1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/APFloat.h"
11 #include "llvm/ADT/APInt.h"
12 #include "llvm/ADT/ArrayRef.h"
13 #include "llvm/ADT/DenseMap.h"
14 #include "llvm/ADT/None.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/SmallString.h"
17 #include "llvm/ADT/SmallVector.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/ADT/Twine.h"
21 #include "llvm/Bitcode/BitstreamReader.h"
22 #include "llvm/Bitcode/LLVMBitCodes.h"
23 #include "llvm/Bitcode/ReaderWriter.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/AutoUpgrade.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CallingConv.h"
29 #include "llvm/IR/CallSite.h"
30 #include "llvm/IR/Comdat.h"
31 #include "llvm/IR/Constant.h"
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/DebugInfo.h"
34 #include "llvm/IR/DebugInfoMetadata.h"
35 #include "llvm/IR/DebugLoc.h"
36 #include "llvm/IR/DerivedTypes.h"
37 #include "llvm/IR/DiagnosticInfo.h"
38 #include "llvm/IR/DiagnosticPrinter.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GlobalAlias.h"
41 #include "llvm/IR/GlobalIFunc.h"
42 #include "llvm/IR/GlobalIndirectSymbol.h"
43 #include "llvm/IR/GlobalObject.h"
44 #include "llvm/IR/GlobalValue.h"
45 #include "llvm/IR/GlobalVariable.h"
46 #include "llvm/IR/GVMaterializer.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstrTypes.h"
49 #include "llvm/IR/Instruction.h"
50 #include "llvm/IR/Instructions.h"
51 #include "llvm/IR/Intrinsics.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSummaryIndex.h"
55 #include "llvm/IR/OperandTraits.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/TrackingMDRef.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/ValueHandle.h"
60 #include "llvm/Support/AtomicOrdering.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CommandLine.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/DataStream.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/ErrorOr.h"
68 #include "llvm/Support/ManagedStatic.h"
69 #include "llvm/Support/MemoryBuffer.h"
70 #include "llvm/Support/raw_ostream.h"
71 #include "llvm/Support/StreamingMemoryObject.h"
72 #include <algorithm>
73 #include <cassert>
74 #include <cstddef>
75 #include <cstdint>
76 #include <deque>
77 #include <limits>
78 #include <map>
79 #include <memory>
80 #include <string>
81 #include <system_error>
82 #include <tuple>
83 #include <utility>
84 #include <vector>
85 
86 using namespace llvm;
87 
88 static cl::opt<bool> PrintSummaryGUIDs(
89     "print-summary-global-ids", cl::init(false), cl::Hidden,
90     cl::desc(
91         "Print the global id for each value when reading the module summary"));
92 
93 namespace {
94 
95 enum {
96   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
97 };
98 
99 class BitcodeReaderValueList {
100   std::vector<WeakVH> ValuePtrs;
101 
102   /// As we resolve forward-referenced constants, we add information about them
103   /// to this vector.  This allows us to resolve them in bulk instead of
104   /// resolving each reference at a time.  See the code in
105   /// ResolveConstantForwardRefs for more information about this.
106   ///
107   /// The key of this vector is the placeholder constant, the value is the slot
108   /// number that holds the resolved value.
109   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
110   ResolveConstantsTy ResolveConstants;
111   LLVMContext &Context;
112 
113 public:
114   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
115   ~BitcodeReaderValueList() {
116     assert(ResolveConstants.empty() && "Constants not resolved?");
117   }
118 
119   // vector compatibility methods
120   unsigned size() const { return ValuePtrs.size(); }
121   void resize(unsigned N) { ValuePtrs.resize(N); }
122   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
123 
124   void clear() {
125     assert(ResolveConstants.empty() && "Constants not resolved?");
126     ValuePtrs.clear();
127   }
128 
129   Value *operator[](unsigned i) const {
130     assert(i < ValuePtrs.size());
131     return ValuePtrs[i];
132   }
133 
134   Value *back() const { return ValuePtrs.back(); }
135   void pop_back() { ValuePtrs.pop_back(); }
136   bool empty() const { return ValuePtrs.empty(); }
137 
138   void shrinkTo(unsigned N) {
139     assert(N <= size() && "Invalid shrinkTo request!");
140     ValuePtrs.resize(N);
141   }
142 
143   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
144   Value *getValueFwdRef(unsigned Idx, Type *Ty);
145 
146   void assignValue(Value *V, unsigned Idx);
147 
148   /// Once all constants are read, this method bulk resolves any forward
149   /// references.
150   void resolveConstantForwardRefs();
151 };
152 
153 class BitcodeReaderMetadataList {
154   unsigned NumFwdRefs;
155   bool AnyFwdRefs;
156   unsigned MinFwdRef;
157   unsigned MaxFwdRef;
158 
159   /// Array of metadata references.
160   ///
161   /// Don't use std::vector here.  Some versions of libc++ copy (instead of
162   /// move) on resize, and TrackingMDRef is very expensive to copy.
163   SmallVector<TrackingMDRef, 1> MetadataPtrs;
164 
165   /// Structures for resolving old type refs.
166   struct {
167     SmallDenseMap<MDString *, TempMDTuple, 1> Unknown;
168     SmallDenseMap<MDString *, DICompositeType *, 1> Final;
169     SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls;
170     SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays;
171   } OldTypeRefs;
172 
173   LLVMContext &Context;
174 
175 public:
176   BitcodeReaderMetadataList(LLVMContext &C)
177       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
178 
179   // vector compatibility methods
180   unsigned size() const { return MetadataPtrs.size(); }
181   void resize(unsigned N) { MetadataPtrs.resize(N); }
182   void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
183   void clear() { MetadataPtrs.clear(); }
184   Metadata *back() const { return MetadataPtrs.back(); }
185   void pop_back() { MetadataPtrs.pop_back(); }
186   bool empty() const { return MetadataPtrs.empty(); }
187 
188   Metadata *operator[](unsigned i) const {
189     assert(i < MetadataPtrs.size());
190     return MetadataPtrs[i];
191   }
192 
193   Metadata *lookup(unsigned I) const {
194     if (I < MetadataPtrs.size())
195       return MetadataPtrs[I];
196     return nullptr;
197   }
198 
199   void shrinkTo(unsigned N) {
200     assert(N <= size() && "Invalid shrinkTo request!");
201     assert(!AnyFwdRefs && "Unexpected forward refs");
202     MetadataPtrs.resize(N);
203   }
204 
205   /// Return the given metadata, creating a replaceable forward reference if
206   /// necessary.
207   Metadata *getMetadataFwdRef(unsigned Idx);
208 
209   /// Return the the given metadata only if it is fully resolved.
210   ///
211   /// Gives the same result as \a lookup(), unless \a MDNode::isResolved()
212   /// would give \c false.
213   Metadata *getMetadataIfResolved(unsigned Idx);
214 
215   MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
216   void assignValue(Metadata *MD, unsigned Idx);
217   void tryToResolveCycles();
218   bool hasFwdRefs() const { return AnyFwdRefs; }
219 
220   /// Upgrade a type that had an MDString reference.
221   void addTypeRef(MDString &UUID, DICompositeType &CT);
222 
223   /// Upgrade a type that had an MDString reference.
224   Metadata *upgradeTypeRef(Metadata *MaybeUUID);
225 
226   /// Upgrade a type ref array that may have MDString references.
227   Metadata *upgradeTypeRefArray(Metadata *MaybeTuple);
228 
229 private:
230   Metadata *resolveTypeRefArray(Metadata *MaybeTuple);
231 };
232 
233 class BitcodeReaderBase {
234 protected:
235   BitcodeReaderBase() = default;
236   BitcodeReaderBase(MemoryBuffer *Buffer) : Buffer(Buffer) {}
237 
238   std::unique_ptr<MemoryBuffer> Buffer;
239   std::unique_ptr<BitstreamReader> StreamFile;
240   BitstreamCursor Stream;
241 
242   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
243   std::error_code initStreamFromBuffer();
244   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
245 
246   virtual std::error_code error(const Twine &Message) = 0;
247   virtual ~BitcodeReaderBase() = default;
248 };
249 
250 std::error_code
251 BitcodeReaderBase::initStream(std::unique_ptr<DataStreamer> Streamer) {
252   if (Streamer)
253     return initLazyStream(std::move(Streamer));
254   return initStreamFromBuffer();
255 }
256 
257 std::error_code BitcodeReaderBase::initStreamFromBuffer() {
258   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
259   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
260 
261   if (Buffer->getBufferSize() & 3)
262     return error("Invalid bitcode signature");
263 
264   // If we have a wrapper header, parse it and ignore the non-bc file contents.
265   // The magic number is 0x0B17C0DE stored in little endian.
266   if (isBitcodeWrapper(BufPtr, BufEnd))
267     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
268       return error("Invalid bitcode wrapper header");
269 
270   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
271   Stream.init(&*StreamFile);
272 
273   return std::error_code();
274 }
275 
276 std::error_code
277 BitcodeReaderBase::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
278   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
279   // see it.
280   auto OwnedBytes =
281       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
282   StreamingMemoryObject &Bytes = *OwnedBytes;
283   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
284   Stream.init(&*StreamFile);
285 
286   unsigned char buf[16];
287   if (Bytes.readBytes(buf, 16, 0) != 16)
288     return error("Invalid bitcode signature");
289 
290   if (!isBitcode(buf, buf + 16))
291     return error("Invalid bitcode signature");
292 
293   if (isBitcodeWrapper(buf, buf + 4)) {
294     const unsigned char *bitcodeStart = buf;
295     const unsigned char *bitcodeEnd = buf + 16;
296     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
297     Bytes.dropLeadingBytes(bitcodeStart - buf);
298     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
299   }
300   return std::error_code();
301 }
302 
303 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
304   LLVMContext &Context;
305   Module *TheModule = nullptr;
306   // Next offset to start scanning for lazy parsing of function bodies.
307   uint64_t NextUnreadBit = 0;
308   // Last function offset found in the VST.
309   uint64_t LastFunctionBlockBit = 0;
310   bool SeenValueSymbolTable = false;
311   uint64_t VSTOffset = 0;
312   // Contains an arbitrary and optional string identifying the bitcode producer
313   std::string ProducerIdentification;
314 
315   std::vector<Type*> TypeList;
316   BitcodeReaderValueList ValueList;
317   BitcodeReaderMetadataList MetadataList;
318   std::vector<Comdat *> ComdatList;
319   SmallVector<Instruction *, 64> InstructionList;
320 
321   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
322   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits;
323   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
324   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
325   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
326 
327   bool HasSeenOldLoopTags = false;
328 
329   /// The set of attributes by index.  Index zero in the file is for null, and
330   /// is thus not represented here.  As such all indices are off by one.
331   std::vector<AttributeSet> MAttributes;
332 
333   /// The set of attribute groups.
334   std::map<unsigned, AttributeSet> MAttributeGroups;
335 
336   /// While parsing a function body, this is a list of the basic blocks for the
337   /// function.
338   std::vector<BasicBlock*> FunctionBBs;
339 
340   // When reading the module header, this list is populated with functions that
341   // have bodies later in the file.
342   std::vector<Function*> FunctionsWithBodies;
343 
344   // When intrinsic functions are encountered which require upgrading they are
345   // stored here with their replacement function.
346   typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap;
347   UpdatedIntrinsicMap UpgradedIntrinsics;
348   // Intrinsics which were remangled because of types rename
349   UpdatedIntrinsicMap RemangledIntrinsics;
350 
351   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
352   DenseMap<unsigned, unsigned> MDKindMap;
353 
354   // Several operations happen after the module header has been read, but
355   // before function bodies are processed. This keeps track of whether
356   // we've done this yet.
357   bool SeenFirstFunctionBody = false;
358 
359   /// When function bodies are initially scanned, this map contains info about
360   /// where to find deferred function body in the stream.
361   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
362 
363   /// When Metadata block is initially scanned when parsing the module, we may
364   /// choose to defer parsing of the metadata. This vector contains info about
365   /// which Metadata blocks are deferred.
366   std::vector<uint64_t> DeferredMetadataInfo;
367 
368   /// These are basic blocks forward-referenced by block addresses.  They are
369   /// inserted lazily into functions when they're loaded.  The basic block ID is
370   /// its index into the vector.
371   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
372   std::deque<Function *> BasicBlockFwdRefQueue;
373 
374   /// Indicates that we are using a new encoding for instruction operands where
375   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
376   /// instruction number, for a more compact encoding.  Some instruction
377   /// operands are not relative to the instruction ID: basic block numbers, and
378   /// types. Once the old style function blocks have been phased out, we would
379   /// not need this flag.
380   bool UseRelativeIDs = false;
381 
382   /// True if all functions will be materialized, negating the need to process
383   /// (e.g.) blockaddress forward references.
384   bool WillMaterializeAllForwardRefs = false;
385 
386   /// True if any Metadata block has been materialized.
387   bool IsMetadataMaterialized = false;
388 
389   bool StripDebugInfo = false;
390 
391   /// Functions that need to be matched with subprograms when upgrading old
392   /// metadata.
393   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
394 
395   std::vector<std::string> BundleTags;
396 
397 public:
398   std::error_code error(BitcodeError E, const Twine &Message);
399   std::error_code error(const Twine &Message) override;
400 
401   BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
402   BitcodeReader(LLVMContext &Context);
403   ~BitcodeReader() override { freeState(); }
404 
405   std::error_code materializeForwardReferencedFunctions();
406 
407   void freeState();
408 
409   void releaseBuffer();
410 
411   std::error_code materialize(GlobalValue *GV) override;
412   std::error_code materializeModule() override;
413   std::vector<StructType *> getIdentifiedStructTypes() const override;
414 
415   /// \brief Main interface to parsing a bitcode buffer.
416   /// \returns true if an error occurred.
417   std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
418                                    Module *M,
419                                    bool ShouldLazyLoadMetadata = false);
420 
421   /// \brief Cheap mechanism to just extract module triple
422   /// \returns true if an error occurred.
423   ErrorOr<std::string> parseTriple();
424 
425   /// Cheap mechanism to just extract the identification block out of bitcode.
426   ErrorOr<std::string> parseIdentificationBlock();
427 
428   /// Peak at the module content and return true if any ObjC category or class
429   /// is found.
430   ErrorOr<bool> hasObjCCategory();
431 
432   static uint64_t decodeSignRotatedValue(uint64_t V);
433 
434   /// Materialize any deferred Metadata block.
435   std::error_code materializeMetadata() override;
436 
437   void setStripDebugInfo() override;
438 
439 private:
440   /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
441   // ProducerIdentification data member, and do some basic enforcement on the
442   // "epoch" encoded in the bitcode.
443   std::error_code parseBitcodeVersion();
444 
445   std::vector<StructType *> IdentifiedStructTypes;
446   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
447   StructType *createIdentifiedStructType(LLVMContext &Context);
448 
449   Type *getTypeByID(unsigned ID);
450 
451   Value *getFnValueByID(unsigned ID, Type *Ty) {
452     if (Ty && Ty->isMetadataTy())
453       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
454     return ValueList.getValueFwdRef(ID, Ty);
455   }
456 
457   Metadata *getFnMetadataByID(unsigned ID) {
458     return MetadataList.getMetadataFwdRef(ID);
459   }
460 
461   BasicBlock *getBasicBlock(unsigned ID) const {
462     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
463     return FunctionBBs[ID];
464   }
465 
466   AttributeSet getAttributes(unsigned i) const {
467     if (i-1 < MAttributes.size())
468       return MAttributes[i-1];
469     return AttributeSet();
470   }
471 
472   /// Read a value/type pair out of the specified record from slot 'Slot'.
473   /// Increment Slot past the number of slots used in the record. Return true on
474   /// failure.
475   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
476                         unsigned InstNum, Value *&ResVal) {
477     if (Slot == Record.size()) return true;
478     unsigned ValNo = (unsigned)Record[Slot++];
479     // Adjust the ValNo, if it was encoded relative to the InstNum.
480     if (UseRelativeIDs)
481       ValNo = InstNum - ValNo;
482     if (ValNo < InstNum) {
483       // If this is not a forward reference, just return the value we already
484       // have.
485       ResVal = getFnValueByID(ValNo, nullptr);
486       return ResVal == nullptr;
487     }
488     if (Slot == Record.size())
489       return true;
490 
491     unsigned TypeNo = (unsigned)Record[Slot++];
492     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
493     return ResVal == nullptr;
494   }
495 
496   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
497   /// past the number of slots used by the value in the record. Return true if
498   /// there is an error.
499   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
500                 unsigned InstNum, Type *Ty, Value *&ResVal) {
501     if (getValue(Record, Slot, InstNum, Ty, ResVal))
502       return true;
503     // All values currently take a single record slot.
504     ++Slot;
505     return false;
506   }
507 
508   /// Like popValue, but does not increment the Slot number.
509   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
510                 unsigned InstNum, Type *Ty, Value *&ResVal) {
511     ResVal = getValue(Record, Slot, InstNum, Ty);
512     return ResVal == nullptr;
513   }
514 
515   /// Version of getValue that returns ResVal directly, or 0 if there is an
516   /// error.
517   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
518                   unsigned InstNum, Type *Ty) {
519     if (Slot == Record.size()) return nullptr;
520     unsigned ValNo = (unsigned)Record[Slot];
521     // Adjust the ValNo, if it was encoded relative to the InstNum.
522     if (UseRelativeIDs)
523       ValNo = InstNum - ValNo;
524     return getFnValueByID(ValNo, Ty);
525   }
526 
527   /// Like getValue, but decodes signed VBRs.
528   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
529                         unsigned InstNum, Type *Ty) {
530     if (Slot == Record.size()) return nullptr;
531     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
532     // Adjust the ValNo, if it was encoded relative to the InstNum.
533     if (UseRelativeIDs)
534       ValNo = InstNum - ValNo;
535     return getFnValueByID(ValNo, Ty);
536   }
537 
538   /// Converts alignment exponent (i.e. power of two (or zero)) to the
539   /// corresponding alignment to use. If alignment is too large, returns
540   /// a corresponding error code.
541   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
542   std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
543   std::error_code parseModule(uint64_t ResumeBit,
544                               bool ShouldLazyLoadMetadata = false);
545   std::error_code parseAttributeBlock();
546   std::error_code parseAttributeGroupBlock();
547   std::error_code parseTypeTable();
548   std::error_code parseTypeTableBody();
549   std::error_code parseOperandBundleTags();
550 
551   ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
552                                unsigned NameIndex, Triple &TT);
553   std::error_code parseValueSymbolTable(uint64_t Offset = 0);
554   std::error_code parseConstants();
555   std::error_code rememberAndSkipFunctionBodies();
556   std::error_code rememberAndSkipFunctionBody();
557   /// Save the positions of the Metadata blocks and skip parsing the blocks.
558   std::error_code rememberAndSkipMetadata();
559   std::error_code parseFunctionBody(Function *F);
560   std::error_code globalCleanup();
561   std::error_code resolveGlobalAndIndirectSymbolInits();
562   std::error_code parseMetadata(bool ModuleLevel = false);
563   std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record,
564                                        StringRef Blob,
565                                        unsigned &NextMetadataNo);
566   std::error_code parseMetadataKinds();
567   std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
568   std::error_code
569   parseGlobalObjectAttachment(GlobalObject &GO,
570                               ArrayRef<uint64_t> Record);
571   std::error_code parseMetadataAttachment(Function &F);
572   ErrorOr<std::string> parseModuleTriple();
573   ErrorOr<bool> hasObjCCategoryInModule();
574   std::error_code parseUseLists();
575   std::error_code findFunctionInStream(
576       Function *F,
577       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
578 };
579 
580 /// Class to manage reading and parsing function summary index bitcode
581 /// files/sections.
582 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
583   DiagnosticHandlerFunction DiagnosticHandler;
584 
585   /// Eventually points to the module index built during parsing.
586   ModuleSummaryIndex *TheIndex = nullptr;
587 
588   /// Used to indicate whether caller only wants to check for the presence
589   /// of the global value summary bitcode section. All blocks are skipped,
590   /// but the SeenGlobalValSummary boolean is set.
591   bool CheckGlobalValSummaryPresenceOnly = false;
592 
593   /// Indicates whether we have encountered a global value summary section
594   /// yet during parsing, used when checking if file contains global value
595   /// summary section.
596   bool SeenGlobalValSummary = false;
597 
598   /// Indicates whether we have already parsed the VST, used for error checking.
599   bool SeenValueSymbolTable = false;
600 
601   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
602   /// Used to enable on-demand parsing of the VST.
603   uint64_t VSTOffset = 0;
604 
605   // Map to save ValueId to GUID association that was recorded in the
606   // ValueSymbolTable. It is used after the VST is parsed to convert
607   // call graph edges read from the function summary from referencing
608   // callees by their ValueId to using the GUID instead, which is how
609   // they are recorded in the summary index being built.
610   // We save a second GUID which is the same as the first one, but ignoring the
611   // linkage, i.e. for value other than local linkage they are identical.
612   DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>>
613       ValueIdToCallGraphGUIDMap;
614 
615   /// Map populated during module path string table parsing, from the
616   /// module ID to a string reference owned by the index's module
617   /// path string table, used to correlate with combined index
618   /// summary records.
619   DenseMap<uint64_t, StringRef> ModuleIdMap;
620 
621   /// Original source file name recorded in a bitcode record.
622   std::string SourceFileName;
623 
624 public:
625   std::error_code error(const Twine &Message);
626 
627   ModuleSummaryIndexBitcodeReader(
628       MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
629       bool CheckGlobalValSummaryPresenceOnly = false);
630   ~ModuleSummaryIndexBitcodeReader() { freeState(); }
631 
632   void freeState();
633 
634   void releaseBuffer();
635 
636   /// Check if the parser has encountered a summary section.
637   bool foundGlobalValSummary() { return SeenGlobalValSummary; }
638 
639   /// \brief Main interface to parsing a bitcode buffer.
640   /// \returns true if an error occurred.
641   std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
642                                         ModuleSummaryIndex *I);
643 
644 private:
645   std::error_code parseModule();
646   std::error_code parseValueSymbolTable(
647       uint64_t Offset,
648       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
649   std::error_code parseEntireSummary();
650   std::error_code parseModuleStringTable();
651   std::pair<GlobalValue::GUID, GlobalValue::GUID>
652 
653   getGUIDFromValueId(unsigned ValueId);
654   std::pair<GlobalValue::GUID, CalleeInfo::HotnessType>
655   readCallGraphEdge(const SmallVector<uint64_t, 64> &Record, unsigned int &I,
656                     bool IsOldProfileFormat, bool HasProfile);
657 };
658 
659 } // end anonymous namespace
660 
661 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
662                                              DiagnosticSeverity Severity,
663                                              const Twine &Msg)
664     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
665 
666 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
667 
668 static std::error_code error(const DiagnosticHandlerFunction &DiagnosticHandler,
669                              std::error_code EC, const Twine &Message) {
670   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
671   DiagnosticHandler(DI);
672   return EC;
673 }
674 
675 static std::error_code error(LLVMContext &Context, std::error_code EC,
676                              const Twine &Message) {
677   return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
678                Message);
679 }
680 
681 static std::error_code error(LLVMContext &Context, const Twine &Message) {
682   return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
683                Message);
684 }
685 
686 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
687   if (!ProducerIdentification.empty()) {
688     return ::error(Context, make_error_code(E),
689                    Message + " (Producer: '" + ProducerIdentification +
690                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
691   }
692   return ::error(Context, make_error_code(E), Message);
693 }
694 
695 std::error_code BitcodeReader::error(const Twine &Message) {
696   if (!ProducerIdentification.empty()) {
697     return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
698                    Message + " (Producer: '" + ProducerIdentification +
699                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
700   }
701   return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
702                  Message);
703 }
704 
705 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
706     : BitcodeReaderBase(Buffer), Context(Context), ValueList(Context),
707       MetadataList(Context) {}
708 
709 BitcodeReader::BitcodeReader(LLVMContext &Context)
710     : Context(Context), ValueList(Context), MetadataList(Context) {}
711 
712 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
713   if (WillMaterializeAllForwardRefs)
714     return std::error_code();
715 
716   // Prevent recursion.
717   WillMaterializeAllForwardRefs = true;
718 
719   while (!BasicBlockFwdRefQueue.empty()) {
720     Function *F = BasicBlockFwdRefQueue.front();
721     BasicBlockFwdRefQueue.pop_front();
722     assert(F && "Expected valid function");
723     if (!BasicBlockFwdRefs.count(F))
724       // Already materialized.
725       continue;
726 
727     // Check for a function that isn't materializable to prevent an infinite
728     // loop.  When parsing a blockaddress stored in a global variable, there
729     // isn't a trivial way to check if a function will have a body without a
730     // linear search through FunctionsWithBodies, so just check it here.
731     if (!F->isMaterializable())
732       return error("Never resolved function from blockaddress");
733 
734     // Try to materialize F.
735     if (std::error_code EC = materialize(F))
736       return EC;
737   }
738   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
739 
740   // Reset state.
741   WillMaterializeAllForwardRefs = false;
742   return std::error_code();
743 }
744 
745 void BitcodeReader::freeState() {
746   Buffer = nullptr;
747   std::vector<Type*>().swap(TypeList);
748   ValueList.clear();
749   MetadataList.clear();
750   std::vector<Comdat *>().swap(ComdatList);
751 
752   std::vector<AttributeSet>().swap(MAttributes);
753   std::vector<BasicBlock*>().swap(FunctionBBs);
754   std::vector<Function*>().swap(FunctionsWithBodies);
755   DeferredFunctionInfo.clear();
756   DeferredMetadataInfo.clear();
757   MDKindMap.clear();
758 
759   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
760   BasicBlockFwdRefQueue.clear();
761 }
762 
763 //===----------------------------------------------------------------------===//
764 //  Helper functions to implement forward reference resolution, etc.
765 //===----------------------------------------------------------------------===//
766 
767 /// Convert a string from a record into an std::string, return true on failure.
768 template <typename StrTy>
769 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
770                             StrTy &Result) {
771   if (Idx > Record.size())
772     return true;
773 
774   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
775     Result += (char)Record[i];
776   return false;
777 }
778 
779 static bool hasImplicitComdat(size_t Val) {
780   switch (Val) {
781   default:
782     return false;
783   case 1:  // Old WeakAnyLinkage
784   case 4:  // Old LinkOnceAnyLinkage
785   case 10: // Old WeakODRLinkage
786   case 11: // Old LinkOnceODRLinkage
787     return true;
788   }
789 }
790 
791 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
792   switch (Val) {
793   default: // Map unknown/new linkages to external
794   case 0:
795     return GlobalValue::ExternalLinkage;
796   case 2:
797     return GlobalValue::AppendingLinkage;
798   case 3:
799     return GlobalValue::InternalLinkage;
800   case 5:
801     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
802   case 6:
803     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
804   case 7:
805     return GlobalValue::ExternalWeakLinkage;
806   case 8:
807     return GlobalValue::CommonLinkage;
808   case 9:
809     return GlobalValue::PrivateLinkage;
810   case 12:
811     return GlobalValue::AvailableExternallyLinkage;
812   case 13:
813     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
814   case 14:
815     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
816   case 15:
817     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
818   case 1: // Old value with implicit comdat.
819   case 16:
820     return GlobalValue::WeakAnyLinkage;
821   case 10: // Old value with implicit comdat.
822   case 17:
823     return GlobalValue::WeakODRLinkage;
824   case 4: // Old value with implicit comdat.
825   case 18:
826     return GlobalValue::LinkOnceAnyLinkage;
827   case 11: // Old value with implicit comdat.
828   case 19:
829     return GlobalValue::LinkOnceODRLinkage;
830   }
831 }
832 
833 /// Decode the flags for GlobalValue in the summary.
834 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
835                                                             uint64_t Version) {
836   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
837   // like getDecodedLinkage() above. Any future change to the linkage enum and
838   // to getDecodedLinkage() will need to be taken into account here as above.
839   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
840   RawFlags = RawFlags >> 4;
841   bool HasSection = RawFlags & 0x1;
842   bool IsNotViableToInline = RawFlags & 0x2;
843   return GlobalValueSummary::GVFlags(Linkage, HasSection, IsNotViableToInline);
844 }
845 
846 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
847   switch (Val) {
848   default: // Map unknown visibilities to default.
849   case 0: return GlobalValue::DefaultVisibility;
850   case 1: return GlobalValue::HiddenVisibility;
851   case 2: return GlobalValue::ProtectedVisibility;
852   }
853 }
854 
855 static GlobalValue::DLLStorageClassTypes
856 getDecodedDLLStorageClass(unsigned Val) {
857   switch (Val) {
858   default: // Map unknown values to default.
859   case 0: return GlobalValue::DefaultStorageClass;
860   case 1: return GlobalValue::DLLImportStorageClass;
861   case 2: return GlobalValue::DLLExportStorageClass;
862   }
863 }
864 
865 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
866   switch (Val) {
867     case 0: return GlobalVariable::NotThreadLocal;
868     default: // Map unknown non-zero value to general dynamic.
869     case 1: return GlobalVariable::GeneralDynamicTLSModel;
870     case 2: return GlobalVariable::LocalDynamicTLSModel;
871     case 3: return GlobalVariable::InitialExecTLSModel;
872     case 4: return GlobalVariable::LocalExecTLSModel;
873   }
874 }
875 
876 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
877   switch (Val) {
878     default: // Map unknown to UnnamedAddr::None.
879     case 0: return GlobalVariable::UnnamedAddr::None;
880     case 1: return GlobalVariable::UnnamedAddr::Global;
881     case 2: return GlobalVariable::UnnamedAddr::Local;
882   }
883 }
884 
885 static int getDecodedCastOpcode(unsigned Val) {
886   switch (Val) {
887   default: return -1;
888   case bitc::CAST_TRUNC   : return Instruction::Trunc;
889   case bitc::CAST_ZEXT    : return Instruction::ZExt;
890   case bitc::CAST_SEXT    : return Instruction::SExt;
891   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
892   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
893   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
894   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
895   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
896   case bitc::CAST_FPEXT   : return Instruction::FPExt;
897   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
898   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
899   case bitc::CAST_BITCAST : return Instruction::BitCast;
900   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
901   }
902 }
903 
904 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
905   bool IsFP = Ty->isFPOrFPVectorTy();
906   // BinOps are only valid for int/fp or vector of int/fp types
907   if (!IsFP && !Ty->isIntOrIntVectorTy())
908     return -1;
909 
910   switch (Val) {
911   default:
912     return -1;
913   case bitc::BINOP_ADD:
914     return IsFP ? Instruction::FAdd : Instruction::Add;
915   case bitc::BINOP_SUB:
916     return IsFP ? Instruction::FSub : Instruction::Sub;
917   case bitc::BINOP_MUL:
918     return IsFP ? Instruction::FMul : Instruction::Mul;
919   case bitc::BINOP_UDIV:
920     return IsFP ? -1 : Instruction::UDiv;
921   case bitc::BINOP_SDIV:
922     return IsFP ? Instruction::FDiv : Instruction::SDiv;
923   case bitc::BINOP_UREM:
924     return IsFP ? -1 : Instruction::URem;
925   case bitc::BINOP_SREM:
926     return IsFP ? Instruction::FRem : Instruction::SRem;
927   case bitc::BINOP_SHL:
928     return IsFP ? -1 : Instruction::Shl;
929   case bitc::BINOP_LSHR:
930     return IsFP ? -1 : Instruction::LShr;
931   case bitc::BINOP_ASHR:
932     return IsFP ? -1 : Instruction::AShr;
933   case bitc::BINOP_AND:
934     return IsFP ? -1 : Instruction::And;
935   case bitc::BINOP_OR:
936     return IsFP ? -1 : Instruction::Or;
937   case bitc::BINOP_XOR:
938     return IsFP ? -1 : Instruction::Xor;
939   }
940 }
941 
942 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
943   switch (Val) {
944   default: return AtomicRMWInst::BAD_BINOP;
945   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
946   case bitc::RMW_ADD: return AtomicRMWInst::Add;
947   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
948   case bitc::RMW_AND: return AtomicRMWInst::And;
949   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
950   case bitc::RMW_OR: return AtomicRMWInst::Or;
951   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
952   case bitc::RMW_MAX: return AtomicRMWInst::Max;
953   case bitc::RMW_MIN: return AtomicRMWInst::Min;
954   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
955   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
956   }
957 }
958 
959 static AtomicOrdering getDecodedOrdering(unsigned Val) {
960   switch (Val) {
961   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
962   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
963   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
964   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
965   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
966   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
967   default: // Map unknown orderings to sequentially-consistent.
968   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
969   }
970 }
971 
972 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
973   switch (Val) {
974   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
975   default: // Map unknown scopes to cross-thread.
976   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
977   }
978 }
979 
980 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
981   switch (Val) {
982   default: // Map unknown selection kinds to any.
983   case bitc::COMDAT_SELECTION_KIND_ANY:
984     return Comdat::Any;
985   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
986     return Comdat::ExactMatch;
987   case bitc::COMDAT_SELECTION_KIND_LARGEST:
988     return Comdat::Largest;
989   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
990     return Comdat::NoDuplicates;
991   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
992     return Comdat::SameSize;
993   }
994 }
995 
996 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
997   FastMathFlags FMF;
998   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
999     FMF.setUnsafeAlgebra();
1000   if (0 != (Val & FastMathFlags::NoNaNs))
1001     FMF.setNoNaNs();
1002   if (0 != (Val & FastMathFlags::NoInfs))
1003     FMF.setNoInfs();
1004   if (0 != (Val & FastMathFlags::NoSignedZeros))
1005     FMF.setNoSignedZeros();
1006   if (0 != (Val & FastMathFlags::AllowReciprocal))
1007     FMF.setAllowReciprocal();
1008   return FMF;
1009 }
1010 
1011 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1012   switch (Val) {
1013   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1014   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1015   }
1016 }
1017 
1018 namespace llvm {
1019 namespace {
1020 
1021 /// \brief A class for maintaining the slot number definition
1022 /// as a placeholder for the actual definition for forward constants defs.
1023 class ConstantPlaceHolder : public ConstantExpr {
1024   void operator=(const ConstantPlaceHolder &) = delete;
1025 
1026 public:
1027   // allocate space for exactly one operand
1028   void *operator new(size_t s) { return User::operator new(s, 1); }
1029   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
1030       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
1031     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
1032   }
1033 
1034   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
1035   static bool classof(const Value *V) {
1036     return isa<ConstantExpr>(V) &&
1037            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
1038   }
1039 
1040   /// Provide fast operand accessors
1041   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
1042 };
1043 
1044 } // end anonymous namespace
1045 
1046 // FIXME: can we inherit this from ConstantExpr?
1047 template <>
1048 struct OperandTraits<ConstantPlaceHolder> :
1049   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
1050 };
1051 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
1052 
1053 } // end namespace llvm
1054 
1055 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
1056   if (Idx == size()) {
1057     push_back(V);
1058     return;
1059   }
1060 
1061   if (Idx >= size())
1062     resize(Idx+1);
1063 
1064   WeakVH &OldV = ValuePtrs[Idx];
1065   if (!OldV) {
1066     OldV = V;
1067     return;
1068   }
1069 
1070   // Handle constants and non-constants (e.g. instrs) differently for
1071   // efficiency.
1072   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
1073     ResolveConstants.push_back(std::make_pair(PHC, Idx));
1074     OldV = V;
1075   } else {
1076     // If there was a forward reference to this value, replace it.
1077     Value *PrevVal = OldV;
1078     OldV->replaceAllUsesWith(V);
1079     delete PrevVal;
1080   }
1081 }
1082 
1083 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
1084                                                     Type *Ty) {
1085   if (Idx >= size())
1086     resize(Idx + 1);
1087 
1088   if (Value *V = ValuePtrs[Idx]) {
1089     if (Ty != V->getType())
1090       report_fatal_error("Type mismatch in constant table!");
1091     return cast<Constant>(V);
1092   }
1093 
1094   // Create and return a placeholder, which will later be RAUW'd.
1095   Constant *C = new ConstantPlaceHolder(Ty, Context);
1096   ValuePtrs[Idx] = C;
1097   return C;
1098 }
1099 
1100 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
1101   // Bail out for a clearly invalid value. This would make us call resize(0)
1102   if (Idx == std::numeric_limits<unsigned>::max())
1103     return nullptr;
1104 
1105   if (Idx >= size())
1106     resize(Idx + 1);
1107 
1108   if (Value *V = ValuePtrs[Idx]) {
1109     // If the types don't match, it's invalid.
1110     if (Ty && Ty != V->getType())
1111       return nullptr;
1112     return V;
1113   }
1114 
1115   // No type specified, must be invalid reference.
1116   if (!Ty) return nullptr;
1117 
1118   // Create and return a placeholder, which will later be RAUW'd.
1119   Value *V = new Argument(Ty);
1120   ValuePtrs[Idx] = V;
1121   return V;
1122 }
1123 
1124 /// Once all constants are read, this method bulk resolves any forward
1125 /// references.  The idea behind this is that we sometimes get constants (such
1126 /// as large arrays) which reference *many* forward ref constants.  Replacing
1127 /// each of these causes a lot of thrashing when building/reuniquing the
1128 /// constant.  Instead of doing this, we look at all the uses and rewrite all
1129 /// the place holders at once for any constant that uses a placeholder.
1130 void BitcodeReaderValueList::resolveConstantForwardRefs() {
1131   // Sort the values by-pointer so that they are efficient to look up with a
1132   // binary search.
1133   std::sort(ResolveConstants.begin(), ResolveConstants.end());
1134 
1135   SmallVector<Constant*, 64> NewOps;
1136 
1137   while (!ResolveConstants.empty()) {
1138     Value *RealVal = operator[](ResolveConstants.back().second);
1139     Constant *Placeholder = ResolveConstants.back().first;
1140     ResolveConstants.pop_back();
1141 
1142     // Loop over all users of the placeholder, updating them to reference the
1143     // new value.  If they reference more than one placeholder, update them all
1144     // at once.
1145     while (!Placeholder->use_empty()) {
1146       auto UI = Placeholder->user_begin();
1147       User *U = *UI;
1148 
1149       // If the using object isn't uniqued, just update the operands.  This
1150       // handles instructions and initializers for global variables.
1151       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
1152         UI.getUse().set(RealVal);
1153         continue;
1154       }
1155 
1156       // Otherwise, we have a constant that uses the placeholder.  Replace that
1157       // constant with a new constant that has *all* placeholder uses updated.
1158       Constant *UserC = cast<Constant>(U);
1159       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
1160            I != E; ++I) {
1161         Value *NewOp;
1162         if (!isa<ConstantPlaceHolder>(*I)) {
1163           // Not a placeholder reference.
1164           NewOp = *I;
1165         } else if (*I == Placeholder) {
1166           // Common case is that it just references this one placeholder.
1167           NewOp = RealVal;
1168         } else {
1169           // Otherwise, look up the placeholder in ResolveConstants.
1170           ResolveConstantsTy::iterator It =
1171             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1172                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1173                                                             0));
1174           assert(It != ResolveConstants.end() && It->first == *I);
1175           NewOp = operator[](It->second);
1176         }
1177 
1178         NewOps.push_back(cast<Constant>(NewOp));
1179       }
1180 
1181       // Make the new constant.
1182       Constant *NewC;
1183       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1184         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1185       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1186         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1187       } else if (isa<ConstantVector>(UserC)) {
1188         NewC = ConstantVector::get(NewOps);
1189       } else {
1190         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1191         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1192       }
1193 
1194       UserC->replaceAllUsesWith(NewC);
1195       UserC->destroyConstant();
1196       NewOps.clear();
1197     }
1198 
1199     // Update all ValueHandles, they should be the only users at this point.
1200     Placeholder->replaceAllUsesWith(RealVal);
1201     delete Placeholder;
1202   }
1203 }
1204 
1205 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1206   if (Idx == size()) {
1207     push_back(MD);
1208     return;
1209   }
1210 
1211   if (Idx >= size())
1212     resize(Idx+1);
1213 
1214   TrackingMDRef &OldMD = MetadataPtrs[Idx];
1215   if (!OldMD) {
1216     OldMD.reset(MD);
1217     return;
1218   }
1219 
1220   // If there was a forward reference to this value, replace it.
1221   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1222   PrevMD->replaceAllUsesWith(MD);
1223   --NumFwdRefs;
1224 }
1225 
1226 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
1227   if (Idx >= size())
1228     resize(Idx + 1);
1229 
1230   if (Metadata *MD = MetadataPtrs[Idx])
1231     return MD;
1232 
1233   // Track forward refs to be resolved later.
1234   if (AnyFwdRefs) {
1235     MinFwdRef = std::min(MinFwdRef, Idx);
1236     MaxFwdRef = std::max(MaxFwdRef, Idx);
1237   } else {
1238     AnyFwdRefs = true;
1239     MinFwdRef = MaxFwdRef = Idx;
1240   }
1241   ++NumFwdRefs;
1242 
1243   // Create and return a placeholder, which will later be RAUW'd.
1244   Metadata *MD = MDNode::getTemporary(Context, None).release();
1245   MetadataPtrs[Idx].reset(MD);
1246   return MD;
1247 }
1248 
1249 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) {
1250   Metadata *MD = lookup(Idx);
1251   if (auto *N = dyn_cast_or_null<MDNode>(MD))
1252     if (!N->isResolved())
1253       return nullptr;
1254   return MD;
1255 }
1256 
1257 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
1258   return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
1259 }
1260 
1261 void BitcodeReaderMetadataList::tryToResolveCycles() {
1262   if (NumFwdRefs)
1263     // Still forward references... can't resolve cycles.
1264     return;
1265 
1266   bool DidReplaceTypeRefs = false;
1267 
1268   // Give up on finding a full definition for any forward decls that remain.
1269   for (const auto &Ref : OldTypeRefs.FwdDecls)
1270     OldTypeRefs.Final.insert(Ref);
1271   OldTypeRefs.FwdDecls.clear();
1272 
1273   // Upgrade from old type ref arrays.  In strange cases, this could add to
1274   // OldTypeRefs.Unknown.
1275   for (const auto &Array : OldTypeRefs.Arrays) {
1276     DidReplaceTypeRefs = true;
1277     Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get()));
1278   }
1279   OldTypeRefs.Arrays.clear();
1280 
1281   // Replace old string-based type refs with the resolved node, if possible.
1282   // If we haven't seen the node, leave it to the verifier to complain about
1283   // the invalid string reference.
1284   for (const auto &Ref : OldTypeRefs.Unknown) {
1285     DidReplaceTypeRefs = true;
1286     if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first))
1287       Ref.second->replaceAllUsesWith(CT);
1288     else
1289       Ref.second->replaceAllUsesWith(Ref.first);
1290   }
1291   OldTypeRefs.Unknown.clear();
1292 
1293   // Make sure all the upgraded types are resolved.
1294   if (DidReplaceTypeRefs) {
1295     AnyFwdRefs = true;
1296     MinFwdRef = 0;
1297     MaxFwdRef = MetadataPtrs.size() - 1;
1298   }
1299 
1300   if (!AnyFwdRefs)
1301     // Nothing to do.
1302     return;
1303 
1304   // Resolve any cycles.
1305   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1306     auto &MD = MetadataPtrs[I];
1307     auto *N = dyn_cast_or_null<MDNode>(MD);
1308     if (!N)
1309       continue;
1310 
1311     assert(!N->isTemporary() && "Unexpected forward reference");
1312     N->resolveCycles();
1313   }
1314 
1315   // Make sure we return early again until there's another forward ref.
1316   AnyFwdRefs = false;
1317 }
1318 
1319 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID,
1320                                            DICompositeType &CT) {
1321   assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID");
1322   if (CT.isForwardDecl())
1323     OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT));
1324   else
1325     OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT));
1326 }
1327 
1328 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) {
1329   auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID);
1330   if (LLVM_LIKELY(!UUID))
1331     return MaybeUUID;
1332 
1333   if (auto *CT = OldTypeRefs.Final.lookup(UUID))
1334     return CT;
1335 
1336   auto &Ref = OldTypeRefs.Unknown[UUID];
1337   if (!Ref)
1338     Ref = MDNode::getTemporary(Context, None);
1339   return Ref.get();
1340 }
1341 
1342 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) {
1343   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1344   if (!Tuple || Tuple->isDistinct())
1345     return MaybeTuple;
1346 
1347   // Look through the array immediately if possible.
1348   if (!Tuple->isTemporary())
1349     return resolveTypeRefArray(Tuple);
1350 
1351   // Create and return a placeholder to use for now.  Eventually
1352   // resolveTypeRefArrays() will be resolve this forward reference.
1353   OldTypeRefs.Arrays.emplace_back(
1354       std::piecewise_construct, std::forward_as_tuple(Tuple),
1355       std::forward_as_tuple(MDTuple::getTemporary(Context, None)));
1356   return OldTypeRefs.Arrays.back().second.get();
1357 }
1358 
1359 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) {
1360   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1361   if (!Tuple || Tuple->isDistinct())
1362     return MaybeTuple;
1363 
1364   // Look through the DITypeRefArray, upgrading each DITypeRef.
1365   SmallVector<Metadata *, 32> Ops;
1366   Ops.reserve(Tuple->getNumOperands());
1367   for (Metadata *MD : Tuple->operands())
1368     Ops.push_back(upgradeTypeRef(MD));
1369 
1370   return MDTuple::get(Context, Ops);
1371 }
1372 
1373 Type *BitcodeReader::getTypeByID(unsigned ID) {
1374   // The type table size is always specified correctly.
1375   if (ID >= TypeList.size())
1376     return nullptr;
1377 
1378   if (Type *Ty = TypeList[ID])
1379     return Ty;
1380 
1381   // If we have a forward reference, the only possible case is when it is to a
1382   // named struct.  Just create a placeholder for now.
1383   return TypeList[ID] = createIdentifiedStructType(Context);
1384 }
1385 
1386 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1387                                                       StringRef Name) {
1388   auto *Ret = StructType::create(Context, Name);
1389   IdentifiedStructTypes.push_back(Ret);
1390   return Ret;
1391 }
1392 
1393 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1394   auto *Ret = StructType::create(Context);
1395   IdentifiedStructTypes.push_back(Ret);
1396   return Ret;
1397 }
1398 
1399 //===----------------------------------------------------------------------===//
1400 //  Functions for parsing blocks from the bitcode file
1401 //===----------------------------------------------------------------------===//
1402 
1403 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1404 /// been decoded from the given integer. This function must stay in sync with
1405 /// 'encodeLLVMAttributesForBitcode'.
1406 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1407                                            uint64_t EncodedAttrs) {
1408   // FIXME: Remove in 4.0.
1409 
1410   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1411   // the bits above 31 down by 11 bits.
1412   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1413   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1414          "Alignment must be a power of two.");
1415 
1416   if (Alignment)
1417     B.addAlignmentAttr(Alignment);
1418   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1419                 (EncodedAttrs & 0xffff));
1420 }
1421 
1422 std::error_code BitcodeReader::parseAttributeBlock() {
1423   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1424     return error("Invalid record");
1425 
1426   if (!MAttributes.empty())
1427     return error("Invalid multiple blocks");
1428 
1429   SmallVector<uint64_t, 64> Record;
1430 
1431   SmallVector<AttributeSet, 8> Attrs;
1432 
1433   // Read all the records.
1434   while (true) {
1435     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1436 
1437     switch (Entry.Kind) {
1438     case BitstreamEntry::SubBlock: // Handled for us already.
1439     case BitstreamEntry::Error:
1440       return error("Malformed block");
1441     case BitstreamEntry::EndBlock:
1442       return std::error_code();
1443     case BitstreamEntry::Record:
1444       // The interesting case.
1445       break;
1446     }
1447 
1448     // Read a record.
1449     Record.clear();
1450     switch (Stream.readRecord(Entry.ID, Record)) {
1451     default:  // Default behavior: ignore.
1452       break;
1453     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1454       // FIXME: Remove in 4.0.
1455       if (Record.size() & 1)
1456         return error("Invalid record");
1457 
1458       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1459         AttrBuilder B;
1460         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1461         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1462       }
1463 
1464       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1465       Attrs.clear();
1466       break;
1467     }
1468     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1469       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1470         Attrs.push_back(MAttributeGroups[Record[i]]);
1471 
1472       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1473       Attrs.clear();
1474       break;
1475     }
1476     }
1477   }
1478 }
1479 
1480 // Returns Attribute::None on unrecognized codes.
1481 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1482   switch (Code) {
1483   default:
1484     return Attribute::None;
1485   case bitc::ATTR_KIND_ALIGNMENT:
1486     return Attribute::Alignment;
1487   case bitc::ATTR_KIND_ALWAYS_INLINE:
1488     return Attribute::AlwaysInline;
1489   case bitc::ATTR_KIND_ARGMEMONLY:
1490     return Attribute::ArgMemOnly;
1491   case bitc::ATTR_KIND_BUILTIN:
1492     return Attribute::Builtin;
1493   case bitc::ATTR_KIND_BY_VAL:
1494     return Attribute::ByVal;
1495   case bitc::ATTR_KIND_IN_ALLOCA:
1496     return Attribute::InAlloca;
1497   case bitc::ATTR_KIND_COLD:
1498     return Attribute::Cold;
1499   case bitc::ATTR_KIND_CONVERGENT:
1500     return Attribute::Convergent;
1501   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1502     return Attribute::InaccessibleMemOnly;
1503   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1504     return Attribute::InaccessibleMemOrArgMemOnly;
1505   case bitc::ATTR_KIND_INLINE_HINT:
1506     return Attribute::InlineHint;
1507   case bitc::ATTR_KIND_IN_REG:
1508     return Attribute::InReg;
1509   case bitc::ATTR_KIND_JUMP_TABLE:
1510     return Attribute::JumpTable;
1511   case bitc::ATTR_KIND_MIN_SIZE:
1512     return Attribute::MinSize;
1513   case bitc::ATTR_KIND_NAKED:
1514     return Attribute::Naked;
1515   case bitc::ATTR_KIND_NEST:
1516     return Attribute::Nest;
1517   case bitc::ATTR_KIND_NO_ALIAS:
1518     return Attribute::NoAlias;
1519   case bitc::ATTR_KIND_NO_BUILTIN:
1520     return Attribute::NoBuiltin;
1521   case bitc::ATTR_KIND_NO_CAPTURE:
1522     return Attribute::NoCapture;
1523   case bitc::ATTR_KIND_NO_DUPLICATE:
1524     return Attribute::NoDuplicate;
1525   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1526     return Attribute::NoImplicitFloat;
1527   case bitc::ATTR_KIND_NO_INLINE:
1528     return Attribute::NoInline;
1529   case bitc::ATTR_KIND_NO_RECURSE:
1530     return Attribute::NoRecurse;
1531   case bitc::ATTR_KIND_NON_LAZY_BIND:
1532     return Attribute::NonLazyBind;
1533   case bitc::ATTR_KIND_NON_NULL:
1534     return Attribute::NonNull;
1535   case bitc::ATTR_KIND_DEREFERENCEABLE:
1536     return Attribute::Dereferenceable;
1537   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1538     return Attribute::DereferenceableOrNull;
1539   case bitc::ATTR_KIND_ALLOC_SIZE:
1540     return Attribute::AllocSize;
1541   case bitc::ATTR_KIND_NO_RED_ZONE:
1542     return Attribute::NoRedZone;
1543   case bitc::ATTR_KIND_NO_RETURN:
1544     return Attribute::NoReturn;
1545   case bitc::ATTR_KIND_NO_UNWIND:
1546     return Attribute::NoUnwind;
1547   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1548     return Attribute::OptimizeForSize;
1549   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1550     return Attribute::OptimizeNone;
1551   case bitc::ATTR_KIND_READ_NONE:
1552     return Attribute::ReadNone;
1553   case bitc::ATTR_KIND_READ_ONLY:
1554     return Attribute::ReadOnly;
1555   case bitc::ATTR_KIND_RETURNED:
1556     return Attribute::Returned;
1557   case bitc::ATTR_KIND_RETURNS_TWICE:
1558     return Attribute::ReturnsTwice;
1559   case bitc::ATTR_KIND_S_EXT:
1560     return Attribute::SExt;
1561   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1562     return Attribute::StackAlignment;
1563   case bitc::ATTR_KIND_STACK_PROTECT:
1564     return Attribute::StackProtect;
1565   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1566     return Attribute::StackProtectReq;
1567   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1568     return Attribute::StackProtectStrong;
1569   case bitc::ATTR_KIND_SAFESTACK:
1570     return Attribute::SafeStack;
1571   case bitc::ATTR_KIND_STRUCT_RET:
1572     return Attribute::StructRet;
1573   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1574     return Attribute::SanitizeAddress;
1575   case bitc::ATTR_KIND_SANITIZE_THREAD:
1576     return Attribute::SanitizeThread;
1577   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1578     return Attribute::SanitizeMemory;
1579   case bitc::ATTR_KIND_SWIFT_ERROR:
1580     return Attribute::SwiftError;
1581   case bitc::ATTR_KIND_SWIFT_SELF:
1582     return Attribute::SwiftSelf;
1583   case bitc::ATTR_KIND_UW_TABLE:
1584     return Attribute::UWTable;
1585   case bitc::ATTR_KIND_WRITEONLY:
1586     return Attribute::WriteOnly;
1587   case bitc::ATTR_KIND_Z_EXT:
1588     return Attribute::ZExt;
1589   }
1590 }
1591 
1592 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1593                                                    unsigned &Alignment) {
1594   // Note: Alignment in bitcode files is incremented by 1, so that zero
1595   // can be used for default alignment.
1596   if (Exponent > Value::MaxAlignmentExponent + 1)
1597     return error("Invalid alignment value");
1598   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1599   return std::error_code();
1600 }
1601 
1602 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1603                                              Attribute::AttrKind *Kind) {
1604   *Kind = getAttrFromCode(Code);
1605   if (*Kind == Attribute::None)
1606     return error(BitcodeError::CorruptedBitcode,
1607                  "Unknown attribute kind (" + Twine(Code) + ")");
1608   return std::error_code();
1609 }
1610 
1611 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1612   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1613     return error("Invalid record");
1614 
1615   if (!MAttributeGroups.empty())
1616     return error("Invalid multiple blocks");
1617 
1618   SmallVector<uint64_t, 64> Record;
1619 
1620   // Read all the records.
1621   while (true) {
1622     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1623 
1624     switch (Entry.Kind) {
1625     case BitstreamEntry::SubBlock: // Handled for us already.
1626     case BitstreamEntry::Error:
1627       return error("Malformed block");
1628     case BitstreamEntry::EndBlock:
1629       return std::error_code();
1630     case BitstreamEntry::Record:
1631       // The interesting case.
1632       break;
1633     }
1634 
1635     // Read a record.
1636     Record.clear();
1637     switch (Stream.readRecord(Entry.ID, Record)) {
1638     default:  // Default behavior: ignore.
1639       break;
1640     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1641       if (Record.size() < 3)
1642         return error("Invalid record");
1643 
1644       uint64_t GrpID = Record[0];
1645       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1646 
1647       AttrBuilder B;
1648       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1649         if (Record[i] == 0) {        // Enum attribute
1650           Attribute::AttrKind Kind;
1651           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1652             return EC;
1653 
1654           B.addAttribute(Kind);
1655         } else if (Record[i] == 1) { // Integer attribute
1656           Attribute::AttrKind Kind;
1657           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1658             return EC;
1659           if (Kind == Attribute::Alignment)
1660             B.addAlignmentAttr(Record[++i]);
1661           else if (Kind == Attribute::StackAlignment)
1662             B.addStackAlignmentAttr(Record[++i]);
1663           else if (Kind == Attribute::Dereferenceable)
1664             B.addDereferenceableAttr(Record[++i]);
1665           else if (Kind == Attribute::DereferenceableOrNull)
1666             B.addDereferenceableOrNullAttr(Record[++i]);
1667           else if (Kind == Attribute::AllocSize)
1668             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1669         } else {                     // String attribute
1670           assert((Record[i] == 3 || Record[i] == 4) &&
1671                  "Invalid attribute group entry");
1672           bool HasValue = (Record[i++] == 4);
1673           SmallString<64> KindStr;
1674           SmallString<64> ValStr;
1675 
1676           while (Record[i] != 0 && i != e)
1677             KindStr += Record[i++];
1678           assert(Record[i] == 0 && "Kind string not null terminated");
1679 
1680           if (HasValue) {
1681             // Has a value associated with it.
1682             ++i; // Skip the '0' that terminates the "kind" string.
1683             while (Record[i] != 0 && i != e)
1684               ValStr += Record[i++];
1685             assert(Record[i] == 0 && "Value string not null terminated");
1686           }
1687 
1688           B.addAttribute(KindStr.str(), ValStr.str());
1689         }
1690       }
1691 
1692       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1693       break;
1694     }
1695     }
1696   }
1697 }
1698 
1699 std::error_code BitcodeReader::parseTypeTable() {
1700   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1701     return error("Invalid record");
1702 
1703   return parseTypeTableBody();
1704 }
1705 
1706 std::error_code BitcodeReader::parseTypeTableBody() {
1707   if (!TypeList.empty())
1708     return error("Invalid multiple blocks");
1709 
1710   SmallVector<uint64_t, 64> Record;
1711   unsigned NumRecords = 0;
1712 
1713   SmallString<64> TypeName;
1714 
1715   // Read all the records for this type table.
1716   while (true) {
1717     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1718 
1719     switch (Entry.Kind) {
1720     case BitstreamEntry::SubBlock: // Handled for us already.
1721     case BitstreamEntry::Error:
1722       return error("Malformed block");
1723     case BitstreamEntry::EndBlock:
1724       if (NumRecords != TypeList.size())
1725         return error("Malformed block");
1726       return std::error_code();
1727     case BitstreamEntry::Record:
1728       // The interesting case.
1729       break;
1730     }
1731 
1732     // Read a record.
1733     Record.clear();
1734     Type *ResultTy = nullptr;
1735     switch (Stream.readRecord(Entry.ID, Record)) {
1736     default:
1737       return error("Invalid value");
1738     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1739       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1740       // type list.  This allows us to reserve space.
1741       if (Record.size() < 1)
1742         return error("Invalid record");
1743       TypeList.resize(Record[0]);
1744       continue;
1745     case bitc::TYPE_CODE_VOID:      // VOID
1746       ResultTy = Type::getVoidTy(Context);
1747       break;
1748     case bitc::TYPE_CODE_HALF:     // HALF
1749       ResultTy = Type::getHalfTy(Context);
1750       break;
1751     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1752       ResultTy = Type::getFloatTy(Context);
1753       break;
1754     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1755       ResultTy = Type::getDoubleTy(Context);
1756       break;
1757     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1758       ResultTy = Type::getX86_FP80Ty(Context);
1759       break;
1760     case bitc::TYPE_CODE_FP128:     // FP128
1761       ResultTy = Type::getFP128Ty(Context);
1762       break;
1763     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1764       ResultTy = Type::getPPC_FP128Ty(Context);
1765       break;
1766     case bitc::TYPE_CODE_LABEL:     // LABEL
1767       ResultTy = Type::getLabelTy(Context);
1768       break;
1769     case bitc::TYPE_CODE_METADATA:  // METADATA
1770       ResultTy = Type::getMetadataTy(Context);
1771       break;
1772     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1773       ResultTy = Type::getX86_MMXTy(Context);
1774       break;
1775     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1776       ResultTy = Type::getTokenTy(Context);
1777       break;
1778     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1779       if (Record.size() < 1)
1780         return error("Invalid record");
1781 
1782       uint64_t NumBits = Record[0];
1783       if (NumBits < IntegerType::MIN_INT_BITS ||
1784           NumBits > IntegerType::MAX_INT_BITS)
1785         return error("Bitwidth for integer type out of range");
1786       ResultTy = IntegerType::get(Context, NumBits);
1787       break;
1788     }
1789     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1790                                     //          [pointee type, address space]
1791       if (Record.size() < 1)
1792         return error("Invalid record");
1793       unsigned AddressSpace = 0;
1794       if (Record.size() == 2)
1795         AddressSpace = Record[1];
1796       ResultTy = getTypeByID(Record[0]);
1797       if (!ResultTy ||
1798           !PointerType::isValidElementType(ResultTy))
1799         return error("Invalid type");
1800       ResultTy = PointerType::get(ResultTy, AddressSpace);
1801       break;
1802     }
1803     case bitc::TYPE_CODE_FUNCTION_OLD: {
1804       // FIXME: attrid is dead, remove it in LLVM 4.0
1805       // FUNCTION: [vararg, attrid, retty, paramty x N]
1806       if (Record.size() < 3)
1807         return error("Invalid record");
1808       SmallVector<Type*, 8> ArgTys;
1809       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1810         if (Type *T = getTypeByID(Record[i]))
1811           ArgTys.push_back(T);
1812         else
1813           break;
1814       }
1815 
1816       ResultTy = getTypeByID(Record[2]);
1817       if (!ResultTy || ArgTys.size() < Record.size()-3)
1818         return error("Invalid type");
1819 
1820       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1821       break;
1822     }
1823     case bitc::TYPE_CODE_FUNCTION: {
1824       // FUNCTION: [vararg, retty, paramty x N]
1825       if (Record.size() < 2)
1826         return error("Invalid record");
1827       SmallVector<Type*, 8> ArgTys;
1828       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1829         if (Type *T = getTypeByID(Record[i])) {
1830           if (!FunctionType::isValidArgumentType(T))
1831             return error("Invalid function argument type");
1832           ArgTys.push_back(T);
1833         }
1834         else
1835           break;
1836       }
1837 
1838       ResultTy = getTypeByID(Record[1]);
1839       if (!ResultTy || ArgTys.size() < Record.size()-2)
1840         return error("Invalid type");
1841 
1842       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1843       break;
1844     }
1845     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1846       if (Record.size() < 1)
1847         return error("Invalid record");
1848       SmallVector<Type*, 8> EltTys;
1849       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1850         if (Type *T = getTypeByID(Record[i]))
1851           EltTys.push_back(T);
1852         else
1853           break;
1854       }
1855       if (EltTys.size() != Record.size()-1)
1856         return error("Invalid type");
1857       ResultTy = StructType::get(Context, EltTys, Record[0]);
1858       break;
1859     }
1860     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1861       if (convertToString(Record, 0, TypeName))
1862         return error("Invalid record");
1863       continue;
1864 
1865     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1866       if (Record.size() < 1)
1867         return error("Invalid record");
1868 
1869       if (NumRecords >= TypeList.size())
1870         return error("Invalid TYPE table");
1871 
1872       // Check to see if this was forward referenced, if so fill in the temp.
1873       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1874       if (Res) {
1875         Res->setName(TypeName);
1876         TypeList[NumRecords] = nullptr;
1877       } else  // Otherwise, create a new struct.
1878         Res = createIdentifiedStructType(Context, TypeName);
1879       TypeName.clear();
1880 
1881       SmallVector<Type*, 8> EltTys;
1882       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1883         if (Type *T = getTypeByID(Record[i]))
1884           EltTys.push_back(T);
1885         else
1886           break;
1887       }
1888       if (EltTys.size() != Record.size()-1)
1889         return error("Invalid record");
1890       Res->setBody(EltTys, Record[0]);
1891       ResultTy = Res;
1892       break;
1893     }
1894     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1895       if (Record.size() != 1)
1896         return error("Invalid record");
1897 
1898       if (NumRecords >= TypeList.size())
1899         return error("Invalid TYPE table");
1900 
1901       // Check to see if this was forward referenced, if so fill in the temp.
1902       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1903       if (Res) {
1904         Res->setName(TypeName);
1905         TypeList[NumRecords] = nullptr;
1906       } else  // Otherwise, create a new struct with no body.
1907         Res = createIdentifiedStructType(Context, TypeName);
1908       TypeName.clear();
1909       ResultTy = Res;
1910       break;
1911     }
1912     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1913       if (Record.size() < 2)
1914         return error("Invalid record");
1915       ResultTy = getTypeByID(Record[1]);
1916       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1917         return error("Invalid type");
1918       ResultTy = ArrayType::get(ResultTy, Record[0]);
1919       break;
1920     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1921       if (Record.size() < 2)
1922         return error("Invalid record");
1923       if (Record[0] == 0)
1924         return error("Invalid vector length");
1925       ResultTy = getTypeByID(Record[1]);
1926       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1927         return error("Invalid type");
1928       ResultTy = VectorType::get(ResultTy, Record[0]);
1929       break;
1930     }
1931 
1932     if (NumRecords >= TypeList.size())
1933       return error("Invalid TYPE table");
1934     if (TypeList[NumRecords])
1935       return error(
1936           "Invalid TYPE table: Only named structs can be forward referenced");
1937     assert(ResultTy && "Didn't read a type?");
1938     TypeList[NumRecords++] = ResultTy;
1939   }
1940 }
1941 
1942 std::error_code BitcodeReader::parseOperandBundleTags() {
1943   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1944     return error("Invalid record");
1945 
1946   if (!BundleTags.empty())
1947     return error("Invalid multiple blocks");
1948 
1949   SmallVector<uint64_t, 64> Record;
1950 
1951   while (true) {
1952     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1953 
1954     switch (Entry.Kind) {
1955     case BitstreamEntry::SubBlock: // Handled for us already.
1956     case BitstreamEntry::Error:
1957       return error("Malformed block");
1958     case BitstreamEntry::EndBlock:
1959       return std::error_code();
1960     case BitstreamEntry::Record:
1961       // The interesting case.
1962       break;
1963     }
1964 
1965     // Tags are implicitly mapped to integers by their order.
1966 
1967     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1968       return error("Invalid record");
1969 
1970     // OPERAND_BUNDLE_TAG: [strchr x N]
1971     BundleTags.emplace_back();
1972     if (convertToString(Record, 0, BundleTags.back()))
1973       return error("Invalid record");
1974     Record.clear();
1975   }
1976 }
1977 
1978 /// Associate a value with its name from the given index in the provided record.
1979 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1980                                             unsigned NameIndex, Triple &TT) {
1981   SmallString<128> ValueName;
1982   if (convertToString(Record, NameIndex, ValueName))
1983     return error("Invalid record");
1984   unsigned ValueID = Record[0];
1985   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1986     return error("Invalid record");
1987   Value *V = ValueList[ValueID];
1988 
1989   StringRef NameStr(ValueName.data(), ValueName.size());
1990   if (NameStr.find_first_of(0) != StringRef::npos)
1991     return error("Invalid value name");
1992   V->setName(NameStr);
1993   auto *GO = dyn_cast<GlobalObject>(V);
1994   if (GO) {
1995     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1996       if (TT.isOSBinFormatMachO())
1997         GO->setComdat(nullptr);
1998       else
1999         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2000     }
2001   }
2002   return V;
2003 }
2004 
2005 /// Helper to note and return the current location, and jump to the given
2006 /// offset.
2007 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
2008                                        BitstreamCursor &Stream) {
2009   // Save the current parsing location so we can jump back at the end
2010   // of the VST read.
2011   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2012   Stream.JumpToBit(Offset * 32);
2013 #ifndef NDEBUG
2014   // Do some checking if we are in debug mode.
2015   BitstreamEntry Entry = Stream.advance();
2016   assert(Entry.Kind == BitstreamEntry::SubBlock);
2017   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2018 #else
2019   // In NDEBUG mode ignore the output so we don't get an unused variable
2020   // warning.
2021   Stream.advance();
2022 #endif
2023   return CurrentBit;
2024 }
2025 
2026 /// Parse the value symbol table at either the current parsing location or
2027 /// at the given bit offset if provided.
2028 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2029   uint64_t CurrentBit;
2030   // Pass in the Offset to distinguish between calling for the module-level
2031   // VST (where we want to jump to the VST offset) and the function-level
2032   // VST (where we don't).
2033   if (Offset > 0)
2034     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
2035 
2036   // Compute the delta between the bitcode indices in the VST (the word offset
2037   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2038   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2039   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2040   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2041   // just before entering the VST subblock because: 1) the EnterSubBlock
2042   // changes the AbbrevID width; 2) the VST block is nested within the same
2043   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2044   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2045   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2046   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2047   unsigned FuncBitcodeOffsetDelta =
2048       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2049 
2050   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2051     return error("Invalid record");
2052 
2053   SmallVector<uint64_t, 64> Record;
2054 
2055   Triple TT(TheModule->getTargetTriple());
2056 
2057   // Read all the records for this value table.
2058   SmallString<128> ValueName;
2059 
2060   while (true) {
2061     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2062 
2063     switch (Entry.Kind) {
2064     case BitstreamEntry::SubBlock: // Handled for us already.
2065     case BitstreamEntry::Error:
2066       return error("Malformed block");
2067     case BitstreamEntry::EndBlock:
2068       if (Offset > 0)
2069         Stream.JumpToBit(CurrentBit);
2070       return std::error_code();
2071     case BitstreamEntry::Record:
2072       // The interesting case.
2073       break;
2074     }
2075 
2076     // Read a record.
2077     Record.clear();
2078     switch (Stream.readRecord(Entry.ID, Record)) {
2079     default:  // Default behavior: unknown type.
2080       break;
2081     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2082       ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
2083       if (std::error_code EC = ValOrErr.getError())
2084         return EC;
2085       ValOrErr.get();
2086       break;
2087     }
2088     case bitc::VST_CODE_FNENTRY: {
2089       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2090       ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
2091       if (std::error_code EC = ValOrErr.getError())
2092         return EC;
2093       Value *V = ValOrErr.get();
2094 
2095       auto *GO = dyn_cast<GlobalObject>(V);
2096       if (!GO) {
2097         // If this is an alias, need to get the actual Function object
2098         // it aliases, in order to set up the DeferredFunctionInfo entry below.
2099         auto *GA = dyn_cast<GlobalAlias>(V);
2100         if (GA)
2101           GO = GA->getBaseObject();
2102         assert(GO);
2103       }
2104 
2105       uint64_t FuncWordOffset = Record[1];
2106       Function *F = dyn_cast<Function>(GO);
2107       assert(F);
2108       uint64_t FuncBitOffset = FuncWordOffset * 32;
2109       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2110       // Set the LastFunctionBlockBit to point to the last function block.
2111       // Later when parsing is resumed after function materialization,
2112       // we can simply skip that last function block.
2113       if (FuncBitOffset > LastFunctionBlockBit)
2114         LastFunctionBlockBit = FuncBitOffset;
2115       break;
2116     }
2117     case bitc::VST_CODE_BBENTRY: {
2118       if (convertToString(Record, 1, ValueName))
2119         return error("Invalid record");
2120       BasicBlock *BB = getBasicBlock(Record[0]);
2121       if (!BB)
2122         return error("Invalid record");
2123 
2124       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2125       ValueName.clear();
2126       break;
2127     }
2128     }
2129   }
2130 }
2131 
2132 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
2133 std::error_code
2134 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
2135   if (Record.size() < 2)
2136     return error("Invalid record");
2137 
2138   unsigned Kind = Record[0];
2139   SmallString<8> Name(Record.begin() + 1, Record.end());
2140 
2141   unsigned NewKind = TheModule->getMDKindID(Name.str());
2142   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
2143     return error("Conflicting METADATA_KIND records");
2144   return std::error_code();
2145 }
2146 
2147 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
2148 
2149 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record,
2150                                                     StringRef Blob,
2151                                                     unsigned &NextMetadataNo) {
2152   // All the MDStrings in the block are emitted together in a single
2153   // record.  The strings are concatenated and stored in a blob along with
2154   // their sizes.
2155   if (Record.size() != 2)
2156     return error("Invalid record: metadata strings layout");
2157 
2158   unsigned NumStrings = Record[0];
2159   unsigned StringsOffset = Record[1];
2160   if (!NumStrings)
2161     return error("Invalid record: metadata strings with no strings");
2162   if (StringsOffset > Blob.size())
2163     return error("Invalid record: metadata strings corrupt offset");
2164 
2165   StringRef Lengths = Blob.slice(0, StringsOffset);
2166   SimpleBitstreamCursor R(*StreamFile);
2167   R.jumpToPointer(Lengths.begin());
2168 
2169   // Ensure that Blob doesn't get invalidated, even if this is reading from
2170   // a StreamingMemoryObject with corrupt data.
2171   R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset);
2172 
2173   StringRef Strings = Blob.drop_front(StringsOffset);
2174   do {
2175     if (R.AtEndOfStream())
2176       return error("Invalid record: metadata strings bad length");
2177 
2178     unsigned Size = R.ReadVBR(6);
2179     if (Strings.size() < Size)
2180       return error("Invalid record: metadata strings truncated chars");
2181 
2182     MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)),
2183                              NextMetadataNo++);
2184     Strings = Strings.drop_front(Size);
2185   } while (--NumStrings);
2186 
2187   return std::error_code();
2188 }
2189 
2190 namespace {
2191 
2192 class PlaceholderQueue {
2193   // Placeholders would thrash around when moved, so store in a std::deque
2194   // instead of some sort of vector.
2195   std::deque<DistinctMDOperandPlaceholder> PHs;
2196 
2197 public:
2198   DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID);
2199   void flush(BitcodeReaderMetadataList &MetadataList);
2200 };
2201 
2202 } // end anonymous namespace
2203 
2204 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) {
2205   PHs.emplace_back(ID);
2206   return PHs.back();
2207 }
2208 
2209 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) {
2210   while (!PHs.empty()) {
2211     PHs.front().replaceUseWith(
2212         MetadataList.getMetadataFwdRef(PHs.front().getID()));
2213     PHs.pop_front();
2214   }
2215 }
2216 
2217 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
2218 /// module level metadata.
2219 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
2220   assert((ModuleLevel || DeferredMetadataInfo.empty()) &&
2221          "Must read all module-level metadata before function-level");
2222 
2223   IsMetadataMaterialized = true;
2224   unsigned NextMetadataNo = MetadataList.size();
2225 
2226   if (!ModuleLevel && MetadataList.hasFwdRefs())
2227     return error("Invalid metadata: fwd refs into function blocks");
2228 
2229   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
2230     return error("Invalid record");
2231 
2232   std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms;
2233   SmallVector<uint64_t, 64> Record;
2234 
2235   PlaceholderQueue Placeholders;
2236   bool IsDistinct;
2237   auto getMD = [&](unsigned ID) -> Metadata * {
2238     if (!IsDistinct)
2239       return MetadataList.getMetadataFwdRef(ID);
2240     if (auto *MD = MetadataList.getMetadataIfResolved(ID))
2241       return MD;
2242     return &Placeholders.getPlaceholderOp(ID);
2243   };
2244   auto getMDOrNull = [&](unsigned ID) -> Metadata * {
2245     if (ID)
2246       return getMD(ID - 1);
2247     return nullptr;
2248   };
2249   auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * {
2250     if (ID)
2251       return MetadataList.getMetadataFwdRef(ID - 1);
2252     return nullptr;
2253   };
2254   auto getMDString = [&](unsigned ID) -> MDString *{
2255     // This requires that the ID is not really a forward reference.  In
2256     // particular, the MDString must already have been resolved.
2257     return cast_or_null<MDString>(getMDOrNull(ID));
2258   };
2259 
2260   // Support for old type refs.
2261   auto getDITypeRefOrNull = [&](unsigned ID) {
2262     return MetadataList.upgradeTypeRef(getMDOrNull(ID));
2263   };
2264 
2265 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
2266   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
2267 
2268   // Read all the records.
2269   while (true) {
2270     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2271 
2272     switch (Entry.Kind) {
2273     case BitstreamEntry::SubBlock: // Handled for us already.
2274     case BitstreamEntry::Error:
2275       return error("Malformed block");
2276     case BitstreamEntry::EndBlock:
2277       // Upgrade old-style CU <-> SP pointers to point from SP to CU.
2278       for (auto CU_SP : CUSubprograms)
2279         if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second))
2280           for (auto &Op : SPs->operands())
2281             if (auto *SP = dyn_cast_or_null<MDNode>(Op))
2282               SP->replaceOperandWith(7, CU_SP.first);
2283 
2284       MetadataList.tryToResolveCycles();
2285       Placeholders.flush(MetadataList);
2286       return std::error_code();
2287     case BitstreamEntry::Record:
2288       // The interesting case.
2289       break;
2290     }
2291 
2292     // Read a record.
2293     Record.clear();
2294     StringRef Blob;
2295     unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob);
2296     IsDistinct = false;
2297     switch (Code) {
2298     default:  // Default behavior: ignore.
2299       break;
2300     case bitc::METADATA_NAME: {
2301       // Read name of the named metadata.
2302       SmallString<8> Name(Record.begin(), Record.end());
2303       Record.clear();
2304       Code = Stream.ReadCode();
2305 
2306       unsigned NextBitCode = Stream.readRecord(Code, Record);
2307       if (NextBitCode != bitc::METADATA_NAMED_NODE)
2308         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
2309 
2310       // Read named metadata elements.
2311       unsigned Size = Record.size();
2312       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
2313       for (unsigned i = 0; i != Size; ++i) {
2314         MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
2315         if (!MD)
2316           return error("Invalid record");
2317         NMD->addOperand(MD);
2318       }
2319       break;
2320     }
2321     case bitc::METADATA_OLD_FN_NODE: {
2322       // FIXME: Remove in 4.0.
2323       // This is a LocalAsMetadata record, the only type of function-local
2324       // metadata.
2325       if (Record.size() % 2 == 1)
2326         return error("Invalid record");
2327 
2328       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
2329       // to be legal, but there's no upgrade path.
2330       auto dropRecord = [&] {
2331         MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
2332       };
2333       if (Record.size() != 2) {
2334         dropRecord();
2335         break;
2336       }
2337 
2338       Type *Ty = getTypeByID(Record[0]);
2339       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
2340         dropRecord();
2341         break;
2342       }
2343 
2344       MetadataList.assignValue(
2345           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2346           NextMetadataNo++);
2347       break;
2348     }
2349     case bitc::METADATA_OLD_NODE: {
2350       // FIXME: Remove in 4.0.
2351       if (Record.size() % 2 == 1)
2352         return error("Invalid record");
2353 
2354       unsigned Size = Record.size();
2355       SmallVector<Metadata *, 8> Elts;
2356       for (unsigned i = 0; i != Size; i += 2) {
2357         Type *Ty = getTypeByID(Record[i]);
2358         if (!Ty)
2359           return error("Invalid record");
2360         if (Ty->isMetadataTy())
2361           Elts.push_back(getMD(Record[i + 1]));
2362         else if (!Ty->isVoidTy()) {
2363           auto *MD =
2364               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2365           assert(isa<ConstantAsMetadata>(MD) &&
2366                  "Expected non-function-local metadata");
2367           Elts.push_back(MD);
2368         } else
2369           Elts.push_back(nullptr);
2370       }
2371       MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2372       break;
2373     }
2374     case bitc::METADATA_VALUE: {
2375       if (Record.size() != 2)
2376         return error("Invalid record");
2377 
2378       Type *Ty = getTypeByID(Record[0]);
2379       if (Ty->isMetadataTy() || Ty->isVoidTy())
2380         return error("Invalid record");
2381 
2382       MetadataList.assignValue(
2383           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2384           NextMetadataNo++);
2385       break;
2386     }
2387     case bitc::METADATA_DISTINCT_NODE:
2388       IsDistinct = true;
2389       LLVM_FALLTHROUGH;
2390     case bitc::METADATA_NODE: {
2391       SmallVector<Metadata *, 8> Elts;
2392       Elts.reserve(Record.size());
2393       for (unsigned ID : Record)
2394         Elts.push_back(getMDOrNull(ID));
2395       MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2396                                           : MDNode::get(Context, Elts),
2397                                NextMetadataNo++);
2398       break;
2399     }
2400     case bitc::METADATA_LOCATION: {
2401       if (Record.size() != 5)
2402         return error("Invalid record");
2403 
2404       IsDistinct = Record[0];
2405       unsigned Line = Record[1];
2406       unsigned Column = Record[2];
2407       Metadata *Scope = getMD(Record[3]);
2408       Metadata *InlinedAt = getMDOrNull(Record[4]);
2409       MetadataList.assignValue(
2410           GET_OR_DISTINCT(DILocation,
2411                           (Context, Line, Column, Scope, InlinedAt)),
2412           NextMetadataNo++);
2413       break;
2414     }
2415     case bitc::METADATA_GENERIC_DEBUG: {
2416       if (Record.size() < 4)
2417         return error("Invalid record");
2418 
2419       IsDistinct = Record[0];
2420       unsigned Tag = Record[1];
2421       unsigned Version = Record[2];
2422 
2423       if (Tag >= 1u << 16 || Version != 0)
2424         return error("Invalid record");
2425 
2426       auto *Header = getMDString(Record[3]);
2427       SmallVector<Metadata *, 8> DwarfOps;
2428       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2429         DwarfOps.push_back(getMDOrNull(Record[I]));
2430       MetadataList.assignValue(
2431           GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)),
2432           NextMetadataNo++);
2433       break;
2434     }
2435     case bitc::METADATA_SUBRANGE: {
2436       if (Record.size() != 3)
2437         return error("Invalid record");
2438 
2439       IsDistinct = Record[0];
2440       MetadataList.assignValue(
2441           GET_OR_DISTINCT(DISubrange,
2442                           (Context, Record[1], unrotateSign(Record[2]))),
2443           NextMetadataNo++);
2444       break;
2445     }
2446     case bitc::METADATA_ENUMERATOR: {
2447       if (Record.size() != 3)
2448         return error("Invalid record");
2449 
2450       IsDistinct = Record[0];
2451       MetadataList.assignValue(
2452           GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]),
2453                                          getMDString(Record[2]))),
2454           NextMetadataNo++);
2455       break;
2456     }
2457     case bitc::METADATA_BASIC_TYPE: {
2458       if (Record.size() != 6)
2459         return error("Invalid record");
2460 
2461       IsDistinct = Record[0];
2462       MetadataList.assignValue(
2463           GET_OR_DISTINCT(DIBasicType,
2464                           (Context, Record[1], getMDString(Record[2]),
2465                            Record[3], Record[4], Record[5])),
2466           NextMetadataNo++);
2467       break;
2468     }
2469     case bitc::METADATA_DERIVED_TYPE: {
2470       if (Record.size() != 12)
2471         return error("Invalid record");
2472 
2473       IsDistinct = Record[0];
2474       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]);
2475       MetadataList.assignValue(
2476           GET_OR_DISTINCT(DIDerivedType,
2477                           (Context, Record[1], getMDString(Record[2]),
2478                            getMDOrNull(Record[3]), Record[4],
2479                            getDITypeRefOrNull(Record[5]),
2480                            getDITypeRefOrNull(Record[6]), Record[7], Record[8],
2481                            Record[9], Flags, getDITypeRefOrNull(Record[11]))),
2482           NextMetadataNo++);
2483       break;
2484     }
2485     case bitc::METADATA_COMPOSITE_TYPE: {
2486       if (Record.size() != 16)
2487         return error("Invalid record");
2488 
2489       // If we have a UUID and this is not a forward declaration, lookup the
2490       // mapping.
2491       IsDistinct = Record[0] & 0x1;
2492       bool IsNotUsedInTypeRef = Record[0] >= 2;
2493       unsigned Tag = Record[1];
2494       MDString *Name = getMDString(Record[2]);
2495       Metadata *File = getMDOrNull(Record[3]);
2496       unsigned Line = Record[4];
2497       Metadata *Scope = getDITypeRefOrNull(Record[5]);
2498       Metadata *BaseType = getDITypeRefOrNull(Record[6]);
2499       uint64_t SizeInBits = Record[7];
2500       if (Record[8] > (uint64_t)std::numeric_limits<uint32_t>::max())
2501         return error("Alignment value is too large");
2502       uint32_t AlignInBits = Record[8];
2503       uint64_t OffsetInBits = Record[9];
2504       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[10]);
2505       Metadata *Elements = getMDOrNull(Record[11]);
2506       unsigned RuntimeLang = Record[12];
2507       Metadata *VTableHolder = getDITypeRefOrNull(Record[13]);
2508       Metadata *TemplateParams = getMDOrNull(Record[14]);
2509       auto *Identifier = getMDString(Record[15]);
2510       DICompositeType *CT = nullptr;
2511       if (Identifier)
2512         CT = DICompositeType::buildODRType(
2513             Context, *Identifier, Tag, Name, File, Line, Scope, BaseType,
2514             SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
2515             VTableHolder, TemplateParams);
2516 
2517       // Create a node if we didn't get a lazy ODR type.
2518       if (!CT)
2519         CT = GET_OR_DISTINCT(DICompositeType,
2520                              (Context, Tag, Name, File, Line, Scope, BaseType,
2521                               SizeInBits, AlignInBits, OffsetInBits, Flags,
2522                               Elements, RuntimeLang, VTableHolder,
2523                               TemplateParams, Identifier));
2524       if (!IsNotUsedInTypeRef && Identifier)
2525         MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT));
2526 
2527       MetadataList.assignValue(CT, NextMetadataNo++);
2528       break;
2529     }
2530     case bitc::METADATA_SUBROUTINE_TYPE: {
2531       if (Record.size() < 3 || Record.size() > 4)
2532         return error("Invalid record");
2533       bool IsOldTypeRefArray = Record[0] < 2;
2534       unsigned CC = (Record.size() > 3) ? Record[3] : 0;
2535 
2536       IsDistinct = Record[0] & 0x1;
2537       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[1]);
2538       Metadata *Types = getMDOrNull(Record[2]);
2539       if (LLVM_UNLIKELY(IsOldTypeRefArray))
2540         Types = MetadataList.upgradeTypeRefArray(Types);
2541 
2542       MetadataList.assignValue(
2543           GET_OR_DISTINCT(DISubroutineType, (Context, Flags, CC, Types)),
2544           NextMetadataNo++);
2545       break;
2546     }
2547 
2548     case bitc::METADATA_MODULE: {
2549       if (Record.size() != 6)
2550         return error("Invalid record");
2551 
2552       IsDistinct = Record[0];
2553       MetadataList.assignValue(
2554           GET_OR_DISTINCT(DIModule,
2555                           (Context, getMDOrNull(Record[1]),
2556                            getMDString(Record[2]), getMDString(Record[3]),
2557                            getMDString(Record[4]), getMDString(Record[5]))),
2558           NextMetadataNo++);
2559       break;
2560     }
2561 
2562     case bitc::METADATA_FILE: {
2563       if (Record.size() != 3)
2564         return error("Invalid record");
2565 
2566       IsDistinct = Record[0];
2567       MetadataList.assignValue(
2568           GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]),
2569                                    getMDString(Record[2]))),
2570           NextMetadataNo++);
2571       break;
2572     }
2573     case bitc::METADATA_COMPILE_UNIT: {
2574       if (Record.size() < 14 || Record.size() > 17)
2575         return error("Invalid record");
2576 
2577       // Ignore Record[0], which indicates whether this compile unit is
2578       // distinct.  It's always distinct.
2579       IsDistinct = true;
2580       auto *CU = DICompileUnit::getDistinct(
2581           Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]),
2582           Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]),
2583           Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2584           getMDOrNull(Record[12]), getMDOrNull(Record[13]),
2585           Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
2586           Record.size() <= 14 ? 0 : Record[14],
2587           Record.size() <= 16 ? true : Record[16]);
2588 
2589       MetadataList.assignValue(CU, NextMetadataNo++);
2590 
2591       // Move the Upgrade the list of subprograms.
2592       if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11]))
2593         CUSubprograms.push_back({CU, SPs});
2594       break;
2595     }
2596     case bitc::METADATA_SUBPROGRAM: {
2597       if (Record.size() < 18 || Record.size() > 20)
2598         return error("Invalid record");
2599 
2600       IsDistinct =
2601           (Record[0] & 1) || Record[8]; // All definitions should be distinct.
2602       // Version 1 has a Function as Record[15].
2603       // Version 2 has removed Record[15].
2604       // Version 3 has the Unit as Record[15].
2605       // Version 4 added thisAdjustment.
2606       bool HasUnit = Record[0] >= 2;
2607       if (HasUnit && Record.size() < 19)
2608         return error("Invalid record");
2609       Metadata *CUorFn = getMDOrNull(Record[15]);
2610       unsigned Offset = Record.size() >= 19 ? 1 : 0;
2611       bool HasFn = Offset && !HasUnit;
2612       bool HasThisAdj = Record.size() >= 20;
2613       DISubprogram *SP = GET_OR_DISTINCT(
2614           DISubprogram, (Context,
2615                          getDITypeRefOrNull(Record[1]),  // scope
2616                          getMDString(Record[2]),         // name
2617                          getMDString(Record[3]),         // linkageName
2618                          getMDOrNull(Record[4]),         // file
2619                          Record[5],                      // line
2620                          getMDOrNull(Record[6]),         // type
2621                          Record[7],                      // isLocal
2622                          Record[8],                      // isDefinition
2623                          Record[9],                      // scopeLine
2624                          getDITypeRefOrNull(Record[10]), // containingType
2625                          Record[11],                     // virtuality
2626                          Record[12],                     // virtualIndex
2627                          HasThisAdj ? Record[19] : 0,    // thisAdjustment
2628                          static_cast<DINode::DIFlags>(Record[13] // flags
2629                                                       ),
2630                          Record[14],                       // isOptimized
2631                          HasUnit ? CUorFn : nullptr,       // unit
2632                          getMDOrNull(Record[15 + Offset]), // templateParams
2633                          getMDOrNull(Record[16 + Offset]), // declaration
2634                          getMDOrNull(Record[17 + Offset])  // variables
2635                          ));
2636       MetadataList.assignValue(SP, NextMetadataNo++);
2637 
2638       // Upgrade sp->function mapping to function->sp mapping.
2639       if (HasFn) {
2640         if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn))
2641           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2642             if (F->isMaterializable())
2643               // Defer until materialized; unmaterialized functions may not have
2644               // metadata.
2645               FunctionsWithSPs[F] = SP;
2646             else if (!F->empty())
2647               F->setSubprogram(SP);
2648           }
2649       }
2650       break;
2651     }
2652     case bitc::METADATA_LEXICAL_BLOCK: {
2653       if (Record.size() != 5)
2654         return error("Invalid record");
2655 
2656       IsDistinct = Record[0];
2657       MetadataList.assignValue(
2658           GET_OR_DISTINCT(DILexicalBlock,
2659                           (Context, getMDOrNull(Record[1]),
2660                            getMDOrNull(Record[2]), Record[3], Record[4])),
2661           NextMetadataNo++);
2662       break;
2663     }
2664     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2665       if (Record.size() != 4)
2666         return error("Invalid record");
2667 
2668       IsDistinct = Record[0];
2669       MetadataList.assignValue(
2670           GET_OR_DISTINCT(DILexicalBlockFile,
2671                           (Context, getMDOrNull(Record[1]),
2672                            getMDOrNull(Record[2]), Record[3])),
2673           NextMetadataNo++);
2674       break;
2675     }
2676     case bitc::METADATA_NAMESPACE: {
2677       if (Record.size() != 5)
2678         return error("Invalid record");
2679 
2680       IsDistinct = Record[0];
2681       MetadataList.assignValue(
2682           GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]),
2683                                         getMDOrNull(Record[2]),
2684                                         getMDString(Record[3]), Record[4])),
2685           NextMetadataNo++);
2686       break;
2687     }
2688     case bitc::METADATA_MACRO: {
2689       if (Record.size() != 5)
2690         return error("Invalid record");
2691 
2692       IsDistinct = Record[0];
2693       MetadataList.assignValue(
2694           GET_OR_DISTINCT(DIMacro,
2695                           (Context, Record[1], Record[2],
2696                            getMDString(Record[3]), getMDString(Record[4]))),
2697           NextMetadataNo++);
2698       break;
2699     }
2700     case bitc::METADATA_MACRO_FILE: {
2701       if (Record.size() != 5)
2702         return error("Invalid record");
2703 
2704       IsDistinct = Record[0];
2705       MetadataList.assignValue(
2706           GET_OR_DISTINCT(DIMacroFile,
2707                           (Context, Record[1], Record[2],
2708                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2709           NextMetadataNo++);
2710       break;
2711     }
2712     case bitc::METADATA_TEMPLATE_TYPE: {
2713       if (Record.size() != 3)
2714         return error("Invalid record");
2715 
2716       IsDistinct = Record[0];
2717       MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2718                                                (Context, getMDString(Record[1]),
2719                                                 getDITypeRefOrNull(Record[2]))),
2720                                NextMetadataNo++);
2721       break;
2722     }
2723     case bitc::METADATA_TEMPLATE_VALUE: {
2724       if (Record.size() != 5)
2725         return error("Invalid record");
2726 
2727       IsDistinct = Record[0];
2728       MetadataList.assignValue(
2729           GET_OR_DISTINCT(DITemplateValueParameter,
2730                           (Context, Record[1], getMDString(Record[2]),
2731                            getDITypeRefOrNull(Record[3]),
2732                            getMDOrNull(Record[4]))),
2733           NextMetadataNo++);
2734       break;
2735     }
2736     case bitc::METADATA_GLOBAL_VAR: {
2737       if (Record.size() < 11 || Record.size() > 12)
2738         return error("Invalid record");
2739 
2740       IsDistinct = Record[0];
2741 
2742       // Upgrade old metadata, which stored a global variable reference or a
2743       // ConstantInt here.
2744       Metadata *Expr = getMDOrNull(Record[9]);
2745       uint64_t AlignInBits = (Record.size() > 11) ? Record[11] : 0;
2746       GlobalVariable *Attach = nullptr;
2747       if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(Expr)) {
2748         if (auto *GV = dyn_cast<GlobalVariable>(CMD->getValue())) {
2749           Attach = GV;
2750           Expr = nullptr;
2751         } else if (auto *CI = dyn_cast<ConstantInt>(CMD->getValue())) {
2752           Expr = DIExpression::get(Context,
2753                                    {dwarf::DW_OP_constu, CI->getZExtValue(),
2754                                     dwarf::DW_OP_stack_value});
2755         } else {
2756           Expr = nullptr;
2757         }
2758       }
2759 
2760       DIGlobalVariable *DGV = GET_OR_DISTINCT(
2761           DIGlobalVariable,
2762           (Context, getMDOrNull(Record[1]), getMDString(Record[2]),
2763            getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2764            getDITypeRefOrNull(Record[6]), Record[7], Record[8], Expr,
2765            getMDOrNull(Record[10]), AlignInBits));
2766       MetadataList.assignValue(DGV, NextMetadataNo++);
2767 
2768       if (Attach)
2769         Attach->addDebugInfo(DGV);
2770 
2771       break;
2772     }
2773     case bitc::METADATA_LOCAL_VAR: {
2774       // 10th field is for the obseleted 'inlinedAt:' field.
2775       if (Record.size() < 8 || Record.size() > 10)
2776         return error("Invalid record");
2777 
2778       IsDistinct = Record[0] & 1;
2779       bool HasAlignment = Record[0] & 2;
2780       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2781       // DW_TAG_arg_variable, if we have alignment flag encoded it means, that
2782       // this is newer version of record which doesn't have artifical tag.
2783       bool HasTag = !HasAlignment && Record.size() > 8;
2784       DINode::DIFlags Flags = static_cast<DINode::DIFlags>(Record[7 + HasTag]);
2785       uint64_t AlignInBits = HasAlignment ? Record[8 + HasTag] : 0;
2786       MetadataList.assignValue(
2787           GET_OR_DISTINCT(DILocalVariable,
2788                           (Context, getMDOrNull(Record[1 + HasTag]),
2789                            getMDString(Record[2 + HasTag]),
2790                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2791                            getDITypeRefOrNull(Record[5 + HasTag]),
2792                            Record[6 + HasTag], Flags, AlignInBits)),
2793           NextMetadataNo++);
2794       break;
2795     }
2796     case bitc::METADATA_EXPRESSION: {
2797       if (Record.size() < 1)
2798         return error("Invalid record");
2799 
2800       IsDistinct = Record[0];
2801       MetadataList.assignValue(
2802           GET_OR_DISTINCT(DIExpression,
2803                           (Context, makeArrayRef(Record).slice(1))),
2804           NextMetadataNo++);
2805       break;
2806     }
2807     case bitc::METADATA_OBJC_PROPERTY: {
2808       if (Record.size() != 8)
2809         return error("Invalid record");
2810 
2811       IsDistinct = Record[0];
2812       MetadataList.assignValue(
2813           GET_OR_DISTINCT(DIObjCProperty,
2814                           (Context, getMDString(Record[1]),
2815                            getMDOrNull(Record[2]), Record[3],
2816                            getMDString(Record[4]), getMDString(Record[5]),
2817                            Record[6], getDITypeRefOrNull(Record[7]))),
2818           NextMetadataNo++);
2819       break;
2820     }
2821     case bitc::METADATA_IMPORTED_ENTITY: {
2822       if (Record.size() != 6)
2823         return error("Invalid record");
2824 
2825       IsDistinct = Record[0];
2826       MetadataList.assignValue(
2827           GET_OR_DISTINCT(DIImportedEntity,
2828                           (Context, Record[1], getMDOrNull(Record[2]),
2829                            getDITypeRefOrNull(Record[3]), Record[4],
2830                            getMDString(Record[5]))),
2831           NextMetadataNo++);
2832       break;
2833     }
2834     case bitc::METADATA_STRING_OLD: {
2835       std::string String(Record.begin(), Record.end());
2836 
2837       // Test for upgrading !llvm.loop.
2838       HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String);
2839 
2840       Metadata *MD = MDString::get(Context, String);
2841       MetadataList.assignValue(MD, NextMetadataNo++);
2842       break;
2843     }
2844     case bitc::METADATA_STRINGS:
2845       if (std::error_code EC =
2846               parseMetadataStrings(Record, Blob, NextMetadataNo))
2847         return EC;
2848       break;
2849     case bitc::METADATA_GLOBAL_DECL_ATTACHMENT: {
2850       if (Record.size() % 2 == 0)
2851         return error("Invalid record");
2852       unsigned ValueID = Record[0];
2853       if (ValueID >= ValueList.size())
2854         return error("Invalid record");
2855       if (auto *GO = dyn_cast<GlobalObject>(ValueList[ValueID]))
2856         parseGlobalObjectAttachment(*GO, ArrayRef<uint64_t>(Record).slice(1));
2857       break;
2858     }
2859     case bitc::METADATA_KIND: {
2860       // Support older bitcode files that had METADATA_KIND records in a
2861       // block with METADATA_BLOCK_ID.
2862       if (std::error_code EC = parseMetadataKindRecord(Record))
2863         return EC;
2864       break;
2865     }
2866     }
2867   }
2868 
2869 #undef GET_OR_DISTINCT
2870 }
2871 
2872 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
2873 std::error_code BitcodeReader::parseMetadataKinds() {
2874   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
2875     return error("Invalid record");
2876 
2877   SmallVector<uint64_t, 64> Record;
2878 
2879   // Read all the records.
2880   while (true) {
2881     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2882 
2883     switch (Entry.Kind) {
2884     case BitstreamEntry::SubBlock: // Handled for us already.
2885     case BitstreamEntry::Error:
2886       return error("Malformed block");
2887     case BitstreamEntry::EndBlock:
2888       return std::error_code();
2889     case BitstreamEntry::Record:
2890       // The interesting case.
2891       break;
2892     }
2893 
2894     // Read a record.
2895     Record.clear();
2896     unsigned Code = Stream.readRecord(Entry.ID, Record);
2897     switch (Code) {
2898     default: // Default behavior: ignore.
2899       break;
2900     case bitc::METADATA_KIND: {
2901       if (std::error_code EC = parseMetadataKindRecord(Record))
2902         return EC;
2903       break;
2904     }
2905     }
2906   }
2907 }
2908 
2909 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2910 /// encoding.
2911 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2912   if ((V & 1) == 0)
2913     return V >> 1;
2914   if (V != 1)
2915     return -(V >> 1);
2916   // There is no such thing as -0 with integers.  "-0" really means MININT.
2917   return 1ULL << 63;
2918 }
2919 
2920 /// Resolve all of the initializers for global values and aliases that we can.
2921 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2922   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2923   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >
2924       IndirectSymbolInitWorklist;
2925   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2926   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2927   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2928 
2929   GlobalInitWorklist.swap(GlobalInits);
2930   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2931   FunctionPrefixWorklist.swap(FunctionPrefixes);
2932   FunctionPrologueWorklist.swap(FunctionPrologues);
2933   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2934 
2935   while (!GlobalInitWorklist.empty()) {
2936     unsigned ValID = GlobalInitWorklist.back().second;
2937     if (ValID >= ValueList.size()) {
2938       // Not ready to resolve this yet, it requires something later in the file.
2939       GlobalInits.push_back(GlobalInitWorklist.back());
2940     } else {
2941       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2942         GlobalInitWorklist.back().first->setInitializer(C);
2943       else
2944         return error("Expected a constant");
2945     }
2946     GlobalInitWorklist.pop_back();
2947   }
2948 
2949   while (!IndirectSymbolInitWorklist.empty()) {
2950     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2951     if (ValID >= ValueList.size()) {
2952       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2953     } else {
2954       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2955       if (!C)
2956         return error("Expected a constant");
2957       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2958       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2959         return error("Alias and aliasee types don't match");
2960       GIS->setIndirectSymbol(C);
2961     }
2962     IndirectSymbolInitWorklist.pop_back();
2963   }
2964 
2965   while (!FunctionPrefixWorklist.empty()) {
2966     unsigned ValID = FunctionPrefixWorklist.back().second;
2967     if (ValID >= ValueList.size()) {
2968       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2969     } else {
2970       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2971         FunctionPrefixWorklist.back().first->setPrefixData(C);
2972       else
2973         return error("Expected a constant");
2974     }
2975     FunctionPrefixWorklist.pop_back();
2976   }
2977 
2978   while (!FunctionPrologueWorklist.empty()) {
2979     unsigned ValID = FunctionPrologueWorklist.back().second;
2980     if (ValID >= ValueList.size()) {
2981       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2982     } else {
2983       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2984         FunctionPrologueWorklist.back().first->setPrologueData(C);
2985       else
2986         return error("Expected a constant");
2987     }
2988     FunctionPrologueWorklist.pop_back();
2989   }
2990 
2991   while (!FunctionPersonalityFnWorklist.empty()) {
2992     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2993     if (ValID >= ValueList.size()) {
2994       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2995     } else {
2996       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2997         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2998       else
2999         return error("Expected a constant");
3000     }
3001     FunctionPersonalityFnWorklist.pop_back();
3002   }
3003 
3004   return std::error_code();
3005 }
3006 
3007 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
3008   SmallVector<uint64_t, 8> Words(Vals.size());
3009   transform(Vals, Words.begin(),
3010                  BitcodeReader::decodeSignRotatedValue);
3011 
3012   return APInt(TypeBits, Words);
3013 }
3014 
3015 std::error_code BitcodeReader::parseConstants() {
3016   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
3017     return error("Invalid record");
3018 
3019   SmallVector<uint64_t, 64> Record;
3020 
3021   // Read all the records for this value table.
3022   Type *CurTy = Type::getInt32Ty(Context);
3023   unsigned NextCstNo = ValueList.size();
3024 
3025   while (true) {
3026     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3027 
3028     switch (Entry.Kind) {
3029     case BitstreamEntry::SubBlock: // Handled for us already.
3030     case BitstreamEntry::Error:
3031       return error("Malformed block");
3032     case BitstreamEntry::EndBlock:
3033       if (NextCstNo != ValueList.size())
3034         return error("Invalid constant reference");
3035 
3036       // Once all the constants have been read, go through and resolve forward
3037       // references.
3038       ValueList.resolveConstantForwardRefs();
3039       return std::error_code();
3040     case BitstreamEntry::Record:
3041       // The interesting case.
3042       break;
3043     }
3044 
3045     // Read a record.
3046     Record.clear();
3047     Type *VoidType = Type::getVoidTy(Context);
3048     Value *V = nullptr;
3049     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3050     switch (BitCode) {
3051     default:  // Default behavior: unknown constant
3052     case bitc::CST_CODE_UNDEF:     // UNDEF
3053       V = UndefValue::get(CurTy);
3054       break;
3055     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
3056       if (Record.empty())
3057         return error("Invalid record");
3058       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
3059         return error("Invalid record");
3060       if (TypeList[Record[0]] == VoidType)
3061         return error("Invalid constant type");
3062       CurTy = TypeList[Record[0]];
3063       continue;  // Skip the ValueList manipulation.
3064     case bitc::CST_CODE_NULL:      // NULL
3065       V = Constant::getNullValue(CurTy);
3066       break;
3067     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
3068       if (!CurTy->isIntegerTy() || Record.empty())
3069         return error("Invalid record");
3070       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
3071       break;
3072     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
3073       if (!CurTy->isIntegerTy() || Record.empty())
3074         return error("Invalid record");
3075 
3076       APInt VInt =
3077           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
3078       V = ConstantInt::get(Context, VInt);
3079 
3080       break;
3081     }
3082     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
3083       if (Record.empty())
3084         return error("Invalid record");
3085       if (CurTy->isHalfTy())
3086         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
3087                                              APInt(16, (uint16_t)Record[0])));
3088       else if (CurTy->isFloatTy())
3089         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
3090                                              APInt(32, (uint32_t)Record[0])));
3091       else if (CurTy->isDoubleTy())
3092         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
3093                                              APInt(64, Record[0])));
3094       else if (CurTy->isX86_FP80Ty()) {
3095         // Bits are not stored the same way as a normal i80 APInt, compensate.
3096         uint64_t Rearrange[2];
3097         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
3098         Rearrange[1] = Record[0] >> 48;
3099         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
3100                                              APInt(80, Rearrange)));
3101       } else if (CurTy->isFP128Ty())
3102         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
3103                                              APInt(128, Record)));
3104       else if (CurTy->isPPC_FP128Ty())
3105         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
3106                                              APInt(128, Record)));
3107       else
3108         V = UndefValue::get(CurTy);
3109       break;
3110     }
3111 
3112     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
3113       if (Record.empty())
3114         return error("Invalid record");
3115 
3116       unsigned Size = Record.size();
3117       SmallVector<Constant*, 16> Elts;
3118 
3119       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
3120         for (unsigned i = 0; i != Size; ++i)
3121           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
3122                                                      STy->getElementType(i)));
3123         V = ConstantStruct::get(STy, Elts);
3124       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
3125         Type *EltTy = ATy->getElementType();
3126         for (unsigned i = 0; i != Size; ++i)
3127           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
3128         V = ConstantArray::get(ATy, Elts);
3129       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
3130         Type *EltTy = VTy->getElementType();
3131         for (unsigned i = 0; i != Size; ++i)
3132           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
3133         V = ConstantVector::get(Elts);
3134       } else {
3135         V = UndefValue::get(CurTy);
3136       }
3137       break;
3138     }
3139     case bitc::CST_CODE_STRING:    // STRING: [values]
3140     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
3141       if (Record.empty())
3142         return error("Invalid record");
3143 
3144       SmallString<16> Elts(Record.begin(), Record.end());
3145       V = ConstantDataArray::getString(Context, Elts,
3146                                        BitCode == bitc::CST_CODE_CSTRING);
3147       break;
3148     }
3149     case bitc::CST_CODE_DATA: {// DATA: [n x value]
3150       if (Record.empty())
3151         return error("Invalid record");
3152 
3153       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
3154       if (EltTy->isIntegerTy(8)) {
3155         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
3156         if (isa<VectorType>(CurTy))
3157           V = ConstantDataVector::get(Context, Elts);
3158         else
3159           V = ConstantDataArray::get(Context, Elts);
3160       } else if (EltTy->isIntegerTy(16)) {
3161         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3162         if (isa<VectorType>(CurTy))
3163           V = ConstantDataVector::get(Context, Elts);
3164         else
3165           V = ConstantDataArray::get(Context, Elts);
3166       } else if (EltTy->isIntegerTy(32)) {
3167         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3168         if (isa<VectorType>(CurTy))
3169           V = ConstantDataVector::get(Context, Elts);
3170         else
3171           V = ConstantDataArray::get(Context, Elts);
3172       } else if (EltTy->isIntegerTy(64)) {
3173         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3174         if (isa<VectorType>(CurTy))
3175           V = ConstantDataVector::get(Context, Elts);
3176         else
3177           V = ConstantDataArray::get(Context, Elts);
3178       } else if (EltTy->isHalfTy()) {
3179         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3180         if (isa<VectorType>(CurTy))
3181           V = ConstantDataVector::getFP(Context, Elts);
3182         else
3183           V = ConstantDataArray::getFP(Context, Elts);
3184       } else if (EltTy->isFloatTy()) {
3185         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3186         if (isa<VectorType>(CurTy))
3187           V = ConstantDataVector::getFP(Context, Elts);
3188         else
3189           V = ConstantDataArray::getFP(Context, Elts);
3190       } else if (EltTy->isDoubleTy()) {
3191         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3192         if (isa<VectorType>(CurTy))
3193           V = ConstantDataVector::getFP(Context, Elts);
3194         else
3195           V = ConstantDataArray::getFP(Context, Elts);
3196       } else {
3197         return error("Invalid type for value");
3198       }
3199       break;
3200     }
3201     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3202       if (Record.size() < 3)
3203         return error("Invalid record");
3204       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3205       if (Opc < 0) {
3206         V = UndefValue::get(CurTy);  // Unknown binop.
3207       } else {
3208         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
3209         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
3210         unsigned Flags = 0;
3211         if (Record.size() >= 4) {
3212           if (Opc == Instruction::Add ||
3213               Opc == Instruction::Sub ||
3214               Opc == Instruction::Mul ||
3215               Opc == Instruction::Shl) {
3216             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3217               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3218             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3219               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3220           } else if (Opc == Instruction::SDiv ||
3221                      Opc == Instruction::UDiv ||
3222                      Opc == Instruction::LShr ||
3223                      Opc == Instruction::AShr) {
3224             if (Record[3] & (1 << bitc::PEO_EXACT))
3225               Flags |= SDivOperator::IsExact;
3226           }
3227         }
3228         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
3229       }
3230       break;
3231     }
3232     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3233       if (Record.size() < 3)
3234         return error("Invalid record");
3235       int Opc = getDecodedCastOpcode(Record[0]);
3236       if (Opc < 0) {
3237         V = UndefValue::get(CurTy);  // Unknown cast.
3238       } else {
3239         Type *OpTy = getTypeByID(Record[1]);
3240         if (!OpTy)
3241           return error("Invalid record");
3242         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
3243         V = UpgradeBitCastExpr(Opc, Op, CurTy);
3244         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
3245       }
3246       break;
3247     }
3248     case bitc::CST_CODE_CE_INBOUNDS_GEP:
3249     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
3250       unsigned OpNum = 0;
3251       Type *PointeeType = nullptr;
3252       if (Record.size() % 2)
3253         PointeeType = getTypeByID(Record[OpNum++]);
3254       SmallVector<Constant*, 16> Elts;
3255       while (OpNum != Record.size()) {
3256         Type *ElTy = getTypeByID(Record[OpNum++]);
3257         if (!ElTy)
3258           return error("Invalid record");
3259         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
3260       }
3261 
3262       if (PointeeType &&
3263           PointeeType !=
3264               cast<SequentialType>(Elts[0]->getType()->getScalarType())
3265                   ->getElementType())
3266         return error("Explicit gep operator type does not match pointee type "
3267                      "of pointer operand");
3268 
3269       if (Elts.size() < 1)
3270         return error("Invalid gep with no operands");
3271 
3272       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3273       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
3274                                          BitCode ==
3275                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
3276       break;
3277     }
3278     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3279       if (Record.size() < 3)
3280         return error("Invalid record");
3281 
3282       Type *SelectorTy = Type::getInt1Ty(Context);
3283 
3284       // The selector might be an i1 or an <n x i1>
3285       // Get the type from the ValueList before getting a forward ref.
3286       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
3287         if (Value *V = ValueList[Record[0]])
3288           if (SelectorTy != V->getType())
3289             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
3290 
3291       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
3292                                                               SelectorTy),
3293                                   ValueList.getConstantFwdRef(Record[1],CurTy),
3294                                   ValueList.getConstantFwdRef(Record[2],CurTy));
3295       break;
3296     }
3297     case bitc::CST_CODE_CE_EXTRACTELT
3298         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3299       if (Record.size() < 3)
3300         return error("Invalid record");
3301       VectorType *OpTy =
3302         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3303       if (!OpTy)
3304         return error("Invalid record");
3305       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3306       Constant *Op1 = nullptr;
3307       if (Record.size() == 4) {
3308         Type *IdxTy = getTypeByID(Record[2]);
3309         if (!IdxTy)
3310           return error("Invalid record");
3311         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3312       } else // TODO: Remove with llvm 4.0
3313         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3314       if (!Op1)
3315         return error("Invalid record");
3316       V = ConstantExpr::getExtractElement(Op0, Op1);
3317       break;
3318     }
3319     case bitc::CST_CODE_CE_INSERTELT
3320         : { // CE_INSERTELT: [opval, opval, opty, opval]
3321       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3322       if (Record.size() < 3 || !OpTy)
3323         return error("Invalid record");
3324       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3325       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
3326                                                   OpTy->getElementType());
3327       Constant *Op2 = nullptr;
3328       if (Record.size() == 4) {
3329         Type *IdxTy = getTypeByID(Record[2]);
3330         if (!IdxTy)
3331           return error("Invalid record");
3332         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3333       } else // TODO: Remove with llvm 4.0
3334         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3335       if (!Op2)
3336         return error("Invalid record");
3337       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
3338       break;
3339     }
3340     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3341       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3342       if (Record.size() < 3 || !OpTy)
3343         return error("Invalid record");
3344       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3345       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
3346       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3347                                                  OpTy->getNumElements());
3348       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
3349       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3350       break;
3351     }
3352     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3353       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3354       VectorType *OpTy =
3355         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3356       if (Record.size() < 4 || !RTy || !OpTy)
3357         return error("Invalid record");
3358       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3359       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3360       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3361                                                  RTy->getNumElements());
3362       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
3363       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3364       break;
3365     }
3366     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3367       if (Record.size() < 4)
3368         return error("Invalid record");
3369       Type *OpTy = getTypeByID(Record[0]);
3370       if (!OpTy)
3371         return error("Invalid record");
3372       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3373       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3374 
3375       if (OpTy->isFPOrFPVectorTy())
3376         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
3377       else
3378         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
3379       break;
3380     }
3381     // This maintains backward compatibility, pre-asm dialect keywords.
3382     // FIXME: Remove with the 4.0 release.
3383     case bitc::CST_CODE_INLINEASM_OLD: {
3384       if (Record.size() < 2)
3385         return error("Invalid record");
3386       std::string AsmStr, ConstrStr;
3387       bool HasSideEffects = Record[0] & 1;
3388       bool IsAlignStack = Record[0] >> 1;
3389       unsigned AsmStrSize = Record[1];
3390       if (2+AsmStrSize >= Record.size())
3391         return error("Invalid record");
3392       unsigned ConstStrSize = Record[2+AsmStrSize];
3393       if (3+AsmStrSize+ConstStrSize > Record.size())
3394         return error("Invalid record");
3395 
3396       for (unsigned i = 0; i != AsmStrSize; ++i)
3397         AsmStr += (char)Record[2+i];
3398       for (unsigned i = 0; i != ConstStrSize; ++i)
3399         ConstrStr += (char)Record[3+AsmStrSize+i];
3400       PointerType *PTy = cast<PointerType>(CurTy);
3401       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3402                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
3403       break;
3404     }
3405     // This version adds support for the asm dialect keywords (e.g.,
3406     // inteldialect).
3407     case bitc::CST_CODE_INLINEASM: {
3408       if (Record.size() < 2)
3409         return error("Invalid record");
3410       std::string AsmStr, ConstrStr;
3411       bool HasSideEffects = Record[0] & 1;
3412       bool IsAlignStack = (Record[0] >> 1) & 1;
3413       unsigned AsmDialect = Record[0] >> 2;
3414       unsigned AsmStrSize = Record[1];
3415       if (2+AsmStrSize >= Record.size())
3416         return error("Invalid record");
3417       unsigned ConstStrSize = Record[2+AsmStrSize];
3418       if (3+AsmStrSize+ConstStrSize > Record.size())
3419         return error("Invalid record");
3420 
3421       for (unsigned i = 0; i != AsmStrSize; ++i)
3422         AsmStr += (char)Record[2+i];
3423       for (unsigned i = 0; i != ConstStrSize; ++i)
3424         ConstrStr += (char)Record[3+AsmStrSize+i];
3425       PointerType *PTy = cast<PointerType>(CurTy);
3426       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3427                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3428                          InlineAsm::AsmDialect(AsmDialect));
3429       break;
3430     }
3431     case bitc::CST_CODE_BLOCKADDRESS:{
3432       if (Record.size() < 3)
3433         return error("Invalid record");
3434       Type *FnTy = getTypeByID(Record[0]);
3435       if (!FnTy)
3436         return error("Invalid record");
3437       Function *Fn =
3438         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
3439       if (!Fn)
3440         return error("Invalid record");
3441 
3442       // If the function is already parsed we can insert the block address right
3443       // away.
3444       BasicBlock *BB;
3445       unsigned BBID = Record[2];
3446       if (!BBID)
3447         // Invalid reference to entry block.
3448         return error("Invalid ID");
3449       if (!Fn->empty()) {
3450         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3451         for (size_t I = 0, E = BBID; I != E; ++I) {
3452           if (BBI == BBE)
3453             return error("Invalid ID");
3454           ++BBI;
3455         }
3456         BB = &*BBI;
3457       } else {
3458         // Otherwise insert a placeholder and remember it so it can be inserted
3459         // when the function is parsed.
3460         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3461         if (FwdBBs.empty())
3462           BasicBlockFwdRefQueue.push_back(Fn);
3463         if (FwdBBs.size() < BBID + 1)
3464           FwdBBs.resize(BBID + 1);
3465         if (!FwdBBs[BBID])
3466           FwdBBs[BBID] = BasicBlock::Create(Context);
3467         BB = FwdBBs[BBID];
3468       }
3469       V = BlockAddress::get(Fn, BB);
3470       break;
3471     }
3472     }
3473 
3474     ValueList.assignValue(V, NextCstNo);
3475     ++NextCstNo;
3476   }
3477 }
3478 
3479 std::error_code BitcodeReader::parseUseLists() {
3480   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3481     return error("Invalid record");
3482 
3483   // Read all the records.
3484   SmallVector<uint64_t, 64> Record;
3485 
3486   while (true) {
3487     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3488 
3489     switch (Entry.Kind) {
3490     case BitstreamEntry::SubBlock: // Handled for us already.
3491     case BitstreamEntry::Error:
3492       return error("Malformed block");
3493     case BitstreamEntry::EndBlock:
3494       return std::error_code();
3495     case BitstreamEntry::Record:
3496       // The interesting case.
3497       break;
3498     }
3499 
3500     // Read a use list record.
3501     Record.clear();
3502     bool IsBB = false;
3503     switch (Stream.readRecord(Entry.ID, Record)) {
3504     default:  // Default behavior: unknown type.
3505       break;
3506     case bitc::USELIST_CODE_BB:
3507       IsBB = true;
3508       LLVM_FALLTHROUGH;
3509     case bitc::USELIST_CODE_DEFAULT: {
3510       unsigned RecordLength = Record.size();
3511       if (RecordLength < 3)
3512         // Records should have at least an ID and two indexes.
3513         return error("Invalid record");
3514       unsigned ID = Record.back();
3515       Record.pop_back();
3516 
3517       Value *V;
3518       if (IsBB) {
3519         assert(ID < FunctionBBs.size() && "Basic block not found");
3520         V = FunctionBBs[ID];
3521       } else
3522         V = ValueList[ID];
3523       unsigned NumUses = 0;
3524       SmallDenseMap<const Use *, unsigned, 16> Order;
3525       for (const Use &U : V->materialized_uses()) {
3526         if (++NumUses > Record.size())
3527           break;
3528         Order[&U] = Record[NumUses - 1];
3529       }
3530       if (Order.size() != Record.size() || NumUses > Record.size())
3531         // Mismatches can happen if the functions are being materialized lazily
3532         // (out-of-order), or a value has been upgraded.
3533         break;
3534 
3535       V->sortUseList([&](const Use &L, const Use &R) {
3536         return Order.lookup(&L) < Order.lookup(&R);
3537       });
3538       break;
3539     }
3540     }
3541   }
3542 }
3543 
3544 /// When we see the block for metadata, remember where it is and then skip it.
3545 /// This lets us lazily deserialize the metadata.
3546 std::error_code BitcodeReader::rememberAndSkipMetadata() {
3547   // Save the current stream state.
3548   uint64_t CurBit = Stream.GetCurrentBitNo();
3549   DeferredMetadataInfo.push_back(CurBit);
3550 
3551   // Skip over the block for now.
3552   if (Stream.SkipBlock())
3553     return error("Invalid record");
3554   return std::error_code();
3555 }
3556 
3557 std::error_code BitcodeReader::materializeMetadata() {
3558   for (uint64_t BitPos : DeferredMetadataInfo) {
3559     // Move the bit stream to the saved position.
3560     Stream.JumpToBit(BitPos);
3561     if (std::error_code EC = parseMetadata(true))
3562       return EC;
3563   }
3564   DeferredMetadataInfo.clear();
3565   return std::error_code();
3566 }
3567 
3568 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3569 
3570 /// When we see the block for a function body, remember where it is and then
3571 /// skip it.  This lets us lazily deserialize the functions.
3572 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
3573   // Get the function we are talking about.
3574   if (FunctionsWithBodies.empty())
3575     return error("Insufficient function protos");
3576 
3577   Function *Fn = FunctionsWithBodies.back();
3578   FunctionsWithBodies.pop_back();
3579 
3580   // Save the current stream state.
3581   uint64_t CurBit = Stream.GetCurrentBitNo();
3582   assert(
3583       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3584       "Mismatch between VST and scanned function offsets");
3585   DeferredFunctionInfo[Fn] = CurBit;
3586 
3587   // Skip over the function block for now.
3588   if (Stream.SkipBlock())
3589     return error("Invalid record");
3590   return std::error_code();
3591 }
3592 
3593 std::error_code BitcodeReader::globalCleanup() {
3594   // Patch the initializers for globals and aliases up.
3595   resolveGlobalAndIndirectSymbolInits();
3596   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3597     return error("Malformed global initializer set");
3598 
3599   // Look for intrinsic functions which need to be upgraded at some point
3600   for (Function &F : *TheModule) {
3601     Function *NewFn;
3602     if (UpgradeIntrinsicFunction(&F, NewFn))
3603       UpgradedIntrinsics[&F] = NewFn;
3604     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3605       // Some types could be renamed during loading if several modules are
3606       // loaded in the same LLVMContext (LTO scenario). In this case we should
3607       // remangle intrinsics names as well.
3608       RemangledIntrinsics[&F] = Remangled.getValue();
3609   }
3610 
3611   // Look for global variables which need to be renamed.
3612   for (GlobalVariable &GV : TheModule->globals())
3613     UpgradeGlobalVariable(&GV);
3614 
3615   // Force deallocation of memory for these vectors to favor the client that
3616   // want lazy deserialization.
3617   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3618   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap(
3619       IndirectSymbolInits);
3620   return std::error_code();
3621 }
3622 
3623 /// Support for lazy parsing of function bodies. This is required if we
3624 /// either have an old bitcode file without a VST forward declaration record,
3625 /// or if we have an anonymous function being materialized, since anonymous
3626 /// functions do not have a name and are therefore not in the VST.
3627 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
3628   Stream.JumpToBit(NextUnreadBit);
3629 
3630   if (Stream.AtEndOfStream())
3631     return error("Could not find function in stream");
3632 
3633   if (!SeenFirstFunctionBody)
3634     return error("Trying to materialize functions before seeing function blocks");
3635 
3636   // An old bitcode file with the symbol table at the end would have
3637   // finished the parse greedily.
3638   assert(SeenValueSymbolTable);
3639 
3640   SmallVector<uint64_t, 64> Record;
3641 
3642   while (true) {
3643     BitstreamEntry Entry = Stream.advance();
3644     switch (Entry.Kind) {
3645     default:
3646       return error("Expect SubBlock");
3647     case BitstreamEntry::SubBlock:
3648       switch (Entry.ID) {
3649       default:
3650         return error("Expect function block");
3651       case bitc::FUNCTION_BLOCK_ID:
3652         if (std::error_code EC = rememberAndSkipFunctionBody())
3653           return EC;
3654         NextUnreadBit = Stream.GetCurrentBitNo();
3655         return std::error_code();
3656       }
3657     }
3658   }
3659 }
3660 
3661 std::error_code BitcodeReader::parseBitcodeVersion() {
3662   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
3663     return error("Invalid record");
3664 
3665   // Read all the records.
3666   SmallVector<uint64_t, 64> Record;
3667 
3668   while (true) {
3669     BitstreamEntry Entry = Stream.advance();
3670 
3671     switch (Entry.Kind) {
3672     default:
3673     case BitstreamEntry::Error:
3674       return error("Malformed block");
3675     case BitstreamEntry::EndBlock:
3676       return std::error_code();
3677     case BitstreamEntry::Record:
3678       // The interesting case.
3679       break;
3680     }
3681 
3682     // Read a record.
3683     Record.clear();
3684     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3685     switch (BitCode) {
3686     default: // Default behavior: reject
3687       return error("Invalid value");
3688     case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION:      [strchr x
3689                                              // N]
3690       convertToString(Record, 0, ProducerIdentification);
3691       break;
3692     }
3693     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH:      [epoch#]
3694       unsigned epoch = (unsigned)Record[0];
3695       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
3696         return error(
3697           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
3698           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
3699       }
3700     }
3701     }
3702   }
3703 }
3704 
3705 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
3706                                            bool ShouldLazyLoadMetadata) {
3707   if (ResumeBit)
3708     Stream.JumpToBit(ResumeBit);
3709   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3710     return error("Invalid record");
3711 
3712   SmallVector<uint64_t, 64> Record;
3713   std::vector<std::string> SectionTable;
3714   std::vector<std::string> GCTable;
3715 
3716   // Read all the records for this module.
3717   while (true) {
3718     BitstreamEntry Entry = Stream.advance();
3719 
3720     switch (Entry.Kind) {
3721     case BitstreamEntry::Error:
3722       return error("Malformed block");
3723     case BitstreamEntry::EndBlock:
3724       return globalCleanup();
3725 
3726     case BitstreamEntry::SubBlock:
3727       switch (Entry.ID) {
3728       default:  // Skip unknown content.
3729         if (Stream.SkipBlock())
3730           return error("Invalid record");
3731         break;
3732       case bitc::BLOCKINFO_BLOCK_ID:
3733         if (Stream.ReadBlockInfoBlock())
3734           return error("Malformed block");
3735         break;
3736       case bitc::PARAMATTR_BLOCK_ID:
3737         if (std::error_code EC = parseAttributeBlock())
3738           return EC;
3739         break;
3740       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3741         if (std::error_code EC = parseAttributeGroupBlock())
3742           return EC;
3743         break;
3744       case bitc::TYPE_BLOCK_ID_NEW:
3745         if (std::error_code EC = parseTypeTable())
3746           return EC;
3747         break;
3748       case bitc::VALUE_SYMTAB_BLOCK_ID:
3749         if (!SeenValueSymbolTable) {
3750           // Either this is an old form VST without function index and an
3751           // associated VST forward declaration record (which would have caused
3752           // the VST to be jumped to and parsed before it was encountered
3753           // normally in the stream), or there were no function blocks to
3754           // trigger an earlier parsing of the VST.
3755           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3756           if (std::error_code EC = parseValueSymbolTable())
3757             return EC;
3758           SeenValueSymbolTable = true;
3759         } else {
3760           // We must have had a VST forward declaration record, which caused
3761           // the parser to jump to and parse the VST earlier.
3762           assert(VSTOffset > 0);
3763           if (Stream.SkipBlock())
3764             return error("Invalid record");
3765         }
3766         break;
3767       case bitc::CONSTANTS_BLOCK_ID:
3768         if (std::error_code EC = parseConstants())
3769           return EC;
3770         if (std::error_code EC = resolveGlobalAndIndirectSymbolInits())
3771           return EC;
3772         break;
3773       case bitc::METADATA_BLOCK_ID:
3774         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3775           if (std::error_code EC = rememberAndSkipMetadata())
3776             return EC;
3777           break;
3778         }
3779         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3780         if (std::error_code EC = parseMetadata(true))
3781           return EC;
3782         break;
3783       case bitc::METADATA_KIND_BLOCK_ID:
3784         if (std::error_code EC = parseMetadataKinds())
3785           return EC;
3786         break;
3787       case bitc::FUNCTION_BLOCK_ID:
3788         // If this is the first function body we've seen, reverse the
3789         // FunctionsWithBodies list.
3790         if (!SeenFirstFunctionBody) {
3791           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3792           if (std::error_code EC = globalCleanup())
3793             return EC;
3794           SeenFirstFunctionBody = true;
3795         }
3796 
3797         if (VSTOffset > 0) {
3798           // If we have a VST forward declaration record, make sure we
3799           // parse the VST now if we haven't already. It is needed to
3800           // set up the DeferredFunctionInfo vector for lazy reading.
3801           if (!SeenValueSymbolTable) {
3802             if (std::error_code EC =
3803                     BitcodeReader::parseValueSymbolTable(VSTOffset))
3804               return EC;
3805             SeenValueSymbolTable = true;
3806             // Fall through so that we record the NextUnreadBit below.
3807             // This is necessary in case we have an anonymous function that
3808             // is later materialized. Since it will not have a VST entry we
3809             // need to fall back to the lazy parse to find its offset.
3810           } else {
3811             // If we have a VST forward declaration record, but have already
3812             // parsed the VST (just above, when the first function body was
3813             // encountered here), then we are resuming the parse after
3814             // materializing functions. The ResumeBit points to the
3815             // start of the last function block recorded in the
3816             // DeferredFunctionInfo map. Skip it.
3817             if (Stream.SkipBlock())
3818               return error("Invalid record");
3819             continue;
3820           }
3821         }
3822 
3823         // Support older bitcode files that did not have the function
3824         // index in the VST, nor a VST forward declaration record, as
3825         // well as anonymous functions that do not have VST entries.
3826         // Build the DeferredFunctionInfo vector on the fly.
3827         if (std::error_code EC = rememberAndSkipFunctionBody())
3828           return EC;
3829 
3830         // Suspend parsing when we reach the function bodies. Subsequent
3831         // materialization calls will resume it when necessary. If the bitcode
3832         // file is old, the symbol table will be at the end instead and will not
3833         // have been seen yet. In this case, just finish the parse now.
3834         if (SeenValueSymbolTable) {
3835           NextUnreadBit = Stream.GetCurrentBitNo();
3836           // After the VST has been parsed, we need to make sure intrinsic name
3837           // are auto-upgraded.
3838           return globalCleanup();
3839         }
3840         break;
3841       case bitc::USELIST_BLOCK_ID:
3842         if (std::error_code EC = parseUseLists())
3843           return EC;
3844         break;
3845       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3846         if (std::error_code EC = parseOperandBundleTags())
3847           return EC;
3848         break;
3849       }
3850       continue;
3851 
3852     case BitstreamEntry::Record:
3853       // The interesting case.
3854       break;
3855     }
3856 
3857     // Read a record.
3858     auto BitCode = Stream.readRecord(Entry.ID, Record);
3859     switch (BitCode) {
3860     default: break;  // Default behavior, ignore unknown content.
3861     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
3862       if (Record.size() < 1)
3863         return error("Invalid record");
3864       // Only version #0 and #1 are supported so far.
3865       unsigned module_version = Record[0];
3866       switch (module_version) {
3867         default:
3868           return error("Invalid value");
3869         case 0:
3870           UseRelativeIDs = false;
3871           break;
3872         case 1:
3873           UseRelativeIDs = true;
3874           break;
3875       }
3876       break;
3877     }
3878     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3879       std::string S;
3880       if (convertToString(Record, 0, S))
3881         return error("Invalid record");
3882       TheModule->setTargetTriple(S);
3883       break;
3884     }
3885     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3886       std::string S;
3887       if (convertToString(Record, 0, S))
3888         return error("Invalid record");
3889       TheModule->setDataLayout(S);
3890       break;
3891     }
3892     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3893       std::string S;
3894       if (convertToString(Record, 0, S))
3895         return error("Invalid record");
3896       TheModule->setModuleInlineAsm(S);
3897       break;
3898     }
3899     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3900       // FIXME: Remove in 4.0.
3901       std::string S;
3902       if (convertToString(Record, 0, S))
3903         return error("Invalid record");
3904       // Ignore value.
3905       break;
3906     }
3907     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3908       std::string S;
3909       if (convertToString(Record, 0, S))
3910         return error("Invalid record");
3911       SectionTable.push_back(S);
3912       break;
3913     }
3914     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3915       std::string S;
3916       if (convertToString(Record, 0, S))
3917         return error("Invalid record");
3918       GCTable.push_back(S);
3919       break;
3920     }
3921     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
3922       if (Record.size() < 2)
3923         return error("Invalid record");
3924       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3925       unsigned ComdatNameSize = Record[1];
3926       std::string ComdatName;
3927       ComdatName.reserve(ComdatNameSize);
3928       for (unsigned i = 0; i != ComdatNameSize; ++i)
3929         ComdatName += (char)Record[2 + i];
3930       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
3931       C->setSelectionKind(SK);
3932       ComdatList.push_back(C);
3933       break;
3934     }
3935     // GLOBALVAR: [pointer type, isconst, initid,
3936     //             linkage, alignment, section, visibility, threadlocal,
3937     //             unnamed_addr, externally_initialized, dllstorageclass,
3938     //             comdat]
3939     case bitc::MODULE_CODE_GLOBALVAR: {
3940       if (Record.size() < 6)
3941         return error("Invalid record");
3942       Type *Ty = getTypeByID(Record[0]);
3943       if (!Ty)
3944         return error("Invalid record");
3945       bool isConstant = Record[1] & 1;
3946       bool explicitType = Record[1] & 2;
3947       unsigned AddressSpace;
3948       if (explicitType) {
3949         AddressSpace = Record[1] >> 2;
3950       } else {
3951         if (!Ty->isPointerTy())
3952           return error("Invalid type for value");
3953         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3954         Ty = cast<PointerType>(Ty)->getElementType();
3955       }
3956 
3957       uint64_t RawLinkage = Record[3];
3958       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3959       unsigned Alignment;
3960       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
3961         return EC;
3962       std::string Section;
3963       if (Record[5]) {
3964         if (Record[5]-1 >= SectionTable.size())
3965           return error("Invalid ID");
3966         Section = SectionTable[Record[5]-1];
3967       }
3968       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3969       // Local linkage must have default visibility.
3970       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3971         // FIXME: Change to an error if non-default in 4.0.
3972         Visibility = getDecodedVisibility(Record[6]);
3973 
3974       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3975       if (Record.size() > 7)
3976         TLM = getDecodedThreadLocalMode(Record[7]);
3977 
3978       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3979       if (Record.size() > 8)
3980         UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3981 
3982       bool ExternallyInitialized = false;
3983       if (Record.size() > 9)
3984         ExternallyInitialized = Record[9];
3985 
3986       GlobalVariable *NewGV =
3987         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
3988                            TLM, AddressSpace, ExternallyInitialized);
3989       NewGV->setAlignment(Alignment);
3990       if (!Section.empty())
3991         NewGV->setSection(Section);
3992       NewGV->setVisibility(Visibility);
3993       NewGV->setUnnamedAddr(UnnamedAddr);
3994 
3995       if (Record.size() > 10)
3996         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3997       else
3998         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3999 
4000       ValueList.push_back(NewGV);
4001 
4002       // Remember which value to use for the global initializer.
4003       if (unsigned InitID = Record[2])
4004         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
4005 
4006       if (Record.size() > 11) {
4007         if (unsigned ComdatID = Record[11]) {
4008           if (ComdatID > ComdatList.size())
4009             return error("Invalid global variable comdat ID");
4010           NewGV->setComdat(ComdatList[ComdatID - 1]);
4011         }
4012       } else if (hasImplicitComdat(RawLinkage)) {
4013         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
4014       }
4015 
4016       break;
4017     }
4018     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
4019     //             alignment, section, visibility, gc, unnamed_addr,
4020     //             prologuedata, dllstorageclass, comdat, prefixdata]
4021     case bitc::MODULE_CODE_FUNCTION: {
4022       if (Record.size() < 8)
4023         return error("Invalid record");
4024       Type *Ty = getTypeByID(Record[0]);
4025       if (!Ty)
4026         return error("Invalid record");
4027       if (auto *PTy = dyn_cast<PointerType>(Ty))
4028         Ty = PTy->getElementType();
4029       auto *FTy = dyn_cast<FunctionType>(Ty);
4030       if (!FTy)
4031         return error("Invalid type for value");
4032       auto CC = static_cast<CallingConv::ID>(Record[1]);
4033       if (CC & ~CallingConv::MaxID)
4034         return error("Invalid calling convention ID");
4035 
4036       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
4037                                         "", TheModule);
4038 
4039       Func->setCallingConv(CC);
4040       bool isProto = Record[2];
4041       uint64_t RawLinkage = Record[3];
4042       Func->setLinkage(getDecodedLinkage(RawLinkage));
4043       Func->setAttributes(getAttributes(Record[4]));
4044 
4045       unsigned Alignment;
4046       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
4047         return EC;
4048       Func->setAlignment(Alignment);
4049       if (Record[6]) {
4050         if (Record[6]-1 >= SectionTable.size())
4051           return error("Invalid ID");
4052         Func->setSection(SectionTable[Record[6]-1]);
4053       }
4054       // Local linkage must have default visibility.
4055       if (!Func->hasLocalLinkage())
4056         // FIXME: Change to an error if non-default in 4.0.
4057         Func->setVisibility(getDecodedVisibility(Record[7]));
4058       if (Record.size() > 8 && Record[8]) {
4059         if (Record[8]-1 >= GCTable.size())
4060           return error("Invalid ID");
4061         Func->setGC(GCTable[Record[8] - 1]);
4062       }
4063       GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4064       if (Record.size() > 9)
4065         UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
4066       Func->setUnnamedAddr(UnnamedAddr);
4067       if (Record.size() > 10 && Record[10] != 0)
4068         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
4069 
4070       if (Record.size() > 11)
4071         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
4072       else
4073         upgradeDLLImportExportLinkage(Func, RawLinkage);
4074 
4075       if (Record.size() > 12) {
4076         if (unsigned ComdatID = Record[12]) {
4077           if (ComdatID > ComdatList.size())
4078             return error("Invalid function comdat ID");
4079           Func->setComdat(ComdatList[ComdatID - 1]);
4080         }
4081       } else if (hasImplicitComdat(RawLinkage)) {
4082         Func->setComdat(reinterpret_cast<Comdat *>(1));
4083       }
4084 
4085       if (Record.size() > 13 && Record[13] != 0)
4086         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
4087 
4088       if (Record.size() > 14 && Record[14] != 0)
4089         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
4090 
4091       ValueList.push_back(Func);
4092 
4093       // If this is a function with a body, remember the prototype we are
4094       // creating now, so that we can match up the body with them later.
4095       if (!isProto) {
4096         Func->setIsMaterializable(true);
4097         FunctionsWithBodies.push_back(Func);
4098         DeferredFunctionInfo[Func] = 0;
4099       }
4100       break;
4101     }
4102     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
4103     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
4104     // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
4105     case bitc::MODULE_CODE_IFUNC:
4106     case bitc::MODULE_CODE_ALIAS:
4107     case bitc::MODULE_CODE_ALIAS_OLD: {
4108       bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
4109       if (Record.size() < (3 + (unsigned)NewRecord))
4110         return error("Invalid record");
4111       unsigned OpNum = 0;
4112       Type *Ty = getTypeByID(Record[OpNum++]);
4113       if (!Ty)
4114         return error("Invalid record");
4115 
4116       unsigned AddrSpace;
4117       if (!NewRecord) {
4118         auto *PTy = dyn_cast<PointerType>(Ty);
4119         if (!PTy)
4120           return error("Invalid type for value");
4121         Ty = PTy->getElementType();
4122         AddrSpace = PTy->getAddressSpace();
4123       } else {
4124         AddrSpace = Record[OpNum++];
4125       }
4126 
4127       auto Val = Record[OpNum++];
4128       auto Linkage = Record[OpNum++];
4129       GlobalIndirectSymbol *NewGA;
4130       if (BitCode == bitc::MODULE_CODE_ALIAS ||
4131           BitCode == bitc::MODULE_CODE_ALIAS_OLD)
4132         NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
4133                                     "", TheModule);
4134       else
4135         NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
4136                                     "", nullptr, TheModule);
4137       // Old bitcode files didn't have visibility field.
4138       // Local linkage must have default visibility.
4139       if (OpNum != Record.size()) {
4140         auto VisInd = OpNum++;
4141         if (!NewGA->hasLocalLinkage())
4142           // FIXME: Change to an error if non-default in 4.0.
4143           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
4144       }
4145       if (OpNum != Record.size())
4146         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
4147       else
4148         upgradeDLLImportExportLinkage(NewGA, Linkage);
4149       if (OpNum != Record.size())
4150         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
4151       if (OpNum != Record.size())
4152         NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
4153       ValueList.push_back(NewGA);
4154       IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
4155       break;
4156     }
4157     /// MODULE_CODE_PURGEVALS: [numvals]
4158     case bitc::MODULE_CODE_PURGEVALS:
4159       // Trim down the value list to the specified size.
4160       if (Record.size() < 1 || Record[0] > ValueList.size())
4161         return error("Invalid record");
4162       ValueList.shrinkTo(Record[0]);
4163       break;
4164     /// MODULE_CODE_VSTOFFSET: [offset]
4165     case bitc::MODULE_CODE_VSTOFFSET:
4166       if (Record.size() < 1)
4167         return error("Invalid record");
4168       VSTOffset = Record[0];
4169       break;
4170     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4171     case bitc::MODULE_CODE_SOURCE_FILENAME:
4172       SmallString<128> ValueName;
4173       if (convertToString(Record, 0, ValueName))
4174         return error("Invalid record");
4175       TheModule->setSourceFileName(ValueName);
4176       break;
4177     }
4178     Record.clear();
4179   }
4180 }
4181 
4182 /// Helper to read the header common to all bitcode files.
4183 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
4184   // Sniff for the signature.
4185   if (Stream.Read(8) != 'B' ||
4186       Stream.Read(8) != 'C' ||
4187       Stream.Read(4) != 0x0 ||
4188       Stream.Read(4) != 0xC ||
4189       Stream.Read(4) != 0xE ||
4190       Stream.Read(4) != 0xD)
4191     return false;
4192   return true;
4193 }
4194 
4195 std::error_code
4196 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
4197                                 Module *M, bool ShouldLazyLoadMetadata) {
4198   TheModule = M;
4199 
4200   if (std::error_code EC = initStream(std::move(Streamer)))
4201     return EC;
4202 
4203   // Sniff for the signature.
4204   if (!hasValidBitcodeHeader(Stream))
4205     return error("Invalid bitcode signature");
4206 
4207   // We expect a number of well-defined blocks, though we don't necessarily
4208   // need to understand them all.
4209   while (true) {
4210     if (Stream.AtEndOfStream()) {
4211       // We didn't really read a proper Module.
4212       return error("Malformed IR file");
4213     }
4214 
4215     BitstreamEntry Entry =
4216       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
4217 
4218     if (Entry.Kind != BitstreamEntry::SubBlock)
4219       return error("Malformed block");
4220 
4221     if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
4222       parseBitcodeVersion();
4223       continue;
4224     }
4225 
4226     if (Entry.ID == bitc::MODULE_BLOCK_ID)
4227       return parseModule(0, ShouldLazyLoadMetadata);
4228 
4229     if (Stream.SkipBlock())
4230       return error("Invalid record");
4231   }
4232 }
4233 
4234 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
4235   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4236     return error("Invalid record");
4237 
4238   SmallVector<uint64_t, 64> Record;
4239 
4240   std::string Triple;
4241 
4242   // Read all the records for this module.
4243   while (true) {
4244     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4245 
4246     switch (Entry.Kind) {
4247     case BitstreamEntry::SubBlock: // Handled for us already.
4248     case BitstreamEntry::Error:
4249       return error("Malformed block");
4250     case BitstreamEntry::EndBlock:
4251       return Triple;
4252     case BitstreamEntry::Record:
4253       // The interesting case.
4254       break;
4255     }
4256 
4257     // Read a record.
4258     switch (Stream.readRecord(Entry.ID, Record)) {
4259     default: break;  // Default behavior, ignore unknown content.
4260     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4261       std::string S;
4262       if (convertToString(Record, 0, S))
4263         return error("Invalid record");
4264       Triple = S;
4265       break;
4266     }
4267     }
4268     Record.clear();
4269   }
4270   llvm_unreachable("Exit infinite loop");
4271 }
4272 
4273 ErrorOr<std::string> BitcodeReader::parseTriple() {
4274   if (std::error_code EC = initStream(nullptr))
4275     return EC;
4276 
4277   // Sniff for the signature.
4278   if (!hasValidBitcodeHeader(Stream))
4279     return error("Invalid bitcode signature");
4280 
4281   // We expect a number of well-defined blocks, though we don't necessarily
4282   // need to understand them all.
4283   while (true) {
4284     BitstreamEntry Entry = Stream.advance();
4285 
4286     switch (Entry.Kind) {
4287     case BitstreamEntry::Error:
4288       return error("Malformed block");
4289     case BitstreamEntry::EndBlock:
4290       return std::error_code();
4291 
4292     case BitstreamEntry::SubBlock:
4293       if (Entry.ID == bitc::MODULE_BLOCK_ID)
4294         return parseModuleTriple();
4295 
4296       // Ignore other sub-blocks.
4297       if (Stream.SkipBlock())
4298         return error("Malformed block");
4299       continue;
4300 
4301     case BitstreamEntry::Record:
4302       Stream.skipRecord(Entry.ID);
4303       continue;
4304     }
4305   }
4306 }
4307 
4308 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
4309   if (std::error_code EC = initStream(nullptr))
4310     return EC;
4311 
4312   // Sniff for the signature.
4313   if (!hasValidBitcodeHeader(Stream))
4314     return error("Invalid bitcode signature");
4315 
4316   // We expect a number of well-defined blocks, though we don't necessarily
4317   // need to understand them all.
4318   while (true) {
4319     BitstreamEntry Entry = Stream.advance();
4320     switch (Entry.Kind) {
4321     case BitstreamEntry::Error:
4322       return error("Malformed block");
4323     case BitstreamEntry::EndBlock:
4324       return std::error_code();
4325 
4326     case BitstreamEntry::SubBlock:
4327       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
4328         if (std::error_code EC = parseBitcodeVersion())
4329           return EC;
4330         return ProducerIdentification;
4331       }
4332       // Ignore other sub-blocks.
4333       if (Stream.SkipBlock())
4334         return error("Malformed block");
4335       continue;
4336     case BitstreamEntry::Record:
4337       Stream.skipRecord(Entry.ID);
4338       continue;
4339     }
4340   }
4341 }
4342 
4343 std::error_code BitcodeReader::parseGlobalObjectAttachment(
4344     GlobalObject &GO, ArrayRef<uint64_t> Record) {
4345   assert(Record.size() % 2 == 0);
4346   for (unsigned I = 0, E = Record.size(); I != E; I += 2) {
4347     auto K = MDKindMap.find(Record[I]);
4348     if (K == MDKindMap.end())
4349       return error("Invalid ID");
4350     MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
4351     if (!MD)
4352       return error("Invalid metadata attachment");
4353     GO.addMetadata(K->second, *MD);
4354   }
4355   return std::error_code();
4356 }
4357 
4358 ErrorOr<bool> BitcodeReader::hasObjCCategory() {
4359   if (std::error_code EC = initStream(nullptr))
4360     return EC;
4361 
4362   // Sniff for the signature.
4363   if (!hasValidBitcodeHeader(Stream))
4364     return error("Invalid bitcode signature");
4365 
4366   // We expect a number of well-defined blocks, though we don't necessarily
4367   // need to understand them all.
4368   while (true) {
4369     BitstreamEntry Entry = Stream.advance();
4370 
4371     switch (Entry.Kind) {
4372     case BitstreamEntry::Error:
4373       return error("Malformed block");
4374     case BitstreamEntry::EndBlock:
4375       return std::error_code();
4376 
4377     case BitstreamEntry::SubBlock:
4378       if (Entry.ID == bitc::MODULE_BLOCK_ID)
4379         return hasObjCCategoryInModule();
4380 
4381       // Ignore other sub-blocks.
4382       if (Stream.SkipBlock())
4383         return error("Malformed block");
4384       continue;
4385 
4386     case BitstreamEntry::Record:
4387       Stream.skipRecord(Entry.ID);
4388       continue;
4389     }
4390   }
4391 }
4392 
4393 ErrorOr<bool> BitcodeReader::hasObjCCategoryInModule() {
4394   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4395     return error("Invalid record");
4396 
4397   SmallVector<uint64_t, 64> Record;
4398   // Read all the records for this module.
4399 
4400   while (true) {
4401     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4402 
4403     switch (Entry.Kind) {
4404     case BitstreamEntry::SubBlock: // Handled for us already.
4405     case BitstreamEntry::Error:
4406       return error("Malformed block");
4407     case BitstreamEntry::EndBlock:
4408       return false;
4409     case BitstreamEntry::Record:
4410       // The interesting case.
4411       break;
4412     }
4413 
4414     // Read a record.
4415     switch (Stream.readRecord(Entry.ID, Record)) {
4416     default:
4417       break; // Default behavior, ignore unknown content.
4418     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
4419       std::string S;
4420       if (convertToString(Record, 0, S))
4421         return error("Invalid record");
4422       // Check for the i386 and other (x86_64, ARM) conventions
4423       if (S.find("__DATA, __objc_catlist") != std::string::npos ||
4424           S.find("__OBJC,__category") != std::string::npos)
4425         return true;
4426       break;
4427     }
4428     }
4429     Record.clear();
4430   }
4431   llvm_unreachable("Exit infinite loop");
4432 }
4433 
4434 /// Parse metadata attachments.
4435 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
4436   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
4437     return error("Invalid record");
4438 
4439   SmallVector<uint64_t, 64> Record;
4440 
4441   while (true) {
4442     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4443 
4444     switch (Entry.Kind) {
4445     case BitstreamEntry::SubBlock: // Handled for us already.
4446     case BitstreamEntry::Error:
4447       return error("Malformed block");
4448     case BitstreamEntry::EndBlock:
4449       return std::error_code();
4450     case BitstreamEntry::Record:
4451       // The interesting case.
4452       break;
4453     }
4454 
4455     // Read a metadata attachment record.
4456     Record.clear();
4457     switch (Stream.readRecord(Entry.ID, Record)) {
4458     default:  // Default behavior: ignore.
4459       break;
4460     case bitc::METADATA_ATTACHMENT: {
4461       unsigned RecordLength = Record.size();
4462       if (Record.empty())
4463         return error("Invalid record");
4464       if (RecordLength % 2 == 0) {
4465         // A function attachment.
4466         if (std::error_code EC = parseGlobalObjectAttachment(F, Record))
4467           return EC;
4468         continue;
4469       }
4470 
4471       // An instruction attachment.
4472       Instruction *Inst = InstructionList[Record[0]];
4473       for (unsigned i = 1; i != RecordLength; i = i+2) {
4474         unsigned Kind = Record[i];
4475         DenseMap<unsigned, unsigned>::iterator I =
4476           MDKindMap.find(Kind);
4477         if (I == MDKindMap.end())
4478           return error("Invalid ID");
4479         Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]);
4480         if (isa<LocalAsMetadata>(Node))
4481           // Drop the attachment.  This used to be legal, but there's no
4482           // upgrade path.
4483           break;
4484         MDNode *MD = dyn_cast_or_null<MDNode>(Node);
4485         if (!MD)
4486           return error("Invalid metadata attachment");
4487 
4488         if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop)
4489           MD = upgradeInstructionLoopAttachment(*MD);
4490 
4491         if (I->second == LLVMContext::MD_tbaa) {
4492           assert(!MD->isTemporary() && "should load MDs before attachments");
4493           MD = UpgradeTBAANode(*MD);
4494         }
4495         Inst->setMetadata(I->second, MD);
4496       }
4497       break;
4498     }
4499     }
4500   }
4501 }
4502 
4503 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4504   LLVMContext &Context = PtrType->getContext();
4505   if (!isa<PointerType>(PtrType))
4506     return error(Context, "Load/Store operand is not a pointer type");
4507   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
4508 
4509   if (ValType && ValType != ElemType)
4510     return error(Context, "Explicit load/store type does not match pointee "
4511                           "type of pointer operand");
4512   if (!PointerType::isLoadableOrStorableType(ElemType))
4513     return error(Context, "Cannot load/store from pointer");
4514   return std::error_code();
4515 }
4516 
4517 /// Lazily parse the specified function body block.
4518 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
4519   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4520     return error("Invalid record");
4521 
4522   // Unexpected unresolved metadata when parsing function.
4523   if (MetadataList.hasFwdRefs())
4524     return error("Invalid function metadata: incoming forward references");
4525 
4526   InstructionList.clear();
4527   unsigned ModuleValueListSize = ValueList.size();
4528   unsigned ModuleMetadataListSize = MetadataList.size();
4529 
4530   // Add all the function arguments to the value table.
4531   for (Argument &I : F->args())
4532     ValueList.push_back(&I);
4533 
4534   unsigned NextValueNo = ValueList.size();
4535   BasicBlock *CurBB = nullptr;
4536   unsigned CurBBNo = 0;
4537 
4538   DebugLoc LastLoc;
4539   auto getLastInstruction = [&]() -> Instruction * {
4540     if (CurBB && !CurBB->empty())
4541       return &CurBB->back();
4542     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4543              !FunctionBBs[CurBBNo - 1]->empty())
4544       return &FunctionBBs[CurBBNo - 1]->back();
4545     return nullptr;
4546   };
4547 
4548   std::vector<OperandBundleDef> OperandBundles;
4549 
4550   // Read all the records.
4551   SmallVector<uint64_t, 64> Record;
4552 
4553   while (true) {
4554     BitstreamEntry Entry = Stream.advance();
4555 
4556     switch (Entry.Kind) {
4557     case BitstreamEntry::Error:
4558       return error("Malformed block");
4559     case BitstreamEntry::EndBlock:
4560       goto OutOfRecordLoop;
4561 
4562     case BitstreamEntry::SubBlock:
4563       switch (Entry.ID) {
4564       default:  // Skip unknown content.
4565         if (Stream.SkipBlock())
4566           return error("Invalid record");
4567         break;
4568       case bitc::CONSTANTS_BLOCK_ID:
4569         if (std::error_code EC = parseConstants())
4570           return EC;
4571         NextValueNo = ValueList.size();
4572         break;
4573       case bitc::VALUE_SYMTAB_BLOCK_ID:
4574         if (std::error_code EC = parseValueSymbolTable())
4575           return EC;
4576         break;
4577       case bitc::METADATA_ATTACHMENT_ID:
4578         if (std::error_code EC = parseMetadataAttachment(*F))
4579           return EC;
4580         break;
4581       case bitc::METADATA_BLOCK_ID:
4582         if (std::error_code EC = parseMetadata())
4583           return EC;
4584         break;
4585       case bitc::USELIST_BLOCK_ID:
4586         if (std::error_code EC = parseUseLists())
4587           return EC;
4588         break;
4589       }
4590       continue;
4591 
4592     case BitstreamEntry::Record:
4593       // The interesting case.
4594       break;
4595     }
4596 
4597     // Read a record.
4598     Record.clear();
4599     Instruction *I = nullptr;
4600     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4601     switch (BitCode) {
4602     default: // Default behavior: reject
4603       return error("Invalid value");
4604     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4605       if (Record.size() < 1 || Record[0] == 0)
4606         return error("Invalid record");
4607       // Create all the basic blocks for the function.
4608       FunctionBBs.resize(Record[0]);
4609 
4610       // See if anything took the address of blocks in this function.
4611       auto BBFRI = BasicBlockFwdRefs.find(F);
4612       if (BBFRI == BasicBlockFwdRefs.end()) {
4613         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4614           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4615       } else {
4616         auto &BBRefs = BBFRI->second;
4617         // Check for invalid basic block references.
4618         if (BBRefs.size() > FunctionBBs.size())
4619           return error("Invalid ID");
4620         assert(!BBRefs.empty() && "Unexpected empty array");
4621         assert(!BBRefs.front() && "Invalid reference to entry block");
4622         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4623              ++I)
4624           if (I < RE && BBRefs[I]) {
4625             BBRefs[I]->insertInto(F);
4626             FunctionBBs[I] = BBRefs[I];
4627           } else {
4628             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4629           }
4630 
4631         // Erase from the table.
4632         BasicBlockFwdRefs.erase(BBFRI);
4633       }
4634 
4635       CurBB = FunctionBBs[0];
4636       continue;
4637     }
4638 
4639     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4640       // This record indicates that the last instruction is at the same
4641       // location as the previous instruction with a location.
4642       I = getLastInstruction();
4643 
4644       if (!I)
4645         return error("Invalid record");
4646       I->setDebugLoc(LastLoc);
4647       I = nullptr;
4648       continue;
4649 
4650     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4651       I = getLastInstruction();
4652       if (!I || Record.size() < 4)
4653         return error("Invalid record");
4654 
4655       unsigned Line = Record[0], Col = Record[1];
4656       unsigned ScopeID = Record[2], IAID = Record[3];
4657 
4658       MDNode *Scope = nullptr, *IA = nullptr;
4659       if (ScopeID) {
4660         Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1);
4661         if (!Scope)
4662           return error("Invalid record");
4663       }
4664       if (IAID) {
4665         IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1);
4666         if (!IA)
4667           return error("Invalid record");
4668       }
4669       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4670       I->setDebugLoc(LastLoc);
4671       I = nullptr;
4672       continue;
4673     }
4674 
4675     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4676       unsigned OpNum = 0;
4677       Value *LHS, *RHS;
4678       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4679           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4680           OpNum+1 > Record.size())
4681         return error("Invalid record");
4682 
4683       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4684       if (Opc == -1)
4685         return error("Invalid record");
4686       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4687       InstructionList.push_back(I);
4688       if (OpNum < Record.size()) {
4689         if (Opc == Instruction::Add ||
4690             Opc == Instruction::Sub ||
4691             Opc == Instruction::Mul ||
4692             Opc == Instruction::Shl) {
4693           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4694             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4695           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4696             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4697         } else if (Opc == Instruction::SDiv ||
4698                    Opc == Instruction::UDiv ||
4699                    Opc == Instruction::LShr ||
4700                    Opc == Instruction::AShr) {
4701           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4702             cast<BinaryOperator>(I)->setIsExact(true);
4703         } else if (isa<FPMathOperator>(I)) {
4704           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4705           if (FMF.any())
4706             I->setFastMathFlags(FMF);
4707         }
4708 
4709       }
4710       break;
4711     }
4712     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4713       unsigned OpNum = 0;
4714       Value *Op;
4715       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4716           OpNum+2 != Record.size())
4717         return error("Invalid record");
4718 
4719       Type *ResTy = getTypeByID(Record[OpNum]);
4720       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4721       if (Opc == -1 || !ResTy)
4722         return error("Invalid record");
4723       Instruction *Temp = nullptr;
4724       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4725         if (Temp) {
4726           InstructionList.push_back(Temp);
4727           CurBB->getInstList().push_back(Temp);
4728         }
4729       } else {
4730         auto CastOp = (Instruction::CastOps)Opc;
4731         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4732           return error("Invalid cast");
4733         I = CastInst::Create(CastOp, Op, ResTy);
4734       }
4735       InstructionList.push_back(I);
4736       break;
4737     }
4738     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4739     case bitc::FUNC_CODE_INST_GEP_OLD:
4740     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4741       unsigned OpNum = 0;
4742 
4743       Type *Ty;
4744       bool InBounds;
4745 
4746       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4747         InBounds = Record[OpNum++];
4748         Ty = getTypeByID(Record[OpNum++]);
4749       } else {
4750         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4751         Ty = nullptr;
4752       }
4753 
4754       Value *BasePtr;
4755       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4756         return error("Invalid record");
4757 
4758       if (!Ty)
4759         Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
4760                  ->getElementType();
4761       else if (Ty !=
4762                cast<SequentialType>(BasePtr->getType()->getScalarType())
4763                    ->getElementType())
4764         return error(
4765             "Explicit gep type does not match pointee type of pointer operand");
4766 
4767       SmallVector<Value*, 16> GEPIdx;
4768       while (OpNum != Record.size()) {
4769         Value *Op;
4770         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4771           return error("Invalid record");
4772         GEPIdx.push_back(Op);
4773       }
4774 
4775       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4776 
4777       InstructionList.push_back(I);
4778       if (InBounds)
4779         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4780       break;
4781     }
4782 
4783     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4784                                        // EXTRACTVAL: [opty, opval, n x indices]
4785       unsigned OpNum = 0;
4786       Value *Agg;
4787       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4788         return error("Invalid record");
4789 
4790       unsigned RecSize = Record.size();
4791       if (OpNum == RecSize)
4792         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4793 
4794       SmallVector<unsigned, 4> EXTRACTVALIdx;
4795       Type *CurTy = Agg->getType();
4796       for (; OpNum != RecSize; ++OpNum) {
4797         bool IsArray = CurTy->isArrayTy();
4798         bool IsStruct = CurTy->isStructTy();
4799         uint64_t Index = Record[OpNum];
4800 
4801         if (!IsStruct && !IsArray)
4802           return error("EXTRACTVAL: Invalid type");
4803         if ((unsigned)Index != Index)
4804           return error("Invalid value");
4805         if (IsStruct && Index >= CurTy->subtypes().size())
4806           return error("EXTRACTVAL: Invalid struct index");
4807         if (IsArray && Index >= CurTy->getArrayNumElements())
4808           return error("EXTRACTVAL: Invalid array index");
4809         EXTRACTVALIdx.push_back((unsigned)Index);
4810 
4811         if (IsStruct)
4812           CurTy = CurTy->subtypes()[Index];
4813         else
4814           CurTy = CurTy->subtypes()[0];
4815       }
4816 
4817       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4818       InstructionList.push_back(I);
4819       break;
4820     }
4821 
4822     case bitc::FUNC_CODE_INST_INSERTVAL: {
4823                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4824       unsigned OpNum = 0;
4825       Value *Agg;
4826       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4827         return error("Invalid record");
4828       Value *Val;
4829       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4830         return error("Invalid record");
4831 
4832       unsigned RecSize = Record.size();
4833       if (OpNum == RecSize)
4834         return error("INSERTVAL: Invalid instruction with 0 indices");
4835 
4836       SmallVector<unsigned, 4> INSERTVALIdx;
4837       Type *CurTy = Agg->getType();
4838       for (; OpNum != RecSize; ++OpNum) {
4839         bool IsArray = CurTy->isArrayTy();
4840         bool IsStruct = CurTy->isStructTy();
4841         uint64_t Index = Record[OpNum];
4842 
4843         if (!IsStruct && !IsArray)
4844           return error("INSERTVAL: Invalid type");
4845         if ((unsigned)Index != Index)
4846           return error("Invalid value");
4847         if (IsStruct && Index >= CurTy->subtypes().size())
4848           return error("INSERTVAL: Invalid struct index");
4849         if (IsArray && Index >= CurTy->getArrayNumElements())
4850           return error("INSERTVAL: Invalid array index");
4851 
4852         INSERTVALIdx.push_back((unsigned)Index);
4853         if (IsStruct)
4854           CurTy = CurTy->subtypes()[Index];
4855         else
4856           CurTy = CurTy->subtypes()[0];
4857       }
4858 
4859       if (CurTy != Val->getType())
4860         return error("Inserted value type doesn't match aggregate type");
4861 
4862       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4863       InstructionList.push_back(I);
4864       break;
4865     }
4866 
4867     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4868       // obsolete form of select
4869       // handles select i1 ... in old bitcode
4870       unsigned OpNum = 0;
4871       Value *TrueVal, *FalseVal, *Cond;
4872       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4873           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4874           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4875         return error("Invalid record");
4876 
4877       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4878       InstructionList.push_back(I);
4879       break;
4880     }
4881 
4882     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4883       // new form of select
4884       // handles select i1 or select [N x i1]
4885       unsigned OpNum = 0;
4886       Value *TrueVal, *FalseVal, *Cond;
4887       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4888           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4889           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4890         return error("Invalid record");
4891 
4892       // select condition can be either i1 or [N x i1]
4893       if (VectorType* vector_type =
4894           dyn_cast<VectorType>(Cond->getType())) {
4895         // expect <n x i1>
4896         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4897           return error("Invalid type for value");
4898       } else {
4899         // expect i1
4900         if (Cond->getType() != Type::getInt1Ty(Context))
4901           return error("Invalid type for value");
4902       }
4903 
4904       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4905       InstructionList.push_back(I);
4906       break;
4907     }
4908 
4909     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4910       unsigned OpNum = 0;
4911       Value *Vec, *Idx;
4912       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4913           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4914         return error("Invalid record");
4915       if (!Vec->getType()->isVectorTy())
4916         return error("Invalid type for value");
4917       I = ExtractElementInst::Create(Vec, Idx);
4918       InstructionList.push_back(I);
4919       break;
4920     }
4921 
4922     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4923       unsigned OpNum = 0;
4924       Value *Vec, *Elt, *Idx;
4925       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4926         return error("Invalid record");
4927       if (!Vec->getType()->isVectorTy())
4928         return error("Invalid type for value");
4929       if (popValue(Record, OpNum, NextValueNo,
4930                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4931           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4932         return error("Invalid record");
4933       I = InsertElementInst::Create(Vec, Elt, Idx);
4934       InstructionList.push_back(I);
4935       break;
4936     }
4937 
4938     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4939       unsigned OpNum = 0;
4940       Value *Vec1, *Vec2, *Mask;
4941       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4942           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4943         return error("Invalid record");
4944 
4945       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4946         return error("Invalid record");
4947       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4948         return error("Invalid type for value");
4949       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4950       InstructionList.push_back(I);
4951       break;
4952     }
4953 
4954     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4955       // Old form of ICmp/FCmp returning bool
4956       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4957       // both legal on vectors but had different behaviour.
4958     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4959       // FCmp/ICmp returning bool or vector of bool
4960 
4961       unsigned OpNum = 0;
4962       Value *LHS, *RHS;
4963       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4964           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4965         return error("Invalid record");
4966 
4967       unsigned PredVal = Record[OpNum];
4968       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4969       FastMathFlags FMF;
4970       if (IsFP && Record.size() > OpNum+1)
4971         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4972 
4973       if (OpNum+1 != Record.size())
4974         return error("Invalid record");
4975 
4976       if (LHS->getType()->isFPOrFPVectorTy())
4977         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4978       else
4979         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4980 
4981       if (FMF.any())
4982         I->setFastMathFlags(FMF);
4983       InstructionList.push_back(I);
4984       break;
4985     }
4986 
4987     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4988       {
4989         unsigned Size = Record.size();
4990         if (Size == 0) {
4991           I = ReturnInst::Create(Context);
4992           InstructionList.push_back(I);
4993           break;
4994         }
4995 
4996         unsigned OpNum = 0;
4997         Value *Op = nullptr;
4998         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4999           return error("Invalid record");
5000         if (OpNum != Record.size())
5001           return error("Invalid record");
5002 
5003         I = ReturnInst::Create(Context, Op);
5004         InstructionList.push_back(I);
5005         break;
5006       }
5007     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
5008       if (Record.size() != 1 && Record.size() != 3)
5009         return error("Invalid record");
5010       BasicBlock *TrueDest = getBasicBlock(Record[0]);
5011       if (!TrueDest)
5012         return error("Invalid record");
5013 
5014       if (Record.size() == 1) {
5015         I = BranchInst::Create(TrueDest);
5016         InstructionList.push_back(I);
5017       }
5018       else {
5019         BasicBlock *FalseDest = getBasicBlock(Record[1]);
5020         Value *Cond = getValue(Record, 2, NextValueNo,
5021                                Type::getInt1Ty(Context));
5022         if (!FalseDest || !Cond)
5023           return error("Invalid record");
5024         I = BranchInst::Create(TrueDest, FalseDest, Cond);
5025         InstructionList.push_back(I);
5026       }
5027       break;
5028     }
5029     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
5030       if (Record.size() != 1 && Record.size() != 2)
5031         return error("Invalid record");
5032       unsigned Idx = 0;
5033       Value *CleanupPad =
5034           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5035       if (!CleanupPad)
5036         return error("Invalid record");
5037       BasicBlock *UnwindDest = nullptr;
5038       if (Record.size() == 2) {
5039         UnwindDest = getBasicBlock(Record[Idx++]);
5040         if (!UnwindDest)
5041           return error("Invalid record");
5042       }
5043 
5044       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
5045       InstructionList.push_back(I);
5046       break;
5047     }
5048     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
5049       if (Record.size() != 2)
5050         return error("Invalid record");
5051       unsigned Idx = 0;
5052       Value *CatchPad =
5053           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5054       if (!CatchPad)
5055         return error("Invalid record");
5056       BasicBlock *BB = getBasicBlock(Record[Idx++]);
5057       if (!BB)
5058         return error("Invalid record");
5059 
5060       I = CatchReturnInst::Create(CatchPad, BB);
5061       InstructionList.push_back(I);
5062       break;
5063     }
5064     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
5065       // We must have, at minimum, the outer scope and the number of arguments.
5066       if (Record.size() < 2)
5067         return error("Invalid record");
5068 
5069       unsigned Idx = 0;
5070 
5071       Value *ParentPad =
5072           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5073 
5074       unsigned NumHandlers = Record[Idx++];
5075 
5076       SmallVector<BasicBlock *, 2> Handlers;
5077       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
5078         BasicBlock *BB = getBasicBlock(Record[Idx++]);
5079         if (!BB)
5080           return error("Invalid record");
5081         Handlers.push_back(BB);
5082       }
5083 
5084       BasicBlock *UnwindDest = nullptr;
5085       if (Idx + 1 == Record.size()) {
5086         UnwindDest = getBasicBlock(Record[Idx++]);
5087         if (!UnwindDest)
5088           return error("Invalid record");
5089       }
5090 
5091       if (Record.size() != Idx)
5092         return error("Invalid record");
5093 
5094       auto *CatchSwitch =
5095           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
5096       for (BasicBlock *Handler : Handlers)
5097         CatchSwitch->addHandler(Handler);
5098       I = CatchSwitch;
5099       InstructionList.push_back(I);
5100       break;
5101     }
5102     case bitc::FUNC_CODE_INST_CATCHPAD:
5103     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
5104       // We must have, at minimum, the outer scope and the number of arguments.
5105       if (Record.size() < 2)
5106         return error("Invalid record");
5107 
5108       unsigned Idx = 0;
5109 
5110       Value *ParentPad =
5111           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
5112 
5113       unsigned NumArgOperands = Record[Idx++];
5114 
5115       SmallVector<Value *, 2> Args;
5116       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
5117         Value *Val;
5118         if (getValueTypePair(Record, Idx, NextValueNo, Val))
5119           return error("Invalid record");
5120         Args.push_back(Val);
5121       }
5122 
5123       if (Record.size() != Idx)
5124         return error("Invalid record");
5125 
5126       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
5127         I = CleanupPadInst::Create(ParentPad, Args);
5128       else
5129         I = CatchPadInst::Create(ParentPad, Args);
5130       InstructionList.push_back(I);
5131       break;
5132     }
5133     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
5134       // Check magic
5135       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
5136         // "New" SwitchInst format with case ranges. The changes to write this
5137         // format were reverted but we still recognize bitcode that uses it.
5138         // Hopefully someday we will have support for case ranges and can use
5139         // this format again.
5140 
5141         Type *OpTy = getTypeByID(Record[1]);
5142         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
5143 
5144         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
5145         BasicBlock *Default = getBasicBlock(Record[3]);
5146         if (!OpTy || !Cond || !Default)
5147           return error("Invalid record");
5148 
5149         unsigned NumCases = Record[4];
5150 
5151         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5152         InstructionList.push_back(SI);
5153 
5154         unsigned CurIdx = 5;
5155         for (unsigned i = 0; i != NumCases; ++i) {
5156           SmallVector<ConstantInt*, 1> CaseVals;
5157           unsigned NumItems = Record[CurIdx++];
5158           for (unsigned ci = 0; ci != NumItems; ++ci) {
5159             bool isSingleNumber = Record[CurIdx++];
5160 
5161             APInt Low;
5162             unsigned ActiveWords = 1;
5163             if (ValueBitWidth > 64)
5164               ActiveWords = Record[CurIdx++];
5165             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
5166                                 ValueBitWidth);
5167             CurIdx += ActiveWords;
5168 
5169             if (!isSingleNumber) {
5170               ActiveWords = 1;
5171               if (ValueBitWidth > 64)
5172                 ActiveWords = Record[CurIdx++];
5173               APInt High = readWideAPInt(
5174                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
5175               CurIdx += ActiveWords;
5176 
5177               // FIXME: It is not clear whether values in the range should be
5178               // compared as signed or unsigned values. The partially
5179               // implemented changes that used this format in the past used
5180               // unsigned comparisons.
5181               for ( ; Low.ule(High); ++Low)
5182                 CaseVals.push_back(ConstantInt::get(Context, Low));
5183             } else
5184               CaseVals.push_back(ConstantInt::get(Context, Low));
5185           }
5186           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
5187           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
5188                  cve = CaseVals.end(); cvi != cve; ++cvi)
5189             SI->addCase(*cvi, DestBB);
5190         }
5191         I = SI;
5192         break;
5193       }
5194 
5195       // Old SwitchInst format without case ranges.
5196 
5197       if (Record.size() < 3 || (Record.size() & 1) == 0)
5198         return error("Invalid record");
5199       Type *OpTy = getTypeByID(Record[0]);
5200       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
5201       BasicBlock *Default = getBasicBlock(Record[2]);
5202       if (!OpTy || !Cond || !Default)
5203         return error("Invalid record");
5204       unsigned NumCases = (Record.size()-3)/2;
5205       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
5206       InstructionList.push_back(SI);
5207       for (unsigned i = 0, e = NumCases; i != e; ++i) {
5208         ConstantInt *CaseVal =
5209           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
5210         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
5211         if (!CaseVal || !DestBB) {
5212           delete SI;
5213           return error("Invalid record");
5214         }
5215         SI->addCase(CaseVal, DestBB);
5216       }
5217       I = SI;
5218       break;
5219     }
5220     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
5221       if (Record.size() < 2)
5222         return error("Invalid record");
5223       Type *OpTy = getTypeByID(Record[0]);
5224       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
5225       if (!OpTy || !Address)
5226         return error("Invalid record");
5227       unsigned NumDests = Record.size()-2;
5228       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
5229       InstructionList.push_back(IBI);
5230       for (unsigned i = 0, e = NumDests; i != e; ++i) {
5231         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
5232           IBI->addDestination(DestBB);
5233         } else {
5234           delete IBI;
5235           return error("Invalid record");
5236         }
5237       }
5238       I = IBI;
5239       break;
5240     }
5241 
5242     case bitc::FUNC_CODE_INST_INVOKE: {
5243       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
5244       if (Record.size() < 4)
5245         return error("Invalid record");
5246       unsigned OpNum = 0;
5247       AttributeSet PAL = getAttributes(Record[OpNum++]);
5248       unsigned CCInfo = Record[OpNum++];
5249       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
5250       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
5251 
5252       FunctionType *FTy = nullptr;
5253       if (CCInfo >> 13 & 1 &&
5254           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5255         return error("Explicit invoke type is not a function type");
5256 
5257       Value *Callee;
5258       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5259         return error("Invalid record");
5260 
5261       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
5262       if (!CalleeTy)
5263         return error("Callee is not a pointer");
5264       if (!FTy) {
5265         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
5266         if (!FTy)
5267           return error("Callee is not of pointer to function type");
5268       } else if (CalleeTy->getElementType() != FTy)
5269         return error("Explicit invoke type does not match pointee type of "
5270                      "callee operand");
5271       if (Record.size() < FTy->getNumParams() + OpNum)
5272         return error("Insufficient operands to call");
5273 
5274       SmallVector<Value*, 16> Ops;
5275       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5276         Ops.push_back(getValue(Record, OpNum, NextValueNo,
5277                                FTy->getParamType(i)));
5278         if (!Ops.back())
5279           return error("Invalid record");
5280       }
5281 
5282       if (!FTy->isVarArg()) {
5283         if (Record.size() != OpNum)
5284           return error("Invalid record");
5285       } else {
5286         // Read type/value pairs for varargs params.
5287         while (OpNum != Record.size()) {
5288           Value *Op;
5289           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5290             return error("Invalid record");
5291           Ops.push_back(Op);
5292         }
5293       }
5294 
5295       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
5296       OperandBundles.clear();
5297       InstructionList.push_back(I);
5298       cast<InvokeInst>(I)->setCallingConv(
5299           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5300       cast<InvokeInst>(I)->setAttributes(PAL);
5301       break;
5302     }
5303     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5304       unsigned Idx = 0;
5305       Value *Val = nullptr;
5306       if (getValueTypePair(Record, Idx, NextValueNo, Val))
5307         return error("Invalid record");
5308       I = ResumeInst::Create(Val);
5309       InstructionList.push_back(I);
5310       break;
5311     }
5312     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5313       I = new UnreachableInst(Context);
5314       InstructionList.push_back(I);
5315       break;
5316     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5317       if (Record.size() < 1 || ((Record.size()-1)&1))
5318         return error("Invalid record");
5319       Type *Ty = getTypeByID(Record[0]);
5320       if (!Ty)
5321         return error("Invalid record");
5322 
5323       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
5324       InstructionList.push_back(PN);
5325 
5326       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
5327         Value *V;
5328         // With the new function encoding, it is possible that operands have
5329         // negative IDs (for forward references).  Use a signed VBR
5330         // representation to keep the encoding small.
5331         if (UseRelativeIDs)
5332           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
5333         else
5334           V = getValue(Record, 1+i, NextValueNo, Ty);
5335         BasicBlock *BB = getBasicBlock(Record[2+i]);
5336         if (!V || !BB)
5337           return error("Invalid record");
5338         PN->addIncoming(V, BB);
5339       }
5340       I = PN;
5341       break;
5342     }
5343 
5344     case bitc::FUNC_CODE_INST_LANDINGPAD:
5345     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5346       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5347       unsigned Idx = 0;
5348       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5349         if (Record.size() < 3)
5350           return error("Invalid record");
5351       } else {
5352         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5353         if (Record.size() < 4)
5354           return error("Invalid record");
5355       }
5356       Type *Ty = getTypeByID(Record[Idx++]);
5357       if (!Ty)
5358         return error("Invalid record");
5359       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5360         Value *PersFn = nullptr;
5361         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
5362           return error("Invalid record");
5363 
5364         if (!F->hasPersonalityFn())
5365           F->setPersonalityFn(cast<Constant>(PersFn));
5366         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5367           return error("Personality function mismatch");
5368       }
5369 
5370       bool IsCleanup = !!Record[Idx++];
5371       unsigned NumClauses = Record[Idx++];
5372       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5373       LP->setCleanup(IsCleanup);
5374       for (unsigned J = 0; J != NumClauses; ++J) {
5375         LandingPadInst::ClauseType CT =
5376           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5377         Value *Val;
5378 
5379         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
5380           delete LP;
5381           return error("Invalid record");
5382         }
5383 
5384         assert((CT != LandingPadInst::Catch ||
5385                 !isa<ArrayType>(Val->getType())) &&
5386                "Catch clause has a invalid type!");
5387         assert((CT != LandingPadInst::Filter ||
5388                 isa<ArrayType>(Val->getType())) &&
5389                "Filter clause has invalid type!");
5390         LP->addClause(cast<Constant>(Val));
5391       }
5392 
5393       I = LP;
5394       InstructionList.push_back(I);
5395       break;
5396     }
5397 
5398     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5399       if (Record.size() != 4)
5400         return error("Invalid record");
5401       uint64_t AlignRecord = Record[3];
5402       const uint64_t InAllocaMask = uint64_t(1) << 5;
5403       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
5404       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
5405       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
5406                                 SwiftErrorMask;
5407       bool InAlloca = AlignRecord & InAllocaMask;
5408       bool SwiftError = AlignRecord & SwiftErrorMask;
5409       Type *Ty = getTypeByID(Record[0]);
5410       if ((AlignRecord & ExplicitTypeMask) == 0) {
5411         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
5412         if (!PTy)
5413           return error("Old-style alloca with a non-pointer type");
5414         Ty = PTy->getElementType();
5415       }
5416       Type *OpTy = getTypeByID(Record[1]);
5417       Value *Size = getFnValueByID(Record[2], OpTy);
5418       unsigned Align;
5419       if (std::error_code EC =
5420               parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
5421         return EC;
5422       }
5423       if (!Ty || !Size)
5424         return error("Invalid record");
5425       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
5426       AI->setUsedWithInAlloca(InAlloca);
5427       AI->setSwiftError(SwiftError);
5428       I = AI;
5429       InstructionList.push_back(I);
5430       break;
5431     }
5432     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5433       unsigned OpNum = 0;
5434       Value *Op;
5435       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5436           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5437         return error("Invalid record");
5438 
5439       Type *Ty = nullptr;
5440       if (OpNum + 3 == Record.size())
5441         Ty = getTypeByID(Record[OpNum++]);
5442       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
5443         return EC;
5444       if (!Ty)
5445         Ty = cast<PointerType>(Op->getType())->getElementType();
5446 
5447       unsigned Align;
5448       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5449         return EC;
5450       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
5451 
5452       InstructionList.push_back(I);
5453       break;
5454     }
5455     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5456        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
5457       unsigned OpNum = 0;
5458       Value *Op;
5459       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5460           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5461         return error("Invalid record");
5462 
5463       Type *Ty = nullptr;
5464       if (OpNum + 5 == Record.size())
5465         Ty = getTypeByID(Record[OpNum++]);
5466       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
5467         return EC;
5468       if (!Ty)
5469         Ty = cast<PointerType>(Op->getType())->getElementType();
5470 
5471       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5472       if (Ordering == AtomicOrdering::NotAtomic ||
5473           Ordering == AtomicOrdering::Release ||
5474           Ordering == AtomicOrdering::AcquireRelease)
5475         return error("Invalid record");
5476       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5477         return error("Invalid record");
5478       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5479 
5480       unsigned Align;
5481       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5482         return EC;
5483       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
5484 
5485       InstructionList.push_back(I);
5486       break;
5487     }
5488     case bitc::FUNC_CODE_INST_STORE:
5489     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5490       unsigned OpNum = 0;
5491       Value *Val, *Ptr;
5492       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5493           (BitCode == bitc::FUNC_CODE_INST_STORE
5494                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5495                : popValue(Record, OpNum, NextValueNo,
5496                           cast<PointerType>(Ptr->getType())->getElementType(),
5497                           Val)) ||
5498           OpNum + 2 != Record.size())
5499         return error("Invalid record");
5500 
5501       if (std::error_code EC =
5502               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5503         return EC;
5504       unsigned Align;
5505       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5506         return EC;
5507       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
5508       InstructionList.push_back(I);
5509       break;
5510     }
5511     case bitc::FUNC_CODE_INST_STOREATOMIC:
5512     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5513       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
5514       unsigned OpNum = 0;
5515       Value *Val, *Ptr;
5516       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5517           !isa<PointerType>(Ptr->getType()) ||
5518           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5519                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5520                : popValue(Record, OpNum, NextValueNo,
5521                           cast<PointerType>(Ptr->getType())->getElementType(),
5522                           Val)) ||
5523           OpNum + 4 != Record.size())
5524         return error("Invalid record");
5525 
5526       if (std::error_code EC =
5527               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5528         return EC;
5529       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5530       if (Ordering == AtomicOrdering::NotAtomic ||
5531           Ordering == AtomicOrdering::Acquire ||
5532           Ordering == AtomicOrdering::AcquireRelease)
5533         return error("Invalid record");
5534       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5535       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5536         return error("Invalid record");
5537 
5538       unsigned Align;
5539       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5540         return EC;
5541       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
5542       InstructionList.push_back(I);
5543       break;
5544     }
5545     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
5546     case bitc::FUNC_CODE_INST_CMPXCHG: {
5547       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
5548       //          failureordering?, isweak?]
5549       unsigned OpNum = 0;
5550       Value *Ptr, *Cmp, *New;
5551       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5552           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
5553                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
5554                : popValue(Record, OpNum, NextValueNo,
5555                           cast<PointerType>(Ptr->getType())->getElementType(),
5556                           Cmp)) ||
5557           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5558           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5559         return error("Invalid record");
5560       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5561       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5562           SuccessOrdering == AtomicOrdering::Unordered)
5563         return error("Invalid record");
5564       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
5565 
5566       if (std::error_code EC =
5567               typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5568         return EC;
5569       AtomicOrdering FailureOrdering;
5570       if (Record.size() < 7)
5571         FailureOrdering =
5572             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5573       else
5574         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5575 
5576       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
5577                                 SynchScope);
5578       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5579 
5580       if (Record.size() < 8) {
5581         // Before weak cmpxchgs existed, the instruction simply returned the
5582         // value loaded from memory, so bitcode files from that era will be
5583         // expecting the first component of a modern cmpxchg.
5584         CurBB->getInstList().push_back(I);
5585         I = ExtractValueInst::Create(I, 0);
5586       } else {
5587         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5588       }
5589 
5590       InstructionList.push_back(I);
5591       break;
5592     }
5593     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5594       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
5595       unsigned OpNum = 0;
5596       Value *Ptr, *Val;
5597       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5598           !isa<PointerType>(Ptr->getType()) ||
5599           popValue(Record, OpNum, NextValueNo,
5600                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
5601           OpNum+4 != Record.size())
5602         return error("Invalid record");
5603       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5604       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5605           Operation > AtomicRMWInst::LAST_BINOP)
5606         return error("Invalid record");
5607       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5608       if (Ordering == AtomicOrdering::NotAtomic ||
5609           Ordering == AtomicOrdering::Unordered)
5610         return error("Invalid record");
5611       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5612       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5613       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5614       InstructionList.push_back(I);
5615       break;
5616     }
5617     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5618       if (2 != Record.size())
5619         return error("Invalid record");
5620       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5621       if (Ordering == AtomicOrdering::NotAtomic ||
5622           Ordering == AtomicOrdering::Unordered ||
5623           Ordering == AtomicOrdering::Monotonic)
5624         return error("Invalid record");
5625       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5626       I = new FenceInst(Context, Ordering, SynchScope);
5627       InstructionList.push_back(I);
5628       break;
5629     }
5630     case bitc::FUNC_CODE_INST_CALL: {
5631       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5632       if (Record.size() < 3)
5633         return error("Invalid record");
5634 
5635       unsigned OpNum = 0;
5636       AttributeSet PAL = getAttributes(Record[OpNum++]);
5637       unsigned CCInfo = Record[OpNum++];
5638 
5639       FastMathFlags FMF;
5640       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5641         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5642         if (!FMF.any())
5643           return error("Fast math flags indicator set for call with no FMF");
5644       }
5645 
5646       FunctionType *FTy = nullptr;
5647       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5648           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5649         return error("Explicit call type is not a function type");
5650 
5651       Value *Callee;
5652       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5653         return error("Invalid record");
5654 
5655       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5656       if (!OpTy)
5657         return error("Callee is not a pointer type");
5658       if (!FTy) {
5659         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5660         if (!FTy)
5661           return error("Callee is not of pointer to function type");
5662       } else if (OpTy->getElementType() != FTy)
5663         return error("Explicit call type does not match pointee type of "
5664                      "callee operand");
5665       if (Record.size() < FTy->getNumParams() + OpNum)
5666         return error("Insufficient operands to call");
5667 
5668       SmallVector<Value*, 16> Args;
5669       // Read the fixed params.
5670       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5671         if (FTy->getParamType(i)->isLabelTy())
5672           Args.push_back(getBasicBlock(Record[OpNum]));
5673         else
5674           Args.push_back(getValue(Record, OpNum, NextValueNo,
5675                                   FTy->getParamType(i)));
5676         if (!Args.back())
5677           return error("Invalid record");
5678       }
5679 
5680       // Read type/value pairs for varargs params.
5681       if (!FTy->isVarArg()) {
5682         if (OpNum != Record.size())
5683           return error("Invalid record");
5684       } else {
5685         while (OpNum != Record.size()) {
5686           Value *Op;
5687           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5688             return error("Invalid record");
5689           Args.push_back(Op);
5690         }
5691       }
5692 
5693       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5694       OperandBundles.clear();
5695       InstructionList.push_back(I);
5696       cast<CallInst>(I)->setCallingConv(
5697           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5698       CallInst::TailCallKind TCK = CallInst::TCK_None;
5699       if (CCInfo & 1 << bitc::CALL_TAIL)
5700         TCK = CallInst::TCK_Tail;
5701       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5702         TCK = CallInst::TCK_MustTail;
5703       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5704         TCK = CallInst::TCK_NoTail;
5705       cast<CallInst>(I)->setTailCallKind(TCK);
5706       cast<CallInst>(I)->setAttributes(PAL);
5707       if (FMF.any()) {
5708         if (!isa<FPMathOperator>(I))
5709           return error("Fast-math-flags specified for call without "
5710                        "floating-point scalar or vector return type");
5711         I->setFastMathFlags(FMF);
5712       }
5713       break;
5714     }
5715     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5716       if (Record.size() < 3)
5717         return error("Invalid record");
5718       Type *OpTy = getTypeByID(Record[0]);
5719       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5720       Type *ResTy = getTypeByID(Record[2]);
5721       if (!OpTy || !Op || !ResTy)
5722         return error("Invalid record");
5723       I = new VAArgInst(Op, ResTy);
5724       InstructionList.push_back(I);
5725       break;
5726     }
5727 
5728     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5729       // A call or an invoke can be optionally prefixed with some variable
5730       // number of operand bundle blocks.  These blocks are read into
5731       // OperandBundles and consumed at the next call or invoke instruction.
5732 
5733       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5734         return error("Invalid record");
5735 
5736       std::vector<Value *> Inputs;
5737 
5738       unsigned OpNum = 1;
5739       while (OpNum != Record.size()) {
5740         Value *Op;
5741         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5742           return error("Invalid record");
5743         Inputs.push_back(Op);
5744       }
5745 
5746       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5747       continue;
5748     }
5749     }
5750 
5751     // Add instruction to end of current BB.  If there is no current BB, reject
5752     // this file.
5753     if (!CurBB) {
5754       delete I;
5755       return error("Invalid instruction with no BB");
5756     }
5757     if (!OperandBundles.empty()) {
5758       delete I;
5759       return error("Operand bundles found with no consumer");
5760     }
5761     CurBB->getInstList().push_back(I);
5762 
5763     // If this was a terminator instruction, move to the next block.
5764     if (isa<TerminatorInst>(I)) {
5765       ++CurBBNo;
5766       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5767     }
5768 
5769     // Non-void values get registered in the value table for future use.
5770     if (I && !I->getType()->isVoidTy())
5771       ValueList.assignValue(I, NextValueNo++);
5772   }
5773 
5774 OutOfRecordLoop:
5775 
5776   if (!OperandBundles.empty())
5777     return error("Operand bundles found with no consumer");
5778 
5779   // Check the function list for unresolved values.
5780   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5781     if (!A->getParent()) {
5782       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5783       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5784         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5785           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5786           delete A;
5787         }
5788       }
5789       return error("Never resolved value found in function");
5790     }
5791   }
5792 
5793   // Unexpected unresolved metadata about to be dropped.
5794   if (MetadataList.hasFwdRefs())
5795     return error("Invalid function metadata: outgoing forward refs");
5796 
5797   // Trim the value list down to the size it was before we parsed this function.
5798   ValueList.shrinkTo(ModuleValueListSize);
5799   MetadataList.shrinkTo(ModuleMetadataListSize);
5800   std::vector<BasicBlock*>().swap(FunctionBBs);
5801   return std::error_code();
5802 }
5803 
5804 /// Find the function body in the bitcode stream
5805 std::error_code BitcodeReader::findFunctionInStream(
5806     Function *F,
5807     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5808   while (DeferredFunctionInfoIterator->second == 0) {
5809     // This is the fallback handling for the old format bitcode that
5810     // didn't contain the function index in the VST, or when we have
5811     // an anonymous function which would not have a VST entry.
5812     // Assert that we have one of those two cases.
5813     assert(VSTOffset == 0 || !F->hasName());
5814     // Parse the next body in the stream and set its position in the
5815     // DeferredFunctionInfo map.
5816     if (std::error_code EC = rememberAndSkipFunctionBodies())
5817       return EC;
5818   }
5819   return std::error_code();
5820 }
5821 
5822 //===----------------------------------------------------------------------===//
5823 // GVMaterializer implementation
5824 //===----------------------------------------------------------------------===//
5825 
5826 void BitcodeReader::releaseBuffer() { Buffer.release(); }
5827 
5828 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
5829   Function *F = dyn_cast<Function>(GV);
5830   // If it's not a function or is already material, ignore the request.
5831   if (!F || !F->isMaterializable())
5832     return std::error_code();
5833 
5834   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5835   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5836   // If its position is recorded as 0, its body is somewhere in the stream
5837   // but we haven't seen it yet.
5838   if (DFII->second == 0)
5839     if (std::error_code EC = findFunctionInStream(F, DFII))
5840       return EC;
5841 
5842   // Materialize metadata before parsing any function bodies.
5843   if (std::error_code EC = materializeMetadata())
5844     return EC;
5845 
5846   // Move the bit stream to the saved position of the deferred function body.
5847   Stream.JumpToBit(DFII->second);
5848 
5849   if (std::error_code EC = parseFunctionBody(F))
5850     return EC;
5851   F->setIsMaterializable(false);
5852 
5853   if (StripDebugInfo)
5854     stripDebugInfo(*F);
5855 
5856   // Upgrade any old intrinsic calls in the function.
5857   for (auto &I : UpgradedIntrinsics) {
5858     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5859          UI != UE;) {
5860       User *U = *UI;
5861       ++UI;
5862       if (CallInst *CI = dyn_cast<CallInst>(U))
5863         UpgradeIntrinsicCall(CI, I.second);
5864     }
5865   }
5866 
5867   // Update calls to the remangled intrinsics
5868   for (auto &I : RemangledIntrinsics)
5869     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5870          UI != UE;)
5871       // Don't expect any other users than call sites
5872       CallSite(*UI++).setCalledFunction(I.second);
5873 
5874   // Finish fn->subprogram upgrade for materialized functions.
5875   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5876     F->setSubprogram(SP);
5877 
5878   // Bring in any functions that this function forward-referenced via
5879   // blockaddresses.
5880   return materializeForwardReferencedFunctions();
5881 }
5882 
5883 std::error_code BitcodeReader::materializeModule() {
5884   if (std::error_code EC = materializeMetadata())
5885     return EC;
5886 
5887   // Promise to materialize all forward references.
5888   WillMaterializeAllForwardRefs = true;
5889 
5890   // Iterate over the module, deserializing any functions that are still on
5891   // disk.
5892   for (Function &F : *TheModule) {
5893     if (std::error_code EC = materialize(&F))
5894       return EC;
5895   }
5896   // At this point, if there are any function bodies, parse the rest of
5897   // the bits in the module past the last function block we have recorded
5898   // through either lazy scanning or the VST.
5899   if (LastFunctionBlockBit || NextUnreadBit)
5900     parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
5901                                                      : NextUnreadBit);
5902 
5903   // Check that all block address forward references got resolved (as we
5904   // promised above).
5905   if (!BasicBlockFwdRefs.empty())
5906     return error("Never resolved function from blockaddress");
5907 
5908   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5909   // delete the old functions to clean up. We can't do this unless the entire
5910   // module is materialized because there could always be another function body
5911   // with calls to the old function.
5912   for (auto &I : UpgradedIntrinsics) {
5913     for (auto *U : I.first->users()) {
5914       if (CallInst *CI = dyn_cast<CallInst>(U))
5915         UpgradeIntrinsicCall(CI, I.second);
5916     }
5917     if (!I.first->use_empty())
5918       I.first->replaceAllUsesWith(I.second);
5919     I.first->eraseFromParent();
5920   }
5921   UpgradedIntrinsics.clear();
5922   // Do the same for remangled intrinsics
5923   for (auto &I : RemangledIntrinsics) {
5924     I.first->replaceAllUsesWith(I.second);
5925     I.first->eraseFromParent();
5926   }
5927   RemangledIntrinsics.clear();
5928 
5929   UpgradeDebugInfo(*TheModule);
5930 
5931   UpgradeModuleFlags(*TheModule);
5932   return std::error_code();
5933 }
5934 
5935 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5936   return IdentifiedStructTypes;
5937 }
5938 
5939 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) {
5940   return ::error(DiagnosticHandler,
5941                  make_error_code(BitcodeError::CorruptedBitcode), Message);
5942 }
5943 
5944 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5945     MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
5946     bool CheckGlobalValSummaryPresenceOnly)
5947     : BitcodeReaderBase(Buffer), DiagnosticHandler(std::move(DiagnosticHandler)),
5948       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5949 
5950 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; }
5951 
5952 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
5953 
5954 std::pair<GlobalValue::GUID, GlobalValue::GUID>
5955 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) {
5956   auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId);
5957   assert(VGI != ValueIdToCallGraphGUIDMap.end());
5958   return VGI->second;
5959 }
5960 
5961 // Specialized value symbol table parser used when reading module index
5962 // blocks where we don't actually create global values. The parsed information
5963 // is saved in the bitcode reader for use when later parsing summaries.
5964 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5965     uint64_t Offset,
5966     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5967   assert(Offset > 0 && "Expected non-zero VST offset");
5968   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5969 
5970   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5971     return error("Invalid record");
5972 
5973   SmallVector<uint64_t, 64> Record;
5974 
5975   // Read all the records for this value table.
5976   SmallString<128> ValueName;
5977 
5978   while (true) {
5979     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5980 
5981     switch (Entry.Kind) {
5982     case BitstreamEntry::SubBlock: // Handled for us already.
5983     case BitstreamEntry::Error:
5984       return error("Malformed block");
5985     case BitstreamEntry::EndBlock:
5986       // Done parsing VST, jump back to wherever we came from.
5987       Stream.JumpToBit(CurrentBit);
5988       return std::error_code();
5989     case BitstreamEntry::Record:
5990       // The interesting case.
5991       break;
5992     }
5993 
5994     // Read a record.
5995     Record.clear();
5996     switch (Stream.readRecord(Entry.ID, Record)) {
5997     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5998       break;
5999     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
6000       if (convertToString(Record, 1, ValueName))
6001         return error("Invalid record");
6002       unsigned ValueID = Record[0];
6003       assert(!SourceFileName.empty());
6004       auto VLI = ValueIdToLinkageMap.find(ValueID);
6005       assert(VLI != ValueIdToLinkageMap.end() &&
6006              "No linkage found for VST entry?");
6007       auto Linkage = VLI->second;
6008       std::string GlobalId =
6009           GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
6010       auto ValueGUID = GlobalValue::getGUID(GlobalId);
6011       auto OriginalNameID = ValueGUID;
6012       if (GlobalValue::isLocalLinkage(Linkage))
6013         OriginalNameID = GlobalValue::getGUID(ValueName);
6014       if (PrintSummaryGUIDs)
6015         dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
6016                << ValueName << "\n";
6017       ValueIdToCallGraphGUIDMap[ValueID] =
6018           std::make_pair(ValueGUID, OriginalNameID);
6019       ValueName.clear();
6020       break;
6021     }
6022     case bitc::VST_CODE_FNENTRY: {
6023       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
6024       if (convertToString(Record, 2, ValueName))
6025         return error("Invalid record");
6026       unsigned ValueID = Record[0];
6027       assert(!SourceFileName.empty());
6028       auto VLI = ValueIdToLinkageMap.find(ValueID);
6029       assert(VLI != ValueIdToLinkageMap.end() &&
6030              "No linkage found for VST entry?");
6031       auto Linkage = VLI->second;
6032       std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier(
6033           ValueName, VLI->second, SourceFileName);
6034       auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId);
6035       auto OriginalNameID = FunctionGUID;
6036       if (GlobalValue::isLocalLinkage(Linkage))
6037         OriginalNameID = GlobalValue::getGUID(ValueName);
6038       if (PrintSummaryGUIDs)
6039         dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is "
6040                << ValueName << "\n";
6041       ValueIdToCallGraphGUIDMap[ValueID] =
6042           std::make_pair(FunctionGUID, OriginalNameID);
6043 
6044       ValueName.clear();
6045       break;
6046     }
6047     case bitc::VST_CODE_COMBINED_ENTRY: {
6048       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
6049       unsigned ValueID = Record[0];
6050       GlobalValue::GUID RefGUID = Record[1];
6051       // The "original name", which is the second value of the pair will be
6052       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
6053       ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID);
6054       break;
6055     }
6056     }
6057   }
6058 }
6059 
6060 // Parse just the blocks needed for building the index out of the module.
6061 // At the end of this routine the module Index is populated with a map
6062 // from global value id to GlobalValueSummary objects.
6063 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() {
6064   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6065     return error("Invalid record");
6066 
6067   SmallVector<uint64_t, 64> Record;
6068   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
6069   unsigned ValueId = 0;
6070 
6071   // Read the index for this module.
6072   while (true) {
6073     BitstreamEntry Entry = Stream.advance();
6074 
6075     switch (Entry.Kind) {
6076     case BitstreamEntry::Error:
6077       return error("Malformed block");
6078     case BitstreamEntry::EndBlock:
6079       return std::error_code();
6080 
6081     case BitstreamEntry::SubBlock:
6082       if (CheckGlobalValSummaryPresenceOnly) {
6083         if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6084           SeenGlobalValSummary = true;
6085           // No need to parse the rest since we found the summary.
6086           return std::error_code();
6087         }
6088         if (Stream.SkipBlock())
6089           return error("Invalid record");
6090         continue;
6091       }
6092       switch (Entry.ID) {
6093       default: // Skip unknown content.
6094         if (Stream.SkipBlock())
6095           return error("Invalid record");
6096         break;
6097       case bitc::BLOCKINFO_BLOCK_ID:
6098         // Need to parse these to get abbrev ids (e.g. for VST)
6099         if (Stream.ReadBlockInfoBlock())
6100           return error("Malformed block");
6101         break;
6102       case bitc::VALUE_SYMTAB_BLOCK_ID:
6103         // Should have been parsed earlier via VSTOffset, unless there
6104         // is no summary section.
6105         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
6106                 !SeenGlobalValSummary) &&
6107                "Expected early VST parse via VSTOffset record");
6108         if (Stream.SkipBlock())
6109           return error("Invalid record");
6110         break;
6111       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
6112         assert(!SeenValueSymbolTable &&
6113                "Already read VST when parsing summary block?");
6114         // We might not have a VST if there were no values in the
6115         // summary. An empty summary block generated when we are
6116         // performing ThinLTO compiles so we don't later invoke
6117         // the regular LTO process on them.
6118         if (VSTOffset > 0) {
6119           if (std::error_code EC =
6120                   parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
6121             return EC;
6122           SeenValueSymbolTable = true;
6123         }
6124         SeenGlobalValSummary = true;
6125         if (std::error_code EC = parseEntireSummary())
6126           return EC;
6127         break;
6128       case bitc::MODULE_STRTAB_BLOCK_ID:
6129         if (std::error_code EC = parseModuleStringTable())
6130           return EC;
6131         break;
6132       }
6133       continue;
6134 
6135     case BitstreamEntry::Record: {
6136         Record.clear();
6137         auto BitCode = Stream.readRecord(Entry.ID, Record);
6138         switch (BitCode) {
6139         default:
6140           break; // Default behavior, ignore unknown content.
6141         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
6142         case bitc::MODULE_CODE_SOURCE_FILENAME: {
6143           SmallString<128> ValueName;
6144           if (convertToString(Record, 0, ValueName))
6145             return error("Invalid record");
6146           SourceFileName = ValueName.c_str();
6147           break;
6148         }
6149         /// MODULE_CODE_HASH: [5*i32]
6150         case bitc::MODULE_CODE_HASH: {
6151           if (Record.size() != 5)
6152             return error("Invalid hash length " + Twine(Record.size()).str());
6153           if (!TheIndex)
6154             break;
6155           if (TheIndex->modulePaths().empty())
6156             // We always seed the index with the module.
6157             TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0);
6158           if (TheIndex->modulePaths().size() != 1)
6159             return error("Don't expect multiple modules defined?");
6160           auto &Hash = TheIndex->modulePaths().begin()->second.second;
6161           int Pos = 0;
6162           for (auto &Val : Record) {
6163             assert(!(Val >> 32) && "Unexpected high bits set");
6164             Hash[Pos++] = Val;
6165           }
6166           break;
6167         }
6168         /// MODULE_CODE_VSTOFFSET: [offset]
6169         case bitc::MODULE_CODE_VSTOFFSET:
6170           if (Record.size() < 1)
6171             return error("Invalid record");
6172           VSTOffset = Record[0];
6173           break;
6174         // GLOBALVAR: [pointer type, isconst, initid,
6175         //             linkage, alignment, section, visibility, threadlocal,
6176         //             unnamed_addr, externally_initialized, dllstorageclass,
6177         //             comdat]
6178         case bitc::MODULE_CODE_GLOBALVAR: {
6179           if (Record.size() < 6)
6180             return error("Invalid record");
6181           uint64_t RawLinkage = Record[3];
6182           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6183           ValueIdToLinkageMap[ValueId++] = Linkage;
6184           break;
6185         }
6186         // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
6187         //             alignment, section, visibility, gc, unnamed_addr,
6188         //             prologuedata, dllstorageclass, comdat, prefixdata]
6189         case bitc::MODULE_CODE_FUNCTION: {
6190           if (Record.size() < 8)
6191             return error("Invalid record");
6192           uint64_t RawLinkage = Record[3];
6193           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6194           ValueIdToLinkageMap[ValueId++] = Linkage;
6195           break;
6196         }
6197         // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
6198         // dllstorageclass]
6199         case bitc::MODULE_CODE_ALIAS: {
6200           if (Record.size() < 6)
6201             return error("Invalid record");
6202           uint64_t RawLinkage = Record[3];
6203           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
6204           ValueIdToLinkageMap[ValueId++] = Linkage;
6205           break;
6206         }
6207         }
6208       }
6209       continue;
6210     }
6211   }
6212 }
6213 
6214 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6215 // objects in the index.
6216 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() {
6217   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
6218     return error("Invalid record");
6219   SmallVector<uint64_t, 64> Record;
6220 
6221   // Parse version
6222   {
6223     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6224     if (Entry.Kind != BitstreamEntry::Record)
6225       return error("Invalid Summary Block: record for version expected");
6226     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
6227       return error("Invalid Summary Block: version expected");
6228   }
6229   const uint64_t Version = Record[0];
6230   const bool IsOldProfileFormat = Version == 1;
6231   if (!IsOldProfileFormat && Version != 2)
6232     return error("Invalid summary version " + Twine(Version) +
6233                  ", 1 or 2 expected");
6234   Record.clear();
6235 
6236   // Keep around the last seen summary to be used when we see an optional
6237   // "OriginalName" attachement.
6238   GlobalValueSummary *LastSeenSummary = nullptr;
6239   bool Combined = false;
6240 
6241   while (true) {
6242     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6243 
6244     switch (Entry.Kind) {
6245     case BitstreamEntry::SubBlock: // Handled for us already.
6246     case BitstreamEntry::Error:
6247       return error("Malformed block");
6248     case BitstreamEntry::EndBlock:
6249       // For a per-module index, remove any entries that still have empty
6250       // summaries. The VST parsing creates entries eagerly for all symbols,
6251       // but not all have associated summaries (e.g. it doesn't know how to
6252       // distinguish between VST_CODE_ENTRY for function declarations vs global
6253       // variables with initializers that end up with a summary). Remove those
6254       // entries now so that we don't need to rely on the combined index merger
6255       // to clean them up (especially since that may not run for the first
6256       // module's index if we merge into that).
6257       if (!Combined)
6258         TheIndex->removeEmptySummaryEntries();
6259       return std::error_code();
6260     case BitstreamEntry::Record:
6261       // The interesting case.
6262       break;
6263     }
6264 
6265     // Read a record. The record format depends on whether this
6266     // is a per-module index or a combined index file. In the per-module
6267     // case the records contain the associated value's ID for correlation
6268     // with VST entries. In the combined index the correlation is done
6269     // via the bitcode offset of the summary records (which were saved
6270     // in the combined index VST entries). The records also contain
6271     // information used for ThinLTO renaming and importing.
6272     Record.clear();
6273     auto BitCode = Stream.readRecord(Entry.ID, Record);
6274     switch (BitCode) {
6275     default: // Default behavior: ignore.
6276       break;
6277     // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid,
6278     //                n x (valueid)]
6279     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs,
6280     //                        numrefs x valueid,
6281     //                        n x (valueid, hotness)]
6282     case bitc::FS_PERMODULE:
6283     case bitc::FS_PERMODULE_PROFILE: {
6284       unsigned ValueID = Record[0];
6285       uint64_t RawFlags = Record[1];
6286       unsigned InstCount = Record[2];
6287       unsigned NumRefs = Record[3];
6288       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6289       std::unique_ptr<FunctionSummary> FS =
6290           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6291       // The module path string ref set in the summary must be owned by the
6292       // index's module string table. Since we don't have a module path
6293       // string table section in the per-module index, we create a single
6294       // module path string table entry with an empty (0) ID to take
6295       // ownership.
6296       FS->setModulePath(
6297           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6298       static int RefListStartIndex = 4;
6299       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6300       assert(Record.size() >= RefListStartIndex + NumRefs &&
6301              "Record size inconsistent with number of references");
6302       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
6303         unsigned RefValueId = Record[I];
6304         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6305         FS->addRefEdge(RefGUID);
6306       }
6307       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6308       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6309            ++I) {
6310         CalleeInfo::HotnessType Hotness;
6311         GlobalValue::GUID CalleeGUID;
6312         std::tie(CalleeGUID, Hotness) =
6313             readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile);
6314         FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness));
6315       }
6316       auto GUID = getGUIDFromValueId(ValueID);
6317       FS->setOriginalName(GUID.second);
6318       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6319       break;
6320     }
6321     // FS_ALIAS: [valueid, flags, valueid]
6322     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6323     // they expect all aliasee summaries to be available.
6324     case bitc::FS_ALIAS: {
6325       unsigned ValueID = Record[0];
6326       uint64_t RawFlags = Record[1];
6327       unsigned AliaseeID = Record[2];
6328       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6329       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6330       // The module path string ref set in the summary must be owned by the
6331       // index's module string table. Since we don't have a module path
6332       // string table section in the per-module index, we create a single
6333       // module path string table entry with an empty (0) ID to take
6334       // ownership.
6335       AS->setModulePath(
6336           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6337 
6338       GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first;
6339       auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID);
6340       if (!AliaseeSummary)
6341         return error("Alias expects aliasee summary to be parsed");
6342       AS->setAliasee(AliaseeSummary);
6343 
6344       auto GUID = getGUIDFromValueId(ValueID);
6345       AS->setOriginalName(GUID.second);
6346       TheIndex->addGlobalValueSummary(GUID.first, std::move(AS));
6347       break;
6348     }
6349     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
6350     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6351       unsigned ValueID = Record[0];
6352       uint64_t RawFlags = Record[1];
6353       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6354       std::unique_ptr<GlobalVarSummary> FS =
6355           llvm::make_unique<GlobalVarSummary>(Flags);
6356       FS->setModulePath(
6357           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6358       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
6359         unsigned RefValueId = Record[I];
6360         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6361         FS->addRefEdge(RefGUID);
6362       }
6363       auto GUID = getGUIDFromValueId(ValueID);
6364       FS->setOriginalName(GUID.second);
6365       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6366       break;
6367     }
6368     // FS_COMBINED: [valueid, modid, flags, instcount, numrefs,
6369     //               numrefs x valueid, n x (valueid)]
6370     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs,
6371     //                       numrefs x valueid, n x (valueid, hotness)]
6372     case bitc::FS_COMBINED:
6373     case bitc::FS_COMBINED_PROFILE: {
6374       unsigned ValueID = Record[0];
6375       uint64_t ModuleId = Record[1];
6376       uint64_t RawFlags = Record[2];
6377       unsigned InstCount = Record[3];
6378       unsigned NumRefs = Record[4];
6379       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6380       std::unique_ptr<FunctionSummary> FS =
6381           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6382       LastSeenSummary = FS.get();
6383       FS->setModulePath(ModuleIdMap[ModuleId]);
6384       static int RefListStartIndex = 5;
6385       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6386       assert(Record.size() >= RefListStartIndex + NumRefs &&
6387              "Record size inconsistent with number of references");
6388       for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E;
6389            ++I) {
6390         unsigned RefValueId = Record[I];
6391         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6392         FS->addRefEdge(RefGUID);
6393       }
6394       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6395       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6396            ++I) {
6397         CalleeInfo::HotnessType Hotness;
6398         GlobalValue::GUID CalleeGUID;
6399         std::tie(CalleeGUID, Hotness) =
6400             readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile);
6401         FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness));
6402       }
6403       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6404       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6405       Combined = true;
6406       break;
6407     }
6408     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6409     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6410     // they expect all aliasee summaries to be available.
6411     case bitc::FS_COMBINED_ALIAS: {
6412       unsigned ValueID = Record[0];
6413       uint64_t ModuleId = Record[1];
6414       uint64_t RawFlags = Record[2];
6415       unsigned AliaseeValueId = Record[3];
6416       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6417       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6418       LastSeenSummary = AS.get();
6419       AS->setModulePath(ModuleIdMap[ModuleId]);
6420 
6421       auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first;
6422       auto AliaseeInModule =
6423           TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath());
6424       if (!AliaseeInModule)
6425         return error("Alias expects aliasee summary to be parsed");
6426       AS->setAliasee(AliaseeInModule);
6427 
6428       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6429       TheIndex->addGlobalValueSummary(GUID, std::move(AS));
6430       Combined = true;
6431       break;
6432     }
6433     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6434     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6435       unsigned ValueID = Record[0];
6436       uint64_t ModuleId = Record[1];
6437       uint64_t RawFlags = Record[2];
6438       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6439       std::unique_ptr<GlobalVarSummary> FS =
6440           llvm::make_unique<GlobalVarSummary>(Flags);
6441       LastSeenSummary = FS.get();
6442       FS->setModulePath(ModuleIdMap[ModuleId]);
6443       for (unsigned I = 3, E = Record.size(); I != E; ++I) {
6444         unsigned RefValueId = Record[I];
6445         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6446         FS->addRefEdge(RefGUID);
6447       }
6448       GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first;
6449       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6450       Combined = true;
6451       break;
6452     }
6453     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6454     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6455       uint64_t OriginalName = Record[0];
6456       if (!LastSeenSummary)
6457         return error("Name attachment that does not follow a combined record");
6458       LastSeenSummary->setOriginalName(OriginalName);
6459       // Reset the LastSeenSummary
6460       LastSeenSummary = nullptr;
6461     }
6462     }
6463   }
6464   llvm_unreachable("Exit infinite loop");
6465 }
6466 
6467 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType>
6468 ModuleSummaryIndexBitcodeReader::readCallGraphEdge(
6469     const SmallVector<uint64_t, 64> &Record, unsigned int &I,
6470     const bool IsOldProfileFormat, const bool HasProfile) {
6471 
6472   auto Hotness = CalleeInfo::HotnessType::Unknown;
6473   unsigned CalleeValueId = Record[I];
6474   GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first;
6475   if (IsOldProfileFormat) {
6476     I += 1; // Skip old callsitecount field
6477     if (HasProfile)
6478       I += 1; // Skip old profilecount field
6479   } else if (HasProfile)
6480     Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
6481   return {CalleeGUID, Hotness};
6482 }
6483 
6484 // Parse the  module string table block into the Index.
6485 // This populates the ModulePathStringTable map in the index.
6486 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6487   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6488     return error("Invalid record");
6489 
6490   SmallVector<uint64_t, 64> Record;
6491 
6492   SmallString<128> ModulePath;
6493   ModulePathStringTableTy::iterator LastSeenModulePath;
6494 
6495   while (true) {
6496     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6497 
6498     switch (Entry.Kind) {
6499     case BitstreamEntry::SubBlock: // Handled for us already.
6500     case BitstreamEntry::Error:
6501       return error("Malformed block");
6502     case BitstreamEntry::EndBlock:
6503       return std::error_code();
6504     case BitstreamEntry::Record:
6505       // The interesting case.
6506       break;
6507     }
6508 
6509     Record.clear();
6510     switch (Stream.readRecord(Entry.ID, Record)) {
6511     default: // Default behavior: ignore.
6512       break;
6513     case bitc::MST_CODE_ENTRY: {
6514       // MST_ENTRY: [modid, namechar x N]
6515       uint64_t ModuleId = Record[0];
6516 
6517       if (convertToString(Record, 1, ModulePath))
6518         return error("Invalid record");
6519 
6520       LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId);
6521       ModuleIdMap[ModuleId] = LastSeenModulePath->first();
6522 
6523       ModulePath.clear();
6524       break;
6525     }
6526     /// MST_CODE_HASH: [5*i32]
6527     case bitc::MST_CODE_HASH: {
6528       if (Record.size() != 5)
6529         return error("Invalid hash length " + Twine(Record.size()).str());
6530       if (LastSeenModulePath == TheIndex->modulePaths().end())
6531         return error("Invalid hash that does not follow a module path");
6532       int Pos = 0;
6533       for (auto &Val : Record) {
6534         assert(!(Val >> 32) && "Unexpected high bits set");
6535         LastSeenModulePath->second.second[Pos++] = Val;
6536       }
6537       // Reset LastSeenModulePath to avoid overriding the hash unexpectedly.
6538       LastSeenModulePath = TheIndex->modulePaths().end();
6539       break;
6540     }
6541     }
6542   }
6543   llvm_unreachable("Exit infinite loop");
6544 }
6545 
6546 // Parse the function info index from the bitcode streamer into the given index.
6547 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(
6548     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) {
6549   TheIndex = I;
6550 
6551   if (std::error_code EC = initStream(std::move(Streamer)))
6552     return EC;
6553 
6554   // Sniff for the signature.
6555   if (!hasValidBitcodeHeader(Stream))
6556     return error("Invalid bitcode signature");
6557 
6558   // We expect a number of well-defined blocks, though we don't necessarily
6559   // need to understand them all.
6560   while (true) {
6561     if (Stream.AtEndOfStream()) {
6562       // We didn't really read a proper Module block.
6563       return error("Malformed block");
6564     }
6565 
6566     BitstreamEntry Entry =
6567         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
6568 
6569     if (Entry.Kind != BitstreamEntry::SubBlock)
6570       return error("Malformed block");
6571 
6572     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
6573     // building the function summary index.
6574     if (Entry.ID == bitc::MODULE_BLOCK_ID)
6575       return parseModule();
6576 
6577     if (Stream.SkipBlock())
6578       return error("Invalid record");
6579   }
6580 }
6581 
6582 namespace {
6583 
6584 // FIXME: This class is only here to support the transition to llvm::Error. It
6585 // will be removed once this transition is complete. Clients should prefer to
6586 // deal with the Error value directly, rather than converting to error_code.
6587 class BitcodeErrorCategoryType : public std::error_category {
6588   const char *name() const noexcept override {
6589     return "llvm.bitcode";
6590   }
6591   std::string message(int IE) const override {
6592     BitcodeError E = static_cast<BitcodeError>(IE);
6593     switch (E) {
6594     case BitcodeError::InvalidBitcodeSignature:
6595       return "Invalid bitcode signature";
6596     case BitcodeError::CorruptedBitcode:
6597       return "Corrupted bitcode";
6598     }
6599     llvm_unreachable("Unknown error type!");
6600   }
6601 };
6602 
6603 } // end anonymous namespace
6604 
6605 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6606 
6607 const std::error_category &llvm::BitcodeErrorCategory() {
6608   return *ErrorCategory;
6609 }
6610 
6611 //===----------------------------------------------------------------------===//
6612 // External interface
6613 //===----------------------------------------------------------------------===//
6614 
6615 static ErrorOr<std::unique_ptr<Module>>
6616 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name,
6617                      BitcodeReader *R, LLVMContext &Context,
6618                      bool MaterializeAll, bool ShouldLazyLoadMetadata) {
6619   std::unique_ptr<Module> M = llvm::make_unique<Module>(Name, Context);
6620   M->setMaterializer(R);
6621 
6622   auto cleanupOnError = [&](std::error_code EC) {
6623     R->releaseBuffer(); // Never take ownership on error.
6624     return EC;
6625   };
6626 
6627   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6628   if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(),
6629                                                ShouldLazyLoadMetadata))
6630     return cleanupOnError(EC);
6631 
6632   if (MaterializeAll) {
6633     // Read in the entire module, and destroy the BitcodeReader.
6634     if (std::error_code EC = M->materializeAll())
6635       return cleanupOnError(EC);
6636   } else {
6637     // Resolve forward references from blockaddresses.
6638     if (std::error_code EC = R->materializeForwardReferencedFunctions())
6639       return cleanupOnError(EC);
6640   }
6641   return std::move(M);
6642 }
6643 
6644 /// \brief Get a lazy one-at-time loading module from bitcode.
6645 ///
6646 /// This isn't always used in a lazy context.  In particular, it's also used by
6647 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
6648 /// in forward-referenced functions from block address references.
6649 ///
6650 /// \param[in] MaterializeAll Set to \c true if we should materialize
6651 /// everything.
6652 static ErrorOr<std::unique_ptr<Module>>
6653 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
6654                          LLVMContext &Context, bool MaterializeAll,
6655                          bool ShouldLazyLoadMetadata = false) {
6656   BitcodeReader *R = new BitcodeReader(Buffer.get(), Context);
6657 
6658   ErrorOr<std::unique_ptr<Module>> Ret =
6659       getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context,
6660                            MaterializeAll, ShouldLazyLoadMetadata);
6661   if (!Ret)
6662     return Ret;
6663 
6664   Buffer.release(); // The BitcodeReader owns it now.
6665   return Ret;
6666 }
6667 
6668 ErrorOr<std::unique_ptr<Module>>
6669 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
6670                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
6671   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
6672                                   ShouldLazyLoadMetadata);
6673 }
6674 
6675 ErrorOr<std::unique_ptr<Module>>
6676 llvm::getStreamedBitcodeModule(StringRef Name,
6677                                std::unique_ptr<DataStreamer> Streamer,
6678                                LLVMContext &Context) {
6679   std::unique_ptr<Module> M = llvm::make_unique<Module>(Name, Context);
6680   BitcodeReader *R = new BitcodeReader(Context);
6681 
6682   return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false,
6683                               false);
6684 }
6685 
6686 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6687                                                         LLVMContext &Context) {
6688   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6689   return getLazyBitcodeModuleImpl(std::move(Buf), Context, true);
6690   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6691   // written.  We must defer until the Module has been fully materialized.
6692 }
6693 
6694 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer,
6695                                          LLVMContext &Context) {
6696   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6697   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6698   ErrorOr<std::string> Triple = R->parseTriple();
6699   if (Triple.getError())
6700     return "";
6701   return Triple.get();
6702 }
6703 
6704 bool llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer,
6705                                            LLVMContext &Context) {
6706   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6707   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6708   ErrorOr<bool> hasObjCCategory = R->hasObjCCategory();
6709   if (hasObjCCategory.getError())
6710     return false;
6711   return hasObjCCategory.get();
6712 }
6713 
6714 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer,
6715                                            LLVMContext &Context) {
6716   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6717   BitcodeReader R(Buf.release(), Context);
6718   ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
6719   if (ProducerString.getError())
6720     return "";
6721   return ProducerString.get();
6722 }
6723 
6724 // Parse the specified bitcode buffer, returning the function info index.
6725 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> llvm::getModuleSummaryIndex(
6726     MemoryBufferRef Buffer,
6727     const DiagnosticHandlerFunction &DiagnosticHandler) {
6728   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6729   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
6730 
6731   auto Index = llvm::make_unique<ModuleSummaryIndex>();
6732 
6733   auto cleanupOnError = [&](std::error_code EC) {
6734     R.releaseBuffer(); // Never take ownership on error.
6735     return EC;
6736   };
6737 
6738   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
6739     return cleanupOnError(EC);
6740 
6741   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6742   return std::move(Index);
6743 }
6744 
6745 // Check if the given bitcode buffer contains a global value summary block.
6746 bool llvm::hasGlobalValueSummary(
6747     MemoryBufferRef Buffer,
6748     const DiagnosticHandlerFunction &DiagnosticHandler) {
6749   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6750   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true);
6751 
6752   auto cleanupOnError = [&](std::error_code EC) {
6753     R.releaseBuffer(); // Never take ownership on error.
6754     return false;
6755   };
6756 
6757   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
6758     return cleanupOnError(EC);
6759 
6760   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6761   return R.foundGlobalValSummary();
6762 }
6763