1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Support/DataStream.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <deque> 37 using namespace llvm; 38 39 namespace { 40 enum { 41 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 42 }; 43 44 class BitcodeReaderValueList { 45 std::vector<WeakVH> ValuePtrs; 46 47 /// ResolveConstants - As we resolve forward-referenced constants, we add 48 /// information about them to this vector. This allows us to resolve them in 49 /// bulk instead of resolving each reference at a time. See the code in 50 /// ResolveConstantForwardRefs for more information about this. 51 /// 52 /// The key of this vector is the placeholder constant, the value is the slot 53 /// number that holds the resolved value. 54 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 55 ResolveConstantsTy ResolveConstants; 56 LLVMContext &Context; 57 public: 58 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 59 ~BitcodeReaderValueList() { 60 assert(ResolveConstants.empty() && "Constants not resolved?"); 61 } 62 63 // vector compatibility methods 64 unsigned size() const { return ValuePtrs.size(); } 65 void resize(unsigned N) { ValuePtrs.resize(N); } 66 void push_back(Value *V) { 67 ValuePtrs.push_back(V); 68 } 69 70 void clear() { 71 assert(ResolveConstants.empty() && "Constants not resolved?"); 72 ValuePtrs.clear(); 73 } 74 75 Value *operator[](unsigned i) const { 76 assert(i < ValuePtrs.size()); 77 return ValuePtrs[i]; 78 } 79 80 Value *back() const { return ValuePtrs.back(); } 81 void pop_back() { ValuePtrs.pop_back(); } 82 bool empty() const { return ValuePtrs.empty(); } 83 void shrinkTo(unsigned N) { 84 assert(N <= size() && "Invalid shrinkTo request!"); 85 ValuePtrs.resize(N); 86 } 87 88 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 89 Value *getValueFwdRef(unsigned Idx, Type *Ty); 90 91 void AssignValue(Value *V, unsigned Idx); 92 93 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 94 /// resolves any forward references. 95 void ResolveConstantForwardRefs(); 96 }; 97 98 class BitcodeReaderMDValueList { 99 unsigned NumFwdRefs; 100 bool AnyFwdRefs; 101 unsigned MinFwdRef; 102 unsigned MaxFwdRef; 103 std::vector<TrackingMDRef> MDValuePtrs; 104 105 LLVMContext &Context; 106 public: 107 BitcodeReaderMDValueList(LLVMContext &C) 108 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 109 110 // vector compatibility methods 111 unsigned size() const { return MDValuePtrs.size(); } 112 void resize(unsigned N) { MDValuePtrs.resize(N); } 113 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 114 void clear() { MDValuePtrs.clear(); } 115 Metadata *back() const { return MDValuePtrs.back(); } 116 void pop_back() { MDValuePtrs.pop_back(); } 117 bool empty() const { return MDValuePtrs.empty(); } 118 119 Metadata *operator[](unsigned i) const { 120 assert(i < MDValuePtrs.size()); 121 return MDValuePtrs[i]; 122 } 123 124 void shrinkTo(unsigned N) { 125 assert(N <= size() && "Invalid shrinkTo request!"); 126 MDValuePtrs.resize(N); 127 } 128 129 Metadata *getValueFwdRef(unsigned Idx); 130 void AssignValue(Metadata *MD, unsigned Idx); 131 void tryToResolveCycles(); 132 }; 133 134 class BitcodeReader : public GVMaterializer { 135 LLVMContext &Context; 136 DiagnosticHandlerFunction DiagnosticHandler; 137 Module *TheModule; 138 std::unique_ptr<MemoryBuffer> Buffer; 139 std::unique_ptr<BitstreamReader> StreamFile; 140 BitstreamCursor Stream; 141 DataStreamer *LazyStreamer; 142 uint64_t NextUnreadBit; 143 bool SeenValueSymbolTable; 144 145 std::vector<Type*> TypeList; 146 BitcodeReaderValueList ValueList; 147 BitcodeReaderMDValueList MDValueList; 148 std::vector<Comdat *> ComdatList; 149 SmallVector<Instruction *, 64> InstructionList; 150 151 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 152 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 153 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 154 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 155 156 SmallVector<Instruction*, 64> InstsWithTBAATag; 157 158 /// MAttributes - The set of attributes by index. Index zero in the 159 /// file is for null, and is thus not represented here. As such all indices 160 /// are off by one. 161 std::vector<AttributeSet> MAttributes; 162 163 /// \brief The set of attribute groups. 164 std::map<unsigned, AttributeSet> MAttributeGroups; 165 166 /// FunctionBBs - While parsing a function body, this is a list of the basic 167 /// blocks for the function. 168 std::vector<BasicBlock*> FunctionBBs; 169 170 // When reading the module header, this list is populated with functions that 171 // have bodies later in the file. 172 std::vector<Function*> FunctionsWithBodies; 173 174 // When intrinsic functions are encountered which require upgrading they are 175 // stored here with their replacement function. 176 typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap; 177 UpgradedIntrinsicMap UpgradedIntrinsics; 178 179 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 180 DenseMap<unsigned, unsigned> MDKindMap; 181 182 // Several operations happen after the module header has been read, but 183 // before function bodies are processed. This keeps track of whether 184 // we've done this yet. 185 bool SeenFirstFunctionBody; 186 187 /// DeferredFunctionInfo - When function bodies are initially scanned, this 188 /// map contains info about where to find deferred function body in the 189 /// stream. 190 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 191 192 /// When Metadata block is initially scanned when parsing the module, we may 193 /// choose to defer parsing of the metadata. This vector contains info about 194 /// which Metadata blocks are deferred. 195 std::vector<uint64_t> DeferredMetadataInfo; 196 197 /// These are basic blocks forward-referenced by block addresses. They are 198 /// inserted lazily into functions when they're loaded. The basic block ID is 199 /// its index into the vector. 200 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 201 std::deque<Function *> BasicBlockFwdRefQueue; 202 203 /// UseRelativeIDs - Indicates that we are using a new encoding for 204 /// instruction operands where most operands in the current 205 /// FUNCTION_BLOCK are encoded relative to the instruction number, 206 /// for a more compact encoding. Some instruction operands are not 207 /// relative to the instruction ID: basic block numbers, and types. 208 /// Once the old style function blocks have been phased out, we would 209 /// not need this flag. 210 bool UseRelativeIDs; 211 212 /// True if all functions will be materialized, negating the need to process 213 /// (e.g.) blockaddress forward references. 214 bool WillMaterializeAllForwardRefs; 215 216 /// Functions that have block addresses taken. This is usually empty. 217 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 218 219 /// True if any Metadata block has been materialized. 220 bool IsMetadataMaterialized; 221 222 bool StripDebugInfo = false; 223 224 public: 225 std::error_code Error(BitcodeError E, const Twine &Message); 226 std::error_code Error(BitcodeError E); 227 std::error_code Error(const Twine &Message); 228 229 explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 230 DiagnosticHandlerFunction DiagnosticHandler); 231 explicit BitcodeReader(DataStreamer *streamer, LLVMContext &C, 232 DiagnosticHandlerFunction DiagnosticHandler); 233 ~BitcodeReader() override { FreeState(); } 234 235 std::error_code materializeForwardReferencedFunctions(); 236 237 void FreeState(); 238 239 void releaseBuffer(); 240 241 bool isDematerializable(const GlobalValue *GV) const override; 242 std::error_code materialize(GlobalValue *GV) override; 243 std::error_code materializeModule(Module *M) override; 244 std::vector<StructType *> getIdentifiedStructTypes() const override; 245 void dematerialize(GlobalValue *GV) override; 246 247 /// @brief Main interface to parsing a bitcode buffer. 248 /// @returns true if an error occurred. 249 std::error_code ParseBitcodeInto(Module *M, 250 bool ShouldLazyLoadMetadata = false); 251 252 /// @brief Cheap mechanism to just extract module triple 253 /// @returns true if an error occurred. 254 ErrorOr<std::string> parseTriple(); 255 256 static uint64_t decodeSignRotatedValue(uint64_t V); 257 258 /// Materialize any deferred Metadata block. 259 std::error_code materializeMetadata() override; 260 261 void setStripDebugInfo() override; 262 263 private: 264 std::vector<StructType *> IdentifiedStructTypes; 265 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 266 StructType *createIdentifiedStructType(LLVMContext &Context); 267 268 Type *getTypeByID(unsigned ID); 269 Value *getFnValueByID(unsigned ID, Type *Ty) { 270 if (Ty && Ty->isMetadataTy()) 271 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 272 return ValueList.getValueFwdRef(ID, Ty); 273 } 274 Metadata *getFnMetadataByID(unsigned ID) { 275 return MDValueList.getValueFwdRef(ID); 276 } 277 BasicBlock *getBasicBlock(unsigned ID) const { 278 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 279 return FunctionBBs[ID]; 280 } 281 AttributeSet getAttributes(unsigned i) const { 282 if (i-1 < MAttributes.size()) 283 return MAttributes[i-1]; 284 return AttributeSet(); 285 } 286 287 /// getValueTypePair - Read a value/type pair out of the specified record from 288 /// slot 'Slot'. Increment Slot past the number of slots used in the record. 289 /// Return true on failure. 290 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 291 unsigned InstNum, Value *&ResVal) { 292 if (Slot == Record.size()) return true; 293 unsigned ValNo = (unsigned)Record[Slot++]; 294 // Adjust the ValNo, if it was encoded relative to the InstNum. 295 if (UseRelativeIDs) 296 ValNo = InstNum - ValNo; 297 if (ValNo < InstNum) { 298 // If this is not a forward reference, just return the value we already 299 // have. 300 ResVal = getFnValueByID(ValNo, nullptr); 301 return ResVal == nullptr; 302 } 303 if (Slot == Record.size()) 304 return true; 305 306 unsigned TypeNo = (unsigned)Record[Slot++]; 307 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 308 return ResVal == nullptr; 309 } 310 311 /// popValue - Read a value out of the specified record from slot 'Slot'. 312 /// Increment Slot past the number of slots used by the value in the record. 313 /// Return true if there is an error. 314 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 315 unsigned InstNum, Type *Ty, Value *&ResVal) { 316 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 317 return true; 318 // All values currently take a single record slot. 319 ++Slot; 320 return false; 321 } 322 323 /// getValue -- Like popValue, but does not increment the Slot number. 324 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 325 unsigned InstNum, Type *Ty, Value *&ResVal) { 326 ResVal = getValue(Record, Slot, InstNum, Ty); 327 return ResVal == nullptr; 328 } 329 330 /// getValue -- Version of getValue that returns ResVal directly, 331 /// or 0 if there is an error. 332 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 333 unsigned InstNum, Type *Ty) { 334 if (Slot == Record.size()) return nullptr; 335 unsigned ValNo = (unsigned)Record[Slot]; 336 // Adjust the ValNo, if it was encoded relative to the InstNum. 337 if (UseRelativeIDs) 338 ValNo = InstNum - ValNo; 339 return getFnValueByID(ValNo, Ty); 340 } 341 342 /// getValueSigned -- Like getValue, but decodes signed VBRs. 343 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 344 unsigned InstNum, Type *Ty) { 345 if (Slot == Record.size()) return nullptr; 346 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 347 // Adjust the ValNo, if it was encoded relative to the InstNum. 348 if (UseRelativeIDs) 349 ValNo = InstNum - ValNo; 350 return getFnValueByID(ValNo, Ty); 351 } 352 353 /// Converts alignment exponent (i.e. power of two (or zero)) to the 354 /// corresponding alignment to use. If alignment is too large, returns 355 /// a corresponding error code. 356 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 357 std::error_code ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 358 std::error_code ParseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 359 std::error_code ParseAttributeBlock(); 360 std::error_code ParseAttributeGroupBlock(); 361 std::error_code ParseTypeTable(); 362 std::error_code ParseTypeTableBody(); 363 364 std::error_code ParseValueSymbolTable(); 365 std::error_code ParseConstants(); 366 std::error_code RememberAndSkipFunctionBody(); 367 /// Save the positions of the Metadata blocks and skip parsing the blocks. 368 std::error_code rememberAndSkipMetadata(); 369 std::error_code ParseFunctionBody(Function *F); 370 std::error_code GlobalCleanup(); 371 std::error_code ResolveGlobalAndAliasInits(); 372 std::error_code ParseMetadata(); 373 std::error_code ParseMetadataAttachment(Function &F); 374 ErrorOr<std::string> parseModuleTriple(); 375 std::error_code ParseUseLists(); 376 std::error_code InitStream(); 377 std::error_code InitStreamFromBuffer(); 378 std::error_code InitLazyStream(); 379 std::error_code FindFunctionInStream( 380 Function *F, 381 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 382 }; 383 } // namespace 384 385 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 386 DiagnosticSeverity Severity, 387 const Twine &Msg) 388 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 389 390 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 391 392 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 393 std::error_code EC, const Twine &Message) { 394 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 395 DiagnosticHandler(DI); 396 return EC; 397 } 398 399 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 400 std::error_code EC) { 401 return Error(DiagnosticHandler, EC, EC.message()); 402 } 403 404 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 405 const Twine &Message) { 406 return Error(DiagnosticHandler, 407 make_error_code(BitcodeError::CorruptedBitcode), Message); 408 } 409 410 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 411 return ::Error(DiagnosticHandler, make_error_code(E), Message); 412 } 413 414 std::error_code BitcodeReader::Error(const Twine &Message) { 415 return ::Error(DiagnosticHandler, 416 make_error_code(BitcodeError::CorruptedBitcode), Message); 417 } 418 419 std::error_code BitcodeReader::Error(BitcodeError E) { 420 return ::Error(DiagnosticHandler, make_error_code(E)); 421 } 422 423 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 424 LLVMContext &C) { 425 if (F) 426 return F; 427 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 428 } 429 430 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 431 DiagnosticHandlerFunction DiagnosticHandler) 432 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 433 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 434 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 435 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 436 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 437 438 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 439 DiagnosticHandlerFunction DiagnosticHandler) 440 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 441 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 442 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 443 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 444 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 445 446 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 447 if (WillMaterializeAllForwardRefs) 448 return std::error_code(); 449 450 // Prevent recursion. 451 WillMaterializeAllForwardRefs = true; 452 453 while (!BasicBlockFwdRefQueue.empty()) { 454 Function *F = BasicBlockFwdRefQueue.front(); 455 BasicBlockFwdRefQueue.pop_front(); 456 assert(F && "Expected valid function"); 457 if (!BasicBlockFwdRefs.count(F)) 458 // Already materialized. 459 continue; 460 461 // Check for a function that isn't materializable to prevent an infinite 462 // loop. When parsing a blockaddress stored in a global variable, there 463 // isn't a trivial way to check if a function will have a body without a 464 // linear search through FunctionsWithBodies, so just check it here. 465 if (!F->isMaterializable()) 466 return Error("Never resolved function from blockaddress"); 467 468 // Try to materialize F. 469 if (std::error_code EC = materialize(F)) 470 return EC; 471 } 472 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 473 474 // Reset state. 475 WillMaterializeAllForwardRefs = false; 476 return std::error_code(); 477 } 478 479 void BitcodeReader::FreeState() { 480 Buffer = nullptr; 481 std::vector<Type*>().swap(TypeList); 482 ValueList.clear(); 483 MDValueList.clear(); 484 std::vector<Comdat *>().swap(ComdatList); 485 486 std::vector<AttributeSet>().swap(MAttributes); 487 std::vector<BasicBlock*>().swap(FunctionBBs); 488 std::vector<Function*>().swap(FunctionsWithBodies); 489 DeferredFunctionInfo.clear(); 490 DeferredMetadataInfo.clear(); 491 MDKindMap.clear(); 492 493 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 494 BasicBlockFwdRefQueue.clear(); 495 } 496 497 //===----------------------------------------------------------------------===// 498 // Helper functions to implement forward reference resolution, etc. 499 //===----------------------------------------------------------------------===// 500 501 /// ConvertToString - Convert a string from a record into an std::string, return 502 /// true on failure. 503 template<typename StrTy> 504 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 505 StrTy &Result) { 506 if (Idx > Record.size()) 507 return true; 508 509 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 510 Result += (char)Record[i]; 511 return false; 512 } 513 514 static bool hasImplicitComdat(size_t Val) { 515 switch (Val) { 516 default: 517 return false; 518 case 1: // Old WeakAnyLinkage 519 case 4: // Old LinkOnceAnyLinkage 520 case 10: // Old WeakODRLinkage 521 case 11: // Old LinkOnceODRLinkage 522 return true; 523 } 524 } 525 526 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 527 switch (Val) { 528 default: // Map unknown/new linkages to external 529 case 0: 530 return GlobalValue::ExternalLinkage; 531 case 2: 532 return GlobalValue::AppendingLinkage; 533 case 3: 534 return GlobalValue::InternalLinkage; 535 case 5: 536 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 537 case 6: 538 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 539 case 7: 540 return GlobalValue::ExternalWeakLinkage; 541 case 8: 542 return GlobalValue::CommonLinkage; 543 case 9: 544 return GlobalValue::PrivateLinkage; 545 case 12: 546 return GlobalValue::AvailableExternallyLinkage; 547 case 13: 548 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 549 case 14: 550 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 551 case 15: 552 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 553 case 1: // Old value with implicit comdat. 554 case 16: 555 return GlobalValue::WeakAnyLinkage; 556 case 10: // Old value with implicit comdat. 557 case 17: 558 return GlobalValue::WeakODRLinkage; 559 case 4: // Old value with implicit comdat. 560 case 18: 561 return GlobalValue::LinkOnceAnyLinkage; 562 case 11: // Old value with implicit comdat. 563 case 19: 564 return GlobalValue::LinkOnceODRLinkage; 565 } 566 } 567 568 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 569 switch (Val) { 570 default: // Map unknown visibilities to default. 571 case 0: return GlobalValue::DefaultVisibility; 572 case 1: return GlobalValue::HiddenVisibility; 573 case 2: return GlobalValue::ProtectedVisibility; 574 } 575 } 576 577 static GlobalValue::DLLStorageClassTypes 578 GetDecodedDLLStorageClass(unsigned Val) { 579 switch (Val) { 580 default: // Map unknown values to default. 581 case 0: return GlobalValue::DefaultStorageClass; 582 case 1: return GlobalValue::DLLImportStorageClass; 583 case 2: return GlobalValue::DLLExportStorageClass; 584 } 585 } 586 587 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 588 switch (Val) { 589 case 0: return GlobalVariable::NotThreadLocal; 590 default: // Map unknown non-zero value to general dynamic. 591 case 1: return GlobalVariable::GeneralDynamicTLSModel; 592 case 2: return GlobalVariable::LocalDynamicTLSModel; 593 case 3: return GlobalVariable::InitialExecTLSModel; 594 case 4: return GlobalVariable::LocalExecTLSModel; 595 } 596 } 597 598 static int GetDecodedCastOpcode(unsigned Val) { 599 switch (Val) { 600 default: return -1; 601 case bitc::CAST_TRUNC : return Instruction::Trunc; 602 case bitc::CAST_ZEXT : return Instruction::ZExt; 603 case bitc::CAST_SEXT : return Instruction::SExt; 604 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 605 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 606 case bitc::CAST_UITOFP : return Instruction::UIToFP; 607 case bitc::CAST_SITOFP : return Instruction::SIToFP; 608 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 609 case bitc::CAST_FPEXT : return Instruction::FPExt; 610 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 611 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 612 case bitc::CAST_BITCAST : return Instruction::BitCast; 613 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 614 } 615 } 616 617 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 618 bool IsFP = Ty->isFPOrFPVectorTy(); 619 // BinOps are only valid for int/fp or vector of int/fp types 620 if (!IsFP && !Ty->isIntOrIntVectorTy()) 621 return -1; 622 623 switch (Val) { 624 default: 625 return -1; 626 case bitc::BINOP_ADD: 627 return IsFP ? Instruction::FAdd : Instruction::Add; 628 case bitc::BINOP_SUB: 629 return IsFP ? Instruction::FSub : Instruction::Sub; 630 case bitc::BINOP_MUL: 631 return IsFP ? Instruction::FMul : Instruction::Mul; 632 case bitc::BINOP_UDIV: 633 return IsFP ? -1 : Instruction::UDiv; 634 case bitc::BINOP_SDIV: 635 return IsFP ? Instruction::FDiv : Instruction::SDiv; 636 case bitc::BINOP_UREM: 637 return IsFP ? -1 : Instruction::URem; 638 case bitc::BINOP_SREM: 639 return IsFP ? Instruction::FRem : Instruction::SRem; 640 case bitc::BINOP_SHL: 641 return IsFP ? -1 : Instruction::Shl; 642 case bitc::BINOP_LSHR: 643 return IsFP ? -1 : Instruction::LShr; 644 case bitc::BINOP_ASHR: 645 return IsFP ? -1 : Instruction::AShr; 646 case bitc::BINOP_AND: 647 return IsFP ? -1 : Instruction::And; 648 case bitc::BINOP_OR: 649 return IsFP ? -1 : Instruction::Or; 650 case bitc::BINOP_XOR: 651 return IsFP ? -1 : Instruction::Xor; 652 } 653 } 654 655 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 656 switch (Val) { 657 default: return AtomicRMWInst::BAD_BINOP; 658 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 659 case bitc::RMW_ADD: return AtomicRMWInst::Add; 660 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 661 case bitc::RMW_AND: return AtomicRMWInst::And; 662 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 663 case bitc::RMW_OR: return AtomicRMWInst::Or; 664 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 665 case bitc::RMW_MAX: return AtomicRMWInst::Max; 666 case bitc::RMW_MIN: return AtomicRMWInst::Min; 667 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 668 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 669 } 670 } 671 672 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 673 switch (Val) { 674 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 675 case bitc::ORDERING_UNORDERED: return Unordered; 676 case bitc::ORDERING_MONOTONIC: return Monotonic; 677 case bitc::ORDERING_ACQUIRE: return Acquire; 678 case bitc::ORDERING_RELEASE: return Release; 679 case bitc::ORDERING_ACQREL: return AcquireRelease; 680 default: // Map unknown orderings to sequentially-consistent. 681 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 682 } 683 } 684 685 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 686 switch (Val) { 687 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 688 default: // Map unknown scopes to cross-thread. 689 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 690 } 691 } 692 693 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 694 switch (Val) { 695 default: // Map unknown selection kinds to any. 696 case bitc::COMDAT_SELECTION_KIND_ANY: 697 return Comdat::Any; 698 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 699 return Comdat::ExactMatch; 700 case bitc::COMDAT_SELECTION_KIND_LARGEST: 701 return Comdat::Largest; 702 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 703 return Comdat::NoDuplicates; 704 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 705 return Comdat::SameSize; 706 } 707 } 708 709 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 710 switch (Val) { 711 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 712 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 713 } 714 } 715 716 namespace llvm { 717 namespace { 718 /// @brief A class for maintaining the slot number definition 719 /// as a placeholder for the actual definition for forward constants defs. 720 class ConstantPlaceHolder : public ConstantExpr { 721 void operator=(const ConstantPlaceHolder &) = delete; 722 public: 723 // allocate space for exactly one operand 724 void *operator new(size_t s) { 725 return User::operator new(s, 1); 726 } 727 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 728 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 729 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 730 } 731 732 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 733 static bool classof(const Value *V) { 734 return isa<ConstantExpr>(V) && 735 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 736 } 737 738 739 /// Provide fast operand accessors 740 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 741 }; 742 } 743 744 // FIXME: can we inherit this from ConstantExpr? 745 template <> 746 struct OperandTraits<ConstantPlaceHolder> : 747 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 748 }; 749 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 750 } 751 752 753 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 754 if (Idx == size()) { 755 push_back(V); 756 return; 757 } 758 759 if (Idx >= size()) 760 resize(Idx+1); 761 762 WeakVH &OldV = ValuePtrs[Idx]; 763 if (!OldV) { 764 OldV = V; 765 return; 766 } 767 768 // Handle constants and non-constants (e.g. instrs) differently for 769 // efficiency. 770 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 771 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 772 OldV = V; 773 } else { 774 // If there was a forward reference to this value, replace it. 775 Value *PrevVal = OldV; 776 OldV->replaceAllUsesWith(V); 777 delete PrevVal; 778 } 779 } 780 781 782 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 783 Type *Ty) { 784 if (Idx >= size()) 785 resize(Idx + 1); 786 787 if (Value *V = ValuePtrs[Idx]) { 788 assert(Ty == V->getType() && "Type mismatch in constant table!"); 789 return cast<Constant>(V); 790 } 791 792 // Create and return a placeholder, which will later be RAUW'd. 793 Constant *C = new ConstantPlaceHolder(Ty, Context); 794 ValuePtrs[Idx] = C; 795 return C; 796 } 797 798 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 799 // Bail out for a clearly invalid value. This would make us call resize(0) 800 if (Idx == UINT_MAX) 801 return nullptr; 802 803 if (Idx >= size()) 804 resize(Idx + 1); 805 806 if (Value *V = ValuePtrs[Idx]) { 807 // If the types don't match, it's invalid. 808 if (Ty && Ty != V->getType()) 809 return nullptr; 810 return V; 811 } 812 813 // No type specified, must be invalid reference. 814 if (!Ty) return nullptr; 815 816 // Create and return a placeholder, which will later be RAUW'd. 817 Value *V = new Argument(Ty); 818 ValuePtrs[Idx] = V; 819 return V; 820 } 821 822 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 823 /// resolves any forward references. The idea behind this is that we sometimes 824 /// get constants (such as large arrays) which reference *many* forward ref 825 /// constants. Replacing each of these causes a lot of thrashing when 826 /// building/reuniquing the constant. Instead of doing this, we look at all the 827 /// uses and rewrite all the place holders at once for any constant that uses 828 /// a placeholder. 829 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 830 // Sort the values by-pointer so that they are efficient to look up with a 831 // binary search. 832 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 833 834 SmallVector<Constant*, 64> NewOps; 835 836 while (!ResolveConstants.empty()) { 837 Value *RealVal = operator[](ResolveConstants.back().second); 838 Constant *Placeholder = ResolveConstants.back().first; 839 ResolveConstants.pop_back(); 840 841 // Loop over all users of the placeholder, updating them to reference the 842 // new value. If they reference more than one placeholder, update them all 843 // at once. 844 while (!Placeholder->use_empty()) { 845 auto UI = Placeholder->user_begin(); 846 User *U = *UI; 847 848 // If the using object isn't uniqued, just update the operands. This 849 // handles instructions and initializers for global variables. 850 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 851 UI.getUse().set(RealVal); 852 continue; 853 } 854 855 // Otherwise, we have a constant that uses the placeholder. Replace that 856 // constant with a new constant that has *all* placeholder uses updated. 857 Constant *UserC = cast<Constant>(U); 858 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 859 I != E; ++I) { 860 Value *NewOp; 861 if (!isa<ConstantPlaceHolder>(*I)) { 862 // Not a placeholder reference. 863 NewOp = *I; 864 } else if (*I == Placeholder) { 865 // Common case is that it just references this one placeholder. 866 NewOp = RealVal; 867 } else { 868 // Otherwise, look up the placeholder in ResolveConstants. 869 ResolveConstantsTy::iterator It = 870 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 871 std::pair<Constant*, unsigned>(cast<Constant>(*I), 872 0)); 873 assert(It != ResolveConstants.end() && It->first == *I); 874 NewOp = operator[](It->second); 875 } 876 877 NewOps.push_back(cast<Constant>(NewOp)); 878 } 879 880 // Make the new constant. 881 Constant *NewC; 882 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 883 NewC = ConstantArray::get(UserCA->getType(), NewOps); 884 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 885 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 886 } else if (isa<ConstantVector>(UserC)) { 887 NewC = ConstantVector::get(NewOps); 888 } else { 889 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 890 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 891 } 892 893 UserC->replaceAllUsesWith(NewC); 894 UserC->destroyConstant(); 895 NewOps.clear(); 896 } 897 898 // Update all ValueHandles, they should be the only users at this point. 899 Placeholder->replaceAllUsesWith(RealVal); 900 delete Placeholder; 901 } 902 } 903 904 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 905 if (Idx == size()) { 906 push_back(MD); 907 return; 908 } 909 910 if (Idx >= size()) 911 resize(Idx+1); 912 913 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 914 if (!OldMD) { 915 OldMD.reset(MD); 916 return; 917 } 918 919 // If there was a forward reference to this value, replace it. 920 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 921 PrevMD->replaceAllUsesWith(MD); 922 --NumFwdRefs; 923 } 924 925 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 926 if (Idx >= size()) 927 resize(Idx + 1); 928 929 if (Metadata *MD = MDValuePtrs[Idx]) 930 return MD; 931 932 // Track forward refs to be resolved later. 933 if (AnyFwdRefs) { 934 MinFwdRef = std::min(MinFwdRef, Idx); 935 MaxFwdRef = std::max(MaxFwdRef, Idx); 936 } else { 937 AnyFwdRefs = true; 938 MinFwdRef = MaxFwdRef = Idx; 939 } 940 ++NumFwdRefs; 941 942 // Create and return a placeholder, which will later be RAUW'd. 943 Metadata *MD = MDNode::getTemporary(Context, None).release(); 944 MDValuePtrs[Idx].reset(MD); 945 return MD; 946 } 947 948 void BitcodeReaderMDValueList::tryToResolveCycles() { 949 if (!AnyFwdRefs) 950 // Nothing to do. 951 return; 952 953 if (NumFwdRefs) 954 // Still forward references... can't resolve cycles. 955 return; 956 957 // Resolve any cycles. 958 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 959 auto &MD = MDValuePtrs[I]; 960 auto *N = dyn_cast_or_null<MDNode>(MD); 961 if (!N) 962 continue; 963 964 assert(!N->isTemporary() && "Unexpected forward reference"); 965 N->resolveCycles(); 966 } 967 968 // Make sure we return early again until there's another forward ref. 969 AnyFwdRefs = false; 970 } 971 972 Type *BitcodeReader::getTypeByID(unsigned ID) { 973 // The type table size is always specified correctly. 974 if (ID >= TypeList.size()) 975 return nullptr; 976 977 if (Type *Ty = TypeList[ID]) 978 return Ty; 979 980 // If we have a forward reference, the only possible case is when it is to a 981 // named struct. Just create a placeholder for now. 982 return TypeList[ID] = createIdentifiedStructType(Context); 983 } 984 985 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 986 StringRef Name) { 987 auto *Ret = StructType::create(Context, Name); 988 IdentifiedStructTypes.push_back(Ret); 989 return Ret; 990 } 991 992 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 993 auto *Ret = StructType::create(Context); 994 IdentifiedStructTypes.push_back(Ret); 995 return Ret; 996 } 997 998 999 //===----------------------------------------------------------------------===// 1000 // Functions for parsing blocks from the bitcode file 1001 //===----------------------------------------------------------------------===// 1002 1003 1004 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1005 /// been decoded from the given integer. This function must stay in sync with 1006 /// 'encodeLLVMAttributesForBitcode'. 1007 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1008 uint64_t EncodedAttrs) { 1009 // FIXME: Remove in 4.0. 1010 1011 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1012 // the bits above 31 down by 11 bits. 1013 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1014 assert((!Alignment || isPowerOf2_32(Alignment)) && 1015 "Alignment must be a power of two."); 1016 1017 if (Alignment) 1018 B.addAlignmentAttr(Alignment); 1019 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1020 (EncodedAttrs & 0xffff)); 1021 } 1022 1023 std::error_code BitcodeReader::ParseAttributeBlock() { 1024 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1025 return Error("Invalid record"); 1026 1027 if (!MAttributes.empty()) 1028 return Error("Invalid multiple blocks"); 1029 1030 SmallVector<uint64_t, 64> Record; 1031 1032 SmallVector<AttributeSet, 8> Attrs; 1033 1034 // Read all the records. 1035 while (1) { 1036 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1037 1038 switch (Entry.Kind) { 1039 case BitstreamEntry::SubBlock: // Handled for us already. 1040 case BitstreamEntry::Error: 1041 return Error("Malformed block"); 1042 case BitstreamEntry::EndBlock: 1043 return std::error_code(); 1044 case BitstreamEntry::Record: 1045 // The interesting case. 1046 break; 1047 } 1048 1049 // Read a record. 1050 Record.clear(); 1051 switch (Stream.readRecord(Entry.ID, Record)) { 1052 default: // Default behavior: ignore. 1053 break; 1054 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1055 // FIXME: Remove in 4.0. 1056 if (Record.size() & 1) 1057 return Error("Invalid record"); 1058 1059 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1060 AttrBuilder B; 1061 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1062 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1063 } 1064 1065 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1066 Attrs.clear(); 1067 break; 1068 } 1069 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1070 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1071 Attrs.push_back(MAttributeGroups[Record[i]]); 1072 1073 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1074 Attrs.clear(); 1075 break; 1076 } 1077 } 1078 } 1079 } 1080 1081 // Returns Attribute::None on unrecognized codes. 1082 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 1083 switch (Code) { 1084 default: 1085 return Attribute::None; 1086 case bitc::ATTR_KIND_ALIGNMENT: 1087 return Attribute::Alignment; 1088 case bitc::ATTR_KIND_ALWAYS_INLINE: 1089 return Attribute::AlwaysInline; 1090 case bitc::ATTR_KIND_BUILTIN: 1091 return Attribute::Builtin; 1092 case bitc::ATTR_KIND_BY_VAL: 1093 return Attribute::ByVal; 1094 case bitc::ATTR_KIND_IN_ALLOCA: 1095 return Attribute::InAlloca; 1096 case bitc::ATTR_KIND_COLD: 1097 return Attribute::Cold; 1098 case bitc::ATTR_KIND_INLINE_HINT: 1099 return Attribute::InlineHint; 1100 case bitc::ATTR_KIND_IN_REG: 1101 return Attribute::InReg; 1102 case bitc::ATTR_KIND_JUMP_TABLE: 1103 return Attribute::JumpTable; 1104 case bitc::ATTR_KIND_MIN_SIZE: 1105 return Attribute::MinSize; 1106 case bitc::ATTR_KIND_NAKED: 1107 return Attribute::Naked; 1108 case bitc::ATTR_KIND_NEST: 1109 return Attribute::Nest; 1110 case bitc::ATTR_KIND_NO_ALIAS: 1111 return Attribute::NoAlias; 1112 case bitc::ATTR_KIND_NO_BUILTIN: 1113 return Attribute::NoBuiltin; 1114 case bitc::ATTR_KIND_NO_CAPTURE: 1115 return Attribute::NoCapture; 1116 case bitc::ATTR_KIND_NO_DUPLICATE: 1117 return Attribute::NoDuplicate; 1118 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1119 return Attribute::NoImplicitFloat; 1120 case bitc::ATTR_KIND_NO_INLINE: 1121 return Attribute::NoInline; 1122 case bitc::ATTR_KIND_NON_LAZY_BIND: 1123 return Attribute::NonLazyBind; 1124 case bitc::ATTR_KIND_NON_NULL: 1125 return Attribute::NonNull; 1126 case bitc::ATTR_KIND_DEREFERENCEABLE: 1127 return Attribute::Dereferenceable; 1128 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1129 return Attribute::DereferenceableOrNull; 1130 case bitc::ATTR_KIND_NO_RED_ZONE: 1131 return Attribute::NoRedZone; 1132 case bitc::ATTR_KIND_NO_RETURN: 1133 return Attribute::NoReturn; 1134 case bitc::ATTR_KIND_NO_UNWIND: 1135 return Attribute::NoUnwind; 1136 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1137 return Attribute::OptimizeForSize; 1138 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1139 return Attribute::OptimizeNone; 1140 case bitc::ATTR_KIND_READ_NONE: 1141 return Attribute::ReadNone; 1142 case bitc::ATTR_KIND_READ_ONLY: 1143 return Attribute::ReadOnly; 1144 case bitc::ATTR_KIND_RETURNED: 1145 return Attribute::Returned; 1146 case bitc::ATTR_KIND_RETURNS_TWICE: 1147 return Attribute::ReturnsTwice; 1148 case bitc::ATTR_KIND_S_EXT: 1149 return Attribute::SExt; 1150 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1151 return Attribute::StackAlignment; 1152 case bitc::ATTR_KIND_STACK_PROTECT: 1153 return Attribute::StackProtect; 1154 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1155 return Attribute::StackProtectReq; 1156 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1157 return Attribute::StackProtectStrong; 1158 case bitc::ATTR_KIND_STRUCT_RET: 1159 return Attribute::StructRet; 1160 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1161 return Attribute::SanitizeAddress; 1162 case bitc::ATTR_KIND_SANITIZE_THREAD: 1163 return Attribute::SanitizeThread; 1164 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1165 return Attribute::SanitizeMemory; 1166 case bitc::ATTR_KIND_UW_TABLE: 1167 return Attribute::UWTable; 1168 case bitc::ATTR_KIND_Z_EXT: 1169 return Attribute::ZExt; 1170 } 1171 } 1172 1173 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1174 unsigned &Alignment) { 1175 // Note: Alignment in bitcode files is incremented by 1, so that zero 1176 // can be used for default alignment. 1177 if (Exponent > Value::MaxAlignmentExponent + 1) 1178 return Error("Invalid alignment value"); 1179 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1180 return std::error_code(); 1181 } 1182 1183 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 1184 Attribute::AttrKind *Kind) { 1185 *Kind = GetAttrFromCode(Code); 1186 if (*Kind == Attribute::None) 1187 return Error(BitcodeError::CorruptedBitcode, 1188 "Unknown attribute kind (" + Twine(Code) + ")"); 1189 return std::error_code(); 1190 } 1191 1192 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 1193 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1194 return Error("Invalid record"); 1195 1196 if (!MAttributeGroups.empty()) 1197 return Error("Invalid multiple blocks"); 1198 1199 SmallVector<uint64_t, 64> Record; 1200 1201 // Read all the records. 1202 while (1) { 1203 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1204 1205 switch (Entry.Kind) { 1206 case BitstreamEntry::SubBlock: // Handled for us already. 1207 case BitstreamEntry::Error: 1208 return Error("Malformed block"); 1209 case BitstreamEntry::EndBlock: 1210 return std::error_code(); 1211 case BitstreamEntry::Record: 1212 // The interesting case. 1213 break; 1214 } 1215 1216 // Read a record. 1217 Record.clear(); 1218 switch (Stream.readRecord(Entry.ID, Record)) { 1219 default: // Default behavior: ignore. 1220 break; 1221 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1222 if (Record.size() < 3) 1223 return Error("Invalid record"); 1224 1225 uint64_t GrpID = Record[0]; 1226 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1227 1228 AttrBuilder B; 1229 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1230 if (Record[i] == 0) { // Enum attribute 1231 Attribute::AttrKind Kind; 1232 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1233 return EC; 1234 1235 B.addAttribute(Kind); 1236 } else if (Record[i] == 1) { // Integer attribute 1237 Attribute::AttrKind Kind; 1238 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1239 return EC; 1240 if (Kind == Attribute::Alignment) 1241 B.addAlignmentAttr(Record[++i]); 1242 else if (Kind == Attribute::StackAlignment) 1243 B.addStackAlignmentAttr(Record[++i]); 1244 else if (Kind == Attribute::Dereferenceable) 1245 B.addDereferenceableAttr(Record[++i]); 1246 else if (Kind == Attribute::DereferenceableOrNull) 1247 B.addDereferenceableOrNullAttr(Record[++i]); 1248 } else { // String attribute 1249 assert((Record[i] == 3 || Record[i] == 4) && 1250 "Invalid attribute group entry"); 1251 bool HasValue = (Record[i++] == 4); 1252 SmallString<64> KindStr; 1253 SmallString<64> ValStr; 1254 1255 while (Record[i] != 0 && i != e) 1256 KindStr += Record[i++]; 1257 assert(Record[i] == 0 && "Kind string not null terminated"); 1258 1259 if (HasValue) { 1260 // Has a value associated with it. 1261 ++i; // Skip the '0' that terminates the "kind" string. 1262 while (Record[i] != 0 && i != e) 1263 ValStr += Record[i++]; 1264 assert(Record[i] == 0 && "Value string not null terminated"); 1265 } 1266 1267 B.addAttribute(KindStr.str(), ValStr.str()); 1268 } 1269 } 1270 1271 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1272 break; 1273 } 1274 } 1275 } 1276 } 1277 1278 std::error_code BitcodeReader::ParseTypeTable() { 1279 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1280 return Error("Invalid record"); 1281 1282 return ParseTypeTableBody(); 1283 } 1284 1285 std::error_code BitcodeReader::ParseTypeTableBody() { 1286 if (!TypeList.empty()) 1287 return Error("Invalid multiple blocks"); 1288 1289 SmallVector<uint64_t, 64> Record; 1290 unsigned NumRecords = 0; 1291 1292 SmallString<64> TypeName; 1293 1294 // Read all the records for this type table. 1295 while (1) { 1296 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1297 1298 switch (Entry.Kind) { 1299 case BitstreamEntry::SubBlock: // Handled for us already. 1300 case BitstreamEntry::Error: 1301 return Error("Malformed block"); 1302 case BitstreamEntry::EndBlock: 1303 if (NumRecords != TypeList.size()) 1304 return Error("Malformed block"); 1305 return std::error_code(); 1306 case BitstreamEntry::Record: 1307 // The interesting case. 1308 break; 1309 } 1310 1311 // Read a record. 1312 Record.clear(); 1313 Type *ResultTy = nullptr; 1314 switch (Stream.readRecord(Entry.ID, Record)) { 1315 default: 1316 return Error("Invalid value"); 1317 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1318 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1319 // type list. This allows us to reserve space. 1320 if (Record.size() < 1) 1321 return Error("Invalid record"); 1322 TypeList.resize(Record[0]); 1323 continue; 1324 case bitc::TYPE_CODE_VOID: // VOID 1325 ResultTy = Type::getVoidTy(Context); 1326 break; 1327 case bitc::TYPE_CODE_HALF: // HALF 1328 ResultTy = Type::getHalfTy(Context); 1329 break; 1330 case bitc::TYPE_CODE_FLOAT: // FLOAT 1331 ResultTy = Type::getFloatTy(Context); 1332 break; 1333 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1334 ResultTy = Type::getDoubleTy(Context); 1335 break; 1336 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1337 ResultTy = Type::getX86_FP80Ty(Context); 1338 break; 1339 case bitc::TYPE_CODE_FP128: // FP128 1340 ResultTy = Type::getFP128Ty(Context); 1341 break; 1342 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1343 ResultTy = Type::getPPC_FP128Ty(Context); 1344 break; 1345 case bitc::TYPE_CODE_LABEL: // LABEL 1346 ResultTy = Type::getLabelTy(Context); 1347 break; 1348 case bitc::TYPE_CODE_METADATA: // METADATA 1349 ResultTy = Type::getMetadataTy(Context); 1350 break; 1351 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1352 ResultTy = Type::getX86_MMXTy(Context); 1353 break; 1354 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1355 if (Record.size() < 1) 1356 return Error("Invalid record"); 1357 1358 uint64_t NumBits = Record[0]; 1359 if (NumBits < IntegerType::MIN_INT_BITS || 1360 NumBits > IntegerType::MAX_INT_BITS) 1361 return Error("Bitwidth for integer type out of range"); 1362 ResultTy = IntegerType::get(Context, NumBits); 1363 break; 1364 } 1365 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1366 // [pointee type, address space] 1367 if (Record.size() < 1) 1368 return Error("Invalid record"); 1369 unsigned AddressSpace = 0; 1370 if (Record.size() == 2) 1371 AddressSpace = Record[1]; 1372 ResultTy = getTypeByID(Record[0]); 1373 if (!ResultTy || 1374 !PointerType::isValidElementType(ResultTy)) 1375 return Error("Invalid type"); 1376 ResultTy = PointerType::get(ResultTy, AddressSpace); 1377 break; 1378 } 1379 case bitc::TYPE_CODE_FUNCTION_OLD: { 1380 // FIXME: attrid is dead, remove it in LLVM 4.0 1381 // FUNCTION: [vararg, attrid, retty, paramty x N] 1382 if (Record.size() < 3) 1383 return Error("Invalid record"); 1384 SmallVector<Type*, 8> ArgTys; 1385 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1386 if (Type *T = getTypeByID(Record[i])) 1387 ArgTys.push_back(T); 1388 else 1389 break; 1390 } 1391 1392 ResultTy = getTypeByID(Record[2]); 1393 if (!ResultTy || ArgTys.size() < Record.size()-3) 1394 return Error("Invalid type"); 1395 1396 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1397 break; 1398 } 1399 case bitc::TYPE_CODE_FUNCTION: { 1400 // FUNCTION: [vararg, retty, paramty x N] 1401 if (Record.size() < 2) 1402 return Error("Invalid record"); 1403 SmallVector<Type*, 8> ArgTys; 1404 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1405 if (Type *T = getTypeByID(Record[i])) { 1406 if (!FunctionType::isValidArgumentType(T)) 1407 return Error("Invalid function argument type"); 1408 ArgTys.push_back(T); 1409 } 1410 else 1411 break; 1412 } 1413 1414 ResultTy = getTypeByID(Record[1]); 1415 if (!ResultTy || ArgTys.size() < Record.size()-2) 1416 return Error("Invalid type"); 1417 1418 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1419 break; 1420 } 1421 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1422 if (Record.size() < 1) 1423 return Error("Invalid record"); 1424 SmallVector<Type*, 8> EltTys; 1425 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1426 if (Type *T = getTypeByID(Record[i])) 1427 EltTys.push_back(T); 1428 else 1429 break; 1430 } 1431 if (EltTys.size() != Record.size()-1) 1432 return Error("Invalid type"); 1433 ResultTy = StructType::get(Context, EltTys, Record[0]); 1434 break; 1435 } 1436 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1437 if (ConvertToString(Record, 0, TypeName)) 1438 return Error("Invalid record"); 1439 continue; 1440 1441 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1442 if (Record.size() < 1) 1443 return Error("Invalid record"); 1444 1445 if (NumRecords >= TypeList.size()) 1446 return Error("Invalid TYPE table"); 1447 1448 // Check to see if this was forward referenced, if so fill in the temp. 1449 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1450 if (Res) { 1451 Res->setName(TypeName); 1452 TypeList[NumRecords] = nullptr; 1453 } else // Otherwise, create a new struct. 1454 Res = createIdentifiedStructType(Context, TypeName); 1455 TypeName.clear(); 1456 1457 SmallVector<Type*, 8> EltTys; 1458 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1459 if (Type *T = getTypeByID(Record[i])) 1460 EltTys.push_back(T); 1461 else 1462 break; 1463 } 1464 if (EltTys.size() != Record.size()-1) 1465 return Error("Invalid record"); 1466 Res->setBody(EltTys, Record[0]); 1467 ResultTy = Res; 1468 break; 1469 } 1470 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1471 if (Record.size() != 1) 1472 return Error("Invalid record"); 1473 1474 if (NumRecords >= TypeList.size()) 1475 return Error("Invalid TYPE table"); 1476 1477 // Check to see if this was forward referenced, if so fill in the temp. 1478 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1479 if (Res) { 1480 Res->setName(TypeName); 1481 TypeList[NumRecords] = nullptr; 1482 } else // Otherwise, create a new struct with no body. 1483 Res = createIdentifiedStructType(Context, TypeName); 1484 TypeName.clear(); 1485 ResultTy = Res; 1486 break; 1487 } 1488 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1489 if (Record.size() < 2) 1490 return Error("Invalid record"); 1491 ResultTy = getTypeByID(Record[1]); 1492 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1493 return Error("Invalid type"); 1494 ResultTy = ArrayType::get(ResultTy, Record[0]); 1495 break; 1496 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1497 if (Record.size() < 2) 1498 return Error("Invalid record"); 1499 ResultTy = getTypeByID(Record[1]); 1500 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1501 return Error("Invalid type"); 1502 ResultTy = VectorType::get(ResultTy, Record[0]); 1503 break; 1504 } 1505 1506 if (NumRecords >= TypeList.size()) 1507 return Error("Invalid TYPE table"); 1508 if (TypeList[NumRecords]) 1509 return Error( 1510 "Invalid TYPE table: Only named structs can be forward referenced"); 1511 assert(ResultTy && "Didn't read a type?"); 1512 TypeList[NumRecords++] = ResultTy; 1513 } 1514 } 1515 1516 std::error_code BitcodeReader::ParseValueSymbolTable() { 1517 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1518 return Error("Invalid record"); 1519 1520 SmallVector<uint64_t, 64> Record; 1521 1522 Triple TT(TheModule->getTargetTriple()); 1523 1524 // Read all the records for this value table. 1525 SmallString<128> ValueName; 1526 while (1) { 1527 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1528 1529 switch (Entry.Kind) { 1530 case BitstreamEntry::SubBlock: // Handled for us already. 1531 case BitstreamEntry::Error: 1532 return Error("Malformed block"); 1533 case BitstreamEntry::EndBlock: 1534 return std::error_code(); 1535 case BitstreamEntry::Record: 1536 // The interesting case. 1537 break; 1538 } 1539 1540 // Read a record. 1541 Record.clear(); 1542 switch (Stream.readRecord(Entry.ID, Record)) { 1543 default: // Default behavior: unknown type. 1544 break; 1545 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1546 if (ConvertToString(Record, 1, ValueName)) 1547 return Error("Invalid record"); 1548 unsigned ValueID = Record[0]; 1549 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1550 return Error("Invalid record"); 1551 Value *V = ValueList[ValueID]; 1552 1553 V->setName(StringRef(ValueName.data(), ValueName.size())); 1554 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1555 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1556 if (TT.isOSBinFormatMachO()) 1557 GO->setComdat(nullptr); 1558 else 1559 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1560 } 1561 } 1562 ValueName.clear(); 1563 break; 1564 } 1565 case bitc::VST_CODE_BBENTRY: { 1566 if (ConvertToString(Record, 1, ValueName)) 1567 return Error("Invalid record"); 1568 BasicBlock *BB = getBasicBlock(Record[0]); 1569 if (!BB) 1570 return Error("Invalid record"); 1571 1572 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1573 ValueName.clear(); 1574 break; 1575 } 1576 } 1577 } 1578 } 1579 1580 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1581 1582 std::error_code BitcodeReader::ParseMetadata() { 1583 IsMetadataMaterialized = true; 1584 unsigned NextMDValueNo = MDValueList.size(); 1585 1586 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1587 return Error("Invalid record"); 1588 1589 SmallVector<uint64_t, 64> Record; 1590 1591 auto getMD = 1592 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1593 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1594 if (ID) 1595 return getMD(ID - 1); 1596 return nullptr; 1597 }; 1598 auto getMDString = [&](unsigned ID) -> MDString *{ 1599 // This requires that the ID is not really a forward reference. In 1600 // particular, the MDString must already have been resolved. 1601 return cast_or_null<MDString>(getMDOrNull(ID)); 1602 }; 1603 1604 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1605 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1606 1607 // Read all the records. 1608 while (1) { 1609 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1610 1611 switch (Entry.Kind) { 1612 case BitstreamEntry::SubBlock: // Handled for us already. 1613 case BitstreamEntry::Error: 1614 return Error("Malformed block"); 1615 case BitstreamEntry::EndBlock: 1616 MDValueList.tryToResolveCycles(); 1617 return std::error_code(); 1618 case BitstreamEntry::Record: 1619 // The interesting case. 1620 break; 1621 } 1622 1623 // Read a record. 1624 Record.clear(); 1625 unsigned Code = Stream.readRecord(Entry.ID, Record); 1626 bool IsDistinct = false; 1627 switch (Code) { 1628 default: // Default behavior: ignore. 1629 break; 1630 case bitc::METADATA_NAME: { 1631 // Read name of the named metadata. 1632 SmallString<8> Name(Record.begin(), Record.end()); 1633 Record.clear(); 1634 Code = Stream.ReadCode(); 1635 1636 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1637 unsigned NextBitCode = Stream.readRecord(Code, Record); 1638 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1639 1640 // Read named metadata elements. 1641 unsigned Size = Record.size(); 1642 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1643 for (unsigned i = 0; i != Size; ++i) { 1644 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1645 if (!MD) 1646 return Error("Invalid record"); 1647 NMD->addOperand(MD); 1648 } 1649 break; 1650 } 1651 case bitc::METADATA_OLD_FN_NODE: { 1652 // FIXME: Remove in 4.0. 1653 // This is a LocalAsMetadata record, the only type of function-local 1654 // metadata. 1655 if (Record.size() % 2 == 1) 1656 return Error("Invalid record"); 1657 1658 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1659 // to be legal, but there's no upgrade path. 1660 auto dropRecord = [&] { 1661 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1662 }; 1663 if (Record.size() != 2) { 1664 dropRecord(); 1665 break; 1666 } 1667 1668 Type *Ty = getTypeByID(Record[0]); 1669 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1670 dropRecord(); 1671 break; 1672 } 1673 1674 MDValueList.AssignValue( 1675 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1676 NextMDValueNo++); 1677 break; 1678 } 1679 case bitc::METADATA_OLD_NODE: { 1680 // FIXME: Remove in 4.0. 1681 if (Record.size() % 2 == 1) 1682 return Error("Invalid record"); 1683 1684 unsigned Size = Record.size(); 1685 SmallVector<Metadata *, 8> Elts; 1686 for (unsigned i = 0; i != Size; i += 2) { 1687 Type *Ty = getTypeByID(Record[i]); 1688 if (!Ty) 1689 return Error("Invalid record"); 1690 if (Ty->isMetadataTy()) 1691 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1692 else if (!Ty->isVoidTy()) { 1693 auto *MD = 1694 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1695 assert(isa<ConstantAsMetadata>(MD) && 1696 "Expected non-function-local metadata"); 1697 Elts.push_back(MD); 1698 } else 1699 Elts.push_back(nullptr); 1700 } 1701 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1702 break; 1703 } 1704 case bitc::METADATA_VALUE: { 1705 if (Record.size() != 2) 1706 return Error("Invalid record"); 1707 1708 Type *Ty = getTypeByID(Record[0]); 1709 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1710 return Error("Invalid record"); 1711 1712 MDValueList.AssignValue( 1713 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1714 NextMDValueNo++); 1715 break; 1716 } 1717 case bitc::METADATA_DISTINCT_NODE: 1718 IsDistinct = true; 1719 // fallthrough... 1720 case bitc::METADATA_NODE: { 1721 SmallVector<Metadata *, 8> Elts; 1722 Elts.reserve(Record.size()); 1723 for (unsigned ID : Record) 1724 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1725 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1726 : MDNode::get(Context, Elts), 1727 NextMDValueNo++); 1728 break; 1729 } 1730 case bitc::METADATA_LOCATION: { 1731 if (Record.size() != 5) 1732 return Error("Invalid record"); 1733 1734 unsigned Line = Record[1]; 1735 unsigned Column = Record[2]; 1736 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1737 Metadata *InlinedAt = 1738 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1739 MDValueList.AssignValue( 1740 GET_OR_DISTINCT(DILocation, Record[0], 1741 (Context, Line, Column, Scope, InlinedAt)), 1742 NextMDValueNo++); 1743 break; 1744 } 1745 case bitc::METADATA_GENERIC_DEBUG: { 1746 if (Record.size() < 4) 1747 return Error("Invalid record"); 1748 1749 unsigned Tag = Record[1]; 1750 unsigned Version = Record[2]; 1751 1752 if (Tag >= 1u << 16 || Version != 0) 1753 return Error("Invalid record"); 1754 1755 auto *Header = getMDString(Record[3]); 1756 SmallVector<Metadata *, 8> DwarfOps; 1757 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1758 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1759 : nullptr); 1760 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 1761 (Context, Tag, Header, DwarfOps)), 1762 NextMDValueNo++); 1763 break; 1764 } 1765 case bitc::METADATA_SUBRANGE: { 1766 if (Record.size() != 3) 1767 return Error("Invalid record"); 1768 1769 MDValueList.AssignValue( 1770 GET_OR_DISTINCT(DISubrange, Record[0], 1771 (Context, Record[1], unrotateSign(Record[2]))), 1772 NextMDValueNo++); 1773 break; 1774 } 1775 case bitc::METADATA_ENUMERATOR: { 1776 if (Record.size() != 3) 1777 return Error("Invalid record"); 1778 1779 MDValueList.AssignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 1780 (Context, unrotateSign(Record[1]), 1781 getMDString(Record[2]))), 1782 NextMDValueNo++); 1783 break; 1784 } 1785 case bitc::METADATA_BASIC_TYPE: { 1786 if (Record.size() != 6) 1787 return Error("Invalid record"); 1788 1789 MDValueList.AssignValue( 1790 GET_OR_DISTINCT(DIBasicType, Record[0], 1791 (Context, Record[1], getMDString(Record[2]), 1792 Record[3], Record[4], Record[5])), 1793 NextMDValueNo++); 1794 break; 1795 } 1796 case bitc::METADATA_DERIVED_TYPE: { 1797 if (Record.size() != 12) 1798 return Error("Invalid record"); 1799 1800 MDValueList.AssignValue( 1801 GET_OR_DISTINCT(DIDerivedType, Record[0], 1802 (Context, Record[1], getMDString(Record[2]), 1803 getMDOrNull(Record[3]), Record[4], 1804 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1805 Record[7], Record[8], Record[9], Record[10], 1806 getMDOrNull(Record[11]))), 1807 NextMDValueNo++); 1808 break; 1809 } 1810 case bitc::METADATA_COMPOSITE_TYPE: { 1811 if (Record.size() != 16) 1812 return Error("Invalid record"); 1813 1814 MDValueList.AssignValue( 1815 GET_OR_DISTINCT(DICompositeType, Record[0], 1816 (Context, Record[1], getMDString(Record[2]), 1817 getMDOrNull(Record[3]), Record[4], 1818 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1819 Record[7], Record[8], Record[9], Record[10], 1820 getMDOrNull(Record[11]), Record[12], 1821 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1822 getMDString(Record[15]))), 1823 NextMDValueNo++); 1824 break; 1825 } 1826 case bitc::METADATA_SUBROUTINE_TYPE: { 1827 if (Record.size() != 3) 1828 return Error("Invalid record"); 1829 1830 MDValueList.AssignValue( 1831 GET_OR_DISTINCT(DISubroutineType, Record[0], 1832 (Context, Record[1], getMDOrNull(Record[2]))), 1833 NextMDValueNo++); 1834 break; 1835 } 1836 case bitc::METADATA_FILE: { 1837 if (Record.size() != 3) 1838 return Error("Invalid record"); 1839 1840 MDValueList.AssignValue( 1841 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 1842 getMDString(Record[2]))), 1843 NextMDValueNo++); 1844 break; 1845 } 1846 case bitc::METADATA_COMPILE_UNIT: { 1847 if (Record.size() != 14) 1848 return Error("Invalid record"); 1849 1850 MDValueList.AssignValue( 1851 GET_OR_DISTINCT(DICompileUnit, Record[0], 1852 (Context, Record[1], getMDOrNull(Record[2]), 1853 getMDString(Record[3]), Record[4], 1854 getMDString(Record[5]), Record[6], 1855 getMDString(Record[7]), Record[8], 1856 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1857 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1858 getMDOrNull(Record[13]))), 1859 NextMDValueNo++); 1860 break; 1861 } 1862 case bitc::METADATA_SUBPROGRAM: { 1863 if (Record.size() != 19) 1864 return Error("Invalid record"); 1865 1866 MDValueList.AssignValue( 1867 GET_OR_DISTINCT( 1868 DISubprogram, Record[0], 1869 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1870 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1871 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1872 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1873 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1874 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1875 NextMDValueNo++); 1876 break; 1877 } 1878 case bitc::METADATA_LEXICAL_BLOCK: { 1879 if (Record.size() != 5) 1880 return Error("Invalid record"); 1881 1882 MDValueList.AssignValue( 1883 GET_OR_DISTINCT(DILexicalBlock, Record[0], 1884 (Context, getMDOrNull(Record[1]), 1885 getMDOrNull(Record[2]), Record[3], Record[4])), 1886 NextMDValueNo++); 1887 break; 1888 } 1889 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1890 if (Record.size() != 4) 1891 return Error("Invalid record"); 1892 1893 MDValueList.AssignValue( 1894 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 1895 (Context, getMDOrNull(Record[1]), 1896 getMDOrNull(Record[2]), Record[3])), 1897 NextMDValueNo++); 1898 break; 1899 } 1900 case bitc::METADATA_NAMESPACE: { 1901 if (Record.size() != 5) 1902 return Error("Invalid record"); 1903 1904 MDValueList.AssignValue( 1905 GET_OR_DISTINCT(DINamespace, Record[0], 1906 (Context, getMDOrNull(Record[1]), 1907 getMDOrNull(Record[2]), getMDString(Record[3]), 1908 Record[4])), 1909 NextMDValueNo++); 1910 break; 1911 } 1912 case bitc::METADATA_TEMPLATE_TYPE: { 1913 if (Record.size() != 3) 1914 return Error("Invalid record"); 1915 1916 MDValueList.AssignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 1917 Record[0], 1918 (Context, getMDString(Record[1]), 1919 getMDOrNull(Record[2]))), 1920 NextMDValueNo++); 1921 break; 1922 } 1923 case bitc::METADATA_TEMPLATE_VALUE: { 1924 if (Record.size() != 5) 1925 return Error("Invalid record"); 1926 1927 MDValueList.AssignValue( 1928 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 1929 (Context, Record[1], getMDString(Record[2]), 1930 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1931 NextMDValueNo++); 1932 break; 1933 } 1934 case bitc::METADATA_GLOBAL_VAR: { 1935 if (Record.size() != 11) 1936 return Error("Invalid record"); 1937 1938 MDValueList.AssignValue( 1939 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 1940 (Context, getMDOrNull(Record[1]), 1941 getMDString(Record[2]), getMDString(Record[3]), 1942 getMDOrNull(Record[4]), Record[5], 1943 getMDOrNull(Record[6]), Record[7], Record[8], 1944 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1945 NextMDValueNo++); 1946 break; 1947 } 1948 case bitc::METADATA_LOCAL_VAR: { 1949 // 10th field is for the obseleted 'inlinedAt:' field. 1950 if (Record.size() != 9 && Record.size() != 10) 1951 return Error("Invalid record"); 1952 1953 MDValueList.AssignValue( 1954 GET_OR_DISTINCT(DILocalVariable, Record[0], 1955 (Context, Record[1], getMDOrNull(Record[2]), 1956 getMDString(Record[3]), getMDOrNull(Record[4]), 1957 Record[5], getMDOrNull(Record[6]), Record[7], 1958 Record[8])), 1959 NextMDValueNo++); 1960 break; 1961 } 1962 case bitc::METADATA_EXPRESSION: { 1963 if (Record.size() < 1) 1964 return Error("Invalid record"); 1965 1966 MDValueList.AssignValue( 1967 GET_OR_DISTINCT(DIExpression, Record[0], 1968 (Context, makeArrayRef(Record).slice(1))), 1969 NextMDValueNo++); 1970 break; 1971 } 1972 case bitc::METADATA_OBJC_PROPERTY: { 1973 if (Record.size() != 8) 1974 return Error("Invalid record"); 1975 1976 MDValueList.AssignValue( 1977 GET_OR_DISTINCT(DIObjCProperty, Record[0], 1978 (Context, getMDString(Record[1]), 1979 getMDOrNull(Record[2]), Record[3], 1980 getMDString(Record[4]), getMDString(Record[5]), 1981 Record[6], getMDOrNull(Record[7]))), 1982 NextMDValueNo++); 1983 break; 1984 } 1985 case bitc::METADATA_IMPORTED_ENTITY: { 1986 if (Record.size() != 6) 1987 return Error("Invalid record"); 1988 1989 MDValueList.AssignValue( 1990 GET_OR_DISTINCT(DIImportedEntity, Record[0], 1991 (Context, Record[1], getMDOrNull(Record[2]), 1992 getMDOrNull(Record[3]), Record[4], 1993 getMDString(Record[5]))), 1994 NextMDValueNo++); 1995 break; 1996 } 1997 case bitc::METADATA_STRING: { 1998 std::string String(Record.begin(), Record.end()); 1999 llvm::UpgradeMDStringConstant(String); 2000 Metadata *MD = MDString::get(Context, String); 2001 MDValueList.AssignValue(MD, NextMDValueNo++); 2002 break; 2003 } 2004 case bitc::METADATA_KIND: { 2005 if (Record.size() < 2) 2006 return Error("Invalid record"); 2007 2008 unsigned Kind = Record[0]; 2009 SmallString<8> Name(Record.begin()+1, Record.end()); 2010 2011 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2012 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2013 return Error("Conflicting METADATA_KIND records"); 2014 break; 2015 } 2016 } 2017 } 2018 #undef GET_OR_DISTINCT 2019 } 2020 2021 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 2022 /// the LSB for dense VBR encoding. 2023 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2024 if ((V & 1) == 0) 2025 return V >> 1; 2026 if (V != 1) 2027 return -(V >> 1); 2028 // There is no such thing as -0 with integers. "-0" really means MININT. 2029 return 1ULL << 63; 2030 } 2031 2032 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 2033 /// values and aliases that we can. 2034 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 2035 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2036 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2037 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2038 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2039 2040 GlobalInitWorklist.swap(GlobalInits); 2041 AliasInitWorklist.swap(AliasInits); 2042 FunctionPrefixWorklist.swap(FunctionPrefixes); 2043 FunctionPrologueWorklist.swap(FunctionPrologues); 2044 2045 while (!GlobalInitWorklist.empty()) { 2046 unsigned ValID = GlobalInitWorklist.back().second; 2047 if (ValID >= ValueList.size()) { 2048 // Not ready to resolve this yet, it requires something later in the file. 2049 GlobalInits.push_back(GlobalInitWorklist.back()); 2050 } else { 2051 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2052 GlobalInitWorklist.back().first->setInitializer(C); 2053 else 2054 return Error("Expected a constant"); 2055 } 2056 GlobalInitWorklist.pop_back(); 2057 } 2058 2059 while (!AliasInitWorklist.empty()) { 2060 unsigned ValID = AliasInitWorklist.back().second; 2061 if (ValID >= ValueList.size()) { 2062 AliasInits.push_back(AliasInitWorklist.back()); 2063 } else { 2064 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2065 AliasInitWorklist.back().first->setAliasee(C); 2066 else 2067 return Error("Expected a constant"); 2068 } 2069 AliasInitWorklist.pop_back(); 2070 } 2071 2072 while (!FunctionPrefixWorklist.empty()) { 2073 unsigned ValID = FunctionPrefixWorklist.back().second; 2074 if (ValID >= ValueList.size()) { 2075 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2076 } else { 2077 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2078 FunctionPrefixWorklist.back().first->setPrefixData(C); 2079 else 2080 return Error("Expected a constant"); 2081 } 2082 FunctionPrefixWorklist.pop_back(); 2083 } 2084 2085 while (!FunctionPrologueWorklist.empty()) { 2086 unsigned ValID = FunctionPrologueWorklist.back().second; 2087 if (ValID >= ValueList.size()) { 2088 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2089 } else { 2090 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2091 FunctionPrologueWorklist.back().first->setPrologueData(C); 2092 else 2093 return Error("Expected a constant"); 2094 } 2095 FunctionPrologueWorklist.pop_back(); 2096 } 2097 2098 return std::error_code(); 2099 } 2100 2101 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2102 SmallVector<uint64_t, 8> Words(Vals.size()); 2103 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2104 BitcodeReader::decodeSignRotatedValue); 2105 2106 return APInt(TypeBits, Words); 2107 } 2108 2109 std::error_code BitcodeReader::ParseConstants() { 2110 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2111 return Error("Invalid record"); 2112 2113 SmallVector<uint64_t, 64> Record; 2114 2115 // Read all the records for this value table. 2116 Type *CurTy = Type::getInt32Ty(Context); 2117 unsigned NextCstNo = ValueList.size(); 2118 while (1) { 2119 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2120 2121 switch (Entry.Kind) { 2122 case BitstreamEntry::SubBlock: // Handled for us already. 2123 case BitstreamEntry::Error: 2124 return Error("Malformed block"); 2125 case BitstreamEntry::EndBlock: 2126 if (NextCstNo != ValueList.size()) 2127 return Error("Invalid ronstant reference"); 2128 2129 // Once all the constants have been read, go through and resolve forward 2130 // references. 2131 ValueList.ResolveConstantForwardRefs(); 2132 return std::error_code(); 2133 case BitstreamEntry::Record: 2134 // The interesting case. 2135 break; 2136 } 2137 2138 // Read a record. 2139 Record.clear(); 2140 Value *V = nullptr; 2141 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2142 switch (BitCode) { 2143 default: // Default behavior: unknown constant 2144 case bitc::CST_CODE_UNDEF: // UNDEF 2145 V = UndefValue::get(CurTy); 2146 break; 2147 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2148 if (Record.empty()) 2149 return Error("Invalid record"); 2150 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2151 return Error("Invalid record"); 2152 CurTy = TypeList[Record[0]]; 2153 continue; // Skip the ValueList manipulation. 2154 case bitc::CST_CODE_NULL: // NULL 2155 V = Constant::getNullValue(CurTy); 2156 break; 2157 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2158 if (!CurTy->isIntegerTy() || Record.empty()) 2159 return Error("Invalid record"); 2160 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2161 break; 2162 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2163 if (!CurTy->isIntegerTy() || Record.empty()) 2164 return Error("Invalid record"); 2165 2166 APInt VInt = ReadWideAPInt(Record, 2167 cast<IntegerType>(CurTy)->getBitWidth()); 2168 V = ConstantInt::get(Context, VInt); 2169 2170 break; 2171 } 2172 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2173 if (Record.empty()) 2174 return Error("Invalid record"); 2175 if (CurTy->isHalfTy()) 2176 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2177 APInt(16, (uint16_t)Record[0]))); 2178 else if (CurTy->isFloatTy()) 2179 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2180 APInt(32, (uint32_t)Record[0]))); 2181 else if (CurTy->isDoubleTy()) 2182 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2183 APInt(64, Record[0]))); 2184 else if (CurTy->isX86_FP80Ty()) { 2185 // Bits are not stored the same way as a normal i80 APInt, compensate. 2186 uint64_t Rearrange[2]; 2187 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2188 Rearrange[1] = Record[0] >> 48; 2189 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2190 APInt(80, Rearrange))); 2191 } else if (CurTy->isFP128Ty()) 2192 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2193 APInt(128, Record))); 2194 else if (CurTy->isPPC_FP128Ty()) 2195 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2196 APInt(128, Record))); 2197 else 2198 V = UndefValue::get(CurTy); 2199 break; 2200 } 2201 2202 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2203 if (Record.empty()) 2204 return Error("Invalid record"); 2205 2206 unsigned Size = Record.size(); 2207 SmallVector<Constant*, 16> Elts; 2208 2209 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2210 for (unsigned i = 0; i != Size; ++i) 2211 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2212 STy->getElementType(i))); 2213 V = ConstantStruct::get(STy, Elts); 2214 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2215 Type *EltTy = ATy->getElementType(); 2216 for (unsigned i = 0; i != Size; ++i) 2217 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2218 V = ConstantArray::get(ATy, Elts); 2219 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2220 Type *EltTy = VTy->getElementType(); 2221 for (unsigned i = 0; i != Size; ++i) 2222 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2223 V = ConstantVector::get(Elts); 2224 } else { 2225 V = UndefValue::get(CurTy); 2226 } 2227 break; 2228 } 2229 case bitc::CST_CODE_STRING: // STRING: [values] 2230 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2231 if (Record.empty()) 2232 return Error("Invalid record"); 2233 2234 SmallString<16> Elts(Record.begin(), Record.end()); 2235 V = ConstantDataArray::getString(Context, Elts, 2236 BitCode == bitc::CST_CODE_CSTRING); 2237 break; 2238 } 2239 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2240 if (Record.empty()) 2241 return Error("Invalid record"); 2242 2243 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2244 unsigned Size = Record.size(); 2245 2246 if (EltTy->isIntegerTy(8)) { 2247 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2248 if (isa<VectorType>(CurTy)) 2249 V = ConstantDataVector::get(Context, Elts); 2250 else 2251 V = ConstantDataArray::get(Context, Elts); 2252 } else if (EltTy->isIntegerTy(16)) { 2253 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2254 if (isa<VectorType>(CurTy)) 2255 V = ConstantDataVector::get(Context, Elts); 2256 else 2257 V = ConstantDataArray::get(Context, Elts); 2258 } else if (EltTy->isIntegerTy(32)) { 2259 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2260 if (isa<VectorType>(CurTy)) 2261 V = ConstantDataVector::get(Context, Elts); 2262 else 2263 V = ConstantDataArray::get(Context, Elts); 2264 } else if (EltTy->isIntegerTy(64)) { 2265 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2266 if (isa<VectorType>(CurTy)) 2267 V = ConstantDataVector::get(Context, Elts); 2268 else 2269 V = ConstantDataArray::get(Context, Elts); 2270 } else if (EltTy->isFloatTy()) { 2271 SmallVector<float, 16> Elts(Size); 2272 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2273 if (isa<VectorType>(CurTy)) 2274 V = ConstantDataVector::get(Context, Elts); 2275 else 2276 V = ConstantDataArray::get(Context, Elts); 2277 } else if (EltTy->isDoubleTy()) { 2278 SmallVector<double, 16> Elts(Size); 2279 std::transform(Record.begin(), Record.end(), Elts.begin(), 2280 BitsToDouble); 2281 if (isa<VectorType>(CurTy)) 2282 V = ConstantDataVector::get(Context, Elts); 2283 else 2284 V = ConstantDataArray::get(Context, Elts); 2285 } else { 2286 return Error("Invalid type for value"); 2287 } 2288 break; 2289 } 2290 2291 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2292 if (Record.size() < 3) 2293 return Error("Invalid record"); 2294 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 2295 if (Opc < 0) { 2296 V = UndefValue::get(CurTy); // Unknown binop. 2297 } else { 2298 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2299 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2300 unsigned Flags = 0; 2301 if (Record.size() >= 4) { 2302 if (Opc == Instruction::Add || 2303 Opc == Instruction::Sub || 2304 Opc == Instruction::Mul || 2305 Opc == Instruction::Shl) { 2306 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2307 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2308 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2309 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2310 } else if (Opc == Instruction::SDiv || 2311 Opc == Instruction::UDiv || 2312 Opc == Instruction::LShr || 2313 Opc == Instruction::AShr) { 2314 if (Record[3] & (1 << bitc::PEO_EXACT)) 2315 Flags |= SDivOperator::IsExact; 2316 } 2317 } 2318 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2319 } 2320 break; 2321 } 2322 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2323 if (Record.size() < 3) 2324 return Error("Invalid record"); 2325 int Opc = GetDecodedCastOpcode(Record[0]); 2326 if (Opc < 0) { 2327 V = UndefValue::get(CurTy); // Unknown cast. 2328 } else { 2329 Type *OpTy = getTypeByID(Record[1]); 2330 if (!OpTy) 2331 return Error("Invalid record"); 2332 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2333 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2334 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2335 } 2336 break; 2337 } 2338 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2339 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2340 unsigned OpNum = 0; 2341 Type *PointeeType = nullptr; 2342 if (Record.size() % 2) 2343 PointeeType = getTypeByID(Record[OpNum++]); 2344 SmallVector<Constant*, 16> Elts; 2345 while (OpNum != Record.size()) { 2346 Type *ElTy = getTypeByID(Record[OpNum++]); 2347 if (!ElTy) 2348 return Error("Invalid record"); 2349 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2350 } 2351 2352 if (PointeeType && 2353 PointeeType != 2354 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2355 ->getElementType()) 2356 return Error("Explicit gep operator type does not match pointee type " 2357 "of pointer operand"); 2358 2359 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2360 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2361 BitCode == 2362 bitc::CST_CODE_CE_INBOUNDS_GEP); 2363 break; 2364 } 2365 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2366 if (Record.size() < 3) 2367 return Error("Invalid record"); 2368 2369 Type *SelectorTy = Type::getInt1Ty(Context); 2370 2371 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2372 // vector. Otherwise, it must be a single bit. 2373 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2374 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2375 VTy->getNumElements()); 2376 2377 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2378 SelectorTy), 2379 ValueList.getConstantFwdRef(Record[1],CurTy), 2380 ValueList.getConstantFwdRef(Record[2],CurTy)); 2381 break; 2382 } 2383 case bitc::CST_CODE_CE_EXTRACTELT 2384 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2385 if (Record.size() < 3) 2386 return Error("Invalid record"); 2387 VectorType *OpTy = 2388 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2389 if (!OpTy) 2390 return Error("Invalid record"); 2391 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2392 Constant *Op1 = nullptr; 2393 if (Record.size() == 4) { 2394 Type *IdxTy = getTypeByID(Record[2]); 2395 if (!IdxTy) 2396 return Error("Invalid record"); 2397 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2398 } else // TODO: Remove with llvm 4.0 2399 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2400 if (!Op1) 2401 return Error("Invalid record"); 2402 V = ConstantExpr::getExtractElement(Op0, Op1); 2403 break; 2404 } 2405 case bitc::CST_CODE_CE_INSERTELT 2406 : { // CE_INSERTELT: [opval, opval, opty, opval] 2407 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2408 if (Record.size() < 3 || !OpTy) 2409 return Error("Invalid record"); 2410 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2411 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2412 OpTy->getElementType()); 2413 Constant *Op2 = nullptr; 2414 if (Record.size() == 4) { 2415 Type *IdxTy = getTypeByID(Record[2]); 2416 if (!IdxTy) 2417 return Error("Invalid record"); 2418 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2419 } else // TODO: Remove with llvm 4.0 2420 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2421 if (!Op2) 2422 return Error("Invalid record"); 2423 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2424 break; 2425 } 2426 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2427 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2428 if (Record.size() < 3 || !OpTy) 2429 return Error("Invalid record"); 2430 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2431 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2432 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2433 OpTy->getNumElements()); 2434 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2435 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2436 break; 2437 } 2438 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2439 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2440 VectorType *OpTy = 2441 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2442 if (Record.size() < 4 || !RTy || !OpTy) 2443 return Error("Invalid record"); 2444 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2445 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2446 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2447 RTy->getNumElements()); 2448 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2449 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2450 break; 2451 } 2452 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2453 if (Record.size() < 4) 2454 return Error("Invalid record"); 2455 Type *OpTy = getTypeByID(Record[0]); 2456 if (!OpTy) 2457 return Error("Invalid record"); 2458 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2459 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2460 2461 if (OpTy->isFPOrFPVectorTy()) 2462 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2463 else 2464 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2465 break; 2466 } 2467 // This maintains backward compatibility, pre-asm dialect keywords. 2468 // FIXME: Remove with the 4.0 release. 2469 case bitc::CST_CODE_INLINEASM_OLD: { 2470 if (Record.size() < 2) 2471 return Error("Invalid record"); 2472 std::string AsmStr, ConstrStr; 2473 bool HasSideEffects = Record[0] & 1; 2474 bool IsAlignStack = Record[0] >> 1; 2475 unsigned AsmStrSize = Record[1]; 2476 if (2+AsmStrSize >= Record.size()) 2477 return Error("Invalid record"); 2478 unsigned ConstStrSize = Record[2+AsmStrSize]; 2479 if (3+AsmStrSize+ConstStrSize > Record.size()) 2480 return Error("Invalid record"); 2481 2482 for (unsigned i = 0; i != AsmStrSize; ++i) 2483 AsmStr += (char)Record[2+i]; 2484 for (unsigned i = 0; i != ConstStrSize; ++i) 2485 ConstrStr += (char)Record[3+AsmStrSize+i]; 2486 PointerType *PTy = cast<PointerType>(CurTy); 2487 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2488 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2489 break; 2490 } 2491 // This version adds support for the asm dialect keywords (e.g., 2492 // inteldialect). 2493 case bitc::CST_CODE_INLINEASM: { 2494 if (Record.size() < 2) 2495 return Error("Invalid record"); 2496 std::string AsmStr, ConstrStr; 2497 bool HasSideEffects = Record[0] & 1; 2498 bool IsAlignStack = (Record[0] >> 1) & 1; 2499 unsigned AsmDialect = Record[0] >> 2; 2500 unsigned AsmStrSize = Record[1]; 2501 if (2+AsmStrSize >= Record.size()) 2502 return Error("Invalid record"); 2503 unsigned ConstStrSize = Record[2+AsmStrSize]; 2504 if (3+AsmStrSize+ConstStrSize > Record.size()) 2505 return Error("Invalid record"); 2506 2507 for (unsigned i = 0; i != AsmStrSize; ++i) 2508 AsmStr += (char)Record[2+i]; 2509 for (unsigned i = 0; i != ConstStrSize; ++i) 2510 ConstrStr += (char)Record[3+AsmStrSize+i]; 2511 PointerType *PTy = cast<PointerType>(CurTy); 2512 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2513 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2514 InlineAsm::AsmDialect(AsmDialect)); 2515 break; 2516 } 2517 case bitc::CST_CODE_BLOCKADDRESS:{ 2518 if (Record.size() < 3) 2519 return Error("Invalid record"); 2520 Type *FnTy = getTypeByID(Record[0]); 2521 if (!FnTy) 2522 return Error("Invalid record"); 2523 Function *Fn = 2524 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2525 if (!Fn) 2526 return Error("Invalid record"); 2527 2528 // Don't let Fn get dematerialized. 2529 BlockAddressesTaken.insert(Fn); 2530 2531 // If the function is already parsed we can insert the block address right 2532 // away. 2533 BasicBlock *BB; 2534 unsigned BBID = Record[2]; 2535 if (!BBID) 2536 // Invalid reference to entry block. 2537 return Error("Invalid ID"); 2538 if (!Fn->empty()) { 2539 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2540 for (size_t I = 0, E = BBID; I != E; ++I) { 2541 if (BBI == BBE) 2542 return Error("Invalid ID"); 2543 ++BBI; 2544 } 2545 BB = BBI; 2546 } else { 2547 // Otherwise insert a placeholder and remember it so it can be inserted 2548 // when the function is parsed. 2549 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2550 if (FwdBBs.empty()) 2551 BasicBlockFwdRefQueue.push_back(Fn); 2552 if (FwdBBs.size() < BBID + 1) 2553 FwdBBs.resize(BBID + 1); 2554 if (!FwdBBs[BBID]) 2555 FwdBBs[BBID] = BasicBlock::Create(Context); 2556 BB = FwdBBs[BBID]; 2557 } 2558 V = BlockAddress::get(Fn, BB); 2559 break; 2560 } 2561 } 2562 2563 ValueList.AssignValue(V, NextCstNo); 2564 ++NextCstNo; 2565 } 2566 } 2567 2568 std::error_code BitcodeReader::ParseUseLists() { 2569 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2570 return Error("Invalid record"); 2571 2572 // Read all the records. 2573 SmallVector<uint64_t, 64> Record; 2574 while (1) { 2575 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2576 2577 switch (Entry.Kind) { 2578 case BitstreamEntry::SubBlock: // Handled for us already. 2579 case BitstreamEntry::Error: 2580 return Error("Malformed block"); 2581 case BitstreamEntry::EndBlock: 2582 return std::error_code(); 2583 case BitstreamEntry::Record: 2584 // The interesting case. 2585 break; 2586 } 2587 2588 // Read a use list record. 2589 Record.clear(); 2590 bool IsBB = false; 2591 switch (Stream.readRecord(Entry.ID, Record)) { 2592 default: // Default behavior: unknown type. 2593 break; 2594 case bitc::USELIST_CODE_BB: 2595 IsBB = true; 2596 // fallthrough 2597 case bitc::USELIST_CODE_DEFAULT: { 2598 unsigned RecordLength = Record.size(); 2599 if (RecordLength < 3) 2600 // Records should have at least an ID and two indexes. 2601 return Error("Invalid record"); 2602 unsigned ID = Record.back(); 2603 Record.pop_back(); 2604 2605 Value *V; 2606 if (IsBB) { 2607 assert(ID < FunctionBBs.size() && "Basic block not found"); 2608 V = FunctionBBs[ID]; 2609 } else 2610 V = ValueList[ID]; 2611 unsigned NumUses = 0; 2612 SmallDenseMap<const Use *, unsigned, 16> Order; 2613 for (const Use &U : V->uses()) { 2614 if (++NumUses > Record.size()) 2615 break; 2616 Order[&U] = Record[NumUses - 1]; 2617 } 2618 if (Order.size() != Record.size() || NumUses > Record.size()) 2619 // Mismatches can happen if the functions are being materialized lazily 2620 // (out-of-order), or a value has been upgraded. 2621 break; 2622 2623 V->sortUseList([&](const Use &L, const Use &R) { 2624 return Order.lookup(&L) < Order.lookup(&R); 2625 }); 2626 break; 2627 } 2628 } 2629 } 2630 } 2631 2632 /// When we see the block for metadata, remember where it is and then skip it. 2633 /// This lets us lazily deserialize the metadata. 2634 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2635 // Save the current stream state. 2636 uint64_t CurBit = Stream.GetCurrentBitNo(); 2637 DeferredMetadataInfo.push_back(CurBit); 2638 2639 // Skip over the block for now. 2640 if (Stream.SkipBlock()) 2641 return Error("Invalid record"); 2642 return std::error_code(); 2643 } 2644 2645 std::error_code BitcodeReader::materializeMetadata() { 2646 for (uint64_t BitPos : DeferredMetadataInfo) { 2647 // Move the bit stream to the saved position. 2648 Stream.JumpToBit(BitPos); 2649 if (std::error_code EC = ParseMetadata()) 2650 return EC; 2651 } 2652 DeferredMetadataInfo.clear(); 2653 return std::error_code(); 2654 } 2655 2656 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2657 2658 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2659 /// remember where it is and then skip it. This lets us lazily deserialize the 2660 /// functions. 2661 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2662 // Get the function we are talking about. 2663 if (FunctionsWithBodies.empty()) 2664 return Error("Insufficient function protos"); 2665 2666 Function *Fn = FunctionsWithBodies.back(); 2667 FunctionsWithBodies.pop_back(); 2668 2669 // Save the current stream state. 2670 uint64_t CurBit = Stream.GetCurrentBitNo(); 2671 DeferredFunctionInfo[Fn] = CurBit; 2672 2673 // Skip over the function block for now. 2674 if (Stream.SkipBlock()) 2675 return Error("Invalid record"); 2676 return std::error_code(); 2677 } 2678 2679 std::error_code BitcodeReader::GlobalCleanup() { 2680 // Patch the initializers for globals and aliases up. 2681 ResolveGlobalAndAliasInits(); 2682 if (!GlobalInits.empty() || !AliasInits.empty()) 2683 return Error("Malformed global initializer set"); 2684 2685 // Look for intrinsic functions which need to be upgraded at some point 2686 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2687 FI != FE; ++FI) { 2688 Function *NewFn; 2689 if (UpgradeIntrinsicFunction(FI, NewFn)) 2690 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2691 } 2692 2693 // Look for global variables which need to be renamed. 2694 for (Module::global_iterator 2695 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2696 GI != GE;) { 2697 GlobalVariable *GV = GI++; 2698 UpgradeGlobalVariable(GV); 2699 } 2700 2701 // Force deallocation of memory for these vectors to favor the client that 2702 // want lazy deserialization. 2703 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2704 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2705 return std::error_code(); 2706 } 2707 2708 std::error_code BitcodeReader::ParseModule(bool Resume, 2709 bool ShouldLazyLoadMetadata) { 2710 if (Resume) 2711 Stream.JumpToBit(NextUnreadBit); 2712 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2713 return Error("Invalid record"); 2714 2715 SmallVector<uint64_t, 64> Record; 2716 std::vector<std::string> SectionTable; 2717 std::vector<std::string> GCTable; 2718 2719 // Read all the records for this module. 2720 while (1) { 2721 BitstreamEntry Entry = Stream.advance(); 2722 2723 switch (Entry.Kind) { 2724 case BitstreamEntry::Error: 2725 return Error("Malformed block"); 2726 case BitstreamEntry::EndBlock: 2727 return GlobalCleanup(); 2728 2729 case BitstreamEntry::SubBlock: 2730 switch (Entry.ID) { 2731 default: // Skip unknown content. 2732 if (Stream.SkipBlock()) 2733 return Error("Invalid record"); 2734 break; 2735 case bitc::BLOCKINFO_BLOCK_ID: 2736 if (Stream.ReadBlockInfoBlock()) 2737 return Error("Malformed block"); 2738 break; 2739 case bitc::PARAMATTR_BLOCK_ID: 2740 if (std::error_code EC = ParseAttributeBlock()) 2741 return EC; 2742 break; 2743 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2744 if (std::error_code EC = ParseAttributeGroupBlock()) 2745 return EC; 2746 break; 2747 case bitc::TYPE_BLOCK_ID_NEW: 2748 if (std::error_code EC = ParseTypeTable()) 2749 return EC; 2750 break; 2751 case bitc::VALUE_SYMTAB_BLOCK_ID: 2752 if (std::error_code EC = ParseValueSymbolTable()) 2753 return EC; 2754 SeenValueSymbolTable = true; 2755 break; 2756 case bitc::CONSTANTS_BLOCK_ID: 2757 if (std::error_code EC = ParseConstants()) 2758 return EC; 2759 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2760 return EC; 2761 break; 2762 case bitc::METADATA_BLOCK_ID: 2763 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2764 if (std::error_code EC = rememberAndSkipMetadata()) 2765 return EC; 2766 break; 2767 } 2768 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2769 if (std::error_code EC = ParseMetadata()) 2770 return EC; 2771 break; 2772 case bitc::FUNCTION_BLOCK_ID: 2773 // If this is the first function body we've seen, reverse the 2774 // FunctionsWithBodies list. 2775 if (!SeenFirstFunctionBody) { 2776 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2777 if (std::error_code EC = GlobalCleanup()) 2778 return EC; 2779 SeenFirstFunctionBody = true; 2780 } 2781 2782 if (std::error_code EC = RememberAndSkipFunctionBody()) 2783 return EC; 2784 // For streaming bitcode, suspend parsing when we reach the function 2785 // bodies. Subsequent materialization calls will resume it when 2786 // necessary. For streaming, the function bodies must be at the end of 2787 // the bitcode. If the bitcode file is old, the symbol table will be 2788 // at the end instead and will not have been seen yet. In this case, 2789 // just finish the parse now. 2790 if (LazyStreamer && SeenValueSymbolTable) { 2791 NextUnreadBit = Stream.GetCurrentBitNo(); 2792 return std::error_code(); 2793 } 2794 break; 2795 case bitc::USELIST_BLOCK_ID: 2796 if (std::error_code EC = ParseUseLists()) 2797 return EC; 2798 break; 2799 } 2800 continue; 2801 2802 case BitstreamEntry::Record: 2803 // The interesting case. 2804 break; 2805 } 2806 2807 2808 // Read a record. 2809 switch (Stream.readRecord(Entry.ID, Record)) { 2810 default: break; // Default behavior, ignore unknown content. 2811 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2812 if (Record.size() < 1) 2813 return Error("Invalid record"); 2814 // Only version #0 and #1 are supported so far. 2815 unsigned module_version = Record[0]; 2816 switch (module_version) { 2817 default: 2818 return Error("Invalid value"); 2819 case 0: 2820 UseRelativeIDs = false; 2821 break; 2822 case 1: 2823 UseRelativeIDs = true; 2824 break; 2825 } 2826 break; 2827 } 2828 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2829 std::string S; 2830 if (ConvertToString(Record, 0, S)) 2831 return Error("Invalid record"); 2832 TheModule->setTargetTriple(S); 2833 break; 2834 } 2835 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2836 std::string S; 2837 if (ConvertToString(Record, 0, S)) 2838 return Error("Invalid record"); 2839 TheModule->setDataLayout(S); 2840 break; 2841 } 2842 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2843 std::string S; 2844 if (ConvertToString(Record, 0, S)) 2845 return Error("Invalid record"); 2846 TheModule->setModuleInlineAsm(S); 2847 break; 2848 } 2849 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2850 // FIXME: Remove in 4.0. 2851 std::string S; 2852 if (ConvertToString(Record, 0, S)) 2853 return Error("Invalid record"); 2854 // Ignore value. 2855 break; 2856 } 2857 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2858 std::string S; 2859 if (ConvertToString(Record, 0, S)) 2860 return Error("Invalid record"); 2861 SectionTable.push_back(S); 2862 break; 2863 } 2864 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2865 std::string S; 2866 if (ConvertToString(Record, 0, S)) 2867 return Error("Invalid record"); 2868 GCTable.push_back(S); 2869 break; 2870 } 2871 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2872 if (Record.size() < 2) 2873 return Error("Invalid record"); 2874 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2875 unsigned ComdatNameSize = Record[1]; 2876 std::string ComdatName; 2877 ComdatName.reserve(ComdatNameSize); 2878 for (unsigned i = 0; i != ComdatNameSize; ++i) 2879 ComdatName += (char)Record[2 + i]; 2880 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2881 C->setSelectionKind(SK); 2882 ComdatList.push_back(C); 2883 break; 2884 } 2885 // GLOBALVAR: [pointer type, isconst, initid, 2886 // linkage, alignment, section, visibility, threadlocal, 2887 // unnamed_addr, externally_initialized, dllstorageclass, 2888 // comdat] 2889 case bitc::MODULE_CODE_GLOBALVAR: { 2890 if (Record.size() < 6) 2891 return Error("Invalid record"); 2892 Type *Ty = getTypeByID(Record[0]); 2893 if (!Ty) 2894 return Error("Invalid record"); 2895 bool isConstant = Record[1] & 1; 2896 bool explicitType = Record[1] & 2; 2897 unsigned AddressSpace; 2898 if (explicitType) { 2899 AddressSpace = Record[1] >> 2; 2900 } else { 2901 if (!Ty->isPointerTy()) 2902 return Error("Invalid type for value"); 2903 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2904 Ty = cast<PointerType>(Ty)->getElementType(); 2905 } 2906 2907 uint64_t RawLinkage = Record[3]; 2908 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2909 unsigned Alignment; 2910 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2911 return EC; 2912 std::string Section; 2913 if (Record[5]) { 2914 if (Record[5]-1 >= SectionTable.size()) 2915 return Error("Invalid ID"); 2916 Section = SectionTable[Record[5]-1]; 2917 } 2918 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2919 // Local linkage must have default visibility. 2920 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2921 // FIXME: Change to an error if non-default in 4.0. 2922 Visibility = GetDecodedVisibility(Record[6]); 2923 2924 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2925 if (Record.size() > 7) 2926 TLM = GetDecodedThreadLocalMode(Record[7]); 2927 2928 bool UnnamedAddr = false; 2929 if (Record.size() > 8) 2930 UnnamedAddr = Record[8]; 2931 2932 bool ExternallyInitialized = false; 2933 if (Record.size() > 9) 2934 ExternallyInitialized = Record[9]; 2935 2936 GlobalVariable *NewGV = 2937 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2938 TLM, AddressSpace, ExternallyInitialized); 2939 NewGV->setAlignment(Alignment); 2940 if (!Section.empty()) 2941 NewGV->setSection(Section); 2942 NewGV->setVisibility(Visibility); 2943 NewGV->setUnnamedAddr(UnnamedAddr); 2944 2945 if (Record.size() > 10) 2946 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2947 else 2948 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2949 2950 ValueList.push_back(NewGV); 2951 2952 // Remember which value to use for the global initializer. 2953 if (unsigned InitID = Record[2]) 2954 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2955 2956 if (Record.size() > 11) { 2957 if (unsigned ComdatID = Record[11]) { 2958 assert(ComdatID <= ComdatList.size()); 2959 NewGV->setComdat(ComdatList[ComdatID - 1]); 2960 } 2961 } else if (hasImplicitComdat(RawLinkage)) { 2962 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2963 } 2964 break; 2965 } 2966 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2967 // alignment, section, visibility, gc, unnamed_addr, 2968 // prologuedata, dllstorageclass, comdat, prefixdata] 2969 case bitc::MODULE_CODE_FUNCTION: { 2970 if (Record.size() < 8) 2971 return Error("Invalid record"); 2972 Type *Ty = getTypeByID(Record[0]); 2973 if (!Ty) 2974 return Error("Invalid record"); 2975 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2976 Ty = PTy->getElementType(); 2977 auto *FTy = dyn_cast<FunctionType>(Ty); 2978 if (!FTy) 2979 return Error("Invalid type for value"); 2980 2981 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2982 "", TheModule); 2983 2984 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2985 bool isProto = Record[2]; 2986 uint64_t RawLinkage = Record[3]; 2987 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2988 Func->setAttributes(getAttributes(Record[4])); 2989 2990 unsigned Alignment; 2991 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 2992 return EC; 2993 Func->setAlignment(Alignment); 2994 if (Record[6]) { 2995 if (Record[6]-1 >= SectionTable.size()) 2996 return Error("Invalid ID"); 2997 Func->setSection(SectionTable[Record[6]-1]); 2998 } 2999 // Local linkage must have default visibility. 3000 if (!Func->hasLocalLinkage()) 3001 // FIXME: Change to an error if non-default in 4.0. 3002 Func->setVisibility(GetDecodedVisibility(Record[7])); 3003 if (Record.size() > 8 && Record[8]) { 3004 if (Record[8]-1 >= GCTable.size()) 3005 return Error("Invalid ID"); 3006 Func->setGC(GCTable[Record[8]-1].c_str()); 3007 } 3008 bool UnnamedAddr = false; 3009 if (Record.size() > 9) 3010 UnnamedAddr = Record[9]; 3011 Func->setUnnamedAddr(UnnamedAddr); 3012 if (Record.size() > 10 && Record[10] != 0) 3013 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3014 3015 if (Record.size() > 11) 3016 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 3017 else 3018 UpgradeDLLImportExportLinkage(Func, RawLinkage); 3019 3020 if (Record.size() > 12) { 3021 if (unsigned ComdatID = Record[12]) { 3022 assert(ComdatID <= ComdatList.size()); 3023 Func->setComdat(ComdatList[ComdatID - 1]); 3024 } 3025 } else if (hasImplicitComdat(RawLinkage)) { 3026 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3027 } 3028 3029 if (Record.size() > 13 && Record[13] != 0) 3030 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3031 3032 ValueList.push_back(Func); 3033 3034 // If this is a function with a body, remember the prototype we are 3035 // creating now, so that we can match up the body with them later. 3036 if (!isProto) { 3037 Func->setIsMaterializable(true); 3038 FunctionsWithBodies.push_back(Func); 3039 if (LazyStreamer) 3040 DeferredFunctionInfo[Func] = 0; 3041 } 3042 break; 3043 } 3044 // ALIAS: [alias type, aliasee val#, linkage] 3045 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 3046 case bitc::MODULE_CODE_ALIAS: { 3047 if (Record.size() < 3) 3048 return Error("Invalid record"); 3049 Type *Ty = getTypeByID(Record[0]); 3050 if (!Ty) 3051 return Error("Invalid record"); 3052 auto *PTy = dyn_cast<PointerType>(Ty); 3053 if (!PTy) 3054 return Error("Invalid type for value"); 3055 3056 auto *NewGA = 3057 GlobalAlias::create(PTy, getDecodedLinkage(Record[2]), "", TheModule); 3058 // Old bitcode files didn't have visibility field. 3059 // Local linkage must have default visibility. 3060 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3061 // FIXME: Change to an error if non-default in 4.0. 3062 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 3063 if (Record.size() > 4) 3064 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 3065 else 3066 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 3067 if (Record.size() > 5) 3068 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 3069 if (Record.size() > 6) 3070 NewGA->setUnnamedAddr(Record[6]); 3071 ValueList.push_back(NewGA); 3072 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3073 break; 3074 } 3075 /// MODULE_CODE_PURGEVALS: [numvals] 3076 case bitc::MODULE_CODE_PURGEVALS: 3077 // Trim down the value list to the specified size. 3078 if (Record.size() < 1 || Record[0] > ValueList.size()) 3079 return Error("Invalid record"); 3080 ValueList.shrinkTo(Record[0]); 3081 break; 3082 } 3083 Record.clear(); 3084 } 3085 } 3086 3087 std::error_code BitcodeReader::ParseBitcodeInto(Module *M, 3088 bool ShouldLazyLoadMetadata) { 3089 TheModule = nullptr; 3090 3091 if (std::error_code EC = InitStream()) 3092 return EC; 3093 3094 // Sniff for the signature. 3095 if (Stream.Read(8) != 'B' || 3096 Stream.Read(8) != 'C' || 3097 Stream.Read(4) != 0x0 || 3098 Stream.Read(4) != 0xC || 3099 Stream.Read(4) != 0xE || 3100 Stream.Read(4) != 0xD) 3101 return Error("Invalid bitcode signature"); 3102 3103 // We expect a number of well-defined blocks, though we don't necessarily 3104 // need to understand them all. 3105 while (1) { 3106 if (Stream.AtEndOfStream()) { 3107 if (TheModule) 3108 return std::error_code(); 3109 // We didn't really read a proper Module. 3110 return Error("Malformed IR file"); 3111 } 3112 3113 BitstreamEntry Entry = 3114 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3115 3116 switch (Entry.Kind) { 3117 case BitstreamEntry::Error: 3118 return Error("Malformed block"); 3119 case BitstreamEntry::EndBlock: 3120 return std::error_code(); 3121 3122 case BitstreamEntry::SubBlock: 3123 switch (Entry.ID) { 3124 case bitc::BLOCKINFO_BLOCK_ID: 3125 if (Stream.ReadBlockInfoBlock()) 3126 return Error("Malformed block"); 3127 break; 3128 case bitc::MODULE_BLOCK_ID: 3129 // Reject multiple MODULE_BLOCK's in a single bitstream. 3130 if (TheModule) 3131 return Error("Invalid multiple blocks"); 3132 TheModule = M; 3133 if (std::error_code EC = ParseModule(false, ShouldLazyLoadMetadata)) 3134 return EC; 3135 if (LazyStreamer) 3136 return std::error_code(); 3137 break; 3138 default: 3139 if (Stream.SkipBlock()) 3140 return Error("Invalid record"); 3141 break; 3142 } 3143 continue; 3144 case BitstreamEntry::Record: 3145 // There should be no records in the top-level of blocks. 3146 3147 // The ranlib in Xcode 4 will align archive members by appending newlines 3148 // to the end of them. If this file size is a multiple of 4 but not 8, we 3149 // have to read and ignore these final 4 bytes :-( 3150 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 3151 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 3152 Stream.AtEndOfStream()) 3153 return std::error_code(); 3154 3155 return Error("Invalid record"); 3156 } 3157 } 3158 } 3159 3160 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3161 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3162 return Error("Invalid record"); 3163 3164 SmallVector<uint64_t, 64> Record; 3165 3166 std::string Triple; 3167 // Read all the records for this module. 3168 while (1) { 3169 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3170 3171 switch (Entry.Kind) { 3172 case BitstreamEntry::SubBlock: // Handled for us already. 3173 case BitstreamEntry::Error: 3174 return Error("Malformed block"); 3175 case BitstreamEntry::EndBlock: 3176 return Triple; 3177 case BitstreamEntry::Record: 3178 // The interesting case. 3179 break; 3180 } 3181 3182 // Read a record. 3183 switch (Stream.readRecord(Entry.ID, Record)) { 3184 default: break; // Default behavior, ignore unknown content. 3185 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3186 std::string S; 3187 if (ConvertToString(Record, 0, S)) 3188 return Error("Invalid record"); 3189 Triple = S; 3190 break; 3191 } 3192 } 3193 Record.clear(); 3194 } 3195 llvm_unreachable("Exit infinite loop"); 3196 } 3197 3198 ErrorOr<std::string> BitcodeReader::parseTriple() { 3199 if (std::error_code EC = InitStream()) 3200 return EC; 3201 3202 // Sniff for the signature. 3203 if (Stream.Read(8) != 'B' || 3204 Stream.Read(8) != 'C' || 3205 Stream.Read(4) != 0x0 || 3206 Stream.Read(4) != 0xC || 3207 Stream.Read(4) != 0xE || 3208 Stream.Read(4) != 0xD) 3209 return Error("Invalid bitcode signature"); 3210 3211 // We expect a number of well-defined blocks, though we don't necessarily 3212 // need to understand them all. 3213 while (1) { 3214 BitstreamEntry Entry = Stream.advance(); 3215 3216 switch (Entry.Kind) { 3217 case BitstreamEntry::Error: 3218 return Error("Malformed block"); 3219 case BitstreamEntry::EndBlock: 3220 return std::error_code(); 3221 3222 case BitstreamEntry::SubBlock: 3223 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3224 return parseModuleTriple(); 3225 3226 // Ignore other sub-blocks. 3227 if (Stream.SkipBlock()) 3228 return Error("Malformed block"); 3229 continue; 3230 3231 case BitstreamEntry::Record: 3232 Stream.skipRecord(Entry.ID); 3233 continue; 3234 } 3235 } 3236 } 3237 3238 /// ParseMetadataAttachment - Parse metadata attachments. 3239 std::error_code BitcodeReader::ParseMetadataAttachment(Function &F) { 3240 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3241 return Error("Invalid record"); 3242 3243 SmallVector<uint64_t, 64> Record; 3244 while (1) { 3245 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3246 3247 switch (Entry.Kind) { 3248 case BitstreamEntry::SubBlock: // Handled for us already. 3249 case BitstreamEntry::Error: 3250 return Error("Malformed block"); 3251 case BitstreamEntry::EndBlock: 3252 return std::error_code(); 3253 case BitstreamEntry::Record: 3254 // The interesting case. 3255 break; 3256 } 3257 3258 // Read a metadata attachment record. 3259 Record.clear(); 3260 switch (Stream.readRecord(Entry.ID, Record)) { 3261 default: // Default behavior: ignore. 3262 break; 3263 case bitc::METADATA_ATTACHMENT: { 3264 unsigned RecordLength = Record.size(); 3265 if (Record.empty()) 3266 return Error("Invalid record"); 3267 if (RecordLength % 2 == 0) { 3268 // A function attachment. 3269 for (unsigned I = 0; I != RecordLength; I += 2) { 3270 auto K = MDKindMap.find(Record[I]); 3271 if (K == MDKindMap.end()) 3272 return Error("Invalid ID"); 3273 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3274 F.setMetadata(K->second, cast<MDNode>(MD)); 3275 } 3276 continue; 3277 } 3278 3279 // An instruction attachment. 3280 Instruction *Inst = InstructionList[Record[0]]; 3281 for (unsigned i = 1; i != RecordLength; i = i+2) { 3282 unsigned Kind = Record[i]; 3283 DenseMap<unsigned, unsigned>::iterator I = 3284 MDKindMap.find(Kind); 3285 if (I == MDKindMap.end()) 3286 return Error("Invalid ID"); 3287 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3288 if (isa<LocalAsMetadata>(Node)) 3289 // Drop the attachment. This used to be legal, but there's no 3290 // upgrade path. 3291 break; 3292 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3293 if (I->second == LLVMContext::MD_tbaa) 3294 InstsWithTBAATag.push_back(Inst); 3295 } 3296 break; 3297 } 3298 } 3299 } 3300 } 3301 3302 static std::error_code TypeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3303 Type *ValType, Type *PtrType) { 3304 if (!isa<PointerType>(PtrType)) 3305 return Error(DH, "Load/Store operand is not a pointer type"); 3306 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3307 3308 if (ValType && ValType != ElemType) 3309 return Error(DH, "Explicit load/store type does not match pointee type of " 3310 "pointer operand"); 3311 if (!PointerType::isLoadableOrStorableType(ElemType)) 3312 return Error(DH, "Cannot load/store from pointer"); 3313 return std::error_code(); 3314 } 3315 3316 /// ParseFunctionBody - Lazily parse the specified function body block. 3317 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 3318 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3319 return Error("Invalid record"); 3320 3321 InstructionList.clear(); 3322 unsigned ModuleValueListSize = ValueList.size(); 3323 unsigned ModuleMDValueListSize = MDValueList.size(); 3324 3325 // Add all the function arguments to the value table. 3326 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3327 ValueList.push_back(I); 3328 3329 unsigned NextValueNo = ValueList.size(); 3330 BasicBlock *CurBB = nullptr; 3331 unsigned CurBBNo = 0; 3332 3333 DebugLoc LastLoc; 3334 auto getLastInstruction = [&]() -> Instruction * { 3335 if (CurBB && !CurBB->empty()) 3336 return &CurBB->back(); 3337 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3338 !FunctionBBs[CurBBNo - 1]->empty()) 3339 return &FunctionBBs[CurBBNo - 1]->back(); 3340 return nullptr; 3341 }; 3342 3343 // Read all the records. 3344 SmallVector<uint64_t, 64> Record; 3345 while (1) { 3346 BitstreamEntry Entry = Stream.advance(); 3347 3348 switch (Entry.Kind) { 3349 case BitstreamEntry::Error: 3350 return Error("Malformed block"); 3351 case BitstreamEntry::EndBlock: 3352 goto OutOfRecordLoop; 3353 3354 case BitstreamEntry::SubBlock: 3355 switch (Entry.ID) { 3356 default: // Skip unknown content. 3357 if (Stream.SkipBlock()) 3358 return Error("Invalid record"); 3359 break; 3360 case bitc::CONSTANTS_BLOCK_ID: 3361 if (std::error_code EC = ParseConstants()) 3362 return EC; 3363 NextValueNo = ValueList.size(); 3364 break; 3365 case bitc::VALUE_SYMTAB_BLOCK_ID: 3366 if (std::error_code EC = ParseValueSymbolTable()) 3367 return EC; 3368 break; 3369 case bitc::METADATA_ATTACHMENT_ID: 3370 if (std::error_code EC = ParseMetadataAttachment(*F)) 3371 return EC; 3372 break; 3373 case bitc::METADATA_BLOCK_ID: 3374 if (std::error_code EC = ParseMetadata()) 3375 return EC; 3376 break; 3377 case bitc::USELIST_BLOCK_ID: 3378 if (std::error_code EC = ParseUseLists()) 3379 return EC; 3380 break; 3381 } 3382 continue; 3383 3384 case BitstreamEntry::Record: 3385 // The interesting case. 3386 break; 3387 } 3388 3389 // Read a record. 3390 Record.clear(); 3391 Instruction *I = nullptr; 3392 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3393 switch (BitCode) { 3394 default: // Default behavior: reject 3395 return Error("Invalid value"); 3396 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3397 if (Record.size() < 1 || Record[0] == 0) 3398 return Error("Invalid record"); 3399 // Create all the basic blocks for the function. 3400 FunctionBBs.resize(Record[0]); 3401 3402 // See if anything took the address of blocks in this function. 3403 auto BBFRI = BasicBlockFwdRefs.find(F); 3404 if (BBFRI == BasicBlockFwdRefs.end()) { 3405 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3406 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3407 } else { 3408 auto &BBRefs = BBFRI->second; 3409 // Check for invalid basic block references. 3410 if (BBRefs.size() > FunctionBBs.size()) 3411 return Error("Invalid ID"); 3412 assert(!BBRefs.empty() && "Unexpected empty array"); 3413 assert(!BBRefs.front() && "Invalid reference to entry block"); 3414 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3415 ++I) 3416 if (I < RE && BBRefs[I]) { 3417 BBRefs[I]->insertInto(F); 3418 FunctionBBs[I] = BBRefs[I]; 3419 } else { 3420 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3421 } 3422 3423 // Erase from the table. 3424 BasicBlockFwdRefs.erase(BBFRI); 3425 } 3426 3427 CurBB = FunctionBBs[0]; 3428 continue; 3429 } 3430 3431 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3432 // This record indicates that the last instruction is at the same 3433 // location as the previous instruction with a location. 3434 I = getLastInstruction(); 3435 3436 if (!I) 3437 return Error("Invalid record"); 3438 I->setDebugLoc(LastLoc); 3439 I = nullptr; 3440 continue; 3441 3442 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3443 I = getLastInstruction(); 3444 if (!I || Record.size() < 4) 3445 return Error("Invalid record"); 3446 3447 unsigned Line = Record[0], Col = Record[1]; 3448 unsigned ScopeID = Record[2], IAID = Record[3]; 3449 3450 MDNode *Scope = nullptr, *IA = nullptr; 3451 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3452 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3453 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3454 I->setDebugLoc(LastLoc); 3455 I = nullptr; 3456 continue; 3457 } 3458 3459 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3460 unsigned OpNum = 0; 3461 Value *LHS, *RHS; 3462 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3463 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3464 OpNum+1 > Record.size()) 3465 return Error("Invalid record"); 3466 3467 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3468 if (Opc == -1) 3469 return Error("Invalid record"); 3470 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3471 InstructionList.push_back(I); 3472 if (OpNum < Record.size()) { 3473 if (Opc == Instruction::Add || 3474 Opc == Instruction::Sub || 3475 Opc == Instruction::Mul || 3476 Opc == Instruction::Shl) { 3477 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3478 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3479 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3480 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3481 } else if (Opc == Instruction::SDiv || 3482 Opc == Instruction::UDiv || 3483 Opc == Instruction::LShr || 3484 Opc == Instruction::AShr) { 3485 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3486 cast<BinaryOperator>(I)->setIsExact(true); 3487 } else if (isa<FPMathOperator>(I)) { 3488 FastMathFlags FMF; 3489 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3490 FMF.setUnsafeAlgebra(); 3491 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3492 FMF.setNoNaNs(); 3493 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3494 FMF.setNoInfs(); 3495 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3496 FMF.setNoSignedZeros(); 3497 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3498 FMF.setAllowReciprocal(); 3499 if (FMF.any()) 3500 I->setFastMathFlags(FMF); 3501 } 3502 3503 } 3504 break; 3505 } 3506 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3507 unsigned OpNum = 0; 3508 Value *Op; 3509 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3510 OpNum+2 != Record.size()) 3511 return Error("Invalid record"); 3512 3513 Type *ResTy = getTypeByID(Record[OpNum]); 3514 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 3515 if (Opc == -1 || !ResTy) 3516 return Error("Invalid record"); 3517 Instruction *Temp = nullptr; 3518 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3519 if (Temp) { 3520 InstructionList.push_back(Temp); 3521 CurBB->getInstList().push_back(Temp); 3522 } 3523 } else { 3524 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3525 } 3526 InstructionList.push_back(I); 3527 break; 3528 } 3529 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3530 case bitc::FUNC_CODE_INST_GEP_OLD: 3531 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3532 unsigned OpNum = 0; 3533 3534 Type *Ty; 3535 bool InBounds; 3536 3537 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3538 InBounds = Record[OpNum++]; 3539 Ty = getTypeByID(Record[OpNum++]); 3540 } else { 3541 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3542 Ty = nullptr; 3543 } 3544 3545 Value *BasePtr; 3546 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3547 return Error("Invalid record"); 3548 3549 if (!Ty) 3550 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 3551 ->getElementType(); 3552 else if (Ty != 3553 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3554 ->getElementType()) 3555 return Error( 3556 "Explicit gep type does not match pointee type of pointer operand"); 3557 3558 SmallVector<Value*, 16> GEPIdx; 3559 while (OpNum != Record.size()) { 3560 Value *Op; 3561 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3562 return Error("Invalid record"); 3563 GEPIdx.push_back(Op); 3564 } 3565 3566 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3567 3568 InstructionList.push_back(I); 3569 if (InBounds) 3570 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3571 break; 3572 } 3573 3574 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3575 // EXTRACTVAL: [opty, opval, n x indices] 3576 unsigned OpNum = 0; 3577 Value *Agg; 3578 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3579 return Error("Invalid record"); 3580 3581 unsigned RecSize = Record.size(); 3582 if (OpNum == RecSize) 3583 return Error("EXTRACTVAL: Invalid instruction with 0 indices"); 3584 3585 SmallVector<unsigned, 4> EXTRACTVALIdx; 3586 Type *CurTy = Agg->getType(); 3587 for (; OpNum != RecSize; ++OpNum) { 3588 bool IsArray = CurTy->isArrayTy(); 3589 bool IsStruct = CurTy->isStructTy(); 3590 uint64_t Index = Record[OpNum]; 3591 3592 if (!IsStruct && !IsArray) 3593 return Error("EXTRACTVAL: Invalid type"); 3594 if ((unsigned)Index != Index) 3595 return Error("Invalid value"); 3596 if (IsStruct && Index >= CurTy->subtypes().size()) 3597 return Error("EXTRACTVAL: Invalid struct index"); 3598 if (IsArray && Index >= CurTy->getArrayNumElements()) 3599 return Error("EXTRACTVAL: Invalid array index"); 3600 EXTRACTVALIdx.push_back((unsigned)Index); 3601 3602 if (IsStruct) 3603 CurTy = CurTy->subtypes()[Index]; 3604 else 3605 CurTy = CurTy->subtypes()[0]; 3606 } 3607 3608 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3609 InstructionList.push_back(I); 3610 break; 3611 } 3612 3613 case bitc::FUNC_CODE_INST_INSERTVAL: { 3614 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3615 unsigned OpNum = 0; 3616 Value *Agg; 3617 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3618 return Error("Invalid record"); 3619 Value *Val; 3620 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3621 return Error("Invalid record"); 3622 3623 unsigned RecSize = Record.size(); 3624 if (OpNum == RecSize) 3625 return Error("INSERTVAL: Invalid instruction with 0 indices"); 3626 3627 SmallVector<unsigned, 4> INSERTVALIdx; 3628 Type *CurTy = Agg->getType(); 3629 for (; OpNum != RecSize; ++OpNum) { 3630 bool IsArray = CurTy->isArrayTy(); 3631 bool IsStruct = CurTy->isStructTy(); 3632 uint64_t Index = Record[OpNum]; 3633 3634 if (!IsStruct && !IsArray) 3635 return Error("INSERTVAL: Invalid type"); 3636 if ((unsigned)Index != Index) 3637 return Error("Invalid value"); 3638 if (IsStruct && Index >= CurTy->subtypes().size()) 3639 return Error("INSERTVAL: Invalid struct index"); 3640 if (IsArray && Index >= CurTy->getArrayNumElements()) 3641 return Error("INSERTVAL: Invalid array index"); 3642 3643 INSERTVALIdx.push_back((unsigned)Index); 3644 if (IsStruct) 3645 CurTy = CurTy->subtypes()[Index]; 3646 else 3647 CurTy = CurTy->subtypes()[0]; 3648 } 3649 3650 if (CurTy != Val->getType()) 3651 return Error("Inserted value type doesn't match aggregate type"); 3652 3653 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3654 InstructionList.push_back(I); 3655 break; 3656 } 3657 3658 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3659 // obsolete form of select 3660 // handles select i1 ... in old bitcode 3661 unsigned OpNum = 0; 3662 Value *TrueVal, *FalseVal, *Cond; 3663 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3664 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3665 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3666 return Error("Invalid record"); 3667 3668 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3669 InstructionList.push_back(I); 3670 break; 3671 } 3672 3673 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3674 // new form of select 3675 // handles select i1 or select [N x i1] 3676 unsigned OpNum = 0; 3677 Value *TrueVal, *FalseVal, *Cond; 3678 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3679 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3680 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3681 return Error("Invalid record"); 3682 3683 // select condition can be either i1 or [N x i1] 3684 if (VectorType* vector_type = 3685 dyn_cast<VectorType>(Cond->getType())) { 3686 // expect <n x i1> 3687 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3688 return Error("Invalid type for value"); 3689 } else { 3690 // expect i1 3691 if (Cond->getType() != Type::getInt1Ty(Context)) 3692 return Error("Invalid type for value"); 3693 } 3694 3695 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3696 InstructionList.push_back(I); 3697 break; 3698 } 3699 3700 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3701 unsigned OpNum = 0; 3702 Value *Vec, *Idx; 3703 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3704 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3705 return Error("Invalid record"); 3706 if (!Vec->getType()->isVectorTy()) 3707 return Error("Invalid type for value"); 3708 I = ExtractElementInst::Create(Vec, Idx); 3709 InstructionList.push_back(I); 3710 break; 3711 } 3712 3713 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3714 unsigned OpNum = 0; 3715 Value *Vec, *Elt, *Idx; 3716 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3717 return Error("Invalid record"); 3718 if (!Vec->getType()->isVectorTy()) 3719 return Error("Invalid type for value"); 3720 if (popValue(Record, OpNum, NextValueNo, 3721 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3722 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3723 return Error("Invalid record"); 3724 I = InsertElementInst::Create(Vec, Elt, Idx); 3725 InstructionList.push_back(I); 3726 break; 3727 } 3728 3729 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3730 unsigned OpNum = 0; 3731 Value *Vec1, *Vec2, *Mask; 3732 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3733 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3734 return Error("Invalid record"); 3735 3736 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3737 return Error("Invalid record"); 3738 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3739 return Error("Invalid type for value"); 3740 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3741 InstructionList.push_back(I); 3742 break; 3743 } 3744 3745 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3746 // Old form of ICmp/FCmp returning bool 3747 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3748 // both legal on vectors but had different behaviour. 3749 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3750 // FCmp/ICmp returning bool or vector of bool 3751 3752 unsigned OpNum = 0; 3753 Value *LHS, *RHS; 3754 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3755 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3756 OpNum+1 != Record.size()) 3757 return Error("Invalid record"); 3758 3759 if (LHS->getType()->isFPOrFPVectorTy()) 3760 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3761 else 3762 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3763 InstructionList.push_back(I); 3764 break; 3765 } 3766 3767 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3768 { 3769 unsigned Size = Record.size(); 3770 if (Size == 0) { 3771 I = ReturnInst::Create(Context); 3772 InstructionList.push_back(I); 3773 break; 3774 } 3775 3776 unsigned OpNum = 0; 3777 Value *Op = nullptr; 3778 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3779 return Error("Invalid record"); 3780 if (OpNum != Record.size()) 3781 return Error("Invalid record"); 3782 3783 I = ReturnInst::Create(Context, Op); 3784 InstructionList.push_back(I); 3785 break; 3786 } 3787 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3788 if (Record.size() != 1 && Record.size() != 3) 3789 return Error("Invalid record"); 3790 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3791 if (!TrueDest) 3792 return Error("Invalid record"); 3793 3794 if (Record.size() == 1) { 3795 I = BranchInst::Create(TrueDest); 3796 InstructionList.push_back(I); 3797 } 3798 else { 3799 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3800 Value *Cond = getValue(Record, 2, NextValueNo, 3801 Type::getInt1Ty(Context)); 3802 if (!FalseDest || !Cond) 3803 return Error("Invalid record"); 3804 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3805 InstructionList.push_back(I); 3806 } 3807 break; 3808 } 3809 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3810 // Check magic 3811 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3812 // "New" SwitchInst format with case ranges. The changes to write this 3813 // format were reverted but we still recognize bitcode that uses it. 3814 // Hopefully someday we will have support for case ranges and can use 3815 // this format again. 3816 3817 Type *OpTy = getTypeByID(Record[1]); 3818 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3819 3820 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3821 BasicBlock *Default = getBasicBlock(Record[3]); 3822 if (!OpTy || !Cond || !Default) 3823 return Error("Invalid record"); 3824 3825 unsigned NumCases = Record[4]; 3826 3827 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3828 InstructionList.push_back(SI); 3829 3830 unsigned CurIdx = 5; 3831 for (unsigned i = 0; i != NumCases; ++i) { 3832 SmallVector<ConstantInt*, 1> CaseVals; 3833 unsigned NumItems = Record[CurIdx++]; 3834 for (unsigned ci = 0; ci != NumItems; ++ci) { 3835 bool isSingleNumber = Record[CurIdx++]; 3836 3837 APInt Low; 3838 unsigned ActiveWords = 1; 3839 if (ValueBitWidth > 64) 3840 ActiveWords = Record[CurIdx++]; 3841 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3842 ValueBitWidth); 3843 CurIdx += ActiveWords; 3844 3845 if (!isSingleNumber) { 3846 ActiveWords = 1; 3847 if (ValueBitWidth > 64) 3848 ActiveWords = Record[CurIdx++]; 3849 APInt High = 3850 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3851 ValueBitWidth); 3852 CurIdx += ActiveWords; 3853 3854 // FIXME: It is not clear whether values in the range should be 3855 // compared as signed or unsigned values. The partially 3856 // implemented changes that used this format in the past used 3857 // unsigned comparisons. 3858 for ( ; Low.ule(High); ++Low) 3859 CaseVals.push_back(ConstantInt::get(Context, Low)); 3860 } else 3861 CaseVals.push_back(ConstantInt::get(Context, Low)); 3862 } 3863 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3864 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3865 cve = CaseVals.end(); cvi != cve; ++cvi) 3866 SI->addCase(*cvi, DestBB); 3867 } 3868 I = SI; 3869 break; 3870 } 3871 3872 // Old SwitchInst format without case ranges. 3873 3874 if (Record.size() < 3 || (Record.size() & 1) == 0) 3875 return Error("Invalid record"); 3876 Type *OpTy = getTypeByID(Record[0]); 3877 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3878 BasicBlock *Default = getBasicBlock(Record[2]); 3879 if (!OpTy || !Cond || !Default) 3880 return Error("Invalid record"); 3881 unsigned NumCases = (Record.size()-3)/2; 3882 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3883 InstructionList.push_back(SI); 3884 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3885 ConstantInt *CaseVal = 3886 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3887 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3888 if (!CaseVal || !DestBB) { 3889 delete SI; 3890 return Error("Invalid record"); 3891 } 3892 SI->addCase(CaseVal, DestBB); 3893 } 3894 I = SI; 3895 break; 3896 } 3897 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3898 if (Record.size() < 2) 3899 return Error("Invalid record"); 3900 Type *OpTy = getTypeByID(Record[0]); 3901 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3902 if (!OpTy || !Address) 3903 return Error("Invalid record"); 3904 unsigned NumDests = Record.size()-2; 3905 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3906 InstructionList.push_back(IBI); 3907 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3908 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3909 IBI->addDestination(DestBB); 3910 } else { 3911 delete IBI; 3912 return Error("Invalid record"); 3913 } 3914 } 3915 I = IBI; 3916 break; 3917 } 3918 3919 case bitc::FUNC_CODE_INST_INVOKE: { 3920 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3921 if (Record.size() < 4) 3922 return Error("Invalid record"); 3923 unsigned OpNum = 0; 3924 AttributeSet PAL = getAttributes(Record[OpNum++]); 3925 unsigned CCInfo = Record[OpNum++]; 3926 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3927 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3928 3929 FunctionType *FTy = nullptr; 3930 if (CCInfo >> 13 & 1 && 3931 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3932 return Error("Explicit invoke type is not a function type"); 3933 3934 Value *Callee; 3935 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3936 return Error("Invalid record"); 3937 3938 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3939 if (!CalleeTy) 3940 return Error("Callee is not a pointer"); 3941 if (!FTy) { 3942 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3943 if (!FTy) 3944 return Error("Callee is not of pointer to function type"); 3945 } else if (CalleeTy->getElementType() != FTy) 3946 return Error("Explicit invoke type does not match pointee type of " 3947 "callee operand"); 3948 if (Record.size() < FTy->getNumParams() + OpNum) 3949 return Error("Insufficient operands to call"); 3950 3951 SmallVector<Value*, 16> Ops; 3952 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3953 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3954 FTy->getParamType(i))); 3955 if (!Ops.back()) 3956 return Error("Invalid record"); 3957 } 3958 3959 if (!FTy->isVarArg()) { 3960 if (Record.size() != OpNum) 3961 return Error("Invalid record"); 3962 } else { 3963 // Read type/value pairs for varargs params. 3964 while (OpNum != Record.size()) { 3965 Value *Op; 3966 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3967 return Error("Invalid record"); 3968 Ops.push_back(Op); 3969 } 3970 } 3971 3972 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3973 InstructionList.push_back(I); 3974 cast<InvokeInst>(I) 3975 ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo)); 3976 cast<InvokeInst>(I)->setAttributes(PAL); 3977 break; 3978 } 3979 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3980 unsigned Idx = 0; 3981 Value *Val = nullptr; 3982 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3983 return Error("Invalid record"); 3984 I = ResumeInst::Create(Val); 3985 InstructionList.push_back(I); 3986 break; 3987 } 3988 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3989 I = new UnreachableInst(Context); 3990 InstructionList.push_back(I); 3991 break; 3992 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3993 if (Record.size() < 1 || ((Record.size()-1)&1)) 3994 return Error("Invalid record"); 3995 Type *Ty = getTypeByID(Record[0]); 3996 if (!Ty) 3997 return Error("Invalid record"); 3998 3999 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4000 InstructionList.push_back(PN); 4001 4002 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4003 Value *V; 4004 // With the new function encoding, it is possible that operands have 4005 // negative IDs (for forward references). Use a signed VBR 4006 // representation to keep the encoding small. 4007 if (UseRelativeIDs) 4008 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4009 else 4010 V = getValue(Record, 1+i, NextValueNo, Ty); 4011 BasicBlock *BB = getBasicBlock(Record[2+i]); 4012 if (!V || !BB) 4013 return Error("Invalid record"); 4014 PN->addIncoming(V, BB); 4015 } 4016 I = PN; 4017 break; 4018 } 4019 4020 case bitc::FUNC_CODE_INST_LANDINGPAD: { 4021 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4022 unsigned Idx = 0; 4023 if (Record.size() < 4) 4024 return Error("Invalid record"); 4025 Type *Ty = getTypeByID(Record[Idx++]); 4026 if (!Ty) 4027 return Error("Invalid record"); 4028 Value *PersFn = nullptr; 4029 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4030 return Error("Invalid record"); 4031 4032 bool IsCleanup = !!Record[Idx++]; 4033 unsigned NumClauses = Record[Idx++]; 4034 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 4035 LP->setCleanup(IsCleanup); 4036 for (unsigned J = 0; J != NumClauses; ++J) { 4037 LandingPadInst::ClauseType CT = 4038 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4039 Value *Val; 4040 4041 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4042 delete LP; 4043 return Error("Invalid record"); 4044 } 4045 4046 assert((CT != LandingPadInst::Catch || 4047 !isa<ArrayType>(Val->getType())) && 4048 "Catch clause has a invalid type!"); 4049 assert((CT != LandingPadInst::Filter || 4050 isa<ArrayType>(Val->getType())) && 4051 "Filter clause has invalid type!"); 4052 LP->addClause(cast<Constant>(Val)); 4053 } 4054 4055 I = LP; 4056 InstructionList.push_back(I); 4057 break; 4058 } 4059 4060 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4061 if (Record.size() != 4) 4062 return Error("Invalid record"); 4063 uint64_t AlignRecord = Record[3]; 4064 const uint64_t InAllocaMask = uint64_t(1) << 5; 4065 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4066 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4067 bool InAlloca = AlignRecord & InAllocaMask; 4068 Type *Ty = getTypeByID(Record[0]); 4069 if ((AlignRecord & ExplicitTypeMask) == 0) { 4070 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4071 if (!PTy) 4072 return Error("Old-style alloca with a non-pointer type"); 4073 Ty = PTy->getElementType(); 4074 } 4075 Type *OpTy = getTypeByID(Record[1]); 4076 Value *Size = getFnValueByID(Record[2], OpTy); 4077 unsigned Align; 4078 if (std::error_code EC = 4079 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4080 return EC; 4081 } 4082 if (!Ty || !Size) 4083 return Error("Invalid record"); 4084 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4085 AI->setUsedWithInAlloca(InAlloca); 4086 I = AI; 4087 InstructionList.push_back(I); 4088 break; 4089 } 4090 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4091 unsigned OpNum = 0; 4092 Value *Op; 4093 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4094 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4095 return Error("Invalid record"); 4096 4097 Type *Ty = nullptr; 4098 if (OpNum + 3 == Record.size()) 4099 Ty = getTypeByID(Record[OpNum++]); 4100 if (std::error_code EC = 4101 TypeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4102 return EC; 4103 if (!Ty) 4104 Ty = cast<PointerType>(Op->getType())->getElementType(); 4105 4106 unsigned Align; 4107 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4108 return EC; 4109 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4110 4111 InstructionList.push_back(I); 4112 break; 4113 } 4114 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4115 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4116 unsigned OpNum = 0; 4117 Value *Op; 4118 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4119 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4120 return Error("Invalid record"); 4121 4122 Type *Ty = nullptr; 4123 if (OpNum + 5 == Record.size()) 4124 Ty = getTypeByID(Record[OpNum++]); 4125 if (std::error_code EC = 4126 TypeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4127 return EC; 4128 if (!Ty) 4129 Ty = cast<PointerType>(Op->getType())->getElementType(); 4130 4131 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4132 if (Ordering == NotAtomic || Ordering == Release || 4133 Ordering == AcquireRelease) 4134 return Error("Invalid record"); 4135 if (Ordering != NotAtomic && Record[OpNum] == 0) 4136 return Error("Invalid record"); 4137 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4138 4139 unsigned Align; 4140 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4141 return EC; 4142 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4143 4144 InstructionList.push_back(I); 4145 break; 4146 } 4147 case bitc::FUNC_CODE_INST_STORE: 4148 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4149 unsigned OpNum = 0; 4150 Value *Val, *Ptr; 4151 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4152 (BitCode == bitc::FUNC_CODE_INST_STORE 4153 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4154 : popValue(Record, OpNum, NextValueNo, 4155 cast<PointerType>(Ptr->getType())->getElementType(), 4156 Val)) || 4157 OpNum + 2 != Record.size()) 4158 return Error("Invalid record"); 4159 4160 if (std::error_code EC = TypeCheckLoadStoreInst( 4161 DiagnosticHandler, Val->getType(), Ptr->getType())) 4162 return EC; 4163 unsigned Align; 4164 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4165 return EC; 4166 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4167 InstructionList.push_back(I); 4168 break; 4169 } 4170 case bitc::FUNC_CODE_INST_STOREATOMIC: 4171 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4172 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4173 unsigned OpNum = 0; 4174 Value *Val, *Ptr; 4175 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4176 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4177 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4178 : popValue(Record, OpNum, NextValueNo, 4179 cast<PointerType>(Ptr->getType())->getElementType(), 4180 Val)) || 4181 OpNum + 4 != Record.size()) 4182 return Error("Invalid record"); 4183 4184 if (std::error_code EC = TypeCheckLoadStoreInst( 4185 DiagnosticHandler, Val->getType(), Ptr->getType())) 4186 return EC; 4187 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4188 if (Ordering == NotAtomic || Ordering == Acquire || 4189 Ordering == AcquireRelease) 4190 return Error("Invalid record"); 4191 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4192 if (Ordering != NotAtomic && Record[OpNum] == 0) 4193 return Error("Invalid record"); 4194 4195 unsigned Align; 4196 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4197 return EC; 4198 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4199 InstructionList.push_back(I); 4200 break; 4201 } 4202 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4203 case bitc::FUNC_CODE_INST_CMPXCHG: { 4204 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4205 // failureordering?, isweak?] 4206 unsigned OpNum = 0; 4207 Value *Ptr, *Cmp, *New; 4208 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4209 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4210 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4211 : popValue(Record, OpNum, NextValueNo, 4212 cast<PointerType>(Ptr->getType())->getElementType(), 4213 Cmp)) || 4214 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4215 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4216 return Error("Invalid record"); 4217 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 4218 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4219 return Error("Invalid record"); 4220 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 4221 4222 if (std::error_code EC = TypeCheckLoadStoreInst( 4223 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 4224 return EC; 4225 AtomicOrdering FailureOrdering; 4226 if (Record.size() < 7) 4227 FailureOrdering = 4228 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4229 else 4230 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 4231 4232 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4233 SynchScope); 4234 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4235 4236 if (Record.size() < 8) { 4237 // Before weak cmpxchgs existed, the instruction simply returned the 4238 // value loaded from memory, so bitcode files from that era will be 4239 // expecting the first component of a modern cmpxchg. 4240 CurBB->getInstList().push_back(I); 4241 I = ExtractValueInst::Create(I, 0); 4242 } else { 4243 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4244 } 4245 4246 InstructionList.push_back(I); 4247 break; 4248 } 4249 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4250 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4251 unsigned OpNum = 0; 4252 Value *Ptr, *Val; 4253 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4254 popValue(Record, OpNum, NextValueNo, 4255 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4256 OpNum+4 != Record.size()) 4257 return Error("Invalid record"); 4258 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 4259 if (Operation < AtomicRMWInst::FIRST_BINOP || 4260 Operation > AtomicRMWInst::LAST_BINOP) 4261 return Error("Invalid record"); 4262 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4263 if (Ordering == NotAtomic || Ordering == Unordered) 4264 return Error("Invalid record"); 4265 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4266 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4267 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4268 InstructionList.push_back(I); 4269 break; 4270 } 4271 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4272 if (2 != Record.size()) 4273 return Error("Invalid record"); 4274 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 4275 if (Ordering == NotAtomic || Ordering == Unordered || 4276 Ordering == Monotonic) 4277 return Error("Invalid record"); 4278 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 4279 I = new FenceInst(Context, Ordering, SynchScope); 4280 InstructionList.push_back(I); 4281 break; 4282 } 4283 case bitc::FUNC_CODE_INST_CALL: { 4284 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4285 if (Record.size() < 3) 4286 return Error("Invalid record"); 4287 4288 unsigned OpNum = 0; 4289 AttributeSet PAL = getAttributes(Record[OpNum++]); 4290 unsigned CCInfo = Record[OpNum++]; 4291 4292 FunctionType *FTy = nullptr; 4293 if (CCInfo >> 15 & 1 && 4294 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4295 return Error("Explicit call type is not a function type"); 4296 4297 Value *Callee; 4298 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4299 return Error("Invalid record"); 4300 4301 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4302 if (!OpTy) 4303 return Error("Callee is not a pointer type"); 4304 if (!FTy) { 4305 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4306 if (!FTy) 4307 return Error("Callee is not of pointer to function type"); 4308 } else if (OpTy->getElementType() != FTy) 4309 return Error("Explicit call type does not match pointee type of " 4310 "callee operand"); 4311 if (Record.size() < FTy->getNumParams() + OpNum) 4312 return Error("Insufficient operands to call"); 4313 4314 SmallVector<Value*, 16> Args; 4315 // Read the fixed params. 4316 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4317 if (FTy->getParamType(i)->isLabelTy()) 4318 Args.push_back(getBasicBlock(Record[OpNum])); 4319 else 4320 Args.push_back(getValue(Record, OpNum, NextValueNo, 4321 FTy->getParamType(i))); 4322 if (!Args.back()) 4323 return Error("Invalid record"); 4324 } 4325 4326 // Read type/value pairs for varargs params. 4327 if (!FTy->isVarArg()) { 4328 if (OpNum != Record.size()) 4329 return Error("Invalid record"); 4330 } else { 4331 while (OpNum != Record.size()) { 4332 Value *Op; 4333 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4334 return Error("Invalid record"); 4335 Args.push_back(Op); 4336 } 4337 } 4338 4339 I = CallInst::Create(FTy, Callee, Args); 4340 InstructionList.push_back(I); 4341 cast<CallInst>(I)->setCallingConv( 4342 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4343 CallInst::TailCallKind TCK = CallInst::TCK_None; 4344 if (CCInfo & 1) 4345 TCK = CallInst::TCK_Tail; 4346 if (CCInfo & (1 << 14)) 4347 TCK = CallInst::TCK_MustTail; 4348 cast<CallInst>(I)->setTailCallKind(TCK); 4349 cast<CallInst>(I)->setAttributes(PAL); 4350 break; 4351 } 4352 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4353 if (Record.size() < 3) 4354 return Error("Invalid record"); 4355 Type *OpTy = getTypeByID(Record[0]); 4356 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4357 Type *ResTy = getTypeByID(Record[2]); 4358 if (!OpTy || !Op || !ResTy) 4359 return Error("Invalid record"); 4360 I = new VAArgInst(Op, ResTy); 4361 InstructionList.push_back(I); 4362 break; 4363 } 4364 } 4365 4366 // Add instruction to end of current BB. If there is no current BB, reject 4367 // this file. 4368 if (!CurBB) { 4369 delete I; 4370 return Error("Invalid instruction with no BB"); 4371 } 4372 CurBB->getInstList().push_back(I); 4373 4374 // If this was a terminator instruction, move to the next block. 4375 if (isa<TerminatorInst>(I)) { 4376 ++CurBBNo; 4377 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4378 } 4379 4380 // Non-void values get registered in the value table for future use. 4381 if (I && !I->getType()->isVoidTy()) 4382 ValueList.AssignValue(I, NextValueNo++); 4383 } 4384 4385 OutOfRecordLoop: 4386 4387 // Check the function list for unresolved values. 4388 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4389 if (!A->getParent()) { 4390 // We found at least one unresolved value. Nuke them all to avoid leaks. 4391 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4392 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4393 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4394 delete A; 4395 } 4396 } 4397 return Error("Never resolved value found in function"); 4398 } 4399 } 4400 4401 // FIXME: Check for unresolved forward-declared metadata references 4402 // and clean up leaks. 4403 4404 // Trim the value list down to the size it was before we parsed this function. 4405 ValueList.shrinkTo(ModuleValueListSize); 4406 MDValueList.shrinkTo(ModuleMDValueListSize); 4407 std::vector<BasicBlock*>().swap(FunctionBBs); 4408 return std::error_code(); 4409 } 4410 4411 /// Find the function body in the bitcode stream 4412 std::error_code BitcodeReader::FindFunctionInStream( 4413 Function *F, 4414 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4415 while (DeferredFunctionInfoIterator->second == 0) { 4416 if (Stream.AtEndOfStream()) 4417 return Error("Could not find function in stream"); 4418 // ParseModule will parse the next body in the stream and set its 4419 // position in the DeferredFunctionInfo map. 4420 if (std::error_code EC = ParseModule(true)) 4421 return EC; 4422 } 4423 return std::error_code(); 4424 } 4425 4426 //===----------------------------------------------------------------------===// 4427 // GVMaterializer implementation 4428 //===----------------------------------------------------------------------===// 4429 4430 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4431 4432 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4433 if (std::error_code EC = materializeMetadata()) 4434 return EC; 4435 4436 Function *F = dyn_cast<Function>(GV); 4437 // If it's not a function or is already material, ignore the request. 4438 if (!F || !F->isMaterializable()) 4439 return std::error_code(); 4440 4441 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4442 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4443 // If its position is recorded as 0, its body is somewhere in the stream 4444 // but we haven't seen it yet. 4445 if (DFII->second == 0 && LazyStreamer) 4446 if (std::error_code EC = FindFunctionInStream(F, DFII)) 4447 return EC; 4448 4449 // Move the bit stream to the saved position of the deferred function body. 4450 Stream.JumpToBit(DFII->second); 4451 4452 if (std::error_code EC = ParseFunctionBody(F)) 4453 return EC; 4454 F->setIsMaterializable(false); 4455 4456 if (StripDebugInfo) 4457 stripDebugInfo(*F); 4458 4459 // Upgrade any old intrinsic calls in the function. 4460 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 4461 E = UpgradedIntrinsics.end(); I != E; ++I) { 4462 if (I->first != I->second) { 4463 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4464 UI != UE;) { 4465 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4466 UpgradeIntrinsicCall(CI, I->second); 4467 } 4468 } 4469 } 4470 4471 // Bring in any functions that this function forward-referenced via 4472 // blockaddresses. 4473 return materializeForwardReferencedFunctions(); 4474 } 4475 4476 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4477 const Function *F = dyn_cast<Function>(GV); 4478 if (!F || F->isDeclaration()) 4479 return false; 4480 4481 // Dematerializing F would leave dangling references that wouldn't be 4482 // reconnected on re-materialization. 4483 if (BlockAddressesTaken.count(F)) 4484 return false; 4485 4486 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4487 } 4488 4489 void BitcodeReader::dematerialize(GlobalValue *GV) { 4490 Function *F = dyn_cast<Function>(GV); 4491 // If this function isn't dematerializable, this is a noop. 4492 if (!F || !isDematerializable(F)) 4493 return; 4494 4495 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4496 4497 // Just forget the function body, we can remat it later. 4498 F->dropAllReferences(); 4499 F->setIsMaterializable(true); 4500 } 4501 4502 std::error_code BitcodeReader::materializeModule(Module *M) { 4503 assert(M == TheModule && 4504 "Can only Materialize the Module this BitcodeReader is attached to."); 4505 4506 if (std::error_code EC = materializeMetadata()) 4507 return EC; 4508 4509 // Promise to materialize all forward references. 4510 WillMaterializeAllForwardRefs = true; 4511 4512 // Iterate over the module, deserializing any functions that are still on 4513 // disk. 4514 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4515 F != E; ++F) { 4516 if (std::error_code EC = materialize(F)) 4517 return EC; 4518 } 4519 // At this point, if there are any function bodies, the current bit is 4520 // pointing to the END_BLOCK record after them. Now make sure the rest 4521 // of the bits in the module have been read. 4522 if (NextUnreadBit) 4523 ParseModule(true); 4524 4525 // Check that all block address forward references got resolved (as we 4526 // promised above). 4527 if (!BasicBlockFwdRefs.empty()) 4528 return Error("Never resolved function from blockaddress"); 4529 4530 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4531 // delete the old functions to clean up. We can't do this unless the entire 4532 // module is materialized because there could always be another function body 4533 // with calls to the old function. 4534 for (std::vector<std::pair<Function*, Function*> >::iterator I = 4535 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 4536 if (I->first != I->second) { 4537 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4538 UI != UE;) { 4539 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4540 UpgradeIntrinsicCall(CI, I->second); 4541 } 4542 if (!I->first->use_empty()) 4543 I->first->replaceAllUsesWith(I->second); 4544 I->first->eraseFromParent(); 4545 } 4546 } 4547 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 4548 4549 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4550 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4551 4552 UpgradeDebugInfo(*M); 4553 return std::error_code(); 4554 } 4555 4556 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4557 return IdentifiedStructTypes; 4558 } 4559 4560 std::error_code BitcodeReader::InitStream() { 4561 if (LazyStreamer) 4562 return InitLazyStream(); 4563 return InitStreamFromBuffer(); 4564 } 4565 4566 std::error_code BitcodeReader::InitStreamFromBuffer() { 4567 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4568 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4569 4570 if (Buffer->getBufferSize() & 3) 4571 return Error("Invalid bitcode signature"); 4572 4573 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4574 // The magic number is 0x0B17C0DE stored in little endian. 4575 if (isBitcodeWrapper(BufPtr, BufEnd)) 4576 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4577 return Error("Invalid bitcode wrapper header"); 4578 4579 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4580 Stream.init(&*StreamFile); 4581 4582 return std::error_code(); 4583 } 4584 4585 std::error_code BitcodeReader::InitLazyStream() { 4586 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4587 // see it. 4588 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 4589 StreamingMemoryObject &Bytes = *OwnedBytes; 4590 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4591 Stream.init(&*StreamFile); 4592 4593 unsigned char buf[16]; 4594 if (Bytes.readBytes(buf, 16, 0) != 16) 4595 return Error("Invalid bitcode signature"); 4596 4597 if (!isBitcode(buf, buf + 16)) 4598 return Error("Invalid bitcode signature"); 4599 4600 if (isBitcodeWrapper(buf, buf + 4)) { 4601 const unsigned char *bitcodeStart = buf; 4602 const unsigned char *bitcodeEnd = buf + 16; 4603 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4604 Bytes.dropLeadingBytes(bitcodeStart - buf); 4605 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4606 } 4607 return std::error_code(); 4608 } 4609 4610 namespace { 4611 class BitcodeErrorCategoryType : public std::error_category { 4612 const char *name() const LLVM_NOEXCEPT override { 4613 return "llvm.bitcode"; 4614 } 4615 std::string message(int IE) const override { 4616 BitcodeError E = static_cast<BitcodeError>(IE); 4617 switch (E) { 4618 case BitcodeError::InvalidBitcodeSignature: 4619 return "Invalid bitcode signature"; 4620 case BitcodeError::CorruptedBitcode: 4621 return "Corrupted bitcode"; 4622 } 4623 llvm_unreachable("Unknown error type!"); 4624 } 4625 }; 4626 } 4627 4628 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4629 4630 const std::error_category &llvm::BitcodeErrorCategory() { 4631 return *ErrorCategory; 4632 } 4633 4634 //===----------------------------------------------------------------------===// 4635 // External interface 4636 //===----------------------------------------------------------------------===// 4637 4638 /// \brief Get a lazy one-at-time loading module from bitcode. 4639 /// 4640 /// This isn't always used in a lazy context. In particular, it's also used by 4641 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4642 /// in forward-referenced functions from block address references. 4643 /// 4644 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 4645 /// materialize everything -- in particular, if this isn't truly lazy. 4646 static ErrorOr<Module *> 4647 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4648 LLVMContext &Context, bool WillMaterializeAll, 4649 DiagnosticHandlerFunction DiagnosticHandler, 4650 bool ShouldLazyLoadMetadata = false) { 4651 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 4652 BitcodeReader *R = 4653 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4654 M->setMaterializer(R); 4655 4656 auto cleanupOnError = [&](std::error_code EC) { 4657 R->releaseBuffer(); // Never take ownership on error. 4658 delete M; // Also deletes R. 4659 return EC; 4660 }; 4661 4662 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4663 if (std::error_code EC = R->ParseBitcodeInto(M, ShouldLazyLoadMetadata)) 4664 return cleanupOnError(EC); 4665 4666 if (!WillMaterializeAll) 4667 // Resolve forward references from blockaddresses. 4668 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4669 return cleanupOnError(EC); 4670 4671 Buffer.release(); // The BitcodeReader owns it now. 4672 return M; 4673 } 4674 4675 ErrorOr<Module *> 4676 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 4677 LLVMContext &Context, 4678 DiagnosticHandlerFunction DiagnosticHandler, 4679 bool ShouldLazyLoadMetadata) { 4680 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4681 DiagnosticHandler, ShouldLazyLoadMetadata); 4682 } 4683 4684 ErrorOr<std::unique_ptr<Module>> 4685 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 4686 LLVMContext &Context, 4687 DiagnosticHandlerFunction DiagnosticHandler) { 4688 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4689 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4690 M->setMaterializer(R); 4691 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 4692 return EC; 4693 return std::move(M); 4694 } 4695 4696 ErrorOr<Module *> 4697 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4698 DiagnosticHandlerFunction DiagnosticHandler) { 4699 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4700 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4701 std::move(Buf), Context, true, DiagnosticHandler); 4702 if (!ModuleOrErr) 4703 return ModuleOrErr; 4704 Module *M = ModuleOrErr.get(); 4705 // Read in the entire module, and destroy the BitcodeReader. 4706 if (std::error_code EC = M->materializeAllPermanently()) { 4707 delete M; 4708 return EC; 4709 } 4710 4711 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4712 // written. We must defer until the Module has been fully materialized. 4713 4714 return M; 4715 } 4716 4717 std::string 4718 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4719 DiagnosticHandlerFunction DiagnosticHandler) { 4720 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4721 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4722 DiagnosticHandler); 4723 ErrorOr<std::string> Triple = R->parseTriple(); 4724 if (Triple.getError()) 4725 return ""; 4726 return Triple.get(); 4727 } 4728