1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 /// Helper to read the header common to all bitcode files. 109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 110 // Sniff for the signature. 111 if (!Stream.canSkipToPos(4) || 112 Stream.Read(8) != 'B' || 113 Stream.Read(8) != 'C' || 114 Stream.Read(4) != 0x0 || 115 Stream.Read(4) != 0xC || 116 Stream.Read(4) != 0xE || 117 Stream.Read(4) != 0xD) 118 return false; 119 return true; 120 } 121 122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 123 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 124 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 125 126 if (Buffer.getBufferSize() & 3) 127 return error("Invalid bitcode signature"); 128 129 // If we have a wrapper header, parse it and ignore the non-bc file contents. 130 // The magic number is 0x0B17C0DE stored in little endian. 131 if (isBitcodeWrapper(BufPtr, BufEnd)) 132 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 133 return error("Invalid bitcode wrapper header"); 134 135 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 136 if (!hasValidBitcodeHeader(Stream)) 137 return error("Invalid bitcode signature"); 138 139 return std::move(Stream); 140 } 141 142 /// Convert a string from a record into an std::string, return true on failure. 143 template <typename StrTy> 144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 145 StrTy &Result) { 146 if (Idx > Record.size()) 147 return true; 148 149 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 150 Result += (char)Record[i]; 151 return false; 152 } 153 154 // Strip all the TBAA attachment for the module. 155 static void stripTBAA(Module *M) { 156 for (auto &F : *M) { 157 if (F.isMaterializable()) 158 continue; 159 for (auto &I : instructions(F)) 160 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 161 } 162 } 163 164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 165 /// "epoch" encoded in the bitcode, and return the producer name if any. 166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 167 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 168 return error("Invalid record"); 169 170 // Read all the records. 171 SmallVector<uint64_t, 64> Record; 172 173 std::string ProducerIdentification; 174 175 while (true) { 176 BitstreamEntry Entry = Stream.advance(); 177 178 switch (Entry.Kind) { 179 default: 180 case BitstreamEntry::Error: 181 return error("Malformed block"); 182 case BitstreamEntry::EndBlock: 183 return ProducerIdentification; 184 case BitstreamEntry::Record: 185 // The interesting case. 186 break; 187 } 188 189 // Read a record. 190 Record.clear(); 191 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 192 switch (BitCode) { 193 default: // Default behavior: reject 194 return error("Invalid value"); 195 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 196 convertToString(Record, 0, ProducerIdentification); 197 break; 198 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 199 unsigned epoch = (unsigned)Record[0]; 200 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 201 return error( 202 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 203 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 204 } 205 } 206 } 207 } 208 } 209 210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 211 // We expect a number of well-defined blocks, though we don't necessarily 212 // need to understand them all. 213 while (true) { 214 if (Stream.AtEndOfStream()) 215 return ""; 216 217 BitstreamEntry Entry = Stream.advance(); 218 switch (Entry.Kind) { 219 case BitstreamEntry::EndBlock: 220 case BitstreamEntry::Error: 221 return error("Malformed block"); 222 223 case BitstreamEntry::SubBlock: 224 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 225 return readIdentificationBlock(Stream); 226 227 // Ignore other sub-blocks. 228 if (Stream.SkipBlock()) 229 return error("Malformed block"); 230 continue; 231 case BitstreamEntry::Record: 232 Stream.skipRecord(Entry.ID); 233 continue; 234 } 235 } 236 } 237 238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 239 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 240 return error("Invalid record"); 241 242 SmallVector<uint64_t, 64> Record; 243 // Read all the records for this module. 244 245 while (true) { 246 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 247 248 switch (Entry.Kind) { 249 case BitstreamEntry::SubBlock: // Handled for us already. 250 case BitstreamEntry::Error: 251 return error("Malformed block"); 252 case BitstreamEntry::EndBlock: 253 return false; 254 case BitstreamEntry::Record: 255 // The interesting case. 256 break; 257 } 258 259 // Read a record. 260 switch (Stream.readRecord(Entry.ID, Record)) { 261 default: 262 break; // Default behavior, ignore unknown content. 263 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 264 std::string S; 265 if (convertToString(Record, 0, S)) 266 return error("Invalid record"); 267 // Check for the i386 and other (x86_64, ARM) conventions 268 if (S.find("__DATA,__objc_catlist") != std::string::npos || 269 S.find("__OBJC,__category") != std::string::npos) 270 return true; 271 break; 272 } 273 } 274 Record.clear(); 275 } 276 llvm_unreachable("Exit infinite loop"); 277 } 278 279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 280 // We expect a number of well-defined blocks, though we don't necessarily 281 // need to understand them all. 282 while (true) { 283 BitstreamEntry Entry = Stream.advance(); 284 285 switch (Entry.Kind) { 286 case BitstreamEntry::Error: 287 return error("Malformed block"); 288 case BitstreamEntry::EndBlock: 289 return false; 290 291 case BitstreamEntry::SubBlock: 292 if (Entry.ID == bitc::MODULE_BLOCK_ID) 293 return hasObjCCategoryInModule(Stream); 294 295 // Ignore other sub-blocks. 296 if (Stream.SkipBlock()) 297 return error("Malformed block"); 298 continue; 299 300 case BitstreamEntry::Record: 301 Stream.skipRecord(Entry.ID); 302 continue; 303 } 304 } 305 } 306 307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 308 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 309 return error("Invalid record"); 310 311 SmallVector<uint64_t, 64> Record; 312 313 std::string Triple; 314 315 // Read all the records for this module. 316 while (true) { 317 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 318 319 switch (Entry.Kind) { 320 case BitstreamEntry::SubBlock: // Handled for us already. 321 case BitstreamEntry::Error: 322 return error("Malformed block"); 323 case BitstreamEntry::EndBlock: 324 return Triple; 325 case BitstreamEntry::Record: 326 // The interesting case. 327 break; 328 } 329 330 // Read a record. 331 switch (Stream.readRecord(Entry.ID, Record)) { 332 default: break; // Default behavior, ignore unknown content. 333 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 334 std::string S; 335 if (convertToString(Record, 0, S)) 336 return error("Invalid record"); 337 Triple = S; 338 break; 339 } 340 } 341 Record.clear(); 342 } 343 llvm_unreachable("Exit infinite loop"); 344 } 345 346 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 347 // We expect a number of well-defined blocks, though we don't necessarily 348 // need to understand them all. 349 while (true) { 350 BitstreamEntry Entry = Stream.advance(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::Error: 354 return error("Malformed block"); 355 case BitstreamEntry::EndBlock: 356 return ""; 357 358 case BitstreamEntry::SubBlock: 359 if (Entry.ID == bitc::MODULE_BLOCK_ID) 360 return readModuleTriple(Stream); 361 362 // Ignore other sub-blocks. 363 if (Stream.SkipBlock()) 364 return error("Malformed block"); 365 continue; 366 367 case BitstreamEntry::Record: 368 Stream.skipRecord(Entry.ID); 369 continue; 370 } 371 } 372 } 373 374 namespace { 375 376 class BitcodeReaderBase { 377 protected: 378 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 379 : Stream(std::move(Stream)), Strtab(Strtab) { 380 this->Stream.setBlockInfo(&BlockInfo); 381 } 382 383 BitstreamBlockInfo BlockInfo; 384 BitstreamCursor Stream; 385 StringRef Strtab; 386 387 /// In version 2 of the bitcode we store names of global values and comdats in 388 /// a string table rather than in the VST. 389 bool UseStrtab = false; 390 391 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 392 393 /// If this module uses a string table, pop the reference to the string table 394 /// and return the referenced string and the rest of the record. Otherwise 395 /// just return the record itself. 396 std::pair<StringRef, ArrayRef<uint64_t>> 397 readNameFromStrtab(ArrayRef<uint64_t> Record); 398 399 bool readBlockInfo(); 400 401 // Contains an arbitrary and optional string identifying the bitcode producer 402 std::string ProducerIdentification; 403 404 Error error(const Twine &Message); 405 }; 406 407 } // end anonymous namespace 408 409 Error BitcodeReaderBase::error(const Twine &Message) { 410 std::string FullMsg = Message.str(); 411 if (!ProducerIdentification.empty()) 412 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 413 LLVM_VERSION_STRING "')"; 414 return ::error(FullMsg); 415 } 416 417 Expected<unsigned> 418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 419 if (Record.empty()) 420 return error("Invalid record"); 421 unsigned ModuleVersion = Record[0]; 422 if (ModuleVersion > 2) 423 return error("Invalid value"); 424 UseStrtab = ModuleVersion >= 2; 425 return ModuleVersion; 426 } 427 428 std::pair<StringRef, ArrayRef<uint64_t>> 429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 430 if (!UseStrtab) 431 return {"", Record}; 432 // Invalid reference. Let the caller complain about the record being empty. 433 if (Record[0] + Record[1] > Strtab.size()) 434 return {"", {}}; 435 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 436 } 437 438 namespace { 439 440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 441 LLVMContext &Context; 442 Module *TheModule = nullptr; 443 // Next offset to start scanning for lazy parsing of function bodies. 444 uint64_t NextUnreadBit = 0; 445 // Last function offset found in the VST. 446 uint64_t LastFunctionBlockBit = 0; 447 bool SeenValueSymbolTable = false; 448 uint64_t VSTOffset = 0; 449 450 std::vector<std::string> SectionTable; 451 std::vector<std::string> GCTable; 452 453 std::vector<Type*> TypeList; 454 BitcodeReaderValueList ValueList; 455 Optional<MetadataLoader> MDLoader; 456 std::vector<Comdat *> ComdatList; 457 SmallVector<Instruction *, 64> InstructionList; 458 459 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 460 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 461 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 463 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 464 465 /// The set of attributes by index. Index zero in the file is for null, and 466 /// is thus not represented here. As such all indices are off by one. 467 std::vector<AttributeList> MAttributes; 468 469 /// The set of attribute groups. 470 std::map<unsigned, AttributeList> MAttributeGroups; 471 472 /// While parsing a function body, this is a list of the basic blocks for the 473 /// function. 474 std::vector<BasicBlock*> FunctionBBs; 475 476 // When reading the module header, this list is populated with functions that 477 // have bodies later in the file. 478 std::vector<Function*> FunctionsWithBodies; 479 480 // When intrinsic functions are encountered which require upgrading they are 481 // stored here with their replacement function. 482 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 483 UpdatedIntrinsicMap UpgradedIntrinsics; 484 // Intrinsics which were remangled because of types rename 485 UpdatedIntrinsicMap RemangledIntrinsics; 486 487 // Several operations happen after the module header has been read, but 488 // before function bodies are processed. This keeps track of whether 489 // we've done this yet. 490 bool SeenFirstFunctionBody = false; 491 492 /// When function bodies are initially scanned, this map contains info about 493 /// where to find deferred function body in the stream. 494 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 495 496 /// When Metadata block is initially scanned when parsing the module, we may 497 /// choose to defer parsing of the metadata. This vector contains info about 498 /// which Metadata blocks are deferred. 499 std::vector<uint64_t> DeferredMetadataInfo; 500 501 /// These are basic blocks forward-referenced by block addresses. They are 502 /// inserted lazily into functions when they're loaded. The basic block ID is 503 /// its index into the vector. 504 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 505 std::deque<Function *> BasicBlockFwdRefQueue; 506 507 /// Indicates that we are using a new encoding for instruction operands where 508 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 509 /// instruction number, for a more compact encoding. Some instruction 510 /// operands are not relative to the instruction ID: basic block numbers, and 511 /// types. Once the old style function blocks have been phased out, we would 512 /// not need this flag. 513 bool UseRelativeIDs = false; 514 515 /// True if all functions will be materialized, negating the need to process 516 /// (e.g.) blockaddress forward references. 517 bool WillMaterializeAllForwardRefs = false; 518 519 bool StripDebugInfo = false; 520 TBAAVerifier TBAAVerifyHelper; 521 522 std::vector<std::string> BundleTags; 523 SmallVector<SyncScope::ID, 8> SSIDs; 524 525 public: 526 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 527 StringRef ProducerIdentification, LLVMContext &Context); 528 529 Error materializeForwardReferencedFunctions(); 530 531 Error materialize(GlobalValue *GV) override; 532 Error materializeModule() override; 533 std::vector<StructType *> getIdentifiedStructTypes() const override; 534 535 /// Main interface to parsing a bitcode buffer. 536 /// \returns true if an error occurred. 537 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 538 bool IsImporting = false); 539 540 static uint64_t decodeSignRotatedValue(uint64_t V); 541 542 /// Materialize any deferred Metadata block. 543 Error materializeMetadata() override; 544 545 void setStripDebugInfo() override; 546 547 private: 548 std::vector<StructType *> IdentifiedStructTypes; 549 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 550 StructType *createIdentifiedStructType(LLVMContext &Context); 551 552 Type *getTypeByID(unsigned ID); 553 554 Value *getFnValueByID(unsigned ID, Type *Ty) { 555 if (Ty && Ty->isMetadataTy()) 556 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 557 return ValueList.getValueFwdRef(ID, Ty); 558 } 559 560 Metadata *getFnMetadataByID(unsigned ID) { 561 return MDLoader->getMetadataFwdRefOrLoad(ID); 562 } 563 564 BasicBlock *getBasicBlock(unsigned ID) const { 565 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 566 return FunctionBBs[ID]; 567 } 568 569 AttributeList getAttributes(unsigned i) const { 570 if (i-1 < MAttributes.size()) 571 return MAttributes[i-1]; 572 return AttributeList(); 573 } 574 575 /// Read a value/type pair out of the specified record from slot 'Slot'. 576 /// Increment Slot past the number of slots used in the record. Return true on 577 /// failure. 578 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 579 unsigned InstNum, Value *&ResVal) { 580 if (Slot == Record.size()) return true; 581 unsigned ValNo = (unsigned)Record[Slot++]; 582 // Adjust the ValNo, if it was encoded relative to the InstNum. 583 if (UseRelativeIDs) 584 ValNo = InstNum - ValNo; 585 if (ValNo < InstNum) { 586 // If this is not a forward reference, just return the value we already 587 // have. 588 ResVal = getFnValueByID(ValNo, nullptr); 589 return ResVal == nullptr; 590 } 591 if (Slot == Record.size()) 592 return true; 593 594 unsigned TypeNo = (unsigned)Record[Slot++]; 595 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 596 return ResVal == nullptr; 597 } 598 599 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 600 /// past the number of slots used by the value in the record. Return true if 601 /// there is an error. 602 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 603 unsigned InstNum, Type *Ty, Value *&ResVal) { 604 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 605 return true; 606 // All values currently take a single record slot. 607 ++Slot; 608 return false; 609 } 610 611 /// Like popValue, but does not increment the Slot number. 612 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 613 unsigned InstNum, Type *Ty, Value *&ResVal) { 614 ResVal = getValue(Record, Slot, InstNum, Ty); 615 return ResVal == nullptr; 616 } 617 618 /// Version of getValue that returns ResVal directly, or 0 if there is an 619 /// error. 620 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 621 unsigned InstNum, Type *Ty) { 622 if (Slot == Record.size()) return nullptr; 623 unsigned ValNo = (unsigned)Record[Slot]; 624 // Adjust the ValNo, if it was encoded relative to the InstNum. 625 if (UseRelativeIDs) 626 ValNo = InstNum - ValNo; 627 return getFnValueByID(ValNo, Ty); 628 } 629 630 /// Like getValue, but decodes signed VBRs. 631 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 632 unsigned InstNum, Type *Ty) { 633 if (Slot == Record.size()) return nullptr; 634 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 635 // Adjust the ValNo, if it was encoded relative to the InstNum. 636 if (UseRelativeIDs) 637 ValNo = InstNum - ValNo; 638 return getFnValueByID(ValNo, Ty); 639 } 640 641 /// Converts alignment exponent (i.e. power of two (or zero)) to the 642 /// corresponding alignment to use. If alignment is too large, returns 643 /// a corresponding error code. 644 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 645 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 646 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 647 648 Error parseComdatRecord(ArrayRef<uint64_t> Record); 649 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 650 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 651 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 652 ArrayRef<uint64_t> Record); 653 654 Error parseAttributeBlock(); 655 Error parseAttributeGroupBlock(); 656 Error parseTypeTable(); 657 Error parseTypeTableBody(); 658 Error parseOperandBundleTags(); 659 Error parseSyncScopeNames(); 660 661 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 662 unsigned NameIndex, Triple &TT); 663 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 664 ArrayRef<uint64_t> Record); 665 Error parseValueSymbolTable(uint64_t Offset = 0); 666 Error parseGlobalValueSymbolTable(); 667 Error parseConstants(); 668 Error rememberAndSkipFunctionBodies(); 669 Error rememberAndSkipFunctionBody(); 670 /// Save the positions of the Metadata blocks and skip parsing the blocks. 671 Error rememberAndSkipMetadata(); 672 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 673 Error parseFunctionBody(Function *F); 674 Error globalCleanup(); 675 Error resolveGlobalAndIndirectSymbolInits(); 676 Error parseUseLists(); 677 Error findFunctionInStream( 678 Function *F, 679 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 680 681 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 682 }; 683 684 /// Class to manage reading and parsing function summary index bitcode 685 /// files/sections. 686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 687 /// The module index built during parsing. 688 ModuleSummaryIndex &TheIndex; 689 690 /// Indicates whether we have encountered a global value summary section 691 /// yet during parsing. 692 bool SeenGlobalValSummary = false; 693 694 /// Indicates whether we have already parsed the VST, used for error checking. 695 bool SeenValueSymbolTable = false; 696 697 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 698 /// Used to enable on-demand parsing of the VST. 699 uint64_t VSTOffset = 0; 700 701 // Map to save ValueId to ValueInfo association that was recorded in the 702 // ValueSymbolTable. It is used after the VST is parsed to convert 703 // call graph edges read from the function summary from referencing 704 // callees by their ValueId to using the ValueInfo instead, which is how 705 // they are recorded in the summary index being built. 706 // We save a GUID which refers to the same global as the ValueInfo, but 707 // ignoring the linkage, i.e. for values other than local linkage they are 708 // identical. 709 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 710 ValueIdToValueInfoMap; 711 712 /// Map populated during module path string table parsing, from the 713 /// module ID to a string reference owned by the index's module 714 /// path string table, used to correlate with combined index 715 /// summary records. 716 DenseMap<uint64_t, StringRef> ModuleIdMap; 717 718 /// Original source file name recorded in a bitcode record. 719 std::string SourceFileName; 720 721 /// The string identifier given to this module by the client, normally the 722 /// path to the bitcode file. 723 StringRef ModulePath; 724 725 /// For per-module summary indexes, the unique numerical identifier given to 726 /// this module by the client. 727 unsigned ModuleId; 728 729 public: 730 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 731 ModuleSummaryIndex &TheIndex, 732 StringRef ModulePath, unsigned ModuleId); 733 734 Error parseModule(); 735 736 private: 737 void setValueGUID(uint64_t ValueID, StringRef ValueName, 738 GlobalValue::LinkageTypes Linkage, 739 StringRef SourceFileName); 740 Error parseValueSymbolTable( 741 uint64_t Offset, 742 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 743 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 744 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 745 bool IsOldProfileFormat, 746 bool HasProfile, 747 bool HasRelBF); 748 Error parseEntireSummary(unsigned ID); 749 Error parseModuleStringTable(); 750 751 std::pair<ValueInfo, GlobalValue::GUID> 752 getValueInfoFromValueId(unsigned ValueId); 753 754 void addThisModule(); 755 ModuleSummaryIndex::ModuleInfo *getThisModule(); 756 }; 757 758 } // end anonymous namespace 759 760 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 761 Error Err) { 762 if (Err) { 763 std::error_code EC; 764 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 765 EC = EIB.convertToErrorCode(); 766 Ctx.emitError(EIB.message()); 767 }); 768 return EC; 769 } 770 return std::error_code(); 771 } 772 773 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 774 StringRef ProducerIdentification, 775 LLVMContext &Context) 776 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 777 ValueList(Context) { 778 this->ProducerIdentification = ProducerIdentification; 779 } 780 781 Error BitcodeReader::materializeForwardReferencedFunctions() { 782 if (WillMaterializeAllForwardRefs) 783 return Error::success(); 784 785 // Prevent recursion. 786 WillMaterializeAllForwardRefs = true; 787 788 while (!BasicBlockFwdRefQueue.empty()) { 789 Function *F = BasicBlockFwdRefQueue.front(); 790 BasicBlockFwdRefQueue.pop_front(); 791 assert(F && "Expected valid function"); 792 if (!BasicBlockFwdRefs.count(F)) 793 // Already materialized. 794 continue; 795 796 // Check for a function that isn't materializable to prevent an infinite 797 // loop. When parsing a blockaddress stored in a global variable, there 798 // isn't a trivial way to check if a function will have a body without a 799 // linear search through FunctionsWithBodies, so just check it here. 800 if (!F->isMaterializable()) 801 return error("Never resolved function from blockaddress"); 802 803 // Try to materialize F. 804 if (Error Err = materialize(F)) 805 return Err; 806 } 807 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 808 809 // Reset state. 810 WillMaterializeAllForwardRefs = false; 811 return Error::success(); 812 } 813 814 //===----------------------------------------------------------------------===// 815 // Helper functions to implement forward reference resolution, etc. 816 //===----------------------------------------------------------------------===// 817 818 static bool hasImplicitComdat(size_t Val) { 819 switch (Val) { 820 default: 821 return false; 822 case 1: // Old WeakAnyLinkage 823 case 4: // Old LinkOnceAnyLinkage 824 case 10: // Old WeakODRLinkage 825 case 11: // Old LinkOnceODRLinkage 826 return true; 827 } 828 } 829 830 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 831 switch (Val) { 832 default: // Map unknown/new linkages to external 833 case 0: 834 return GlobalValue::ExternalLinkage; 835 case 2: 836 return GlobalValue::AppendingLinkage; 837 case 3: 838 return GlobalValue::InternalLinkage; 839 case 5: 840 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 841 case 6: 842 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 843 case 7: 844 return GlobalValue::ExternalWeakLinkage; 845 case 8: 846 return GlobalValue::CommonLinkage; 847 case 9: 848 return GlobalValue::PrivateLinkage; 849 case 12: 850 return GlobalValue::AvailableExternallyLinkage; 851 case 13: 852 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 853 case 14: 854 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 855 case 15: 856 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 857 case 1: // Old value with implicit comdat. 858 case 16: 859 return GlobalValue::WeakAnyLinkage; 860 case 10: // Old value with implicit comdat. 861 case 17: 862 return GlobalValue::WeakODRLinkage; 863 case 4: // Old value with implicit comdat. 864 case 18: 865 return GlobalValue::LinkOnceAnyLinkage; 866 case 11: // Old value with implicit comdat. 867 case 19: 868 return GlobalValue::LinkOnceODRLinkage; 869 } 870 } 871 872 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 873 FunctionSummary::FFlags Flags; 874 Flags.ReadNone = RawFlags & 0x1; 875 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 876 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 877 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 878 Flags.NoInline = (RawFlags >> 4) & 0x1; 879 return Flags; 880 } 881 882 /// Decode the flags for GlobalValue in the summary. 883 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 884 uint64_t Version) { 885 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 886 // like getDecodedLinkage() above. Any future change to the linkage enum and 887 // to getDecodedLinkage() will need to be taken into account here as above. 888 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 889 RawFlags = RawFlags >> 4; 890 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 891 // The Live flag wasn't introduced until version 3. For dead stripping 892 // to work correctly on earlier versions, we must conservatively treat all 893 // values as live. 894 bool Live = (RawFlags & 0x2) || Version < 3; 895 bool Local = (RawFlags & 0x4); 896 bool AutoHide = (RawFlags & 0x8); 897 898 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 899 } 900 901 // Decode the flags for GlobalVariable in the summary 902 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 903 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false); 904 } 905 906 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 907 switch (Val) { 908 default: // Map unknown visibilities to default. 909 case 0: return GlobalValue::DefaultVisibility; 910 case 1: return GlobalValue::HiddenVisibility; 911 case 2: return GlobalValue::ProtectedVisibility; 912 } 913 } 914 915 static GlobalValue::DLLStorageClassTypes 916 getDecodedDLLStorageClass(unsigned Val) { 917 switch (Val) { 918 default: // Map unknown values to default. 919 case 0: return GlobalValue::DefaultStorageClass; 920 case 1: return GlobalValue::DLLImportStorageClass; 921 case 2: return GlobalValue::DLLExportStorageClass; 922 } 923 } 924 925 static bool getDecodedDSOLocal(unsigned Val) { 926 switch(Val) { 927 default: // Map unknown values to preemptable. 928 case 0: return false; 929 case 1: return true; 930 } 931 } 932 933 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 934 switch (Val) { 935 case 0: return GlobalVariable::NotThreadLocal; 936 default: // Map unknown non-zero value to general dynamic. 937 case 1: return GlobalVariable::GeneralDynamicTLSModel; 938 case 2: return GlobalVariable::LocalDynamicTLSModel; 939 case 3: return GlobalVariable::InitialExecTLSModel; 940 case 4: return GlobalVariable::LocalExecTLSModel; 941 } 942 } 943 944 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 945 switch (Val) { 946 default: // Map unknown to UnnamedAddr::None. 947 case 0: return GlobalVariable::UnnamedAddr::None; 948 case 1: return GlobalVariable::UnnamedAddr::Global; 949 case 2: return GlobalVariable::UnnamedAddr::Local; 950 } 951 } 952 953 static int getDecodedCastOpcode(unsigned Val) { 954 switch (Val) { 955 default: return -1; 956 case bitc::CAST_TRUNC : return Instruction::Trunc; 957 case bitc::CAST_ZEXT : return Instruction::ZExt; 958 case bitc::CAST_SEXT : return Instruction::SExt; 959 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 960 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 961 case bitc::CAST_UITOFP : return Instruction::UIToFP; 962 case bitc::CAST_SITOFP : return Instruction::SIToFP; 963 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 964 case bitc::CAST_FPEXT : return Instruction::FPExt; 965 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 966 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 967 case bitc::CAST_BITCAST : return Instruction::BitCast; 968 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 969 } 970 } 971 972 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 973 bool IsFP = Ty->isFPOrFPVectorTy(); 974 // UnOps are only valid for int/fp or vector of int/fp types 975 if (!IsFP && !Ty->isIntOrIntVectorTy()) 976 return -1; 977 978 switch (Val) { 979 default: 980 return -1; 981 case bitc::UNOP_NEG: 982 return IsFP ? Instruction::FNeg : -1; 983 } 984 } 985 986 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 987 bool IsFP = Ty->isFPOrFPVectorTy(); 988 // BinOps are only valid for int/fp or vector of int/fp types 989 if (!IsFP && !Ty->isIntOrIntVectorTy()) 990 return -1; 991 992 switch (Val) { 993 default: 994 return -1; 995 case bitc::BINOP_ADD: 996 return IsFP ? Instruction::FAdd : Instruction::Add; 997 case bitc::BINOP_SUB: 998 return IsFP ? Instruction::FSub : Instruction::Sub; 999 case bitc::BINOP_MUL: 1000 return IsFP ? Instruction::FMul : Instruction::Mul; 1001 case bitc::BINOP_UDIV: 1002 return IsFP ? -1 : Instruction::UDiv; 1003 case bitc::BINOP_SDIV: 1004 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1005 case bitc::BINOP_UREM: 1006 return IsFP ? -1 : Instruction::URem; 1007 case bitc::BINOP_SREM: 1008 return IsFP ? Instruction::FRem : Instruction::SRem; 1009 case bitc::BINOP_SHL: 1010 return IsFP ? -1 : Instruction::Shl; 1011 case bitc::BINOP_LSHR: 1012 return IsFP ? -1 : Instruction::LShr; 1013 case bitc::BINOP_ASHR: 1014 return IsFP ? -1 : Instruction::AShr; 1015 case bitc::BINOP_AND: 1016 return IsFP ? -1 : Instruction::And; 1017 case bitc::BINOP_OR: 1018 return IsFP ? -1 : Instruction::Or; 1019 case bitc::BINOP_XOR: 1020 return IsFP ? -1 : Instruction::Xor; 1021 } 1022 } 1023 1024 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1025 switch (Val) { 1026 default: return AtomicRMWInst::BAD_BINOP; 1027 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1028 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1029 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1030 case bitc::RMW_AND: return AtomicRMWInst::And; 1031 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1032 case bitc::RMW_OR: return AtomicRMWInst::Or; 1033 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1034 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1035 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1036 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1037 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1038 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1039 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1040 } 1041 } 1042 1043 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1044 switch (Val) { 1045 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1046 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1047 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1048 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1049 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1050 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1051 default: // Map unknown orderings to sequentially-consistent. 1052 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1053 } 1054 } 1055 1056 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1057 switch (Val) { 1058 default: // Map unknown selection kinds to any. 1059 case bitc::COMDAT_SELECTION_KIND_ANY: 1060 return Comdat::Any; 1061 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1062 return Comdat::ExactMatch; 1063 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1064 return Comdat::Largest; 1065 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1066 return Comdat::NoDuplicates; 1067 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1068 return Comdat::SameSize; 1069 } 1070 } 1071 1072 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1073 FastMathFlags FMF; 1074 if (0 != (Val & bitc::UnsafeAlgebra)) 1075 FMF.setFast(); 1076 if (0 != (Val & bitc::AllowReassoc)) 1077 FMF.setAllowReassoc(); 1078 if (0 != (Val & bitc::NoNaNs)) 1079 FMF.setNoNaNs(); 1080 if (0 != (Val & bitc::NoInfs)) 1081 FMF.setNoInfs(); 1082 if (0 != (Val & bitc::NoSignedZeros)) 1083 FMF.setNoSignedZeros(); 1084 if (0 != (Val & bitc::AllowReciprocal)) 1085 FMF.setAllowReciprocal(); 1086 if (0 != (Val & bitc::AllowContract)) 1087 FMF.setAllowContract(true); 1088 if (0 != (Val & bitc::ApproxFunc)) 1089 FMF.setApproxFunc(); 1090 return FMF; 1091 } 1092 1093 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1094 switch (Val) { 1095 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1096 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1097 } 1098 } 1099 1100 Type *BitcodeReader::getTypeByID(unsigned ID) { 1101 // The type table size is always specified correctly. 1102 if (ID >= TypeList.size()) 1103 return nullptr; 1104 1105 if (Type *Ty = TypeList[ID]) 1106 return Ty; 1107 1108 // If we have a forward reference, the only possible case is when it is to a 1109 // named struct. Just create a placeholder for now. 1110 return TypeList[ID] = createIdentifiedStructType(Context); 1111 } 1112 1113 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1114 StringRef Name) { 1115 auto *Ret = StructType::create(Context, Name); 1116 IdentifiedStructTypes.push_back(Ret); 1117 return Ret; 1118 } 1119 1120 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1121 auto *Ret = StructType::create(Context); 1122 IdentifiedStructTypes.push_back(Ret); 1123 return Ret; 1124 } 1125 1126 //===----------------------------------------------------------------------===// 1127 // Functions for parsing blocks from the bitcode file 1128 //===----------------------------------------------------------------------===// 1129 1130 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1131 switch (Val) { 1132 case Attribute::EndAttrKinds: 1133 llvm_unreachable("Synthetic enumerators which should never get here"); 1134 1135 case Attribute::None: return 0; 1136 case Attribute::ZExt: return 1 << 0; 1137 case Attribute::SExt: return 1 << 1; 1138 case Attribute::NoReturn: return 1 << 2; 1139 case Attribute::InReg: return 1 << 3; 1140 case Attribute::StructRet: return 1 << 4; 1141 case Attribute::NoUnwind: return 1 << 5; 1142 case Attribute::NoAlias: return 1 << 6; 1143 case Attribute::ByVal: return 1 << 7; 1144 case Attribute::Nest: return 1 << 8; 1145 case Attribute::ReadNone: return 1 << 9; 1146 case Attribute::ReadOnly: return 1 << 10; 1147 case Attribute::NoInline: return 1 << 11; 1148 case Attribute::AlwaysInline: return 1 << 12; 1149 case Attribute::OptimizeForSize: return 1 << 13; 1150 case Attribute::StackProtect: return 1 << 14; 1151 case Attribute::StackProtectReq: return 1 << 15; 1152 case Attribute::Alignment: return 31 << 16; 1153 case Attribute::NoCapture: return 1 << 21; 1154 case Attribute::NoRedZone: return 1 << 22; 1155 case Attribute::NoImplicitFloat: return 1 << 23; 1156 case Attribute::Naked: return 1 << 24; 1157 case Attribute::InlineHint: return 1 << 25; 1158 case Attribute::StackAlignment: return 7 << 26; 1159 case Attribute::ReturnsTwice: return 1 << 29; 1160 case Attribute::UWTable: return 1 << 30; 1161 case Attribute::NonLazyBind: return 1U << 31; 1162 case Attribute::SanitizeAddress: return 1ULL << 32; 1163 case Attribute::MinSize: return 1ULL << 33; 1164 case Attribute::NoDuplicate: return 1ULL << 34; 1165 case Attribute::StackProtectStrong: return 1ULL << 35; 1166 case Attribute::SanitizeThread: return 1ULL << 36; 1167 case Attribute::SanitizeMemory: return 1ULL << 37; 1168 case Attribute::NoBuiltin: return 1ULL << 38; 1169 case Attribute::Returned: return 1ULL << 39; 1170 case Attribute::Cold: return 1ULL << 40; 1171 case Attribute::Builtin: return 1ULL << 41; 1172 case Attribute::OptimizeNone: return 1ULL << 42; 1173 case Attribute::InAlloca: return 1ULL << 43; 1174 case Attribute::NonNull: return 1ULL << 44; 1175 case Attribute::JumpTable: return 1ULL << 45; 1176 case Attribute::Convergent: return 1ULL << 46; 1177 case Attribute::SafeStack: return 1ULL << 47; 1178 case Attribute::NoRecurse: return 1ULL << 48; 1179 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1180 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1181 case Attribute::SwiftSelf: return 1ULL << 51; 1182 case Attribute::SwiftError: return 1ULL << 52; 1183 case Attribute::WriteOnly: return 1ULL << 53; 1184 case Attribute::Speculatable: return 1ULL << 54; 1185 case Attribute::StrictFP: return 1ULL << 55; 1186 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1187 case Attribute::NoCfCheck: return 1ULL << 57; 1188 case Attribute::OptForFuzzing: return 1ULL << 58; 1189 case Attribute::ShadowCallStack: return 1ULL << 59; 1190 case Attribute::SpeculativeLoadHardening: 1191 return 1ULL << 60; 1192 case Attribute::ImmArg: 1193 return 1ULL << 61; 1194 case Attribute::Dereferenceable: 1195 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1196 break; 1197 case Attribute::DereferenceableOrNull: 1198 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1199 "format"); 1200 break; 1201 case Attribute::ArgMemOnly: 1202 llvm_unreachable("argmemonly attribute not supported in raw format"); 1203 break; 1204 case Attribute::AllocSize: 1205 llvm_unreachable("allocsize not supported in raw format"); 1206 break; 1207 } 1208 llvm_unreachable("Unsupported attribute type"); 1209 } 1210 1211 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1212 if (!Val) return; 1213 1214 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1215 I = Attribute::AttrKind(I + 1)) { 1216 if (I == Attribute::Dereferenceable || 1217 I == Attribute::DereferenceableOrNull || 1218 I == Attribute::ArgMemOnly || 1219 I == Attribute::AllocSize) 1220 continue; 1221 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1222 if (I == Attribute::Alignment) 1223 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1224 else if (I == Attribute::StackAlignment) 1225 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1226 else 1227 B.addAttribute(I); 1228 } 1229 } 1230 } 1231 1232 /// This fills an AttrBuilder object with the LLVM attributes that have 1233 /// been decoded from the given integer. This function must stay in sync with 1234 /// 'encodeLLVMAttributesForBitcode'. 1235 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1236 uint64_t EncodedAttrs) { 1237 // FIXME: Remove in 4.0. 1238 1239 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1240 // the bits above 31 down by 11 bits. 1241 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1242 assert((!Alignment || isPowerOf2_32(Alignment)) && 1243 "Alignment must be a power of two."); 1244 1245 if (Alignment) 1246 B.addAlignmentAttr(Alignment); 1247 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1248 (EncodedAttrs & 0xffff)); 1249 } 1250 1251 Error BitcodeReader::parseAttributeBlock() { 1252 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1253 return error("Invalid record"); 1254 1255 if (!MAttributes.empty()) 1256 return error("Invalid multiple blocks"); 1257 1258 SmallVector<uint64_t, 64> Record; 1259 1260 SmallVector<AttributeList, 8> Attrs; 1261 1262 // Read all the records. 1263 while (true) { 1264 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1265 1266 switch (Entry.Kind) { 1267 case BitstreamEntry::SubBlock: // Handled for us already. 1268 case BitstreamEntry::Error: 1269 return error("Malformed block"); 1270 case BitstreamEntry::EndBlock: 1271 return Error::success(); 1272 case BitstreamEntry::Record: 1273 // The interesting case. 1274 break; 1275 } 1276 1277 // Read a record. 1278 Record.clear(); 1279 switch (Stream.readRecord(Entry.ID, Record)) { 1280 default: // Default behavior: ignore. 1281 break; 1282 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1283 // FIXME: Remove in 4.0. 1284 if (Record.size() & 1) 1285 return error("Invalid record"); 1286 1287 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1288 AttrBuilder B; 1289 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1290 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1291 } 1292 1293 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1294 Attrs.clear(); 1295 break; 1296 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1297 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1298 Attrs.push_back(MAttributeGroups[Record[i]]); 1299 1300 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1301 Attrs.clear(); 1302 break; 1303 } 1304 } 1305 } 1306 1307 // Returns Attribute::None on unrecognized codes. 1308 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1309 switch (Code) { 1310 default: 1311 return Attribute::None; 1312 case bitc::ATTR_KIND_ALIGNMENT: 1313 return Attribute::Alignment; 1314 case bitc::ATTR_KIND_ALWAYS_INLINE: 1315 return Attribute::AlwaysInline; 1316 case bitc::ATTR_KIND_ARGMEMONLY: 1317 return Attribute::ArgMemOnly; 1318 case bitc::ATTR_KIND_BUILTIN: 1319 return Attribute::Builtin; 1320 case bitc::ATTR_KIND_BY_VAL: 1321 return Attribute::ByVal; 1322 case bitc::ATTR_KIND_IN_ALLOCA: 1323 return Attribute::InAlloca; 1324 case bitc::ATTR_KIND_COLD: 1325 return Attribute::Cold; 1326 case bitc::ATTR_KIND_CONVERGENT: 1327 return Attribute::Convergent; 1328 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1329 return Attribute::InaccessibleMemOnly; 1330 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1331 return Attribute::InaccessibleMemOrArgMemOnly; 1332 case bitc::ATTR_KIND_INLINE_HINT: 1333 return Attribute::InlineHint; 1334 case bitc::ATTR_KIND_IN_REG: 1335 return Attribute::InReg; 1336 case bitc::ATTR_KIND_JUMP_TABLE: 1337 return Attribute::JumpTable; 1338 case bitc::ATTR_KIND_MIN_SIZE: 1339 return Attribute::MinSize; 1340 case bitc::ATTR_KIND_NAKED: 1341 return Attribute::Naked; 1342 case bitc::ATTR_KIND_NEST: 1343 return Attribute::Nest; 1344 case bitc::ATTR_KIND_NO_ALIAS: 1345 return Attribute::NoAlias; 1346 case bitc::ATTR_KIND_NO_BUILTIN: 1347 return Attribute::NoBuiltin; 1348 case bitc::ATTR_KIND_NO_CAPTURE: 1349 return Attribute::NoCapture; 1350 case bitc::ATTR_KIND_NO_DUPLICATE: 1351 return Attribute::NoDuplicate; 1352 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1353 return Attribute::NoImplicitFloat; 1354 case bitc::ATTR_KIND_NO_INLINE: 1355 return Attribute::NoInline; 1356 case bitc::ATTR_KIND_NO_RECURSE: 1357 return Attribute::NoRecurse; 1358 case bitc::ATTR_KIND_NON_LAZY_BIND: 1359 return Attribute::NonLazyBind; 1360 case bitc::ATTR_KIND_NON_NULL: 1361 return Attribute::NonNull; 1362 case bitc::ATTR_KIND_DEREFERENCEABLE: 1363 return Attribute::Dereferenceable; 1364 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1365 return Attribute::DereferenceableOrNull; 1366 case bitc::ATTR_KIND_ALLOC_SIZE: 1367 return Attribute::AllocSize; 1368 case bitc::ATTR_KIND_NO_RED_ZONE: 1369 return Attribute::NoRedZone; 1370 case bitc::ATTR_KIND_NO_RETURN: 1371 return Attribute::NoReturn; 1372 case bitc::ATTR_KIND_NOCF_CHECK: 1373 return Attribute::NoCfCheck; 1374 case bitc::ATTR_KIND_NO_UNWIND: 1375 return Attribute::NoUnwind; 1376 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1377 return Attribute::OptForFuzzing; 1378 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1379 return Attribute::OptimizeForSize; 1380 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1381 return Attribute::OptimizeNone; 1382 case bitc::ATTR_KIND_READ_NONE: 1383 return Attribute::ReadNone; 1384 case bitc::ATTR_KIND_READ_ONLY: 1385 return Attribute::ReadOnly; 1386 case bitc::ATTR_KIND_RETURNED: 1387 return Attribute::Returned; 1388 case bitc::ATTR_KIND_RETURNS_TWICE: 1389 return Attribute::ReturnsTwice; 1390 case bitc::ATTR_KIND_S_EXT: 1391 return Attribute::SExt; 1392 case bitc::ATTR_KIND_SPECULATABLE: 1393 return Attribute::Speculatable; 1394 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1395 return Attribute::StackAlignment; 1396 case bitc::ATTR_KIND_STACK_PROTECT: 1397 return Attribute::StackProtect; 1398 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1399 return Attribute::StackProtectReq; 1400 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1401 return Attribute::StackProtectStrong; 1402 case bitc::ATTR_KIND_SAFESTACK: 1403 return Attribute::SafeStack; 1404 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1405 return Attribute::ShadowCallStack; 1406 case bitc::ATTR_KIND_STRICT_FP: 1407 return Attribute::StrictFP; 1408 case bitc::ATTR_KIND_STRUCT_RET: 1409 return Attribute::StructRet; 1410 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1411 return Attribute::SanitizeAddress; 1412 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1413 return Attribute::SanitizeHWAddress; 1414 case bitc::ATTR_KIND_SANITIZE_THREAD: 1415 return Attribute::SanitizeThread; 1416 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1417 return Attribute::SanitizeMemory; 1418 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1419 return Attribute::SpeculativeLoadHardening; 1420 case bitc::ATTR_KIND_SWIFT_ERROR: 1421 return Attribute::SwiftError; 1422 case bitc::ATTR_KIND_SWIFT_SELF: 1423 return Attribute::SwiftSelf; 1424 case bitc::ATTR_KIND_UW_TABLE: 1425 return Attribute::UWTable; 1426 case bitc::ATTR_KIND_WRITEONLY: 1427 return Attribute::WriteOnly; 1428 case bitc::ATTR_KIND_Z_EXT: 1429 return Attribute::ZExt; 1430 case bitc::ATTR_KIND_IMMARG: 1431 return Attribute::ImmArg; 1432 } 1433 } 1434 1435 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1436 unsigned &Alignment) { 1437 // Note: Alignment in bitcode files is incremented by 1, so that zero 1438 // can be used for default alignment. 1439 if (Exponent > Value::MaxAlignmentExponent + 1) 1440 return error("Invalid alignment value"); 1441 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1442 return Error::success(); 1443 } 1444 1445 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1446 *Kind = getAttrFromCode(Code); 1447 if (*Kind == Attribute::None) 1448 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1449 return Error::success(); 1450 } 1451 1452 Error BitcodeReader::parseAttributeGroupBlock() { 1453 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1454 return error("Invalid record"); 1455 1456 if (!MAttributeGroups.empty()) 1457 return error("Invalid multiple blocks"); 1458 1459 SmallVector<uint64_t, 64> Record; 1460 1461 // Read all the records. 1462 while (true) { 1463 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1464 1465 switch (Entry.Kind) { 1466 case BitstreamEntry::SubBlock: // Handled for us already. 1467 case BitstreamEntry::Error: 1468 return error("Malformed block"); 1469 case BitstreamEntry::EndBlock: 1470 return Error::success(); 1471 case BitstreamEntry::Record: 1472 // The interesting case. 1473 break; 1474 } 1475 1476 // Read a record. 1477 Record.clear(); 1478 switch (Stream.readRecord(Entry.ID, Record)) { 1479 default: // Default behavior: ignore. 1480 break; 1481 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1482 if (Record.size() < 3) 1483 return error("Invalid record"); 1484 1485 uint64_t GrpID = Record[0]; 1486 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1487 1488 AttrBuilder B; 1489 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1490 if (Record[i] == 0) { // Enum attribute 1491 Attribute::AttrKind Kind; 1492 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1493 return Err; 1494 1495 B.addAttribute(Kind); 1496 } else if (Record[i] == 1) { // Integer attribute 1497 Attribute::AttrKind Kind; 1498 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1499 return Err; 1500 if (Kind == Attribute::Alignment) 1501 B.addAlignmentAttr(Record[++i]); 1502 else if (Kind == Attribute::StackAlignment) 1503 B.addStackAlignmentAttr(Record[++i]); 1504 else if (Kind == Attribute::Dereferenceable) 1505 B.addDereferenceableAttr(Record[++i]); 1506 else if (Kind == Attribute::DereferenceableOrNull) 1507 B.addDereferenceableOrNullAttr(Record[++i]); 1508 else if (Kind == Attribute::AllocSize) 1509 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1510 } else { // String attribute 1511 assert((Record[i] == 3 || Record[i] == 4) && 1512 "Invalid attribute group entry"); 1513 bool HasValue = (Record[i++] == 4); 1514 SmallString<64> KindStr; 1515 SmallString<64> ValStr; 1516 1517 while (Record[i] != 0 && i != e) 1518 KindStr += Record[i++]; 1519 assert(Record[i] == 0 && "Kind string not null terminated"); 1520 1521 if (HasValue) { 1522 // Has a value associated with it. 1523 ++i; // Skip the '0' that terminates the "kind" string. 1524 while (Record[i] != 0 && i != e) 1525 ValStr += Record[i++]; 1526 assert(Record[i] == 0 && "Value string not null terminated"); 1527 } 1528 1529 B.addAttribute(KindStr.str(), ValStr.str()); 1530 } 1531 } 1532 1533 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1534 break; 1535 } 1536 } 1537 } 1538 } 1539 1540 Error BitcodeReader::parseTypeTable() { 1541 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1542 return error("Invalid record"); 1543 1544 return parseTypeTableBody(); 1545 } 1546 1547 Error BitcodeReader::parseTypeTableBody() { 1548 if (!TypeList.empty()) 1549 return error("Invalid multiple blocks"); 1550 1551 SmallVector<uint64_t, 64> Record; 1552 unsigned NumRecords = 0; 1553 1554 SmallString<64> TypeName; 1555 1556 // Read all the records for this type table. 1557 while (true) { 1558 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1559 1560 switch (Entry.Kind) { 1561 case BitstreamEntry::SubBlock: // Handled for us already. 1562 case BitstreamEntry::Error: 1563 return error("Malformed block"); 1564 case BitstreamEntry::EndBlock: 1565 if (NumRecords != TypeList.size()) 1566 return error("Malformed block"); 1567 return Error::success(); 1568 case BitstreamEntry::Record: 1569 // The interesting case. 1570 break; 1571 } 1572 1573 // Read a record. 1574 Record.clear(); 1575 Type *ResultTy = nullptr; 1576 switch (Stream.readRecord(Entry.ID, Record)) { 1577 default: 1578 return error("Invalid value"); 1579 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1580 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1581 // type list. This allows us to reserve space. 1582 if (Record.size() < 1) 1583 return error("Invalid record"); 1584 TypeList.resize(Record[0]); 1585 continue; 1586 case bitc::TYPE_CODE_VOID: // VOID 1587 ResultTy = Type::getVoidTy(Context); 1588 break; 1589 case bitc::TYPE_CODE_HALF: // HALF 1590 ResultTy = Type::getHalfTy(Context); 1591 break; 1592 case bitc::TYPE_CODE_FLOAT: // FLOAT 1593 ResultTy = Type::getFloatTy(Context); 1594 break; 1595 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1596 ResultTy = Type::getDoubleTy(Context); 1597 break; 1598 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1599 ResultTy = Type::getX86_FP80Ty(Context); 1600 break; 1601 case bitc::TYPE_CODE_FP128: // FP128 1602 ResultTy = Type::getFP128Ty(Context); 1603 break; 1604 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1605 ResultTy = Type::getPPC_FP128Ty(Context); 1606 break; 1607 case bitc::TYPE_CODE_LABEL: // LABEL 1608 ResultTy = Type::getLabelTy(Context); 1609 break; 1610 case bitc::TYPE_CODE_METADATA: // METADATA 1611 ResultTy = Type::getMetadataTy(Context); 1612 break; 1613 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1614 ResultTy = Type::getX86_MMXTy(Context); 1615 break; 1616 case bitc::TYPE_CODE_TOKEN: // TOKEN 1617 ResultTy = Type::getTokenTy(Context); 1618 break; 1619 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1620 if (Record.size() < 1) 1621 return error("Invalid record"); 1622 1623 uint64_t NumBits = Record[0]; 1624 if (NumBits < IntegerType::MIN_INT_BITS || 1625 NumBits > IntegerType::MAX_INT_BITS) 1626 return error("Bitwidth for integer type out of range"); 1627 ResultTy = IntegerType::get(Context, NumBits); 1628 break; 1629 } 1630 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1631 // [pointee type, address space] 1632 if (Record.size() < 1) 1633 return error("Invalid record"); 1634 unsigned AddressSpace = 0; 1635 if (Record.size() == 2) 1636 AddressSpace = Record[1]; 1637 ResultTy = getTypeByID(Record[0]); 1638 if (!ResultTy || 1639 !PointerType::isValidElementType(ResultTy)) 1640 return error("Invalid type"); 1641 ResultTy = PointerType::get(ResultTy, AddressSpace); 1642 break; 1643 } 1644 case bitc::TYPE_CODE_FUNCTION_OLD: { 1645 // FIXME: attrid is dead, remove it in LLVM 4.0 1646 // FUNCTION: [vararg, attrid, retty, paramty x N] 1647 if (Record.size() < 3) 1648 return error("Invalid record"); 1649 SmallVector<Type*, 8> ArgTys; 1650 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1651 if (Type *T = getTypeByID(Record[i])) 1652 ArgTys.push_back(T); 1653 else 1654 break; 1655 } 1656 1657 ResultTy = getTypeByID(Record[2]); 1658 if (!ResultTy || ArgTys.size() < Record.size()-3) 1659 return error("Invalid type"); 1660 1661 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1662 break; 1663 } 1664 case bitc::TYPE_CODE_FUNCTION: { 1665 // FUNCTION: [vararg, retty, paramty x N] 1666 if (Record.size() < 2) 1667 return error("Invalid record"); 1668 SmallVector<Type*, 8> ArgTys; 1669 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1670 if (Type *T = getTypeByID(Record[i])) { 1671 if (!FunctionType::isValidArgumentType(T)) 1672 return error("Invalid function argument type"); 1673 ArgTys.push_back(T); 1674 } 1675 else 1676 break; 1677 } 1678 1679 ResultTy = getTypeByID(Record[1]); 1680 if (!ResultTy || ArgTys.size() < Record.size()-2) 1681 return error("Invalid type"); 1682 1683 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1684 break; 1685 } 1686 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1687 if (Record.size() < 1) 1688 return error("Invalid record"); 1689 SmallVector<Type*, 8> EltTys; 1690 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1691 if (Type *T = getTypeByID(Record[i])) 1692 EltTys.push_back(T); 1693 else 1694 break; 1695 } 1696 if (EltTys.size() != Record.size()-1) 1697 return error("Invalid type"); 1698 ResultTy = StructType::get(Context, EltTys, Record[0]); 1699 break; 1700 } 1701 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1702 if (convertToString(Record, 0, TypeName)) 1703 return error("Invalid record"); 1704 continue; 1705 1706 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1707 if (Record.size() < 1) 1708 return error("Invalid record"); 1709 1710 if (NumRecords >= TypeList.size()) 1711 return error("Invalid TYPE table"); 1712 1713 // Check to see if this was forward referenced, if so fill in the temp. 1714 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1715 if (Res) { 1716 Res->setName(TypeName); 1717 TypeList[NumRecords] = nullptr; 1718 } else // Otherwise, create a new struct. 1719 Res = createIdentifiedStructType(Context, TypeName); 1720 TypeName.clear(); 1721 1722 SmallVector<Type*, 8> EltTys; 1723 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1724 if (Type *T = getTypeByID(Record[i])) 1725 EltTys.push_back(T); 1726 else 1727 break; 1728 } 1729 if (EltTys.size() != Record.size()-1) 1730 return error("Invalid record"); 1731 Res->setBody(EltTys, Record[0]); 1732 ResultTy = Res; 1733 break; 1734 } 1735 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1736 if (Record.size() != 1) 1737 return error("Invalid record"); 1738 1739 if (NumRecords >= TypeList.size()) 1740 return error("Invalid TYPE table"); 1741 1742 // Check to see if this was forward referenced, if so fill in the temp. 1743 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1744 if (Res) { 1745 Res->setName(TypeName); 1746 TypeList[NumRecords] = nullptr; 1747 } else // Otherwise, create a new struct with no body. 1748 Res = createIdentifiedStructType(Context, TypeName); 1749 TypeName.clear(); 1750 ResultTy = Res; 1751 break; 1752 } 1753 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1754 if (Record.size() < 2) 1755 return error("Invalid record"); 1756 ResultTy = getTypeByID(Record[1]); 1757 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1758 return error("Invalid type"); 1759 ResultTy = ArrayType::get(ResultTy, Record[0]); 1760 break; 1761 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1762 if (Record.size() < 2) 1763 return error("Invalid record"); 1764 if (Record[0] == 0) 1765 return error("Invalid vector length"); 1766 ResultTy = getTypeByID(Record[1]); 1767 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1768 return error("Invalid type"); 1769 ResultTy = VectorType::get(ResultTy, Record[0]); 1770 break; 1771 } 1772 1773 if (NumRecords >= TypeList.size()) 1774 return error("Invalid TYPE table"); 1775 if (TypeList[NumRecords]) 1776 return error( 1777 "Invalid TYPE table: Only named structs can be forward referenced"); 1778 assert(ResultTy && "Didn't read a type?"); 1779 TypeList[NumRecords++] = ResultTy; 1780 } 1781 } 1782 1783 Error BitcodeReader::parseOperandBundleTags() { 1784 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1785 return error("Invalid record"); 1786 1787 if (!BundleTags.empty()) 1788 return error("Invalid multiple blocks"); 1789 1790 SmallVector<uint64_t, 64> Record; 1791 1792 while (true) { 1793 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1794 1795 switch (Entry.Kind) { 1796 case BitstreamEntry::SubBlock: // Handled for us already. 1797 case BitstreamEntry::Error: 1798 return error("Malformed block"); 1799 case BitstreamEntry::EndBlock: 1800 return Error::success(); 1801 case BitstreamEntry::Record: 1802 // The interesting case. 1803 break; 1804 } 1805 1806 // Tags are implicitly mapped to integers by their order. 1807 1808 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1809 return error("Invalid record"); 1810 1811 // OPERAND_BUNDLE_TAG: [strchr x N] 1812 BundleTags.emplace_back(); 1813 if (convertToString(Record, 0, BundleTags.back())) 1814 return error("Invalid record"); 1815 Record.clear(); 1816 } 1817 } 1818 1819 Error BitcodeReader::parseSyncScopeNames() { 1820 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1821 return error("Invalid record"); 1822 1823 if (!SSIDs.empty()) 1824 return error("Invalid multiple synchronization scope names blocks"); 1825 1826 SmallVector<uint64_t, 64> Record; 1827 while (true) { 1828 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1829 switch (Entry.Kind) { 1830 case BitstreamEntry::SubBlock: // Handled for us already. 1831 case BitstreamEntry::Error: 1832 return error("Malformed block"); 1833 case BitstreamEntry::EndBlock: 1834 if (SSIDs.empty()) 1835 return error("Invalid empty synchronization scope names block"); 1836 return Error::success(); 1837 case BitstreamEntry::Record: 1838 // The interesting case. 1839 break; 1840 } 1841 1842 // Synchronization scope names are implicitly mapped to synchronization 1843 // scope IDs by their order. 1844 1845 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1846 return error("Invalid record"); 1847 1848 SmallString<16> SSN; 1849 if (convertToString(Record, 0, SSN)) 1850 return error("Invalid record"); 1851 1852 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1853 Record.clear(); 1854 } 1855 } 1856 1857 /// Associate a value with its name from the given index in the provided record. 1858 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1859 unsigned NameIndex, Triple &TT) { 1860 SmallString<128> ValueName; 1861 if (convertToString(Record, NameIndex, ValueName)) 1862 return error("Invalid record"); 1863 unsigned ValueID = Record[0]; 1864 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1865 return error("Invalid record"); 1866 Value *V = ValueList[ValueID]; 1867 1868 StringRef NameStr(ValueName.data(), ValueName.size()); 1869 if (NameStr.find_first_of(0) != StringRef::npos) 1870 return error("Invalid value name"); 1871 V->setName(NameStr); 1872 auto *GO = dyn_cast<GlobalObject>(V); 1873 if (GO) { 1874 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1875 if (TT.supportsCOMDAT()) 1876 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1877 else 1878 GO->setComdat(nullptr); 1879 } 1880 } 1881 return V; 1882 } 1883 1884 /// Helper to note and return the current location, and jump to the given 1885 /// offset. 1886 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1887 BitstreamCursor &Stream) { 1888 // Save the current parsing location so we can jump back at the end 1889 // of the VST read. 1890 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1891 Stream.JumpToBit(Offset * 32); 1892 #ifndef NDEBUG 1893 // Do some checking if we are in debug mode. 1894 BitstreamEntry Entry = Stream.advance(); 1895 assert(Entry.Kind == BitstreamEntry::SubBlock); 1896 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1897 #else 1898 // In NDEBUG mode ignore the output so we don't get an unused variable 1899 // warning. 1900 Stream.advance(); 1901 #endif 1902 return CurrentBit; 1903 } 1904 1905 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1906 Function *F, 1907 ArrayRef<uint64_t> Record) { 1908 // Note that we subtract 1 here because the offset is relative to one word 1909 // before the start of the identification or module block, which was 1910 // historically always the start of the regular bitcode header. 1911 uint64_t FuncWordOffset = Record[1] - 1; 1912 uint64_t FuncBitOffset = FuncWordOffset * 32; 1913 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1914 // Set the LastFunctionBlockBit to point to the last function block. 1915 // Later when parsing is resumed after function materialization, 1916 // we can simply skip that last function block. 1917 if (FuncBitOffset > LastFunctionBlockBit) 1918 LastFunctionBlockBit = FuncBitOffset; 1919 } 1920 1921 /// Read a new-style GlobalValue symbol table. 1922 Error BitcodeReader::parseGlobalValueSymbolTable() { 1923 unsigned FuncBitcodeOffsetDelta = 1924 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1925 1926 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1927 return error("Invalid record"); 1928 1929 SmallVector<uint64_t, 64> Record; 1930 while (true) { 1931 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1932 1933 switch (Entry.Kind) { 1934 case BitstreamEntry::SubBlock: 1935 case BitstreamEntry::Error: 1936 return error("Malformed block"); 1937 case BitstreamEntry::EndBlock: 1938 return Error::success(); 1939 case BitstreamEntry::Record: 1940 break; 1941 } 1942 1943 Record.clear(); 1944 switch (Stream.readRecord(Entry.ID, Record)) { 1945 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1946 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1947 cast<Function>(ValueList[Record[0]]), Record); 1948 break; 1949 } 1950 } 1951 } 1952 1953 /// Parse the value symbol table at either the current parsing location or 1954 /// at the given bit offset if provided. 1955 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1956 uint64_t CurrentBit; 1957 // Pass in the Offset to distinguish between calling for the module-level 1958 // VST (where we want to jump to the VST offset) and the function-level 1959 // VST (where we don't). 1960 if (Offset > 0) { 1961 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1962 // If this module uses a string table, read this as a module-level VST. 1963 if (UseStrtab) { 1964 if (Error Err = parseGlobalValueSymbolTable()) 1965 return Err; 1966 Stream.JumpToBit(CurrentBit); 1967 return Error::success(); 1968 } 1969 // Otherwise, the VST will be in a similar format to a function-level VST, 1970 // and will contain symbol names. 1971 } 1972 1973 // Compute the delta between the bitcode indices in the VST (the word offset 1974 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1975 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1976 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1977 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1978 // just before entering the VST subblock because: 1) the EnterSubBlock 1979 // changes the AbbrevID width; 2) the VST block is nested within the same 1980 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1981 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1982 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1983 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1984 unsigned FuncBitcodeOffsetDelta = 1985 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1986 1987 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1988 return error("Invalid record"); 1989 1990 SmallVector<uint64_t, 64> Record; 1991 1992 Triple TT(TheModule->getTargetTriple()); 1993 1994 // Read all the records for this value table. 1995 SmallString<128> ValueName; 1996 1997 while (true) { 1998 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1999 2000 switch (Entry.Kind) { 2001 case BitstreamEntry::SubBlock: // Handled for us already. 2002 case BitstreamEntry::Error: 2003 return error("Malformed block"); 2004 case BitstreamEntry::EndBlock: 2005 if (Offset > 0) 2006 Stream.JumpToBit(CurrentBit); 2007 return Error::success(); 2008 case BitstreamEntry::Record: 2009 // The interesting case. 2010 break; 2011 } 2012 2013 // Read a record. 2014 Record.clear(); 2015 switch (Stream.readRecord(Entry.ID, Record)) { 2016 default: // Default behavior: unknown type. 2017 break; 2018 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2019 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2020 if (Error Err = ValOrErr.takeError()) 2021 return Err; 2022 ValOrErr.get(); 2023 break; 2024 } 2025 case bitc::VST_CODE_FNENTRY: { 2026 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2027 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2028 if (Error Err = ValOrErr.takeError()) 2029 return Err; 2030 Value *V = ValOrErr.get(); 2031 2032 // Ignore function offsets emitted for aliases of functions in older 2033 // versions of LLVM. 2034 if (auto *F = dyn_cast<Function>(V)) 2035 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2036 break; 2037 } 2038 case bitc::VST_CODE_BBENTRY: { 2039 if (convertToString(Record, 1, ValueName)) 2040 return error("Invalid record"); 2041 BasicBlock *BB = getBasicBlock(Record[0]); 2042 if (!BB) 2043 return error("Invalid record"); 2044 2045 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2046 ValueName.clear(); 2047 break; 2048 } 2049 } 2050 } 2051 } 2052 2053 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2054 /// encoding. 2055 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2056 if ((V & 1) == 0) 2057 return V >> 1; 2058 if (V != 1) 2059 return -(V >> 1); 2060 // There is no such thing as -0 with integers. "-0" really means MININT. 2061 return 1ULL << 63; 2062 } 2063 2064 /// Resolve all of the initializers for global values and aliases that we can. 2065 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2066 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2067 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2068 IndirectSymbolInitWorklist; 2069 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2070 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2071 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2072 2073 GlobalInitWorklist.swap(GlobalInits); 2074 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2075 FunctionPrefixWorklist.swap(FunctionPrefixes); 2076 FunctionPrologueWorklist.swap(FunctionPrologues); 2077 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2078 2079 while (!GlobalInitWorklist.empty()) { 2080 unsigned ValID = GlobalInitWorklist.back().second; 2081 if (ValID >= ValueList.size()) { 2082 // Not ready to resolve this yet, it requires something later in the file. 2083 GlobalInits.push_back(GlobalInitWorklist.back()); 2084 } else { 2085 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2086 GlobalInitWorklist.back().first->setInitializer(C); 2087 else 2088 return error("Expected a constant"); 2089 } 2090 GlobalInitWorklist.pop_back(); 2091 } 2092 2093 while (!IndirectSymbolInitWorklist.empty()) { 2094 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2095 if (ValID >= ValueList.size()) { 2096 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2097 } else { 2098 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2099 if (!C) 2100 return error("Expected a constant"); 2101 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2102 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2103 return error("Alias and aliasee types don't match"); 2104 GIS->setIndirectSymbol(C); 2105 } 2106 IndirectSymbolInitWorklist.pop_back(); 2107 } 2108 2109 while (!FunctionPrefixWorklist.empty()) { 2110 unsigned ValID = FunctionPrefixWorklist.back().second; 2111 if (ValID >= ValueList.size()) { 2112 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2113 } else { 2114 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2115 FunctionPrefixWorklist.back().first->setPrefixData(C); 2116 else 2117 return error("Expected a constant"); 2118 } 2119 FunctionPrefixWorklist.pop_back(); 2120 } 2121 2122 while (!FunctionPrologueWorklist.empty()) { 2123 unsigned ValID = FunctionPrologueWorklist.back().second; 2124 if (ValID >= ValueList.size()) { 2125 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2126 } else { 2127 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2128 FunctionPrologueWorklist.back().first->setPrologueData(C); 2129 else 2130 return error("Expected a constant"); 2131 } 2132 FunctionPrologueWorklist.pop_back(); 2133 } 2134 2135 while (!FunctionPersonalityFnWorklist.empty()) { 2136 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2137 if (ValID >= ValueList.size()) { 2138 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2139 } else { 2140 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2141 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2142 else 2143 return error("Expected a constant"); 2144 } 2145 FunctionPersonalityFnWorklist.pop_back(); 2146 } 2147 2148 return Error::success(); 2149 } 2150 2151 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2152 SmallVector<uint64_t, 8> Words(Vals.size()); 2153 transform(Vals, Words.begin(), 2154 BitcodeReader::decodeSignRotatedValue); 2155 2156 return APInt(TypeBits, Words); 2157 } 2158 2159 Error BitcodeReader::parseConstants() { 2160 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2161 return error("Invalid record"); 2162 2163 SmallVector<uint64_t, 64> Record; 2164 2165 // Read all the records for this value table. 2166 Type *CurTy = Type::getInt32Ty(Context); 2167 unsigned NextCstNo = ValueList.size(); 2168 2169 while (true) { 2170 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2171 2172 switch (Entry.Kind) { 2173 case BitstreamEntry::SubBlock: // Handled for us already. 2174 case BitstreamEntry::Error: 2175 return error("Malformed block"); 2176 case BitstreamEntry::EndBlock: 2177 if (NextCstNo != ValueList.size()) 2178 return error("Invalid constant reference"); 2179 2180 // Once all the constants have been read, go through and resolve forward 2181 // references. 2182 ValueList.resolveConstantForwardRefs(); 2183 return Error::success(); 2184 case BitstreamEntry::Record: 2185 // The interesting case. 2186 break; 2187 } 2188 2189 // Read a record. 2190 Record.clear(); 2191 Type *VoidType = Type::getVoidTy(Context); 2192 Value *V = nullptr; 2193 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2194 switch (BitCode) { 2195 default: // Default behavior: unknown constant 2196 case bitc::CST_CODE_UNDEF: // UNDEF 2197 V = UndefValue::get(CurTy); 2198 break; 2199 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2200 if (Record.empty()) 2201 return error("Invalid record"); 2202 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2203 return error("Invalid record"); 2204 if (TypeList[Record[0]] == VoidType) 2205 return error("Invalid constant type"); 2206 CurTy = TypeList[Record[0]]; 2207 continue; // Skip the ValueList manipulation. 2208 case bitc::CST_CODE_NULL: // NULL 2209 V = Constant::getNullValue(CurTy); 2210 break; 2211 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2212 if (!CurTy->isIntegerTy() || Record.empty()) 2213 return error("Invalid record"); 2214 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2215 break; 2216 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2217 if (!CurTy->isIntegerTy() || Record.empty()) 2218 return error("Invalid record"); 2219 2220 APInt VInt = 2221 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2222 V = ConstantInt::get(Context, VInt); 2223 2224 break; 2225 } 2226 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2227 if (Record.empty()) 2228 return error("Invalid record"); 2229 if (CurTy->isHalfTy()) 2230 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2231 APInt(16, (uint16_t)Record[0]))); 2232 else if (CurTy->isFloatTy()) 2233 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2234 APInt(32, (uint32_t)Record[0]))); 2235 else if (CurTy->isDoubleTy()) 2236 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2237 APInt(64, Record[0]))); 2238 else if (CurTy->isX86_FP80Ty()) { 2239 // Bits are not stored the same way as a normal i80 APInt, compensate. 2240 uint64_t Rearrange[2]; 2241 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2242 Rearrange[1] = Record[0] >> 48; 2243 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2244 APInt(80, Rearrange))); 2245 } else if (CurTy->isFP128Ty()) 2246 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2247 APInt(128, Record))); 2248 else if (CurTy->isPPC_FP128Ty()) 2249 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2250 APInt(128, Record))); 2251 else 2252 V = UndefValue::get(CurTy); 2253 break; 2254 } 2255 2256 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2257 if (Record.empty()) 2258 return error("Invalid record"); 2259 2260 unsigned Size = Record.size(); 2261 SmallVector<Constant*, 16> Elts; 2262 2263 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2264 for (unsigned i = 0; i != Size; ++i) 2265 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2266 STy->getElementType(i))); 2267 V = ConstantStruct::get(STy, Elts); 2268 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2269 Type *EltTy = ATy->getElementType(); 2270 for (unsigned i = 0; i != Size; ++i) 2271 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2272 V = ConstantArray::get(ATy, Elts); 2273 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2274 Type *EltTy = VTy->getElementType(); 2275 for (unsigned i = 0; i != Size; ++i) 2276 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2277 V = ConstantVector::get(Elts); 2278 } else { 2279 V = UndefValue::get(CurTy); 2280 } 2281 break; 2282 } 2283 case bitc::CST_CODE_STRING: // STRING: [values] 2284 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2285 if (Record.empty()) 2286 return error("Invalid record"); 2287 2288 SmallString<16> Elts(Record.begin(), Record.end()); 2289 V = ConstantDataArray::getString(Context, Elts, 2290 BitCode == bitc::CST_CODE_CSTRING); 2291 break; 2292 } 2293 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2294 if (Record.empty()) 2295 return error("Invalid record"); 2296 2297 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2298 if (EltTy->isIntegerTy(8)) { 2299 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2300 if (isa<VectorType>(CurTy)) 2301 V = ConstantDataVector::get(Context, Elts); 2302 else 2303 V = ConstantDataArray::get(Context, Elts); 2304 } else if (EltTy->isIntegerTy(16)) { 2305 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2306 if (isa<VectorType>(CurTy)) 2307 V = ConstantDataVector::get(Context, Elts); 2308 else 2309 V = ConstantDataArray::get(Context, Elts); 2310 } else if (EltTy->isIntegerTy(32)) { 2311 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2312 if (isa<VectorType>(CurTy)) 2313 V = ConstantDataVector::get(Context, Elts); 2314 else 2315 V = ConstantDataArray::get(Context, Elts); 2316 } else if (EltTy->isIntegerTy(64)) { 2317 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2318 if (isa<VectorType>(CurTy)) 2319 V = ConstantDataVector::get(Context, Elts); 2320 else 2321 V = ConstantDataArray::get(Context, Elts); 2322 } else if (EltTy->isHalfTy()) { 2323 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2324 if (isa<VectorType>(CurTy)) 2325 V = ConstantDataVector::getFP(Context, Elts); 2326 else 2327 V = ConstantDataArray::getFP(Context, Elts); 2328 } else if (EltTy->isFloatTy()) { 2329 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2330 if (isa<VectorType>(CurTy)) 2331 V = ConstantDataVector::getFP(Context, Elts); 2332 else 2333 V = ConstantDataArray::getFP(Context, Elts); 2334 } else if (EltTy->isDoubleTy()) { 2335 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2336 if (isa<VectorType>(CurTy)) 2337 V = ConstantDataVector::getFP(Context, Elts); 2338 else 2339 V = ConstantDataArray::getFP(Context, Elts); 2340 } else { 2341 return error("Invalid type for value"); 2342 } 2343 break; 2344 } 2345 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2346 if (Record.size() < 2) 2347 return error("Invalid record"); 2348 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2349 if (Opc < 0) { 2350 V = UndefValue::get(CurTy); // Unknown unop. 2351 } else { 2352 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2353 unsigned Flags = 0; 2354 V = ConstantExpr::get(Opc, LHS, Flags); 2355 } 2356 break; 2357 } 2358 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2359 if (Record.size() < 3) 2360 return error("Invalid record"); 2361 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2362 if (Opc < 0) { 2363 V = UndefValue::get(CurTy); // Unknown binop. 2364 } else { 2365 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2366 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2367 unsigned Flags = 0; 2368 if (Record.size() >= 4) { 2369 if (Opc == Instruction::Add || 2370 Opc == Instruction::Sub || 2371 Opc == Instruction::Mul || 2372 Opc == Instruction::Shl) { 2373 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2374 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2375 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2376 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2377 } else if (Opc == Instruction::SDiv || 2378 Opc == Instruction::UDiv || 2379 Opc == Instruction::LShr || 2380 Opc == Instruction::AShr) { 2381 if (Record[3] & (1 << bitc::PEO_EXACT)) 2382 Flags |= SDivOperator::IsExact; 2383 } 2384 } 2385 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2386 } 2387 break; 2388 } 2389 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2390 if (Record.size() < 3) 2391 return error("Invalid record"); 2392 int Opc = getDecodedCastOpcode(Record[0]); 2393 if (Opc < 0) { 2394 V = UndefValue::get(CurTy); // Unknown cast. 2395 } else { 2396 Type *OpTy = getTypeByID(Record[1]); 2397 if (!OpTy) 2398 return error("Invalid record"); 2399 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2400 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2401 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2402 } 2403 break; 2404 } 2405 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2406 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2407 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2408 // operands] 2409 unsigned OpNum = 0; 2410 Type *PointeeType = nullptr; 2411 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2412 Record.size() % 2) 2413 PointeeType = getTypeByID(Record[OpNum++]); 2414 2415 bool InBounds = false; 2416 Optional<unsigned> InRangeIndex; 2417 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2418 uint64_t Op = Record[OpNum++]; 2419 InBounds = Op & 1; 2420 InRangeIndex = Op >> 1; 2421 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2422 InBounds = true; 2423 2424 SmallVector<Constant*, 16> Elts; 2425 while (OpNum != Record.size()) { 2426 Type *ElTy = getTypeByID(Record[OpNum++]); 2427 if (!ElTy) 2428 return error("Invalid record"); 2429 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2430 } 2431 2432 if (Elts.size() < 1) 2433 return error("Invalid gep with no operands"); 2434 2435 Type *ImplicitPointeeType = 2436 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2437 ->getElementType(); 2438 if (!PointeeType) 2439 PointeeType = ImplicitPointeeType; 2440 else if (PointeeType != ImplicitPointeeType) 2441 return error("Explicit gep operator type does not match pointee type " 2442 "of pointer operand"); 2443 2444 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2445 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2446 InBounds, InRangeIndex); 2447 break; 2448 } 2449 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2450 if (Record.size() < 3) 2451 return error("Invalid record"); 2452 2453 Type *SelectorTy = Type::getInt1Ty(Context); 2454 2455 // The selector might be an i1 or an <n x i1> 2456 // Get the type from the ValueList before getting a forward ref. 2457 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2458 if (Value *V = ValueList[Record[0]]) 2459 if (SelectorTy != V->getType()) 2460 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2461 2462 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2463 SelectorTy), 2464 ValueList.getConstantFwdRef(Record[1],CurTy), 2465 ValueList.getConstantFwdRef(Record[2],CurTy)); 2466 break; 2467 } 2468 case bitc::CST_CODE_CE_EXTRACTELT 2469 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2470 if (Record.size() < 3) 2471 return error("Invalid record"); 2472 VectorType *OpTy = 2473 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2474 if (!OpTy) 2475 return error("Invalid record"); 2476 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2477 Constant *Op1 = nullptr; 2478 if (Record.size() == 4) { 2479 Type *IdxTy = getTypeByID(Record[2]); 2480 if (!IdxTy) 2481 return error("Invalid record"); 2482 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2483 } else // TODO: Remove with llvm 4.0 2484 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2485 if (!Op1) 2486 return error("Invalid record"); 2487 V = ConstantExpr::getExtractElement(Op0, Op1); 2488 break; 2489 } 2490 case bitc::CST_CODE_CE_INSERTELT 2491 : { // CE_INSERTELT: [opval, opval, opty, opval] 2492 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2493 if (Record.size() < 3 || !OpTy) 2494 return error("Invalid record"); 2495 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2496 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2497 OpTy->getElementType()); 2498 Constant *Op2 = nullptr; 2499 if (Record.size() == 4) { 2500 Type *IdxTy = getTypeByID(Record[2]); 2501 if (!IdxTy) 2502 return error("Invalid record"); 2503 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2504 } else // TODO: Remove with llvm 4.0 2505 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2506 if (!Op2) 2507 return error("Invalid record"); 2508 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2509 break; 2510 } 2511 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2512 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2513 if (Record.size() < 3 || !OpTy) 2514 return error("Invalid record"); 2515 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2516 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2517 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2518 OpTy->getNumElements()); 2519 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2520 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2521 break; 2522 } 2523 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2524 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2525 VectorType *OpTy = 2526 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2527 if (Record.size() < 4 || !RTy || !OpTy) 2528 return error("Invalid record"); 2529 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2530 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2531 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2532 RTy->getNumElements()); 2533 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2534 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2535 break; 2536 } 2537 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2538 if (Record.size() < 4) 2539 return error("Invalid record"); 2540 Type *OpTy = getTypeByID(Record[0]); 2541 if (!OpTy) 2542 return error("Invalid record"); 2543 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2544 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2545 2546 if (OpTy->isFPOrFPVectorTy()) 2547 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2548 else 2549 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2550 break; 2551 } 2552 // This maintains backward compatibility, pre-asm dialect keywords. 2553 // FIXME: Remove with the 4.0 release. 2554 case bitc::CST_CODE_INLINEASM_OLD: { 2555 if (Record.size() < 2) 2556 return error("Invalid record"); 2557 std::string AsmStr, ConstrStr; 2558 bool HasSideEffects = Record[0] & 1; 2559 bool IsAlignStack = Record[0] >> 1; 2560 unsigned AsmStrSize = Record[1]; 2561 if (2+AsmStrSize >= Record.size()) 2562 return error("Invalid record"); 2563 unsigned ConstStrSize = Record[2+AsmStrSize]; 2564 if (3+AsmStrSize+ConstStrSize > Record.size()) 2565 return error("Invalid record"); 2566 2567 for (unsigned i = 0; i != AsmStrSize; ++i) 2568 AsmStr += (char)Record[2+i]; 2569 for (unsigned i = 0; i != ConstStrSize; ++i) 2570 ConstrStr += (char)Record[3+AsmStrSize+i]; 2571 PointerType *PTy = cast<PointerType>(CurTy); 2572 UpgradeInlineAsmString(&AsmStr); 2573 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2574 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2575 break; 2576 } 2577 // This version adds support for the asm dialect keywords (e.g., 2578 // inteldialect). 2579 case bitc::CST_CODE_INLINEASM: { 2580 if (Record.size() < 2) 2581 return error("Invalid record"); 2582 std::string AsmStr, ConstrStr; 2583 bool HasSideEffects = Record[0] & 1; 2584 bool IsAlignStack = (Record[0] >> 1) & 1; 2585 unsigned AsmDialect = Record[0] >> 2; 2586 unsigned AsmStrSize = Record[1]; 2587 if (2+AsmStrSize >= Record.size()) 2588 return error("Invalid record"); 2589 unsigned ConstStrSize = Record[2+AsmStrSize]; 2590 if (3+AsmStrSize+ConstStrSize > Record.size()) 2591 return error("Invalid record"); 2592 2593 for (unsigned i = 0; i != AsmStrSize; ++i) 2594 AsmStr += (char)Record[2+i]; 2595 for (unsigned i = 0; i != ConstStrSize; ++i) 2596 ConstrStr += (char)Record[3+AsmStrSize+i]; 2597 PointerType *PTy = cast<PointerType>(CurTy); 2598 UpgradeInlineAsmString(&AsmStr); 2599 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2600 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2601 InlineAsm::AsmDialect(AsmDialect)); 2602 break; 2603 } 2604 case bitc::CST_CODE_BLOCKADDRESS:{ 2605 if (Record.size() < 3) 2606 return error("Invalid record"); 2607 Type *FnTy = getTypeByID(Record[0]); 2608 if (!FnTy) 2609 return error("Invalid record"); 2610 Function *Fn = 2611 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2612 if (!Fn) 2613 return error("Invalid record"); 2614 2615 // If the function is already parsed we can insert the block address right 2616 // away. 2617 BasicBlock *BB; 2618 unsigned BBID = Record[2]; 2619 if (!BBID) 2620 // Invalid reference to entry block. 2621 return error("Invalid ID"); 2622 if (!Fn->empty()) { 2623 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2624 for (size_t I = 0, E = BBID; I != E; ++I) { 2625 if (BBI == BBE) 2626 return error("Invalid ID"); 2627 ++BBI; 2628 } 2629 BB = &*BBI; 2630 } else { 2631 // Otherwise insert a placeholder and remember it so it can be inserted 2632 // when the function is parsed. 2633 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2634 if (FwdBBs.empty()) 2635 BasicBlockFwdRefQueue.push_back(Fn); 2636 if (FwdBBs.size() < BBID + 1) 2637 FwdBBs.resize(BBID + 1); 2638 if (!FwdBBs[BBID]) 2639 FwdBBs[BBID] = BasicBlock::Create(Context); 2640 BB = FwdBBs[BBID]; 2641 } 2642 V = BlockAddress::get(Fn, BB); 2643 break; 2644 } 2645 } 2646 2647 ValueList.assignValue(V, NextCstNo); 2648 ++NextCstNo; 2649 } 2650 } 2651 2652 Error BitcodeReader::parseUseLists() { 2653 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2654 return error("Invalid record"); 2655 2656 // Read all the records. 2657 SmallVector<uint64_t, 64> Record; 2658 2659 while (true) { 2660 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2661 2662 switch (Entry.Kind) { 2663 case BitstreamEntry::SubBlock: // Handled for us already. 2664 case BitstreamEntry::Error: 2665 return error("Malformed block"); 2666 case BitstreamEntry::EndBlock: 2667 return Error::success(); 2668 case BitstreamEntry::Record: 2669 // The interesting case. 2670 break; 2671 } 2672 2673 // Read a use list record. 2674 Record.clear(); 2675 bool IsBB = false; 2676 switch (Stream.readRecord(Entry.ID, Record)) { 2677 default: // Default behavior: unknown type. 2678 break; 2679 case bitc::USELIST_CODE_BB: 2680 IsBB = true; 2681 LLVM_FALLTHROUGH; 2682 case bitc::USELIST_CODE_DEFAULT: { 2683 unsigned RecordLength = Record.size(); 2684 if (RecordLength < 3) 2685 // Records should have at least an ID and two indexes. 2686 return error("Invalid record"); 2687 unsigned ID = Record.back(); 2688 Record.pop_back(); 2689 2690 Value *V; 2691 if (IsBB) { 2692 assert(ID < FunctionBBs.size() && "Basic block not found"); 2693 V = FunctionBBs[ID]; 2694 } else 2695 V = ValueList[ID]; 2696 unsigned NumUses = 0; 2697 SmallDenseMap<const Use *, unsigned, 16> Order; 2698 for (const Use &U : V->materialized_uses()) { 2699 if (++NumUses > Record.size()) 2700 break; 2701 Order[&U] = Record[NumUses - 1]; 2702 } 2703 if (Order.size() != Record.size() || NumUses > Record.size()) 2704 // Mismatches can happen if the functions are being materialized lazily 2705 // (out-of-order), or a value has been upgraded. 2706 break; 2707 2708 V->sortUseList([&](const Use &L, const Use &R) { 2709 return Order.lookup(&L) < Order.lookup(&R); 2710 }); 2711 break; 2712 } 2713 } 2714 } 2715 } 2716 2717 /// When we see the block for metadata, remember where it is and then skip it. 2718 /// This lets us lazily deserialize the metadata. 2719 Error BitcodeReader::rememberAndSkipMetadata() { 2720 // Save the current stream state. 2721 uint64_t CurBit = Stream.GetCurrentBitNo(); 2722 DeferredMetadataInfo.push_back(CurBit); 2723 2724 // Skip over the block for now. 2725 if (Stream.SkipBlock()) 2726 return error("Invalid record"); 2727 return Error::success(); 2728 } 2729 2730 Error BitcodeReader::materializeMetadata() { 2731 for (uint64_t BitPos : DeferredMetadataInfo) { 2732 // Move the bit stream to the saved position. 2733 Stream.JumpToBit(BitPos); 2734 if (Error Err = MDLoader->parseModuleMetadata()) 2735 return Err; 2736 } 2737 2738 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2739 // metadata. 2740 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2741 NamedMDNode *LinkerOpts = 2742 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2743 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2744 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2745 } 2746 2747 DeferredMetadataInfo.clear(); 2748 return Error::success(); 2749 } 2750 2751 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2752 2753 /// When we see the block for a function body, remember where it is and then 2754 /// skip it. This lets us lazily deserialize the functions. 2755 Error BitcodeReader::rememberAndSkipFunctionBody() { 2756 // Get the function we are talking about. 2757 if (FunctionsWithBodies.empty()) 2758 return error("Insufficient function protos"); 2759 2760 Function *Fn = FunctionsWithBodies.back(); 2761 FunctionsWithBodies.pop_back(); 2762 2763 // Save the current stream state. 2764 uint64_t CurBit = Stream.GetCurrentBitNo(); 2765 assert( 2766 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2767 "Mismatch between VST and scanned function offsets"); 2768 DeferredFunctionInfo[Fn] = CurBit; 2769 2770 // Skip over the function block for now. 2771 if (Stream.SkipBlock()) 2772 return error("Invalid record"); 2773 return Error::success(); 2774 } 2775 2776 Error BitcodeReader::globalCleanup() { 2777 // Patch the initializers for globals and aliases up. 2778 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2779 return Err; 2780 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2781 return error("Malformed global initializer set"); 2782 2783 // Look for intrinsic functions which need to be upgraded at some point 2784 for (Function &F : *TheModule) { 2785 MDLoader->upgradeDebugIntrinsics(F); 2786 Function *NewFn; 2787 if (UpgradeIntrinsicFunction(&F, NewFn)) 2788 UpgradedIntrinsics[&F] = NewFn; 2789 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2790 // Some types could be renamed during loading if several modules are 2791 // loaded in the same LLVMContext (LTO scenario). In this case we should 2792 // remangle intrinsics names as well. 2793 RemangledIntrinsics[&F] = Remangled.getValue(); 2794 } 2795 2796 // Look for global variables which need to be renamed. 2797 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 2798 for (GlobalVariable &GV : TheModule->globals()) 2799 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 2800 UpgradedVariables.emplace_back(&GV, Upgraded); 2801 for (auto &Pair : UpgradedVariables) { 2802 Pair.first->eraseFromParent(); 2803 TheModule->getGlobalList().push_back(Pair.second); 2804 } 2805 2806 // Force deallocation of memory for these vectors to favor the client that 2807 // want lazy deserialization. 2808 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2809 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2810 IndirectSymbolInits); 2811 return Error::success(); 2812 } 2813 2814 /// Support for lazy parsing of function bodies. This is required if we 2815 /// either have an old bitcode file without a VST forward declaration record, 2816 /// or if we have an anonymous function being materialized, since anonymous 2817 /// functions do not have a name and are therefore not in the VST. 2818 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2819 Stream.JumpToBit(NextUnreadBit); 2820 2821 if (Stream.AtEndOfStream()) 2822 return error("Could not find function in stream"); 2823 2824 if (!SeenFirstFunctionBody) 2825 return error("Trying to materialize functions before seeing function blocks"); 2826 2827 // An old bitcode file with the symbol table at the end would have 2828 // finished the parse greedily. 2829 assert(SeenValueSymbolTable); 2830 2831 SmallVector<uint64_t, 64> Record; 2832 2833 while (true) { 2834 BitstreamEntry Entry = Stream.advance(); 2835 switch (Entry.Kind) { 2836 default: 2837 return error("Expect SubBlock"); 2838 case BitstreamEntry::SubBlock: 2839 switch (Entry.ID) { 2840 default: 2841 return error("Expect function block"); 2842 case bitc::FUNCTION_BLOCK_ID: 2843 if (Error Err = rememberAndSkipFunctionBody()) 2844 return Err; 2845 NextUnreadBit = Stream.GetCurrentBitNo(); 2846 return Error::success(); 2847 } 2848 } 2849 } 2850 } 2851 2852 bool BitcodeReaderBase::readBlockInfo() { 2853 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2854 if (!NewBlockInfo) 2855 return true; 2856 BlockInfo = std::move(*NewBlockInfo); 2857 return false; 2858 } 2859 2860 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2861 // v1: [selection_kind, name] 2862 // v2: [strtab_offset, strtab_size, selection_kind] 2863 StringRef Name; 2864 std::tie(Name, Record) = readNameFromStrtab(Record); 2865 2866 if (Record.empty()) 2867 return error("Invalid record"); 2868 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2869 std::string OldFormatName; 2870 if (!UseStrtab) { 2871 if (Record.size() < 2) 2872 return error("Invalid record"); 2873 unsigned ComdatNameSize = Record[1]; 2874 OldFormatName.reserve(ComdatNameSize); 2875 for (unsigned i = 0; i != ComdatNameSize; ++i) 2876 OldFormatName += (char)Record[2 + i]; 2877 Name = OldFormatName; 2878 } 2879 Comdat *C = TheModule->getOrInsertComdat(Name); 2880 C->setSelectionKind(SK); 2881 ComdatList.push_back(C); 2882 return Error::success(); 2883 } 2884 2885 static void inferDSOLocal(GlobalValue *GV) { 2886 // infer dso_local from linkage and visibility if it is not encoded. 2887 if (GV->hasLocalLinkage() || 2888 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 2889 GV->setDSOLocal(true); 2890 } 2891 2892 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2893 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2894 // visibility, threadlocal, unnamed_addr, externally_initialized, 2895 // dllstorageclass, comdat, attributes, preemption specifier, 2896 // partition strtab offset, partition strtab size] (name in VST) 2897 // v2: [strtab_offset, strtab_size, v1] 2898 StringRef Name; 2899 std::tie(Name, Record) = readNameFromStrtab(Record); 2900 2901 if (Record.size() < 6) 2902 return error("Invalid record"); 2903 Type *Ty = getTypeByID(Record[0]); 2904 if (!Ty) 2905 return error("Invalid record"); 2906 bool isConstant = Record[1] & 1; 2907 bool explicitType = Record[1] & 2; 2908 unsigned AddressSpace; 2909 if (explicitType) { 2910 AddressSpace = Record[1] >> 2; 2911 } else { 2912 if (!Ty->isPointerTy()) 2913 return error("Invalid type for value"); 2914 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2915 Ty = cast<PointerType>(Ty)->getElementType(); 2916 } 2917 2918 uint64_t RawLinkage = Record[3]; 2919 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2920 unsigned Alignment; 2921 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2922 return Err; 2923 std::string Section; 2924 if (Record[5]) { 2925 if (Record[5] - 1 >= SectionTable.size()) 2926 return error("Invalid ID"); 2927 Section = SectionTable[Record[5] - 1]; 2928 } 2929 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2930 // Local linkage must have default visibility. 2931 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2932 // FIXME: Change to an error if non-default in 4.0. 2933 Visibility = getDecodedVisibility(Record[6]); 2934 2935 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2936 if (Record.size() > 7) 2937 TLM = getDecodedThreadLocalMode(Record[7]); 2938 2939 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2940 if (Record.size() > 8) 2941 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2942 2943 bool ExternallyInitialized = false; 2944 if (Record.size() > 9) 2945 ExternallyInitialized = Record[9]; 2946 2947 GlobalVariable *NewGV = 2948 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2949 nullptr, TLM, AddressSpace, ExternallyInitialized); 2950 NewGV->setAlignment(Alignment); 2951 if (!Section.empty()) 2952 NewGV->setSection(Section); 2953 NewGV->setVisibility(Visibility); 2954 NewGV->setUnnamedAddr(UnnamedAddr); 2955 2956 if (Record.size() > 10) 2957 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2958 else 2959 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2960 2961 ValueList.push_back(NewGV); 2962 2963 // Remember which value to use for the global initializer. 2964 if (unsigned InitID = Record[2]) 2965 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2966 2967 if (Record.size() > 11) { 2968 if (unsigned ComdatID = Record[11]) { 2969 if (ComdatID > ComdatList.size()) 2970 return error("Invalid global variable comdat ID"); 2971 NewGV->setComdat(ComdatList[ComdatID - 1]); 2972 } 2973 } else if (hasImplicitComdat(RawLinkage)) { 2974 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2975 } 2976 2977 if (Record.size() > 12) { 2978 auto AS = getAttributes(Record[12]).getFnAttributes(); 2979 NewGV->setAttributes(AS); 2980 } 2981 2982 if (Record.size() > 13) { 2983 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 2984 } 2985 inferDSOLocal(NewGV); 2986 2987 // Check whether we have enough values to read a partition name. 2988 if (Record.size() > 15) 2989 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 2990 2991 return Error::success(); 2992 } 2993 2994 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2995 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2996 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2997 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 2998 // v2: [strtab_offset, strtab_size, v1] 2999 StringRef Name; 3000 std::tie(Name, Record) = readNameFromStrtab(Record); 3001 3002 if (Record.size() < 8) 3003 return error("Invalid record"); 3004 Type *Ty = getTypeByID(Record[0]); 3005 if (!Ty) 3006 return error("Invalid record"); 3007 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3008 Ty = PTy->getElementType(); 3009 auto *FTy = dyn_cast<FunctionType>(Ty); 3010 if (!FTy) 3011 return error("Invalid type for value"); 3012 auto CC = static_cast<CallingConv::ID>(Record[1]); 3013 if (CC & ~CallingConv::MaxID) 3014 return error("Invalid calling convention ID"); 3015 3016 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3017 if (Record.size() > 16) 3018 AddrSpace = Record[16]; 3019 3020 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3021 AddrSpace, Name, TheModule); 3022 3023 Func->setCallingConv(CC); 3024 bool isProto = Record[2]; 3025 uint64_t RawLinkage = Record[3]; 3026 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3027 Func->setAttributes(getAttributes(Record[4])); 3028 3029 unsigned Alignment; 3030 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3031 return Err; 3032 Func->setAlignment(Alignment); 3033 if (Record[6]) { 3034 if (Record[6] - 1 >= SectionTable.size()) 3035 return error("Invalid ID"); 3036 Func->setSection(SectionTable[Record[6] - 1]); 3037 } 3038 // Local linkage must have default visibility. 3039 if (!Func->hasLocalLinkage()) 3040 // FIXME: Change to an error if non-default in 4.0. 3041 Func->setVisibility(getDecodedVisibility(Record[7])); 3042 if (Record.size() > 8 && Record[8]) { 3043 if (Record[8] - 1 >= GCTable.size()) 3044 return error("Invalid ID"); 3045 Func->setGC(GCTable[Record[8] - 1]); 3046 } 3047 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3048 if (Record.size() > 9) 3049 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3050 Func->setUnnamedAddr(UnnamedAddr); 3051 if (Record.size() > 10 && Record[10] != 0) 3052 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3053 3054 if (Record.size() > 11) 3055 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3056 else 3057 upgradeDLLImportExportLinkage(Func, RawLinkage); 3058 3059 if (Record.size() > 12) { 3060 if (unsigned ComdatID = Record[12]) { 3061 if (ComdatID > ComdatList.size()) 3062 return error("Invalid function comdat ID"); 3063 Func->setComdat(ComdatList[ComdatID - 1]); 3064 } 3065 } else if (hasImplicitComdat(RawLinkage)) { 3066 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3067 } 3068 3069 if (Record.size() > 13 && Record[13] != 0) 3070 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3071 3072 if (Record.size() > 14 && Record[14] != 0) 3073 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3074 3075 if (Record.size() > 15) { 3076 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3077 } 3078 inferDSOLocal(Func); 3079 3080 // Record[16] is the address space number. 3081 3082 // Check whether we have enough values to read a partition name. 3083 if (Record.size() > 18) 3084 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3085 3086 ValueList.push_back(Func); 3087 3088 // If this is a function with a body, remember the prototype we are 3089 // creating now, so that we can match up the body with them later. 3090 if (!isProto) { 3091 Func->setIsMaterializable(true); 3092 FunctionsWithBodies.push_back(Func); 3093 DeferredFunctionInfo[Func] = 0; 3094 } 3095 return Error::success(); 3096 } 3097 3098 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3099 unsigned BitCode, ArrayRef<uint64_t> Record) { 3100 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3101 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3102 // dllstorageclass, threadlocal, unnamed_addr, 3103 // preemption specifier] (name in VST) 3104 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3105 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3106 // preemption specifier] (name in VST) 3107 // v2: [strtab_offset, strtab_size, v1] 3108 StringRef Name; 3109 std::tie(Name, Record) = readNameFromStrtab(Record); 3110 3111 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3112 if (Record.size() < (3 + (unsigned)NewRecord)) 3113 return error("Invalid record"); 3114 unsigned OpNum = 0; 3115 Type *Ty = getTypeByID(Record[OpNum++]); 3116 if (!Ty) 3117 return error("Invalid record"); 3118 3119 unsigned AddrSpace; 3120 if (!NewRecord) { 3121 auto *PTy = dyn_cast<PointerType>(Ty); 3122 if (!PTy) 3123 return error("Invalid type for value"); 3124 Ty = PTy->getElementType(); 3125 AddrSpace = PTy->getAddressSpace(); 3126 } else { 3127 AddrSpace = Record[OpNum++]; 3128 } 3129 3130 auto Val = Record[OpNum++]; 3131 auto Linkage = Record[OpNum++]; 3132 GlobalIndirectSymbol *NewGA; 3133 if (BitCode == bitc::MODULE_CODE_ALIAS || 3134 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3135 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3136 TheModule); 3137 else 3138 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3139 nullptr, TheModule); 3140 // Old bitcode files didn't have visibility field. 3141 // Local linkage must have default visibility. 3142 if (OpNum != Record.size()) { 3143 auto VisInd = OpNum++; 3144 if (!NewGA->hasLocalLinkage()) 3145 // FIXME: Change to an error if non-default in 4.0. 3146 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3147 } 3148 if (BitCode == bitc::MODULE_CODE_ALIAS || 3149 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3150 if (OpNum != Record.size()) 3151 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3152 else 3153 upgradeDLLImportExportLinkage(NewGA, Linkage); 3154 if (OpNum != Record.size()) 3155 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3156 if (OpNum != Record.size()) 3157 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3158 } 3159 if (OpNum != Record.size()) 3160 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3161 inferDSOLocal(NewGA); 3162 3163 // Check whether we have enough values to read a partition name. 3164 if (OpNum + 1 < Record.size()) { 3165 NewGA->setPartition( 3166 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3167 OpNum += 2; 3168 } 3169 3170 ValueList.push_back(NewGA); 3171 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3172 return Error::success(); 3173 } 3174 3175 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3176 bool ShouldLazyLoadMetadata) { 3177 if (ResumeBit) 3178 Stream.JumpToBit(ResumeBit); 3179 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3180 return error("Invalid record"); 3181 3182 SmallVector<uint64_t, 64> Record; 3183 3184 // Read all the records for this module. 3185 while (true) { 3186 BitstreamEntry Entry = Stream.advance(); 3187 3188 switch (Entry.Kind) { 3189 case BitstreamEntry::Error: 3190 return error("Malformed block"); 3191 case BitstreamEntry::EndBlock: 3192 return globalCleanup(); 3193 3194 case BitstreamEntry::SubBlock: 3195 switch (Entry.ID) { 3196 default: // Skip unknown content. 3197 if (Stream.SkipBlock()) 3198 return error("Invalid record"); 3199 break; 3200 case bitc::BLOCKINFO_BLOCK_ID: 3201 if (readBlockInfo()) 3202 return error("Malformed block"); 3203 break; 3204 case bitc::PARAMATTR_BLOCK_ID: 3205 if (Error Err = parseAttributeBlock()) 3206 return Err; 3207 break; 3208 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3209 if (Error Err = parseAttributeGroupBlock()) 3210 return Err; 3211 break; 3212 case bitc::TYPE_BLOCK_ID_NEW: 3213 if (Error Err = parseTypeTable()) 3214 return Err; 3215 break; 3216 case bitc::VALUE_SYMTAB_BLOCK_ID: 3217 if (!SeenValueSymbolTable) { 3218 // Either this is an old form VST without function index and an 3219 // associated VST forward declaration record (which would have caused 3220 // the VST to be jumped to and parsed before it was encountered 3221 // normally in the stream), or there were no function blocks to 3222 // trigger an earlier parsing of the VST. 3223 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3224 if (Error Err = parseValueSymbolTable()) 3225 return Err; 3226 SeenValueSymbolTable = true; 3227 } else { 3228 // We must have had a VST forward declaration record, which caused 3229 // the parser to jump to and parse the VST earlier. 3230 assert(VSTOffset > 0); 3231 if (Stream.SkipBlock()) 3232 return error("Invalid record"); 3233 } 3234 break; 3235 case bitc::CONSTANTS_BLOCK_ID: 3236 if (Error Err = parseConstants()) 3237 return Err; 3238 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3239 return Err; 3240 break; 3241 case bitc::METADATA_BLOCK_ID: 3242 if (ShouldLazyLoadMetadata) { 3243 if (Error Err = rememberAndSkipMetadata()) 3244 return Err; 3245 break; 3246 } 3247 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3248 if (Error Err = MDLoader->parseModuleMetadata()) 3249 return Err; 3250 break; 3251 case bitc::METADATA_KIND_BLOCK_ID: 3252 if (Error Err = MDLoader->parseMetadataKinds()) 3253 return Err; 3254 break; 3255 case bitc::FUNCTION_BLOCK_ID: 3256 // If this is the first function body we've seen, reverse the 3257 // FunctionsWithBodies list. 3258 if (!SeenFirstFunctionBody) { 3259 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3260 if (Error Err = globalCleanup()) 3261 return Err; 3262 SeenFirstFunctionBody = true; 3263 } 3264 3265 if (VSTOffset > 0) { 3266 // If we have a VST forward declaration record, make sure we 3267 // parse the VST now if we haven't already. It is needed to 3268 // set up the DeferredFunctionInfo vector for lazy reading. 3269 if (!SeenValueSymbolTable) { 3270 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3271 return Err; 3272 SeenValueSymbolTable = true; 3273 // Fall through so that we record the NextUnreadBit below. 3274 // This is necessary in case we have an anonymous function that 3275 // is later materialized. Since it will not have a VST entry we 3276 // need to fall back to the lazy parse to find its offset. 3277 } else { 3278 // If we have a VST forward declaration record, but have already 3279 // parsed the VST (just above, when the first function body was 3280 // encountered here), then we are resuming the parse after 3281 // materializing functions. The ResumeBit points to the 3282 // start of the last function block recorded in the 3283 // DeferredFunctionInfo map. Skip it. 3284 if (Stream.SkipBlock()) 3285 return error("Invalid record"); 3286 continue; 3287 } 3288 } 3289 3290 // Support older bitcode files that did not have the function 3291 // index in the VST, nor a VST forward declaration record, as 3292 // well as anonymous functions that do not have VST entries. 3293 // Build the DeferredFunctionInfo vector on the fly. 3294 if (Error Err = rememberAndSkipFunctionBody()) 3295 return Err; 3296 3297 // Suspend parsing when we reach the function bodies. Subsequent 3298 // materialization calls will resume it when necessary. If the bitcode 3299 // file is old, the symbol table will be at the end instead and will not 3300 // have been seen yet. In this case, just finish the parse now. 3301 if (SeenValueSymbolTable) { 3302 NextUnreadBit = Stream.GetCurrentBitNo(); 3303 // After the VST has been parsed, we need to make sure intrinsic name 3304 // are auto-upgraded. 3305 return globalCleanup(); 3306 } 3307 break; 3308 case bitc::USELIST_BLOCK_ID: 3309 if (Error Err = parseUseLists()) 3310 return Err; 3311 break; 3312 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3313 if (Error Err = parseOperandBundleTags()) 3314 return Err; 3315 break; 3316 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3317 if (Error Err = parseSyncScopeNames()) 3318 return Err; 3319 break; 3320 } 3321 continue; 3322 3323 case BitstreamEntry::Record: 3324 // The interesting case. 3325 break; 3326 } 3327 3328 // Read a record. 3329 auto BitCode = Stream.readRecord(Entry.ID, Record); 3330 switch (BitCode) { 3331 default: break; // Default behavior, ignore unknown content. 3332 case bitc::MODULE_CODE_VERSION: { 3333 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3334 if (!VersionOrErr) 3335 return VersionOrErr.takeError(); 3336 UseRelativeIDs = *VersionOrErr >= 1; 3337 break; 3338 } 3339 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3340 std::string S; 3341 if (convertToString(Record, 0, S)) 3342 return error("Invalid record"); 3343 TheModule->setTargetTriple(S); 3344 break; 3345 } 3346 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3347 std::string S; 3348 if (convertToString(Record, 0, S)) 3349 return error("Invalid record"); 3350 TheModule->setDataLayout(S); 3351 break; 3352 } 3353 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3354 std::string S; 3355 if (convertToString(Record, 0, S)) 3356 return error("Invalid record"); 3357 TheModule->setModuleInlineAsm(S); 3358 break; 3359 } 3360 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3361 // FIXME: Remove in 4.0. 3362 std::string S; 3363 if (convertToString(Record, 0, S)) 3364 return error("Invalid record"); 3365 // Ignore value. 3366 break; 3367 } 3368 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3369 std::string S; 3370 if (convertToString(Record, 0, S)) 3371 return error("Invalid record"); 3372 SectionTable.push_back(S); 3373 break; 3374 } 3375 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3376 std::string S; 3377 if (convertToString(Record, 0, S)) 3378 return error("Invalid record"); 3379 GCTable.push_back(S); 3380 break; 3381 } 3382 case bitc::MODULE_CODE_COMDAT: 3383 if (Error Err = parseComdatRecord(Record)) 3384 return Err; 3385 break; 3386 case bitc::MODULE_CODE_GLOBALVAR: 3387 if (Error Err = parseGlobalVarRecord(Record)) 3388 return Err; 3389 break; 3390 case bitc::MODULE_CODE_FUNCTION: 3391 if (Error Err = parseFunctionRecord(Record)) 3392 return Err; 3393 break; 3394 case bitc::MODULE_CODE_IFUNC: 3395 case bitc::MODULE_CODE_ALIAS: 3396 case bitc::MODULE_CODE_ALIAS_OLD: 3397 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3398 return Err; 3399 break; 3400 /// MODULE_CODE_VSTOFFSET: [offset] 3401 case bitc::MODULE_CODE_VSTOFFSET: 3402 if (Record.size() < 1) 3403 return error("Invalid record"); 3404 // Note that we subtract 1 here because the offset is relative to one word 3405 // before the start of the identification or module block, which was 3406 // historically always the start of the regular bitcode header. 3407 VSTOffset = Record[0] - 1; 3408 break; 3409 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3410 case bitc::MODULE_CODE_SOURCE_FILENAME: 3411 SmallString<128> ValueName; 3412 if (convertToString(Record, 0, ValueName)) 3413 return error("Invalid record"); 3414 TheModule->setSourceFileName(ValueName); 3415 break; 3416 } 3417 Record.clear(); 3418 } 3419 } 3420 3421 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3422 bool IsImporting) { 3423 TheModule = M; 3424 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3425 [&](unsigned ID) { return getTypeByID(ID); }); 3426 return parseModule(0, ShouldLazyLoadMetadata); 3427 } 3428 3429 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3430 if (!isa<PointerType>(PtrType)) 3431 return error("Load/Store operand is not a pointer type"); 3432 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3433 3434 if (ValType && ValType != ElemType) 3435 return error("Explicit load/store type does not match pointee " 3436 "type of pointer operand"); 3437 if (!PointerType::isLoadableOrStorableType(ElemType)) 3438 return error("Cannot load/store from pointer"); 3439 return Error::success(); 3440 } 3441 3442 /// Lazily parse the specified function body block. 3443 Error BitcodeReader::parseFunctionBody(Function *F) { 3444 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3445 return error("Invalid record"); 3446 3447 // Unexpected unresolved metadata when parsing function. 3448 if (MDLoader->hasFwdRefs()) 3449 return error("Invalid function metadata: incoming forward references"); 3450 3451 InstructionList.clear(); 3452 unsigned ModuleValueListSize = ValueList.size(); 3453 unsigned ModuleMDLoaderSize = MDLoader->size(); 3454 3455 // Add all the function arguments to the value table. 3456 for (Argument &I : F->args()) 3457 ValueList.push_back(&I); 3458 3459 unsigned NextValueNo = ValueList.size(); 3460 BasicBlock *CurBB = nullptr; 3461 unsigned CurBBNo = 0; 3462 3463 DebugLoc LastLoc; 3464 auto getLastInstruction = [&]() -> Instruction * { 3465 if (CurBB && !CurBB->empty()) 3466 return &CurBB->back(); 3467 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3468 !FunctionBBs[CurBBNo - 1]->empty()) 3469 return &FunctionBBs[CurBBNo - 1]->back(); 3470 return nullptr; 3471 }; 3472 3473 std::vector<OperandBundleDef> OperandBundles; 3474 3475 // Read all the records. 3476 SmallVector<uint64_t, 64> Record; 3477 3478 while (true) { 3479 BitstreamEntry Entry = Stream.advance(); 3480 3481 switch (Entry.Kind) { 3482 case BitstreamEntry::Error: 3483 return error("Malformed block"); 3484 case BitstreamEntry::EndBlock: 3485 goto OutOfRecordLoop; 3486 3487 case BitstreamEntry::SubBlock: 3488 switch (Entry.ID) { 3489 default: // Skip unknown content. 3490 if (Stream.SkipBlock()) 3491 return error("Invalid record"); 3492 break; 3493 case bitc::CONSTANTS_BLOCK_ID: 3494 if (Error Err = parseConstants()) 3495 return Err; 3496 NextValueNo = ValueList.size(); 3497 break; 3498 case bitc::VALUE_SYMTAB_BLOCK_ID: 3499 if (Error Err = parseValueSymbolTable()) 3500 return Err; 3501 break; 3502 case bitc::METADATA_ATTACHMENT_ID: 3503 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3504 return Err; 3505 break; 3506 case bitc::METADATA_BLOCK_ID: 3507 assert(DeferredMetadataInfo.empty() && 3508 "Must read all module-level metadata before function-level"); 3509 if (Error Err = MDLoader->parseFunctionMetadata()) 3510 return Err; 3511 break; 3512 case bitc::USELIST_BLOCK_ID: 3513 if (Error Err = parseUseLists()) 3514 return Err; 3515 break; 3516 } 3517 continue; 3518 3519 case BitstreamEntry::Record: 3520 // The interesting case. 3521 break; 3522 } 3523 3524 // Read a record. 3525 Record.clear(); 3526 Instruction *I = nullptr; 3527 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3528 switch (BitCode) { 3529 default: // Default behavior: reject 3530 return error("Invalid value"); 3531 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3532 if (Record.size() < 1 || Record[0] == 0) 3533 return error("Invalid record"); 3534 // Create all the basic blocks for the function. 3535 FunctionBBs.resize(Record[0]); 3536 3537 // See if anything took the address of blocks in this function. 3538 auto BBFRI = BasicBlockFwdRefs.find(F); 3539 if (BBFRI == BasicBlockFwdRefs.end()) { 3540 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3541 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3542 } else { 3543 auto &BBRefs = BBFRI->second; 3544 // Check for invalid basic block references. 3545 if (BBRefs.size() > FunctionBBs.size()) 3546 return error("Invalid ID"); 3547 assert(!BBRefs.empty() && "Unexpected empty array"); 3548 assert(!BBRefs.front() && "Invalid reference to entry block"); 3549 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3550 ++I) 3551 if (I < RE && BBRefs[I]) { 3552 BBRefs[I]->insertInto(F); 3553 FunctionBBs[I] = BBRefs[I]; 3554 } else { 3555 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3556 } 3557 3558 // Erase from the table. 3559 BasicBlockFwdRefs.erase(BBFRI); 3560 } 3561 3562 CurBB = FunctionBBs[0]; 3563 continue; 3564 } 3565 3566 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3567 // This record indicates that the last instruction is at the same 3568 // location as the previous instruction with a location. 3569 I = getLastInstruction(); 3570 3571 if (!I) 3572 return error("Invalid record"); 3573 I->setDebugLoc(LastLoc); 3574 I = nullptr; 3575 continue; 3576 3577 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3578 I = getLastInstruction(); 3579 if (!I || Record.size() < 4) 3580 return error("Invalid record"); 3581 3582 unsigned Line = Record[0], Col = Record[1]; 3583 unsigned ScopeID = Record[2], IAID = Record[3]; 3584 bool isImplicitCode = Record.size() == 5 && Record[4]; 3585 3586 MDNode *Scope = nullptr, *IA = nullptr; 3587 if (ScopeID) { 3588 Scope = dyn_cast_or_null<MDNode>( 3589 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3590 if (!Scope) 3591 return error("Invalid record"); 3592 } 3593 if (IAID) { 3594 IA = dyn_cast_or_null<MDNode>( 3595 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3596 if (!IA) 3597 return error("Invalid record"); 3598 } 3599 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3600 I->setDebugLoc(LastLoc); 3601 I = nullptr; 3602 continue; 3603 } 3604 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3605 unsigned OpNum = 0; 3606 Value *LHS; 3607 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3608 OpNum+1 > Record.size()) 3609 return error("Invalid record"); 3610 3611 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3612 if (Opc == -1) 3613 return error("Invalid record"); 3614 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3615 InstructionList.push_back(I); 3616 if (OpNum < Record.size()) { 3617 if (isa<FPMathOperator>(I)) { 3618 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3619 if (FMF.any()) 3620 I->setFastMathFlags(FMF); 3621 } 3622 } 3623 break; 3624 } 3625 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3626 unsigned OpNum = 0; 3627 Value *LHS, *RHS; 3628 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3629 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3630 OpNum+1 > Record.size()) 3631 return error("Invalid record"); 3632 3633 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3634 if (Opc == -1) 3635 return error("Invalid record"); 3636 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3637 InstructionList.push_back(I); 3638 if (OpNum < Record.size()) { 3639 if (Opc == Instruction::Add || 3640 Opc == Instruction::Sub || 3641 Opc == Instruction::Mul || 3642 Opc == Instruction::Shl) { 3643 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3644 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3645 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3646 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3647 } else if (Opc == Instruction::SDiv || 3648 Opc == Instruction::UDiv || 3649 Opc == Instruction::LShr || 3650 Opc == Instruction::AShr) { 3651 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3652 cast<BinaryOperator>(I)->setIsExact(true); 3653 } else if (isa<FPMathOperator>(I)) { 3654 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3655 if (FMF.any()) 3656 I->setFastMathFlags(FMF); 3657 } 3658 3659 } 3660 break; 3661 } 3662 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3663 unsigned OpNum = 0; 3664 Value *Op; 3665 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3666 OpNum+2 != Record.size()) 3667 return error("Invalid record"); 3668 3669 Type *ResTy = getTypeByID(Record[OpNum]); 3670 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3671 if (Opc == -1 || !ResTy) 3672 return error("Invalid record"); 3673 Instruction *Temp = nullptr; 3674 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3675 if (Temp) { 3676 InstructionList.push_back(Temp); 3677 CurBB->getInstList().push_back(Temp); 3678 } 3679 } else { 3680 auto CastOp = (Instruction::CastOps)Opc; 3681 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3682 return error("Invalid cast"); 3683 I = CastInst::Create(CastOp, Op, ResTy); 3684 } 3685 InstructionList.push_back(I); 3686 break; 3687 } 3688 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3689 case bitc::FUNC_CODE_INST_GEP_OLD: 3690 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3691 unsigned OpNum = 0; 3692 3693 Type *Ty; 3694 bool InBounds; 3695 3696 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3697 InBounds = Record[OpNum++]; 3698 Ty = getTypeByID(Record[OpNum++]); 3699 } else { 3700 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3701 Ty = nullptr; 3702 } 3703 3704 Value *BasePtr; 3705 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3706 return error("Invalid record"); 3707 3708 if (!Ty) 3709 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3710 ->getElementType(); 3711 else if (Ty != 3712 cast<PointerType>(BasePtr->getType()->getScalarType()) 3713 ->getElementType()) 3714 return error( 3715 "Explicit gep type does not match pointee type of pointer operand"); 3716 3717 SmallVector<Value*, 16> GEPIdx; 3718 while (OpNum != Record.size()) { 3719 Value *Op; 3720 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3721 return error("Invalid record"); 3722 GEPIdx.push_back(Op); 3723 } 3724 3725 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3726 3727 InstructionList.push_back(I); 3728 if (InBounds) 3729 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3730 break; 3731 } 3732 3733 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3734 // EXTRACTVAL: [opty, opval, n x indices] 3735 unsigned OpNum = 0; 3736 Value *Agg; 3737 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3738 return error("Invalid record"); 3739 3740 unsigned RecSize = Record.size(); 3741 if (OpNum == RecSize) 3742 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3743 3744 SmallVector<unsigned, 4> EXTRACTVALIdx; 3745 Type *CurTy = Agg->getType(); 3746 for (; OpNum != RecSize; ++OpNum) { 3747 bool IsArray = CurTy->isArrayTy(); 3748 bool IsStruct = CurTy->isStructTy(); 3749 uint64_t Index = Record[OpNum]; 3750 3751 if (!IsStruct && !IsArray) 3752 return error("EXTRACTVAL: Invalid type"); 3753 if ((unsigned)Index != Index) 3754 return error("Invalid value"); 3755 if (IsStruct && Index >= CurTy->getStructNumElements()) 3756 return error("EXTRACTVAL: Invalid struct index"); 3757 if (IsArray && Index >= CurTy->getArrayNumElements()) 3758 return error("EXTRACTVAL: Invalid array index"); 3759 EXTRACTVALIdx.push_back((unsigned)Index); 3760 3761 if (IsStruct) 3762 CurTy = CurTy->getStructElementType(Index); 3763 else 3764 CurTy = CurTy->getArrayElementType(); 3765 } 3766 3767 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3768 InstructionList.push_back(I); 3769 break; 3770 } 3771 3772 case bitc::FUNC_CODE_INST_INSERTVAL: { 3773 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3774 unsigned OpNum = 0; 3775 Value *Agg; 3776 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3777 return error("Invalid record"); 3778 Value *Val; 3779 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3780 return error("Invalid record"); 3781 3782 unsigned RecSize = Record.size(); 3783 if (OpNum == RecSize) 3784 return error("INSERTVAL: Invalid instruction with 0 indices"); 3785 3786 SmallVector<unsigned, 4> INSERTVALIdx; 3787 Type *CurTy = Agg->getType(); 3788 for (; OpNum != RecSize; ++OpNum) { 3789 bool IsArray = CurTy->isArrayTy(); 3790 bool IsStruct = CurTy->isStructTy(); 3791 uint64_t Index = Record[OpNum]; 3792 3793 if (!IsStruct && !IsArray) 3794 return error("INSERTVAL: Invalid type"); 3795 if ((unsigned)Index != Index) 3796 return error("Invalid value"); 3797 if (IsStruct && Index >= CurTy->getStructNumElements()) 3798 return error("INSERTVAL: Invalid struct index"); 3799 if (IsArray && Index >= CurTy->getArrayNumElements()) 3800 return error("INSERTVAL: Invalid array index"); 3801 3802 INSERTVALIdx.push_back((unsigned)Index); 3803 if (IsStruct) 3804 CurTy = CurTy->getStructElementType(Index); 3805 else 3806 CurTy = CurTy->getArrayElementType(); 3807 } 3808 3809 if (CurTy != Val->getType()) 3810 return error("Inserted value type doesn't match aggregate type"); 3811 3812 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3813 InstructionList.push_back(I); 3814 break; 3815 } 3816 3817 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3818 // obsolete form of select 3819 // handles select i1 ... in old bitcode 3820 unsigned OpNum = 0; 3821 Value *TrueVal, *FalseVal, *Cond; 3822 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3823 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3824 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3825 return error("Invalid record"); 3826 3827 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3828 InstructionList.push_back(I); 3829 break; 3830 } 3831 3832 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3833 // new form of select 3834 // handles select i1 or select [N x i1] 3835 unsigned OpNum = 0; 3836 Value *TrueVal, *FalseVal, *Cond; 3837 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3838 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3839 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3840 return error("Invalid record"); 3841 3842 // select condition can be either i1 or [N x i1] 3843 if (VectorType* vector_type = 3844 dyn_cast<VectorType>(Cond->getType())) { 3845 // expect <n x i1> 3846 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3847 return error("Invalid type for value"); 3848 } else { 3849 // expect i1 3850 if (Cond->getType() != Type::getInt1Ty(Context)) 3851 return error("Invalid type for value"); 3852 } 3853 3854 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3855 InstructionList.push_back(I); 3856 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 3857 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3858 if (FMF.any()) 3859 I->setFastMathFlags(FMF); 3860 } 3861 break; 3862 } 3863 3864 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3865 unsigned OpNum = 0; 3866 Value *Vec, *Idx; 3867 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3868 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3869 return error("Invalid record"); 3870 if (!Vec->getType()->isVectorTy()) 3871 return error("Invalid type for value"); 3872 I = ExtractElementInst::Create(Vec, Idx); 3873 InstructionList.push_back(I); 3874 break; 3875 } 3876 3877 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3878 unsigned OpNum = 0; 3879 Value *Vec, *Elt, *Idx; 3880 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3881 return error("Invalid record"); 3882 if (!Vec->getType()->isVectorTy()) 3883 return error("Invalid type for value"); 3884 if (popValue(Record, OpNum, NextValueNo, 3885 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3886 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3887 return error("Invalid record"); 3888 I = InsertElementInst::Create(Vec, Elt, Idx); 3889 InstructionList.push_back(I); 3890 break; 3891 } 3892 3893 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3894 unsigned OpNum = 0; 3895 Value *Vec1, *Vec2, *Mask; 3896 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3897 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3898 return error("Invalid record"); 3899 3900 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3901 return error("Invalid record"); 3902 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3903 return error("Invalid type for value"); 3904 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3905 InstructionList.push_back(I); 3906 break; 3907 } 3908 3909 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3910 // Old form of ICmp/FCmp returning bool 3911 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3912 // both legal on vectors but had different behaviour. 3913 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3914 // FCmp/ICmp returning bool or vector of bool 3915 3916 unsigned OpNum = 0; 3917 Value *LHS, *RHS; 3918 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3919 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3920 return error("Invalid record"); 3921 3922 unsigned PredVal = Record[OpNum]; 3923 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3924 FastMathFlags FMF; 3925 if (IsFP && Record.size() > OpNum+1) 3926 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3927 3928 if (OpNum+1 != Record.size()) 3929 return error("Invalid record"); 3930 3931 if (LHS->getType()->isFPOrFPVectorTy()) 3932 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3933 else 3934 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3935 3936 if (FMF.any()) 3937 I->setFastMathFlags(FMF); 3938 InstructionList.push_back(I); 3939 break; 3940 } 3941 3942 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3943 { 3944 unsigned Size = Record.size(); 3945 if (Size == 0) { 3946 I = ReturnInst::Create(Context); 3947 InstructionList.push_back(I); 3948 break; 3949 } 3950 3951 unsigned OpNum = 0; 3952 Value *Op = nullptr; 3953 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3954 return error("Invalid record"); 3955 if (OpNum != Record.size()) 3956 return error("Invalid record"); 3957 3958 I = ReturnInst::Create(Context, Op); 3959 InstructionList.push_back(I); 3960 break; 3961 } 3962 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3963 if (Record.size() != 1 && Record.size() != 3) 3964 return error("Invalid record"); 3965 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3966 if (!TrueDest) 3967 return error("Invalid record"); 3968 3969 if (Record.size() == 1) { 3970 I = BranchInst::Create(TrueDest); 3971 InstructionList.push_back(I); 3972 } 3973 else { 3974 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3975 Value *Cond = getValue(Record, 2, NextValueNo, 3976 Type::getInt1Ty(Context)); 3977 if (!FalseDest || !Cond) 3978 return error("Invalid record"); 3979 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3980 InstructionList.push_back(I); 3981 } 3982 break; 3983 } 3984 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3985 if (Record.size() != 1 && Record.size() != 2) 3986 return error("Invalid record"); 3987 unsigned Idx = 0; 3988 Value *CleanupPad = 3989 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3990 if (!CleanupPad) 3991 return error("Invalid record"); 3992 BasicBlock *UnwindDest = nullptr; 3993 if (Record.size() == 2) { 3994 UnwindDest = getBasicBlock(Record[Idx++]); 3995 if (!UnwindDest) 3996 return error("Invalid record"); 3997 } 3998 3999 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4000 InstructionList.push_back(I); 4001 break; 4002 } 4003 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4004 if (Record.size() != 2) 4005 return error("Invalid record"); 4006 unsigned Idx = 0; 4007 Value *CatchPad = 4008 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4009 if (!CatchPad) 4010 return error("Invalid record"); 4011 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4012 if (!BB) 4013 return error("Invalid record"); 4014 4015 I = CatchReturnInst::Create(CatchPad, BB); 4016 InstructionList.push_back(I); 4017 break; 4018 } 4019 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4020 // We must have, at minimum, the outer scope and the number of arguments. 4021 if (Record.size() < 2) 4022 return error("Invalid record"); 4023 4024 unsigned Idx = 0; 4025 4026 Value *ParentPad = 4027 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4028 4029 unsigned NumHandlers = Record[Idx++]; 4030 4031 SmallVector<BasicBlock *, 2> Handlers; 4032 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4033 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4034 if (!BB) 4035 return error("Invalid record"); 4036 Handlers.push_back(BB); 4037 } 4038 4039 BasicBlock *UnwindDest = nullptr; 4040 if (Idx + 1 == Record.size()) { 4041 UnwindDest = getBasicBlock(Record[Idx++]); 4042 if (!UnwindDest) 4043 return error("Invalid record"); 4044 } 4045 4046 if (Record.size() != Idx) 4047 return error("Invalid record"); 4048 4049 auto *CatchSwitch = 4050 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4051 for (BasicBlock *Handler : Handlers) 4052 CatchSwitch->addHandler(Handler); 4053 I = CatchSwitch; 4054 InstructionList.push_back(I); 4055 break; 4056 } 4057 case bitc::FUNC_CODE_INST_CATCHPAD: 4058 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4059 // We must have, at minimum, the outer scope and the number of arguments. 4060 if (Record.size() < 2) 4061 return error("Invalid record"); 4062 4063 unsigned Idx = 0; 4064 4065 Value *ParentPad = 4066 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4067 4068 unsigned NumArgOperands = Record[Idx++]; 4069 4070 SmallVector<Value *, 2> Args; 4071 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4072 Value *Val; 4073 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4074 return error("Invalid record"); 4075 Args.push_back(Val); 4076 } 4077 4078 if (Record.size() != Idx) 4079 return error("Invalid record"); 4080 4081 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4082 I = CleanupPadInst::Create(ParentPad, Args); 4083 else 4084 I = CatchPadInst::Create(ParentPad, Args); 4085 InstructionList.push_back(I); 4086 break; 4087 } 4088 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4089 // Check magic 4090 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4091 // "New" SwitchInst format with case ranges. The changes to write this 4092 // format were reverted but we still recognize bitcode that uses it. 4093 // Hopefully someday we will have support for case ranges and can use 4094 // this format again. 4095 4096 Type *OpTy = getTypeByID(Record[1]); 4097 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4098 4099 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4100 BasicBlock *Default = getBasicBlock(Record[3]); 4101 if (!OpTy || !Cond || !Default) 4102 return error("Invalid record"); 4103 4104 unsigned NumCases = Record[4]; 4105 4106 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4107 InstructionList.push_back(SI); 4108 4109 unsigned CurIdx = 5; 4110 for (unsigned i = 0; i != NumCases; ++i) { 4111 SmallVector<ConstantInt*, 1> CaseVals; 4112 unsigned NumItems = Record[CurIdx++]; 4113 for (unsigned ci = 0; ci != NumItems; ++ci) { 4114 bool isSingleNumber = Record[CurIdx++]; 4115 4116 APInt Low; 4117 unsigned ActiveWords = 1; 4118 if (ValueBitWidth > 64) 4119 ActiveWords = Record[CurIdx++]; 4120 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4121 ValueBitWidth); 4122 CurIdx += ActiveWords; 4123 4124 if (!isSingleNumber) { 4125 ActiveWords = 1; 4126 if (ValueBitWidth > 64) 4127 ActiveWords = Record[CurIdx++]; 4128 APInt High = readWideAPInt( 4129 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4130 CurIdx += ActiveWords; 4131 4132 // FIXME: It is not clear whether values in the range should be 4133 // compared as signed or unsigned values. The partially 4134 // implemented changes that used this format in the past used 4135 // unsigned comparisons. 4136 for ( ; Low.ule(High); ++Low) 4137 CaseVals.push_back(ConstantInt::get(Context, Low)); 4138 } else 4139 CaseVals.push_back(ConstantInt::get(Context, Low)); 4140 } 4141 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4142 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4143 cve = CaseVals.end(); cvi != cve; ++cvi) 4144 SI->addCase(*cvi, DestBB); 4145 } 4146 I = SI; 4147 break; 4148 } 4149 4150 // Old SwitchInst format without case ranges. 4151 4152 if (Record.size() < 3 || (Record.size() & 1) == 0) 4153 return error("Invalid record"); 4154 Type *OpTy = getTypeByID(Record[0]); 4155 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4156 BasicBlock *Default = getBasicBlock(Record[2]); 4157 if (!OpTy || !Cond || !Default) 4158 return error("Invalid record"); 4159 unsigned NumCases = (Record.size()-3)/2; 4160 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4161 InstructionList.push_back(SI); 4162 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4163 ConstantInt *CaseVal = 4164 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4165 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4166 if (!CaseVal || !DestBB) { 4167 delete SI; 4168 return error("Invalid record"); 4169 } 4170 SI->addCase(CaseVal, DestBB); 4171 } 4172 I = SI; 4173 break; 4174 } 4175 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4176 if (Record.size() < 2) 4177 return error("Invalid record"); 4178 Type *OpTy = getTypeByID(Record[0]); 4179 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4180 if (!OpTy || !Address) 4181 return error("Invalid record"); 4182 unsigned NumDests = Record.size()-2; 4183 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4184 InstructionList.push_back(IBI); 4185 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4186 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4187 IBI->addDestination(DestBB); 4188 } else { 4189 delete IBI; 4190 return error("Invalid record"); 4191 } 4192 } 4193 I = IBI; 4194 break; 4195 } 4196 4197 case bitc::FUNC_CODE_INST_INVOKE: { 4198 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4199 if (Record.size() < 4) 4200 return error("Invalid record"); 4201 unsigned OpNum = 0; 4202 AttributeList PAL = getAttributes(Record[OpNum++]); 4203 unsigned CCInfo = Record[OpNum++]; 4204 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4205 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4206 4207 FunctionType *FTy = nullptr; 4208 if (CCInfo >> 13 & 1 && 4209 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4210 return error("Explicit invoke type is not a function type"); 4211 4212 Value *Callee; 4213 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4214 return error("Invalid record"); 4215 4216 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4217 if (!CalleeTy) 4218 return error("Callee is not a pointer"); 4219 if (!FTy) { 4220 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4221 if (!FTy) 4222 return error("Callee is not of pointer to function type"); 4223 } else if (CalleeTy->getElementType() != FTy) 4224 return error("Explicit invoke type does not match pointee type of " 4225 "callee operand"); 4226 if (Record.size() < FTy->getNumParams() + OpNum) 4227 return error("Insufficient operands to call"); 4228 4229 SmallVector<Value*, 16> Ops; 4230 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4231 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4232 FTy->getParamType(i))); 4233 if (!Ops.back()) 4234 return error("Invalid record"); 4235 } 4236 4237 if (!FTy->isVarArg()) { 4238 if (Record.size() != OpNum) 4239 return error("Invalid record"); 4240 } else { 4241 // Read type/value pairs for varargs params. 4242 while (OpNum != Record.size()) { 4243 Value *Op; 4244 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4245 return error("Invalid record"); 4246 Ops.push_back(Op); 4247 } 4248 } 4249 4250 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4251 OperandBundles); 4252 OperandBundles.clear(); 4253 InstructionList.push_back(I); 4254 cast<InvokeInst>(I)->setCallingConv( 4255 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4256 cast<InvokeInst>(I)->setAttributes(PAL); 4257 break; 4258 } 4259 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4260 unsigned Idx = 0; 4261 Value *Val = nullptr; 4262 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4263 return error("Invalid record"); 4264 I = ResumeInst::Create(Val); 4265 InstructionList.push_back(I); 4266 break; 4267 } 4268 case bitc::FUNC_CODE_INST_CALLBR: { 4269 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4270 unsigned OpNum = 0; 4271 AttributeList PAL = getAttributes(Record[OpNum++]); 4272 unsigned CCInfo = Record[OpNum++]; 4273 4274 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4275 unsigned NumIndirectDests = Record[OpNum++]; 4276 SmallVector<BasicBlock *, 16> IndirectDests; 4277 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4278 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4279 4280 FunctionType *FTy = nullptr; 4281 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4282 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4283 return error("Explicit call type is not a function type"); 4284 4285 Value *Callee; 4286 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4287 return error("Invalid record"); 4288 4289 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4290 if (!OpTy) 4291 return error("Callee is not a pointer type"); 4292 if (!FTy) { 4293 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4294 if (!FTy) 4295 return error("Callee is not of pointer to function type"); 4296 } else if (OpTy->getElementType() != FTy) 4297 return error("Explicit call type does not match pointee type of " 4298 "callee operand"); 4299 if (Record.size() < FTy->getNumParams() + OpNum) 4300 return error("Insufficient operands to call"); 4301 4302 SmallVector<Value*, 16> Args; 4303 // Read the fixed params. 4304 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4305 if (FTy->getParamType(i)->isLabelTy()) 4306 Args.push_back(getBasicBlock(Record[OpNum])); 4307 else 4308 Args.push_back(getValue(Record, OpNum, NextValueNo, 4309 FTy->getParamType(i))); 4310 if (!Args.back()) 4311 return error("Invalid record"); 4312 } 4313 4314 // Read type/value pairs for varargs params. 4315 if (!FTy->isVarArg()) { 4316 if (OpNum != Record.size()) 4317 return error("Invalid record"); 4318 } else { 4319 while (OpNum != Record.size()) { 4320 Value *Op; 4321 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4322 return error("Invalid record"); 4323 Args.push_back(Op); 4324 } 4325 } 4326 4327 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4328 OperandBundles); 4329 OperandBundles.clear(); 4330 InstructionList.push_back(I); 4331 cast<CallBrInst>(I)->setCallingConv( 4332 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4333 cast<CallBrInst>(I)->setAttributes(PAL); 4334 break; 4335 } 4336 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4337 I = new UnreachableInst(Context); 4338 InstructionList.push_back(I); 4339 break; 4340 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4341 if (Record.size() < 1 || ((Record.size()-1)&1)) 4342 return error("Invalid record"); 4343 Type *Ty = getTypeByID(Record[0]); 4344 if (!Ty) 4345 return error("Invalid record"); 4346 4347 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4348 InstructionList.push_back(PN); 4349 4350 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4351 Value *V; 4352 // With the new function encoding, it is possible that operands have 4353 // negative IDs (for forward references). Use a signed VBR 4354 // representation to keep the encoding small. 4355 if (UseRelativeIDs) 4356 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4357 else 4358 V = getValue(Record, 1+i, NextValueNo, Ty); 4359 BasicBlock *BB = getBasicBlock(Record[2+i]); 4360 if (!V || !BB) 4361 return error("Invalid record"); 4362 PN->addIncoming(V, BB); 4363 } 4364 I = PN; 4365 break; 4366 } 4367 4368 case bitc::FUNC_CODE_INST_LANDINGPAD: 4369 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4370 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4371 unsigned Idx = 0; 4372 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4373 if (Record.size() < 3) 4374 return error("Invalid record"); 4375 } else { 4376 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4377 if (Record.size() < 4) 4378 return error("Invalid record"); 4379 } 4380 Type *Ty = getTypeByID(Record[Idx++]); 4381 if (!Ty) 4382 return error("Invalid record"); 4383 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4384 Value *PersFn = nullptr; 4385 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4386 return error("Invalid record"); 4387 4388 if (!F->hasPersonalityFn()) 4389 F->setPersonalityFn(cast<Constant>(PersFn)); 4390 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4391 return error("Personality function mismatch"); 4392 } 4393 4394 bool IsCleanup = !!Record[Idx++]; 4395 unsigned NumClauses = Record[Idx++]; 4396 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4397 LP->setCleanup(IsCleanup); 4398 for (unsigned J = 0; J != NumClauses; ++J) { 4399 LandingPadInst::ClauseType CT = 4400 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4401 Value *Val; 4402 4403 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4404 delete LP; 4405 return error("Invalid record"); 4406 } 4407 4408 assert((CT != LandingPadInst::Catch || 4409 !isa<ArrayType>(Val->getType())) && 4410 "Catch clause has a invalid type!"); 4411 assert((CT != LandingPadInst::Filter || 4412 isa<ArrayType>(Val->getType())) && 4413 "Filter clause has invalid type!"); 4414 LP->addClause(cast<Constant>(Val)); 4415 } 4416 4417 I = LP; 4418 InstructionList.push_back(I); 4419 break; 4420 } 4421 4422 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4423 if (Record.size() != 4) 4424 return error("Invalid record"); 4425 uint64_t AlignRecord = Record[3]; 4426 const uint64_t InAllocaMask = uint64_t(1) << 5; 4427 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4428 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4429 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4430 SwiftErrorMask; 4431 bool InAlloca = AlignRecord & InAllocaMask; 4432 bool SwiftError = AlignRecord & SwiftErrorMask; 4433 Type *Ty = getTypeByID(Record[0]); 4434 if ((AlignRecord & ExplicitTypeMask) == 0) { 4435 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4436 if (!PTy) 4437 return error("Old-style alloca with a non-pointer type"); 4438 Ty = PTy->getElementType(); 4439 } 4440 Type *OpTy = getTypeByID(Record[1]); 4441 Value *Size = getFnValueByID(Record[2], OpTy); 4442 unsigned Align; 4443 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4444 return Err; 4445 } 4446 if (!Ty || !Size) 4447 return error("Invalid record"); 4448 4449 // FIXME: Make this an optional field. 4450 const DataLayout &DL = TheModule->getDataLayout(); 4451 unsigned AS = DL.getAllocaAddrSpace(); 4452 4453 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4454 AI->setUsedWithInAlloca(InAlloca); 4455 AI->setSwiftError(SwiftError); 4456 I = AI; 4457 InstructionList.push_back(I); 4458 break; 4459 } 4460 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4461 unsigned OpNum = 0; 4462 Value *Op; 4463 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4464 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4465 return error("Invalid record"); 4466 4467 Type *Ty = nullptr; 4468 if (OpNum + 3 == Record.size()) 4469 Ty = getTypeByID(Record[OpNum++]); 4470 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4471 return Err; 4472 if (!Ty) 4473 Ty = cast<PointerType>(Op->getType())->getElementType(); 4474 4475 unsigned Align; 4476 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4477 return Err; 4478 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4479 4480 InstructionList.push_back(I); 4481 break; 4482 } 4483 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4484 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4485 unsigned OpNum = 0; 4486 Value *Op; 4487 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4488 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4489 return error("Invalid record"); 4490 4491 Type *Ty = nullptr; 4492 if (OpNum + 5 == Record.size()) 4493 Ty = getTypeByID(Record[OpNum++]); 4494 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4495 return Err; 4496 if (!Ty) 4497 Ty = cast<PointerType>(Op->getType())->getElementType(); 4498 4499 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4500 if (Ordering == AtomicOrdering::NotAtomic || 4501 Ordering == AtomicOrdering::Release || 4502 Ordering == AtomicOrdering::AcquireRelease) 4503 return error("Invalid record"); 4504 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4505 return error("Invalid record"); 4506 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4507 4508 unsigned Align; 4509 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4510 return Err; 4511 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID); 4512 4513 InstructionList.push_back(I); 4514 break; 4515 } 4516 case bitc::FUNC_CODE_INST_STORE: 4517 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4518 unsigned OpNum = 0; 4519 Value *Val, *Ptr; 4520 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4521 (BitCode == bitc::FUNC_CODE_INST_STORE 4522 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4523 : popValue(Record, OpNum, NextValueNo, 4524 cast<PointerType>(Ptr->getType())->getElementType(), 4525 Val)) || 4526 OpNum + 2 != Record.size()) 4527 return error("Invalid record"); 4528 4529 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4530 return Err; 4531 unsigned Align; 4532 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4533 return Err; 4534 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4535 InstructionList.push_back(I); 4536 break; 4537 } 4538 case bitc::FUNC_CODE_INST_STOREATOMIC: 4539 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4540 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4541 unsigned OpNum = 0; 4542 Value *Val, *Ptr; 4543 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4544 !isa<PointerType>(Ptr->getType()) || 4545 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4546 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4547 : popValue(Record, OpNum, NextValueNo, 4548 cast<PointerType>(Ptr->getType())->getElementType(), 4549 Val)) || 4550 OpNum + 4 != Record.size()) 4551 return error("Invalid record"); 4552 4553 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4554 return Err; 4555 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4556 if (Ordering == AtomicOrdering::NotAtomic || 4557 Ordering == AtomicOrdering::Acquire || 4558 Ordering == AtomicOrdering::AcquireRelease) 4559 return error("Invalid record"); 4560 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4561 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4562 return error("Invalid record"); 4563 4564 unsigned Align; 4565 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4566 return Err; 4567 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4568 InstructionList.push_back(I); 4569 break; 4570 } 4571 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4572 case bitc::FUNC_CODE_INST_CMPXCHG: { 4573 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4574 // failureordering?, isweak?] 4575 unsigned OpNum = 0; 4576 Value *Ptr, *Cmp, *New; 4577 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4578 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4579 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4580 : popValue(Record, OpNum, NextValueNo, 4581 cast<PointerType>(Ptr->getType())->getElementType(), 4582 Cmp)) || 4583 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4584 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4585 return error("Invalid record"); 4586 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4587 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4588 SuccessOrdering == AtomicOrdering::Unordered) 4589 return error("Invalid record"); 4590 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4591 4592 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4593 return Err; 4594 AtomicOrdering FailureOrdering; 4595 if (Record.size() < 7) 4596 FailureOrdering = 4597 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4598 else 4599 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4600 4601 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4602 SSID); 4603 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4604 4605 if (Record.size() < 8) { 4606 // Before weak cmpxchgs existed, the instruction simply returned the 4607 // value loaded from memory, so bitcode files from that era will be 4608 // expecting the first component of a modern cmpxchg. 4609 CurBB->getInstList().push_back(I); 4610 I = ExtractValueInst::Create(I, 0); 4611 } else { 4612 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4613 } 4614 4615 InstructionList.push_back(I); 4616 break; 4617 } 4618 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4619 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4620 unsigned OpNum = 0; 4621 Value *Ptr, *Val; 4622 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4623 !isa<PointerType>(Ptr->getType()) || 4624 popValue(Record, OpNum, NextValueNo, 4625 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4626 OpNum+4 != Record.size()) 4627 return error("Invalid record"); 4628 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4629 if (Operation < AtomicRMWInst::FIRST_BINOP || 4630 Operation > AtomicRMWInst::LAST_BINOP) 4631 return error("Invalid record"); 4632 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4633 if (Ordering == AtomicOrdering::NotAtomic || 4634 Ordering == AtomicOrdering::Unordered) 4635 return error("Invalid record"); 4636 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4637 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4638 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4639 InstructionList.push_back(I); 4640 break; 4641 } 4642 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4643 if (2 != Record.size()) 4644 return error("Invalid record"); 4645 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4646 if (Ordering == AtomicOrdering::NotAtomic || 4647 Ordering == AtomicOrdering::Unordered || 4648 Ordering == AtomicOrdering::Monotonic) 4649 return error("Invalid record"); 4650 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4651 I = new FenceInst(Context, Ordering, SSID); 4652 InstructionList.push_back(I); 4653 break; 4654 } 4655 case bitc::FUNC_CODE_INST_CALL: { 4656 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4657 if (Record.size() < 3) 4658 return error("Invalid record"); 4659 4660 unsigned OpNum = 0; 4661 AttributeList PAL = getAttributes(Record[OpNum++]); 4662 unsigned CCInfo = Record[OpNum++]; 4663 4664 FastMathFlags FMF; 4665 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4666 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4667 if (!FMF.any()) 4668 return error("Fast math flags indicator set for call with no FMF"); 4669 } 4670 4671 FunctionType *FTy = nullptr; 4672 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4673 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4674 return error("Explicit call type is not a function type"); 4675 4676 Value *Callee; 4677 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4678 return error("Invalid record"); 4679 4680 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4681 if (!OpTy) 4682 return error("Callee is not a pointer type"); 4683 if (!FTy) { 4684 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4685 if (!FTy) 4686 return error("Callee is not of pointer to function type"); 4687 } else if (OpTy->getElementType() != FTy) 4688 return error("Explicit call type does not match pointee type of " 4689 "callee operand"); 4690 if (Record.size() < FTy->getNumParams() + OpNum) 4691 return error("Insufficient operands to call"); 4692 4693 SmallVector<Value*, 16> Args; 4694 // Read the fixed params. 4695 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4696 if (FTy->getParamType(i)->isLabelTy()) 4697 Args.push_back(getBasicBlock(Record[OpNum])); 4698 else 4699 Args.push_back(getValue(Record, OpNum, NextValueNo, 4700 FTy->getParamType(i))); 4701 if (!Args.back()) 4702 return error("Invalid record"); 4703 } 4704 4705 // Read type/value pairs for varargs params. 4706 if (!FTy->isVarArg()) { 4707 if (OpNum != Record.size()) 4708 return error("Invalid record"); 4709 } else { 4710 while (OpNum != Record.size()) { 4711 Value *Op; 4712 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4713 return error("Invalid record"); 4714 Args.push_back(Op); 4715 } 4716 } 4717 4718 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4719 OperandBundles.clear(); 4720 InstructionList.push_back(I); 4721 cast<CallInst>(I)->setCallingConv( 4722 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4723 CallInst::TailCallKind TCK = CallInst::TCK_None; 4724 if (CCInfo & 1 << bitc::CALL_TAIL) 4725 TCK = CallInst::TCK_Tail; 4726 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4727 TCK = CallInst::TCK_MustTail; 4728 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4729 TCK = CallInst::TCK_NoTail; 4730 cast<CallInst>(I)->setTailCallKind(TCK); 4731 cast<CallInst>(I)->setAttributes(PAL); 4732 if (FMF.any()) { 4733 if (!isa<FPMathOperator>(I)) 4734 return error("Fast-math-flags specified for call without " 4735 "floating-point scalar or vector return type"); 4736 I->setFastMathFlags(FMF); 4737 } 4738 break; 4739 } 4740 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4741 if (Record.size() < 3) 4742 return error("Invalid record"); 4743 Type *OpTy = getTypeByID(Record[0]); 4744 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4745 Type *ResTy = getTypeByID(Record[2]); 4746 if (!OpTy || !Op || !ResTy) 4747 return error("Invalid record"); 4748 I = new VAArgInst(Op, ResTy); 4749 InstructionList.push_back(I); 4750 break; 4751 } 4752 4753 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4754 // A call or an invoke can be optionally prefixed with some variable 4755 // number of operand bundle blocks. These blocks are read into 4756 // OperandBundles and consumed at the next call or invoke instruction. 4757 4758 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4759 return error("Invalid record"); 4760 4761 std::vector<Value *> Inputs; 4762 4763 unsigned OpNum = 1; 4764 while (OpNum != Record.size()) { 4765 Value *Op; 4766 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4767 return error("Invalid record"); 4768 Inputs.push_back(Op); 4769 } 4770 4771 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4772 continue; 4773 } 4774 } 4775 4776 // Add instruction to end of current BB. If there is no current BB, reject 4777 // this file. 4778 if (!CurBB) { 4779 I->deleteValue(); 4780 return error("Invalid instruction with no BB"); 4781 } 4782 if (!OperandBundles.empty()) { 4783 I->deleteValue(); 4784 return error("Operand bundles found with no consumer"); 4785 } 4786 CurBB->getInstList().push_back(I); 4787 4788 // If this was a terminator instruction, move to the next block. 4789 if (I->isTerminator()) { 4790 ++CurBBNo; 4791 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4792 } 4793 4794 // Non-void values get registered in the value table for future use. 4795 if (I && !I->getType()->isVoidTy()) 4796 ValueList.assignValue(I, NextValueNo++); 4797 } 4798 4799 OutOfRecordLoop: 4800 4801 if (!OperandBundles.empty()) 4802 return error("Operand bundles found with no consumer"); 4803 4804 // Check the function list for unresolved values. 4805 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4806 if (!A->getParent()) { 4807 // We found at least one unresolved value. Nuke them all to avoid leaks. 4808 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4809 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4810 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4811 delete A; 4812 } 4813 } 4814 return error("Never resolved value found in function"); 4815 } 4816 } 4817 4818 // Unexpected unresolved metadata about to be dropped. 4819 if (MDLoader->hasFwdRefs()) 4820 return error("Invalid function metadata: outgoing forward refs"); 4821 4822 // Trim the value list down to the size it was before we parsed this function. 4823 ValueList.shrinkTo(ModuleValueListSize); 4824 MDLoader->shrinkTo(ModuleMDLoaderSize); 4825 std::vector<BasicBlock*>().swap(FunctionBBs); 4826 return Error::success(); 4827 } 4828 4829 /// Find the function body in the bitcode stream 4830 Error BitcodeReader::findFunctionInStream( 4831 Function *F, 4832 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4833 while (DeferredFunctionInfoIterator->second == 0) { 4834 // This is the fallback handling for the old format bitcode that 4835 // didn't contain the function index in the VST, or when we have 4836 // an anonymous function which would not have a VST entry. 4837 // Assert that we have one of those two cases. 4838 assert(VSTOffset == 0 || !F->hasName()); 4839 // Parse the next body in the stream and set its position in the 4840 // DeferredFunctionInfo map. 4841 if (Error Err = rememberAndSkipFunctionBodies()) 4842 return Err; 4843 } 4844 return Error::success(); 4845 } 4846 4847 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4848 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4849 return SyncScope::ID(Val); 4850 if (Val >= SSIDs.size()) 4851 return SyncScope::System; // Map unknown synchronization scopes to system. 4852 return SSIDs[Val]; 4853 } 4854 4855 //===----------------------------------------------------------------------===// 4856 // GVMaterializer implementation 4857 //===----------------------------------------------------------------------===// 4858 4859 Error BitcodeReader::materialize(GlobalValue *GV) { 4860 Function *F = dyn_cast<Function>(GV); 4861 // If it's not a function or is already material, ignore the request. 4862 if (!F || !F->isMaterializable()) 4863 return Error::success(); 4864 4865 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4866 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4867 // If its position is recorded as 0, its body is somewhere in the stream 4868 // but we haven't seen it yet. 4869 if (DFII->second == 0) 4870 if (Error Err = findFunctionInStream(F, DFII)) 4871 return Err; 4872 4873 // Materialize metadata before parsing any function bodies. 4874 if (Error Err = materializeMetadata()) 4875 return Err; 4876 4877 // Move the bit stream to the saved position of the deferred function body. 4878 Stream.JumpToBit(DFII->second); 4879 4880 if (Error Err = parseFunctionBody(F)) 4881 return Err; 4882 F->setIsMaterializable(false); 4883 4884 if (StripDebugInfo) 4885 stripDebugInfo(*F); 4886 4887 // Upgrade any old intrinsic calls in the function. 4888 for (auto &I : UpgradedIntrinsics) { 4889 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4890 UI != UE;) { 4891 User *U = *UI; 4892 ++UI; 4893 if (CallInst *CI = dyn_cast<CallInst>(U)) 4894 UpgradeIntrinsicCall(CI, I.second); 4895 } 4896 } 4897 4898 // Update calls to the remangled intrinsics 4899 for (auto &I : RemangledIntrinsics) 4900 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4901 UI != UE;) 4902 // Don't expect any other users than call sites 4903 CallSite(*UI++).setCalledFunction(I.second); 4904 4905 // Finish fn->subprogram upgrade for materialized functions. 4906 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4907 F->setSubprogram(SP); 4908 4909 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4910 if (!MDLoader->isStrippingTBAA()) { 4911 for (auto &I : instructions(F)) { 4912 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4913 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4914 continue; 4915 MDLoader->setStripTBAA(true); 4916 stripTBAA(F->getParent()); 4917 } 4918 } 4919 4920 // Bring in any functions that this function forward-referenced via 4921 // blockaddresses. 4922 return materializeForwardReferencedFunctions(); 4923 } 4924 4925 Error BitcodeReader::materializeModule() { 4926 if (Error Err = materializeMetadata()) 4927 return Err; 4928 4929 // Promise to materialize all forward references. 4930 WillMaterializeAllForwardRefs = true; 4931 4932 // Iterate over the module, deserializing any functions that are still on 4933 // disk. 4934 for (Function &F : *TheModule) { 4935 if (Error Err = materialize(&F)) 4936 return Err; 4937 } 4938 // At this point, if there are any function bodies, parse the rest of 4939 // the bits in the module past the last function block we have recorded 4940 // through either lazy scanning or the VST. 4941 if (LastFunctionBlockBit || NextUnreadBit) 4942 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4943 ? LastFunctionBlockBit 4944 : NextUnreadBit)) 4945 return Err; 4946 4947 // Check that all block address forward references got resolved (as we 4948 // promised above). 4949 if (!BasicBlockFwdRefs.empty()) 4950 return error("Never resolved function from blockaddress"); 4951 4952 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4953 // delete the old functions to clean up. We can't do this unless the entire 4954 // module is materialized because there could always be another function body 4955 // with calls to the old function. 4956 for (auto &I : UpgradedIntrinsics) { 4957 for (auto *U : I.first->users()) { 4958 if (CallInst *CI = dyn_cast<CallInst>(U)) 4959 UpgradeIntrinsicCall(CI, I.second); 4960 } 4961 if (!I.first->use_empty()) 4962 I.first->replaceAllUsesWith(I.second); 4963 I.first->eraseFromParent(); 4964 } 4965 UpgradedIntrinsics.clear(); 4966 // Do the same for remangled intrinsics 4967 for (auto &I : RemangledIntrinsics) { 4968 I.first->replaceAllUsesWith(I.second); 4969 I.first->eraseFromParent(); 4970 } 4971 RemangledIntrinsics.clear(); 4972 4973 UpgradeDebugInfo(*TheModule); 4974 4975 UpgradeModuleFlags(*TheModule); 4976 4977 UpgradeRetainReleaseMarker(*TheModule); 4978 4979 return Error::success(); 4980 } 4981 4982 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4983 return IdentifiedStructTypes; 4984 } 4985 4986 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4987 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4988 StringRef ModulePath, unsigned ModuleId) 4989 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4990 ModulePath(ModulePath), ModuleId(ModuleId) {} 4991 4992 void ModuleSummaryIndexBitcodeReader::addThisModule() { 4993 TheIndex.addModule(ModulePath, ModuleId); 4994 } 4995 4996 ModuleSummaryIndex::ModuleInfo * 4997 ModuleSummaryIndexBitcodeReader::getThisModule() { 4998 return TheIndex.getModule(ModulePath); 4999 } 5000 5001 std::pair<ValueInfo, GlobalValue::GUID> 5002 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5003 auto VGI = ValueIdToValueInfoMap[ValueId]; 5004 assert(VGI.first); 5005 return VGI; 5006 } 5007 5008 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5009 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5010 StringRef SourceFileName) { 5011 std::string GlobalId = 5012 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5013 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5014 auto OriginalNameID = ValueGUID; 5015 if (GlobalValue::isLocalLinkage(Linkage)) 5016 OriginalNameID = GlobalValue::getGUID(ValueName); 5017 if (PrintSummaryGUIDs) 5018 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5019 << ValueName << "\n"; 5020 5021 // UseStrtab is false for legacy summary formats and value names are 5022 // created on stack. In that case we save the name in a string saver in 5023 // the index so that the value name can be recorded. 5024 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5025 TheIndex.getOrInsertValueInfo( 5026 ValueGUID, 5027 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5028 OriginalNameID); 5029 } 5030 5031 // Specialized value symbol table parser used when reading module index 5032 // blocks where we don't actually create global values. The parsed information 5033 // is saved in the bitcode reader for use when later parsing summaries. 5034 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5035 uint64_t Offset, 5036 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5037 // With a strtab the VST is not required to parse the summary. 5038 if (UseStrtab) 5039 return Error::success(); 5040 5041 assert(Offset > 0 && "Expected non-zero VST offset"); 5042 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5043 5044 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5045 return error("Invalid record"); 5046 5047 SmallVector<uint64_t, 64> Record; 5048 5049 // Read all the records for this value table. 5050 SmallString<128> ValueName; 5051 5052 while (true) { 5053 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5054 5055 switch (Entry.Kind) { 5056 case BitstreamEntry::SubBlock: // Handled for us already. 5057 case BitstreamEntry::Error: 5058 return error("Malformed block"); 5059 case BitstreamEntry::EndBlock: 5060 // Done parsing VST, jump back to wherever we came from. 5061 Stream.JumpToBit(CurrentBit); 5062 return Error::success(); 5063 case BitstreamEntry::Record: 5064 // The interesting case. 5065 break; 5066 } 5067 5068 // Read a record. 5069 Record.clear(); 5070 switch (Stream.readRecord(Entry.ID, Record)) { 5071 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5072 break; 5073 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5074 if (convertToString(Record, 1, ValueName)) 5075 return error("Invalid record"); 5076 unsigned ValueID = Record[0]; 5077 assert(!SourceFileName.empty()); 5078 auto VLI = ValueIdToLinkageMap.find(ValueID); 5079 assert(VLI != ValueIdToLinkageMap.end() && 5080 "No linkage found for VST entry?"); 5081 auto Linkage = VLI->second; 5082 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5083 ValueName.clear(); 5084 break; 5085 } 5086 case bitc::VST_CODE_FNENTRY: { 5087 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5088 if (convertToString(Record, 2, ValueName)) 5089 return error("Invalid record"); 5090 unsigned ValueID = Record[0]; 5091 assert(!SourceFileName.empty()); 5092 auto VLI = ValueIdToLinkageMap.find(ValueID); 5093 assert(VLI != ValueIdToLinkageMap.end() && 5094 "No linkage found for VST entry?"); 5095 auto Linkage = VLI->second; 5096 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5097 ValueName.clear(); 5098 break; 5099 } 5100 case bitc::VST_CODE_COMBINED_ENTRY: { 5101 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5102 unsigned ValueID = Record[0]; 5103 GlobalValue::GUID RefGUID = Record[1]; 5104 // The "original name", which is the second value of the pair will be 5105 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5106 ValueIdToValueInfoMap[ValueID] = 5107 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5108 break; 5109 } 5110 } 5111 } 5112 } 5113 5114 // Parse just the blocks needed for building the index out of the module. 5115 // At the end of this routine the module Index is populated with a map 5116 // from global value id to GlobalValueSummary objects. 5117 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5118 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5119 return error("Invalid record"); 5120 5121 SmallVector<uint64_t, 64> Record; 5122 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5123 unsigned ValueId = 0; 5124 5125 // Read the index for this module. 5126 while (true) { 5127 BitstreamEntry Entry = Stream.advance(); 5128 5129 switch (Entry.Kind) { 5130 case BitstreamEntry::Error: 5131 return error("Malformed block"); 5132 case BitstreamEntry::EndBlock: 5133 return Error::success(); 5134 5135 case BitstreamEntry::SubBlock: 5136 switch (Entry.ID) { 5137 default: // Skip unknown content. 5138 if (Stream.SkipBlock()) 5139 return error("Invalid record"); 5140 break; 5141 case bitc::BLOCKINFO_BLOCK_ID: 5142 // Need to parse these to get abbrev ids (e.g. for VST) 5143 if (readBlockInfo()) 5144 return error("Malformed block"); 5145 break; 5146 case bitc::VALUE_SYMTAB_BLOCK_ID: 5147 // Should have been parsed earlier via VSTOffset, unless there 5148 // is no summary section. 5149 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5150 !SeenGlobalValSummary) && 5151 "Expected early VST parse via VSTOffset record"); 5152 if (Stream.SkipBlock()) 5153 return error("Invalid record"); 5154 break; 5155 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5156 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5157 // Add the module if it is a per-module index (has a source file name). 5158 if (!SourceFileName.empty()) 5159 addThisModule(); 5160 assert(!SeenValueSymbolTable && 5161 "Already read VST when parsing summary block?"); 5162 // We might not have a VST if there were no values in the 5163 // summary. An empty summary block generated when we are 5164 // performing ThinLTO compiles so we don't later invoke 5165 // the regular LTO process on them. 5166 if (VSTOffset > 0) { 5167 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5168 return Err; 5169 SeenValueSymbolTable = true; 5170 } 5171 SeenGlobalValSummary = true; 5172 if (Error Err = parseEntireSummary(Entry.ID)) 5173 return Err; 5174 break; 5175 case bitc::MODULE_STRTAB_BLOCK_ID: 5176 if (Error Err = parseModuleStringTable()) 5177 return Err; 5178 break; 5179 } 5180 continue; 5181 5182 case BitstreamEntry::Record: { 5183 Record.clear(); 5184 auto BitCode = Stream.readRecord(Entry.ID, Record); 5185 switch (BitCode) { 5186 default: 5187 break; // Default behavior, ignore unknown content. 5188 case bitc::MODULE_CODE_VERSION: { 5189 if (Error Err = parseVersionRecord(Record).takeError()) 5190 return Err; 5191 break; 5192 } 5193 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5194 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5195 SmallString<128> ValueName; 5196 if (convertToString(Record, 0, ValueName)) 5197 return error("Invalid record"); 5198 SourceFileName = ValueName.c_str(); 5199 break; 5200 } 5201 /// MODULE_CODE_HASH: [5*i32] 5202 case bitc::MODULE_CODE_HASH: { 5203 if (Record.size() != 5) 5204 return error("Invalid hash length " + Twine(Record.size()).str()); 5205 auto &Hash = getThisModule()->second.second; 5206 int Pos = 0; 5207 for (auto &Val : Record) { 5208 assert(!(Val >> 32) && "Unexpected high bits set"); 5209 Hash[Pos++] = Val; 5210 } 5211 break; 5212 } 5213 /// MODULE_CODE_VSTOFFSET: [offset] 5214 case bitc::MODULE_CODE_VSTOFFSET: 5215 if (Record.size() < 1) 5216 return error("Invalid record"); 5217 // Note that we subtract 1 here because the offset is relative to one 5218 // word before the start of the identification or module block, which 5219 // was historically always the start of the regular bitcode header. 5220 VSTOffset = Record[0] - 1; 5221 break; 5222 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5223 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5224 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5225 // v2: [strtab offset, strtab size, v1] 5226 case bitc::MODULE_CODE_GLOBALVAR: 5227 case bitc::MODULE_CODE_FUNCTION: 5228 case bitc::MODULE_CODE_ALIAS: { 5229 StringRef Name; 5230 ArrayRef<uint64_t> GVRecord; 5231 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5232 if (GVRecord.size() <= 3) 5233 return error("Invalid record"); 5234 uint64_t RawLinkage = GVRecord[3]; 5235 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5236 if (!UseStrtab) { 5237 ValueIdToLinkageMap[ValueId++] = Linkage; 5238 break; 5239 } 5240 5241 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5242 break; 5243 } 5244 } 5245 } 5246 continue; 5247 } 5248 } 5249 } 5250 5251 std::vector<ValueInfo> 5252 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5253 std::vector<ValueInfo> Ret; 5254 Ret.reserve(Record.size()); 5255 for (uint64_t RefValueId : Record) 5256 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5257 return Ret; 5258 } 5259 5260 std::vector<FunctionSummary::EdgeTy> 5261 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5262 bool IsOldProfileFormat, 5263 bool HasProfile, bool HasRelBF) { 5264 std::vector<FunctionSummary::EdgeTy> Ret; 5265 Ret.reserve(Record.size()); 5266 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5267 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5268 uint64_t RelBF = 0; 5269 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5270 if (IsOldProfileFormat) { 5271 I += 1; // Skip old callsitecount field 5272 if (HasProfile) 5273 I += 1; // Skip old profilecount field 5274 } else if (HasProfile) 5275 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5276 else if (HasRelBF) 5277 RelBF = Record[++I]; 5278 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5279 } 5280 return Ret; 5281 } 5282 5283 static void 5284 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5285 WholeProgramDevirtResolution &Wpd) { 5286 uint64_t ArgNum = Record[Slot++]; 5287 WholeProgramDevirtResolution::ByArg &B = 5288 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5289 Slot += ArgNum; 5290 5291 B.TheKind = 5292 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5293 B.Info = Record[Slot++]; 5294 B.Byte = Record[Slot++]; 5295 B.Bit = Record[Slot++]; 5296 } 5297 5298 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5299 StringRef Strtab, size_t &Slot, 5300 TypeIdSummary &TypeId) { 5301 uint64_t Id = Record[Slot++]; 5302 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5303 5304 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5305 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5306 static_cast<size_t>(Record[Slot + 1])}; 5307 Slot += 2; 5308 5309 uint64_t ResByArgNum = Record[Slot++]; 5310 for (uint64_t I = 0; I != ResByArgNum; ++I) 5311 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5312 } 5313 5314 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5315 StringRef Strtab, 5316 ModuleSummaryIndex &TheIndex) { 5317 size_t Slot = 0; 5318 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5319 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5320 Slot += 2; 5321 5322 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5323 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5324 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5325 TypeId.TTRes.SizeM1 = Record[Slot++]; 5326 TypeId.TTRes.BitMask = Record[Slot++]; 5327 TypeId.TTRes.InlineBits = Record[Slot++]; 5328 5329 while (Slot < Record.size()) 5330 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5331 } 5332 5333 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) { 5334 // Read-only refs are in the end of the refs list. 5335 for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo) 5336 Refs[RefNo].setReadOnly(); 5337 } 5338 5339 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5340 // objects in the index. 5341 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5342 if (Stream.EnterSubBlock(ID)) 5343 return error("Invalid record"); 5344 SmallVector<uint64_t, 64> Record; 5345 5346 // Parse version 5347 { 5348 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5349 if (Entry.Kind != BitstreamEntry::Record) 5350 return error("Invalid Summary Block: record for version expected"); 5351 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5352 return error("Invalid Summary Block: version expected"); 5353 } 5354 const uint64_t Version = Record[0]; 5355 const bool IsOldProfileFormat = Version == 1; 5356 if (Version < 1 || Version > 6) 5357 return error("Invalid summary version " + Twine(Version) + 5358 ". Version should be in the range [1-6]."); 5359 Record.clear(); 5360 5361 // Keep around the last seen summary to be used when we see an optional 5362 // "OriginalName" attachement. 5363 GlobalValueSummary *LastSeenSummary = nullptr; 5364 GlobalValue::GUID LastSeenGUID = 0; 5365 5366 // We can expect to see any number of type ID information records before 5367 // each function summary records; these variables store the information 5368 // collected so far so that it can be used to create the summary object. 5369 std::vector<GlobalValue::GUID> PendingTypeTests; 5370 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5371 PendingTypeCheckedLoadVCalls; 5372 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5373 PendingTypeCheckedLoadConstVCalls; 5374 5375 while (true) { 5376 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5377 5378 switch (Entry.Kind) { 5379 case BitstreamEntry::SubBlock: // Handled for us already. 5380 case BitstreamEntry::Error: 5381 return error("Malformed block"); 5382 case BitstreamEntry::EndBlock: 5383 return Error::success(); 5384 case BitstreamEntry::Record: 5385 // The interesting case. 5386 break; 5387 } 5388 5389 // Read a record. The record format depends on whether this 5390 // is a per-module index or a combined index file. In the per-module 5391 // case the records contain the associated value's ID for correlation 5392 // with VST entries. In the combined index the correlation is done 5393 // via the bitcode offset of the summary records (which were saved 5394 // in the combined index VST entries). The records also contain 5395 // information used for ThinLTO renaming and importing. 5396 Record.clear(); 5397 auto BitCode = Stream.readRecord(Entry.ID, Record); 5398 switch (BitCode) { 5399 default: // Default behavior: ignore. 5400 break; 5401 case bitc::FS_FLAGS: { // [flags] 5402 uint64_t Flags = Record[0]; 5403 // Scan flags. 5404 assert(Flags <= 0x1f && "Unexpected bits in flag"); 5405 5406 // 1 bit: WithGlobalValueDeadStripping flag. 5407 // Set on combined index only. 5408 if (Flags & 0x1) 5409 TheIndex.setWithGlobalValueDeadStripping(); 5410 // 1 bit: SkipModuleByDistributedBackend flag. 5411 // Set on combined index only. 5412 if (Flags & 0x2) 5413 TheIndex.setSkipModuleByDistributedBackend(); 5414 // 1 bit: HasSyntheticEntryCounts flag. 5415 // Set on combined index only. 5416 if (Flags & 0x4) 5417 TheIndex.setHasSyntheticEntryCounts(); 5418 // 1 bit: DisableSplitLTOUnit flag. 5419 // Set on per module indexes. It is up to the client to validate 5420 // the consistency of this flag across modules being linked. 5421 if (Flags & 0x8) 5422 TheIndex.setEnableSplitLTOUnit(); 5423 // 1 bit: PartiallySplitLTOUnits flag. 5424 // Set on combined index only. 5425 if (Flags & 0x10) 5426 TheIndex.setPartiallySplitLTOUnits(); 5427 break; 5428 } 5429 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5430 uint64_t ValueID = Record[0]; 5431 GlobalValue::GUID RefGUID = Record[1]; 5432 ValueIdToValueInfoMap[ValueID] = 5433 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5434 break; 5435 } 5436 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5437 // numrefs x valueid, n x (valueid)] 5438 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5439 // numrefs x valueid, 5440 // n x (valueid, hotness)] 5441 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5442 // numrefs x valueid, 5443 // n x (valueid, relblockfreq)] 5444 case bitc::FS_PERMODULE: 5445 case bitc::FS_PERMODULE_RELBF: 5446 case bitc::FS_PERMODULE_PROFILE: { 5447 unsigned ValueID = Record[0]; 5448 uint64_t RawFlags = Record[1]; 5449 unsigned InstCount = Record[2]; 5450 uint64_t RawFunFlags = 0; 5451 unsigned NumRefs = Record[3]; 5452 unsigned NumImmutableRefs = 0; 5453 int RefListStartIndex = 4; 5454 if (Version >= 4) { 5455 RawFunFlags = Record[3]; 5456 NumRefs = Record[4]; 5457 RefListStartIndex = 5; 5458 if (Version >= 5) { 5459 NumImmutableRefs = Record[5]; 5460 RefListStartIndex = 6; 5461 } 5462 } 5463 5464 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5465 // The module path string ref set in the summary must be owned by the 5466 // index's module string table. Since we don't have a module path 5467 // string table section in the per-module index, we create a single 5468 // module path string table entry with an empty (0) ID to take 5469 // ownership. 5470 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5471 assert(Record.size() >= RefListStartIndex + NumRefs && 5472 "Record size inconsistent with number of references"); 5473 std::vector<ValueInfo> Refs = makeRefList( 5474 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5475 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5476 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5477 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5478 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5479 IsOldProfileFormat, HasProfile, HasRelBF); 5480 setImmutableRefs(Refs, NumImmutableRefs); 5481 auto FS = llvm::make_unique<FunctionSummary>( 5482 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5483 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5484 std::move(PendingTypeTestAssumeVCalls), 5485 std::move(PendingTypeCheckedLoadVCalls), 5486 std::move(PendingTypeTestAssumeConstVCalls), 5487 std::move(PendingTypeCheckedLoadConstVCalls)); 5488 PendingTypeTests.clear(); 5489 PendingTypeTestAssumeVCalls.clear(); 5490 PendingTypeCheckedLoadVCalls.clear(); 5491 PendingTypeTestAssumeConstVCalls.clear(); 5492 PendingTypeCheckedLoadConstVCalls.clear(); 5493 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5494 FS->setModulePath(getThisModule()->first()); 5495 FS->setOriginalName(VIAndOriginalGUID.second); 5496 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5497 break; 5498 } 5499 // FS_ALIAS: [valueid, flags, valueid] 5500 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5501 // they expect all aliasee summaries to be available. 5502 case bitc::FS_ALIAS: { 5503 unsigned ValueID = Record[0]; 5504 uint64_t RawFlags = Record[1]; 5505 unsigned AliaseeID = Record[2]; 5506 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5507 auto AS = llvm::make_unique<AliasSummary>(Flags); 5508 // The module path string ref set in the summary must be owned by the 5509 // index's module string table. Since we don't have a module path 5510 // string table section in the per-module index, we create a single 5511 // module path string table entry with an empty (0) ID to take 5512 // ownership. 5513 AS->setModulePath(getThisModule()->first()); 5514 5515 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5516 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5517 if (!AliaseeInModule) 5518 return error("Alias expects aliasee summary to be parsed"); 5519 AS->setAliasee(AliaseeVI, AliaseeInModule); 5520 5521 auto GUID = getValueInfoFromValueId(ValueID); 5522 AS->setOriginalName(GUID.second); 5523 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5524 break; 5525 } 5526 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5527 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5528 unsigned ValueID = Record[0]; 5529 uint64_t RawFlags = Record[1]; 5530 unsigned RefArrayStart = 2; 5531 GlobalVarSummary::GVarFlags GVF; 5532 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5533 if (Version >= 5) { 5534 GVF = getDecodedGVarFlags(Record[2]); 5535 RefArrayStart = 3; 5536 } 5537 std::vector<ValueInfo> Refs = 5538 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5539 auto FS = 5540 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5541 FS->setModulePath(getThisModule()->first()); 5542 auto GUID = getValueInfoFromValueId(ValueID); 5543 FS->setOriginalName(GUID.second); 5544 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5545 break; 5546 } 5547 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5548 // numrefs x valueid, n x (valueid)] 5549 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5550 // numrefs x valueid, n x (valueid, hotness)] 5551 case bitc::FS_COMBINED: 5552 case bitc::FS_COMBINED_PROFILE: { 5553 unsigned ValueID = Record[0]; 5554 uint64_t ModuleId = Record[1]; 5555 uint64_t RawFlags = Record[2]; 5556 unsigned InstCount = Record[3]; 5557 uint64_t RawFunFlags = 0; 5558 uint64_t EntryCount = 0; 5559 unsigned NumRefs = Record[4]; 5560 unsigned NumImmutableRefs = 0; 5561 int RefListStartIndex = 5; 5562 5563 if (Version >= 4) { 5564 RawFunFlags = Record[4]; 5565 RefListStartIndex = 6; 5566 size_t NumRefsIndex = 5; 5567 if (Version >= 5) { 5568 RefListStartIndex = 7; 5569 if (Version >= 6) { 5570 NumRefsIndex = 6; 5571 EntryCount = Record[5]; 5572 RefListStartIndex = 8; 5573 } 5574 NumImmutableRefs = Record[RefListStartIndex - 1]; 5575 } 5576 NumRefs = Record[NumRefsIndex]; 5577 } 5578 5579 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5580 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5581 assert(Record.size() >= RefListStartIndex + NumRefs && 5582 "Record size inconsistent with number of references"); 5583 std::vector<ValueInfo> Refs = makeRefList( 5584 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5585 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5586 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5587 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5588 IsOldProfileFormat, HasProfile, false); 5589 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5590 setImmutableRefs(Refs, NumImmutableRefs); 5591 auto FS = llvm::make_unique<FunctionSummary>( 5592 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 5593 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 5594 std::move(PendingTypeTestAssumeVCalls), 5595 std::move(PendingTypeCheckedLoadVCalls), 5596 std::move(PendingTypeTestAssumeConstVCalls), 5597 std::move(PendingTypeCheckedLoadConstVCalls)); 5598 PendingTypeTests.clear(); 5599 PendingTypeTestAssumeVCalls.clear(); 5600 PendingTypeCheckedLoadVCalls.clear(); 5601 PendingTypeTestAssumeConstVCalls.clear(); 5602 PendingTypeCheckedLoadConstVCalls.clear(); 5603 LastSeenSummary = FS.get(); 5604 LastSeenGUID = VI.getGUID(); 5605 FS->setModulePath(ModuleIdMap[ModuleId]); 5606 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5607 break; 5608 } 5609 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5610 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5611 // they expect all aliasee summaries to be available. 5612 case bitc::FS_COMBINED_ALIAS: { 5613 unsigned ValueID = Record[0]; 5614 uint64_t ModuleId = Record[1]; 5615 uint64_t RawFlags = Record[2]; 5616 unsigned AliaseeValueId = Record[3]; 5617 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5618 auto AS = llvm::make_unique<AliasSummary>(Flags); 5619 LastSeenSummary = AS.get(); 5620 AS->setModulePath(ModuleIdMap[ModuleId]); 5621 5622 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 5623 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 5624 AS->setAliasee(AliaseeVI, AliaseeInModule); 5625 5626 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5627 LastSeenGUID = VI.getGUID(); 5628 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5629 break; 5630 } 5631 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5632 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5633 unsigned ValueID = Record[0]; 5634 uint64_t ModuleId = Record[1]; 5635 uint64_t RawFlags = Record[2]; 5636 unsigned RefArrayStart = 3; 5637 GlobalVarSummary::GVarFlags GVF; 5638 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5639 if (Version >= 5) { 5640 GVF = getDecodedGVarFlags(Record[3]); 5641 RefArrayStart = 4; 5642 } 5643 std::vector<ValueInfo> Refs = 5644 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5645 auto FS = 5646 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5647 LastSeenSummary = FS.get(); 5648 FS->setModulePath(ModuleIdMap[ModuleId]); 5649 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5650 LastSeenGUID = VI.getGUID(); 5651 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5652 break; 5653 } 5654 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5655 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5656 uint64_t OriginalName = Record[0]; 5657 if (!LastSeenSummary) 5658 return error("Name attachment that does not follow a combined record"); 5659 LastSeenSummary->setOriginalName(OriginalName); 5660 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5661 // Reset the LastSeenSummary 5662 LastSeenSummary = nullptr; 5663 LastSeenGUID = 0; 5664 break; 5665 } 5666 case bitc::FS_TYPE_TESTS: 5667 assert(PendingTypeTests.empty()); 5668 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5669 Record.end()); 5670 break; 5671 5672 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5673 assert(PendingTypeTestAssumeVCalls.empty()); 5674 for (unsigned I = 0; I != Record.size(); I += 2) 5675 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5676 break; 5677 5678 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5679 assert(PendingTypeCheckedLoadVCalls.empty()); 5680 for (unsigned I = 0; I != Record.size(); I += 2) 5681 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5682 break; 5683 5684 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5685 PendingTypeTestAssumeConstVCalls.push_back( 5686 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5687 break; 5688 5689 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5690 PendingTypeCheckedLoadConstVCalls.push_back( 5691 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5692 break; 5693 5694 case bitc::FS_CFI_FUNCTION_DEFS: { 5695 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5696 for (unsigned I = 0; I != Record.size(); I += 2) 5697 CfiFunctionDefs.insert( 5698 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5699 break; 5700 } 5701 5702 case bitc::FS_CFI_FUNCTION_DECLS: { 5703 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5704 for (unsigned I = 0; I != Record.size(); I += 2) 5705 CfiFunctionDecls.insert( 5706 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5707 break; 5708 } 5709 5710 case bitc::FS_TYPE_ID: 5711 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 5712 break; 5713 } 5714 } 5715 llvm_unreachable("Exit infinite loop"); 5716 } 5717 5718 // Parse the module string table block into the Index. 5719 // This populates the ModulePathStringTable map in the index. 5720 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5721 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5722 return error("Invalid record"); 5723 5724 SmallVector<uint64_t, 64> Record; 5725 5726 SmallString<128> ModulePath; 5727 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5728 5729 while (true) { 5730 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5731 5732 switch (Entry.Kind) { 5733 case BitstreamEntry::SubBlock: // Handled for us already. 5734 case BitstreamEntry::Error: 5735 return error("Malformed block"); 5736 case BitstreamEntry::EndBlock: 5737 return Error::success(); 5738 case BitstreamEntry::Record: 5739 // The interesting case. 5740 break; 5741 } 5742 5743 Record.clear(); 5744 switch (Stream.readRecord(Entry.ID, Record)) { 5745 default: // Default behavior: ignore. 5746 break; 5747 case bitc::MST_CODE_ENTRY: { 5748 // MST_ENTRY: [modid, namechar x N] 5749 uint64_t ModuleId = Record[0]; 5750 5751 if (convertToString(Record, 1, ModulePath)) 5752 return error("Invalid record"); 5753 5754 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5755 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5756 5757 ModulePath.clear(); 5758 break; 5759 } 5760 /// MST_CODE_HASH: [5*i32] 5761 case bitc::MST_CODE_HASH: { 5762 if (Record.size() != 5) 5763 return error("Invalid hash length " + Twine(Record.size()).str()); 5764 if (!LastSeenModule) 5765 return error("Invalid hash that does not follow a module path"); 5766 int Pos = 0; 5767 for (auto &Val : Record) { 5768 assert(!(Val >> 32) && "Unexpected high bits set"); 5769 LastSeenModule->second.second[Pos++] = Val; 5770 } 5771 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5772 LastSeenModule = nullptr; 5773 break; 5774 } 5775 } 5776 } 5777 llvm_unreachable("Exit infinite loop"); 5778 } 5779 5780 namespace { 5781 5782 // FIXME: This class is only here to support the transition to llvm::Error. It 5783 // will be removed once this transition is complete. Clients should prefer to 5784 // deal with the Error value directly, rather than converting to error_code. 5785 class BitcodeErrorCategoryType : public std::error_category { 5786 const char *name() const noexcept override { 5787 return "llvm.bitcode"; 5788 } 5789 5790 std::string message(int IE) const override { 5791 BitcodeError E = static_cast<BitcodeError>(IE); 5792 switch (E) { 5793 case BitcodeError::CorruptedBitcode: 5794 return "Corrupted bitcode"; 5795 } 5796 llvm_unreachable("Unknown error type!"); 5797 } 5798 }; 5799 5800 } // end anonymous namespace 5801 5802 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5803 5804 const std::error_category &llvm::BitcodeErrorCategory() { 5805 return *ErrorCategory; 5806 } 5807 5808 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5809 unsigned Block, unsigned RecordID) { 5810 if (Stream.EnterSubBlock(Block)) 5811 return error("Invalid record"); 5812 5813 StringRef Strtab; 5814 while (true) { 5815 BitstreamEntry Entry = Stream.advance(); 5816 switch (Entry.Kind) { 5817 case BitstreamEntry::EndBlock: 5818 return Strtab; 5819 5820 case BitstreamEntry::Error: 5821 return error("Malformed block"); 5822 5823 case BitstreamEntry::SubBlock: 5824 if (Stream.SkipBlock()) 5825 return error("Malformed block"); 5826 break; 5827 5828 case BitstreamEntry::Record: 5829 StringRef Blob; 5830 SmallVector<uint64_t, 1> Record; 5831 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5832 Strtab = Blob; 5833 break; 5834 } 5835 } 5836 } 5837 5838 //===----------------------------------------------------------------------===// 5839 // External interface 5840 //===----------------------------------------------------------------------===// 5841 5842 Expected<std::vector<BitcodeModule>> 5843 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5844 auto FOrErr = getBitcodeFileContents(Buffer); 5845 if (!FOrErr) 5846 return FOrErr.takeError(); 5847 return std::move(FOrErr->Mods); 5848 } 5849 5850 Expected<BitcodeFileContents> 5851 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5852 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5853 if (!StreamOrErr) 5854 return StreamOrErr.takeError(); 5855 BitstreamCursor &Stream = *StreamOrErr; 5856 5857 BitcodeFileContents F; 5858 while (true) { 5859 uint64_t BCBegin = Stream.getCurrentByteNo(); 5860 5861 // We may be consuming bitcode from a client that leaves garbage at the end 5862 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5863 // the end that there cannot possibly be another module, stop looking. 5864 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5865 return F; 5866 5867 BitstreamEntry Entry = Stream.advance(); 5868 switch (Entry.Kind) { 5869 case BitstreamEntry::EndBlock: 5870 case BitstreamEntry::Error: 5871 return error("Malformed block"); 5872 5873 case BitstreamEntry::SubBlock: { 5874 uint64_t IdentificationBit = -1ull; 5875 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5876 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5877 if (Stream.SkipBlock()) 5878 return error("Malformed block"); 5879 5880 Entry = Stream.advance(); 5881 if (Entry.Kind != BitstreamEntry::SubBlock || 5882 Entry.ID != bitc::MODULE_BLOCK_ID) 5883 return error("Malformed block"); 5884 } 5885 5886 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5887 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5888 if (Stream.SkipBlock()) 5889 return error("Malformed block"); 5890 5891 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5892 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5893 Buffer.getBufferIdentifier(), IdentificationBit, 5894 ModuleBit}); 5895 continue; 5896 } 5897 5898 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5899 Expected<StringRef> Strtab = 5900 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5901 if (!Strtab) 5902 return Strtab.takeError(); 5903 // This string table is used by every preceding bitcode module that does 5904 // not have its own string table. A bitcode file may have multiple 5905 // string tables if it was created by binary concatenation, for example 5906 // with "llvm-cat -b". 5907 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5908 if (!I->Strtab.empty()) 5909 break; 5910 I->Strtab = *Strtab; 5911 } 5912 // Similarly, the string table is used by every preceding symbol table; 5913 // normally there will be just one unless the bitcode file was created 5914 // by binary concatenation. 5915 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5916 F.StrtabForSymtab = *Strtab; 5917 continue; 5918 } 5919 5920 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5921 Expected<StringRef> SymtabOrErr = 5922 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5923 if (!SymtabOrErr) 5924 return SymtabOrErr.takeError(); 5925 5926 // We can expect the bitcode file to have multiple symbol tables if it 5927 // was created by binary concatenation. In that case we silently 5928 // ignore any subsequent symbol tables, which is fine because this is a 5929 // low level function. The client is expected to notice that the number 5930 // of modules in the symbol table does not match the number of modules 5931 // in the input file and regenerate the symbol table. 5932 if (F.Symtab.empty()) 5933 F.Symtab = *SymtabOrErr; 5934 continue; 5935 } 5936 5937 if (Stream.SkipBlock()) 5938 return error("Malformed block"); 5939 continue; 5940 } 5941 case BitstreamEntry::Record: 5942 Stream.skipRecord(Entry.ID); 5943 continue; 5944 } 5945 } 5946 } 5947 5948 /// Get a lazy one-at-time loading module from bitcode. 5949 /// 5950 /// This isn't always used in a lazy context. In particular, it's also used by 5951 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5952 /// in forward-referenced functions from block address references. 5953 /// 5954 /// \param[in] MaterializeAll Set to \c true if we should materialize 5955 /// everything. 5956 Expected<std::unique_ptr<Module>> 5957 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5958 bool ShouldLazyLoadMetadata, bool IsImporting) { 5959 BitstreamCursor Stream(Buffer); 5960 5961 std::string ProducerIdentification; 5962 if (IdentificationBit != -1ull) { 5963 Stream.JumpToBit(IdentificationBit); 5964 Expected<std::string> ProducerIdentificationOrErr = 5965 readIdentificationBlock(Stream); 5966 if (!ProducerIdentificationOrErr) 5967 return ProducerIdentificationOrErr.takeError(); 5968 5969 ProducerIdentification = *ProducerIdentificationOrErr; 5970 } 5971 5972 Stream.JumpToBit(ModuleBit); 5973 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5974 Context); 5975 5976 std::unique_ptr<Module> M = 5977 llvm::make_unique<Module>(ModuleIdentifier, Context); 5978 M->setMaterializer(R); 5979 5980 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5981 if (Error Err = 5982 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5983 return std::move(Err); 5984 5985 if (MaterializeAll) { 5986 // Read in the entire module, and destroy the BitcodeReader. 5987 if (Error Err = M->materializeAll()) 5988 return std::move(Err); 5989 } else { 5990 // Resolve forward references from blockaddresses. 5991 if (Error Err = R->materializeForwardReferencedFunctions()) 5992 return std::move(Err); 5993 } 5994 return std::move(M); 5995 } 5996 5997 Expected<std::unique_ptr<Module>> 5998 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5999 bool IsImporting) { 6000 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 6001 } 6002 6003 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6004 // We don't use ModuleIdentifier here because the client may need to control the 6005 // module path used in the combined summary (e.g. when reading summaries for 6006 // regular LTO modules). 6007 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6008 StringRef ModulePath, uint64_t ModuleId) { 6009 BitstreamCursor Stream(Buffer); 6010 Stream.JumpToBit(ModuleBit); 6011 6012 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6013 ModulePath, ModuleId); 6014 return R.parseModule(); 6015 } 6016 6017 // Parse the specified bitcode buffer, returning the function info index. 6018 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6019 BitstreamCursor Stream(Buffer); 6020 Stream.JumpToBit(ModuleBit); 6021 6022 auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6023 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6024 ModuleIdentifier, 0); 6025 6026 if (Error Err = R.parseModule()) 6027 return std::move(Err); 6028 6029 return std::move(Index); 6030 } 6031 6032 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6033 unsigned ID) { 6034 if (Stream.EnterSubBlock(ID)) 6035 return error("Invalid record"); 6036 SmallVector<uint64_t, 64> Record; 6037 6038 while (true) { 6039 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6040 6041 switch (Entry.Kind) { 6042 case BitstreamEntry::SubBlock: // Handled for us already. 6043 case BitstreamEntry::Error: 6044 return error("Malformed block"); 6045 case BitstreamEntry::EndBlock: 6046 // If no flags record found, conservatively return true to mimic 6047 // behavior before this flag was added. 6048 return true; 6049 case BitstreamEntry::Record: 6050 // The interesting case. 6051 break; 6052 } 6053 6054 // Look for the FS_FLAGS record. 6055 Record.clear(); 6056 auto BitCode = Stream.readRecord(Entry.ID, Record); 6057 switch (BitCode) { 6058 default: // Default behavior: ignore. 6059 break; 6060 case bitc::FS_FLAGS: { // [flags] 6061 uint64_t Flags = Record[0]; 6062 // Scan flags. 6063 assert(Flags <= 0x1f && "Unexpected bits in flag"); 6064 6065 return Flags & 0x8; 6066 } 6067 } 6068 } 6069 llvm_unreachable("Exit infinite loop"); 6070 } 6071 6072 // Check if the given bitcode buffer contains a global value summary block. 6073 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6074 BitstreamCursor Stream(Buffer); 6075 Stream.JumpToBit(ModuleBit); 6076 6077 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6078 return error("Invalid record"); 6079 6080 while (true) { 6081 BitstreamEntry Entry = Stream.advance(); 6082 6083 switch (Entry.Kind) { 6084 case BitstreamEntry::Error: 6085 return error("Malformed block"); 6086 case BitstreamEntry::EndBlock: 6087 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6088 /*EnableSplitLTOUnit=*/false}; 6089 6090 case BitstreamEntry::SubBlock: 6091 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6092 Expected<bool> EnableSplitLTOUnit = 6093 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6094 if (!EnableSplitLTOUnit) 6095 return EnableSplitLTOUnit.takeError(); 6096 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6097 *EnableSplitLTOUnit}; 6098 } 6099 6100 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6101 Expected<bool> EnableSplitLTOUnit = 6102 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6103 if (!EnableSplitLTOUnit) 6104 return EnableSplitLTOUnit.takeError(); 6105 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6106 *EnableSplitLTOUnit}; 6107 } 6108 6109 // Ignore other sub-blocks. 6110 if (Stream.SkipBlock()) 6111 return error("Malformed block"); 6112 continue; 6113 6114 case BitstreamEntry::Record: 6115 Stream.skipRecord(Entry.ID); 6116 continue; 6117 } 6118 } 6119 } 6120 6121 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6122 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6123 if (!MsOrErr) 6124 return MsOrErr.takeError(); 6125 6126 if (MsOrErr->size() != 1) 6127 return error("Expected a single module"); 6128 6129 return (*MsOrErr)[0]; 6130 } 6131 6132 Expected<std::unique_ptr<Module>> 6133 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6134 bool ShouldLazyLoadMetadata, bool IsImporting) { 6135 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6136 if (!BM) 6137 return BM.takeError(); 6138 6139 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6140 } 6141 6142 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6143 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6144 bool ShouldLazyLoadMetadata, bool IsImporting) { 6145 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6146 IsImporting); 6147 if (MOrErr) 6148 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6149 return MOrErr; 6150 } 6151 6152 Expected<std::unique_ptr<Module>> 6153 BitcodeModule::parseModule(LLVMContext &Context) { 6154 return getModuleImpl(Context, true, false, false); 6155 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6156 // written. We must defer until the Module has been fully materialized. 6157 } 6158 6159 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6160 LLVMContext &Context) { 6161 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6162 if (!BM) 6163 return BM.takeError(); 6164 6165 return BM->parseModule(Context); 6166 } 6167 6168 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6169 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6170 if (!StreamOrErr) 6171 return StreamOrErr.takeError(); 6172 6173 return readTriple(*StreamOrErr); 6174 } 6175 6176 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6177 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6178 if (!StreamOrErr) 6179 return StreamOrErr.takeError(); 6180 6181 return hasObjCCategory(*StreamOrErr); 6182 } 6183 6184 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6185 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6186 if (!StreamOrErr) 6187 return StreamOrErr.takeError(); 6188 6189 return readIdentificationCode(*StreamOrErr); 6190 } 6191 6192 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6193 ModuleSummaryIndex &CombinedIndex, 6194 uint64_t ModuleId) { 6195 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6196 if (!BM) 6197 return BM.takeError(); 6198 6199 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6200 } 6201 6202 Expected<std::unique_ptr<ModuleSummaryIndex>> 6203 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6204 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6205 if (!BM) 6206 return BM.takeError(); 6207 6208 return BM->getSummary(); 6209 } 6210 6211 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6212 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6213 if (!BM) 6214 return BM.takeError(); 6215 6216 return BM->getLTOInfo(); 6217 } 6218 6219 Expected<std::unique_ptr<ModuleSummaryIndex>> 6220 llvm::getModuleSummaryIndexForFile(StringRef Path, 6221 bool IgnoreEmptyThinLTOIndexFile) { 6222 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6223 MemoryBuffer::getFileOrSTDIN(Path); 6224 if (!FileOrErr) 6225 return errorCodeToError(FileOrErr.getError()); 6226 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6227 return nullptr; 6228 return getModuleSummaryIndex(**FileOrErr); 6229 } 6230