDValueList.assignValue( 2228 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 2229 (Context, getMDOrNull(Record[1]), 2230 getMDOrNull(Record[2]), Record[3])), 2231 NextMDValueNo++); 2232 break; 2233 } 2234 case bitc::METADATA_NAMESPACE: { 2235 if (Record.size() != 5) 2236 return error("Invalid record"); 2237 2238 MDValueList.assignValue( 2239 GET_OR_DISTINCT(DINamespace, Record[0], 2240 (Context, getMDOrNull(Record[1]), 2241 getMDOrNull(Record[2]), getMDString(Record[3]), 2242 Record[4])), 2243 NextMDValueNo++); 2244 break; 2245 } 2246 case bitc::METADATA_MACRO: { 2247 if (Record.size() != 5) 2248 return error("Invalid record"); 2249 2250 MDValueList.assignValue( 2251 GET_OR_DISTINCT(DIMacro, Record[0], 2252 (Context, Record[1], Record[2], 2253 getMDString(Record[3]), getMDString(Record[4]))), 2254 NextMDValueNo++); 2255 break; 2256 } 2257 case bitc::METADATA_MACRO_FILE: { 2258 if (Record.size() != 5) 2259 return error("Invalid record"); 2260 2261 MDValueList.assignValue( 2262 GET_OR_DISTINCT(DIMacroFile, Record[0], 2263 (Context, Record[1], Record[2], 2264 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2265 NextMDValueNo++); 2266 break; 2267 } 2268 case bitc::METADATA_TEMPLATE_TYPE: { 2269 if (Record.size() != 3) 2270 return error("Invalid record"); 2271 2272 MDValueList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2273 Record[0], 2274 (Context, getMDString(Record[1]), 2275 getMDOrNull(Record[2]))), 2276 NextMDValueNo++); 2277 break; 2278 } 2279 case bitc::METADATA_TEMPLATE_VALUE: { 2280 if (Record.size() != 5) 2281 return error("Invalid record"); 2282 2283 MDValueList.assignValue( 2284 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 2285 (Context, Record[1], getMDString(Record[2]), 2286 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2287 NextMDValueNo++); 2288 break; 2289 } 2290 case bitc::METADATA_GLOBAL_VAR: { 2291 if (Record.size() != 11) 2292 return error("Invalid record"); 2293 2294 MDValueList.assignValue( 2295 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 2296 (Context, getMDOrNull(Record[1]), 2297 getMDString(Record[2]), getMDString(Record[3]), 2298 getMDOrNull(Record[4]), Record[5], 2299 getMDOrNull(Record[6]), Record[7], Record[8], 2300 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2301 NextMDValueNo++); 2302 break; 2303 } 2304 case bitc::METADATA_LOCAL_VAR: { 2305 // 10th field is for the obseleted 'inlinedAt:' field. 2306 if (Record.size() < 8 || Record.size() > 10) 2307 return error("Invalid record"); 2308 2309 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2310 // DW_TAG_arg_variable. 2311 bool HasTag = Record.size() > 8; 2312 MDValueList.assignValue( 2313 GET_OR_DISTINCT(DILocalVariable, Record[0], 2314 (Context, getMDOrNull(Record[1 + HasTag]), 2315 getMDString(Record[2 + HasTag]), 2316 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2317 getMDOrNull(Record[5 + HasTag]), Record[6 + HasTag], 2318 Record[7 + HasTag])), 2319 NextMDValueNo++); 2320 break; 2321 } 2322 case bitc::METADATA_EXPRESSION: { 2323 if (Record.size() < 1) 2324 return error("Invalid record"); 2325 2326 MDValueList.assignValue( 2327 GET_OR_DISTINCT(DIExpression, Record[0], 2328 (Context, makeArrayRef(Record).slice(1))), 2329 NextMDValueNo++); 2330 break; 2331 } 2332 case bitc::METADATA_OBJC_PROPERTY: { 2333 if (Record.size() != 8) 2334 return error("Invalid record"); 2335 2336 MDValueList.assignValue( 2337 GET_OR_DISTINCT(DIObjCProperty, Record[0], 2338 (Context, getMDString(Record[1]), 2339 getMDOrNull(Record[2]), Record[3], 2340 getMDString(Record[4]), getMDString(Record[5]), 2341 Record[6], getMDOrNull(Record[7]))), 2342 NextMDValueNo++); 2343 break; 2344 } 2345 case bitc::METADATA_IMPORTED_ENTITY: { 2346 if (Record.size() != 6) 2347 return error("Invalid record"); 2348 2349 MDValueList.assignValue( 2350 GET_OR_DISTINCT(DIImportedEntity, Record[0], 2351 (Context, Record[1], getMDOrNull(Record[2]), 2352 getMDOrNull(Record[3]), Record[4], 2353 getMDString(Record[5]))), 2354 NextMDValueNo++); 2355 break; 2356 } 2357 case bitc::METADATA_STRING: { 2358 std::string String(Record.begin(), Record.end()); 2359 llvm::UpgradeMDStringConstant(String); 2360 Metadata *MD = MDString::get(Context, String); 2361 MDValueList.assignValue(MD, NextMDValueNo++); 2362 break; 2363 } 2364 case bitc::METADATA_KIND: { 2365 // Support older bitcode files that had METADATA_KIND records in a 2366 // block with METADATA_BLOCK_ID. 2367 if (std::error_code EC = parseMetadataKindRecord(Record)) 2368 return EC; 2369 break; 2370 } 2371 } 2372 } 2373 #undef GET_OR_DISTINCT 2374 } 2375 2376 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2377 std::error_code BitcodeReader::parseMetadataKinds() { 2378 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2379 return error("Invalid record"); 2380 2381 SmallVector<uint64_t, 64> Record; 2382 2383 // Read all the records. 2384 while (1) { 2385 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2386 2387 switch (Entry.Kind) { 2388 case BitstreamEntry::SubBlock: // Handled for us already. 2389 case BitstreamEntry::Error: 2390 return error("Malformed block"); 2391 case BitstreamEntry::EndBlock: 2392 return std::error_code(); 2393 case BitstreamEntry::Record: 2394 // The interesting case. 2395 break; 2396 } 2397 2398 // Read a record. 2399 Record.clear(); 2400 unsigned Code = Stream.readRecord(Entry.ID, Record); 2401 switch (Code) { 2402 default: // Default behavior: ignore. 2403 break; 2404 case bitc::METADATA_KIND: { 2405 if (std::error_code EC = parseMetadataKindRecord(Record)) 2406 return EC; 2407 break; 2408 } 2409 } 2410 } 2411 } 2412 2413 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2414 /// encoding. 2415 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2416 if ((V & 1) == 0) 2417 return V >> 1; 2418 if (V != 1) 2419 return -(V >> 1); 2420 // There is no such thing as -0 with integers. "-0" really means MININT. 2421 return 1ULL << 63; 2422 } 2423 2424 /// Resolve all of the initializers for global values and aliases that we can. 2425 std::error_code BitcodeReader::resolveGlobalAndAliasInits() { 2426 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2427 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2428 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2429 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2430 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2431 2432 GlobalInitWorklist.swap(GlobalInits); 2433 AliasInitWorklist.swap(AliasInits); 2434 FunctionPrefixWorklist.swap(FunctionPrefixes); 2435 FunctionPrologueWorklist.swap(FunctionPrologues); 2436 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2437 2438 while (!GlobalInitWorklist.empty()) { 2439 unsigned ValID = GlobalInitWorklist.back().second; 2440 if (ValID >= ValueList.size()) { 2441 // Not ready to resolve this yet, it requires something later in the file. 2442 GlobalInits.push_back(GlobalInitWorklist.back()); 2443 } else { 2444 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2445 GlobalInitWorklist.back().first->setInitializer(C); 2446 else 2447 return error("Expected a constant"); 2448 } 2449 GlobalInitWorklist.pop_back(); 2450 } 2451 2452 while (!AliasInitWorklist.empty()) { 2453 unsigned ValID = AliasInitWorklist.back().second; 2454 if (ValID >= ValueList.size()) { 2455 AliasInits.push_back(AliasInitWorklist.back()); 2456 } else { 2457 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2458 if (!C) 2459 return error("Expected a constant"); 2460 GlobalAlias *Alias = AliasInitWorklist.back().first; 2461 if (C->getType() != Alias->getType()) 2462 return error("Alias and aliasee types don't match"); 2463 Alias->setAliasee(C); 2464 } 2465 AliasInitWorklist.pop_back(); 2466 } 2467 2468 while (!FunctionPrefixWorklist.empty()) { 2469 unsigned ValID = FunctionPrefixWorklist.back().second; 2470 if (ValID >= ValueList.size()) { 2471 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2472 } else { 2473 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2474 FunctionPrefixWorklist.back().first->setPrefixData(C); 2475 else 2476 return error("Expected a constant"); 2477 } 2478 FunctionPrefixWorklist.pop_back(); 2479 } 2480 2481 while (!FunctionPrologueWorklist.empty()) { 2482 unsigned ValID = FunctionPrologueWorklist.back().second; 2483 if (ValID >= ValueList.size()) { 2484 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2485 } else { 2486 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2487 FunctionPrologueWorklist.back().first->setPrologueData(C); 2488 else 2489 return error("Expected a constant"); 2490 } 2491 FunctionPrologueWorklist.pop_back(); 2492 } 2493 2494 while (!FunctionPersonalityFnWorklist.empty()) { 2495 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2496 if (ValID >= ValueList.size()) { 2497 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2498 } else { 2499 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2500 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2501 else 2502 return error("Expected a constant"); 2503 } 2504 FunctionPersonalityFnWorklist.pop_back(); 2505 } 2506 2507 return std::error_code(); 2508 } 2509 2510 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2511 SmallVector<uint64_t, 8> Words(Vals.size()); 2512 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2513 BitcodeReader::decodeSignRotatedValue); 2514 2515 return APInt(TypeBits, Words); 2516 } 2517 2518 std::error_code BitcodeReader::parseConstants() { 2519 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2520 return error("Invalid record"); 2521 2522 SmallVector<uint64_t, 64> Record; 2523 2524 // Read all the records for this value table. 2525 Type *CurTy = Type::getInt32Ty(Context); 2526 unsigned NextCstNo = ValueList.size(); 2527 while (1) { 2528 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2529 2530 switch (Entry.Kind) { 2531 case BitstreamEntry::SubBlock: // Handled for us already. 2532 case BitstreamEntry::Error: 2533 return error("Malformed block"); 2534 case BitstreamEntry::EndBlock: 2535 if (NextCstNo != ValueList.size()) 2536 return error("Invalid ronstant reference"); 2537 2538 // Once all the constants have been read, go through and resolve forward 2539 // references. 2540 ValueList.resolveConstantForwardRefs(); 2541 return std::error_code(); 2542 case BitstreamEntry::Record: 2543 // The interesting case. 2544 break; 2545 } 2546 2547 // Read a record. 2548 Record.clear(); 2549 Value *V = nullptr; 2550 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2551 switch (BitCode) { 2552 default: // Default behavior: unknown constant 2553 case bitc::CST_CODE_UNDEF: // UNDEF 2554 V = UndefValue::get(CurTy); 2555 break; 2556 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2557 if (Record.empty()) 2558 return error("Invalid record"); 2559 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2560 return error("Invalid record"); 2561 CurTy = TypeList[Record[0]]; 2562 continue; // Skip the ValueList manipulation. 2563 case bitc::CST_CODE_NULL: // NULL 2564 V = Constant::getNullValue(CurTy); 2565 break; 2566 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2567 if (!CurTy->isIntegerTy() || Record.empty()) 2568 return error("Invalid record"); 2569 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2570 break; 2571 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2572 if (!CurTy->isIntegerTy() || Record.empty()) 2573 return error("Invalid record"); 2574 2575 APInt VInt = 2576 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2577 V = ConstantInt::get(Context, VInt); 2578 2579 break; 2580 } 2581 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2582 if (Record.empty()) 2583 return error("Invalid record"); 2584 if (CurTy->isHalfTy()) 2585 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2586 APInt(16, (uint16_t)Record[0]))); 2587 else if (CurTy->isFloatTy()) 2588 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2589 APInt(32, (uint32_t)Record[0]))); 2590 else if (CurTy->isDoubleTy()) 2591 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2592 APInt(64, Record[0]))); 2593 else if (CurTy->isX86_FP80Ty()) { 2594 // Bits are not stored the same way as a normal i80 APInt, compensate. 2595 uint64_t Rearrange[2]; 2596 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2597 Rearrange[1] = Record[0] >> 48; 2598 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2599 APInt(80, Rearrange))); 2600 } else if (CurTy->isFP128Ty()) 2601 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2602 APInt(128, Record))); 2603 else if (CurTy->isPPC_FP128Ty()) 2604 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2605 APInt(128, Record))); 2606 else 2607 V = UndefValue::get(CurTy); 2608 break; 2609 } 2610 2611 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2612 if (Record.empty()) 2613 return error("Invalid record"); 2614 2615 unsigned Size = Record.size(); 2616 SmallVector<Constant*, 16> Elts; 2617 2618 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2619 for (unsigned i = 0; i != Size; ++i) 2620 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2621 STy->getElementType(i))); 2622 V = ConstantStruct::get(STy, Elts); 2623 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2624 Type *EltTy = ATy->getElementType(); 2625 for (unsigned i = 0; i != Size; ++i) 2626 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2627 V = ConstantArray::get(ATy, Elts); 2628 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2629 Type *EltTy = VTy->getElementType(); 2630 for (unsigned i = 0; i != Size; ++i) 2631 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2632 V = ConstantVector::get(Elts); 2633 } else { 2634 V = UndefValue::get(CurTy); 2635 } 2636 break; 2637 } 2638 case bitc::CST_CODE_STRING: // STRING: [values] 2639 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2640 if (Record.empty()) 2641 return error("Invalid record"); 2642 2643 SmallString<16> Elts(Record.begin(), Record.end()); 2644 V = ConstantDataArray::getString(Context, Elts, 2645 BitCode == bitc::CST_CODE_CSTRING); 2646 break; 2647 } 2648 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2649 if (Record.empty()) 2650 return error("Invalid record"); 2651 2652 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2653 unsigned Size = Record.size(); 2654 2655 if (EltTy->isIntegerTy(8)) { 2656 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2657 if (isa<VectorType>(CurTy)) 2658 V = ConstantDataVector::get(Context, Elts); 2659 else 2660 V = ConstantDataArray::get(Context, Elts); 2661 } else if (EltTy->isIntegerTy(16)) { 2662 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2663 if (isa<VectorType>(CurTy)) 2664 V = ConstantDataVector::get(Context, Elts); 2665 else 2666 V = ConstantDataArray::get(Context, Elts); 2667 } else if (EltTy->isIntegerTy(32)) { 2668 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2669 if (isa<VectorType>(CurTy)) 2670 V = ConstantDataVector::get(Context, Elts); 2671 else 2672 V = ConstantDataArray::get(Context, Elts); 2673 } else if (EltTy->isIntegerTy(64)) { 2674 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2675 if (isa<VectorType>(CurTy)) 2676 V = ConstantDataVector::get(Context, Elts); 2677 else 2678 V = ConstantDataArray::get(Context, Elts); 2679 } else if (EltTy->isFloatTy()) { 2680 SmallVector<float, 16> Elts(Size); 2681 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2682 if (isa<VectorType>(CurTy)) 2683 V = ConstantDataVector::get(Context, Elts); 2684 else 2685 V = ConstantDataArray::get(Context, Elts); 2686 } else if (EltTy->isDoubleTy()) { 2687 SmallVector<double, 16> Elts(Size); 2688 std::transform(Record.begin(), Record.end(), Elts.begin(), 2689 BitsToDouble); 2690 if (isa<VectorType>(CurTy)) 2691 V = ConstantDataVector::get(Context, Elts); 2692 else 2693 V = ConstantDataArray::get(Context, Elts); 2694 } else { 2695 return error("Invalid type for value"); 2696 } 2697 break; 2698 } 2699 2700 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2701 if (Record.size() < 3) 2702 return error("Invalid record"); 2703 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2704 if (Opc < 0) { 2705 V = UndefValue::get(CurTy); // Unknown binop. 2706 } else { 2707 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2708 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2709 unsigned Flags = 0; 2710 if (Record.size() >= 4) { 2711 if (Opc == Instruction::Add || 2712 Opc == Instruction::Sub || 2713 Opc == Instruction::Mul || 2714 Opc == Instruction::Shl) { 2715 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2716 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2717 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2718 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2719 } else if (Opc == Instruction::SDiv || 2720 Opc == Instruction::UDiv || 2721 Opc == Instruction::LShr || 2722 Opc == Instruction::AShr) { 2723 if (Record[3] & (1 << bitc::PEO_EXACT)) 2724 Flags |= SDivOperator::IsExact; 2725 } 2726 } 2727 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2728 } 2729 break; 2730 } 2731 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2732 if (Record.size() < 3) 2733 return error("Invalid record"); 2734 int Opc = getDecodedCastOpcode(Record[0]); 2735 if (Opc < 0) { 2736 V = UndefValue::get(CurTy); // Unknown cast. 2737 } else { 2738 Type *OpTy = getTypeByID(Record[1]); 2739 if (!OpTy) 2740 return error("Invalid record"); 2741 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2742 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2743 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2744 } 2745 break; 2746 } 2747 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2748 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2749 unsigned OpNum = 0; 2750 Type *PointeeType = nullptr; 2751 if (Record.size() % 2) 2752 PointeeType = getTypeByID(Record[OpNum++]); 2753 SmallVector<Constant*, 16> Elts; 2754 while (OpNum != Record.size()) { 2755 Type *ElTy = getTypeByID(Record[OpNum++]); 2756 if (!ElTy) 2757 return error("Invalid record"); 2758 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2759 } 2760 2761 if (PointeeType && 2762 PointeeType != 2763 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2764 ->getElementType()) 2765 return error("Explicit gep operator type does not match pointee type " 2766 "of pointer operand"); 2767 2768 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2769 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2770 BitCode == 2771 bitc::CST_CODE_CE_INBOUNDS_GEP); 2772 break; 2773 } 2774 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2775 if (Record.size() < 3) 2776 return error("Invalid record"); 2777 2778 Type *SelectorTy = Type::getInt1Ty(Context); 2779 2780 // The selector might be an i1 or an <n x i1> 2781 // Get the type from the ValueList before getting a forward ref. 2782 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2783 if (Value *V = ValueList[Record[0]]) 2784 if (SelectorTy != V->getType()) 2785 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2786 2787 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2788 SelectorTy), 2789 ValueList.getConstantFwdRef(Record[1],CurTy), 2790 ValueList.getConstantFwdRef(Record[2],CurTy)); 2791 break; 2792 } 2793 case bitc::CST_CODE_CE_EXTRACTELT 2794 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2795 if (Record.size() < 3) 2796 return error("Invalid record"); 2797 VectorType *OpTy = 2798 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2799 if (!OpTy) 2800 return error("Invalid record"); 2801 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2802 Constant *Op1 = nullptr; 2803 if (Record.size() == 4) { 2804 Type *IdxTy = getTypeByID(Record[2]); 2805 if (!IdxTy) 2806 return error("Invalid record"); 2807 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2808 } else // TODO: Remove with llvm 4.0 2809 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2810 if (!Op1) 2811 return error("Invalid record"); 2812 V = ConstantExpr::getExtractElement(Op0, Op1); 2813 break; 2814 } 2815 case bitc::CST_CODE_CE_INSERTELT 2816 : { // CE_INSERTELT: [opval, opval, opty, opval] 2817 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2818 if (Record.size() < 3 || !OpTy) 2819 return error("Invalid record"); 2820 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2821 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2822 OpTy->getElementType()); 2823 Constant *Op2 = nullptr; 2824 if (Record.size() == 4) { 2825 Type *IdxTy = getTypeByID(Record[2]); 2826 if (!IdxTy) 2827 return error("Invalid record"); 2828 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2829 } else // TODO: Remove with llvm 4.0 2830 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2831 if (!Op2) 2832 return error("Invalid record"); 2833 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2834 break; 2835 } 2836 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2837 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2838 if (Record.size() < 3 || !OpTy) 2839 return error("Invalid record"); 2840 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2841 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2842 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2843 OpTy->getNumElements()); 2844 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2845 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2846 break; 2847 } 2848 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2849 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2850 VectorType *OpTy = 2851 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2852 if (Record.size() < 4 || !RTy || !OpTy) 2853 return error("Invalid record"); 2854 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2855 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2856 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2857 RTy->getNumElements()); 2858 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2859 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2860 break; 2861 } 2862 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2863 if (Record.size() < 4) 2864 return error("Invalid record"); 2865 Type *OpTy = getTypeByID(Record[0]); 2866 if (!OpTy) 2867 return error("Invalid record"); 2868 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2869 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2870 2871 if (OpTy->isFPOrFPVectorTy()) 2872 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2873 else 2874 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2875 break; 2876 } 2877 // This maintains backward compatibility, pre-asm dialect keywords. 2878 // FIXME: Remove with the 4.0 release. 2879 case bitc::CST_CODE_INLINEASM_OLD: { 2880 if (Record.size() < 2) 2881 return error("Invalid record"); 2882 std::string AsmStr, ConstrStr; 2883 bool HasSideEffects = Record[0] & 1; 2884 bool IsAlignStack = Record[0] >> 1; 2885 unsigned AsmStrSize = Record[1]; 2886 if (2+AsmStrSize >= Record.size()) 2887 return error("Invalid record"); 2888 unsigned ConstStrSize = Record[2+AsmStrSize]; 2889 if (3+AsmStrSize+ConstStrSize > Record.size()) 2890 return error("Invalid record"); 2891 2892 for (unsigned i = 0; i != AsmStrSize; ++i) 2893 AsmStr += (char)Record[2+i]; 2894 for (unsigned i = 0; i != ConstStrSize; ++i) 2895 ConstrStr += (char)Record[3+AsmStrSize+i]; 2896 PointerType *PTy = cast<PointerType>(CurTy); 2897 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2898 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2899 break; 2900 } 2901 // This version adds support for the asm dialect keywords (e.g., 2902 // inteldialect). 2903 case bitc::CST_CODE_INLINEASM: { 2904 if (Record.size() < 2) 2905 return error("Invalid record"); 2906 std::string AsmStr, ConstrStr; 2907 bool HasSideEffects = Record[0] & 1; 2908 bool IsAlignStack = (Record[0] >> 1) & 1; 2909 unsigned AsmDialect = Record[0] >> 2; 2910 unsigned AsmStrSize = Record[1]; 2911 if (2+AsmStrSize >= Record.size()) 2912 return error("Invalid record"); 2913 unsigned ConstStrSize = Record[2+AsmStrSize]; 2914 if (3+AsmStrSize+ConstStrSize > Record.size()) 2915 return error("Invalid record"); 2916 2917 for (unsigned i = 0; i != AsmStrSize; ++i) 2918 AsmStr += (char)Record[2+i]; 2919 for (unsigned i = 0; i != ConstStrSize; ++i) 2920 ConstrStr += (char)Record[3+AsmStrSize+i]; 2921 PointerType *PTy = cast<PointerType>(CurTy); 2922 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2923 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2924 InlineAsm::AsmDialect(AsmDialect)); 2925 break; 2926 } 2927 case bitc::CST_CODE_BLOCKADDRESS:{ 2928 if (Record.size() < 3) 2929 return error("Invalid record"); 2930 Type *FnTy = getTypeByID(Record[0]); 2931 if (!FnTy) 2932 return error("Invalid record"); 2933 Function *Fn = 2934 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2935 if (!Fn) 2936 return error("Invalid record"); 2937 2938 // If the function is already parsed we can insert the block address right 2939 // away. 2940 BasicBlock *BB; 2941 unsigned BBID = Record[2]; 2942 if (!BBID) 2943 // Invalid reference to entry block. 2944 return error("Invalid ID"); 2945 if (!Fn->empty()) { 2946 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2947 for (size_t I = 0, E = BBID; I != E; ++I) { 2948 if (BBI == BBE) 2949 return error("Invalid ID"); 2950 ++BBI; 2951 } 2952 BB = &*BBI; 2953 } else { 2954 // Otherwise insert a placeholder and remember it so it can be inserted 2955 // when the function is parsed. 2956 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2957 if (FwdBBs.empty()) 2958 BasicBlockFwdRefQueue.push_back(Fn); 2959 if (FwdBBs.size() < BBID + 1) 2960 FwdBBs.resize(BBID + 1); 2961 if (!FwdBBs[BBID]) 2962 FwdBBs[BBID] = BasicBlock::Create(Context); 2963 BB = FwdBBs[BBID]; 2964 } 2965 V = BlockAddress::get(Fn, BB); 2966 break; 2967 } 2968 } 2969 2970 ValueList.assignValue(V, NextCstNo); 2971 ++NextCstNo; 2972 } 2973 } 2974 2975 std::error_code BitcodeReader::parseUseLists() { 2976 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2977 return error("Invalid record"); 2978 2979 // Read all the records. 2980 SmallVector<uint64_t, 64> Record; 2981 while (1) { 2982 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2983 2984 switch (Entry.Kind) { 2985 case BitstreamEntry::SubBlock: // Handled for us already. 2986 case BitstreamEntry::Error: 2987 return error("Malformed block"); 2988 case BitstreamEntry::EndBlock: 2989 return std::error_code(); 2990 case BitstreamEntry::Record: 2991 // The interesting case. 2992 break; 2993 } 2994 2995 // Read a use list record. 2996 Record.clear(); 2997 bool IsBB = false; 2998 switch (Stream.readRecord(Entry.ID, Record)) { 2999 default: // Default behavior: unknown type. 3000 break; 3001 case bitc::USELIST_CODE_BB: 3002 IsBB = true; 3003 // fallthrough 3004 case bitc::USELIST_CODE_DEFAULT: { 3005 unsigned RecordLength = Record.size(); 3006 if (RecordLength < 3) 3007 // Records should have at least an ID and two indexes. 3008 return error("Invalid record"); 3009 unsigned ID = Record.back(); 3010 Record.pop_back(); 3011 3012 Value *V; 3013 if (IsBB) { 3014 assert(ID < FunctionBBs.size() && "Basic block not found"); 3015 V = FunctionBBs[ID]; 3016 } else 3017 V = ValueList[ID]; 3018 unsigned NumUses = 0; 3019 SmallDenseMap<const Use *, unsigned, 16> Order; 3020 for (const Use &U : V->materialized_uses()) { 3021 if (++NumUses > Record.size()) 3022 break; 3023 Order[&U] = Record[NumUses - 1]; 3024 } 3025 if (Order.size() != Record.size() || NumUses > Record.size()) 3026 // Mismatches can happen if the functions are being materialized lazily 3027 // (out-of-order), or a value has been upgraded. 3028 break; 3029 3030 V->sortUseList([&](const Use &L, const Use &R) { 3031 return Order.lookup(&L) < Order.lookup(&R); 3032 }); 3033 break; 3034 } 3035 } 3036 } 3037 } 3038 3039 /// When we see the block for metadata, remember where it is and then skip it. 3040 /// This lets us lazily deserialize the metadata. 3041 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3042 // Save the current stream state. 3043 uint64_t CurBit = Stream.GetCurrentBitNo(); 3044 DeferredMetadataInfo.push_back(CurBit); 3045 3046 // Skip over the block for now. 3047 if (Stream.SkipBlock()) 3048 return error("Invalid record"); 3049 return std::error_code(); 3050 } 3051 3052 std::error_code BitcodeReader::materializeMetadata() { 3053 for (uint64_t BitPos : DeferredMetadataInfo) { 3054 // Move the bit stream to the saved position. 3055 Stream.JumpToBit(BitPos); 3056 if (std::error_code EC = parseMetadata(true)) 3057 return EC; 3058 } 3059 DeferredMetadataInfo.clear(); 3060 return std::error_code(); 3061 } 3062 3063 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3064 3065 void BitcodeReader::saveMDValueList( 3066 DenseMap<const Metadata *, unsigned> &MDValueToValIDMap, bool OnlyTempMD) { 3067 for (unsigned ValID = 0; ValID < MDValueList.size(); ++ValID) { 3068 Metadata *MD = MDValueList[ValID]; 3069 auto *N = dyn_cast_or_null<MDNode>(MD); 3070 // Save all values if !OnlyTempMD, otherwise just the temporary metadata. 3071 if (!OnlyTempMD || (N && N->isTemporary())) { 3072 // Will call this after materializing each function, in order to 3073 // handle remapping of the function's instructions/metadata. 3074 // See if we already have an entry in that case. 3075 if (OnlyTempMD && MDValueToValIDMap.count(MD)) { 3076 assert(MDValueToValIDMap[MD] == ValID && 3077 "Inconsistent metadata value id"); 3078 continue; 3079 } 3080 MDValueToValIDMap[MD] = ValID; 3081 } 3082 } 3083 } 3084 3085 /// When we see the block for a function body, remember where it is and then 3086 /// skip it. This lets us lazily deserialize the functions. 3087 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3088 // Get the function we are talking about. 3089 if (FunctionsWithBodies.empty()) 3090 return error("Insufficient function protos"); 3091 3092 Function *Fn = FunctionsWithBodies.back(); 3093 FunctionsWithBodies.pop_back(); 3094 3095 // Save the current stream state. 3096 uint64_t CurBit = Stream.GetCurrentBitNo(); 3097 assert( 3098 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3099 "Mismatch between VST and scanned function offsets"); 3100 DeferredFunctionInfo[Fn] = CurBit; 3101 3102 // Skip over the function block for now. 3103 if (Stream.SkipBlock()) 3104 return error("Invalid record"); 3105 return std::error_code(); 3106 } 3107 3108 std::error_code BitcodeReader::globalCleanup() { 3109 // Patch the initializers for globals and aliases up. 3110 resolveGlobalAndAliasInits(); 3111 if (!GlobalInits.empty() || !AliasInits.empty()) 3112 return error("Malformed global initializer set"); 3113 3114 // Look for intrinsic functions which need to be upgraded at some point 3115 for (Function &F : *TheModule) { 3116 Function *NewFn; 3117 if (UpgradeIntrinsicFunction(&F, NewFn)) 3118 UpgradedIntrinsics[&F] = NewFn; 3119 } 3120 3121 // Look for global variables which need to be renamed. 3122 for (GlobalVariable &GV : TheModule->globals()) 3123 UpgradeGlobalVariable(&GV); 3124 3125 // Force deallocation of memory for these vectors to favor the client that 3126 // want lazy deserialization. 3127 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3128 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 3129 return std::error_code(); 3130 } 3131 3132 /// Support for lazy parsing of function bodies. This is required if we 3133 /// either have an old bitcode file without a VST forward declaration record, 3134 /// or if we have an anonymous function being materialized, since anonymous 3135 /// functions do not have a name and are therefore not in the VST. 3136 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3137 Stream.JumpToBit(NextUnreadBit); 3138 3139 if (Stream.AtEndOfStream()) 3140 return error("Could not find function in stream"); 3141 3142 if (!SeenFirstFunctionBody) 3143 return error("Trying to materialize functions before seeing function blocks"); 3144 3145 // An old bitcode file with the symbol table at the end would have 3146 // finished the parse greedily. 3147 assert(SeenValueSymbolTable); 3148 3149 SmallVector<uint64_t, 64> Record; 3150 3151 while (1) { 3152 BitstreamEntry Entry = Stream.advance(); 3153 switch (Entry.Kind) { 3154 default: 3155 return error("Expect SubBlock"); 3156 case BitstreamEntry::SubBlock: 3157 switch (Entry.ID) { 3158 default: 3159 return error("Expect function block"); 3160 case bitc::FUNCTION_BLOCK_ID: 3161 if (std::error_code EC = rememberAndSkipFunctionBody()) 3162 return EC; 3163 NextUnreadBit = Stream.GetCurrentBitNo(); 3164 return std::error_code(); 3165 } 3166 } 3167 } 3168 } 3169 3170 std::error_code BitcodeReader::parseBitcodeVersion() { 3171 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3172 return error("Invalid record"); 3173 3174 // Read all the records. 3175 SmallVector<uint64_t, 64> Record; 3176 while (1) { 3177 BitstreamEntry Entry = Stream.advance(); 3178 3179 switch (Entry.Kind) { 3180 default: 3181 case BitstreamEntry::Error: 3182 return error("Malformed block"); 3183 case BitstreamEntry::EndBlock: 3184 return std::error_code(); 3185 case BitstreamEntry::Record: 3186 // The interesting case. 3187 break; 3188 } 3189 3190 // Read a record. 3191 Record.clear(); 3192 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3193 switch (BitCode) { 3194 default: // Default behavior: reject 3195 return error("Invalid value"); 3196 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3197 // N] 3198 convertToString(Record, 0, ProducerIdentification); 3199 break; 3200 } 3201 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3202 unsigned epoch = (unsigned)Record[0]; 3203 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3204 return error( 3205 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3206 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3207 } 3208 } 3209 } 3210 } 3211 } 3212 3213 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3214 bool ShouldLazyLoadMetadata) { 3215 if (ResumeBit) 3216 Stream.JumpToBit(ResumeBit); 3217 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3218 return error("Invalid record"); 3219 3220 SmallVector<uint64_t, 64> Record; 3221 std::vector<std::string> SectionTable; 3222 std::vector<std::string> GCTable; 3223 3224 // Read all the records for this module. 3225 while (1) { 3226 BitstreamEntry Entry = Stream.advance(); 3227 3228 switch (Entry.Kind) { 3229 case BitstreamEntry::Error: 3230 return error("Malformed block"); 3231 case BitstreamEntry::EndBlock: 3232 return globalCleanup(); 3233 3234 case BitstreamEntry::SubBlock: 3235 switch (Entry.ID) { 3236 default: // Skip unknown content. 3237 if (Stream.SkipBlock()) 3238 return error("Invalid record"); 3239 break; 3240 case bitc::BLOCKINFO_BLOCK_ID: 3241 if (Stream.ReadBlockInfoBlock()) 3242 return error("Malformed block"); 3243 break; 3244 case bitc::PARAMATTR_BLOCK_ID: 3245 if (std::error_code EC = parseAttributeBlock()) 3246 return EC; 3247 break; 3248 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3249 if (std::error_code EC = parseAttributeGroupBlock()) 3250 return EC; 3251 break; 3252 case bitc::TYPE_BLOCK_ID_NEW: 3253 if (std::error_code EC = parseTypeTable()) 3254 return EC; 3255 break; 3256 case bitc::VALUE_SYMTAB_BLOCK_ID: 3257 if (!SeenValueSymbolTable) { 3258 // Either this is an old form VST without function index and an 3259 // associated VST forward declaration record (which would have caused 3260 // the VST to be jumped to and parsed before it was encountered 3261 // normally in the stream), or there were no function blocks to 3262 // trigger an earlier parsing of the VST. 3263 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3264 if (std::error_code EC = parseValueSymbolTable()) 3265 return EC; 3266 SeenValueSymbolTable = true; 3267 } else { 3268 // We must have had a VST forward declaration record, which caused 3269 // the parser to jump to and parse the VST earlier. 3270 assert(VSTOffset > 0); 3271 if (Stream.SkipBlock()) 3272 return error("Invalid record"); 3273 } 3274 break; 3275 case bitc::CONSTANTS_BLOCK_ID: 3276 if (std::error_code EC = parseConstants()) 3277 return EC; 3278 if (std::error_code EC = resolveGlobalAndAliasInits()) 3279 return EC; 3280 break; 3281 case bitc::METADATA_BLOCK_ID: 3282 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3283 if (std::error_code EC = rememberAndSkipMetadata()) 3284 return EC; 3285 break; 3286 } 3287 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3288 if (std::error_code EC = parseMetadata(true)) 3289 return EC; 3290 break; 3291 case bitc::METADATA_KIND_BLOCK_ID: 3292 if (std::error_code EC = parseMetadataKinds()) 3293 return EC; 3294 break; 3295 case bitc::FUNCTION_BLOCK_ID: 3296 // If this is the first function body we've seen, reverse the 3297 // FunctionsWithBodies list. 3298 if (!SeenFirstFunctionBody) { 3299 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3300 if (std::error_code EC = globalCleanup()) 3301 return EC; 3302 SeenFirstFunctionBody = true; 3303 } 3304 3305 if (VSTOffset > 0) { 3306 // If we have a VST forward declaration record, make sure we 3307 // parse the VST now if we haven't already. It is needed to 3308 // set up the DeferredFunctionInfo vector for lazy reading. 3309 if (!SeenValueSymbolTable) { 3310 if (std::error_code EC = 3311 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3312 return EC; 3313 SeenValueSymbolTable = true; 3314 // Fall through so that we record the NextUnreadBit below. 3315 // This is necessary in case we have an anonymous function that 3316 // is later materialized. Since it will not have a VST entry we 3317 // need to fall back to the lazy parse to find its offset. 3318 } else { 3319 // If we have a VST forward declaration record, but have already 3320 // parsed the VST (just above, when the first function body was 3321 // encountered here), then we are resuming the parse after 3322 // materializing functions. The ResumeBit points to the 3323 // start of the last function block recorded in the 3324 // DeferredFunctionInfo map. Skip it. 3325 if (Stream.SkipBlock()) 3326 return error("Invalid record"); 3327 continue; 3328 } 3329 } 3330 3331 // Support older bitcode files that did not have the function 3332 // index in the VST, nor a VST forward declaration record, as 3333 // well as anonymous functions that do not have VST entries. 3334 // Build the DeferredFunctionInfo vector on the fly. 3335 if (std::error_code EC = rememberAndSkipFunctionBody()) 3336 return EC; 3337 3338 // Suspend parsing when we reach the function bodies. Subsequent 3339 // materialization calls will resume it when necessary. If the bitcode 3340 // file is old, the symbol table will be at the end instead and will not 3341 // have been seen yet. In this case, just finish the parse now. 3342 if (SeenValueSymbolTable) { 3343 NextUnreadBit = Stream.GetCurrentBitNo(); 3344 return std::error_code(); 3345 } 3346 break; 3347 case bitc::USELIST_BLOCK_ID: 3348 if (std::error_code EC = parseUseLists()) 3349 return EC; 3350 break; 3351 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3352 if (std::error_code EC = parseOperandBundleTags()) 3353 return EC; 3354 break; 3355 } 3356 continue; 3357 3358 case BitstreamEntry::Record: 3359 // The interesting case. 3360 break; 3361 } 3362 3363 3364 // Read a record. 3365 auto BitCode = Stream.readRecord(Entry.ID, Record); 3366 switch (BitCode) { 3367 default: break; // Default behavior, ignore unknown content. 3368 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3369 if (Record.size() < 1) 3370 return error("Invalid record"); 3371 // Only version #0 and #1 are supported so far. 3372 unsigned module_version = Record[0]; 3373 switch (module_version) { 3374 default: 3375 return error("Invalid value"); 3376 case 0: 3377 UseRelativeIDs = false; 3378 break; 3379 case 1: 3380 UseRelativeIDs = true; 3381 break; 3382 } 3383 break; 3384 } 3385 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3386 std::string S; 3387 if (convertToString(Record, 0, S)) 3388 return error("Invalid record"); 3389 TheModule->setTargetTriple(S); 3390 break; 3391 } 3392 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3393 std::string S; 3394 if (convertToString(Record, 0, S)) 3395 return error("Invalid record"); 3396 TheModule->setDataLayout(S); 3397 break; 3398 } 3399 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3400 std::string S; 3401 if (convertToString(Record, 0, S)) 3402 return error("Invalid record"); 3403 TheModule->setModuleInlineAsm(S); 3404 break; 3405 } 3406 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3407 // FIXME: Remove in 4.0. 3408 std::string S; 3409 if (convertToString(Record, 0, S)) 3410 return error("Invalid record"); 3411 // Ignore value. 3412 break; 3413 } 3414 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3415 std::string S; 3416 if (convertToString(Record, 0, S)) 3417 return error("Invalid record"); 3418 SectionTable.push_back(S); 3419 break; 3420 } 3421 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3422 std::string S; 3423 if (convertToString(Record, 0, S)) 3424 return error("Invalid record"); 3425 GCTable.push_back(S); 3426 break; 3427 } 3428 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3429 if (Record.size() < 2) 3430 return error("Invalid record"); 3431 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3432 unsigned ComdatNameSize = Record[1]; 3433 std::string ComdatName; 3434 ComdatName.reserve(ComdatNameSize); 3435 for (unsigned i = 0; i != ComdatNameSize; ++i) 3436 ComdatName += (char)Record[2 + i]; 3437 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3438 C->setSelectionKind(SK); 3439 ComdatList.push_back(C); 3440 break; 3441 } 3442 // GLOBALVAR: [pointer type, isconst, initid, 3443 // linkage, alignment, section, visibility, threadlocal, 3444 // unnamed_addr, externally_initialized, dllstorageclass, 3445 // comdat] 3446 case bitc::MODULE_CODE_GLOBALVAR: { 3447 if (Record.size() < 6) 3448 return error("Invalid record"); 3449 Type *Ty = getTypeByID(Record[0]); 3450 if (!Ty) 3451 return error("Invalid record"); 3452 bool isConstant = Record[1] & 1; 3453 bool explicitType = Record[1] & 2; 3454 unsigned AddressSpace; 3455 if (explicitType) { 3456 AddressSpace = Record[1] >> 2; 3457 } else { 3458 if (!Ty->isPointerTy()) 3459 return error("Invalid type for value"); 3460 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3461 Ty = cast<PointerType>(Ty)->getElementType(); 3462 } 3463 3464 uint64_t RawLinkage = Record[3]; 3465 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3466 unsigned Alignment; 3467 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3468 return EC; 3469 std::string Section; 3470 if (Record[5]) { 3471 if (Record[5]-1 >= SectionTable.size()) 3472 return error("Invalid ID"); 3473 Section = SectionTable[Record[5]-1]; 3474 } 3475 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3476 // Local linkage must have default visibility. 3477 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3478 // FIXME: Change to an error if non-default in 4.0. 3479 Visibility = getDecodedVisibility(Record[6]); 3480 3481 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3482 if (Record.size() > 7) 3483 TLM = getDecodedThreadLocalMode(Record[7]); 3484 3485 bool UnnamedAddr = false; 3486 if (Record.size() > 8) 3487 UnnamedAddr = Record[8]; 3488 3489 bool ExternallyInitialized = false; 3490 if (Record.size() > 9) 3491 ExternallyInitialized = Record[9]; 3492 3493 GlobalVariable *NewGV = 3494 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3495 TLM, AddressSpace, ExternallyInitialized); 3496 NewGV->setAlignment(Alignment); 3497 if (!Section.empty()) 3498 NewGV->setSection(Section); 3499 NewGV->setVisibility(Visibility); 3500 NewGV->setUnnamedAddr(UnnamedAddr); 3501 3502 if (Record.size() > 10) 3503 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3504 else 3505 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3506 3507 ValueList.push_back(NewGV); 3508 3509 // Remember which value to use for the global initializer. 3510 if (unsigned InitID = Record[2]) 3511 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3512 3513 if (Record.size() > 11) { 3514 if (unsigned ComdatID = Record[11]) { 3515 if (ComdatID > ComdatList.size()) 3516 return error("Invalid global variable comdat ID"); 3517 NewGV->setComdat(ComdatList[ComdatID - 1]); 3518 } 3519 } else if (hasImplicitComdat(RawLinkage)) { 3520 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3521 } 3522 break; 3523 } 3524 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3525 // alignment, section, visibility, gc, unnamed_addr, 3526 // prologuedata, dllstorageclass, comdat, prefixdata] 3527 case bitc::MODULE_CODE_FUNCTION: { 3528 if (Record.size() < 8) 3529 return error("Invalid record"); 3530 Type *Ty = getTypeByID(Record[0]); 3531 if (!Ty) 3532 return error("Invalid record"); 3533 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3534 Ty = PTy->getElementType(); 3535 auto *FTy = dyn_cast<FunctionType>(Ty); 3536 if (!FTy) 3537 return error("Invalid type for value"); 3538 auto CC = static_cast<CallingConv::ID>(Record[1]); 3539 if (CC & ~CallingConv::MaxID) 3540 return error("Invalid calling convention ID"); 3541 3542 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3543 "", TheModule); 3544 3545 Func->setCallingConv(CC); 3546 bool isProto = Record[2]; 3547 uint64_t RawLinkage = Record[3]; 3548 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3549 Func->setAttributes(getAttributes(Record[4])); 3550 3551 unsigned Alignment; 3552 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3553 return EC; 3554 Func->setAlignment(Alignment); 3555 if (Record[6]) { 3556 if (Record[6]-1 >= SectionTable.size()) 3557 return error("Invalid ID"); 3558 Func->setSection(SectionTable[Record[6]-1]); 3559 } 3560 // Local linkage must have default visibility. 3561 if (!Func->hasLocalLinkage()) 3562 // FIXME: Change to an error if non-default in 4.0. 3563 Func->setVisibility(getDecodedVisibility(Record[7])); 3564 if (Record.size() > 8 && Record[8]) { 3565 if (Record[8]-1 >= GCTable.size()) 3566 return error("Invalid ID"); 3567 Func->setGC(GCTable[Record[8]-1].c_str()); 3568 } 3569 bool UnnamedAddr = false; 3570 if (Record.size() > 9) 3571 UnnamedAddr = Record[9]; 3572 Func->setUnnamedAddr(UnnamedAddr); 3573 if (Record.size() > 10 && Record[10] != 0) 3574 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3575 3576 if (Record.size() > 11) 3577 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3578 else 3579 upgradeDLLImportExportLinkage(Func, RawLinkage); 3580 3581 if (Record.size() > 12) { 3582 if (unsigned ComdatID = Record[12]) { 3583 if (ComdatID > ComdatList.size()) 3584 return error("Invalid function comdat ID"); 3585 Func->setComdat(ComdatList[ComdatID - 1]); 3586 } 3587 } else if (hasImplicitComdat(RawLinkage)) { 3588 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3589 } 3590 3591 if (Record.size() > 13 && Record[13] != 0) 3592 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3593 3594 if (Record.size() > 14 && Record[14] != 0) 3595 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3596 3597 ValueList.push_back(Func); 3598 3599 // If this is a function with a body, remember the prototype we are 3600 // creating now, so that we can match up the body with them later. 3601 if (!isProto) { 3602 Func->setIsMaterializable(true); 3603 FunctionsWithBodies.push_back(Func); 3604 DeferredFunctionInfo[Func] = 0; 3605 } 3606 break; 3607 } 3608 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3609 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3610 case bitc::MODULE_CODE_ALIAS: 3611 case bitc::MODULE_CODE_ALIAS_OLD: { 3612 bool NewRecord = BitCode == bitc::MODULE_CODE_ALIAS; 3613 if (Record.size() < (3 + (unsigned)NewRecord)) 3614 return error("Invalid record"); 3615 unsigned OpNum = 0; 3616 Type *Ty = getTypeByID(Record[OpNum++]); 3617 if (!Ty) 3618 return error("Invalid record"); 3619 3620 unsigned AddrSpace; 3621 if (!NewRecord) { 3622 auto *PTy = dyn_cast<PointerType>(Ty); 3623 if (!PTy) 3624 return error("Invalid type for value"); 3625 Ty = PTy->getElementType(); 3626 AddrSpace = PTy->getAddressSpace(); 3627 } else { 3628 AddrSpace = Record[OpNum++]; 3629 } 3630 3631 auto Val = Record[OpNum++]; 3632 auto Linkage = Record[OpNum++]; 3633 auto *NewGA = GlobalAlias::create( 3634 Ty, AddrSpace, getDecodedLinkage(Linkage), "", TheModule); 3635 // Old bitcode files didn't have visibility field. 3636 // Local linkage must have default visibility. 3637 if (OpNum != Record.size()) { 3638 auto VisInd = OpNum++; 3639 if (!NewGA->hasLocalLinkage()) 3640 // FIXME: Change to an error if non-default in 4.0. 3641 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3642 } 3643 if (OpNum != Record.size()) 3644 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3645 else 3646 upgradeDLLImportExportLinkage(NewGA, Linkage); 3647 if (OpNum != Record.size()) 3648 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3649 if (OpNum != Record.size()) 3650 NewGA->setUnnamedAddr(Record[OpNum++]); 3651 ValueList.push_back(NewGA); 3652 AliasInits.push_back(std::make_pair(NewGA, Val)); 3653 break; 3654 } 3655 /// MODULE_CODE_PURGEVALS: [numvals] 3656 case bitc::MODULE_CODE_PURGEVALS: 3657 // Trim down the value list to the specified size. 3658 if (Record.size() < 1 || Record[0] > ValueList.size()) 3659 return error("Invalid record"); 3660 ValueList.shrinkTo(Record[0]); 3661 break; 3662 /// MODULE_CODE_VSTOFFSET: [offset] 3663 case bitc::MODULE_CODE_VSTOFFSET: 3664 if (Record.size() < 1) 3665 return error("Invalid record"); 3666 VSTOffset = Record[0]; 3667 break; 3668 /// MODULE_CODE_METADATA_VALUES: [numvals] 3669 case bitc::MODULE_CODE_METADATA_VALUES: 3670 if (Record.size() < 1) 3671 return error("Invalid record"); 3672 assert(!IsMetadataMaterialized); 3673 // This record contains the number of metadata values in the module-level 3674 // METADATA_BLOCK. It is used to support lazy parsing of metadata as 3675 // a postpass, where we will parse function-level metadata first. 3676 // This is needed because the ids of metadata are assigned implicitly 3677 // based on their ordering in the bitcode, with the function-level 3678 // metadata ids starting after the module-level metadata ids. Otherwise, 3679 // we would have to parse the module-level metadata block to prime the 3680 // MDValueList when we are lazy loading metadata during function 3681 // importing. Initialize the MDValueList size here based on the 3682 // record value, regardless of whether we are doing lazy metadata 3683 // loading, so that we have consistent handling and assertion 3684 // checking in parseMetadata for module-level metadata. 3685 NumModuleMDs = Record[0]; 3686 SeenModuleValuesRecord = true; 3687 assert(MDValueList.size() == 0); 3688 MDValueList.resize(NumModuleMDs); 3689 break; 3690 } 3691 Record.clear(); 3692 } 3693 } 3694 3695 /// Helper to read the header common to all bitcode files. 3696 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3697 // Sniff for the signature. 3698 if (Stream.Read(8) != 'B' || 3699 Stream.Read(8) != 'C' || 3700 Stream.Read(4) != 0x0 || 3701 Stream.Read(4) != 0xC || 3702 Stream.Read(4) != 0xE || 3703 Stream.Read(4) != 0xD) 3704 return false; 3705 return true; 3706 } 3707 3708 std::error_code 3709 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 3710 Module *M, bool ShouldLazyLoadMetadata) { 3711 TheModule = M; 3712 3713 if (std::error_code EC = initStream(std::move(Streamer))) 3714 return EC; 3715 3716 // Sniff for the signature. 3717 if (!hasValidBitcodeHeader(Stream)) 3718 return error("Invalid bitcode signature"); 3719 3720 // We expect a number of well-defined blocks, though we don't necessarily 3721 // need to understand them all. 3722 while (1) { 3723 if (Stream.AtEndOfStream()) { 3724 // We didn't really read a proper Module. 3725 return error("Malformed IR file"); 3726 } 3727 3728 BitstreamEntry Entry = 3729 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3730 3731 if (Entry.Kind != BitstreamEntry::SubBlock) 3732 return error("Malformed block"); 3733 3734 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3735 parseBitcodeVersion(); 3736 continue; 3737 } 3738 3739 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3740 return parseModule(0, ShouldLazyLoadMetadata); 3741 3742 if (Stream.SkipBlock()) 3743 return error("Invalid record"); 3744 } 3745 } 3746 3747 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3748 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3749 return error("Invalid record"); 3750 3751 SmallVector<uint64_t, 64> Record; 3752 3753 std::string Triple; 3754 // Read all the records for this module. 3755 while (1) { 3756 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3757 3758 switch (Entry.Kind) { 3759 case BitstreamEntry::SubBlock: // Handled for us already. 3760 case BitstreamEntry::Error: 3761 return error("Malformed block"); 3762 case BitstreamEntry::EndBlock: 3763 return Triple; 3764 case BitstreamEntry::Record: 3765 // The interesting case. 3766 break; 3767 } 3768 3769 // Read a record. 3770 switch (Stream.readRecord(Entry.ID, Record)) { 3771 default: break; // Default behavior, ignore unknown content. 3772 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3773 std::string S; 3774 if (convertToString(Record, 0, S)) 3775 return error("Invalid record"); 3776 Triple = S; 3777 break; 3778 } 3779 } 3780 Record.clear(); 3781 } 3782 llvm_unreachable("Exit infinite loop"); 3783 } 3784 3785 ErrorOr<std::string> BitcodeReader::parseTriple() { 3786 if (std::error_code EC = initStream(nullptr)) 3787 return EC; 3788 3789 // Sniff for the signature. 3790 if (!hasValidBitcodeHeader(Stream)) 3791 return error("Invalid bitcode signature"); 3792 3793 // We expect a number of well-defined blocks, though we don't necessarily 3794 // need to understand them all. 3795 while (1) { 3796 BitstreamEntry Entry = Stream.advance(); 3797 3798 switch (Entry.Kind) { 3799 case BitstreamEntry::Error: 3800 return error("Malformed block"); 3801 case BitstreamEntry::EndBlock: 3802 return std::error_code(); 3803 3804 case BitstreamEntry::SubBlock: 3805 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3806 return parseModuleTriple(); 3807 3808 // Ignore other sub-blocks. 3809 if (Stream.SkipBlock()) 3810 return error("Malformed block"); 3811 continue; 3812 3813 case BitstreamEntry::Record: 3814 Stream.skipRecord(Entry.ID); 3815 continue; 3816 } 3817 } 3818 } 3819 3820 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 3821 if (std::error_code EC = initStream(nullptr)) 3822 return EC; 3823 3824 // Sniff for the signature. 3825 if (!hasValidBitcodeHeader(Stream)) 3826 return error("Invalid bitcode signature"); 3827 3828 // We expect a number of well-defined blocks, though we don't necessarily 3829 // need to understand them all. 3830 while (1) { 3831 BitstreamEntry Entry = Stream.advance(); 3832 switch (Entry.Kind) { 3833 case BitstreamEntry::Error: 3834 return error("Malformed block"); 3835 case BitstreamEntry::EndBlock: 3836 return std::error_code(); 3837 3838 case BitstreamEntry::SubBlock: 3839 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 3840 if (std::error_code EC = parseBitcodeVersion()) 3841 return EC; 3842 return ProducerIdentification; 3843 } 3844 // Ignore other sub-blocks. 3845 if (Stream.SkipBlock()) 3846 return error("Malformed block"); 3847 continue; 3848 case BitstreamEntry::Record: 3849 Stream.skipRecord(Entry.ID); 3850 continue; 3851 } 3852 } 3853 } 3854 3855 /// Parse metadata attachments. 3856 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 3857 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3858 return error("Invalid record"); 3859 3860 SmallVector<uint64_t, 64> Record; 3861 while (1) { 3862 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3863 3864 switch (Entry.Kind) { 3865 case BitstreamEntry::SubBlock: // Handled for us already. 3866 case BitstreamEntry::Error: 3867 return error("Malformed block"); 3868 case BitstreamEntry::EndBlock: 3869 return std::error_code(); 3870 case BitstreamEntry::Record: 3871 // The interesting case. 3872 break; 3873 } 3874 3875 // Read a metadata attachment record. 3876 Record.clear(); 3877 switch (Stream.readRecord(Entry.ID, Record)) { 3878 default: // Default behavior: ignore. 3879 break; 3880 case bitc::METADATA_ATTACHMENT: { 3881 unsigned RecordLength = Record.size(); 3882 if (Record.empty()) 3883 return error("Invalid record"); 3884 if (RecordLength % 2 == 0) { 3885 // A function attachment. 3886 for (unsigned I = 0; I != RecordLength; I += 2) { 3887 auto K = MDKindMap.find(Record[I]); 3888 if (K == MDKindMap.end()) 3889 return error("Invalid ID"); 3890 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3891 F.setMetadata(K->second, cast<MDNode>(MD)); 3892 } 3893 continue; 3894 } 3895 3896 // An instruction attachment. 3897 Instruction *Inst = InstructionList[Record[0]]; 3898 for (unsigned i = 1; i != RecordLength; i = i+2) { 3899 unsigned Kind = Record[i]; 3900 DenseMap<unsigned, unsigned>::iterator I = 3901 MDKindMap.find(Kind); 3902 if (I == MDKindMap.end()) 3903 return error("Invalid ID"); 3904 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3905 if (isa<LocalAsMetadata>(Node)) 3906 // Drop the attachment. This used to be legal, but there's no 3907 // upgrade path. 3908 break; 3909 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3910 if (I->second == LLVMContext::MD_tbaa) 3911 InstsWithTBAATag.push_back(Inst); 3912 } 3913 break; 3914 } 3915 } 3916 } 3917 } 3918 3919 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3920 LLVMContext &Context = PtrType->getContext(); 3921 if (!isa<PointerType>(PtrType)) 3922 return error(Context, "Load/Store operand is not a pointer type"); 3923 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3924 3925 if (ValType && ValType != ElemType) 3926 return error(Context, "Explicit load/store type does not match pointee " 3927 "type of pointer operand"); 3928 if (!PointerType::isLoadableOrStorableType(ElemType)) 3929 return error(Context, "Cannot load/store from pointer"); 3930 return std::error_code(); 3931 } 3932 3933 /// Lazily parse the specified function body block. 3934 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 3935 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3936 return error("Invalid record"); 3937 3938 InstructionList.clear(); 3939 unsigned ModuleValueListSize = ValueList.size(); 3940 unsigned ModuleMDValueListSize = MDValueList.size(); 3941 3942 // Add all the function arguments to the value table. 3943 for (Argument &I : F->args()) 3944 ValueList.push_back(&I); 3945 3946 unsigned NextValueNo = ValueList.size(); 3947 BasicBlock *CurBB = nullptr; 3948 unsigned CurBBNo = 0; 3949 3950 DebugLoc LastLoc; 3951 auto getLastInstruction = [&]() -> Instruction * { 3952 if (CurBB && !CurBB->empty()) 3953 return &CurBB->back(); 3954 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3955 !FunctionBBs[CurBBNo - 1]->empty()) 3956 return &FunctionBBs[CurBBNo - 1]->back(); 3957 return nullptr; 3958 }; 3959 3960 std::vector<OperandBundleDef> OperandBundles; 3961 3962 // Read all the records. 3963 SmallVector<uint64_t, 64> Record; 3964 while (1) { 3965 BitstreamEntry Entry = Stream.advance(); 3966 3967 switch (Entry.Kind) { 3968 case BitstreamEntry::Error: 3969 return error("Malformed block"); 3970 case BitstreamEntry::EndBlock: 3971 goto OutOfRecordLoop; 3972 3973 case BitstreamEntry::SubBlock: 3974 switch (Entry.ID) { 3975 default: // Skip unknown content. 3976 if (Stream.SkipBlock()) 3977 return error("Invalid record"); 3978 break; 3979 case bitc::CONSTANTS_BLOCK_ID: 3980 if (std::error_code EC = parseConstants()) 3981 return EC; 3982 NextValueNo = ValueList.size(); 3983 break; 3984 case bitc::VALUE_SYMTAB_BLOCK_ID: 3985 if (std::error_code EC = parseValueSymbolTable()) 3986 return EC; 3987 break; 3988 case bitc::METADATA_ATTACHMENT_ID: 3989 if (std::error_code EC = parseMetadataAttachment(*F)) 3990 return EC; 3991 break; 3992 case bitc::METADATA_BLOCK_ID: 3993 if (std::error_code EC = parseMetadata()) 3994 return EC; 3995 break; 3996 case bitc::USELIST_BLOCK_ID: 3997 if (std::error_code EC = parseUseLists()) 3998 return EC; 3999 break; 4000 } 4001 continue; 4002 4003 case BitstreamEntry::Record: 4004 // The interesting case. 4005 break; 4006 } 4007 4008 // Read a record. 4009 Record.clear(); 4010 Instruction *I = nullptr; 4011 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4012 switch (BitCode) { 4013 default: // Default behavior: reject 4014 return error("Invalid value"); 4015 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4016 if (Record.size() < 1 || Record[0] == 0) 4017 return error("Invalid record"); 4018 // Create all the basic blocks for the function. 4019 FunctionBBs.resize(Record[0]); 4020 4021 // See if anything took the address of blocks in this function. 4022 auto BBFRI = BasicBlockFwdRefs.find(F); 4023 if (BBFRI == BasicBlockFwdRefs.end()) { 4024 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4025 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4026 } else { 4027 auto &BBRefs = BBFRI->second; 4028 // Check for invalid basic block references. 4029 if (BBRefs.size() > FunctionBBs.size()) 4030 return error("Invalid ID"); 4031 assert(!BBRefs.empty() && "Unexpected empty array"); 4032 assert(!BBRefs.front() && "Invalid reference to entry block"); 4033 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4034 ++I) 4035 if (I < RE && BBRefs[I]) { 4036 BBRefs[I]->insertInto(F); 4037 FunctionBBs[I] = BBRefs[I]; 4038 } else { 4039 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4040 } 4041 4042 // Erase from the table. 4043 BasicBlockFwdRefs.erase(BBFRI); 4044 } 4045 4046 CurBB = FunctionBBs[0]; 4047 continue; 4048 } 4049 4050 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4051 // This record indicates that the last instruction is at the same 4052 // location as the previous instruction with a location. 4053 I = getLastInstruction(); 4054 4055 if (!I) 4056 return error("Invalid record"); 4057 I->setDebugLoc(LastLoc); 4058 I = nullptr; 4059 continue; 4060 4061 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4062 I = getLastInstruction(); 4063 if (!I || Record.size() < 4) 4064 return error("Invalid record"); 4065 4066 unsigned Line = Record[0], Col = Record[1]; 4067 unsigned ScopeID = Record[2], IAID = Record[3]; 4068 4069 MDNode *Scope = nullptr, *IA = nullptr; 4070 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 4071 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 4072 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4073 I->setDebugLoc(LastLoc); 4074 I = nullptr; 4075 continue; 4076 } 4077 4078 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4079 unsigned OpNum = 0; 4080 Value *LHS, *RHS; 4081 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4082 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4083 OpNum+1 > Record.size()) 4084 return error("Invalid record"); 4085 4086 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4087 if (Opc == -1) 4088 return error("Invalid record"); 4089 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4090 InstructionList.push_back(I); 4091 if (OpNum < Record.size()) { 4092 if (Opc == Instruction::Add || 4093 Opc == Instruction::Sub || 4094 Opc == Instruction::Mul || 4095 Opc == Instruction::Shl) { 4096 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4097 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4098 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4099 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4100 } else if (Opc == Instruction::SDiv || 4101 Opc == Instruction::UDiv || 4102 Opc == Instruction::LShr || 4103 Opc == Instruction::AShr) { 4104 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4105 cast<BinaryOperator>(I)->setIsExact(true); 4106 } else if (isa<FPMathOperator>(I)) { 4107 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4108 if (FMF.any()) 4109 I->setFastMathFlags(FMF); 4110 } 4111 4112 } 4113 break; 4114 } 4115 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4116 unsigned OpNum = 0; 4117 Value *Op; 4118 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4119 OpNum+2 != Record.size()) 4120 return error("Invalid record"); 4121 4122 Type *ResTy = getTypeByID(Record[OpNum]); 4123 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4124 if (Opc == -1 || !ResTy) 4125 return error("Invalid record"); 4126 Instruction *Temp = nullptr; 4127 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4128 if (Temp) { 4129 InstructionList.push_back(Temp); 4130 CurBB->getInstList().push_back(Temp); 4131 } 4132 } else { 4133 auto CastOp = (Instruction::CastOps)Opc; 4134 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4135 return error("Invalid cast"); 4136 I = CastInst::Create(CastOp, Op, ResTy); 4137 } 4138 InstructionList.push_back(I); 4139 break; 4140 } 4141 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4142 case bitc::FUNC_CODE_INST_GEP_OLD: 4143 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4144 unsigned OpNum = 0; 4145 4146 Type *Ty; 4147 bool InBounds; 4148 4149 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4150 InBounds = Record[OpNum++]; 4151 Ty = getTypeByID(Record[OpNum++]); 4152 } else { 4153 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4154 Ty = nullptr; 4155 } 4156 4157 Value *BasePtr; 4158 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4159 return error("Invalid record"); 4160 4161 if (!Ty) 4162 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4163 ->getElementType(); 4164 else if (Ty != 4165 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4166 ->getElementType()) 4167 return error( 4168 "Explicit gep type does not match pointee type of pointer operand"); 4169 4170 SmallVector<Value*, 16> GEPIdx; 4171 while (OpNum != Record.size()) { 4172 Value *Op; 4173 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4174 return error("Invalid record"); 4175 GEPIdx.push_back(Op); 4176 } 4177 4178 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4179 4180 InstructionList.push_back(I); 4181 if (InBounds) 4182 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4183 break; 4184 } 4185 4186 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4187 // EXTRACTVAL: [opty, opval, n x indices] 4188 unsigned OpNum = 0; 4189 Value *Agg; 4190 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4191 return error("Invalid record"); 4192 4193 unsigned RecSize = Record.size(); 4194 if (OpNum == RecSize) 4195 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4196 4197 SmallVector<unsigned, 4> EXTRACTVALIdx; 4198 Type *CurTy = Agg->getType(); 4199 for (; OpNum != RecSize; ++OpNum) { 4200 bool IsArray = CurTy->isArrayTy(); 4201 bool IsStruct = CurTy->isStructTy(); 4202 uint64_t Index = Record[OpNum]; 4203 4204 if (!IsStruct && !IsArray) 4205 return error("EXTRACTVAL: Invalid type"); 4206 if ((unsigned)Index != Index) 4207 return error("Invalid value"); 4208 if (IsStruct && Index >= CurTy->subtypes().size()) 4209 return error("EXTRACTVAL: Invalid struct index"); 4210 if (IsArray && Index >= CurTy->getArrayNumElements()) 4211 return error("EXTRACTVAL: Invalid array index"); 4212 EXTRACTVALIdx.push_back((unsigned)Index); 4213 4214 if (IsStruct) 4215 CurTy = CurTy->subtypes()[Index]; 4216 else 4217 CurTy = CurTy->subtypes()[0]; 4218 } 4219 4220 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4221 InstructionList.push_back(I); 4222 break; 4223 } 4224 4225 case bitc::FUNC_CODE_INST_INSERTVAL: { 4226 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4227 unsigned OpNum = 0; 4228 Value *Agg; 4229 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4230 return error("Invalid record"); 4231 Value *Val; 4232 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4233 return error("Invalid record"); 4234 4235 unsigned RecSize = Record.size(); 4236 if (OpNum == RecSize) 4237 return error("INSERTVAL: Invalid instruction with 0 indices"); 4238 4239 SmallVector<unsigned, 4> INSERTVALIdx; 4240 Type *CurTy = Agg->getType(); 4241 for (; OpNum != RecSize; ++OpNum) { 4242 bool IsArray = CurTy->isArrayTy(); 4243 bool IsStruct = CurTy->isStructTy(); 4244 uint64_t Index = Record[OpNum]; 4245 4246 if (!IsStruct && !IsArray) 4247 return error("INSERTVAL: Invalid type"); 4248 if ((unsigned)Index != Index) 4249 return error("Invalid value"); 4250 if (IsStruct && Index >= CurTy->subtypes().size()) 4251 return error("INSERTVAL: Invalid struct index"); 4252 if (IsArray && Index >= CurTy->getArrayNumElements()) 4253 return error("INSERTVAL: Invalid array index"); 4254 4255 INSERTVALIdx.push_back((unsigned)Index); 4256 if (IsStruct) 4257 CurTy = CurTy->subtypes()[Index]; 4258 else 4259 CurTy = CurTy->subtypes()[0]; 4260 } 4261 4262 if (CurTy != Val->getType()) 4263 return error("Inserted value type doesn't match aggregate type"); 4264 4265 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4266 InstructionList.push_back(I); 4267 break; 4268 } 4269 4270 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4271 // obsolete form of select 4272 // handles select i1 ... in old bitcode 4273 unsigned OpNum = 0; 4274 Value *TrueVal, *FalseVal, *Cond; 4275 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4276 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4277 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4278 return error("Invalid record"); 4279 4280 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4281 InstructionList.push_back(I); 4282 break; 4283 } 4284 4285 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4286 // new form of select 4287 // handles select i1 or select [N x i1] 4288 unsigned OpNum = 0; 4289 Value *TrueVal, *FalseVal, *Cond; 4290 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4291 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4292 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4293 return error("Invalid record"); 4294 4295 // select condition can be either i1 or [N x i1] 4296 if (VectorType* vector_type = 4297 dyn_cast<VectorType>(Cond->getType())) { 4298 // expect <n x i1> 4299 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4300 return error("Invalid type for value"); 4301 } else { 4302 // expect i1 4303 if (Cond->getType() != Type::getInt1Ty(Context)) 4304 return error("Invalid type for value"); 4305 } 4306 4307 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4308 InstructionList.push_back(I); 4309 break; 4310 } 4311 4312 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4313 unsigned OpNum = 0; 4314 Value *Vec, *Idx; 4315 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4316 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4317 return error("Invalid record"); 4318 if (!Vec->getType()->isVectorTy()) 4319 return error("Invalid type for value"); 4320 I = ExtractElementInst::Create(Vec, Idx); 4321 InstructionList.push_back(I); 4322 break; 4323 } 4324 4325 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4326 unsigned OpNum = 0; 4327 Value *Vec, *Elt, *Idx; 4328 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4329 return error("Invalid record"); 4330 if (!Vec->getType()->isVectorTy()) 4331 return error("Invalid type for value"); 4332 if (popValue(Record, OpNum, NextValueNo, 4333 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4334 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4335 return error("Invalid record"); 4336 I = InsertElementInst::Create(Vec, Elt, Idx); 4337 InstructionList.push_back(I); 4338 break; 4339 } 4340 4341 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4342 unsigned OpNum = 0; 4343 Value *Vec1, *Vec2, *Mask; 4344 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4345 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4346 return error("Invalid record"); 4347 4348 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4349 return error("Invalid record"); 4350 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4351 return error("Invalid type for value"); 4352 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4353 InstructionList.push_back(I); 4354 break; 4355 } 4356 4357 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4358 // Old form of ICmp/FCmp returning bool 4359 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4360 // both legal on vectors but had different behaviour. 4361 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4362 // FCmp/ICmp returning bool or vector of bool 4363 4364 unsigned OpNum = 0; 4365 Value *LHS, *RHS; 4366 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4367 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4368 return error("Invalid record"); 4369 4370 unsigned PredVal = Record[OpNum]; 4371 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4372 FastMathFlags FMF; 4373 if (IsFP && Record.size() > OpNum+1) 4374 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4375 4376 if (OpNum+1 != Record.size()) 4377 return error("Invalid record"); 4378 4379 if (LHS->getType()->isFPOrFPVectorTy()) 4380 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4381 else 4382 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4383 4384 if (FMF.any()) 4385 I->setFastMathFlags(FMF); 4386 InstructionList.push_back(I); 4387 break; 4388 } 4389 4390 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4391 { 4392 unsigned Size = Record.size(); 4393 if (Size == 0) { 4394 I = ReturnInst::Create(Context); 4395 InstructionList.push_back(I); 4396 break; 4397 } 4398 4399 unsigned OpNum = 0; 4400 Value *Op = nullptr; 4401 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4402 return error("Invalid record"); 4403 if (OpNum != Record.size()) 4404 return error("Invalid record"); 4405 4406 I = ReturnInst::Create(Context, Op); 4407 InstructionList.push_back(I); 4408 break; 4409 } 4410 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4411 if (Record.size() != 1 && Record.size() != 3) 4412 return error("Invalid record"); 4413 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4414 if (!TrueDest) 4415 return error("Invalid record"); 4416 4417 if (Record.size() == 1) { 4418 I = BranchInst::Create(TrueDest); 4419 InstructionList.push_back(I); 4420 } 4421 else { 4422 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4423 Value *Cond = getValue(Record, 2, NextValueNo, 4424 Type::getInt1Ty(Context)); 4425 if (!FalseDest || !Cond) 4426 return error("Invalid record"); 4427 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4428 InstructionList.push_back(I); 4429 } 4430 break; 4431 } 4432 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4433 if (Record.size() != 1 && Record.size() != 2) 4434 return error("Invalid record"); 4435 unsigned Idx = 0; 4436 Value *CleanupPad = 4437 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4438 if (!CleanupPad) 4439 return error("Invalid record"); 4440 BasicBlock *UnwindDest = nullptr; 4441 if (Record.size() == 2) { 4442 UnwindDest = getBasicBlock(Record[Idx++]); 4443 if (!UnwindDest) 4444 return error("Invalid record"); 4445 } 4446 4447 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4448 InstructionList.push_back(I); 4449 break; 4450 } 4451 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4452 if (Record.size() != 2) 4453 return error("Invalid record"); 4454 unsigned Idx = 0; 4455 Value *CatchPad = 4456 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4457 if (!CatchPad) 4458 return error("Invalid record"); 4459 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4460 if (!BB) 4461 return error("Invalid record"); 4462 4463 I = CatchReturnInst::Create(CatchPad, BB); 4464 InstructionList.push_back(I); 4465 break; 4466 } 4467 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4468 // We must have, at minimum, the outer scope and the number of arguments. 4469 if (Record.size() < 2) 4470 return error("Invalid record"); 4471 4472 unsigned Idx = 0; 4473 4474 Value *ParentPad = 4475 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4476 4477 unsigned NumHandlers = Record[Idx++]; 4478 4479 SmallVector<BasicBlock *, 2> Handlers; 4480 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4481 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4482 if (!BB) 4483 return error("Invalid record"); 4484 Handlers.push_back(BB); 4485 } 4486 4487 BasicBlock *UnwindDest = nullptr; 4488 if (Idx + 1 == Record.size()) { 4489 UnwindDest = getBasicBlock(Record[Idx++]); 4490 if (!UnwindDest) 4491 return error("Invalid record"); 4492 } 4493 4494 if (Record.size() != Idx) 4495 return error("Invalid record"); 4496 4497 auto *CatchSwitch = 4498 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4499 for (BasicBlock *Handler : Handlers) 4500 CatchSwitch->addHandler(Handler); 4501 I = CatchSwitch; 4502 InstructionList.push_back(I); 4503 break; 4504 } 4505 case bitc::FUNC_CODE_INST_CATCHPAD: 4506 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4507 // We must have, at minimum, the outer scope and the number of arguments. 4508 if (Record.size() < 2) 4509 return error("Invalid record"); 4510 4511 unsigned Idx = 0; 4512 4513 Value *ParentPad = 4514 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4515 4516 unsigned NumArgOperands = Record[Idx++]; 4517 4518 SmallVector<Value *, 2> Args; 4519 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4520 Value *Val; 4521 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4522 return error("Invalid record"); 4523 Args.push_back(Val); 4524 } 4525 4526 if (Record.size() != Idx) 4527 return error("Invalid record"); 4528 4529 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4530 I = CleanupPadInst::Create(ParentPad, Args); 4531 else 4532 I = CatchPadInst::Create(ParentPad, Args); 4533 InstructionList.push_back(I); 4534 break; 4535 } 4536 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4537 // Check magic 4538 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4539 // "New" SwitchInst format with case ranges. The changes to write this 4540 // format were reverted but we still recognize bitcode that uses it. 4541 // Hopefully someday we will have support for case ranges and can use 4542 // this format again. 4543 4544 Type *OpTy = getTypeByID(Record[1]); 4545 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4546 4547 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4548 BasicBlock *Default = getBasicBlock(Record[3]); 4549 if (!OpTy || !Cond || !Default) 4550 return error("Invalid record"); 4551 4552 unsigned NumCases = Record[4]; 4553 4554 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4555 InstructionList.push_back(SI); 4556 4557 unsigned CurIdx = 5; 4558 for (unsigned i = 0; i != NumCases; ++i) { 4559 SmallVector<ConstantInt*, 1> CaseVals; 4560 unsigned NumItems = Record[CurIdx++]; 4561 for (unsigned ci = 0; ci != NumItems; ++ci) { 4562 bool isSingleNumber = Record[CurIdx++]; 4563 4564 APInt Low; 4565 unsigned ActiveWords = 1; 4566 if (ValueBitWidth > 64) 4567 ActiveWords = Record[CurIdx++]; 4568 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4569 ValueBitWidth); 4570 CurIdx += ActiveWords; 4571 4572 if (!isSingleNumber) { 4573 ActiveWords = 1; 4574 if (ValueBitWidth > 64) 4575 ActiveWords = Record[CurIdx++]; 4576 APInt High = readWideAPInt( 4577 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4578 CurIdx += ActiveWords; 4579 4580 // FIXME: It is not clear whether values in the range should be 4581 // compared as signed or unsigned values. The partially 4582 // implemented changes that used this format in the past used 4583 // unsigned comparisons. 4584 for ( ; Low.ule(High); ++Low) 4585 CaseVals.push_back(ConstantInt::get(Context, Low)); 4586 } else 4587 CaseVals.push_back(ConstantInt::get(Context, Low)); 4588 } 4589 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4590 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4591 cve = CaseVals.end(); cvi != cve; ++cvi) 4592 SI->addCase(*cvi, DestBB); 4593 } 4594 I = SI; 4595 break; 4596 } 4597 4598 // Old SwitchInst format without case ranges. 4599 4600 if (Record.size() < 3 || (Record.size() & 1) == 0) 4601 return error("Invalid record"); 4602 Type *OpTy = getTypeByID(Record[0]); 4603 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4604 BasicBlock *Default = getBasicBlock(Record[2]); 4605 if (!OpTy || !Cond || !Default) 4606 return error("Invalid record"); 4607 unsigned NumCases = (Record.size()-3)/2; 4608 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4609 InstructionList.push_back(SI); 4610 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4611 ConstantInt *CaseVal = 4612 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4613 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4614 if (!CaseVal || !DestBB) { 4615 delete SI; 4616 return error("Invalid record"); 4617 } 4618 SI->addCase(CaseVal, DestBB); 4619 } 4620 I = SI; 4621 break; 4622 } 4623 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4624 if (Record.size() < 2) 4625 return error("Invalid record"); 4626 Type *OpTy = getTypeByID(Record[0]); 4627 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4628 if (!OpTy || !Address) 4629 return error("Invalid record"); 4630 unsigned NumDests = Record.size()-2; 4631 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4632 InstructionList.push_back(IBI); 4633 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4634 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4635 IBI->addDestination(DestBB); 4636 } else { 4637 delete IBI; 4638 return error("Invalid record"); 4639 } 4640 } 4641 I = IBI; 4642 break; 4643 } 4644 4645 case bitc::FUNC_CODE_INST_INVOKE: { 4646 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4647 if (Record.size() < 4) 4648 return error("Invalid record"); 4649 unsigned OpNum = 0; 4650 AttributeSet PAL = getAttributes(Record[OpNum++]); 4651 unsigned CCInfo = Record[OpNum++]; 4652 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4653 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4654 4655 FunctionType *FTy = nullptr; 4656 if (CCInfo >> 13 & 1 && 4657 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4658 return error("Explicit invoke type is not a function type"); 4659 4660 Value *Callee; 4661 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4662 return error("Invalid record"); 4663 4664 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4665 if (!CalleeTy) 4666 return error("Callee is not a pointer"); 4667 if (!FTy) { 4668 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4669 if (!FTy) 4670 return error("Callee is not of pointer to function type"); 4671 } else if (CalleeTy->getElementType() != FTy) 4672 return error("Explicit invoke type does not match pointee type of " 4673 "callee operand"); 4674 if (Record.size() < FTy->getNumParams() + OpNum) 4675 return error("Insufficient operands to call"); 4676 4677 SmallVector<Value*, 16> Ops; 4678 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4679 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4680 FTy->getParamType(i))); 4681 if (!Ops.back()) 4682 return error("Invalid record"); 4683 } 4684 4685 if (!FTy->isVarArg()) { 4686 if (Record.size() != OpNum) 4687 return error("Invalid record"); 4688 } else { 4689 // Read type/value pairs for varargs params. 4690 while (OpNum != Record.size()) { 4691 Value *Op; 4692 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4693 return error("Invalid record"); 4694 Ops.push_back(Op); 4695 } 4696 } 4697 4698 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4699 OperandBundles.clear(); 4700 InstructionList.push_back(I); 4701 cast<InvokeInst>(I)->setCallingConv( 4702 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4703 cast<InvokeInst>(I)->setAttributes(PAL); 4704 break; 4705 } 4706 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4707 unsigned Idx = 0; 4708 Value *Val = nullptr; 4709 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4710 return error("Invalid record"); 4711 I = ResumeInst::Create(Val); 4712 InstructionList.push_back(I); 4713 break; 4714 } 4715 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4716 I = new UnreachableInst(Context); 4717 InstructionList.push_back(I); 4718 break; 4719 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4720 if (Record.size() < 1 || ((Record.size()-1)&1)) 4721 return error("Invalid record"); 4722 Type *Ty = getTypeByID(Record[0]); 4723 if (!Ty) 4724 return error("Invalid record"); 4725 4726 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4727 InstructionList.push_back(PN); 4728 4729 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4730 Value *V; 4731 // With the new function encoding, it is possible that operands have 4732 // negative IDs (for forward references). Use a signed VBR 4733 // representation to keep the encoding small. 4734 if (UseRelativeIDs) 4735 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4736 else 4737 V = getValue(Record, 1+i, NextValueNo, Ty); 4738 BasicBlock *BB = getBasicBlock(Record[2+i]); 4739 if (!V || !BB) 4740 return error("Invalid record"); 4741 PN->addIncoming(V, BB); 4742 } 4743 I = PN; 4744 break; 4745 } 4746 4747 case bitc::FUNC_CODE_INST_LANDINGPAD: 4748 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4749 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4750 unsigned Idx = 0; 4751 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4752 if (Record.size() < 3) 4753 return error("Invalid record"); 4754 } else { 4755 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4756 if (Record.size() < 4) 4757 return error("Invalid record"); 4758 } 4759 Type *Ty = getTypeByID(Record[Idx++]); 4760 if (!Ty) 4761 return error("Invalid record"); 4762 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4763 Value *PersFn = nullptr; 4764 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4765 return error("Invalid record"); 4766 4767 if (!F->hasPersonalityFn()) 4768 F->setPersonalityFn(cast<Constant>(PersFn)); 4769 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4770 return error("Personality function mismatch"); 4771 } 4772 4773 bool IsCleanup = !!Record[Idx++]; 4774 unsigned NumClauses = Record[Idx++]; 4775 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4776 LP->setCleanup(IsCleanup); 4777 for (unsigned J = 0; J != NumClauses; ++J) { 4778 LandingPadInst::ClauseType CT = 4779 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4780 Value *Val; 4781 4782 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4783 delete LP; 4784 return error("Invalid record"); 4785 } 4786 4787 assert((CT != LandingPadInst::Catch || 4788 !isa<ArrayType>(Val->getType())) && 4789 "Catch clause has a invalid type!"); 4790 assert((CT != LandingPadInst::Filter || 4791 isa<ArrayType>(Val->getType())) && 4792 "Filter clause has invalid type!"); 4793 LP->addClause(cast<Constant>(Val)); 4794 } 4795 4796 I = LP; 4797 InstructionList.push_back(I); 4798 break; 4799 } 4800 4801 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4802 if (Record.size() != 4) 4803 return error("Invalid record"); 4804 uint64_t AlignRecord = Record[3]; 4805 const uint64_t InAllocaMask = uint64_t(1) << 5; 4806 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4807 // Reserve bit 7 for SwiftError flag. 4808 // const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4809 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4810 bool InAlloca = AlignRecord & InAllocaMask; 4811 Type *Ty = getTypeByID(Record[0]); 4812 if ((AlignRecord & ExplicitTypeMask) == 0) { 4813 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4814 if (!PTy) 4815 return error("Old-style alloca with a non-pointer type"); 4816 Ty = PTy->getElementType(); 4817 } 4818 Type *OpTy = getTypeByID(Record[1]); 4819 Value *Size = getFnValueByID(Record[2], OpTy); 4820 unsigned Align; 4821 if (std::error_code EC = 4822 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4823 return EC; 4824 } 4825 if (!Ty || !Size) 4826 return error("Invalid record"); 4827 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4828 AI->setUsedWithInAlloca(InAlloca); 4829 I = AI; 4830 InstructionList.push_back(I); 4831 break; 4832 } 4833 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4834 unsigned OpNum = 0; 4835 Value *Op; 4836 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4837 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4838 return error("Invalid record"); 4839 4840 Type *Ty = nullptr; 4841 if (OpNum + 3 == Record.size()) 4842 Ty = getTypeByID(Record[OpNum++]); 4843 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4844 return EC; 4845 if (!Ty) 4846 Ty = cast<PointerType>(Op->getType())->getElementType(); 4847 4848 unsigned Align; 4849 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4850 return EC; 4851 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4852 4853 InstructionList.push_back(I); 4854 break; 4855 } 4856 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4857 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4858 unsigned OpNum = 0; 4859 Value *Op; 4860 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4861 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4862 return error("Invalid record"); 4863 4864 Type *Ty = nullptr; 4865 if (OpNum + 5 == Record.size()) 4866 Ty = getTypeByID(Record[OpNum++]); 4867 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 4868 return EC; 4869 if (!Ty) 4870 Ty = cast<PointerType>(Op->getType())->getElementType(); 4871 4872 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4873 if (Ordering == NotAtomic || Ordering == Release || 4874 Ordering == AcquireRelease) 4875 return error("Invalid record"); 4876 if (Ordering != NotAtomic && Record[OpNum] == 0) 4877 return error("Invalid record"); 4878 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4879 4880 unsigned Align; 4881 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4882 return EC; 4883 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4884 4885 InstructionList.push_back(I); 4886 break; 4887 } 4888 case bitc::FUNC_CODE_INST_STORE: 4889 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4890 unsigned OpNum = 0; 4891 Value *Val, *Ptr; 4892 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4893 (BitCode == bitc::FUNC_CODE_INST_STORE 4894 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4895 : popValue(Record, OpNum, NextValueNo, 4896 cast<PointerType>(Ptr->getType())->getElementType(), 4897 Val)) || 4898 OpNum + 2 != Record.size()) 4899 return error("Invalid record"); 4900 4901 if (std::error_code EC = 4902 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4903 return EC; 4904 unsigned Align; 4905 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4906 return EC; 4907 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4908 InstructionList.push_back(I); 4909 break; 4910 } 4911 case bitc::FUNC_CODE_INST_STOREATOMIC: 4912 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4913 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4914 unsigned OpNum = 0; 4915 Value *Val, *Ptr; 4916 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4917 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4918 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4919 : popValue(Record, OpNum, NextValueNo, 4920 cast<PointerType>(Ptr->getType())->getElementType(), 4921 Val)) || 4922 OpNum + 4 != Record.size()) 4923 return error("Invalid record"); 4924 4925 if (std::error_code EC = 4926 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4927 return EC; 4928 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4929 if (Ordering == NotAtomic || Ordering == Acquire || 4930 Ordering == AcquireRelease) 4931 return error("Invalid record"); 4932 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4933 if (Ordering != NotAtomic && Record[OpNum] == 0) 4934 return error("Invalid record"); 4935 4936 unsigned Align; 4937 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4938 return EC; 4939 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4940 InstructionList.push_back(I); 4941 break; 4942 } 4943 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4944 case bitc::FUNC_CODE_INST_CMPXCHG: { 4945 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4946 // failureordering?, isweak?] 4947 unsigned OpNum = 0; 4948 Value *Ptr, *Cmp, *New; 4949 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4950 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4951 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4952 : popValue(Record, OpNum, NextValueNo, 4953 cast<PointerType>(Ptr->getType())->getElementType(), 4954 Cmp)) || 4955 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4956 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4957 return error("Invalid record"); 4958 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4959 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4960 return error("Invalid record"); 4961 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4962 4963 if (std::error_code EC = 4964 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4965 return EC; 4966 AtomicOrdering FailureOrdering; 4967 if (Record.size() < 7) 4968 FailureOrdering = 4969 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4970 else 4971 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4972 4973 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4974 SynchScope); 4975 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4976 4977 if (Record.size() < 8) { 4978 // Before weak cmpxchgs existed, the instruction simply returned the 4979 // value loaded from memory, so bitcode files from that era will be 4980 // expecting the first component of a modern cmpxchg. 4981 CurBB->getInstList().push_back(I); 4982 I = ExtractValueInst::Create(I, 0); 4983 } else { 4984 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4985 } 4986 4987 InstructionList.push_back(I); 4988 break; 4989 } 4990 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4991 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4992 unsigned OpNum = 0; 4993 Value *Ptr, *Val; 4994 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4995 popValue(Record, OpNum, NextValueNo, 4996 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4997 OpNum+4 != Record.size()) 4998 return error("Invalid record"); 4999 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5000 if (Operation < AtomicRMWInst::FIRST_BINOP || 5001 Operation > AtomicRMWInst::LAST_BINOP) 5002 return error("Invalid record"); 5003 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5004 if (Ordering == NotAtomic || Ordering == Unordered) 5005 return error("Invalid record"); 5006 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5007 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5008 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5009 InstructionList.push_back(I); 5010 break; 5011 } 5012 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5013 if (2 != Record.size()) 5014 return error("Invalid record"); 5015 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5016 if (Ordering == NotAtomic || Ordering == Unordered || 5017 Ordering == Monotonic) 5018 return error("Invalid record"); 5019 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5020 I = new FenceInst(Context, Ordering, SynchScope); 5021 InstructionList.push_back(I); 5022 break; 5023 } 5024 case bitc::FUNC_CODE_INST_CALL: { 5025 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5026 if (Record.size() < 3) 5027 return error("Invalid record"); 5028 5029 unsigned OpNum = 0; 5030 AttributeSet PAL = getAttributes(Record[OpNum++]); 5031 unsigned CCInfo = Record[OpNum++]; 5032 5033 FastMathFlags FMF; 5034 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5035 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5036 if (!FMF.any()) 5037 return error("Fast math flags indicator set for call with no FMF"); 5038 } 5039 5040 FunctionType *FTy = nullptr; 5041 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5042 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5043 return error("Explicit call type is not a function type"); 5044 5045 Value *Callee; 5046 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5047 return error("Invalid record"); 5048 5049 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5050 if (!OpTy) 5051 return error("Callee is not a pointer type"); 5052 if (!FTy) { 5053 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5054 if (!FTy) 5055 return error("Callee is not of pointer to function type"); 5056 } else if (OpTy->getElementType() != FTy) 5057 return error("Explicit call type does not match pointee type of " 5058 "callee operand"); 5059 if (Record.size() < FTy->getNumParams() + OpNum) 5060 return error("Insufficient operands to call"); 5061 5062 SmallVector<Value*, 16> Args; 5063 // Read the fixed params. 5064 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5065 if (FTy->getParamType(i)->isLabelTy()) 5066 Args.push_back(getBasicBlock(Record[OpNum])); 5067 else 5068 Args.push_back(getValue(Record, OpNum, NextValueNo, 5069 FTy->getParamType(i))); 5070 if (!Args.back()) 5071 return error("Invalid record"); 5072 } 5073 5074 // Read type/value pairs for varargs params. 5075 if (!FTy->isVarArg()) { 5076 if (OpNum != Record.size()) 5077 return error("Invalid record"); 5078 } else { 5079 while (OpNum != Record.size()) { 5080 Value *Op; 5081 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5082 return error("Invalid record"); 5083 Args.push_back(Op); 5084 } 5085 } 5086 5087 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5088 OperandBundles.clear(); 5089 InstructionList.push_back(I); 5090 cast<CallInst>(I)->setCallingConv( 5091 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5092 CallInst::TailCallKind TCK = CallInst::TCK_None; 5093 if (CCInfo & 1 << bitc::CALL_TAIL) 5094 TCK = CallInst::TCK_Tail; 5095 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5096 TCK = CallInst::TCK_MustTail; 5097 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5098 TCK = CallInst::TCK_NoTail; 5099 cast<CallInst>(I)->setTailCallKind(TCK); 5100 cast<CallInst>(I)->setAttributes(PAL); 5101 if (FMF.any()) { 5102 if (!isa<FPMathOperator>(I)) 5103 return error("Fast-math-flags specified for call without " 5104 "floating-point scalar or vector return type"); 5105 I->setFastMathFlags(FMF); 5106 } 5107 break; 5108 } 5109 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5110 if (Record.size() < 3) 5111 return error("Invalid record"); 5112 Type *OpTy = getTypeByID(Record[0]); 5113 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5114 Type *ResTy = getTypeByID(Record[2]); 5115 if (!OpTy || !Op || !ResTy) 5116 return error("Invalid record"); 5117 I = new VAArgInst(Op, ResTy); 5118 InstructionList.push_back(I); 5119 break; 5120 } 5121 5122 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5123 // A call or an invoke can be optionally prefixed with some variable 5124 // number of operand bundle blocks. These blocks are read into 5125 // OperandBundles and consumed at the next call or invoke instruction. 5126 5127 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5128 return error("Invalid record"); 5129 5130 std::vector<Value *> Inputs; 5131 5132 unsigned OpNum = 1; 5133 while (OpNum != Record.size()) { 5134 Value *Op; 5135 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5136 return error("Invalid record"); 5137 Inputs.push_back(Op); 5138 } 5139 5140 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5141 continue; 5142 } 5143 } 5144 5145 // Add instruction to end of current BB. If there is no current BB, reject 5146 // this file. 5147 if (!CurBB) { 5148 delete I; 5149 return error("Invalid instruction with no BB"); 5150 } 5151 if (!OperandBundles.empty()) { 5152 delete I; 5153 return error("Operand bundles found with no consumer"); 5154 } 5155 CurBB->getInstList().push_back(I); 5156 5157 // If this was a terminator instruction, move to the next block. 5158 if (isa<TerminatorInst>(I)) { 5159 ++CurBBNo; 5160 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5161 } 5162 5163 // Non-void values get registered in the value table for future use. 5164 if (I && !I->getType()->isVoidTy()) 5165 ValueList.assignValue(I, NextValueNo++); 5166 } 5167 5168 OutOfRecordLoop: 5169 5170 if (!OperandBundles.empty()) 5171 return error("Operand bundles found with no consumer"); 5172 5173 // Check the function list for unresolved values. 5174 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5175 if (!A->getParent()) { 5176 // We found at least one unresolved value. Nuke them all to avoid leaks. 5177 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5178 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5179 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5180 delete A; 5181 } 5182 } 5183 return error("Never resolved value found in function"); 5184 } 5185 } 5186 5187 // FIXME: Check for unresolved forward-declared metadata references 5188 // and clean up leaks. 5189 5190 // Trim the value list down to the size it was before we parsed this function. 5191 ValueList.shrinkTo(ModuleValueListSize); 5192 MDValueList.shrinkTo(ModuleMDValueListSize); 5193 std::vector<BasicBlock*>().swap(FunctionBBs); 5194 return std::error_code(); 5195 } 5196 5197 /// Find the function body in the bitcode stream 5198 std::error_code BitcodeReader::findFunctionInStream( 5199 Function *F, 5200 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5201 while (DeferredFunctionInfoIterator->second == 0) { 5202 // This is the fallback handling for the old format bitcode that 5203 // didn't contain the function index in the VST, or when we have 5204 // an anonymous function which would not have a VST entry. 5205 // Assert that we have one of those two cases. 5206 assert(VSTOffset == 0 || !F->hasName()); 5207 // Parse the next body in the stream and set its position in the 5208 // DeferredFunctionInfo map. 5209 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5210 return EC; 5211 } 5212 return std::error_code(); 5213 } 5214 5215 //===----------------------------------------------------------------------===// 5216 // GVMaterializer implementation 5217 //===----------------------------------------------------------------------===// 5218 5219 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5220 5221 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5222 // In older bitcode we must materialize the metadata before parsing 5223 // any functions, in order to set up the MDValueList properly. 5224 if (!SeenModuleValuesRecord) { 5225 if (std::error_code EC = materializeMetadata()) 5226 return EC; 5227 } 5228 5229 Function *F = dyn_cast<Function>(GV); 5230 // If it's not a function or is already material, ignore the request. 5231 if (!F || !F->isMaterializable()) 5232 return std::error_code(); 5233 5234 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5235 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5236 // If its position is recorded as 0, its body is somewhere in the stream 5237 // but we haven't seen it yet. 5238 if (DFII->second == 0) 5239 if (std::error_code EC = findFunctionInStream(F, DFII)) 5240 return EC; 5241 5242 // Move the bit stream to the saved position of the deferred function body. 5243 Stream.JumpToBit(DFII->second); 5244 5245 if (std::error_code EC = parseFunctionBody(F)) 5246 return EC; 5247 F->setIsMaterializable(false); 5248 5249 if (StripDebugInfo) 5250 stripDebugInfo(*F); 5251 5252 // Upgrade any old intrinsic calls in the function. 5253 for (auto &I : UpgradedIntrinsics) { 5254 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5255 UI != UE;) { 5256 User *U = *UI; 5257 ++UI; 5258 if (CallInst *CI = dyn_cast<CallInst>(U)) 5259 UpgradeIntrinsicCall(CI, I.second); 5260 } 5261 } 5262 5263 // Finish fn->subprogram upgrade for materialized functions. 5264 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5265 F->setSubprogram(SP); 5266 5267 // Bring in any functions that this function forward-referenced via 5268 // blockaddresses. 5269 return materializeForwardReferencedFunctions(); 5270 } 5271 5272 std::error_code BitcodeReader::materializeModule() { 5273 if (std::error_code EC = materializeMetadata()) 5274 return EC; 5275 5276 // Promise to materialize all forward references. 5277 WillMaterializeAllForwardRefs = true; 5278 5279 // Iterate over the module, deserializing any functions that are still on 5280 // disk. 5281 for (Function &F : *TheModule) { 5282 if (std::error_code EC = materialize(&F)) 5283 return EC; 5284 } 5285 // At this point, if there are any function bodies, parse the rest of 5286 // the bits in the module past the last function block we have recorded 5287 // through either lazy scanning or the VST. 5288 if (LastFunctionBlockBit || NextUnreadBit) 5289 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5290 : NextUnreadBit); 5291 5292 // Check that all block address forward references got resolved (as we 5293 // promised above). 5294 if (!BasicBlockFwdRefs.empty()) 5295 return error("Never resolved function from blockaddress"); 5296 5297 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5298 // delete the old functions to clean up. We can't do this unless the entire 5299 // module is materialized because there could always be another function body 5300 // with calls to the old function. 5301 for (auto &I : UpgradedIntrinsics) { 5302 for (auto *U : I.first->users()) { 5303 if (CallInst *CI = dyn_cast<CallInst>(U)) 5304 UpgradeIntrinsicCall(CI, I.second); 5305 } 5306 if (!I.first->use_empty()) 5307 I.first->replaceAllUsesWith(I.second); 5308 I.first->eraseFromParent(); 5309 } 5310 UpgradedIntrinsics.clear(); 5311 5312 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5313 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5314 5315 UpgradeDebugInfo(*TheModule); 5316 return std::error_code(); 5317 } 5318 5319 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5320 return IdentifiedStructTypes; 5321 } 5322 5323 std::error_code 5324 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5325 if (Streamer) 5326 return initLazyStream(std::move(Streamer)); 5327 return initStreamFromBuffer(); 5328 } 5329 5330 std::error_code BitcodeReader::initStreamFromBuffer() { 5331 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5332 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5333 5334 if (Buffer->getBufferSize() & 3) 5335 return error("Invalid bitcode signature"); 5336 5337 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5338 // The magic number is 0x0B17C0DE stored in little endian. 5339 if (isBitcodeWrapper(BufPtr, BufEnd)) 5340 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5341 return error("Invalid bitcode wrapper header"); 5342 5343 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5344 Stream.init(&*StreamFile); 5345 5346 return std::error_code(); 5347 } 5348 5349 std::error_code 5350 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5351 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5352 // see it. 5353 auto OwnedBytes = 5354 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5355 StreamingMemoryObject &Bytes = *OwnedBytes; 5356 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5357 Stream.init(&*StreamFile); 5358 5359 unsigned char buf[16]; 5360 if (Bytes.readBytes(buf, 16, 0) != 16) 5361 return error("Invalid bitcode signature"); 5362 5363 if (!isBitcode(buf, buf + 16)) 5364 return error("Invalid bitcode signature"); 5365 5366 if (isBitcodeWrapper(buf, buf + 4)) { 5367 const unsigned char *bitcodeStart = buf; 5368 const unsigned char *bitcodeEnd = buf + 16; 5369 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5370 Bytes.dropLeadingBytes(bitcodeStart - buf); 5371 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5372 } 5373 return std::error_code(); 5374 } 5375 5376 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E, 5377 const Twine &Message) { 5378 return ::error(DiagnosticHandler, make_error_code(E), Message); 5379 } 5380 5381 std::error_code FunctionIndexBitcodeReader::error(const Twine &Message) { 5382 return ::error(DiagnosticHandler, 5383 make_error_code(BitcodeError::CorruptedBitcode), Message); 5384 } 5385 5386 std::error_code FunctionIndexBitcodeReader::error(BitcodeError E) { 5387 return ::error(DiagnosticHandler, make_error_code(E)); 5388 } 5389 5390 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5391 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5392 bool IsLazy, bool CheckFuncSummaryPresenceOnly) 5393 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), IsLazy(IsLazy), 5394 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5395 5396 FunctionIndexBitcodeReader::FunctionIndexBitcodeReader( 5397 DiagnosticHandlerFunction DiagnosticHandler, bool IsLazy, 5398 bool CheckFuncSummaryPresenceOnly) 5399 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), IsLazy(IsLazy), 5400 CheckFuncSummaryPresenceOnly(CheckFuncSummaryPresenceOnly) {} 5401 5402 void FunctionIndexBitcodeReader::freeState() { Buffer = nullptr; } 5403 5404 void FunctionIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5405 5406 // Specialized value symbol table parser used when reading function index 5407 // blocks where we don't actually create global values. 5408 // At the end of this routine the function index is populated with a map 5409 // from function name to FunctionInfo. The function info contains 5410 // the function block's bitcode offset as well as the offset into the 5411 // function summary section. 5412 std::error_code FunctionIndexBitcodeReader::parseValueSymbolTable() { 5413 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5414 return error("Invalid record"); 5415 5416 SmallVector<uint64_t, 64> Record; 5417 5418 // Read all the records for this value table. 5419 SmallString<128> ValueName; 5420 while (1) { 5421 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5422 5423 switch (Entry.Kind) { 5424 case BitstreamEntry::SubBlock: // Handled for us already. 5425 case BitstreamEntry::Error: 5426 return error("Malformed block"); 5427 case BitstreamEntry::EndBlock: 5428 return std::error_code(); 5429 case BitstreamEntry::Record: 5430 // The interesting case. 5431 break; 5432 } 5433 5434 // Read a record. 5435 Record.clear(); 5436 switch (Stream.readRecord(Entry.ID, Record)) { 5437 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5438 break; 5439 case bitc::VST_CODE_FNENTRY: { 5440 // VST_FNENTRY: [valueid, offset, namechar x N] 5441 if (convertToString(Record, 2, ValueName)) 5442 return error("Invalid record"); 5443 unsigned ValueID = Record[0]; 5444 uint64_t FuncOffset = Record[1]; 5445 std::unique_ptr<FunctionInfo> FuncInfo = 5446 llvm::make_unique<FunctionInfo>(FuncOffset); 5447 if (foundFuncSummary() && !IsLazy) { 5448 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5449 SummaryMap.find(ValueID); 5450 assert(SMI != SummaryMap.end() && "Summary info not found"); 5451 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5452 } 5453 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5454 5455 ValueName.clear(); 5456 break; 5457 } 5458 case bitc::VST_CODE_COMBINED_FNENTRY: { 5459 // VST_FNENTRY: [offset, namechar x N] 5460 if (convertToString(Record, 1, ValueName)) 5461 return error("Invalid record"); 5462 uint64_t FuncSummaryOffset = Record[0]; 5463 std::unique_ptr<FunctionInfo> FuncInfo = 5464 llvm::make_unique<FunctionInfo>(FuncSummaryOffset); 5465 if (foundFuncSummary() && !IsLazy) { 5466 DenseMap<uint64_t, std::unique_ptr<FunctionSummary>>::iterator SMI = 5467 SummaryMap.find(FuncSummaryOffset); 5468 assert(SMI != SummaryMap.end() && "Summary info not found"); 5469 FuncInfo->setFunctionSummary(std::move(SMI->second)); 5470 } 5471 TheIndex->addFunctionInfo(ValueName, std::move(FuncInfo)); 5472 5473 ValueName.clear(); 5474 break; 5475 } 5476 } 5477 } 5478 } 5479 5480 // Parse just the blocks needed for function index building out of the module. 5481 // At the end of this routine the function Index is populated with a map 5482 // from function name to FunctionInfo. The function info contains 5483 // either the parsed function summary information (when parsing summaries 5484 // eagerly), or just to the function summary record's offset 5485 // if parsing lazily (IsLazy). 5486 std::error_code FunctionIndexBitcodeReader::parseModule() { 5487 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5488 return error("Invalid record"); 5489 5490 // Read the function index for this module. 5491 while (1) { 5492 BitstreamEntry Entry = Stream.advance(); 5493 5494 switch (Entry.Kind) { 5495 case BitstreamEntry::Error: 5496 return error("Malformed block"); 5497 case BitstreamEntry::EndBlock: 5498 return std::error_code(); 5499 5500 case BitstreamEntry::SubBlock: 5501 if (CheckFuncSummaryPresenceOnly) { 5502 if (Entry.ID == bitc::FUNCTION_SUMMARY_BLOCK_ID) { 5503 SeenFuncSummary = true; 5504 // No need to parse the rest since we found the summary. 5505 return std::error_code(); 5506 } 5507 if (Stream.SkipBlock()) 5508 return error("Invalid record"); 5509 continue; 5510 } 5511 switch (Entry.ID) { 5512 default: // Skip unknown content. 5513 if (Stream.SkipBlock()) 5514 return error("Invalid record"); 5515 break; 5516 case bitc::BLOCKINFO_BLOCK_ID: 5517 // Need to parse these to get abbrev ids (e.g. for VST) 5518 if (Stream.ReadBlockInfoBlock()) 5519 return error("Malformed block"); 5520 break; 5521 case bitc::VALUE_SYMTAB_BLOCK_ID: 5522 if (std::error_code EC = parseValueSymbolTable()) 5523 return EC; 5524 break; 5525 case bitc::FUNCTION_SUMMARY_BLOCK_ID: 5526 SeenFuncSummary = true; 5527 if (IsLazy) { 5528 // Lazy parsing of summary info, skip it. 5529 if (Stream.SkipBlock()) 5530 return error("Invalid record"); 5531 } else if (std::error_code EC = parseEntireSummary()) 5532 return EC; 5533 break; 5534 case bitc::MODULE_STRTAB_BLOCK_ID: 5535 if (std::error_code EC = parseModuleStringTable()) 5536 return EC; 5537 break; 5538 } 5539 continue; 5540 5541 case BitstreamEntry::Record: 5542 Stream.skipRecord(Entry.ID); 5543 continue; 5544 } 5545 } 5546 } 5547 5548 // Eagerly parse the entire function summary block (i.e. for all functions 5549 // in the index). This populates the FunctionSummary objects in 5550 // the index. 5551 std::error_code FunctionIndexBitcodeReader::parseEntireSummary() { 5552 if (Stream.EnterSubBlock(bitc::FUNCTION_SUMMARY_BLOCK_ID)) 5553 return error("Invalid record"); 5554 5555 SmallVector<uint64_t, 64> Record; 5556 5557 while (1) { 5558 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5559 5560 switch (Entry.Kind) { 5561 case BitstreamEntry::SubBlock: // Handled for us already. 5562 case BitstreamEntry::Error: 5563 return error("Malformed block"); 5564 case BitstreamEntry::EndBlock: 5565 return std::error_code(); 5566 case BitstreamEntry::Record: 5567 // The interesting case. 5568 break; 5569 } 5570 5571 // Read a record. The record format depends on whether this 5572 // is a per-module index or a combined index file. In the per-module 5573 // case the records contain the associated value's ID for correlation 5574 // with VST entries. In the combined index the correlation is done 5575 // via the bitcode offset of the summary records (which were saved 5576 // in the combined index VST entries). The records also contain 5577 // information used for ThinLTO renaming and importing. 5578 Record.clear(); 5579 uint64_t CurRecordBit = Stream.GetCurrentBitNo(); 5580 switch (Stream.readRecord(Entry.ID, Record)) { 5581 default: // Default behavior: ignore. 5582 break; 5583 // FS_PERMODULE_ENTRY: [valueid, islocal, instcount] 5584 case bitc::FS_CODE_PERMODULE_ENTRY: { 5585 unsigned ValueID = Record[0]; 5586 bool IsLocal = Record[1]; 5587 unsigned InstCount = Record[2]; 5588 std::unique_ptr<FunctionSummary> FS = 5589 llvm::make_unique<FunctionSummary>(InstCount); 5590 FS->setLocalFunction(IsLocal); 5591 // The module path string ref set in the summary must be owned by the 5592 // index's module string table. Since we don't have a module path 5593 // string table section in the per-module index, we create a single 5594 // module path string table entry with an empty (0) ID to take 5595 // ownership. 5596 FS->setModulePath( 5597 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)); 5598 SummaryMap[ValueID] = std::move(FS); 5599 } 5600 // FS_COMBINED_ENTRY: [modid, instcount] 5601 case bitc::FS_CODE_COMBINED_ENTRY: { 5602 uint64_t ModuleId = Record[0]; 5603 unsigned InstCount = Record[1]; 5604 std::unique_ptr<FunctionSummary> FS = 5605 llvm::make_unique<FunctionSummary>(InstCount); 5606 FS->setModulePath(ModuleIdMap[ModuleId]); 5607 SummaryMap[CurRecordBit] = std::move(FS); 5608 } 5609 } 5610 } 5611 llvm_unreachable("Exit infinite loop"); 5612 } 5613 5614 // Parse the module string table block into the Index. 5615 // This populates the ModulePathStringTable map in the index. 5616 std::error_code FunctionIndexBitcodeReader::parseModuleStringTable() { 5617 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5618 return error("Invalid record"); 5619 5620 SmallVector<uint64_t, 64> Record; 5621 5622 SmallString<128> ModulePath; 5623 while (1) { 5624 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5625 5626 switch (Entry.Kind) { 5627 case BitstreamEntry::SubBlock: // Handled for us already. 5628 case BitstreamEntry::Error: 5629 return error("Malformed block"); 5630 case BitstreamEntry::EndBlock: 5631 return std::error_code(); 5632 case BitstreamEntry::Record: 5633 // The interesting case. 5634 break; 5635 } 5636 5637 Record.clear(); 5638 switch (Stream.readRecord(Entry.ID, Record)) { 5639 default: // Default behavior: ignore. 5640 break; 5641 case bitc::MST_CODE_ENTRY: { 5642 // MST_ENTRY: [modid, namechar x N] 5643 if (convertToString(Record, 1, ModulePath)) 5644 return error("Invalid record"); 5645 uint64_t ModuleId = Record[0]; 5646 StringRef ModulePathInMap = TheIndex->addModulePath(ModulePath, ModuleId); 5647 ModuleIdMap[ModuleId] = ModulePathInMap; 5648 ModulePath.clear(); 5649 break; 5650 } 5651 } 5652 } 5653 llvm_unreachable("Exit infinite loop"); 5654 } 5655 5656 // Parse the function info index from the bitcode streamer into the given index. 5657 std::error_code FunctionIndexBitcodeReader::parseSummaryIndexInto( 5658 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I) { 5659 TheIndex = I; 5660 5661 if (std::error_code EC = initStream(std::move(Streamer))) 5662 return EC; 5663 5664 // Sniff for the signature. 5665 if (!hasValidBitcodeHeader(Stream)) 5666 return error("Invalid bitcode signature"); 5667 5668 // We expect a number of well-defined blocks, though we don't necessarily 5669 // need to understand them all. 5670 while (1) { 5671 if (Stream.AtEndOfStream()) { 5672 // We didn't really read a proper Module block. 5673 return error("Malformed block"); 5674 } 5675 5676 BitstreamEntry Entry = 5677 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 5678 5679 if (Entry.Kind != BitstreamEntry::SubBlock) 5680 return error("Malformed block"); 5681 5682 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 5683 // building the function summary index. 5684 if (Entry.ID == bitc::MODULE_BLOCK_ID) 5685 return parseModule(); 5686 5687 if (Stream.SkipBlock()) 5688 return error("Invalid record"); 5689 } 5690 } 5691 5692 // Parse the function information at the given offset in the buffer into 5693 // the index. Used to support lazy parsing of function summaries from the 5694 // combined index during importing. 5695 // TODO: This function is not yet complete as it won't have a consumer 5696 // until ThinLTO function importing is added. 5697 std::error_code FunctionIndexBitcodeReader::parseFunctionSummary( 5698 std::unique_ptr<DataStreamer> Streamer, FunctionInfoIndex *I, 5699 size_t FunctionSummaryOffset) { 5700 TheIndex = I; 5701 5702 if (std::error_code EC = initStream(std::move(Streamer))) 5703 return EC; 5704 5705 // Sniff for the signature. 5706 if (!hasValidBitcodeHeader(Stream)) 5707 return error("Invalid bitcode signature"); 5708 5709 Stream.JumpToBit(FunctionSummaryOffset); 5710 5711 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5712 5713 switch (Entry.Kind) { 5714 default: 5715 return error("Malformed block"); 5716 case BitstreamEntry::Record: 5717 // The expected case. 5718 break; 5719 } 5720 5721 // TODO: Read a record. This interface will be completed when ThinLTO 5722 // importing is added so that it can be tested. 5723 SmallVector<uint64_t, 64> Record; 5724 switch (Stream.readRecord(Entry.ID, Record)) { 5725 case bitc::FS_CODE_COMBINED_ENTRY: 5726 default: 5727 return error("Invalid record"); 5728 } 5729 5730 return std::error_code(); 5731 } 5732 5733 std::error_code 5734 FunctionIndexBitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5735 if (Streamer) 5736 return initLazyStream(std::move(Streamer)); 5737 return initStreamFromBuffer(); 5738 } 5739 5740 std::error_code FunctionIndexBitcodeReader::initStreamFromBuffer() { 5741 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 5742 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 5743 5744 if (Buffer->getBufferSize() & 3) 5745 return error("Invalid bitcode signature"); 5746 5747 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5748 // The magic number is 0x0B17C0DE stored in little endian. 5749 if (isBitcodeWrapper(BufPtr, BufEnd)) 5750 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5751 return error("Invalid bitcode wrapper header"); 5752 5753 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5754 Stream.init(&*StreamFile); 5755 5756 return std::error_code(); 5757 } 5758 5759 std::error_code FunctionIndexBitcodeReader::initLazyStream( 5760 std::unique_ptr<DataStreamer> Streamer) { 5761 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5762 // see it. 5763 auto OwnedBytes = 5764 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5765 StreamingMemoryObject &Bytes = *OwnedBytes; 5766 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5767 Stream.init(&*StreamFile); 5768 5769 unsigned char buf[16]; 5770 if (Bytes.readBytes(buf, 16, 0) != 16) 5771 return error("Invalid bitcode signature"); 5772 5773 if (!isBitcode(buf, buf + 16)) 5774 return error("Invalid bitcode signature"); 5775 5776 if (isBitcodeWrapper(buf, buf + 4)) { 5777 const unsigned char *bitcodeStart = buf; 5778 const unsigned char *bitcodeEnd = buf + 16; 5779 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5780 Bytes.dropLeadingBytes(bitcodeStart - buf); 5781 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5782 } 5783 return std::error_code(); 5784 } 5785 5786 namespace { 5787 class BitcodeErrorCategoryType : public std::error_category { 5788 const char *name() const LLVM_NOEXCEPT override { 5789 return "llvm.bitcode"; 5790 } 5791 std::string message(int IE) const override { 5792 BitcodeError E = static_cast<BitcodeError>(IE); 5793 switch (E) { 5794 case BitcodeError::InvalidBitcodeSignature: 5795 return "Invalid bitcode signature"; 5796 case BitcodeError::CorruptedBitcode: 5797 return "Corrupted bitcode"; 5798 } 5799 llvm_unreachable("Unknown error type!"); 5800 } 5801 }; 5802 } 5803 5804 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5805 5806 const std::error_category &llvm::BitcodeErrorCategory() { 5807 return *ErrorCategory; 5808 } 5809 5810 //===----------------------------------------------------------------------===// 5811 // External interface 5812 //===----------------------------------------------------------------------===// 5813 5814 static ErrorOr<std::unique_ptr<Module>> 5815 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 5816 BitcodeReader *R, LLVMContext &Context, 5817 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 5818 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5819 M->setMaterializer(R); 5820 5821 auto cleanupOnError = [&](std::error_code EC) { 5822 R->releaseBuffer(); // Never take ownership on error. 5823 return EC; 5824 }; 5825 5826 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5827 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 5828 ShouldLazyLoadMetadata)) 5829 return cleanupOnError(EC); 5830 5831 if (MaterializeAll) { 5832 // Read in the entire module, and destroy the BitcodeReader. 5833 if (std::error_code EC = M->materializeAll()) 5834 return cleanupOnError(EC); 5835 } else { 5836 // Resolve forward references from blockaddresses. 5837 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 5838 return cleanupOnError(EC); 5839 } 5840 return std::move(M); 5841 } 5842 5843 /// \brief Get a lazy one-at-time loading module from bitcode. 5844 /// 5845 /// This isn't always used in a lazy context. In particular, it's also used by 5846 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 5847 /// in forward-referenced functions from block address references. 5848 /// 5849 /// \param[in] MaterializeAll Set to \c true if we should materialize 5850 /// everything. 5851 static ErrorOr<std::unique_ptr<Module>> 5852 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 5853 LLVMContext &Context, bool MaterializeAll, 5854 bool ShouldLazyLoadMetadata = false) { 5855 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 5856 5857 ErrorOr<std::unique_ptr<Module>> Ret = 5858 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 5859 MaterializeAll, ShouldLazyLoadMetadata); 5860 if (!Ret) 5861 return Ret; 5862 5863 Buffer.release(); // The BitcodeReader owns it now. 5864 return Ret; 5865 } 5866 5867 ErrorOr<std::unique_ptr<Module>> 5868 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 5869 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 5870 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 5871 ShouldLazyLoadMetadata); 5872 } 5873 5874 ErrorOr<std::unique_ptr<Module>> 5875 llvm::getStreamedBitcodeModule(StringRef Name, 5876 std::unique_ptr<DataStreamer> Streamer, 5877 LLVMContext &Context) { 5878 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 5879 BitcodeReader *R = new BitcodeReader(Context); 5880 5881 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 5882 false); 5883 } 5884 5885 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5886 LLVMContext &Context) { 5887 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5888 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 5889 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5890 // written. We must defer until the Module has been fully materialized. 5891 } 5892 5893 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 5894 LLVMContext &Context) { 5895 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5896 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 5897 ErrorOr<std::string> Triple = R->parseTriple(); 5898 if (Triple.getError()) 5899 return ""; 5900 return Triple.get(); 5901 } 5902 5903 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 5904 LLVMContext &Context) { 5905 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5906 BitcodeReader R(Buf.release(), Context); 5907 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 5908 if (ProducerString.getError()) 5909 return ""; 5910 return ProducerString.get(); 5911 } 5912 5913 // Parse the specified bitcode buffer, returning the function info index. 5914 // If IsLazy is false, parse the entire function summary into 5915 // the index. Otherwise skip the function summary section, and only create 5916 // an index object with a map from function name to function summary offset. 5917 // The index is used to perform lazy function summary reading later. 5918 ErrorOr<std::unique_ptr<FunctionInfoIndex>> 5919 llvm::getFunctionInfoIndex(MemoryBufferRef Buffer, 5920 DiagnosticHandlerFunction DiagnosticHandler, 5921 bool IsLazy) { 5922 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5923 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, IsLazy); 5924 5925 auto Index = llvm::make_unique<FunctionInfoIndex>(); 5926 5927 auto cleanupOnError = [&](std::error_code EC) { 5928 R.releaseBuffer(); // Never take ownership on error. 5929 return EC; 5930 }; 5931 5932 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 5933 return cleanupOnError(EC); 5934 5935 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5936 return std::move(Index); 5937 } 5938 5939 // Check if the given bitcode buffer contains a function summary block. 5940 bool llvm::hasFunctionSummary(MemoryBufferRef Buffer, 5941 DiagnosticHandlerFunction DiagnosticHandler) { 5942 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5943 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler, false, true); 5944 5945 auto cleanupOnError = [&](std::error_code EC) { 5946 R.releaseBuffer(); // Never take ownership on error. 5947 return false; 5948 }; 5949 5950 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 5951 return cleanupOnError(EC); 5952 5953 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5954 return R.foundFuncSummary(); 5955 } 5956 5957 // This method supports lazy reading of function summary data from the combined 5958 // index during ThinLTO function importing. When reading the combined index 5959 // file, getFunctionInfoIndex is first invoked with IsLazy=true. 5960 // Then this method is called for each function considered for importing, 5961 // to parse the summary information for the given function name into 5962 // the index. 5963 std::error_code llvm::readFunctionSummary( 5964 MemoryBufferRef Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5965 StringRef FunctionName, std::unique_ptr<FunctionInfoIndex> Index) { 5966 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 5967 FunctionIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 5968 5969 auto cleanupOnError = [&](std::error_code EC) { 5970 R.releaseBuffer(); // Never take ownership on error. 5971 return EC; 5972 }; 5973 5974 // Lookup the given function name in the FunctionMap, which may 5975 // contain a list of function infos in the case of a COMDAT. Walk through 5976 // and parse each function summary info at the function summary offset 5977 // recorded when parsing the value symbol table. 5978 for (const auto &FI : Index->getFunctionInfoList(FunctionName)) { 5979 size_t FunctionSummaryOffset = FI->bitcodeIndex(); 5980 if (std::error_code EC = 5981 R.parseFunctionSummary(nullptr, Index.get(), FunctionSummaryOffset)) 5982 return cleanupOnError(EC); 5983 } 5984 5985 Buf.release(); // The FunctionIndexBitcodeReader owns it now. 5986 return std::error_code(); 5987 } 5988