1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/IR/AutoUpgrade.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DerivedTypes.h" 19 #include "llvm/IR/DiagnosticPrinter.h" 20 #include "llvm/IR/InlineAsm.h" 21 #include "llvm/IR/IntrinsicInst.h" 22 #include "llvm/IR/LLVMContext.h" 23 #include "llvm/IR/Module.h" 24 #include "llvm/IR/OperandTraits.h" 25 #include "llvm/IR/Operator.h" 26 #include "llvm/Support/DataStream.h" 27 #include "llvm/Support/ManagedStatic.h" 28 #include "llvm/Support/MathExtras.h" 29 #include "llvm/Support/MemoryBuffer.h" 30 #include "llvm/Support/raw_ostream.h" 31 32 using namespace llvm; 33 34 enum { 35 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 36 }; 37 38 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 39 DiagnosticSeverity Severity, 40 const Twine &Msg) 41 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 42 43 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 44 45 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 46 std::error_code EC, const Twine &Message) { 47 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 48 DiagnosticHandler(DI); 49 return EC; 50 } 51 52 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 53 std::error_code EC) { 54 return Error(DiagnosticHandler, EC, EC.message()); 55 } 56 57 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 58 return ::Error(DiagnosticHandler, make_error_code(E), Message); 59 } 60 61 std::error_code BitcodeReader::Error(const Twine &Message) { 62 return ::Error(DiagnosticHandler, 63 make_error_code(BitcodeError::CorruptedBitcode), Message); 64 } 65 66 std::error_code BitcodeReader::Error(BitcodeError E) { 67 return ::Error(DiagnosticHandler, make_error_code(E)); 68 } 69 70 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 71 LLVMContext &C) { 72 if (F) 73 return F; 74 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 75 } 76 77 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 78 DiagnosticHandlerFunction DiagnosticHandler) 79 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 80 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 81 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 82 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 83 WillMaterializeAllForwardRefs(false) {} 84 85 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 86 DiagnosticHandlerFunction DiagnosticHandler) 87 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 88 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 89 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 90 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 91 WillMaterializeAllForwardRefs(false) {} 92 93 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 94 if (WillMaterializeAllForwardRefs) 95 return std::error_code(); 96 97 // Prevent recursion. 98 WillMaterializeAllForwardRefs = true; 99 100 while (!BasicBlockFwdRefQueue.empty()) { 101 Function *F = BasicBlockFwdRefQueue.front(); 102 BasicBlockFwdRefQueue.pop_front(); 103 assert(F && "Expected valid function"); 104 if (!BasicBlockFwdRefs.count(F)) 105 // Already materialized. 106 continue; 107 108 // Check for a function that isn't materializable to prevent an infinite 109 // loop. When parsing a blockaddress stored in a global variable, there 110 // isn't a trivial way to check if a function will have a body without a 111 // linear search through FunctionsWithBodies, so just check it here. 112 if (!F->isMaterializable()) 113 return Error("Never resolved function from blockaddress"); 114 115 // Try to materialize F. 116 if (std::error_code EC = materialize(F)) 117 return EC; 118 } 119 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 120 121 // Reset state. 122 WillMaterializeAllForwardRefs = false; 123 return std::error_code(); 124 } 125 126 void BitcodeReader::FreeState() { 127 Buffer = nullptr; 128 std::vector<Type*>().swap(TypeList); 129 ValueList.clear(); 130 MDValueList.clear(); 131 std::vector<Comdat *>().swap(ComdatList); 132 133 std::vector<AttributeSet>().swap(MAttributes); 134 std::vector<BasicBlock*>().swap(FunctionBBs); 135 std::vector<Function*>().swap(FunctionsWithBodies); 136 DeferredFunctionInfo.clear(); 137 MDKindMap.clear(); 138 139 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 140 BasicBlockFwdRefQueue.clear(); 141 } 142 143 //===----------------------------------------------------------------------===// 144 // Helper functions to implement forward reference resolution, etc. 145 //===----------------------------------------------------------------------===// 146 147 /// ConvertToString - Convert a string from a record into an std::string, return 148 /// true on failure. 149 template<typename StrTy> 150 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 156 Result += (char)Record[i]; 157 return false; 158 } 159 160 static bool hasImplicitComdat(size_t Val) { 161 switch (Val) { 162 default: 163 return false; 164 case 1: // Old WeakAnyLinkage 165 case 4: // Old LinkOnceAnyLinkage 166 case 10: // Old WeakODRLinkage 167 case 11: // Old LinkOnceODRLinkage 168 return true; 169 } 170 } 171 172 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 173 switch (Val) { 174 default: // Map unknown/new linkages to external 175 case 0: 176 return GlobalValue::ExternalLinkage; 177 case 2: 178 return GlobalValue::AppendingLinkage; 179 case 3: 180 return GlobalValue::InternalLinkage; 181 case 5: 182 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 183 case 6: 184 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 185 case 7: 186 return GlobalValue::ExternalWeakLinkage; 187 case 8: 188 return GlobalValue::CommonLinkage; 189 case 9: 190 return GlobalValue::PrivateLinkage; 191 case 12: 192 return GlobalValue::AvailableExternallyLinkage; 193 case 13: 194 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 195 case 14: 196 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 197 case 15: 198 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 199 case 1: // Old value with implicit comdat. 200 case 16: 201 return GlobalValue::WeakAnyLinkage; 202 case 10: // Old value with implicit comdat. 203 case 17: 204 return GlobalValue::WeakODRLinkage; 205 case 4: // Old value with implicit comdat. 206 case 18: 207 return GlobalValue::LinkOnceAnyLinkage; 208 case 11: // Old value with implicit comdat. 209 case 19: 210 return GlobalValue::LinkOnceODRLinkage; 211 } 212 } 213 214 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 215 switch (Val) { 216 default: // Map unknown visibilities to default. 217 case 0: return GlobalValue::DefaultVisibility; 218 case 1: return GlobalValue::HiddenVisibility; 219 case 2: return GlobalValue::ProtectedVisibility; 220 } 221 } 222 223 static GlobalValue::DLLStorageClassTypes 224 GetDecodedDLLStorageClass(unsigned Val) { 225 switch (Val) { 226 default: // Map unknown values to default. 227 case 0: return GlobalValue::DefaultStorageClass; 228 case 1: return GlobalValue::DLLImportStorageClass; 229 case 2: return GlobalValue::DLLExportStorageClass; 230 } 231 } 232 233 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 234 switch (Val) { 235 case 0: return GlobalVariable::NotThreadLocal; 236 default: // Map unknown non-zero value to general dynamic. 237 case 1: return GlobalVariable::GeneralDynamicTLSModel; 238 case 2: return GlobalVariable::LocalDynamicTLSModel; 239 case 3: return GlobalVariable::InitialExecTLSModel; 240 case 4: return GlobalVariable::LocalExecTLSModel; 241 } 242 } 243 244 static int GetDecodedCastOpcode(unsigned Val) { 245 switch (Val) { 246 default: return -1; 247 case bitc::CAST_TRUNC : return Instruction::Trunc; 248 case bitc::CAST_ZEXT : return Instruction::ZExt; 249 case bitc::CAST_SEXT : return Instruction::SExt; 250 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 251 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 252 case bitc::CAST_UITOFP : return Instruction::UIToFP; 253 case bitc::CAST_SITOFP : return Instruction::SIToFP; 254 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 255 case bitc::CAST_FPEXT : return Instruction::FPExt; 256 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 257 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 258 case bitc::CAST_BITCAST : return Instruction::BitCast; 259 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 260 } 261 } 262 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 263 switch (Val) { 264 default: return -1; 265 case bitc::BINOP_ADD: 266 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 267 case bitc::BINOP_SUB: 268 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 269 case bitc::BINOP_MUL: 270 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 271 case bitc::BINOP_UDIV: return Instruction::UDiv; 272 case bitc::BINOP_SDIV: 273 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 274 case bitc::BINOP_UREM: return Instruction::URem; 275 case bitc::BINOP_SREM: 276 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 277 case bitc::BINOP_SHL: return Instruction::Shl; 278 case bitc::BINOP_LSHR: return Instruction::LShr; 279 case bitc::BINOP_ASHR: return Instruction::AShr; 280 case bitc::BINOP_AND: return Instruction::And; 281 case bitc::BINOP_OR: return Instruction::Or; 282 case bitc::BINOP_XOR: return Instruction::Xor; 283 } 284 } 285 286 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 287 switch (Val) { 288 default: return AtomicRMWInst::BAD_BINOP; 289 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 290 case bitc::RMW_ADD: return AtomicRMWInst::Add; 291 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 292 case bitc::RMW_AND: return AtomicRMWInst::And; 293 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 294 case bitc::RMW_OR: return AtomicRMWInst::Or; 295 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 296 case bitc::RMW_MAX: return AtomicRMWInst::Max; 297 case bitc::RMW_MIN: return AtomicRMWInst::Min; 298 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 299 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 300 } 301 } 302 303 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 304 switch (Val) { 305 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 306 case bitc::ORDERING_UNORDERED: return Unordered; 307 case bitc::ORDERING_MONOTONIC: return Monotonic; 308 case bitc::ORDERING_ACQUIRE: return Acquire; 309 case bitc::ORDERING_RELEASE: return Release; 310 case bitc::ORDERING_ACQREL: return AcquireRelease; 311 default: // Map unknown orderings to sequentially-consistent. 312 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 313 } 314 } 315 316 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 317 switch (Val) { 318 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 319 default: // Map unknown scopes to cross-thread. 320 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 321 } 322 } 323 324 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 325 switch (Val) { 326 default: // Map unknown selection kinds to any. 327 case bitc::COMDAT_SELECTION_KIND_ANY: 328 return Comdat::Any; 329 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 330 return Comdat::ExactMatch; 331 case bitc::COMDAT_SELECTION_KIND_LARGEST: 332 return Comdat::Largest; 333 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 334 return Comdat::NoDuplicates; 335 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 336 return Comdat::SameSize; 337 } 338 } 339 340 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 341 switch (Val) { 342 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 343 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 344 } 345 } 346 347 namespace llvm { 348 namespace { 349 /// @brief A class for maintaining the slot number definition 350 /// as a placeholder for the actual definition for forward constants defs. 351 class ConstantPlaceHolder : public ConstantExpr { 352 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 353 public: 354 // allocate space for exactly one operand 355 void *operator new(size_t s) { 356 return User::operator new(s, 1); 357 } 358 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 359 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 360 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 361 } 362 363 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 364 static bool classof(const Value *V) { 365 return isa<ConstantExpr>(V) && 366 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 367 } 368 369 370 /// Provide fast operand accessors 371 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 372 }; 373 } 374 375 // FIXME: can we inherit this from ConstantExpr? 376 template <> 377 struct OperandTraits<ConstantPlaceHolder> : 378 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 379 }; 380 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 381 } 382 383 384 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 385 if (Idx == size()) { 386 push_back(V); 387 return; 388 } 389 390 if (Idx >= size()) 391 resize(Idx+1); 392 393 WeakVH &OldV = ValuePtrs[Idx]; 394 if (!OldV) { 395 OldV = V; 396 return; 397 } 398 399 // Handle constants and non-constants (e.g. instrs) differently for 400 // efficiency. 401 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 402 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 403 OldV = V; 404 } else { 405 // If there was a forward reference to this value, replace it. 406 Value *PrevVal = OldV; 407 OldV->replaceAllUsesWith(V); 408 delete PrevVal; 409 } 410 } 411 412 413 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 414 Type *Ty) { 415 if (Idx >= size()) 416 resize(Idx + 1); 417 418 if (Value *V = ValuePtrs[Idx]) { 419 assert(Ty == V->getType() && "Type mismatch in constant table!"); 420 return cast<Constant>(V); 421 } 422 423 // Create and return a placeholder, which will later be RAUW'd. 424 Constant *C = new ConstantPlaceHolder(Ty, Context); 425 ValuePtrs[Idx] = C; 426 return C; 427 } 428 429 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 430 if (Idx >= size()) 431 resize(Idx + 1); 432 433 if (Value *V = ValuePtrs[Idx]) { 434 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 435 return V; 436 } 437 438 // No type specified, must be invalid reference. 439 if (!Ty) return nullptr; 440 441 // Create and return a placeholder, which will later be RAUW'd. 442 Value *V = new Argument(Ty); 443 ValuePtrs[Idx] = V; 444 return V; 445 } 446 447 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 448 /// resolves any forward references. The idea behind this is that we sometimes 449 /// get constants (such as large arrays) which reference *many* forward ref 450 /// constants. Replacing each of these causes a lot of thrashing when 451 /// building/reuniquing the constant. Instead of doing this, we look at all the 452 /// uses and rewrite all the place holders at once for any constant that uses 453 /// a placeholder. 454 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 455 // Sort the values by-pointer so that they are efficient to look up with a 456 // binary search. 457 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 458 459 SmallVector<Constant*, 64> NewOps; 460 461 while (!ResolveConstants.empty()) { 462 Value *RealVal = operator[](ResolveConstants.back().second); 463 Constant *Placeholder = ResolveConstants.back().first; 464 ResolveConstants.pop_back(); 465 466 // Loop over all users of the placeholder, updating them to reference the 467 // new value. If they reference more than one placeholder, update them all 468 // at once. 469 while (!Placeholder->use_empty()) { 470 auto UI = Placeholder->user_begin(); 471 User *U = *UI; 472 473 // If the using object isn't uniqued, just update the operands. This 474 // handles instructions and initializers for global variables. 475 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 476 UI.getUse().set(RealVal); 477 continue; 478 } 479 480 // Otherwise, we have a constant that uses the placeholder. Replace that 481 // constant with a new constant that has *all* placeholder uses updated. 482 Constant *UserC = cast<Constant>(U); 483 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 484 I != E; ++I) { 485 Value *NewOp; 486 if (!isa<ConstantPlaceHolder>(*I)) { 487 // Not a placeholder reference. 488 NewOp = *I; 489 } else if (*I == Placeholder) { 490 // Common case is that it just references this one placeholder. 491 NewOp = RealVal; 492 } else { 493 // Otherwise, look up the placeholder in ResolveConstants. 494 ResolveConstantsTy::iterator It = 495 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 496 std::pair<Constant*, unsigned>(cast<Constant>(*I), 497 0)); 498 assert(It != ResolveConstants.end() && It->first == *I); 499 NewOp = operator[](It->second); 500 } 501 502 NewOps.push_back(cast<Constant>(NewOp)); 503 } 504 505 // Make the new constant. 506 Constant *NewC; 507 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 508 NewC = ConstantArray::get(UserCA->getType(), NewOps); 509 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 510 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 511 } else if (isa<ConstantVector>(UserC)) { 512 NewC = ConstantVector::get(NewOps); 513 } else { 514 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 515 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 516 } 517 518 UserC->replaceAllUsesWith(NewC); 519 UserC->destroyConstant(); 520 NewOps.clear(); 521 } 522 523 // Update all ValueHandles, they should be the only users at this point. 524 Placeholder->replaceAllUsesWith(RealVal); 525 delete Placeholder; 526 } 527 } 528 529 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 530 if (Idx == size()) { 531 push_back(MD); 532 return; 533 } 534 535 if (Idx >= size()) 536 resize(Idx+1); 537 538 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 539 if (!OldMD) { 540 OldMD.reset(MD); 541 return; 542 } 543 544 // If there was a forward reference to this value, replace it. 545 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 546 PrevMD->replaceAllUsesWith(MD); 547 --NumFwdRefs; 548 } 549 550 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 551 if (Idx >= size()) 552 resize(Idx + 1); 553 554 if (Metadata *MD = MDValuePtrs[Idx]) 555 return MD; 556 557 // Create and return a placeholder, which will later be RAUW'd. 558 AnyFwdRefs = true; 559 ++NumFwdRefs; 560 Metadata *MD = MDNode::getTemporary(Context, None).release(); 561 MDValuePtrs[Idx].reset(MD); 562 return MD; 563 } 564 565 void BitcodeReaderMDValueList::tryToResolveCycles() { 566 if (!AnyFwdRefs) 567 // Nothing to do. 568 return; 569 570 if (NumFwdRefs) 571 // Still forward references... can't resolve cycles. 572 return; 573 574 // Resolve any cycles. 575 for (auto &MD : MDValuePtrs) { 576 auto *N = dyn_cast_or_null<MDNode>(MD); 577 if (!N) 578 continue; 579 580 assert(!N->isTemporary() && "Unexpected forward reference"); 581 N->resolveCycles(); 582 } 583 } 584 585 Type *BitcodeReader::getTypeByID(unsigned ID) { 586 // The type table size is always specified correctly. 587 if (ID >= TypeList.size()) 588 return nullptr; 589 590 if (Type *Ty = TypeList[ID]) 591 return Ty; 592 593 // If we have a forward reference, the only possible case is when it is to a 594 // named struct. Just create a placeholder for now. 595 return TypeList[ID] = createIdentifiedStructType(Context); 596 } 597 598 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 599 StringRef Name) { 600 auto *Ret = StructType::create(Context, Name); 601 IdentifiedStructTypes.push_back(Ret); 602 return Ret; 603 } 604 605 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 606 auto *Ret = StructType::create(Context); 607 IdentifiedStructTypes.push_back(Ret); 608 return Ret; 609 } 610 611 612 //===----------------------------------------------------------------------===// 613 // Functions for parsing blocks from the bitcode file 614 //===----------------------------------------------------------------------===// 615 616 617 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 618 /// been decoded from the given integer. This function must stay in sync with 619 /// 'encodeLLVMAttributesForBitcode'. 620 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 621 uint64_t EncodedAttrs) { 622 // FIXME: Remove in 4.0. 623 624 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 625 // the bits above 31 down by 11 bits. 626 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 627 assert((!Alignment || isPowerOf2_32(Alignment)) && 628 "Alignment must be a power of two."); 629 630 if (Alignment) 631 B.addAlignmentAttr(Alignment); 632 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 633 (EncodedAttrs & 0xffff)); 634 } 635 636 std::error_code BitcodeReader::ParseAttributeBlock() { 637 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 638 return Error("Invalid record"); 639 640 if (!MAttributes.empty()) 641 return Error("Invalid multiple blocks"); 642 643 SmallVector<uint64_t, 64> Record; 644 645 SmallVector<AttributeSet, 8> Attrs; 646 647 // Read all the records. 648 while (1) { 649 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 650 651 switch (Entry.Kind) { 652 case BitstreamEntry::SubBlock: // Handled for us already. 653 case BitstreamEntry::Error: 654 return Error("Malformed block"); 655 case BitstreamEntry::EndBlock: 656 return std::error_code(); 657 case BitstreamEntry::Record: 658 // The interesting case. 659 break; 660 } 661 662 // Read a record. 663 Record.clear(); 664 switch (Stream.readRecord(Entry.ID, Record)) { 665 default: // Default behavior: ignore. 666 break; 667 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 668 // FIXME: Remove in 4.0. 669 if (Record.size() & 1) 670 return Error("Invalid record"); 671 672 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 673 AttrBuilder B; 674 decodeLLVMAttributesForBitcode(B, Record[i+1]); 675 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 676 } 677 678 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 679 Attrs.clear(); 680 break; 681 } 682 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 683 for (unsigned i = 0, e = Record.size(); i != e; ++i) 684 Attrs.push_back(MAttributeGroups[Record[i]]); 685 686 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 687 Attrs.clear(); 688 break; 689 } 690 } 691 } 692 } 693 694 // Returns Attribute::None on unrecognized codes. 695 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 696 switch (Code) { 697 default: 698 return Attribute::None; 699 case bitc::ATTR_KIND_ALIGNMENT: 700 return Attribute::Alignment; 701 case bitc::ATTR_KIND_ALWAYS_INLINE: 702 return Attribute::AlwaysInline; 703 case bitc::ATTR_KIND_BUILTIN: 704 return Attribute::Builtin; 705 case bitc::ATTR_KIND_BY_VAL: 706 return Attribute::ByVal; 707 case bitc::ATTR_KIND_IN_ALLOCA: 708 return Attribute::InAlloca; 709 case bitc::ATTR_KIND_COLD: 710 return Attribute::Cold; 711 case bitc::ATTR_KIND_INLINE_HINT: 712 return Attribute::InlineHint; 713 case bitc::ATTR_KIND_IN_REG: 714 return Attribute::InReg; 715 case bitc::ATTR_KIND_JUMP_TABLE: 716 return Attribute::JumpTable; 717 case bitc::ATTR_KIND_MIN_SIZE: 718 return Attribute::MinSize; 719 case bitc::ATTR_KIND_NAKED: 720 return Attribute::Naked; 721 case bitc::ATTR_KIND_NEST: 722 return Attribute::Nest; 723 case bitc::ATTR_KIND_NO_ALIAS: 724 return Attribute::NoAlias; 725 case bitc::ATTR_KIND_NO_BUILTIN: 726 return Attribute::NoBuiltin; 727 case bitc::ATTR_KIND_NO_CAPTURE: 728 return Attribute::NoCapture; 729 case bitc::ATTR_KIND_NO_DUPLICATE: 730 return Attribute::NoDuplicate; 731 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 732 return Attribute::NoImplicitFloat; 733 case bitc::ATTR_KIND_NO_INLINE: 734 return Attribute::NoInline; 735 case bitc::ATTR_KIND_NON_LAZY_BIND: 736 return Attribute::NonLazyBind; 737 case bitc::ATTR_KIND_NON_NULL: 738 return Attribute::NonNull; 739 case bitc::ATTR_KIND_DEREFERENCEABLE: 740 return Attribute::Dereferenceable; 741 case bitc::ATTR_KIND_NO_RED_ZONE: 742 return Attribute::NoRedZone; 743 case bitc::ATTR_KIND_NO_RETURN: 744 return Attribute::NoReturn; 745 case bitc::ATTR_KIND_NO_UNWIND: 746 return Attribute::NoUnwind; 747 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 748 return Attribute::OptimizeForSize; 749 case bitc::ATTR_KIND_OPTIMIZE_NONE: 750 return Attribute::OptimizeNone; 751 case bitc::ATTR_KIND_READ_NONE: 752 return Attribute::ReadNone; 753 case bitc::ATTR_KIND_READ_ONLY: 754 return Attribute::ReadOnly; 755 case bitc::ATTR_KIND_RETURNED: 756 return Attribute::Returned; 757 case bitc::ATTR_KIND_RETURNS_TWICE: 758 return Attribute::ReturnsTwice; 759 case bitc::ATTR_KIND_S_EXT: 760 return Attribute::SExt; 761 case bitc::ATTR_KIND_STACK_ALIGNMENT: 762 return Attribute::StackAlignment; 763 case bitc::ATTR_KIND_STACK_PROTECT: 764 return Attribute::StackProtect; 765 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 766 return Attribute::StackProtectReq; 767 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 768 return Attribute::StackProtectStrong; 769 case bitc::ATTR_KIND_STRUCT_RET: 770 return Attribute::StructRet; 771 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 772 return Attribute::SanitizeAddress; 773 case bitc::ATTR_KIND_SANITIZE_THREAD: 774 return Attribute::SanitizeThread; 775 case bitc::ATTR_KIND_SANITIZE_MEMORY: 776 return Attribute::SanitizeMemory; 777 case bitc::ATTR_KIND_UW_TABLE: 778 return Attribute::UWTable; 779 case bitc::ATTR_KIND_Z_EXT: 780 return Attribute::ZExt; 781 } 782 } 783 784 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 785 Attribute::AttrKind *Kind) { 786 *Kind = GetAttrFromCode(Code); 787 if (*Kind == Attribute::None) 788 return Error(BitcodeError::CorruptedBitcode, 789 "Unknown attribute kind (" + Twine(Code) + ")"); 790 return std::error_code(); 791 } 792 793 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 794 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 795 return Error("Invalid record"); 796 797 if (!MAttributeGroups.empty()) 798 return Error("Invalid multiple blocks"); 799 800 SmallVector<uint64_t, 64> Record; 801 802 // Read all the records. 803 while (1) { 804 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 805 806 switch (Entry.Kind) { 807 case BitstreamEntry::SubBlock: // Handled for us already. 808 case BitstreamEntry::Error: 809 return Error("Malformed block"); 810 case BitstreamEntry::EndBlock: 811 return std::error_code(); 812 case BitstreamEntry::Record: 813 // The interesting case. 814 break; 815 } 816 817 // Read a record. 818 Record.clear(); 819 switch (Stream.readRecord(Entry.ID, Record)) { 820 default: // Default behavior: ignore. 821 break; 822 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 823 if (Record.size() < 3) 824 return Error("Invalid record"); 825 826 uint64_t GrpID = Record[0]; 827 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 828 829 AttrBuilder B; 830 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 831 if (Record[i] == 0) { // Enum attribute 832 Attribute::AttrKind Kind; 833 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 834 return EC; 835 836 B.addAttribute(Kind); 837 } else if (Record[i] == 1) { // Integer attribute 838 Attribute::AttrKind Kind; 839 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 840 return EC; 841 if (Kind == Attribute::Alignment) 842 B.addAlignmentAttr(Record[++i]); 843 else if (Kind == Attribute::StackAlignment) 844 B.addStackAlignmentAttr(Record[++i]); 845 else if (Kind == Attribute::Dereferenceable) 846 B.addDereferenceableAttr(Record[++i]); 847 } else { // String attribute 848 assert((Record[i] == 3 || Record[i] == 4) && 849 "Invalid attribute group entry"); 850 bool HasValue = (Record[i++] == 4); 851 SmallString<64> KindStr; 852 SmallString<64> ValStr; 853 854 while (Record[i] != 0 && i != e) 855 KindStr += Record[i++]; 856 assert(Record[i] == 0 && "Kind string not null terminated"); 857 858 if (HasValue) { 859 // Has a value associated with it. 860 ++i; // Skip the '0' that terminates the "kind" string. 861 while (Record[i] != 0 && i != e) 862 ValStr += Record[i++]; 863 assert(Record[i] == 0 && "Value string not null terminated"); 864 } 865 866 B.addAttribute(KindStr.str(), ValStr.str()); 867 } 868 } 869 870 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 871 break; 872 } 873 } 874 } 875 } 876 877 std::error_code BitcodeReader::ParseTypeTable() { 878 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 879 return Error("Invalid record"); 880 881 return ParseTypeTableBody(); 882 } 883 884 std::error_code BitcodeReader::ParseTypeTableBody() { 885 if (!TypeList.empty()) 886 return Error("Invalid multiple blocks"); 887 888 SmallVector<uint64_t, 64> Record; 889 unsigned NumRecords = 0; 890 891 SmallString<64> TypeName; 892 893 // Read all the records for this type table. 894 while (1) { 895 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 896 897 switch (Entry.Kind) { 898 case BitstreamEntry::SubBlock: // Handled for us already. 899 case BitstreamEntry::Error: 900 return Error("Malformed block"); 901 case BitstreamEntry::EndBlock: 902 if (NumRecords != TypeList.size()) 903 return Error("Malformed block"); 904 return std::error_code(); 905 case BitstreamEntry::Record: 906 // The interesting case. 907 break; 908 } 909 910 // Read a record. 911 Record.clear(); 912 Type *ResultTy = nullptr; 913 switch (Stream.readRecord(Entry.ID, Record)) { 914 default: 915 return Error("Invalid value"); 916 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 917 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 918 // type list. This allows us to reserve space. 919 if (Record.size() < 1) 920 return Error("Invalid record"); 921 TypeList.resize(Record[0]); 922 continue; 923 case bitc::TYPE_CODE_VOID: // VOID 924 ResultTy = Type::getVoidTy(Context); 925 break; 926 case bitc::TYPE_CODE_HALF: // HALF 927 ResultTy = Type::getHalfTy(Context); 928 break; 929 case bitc::TYPE_CODE_FLOAT: // FLOAT 930 ResultTy = Type::getFloatTy(Context); 931 break; 932 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 933 ResultTy = Type::getDoubleTy(Context); 934 break; 935 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 936 ResultTy = Type::getX86_FP80Ty(Context); 937 break; 938 case bitc::TYPE_CODE_FP128: // FP128 939 ResultTy = Type::getFP128Ty(Context); 940 break; 941 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 942 ResultTy = Type::getPPC_FP128Ty(Context); 943 break; 944 case bitc::TYPE_CODE_LABEL: // LABEL 945 ResultTy = Type::getLabelTy(Context); 946 break; 947 case bitc::TYPE_CODE_METADATA: // METADATA 948 ResultTy = Type::getMetadataTy(Context); 949 break; 950 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 951 ResultTy = Type::getX86_MMXTy(Context); 952 break; 953 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 954 if (Record.size() < 1) 955 return Error("Invalid record"); 956 957 ResultTy = IntegerType::get(Context, Record[0]); 958 break; 959 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 960 // [pointee type, address space] 961 if (Record.size() < 1) 962 return Error("Invalid record"); 963 unsigned AddressSpace = 0; 964 if (Record.size() == 2) 965 AddressSpace = Record[1]; 966 ResultTy = getTypeByID(Record[0]); 967 if (!ResultTy) 968 return Error("Invalid type"); 969 ResultTy = PointerType::get(ResultTy, AddressSpace); 970 break; 971 } 972 case bitc::TYPE_CODE_FUNCTION_OLD: { 973 // FIXME: attrid is dead, remove it in LLVM 4.0 974 // FUNCTION: [vararg, attrid, retty, paramty x N] 975 if (Record.size() < 3) 976 return Error("Invalid record"); 977 SmallVector<Type*, 8> ArgTys; 978 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 979 if (Type *T = getTypeByID(Record[i])) 980 ArgTys.push_back(T); 981 else 982 break; 983 } 984 985 ResultTy = getTypeByID(Record[2]); 986 if (!ResultTy || ArgTys.size() < Record.size()-3) 987 return Error("Invalid type"); 988 989 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 990 break; 991 } 992 case bitc::TYPE_CODE_FUNCTION: { 993 // FUNCTION: [vararg, retty, paramty x N] 994 if (Record.size() < 2) 995 return Error("Invalid record"); 996 SmallVector<Type*, 8> ArgTys; 997 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 998 if (Type *T = getTypeByID(Record[i])) 999 ArgTys.push_back(T); 1000 else 1001 break; 1002 } 1003 1004 ResultTy = getTypeByID(Record[1]); 1005 if (!ResultTy || ArgTys.size() < Record.size()-2) 1006 return Error("Invalid type"); 1007 1008 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1009 break; 1010 } 1011 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1012 if (Record.size() < 1) 1013 return Error("Invalid record"); 1014 SmallVector<Type*, 8> EltTys; 1015 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1016 if (Type *T = getTypeByID(Record[i])) 1017 EltTys.push_back(T); 1018 else 1019 break; 1020 } 1021 if (EltTys.size() != Record.size()-1) 1022 return Error("Invalid type"); 1023 ResultTy = StructType::get(Context, EltTys, Record[0]); 1024 break; 1025 } 1026 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1027 if (ConvertToString(Record, 0, TypeName)) 1028 return Error("Invalid record"); 1029 continue; 1030 1031 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1032 if (Record.size() < 1) 1033 return Error("Invalid record"); 1034 1035 if (NumRecords >= TypeList.size()) 1036 return Error("Invalid TYPE table"); 1037 1038 // Check to see if this was forward referenced, if so fill in the temp. 1039 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1040 if (Res) { 1041 Res->setName(TypeName); 1042 TypeList[NumRecords] = nullptr; 1043 } else // Otherwise, create a new struct. 1044 Res = createIdentifiedStructType(Context, TypeName); 1045 TypeName.clear(); 1046 1047 SmallVector<Type*, 8> EltTys; 1048 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1049 if (Type *T = getTypeByID(Record[i])) 1050 EltTys.push_back(T); 1051 else 1052 break; 1053 } 1054 if (EltTys.size() != Record.size()-1) 1055 return Error("Invalid record"); 1056 Res->setBody(EltTys, Record[0]); 1057 ResultTy = Res; 1058 break; 1059 } 1060 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1061 if (Record.size() != 1) 1062 return Error("Invalid record"); 1063 1064 if (NumRecords >= TypeList.size()) 1065 return Error("Invalid TYPE table"); 1066 1067 // Check to see if this was forward referenced, if so fill in the temp. 1068 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1069 if (Res) { 1070 Res->setName(TypeName); 1071 TypeList[NumRecords] = nullptr; 1072 } else // Otherwise, create a new struct with no body. 1073 Res = createIdentifiedStructType(Context, TypeName); 1074 TypeName.clear(); 1075 ResultTy = Res; 1076 break; 1077 } 1078 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1079 if (Record.size() < 2) 1080 return Error("Invalid record"); 1081 if ((ResultTy = getTypeByID(Record[1]))) 1082 ResultTy = ArrayType::get(ResultTy, Record[0]); 1083 else 1084 return Error("Invalid type"); 1085 break; 1086 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1087 if (Record.size() < 2) 1088 return Error("Invalid record"); 1089 if ((ResultTy = getTypeByID(Record[1]))) 1090 ResultTy = VectorType::get(ResultTy, Record[0]); 1091 else 1092 return Error("Invalid type"); 1093 break; 1094 } 1095 1096 if (NumRecords >= TypeList.size()) 1097 return Error("Invalid TYPE table"); 1098 assert(ResultTy && "Didn't read a type?"); 1099 assert(!TypeList[NumRecords] && "Already read type?"); 1100 TypeList[NumRecords++] = ResultTy; 1101 } 1102 } 1103 1104 std::error_code BitcodeReader::ParseValueSymbolTable() { 1105 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1106 return Error("Invalid record"); 1107 1108 SmallVector<uint64_t, 64> Record; 1109 1110 Triple TT(TheModule->getTargetTriple()); 1111 1112 // Read all the records for this value table. 1113 SmallString<128> ValueName; 1114 while (1) { 1115 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1116 1117 switch (Entry.Kind) { 1118 case BitstreamEntry::SubBlock: // Handled for us already. 1119 case BitstreamEntry::Error: 1120 return Error("Malformed block"); 1121 case BitstreamEntry::EndBlock: 1122 return std::error_code(); 1123 case BitstreamEntry::Record: 1124 // The interesting case. 1125 break; 1126 } 1127 1128 // Read a record. 1129 Record.clear(); 1130 switch (Stream.readRecord(Entry.ID, Record)) { 1131 default: // Default behavior: unknown type. 1132 break; 1133 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1134 if (ConvertToString(Record, 1, ValueName)) 1135 return Error("Invalid record"); 1136 unsigned ValueID = Record[0]; 1137 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1138 return Error("Invalid record"); 1139 Value *V = ValueList[ValueID]; 1140 1141 V->setName(StringRef(ValueName.data(), ValueName.size())); 1142 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1143 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1144 if (TT.isOSBinFormatMachO()) 1145 GO->setComdat(nullptr); 1146 else 1147 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1148 } 1149 } 1150 ValueName.clear(); 1151 break; 1152 } 1153 case bitc::VST_CODE_BBENTRY: { 1154 if (ConvertToString(Record, 1, ValueName)) 1155 return Error("Invalid record"); 1156 BasicBlock *BB = getBasicBlock(Record[0]); 1157 if (!BB) 1158 return Error("Invalid record"); 1159 1160 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1161 ValueName.clear(); 1162 break; 1163 } 1164 } 1165 } 1166 } 1167 1168 std::error_code BitcodeReader::ParseMetadata() { 1169 unsigned NextMDValueNo = MDValueList.size(); 1170 1171 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1172 return Error("Invalid record"); 1173 1174 SmallVector<uint64_t, 64> Record; 1175 1176 // Read all the records. 1177 while (1) { 1178 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1179 1180 switch (Entry.Kind) { 1181 case BitstreamEntry::SubBlock: // Handled for us already. 1182 case BitstreamEntry::Error: 1183 return Error("Malformed block"); 1184 case BitstreamEntry::EndBlock: 1185 MDValueList.tryToResolveCycles(); 1186 return std::error_code(); 1187 case BitstreamEntry::Record: 1188 // The interesting case. 1189 break; 1190 } 1191 1192 // Read a record. 1193 Record.clear(); 1194 unsigned Code = Stream.readRecord(Entry.ID, Record); 1195 bool IsDistinct = false; 1196 switch (Code) { 1197 default: // Default behavior: ignore. 1198 break; 1199 case bitc::METADATA_NAME: { 1200 // Read name of the named metadata. 1201 SmallString<8> Name(Record.begin(), Record.end()); 1202 Record.clear(); 1203 Code = Stream.ReadCode(); 1204 1205 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1206 unsigned NextBitCode = Stream.readRecord(Code, Record); 1207 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1208 1209 // Read named metadata elements. 1210 unsigned Size = Record.size(); 1211 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1212 for (unsigned i = 0; i != Size; ++i) { 1213 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1214 if (!MD) 1215 return Error("Invalid record"); 1216 NMD->addOperand(MD); 1217 } 1218 break; 1219 } 1220 case bitc::METADATA_OLD_FN_NODE: { 1221 // FIXME: Remove in 4.0. 1222 // This is a LocalAsMetadata record, the only type of function-local 1223 // metadata. 1224 if (Record.size() % 2 == 1) 1225 return Error("Invalid record"); 1226 1227 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1228 // to be legal, but there's no upgrade path. 1229 auto dropRecord = [&] { 1230 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1231 }; 1232 if (Record.size() != 2) { 1233 dropRecord(); 1234 break; 1235 } 1236 1237 Type *Ty = getTypeByID(Record[0]); 1238 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1239 dropRecord(); 1240 break; 1241 } 1242 1243 MDValueList.AssignValue( 1244 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1245 NextMDValueNo++); 1246 break; 1247 } 1248 case bitc::METADATA_OLD_NODE: { 1249 // FIXME: Remove in 4.0. 1250 if (Record.size() % 2 == 1) 1251 return Error("Invalid record"); 1252 1253 unsigned Size = Record.size(); 1254 SmallVector<Metadata *, 8> Elts; 1255 for (unsigned i = 0; i != Size; i += 2) { 1256 Type *Ty = getTypeByID(Record[i]); 1257 if (!Ty) 1258 return Error("Invalid record"); 1259 if (Ty->isMetadataTy()) 1260 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1261 else if (!Ty->isVoidTy()) { 1262 auto *MD = 1263 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1264 assert(isa<ConstantAsMetadata>(MD) && 1265 "Expected non-function-local metadata"); 1266 Elts.push_back(MD); 1267 } else 1268 Elts.push_back(nullptr); 1269 } 1270 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1271 break; 1272 } 1273 case bitc::METADATA_VALUE: { 1274 if (Record.size() != 2) 1275 return Error("Invalid record"); 1276 1277 Type *Ty = getTypeByID(Record[0]); 1278 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1279 return Error("Invalid record"); 1280 1281 MDValueList.AssignValue( 1282 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1283 NextMDValueNo++); 1284 break; 1285 } 1286 case bitc::METADATA_DISTINCT_NODE: 1287 IsDistinct = true; 1288 // fallthrough... 1289 case bitc::METADATA_NODE: { 1290 SmallVector<Metadata *, 8> Elts; 1291 Elts.reserve(Record.size()); 1292 for (unsigned ID : Record) 1293 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1294 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1295 : MDNode::get(Context, Elts), 1296 NextMDValueNo++); 1297 break; 1298 } 1299 case bitc::METADATA_LOCATION: { 1300 if (Record.size() != 5) 1301 return Error("Invalid record"); 1302 1303 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1304 unsigned Line = Record[1]; 1305 unsigned Column = Record[2]; 1306 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1307 Metadata *InlinedAt = 1308 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1309 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1310 NextMDValueNo++); 1311 break; 1312 } 1313 case bitc::METADATA_STRING: { 1314 std::string String(Record.begin(), Record.end()); 1315 llvm::UpgradeMDStringConstant(String); 1316 Metadata *MD = MDString::get(Context, String); 1317 MDValueList.AssignValue(MD, NextMDValueNo++); 1318 break; 1319 } 1320 case bitc::METADATA_KIND: { 1321 if (Record.size() < 2) 1322 return Error("Invalid record"); 1323 1324 unsigned Kind = Record[0]; 1325 SmallString<8> Name(Record.begin()+1, Record.end()); 1326 1327 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1328 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1329 return Error("Conflicting METADATA_KIND records"); 1330 break; 1331 } 1332 } 1333 } 1334 } 1335 1336 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1337 /// the LSB for dense VBR encoding. 1338 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1339 if ((V & 1) == 0) 1340 return V >> 1; 1341 if (V != 1) 1342 return -(V >> 1); 1343 // There is no such thing as -0 with integers. "-0" really means MININT. 1344 return 1ULL << 63; 1345 } 1346 1347 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1348 /// values and aliases that we can. 1349 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1350 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1351 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1352 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1353 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1354 1355 GlobalInitWorklist.swap(GlobalInits); 1356 AliasInitWorklist.swap(AliasInits); 1357 FunctionPrefixWorklist.swap(FunctionPrefixes); 1358 FunctionPrologueWorklist.swap(FunctionPrologues); 1359 1360 while (!GlobalInitWorklist.empty()) { 1361 unsigned ValID = GlobalInitWorklist.back().second; 1362 if (ValID >= ValueList.size()) { 1363 // Not ready to resolve this yet, it requires something later in the file. 1364 GlobalInits.push_back(GlobalInitWorklist.back()); 1365 } else { 1366 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1367 GlobalInitWorklist.back().first->setInitializer(C); 1368 else 1369 return Error("Expected a constant"); 1370 } 1371 GlobalInitWorklist.pop_back(); 1372 } 1373 1374 while (!AliasInitWorklist.empty()) { 1375 unsigned ValID = AliasInitWorklist.back().second; 1376 if (ValID >= ValueList.size()) { 1377 AliasInits.push_back(AliasInitWorklist.back()); 1378 } else { 1379 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1380 AliasInitWorklist.back().first->setAliasee(C); 1381 else 1382 return Error("Expected a constant"); 1383 } 1384 AliasInitWorklist.pop_back(); 1385 } 1386 1387 while (!FunctionPrefixWorklist.empty()) { 1388 unsigned ValID = FunctionPrefixWorklist.back().second; 1389 if (ValID >= ValueList.size()) { 1390 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1391 } else { 1392 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1393 FunctionPrefixWorklist.back().first->setPrefixData(C); 1394 else 1395 return Error("Expected a constant"); 1396 } 1397 FunctionPrefixWorklist.pop_back(); 1398 } 1399 1400 while (!FunctionPrologueWorklist.empty()) { 1401 unsigned ValID = FunctionPrologueWorklist.back().second; 1402 if (ValID >= ValueList.size()) { 1403 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1404 } else { 1405 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1406 FunctionPrologueWorklist.back().first->setPrologueData(C); 1407 else 1408 return Error("Expected a constant"); 1409 } 1410 FunctionPrologueWorklist.pop_back(); 1411 } 1412 1413 return std::error_code(); 1414 } 1415 1416 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1417 SmallVector<uint64_t, 8> Words(Vals.size()); 1418 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1419 BitcodeReader::decodeSignRotatedValue); 1420 1421 return APInt(TypeBits, Words); 1422 } 1423 1424 std::error_code BitcodeReader::ParseConstants() { 1425 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1426 return Error("Invalid record"); 1427 1428 SmallVector<uint64_t, 64> Record; 1429 1430 // Read all the records for this value table. 1431 Type *CurTy = Type::getInt32Ty(Context); 1432 unsigned NextCstNo = ValueList.size(); 1433 while (1) { 1434 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1435 1436 switch (Entry.Kind) { 1437 case BitstreamEntry::SubBlock: // Handled for us already. 1438 case BitstreamEntry::Error: 1439 return Error("Malformed block"); 1440 case BitstreamEntry::EndBlock: 1441 if (NextCstNo != ValueList.size()) 1442 return Error("Invalid ronstant reference"); 1443 1444 // Once all the constants have been read, go through and resolve forward 1445 // references. 1446 ValueList.ResolveConstantForwardRefs(); 1447 return std::error_code(); 1448 case BitstreamEntry::Record: 1449 // The interesting case. 1450 break; 1451 } 1452 1453 // Read a record. 1454 Record.clear(); 1455 Value *V = nullptr; 1456 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1457 switch (BitCode) { 1458 default: // Default behavior: unknown constant 1459 case bitc::CST_CODE_UNDEF: // UNDEF 1460 V = UndefValue::get(CurTy); 1461 break; 1462 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1463 if (Record.empty()) 1464 return Error("Invalid record"); 1465 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1466 return Error("Invalid record"); 1467 CurTy = TypeList[Record[0]]; 1468 continue; // Skip the ValueList manipulation. 1469 case bitc::CST_CODE_NULL: // NULL 1470 V = Constant::getNullValue(CurTy); 1471 break; 1472 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1473 if (!CurTy->isIntegerTy() || Record.empty()) 1474 return Error("Invalid record"); 1475 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1476 break; 1477 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1478 if (!CurTy->isIntegerTy() || Record.empty()) 1479 return Error("Invalid record"); 1480 1481 APInt VInt = ReadWideAPInt(Record, 1482 cast<IntegerType>(CurTy)->getBitWidth()); 1483 V = ConstantInt::get(Context, VInt); 1484 1485 break; 1486 } 1487 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1488 if (Record.empty()) 1489 return Error("Invalid record"); 1490 if (CurTy->isHalfTy()) 1491 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1492 APInt(16, (uint16_t)Record[0]))); 1493 else if (CurTy->isFloatTy()) 1494 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1495 APInt(32, (uint32_t)Record[0]))); 1496 else if (CurTy->isDoubleTy()) 1497 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1498 APInt(64, Record[0]))); 1499 else if (CurTy->isX86_FP80Ty()) { 1500 // Bits are not stored the same way as a normal i80 APInt, compensate. 1501 uint64_t Rearrange[2]; 1502 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1503 Rearrange[1] = Record[0] >> 48; 1504 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1505 APInt(80, Rearrange))); 1506 } else if (CurTy->isFP128Ty()) 1507 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1508 APInt(128, Record))); 1509 else if (CurTy->isPPC_FP128Ty()) 1510 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1511 APInt(128, Record))); 1512 else 1513 V = UndefValue::get(CurTy); 1514 break; 1515 } 1516 1517 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1518 if (Record.empty()) 1519 return Error("Invalid record"); 1520 1521 unsigned Size = Record.size(); 1522 SmallVector<Constant*, 16> Elts; 1523 1524 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1525 for (unsigned i = 0; i != Size; ++i) 1526 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1527 STy->getElementType(i))); 1528 V = ConstantStruct::get(STy, Elts); 1529 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1530 Type *EltTy = ATy->getElementType(); 1531 for (unsigned i = 0; i != Size; ++i) 1532 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1533 V = ConstantArray::get(ATy, Elts); 1534 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1535 Type *EltTy = VTy->getElementType(); 1536 for (unsigned i = 0; i != Size; ++i) 1537 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1538 V = ConstantVector::get(Elts); 1539 } else { 1540 V = UndefValue::get(CurTy); 1541 } 1542 break; 1543 } 1544 case bitc::CST_CODE_STRING: // STRING: [values] 1545 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1546 if (Record.empty()) 1547 return Error("Invalid record"); 1548 1549 SmallString<16> Elts(Record.begin(), Record.end()); 1550 V = ConstantDataArray::getString(Context, Elts, 1551 BitCode == bitc::CST_CODE_CSTRING); 1552 break; 1553 } 1554 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1555 if (Record.empty()) 1556 return Error("Invalid record"); 1557 1558 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1559 unsigned Size = Record.size(); 1560 1561 if (EltTy->isIntegerTy(8)) { 1562 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1563 if (isa<VectorType>(CurTy)) 1564 V = ConstantDataVector::get(Context, Elts); 1565 else 1566 V = ConstantDataArray::get(Context, Elts); 1567 } else if (EltTy->isIntegerTy(16)) { 1568 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1569 if (isa<VectorType>(CurTy)) 1570 V = ConstantDataVector::get(Context, Elts); 1571 else 1572 V = ConstantDataArray::get(Context, Elts); 1573 } else if (EltTy->isIntegerTy(32)) { 1574 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1575 if (isa<VectorType>(CurTy)) 1576 V = ConstantDataVector::get(Context, Elts); 1577 else 1578 V = ConstantDataArray::get(Context, Elts); 1579 } else if (EltTy->isIntegerTy(64)) { 1580 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1581 if (isa<VectorType>(CurTy)) 1582 V = ConstantDataVector::get(Context, Elts); 1583 else 1584 V = ConstantDataArray::get(Context, Elts); 1585 } else if (EltTy->isFloatTy()) { 1586 SmallVector<float, 16> Elts(Size); 1587 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1588 if (isa<VectorType>(CurTy)) 1589 V = ConstantDataVector::get(Context, Elts); 1590 else 1591 V = ConstantDataArray::get(Context, Elts); 1592 } else if (EltTy->isDoubleTy()) { 1593 SmallVector<double, 16> Elts(Size); 1594 std::transform(Record.begin(), Record.end(), Elts.begin(), 1595 BitsToDouble); 1596 if (isa<VectorType>(CurTy)) 1597 V = ConstantDataVector::get(Context, Elts); 1598 else 1599 V = ConstantDataArray::get(Context, Elts); 1600 } else { 1601 return Error("Invalid type for value"); 1602 } 1603 break; 1604 } 1605 1606 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1607 if (Record.size() < 3) 1608 return Error("Invalid record"); 1609 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1610 if (Opc < 0) { 1611 V = UndefValue::get(CurTy); // Unknown binop. 1612 } else { 1613 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1614 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1615 unsigned Flags = 0; 1616 if (Record.size() >= 4) { 1617 if (Opc == Instruction::Add || 1618 Opc == Instruction::Sub || 1619 Opc == Instruction::Mul || 1620 Opc == Instruction::Shl) { 1621 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1622 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1623 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1624 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1625 } else if (Opc == Instruction::SDiv || 1626 Opc == Instruction::UDiv || 1627 Opc == Instruction::LShr || 1628 Opc == Instruction::AShr) { 1629 if (Record[3] & (1 << bitc::PEO_EXACT)) 1630 Flags |= SDivOperator::IsExact; 1631 } 1632 } 1633 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1634 } 1635 break; 1636 } 1637 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1638 if (Record.size() < 3) 1639 return Error("Invalid record"); 1640 int Opc = GetDecodedCastOpcode(Record[0]); 1641 if (Opc < 0) { 1642 V = UndefValue::get(CurTy); // Unknown cast. 1643 } else { 1644 Type *OpTy = getTypeByID(Record[1]); 1645 if (!OpTy) 1646 return Error("Invalid record"); 1647 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1648 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1649 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1650 } 1651 break; 1652 } 1653 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1654 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1655 if (Record.size() & 1) 1656 return Error("Invalid record"); 1657 SmallVector<Constant*, 16> Elts; 1658 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1659 Type *ElTy = getTypeByID(Record[i]); 1660 if (!ElTy) 1661 return Error("Invalid record"); 1662 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1663 } 1664 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1665 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1666 BitCode == 1667 bitc::CST_CODE_CE_INBOUNDS_GEP); 1668 break; 1669 } 1670 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1671 if (Record.size() < 3) 1672 return Error("Invalid record"); 1673 1674 Type *SelectorTy = Type::getInt1Ty(Context); 1675 1676 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1677 // vector. Otherwise, it must be a single bit. 1678 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1679 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1680 VTy->getNumElements()); 1681 1682 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1683 SelectorTy), 1684 ValueList.getConstantFwdRef(Record[1],CurTy), 1685 ValueList.getConstantFwdRef(Record[2],CurTy)); 1686 break; 1687 } 1688 case bitc::CST_CODE_CE_EXTRACTELT 1689 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1690 if (Record.size() < 3) 1691 return Error("Invalid record"); 1692 VectorType *OpTy = 1693 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1694 if (!OpTy) 1695 return Error("Invalid record"); 1696 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1697 Constant *Op1 = nullptr; 1698 if (Record.size() == 4) { 1699 Type *IdxTy = getTypeByID(Record[2]); 1700 if (!IdxTy) 1701 return Error("Invalid record"); 1702 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1703 } else // TODO: Remove with llvm 4.0 1704 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1705 if (!Op1) 1706 return Error("Invalid record"); 1707 V = ConstantExpr::getExtractElement(Op0, Op1); 1708 break; 1709 } 1710 case bitc::CST_CODE_CE_INSERTELT 1711 : { // CE_INSERTELT: [opval, opval, opty, opval] 1712 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1713 if (Record.size() < 3 || !OpTy) 1714 return Error("Invalid record"); 1715 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1716 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1717 OpTy->getElementType()); 1718 Constant *Op2 = nullptr; 1719 if (Record.size() == 4) { 1720 Type *IdxTy = getTypeByID(Record[2]); 1721 if (!IdxTy) 1722 return Error("Invalid record"); 1723 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1724 } else // TODO: Remove with llvm 4.0 1725 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1726 if (!Op2) 1727 return Error("Invalid record"); 1728 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1729 break; 1730 } 1731 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1732 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1733 if (Record.size() < 3 || !OpTy) 1734 return Error("Invalid record"); 1735 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1736 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1737 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1738 OpTy->getNumElements()); 1739 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1740 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1741 break; 1742 } 1743 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1744 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1745 VectorType *OpTy = 1746 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1747 if (Record.size() < 4 || !RTy || !OpTy) 1748 return Error("Invalid record"); 1749 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1750 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1751 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1752 RTy->getNumElements()); 1753 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1754 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1755 break; 1756 } 1757 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1758 if (Record.size() < 4) 1759 return Error("Invalid record"); 1760 Type *OpTy = getTypeByID(Record[0]); 1761 if (!OpTy) 1762 return Error("Invalid record"); 1763 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1764 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1765 1766 if (OpTy->isFPOrFPVectorTy()) 1767 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1768 else 1769 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1770 break; 1771 } 1772 // This maintains backward compatibility, pre-asm dialect keywords. 1773 // FIXME: Remove with the 4.0 release. 1774 case bitc::CST_CODE_INLINEASM_OLD: { 1775 if (Record.size() < 2) 1776 return Error("Invalid record"); 1777 std::string AsmStr, ConstrStr; 1778 bool HasSideEffects = Record[0] & 1; 1779 bool IsAlignStack = Record[0] >> 1; 1780 unsigned AsmStrSize = Record[1]; 1781 if (2+AsmStrSize >= Record.size()) 1782 return Error("Invalid record"); 1783 unsigned ConstStrSize = Record[2+AsmStrSize]; 1784 if (3+AsmStrSize+ConstStrSize > Record.size()) 1785 return Error("Invalid record"); 1786 1787 for (unsigned i = 0; i != AsmStrSize; ++i) 1788 AsmStr += (char)Record[2+i]; 1789 for (unsigned i = 0; i != ConstStrSize; ++i) 1790 ConstrStr += (char)Record[3+AsmStrSize+i]; 1791 PointerType *PTy = cast<PointerType>(CurTy); 1792 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1793 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1794 break; 1795 } 1796 // This version adds support for the asm dialect keywords (e.g., 1797 // inteldialect). 1798 case bitc::CST_CODE_INLINEASM: { 1799 if (Record.size() < 2) 1800 return Error("Invalid record"); 1801 std::string AsmStr, ConstrStr; 1802 bool HasSideEffects = Record[0] & 1; 1803 bool IsAlignStack = (Record[0] >> 1) & 1; 1804 unsigned AsmDialect = Record[0] >> 2; 1805 unsigned AsmStrSize = Record[1]; 1806 if (2+AsmStrSize >= Record.size()) 1807 return Error("Invalid record"); 1808 unsigned ConstStrSize = Record[2+AsmStrSize]; 1809 if (3+AsmStrSize+ConstStrSize > Record.size()) 1810 return Error("Invalid record"); 1811 1812 for (unsigned i = 0; i != AsmStrSize; ++i) 1813 AsmStr += (char)Record[2+i]; 1814 for (unsigned i = 0; i != ConstStrSize; ++i) 1815 ConstrStr += (char)Record[3+AsmStrSize+i]; 1816 PointerType *PTy = cast<PointerType>(CurTy); 1817 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1818 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1819 InlineAsm::AsmDialect(AsmDialect)); 1820 break; 1821 } 1822 case bitc::CST_CODE_BLOCKADDRESS:{ 1823 if (Record.size() < 3) 1824 return Error("Invalid record"); 1825 Type *FnTy = getTypeByID(Record[0]); 1826 if (!FnTy) 1827 return Error("Invalid record"); 1828 Function *Fn = 1829 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1830 if (!Fn) 1831 return Error("Invalid record"); 1832 1833 // Don't let Fn get dematerialized. 1834 BlockAddressesTaken.insert(Fn); 1835 1836 // If the function is already parsed we can insert the block address right 1837 // away. 1838 BasicBlock *BB; 1839 unsigned BBID = Record[2]; 1840 if (!BBID) 1841 // Invalid reference to entry block. 1842 return Error("Invalid ID"); 1843 if (!Fn->empty()) { 1844 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1845 for (size_t I = 0, E = BBID; I != E; ++I) { 1846 if (BBI == BBE) 1847 return Error("Invalid ID"); 1848 ++BBI; 1849 } 1850 BB = BBI; 1851 } else { 1852 // Otherwise insert a placeholder and remember it so it can be inserted 1853 // when the function is parsed. 1854 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1855 if (FwdBBs.empty()) 1856 BasicBlockFwdRefQueue.push_back(Fn); 1857 if (FwdBBs.size() < BBID + 1) 1858 FwdBBs.resize(BBID + 1); 1859 if (!FwdBBs[BBID]) 1860 FwdBBs[BBID] = BasicBlock::Create(Context); 1861 BB = FwdBBs[BBID]; 1862 } 1863 V = BlockAddress::get(Fn, BB); 1864 break; 1865 } 1866 } 1867 1868 ValueList.AssignValue(V, NextCstNo); 1869 ++NextCstNo; 1870 } 1871 } 1872 1873 std::error_code BitcodeReader::ParseUseLists() { 1874 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1875 return Error("Invalid record"); 1876 1877 // Read all the records. 1878 SmallVector<uint64_t, 64> Record; 1879 while (1) { 1880 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1881 1882 switch (Entry.Kind) { 1883 case BitstreamEntry::SubBlock: // Handled for us already. 1884 case BitstreamEntry::Error: 1885 return Error("Malformed block"); 1886 case BitstreamEntry::EndBlock: 1887 return std::error_code(); 1888 case BitstreamEntry::Record: 1889 // The interesting case. 1890 break; 1891 } 1892 1893 // Read a use list record. 1894 Record.clear(); 1895 bool IsBB = false; 1896 switch (Stream.readRecord(Entry.ID, Record)) { 1897 default: // Default behavior: unknown type. 1898 break; 1899 case bitc::USELIST_CODE_BB: 1900 IsBB = true; 1901 // fallthrough 1902 case bitc::USELIST_CODE_DEFAULT: { 1903 unsigned RecordLength = Record.size(); 1904 if (RecordLength < 3) 1905 // Records should have at least an ID and two indexes. 1906 return Error("Invalid record"); 1907 unsigned ID = Record.back(); 1908 Record.pop_back(); 1909 1910 Value *V; 1911 if (IsBB) { 1912 assert(ID < FunctionBBs.size() && "Basic block not found"); 1913 V = FunctionBBs[ID]; 1914 } else 1915 V = ValueList[ID]; 1916 unsigned NumUses = 0; 1917 SmallDenseMap<const Use *, unsigned, 16> Order; 1918 for (const Use &U : V->uses()) { 1919 if (++NumUses > Record.size()) 1920 break; 1921 Order[&U] = Record[NumUses - 1]; 1922 } 1923 if (Order.size() != Record.size() || NumUses > Record.size()) 1924 // Mismatches can happen if the functions are being materialized lazily 1925 // (out-of-order), or a value has been upgraded. 1926 break; 1927 1928 V->sortUseList([&](const Use &L, const Use &R) { 1929 return Order.lookup(&L) < Order.lookup(&R); 1930 }); 1931 break; 1932 } 1933 } 1934 } 1935 } 1936 1937 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1938 /// remember where it is and then skip it. This lets us lazily deserialize the 1939 /// functions. 1940 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 1941 // Get the function we are talking about. 1942 if (FunctionsWithBodies.empty()) 1943 return Error("Insufficient function protos"); 1944 1945 Function *Fn = FunctionsWithBodies.back(); 1946 FunctionsWithBodies.pop_back(); 1947 1948 // Save the current stream state. 1949 uint64_t CurBit = Stream.GetCurrentBitNo(); 1950 DeferredFunctionInfo[Fn] = CurBit; 1951 1952 // Skip over the function block for now. 1953 if (Stream.SkipBlock()) 1954 return Error("Invalid record"); 1955 return std::error_code(); 1956 } 1957 1958 std::error_code BitcodeReader::GlobalCleanup() { 1959 // Patch the initializers for globals and aliases up. 1960 ResolveGlobalAndAliasInits(); 1961 if (!GlobalInits.empty() || !AliasInits.empty()) 1962 return Error("Malformed global initializer set"); 1963 1964 // Look for intrinsic functions which need to be upgraded at some point 1965 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1966 FI != FE; ++FI) { 1967 Function *NewFn; 1968 if (UpgradeIntrinsicFunction(FI, NewFn)) 1969 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1970 } 1971 1972 // Look for global variables which need to be renamed. 1973 for (Module::global_iterator 1974 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1975 GI != GE;) { 1976 GlobalVariable *GV = GI++; 1977 UpgradeGlobalVariable(GV); 1978 } 1979 1980 // Force deallocation of memory for these vectors to favor the client that 1981 // want lazy deserialization. 1982 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1983 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1984 return std::error_code(); 1985 } 1986 1987 std::error_code BitcodeReader::ParseModule(bool Resume) { 1988 if (Resume) 1989 Stream.JumpToBit(NextUnreadBit); 1990 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1991 return Error("Invalid record"); 1992 1993 SmallVector<uint64_t, 64> Record; 1994 std::vector<std::string> SectionTable; 1995 std::vector<std::string> GCTable; 1996 1997 // Read all the records for this module. 1998 while (1) { 1999 BitstreamEntry Entry = Stream.advance(); 2000 2001 switch (Entry.Kind) { 2002 case BitstreamEntry::Error: 2003 return Error("Malformed block"); 2004 case BitstreamEntry::EndBlock: 2005 return GlobalCleanup(); 2006 2007 case BitstreamEntry::SubBlock: 2008 switch (Entry.ID) { 2009 default: // Skip unknown content. 2010 if (Stream.SkipBlock()) 2011 return Error("Invalid record"); 2012 break; 2013 case bitc::BLOCKINFO_BLOCK_ID: 2014 if (Stream.ReadBlockInfoBlock()) 2015 return Error("Malformed block"); 2016 break; 2017 case bitc::PARAMATTR_BLOCK_ID: 2018 if (std::error_code EC = ParseAttributeBlock()) 2019 return EC; 2020 break; 2021 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2022 if (std::error_code EC = ParseAttributeGroupBlock()) 2023 return EC; 2024 break; 2025 case bitc::TYPE_BLOCK_ID_NEW: 2026 if (std::error_code EC = ParseTypeTable()) 2027 return EC; 2028 break; 2029 case bitc::VALUE_SYMTAB_BLOCK_ID: 2030 if (std::error_code EC = ParseValueSymbolTable()) 2031 return EC; 2032 SeenValueSymbolTable = true; 2033 break; 2034 case bitc::CONSTANTS_BLOCK_ID: 2035 if (std::error_code EC = ParseConstants()) 2036 return EC; 2037 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2038 return EC; 2039 break; 2040 case bitc::METADATA_BLOCK_ID: 2041 if (std::error_code EC = ParseMetadata()) 2042 return EC; 2043 break; 2044 case bitc::FUNCTION_BLOCK_ID: 2045 // If this is the first function body we've seen, reverse the 2046 // FunctionsWithBodies list. 2047 if (!SeenFirstFunctionBody) { 2048 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2049 if (std::error_code EC = GlobalCleanup()) 2050 return EC; 2051 SeenFirstFunctionBody = true; 2052 } 2053 2054 if (std::error_code EC = RememberAndSkipFunctionBody()) 2055 return EC; 2056 // For streaming bitcode, suspend parsing when we reach the function 2057 // bodies. Subsequent materialization calls will resume it when 2058 // necessary. For streaming, the function bodies must be at the end of 2059 // the bitcode. If the bitcode file is old, the symbol table will be 2060 // at the end instead and will not have been seen yet. In this case, 2061 // just finish the parse now. 2062 if (LazyStreamer && SeenValueSymbolTable) { 2063 NextUnreadBit = Stream.GetCurrentBitNo(); 2064 return std::error_code(); 2065 } 2066 break; 2067 case bitc::USELIST_BLOCK_ID: 2068 if (std::error_code EC = ParseUseLists()) 2069 return EC; 2070 break; 2071 } 2072 continue; 2073 2074 case BitstreamEntry::Record: 2075 // The interesting case. 2076 break; 2077 } 2078 2079 2080 // Read a record. 2081 switch (Stream.readRecord(Entry.ID, Record)) { 2082 default: break; // Default behavior, ignore unknown content. 2083 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2084 if (Record.size() < 1) 2085 return Error("Invalid record"); 2086 // Only version #0 and #1 are supported so far. 2087 unsigned module_version = Record[0]; 2088 switch (module_version) { 2089 default: 2090 return Error("Invalid value"); 2091 case 0: 2092 UseRelativeIDs = false; 2093 break; 2094 case 1: 2095 UseRelativeIDs = true; 2096 break; 2097 } 2098 break; 2099 } 2100 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2101 std::string S; 2102 if (ConvertToString(Record, 0, S)) 2103 return Error("Invalid record"); 2104 TheModule->setTargetTriple(S); 2105 break; 2106 } 2107 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2108 std::string S; 2109 if (ConvertToString(Record, 0, S)) 2110 return Error("Invalid record"); 2111 TheModule->setDataLayout(S); 2112 break; 2113 } 2114 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2115 std::string S; 2116 if (ConvertToString(Record, 0, S)) 2117 return Error("Invalid record"); 2118 TheModule->setModuleInlineAsm(S); 2119 break; 2120 } 2121 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2122 // FIXME: Remove in 4.0. 2123 std::string S; 2124 if (ConvertToString(Record, 0, S)) 2125 return Error("Invalid record"); 2126 // Ignore value. 2127 break; 2128 } 2129 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2130 std::string S; 2131 if (ConvertToString(Record, 0, S)) 2132 return Error("Invalid record"); 2133 SectionTable.push_back(S); 2134 break; 2135 } 2136 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2137 std::string S; 2138 if (ConvertToString(Record, 0, S)) 2139 return Error("Invalid record"); 2140 GCTable.push_back(S); 2141 break; 2142 } 2143 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2144 if (Record.size() < 2) 2145 return Error("Invalid record"); 2146 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2147 unsigned ComdatNameSize = Record[1]; 2148 std::string ComdatName; 2149 ComdatName.reserve(ComdatNameSize); 2150 for (unsigned i = 0; i != ComdatNameSize; ++i) 2151 ComdatName += (char)Record[2 + i]; 2152 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2153 C->setSelectionKind(SK); 2154 ComdatList.push_back(C); 2155 break; 2156 } 2157 // GLOBALVAR: [pointer type, isconst, initid, 2158 // linkage, alignment, section, visibility, threadlocal, 2159 // unnamed_addr, dllstorageclass] 2160 case bitc::MODULE_CODE_GLOBALVAR: { 2161 if (Record.size() < 6) 2162 return Error("Invalid record"); 2163 Type *Ty = getTypeByID(Record[0]); 2164 if (!Ty) 2165 return Error("Invalid record"); 2166 if (!Ty->isPointerTy()) 2167 return Error("Invalid type for value"); 2168 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2169 Ty = cast<PointerType>(Ty)->getElementType(); 2170 2171 bool isConstant = Record[1]; 2172 uint64_t RawLinkage = Record[3]; 2173 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2174 unsigned Alignment = (1 << Record[4]) >> 1; 2175 std::string Section; 2176 if (Record[5]) { 2177 if (Record[5]-1 >= SectionTable.size()) 2178 return Error("Invalid ID"); 2179 Section = SectionTable[Record[5]-1]; 2180 } 2181 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2182 // Local linkage must have default visibility. 2183 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2184 // FIXME: Change to an error if non-default in 4.0. 2185 Visibility = GetDecodedVisibility(Record[6]); 2186 2187 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2188 if (Record.size() > 7) 2189 TLM = GetDecodedThreadLocalMode(Record[7]); 2190 2191 bool UnnamedAddr = false; 2192 if (Record.size() > 8) 2193 UnnamedAddr = Record[8]; 2194 2195 bool ExternallyInitialized = false; 2196 if (Record.size() > 9) 2197 ExternallyInitialized = Record[9]; 2198 2199 GlobalVariable *NewGV = 2200 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2201 TLM, AddressSpace, ExternallyInitialized); 2202 NewGV->setAlignment(Alignment); 2203 if (!Section.empty()) 2204 NewGV->setSection(Section); 2205 NewGV->setVisibility(Visibility); 2206 NewGV->setUnnamedAddr(UnnamedAddr); 2207 2208 if (Record.size() > 10) 2209 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2210 else 2211 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2212 2213 ValueList.push_back(NewGV); 2214 2215 // Remember which value to use for the global initializer. 2216 if (unsigned InitID = Record[2]) 2217 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2218 2219 if (Record.size() > 11) { 2220 if (unsigned ComdatID = Record[11]) { 2221 assert(ComdatID <= ComdatList.size()); 2222 NewGV->setComdat(ComdatList[ComdatID - 1]); 2223 } 2224 } else if (hasImplicitComdat(RawLinkage)) { 2225 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2226 } 2227 break; 2228 } 2229 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2230 // alignment, section, visibility, gc, unnamed_addr, 2231 // prologuedata, dllstorageclass, comdat, prefixdata] 2232 case bitc::MODULE_CODE_FUNCTION: { 2233 if (Record.size() < 8) 2234 return Error("Invalid record"); 2235 Type *Ty = getTypeByID(Record[0]); 2236 if (!Ty) 2237 return Error("Invalid record"); 2238 if (!Ty->isPointerTy()) 2239 return Error("Invalid type for value"); 2240 FunctionType *FTy = 2241 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2242 if (!FTy) 2243 return Error("Invalid type for value"); 2244 2245 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2246 "", TheModule); 2247 2248 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2249 bool isProto = Record[2]; 2250 uint64_t RawLinkage = Record[3]; 2251 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2252 Func->setAttributes(getAttributes(Record[4])); 2253 2254 Func->setAlignment((1 << Record[5]) >> 1); 2255 if (Record[6]) { 2256 if (Record[6]-1 >= SectionTable.size()) 2257 return Error("Invalid ID"); 2258 Func->setSection(SectionTable[Record[6]-1]); 2259 } 2260 // Local linkage must have default visibility. 2261 if (!Func->hasLocalLinkage()) 2262 // FIXME: Change to an error if non-default in 4.0. 2263 Func->setVisibility(GetDecodedVisibility(Record[7])); 2264 if (Record.size() > 8 && Record[8]) { 2265 if (Record[8]-1 > GCTable.size()) 2266 return Error("Invalid ID"); 2267 Func->setGC(GCTable[Record[8]-1].c_str()); 2268 } 2269 bool UnnamedAddr = false; 2270 if (Record.size() > 9) 2271 UnnamedAddr = Record[9]; 2272 Func->setUnnamedAddr(UnnamedAddr); 2273 if (Record.size() > 10 && Record[10] != 0) 2274 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2275 2276 if (Record.size() > 11) 2277 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2278 else 2279 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2280 2281 if (Record.size() > 12) { 2282 if (unsigned ComdatID = Record[12]) { 2283 assert(ComdatID <= ComdatList.size()); 2284 Func->setComdat(ComdatList[ComdatID - 1]); 2285 } 2286 } else if (hasImplicitComdat(RawLinkage)) { 2287 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2288 } 2289 2290 if (Record.size() > 13 && Record[13] != 0) 2291 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2292 2293 ValueList.push_back(Func); 2294 2295 // If this is a function with a body, remember the prototype we are 2296 // creating now, so that we can match up the body with them later. 2297 if (!isProto) { 2298 Func->setIsMaterializable(true); 2299 FunctionsWithBodies.push_back(Func); 2300 if (LazyStreamer) 2301 DeferredFunctionInfo[Func] = 0; 2302 } 2303 break; 2304 } 2305 // ALIAS: [alias type, aliasee val#, linkage] 2306 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2307 case bitc::MODULE_CODE_ALIAS: { 2308 if (Record.size() < 3) 2309 return Error("Invalid record"); 2310 Type *Ty = getTypeByID(Record[0]); 2311 if (!Ty) 2312 return Error("Invalid record"); 2313 auto *PTy = dyn_cast<PointerType>(Ty); 2314 if (!PTy) 2315 return Error("Invalid type for value"); 2316 2317 auto *NewGA = 2318 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2319 getDecodedLinkage(Record[2]), "", TheModule); 2320 // Old bitcode files didn't have visibility field. 2321 // Local linkage must have default visibility. 2322 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2323 // FIXME: Change to an error if non-default in 4.0. 2324 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2325 if (Record.size() > 4) 2326 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2327 else 2328 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2329 if (Record.size() > 5) 2330 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2331 if (Record.size() > 6) 2332 NewGA->setUnnamedAddr(Record[6]); 2333 ValueList.push_back(NewGA); 2334 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2335 break; 2336 } 2337 /// MODULE_CODE_PURGEVALS: [numvals] 2338 case bitc::MODULE_CODE_PURGEVALS: 2339 // Trim down the value list to the specified size. 2340 if (Record.size() < 1 || Record[0] > ValueList.size()) 2341 return Error("Invalid record"); 2342 ValueList.shrinkTo(Record[0]); 2343 break; 2344 } 2345 Record.clear(); 2346 } 2347 } 2348 2349 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2350 TheModule = nullptr; 2351 2352 if (std::error_code EC = InitStream()) 2353 return EC; 2354 2355 // Sniff for the signature. 2356 if (Stream.Read(8) != 'B' || 2357 Stream.Read(8) != 'C' || 2358 Stream.Read(4) != 0x0 || 2359 Stream.Read(4) != 0xC || 2360 Stream.Read(4) != 0xE || 2361 Stream.Read(4) != 0xD) 2362 return Error("Invalid bitcode signature"); 2363 2364 // We expect a number of well-defined blocks, though we don't necessarily 2365 // need to understand them all. 2366 while (1) { 2367 if (Stream.AtEndOfStream()) 2368 return std::error_code(); 2369 2370 BitstreamEntry Entry = 2371 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2372 2373 switch (Entry.Kind) { 2374 case BitstreamEntry::Error: 2375 return Error("Malformed block"); 2376 case BitstreamEntry::EndBlock: 2377 return std::error_code(); 2378 2379 case BitstreamEntry::SubBlock: 2380 switch (Entry.ID) { 2381 case bitc::BLOCKINFO_BLOCK_ID: 2382 if (Stream.ReadBlockInfoBlock()) 2383 return Error("Malformed block"); 2384 break; 2385 case bitc::MODULE_BLOCK_ID: 2386 // Reject multiple MODULE_BLOCK's in a single bitstream. 2387 if (TheModule) 2388 return Error("Invalid multiple blocks"); 2389 TheModule = M; 2390 if (std::error_code EC = ParseModule(false)) 2391 return EC; 2392 if (LazyStreamer) 2393 return std::error_code(); 2394 break; 2395 default: 2396 if (Stream.SkipBlock()) 2397 return Error("Invalid record"); 2398 break; 2399 } 2400 continue; 2401 case BitstreamEntry::Record: 2402 // There should be no records in the top-level of blocks. 2403 2404 // The ranlib in Xcode 4 will align archive members by appending newlines 2405 // to the end of them. If this file size is a multiple of 4 but not 8, we 2406 // have to read and ignore these final 4 bytes :-( 2407 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2408 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2409 Stream.AtEndOfStream()) 2410 return std::error_code(); 2411 2412 return Error("Invalid record"); 2413 } 2414 } 2415 } 2416 2417 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2418 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2419 return Error("Invalid record"); 2420 2421 SmallVector<uint64_t, 64> Record; 2422 2423 std::string Triple; 2424 // Read all the records for this module. 2425 while (1) { 2426 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2427 2428 switch (Entry.Kind) { 2429 case BitstreamEntry::SubBlock: // Handled for us already. 2430 case BitstreamEntry::Error: 2431 return Error("Malformed block"); 2432 case BitstreamEntry::EndBlock: 2433 return Triple; 2434 case BitstreamEntry::Record: 2435 // The interesting case. 2436 break; 2437 } 2438 2439 // Read a record. 2440 switch (Stream.readRecord(Entry.ID, Record)) { 2441 default: break; // Default behavior, ignore unknown content. 2442 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2443 std::string S; 2444 if (ConvertToString(Record, 0, S)) 2445 return Error("Invalid record"); 2446 Triple = S; 2447 break; 2448 } 2449 } 2450 Record.clear(); 2451 } 2452 llvm_unreachable("Exit infinite loop"); 2453 } 2454 2455 ErrorOr<std::string> BitcodeReader::parseTriple() { 2456 if (std::error_code EC = InitStream()) 2457 return EC; 2458 2459 // Sniff for the signature. 2460 if (Stream.Read(8) != 'B' || 2461 Stream.Read(8) != 'C' || 2462 Stream.Read(4) != 0x0 || 2463 Stream.Read(4) != 0xC || 2464 Stream.Read(4) != 0xE || 2465 Stream.Read(4) != 0xD) 2466 return Error("Invalid bitcode signature"); 2467 2468 // We expect a number of well-defined blocks, though we don't necessarily 2469 // need to understand them all. 2470 while (1) { 2471 BitstreamEntry Entry = Stream.advance(); 2472 2473 switch (Entry.Kind) { 2474 case BitstreamEntry::Error: 2475 return Error("Malformed block"); 2476 case BitstreamEntry::EndBlock: 2477 return std::error_code(); 2478 2479 case BitstreamEntry::SubBlock: 2480 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2481 return parseModuleTriple(); 2482 2483 // Ignore other sub-blocks. 2484 if (Stream.SkipBlock()) 2485 return Error("Malformed block"); 2486 continue; 2487 2488 case BitstreamEntry::Record: 2489 Stream.skipRecord(Entry.ID); 2490 continue; 2491 } 2492 } 2493 } 2494 2495 /// ParseMetadataAttachment - Parse metadata attachments. 2496 std::error_code BitcodeReader::ParseMetadataAttachment() { 2497 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2498 return Error("Invalid record"); 2499 2500 SmallVector<uint64_t, 64> Record; 2501 while (1) { 2502 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2503 2504 switch (Entry.Kind) { 2505 case BitstreamEntry::SubBlock: // Handled for us already. 2506 case BitstreamEntry::Error: 2507 return Error("Malformed block"); 2508 case BitstreamEntry::EndBlock: 2509 return std::error_code(); 2510 case BitstreamEntry::Record: 2511 // The interesting case. 2512 break; 2513 } 2514 2515 // Read a metadata attachment record. 2516 Record.clear(); 2517 switch (Stream.readRecord(Entry.ID, Record)) { 2518 default: // Default behavior: ignore. 2519 break; 2520 case bitc::METADATA_ATTACHMENT: { 2521 unsigned RecordLength = Record.size(); 2522 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2523 return Error("Invalid record"); 2524 Instruction *Inst = InstructionList[Record[0]]; 2525 for (unsigned i = 1; i != RecordLength; i = i+2) { 2526 unsigned Kind = Record[i]; 2527 DenseMap<unsigned, unsigned>::iterator I = 2528 MDKindMap.find(Kind); 2529 if (I == MDKindMap.end()) 2530 return Error("Invalid ID"); 2531 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2532 if (isa<LocalAsMetadata>(Node)) 2533 // Drop the attachment. This used to be legal, but there's no 2534 // upgrade path. 2535 break; 2536 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2537 if (I->second == LLVMContext::MD_tbaa) 2538 InstsWithTBAATag.push_back(Inst); 2539 } 2540 break; 2541 } 2542 } 2543 } 2544 } 2545 2546 /// ParseFunctionBody - Lazily parse the specified function body block. 2547 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2548 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2549 return Error("Invalid record"); 2550 2551 InstructionList.clear(); 2552 unsigned ModuleValueListSize = ValueList.size(); 2553 unsigned ModuleMDValueListSize = MDValueList.size(); 2554 2555 // Add all the function arguments to the value table. 2556 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2557 ValueList.push_back(I); 2558 2559 unsigned NextValueNo = ValueList.size(); 2560 BasicBlock *CurBB = nullptr; 2561 unsigned CurBBNo = 0; 2562 2563 DebugLoc LastLoc; 2564 auto getLastInstruction = [&]() -> Instruction * { 2565 if (CurBB && !CurBB->empty()) 2566 return &CurBB->back(); 2567 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2568 !FunctionBBs[CurBBNo - 1]->empty()) 2569 return &FunctionBBs[CurBBNo - 1]->back(); 2570 return nullptr; 2571 }; 2572 2573 // Read all the records. 2574 SmallVector<uint64_t, 64> Record; 2575 while (1) { 2576 BitstreamEntry Entry = Stream.advance(); 2577 2578 switch (Entry.Kind) { 2579 case BitstreamEntry::Error: 2580 return Error("Malformed block"); 2581 case BitstreamEntry::EndBlock: 2582 goto OutOfRecordLoop; 2583 2584 case BitstreamEntry::SubBlock: 2585 switch (Entry.ID) { 2586 default: // Skip unknown content. 2587 if (Stream.SkipBlock()) 2588 return Error("Invalid record"); 2589 break; 2590 case bitc::CONSTANTS_BLOCK_ID: 2591 if (std::error_code EC = ParseConstants()) 2592 return EC; 2593 NextValueNo = ValueList.size(); 2594 break; 2595 case bitc::VALUE_SYMTAB_BLOCK_ID: 2596 if (std::error_code EC = ParseValueSymbolTable()) 2597 return EC; 2598 break; 2599 case bitc::METADATA_ATTACHMENT_ID: 2600 if (std::error_code EC = ParseMetadataAttachment()) 2601 return EC; 2602 break; 2603 case bitc::METADATA_BLOCK_ID: 2604 if (std::error_code EC = ParseMetadata()) 2605 return EC; 2606 break; 2607 case bitc::USELIST_BLOCK_ID: 2608 if (std::error_code EC = ParseUseLists()) 2609 return EC; 2610 break; 2611 } 2612 continue; 2613 2614 case BitstreamEntry::Record: 2615 // The interesting case. 2616 break; 2617 } 2618 2619 // Read a record. 2620 Record.clear(); 2621 Instruction *I = nullptr; 2622 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2623 switch (BitCode) { 2624 default: // Default behavior: reject 2625 return Error("Invalid value"); 2626 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2627 if (Record.size() < 1 || Record[0] == 0) 2628 return Error("Invalid record"); 2629 // Create all the basic blocks for the function. 2630 FunctionBBs.resize(Record[0]); 2631 2632 // See if anything took the address of blocks in this function. 2633 auto BBFRI = BasicBlockFwdRefs.find(F); 2634 if (BBFRI == BasicBlockFwdRefs.end()) { 2635 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2636 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2637 } else { 2638 auto &BBRefs = BBFRI->second; 2639 // Check for invalid basic block references. 2640 if (BBRefs.size() > FunctionBBs.size()) 2641 return Error("Invalid ID"); 2642 assert(!BBRefs.empty() && "Unexpected empty array"); 2643 assert(!BBRefs.front() && "Invalid reference to entry block"); 2644 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2645 ++I) 2646 if (I < RE && BBRefs[I]) { 2647 BBRefs[I]->insertInto(F); 2648 FunctionBBs[I] = BBRefs[I]; 2649 } else { 2650 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2651 } 2652 2653 // Erase from the table. 2654 BasicBlockFwdRefs.erase(BBFRI); 2655 } 2656 2657 CurBB = FunctionBBs[0]; 2658 continue; 2659 } 2660 2661 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2662 // This record indicates that the last instruction is at the same 2663 // location as the previous instruction with a location. 2664 I = getLastInstruction(); 2665 2666 if (!I) 2667 return Error("Invalid record"); 2668 I->setDebugLoc(LastLoc); 2669 I = nullptr; 2670 continue; 2671 2672 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2673 I = getLastInstruction(); 2674 if (!I || Record.size() < 4) 2675 return Error("Invalid record"); 2676 2677 unsigned Line = Record[0], Col = Record[1]; 2678 unsigned ScopeID = Record[2], IAID = Record[3]; 2679 2680 MDNode *Scope = nullptr, *IA = nullptr; 2681 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2682 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2683 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2684 I->setDebugLoc(LastLoc); 2685 I = nullptr; 2686 continue; 2687 } 2688 2689 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2690 unsigned OpNum = 0; 2691 Value *LHS, *RHS; 2692 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2693 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2694 OpNum+1 > Record.size()) 2695 return Error("Invalid record"); 2696 2697 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2698 if (Opc == -1) 2699 return Error("Invalid record"); 2700 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2701 InstructionList.push_back(I); 2702 if (OpNum < Record.size()) { 2703 if (Opc == Instruction::Add || 2704 Opc == Instruction::Sub || 2705 Opc == Instruction::Mul || 2706 Opc == Instruction::Shl) { 2707 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2708 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2709 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2710 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2711 } else if (Opc == Instruction::SDiv || 2712 Opc == Instruction::UDiv || 2713 Opc == Instruction::LShr || 2714 Opc == Instruction::AShr) { 2715 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2716 cast<BinaryOperator>(I)->setIsExact(true); 2717 } else if (isa<FPMathOperator>(I)) { 2718 FastMathFlags FMF; 2719 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2720 FMF.setUnsafeAlgebra(); 2721 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2722 FMF.setNoNaNs(); 2723 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2724 FMF.setNoInfs(); 2725 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2726 FMF.setNoSignedZeros(); 2727 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2728 FMF.setAllowReciprocal(); 2729 if (FMF.any()) 2730 I->setFastMathFlags(FMF); 2731 } 2732 2733 } 2734 break; 2735 } 2736 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2737 unsigned OpNum = 0; 2738 Value *Op; 2739 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2740 OpNum+2 != Record.size()) 2741 return Error("Invalid record"); 2742 2743 Type *ResTy = getTypeByID(Record[OpNum]); 2744 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2745 if (Opc == -1 || !ResTy) 2746 return Error("Invalid record"); 2747 Instruction *Temp = nullptr; 2748 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2749 if (Temp) { 2750 InstructionList.push_back(Temp); 2751 CurBB->getInstList().push_back(Temp); 2752 } 2753 } else { 2754 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2755 } 2756 InstructionList.push_back(I); 2757 break; 2758 } 2759 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2760 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2761 unsigned OpNum = 0; 2762 Value *BasePtr; 2763 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2764 return Error("Invalid record"); 2765 2766 SmallVector<Value*, 16> GEPIdx; 2767 while (OpNum != Record.size()) { 2768 Value *Op; 2769 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2770 return Error("Invalid record"); 2771 GEPIdx.push_back(Op); 2772 } 2773 2774 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2775 InstructionList.push_back(I); 2776 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2777 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2778 break; 2779 } 2780 2781 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2782 // EXTRACTVAL: [opty, opval, n x indices] 2783 unsigned OpNum = 0; 2784 Value *Agg; 2785 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2786 return Error("Invalid record"); 2787 2788 SmallVector<unsigned, 4> EXTRACTVALIdx; 2789 for (unsigned RecSize = Record.size(); 2790 OpNum != RecSize; ++OpNum) { 2791 uint64_t Index = Record[OpNum]; 2792 if ((unsigned)Index != Index) 2793 return Error("Invalid value"); 2794 EXTRACTVALIdx.push_back((unsigned)Index); 2795 } 2796 2797 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2798 InstructionList.push_back(I); 2799 break; 2800 } 2801 2802 case bitc::FUNC_CODE_INST_INSERTVAL: { 2803 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2804 unsigned OpNum = 0; 2805 Value *Agg; 2806 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2807 return Error("Invalid record"); 2808 Value *Val; 2809 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2810 return Error("Invalid record"); 2811 2812 SmallVector<unsigned, 4> INSERTVALIdx; 2813 for (unsigned RecSize = Record.size(); 2814 OpNum != RecSize; ++OpNum) { 2815 uint64_t Index = Record[OpNum]; 2816 if ((unsigned)Index != Index) 2817 return Error("Invalid value"); 2818 INSERTVALIdx.push_back((unsigned)Index); 2819 } 2820 2821 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2822 InstructionList.push_back(I); 2823 break; 2824 } 2825 2826 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2827 // obsolete form of select 2828 // handles select i1 ... in old bitcode 2829 unsigned OpNum = 0; 2830 Value *TrueVal, *FalseVal, *Cond; 2831 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2832 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2833 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2834 return Error("Invalid record"); 2835 2836 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2837 InstructionList.push_back(I); 2838 break; 2839 } 2840 2841 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2842 // new form of select 2843 // handles select i1 or select [N x i1] 2844 unsigned OpNum = 0; 2845 Value *TrueVal, *FalseVal, *Cond; 2846 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2847 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2848 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2849 return Error("Invalid record"); 2850 2851 // select condition can be either i1 or [N x i1] 2852 if (VectorType* vector_type = 2853 dyn_cast<VectorType>(Cond->getType())) { 2854 // expect <n x i1> 2855 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2856 return Error("Invalid type for value"); 2857 } else { 2858 // expect i1 2859 if (Cond->getType() != Type::getInt1Ty(Context)) 2860 return Error("Invalid type for value"); 2861 } 2862 2863 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2864 InstructionList.push_back(I); 2865 break; 2866 } 2867 2868 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2869 unsigned OpNum = 0; 2870 Value *Vec, *Idx; 2871 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2872 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2873 return Error("Invalid record"); 2874 I = ExtractElementInst::Create(Vec, Idx); 2875 InstructionList.push_back(I); 2876 break; 2877 } 2878 2879 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2880 unsigned OpNum = 0; 2881 Value *Vec, *Elt, *Idx; 2882 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2883 popValue(Record, OpNum, NextValueNo, 2884 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2885 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2886 return Error("Invalid record"); 2887 I = InsertElementInst::Create(Vec, Elt, Idx); 2888 InstructionList.push_back(I); 2889 break; 2890 } 2891 2892 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2893 unsigned OpNum = 0; 2894 Value *Vec1, *Vec2, *Mask; 2895 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2896 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2897 return Error("Invalid record"); 2898 2899 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2900 return Error("Invalid record"); 2901 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2902 InstructionList.push_back(I); 2903 break; 2904 } 2905 2906 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2907 // Old form of ICmp/FCmp returning bool 2908 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2909 // both legal on vectors but had different behaviour. 2910 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2911 // FCmp/ICmp returning bool or vector of bool 2912 2913 unsigned OpNum = 0; 2914 Value *LHS, *RHS; 2915 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2916 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2917 OpNum+1 != Record.size()) 2918 return Error("Invalid record"); 2919 2920 if (LHS->getType()->isFPOrFPVectorTy()) 2921 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2922 else 2923 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2924 InstructionList.push_back(I); 2925 break; 2926 } 2927 2928 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2929 { 2930 unsigned Size = Record.size(); 2931 if (Size == 0) { 2932 I = ReturnInst::Create(Context); 2933 InstructionList.push_back(I); 2934 break; 2935 } 2936 2937 unsigned OpNum = 0; 2938 Value *Op = nullptr; 2939 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2940 return Error("Invalid record"); 2941 if (OpNum != Record.size()) 2942 return Error("Invalid record"); 2943 2944 I = ReturnInst::Create(Context, Op); 2945 InstructionList.push_back(I); 2946 break; 2947 } 2948 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2949 if (Record.size() != 1 && Record.size() != 3) 2950 return Error("Invalid record"); 2951 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2952 if (!TrueDest) 2953 return Error("Invalid record"); 2954 2955 if (Record.size() == 1) { 2956 I = BranchInst::Create(TrueDest); 2957 InstructionList.push_back(I); 2958 } 2959 else { 2960 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2961 Value *Cond = getValue(Record, 2, NextValueNo, 2962 Type::getInt1Ty(Context)); 2963 if (!FalseDest || !Cond) 2964 return Error("Invalid record"); 2965 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2966 InstructionList.push_back(I); 2967 } 2968 break; 2969 } 2970 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2971 // Check magic 2972 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2973 // "New" SwitchInst format with case ranges. The changes to write this 2974 // format were reverted but we still recognize bitcode that uses it. 2975 // Hopefully someday we will have support for case ranges and can use 2976 // this format again. 2977 2978 Type *OpTy = getTypeByID(Record[1]); 2979 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2980 2981 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 2982 BasicBlock *Default = getBasicBlock(Record[3]); 2983 if (!OpTy || !Cond || !Default) 2984 return Error("Invalid record"); 2985 2986 unsigned NumCases = Record[4]; 2987 2988 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2989 InstructionList.push_back(SI); 2990 2991 unsigned CurIdx = 5; 2992 for (unsigned i = 0; i != NumCases; ++i) { 2993 SmallVector<ConstantInt*, 1> CaseVals; 2994 unsigned NumItems = Record[CurIdx++]; 2995 for (unsigned ci = 0; ci != NumItems; ++ci) { 2996 bool isSingleNumber = Record[CurIdx++]; 2997 2998 APInt Low; 2999 unsigned ActiveWords = 1; 3000 if (ValueBitWidth > 64) 3001 ActiveWords = Record[CurIdx++]; 3002 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3003 ValueBitWidth); 3004 CurIdx += ActiveWords; 3005 3006 if (!isSingleNumber) { 3007 ActiveWords = 1; 3008 if (ValueBitWidth > 64) 3009 ActiveWords = Record[CurIdx++]; 3010 APInt High = 3011 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3012 ValueBitWidth); 3013 CurIdx += ActiveWords; 3014 3015 // FIXME: It is not clear whether values in the range should be 3016 // compared as signed or unsigned values. The partially 3017 // implemented changes that used this format in the past used 3018 // unsigned comparisons. 3019 for ( ; Low.ule(High); ++Low) 3020 CaseVals.push_back(ConstantInt::get(Context, Low)); 3021 } else 3022 CaseVals.push_back(ConstantInt::get(Context, Low)); 3023 } 3024 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3025 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3026 cve = CaseVals.end(); cvi != cve; ++cvi) 3027 SI->addCase(*cvi, DestBB); 3028 } 3029 I = SI; 3030 break; 3031 } 3032 3033 // Old SwitchInst format without case ranges. 3034 3035 if (Record.size() < 3 || (Record.size() & 1) == 0) 3036 return Error("Invalid record"); 3037 Type *OpTy = getTypeByID(Record[0]); 3038 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3039 BasicBlock *Default = getBasicBlock(Record[2]); 3040 if (!OpTy || !Cond || !Default) 3041 return Error("Invalid record"); 3042 unsigned NumCases = (Record.size()-3)/2; 3043 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3044 InstructionList.push_back(SI); 3045 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3046 ConstantInt *CaseVal = 3047 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3048 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3049 if (!CaseVal || !DestBB) { 3050 delete SI; 3051 return Error("Invalid record"); 3052 } 3053 SI->addCase(CaseVal, DestBB); 3054 } 3055 I = SI; 3056 break; 3057 } 3058 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3059 if (Record.size() < 2) 3060 return Error("Invalid record"); 3061 Type *OpTy = getTypeByID(Record[0]); 3062 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3063 if (!OpTy || !Address) 3064 return Error("Invalid record"); 3065 unsigned NumDests = Record.size()-2; 3066 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3067 InstructionList.push_back(IBI); 3068 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3069 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3070 IBI->addDestination(DestBB); 3071 } else { 3072 delete IBI; 3073 return Error("Invalid record"); 3074 } 3075 } 3076 I = IBI; 3077 break; 3078 } 3079 3080 case bitc::FUNC_CODE_INST_INVOKE: { 3081 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3082 if (Record.size() < 4) 3083 return Error("Invalid record"); 3084 AttributeSet PAL = getAttributes(Record[0]); 3085 unsigned CCInfo = Record[1]; 3086 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3087 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3088 3089 unsigned OpNum = 4; 3090 Value *Callee; 3091 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3092 return Error("Invalid record"); 3093 3094 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3095 FunctionType *FTy = !CalleeTy ? nullptr : 3096 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3097 3098 // Check that the right number of fixed parameters are here. 3099 if (!FTy || !NormalBB || !UnwindBB || 3100 Record.size() < OpNum+FTy->getNumParams()) 3101 return Error("Invalid record"); 3102 3103 SmallVector<Value*, 16> Ops; 3104 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3105 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3106 FTy->getParamType(i))); 3107 if (!Ops.back()) 3108 return Error("Invalid record"); 3109 } 3110 3111 if (!FTy->isVarArg()) { 3112 if (Record.size() != OpNum) 3113 return Error("Invalid record"); 3114 } else { 3115 // Read type/value pairs for varargs params. 3116 while (OpNum != Record.size()) { 3117 Value *Op; 3118 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3119 return Error("Invalid record"); 3120 Ops.push_back(Op); 3121 } 3122 } 3123 3124 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3125 InstructionList.push_back(I); 3126 cast<InvokeInst>(I)->setCallingConv( 3127 static_cast<CallingConv::ID>(CCInfo)); 3128 cast<InvokeInst>(I)->setAttributes(PAL); 3129 break; 3130 } 3131 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3132 unsigned Idx = 0; 3133 Value *Val = nullptr; 3134 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3135 return Error("Invalid record"); 3136 I = ResumeInst::Create(Val); 3137 InstructionList.push_back(I); 3138 break; 3139 } 3140 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3141 I = new UnreachableInst(Context); 3142 InstructionList.push_back(I); 3143 break; 3144 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3145 if (Record.size() < 1 || ((Record.size()-1)&1)) 3146 return Error("Invalid record"); 3147 Type *Ty = getTypeByID(Record[0]); 3148 if (!Ty) 3149 return Error("Invalid record"); 3150 3151 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3152 InstructionList.push_back(PN); 3153 3154 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3155 Value *V; 3156 // With the new function encoding, it is possible that operands have 3157 // negative IDs (for forward references). Use a signed VBR 3158 // representation to keep the encoding small. 3159 if (UseRelativeIDs) 3160 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3161 else 3162 V = getValue(Record, 1+i, NextValueNo, Ty); 3163 BasicBlock *BB = getBasicBlock(Record[2+i]); 3164 if (!V || !BB) 3165 return Error("Invalid record"); 3166 PN->addIncoming(V, BB); 3167 } 3168 I = PN; 3169 break; 3170 } 3171 3172 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3173 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3174 unsigned Idx = 0; 3175 if (Record.size() < 4) 3176 return Error("Invalid record"); 3177 Type *Ty = getTypeByID(Record[Idx++]); 3178 if (!Ty) 3179 return Error("Invalid record"); 3180 Value *PersFn = nullptr; 3181 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3182 return Error("Invalid record"); 3183 3184 bool IsCleanup = !!Record[Idx++]; 3185 unsigned NumClauses = Record[Idx++]; 3186 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3187 LP->setCleanup(IsCleanup); 3188 for (unsigned J = 0; J != NumClauses; ++J) { 3189 LandingPadInst::ClauseType CT = 3190 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3191 Value *Val; 3192 3193 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3194 delete LP; 3195 return Error("Invalid record"); 3196 } 3197 3198 assert((CT != LandingPadInst::Catch || 3199 !isa<ArrayType>(Val->getType())) && 3200 "Catch clause has a invalid type!"); 3201 assert((CT != LandingPadInst::Filter || 3202 isa<ArrayType>(Val->getType())) && 3203 "Filter clause has invalid type!"); 3204 LP->addClause(cast<Constant>(Val)); 3205 } 3206 3207 I = LP; 3208 InstructionList.push_back(I); 3209 break; 3210 } 3211 3212 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3213 if (Record.size() != 4) 3214 return Error("Invalid record"); 3215 PointerType *Ty = 3216 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3217 Type *OpTy = getTypeByID(Record[1]); 3218 Value *Size = getFnValueByID(Record[2], OpTy); 3219 unsigned AlignRecord = Record[3]; 3220 bool InAlloca = AlignRecord & (1 << 5); 3221 unsigned Align = AlignRecord & ((1 << 5) - 1); 3222 if (!Ty || !Size) 3223 return Error("Invalid record"); 3224 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3225 AI->setUsedWithInAlloca(InAlloca); 3226 I = AI; 3227 InstructionList.push_back(I); 3228 break; 3229 } 3230 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3231 unsigned OpNum = 0; 3232 Value *Op; 3233 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3234 OpNum+2 != Record.size()) 3235 return Error("Invalid record"); 3236 3237 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3238 InstructionList.push_back(I); 3239 break; 3240 } 3241 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3242 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3243 unsigned OpNum = 0; 3244 Value *Op; 3245 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3246 OpNum+4 != Record.size()) 3247 return Error("Invalid record"); 3248 3249 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3250 if (Ordering == NotAtomic || Ordering == Release || 3251 Ordering == AcquireRelease) 3252 return Error("Invalid record"); 3253 if (Ordering != NotAtomic && Record[OpNum] == 0) 3254 return Error("Invalid record"); 3255 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3256 3257 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3258 Ordering, SynchScope); 3259 InstructionList.push_back(I); 3260 break; 3261 } 3262 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3263 unsigned OpNum = 0; 3264 Value *Val, *Ptr; 3265 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3266 popValue(Record, OpNum, NextValueNo, 3267 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3268 OpNum+2 != Record.size()) 3269 return Error("Invalid record"); 3270 3271 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3272 InstructionList.push_back(I); 3273 break; 3274 } 3275 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3276 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3277 unsigned OpNum = 0; 3278 Value *Val, *Ptr; 3279 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3280 popValue(Record, OpNum, NextValueNo, 3281 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3282 OpNum+4 != Record.size()) 3283 return Error("Invalid record"); 3284 3285 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3286 if (Ordering == NotAtomic || Ordering == Acquire || 3287 Ordering == AcquireRelease) 3288 return Error("Invalid record"); 3289 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3290 if (Ordering != NotAtomic && Record[OpNum] == 0) 3291 return Error("Invalid record"); 3292 3293 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3294 Ordering, SynchScope); 3295 InstructionList.push_back(I); 3296 break; 3297 } 3298 case bitc::FUNC_CODE_INST_CMPXCHG: { 3299 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3300 // failureordering?, isweak?] 3301 unsigned OpNum = 0; 3302 Value *Ptr, *Cmp, *New; 3303 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3304 popValue(Record, OpNum, NextValueNo, 3305 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3306 popValue(Record, OpNum, NextValueNo, 3307 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3308 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3309 return Error("Invalid record"); 3310 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3311 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3312 return Error("Invalid record"); 3313 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3314 3315 AtomicOrdering FailureOrdering; 3316 if (Record.size() < 7) 3317 FailureOrdering = 3318 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3319 else 3320 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3321 3322 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3323 SynchScope); 3324 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3325 3326 if (Record.size() < 8) { 3327 // Before weak cmpxchgs existed, the instruction simply returned the 3328 // value loaded from memory, so bitcode files from that era will be 3329 // expecting the first component of a modern cmpxchg. 3330 CurBB->getInstList().push_back(I); 3331 I = ExtractValueInst::Create(I, 0); 3332 } else { 3333 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3334 } 3335 3336 InstructionList.push_back(I); 3337 break; 3338 } 3339 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3340 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3341 unsigned OpNum = 0; 3342 Value *Ptr, *Val; 3343 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3344 popValue(Record, OpNum, NextValueNo, 3345 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3346 OpNum+4 != Record.size()) 3347 return Error("Invalid record"); 3348 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3349 if (Operation < AtomicRMWInst::FIRST_BINOP || 3350 Operation > AtomicRMWInst::LAST_BINOP) 3351 return Error("Invalid record"); 3352 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3353 if (Ordering == NotAtomic || Ordering == Unordered) 3354 return Error("Invalid record"); 3355 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3356 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3357 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3358 InstructionList.push_back(I); 3359 break; 3360 } 3361 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3362 if (2 != Record.size()) 3363 return Error("Invalid record"); 3364 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3365 if (Ordering == NotAtomic || Ordering == Unordered || 3366 Ordering == Monotonic) 3367 return Error("Invalid record"); 3368 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3369 I = new FenceInst(Context, Ordering, SynchScope); 3370 InstructionList.push_back(I); 3371 break; 3372 } 3373 case bitc::FUNC_CODE_INST_CALL: { 3374 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3375 if (Record.size() < 3) 3376 return Error("Invalid record"); 3377 3378 AttributeSet PAL = getAttributes(Record[0]); 3379 unsigned CCInfo = Record[1]; 3380 3381 unsigned OpNum = 2; 3382 Value *Callee; 3383 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3384 return Error("Invalid record"); 3385 3386 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3387 FunctionType *FTy = nullptr; 3388 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3389 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3390 return Error("Invalid record"); 3391 3392 SmallVector<Value*, 16> Args; 3393 // Read the fixed params. 3394 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3395 if (FTy->getParamType(i)->isLabelTy()) 3396 Args.push_back(getBasicBlock(Record[OpNum])); 3397 else 3398 Args.push_back(getValue(Record, OpNum, NextValueNo, 3399 FTy->getParamType(i))); 3400 if (!Args.back()) 3401 return Error("Invalid record"); 3402 } 3403 3404 // Read type/value pairs for varargs params. 3405 if (!FTy->isVarArg()) { 3406 if (OpNum != Record.size()) 3407 return Error("Invalid record"); 3408 } else { 3409 while (OpNum != Record.size()) { 3410 Value *Op; 3411 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3412 return Error("Invalid record"); 3413 Args.push_back(Op); 3414 } 3415 } 3416 3417 I = CallInst::Create(Callee, Args); 3418 InstructionList.push_back(I); 3419 cast<CallInst>(I)->setCallingConv( 3420 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3421 CallInst::TailCallKind TCK = CallInst::TCK_None; 3422 if (CCInfo & 1) 3423 TCK = CallInst::TCK_Tail; 3424 if (CCInfo & (1 << 14)) 3425 TCK = CallInst::TCK_MustTail; 3426 cast<CallInst>(I)->setTailCallKind(TCK); 3427 cast<CallInst>(I)->setAttributes(PAL); 3428 break; 3429 } 3430 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3431 if (Record.size() < 3) 3432 return Error("Invalid record"); 3433 Type *OpTy = getTypeByID(Record[0]); 3434 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3435 Type *ResTy = getTypeByID(Record[2]); 3436 if (!OpTy || !Op || !ResTy) 3437 return Error("Invalid record"); 3438 I = new VAArgInst(Op, ResTy); 3439 InstructionList.push_back(I); 3440 break; 3441 } 3442 } 3443 3444 // Add instruction to end of current BB. If there is no current BB, reject 3445 // this file. 3446 if (!CurBB) { 3447 delete I; 3448 return Error("Invalid instruction with no BB"); 3449 } 3450 CurBB->getInstList().push_back(I); 3451 3452 // If this was a terminator instruction, move to the next block. 3453 if (isa<TerminatorInst>(I)) { 3454 ++CurBBNo; 3455 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3456 } 3457 3458 // Non-void values get registered in the value table for future use. 3459 if (I && !I->getType()->isVoidTy()) 3460 ValueList.AssignValue(I, NextValueNo++); 3461 } 3462 3463 OutOfRecordLoop: 3464 3465 // Check the function list for unresolved values. 3466 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3467 if (!A->getParent()) { 3468 // We found at least one unresolved value. Nuke them all to avoid leaks. 3469 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3470 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3471 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3472 delete A; 3473 } 3474 } 3475 return Error("Never resolved value found in function"); 3476 } 3477 } 3478 3479 // FIXME: Check for unresolved forward-declared metadata references 3480 // and clean up leaks. 3481 3482 // Trim the value list down to the size it was before we parsed this function. 3483 ValueList.shrinkTo(ModuleValueListSize); 3484 MDValueList.shrinkTo(ModuleMDValueListSize); 3485 std::vector<BasicBlock*>().swap(FunctionBBs); 3486 return std::error_code(); 3487 } 3488 3489 /// Find the function body in the bitcode stream 3490 std::error_code BitcodeReader::FindFunctionInStream( 3491 Function *F, 3492 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3493 while (DeferredFunctionInfoIterator->second == 0) { 3494 if (Stream.AtEndOfStream()) 3495 return Error("Could not find function in stream"); 3496 // ParseModule will parse the next body in the stream and set its 3497 // position in the DeferredFunctionInfo map. 3498 if (std::error_code EC = ParseModule(true)) 3499 return EC; 3500 } 3501 return std::error_code(); 3502 } 3503 3504 //===----------------------------------------------------------------------===// 3505 // GVMaterializer implementation 3506 //===----------------------------------------------------------------------===// 3507 3508 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3509 3510 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3511 Function *F = dyn_cast<Function>(GV); 3512 // If it's not a function or is already material, ignore the request. 3513 if (!F || !F->isMaterializable()) 3514 return std::error_code(); 3515 3516 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3517 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3518 // If its position is recorded as 0, its body is somewhere in the stream 3519 // but we haven't seen it yet. 3520 if (DFII->second == 0 && LazyStreamer) 3521 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3522 return EC; 3523 3524 // Move the bit stream to the saved position of the deferred function body. 3525 Stream.JumpToBit(DFII->second); 3526 3527 if (std::error_code EC = ParseFunctionBody(F)) 3528 return EC; 3529 F->setIsMaterializable(false); 3530 3531 // Upgrade any old intrinsic calls in the function. 3532 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3533 E = UpgradedIntrinsics.end(); I != E; ++I) { 3534 if (I->first != I->second) { 3535 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3536 UI != UE;) { 3537 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3538 UpgradeIntrinsicCall(CI, I->second); 3539 } 3540 } 3541 } 3542 3543 // Bring in any functions that this function forward-referenced via 3544 // blockaddresses. 3545 return materializeForwardReferencedFunctions(); 3546 } 3547 3548 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3549 const Function *F = dyn_cast<Function>(GV); 3550 if (!F || F->isDeclaration()) 3551 return false; 3552 3553 // Dematerializing F would leave dangling references that wouldn't be 3554 // reconnected on re-materialization. 3555 if (BlockAddressesTaken.count(F)) 3556 return false; 3557 3558 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3559 } 3560 3561 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3562 Function *F = dyn_cast<Function>(GV); 3563 // If this function isn't dematerializable, this is a noop. 3564 if (!F || !isDematerializable(F)) 3565 return; 3566 3567 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3568 3569 // Just forget the function body, we can remat it later. 3570 F->dropAllReferences(); 3571 F->setIsMaterializable(true); 3572 } 3573 3574 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3575 assert(M == TheModule && 3576 "Can only Materialize the Module this BitcodeReader is attached to."); 3577 3578 // Promise to materialize all forward references. 3579 WillMaterializeAllForwardRefs = true; 3580 3581 // Iterate over the module, deserializing any functions that are still on 3582 // disk. 3583 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3584 F != E; ++F) { 3585 if (std::error_code EC = materialize(F)) 3586 return EC; 3587 } 3588 // At this point, if there are any function bodies, the current bit is 3589 // pointing to the END_BLOCK record after them. Now make sure the rest 3590 // of the bits in the module have been read. 3591 if (NextUnreadBit) 3592 ParseModule(true); 3593 3594 // Check that all block address forward references got resolved (as we 3595 // promised above). 3596 if (!BasicBlockFwdRefs.empty()) 3597 return Error("Never resolved function from blockaddress"); 3598 3599 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3600 // delete the old functions to clean up. We can't do this unless the entire 3601 // module is materialized because there could always be another function body 3602 // with calls to the old function. 3603 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3604 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3605 if (I->first != I->second) { 3606 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3607 UI != UE;) { 3608 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3609 UpgradeIntrinsicCall(CI, I->second); 3610 } 3611 if (!I->first->use_empty()) 3612 I->first->replaceAllUsesWith(I->second); 3613 I->first->eraseFromParent(); 3614 } 3615 } 3616 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3617 3618 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3619 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3620 3621 UpgradeDebugInfo(*M); 3622 return std::error_code(); 3623 } 3624 3625 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3626 return IdentifiedStructTypes; 3627 } 3628 3629 std::error_code BitcodeReader::InitStream() { 3630 if (LazyStreamer) 3631 return InitLazyStream(); 3632 return InitStreamFromBuffer(); 3633 } 3634 3635 std::error_code BitcodeReader::InitStreamFromBuffer() { 3636 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3637 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3638 3639 if (Buffer->getBufferSize() & 3) 3640 return Error("Invalid bitcode signature"); 3641 3642 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3643 // The magic number is 0x0B17C0DE stored in little endian. 3644 if (isBitcodeWrapper(BufPtr, BufEnd)) 3645 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3646 return Error("Invalid bitcode wrapper header"); 3647 3648 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3649 Stream.init(&*StreamFile); 3650 3651 return std::error_code(); 3652 } 3653 3654 std::error_code BitcodeReader::InitLazyStream() { 3655 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3656 // see it. 3657 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3658 StreamingMemoryObject &Bytes = *OwnedBytes; 3659 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3660 Stream.init(&*StreamFile); 3661 3662 unsigned char buf[16]; 3663 if (Bytes.readBytes(buf, 16, 0) != 16) 3664 return Error("Invalid bitcode signature"); 3665 3666 if (!isBitcode(buf, buf + 16)) 3667 return Error("Invalid bitcode signature"); 3668 3669 if (isBitcodeWrapper(buf, buf + 4)) { 3670 const unsigned char *bitcodeStart = buf; 3671 const unsigned char *bitcodeEnd = buf + 16; 3672 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3673 Bytes.dropLeadingBytes(bitcodeStart - buf); 3674 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3675 } 3676 return std::error_code(); 3677 } 3678 3679 namespace { 3680 class BitcodeErrorCategoryType : public std::error_category { 3681 const char *name() const LLVM_NOEXCEPT override { 3682 return "llvm.bitcode"; 3683 } 3684 std::string message(int IE) const override { 3685 BitcodeError E = static_cast<BitcodeError>(IE); 3686 switch (E) { 3687 case BitcodeError::InvalidBitcodeSignature: 3688 return "Invalid bitcode signature"; 3689 case BitcodeError::CorruptedBitcode: 3690 return "Corrupted bitcode"; 3691 } 3692 llvm_unreachable("Unknown error type!"); 3693 } 3694 }; 3695 } 3696 3697 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3698 3699 const std::error_category &llvm::BitcodeErrorCategory() { 3700 return *ErrorCategory; 3701 } 3702 3703 //===----------------------------------------------------------------------===// 3704 // External interface 3705 //===----------------------------------------------------------------------===// 3706 3707 /// \brief Get a lazy one-at-time loading module from bitcode. 3708 /// 3709 /// This isn't always used in a lazy context. In particular, it's also used by 3710 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3711 /// in forward-referenced functions from block address references. 3712 /// 3713 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3714 /// materialize everything -- in particular, if this isn't truly lazy. 3715 static ErrorOr<Module *> 3716 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3717 LLVMContext &Context, bool WillMaterializeAll, 3718 DiagnosticHandlerFunction DiagnosticHandler) { 3719 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3720 BitcodeReader *R = 3721 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 3722 M->setMaterializer(R); 3723 3724 auto cleanupOnError = [&](std::error_code EC) { 3725 R->releaseBuffer(); // Never take ownership on error. 3726 delete M; // Also deletes R. 3727 return EC; 3728 }; 3729 3730 if (std::error_code EC = R->ParseBitcodeInto(M)) 3731 return cleanupOnError(EC); 3732 3733 if (!WillMaterializeAll) 3734 // Resolve forward references from blockaddresses. 3735 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3736 return cleanupOnError(EC); 3737 3738 Buffer.release(); // The BitcodeReader owns it now. 3739 return M; 3740 } 3741 3742 ErrorOr<Module *> 3743 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3744 LLVMContext &Context, 3745 DiagnosticHandlerFunction DiagnosticHandler) { 3746 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 3747 DiagnosticHandler); 3748 } 3749 3750 ErrorOr<std::unique_ptr<Module>> 3751 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 3752 LLVMContext &Context, 3753 DiagnosticHandlerFunction DiagnosticHandler) { 3754 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 3755 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 3756 M->setMaterializer(R); 3757 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 3758 return EC; 3759 return std::move(M); 3760 } 3761 3762 ErrorOr<Module *> 3763 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 3764 DiagnosticHandlerFunction DiagnosticHandler) { 3765 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3766 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 3767 std::move(Buf), Context, true, DiagnosticHandler); 3768 if (!ModuleOrErr) 3769 return ModuleOrErr; 3770 Module *M = ModuleOrErr.get(); 3771 // Read in the entire module, and destroy the BitcodeReader. 3772 if (std::error_code EC = M->materializeAllPermanently()) { 3773 delete M; 3774 return EC; 3775 } 3776 3777 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3778 // written. We must defer until the Module has been fully materialized. 3779 3780 return M; 3781 } 3782 3783 std::string 3784 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 3785 DiagnosticHandlerFunction DiagnosticHandler) { 3786 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3787 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 3788 DiagnosticHandler); 3789 ErrorOr<std::string> Triple = R->parseTriple(); 3790 if (Triple.getError()) 3791 return ""; 3792 return Triple.get(); 3793 } 3794