1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 /// Helper to read the header common to all bitcode files. 109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 110 // Sniff for the signature. 111 if (!Stream.canSkipToPos(4) || 112 Stream.Read(8) != 'B' || 113 Stream.Read(8) != 'C' || 114 Stream.Read(4) != 0x0 || 115 Stream.Read(4) != 0xC || 116 Stream.Read(4) != 0xE || 117 Stream.Read(4) != 0xD) 118 return false; 119 return true; 120 } 121 122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 123 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 124 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 125 126 if (Buffer.getBufferSize() & 3) 127 return error("Invalid bitcode signature"); 128 129 // If we have a wrapper header, parse it and ignore the non-bc file contents. 130 // The magic number is 0x0B17C0DE stored in little endian. 131 if (isBitcodeWrapper(BufPtr, BufEnd)) 132 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 133 return error("Invalid bitcode wrapper header"); 134 135 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 136 if (!hasValidBitcodeHeader(Stream)) 137 return error("Invalid bitcode signature"); 138 139 return std::move(Stream); 140 } 141 142 /// Convert a string from a record into an std::string, return true on failure. 143 template <typename StrTy> 144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 145 StrTy &Result) { 146 if (Idx > Record.size()) 147 return true; 148 149 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 150 Result += (char)Record[i]; 151 return false; 152 } 153 154 // Strip all the TBAA attachment for the module. 155 static void stripTBAA(Module *M) { 156 for (auto &F : *M) { 157 if (F.isMaterializable()) 158 continue; 159 for (auto &I : instructions(F)) 160 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 161 } 162 } 163 164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 165 /// "epoch" encoded in the bitcode, and return the producer name if any. 166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 167 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 168 return error("Invalid record"); 169 170 // Read all the records. 171 SmallVector<uint64_t, 64> Record; 172 173 std::string ProducerIdentification; 174 175 while (true) { 176 BitstreamEntry Entry = Stream.advance(); 177 178 switch (Entry.Kind) { 179 default: 180 case BitstreamEntry::Error: 181 return error("Malformed block"); 182 case BitstreamEntry::EndBlock: 183 return ProducerIdentification; 184 case BitstreamEntry::Record: 185 // The interesting case. 186 break; 187 } 188 189 // Read a record. 190 Record.clear(); 191 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 192 switch (BitCode) { 193 default: // Default behavior: reject 194 return error("Invalid value"); 195 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 196 convertToString(Record, 0, ProducerIdentification); 197 break; 198 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 199 unsigned epoch = (unsigned)Record[0]; 200 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 201 return error( 202 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 203 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 204 } 205 } 206 } 207 } 208 } 209 210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 211 // We expect a number of well-defined blocks, though we don't necessarily 212 // need to understand them all. 213 while (true) { 214 if (Stream.AtEndOfStream()) 215 return ""; 216 217 BitstreamEntry Entry = Stream.advance(); 218 switch (Entry.Kind) { 219 case BitstreamEntry::EndBlock: 220 case BitstreamEntry::Error: 221 return error("Malformed block"); 222 223 case BitstreamEntry::SubBlock: 224 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 225 return readIdentificationBlock(Stream); 226 227 // Ignore other sub-blocks. 228 if (Stream.SkipBlock()) 229 return error("Malformed block"); 230 continue; 231 case BitstreamEntry::Record: 232 Stream.skipRecord(Entry.ID); 233 continue; 234 } 235 } 236 } 237 238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 239 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 240 return error("Invalid record"); 241 242 SmallVector<uint64_t, 64> Record; 243 // Read all the records for this module. 244 245 while (true) { 246 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 247 248 switch (Entry.Kind) { 249 case BitstreamEntry::SubBlock: // Handled for us already. 250 case BitstreamEntry::Error: 251 return error("Malformed block"); 252 case BitstreamEntry::EndBlock: 253 return false; 254 case BitstreamEntry::Record: 255 // The interesting case. 256 break; 257 } 258 259 // Read a record. 260 switch (Stream.readRecord(Entry.ID, Record)) { 261 default: 262 break; // Default behavior, ignore unknown content. 263 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 264 std::string S; 265 if (convertToString(Record, 0, S)) 266 return error("Invalid record"); 267 // Check for the i386 and other (x86_64, ARM) conventions 268 if (S.find("__DATA,__objc_catlist") != std::string::npos || 269 S.find("__OBJC,__category") != std::string::npos) 270 return true; 271 break; 272 } 273 } 274 Record.clear(); 275 } 276 llvm_unreachable("Exit infinite loop"); 277 } 278 279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 280 // We expect a number of well-defined blocks, though we don't necessarily 281 // need to understand them all. 282 while (true) { 283 BitstreamEntry Entry = Stream.advance(); 284 285 switch (Entry.Kind) { 286 case BitstreamEntry::Error: 287 return error("Malformed block"); 288 case BitstreamEntry::EndBlock: 289 return false; 290 291 case BitstreamEntry::SubBlock: 292 if (Entry.ID == bitc::MODULE_BLOCK_ID) 293 return hasObjCCategoryInModule(Stream); 294 295 // Ignore other sub-blocks. 296 if (Stream.SkipBlock()) 297 return error("Malformed block"); 298 continue; 299 300 case BitstreamEntry::Record: 301 Stream.skipRecord(Entry.ID); 302 continue; 303 } 304 } 305 } 306 307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 308 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 309 return error("Invalid record"); 310 311 SmallVector<uint64_t, 64> Record; 312 313 std::string Triple; 314 315 // Read all the records for this module. 316 while (true) { 317 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 318 319 switch (Entry.Kind) { 320 case BitstreamEntry::SubBlock: // Handled for us already. 321 case BitstreamEntry::Error: 322 return error("Malformed block"); 323 case BitstreamEntry::EndBlock: 324 return Triple; 325 case BitstreamEntry::Record: 326 // The interesting case. 327 break; 328 } 329 330 // Read a record. 331 switch (Stream.readRecord(Entry.ID, Record)) { 332 default: break; // Default behavior, ignore unknown content. 333 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 334 std::string S; 335 if (convertToString(Record, 0, S)) 336 return error("Invalid record"); 337 Triple = S; 338 break; 339 } 340 } 341 Record.clear(); 342 } 343 llvm_unreachable("Exit infinite loop"); 344 } 345 346 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 347 // We expect a number of well-defined blocks, though we don't necessarily 348 // need to understand them all. 349 while (true) { 350 BitstreamEntry Entry = Stream.advance(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::Error: 354 return error("Malformed block"); 355 case BitstreamEntry::EndBlock: 356 return ""; 357 358 case BitstreamEntry::SubBlock: 359 if (Entry.ID == bitc::MODULE_BLOCK_ID) 360 return readModuleTriple(Stream); 361 362 // Ignore other sub-blocks. 363 if (Stream.SkipBlock()) 364 return error("Malformed block"); 365 continue; 366 367 case BitstreamEntry::Record: 368 Stream.skipRecord(Entry.ID); 369 continue; 370 } 371 } 372 } 373 374 namespace { 375 376 class BitcodeReaderBase { 377 protected: 378 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 379 : Stream(std::move(Stream)), Strtab(Strtab) { 380 this->Stream.setBlockInfo(&BlockInfo); 381 } 382 383 BitstreamBlockInfo BlockInfo; 384 BitstreamCursor Stream; 385 StringRef Strtab; 386 387 /// In version 2 of the bitcode we store names of global values and comdats in 388 /// a string table rather than in the VST. 389 bool UseStrtab = false; 390 391 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 392 393 /// If this module uses a string table, pop the reference to the string table 394 /// and return the referenced string and the rest of the record. Otherwise 395 /// just return the record itself. 396 std::pair<StringRef, ArrayRef<uint64_t>> 397 readNameFromStrtab(ArrayRef<uint64_t> Record); 398 399 bool readBlockInfo(); 400 401 // Contains an arbitrary and optional string identifying the bitcode producer 402 std::string ProducerIdentification; 403 404 Error error(const Twine &Message); 405 }; 406 407 } // end anonymous namespace 408 409 Error BitcodeReaderBase::error(const Twine &Message) { 410 std::string FullMsg = Message.str(); 411 if (!ProducerIdentification.empty()) 412 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 413 LLVM_VERSION_STRING "')"; 414 return ::error(FullMsg); 415 } 416 417 Expected<unsigned> 418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 419 if (Record.empty()) 420 return error("Invalid record"); 421 unsigned ModuleVersion = Record[0]; 422 if (ModuleVersion > 2) 423 return error("Invalid value"); 424 UseStrtab = ModuleVersion >= 2; 425 return ModuleVersion; 426 } 427 428 std::pair<StringRef, ArrayRef<uint64_t>> 429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 430 if (!UseStrtab) 431 return {"", Record}; 432 // Invalid reference. Let the caller complain about the record being empty. 433 if (Record[0] + Record[1] > Strtab.size()) 434 return {"", {}}; 435 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 436 } 437 438 namespace { 439 440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 441 LLVMContext &Context; 442 Module *TheModule = nullptr; 443 // Next offset to start scanning for lazy parsing of function bodies. 444 uint64_t NextUnreadBit = 0; 445 // Last function offset found in the VST. 446 uint64_t LastFunctionBlockBit = 0; 447 bool SeenValueSymbolTable = false; 448 uint64_t VSTOffset = 0; 449 450 std::vector<std::string> SectionTable; 451 std::vector<std::string> GCTable; 452 453 std::vector<Type*> TypeList; 454 BitcodeReaderValueList ValueList; 455 Optional<MetadataLoader> MDLoader; 456 std::vector<Comdat *> ComdatList; 457 SmallVector<Instruction *, 64> InstructionList; 458 459 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 460 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 461 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 463 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 464 465 /// The set of attributes by index. Index zero in the file is for null, and 466 /// is thus not represented here. As such all indices are off by one. 467 std::vector<AttributeList> MAttributes; 468 469 /// The set of attribute groups. 470 std::map<unsigned, AttributeList> MAttributeGroups; 471 472 /// While parsing a function body, this is a list of the basic blocks for the 473 /// function. 474 std::vector<BasicBlock*> FunctionBBs; 475 476 // When reading the module header, this list is populated with functions that 477 // have bodies later in the file. 478 std::vector<Function*> FunctionsWithBodies; 479 480 // When intrinsic functions are encountered which require upgrading they are 481 // stored here with their replacement function. 482 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 483 UpdatedIntrinsicMap UpgradedIntrinsics; 484 // Intrinsics which were remangled because of types rename 485 UpdatedIntrinsicMap RemangledIntrinsics; 486 487 // Several operations happen after the module header has been read, but 488 // before function bodies are processed. This keeps track of whether 489 // we've done this yet. 490 bool SeenFirstFunctionBody = false; 491 492 /// When function bodies are initially scanned, this map contains info about 493 /// where to find deferred function body in the stream. 494 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 495 496 /// When Metadata block is initially scanned when parsing the module, we may 497 /// choose to defer parsing of the metadata. This vector contains info about 498 /// which Metadata blocks are deferred. 499 std::vector<uint64_t> DeferredMetadataInfo; 500 501 /// These are basic blocks forward-referenced by block addresses. They are 502 /// inserted lazily into functions when they're loaded. The basic block ID is 503 /// its index into the vector. 504 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 505 std::deque<Function *> BasicBlockFwdRefQueue; 506 507 /// Indicates that we are using a new encoding for instruction operands where 508 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 509 /// instruction number, for a more compact encoding. Some instruction 510 /// operands are not relative to the instruction ID: basic block numbers, and 511 /// types. Once the old style function blocks have been phased out, we would 512 /// not need this flag. 513 bool UseRelativeIDs = false; 514 515 /// True if all functions will be materialized, negating the need to process 516 /// (e.g.) blockaddress forward references. 517 bool WillMaterializeAllForwardRefs = false; 518 519 bool StripDebugInfo = false; 520 TBAAVerifier TBAAVerifyHelper; 521 522 std::vector<std::string> BundleTags; 523 SmallVector<SyncScope::ID, 8> SSIDs; 524 525 public: 526 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 527 StringRef ProducerIdentification, LLVMContext &Context); 528 529 Error materializeForwardReferencedFunctions(); 530 531 Error materialize(GlobalValue *GV) override; 532 Error materializeModule() override; 533 std::vector<StructType *> getIdentifiedStructTypes() const override; 534 535 /// Main interface to parsing a bitcode buffer. 536 /// \returns true if an error occurred. 537 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 538 bool IsImporting = false); 539 540 static uint64_t decodeSignRotatedValue(uint64_t V); 541 542 /// Materialize any deferred Metadata block. 543 Error materializeMetadata() override; 544 545 void setStripDebugInfo() override; 546 547 private: 548 std::vector<StructType *> IdentifiedStructTypes; 549 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 550 StructType *createIdentifiedStructType(LLVMContext &Context); 551 552 Type *getTypeByID(unsigned ID); 553 554 Value *getFnValueByID(unsigned ID, Type *Ty) { 555 if (Ty && Ty->isMetadataTy()) 556 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 557 return ValueList.getValueFwdRef(ID, Ty); 558 } 559 560 Metadata *getFnMetadataByID(unsigned ID) { 561 return MDLoader->getMetadataFwdRefOrLoad(ID); 562 } 563 564 BasicBlock *getBasicBlock(unsigned ID) const { 565 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 566 return FunctionBBs[ID]; 567 } 568 569 AttributeList getAttributes(unsigned i) const { 570 if (i-1 < MAttributes.size()) 571 return MAttributes[i-1]; 572 return AttributeList(); 573 } 574 575 /// Read a value/type pair out of the specified record from slot 'Slot'. 576 /// Increment Slot past the number of slots used in the record. Return true on 577 /// failure. 578 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 579 unsigned InstNum, Value *&ResVal) { 580 if (Slot == Record.size()) return true; 581 unsigned ValNo = (unsigned)Record[Slot++]; 582 // Adjust the ValNo, if it was encoded relative to the InstNum. 583 if (UseRelativeIDs) 584 ValNo = InstNum - ValNo; 585 if (ValNo < InstNum) { 586 // If this is not a forward reference, just return the value we already 587 // have. 588 ResVal = getFnValueByID(ValNo, nullptr); 589 return ResVal == nullptr; 590 } 591 if (Slot == Record.size()) 592 return true; 593 594 unsigned TypeNo = (unsigned)Record[Slot++]; 595 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 596 return ResVal == nullptr; 597 } 598 599 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 600 /// past the number of slots used by the value in the record. Return true if 601 /// there is an error. 602 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 603 unsigned InstNum, Type *Ty, Value *&ResVal) { 604 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 605 return true; 606 // All values currently take a single record slot. 607 ++Slot; 608 return false; 609 } 610 611 /// Like popValue, but does not increment the Slot number. 612 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 613 unsigned InstNum, Type *Ty, Value *&ResVal) { 614 ResVal = getValue(Record, Slot, InstNum, Ty); 615 return ResVal == nullptr; 616 } 617 618 /// Version of getValue that returns ResVal directly, or 0 if there is an 619 /// error. 620 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 621 unsigned InstNum, Type *Ty) { 622 if (Slot == Record.size()) return nullptr; 623 unsigned ValNo = (unsigned)Record[Slot]; 624 // Adjust the ValNo, if it was encoded relative to the InstNum. 625 if (UseRelativeIDs) 626 ValNo = InstNum - ValNo; 627 return getFnValueByID(ValNo, Ty); 628 } 629 630 /// Like getValue, but decodes signed VBRs. 631 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 632 unsigned InstNum, Type *Ty) { 633 if (Slot == Record.size()) return nullptr; 634 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 635 // Adjust the ValNo, if it was encoded relative to the InstNum. 636 if (UseRelativeIDs) 637 ValNo = InstNum - ValNo; 638 return getFnValueByID(ValNo, Ty); 639 } 640 641 /// Converts alignment exponent (i.e. power of two (or zero)) to the 642 /// corresponding alignment to use. If alignment is too large, returns 643 /// a corresponding error code. 644 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 645 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 646 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 647 648 Error parseComdatRecord(ArrayRef<uint64_t> Record); 649 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 650 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 651 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 652 ArrayRef<uint64_t> Record); 653 654 Error parseAttributeBlock(); 655 Error parseAttributeGroupBlock(); 656 Error parseTypeTable(); 657 Error parseTypeTableBody(); 658 Error parseOperandBundleTags(); 659 Error parseSyncScopeNames(); 660 661 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 662 unsigned NameIndex, Triple &TT); 663 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 664 ArrayRef<uint64_t> Record); 665 Error parseValueSymbolTable(uint64_t Offset = 0); 666 Error parseGlobalValueSymbolTable(); 667 Error parseConstants(); 668 Error rememberAndSkipFunctionBodies(); 669 Error rememberAndSkipFunctionBody(); 670 /// Save the positions of the Metadata blocks and skip parsing the blocks. 671 Error rememberAndSkipMetadata(); 672 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 673 Error parseFunctionBody(Function *F); 674 Error globalCleanup(); 675 Error resolveGlobalAndIndirectSymbolInits(); 676 Error parseUseLists(); 677 Error findFunctionInStream( 678 Function *F, 679 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 680 681 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 682 }; 683 684 /// Class to manage reading and parsing function summary index bitcode 685 /// files/sections. 686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 687 /// The module index built during parsing. 688 ModuleSummaryIndex &TheIndex; 689 690 /// Indicates whether we have encountered a global value summary section 691 /// yet during parsing. 692 bool SeenGlobalValSummary = false; 693 694 /// Indicates whether we have already parsed the VST, used for error checking. 695 bool SeenValueSymbolTable = false; 696 697 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 698 /// Used to enable on-demand parsing of the VST. 699 uint64_t VSTOffset = 0; 700 701 // Map to save ValueId to ValueInfo association that was recorded in the 702 // ValueSymbolTable. It is used after the VST is parsed to convert 703 // call graph edges read from the function summary from referencing 704 // callees by their ValueId to using the ValueInfo instead, which is how 705 // they are recorded in the summary index being built. 706 // We save a GUID which refers to the same global as the ValueInfo, but 707 // ignoring the linkage, i.e. for values other than local linkage they are 708 // identical. 709 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 710 ValueIdToValueInfoMap; 711 712 /// Map populated during module path string table parsing, from the 713 /// module ID to a string reference owned by the index's module 714 /// path string table, used to correlate with combined index 715 /// summary records. 716 DenseMap<uint64_t, StringRef> ModuleIdMap; 717 718 /// Original source file name recorded in a bitcode record. 719 std::string SourceFileName; 720 721 /// The string identifier given to this module by the client, normally the 722 /// path to the bitcode file. 723 StringRef ModulePath; 724 725 /// For per-module summary indexes, the unique numerical identifier given to 726 /// this module by the client. 727 unsigned ModuleId; 728 729 public: 730 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 731 ModuleSummaryIndex &TheIndex, 732 StringRef ModulePath, unsigned ModuleId); 733 734 Error parseModule(); 735 736 private: 737 void setValueGUID(uint64_t ValueID, StringRef ValueName, 738 GlobalValue::LinkageTypes Linkage, 739 StringRef SourceFileName); 740 Error parseValueSymbolTable( 741 uint64_t Offset, 742 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 743 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 744 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 745 bool IsOldProfileFormat, 746 bool HasProfile, 747 bool HasRelBF); 748 Error parseEntireSummary(unsigned ID); 749 Error parseModuleStringTable(); 750 751 std::pair<ValueInfo, GlobalValue::GUID> 752 getValueInfoFromValueId(unsigned ValueId); 753 754 void addThisModule(); 755 ModuleSummaryIndex::ModuleInfo *getThisModule(); 756 }; 757 758 } // end anonymous namespace 759 760 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 761 Error Err) { 762 if (Err) { 763 std::error_code EC; 764 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 765 EC = EIB.convertToErrorCode(); 766 Ctx.emitError(EIB.message()); 767 }); 768 return EC; 769 } 770 return std::error_code(); 771 } 772 773 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 774 StringRef ProducerIdentification, 775 LLVMContext &Context) 776 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 777 ValueList(Context) { 778 this->ProducerIdentification = ProducerIdentification; 779 } 780 781 Error BitcodeReader::materializeForwardReferencedFunctions() { 782 if (WillMaterializeAllForwardRefs) 783 return Error::success(); 784 785 // Prevent recursion. 786 WillMaterializeAllForwardRefs = true; 787 788 while (!BasicBlockFwdRefQueue.empty()) { 789 Function *F = BasicBlockFwdRefQueue.front(); 790 BasicBlockFwdRefQueue.pop_front(); 791 assert(F && "Expected valid function"); 792 if (!BasicBlockFwdRefs.count(F)) 793 // Already materialized. 794 continue; 795 796 // Check for a function that isn't materializable to prevent an infinite 797 // loop. When parsing a blockaddress stored in a global variable, there 798 // isn't a trivial way to check if a function will have a body without a 799 // linear search through FunctionsWithBodies, so just check it here. 800 if (!F->isMaterializable()) 801 return error("Never resolved function from blockaddress"); 802 803 // Try to materialize F. 804 if (Error Err = materialize(F)) 805 return Err; 806 } 807 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 808 809 // Reset state. 810 WillMaterializeAllForwardRefs = false; 811 return Error::success(); 812 } 813 814 //===----------------------------------------------------------------------===// 815 // Helper functions to implement forward reference resolution, etc. 816 //===----------------------------------------------------------------------===// 817 818 static bool hasImplicitComdat(size_t Val) { 819 switch (Val) { 820 default: 821 return false; 822 case 1: // Old WeakAnyLinkage 823 case 4: // Old LinkOnceAnyLinkage 824 case 10: // Old WeakODRLinkage 825 case 11: // Old LinkOnceODRLinkage 826 return true; 827 } 828 } 829 830 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 831 switch (Val) { 832 default: // Map unknown/new linkages to external 833 case 0: 834 return GlobalValue::ExternalLinkage; 835 case 2: 836 return GlobalValue::AppendingLinkage; 837 case 3: 838 return GlobalValue::InternalLinkage; 839 case 5: 840 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 841 case 6: 842 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 843 case 7: 844 return GlobalValue::ExternalWeakLinkage; 845 case 8: 846 return GlobalValue::CommonLinkage; 847 case 9: 848 return GlobalValue::PrivateLinkage; 849 case 12: 850 return GlobalValue::AvailableExternallyLinkage; 851 case 13: 852 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 853 case 14: 854 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 855 case 15: 856 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 857 case 1: // Old value with implicit comdat. 858 case 16: 859 return GlobalValue::WeakAnyLinkage; 860 case 10: // Old value with implicit comdat. 861 case 17: 862 return GlobalValue::WeakODRLinkage; 863 case 4: // Old value with implicit comdat. 864 case 18: 865 return GlobalValue::LinkOnceAnyLinkage; 866 case 11: // Old value with implicit comdat. 867 case 19: 868 return GlobalValue::LinkOnceODRLinkage; 869 } 870 } 871 872 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 873 FunctionSummary::FFlags Flags; 874 Flags.ReadNone = RawFlags & 0x1; 875 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 876 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 877 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 878 Flags.NoInline = (RawFlags >> 4) & 0x1; 879 return Flags; 880 } 881 882 /// Decode the flags for GlobalValue in the summary. 883 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 884 uint64_t Version) { 885 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 886 // like getDecodedLinkage() above. Any future change to the linkage enum and 887 // to getDecodedLinkage() will need to be taken into account here as above. 888 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 889 RawFlags = RawFlags >> 4; 890 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 891 // The Live flag wasn't introduced until version 3. For dead stripping 892 // to work correctly on earlier versions, we must conservatively treat all 893 // values as live. 894 bool Live = (RawFlags & 0x2) || Version < 3; 895 bool Local = (RawFlags & 0x4); 896 897 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local); 898 } 899 900 // Decode the flags for GlobalVariable in the summary 901 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 902 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false); 903 } 904 905 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 906 switch (Val) { 907 default: // Map unknown visibilities to default. 908 case 0: return GlobalValue::DefaultVisibility; 909 case 1: return GlobalValue::HiddenVisibility; 910 case 2: return GlobalValue::ProtectedVisibility; 911 } 912 } 913 914 static GlobalValue::DLLStorageClassTypes 915 getDecodedDLLStorageClass(unsigned Val) { 916 switch (Val) { 917 default: // Map unknown values to default. 918 case 0: return GlobalValue::DefaultStorageClass; 919 case 1: return GlobalValue::DLLImportStorageClass; 920 case 2: return GlobalValue::DLLExportStorageClass; 921 } 922 } 923 924 static bool getDecodedDSOLocal(unsigned Val) { 925 switch(Val) { 926 default: // Map unknown values to preemptable. 927 case 0: return false; 928 case 1: return true; 929 } 930 } 931 932 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 933 switch (Val) { 934 case 0: return GlobalVariable::NotThreadLocal; 935 default: // Map unknown non-zero value to general dynamic. 936 case 1: return GlobalVariable::GeneralDynamicTLSModel; 937 case 2: return GlobalVariable::LocalDynamicTLSModel; 938 case 3: return GlobalVariable::InitialExecTLSModel; 939 case 4: return GlobalVariable::LocalExecTLSModel; 940 } 941 } 942 943 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 944 switch (Val) { 945 default: // Map unknown to UnnamedAddr::None. 946 case 0: return GlobalVariable::UnnamedAddr::None; 947 case 1: return GlobalVariable::UnnamedAddr::Global; 948 case 2: return GlobalVariable::UnnamedAddr::Local; 949 } 950 } 951 952 static int getDecodedCastOpcode(unsigned Val) { 953 switch (Val) { 954 default: return -1; 955 case bitc::CAST_TRUNC : return Instruction::Trunc; 956 case bitc::CAST_ZEXT : return Instruction::ZExt; 957 case bitc::CAST_SEXT : return Instruction::SExt; 958 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 959 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 960 case bitc::CAST_UITOFP : return Instruction::UIToFP; 961 case bitc::CAST_SITOFP : return Instruction::SIToFP; 962 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 963 case bitc::CAST_FPEXT : return Instruction::FPExt; 964 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 965 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 966 case bitc::CAST_BITCAST : return Instruction::BitCast; 967 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 968 } 969 } 970 971 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 972 bool IsFP = Ty->isFPOrFPVectorTy(); 973 // UnOps are only valid for int/fp or vector of int/fp types 974 if (!IsFP && !Ty->isIntOrIntVectorTy()) 975 return -1; 976 977 switch (Val) { 978 default: 979 return -1; 980 case bitc::UNOP_NEG: 981 return IsFP ? Instruction::FNeg : -1; 982 } 983 } 984 985 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 986 bool IsFP = Ty->isFPOrFPVectorTy(); 987 // BinOps are only valid for int/fp or vector of int/fp types 988 if (!IsFP && !Ty->isIntOrIntVectorTy()) 989 return -1; 990 991 switch (Val) { 992 default: 993 return -1; 994 case bitc::BINOP_ADD: 995 return IsFP ? Instruction::FAdd : Instruction::Add; 996 case bitc::BINOP_SUB: 997 return IsFP ? Instruction::FSub : Instruction::Sub; 998 case bitc::BINOP_MUL: 999 return IsFP ? Instruction::FMul : Instruction::Mul; 1000 case bitc::BINOP_UDIV: 1001 return IsFP ? -1 : Instruction::UDiv; 1002 case bitc::BINOP_SDIV: 1003 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1004 case bitc::BINOP_UREM: 1005 return IsFP ? -1 : Instruction::URem; 1006 case bitc::BINOP_SREM: 1007 return IsFP ? Instruction::FRem : Instruction::SRem; 1008 case bitc::BINOP_SHL: 1009 return IsFP ? -1 : Instruction::Shl; 1010 case bitc::BINOP_LSHR: 1011 return IsFP ? -1 : Instruction::LShr; 1012 case bitc::BINOP_ASHR: 1013 return IsFP ? -1 : Instruction::AShr; 1014 case bitc::BINOP_AND: 1015 return IsFP ? -1 : Instruction::And; 1016 case bitc::BINOP_OR: 1017 return IsFP ? -1 : Instruction::Or; 1018 case bitc::BINOP_XOR: 1019 return IsFP ? -1 : Instruction::Xor; 1020 } 1021 } 1022 1023 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1024 switch (Val) { 1025 default: return AtomicRMWInst::BAD_BINOP; 1026 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1027 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1028 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1029 case bitc::RMW_AND: return AtomicRMWInst::And; 1030 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1031 case bitc::RMW_OR: return AtomicRMWInst::Or; 1032 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1033 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1034 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1035 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1036 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1037 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1038 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1039 } 1040 } 1041 1042 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1043 switch (Val) { 1044 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1045 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1046 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1047 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1048 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1049 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1050 default: // Map unknown orderings to sequentially-consistent. 1051 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1052 } 1053 } 1054 1055 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1056 switch (Val) { 1057 default: // Map unknown selection kinds to any. 1058 case bitc::COMDAT_SELECTION_KIND_ANY: 1059 return Comdat::Any; 1060 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1061 return Comdat::ExactMatch; 1062 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1063 return Comdat::Largest; 1064 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1065 return Comdat::NoDuplicates; 1066 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1067 return Comdat::SameSize; 1068 } 1069 } 1070 1071 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1072 FastMathFlags FMF; 1073 if (0 != (Val & bitc::UnsafeAlgebra)) 1074 FMF.setFast(); 1075 if (0 != (Val & bitc::AllowReassoc)) 1076 FMF.setAllowReassoc(); 1077 if (0 != (Val & bitc::NoNaNs)) 1078 FMF.setNoNaNs(); 1079 if (0 != (Val & bitc::NoInfs)) 1080 FMF.setNoInfs(); 1081 if (0 != (Val & bitc::NoSignedZeros)) 1082 FMF.setNoSignedZeros(); 1083 if (0 != (Val & bitc::AllowReciprocal)) 1084 FMF.setAllowReciprocal(); 1085 if (0 != (Val & bitc::AllowContract)) 1086 FMF.setAllowContract(true); 1087 if (0 != (Val & bitc::ApproxFunc)) 1088 FMF.setApproxFunc(); 1089 return FMF; 1090 } 1091 1092 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1093 switch (Val) { 1094 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1095 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1096 } 1097 } 1098 1099 Type *BitcodeReader::getTypeByID(unsigned ID) { 1100 // The type table size is always specified correctly. 1101 if (ID >= TypeList.size()) 1102 return nullptr; 1103 1104 if (Type *Ty = TypeList[ID]) 1105 return Ty; 1106 1107 // If we have a forward reference, the only possible case is when it is to a 1108 // named struct. Just create a placeholder for now. 1109 return TypeList[ID] = createIdentifiedStructType(Context); 1110 } 1111 1112 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1113 StringRef Name) { 1114 auto *Ret = StructType::create(Context, Name); 1115 IdentifiedStructTypes.push_back(Ret); 1116 return Ret; 1117 } 1118 1119 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1120 auto *Ret = StructType::create(Context); 1121 IdentifiedStructTypes.push_back(Ret); 1122 return Ret; 1123 } 1124 1125 //===----------------------------------------------------------------------===// 1126 // Functions for parsing blocks from the bitcode file 1127 //===----------------------------------------------------------------------===// 1128 1129 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1130 switch (Val) { 1131 case Attribute::EndAttrKinds: 1132 llvm_unreachable("Synthetic enumerators which should never get here"); 1133 1134 case Attribute::None: return 0; 1135 case Attribute::ZExt: return 1 << 0; 1136 case Attribute::SExt: return 1 << 1; 1137 case Attribute::NoReturn: return 1 << 2; 1138 case Attribute::InReg: return 1 << 3; 1139 case Attribute::StructRet: return 1 << 4; 1140 case Attribute::NoUnwind: return 1 << 5; 1141 case Attribute::NoAlias: return 1 << 6; 1142 case Attribute::ByVal: return 1 << 7; 1143 case Attribute::Nest: return 1 << 8; 1144 case Attribute::ReadNone: return 1 << 9; 1145 case Attribute::ReadOnly: return 1 << 10; 1146 case Attribute::NoInline: return 1 << 11; 1147 case Attribute::AlwaysInline: return 1 << 12; 1148 case Attribute::OptimizeForSize: return 1 << 13; 1149 case Attribute::StackProtect: return 1 << 14; 1150 case Attribute::StackProtectReq: return 1 << 15; 1151 case Attribute::Alignment: return 31 << 16; 1152 case Attribute::NoCapture: return 1 << 21; 1153 case Attribute::NoRedZone: return 1 << 22; 1154 case Attribute::NoImplicitFloat: return 1 << 23; 1155 case Attribute::Naked: return 1 << 24; 1156 case Attribute::InlineHint: return 1 << 25; 1157 case Attribute::StackAlignment: return 7 << 26; 1158 case Attribute::ReturnsTwice: return 1 << 29; 1159 case Attribute::UWTable: return 1 << 30; 1160 case Attribute::NonLazyBind: return 1U << 31; 1161 case Attribute::SanitizeAddress: return 1ULL << 32; 1162 case Attribute::MinSize: return 1ULL << 33; 1163 case Attribute::NoDuplicate: return 1ULL << 34; 1164 case Attribute::StackProtectStrong: return 1ULL << 35; 1165 case Attribute::SanitizeThread: return 1ULL << 36; 1166 case Attribute::SanitizeMemory: return 1ULL << 37; 1167 case Attribute::NoBuiltin: return 1ULL << 38; 1168 case Attribute::Returned: return 1ULL << 39; 1169 case Attribute::Cold: return 1ULL << 40; 1170 case Attribute::Builtin: return 1ULL << 41; 1171 case Attribute::OptimizeNone: return 1ULL << 42; 1172 case Attribute::InAlloca: return 1ULL << 43; 1173 case Attribute::NonNull: return 1ULL << 44; 1174 case Attribute::JumpTable: return 1ULL << 45; 1175 case Attribute::Convergent: return 1ULL << 46; 1176 case Attribute::SafeStack: return 1ULL << 47; 1177 case Attribute::NoRecurse: return 1ULL << 48; 1178 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1179 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1180 case Attribute::SwiftSelf: return 1ULL << 51; 1181 case Attribute::SwiftError: return 1ULL << 52; 1182 case Attribute::WriteOnly: return 1ULL << 53; 1183 case Attribute::Speculatable: return 1ULL << 54; 1184 case Attribute::StrictFP: return 1ULL << 55; 1185 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1186 case Attribute::NoCfCheck: return 1ULL << 57; 1187 case Attribute::OptForFuzzing: return 1ULL << 58; 1188 case Attribute::ShadowCallStack: return 1ULL << 59; 1189 case Attribute::SpeculativeLoadHardening: 1190 return 1ULL << 60; 1191 case Attribute::Dereferenceable: 1192 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1193 break; 1194 case Attribute::DereferenceableOrNull: 1195 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1196 "format"); 1197 break; 1198 case Attribute::ArgMemOnly: 1199 llvm_unreachable("argmemonly attribute not supported in raw format"); 1200 break; 1201 case Attribute::AllocSize: 1202 llvm_unreachable("allocsize not supported in raw format"); 1203 break; 1204 } 1205 llvm_unreachable("Unsupported attribute type"); 1206 } 1207 1208 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1209 if (!Val) return; 1210 1211 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1212 I = Attribute::AttrKind(I + 1)) { 1213 if (I == Attribute::Dereferenceable || 1214 I == Attribute::DereferenceableOrNull || 1215 I == Attribute::ArgMemOnly || 1216 I == Attribute::AllocSize) 1217 continue; 1218 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1219 if (I == Attribute::Alignment) 1220 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1221 else if (I == Attribute::StackAlignment) 1222 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1223 else 1224 B.addAttribute(I); 1225 } 1226 } 1227 } 1228 1229 /// This fills an AttrBuilder object with the LLVM attributes that have 1230 /// been decoded from the given integer. This function must stay in sync with 1231 /// 'encodeLLVMAttributesForBitcode'. 1232 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1233 uint64_t EncodedAttrs) { 1234 // FIXME: Remove in 4.0. 1235 1236 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1237 // the bits above 31 down by 11 bits. 1238 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1239 assert((!Alignment || isPowerOf2_32(Alignment)) && 1240 "Alignment must be a power of two."); 1241 1242 if (Alignment) 1243 B.addAlignmentAttr(Alignment); 1244 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1245 (EncodedAttrs & 0xffff)); 1246 } 1247 1248 Error BitcodeReader::parseAttributeBlock() { 1249 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1250 return error("Invalid record"); 1251 1252 if (!MAttributes.empty()) 1253 return error("Invalid multiple blocks"); 1254 1255 SmallVector<uint64_t, 64> Record; 1256 1257 SmallVector<AttributeList, 8> Attrs; 1258 1259 // Read all the records. 1260 while (true) { 1261 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1262 1263 switch (Entry.Kind) { 1264 case BitstreamEntry::SubBlock: // Handled for us already. 1265 case BitstreamEntry::Error: 1266 return error("Malformed block"); 1267 case BitstreamEntry::EndBlock: 1268 return Error::success(); 1269 case BitstreamEntry::Record: 1270 // The interesting case. 1271 break; 1272 } 1273 1274 // Read a record. 1275 Record.clear(); 1276 switch (Stream.readRecord(Entry.ID, Record)) { 1277 default: // Default behavior: ignore. 1278 break; 1279 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1280 // FIXME: Remove in 4.0. 1281 if (Record.size() & 1) 1282 return error("Invalid record"); 1283 1284 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1285 AttrBuilder B; 1286 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1287 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1288 } 1289 1290 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1291 Attrs.clear(); 1292 break; 1293 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1294 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1295 Attrs.push_back(MAttributeGroups[Record[i]]); 1296 1297 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1298 Attrs.clear(); 1299 break; 1300 } 1301 } 1302 } 1303 1304 // Returns Attribute::None on unrecognized codes. 1305 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1306 switch (Code) { 1307 default: 1308 return Attribute::None; 1309 case bitc::ATTR_KIND_ALIGNMENT: 1310 return Attribute::Alignment; 1311 case bitc::ATTR_KIND_ALWAYS_INLINE: 1312 return Attribute::AlwaysInline; 1313 case bitc::ATTR_KIND_ARGMEMONLY: 1314 return Attribute::ArgMemOnly; 1315 case bitc::ATTR_KIND_BUILTIN: 1316 return Attribute::Builtin; 1317 case bitc::ATTR_KIND_BY_VAL: 1318 return Attribute::ByVal; 1319 case bitc::ATTR_KIND_IN_ALLOCA: 1320 return Attribute::InAlloca; 1321 case bitc::ATTR_KIND_COLD: 1322 return Attribute::Cold; 1323 case bitc::ATTR_KIND_CONVERGENT: 1324 return Attribute::Convergent; 1325 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1326 return Attribute::InaccessibleMemOnly; 1327 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1328 return Attribute::InaccessibleMemOrArgMemOnly; 1329 case bitc::ATTR_KIND_INLINE_HINT: 1330 return Attribute::InlineHint; 1331 case bitc::ATTR_KIND_IN_REG: 1332 return Attribute::InReg; 1333 case bitc::ATTR_KIND_JUMP_TABLE: 1334 return Attribute::JumpTable; 1335 case bitc::ATTR_KIND_MIN_SIZE: 1336 return Attribute::MinSize; 1337 case bitc::ATTR_KIND_NAKED: 1338 return Attribute::Naked; 1339 case bitc::ATTR_KIND_NEST: 1340 return Attribute::Nest; 1341 case bitc::ATTR_KIND_NO_ALIAS: 1342 return Attribute::NoAlias; 1343 case bitc::ATTR_KIND_NO_BUILTIN: 1344 return Attribute::NoBuiltin; 1345 case bitc::ATTR_KIND_NO_CAPTURE: 1346 return Attribute::NoCapture; 1347 case bitc::ATTR_KIND_NO_DUPLICATE: 1348 return Attribute::NoDuplicate; 1349 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1350 return Attribute::NoImplicitFloat; 1351 case bitc::ATTR_KIND_NO_INLINE: 1352 return Attribute::NoInline; 1353 case bitc::ATTR_KIND_NO_RECURSE: 1354 return Attribute::NoRecurse; 1355 case bitc::ATTR_KIND_NON_LAZY_BIND: 1356 return Attribute::NonLazyBind; 1357 case bitc::ATTR_KIND_NON_NULL: 1358 return Attribute::NonNull; 1359 case bitc::ATTR_KIND_DEREFERENCEABLE: 1360 return Attribute::Dereferenceable; 1361 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1362 return Attribute::DereferenceableOrNull; 1363 case bitc::ATTR_KIND_ALLOC_SIZE: 1364 return Attribute::AllocSize; 1365 case bitc::ATTR_KIND_NO_RED_ZONE: 1366 return Attribute::NoRedZone; 1367 case bitc::ATTR_KIND_NO_RETURN: 1368 return Attribute::NoReturn; 1369 case bitc::ATTR_KIND_NOCF_CHECK: 1370 return Attribute::NoCfCheck; 1371 case bitc::ATTR_KIND_NO_UNWIND: 1372 return Attribute::NoUnwind; 1373 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1374 return Attribute::OptForFuzzing; 1375 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1376 return Attribute::OptimizeForSize; 1377 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1378 return Attribute::OptimizeNone; 1379 case bitc::ATTR_KIND_READ_NONE: 1380 return Attribute::ReadNone; 1381 case bitc::ATTR_KIND_READ_ONLY: 1382 return Attribute::ReadOnly; 1383 case bitc::ATTR_KIND_RETURNED: 1384 return Attribute::Returned; 1385 case bitc::ATTR_KIND_RETURNS_TWICE: 1386 return Attribute::ReturnsTwice; 1387 case bitc::ATTR_KIND_S_EXT: 1388 return Attribute::SExt; 1389 case bitc::ATTR_KIND_SPECULATABLE: 1390 return Attribute::Speculatable; 1391 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1392 return Attribute::StackAlignment; 1393 case bitc::ATTR_KIND_STACK_PROTECT: 1394 return Attribute::StackProtect; 1395 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1396 return Attribute::StackProtectReq; 1397 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1398 return Attribute::StackProtectStrong; 1399 case bitc::ATTR_KIND_SAFESTACK: 1400 return Attribute::SafeStack; 1401 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1402 return Attribute::ShadowCallStack; 1403 case bitc::ATTR_KIND_STRICT_FP: 1404 return Attribute::StrictFP; 1405 case bitc::ATTR_KIND_STRUCT_RET: 1406 return Attribute::StructRet; 1407 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1408 return Attribute::SanitizeAddress; 1409 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1410 return Attribute::SanitizeHWAddress; 1411 case bitc::ATTR_KIND_SANITIZE_THREAD: 1412 return Attribute::SanitizeThread; 1413 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1414 return Attribute::SanitizeMemory; 1415 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1416 return Attribute::SpeculativeLoadHardening; 1417 case bitc::ATTR_KIND_SWIFT_ERROR: 1418 return Attribute::SwiftError; 1419 case bitc::ATTR_KIND_SWIFT_SELF: 1420 return Attribute::SwiftSelf; 1421 case bitc::ATTR_KIND_UW_TABLE: 1422 return Attribute::UWTable; 1423 case bitc::ATTR_KIND_WRITEONLY: 1424 return Attribute::WriteOnly; 1425 case bitc::ATTR_KIND_Z_EXT: 1426 return Attribute::ZExt; 1427 } 1428 } 1429 1430 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1431 unsigned &Alignment) { 1432 // Note: Alignment in bitcode files is incremented by 1, so that zero 1433 // can be used for default alignment. 1434 if (Exponent > Value::MaxAlignmentExponent + 1) 1435 return error("Invalid alignment value"); 1436 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1437 return Error::success(); 1438 } 1439 1440 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1441 *Kind = getAttrFromCode(Code); 1442 if (*Kind == Attribute::None) 1443 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1444 return Error::success(); 1445 } 1446 1447 Error BitcodeReader::parseAttributeGroupBlock() { 1448 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1449 return error("Invalid record"); 1450 1451 if (!MAttributeGroups.empty()) 1452 return error("Invalid multiple blocks"); 1453 1454 SmallVector<uint64_t, 64> Record; 1455 1456 // Read all the records. 1457 while (true) { 1458 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1459 1460 switch (Entry.Kind) { 1461 case BitstreamEntry::SubBlock: // Handled for us already. 1462 case BitstreamEntry::Error: 1463 return error("Malformed block"); 1464 case BitstreamEntry::EndBlock: 1465 return Error::success(); 1466 case BitstreamEntry::Record: 1467 // The interesting case. 1468 break; 1469 } 1470 1471 // Read a record. 1472 Record.clear(); 1473 switch (Stream.readRecord(Entry.ID, Record)) { 1474 default: // Default behavior: ignore. 1475 break; 1476 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1477 if (Record.size() < 3) 1478 return error("Invalid record"); 1479 1480 uint64_t GrpID = Record[0]; 1481 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1482 1483 AttrBuilder B; 1484 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1485 if (Record[i] == 0) { // Enum attribute 1486 Attribute::AttrKind Kind; 1487 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1488 return Err; 1489 1490 B.addAttribute(Kind); 1491 } else if (Record[i] == 1) { // Integer attribute 1492 Attribute::AttrKind Kind; 1493 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1494 return Err; 1495 if (Kind == Attribute::Alignment) 1496 B.addAlignmentAttr(Record[++i]); 1497 else if (Kind == Attribute::StackAlignment) 1498 B.addStackAlignmentAttr(Record[++i]); 1499 else if (Kind == Attribute::Dereferenceable) 1500 B.addDereferenceableAttr(Record[++i]); 1501 else if (Kind == Attribute::DereferenceableOrNull) 1502 B.addDereferenceableOrNullAttr(Record[++i]); 1503 else if (Kind == Attribute::AllocSize) 1504 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1505 } else { // String attribute 1506 assert((Record[i] == 3 || Record[i] == 4) && 1507 "Invalid attribute group entry"); 1508 bool HasValue = (Record[i++] == 4); 1509 SmallString<64> KindStr; 1510 SmallString<64> ValStr; 1511 1512 while (Record[i] != 0 && i != e) 1513 KindStr += Record[i++]; 1514 assert(Record[i] == 0 && "Kind string not null terminated"); 1515 1516 if (HasValue) { 1517 // Has a value associated with it. 1518 ++i; // Skip the '0' that terminates the "kind" string. 1519 while (Record[i] != 0 && i != e) 1520 ValStr += Record[i++]; 1521 assert(Record[i] == 0 && "Value string not null terminated"); 1522 } 1523 1524 B.addAttribute(KindStr.str(), ValStr.str()); 1525 } 1526 } 1527 1528 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1529 break; 1530 } 1531 } 1532 } 1533 } 1534 1535 Error BitcodeReader::parseTypeTable() { 1536 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1537 return error("Invalid record"); 1538 1539 return parseTypeTableBody(); 1540 } 1541 1542 Error BitcodeReader::parseTypeTableBody() { 1543 if (!TypeList.empty()) 1544 return error("Invalid multiple blocks"); 1545 1546 SmallVector<uint64_t, 64> Record; 1547 unsigned NumRecords = 0; 1548 1549 SmallString<64> TypeName; 1550 1551 // Read all the records for this type table. 1552 while (true) { 1553 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1554 1555 switch (Entry.Kind) { 1556 case BitstreamEntry::SubBlock: // Handled for us already. 1557 case BitstreamEntry::Error: 1558 return error("Malformed block"); 1559 case BitstreamEntry::EndBlock: 1560 if (NumRecords != TypeList.size()) 1561 return error("Malformed block"); 1562 return Error::success(); 1563 case BitstreamEntry::Record: 1564 // The interesting case. 1565 break; 1566 } 1567 1568 // Read a record. 1569 Record.clear(); 1570 Type *ResultTy = nullptr; 1571 switch (Stream.readRecord(Entry.ID, Record)) { 1572 default: 1573 return error("Invalid value"); 1574 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1575 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1576 // type list. This allows us to reserve space. 1577 if (Record.size() < 1) 1578 return error("Invalid record"); 1579 TypeList.resize(Record[0]); 1580 continue; 1581 case bitc::TYPE_CODE_VOID: // VOID 1582 ResultTy = Type::getVoidTy(Context); 1583 break; 1584 case bitc::TYPE_CODE_HALF: // HALF 1585 ResultTy = Type::getHalfTy(Context); 1586 break; 1587 case bitc::TYPE_CODE_FLOAT: // FLOAT 1588 ResultTy = Type::getFloatTy(Context); 1589 break; 1590 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1591 ResultTy = Type::getDoubleTy(Context); 1592 break; 1593 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1594 ResultTy = Type::getX86_FP80Ty(Context); 1595 break; 1596 case bitc::TYPE_CODE_FP128: // FP128 1597 ResultTy = Type::getFP128Ty(Context); 1598 break; 1599 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1600 ResultTy = Type::getPPC_FP128Ty(Context); 1601 break; 1602 case bitc::TYPE_CODE_LABEL: // LABEL 1603 ResultTy = Type::getLabelTy(Context); 1604 break; 1605 case bitc::TYPE_CODE_METADATA: // METADATA 1606 ResultTy = Type::getMetadataTy(Context); 1607 break; 1608 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1609 ResultTy = Type::getX86_MMXTy(Context); 1610 break; 1611 case bitc::TYPE_CODE_TOKEN: // TOKEN 1612 ResultTy = Type::getTokenTy(Context); 1613 break; 1614 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1615 if (Record.size() < 1) 1616 return error("Invalid record"); 1617 1618 uint64_t NumBits = Record[0]; 1619 if (NumBits < IntegerType::MIN_INT_BITS || 1620 NumBits > IntegerType::MAX_INT_BITS) 1621 return error("Bitwidth for integer type out of range"); 1622 ResultTy = IntegerType::get(Context, NumBits); 1623 break; 1624 } 1625 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1626 // [pointee type, address space] 1627 if (Record.size() < 1) 1628 return error("Invalid record"); 1629 unsigned AddressSpace = 0; 1630 if (Record.size() == 2) 1631 AddressSpace = Record[1]; 1632 ResultTy = getTypeByID(Record[0]); 1633 if (!ResultTy || 1634 !PointerType::isValidElementType(ResultTy)) 1635 return error("Invalid type"); 1636 ResultTy = PointerType::get(ResultTy, AddressSpace); 1637 break; 1638 } 1639 case bitc::TYPE_CODE_FUNCTION_OLD: { 1640 // FIXME: attrid is dead, remove it in LLVM 4.0 1641 // FUNCTION: [vararg, attrid, retty, paramty x N] 1642 if (Record.size() < 3) 1643 return error("Invalid record"); 1644 SmallVector<Type*, 8> ArgTys; 1645 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1646 if (Type *T = getTypeByID(Record[i])) 1647 ArgTys.push_back(T); 1648 else 1649 break; 1650 } 1651 1652 ResultTy = getTypeByID(Record[2]); 1653 if (!ResultTy || ArgTys.size() < Record.size()-3) 1654 return error("Invalid type"); 1655 1656 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1657 break; 1658 } 1659 case bitc::TYPE_CODE_FUNCTION: { 1660 // FUNCTION: [vararg, retty, paramty x N] 1661 if (Record.size() < 2) 1662 return error("Invalid record"); 1663 SmallVector<Type*, 8> ArgTys; 1664 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1665 if (Type *T = getTypeByID(Record[i])) { 1666 if (!FunctionType::isValidArgumentType(T)) 1667 return error("Invalid function argument type"); 1668 ArgTys.push_back(T); 1669 } 1670 else 1671 break; 1672 } 1673 1674 ResultTy = getTypeByID(Record[1]); 1675 if (!ResultTy || ArgTys.size() < Record.size()-2) 1676 return error("Invalid type"); 1677 1678 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1679 break; 1680 } 1681 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1682 if (Record.size() < 1) 1683 return error("Invalid record"); 1684 SmallVector<Type*, 8> EltTys; 1685 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1686 if (Type *T = getTypeByID(Record[i])) 1687 EltTys.push_back(T); 1688 else 1689 break; 1690 } 1691 if (EltTys.size() != Record.size()-1) 1692 return error("Invalid type"); 1693 ResultTy = StructType::get(Context, EltTys, Record[0]); 1694 break; 1695 } 1696 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1697 if (convertToString(Record, 0, TypeName)) 1698 return error("Invalid record"); 1699 continue; 1700 1701 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1702 if (Record.size() < 1) 1703 return error("Invalid record"); 1704 1705 if (NumRecords >= TypeList.size()) 1706 return error("Invalid TYPE table"); 1707 1708 // Check to see if this was forward referenced, if so fill in the temp. 1709 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1710 if (Res) { 1711 Res->setName(TypeName); 1712 TypeList[NumRecords] = nullptr; 1713 } else // Otherwise, create a new struct. 1714 Res = createIdentifiedStructType(Context, TypeName); 1715 TypeName.clear(); 1716 1717 SmallVector<Type*, 8> EltTys; 1718 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1719 if (Type *T = getTypeByID(Record[i])) 1720 EltTys.push_back(T); 1721 else 1722 break; 1723 } 1724 if (EltTys.size() != Record.size()-1) 1725 return error("Invalid record"); 1726 Res->setBody(EltTys, Record[0]); 1727 ResultTy = Res; 1728 break; 1729 } 1730 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1731 if (Record.size() != 1) 1732 return error("Invalid record"); 1733 1734 if (NumRecords >= TypeList.size()) 1735 return error("Invalid TYPE table"); 1736 1737 // Check to see if this was forward referenced, if so fill in the temp. 1738 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1739 if (Res) { 1740 Res->setName(TypeName); 1741 TypeList[NumRecords] = nullptr; 1742 } else // Otherwise, create a new struct with no body. 1743 Res = createIdentifiedStructType(Context, TypeName); 1744 TypeName.clear(); 1745 ResultTy = Res; 1746 break; 1747 } 1748 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1749 if (Record.size() < 2) 1750 return error("Invalid record"); 1751 ResultTy = getTypeByID(Record[1]); 1752 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1753 return error("Invalid type"); 1754 ResultTy = ArrayType::get(ResultTy, Record[0]); 1755 break; 1756 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1757 if (Record.size() < 2) 1758 return error("Invalid record"); 1759 if (Record[0] == 0) 1760 return error("Invalid vector length"); 1761 ResultTy = getTypeByID(Record[1]); 1762 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1763 return error("Invalid type"); 1764 ResultTy = VectorType::get(ResultTy, Record[0]); 1765 break; 1766 } 1767 1768 if (NumRecords >= TypeList.size()) 1769 return error("Invalid TYPE table"); 1770 if (TypeList[NumRecords]) 1771 return error( 1772 "Invalid TYPE table: Only named structs can be forward referenced"); 1773 assert(ResultTy && "Didn't read a type?"); 1774 TypeList[NumRecords++] = ResultTy; 1775 } 1776 } 1777 1778 Error BitcodeReader::parseOperandBundleTags() { 1779 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1780 return error("Invalid record"); 1781 1782 if (!BundleTags.empty()) 1783 return error("Invalid multiple blocks"); 1784 1785 SmallVector<uint64_t, 64> Record; 1786 1787 while (true) { 1788 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1789 1790 switch (Entry.Kind) { 1791 case BitstreamEntry::SubBlock: // Handled for us already. 1792 case BitstreamEntry::Error: 1793 return error("Malformed block"); 1794 case BitstreamEntry::EndBlock: 1795 return Error::success(); 1796 case BitstreamEntry::Record: 1797 // The interesting case. 1798 break; 1799 } 1800 1801 // Tags are implicitly mapped to integers by their order. 1802 1803 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1804 return error("Invalid record"); 1805 1806 // OPERAND_BUNDLE_TAG: [strchr x N] 1807 BundleTags.emplace_back(); 1808 if (convertToString(Record, 0, BundleTags.back())) 1809 return error("Invalid record"); 1810 Record.clear(); 1811 } 1812 } 1813 1814 Error BitcodeReader::parseSyncScopeNames() { 1815 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1816 return error("Invalid record"); 1817 1818 if (!SSIDs.empty()) 1819 return error("Invalid multiple synchronization scope names blocks"); 1820 1821 SmallVector<uint64_t, 64> Record; 1822 while (true) { 1823 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1824 switch (Entry.Kind) { 1825 case BitstreamEntry::SubBlock: // Handled for us already. 1826 case BitstreamEntry::Error: 1827 return error("Malformed block"); 1828 case BitstreamEntry::EndBlock: 1829 if (SSIDs.empty()) 1830 return error("Invalid empty synchronization scope names block"); 1831 return Error::success(); 1832 case BitstreamEntry::Record: 1833 // The interesting case. 1834 break; 1835 } 1836 1837 // Synchronization scope names are implicitly mapped to synchronization 1838 // scope IDs by their order. 1839 1840 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1841 return error("Invalid record"); 1842 1843 SmallString<16> SSN; 1844 if (convertToString(Record, 0, SSN)) 1845 return error("Invalid record"); 1846 1847 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1848 Record.clear(); 1849 } 1850 } 1851 1852 /// Associate a value with its name from the given index in the provided record. 1853 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1854 unsigned NameIndex, Triple &TT) { 1855 SmallString<128> ValueName; 1856 if (convertToString(Record, NameIndex, ValueName)) 1857 return error("Invalid record"); 1858 unsigned ValueID = Record[0]; 1859 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1860 return error("Invalid record"); 1861 Value *V = ValueList[ValueID]; 1862 1863 StringRef NameStr(ValueName.data(), ValueName.size()); 1864 if (NameStr.find_first_of(0) != StringRef::npos) 1865 return error("Invalid value name"); 1866 V->setName(NameStr); 1867 auto *GO = dyn_cast<GlobalObject>(V); 1868 if (GO) { 1869 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1870 if (TT.supportsCOMDAT()) 1871 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1872 else 1873 GO->setComdat(nullptr); 1874 } 1875 } 1876 return V; 1877 } 1878 1879 /// Helper to note and return the current location, and jump to the given 1880 /// offset. 1881 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1882 BitstreamCursor &Stream) { 1883 // Save the current parsing location so we can jump back at the end 1884 // of the VST read. 1885 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1886 Stream.JumpToBit(Offset * 32); 1887 #ifndef NDEBUG 1888 // Do some checking if we are in debug mode. 1889 BitstreamEntry Entry = Stream.advance(); 1890 assert(Entry.Kind == BitstreamEntry::SubBlock); 1891 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1892 #else 1893 // In NDEBUG mode ignore the output so we don't get an unused variable 1894 // warning. 1895 Stream.advance(); 1896 #endif 1897 return CurrentBit; 1898 } 1899 1900 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1901 Function *F, 1902 ArrayRef<uint64_t> Record) { 1903 // Note that we subtract 1 here because the offset is relative to one word 1904 // before the start of the identification or module block, which was 1905 // historically always the start of the regular bitcode header. 1906 uint64_t FuncWordOffset = Record[1] - 1; 1907 uint64_t FuncBitOffset = FuncWordOffset * 32; 1908 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1909 // Set the LastFunctionBlockBit to point to the last function block. 1910 // Later when parsing is resumed after function materialization, 1911 // we can simply skip that last function block. 1912 if (FuncBitOffset > LastFunctionBlockBit) 1913 LastFunctionBlockBit = FuncBitOffset; 1914 } 1915 1916 /// Read a new-style GlobalValue symbol table. 1917 Error BitcodeReader::parseGlobalValueSymbolTable() { 1918 unsigned FuncBitcodeOffsetDelta = 1919 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1920 1921 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1922 return error("Invalid record"); 1923 1924 SmallVector<uint64_t, 64> Record; 1925 while (true) { 1926 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1927 1928 switch (Entry.Kind) { 1929 case BitstreamEntry::SubBlock: 1930 case BitstreamEntry::Error: 1931 return error("Malformed block"); 1932 case BitstreamEntry::EndBlock: 1933 return Error::success(); 1934 case BitstreamEntry::Record: 1935 break; 1936 } 1937 1938 Record.clear(); 1939 switch (Stream.readRecord(Entry.ID, Record)) { 1940 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1941 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1942 cast<Function>(ValueList[Record[0]]), Record); 1943 break; 1944 } 1945 } 1946 } 1947 1948 /// Parse the value symbol table at either the current parsing location or 1949 /// at the given bit offset if provided. 1950 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1951 uint64_t CurrentBit; 1952 // Pass in the Offset to distinguish between calling for the module-level 1953 // VST (where we want to jump to the VST offset) and the function-level 1954 // VST (where we don't). 1955 if (Offset > 0) { 1956 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1957 // If this module uses a string table, read this as a module-level VST. 1958 if (UseStrtab) { 1959 if (Error Err = parseGlobalValueSymbolTable()) 1960 return Err; 1961 Stream.JumpToBit(CurrentBit); 1962 return Error::success(); 1963 } 1964 // Otherwise, the VST will be in a similar format to a function-level VST, 1965 // and will contain symbol names. 1966 } 1967 1968 // Compute the delta between the bitcode indices in the VST (the word offset 1969 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1970 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1971 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1972 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1973 // just before entering the VST subblock because: 1) the EnterSubBlock 1974 // changes the AbbrevID width; 2) the VST block is nested within the same 1975 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1976 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1977 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1978 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1979 unsigned FuncBitcodeOffsetDelta = 1980 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1981 1982 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1983 return error("Invalid record"); 1984 1985 SmallVector<uint64_t, 64> Record; 1986 1987 Triple TT(TheModule->getTargetTriple()); 1988 1989 // Read all the records for this value table. 1990 SmallString<128> ValueName; 1991 1992 while (true) { 1993 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1994 1995 switch (Entry.Kind) { 1996 case BitstreamEntry::SubBlock: // Handled for us already. 1997 case BitstreamEntry::Error: 1998 return error("Malformed block"); 1999 case BitstreamEntry::EndBlock: 2000 if (Offset > 0) 2001 Stream.JumpToBit(CurrentBit); 2002 return Error::success(); 2003 case BitstreamEntry::Record: 2004 // The interesting case. 2005 break; 2006 } 2007 2008 // Read a record. 2009 Record.clear(); 2010 switch (Stream.readRecord(Entry.ID, Record)) { 2011 default: // Default behavior: unknown type. 2012 break; 2013 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2014 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2015 if (Error Err = ValOrErr.takeError()) 2016 return Err; 2017 ValOrErr.get(); 2018 break; 2019 } 2020 case bitc::VST_CODE_FNENTRY: { 2021 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2022 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2023 if (Error Err = ValOrErr.takeError()) 2024 return Err; 2025 Value *V = ValOrErr.get(); 2026 2027 // Ignore function offsets emitted for aliases of functions in older 2028 // versions of LLVM. 2029 if (auto *F = dyn_cast<Function>(V)) 2030 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2031 break; 2032 } 2033 case bitc::VST_CODE_BBENTRY: { 2034 if (convertToString(Record, 1, ValueName)) 2035 return error("Invalid record"); 2036 BasicBlock *BB = getBasicBlock(Record[0]); 2037 if (!BB) 2038 return error("Invalid record"); 2039 2040 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2041 ValueName.clear(); 2042 break; 2043 } 2044 } 2045 } 2046 } 2047 2048 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2049 /// encoding. 2050 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2051 if ((V & 1) == 0) 2052 return V >> 1; 2053 if (V != 1) 2054 return -(V >> 1); 2055 // There is no such thing as -0 with integers. "-0" really means MININT. 2056 return 1ULL << 63; 2057 } 2058 2059 /// Resolve all of the initializers for global values and aliases that we can. 2060 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2061 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2062 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2063 IndirectSymbolInitWorklist; 2064 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2065 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2066 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2067 2068 GlobalInitWorklist.swap(GlobalInits); 2069 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2070 FunctionPrefixWorklist.swap(FunctionPrefixes); 2071 FunctionPrologueWorklist.swap(FunctionPrologues); 2072 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2073 2074 while (!GlobalInitWorklist.empty()) { 2075 unsigned ValID = GlobalInitWorklist.back().second; 2076 if (ValID >= ValueList.size()) { 2077 // Not ready to resolve this yet, it requires something later in the file. 2078 GlobalInits.push_back(GlobalInitWorklist.back()); 2079 } else { 2080 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2081 GlobalInitWorklist.back().first->setInitializer(C); 2082 else 2083 return error("Expected a constant"); 2084 } 2085 GlobalInitWorklist.pop_back(); 2086 } 2087 2088 while (!IndirectSymbolInitWorklist.empty()) { 2089 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2090 if (ValID >= ValueList.size()) { 2091 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2092 } else { 2093 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2094 if (!C) 2095 return error("Expected a constant"); 2096 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2097 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2098 return error("Alias and aliasee types don't match"); 2099 GIS->setIndirectSymbol(C); 2100 } 2101 IndirectSymbolInitWorklist.pop_back(); 2102 } 2103 2104 while (!FunctionPrefixWorklist.empty()) { 2105 unsigned ValID = FunctionPrefixWorklist.back().second; 2106 if (ValID >= ValueList.size()) { 2107 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2108 } else { 2109 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2110 FunctionPrefixWorklist.back().first->setPrefixData(C); 2111 else 2112 return error("Expected a constant"); 2113 } 2114 FunctionPrefixWorklist.pop_back(); 2115 } 2116 2117 while (!FunctionPrologueWorklist.empty()) { 2118 unsigned ValID = FunctionPrologueWorklist.back().second; 2119 if (ValID >= ValueList.size()) { 2120 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2121 } else { 2122 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2123 FunctionPrologueWorklist.back().first->setPrologueData(C); 2124 else 2125 return error("Expected a constant"); 2126 } 2127 FunctionPrologueWorklist.pop_back(); 2128 } 2129 2130 while (!FunctionPersonalityFnWorklist.empty()) { 2131 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2132 if (ValID >= ValueList.size()) { 2133 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2134 } else { 2135 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2136 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2137 else 2138 return error("Expected a constant"); 2139 } 2140 FunctionPersonalityFnWorklist.pop_back(); 2141 } 2142 2143 return Error::success(); 2144 } 2145 2146 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2147 SmallVector<uint64_t, 8> Words(Vals.size()); 2148 transform(Vals, Words.begin(), 2149 BitcodeReader::decodeSignRotatedValue); 2150 2151 return APInt(TypeBits, Words); 2152 } 2153 2154 Error BitcodeReader::parseConstants() { 2155 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2156 return error("Invalid record"); 2157 2158 SmallVector<uint64_t, 64> Record; 2159 2160 // Read all the records for this value table. 2161 Type *CurTy = Type::getInt32Ty(Context); 2162 unsigned NextCstNo = ValueList.size(); 2163 2164 while (true) { 2165 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2166 2167 switch (Entry.Kind) { 2168 case BitstreamEntry::SubBlock: // Handled for us already. 2169 case BitstreamEntry::Error: 2170 return error("Malformed block"); 2171 case BitstreamEntry::EndBlock: 2172 if (NextCstNo != ValueList.size()) 2173 return error("Invalid constant reference"); 2174 2175 // Once all the constants have been read, go through and resolve forward 2176 // references. 2177 ValueList.resolveConstantForwardRefs(); 2178 return Error::success(); 2179 case BitstreamEntry::Record: 2180 // The interesting case. 2181 break; 2182 } 2183 2184 // Read a record. 2185 Record.clear(); 2186 Type *VoidType = Type::getVoidTy(Context); 2187 Value *V = nullptr; 2188 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2189 switch (BitCode) { 2190 default: // Default behavior: unknown constant 2191 case bitc::CST_CODE_UNDEF: // UNDEF 2192 V = UndefValue::get(CurTy); 2193 break; 2194 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2195 if (Record.empty()) 2196 return error("Invalid record"); 2197 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2198 return error("Invalid record"); 2199 if (TypeList[Record[0]] == VoidType) 2200 return error("Invalid constant type"); 2201 CurTy = TypeList[Record[0]]; 2202 continue; // Skip the ValueList manipulation. 2203 case bitc::CST_CODE_NULL: // NULL 2204 V = Constant::getNullValue(CurTy); 2205 break; 2206 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2207 if (!CurTy->isIntegerTy() || Record.empty()) 2208 return error("Invalid record"); 2209 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2210 break; 2211 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2212 if (!CurTy->isIntegerTy() || Record.empty()) 2213 return error("Invalid record"); 2214 2215 APInt VInt = 2216 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2217 V = ConstantInt::get(Context, VInt); 2218 2219 break; 2220 } 2221 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2222 if (Record.empty()) 2223 return error("Invalid record"); 2224 if (CurTy->isHalfTy()) 2225 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2226 APInt(16, (uint16_t)Record[0]))); 2227 else if (CurTy->isFloatTy()) 2228 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2229 APInt(32, (uint32_t)Record[0]))); 2230 else if (CurTy->isDoubleTy()) 2231 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2232 APInt(64, Record[0]))); 2233 else if (CurTy->isX86_FP80Ty()) { 2234 // Bits are not stored the same way as a normal i80 APInt, compensate. 2235 uint64_t Rearrange[2]; 2236 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2237 Rearrange[1] = Record[0] >> 48; 2238 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2239 APInt(80, Rearrange))); 2240 } else if (CurTy->isFP128Ty()) 2241 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2242 APInt(128, Record))); 2243 else if (CurTy->isPPC_FP128Ty()) 2244 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2245 APInt(128, Record))); 2246 else 2247 V = UndefValue::get(CurTy); 2248 break; 2249 } 2250 2251 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2252 if (Record.empty()) 2253 return error("Invalid record"); 2254 2255 unsigned Size = Record.size(); 2256 SmallVector<Constant*, 16> Elts; 2257 2258 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2259 for (unsigned i = 0; i != Size; ++i) 2260 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2261 STy->getElementType(i))); 2262 V = ConstantStruct::get(STy, Elts); 2263 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2264 Type *EltTy = ATy->getElementType(); 2265 for (unsigned i = 0; i != Size; ++i) 2266 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2267 V = ConstantArray::get(ATy, Elts); 2268 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2269 Type *EltTy = VTy->getElementType(); 2270 for (unsigned i = 0; i != Size; ++i) 2271 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2272 V = ConstantVector::get(Elts); 2273 } else { 2274 V = UndefValue::get(CurTy); 2275 } 2276 break; 2277 } 2278 case bitc::CST_CODE_STRING: // STRING: [values] 2279 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2280 if (Record.empty()) 2281 return error("Invalid record"); 2282 2283 SmallString<16> Elts(Record.begin(), Record.end()); 2284 V = ConstantDataArray::getString(Context, Elts, 2285 BitCode == bitc::CST_CODE_CSTRING); 2286 break; 2287 } 2288 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2289 if (Record.empty()) 2290 return error("Invalid record"); 2291 2292 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2293 if (EltTy->isIntegerTy(8)) { 2294 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2295 if (isa<VectorType>(CurTy)) 2296 V = ConstantDataVector::get(Context, Elts); 2297 else 2298 V = ConstantDataArray::get(Context, Elts); 2299 } else if (EltTy->isIntegerTy(16)) { 2300 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2301 if (isa<VectorType>(CurTy)) 2302 V = ConstantDataVector::get(Context, Elts); 2303 else 2304 V = ConstantDataArray::get(Context, Elts); 2305 } else if (EltTy->isIntegerTy(32)) { 2306 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2307 if (isa<VectorType>(CurTy)) 2308 V = ConstantDataVector::get(Context, Elts); 2309 else 2310 V = ConstantDataArray::get(Context, Elts); 2311 } else if (EltTy->isIntegerTy(64)) { 2312 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2313 if (isa<VectorType>(CurTy)) 2314 V = ConstantDataVector::get(Context, Elts); 2315 else 2316 V = ConstantDataArray::get(Context, Elts); 2317 } else if (EltTy->isHalfTy()) { 2318 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2319 if (isa<VectorType>(CurTy)) 2320 V = ConstantDataVector::getFP(Context, Elts); 2321 else 2322 V = ConstantDataArray::getFP(Context, Elts); 2323 } else if (EltTy->isFloatTy()) { 2324 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2325 if (isa<VectorType>(CurTy)) 2326 V = ConstantDataVector::getFP(Context, Elts); 2327 else 2328 V = ConstantDataArray::getFP(Context, Elts); 2329 } else if (EltTy->isDoubleTy()) { 2330 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2331 if (isa<VectorType>(CurTy)) 2332 V = ConstantDataVector::getFP(Context, Elts); 2333 else 2334 V = ConstantDataArray::getFP(Context, Elts); 2335 } else { 2336 return error("Invalid type for value"); 2337 } 2338 break; 2339 } 2340 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2341 if (Record.size() < 2) 2342 return error("Invalid record"); 2343 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2344 if (Opc < 0) { 2345 V = UndefValue::get(CurTy); // Unknown unop. 2346 } else { 2347 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2348 unsigned Flags = 0; 2349 V = ConstantExpr::get(Opc, LHS, Flags); 2350 } 2351 break; 2352 } 2353 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2354 if (Record.size() < 3) 2355 return error("Invalid record"); 2356 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2357 if (Opc < 0) { 2358 V = UndefValue::get(CurTy); // Unknown binop. 2359 } else { 2360 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2361 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2362 unsigned Flags = 0; 2363 if (Record.size() >= 4) { 2364 if (Opc == Instruction::Add || 2365 Opc == Instruction::Sub || 2366 Opc == Instruction::Mul || 2367 Opc == Instruction::Shl) { 2368 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2369 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2370 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2371 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2372 } else if (Opc == Instruction::SDiv || 2373 Opc == Instruction::UDiv || 2374 Opc == Instruction::LShr || 2375 Opc == Instruction::AShr) { 2376 if (Record[3] & (1 << bitc::PEO_EXACT)) 2377 Flags |= SDivOperator::IsExact; 2378 } 2379 } 2380 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2381 } 2382 break; 2383 } 2384 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2385 if (Record.size() < 3) 2386 return error("Invalid record"); 2387 int Opc = getDecodedCastOpcode(Record[0]); 2388 if (Opc < 0) { 2389 V = UndefValue::get(CurTy); // Unknown cast. 2390 } else { 2391 Type *OpTy = getTypeByID(Record[1]); 2392 if (!OpTy) 2393 return error("Invalid record"); 2394 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2395 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2396 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2397 } 2398 break; 2399 } 2400 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2401 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2402 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2403 // operands] 2404 unsigned OpNum = 0; 2405 Type *PointeeType = nullptr; 2406 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2407 Record.size() % 2) 2408 PointeeType = getTypeByID(Record[OpNum++]); 2409 2410 bool InBounds = false; 2411 Optional<unsigned> InRangeIndex; 2412 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2413 uint64_t Op = Record[OpNum++]; 2414 InBounds = Op & 1; 2415 InRangeIndex = Op >> 1; 2416 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2417 InBounds = true; 2418 2419 SmallVector<Constant*, 16> Elts; 2420 while (OpNum != Record.size()) { 2421 Type *ElTy = getTypeByID(Record[OpNum++]); 2422 if (!ElTy) 2423 return error("Invalid record"); 2424 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2425 } 2426 2427 if (Elts.size() < 1) 2428 return error("Invalid gep with no operands"); 2429 2430 Type *ImplicitPointeeType = 2431 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2432 ->getElementType(); 2433 if (!PointeeType) 2434 PointeeType = ImplicitPointeeType; 2435 else if (PointeeType != ImplicitPointeeType) 2436 return error("Explicit gep operator type does not match pointee type " 2437 "of pointer operand"); 2438 2439 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2440 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2441 InBounds, InRangeIndex); 2442 break; 2443 } 2444 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2445 if (Record.size() < 3) 2446 return error("Invalid record"); 2447 2448 Type *SelectorTy = Type::getInt1Ty(Context); 2449 2450 // The selector might be an i1 or an <n x i1> 2451 // Get the type from the ValueList before getting a forward ref. 2452 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2453 if (Value *V = ValueList[Record[0]]) 2454 if (SelectorTy != V->getType()) 2455 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2456 2457 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2458 SelectorTy), 2459 ValueList.getConstantFwdRef(Record[1],CurTy), 2460 ValueList.getConstantFwdRef(Record[2],CurTy)); 2461 break; 2462 } 2463 case bitc::CST_CODE_CE_EXTRACTELT 2464 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2465 if (Record.size() < 3) 2466 return error("Invalid record"); 2467 VectorType *OpTy = 2468 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2469 if (!OpTy) 2470 return error("Invalid record"); 2471 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2472 Constant *Op1 = nullptr; 2473 if (Record.size() == 4) { 2474 Type *IdxTy = getTypeByID(Record[2]); 2475 if (!IdxTy) 2476 return error("Invalid record"); 2477 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2478 } else // TODO: Remove with llvm 4.0 2479 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2480 if (!Op1) 2481 return error("Invalid record"); 2482 V = ConstantExpr::getExtractElement(Op0, Op1); 2483 break; 2484 } 2485 case bitc::CST_CODE_CE_INSERTELT 2486 : { // CE_INSERTELT: [opval, opval, opty, opval] 2487 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2488 if (Record.size() < 3 || !OpTy) 2489 return error("Invalid record"); 2490 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2491 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2492 OpTy->getElementType()); 2493 Constant *Op2 = nullptr; 2494 if (Record.size() == 4) { 2495 Type *IdxTy = getTypeByID(Record[2]); 2496 if (!IdxTy) 2497 return error("Invalid record"); 2498 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2499 } else // TODO: Remove with llvm 4.0 2500 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2501 if (!Op2) 2502 return error("Invalid record"); 2503 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2504 break; 2505 } 2506 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2507 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2508 if (Record.size() < 3 || !OpTy) 2509 return error("Invalid record"); 2510 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2511 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2512 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2513 OpTy->getNumElements()); 2514 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2515 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2516 break; 2517 } 2518 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2519 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2520 VectorType *OpTy = 2521 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2522 if (Record.size() < 4 || !RTy || !OpTy) 2523 return error("Invalid record"); 2524 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2525 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2526 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2527 RTy->getNumElements()); 2528 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2529 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2530 break; 2531 } 2532 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2533 if (Record.size() < 4) 2534 return error("Invalid record"); 2535 Type *OpTy = getTypeByID(Record[0]); 2536 if (!OpTy) 2537 return error("Invalid record"); 2538 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2539 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2540 2541 if (OpTy->isFPOrFPVectorTy()) 2542 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2543 else 2544 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2545 break; 2546 } 2547 // This maintains backward compatibility, pre-asm dialect keywords. 2548 // FIXME: Remove with the 4.0 release. 2549 case bitc::CST_CODE_INLINEASM_OLD: { 2550 if (Record.size() < 2) 2551 return error("Invalid record"); 2552 std::string AsmStr, ConstrStr; 2553 bool HasSideEffects = Record[0] & 1; 2554 bool IsAlignStack = Record[0] >> 1; 2555 unsigned AsmStrSize = Record[1]; 2556 if (2+AsmStrSize >= Record.size()) 2557 return error("Invalid record"); 2558 unsigned ConstStrSize = Record[2+AsmStrSize]; 2559 if (3+AsmStrSize+ConstStrSize > Record.size()) 2560 return error("Invalid record"); 2561 2562 for (unsigned i = 0; i != AsmStrSize; ++i) 2563 AsmStr += (char)Record[2+i]; 2564 for (unsigned i = 0; i != ConstStrSize; ++i) 2565 ConstrStr += (char)Record[3+AsmStrSize+i]; 2566 PointerType *PTy = cast<PointerType>(CurTy); 2567 UpgradeInlineAsmString(&AsmStr); 2568 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2569 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2570 break; 2571 } 2572 // This version adds support for the asm dialect keywords (e.g., 2573 // inteldialect). 2574 case bitc::CST_CODE_INLINEASM: { 2575 if (Record.size() < 2) 2576 return error("Invalid record"); 2577 std::string AsmStr, ConstrStr; 2578 bool HasSideEffects = Record[0] & 1; 2579 bool IsAlignStack = (Record[0] >> 1) & 1; 2580 unsigned AsmDialect = Record[0] >> 2; 2581 unsigned AsmStrSize = Record[1]; 2582 if (2+AsmStrSize >= Record.size()) 2583 return error("Invalid record"); 2584 unsigned ConstStrSize = Record[2+AsmStrSize]; 2585 if (3+AsmStrSize+ConstStrSize > Record.size()) 2586 return error("Invalid record"); 2587 2588 for (unsigned i = 0; i != AsmStrSize; ++i) 2589 AsmStr += (char)Record[2+i]; 2590 for (unsigned i = 0; i != ConstStrSize; ++i) 2591 ConstrStr += (char)Record[3+AsmStrSize+i]; 2592 PointerType *PTy = cast<PointerType>(CurTy); 2593 UpgradeInlineAsmString(&AsmStr); 2594 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2595 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2596 InlineAsm::AsmDialect(AsmDialect)); 2597 break; 2598 } 2599 case bitc::CST_CODE_BLOCKADDRESS:{ 2600 if (Record.size() < 3) 2601 return error("Invalid record"); 2602 Type *FnTy = getTypeByID(Record[0]); 2603 if (!FnTy) 2604 return error("Invalid record"); 2605 Function *Fn = 2606 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2607 if (!Fn) 2608 return error("Invalid record"); 2609 2610 // If the function is already parsed we can insert the block address right 2611 // away. 2612 BasicBlock *BB; 2613 unsigned BBID = Record[2]; 2614 if (!BBID) 2615 // Invalid reference to entry block. 2616 return error("Invalid ID"); 2617 if (!Fn->empty()) { 2618 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2619 for (size_t I = 0, E = BBID; I != E; ++I) { 2620 if (BBI == BBE) 2621 return error("Invalid ID"); 2622 ++BBI; 2623 } 2624 BB = &*BBI; 2625 } else { 2626 // Otherwise insert a placeholder and remember it so it can be inserted 2627 // when the function is parsed. 2628 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2629 if (FwdBBs.empty()) 2630 BasicBlockFwdRefQueue.push_back(Fn); 2631 if (FwdBBs.size() < BBID + 1) 2632 FwdBBs.resize(BBID + 1); 2633 if (!FwdBBs[BBID]) 2634 FwdBBs[BBID] = BasicBlock::Create(Context); 2635 BB = FwdBBs[BBID]; 2636 } 2637 V = BlockAddress::get(Fn, BB); 2638 break; 2639 } 2640 } 2641 2642 ValueList.assignValue(V, NextCstNo); 2643 ++NextCstNo; 2644 } 2645 } 2646 2647 Error BitcodeReader::parseUseLists() { 2648 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2649 return error("Invalid record"); 2650 2651 // Read all the records. 2652 SmallVector<uint64_t, 64> Record; 2653 2654 while (true) { 2655 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2656 2657 switch (Entry.Kind) { 2658 case BitstreamEntry::SubBlock: // Handled for us already. 2659 case BitstreamEntry::Error: 2660 return error("Malformed block"); 2661 case BitstreamEntry::EndBlock: 2662 return Error::success(); 2663 case BitstreamEntry::Record: 2664 // The interesting case. 2665 break; 2666 } 2667 2668 // Read a use list record. 2669 Record.clear(); 2670 bool IsBB = false; 2671 switch (Stream.readRecord(Entry.ID, Record)) { 2672 default: // Default behavior: unknown type. 2673 break; 2674 case bitc::USELIST_CODE_BB: 2675 IsBB = true; 2676 LLVM_FALLTHROUGH; 2677 case bitc::USELIST_CODE_DEFAULT: { 2678 unsigned RecordLength = Record.size(); 2679 if (RecordLength < 3) 2680 // Records should have at least an ID and two indexes. 2681 return error("Invalid record"); 2682 unsigned ID = Record.back(); 2683 Record.pop_back(); 2684 2685 Value *V; 2686 if (IsBB) { 2687 assert(ID < FunctionBBs.size() && "Basic block not found"); 2688 V = FunctionBBs[ID]; 2689 } else 2690 V = ValueList[ID]; 2691 unsigned NumUses = 0; 2692 SmallDenseMap<const Use *, unsigned, 16> Order; 2693 for (const Use &U : V->materialized_uses()) { 2694 if (++NumUses > Record.size()) 2695 break; 2696 Order[&U] = Record[NumUses - 1]; 2697 } 2698 if (Order.size() != Record.size() || NumUses > Record.size()) 2699 // Mismatches can happen if the functions are being materialized lazily 2700 // (out-of-order), or a value has been upgraded. 2701 break; 2702 2703 V->sortUseList([&](const Use &L, const Use &R) { 2704 return Order.lookup(&L) < Order.lookup(&R); 2705 }); 2706 break; 2707 } 2708 } 2709 } 2710 } 2711 2712 /// When we see the block for metadata, remember where it is and then skip it. 2713 /// This lets us lazily deserialize the metadata. 2714 Error BitcodeReader::rememberAndSkipMetadata() { 2715 // Save the current stream state. 2716 uint64_t CurBit = Stream.GetCurrentBitNo(); 2717 DeferredMetadataInfo.push_back(CurBit); 2718 2719 // Skip over the block for now. 2720 if (Stream.SkipBlock()) 2721 return error("Invalid record"); 2722 return Error::success(); 2723 } 2724 2725 Error BitcodeReader::materializeMetadata() { 2726 for (uint64_t BitPos : DeferredMetadataInfo) { 2727 // Move the bit stream to the saved position. 2728 Stream.JumpToBit(BitPos); 2729 if (Error Err = MDLoader->parseModuleMetadata()) 2730 return Err; 2731 } 2732 2733 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2734 // metadata. 2735 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2736 NamedMDNode *LinkerOpts = 2737 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2738 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2739 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2740 } 2741 2742 DeferredMetadataInfo.clear(); 2743 return Error::success(); 2744 } 2745 2746 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2747 2748 /// When we see the block for a function body, remember where it is and then 2749 /// skip it. This lets us lazily deserialize the functions. 2750 Error BitcodeReader::rememberAndSkipFunctionBody() { 2751 // Get the function we are talking about. 2752 if (FunctionsWithBodies.empty()) 2753 return error("Insufficient function protos"); 2754 2755 Function *Fn = FunctionsWithBodies.back(); 2756 FunctionsWithBodies.pop_back(); 2757 2758 // Save the current stream state. 2759 uint64_t CurBit = Stream.GetCurrentBitNo(); 2760 assert( 2761 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2762 "Mismatch between VST and scanned function offsets"); 2763 DeferredFunctionInfo[Fn] = CurBit; 2764 2765 // Skip over the function block for now. 2766 if (Stream.SkipBlock()) 2767 return error("Invalid record"); 2768 return Error::success(); 2769 } 2770 2771 Error BitcodeReader::globalCleanup() { 2772 // Patch the initializers for globals and aliases up. 2773 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2774 return Err; 2775 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2776 return error("Malformed global initializer set"); 2777 2778 // Look for intrinsic functions which need to be upgraded at some point 2779 for (Function &F : *TheModule) { 2780 MDLoader->upgradeDebugIntrinsics(F); 2781 Function *NewFn; 2782 if (UpgradeIntrinsicFunction(&F, NewFn)) 2783 UpgradedIntrinsics[&F] = NewFn; 2784 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2785 // Some types could be renamed during loading if several modules are 2786 // loaded in the same LLVMContext (LTO scenario). In this case we should 2787 // remangle intrinsics names as well. 2788 RemangledIntrinsics[&F] = Remangled.getValue(); 2789 } 2790 2791 // Look for global variables which need to be renamed. 2792 for (GlobalVariable &GV : TheModule->globals()) 2793 UpgradeGlobalVariable(&GV); 2794 2795 // Force deallocation of memory for these vectors to favor the client that 2796 // want lazy deserialization. 2797 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2798 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2799 IndirectSymbolInits); 2800 return Error::success(); 2801 } 2802 2803 /// Support for lazy parsing of function bodies. This is required if we 2804 /// either have an old bitcode file without a VST forward declaration record, 2805 /// or if we have an anonymous function being materialized, since anonymous 2806 /// functions do not have a name and are therefore not in the VST. 2807 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2808 Stream.JumpToBit(NextUnreadBit); 2809 2810 if (Stream.AtEndOfStream()) 2811 return error("Could not find function in stream"); 2812 2813 if (!SeenFirstFunctionBody) 2814 return error("Trying to materialize functions before seeing function blocks"); 2815 2816 // An old bitcode file with the symbol table at the end would have 2817 // finished the parse greedily. 2818 assert(SeenValueSymbolTable); 2819 2820 SmallVector<uint64_t, 64> Record; 2821 2822 while (true) { 2823 BitstreamEntry Entry = Stream.advance(); 2824 switch (Entry.Kind) { 2825 default: 2826 return error("Expect SubBlock"); 2827 case BitstreamEntry::SubBlock: 2828 switch (Entry.ID) { 2829 default: 2830 return error("Expect function block"); 2831 case bitc::FUNCTION_BLOCK_ID: 2832 if (Error Err = rememberAndSkipFunctionBody()) 2833 return Err; 2834 NextUnreadBit = Stream.GetCurrentBitNo(); 2835 return Error::success(); 2836 } 2837 } 2838 } 2839 } 2840 2841 bool BitcodeReaderBase::readBlockInfo() { 2842 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2843 if (!NewBlockInfo) 2844 return true; 2845 BlockInfo = std::move(*NewBlockInfo); 2846 return false; 2847 } 2848 2849 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2850 // v1: [selection_kind, name] 2851 // v2: [strtab_offset, strtab_size, selection_kind] 2852 StringRef Name; 2853 std::tie(Name, Record) = readNameFromStrtab(Record); 2854 2855 if (Record.empty()) 2856 return error("Invalid record"); 2857 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2858 std::string OldFormatName; 2859 if (!UseStrtab) { 2860 if (Record.size() < 2) 2861 return error("Invalid record"); 2862 unsigned ComdatNameSize = Record[1]; 2863 OldFormatName.reserve(ComdatNameSize); 2864 for (unsigned i = 0; i != ComdatNameSize; ++i) 2865 OldFormatName += (char)Record[2 + i]; 2866 Name = OldFormatName; 2867 } 2868 Comdat *C = TheModule->getOrInsertComdat(Name); 2869 C->setSelectionKind(SK); 2870 ComdatList.push_back(C); 2871 return Error::success(); 2872 } 2873 2874 static void inferDSOLocal(GlobalValue *GV) { 2875 // infer dso_local from linkage and visibility if it is not encoded. 2876 if (GV->hasLocalLinkage() || 2877 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 2878 GV->setDSOLocal(true); 2879 } 2880 2881 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2882 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2883 // visibility, threadlocal, unnamed_addr, externally_initialized, 2884 // dllstorageclass, comdat, attributes, preemption specifier] (name in VST) 2885 // v2: [strtab_offset, strtab_size, v1] 2886 StringRef Name; 2887 std::tie(Name, Record) = readNameFromStrtab(Record); 2888 2889 if (Record.size() < 6) 2890 return error("Invalid record"); 2891 Type *Ty = getTypeByID(Record[0]); 2892 if (!Ty) 2893 return error("Invalid record"); 2894 bool isConstant = Record[1] & 1; 2895 bool explicitType = Record[1] & 2; 2896 unsigned AddressSpace; 2897 if (explicitType) { 2898 AddressSpace = Record[1] >> 2; 2899 } else { 2900 if (!Ty->isPointerTy()) 2901 return error("Invalid type for value"); 2902 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2903 Ty = cast<PointerType>(Ty)->getElementType(); 2904 } 2905 2906 uint64_t RawLinkage = Record[3]; 2907 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2908 unsigned Alignment; 2909 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2910 return Err; 2911 std::string Section; 2912 if (Record[5]) { 2913 if (Record[5] - 1 >= SectionTable.size()) 2914 return error("Invalid ID"); 2915 Section = SectionTable[Record[5] - 1]; 2916 } 2917 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2918 // Local linkage must have default visibility. 2919 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2920 // FIXME: Change to an error if non-default in 4.0. 2921 Visibility = getDecodedVisibility(Record[6]); 2922 2923 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2924 if (Record.size() > 7) 2925 TLM = getDecodedThreadLocalMode(Record[7]); 2926 2927 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2928 if (Record.size() > 8) 2929 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2930 2931 bool ExternallyInitialized = false; 2932 if (Record.size() > 9) 2933 ExternallyInitialized = Record[9]; 2934 2935 GlobalVariable *NewGV = 2936 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2937 nullptr, TLM, AddressSpace, ExternallyInitialized); 2938 NewGV->setAlignment(Alignment); 2939 if (!Section.empty()) 2940 NewGV->setSection(Section); 2941 NewGV->setVisibility(Visibility); 2942 NewGV->setUnnamedAddr(UnnamedAddr); 2943 2944 if (Record.size() > 10) 2945 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2946 else 2947 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2948 2949 ValueList.push_back(NewGV); 2950 2951 // Remember which value to use for the global initializer. 2952 if (unsigned InitID = Record[2]) 2953 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2954 2955 if (Record.size() > 11) { 2956 if (unsigned ComdatID = Record[11]) { 2957 if (ComdatID > ComdatList.size()) 2958 return error("Invalid global variable comdat ID"); 2959 NewGV->setComdat(ComdatList[ComdatID - 1]); 2960 } 2961 } else if (hasImplicitComdat(RawLinkage)) { 2962 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2963 } 2964 2965 if (Record.size() > 12) { 2966 auto AS = getAttributes(Record[12]).getFnAttributes(); 2967 NewGV->setAttributes(AS); 2968 } 2969 2970 if (Record.size() > 13) { 2971 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 2972 } 2973 inferDSOLocal(NewGV); 2974 2975 return Error::success(); 2976 } 2977 2978 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2979 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2980 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2981 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 2982 // v2: [strtab_offset, strtab_size, v1] 2983 StringRef Name; 2984 std::tie(Name, Record) = readNameFromStrtab(Record); 2985 2986 if (Record.size() < 8) 2987 return error("Invalid record"); 2988 Type *Ty = getTypeByID(Record[0]); 2989 if (!Ty) 2990 return error("Invalid record"); 2991 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2992 Ty = PTy->getElementType(); 2993 auto *FTy = dyn_cast<FunctionType>(Ty); 2994 if (!FTy) 2995 return error("Invalid type for value"); 2996 auto CC = static_cast<CallingConv::ID>(Record[1]); 2997 if (CC & ~CallingConv::MaxID) 2998 return error("Invalid calling convention ID"); 2999 3000 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3001 if (Record.size() > 16) 3002 AddrSpace = Record[16]; 3003 3004 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3005 AddrSpace, Name, TheModule); 3006 3007 Func->setCallingConv(CC); 3008 bool isProto = Record[2]; 3009 uint64_t RawLinkage = Record[3]; 3010 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3011 Func->setAttributes(getAttributes(Record[4])); 3012 3013 unsigned Alignment; 3014 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3015 return Err; 3016 Func->setAlignment(Alignment); 3017 if (Record[6]) { 3018 if (Record[6] - 1 >= SectionTable.size()) 3019 return error("Invalid ID"); 3020 Func->setSection(SectionTable[Record[6] - 1]); 3021 } 3022 // Local linkage must have default visibility. 3023 if (!Func->hasLocalLinkage()) 3024 // FIXME: Change to an error if non-default in 4.0. 3025 Func->setVisibility(getDecodedVisibility(Record[7])); 3026 if (Record.size() > 8 && Record[8]) { 3027 if (Record[8] - 1 >= GCTable.size()) 3028 return error("Invalid ID"); 3029 Func->setGC(GCTable[Record[8] - 1]); 3030 } 3031 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3032 if (Record.size() > 9) 3033 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3034 Func->setUnnamedAddr(UnnamedAddr); 3035 if (Record.size() > 10 && Record[10] != 0) 3036 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3037 3038 if (Record.size() > 11) 3039 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3040 else 3041 upgradeDLLImportExportLinkage(Func, RawLinkage); 3042 3043 if (Record.size() > 12) { 3044 if (unsigned ComdatID = Record[12]) { 3045 if (ComdatID > ComdatList.size()) 3046 return error("Invalid function comdat ID"); 3047 Func->setComdat(ComdatList[ComdatID - 1]); 3048 } 3049 } else if (hasImplicitComdat(RawLinkage)) { 3050 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3051 } 3052 3053 if (Record.size() > 13 && Record[13] != 0) 3054 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3055 3056 if (Record.size() > 14 && Record[14] != 0) 3057 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3058 3059 if (Record.size() > 15) { 3060 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3061 } 3062 inferDSOLocal(Func); 3063 3064 ValueList.push_back(Func); 3065 3066 // If this is a function with a body, remember the prototype we are 3067 // creating now, so that we can match up the body with them later. 3068 if (!isProto) { 3069 Func->setIsMaterializable(true); 3070 FunctionsWithBodies.push_back(Func); 3071 DeferredFunctionInfo[Func] = 0; 3072 } 3073 return Error::success(); 3074 } 3075 3076 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3077 unsigned BitCode, ArrayRef<uint64_t> Record) { 3078 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3079 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3080 // dllstorageclass, threadlocal, unnamed_addr, 3081 // preemption specifier] (name in VST) 3082 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3083 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3084 // preemption specifier] (name in VST) 3085 // v2: [strtab_offset, strtab_size, v1] 3086 StringRef Name; 3087 std::tie(Name, Record) = readNameFromStrtab(Record); 3088 3089 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3090 if (Record.size() < (3 + (unsigned)NewRecord)) 3091 return error("Invalid record"); 3092 unsigned OpNum = 0; 3093 Type *Ty = getTypeByID(Record[OpNum++]); 3094 if (!Ty) 3095 return error("Invalid record"); 3096 3097 unsigned AddrSpace; 3098 if (!NewRecord) { 3099 auto *PTy = dyn_cast<PointerType>(Ty); 3100 if (!PTy) 3101 return error("Invalid type for value"); 3102 Ty = PTy->getElementType(); 3103 AddrSpace = PTy->getAddressSpace(); 3104 } else { 3105 AddrSpace = Record[OpNum++]; 3106 } 3107 3108 auto Val = Record[OpNum++]; 3109 auto Linkage = Record[OpNum++]; 3110 GlobalIndirectSymbol *NewGA; 3111 if (BitCode == bitc::MODULE_CODE_ALIAS || 3112 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3113 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3114 TheModule); 3115 else 3116 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3117 nullptr, TheModule); 3118 // Old bitcode files didn't have visibility field. 3119 // Local linkage must have default visibility. 3120 if (OpNum != Record.size()) { 3121 auto VisInd = OpNum++; 3122 if (!NewGA->hasLocalLinkage()) 3123 // FIXME: Change to an error if non-default in 4.0. 3124 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3125 } 3126 if (BitCode == bitc::MODULE_CODE_ALIAS || 3127 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3128 if (OpNum != Record.size()) 3129 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3130 else 3131 upgradeDLLImportExportLinkage(NewGA, Linkage); 3132 if (OpNum != Record.size()) 3133 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3134 if (OpNum != Record.size()) 3135 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3136 } 3137 if (OpNum != Record.size()) 3138 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3139 inferDSOLocal(NewGA); 3140 3141 ValueList.push_back(NewGA); 3142 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3143 return Error::success(); 3144 } 3145 3146 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3147 bool ShouldLazyLoadMetadata) { 3148 if (ResumeBit) 3149 Stream.JumpToBit(ResumeBit); 3150 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3151 return error("Invalid record"); 3152 3153 SmallVector<uint64_t, 64> Record; 3154 3155 // Read all the records for this module. 3156 while (true) { 3157 BitstreamEntry Entry = Stream.advance(); 3158 3159 switch (Entry.Kind) { 3160 case BitstreamEntry::Error: 3161 return error("Malformed block"); 3162 case BitstreamEntry::EndBlock: 3163 return globalCleanup(); 3164 3165 case BitstreamEntry::SubBlock: 3166 switch (Entry.ID) { 3167 default: // Skip unknown content. 3168 if (Stream.SkipBlock()) 3169 return error("Invalid record"); 3170 break; 3171 case bitc::BLOCKINFO_BLOCK_ID: 3172 if (readBlockInfo()) 3173 return error("Malformed block"); 3174 break; 3175 case bitc::PARAMATTR_BLOCK_ID: 3176 if (Error Err = parseAttributeBlock()) 3177 return Err; 3178 break; 3179 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3180 if (Error Err = parseAttributeGroupBlock()) 3181 return Err; 3182 break; 3183 case bitc::TYPE_BLOCK_ID_NEW: 3184 if (Error Err = parseTypeTable()) 3185 return Err; 3186 break; 3187 case bitc::VALUE_SYMTAB_BLOCK_ID: 3188 if (!SeenValueSymbolTable) { 3189 // Either this is an old form VST without function index and an 3190 // associated VST forward declaration record (which would have caused 3191 // the VST to be jumped to and parsed before it was encountered 3192 // normally in the stream), or there were no function blocks to 3193 // trigger an earlier parsing of the VST. 3194 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3195 if (Error Err = parseValueSymbolTable()) 3196 return Err; 3197 SeenValueSymbolTable = true; 3198 } else { 3199 // We must have had a VST forward declaration record, which caused 3200 // the parser to jump to and parse the VST earlier. 3201 assert(VSTOffset > 0); 3202 if (Stream.SkipBlock()) 3203 return error("Invalid record"); 3204 } 3205 break; 3206 case bitc::CONSTANTS_BLOCK_ID: 3207 if (Error Err = parseConstants()) 3208 return Err; 3209 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3210 return Err; 3211 break; 3212 case bitc::METADATA_BLOCK_ID: 3213 if (ShouldLazyLoadMetadata) { 3214 if (Error Err = rememberAndSkipMetadata()) 3215 return Err; 3216 break; 3217 } 3218 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3219 if (Error Err = MDLoader->parseModuleMetadata()) 3220 return Err; 3221 break; 3222 case bitc::METADATA_KIND_BLOCK_ID: 3223 if (Error Err = MDLoader->parseMetadataKinds()) 3224 return Err; 3225 break; 3226 case bitc::FUNCTION_BLOCK_ID: 3227 // If this is the first function body we've seen, reverse the 3228 // FunctionsWithBodies list. 3229 if (!SeenFirstFunctionBody) { 3230 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3231 if (Error Err = globalCleanup()) 3232 return Err; 3233 SeenFirstFunctionBody = true; 3234 } 3235 3236 if (VSTOffset > 0) { 3237 // If we have a VST forward declaration record, make sure we 3238 // parse the VST now if we haven't already. It is needed to 3239 // set up the DeferredFunctionInfo vector for lazy reading. 3240 if (!SeenValueSymbolTable) { 3241 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3242 return Err; 3243 SeenValueSymbolTable = true; 3244 // Fall through so that we record the NextUnreadBit below. 3245 // This is necessary in case we have an anonymous function that 3246 // is later materialized. Since it will not have a VST entry we 3247 // need to fall back to the lazy parse to find its offset. 3248 } else { 3249 // If we have a VST forward declaration record, but have already 3250 // parsed the VST (just above, when the first function body was 3251 // encountered here), then we are resuming the parse after 3252 // materializing functions. The ResumeBit points to the 3253 // start of the last function block recorded in the 3254 // DeferredFunctionInfo map. Skip it. 3255 if (Stream.SkipBlock()) 3256 return error("Invalid record"); 3257 continue; 3258 } 3259 } 3260 3261 // Support older bitcode files that did not have the function 3262 // index in the VST, nor a VST forward declaration record, as 3263 // well as anonymous functions that do not have VST entries. 3264 // Build the DeferredFunctionInfo vector on the fly. 3265 if (Error Err = rememberAndSkipFunctionBody()) 3266 return Err; 3267 3268 // Suspend parsing when we reach the function bodies. Subsequent 3269 // materialization calls will resume it when necessary. If the bitcode 3270 // file is old, the symbol table will be at the end instead and will not 3271 // have been seen yet. In this case, just finish the parse now. 3272 if (SeenValueSymbolTable) { 3273 NextUnreadBit = Stream.GetCurrentBitNo(); 3274 // After the VST has been parsed, we need to make sure intrinsic name 3275 // are auto-upgraded. 3276 return globalCleanup(); 3277 } 3278 break; 3279 case bitc::USELIST_BLOCK_ID: 3280 if (Error Err = parseUseLists()) 3281 return Err; 3282 break; 3283 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3284 if (Error Err = parseOperandBundleTags()) 3285 return Err; 3286 break; 3287 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3288 if (Error Err = parseSyncScopeNames()) 3289 return Err; 3290 break; 3291 } 3292 continue; 3293 3294 case BitstreamEntry::Record: 3295 // The interesting case. 3296 break; 3297 } 3298 3299 // Read a record. 3300 auto BitCode = Stream.readRecord(Entry.ID, Record); 3301 switch (BitCode) { 3302 default: break; // Default behavior, ignore unknown content. 3303 case bitc::MODULE_CODE_VERSION: { 3304 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3305 if (!VersionOrErr) 3306 return VersionOrErr.takeError(); 3307 UseRelativeIDs = *VersionOrErr >= 1; 3308 break; 3309 } 3310 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3311 std::string S; 3312 if (convertToString(Record, 0, S)) 3313 return error("Invalid record"); 3314 TheModule->setTargetTriple(S); 3315 break; 3316 } 3317 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3318 std::string S; 3319 if (convertToString(Record, 0, S)) 3320 return error("Invalid record"); 3321 TheModule->setDataLayout(S); 3322 break; 3323 } 3324 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3325 std::string S; 3326 if (convertToString(Record, 0, S)) 3327 return error("Invalid record"); 3328 TheModule->setModuleInlineAsm(S); 3329 break; 3330 } 3331 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3332 // FIXME: Remove in 4.0. 3333 std::string S; 3334 if (convertToString(Record, 0, S)) 3335 return error("Invalid record"); 3336 // Ignore value. 3337 break; 3338 } 3339 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3340 std::string S; 3341 if (convertToString(Record, 0, S)) 3342 return error("Invalid record"); 3343 SectionTable.push_back(S); 3344 break; 3345 } 3346 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3347 std::string S; 3348 if (convertToString(Record, 0, S)) 3349 return error("Invalid record"); 3350 GCTable.push_back(S); 3351 break; 3352 } 3353 case bitc::MODULE_CODE_COMDAT: 3354 if (Error Err = parseComdatRecord(Record)) 3355 return Err; 3356 break; 3357 case bitc::MODULE_CODE_GLOBALVAR: 3358 if (Error Err = parseGlobalVarRecord(Record)) 3359 return Err; 3360 break; 3361 case bitc::MODULE_CODE_FUNCTION: 3362 if (Error Err = parseFunctionRecord(Record)) 3363 return Err; 3364 break; 3365 case bitc::MODULE_CODE_IFUNC: 3366 case bitc::MODULE_CODE_ALIAS: 3367 case bitc::MODULE_CODE_ALIAS_OLD: 3368 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3369 return Err; 3370 break; 3371 /// MODULE_CODE_VSTOFFSET: [offset] 3372 case bitc::MODULE_CODE_VSTOFFSET: 3373 if (Record.size() < 1) 3374 return error("Invalid record"); 3375 // Note that we subtract 1 here because the offset is relative to one word 3376 // before the start of the identification or module block, which was 3377 // historically always the start of the regular bitcode header. 3378 VSTOffset = Record[0] - 1; 3379 break; 3380 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3381 case bitc::MODULE_CODE_SOURCE_FILENAME: 3382 SmallString<128> ValueName; 3383 if (convertToString(Record, 0, ValueName)) 3384 return error("Invalid record"); 3385 TheModule->setSourceFileName(ValueName); 3386 break; 3387 } 3388 Record.clear(); 3389 } 3390 } 3391 3392 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3393 bool IsImporting) { 3394 TheModule = M; 3395 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3396 [&](unsigned ID) { return getTypeByID(ID); }); 3397 return parseModule(0, ShouldLazyLoadMetadata); 3398 } 3399 3400 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3401 if (!isa<PointerType>(PtrType)) 3402 return error("Load/Store operand is not a pointer type"); 3403 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3404 3405 if (ValType && ValType != ElemType) 3406 return error("Explicit load/store type does not match pointee " 3407 "type of pointer operand"); 3408 if (!PointerType::isLoadableOrStorableType(ElemType)) 3409 return error("Cannot load/store from pointer"); 3410 return Error::success(); 3411 } 3412 3413 /// Lazily parse the specified function body block. 3414 Error BitcodeReader::parseFunctionBody(Function *F) { 3415 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3416 return error("Invalid record"); 3417 3418 // Unexpected unresolved metadata when parsing function. 3419 if (MDLoader->hasFwdRefs()) 3420 return error("Invalid function metadata: incoming forward references"); 3421 3422 InstructionList.clear(); 3423 unsigned ModuleValueListSize = ValueList.size(); 3424 unsigned ModuleMDLoaderSize = MDLoader->size(); 3425 3426 // Add all the function arguments to the value table. 3427 for (Argument &I : F->args()) 3428 ValueList.push_back(&I); 3429 3430 unsigned NextValueNo = ValueList.size(); 3431 BasicBlock *CurBB = nullptr; 3432 unsigned CurBBNo = 0; 3433 3434 DebugLoc LastLoc; 3435 auto getLastInstruction = [&]() -> Instruction * { 3436 if (CurBB && !CurBB->empty()) 3437 return &CurBB->back(); 3438 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3439 !FunctionBBs[CurBBNo - 1]->empty()) 3440 return &FunctionBBs[CurBBNo - 1]->back(); 3441 return nullptr; 3442 }; 3443 3444 std::vector<OperandBundleDef> OperandBundles; 3445 3446 // Read all the records. 3447 SmallVector<uint64_t, 64> Record; 3448 3449 while (true) { 3450 BitstreamEntry Entry = Stream.advance(); 3451 3452 switch (Entry.Kind) { 3453 case BitstreamEntry::Error: 3454 return error("Malformed block"); 3455 case BitstreamEntry::EndBlock: 3456 goto OutOfRecordLoop; 3457 3458 case BitstreamEntry::SubBlock: 3459 switch (Entry.ID) { 3460 default: // Skip unknown content. 3461 if (Stream.SkipBlock()) 3462 return error("Invalid record"); 3463 break; 3464 case bitc::CONSTANTS_BLOCK_ID: 3465 if (Error Err = parseConstants()) 3466 return Err; 3467 NextValueNo = ValueList.size(); 3468 break; 3469 case bitc::VALUE_SYMTAB_BLOCK_ID: 3470 if (Error Err = parseValueSymbolTable()) 3471 return Err; 3472 break; 3473 case bitc::METADATA_ATTACHMENT_ID: 3474 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3475 return Err; 3476 break; 3477 case bitc::METADATA_BLOCK_ID: 3478 assert(DeferredMetadataInfo.empty() && 3479 "Must read all module-level metadata before function-level"); 3480 if (Error Err = MDLoader->parseFunctionMetadata()) 3481 return Err; 3482 break; 3483 case bitc::USELIST_BLOCK_ID: 3484 if (Error Err = parseUseLists()) 3485 return Err; 3486 break; 3487 } 3488 continue; 3489 3490 case BitstreamEntry::Record: 3491 // The interesting case. 3492 break; 3493 } 3494 3495 // Read a record. 3496 Record.clear(); 3497 Instruction *I = nullptr; 3498 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3499 switch (BitCode) { 3500 default: // Default behavior: reject 3501 return error("Invalid value"); 3502 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3503 if (Record.size() < 1 || Record[0] == 0) 3504 return error("Invalid record"); 3505 // Create all the basic blocks for the function. 3506 FunctionBBs.resize(Record[0]); 3507 3508 // See if anything took the address of blocks in this function. 3509 auto BBFRI = BasicBlockFwdRefs.find(F); 3510 if (BBFRI == BasicBlockFwdRefs.end()) { 3511 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3512 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3513 } else { 3514 auto &BBRefs = BBFRI->second; 3515 // Check for invalid basic block references. 3516 if (BBRefs.size() > FunctionBBs.size()) 3517 return error("Invalid ID"); 3518 assert(!BBRefs.empty() && "Unexpected empty array"); 3519 assert(!BBRefs.front() && "Invalid reference to entry block"); 3520 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3521 ++I) 3522 if (I < RE && BBRefs[I]) { 3523 BBRefs[I]->insertInto(F); 3524 FunctionBBs[I] = BBRefs[I]; 3525 } else { 3526 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3527 } 3528 3529 // Erase from the table. 3530 BasicBlockFwdRefs.erase(BBFRI); 3531 } 3532 3533 CurBB = FunctionBBs[0]; 3534 continue; 3535 } 3536 3537 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3538 // This record indicates that the last instruction is at the same 3539 // location as the previous instruction with a location. 3540 I = getLastInstruction(); 3541 3542 if (!I) 3543 return error("Invalid record"); 3544 I->setDebugLoc(LastLoc); 3545 I = nullptr; 3546 continue; 3547 3548 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3549 I = getLastInstruction(); 3550 if (!I || Record.size() < 4) 3551 return error("Invalid record"); 3552 3553 unsigned Line = Record[0], Col = Record[1]; 3554 unsigned ScopeID = Record[2], IAID = Record[3]; 3555 bool isImplicitCode = Record.size() == 5 && Record[4]; 3556 3557 MDNode *Scope = nullptr, *IA = nullptr; 3558 if (ScopeID) { 3559 Scope = dyn_cast_or_null<MDNode>( 3560 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3561 if (!Scope) 3562 return error("Invalid record"); 3563 } 3564 if (IAID) { 3565 IA = dyn_cast_or_null<MDNode>( 3566 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3567 if (!IA) 3568 return error("Invalid record"); 3569 } 3570 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3571 I->setDebugLoc(LastLoc); 3572 I = nullptr; 3573 continue; 3574 } 3575 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3576 unsigned OpNum = 0; 3577 Value *LHS; 3578 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3579 OpNum+1 > Record.size()) 3580 return error("Invalid record"); 3581 3582 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3583 if (Opc == -1) 3584 return error("Invalid record"); 3585 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3586 InstructionList.push_back(I); 3587 if (OpNum < Record.size()) { 3588 if (isa<FPMathOperator>(I)) { 3589 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3590 if (FMF.any()) 3591 I->setFastMathFlags(FMF); 3592 } 3593 } 3594 break; 3595 } 3596 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3597 unsigned OpNum = 0; 3598 Value *LHS, *RHS; 3599 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3600 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3601 OpNum+1 > Record.size()) 3602 return error("Invalid record"); 3603 3604 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3605 if (Opc == -1) 3606 return error("Invalid record"); 3607 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3608 InstructionList.push_back(I); 3609 if (OpNum < Record.size()) { 3610 if (Opc == Instruction::Add || 3611 Opc == Instruction::Sub || 3612 Opc == Instruction::Mul || 3613 Opc == Instruction::Shl) { 3614 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3615 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3616 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3617 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3618 } else if (Opc == Instruction::SDiv || 3619 Opc == Instruction::UDiv || 3620 Opc == Instruction::LShr || 3621 Opc == Instruction::AShr) { 3622 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3623 cast<BinaryOperator>(I)->setIsExact(true); 3624 } else if (isa<FPMathOperator>(I)) { 3625 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3626 if (FMF.any()) 3627 I->setFastMathFlags(FMF); 3628 } 3629 3630 } 3631 break; 3632 } 3633 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3634 unsigned OpNum = 0; 3635 Value *Op; 3636 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3637 OpNum+2 != Record.size()) 3638 return error("Invalid record"); 3639 3640 Type *ResTy = getTypeByID(Record[OpNum]); 3641 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3642 if (Opc == -1 || !ResTy) 3643 return error("Invalid record"); 3644 Instruction *Temp = nullptr; 3645 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3646 if (Temp) { 3647 InstructionList.push_back(Temp); 3648 CurBB->getInstList().push_back(Temp); 3649 } 3650 } else { 3651 auto CastOp = (Instruction::CastOps)Opc; 3652 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3653 return error("Invalid cast"); 3654 I = CastInst::Create(CastOp, Op, ResTy); 3655 } 3656 InstructionList.push_back(I); 3657 break; 3658 } 3659 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3660 case bitc::FUNC_CODE_INST_GEP_OLD: 3661 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3662 unsigned OpNum = 0; 3663 3664 Type *Ty; 3665 bool InBounds; 3666 3667 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3668 InBounds = Record[OpNum++]; 3669 Ty = getTypeByID(Record[OpNum++]); 3670 } else { 3671 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3672 Ty = nullptr; 3673 } 3674 3675 Value *BasePtr; 3676 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3677 return error("Invalid record"); 3678 3679 if (!Ty) 3680 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3681 ->getElementType(); 3682 else if (Ty != 3683 cast<PointerType>(BasePtr->getType()->getScalarType()) 3684 ->getElementType()) 3685 return error( 3686 "Explicit gep type does not match pointee type of pointer operand"); 3687 3688 SmallVector<Value*, 16> GEPIdx; 3689 while (OpNum != Record.size()) { 3690 Value *Op; 3691 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3692 return error("Invalid record"); 3693 GEPIdx.push_back(Op); 3694 } 3695 3696 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3697 3698 InstructionList.push_back(I); 3699 if (InBounds) 3700 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3701 break; 3702 } 3703 3704 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3705 // EXTRACTVAL: [opty, opval, n x indices] 3706 unsigned OpNum = 0; 3707 Value *Agg; 3708 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3709 return error("Invalid record"); 3710 3711 unsigned RecSize = Record.size(); 3712 if (OpNum == RecSize) 3713 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3714 3715 SmallVector<unsigned, 4> EXTRACTVALIdx; 3716 Type *CurTy = Agg->getType(); 3717 for (; OpNum != RecSize; ++OpNum) { 3718 bool IsArray = CurTy->isArrayTy(); 3719 bool IsStruct = CurTy->isStructTy(); 3720 uint64_t Index = Record[OpNum]; 3721 3722 if (!IsStruct && !IsArray) 3723 return error("EXTRACTVAL: Invalid type"); 3724 if ((unsigned)Index != Index) 3725 return error("Invalid value"); 3726 if (IsStruct && Index >= CurTy->getStructNumElements()) 3727 return error("EXTRACTVAL: Invalid struct index"); 3728 if (IsArray && Index >= CurTy->getArrayNumElements()) 3729 return error("EXTRACTVAL: Invalid array index"); 3730 EXTRACTVALIdx.push_back((unsigned)Index); 3731 3732 if (IsStruct) 3733 CurTy = CurTy->getStructElementType(Index); 3734 else 3735 CurTy = CurTy->getArrayElementType(); 3736 } 3737 3738 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3739 InstructionList.push_back(I); 3740 break; 3741 } 3742 3743 case bitc::FUNC_CODE_INST_INSERTVAL: { 3744 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3745 unsigned OpNum = 0; 3746 Value *Agg; 3747 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3748 return error("Invalid record"); 3749 Value *Val; 3750 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3751 return error("Invalid record"); 3752 3753 unsigned RecSize = Record.size(); 3754 if (OpNum == RecSize) 3755 return error("INSERTVAL: Invalid instruction with 0 indices"); 3756 3757 SmallVector<unsigned, 4> INSERTVALIdx; 3758 Type *CurTy = Agg->getType(); 3759 for (; OpNum != RecSize; ++OpNum) { 3760 bool IsArray = CurTy->isArrayTy(); 3761 bool IsStruct = CurTy->isStructTy(); 3762 uint64_t Index = Record[OpNum]; 3763 3764 if (!IsStruct && !IsArray) 3765 return error("INSERTVAL: Invalid type"); 3766 if ((unsigned)Index != Index) 3767 return error("Invalid value"); 3768 if (IsStruct && Index >= CurTy->getStructNumElements()) 3769 return error("INSERTVAL: Invalid struct index"); 3770 if (IsArray && Index >= CurTy->getArrayNumElements()) 3771 return error("INSERTVAL: Invalid array index"); 3772 3773 INSERTVALIdx.push_back((unsigned)Index); 3774 if (IsStruct) 3775 CurTy = CurTy->getStructElementType(Index); 3776 else 3777 CurTy = CurTy->getArrayElementType(); 3778 } 3779 3780 if (CurTy != Val->getType()) 3781 return error("Inserted value type doesn't match aggregate type"); 3782 3783 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3784 InstructionList.push_back(I); 3785 break; 3786 } 3787 3788 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3789 // obsolete form of select 3790 // handles select i1 ... in old bitcode 3791 unsigned OpNum = 0; 3792 Value *TrueVal, *FalseVal, *Cond; 3793 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3794 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3795 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3796 return error("Invalid record"); 3797 3798 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3799 InstructionList.push_back(I); 3800 break; 3801 } 3802 3803 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3804 // new form of select 3805 // handles select i1 or select [N x i1] 3806 unsigned OpNum = 0; 3807 Value *TrueVal, *FalseVal, *Cond; 3808 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3809 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3810 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3811 return error("Invalid record"); 3812 3813 // select condition can be either i1 or [N x i1] 3814 if (VectorType* vector_type = 3815 dyn_cast<VectorType>(Cond->getType())) { 3816 // expect <n x i1> 3817 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3818 return error("Invalid type for value"); 3819 } else { 3820 // expect i1 3821 if (Cond->getType() != Type::getInt1Ty(Context)) 3822 return error("Invalid type for value"); 3823 } 3824 3825 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3826 InstructionList.push_back(I); 3827 break; 3828 } 3829 3830 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3831 unsigned OpNum = 0; 3832 Value *Vec, *Idx; 3833 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3834 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3835 return error("Invalid record"); 3836 if (!Vec->getType()->isVectorTy()) 3837 return error("Invalid type for value"); 3838 I = ExtractElementInst::Create(Vec, Idx); 3839 InstructionList.push_back(I); 3840 break; 3841 } 3842 3843 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3844 unsigned OpNum = 0; 3845 Value *Vec, *Elt, *Idx; 3846 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3847 return error("Invalid record"); 3848 if (!Vec->getType()->isVectorTy()) 3849 return error("Invalid type for value"); 3850 if (popValue(Record, OpNum, NextValueNo, 3851 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3852 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3853 return error("Invalid record"); 3854 I = InsertElementInst::Create(Vec, Elt, Idx); 3855 InstructionList.push_back(I); 3856 break; 3857 } 3858 3859 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3860 unsigned OpNum = 0; 3861 Value *Vec1, *Vec2, *Mask; 3862 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3863 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3864 return error("Invalid record"); 3865 3866 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3867 return error("Invalid record"); 3868 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3869 return error("Invalid type for value"); 3870 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3871 InstructionList.push_back(I); 3872 break; 3873 } 3874 3875 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3876 // Old form of ICmp/FCmp returning bool 3877 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3878 // both legal on vectors but had different behaviour. 3879 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3880 // FCmp/ICmp returning bool or vector of bool 3881 3882 unsigned OpNum = 0; 3883 Value *LHS, *RHS; 3884 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3885 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3886 return error("Invalid record"); 3887 3888 unsigned PredVal = Record[OpNum]; 3889 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3890 FastMathFlags FMF; 3891 if (IsFP && Record.size() > OpNum+1) 3892 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3893 3894 if (OpNum+1 != Record.size()) 3895 return error("Invalid record"); 3896 3897 if (LHS->getType()->isFPOrFPVectorTy()) 3898 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3899 else 3900 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3901 3902 if (FMF.any()) 3903 I->setFastMathFlags(FMF); 3904 InstructionList.push_back(I); 3905 break; 3906 } 3907 3908 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3909 { 3910 unsigned Size = Record.size(); 3911 if (Size == 0) { 3912 I = ReturnInst::Create(Context); 3913 InstructionList.push_back(I); 3914 break; 3915 } 3916 3917 unsigned OpNum = 0; 3918 Value *Op = nullptr; 3919 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3920 return error("Invalid record"); 3921 if (OpNum != Record.size()) 3922 return error("Invalid record"); 3923 3924 I = ReturnInst::Create(Context, Op); 3925 InstructionList.push_back(I); 3926 break; 3927 } 3928 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3929 if (Record.size() != 1 && Record.size() != 3) 3930 return error("Invalid record"); 3931 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3932 if (!TrueDest) 3933 return error("Invalid record"); 3934 3935 if (Record.size() == 1) { 3936 I = BranchInst::Create(TrueDest); 3937 InstructionList.push_back(I); 3938 } 3939 else { 3940 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3941 Value *Cond = getValue(Record, 2, NextValueNo, 3942 Type::getInt1Ty(Context)); 3943 if (!FalseDest || !Cond) 3944 return error("Invalid record"); 3945 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3946 InstructionList.push_back(I); 3947 } 3948 break; 3949 } 3950 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3951 if (Record.size() != 1 && Record.size() != 2) 3952 return error("Invalid record"); 3953 unsigned Idx = 0; 3954 Value *CleanupPad = 3955 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3956 if (!CleanupPad) 3957 return error("Invalid record"); 3958 BasicBlock *UnwindDest = nullptr; 3959 if (Record.size() == 2) { 3960 UnwindDest = getBasicBlock(Record[Idx++]); 3961 if (!UnwindDest) 3962 return error("Invalid record"); 3963 } 3964 3965 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3966 InstructionList.push_back(I); 3967 break; 3968 } 3969 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3970 if (Record.size() != 2) 3971 return error("Invalid record"); 3972 unsigned Idx = 0; 3973 Value *CatchPad = 3974 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3975 if (!CatchPad) 3976 return error("Invalid record"); 3977 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3978 if (!BB) 3979 return error("Invalid record"); 3980 3981 I = CatchReturnInst::Create(CatchPad, BB); 3982 InstructionList.push_back(I); 3983 break; 3984 } 3985 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3986 // We must have, at minimum, the outer scope and the number of arguments. 3987 if (Record.size() < 2) 3988 return error("Invalid record"); 3989 3990 unsigned Idx = 0; 3991 3992 Value *ParentPad = 3993 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3994 3995 unsigned NumHandlers = Record[Idx++]; 3996 3997 SmallVector<BasicBlock *, 2> Handlers; 3998 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3999 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4000 if (!BB) 4001 return error("Invalid record"); 4002 Handlers.push_back(BB); 4003 } 4004 4005 BasicBlock *UnwindDest = nullptr; 4006 if (Idx + 1 == Record.size()) { 4007 UnwindDest = getBasicBlock(Record[Idx++]); 4008 if (!UnwindDest) 4009 return error("Invalid record"); 4010 } 4011 4012 if (Record.size() != Idx) 4013 return error("Invalid record"); 4014 4015 auto *CatchSwitch = 4016 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4017 for (BasicBlock *Handler : Handlers) 4018 CatchSwitch->addHandler(Handler); 4019 I = CatchSwitch; 4020 InstructionList.push_back(I); 4021 break; 4022 } 4023 case bitc::FUNC_CODE_INST_CATCHPAD: 4024 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4025 // We must have, at minimum, the outer scope and the number of arguments. 4026 if (Record.size() < 2) 4027 return error("Invalid record"); 4028 4029 unsigned Idx = 0; 4030 4031 Value *ParentPad = 4032 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4033 4034 unsigned NumArgOperands = Record[Idx++]; 4035 4036 SmallVector<Value *, 2> Args; 4037 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4038 Value *Val; 4039 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4040 return error("Invalid record"); 4041 Args.push_back(Val); 4042 } 4043 4044 if (Record.size() != Idx) 4045 return error("Invalid record"); 4046 4047 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4048 I = CleanupPadInst::Create(ParentPad, Args); 4049 else 4050 I = CatchPadInst::Create(ParentPad, Args); 4051 InstructionList.push_back(I); 4052 break; 4053 } 4054 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4055 // Check magic 4056 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4057 // "New" SwitchInst format with case ranges. The changes to write this 4058 // format were reverted but we still recognize bitcode that uses it. 4059 // Hopefully someday we will have support for case ranges and can use 4060 // this format again. 4061 4062 Type *OpTy = getTypeByID(Record[1]); 4063 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4064 4065 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4066 BasicBlock *Default = getBasicBlock(Record[3]); 4067 if (!OpTy || !Cond || !Default) 4068 return error("Invalid record"); 4069 4070 unsigned NumCases = Record[4]; 4071 4072 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4073 InstructionList.push_back(SI); 4074 4075 unsigned CurIdx = 5; 4076 for (unsigned i = 0; i != NumCases; ++i) { 4077 SmallVector<ConstantInt*, 1> CaseVals; 4078 unsigned NumItems = Record[CurIdx++]; 4079 for (unsigned ci = 0; ci != NumItems; ++ci) { 4080 bool isSingleNumber = Record[CurIdx++]; 4081 4082 APInt Low; 4083 unsigned ActiveWords = 1; 4084 if (ValueBitWidth > 64) 4085 ActiveWords = Record[CurIdx++]; 4086 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4087 ValueBitWidth); 4088 CurIdx += ActiveWords; 4089 4090 if (!isSingleNumber) { 4091 ActiveWords = 1; 4092 if (ValueBitWidth > 64) 4093 ActiveWords = Record[CurIdx++]; 4094 APInt High = readWideAPInt( 4095 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4096 CurIdx += ActiveWords; 4097 4098 // FIXME: It is not clear whether values in the range should be 4099 // compared as signed or unsigned values. The partially 4100 // implemented changes that used this format in the past used 4101 // unsigned comparisons. 4102 for ( ; Low.ule(High); ++Low) 4103 CaseVals.push_back(ConstantInt::get(Context, Low)); 4104 } else 4105 CaseVals.push_back(ConstantInt::get(Context, Low)); 4106 } 4107 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4108 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4109 cve = CaseVals.end(); cvi != cve; ++cvi) 4110 SI->addCase(*cvi, DestBB); 4111 } 4112 I = SI; 4113 break; 4114 } 4115 4116 // Old SwitchInst format without case ranges. 4117 4118 if (Record.size() < 3 || (Record.size() & 1) == 0) 4119 return error("Invalid record"); 4120 Type *OpTy = getTypeByID(Record[0]); 4121 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4122 BasicBlock *Default = getBasicBlock(Record[2]); 4123 if (!OpTy || !Cond || !Default) 4124 return error("Invalid record"); 4125 unsigned NumCases = (Record.size()-3)/2; 4126 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4127 InstructionList.push_back(SI); 4128 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4129 ConstantInt *CaseVal = 4130 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4131 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4132 if (!CaseVal || !DestBB) { 4133 delete SI; 4134 return error("Invalid record"); 4135 } 4136 SI->addCase(CaseVal, DestBB); 4137 } 4138 I = SI; 4139 break; 4140 } 4141 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4142 if (Record.size() < 2) 4143 return error("Invalid record"); 4144 Type *OpTy = getTypeByID(Record[0]); 4145 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4146 if (!OpTy || !Address) 4147 return error("Invalid record"); 4148 unsigned NumDests = Record.size()-2; 4149 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4150 InstructionList.push_back(IBI); 4151 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4152 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4153 IBI->addDestination(DestBB); 4154 } else { 4155 delete IBI; 4156 return error("Invalid record"); 4157 } 4158 } 4159 I = IBI; 4160 break; 4161 } 4162 4163 case bitc::FUNC_CODE_INST_INVOKE: { 4164 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4165 if (Record.size() < 4) 4166 return error("Invalid record"); 4167 unsigned OpNum = 0; 4168 AttributeList PAL = getAttributes(Record[OpNum++]); 4169 unsigned CCInfo = Record[OpNum++]; 4170 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4171 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4172 4173 FunctionType *FTy = nullptr; 4174 if (CCInfo >> 13 & 1 && 4175 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4176 return error("Explicit invoke type is not a function type"); 4177 4178 Value *Callee; 4179 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4180 return error("Invalid record"); 4181 4182 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4183 if (!CalleeTy) 4184 return error("Callee is not a pointer"); 4185 if (!FTy) { 4186 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4187 if (!FTy) 4188 return error("Callee is not of pointer to function type"); 4189 } else if (CalleeTy->getElementType() != FTy) 4190 return error("Explicit invoke type does not match pointee type of " 4191 "callee operand"); 4192 if (Record.size() < FTy->getNumParams() + OpNum) 4193 return error("Insufficient operands to call"); 4194 4195 SmallVector<Value*, 16> Ops; 4196 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4197 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4198 FTy->getParamType(i))); 4199 if (!Ops.back()) 4200 return error("Invalid record"); 4201 } 4202 4203 if (!FTy->isVarArg()) { 4204 if (Record.size() != OpNum) 4205 return error("Invalid record"); 4206 } else { 4207 // Read type/value pairs for varargs params. 4208 while (OpNum != Record.size()) { 4209 Value *Op; 4210 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4211 return error("Invalid record"); 4212 Ops.push_back(Op); 4213 } 4214 } 4215 4216 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4217 OperandBundles); 4218 OperandBundles.clear(); 4219 InstructionList.push_back(I); 4220 cast<InvokeInst>(I)->setCallingConv( 4221 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4222 cast<InvokeInst>(I)->setAttributes(PAL); 4223 break; 4224 } 4225 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4226 unsigned Idx = 0; 4227 Value *Val = nullptr; 4228 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4229 return error("Invalid record"); 4230 I = ResumeInst::Create(Val); 4231 InstructionList.push_back(I); 4232 break; 4233 } 4234 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4235 I = new UnreachableInst(Context); 4236 InstructionList.push_back(I); 4237 break; 4238 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4239 if (Record.size() < 1 || ((Record.size()-1)&1)) 4240 return error("Invalid record"); 4241 Type *Ty = getTypeByID(Record[0]); 4242 if (!Ty) 4243 return error("Invalid record"); 4244 4245 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4246 InstructionList.push_back(PN); 4247 4248 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4249 Value *V; 4250 // With the new function encoding, it is possible that operands have 4251 // negative IDs (for forward references). Use a signed VBR 4252 // representation to keep the encoding small. 4253 if (UseRelativeIDs) 4254 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4255 else 4256 V = getValue(Record, 1+i, NextValueNo, Ty); 4257 BasicBlock *BB = getBasicBlock(Record[2+i]); 4258 if (!V || !BB) 4259 return error("Invalid record"); 4260 PN->addIncoming(V, BB); 4261 } 4262 I = PN; 4263 break; 4264 } 4265 4266 case bitc::FUNC_CODE_INST_LANDINGPAD: 4267 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4268 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4269 unsigned Idx = 0; 4270 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4271 if (Record.size() < 3) 4272 return error("Invalid record"); 4273 } else { 4274 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4275 if (Record.size() < 4) 4276 return error("Invalid record"); 4277 } 4278 Type *Ty = getTypeByID(Record[Idx++]); 4279 if (!Ty) 4280 return error("Invalid record"); 4281 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4282 Value *PersFn = nullptr; 4283 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4284 return error("Invalid record"); 4285 4286 if (!F->hasPersonalityFn()) 4287 F->setPersonalityFn(cast<Constant>(PersFn)); 4288 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4289 return error("Personality function mismatch"); 4290 } 4291 4292 bool IsCleanup = !!Record[Idx++]; 4293 unsigned NumClauses = Record[Idx++]; 4294 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4295 LP->setCleanup(IsCleanup); 4296 for (unsigned J = 0; J != NumClauses; ++J) { 4297 LandingPadInst::ClauseType CT = 4298 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4299 Value *Val; 4300 4301 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4302 delete LP; 4303 return error("Invalid record"); 4304 } 4305 4306 assert((CT != LandingPadInst::Catch || 4307 !isa<ArrayType>(Val->getType())) && 4308 "Catch clause has a invalid type!"); 4309 assert((CT != LandingPadInst::Filter || 4310 isa<ArrayType>(Val->getType())) && 4311 "Filter clause has invalid type!"); 4312 LP->addClause(cast<Constant>(Val)); 4313 } 4314 4315 I = LP; 4316 InstructionList.push_back(I); 4317 break; 4318 } 4319 4320 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4321 if (Record.size() != 4) 4322 return error("Invalid record"); 4323 uint64_t AlignRecord = Record[3]; 4324 const uint64_t InAllocaMask = uint64_t(1) << 5; 4325 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4326 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4327 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4328 SwiftErrorMask; 4329 bool InAlloca = AlignRecord & InAllocaMask; 4330 bool SwiftError = AlignRecord & SwiftErrorMask; 4331 Type *Ty = getTypeByID(Record[0]); 4332 if ((AlignRecord & ExplicitTypeMask) == 0) { 4333 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4334 if (!PTy) 4335 return error("Old-style alloca with a non-pointer type"); 4336 Ty = PTy->getElementType(); 4337 } 4338 Type *OpTy = getTypeByID(Record[1]); 4339 Value *Size = getFnValueByID(Record[2], OpTy); 4340 unsigned Align; 4341 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4342 return Err; 4343 } 4344 if (!Ty || !Size) 4345 return error("Invalid record"); 4346 4347 // FIXME: Make this an optional field. 4348 const DataLayout &DL = TheModule->getDataLayout(); 4349 unsigned AS = DL.getAllocaAddrSpace(); 4350 4351 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4352 AI->setUsedWithInAlloca(InAlloca); 4353 AI->setSwiftError(SwiftError); 4354 I = AI; 4355 InstructionList.push_back(I); 4356 break; 4357 } 4358 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4359 unsigned OpNum = 0; 4360 Value *Op; 4361 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4362 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4363 return error("Invalid record"); 4364 4365 Type *Ty = nullptr; 4366 if (OpNum + 3 == Record.size()) 4367 Ty = getTypeByID(Record[OpNum++]); 4368 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4369 return Err; 4370 if (!Ty) 4371 Ty = cast<PointerType>(Op->getType())->getElementType(); 4372 4373 unsigned Align; 4374 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4375 return Err; 4376 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4377 4378 InstructionList.push_back(I); 4379 break; 4380 } 4381 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4382 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4383 unsigned OpNum = 0; 4384 Value *Op; 4385 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4386 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4387 return error("Invalid record"); 4388 4389 Type *Ty = nullptr; 4390 if (OpNum + 5 == Record.size()) 4391 Ty = getTypeByID(Record[OpNum++]); 4392 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4393 return Err; 4394 if (!Ty) 4395 Ty = cast<PointerType>(Op->getType())->getElementType(); 4396 4397 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4398 if (Ordering == AtomicOrdering::NotAtomic || 4399 Ordering == AtomicOrdering::Release || 4400 Ordering == AtomicOrdering::AcquireRelease) 4401 return error("Invalid record"); 4402 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4403 return error("Invalid record"); 4404 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4405 4406 unsigned Align; 4407 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4408 return Err; 4409 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID); 4410 4411 InstructionList.push_back(I); 4412 break; 4413 } 4414 case bitc::FUNC_CODE_INST_STORE: 4415 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4416 unsigned OpNum = 0; 4417 Value *Val, *Ptr; 4418 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4419 (BitCode == bitc::FUNC_CODE_INST_STORE 4420 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4421 : popValue(Record, OpNum, NextValueNo, 4422 cast<PointerType>(Ptr->getType())->getElementType(), 4423 Val)) || 4424 OpNum + 2 != Record.size()) 4425 return error("Invalid record"); 4426 4427 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4428 return Err; 4429 unsigned Align; 4430 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4431 return Err; 4432 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4433 InstructionList.push_back(I); 4434 break; 4435 } 4436 case bitc::FUNC_CODE_INST_STOREATOMIC: 4437 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4438 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4439 unsigned OpNum = 0; 4440 Value *Val, *Ptr; 4441 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4442 !isa<PointerType>(Ptr->getType()) || 4443 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4444 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4445 : popValue(Record, OpNum, NextValueNo, 4446 cast<PointerType>(Ptr->getType())->getElementType(), 4447 Val)) || 4448 OpNum + 4 != Record.size()) 4449 return error("Invalid record"); 4450 4451 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4452 return Err; 4453 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4454 if (Ordering == AtomicOrdering::NotAtomic || 4455 Ordering == AtomicOrdering::Acquire || 4456 Ordering == AtomicOrdering::AcquireRelease) 4457 return error("Invalid record"); 4458 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4459 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4460 return error("Invalid record"); 4461 4462 unsigned Align; 4463 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4464 return Err; 4465 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4466 InstructionList.push_back(I); 4467 break; 4468 } 4469 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4470 case bitc::FUNC_CODE_INST_CMPXCHG: { 4471 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4472 // failureordering?, isweak?] 4473 unsigned OpNum = 0; 4474 Value *Ptr, *Cmp, *New; 4475 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4476 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4477 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4478 : popValue(Record, OpNum, NextValueNo, 4479 cast<PointerType>(Ptr->getType())->getElementType(), 4480 Cmp)) || 4481 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4482 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4483 return error("Invalid record"); 4484 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4485 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4486 SuccessOrdering == AtomicOrdering::Unordered) 4487 return error("Invalid record"); 4488 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4489 4490 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4491 return Err; 4492 AtomicOrdering FailureOrdering; 4493 if (Record.size() < 7) 4494 FailureOrdering = 4495 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4496 else 4497 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4498 4499 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4500 SSID); 4501 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4502 4503 if (Record.size() < 8) { 4504 // Before weak cmpxchgs existed, the instruction simply returned the 4505 // value loaded from memory, so bitcode files from that era will be 4506 // expecting the first component of a modern cmpxchg. 4507 CurBB->getInstList().push_back(I); 4508 I = ExtractValueInst::Create(I, 0); 4509 } else { 4510 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4511 } 4512 4513 InstructionList.push_back(I); 4514 break; 4515 } 4516 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4517 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4518 unsigned OpNum = 0; 4519 Value *Ptr, *Val; 4520 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4521 !isa<PointerType>(Ptr->getType()) || 4522 popValue(Record, OpNum, NextValueNo, 4523 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4524 OpNum+4 != Record.size()) 4525 return error("Invalid record"); 4526 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4527 if (Operation < AtomicRMWInst::FIRST_BINOP || 4528 Operation > AtomicRMWInst::LAST_BINOP) 4529 return error("Invalid record"); 4530 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4531 if (Ordering == AtomicOrdering::NotAtomic || 4532 Ordering == AtomicOrdering::Unordered) 4533 return error("Invalid record"); 4534 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4535 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4536 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4537 InstructionList.push_back(I); 4538 break; 4539 } 4540 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4541 if (2 != Record.size()) 4542 return error("Invalid record"); 4543 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4544 if (Ordering == AtomicOrdering::NotAtomic || 4545 Ordering == AtomicOrdering::Unordered || 4546 Ordering == AtomicOrdering::Monotonic) 4547 return error("Invalid record"); 4548 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4549 I = new FenceInst(Context, Ordering, SSID); 4550 InstructionList.push_back(I); 4551 break; 4552 } 4553 case bitc::FUNC_CODE_INST_CALL: { 4554 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4555 if (Record.size() < 3) 4556 return error("Invalid record"); 4557 4558 unsigned OpNum = 0; 4559 AttributeList PAL = getAttributes(Record[OpNum++]); 4560 unsigned CCInfo = Record[OpNum++]; 4561 4562 FastMathFlags FMF; 4563 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4564 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4565 if (!FMF.any()) 4566 return error("Fast math flags indicator set for call with no FMF"); 4567 } 4568 4569 FunctionType *FTy = nullptr; 4570 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4571 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4572 return error("Explicit call type is not a function type"); 4573 4574 Value *Callee; 4575 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4576 return error("Invalid record"); 4577 4578 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4579 if (!OpTy) 4580 return error("Callee is not a pointer type"); 4581 if (!FTy) { 4582 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4583 if (!FTy) 4584 return error("Callee is not of pointer to function type"); 4585 } else if (OpTy->getElementType() != FTy) 4586 return error("Explicit call type does not match pointee type of " 4587 "callee operand"); 4588 if (Record.size() < FTy->getNumParams() + OpNum) 4589 return error("Insufficient operands to call"); 4590 4591 SmallVector<Value*, 16> Args; 4592 // Read the fixed params. 4593 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4594 if (FTy->getParamType(i)->isLabelTy()) 4595 Args.push_back(getBasicBlock(Record[OpNum])); 4596 else 4597 Args.push_back(getValue(Record, OpNum, NextValueNo, 4598 FTy->getParamType(i))); 4599 if (!Args.back()) 4600 return error("Invalid record"); 4601 } 4602 4603 // Read type/value pairs for varargs params. 4604 if (!FTy->isVarArg()) { 4605 if (OpNum != Record.size()) 4606 return error("Invalid record"); 4607 } else { 4608 while (OpNum != Record.size()) { 4609 Value *Op; 4610 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4611 return error("Invalid record"); 4612 Args.push_back(Op); 4613 } 4614 } 4615 4616 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4617 OperandBundles.clear(); 4618 InstructionList.push_back(I); 4619 cast<CallInst>(I)->setCallingConv( 4620 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4621 CallInst::TailCallKind TCK = CallInst::TCK_None; 4622 if (CCInfo & 1 << bitc::CALL_TAIL) 4623 TCK = CallInst::TCK_Tail; 4624 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4625 TCK = CallInst::TCK_MustTail; 4626 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4627 TCK = CallInst::TCK_NoTail; 4628 cast<CallInst>(I)->setTailCallKind(TCK); 4629 cast<CallInst>(I)->setAttributes(PAL); 4630 if (FMF.any()) { 4631 if (!isa<FPMathOperator>(I)) 4632 return error("Fast-math-flags specified for call without " 4633 "floating-point scalar or vector return type"); 4634 I->setFastMathFlags(FMF); 4635 } 4636 break; 4637 } 4638 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4639 if (Record.size() < 3) 4640 return error("Invalid record"); 4641 Type *OpTy = getTypeByID(Record[0]); 4642 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4643 Type *ResTy = getTypeByID(Record[2]); 4644 if (!OpTy || !Op || !ResTy) 4645 return error("Invalid record"); 4646 I = new VAArgInst(Op, ResTy); 4647 InstructionList.push_back(I); 4648 break; 4649 } 4650 4651 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4652 // A call or an invoke can be optionally prefixed with some variable 4653 // number of operand bundle blocks. These blocks are read into 4654 // OperandBundles and consumed at the next call or invoke instruction. 4655 4656 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4657 return error("Invalid record"); 4658 4659 std::vector<Value *> Inputs; 4660 4661 unsigned OpNum = 1; 4662 while (OpNum != Record.size()) { 4663 Value *Op; 4664 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4665 return error("Invalid record"); 4666 Inputs.push_back(Op); 4667 } 4668 4669 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4670 continue; 4671 } 4672 } 4673 4674 // Add instruction to end of current BB. If there is no current BB, reject 4675 // this file. 4676 if (!CurBB) { 4677 I->deleteValue(); 4678 return error("Invalid instruction with no BB"); 4679 } 4680 if (!OperandBundles.empty()) { 4681 I->deleteValue(); 4682 return error("Operand bundles found with no consumer"); 4683 } 4684 CurBB->getInstList().push_back(I); 4685 4686 // If this was a terminator instruction, move to the next block. 4687 if (I->isTerminator()) { 4688 ++CurBBNo; 4689 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4690 } 4691 4692 // Non-void values get registered in the value table for future use. 4693 if (I && !I->getType()->isVoidTy()) 4694 ValueList.assignValue(I, NextValueNo++); 4695 } 4696 4697 OutOfRecordLoop: 4698 4699 if (!OperandBundles.empty()) 4700 return error("Operand bundles found with no consumer"); 4701 4702 // Check the function list for unresolved values. 4703 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4704 if (!A->getParent()) { 4705 // We found at least one unresolved value. Nuke them all to avoid leaks. 4706 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4707 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4708 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4709 delete A; 4710 } 4711 } 4712 return error("Never resolved value found in function"); 4713 } 4714 } 4715 4716 // Unexpected unresolved metadata about to be dropped. 4717 if (MDLoader->hasFwdRefs()) 4718 return error("Invalid function metadata: outgoing forward refs"); 4719 4720 // Trim the value list down to the size it was before we parsed this function. 4721 ValueList.shrinkTo(ModuleValueListSize); 4722 MDLoader->shrinkTo(ModuleMDLoaderSize); 4723 std::vector<BasicBlock*>().swap(FunctionBBs); 4724 return Error::success(); 4725 } 4726 4727 /// Find the function body in the bitcode stream 4728 Error BitcodeReader::findFunctionInStream( 4729 Function *F, 4730 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4731 while (DeferredFunctionInfoIterator->second == 0) { 4732 // This is the fallback handling for the old format bitcode that 4733 // didn't contain the function index in the VST, or when we have 4734 // an anonymous function which would not have a VST entry. 4735 // Assert that we have one of those two cases. 4736 assert(VSTOffset == 0 || !F->hasName()); 4737 // Parse the next body in the stream and set its position in the 4738 // DeferredFunctionInfo map. 4739 if (Error Err = rememberAndSkipFunctionBodies()) 4740 return Err; 4741 } 4742 return Error::success(); 4743 } 4744 4745 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4746 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4747 return SyncScope::ID(Val); 4748 if (Val >= SSIDs.size()) 4749 return SyncScope::System; // Map unknown synchronization scopes to system. 4750 return SSIDs[Val]; 4751 } 4752 4753 //===----------------------------------------------------------------------===// 4754 // GVMaterializer implementation 4755 //===----------------------------------------------------------------------===// 4756 4757 Error BitcodeReader::materialize(GlobalValue *GV) { 4758 Function *F = dyn_cast<Function>(GV); 4759 // If it's not a function or is already material, ignore the request. 4760 if (!F || !F->isMaterializable()) 4761 return Error::success(); 4762 4763 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4764 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4765 // If its position is recorded as 0, its body is somewhere in the stream 4766 // but we haven't seen it yet. 4767 if (DFII->second == 0) 4768 if (Error Err = findFunctionInStream(F, DFII)) 4769 return Err; 4770 4771 // Materialize metadata before parsing any function bodies. 4772 if (Error Err = materializeMetadata()) 4773 return Err; 4774 4775 // Move the bit stream to the saved position of the deferred function body. 4776 Stream.JumpToBit(DFII->second); 4777 4778 if (Error Err = parseFunctionBody(F)) 4779 return Err; 4780 F->setIsMaterializable(false); 4781 4782 if (StripDebugInfo) 4783 stripDebugInfo(*F); 4784 4785 // Upgrade any old intrinsic calls in the function. 4786 for (auto &I : UpgradedIntrinsics) { 4787 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4788 UI != UE;) { 4789 User *U = *UI; 4790 ++UI; 4791 if (CallInst *CI = dyn_cast<CallInst>(U)) 4792 UpgradeIntrinsicCall(CI, I.second); 4793 } 4794 } 4795 4796 // Update calls to the remangled intrinsics 4797 for (auto &I : RemangledIntrinsics) 4798 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4799 UI != UE;) 4800 // Don't expect any other users than call sites 4801 CallSite(*UI++).setCalledFunction(I.second); 4802 4803 // Finish fn->subprogram upgrade for materialized functions. 4804 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4805 F->setSubprogram(SP); 4806 4807 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4808 if (!MDLoader->isStrippingTBAA()) { 4809 for (auto &I : instructions(F)) { 4810 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4811 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4812 continue; 4813 MDLoader->setStripTBAA(true); 4814 stripTBAA(F->getParent()); 4815 } 4816 } 4817 4818 // Bring in any functions that this function forward-referenced via 4819 // blockaddresses. 4820 return materializeForwardReferencedFunctions(); 4821 } 4822 4823 Error BitcodeReader::materializeModule() { 4824 if (Error Err = materializeMetadata()) 4825 return Err; 4826 4827 // Promise to materialize all forward references. 4828 WillMaterializeAllForwardRefs = true; 4829 4830 // Iterate over the module, deserializing any functions that are still on 4831 // disk. 4832 for (Function &F : *TheModule) { 4833 if (Error Err = materialize(&F)) 4834 return Err; 4835 } 4836 // At this point, if there are any function bodies, parse the rest of 4837 // the bits in the module past the last function block we have recorded 4838 // through either lazy scanning or the VST. 4839 if (LastFunctionBlockBit || NextUnreadBit) 4840 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4841 ? LastFunctionBlockBit 4842 : NextUnreadBit)) 4843 return Err; 4844 4845 // Check that all block address forward references got resolved (as we 4846 // promised above). 4847 if (!BasicBlockFwdRefs.empty()) 4848 return error("Never resolved function from blockaddress"); 4849 4850 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4851 // delete the old functions to clean up. We can't do this unless the entire 4852 // module is materialized because there could always be another function body 4853 // with calls to the old function. 4854 for (auto &I : UpgradedIntrinsics) { 4855 for (auto *U : I.first->users()) { 4856 if (CallInst *CI = dyn_cast<CallInst>(U)) 4857 UpgradeIntrinsicCall(CI, I.second); 4858 } 4859 if (!I.first->use_empty()) 4860 I.first->replaceAllUsesWith(I.second); 4861 I.first->eraseFromParent(); 4862 } 4863 UpgradedIntrinsics.clear(); 4864 // Do the same for remangled intrinsics 4865 for (auto &I : RemangledIntrinsics) { 4866 I.first->replaceAllUsesWith(I.second); 4867 I.first->eraseFromParent(); 4868 } 4869 RemangledIntrinsics.clear(); 4870 4871 UpgradeDebugInfo(*TheModule); 4872 4873 UpgradeModuleFlags(*TheModule); 4874 4875 UpgradeRetainReleaseMarker(*TheModule); 4876 4877 return Error::success(); 4878 } 4879 4880 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4881 return IdentifiedStructTypes; 4882 } 4883 4884 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4885 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4886 StringRef ModulePath, unsigned ModuleId) 4887 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4888 ModulePath(ModulePath), ModuleId(ModuleId) {} 4889 4890 void ModuleSummaryIndexBitcodeReader::addThisModule() { 4891 TheIndex.addModule(ModulePath, ModuleId); 4892 } 4893 4894 ModuleSummaryIndex::ModuleInfo * 4895 ModuleSummaryIndexBitcodeReader::getThisModule() { 4896 return TheIndex.getModule(ModulePath); 4897 } 4898 4899 std::pair<ValueInfo, GlobalValue::GUID> 4900 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4901 auto VGI = ValueIdToValueInfoMap[ValueId]; 4902 assert(VGI.first); 4903 return VGI; 4904 } 4905 4906 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4907 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4908 StringRef SourceFileName) { 4909 std::string GlobalId = 4910 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4911 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4912 auto OriginalNameID = ValueGUID; 4913 if (GlobalValue::isLocalLinkage(Linkage)) 4914 OriginalNameID = GlobalValue::getGUID(ValueName); 4915 if (PrintSummaryGUIDs) 4916 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4917 << ValueName << "\n"; 4918 4919 // UseStrtab is false for legacy summary formats and value names are 4920 // created on stack. In that case we save the name in a string saver in 4921 // the index so that the value name can be recorded. 4922 ValueIdToValueInfoMap[ValueID] = std::make_pair( 4923 TheIndex.getOrInsertValueInfo( 4924 ValueGUID, 4925 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 4926 OriginalNameID); 4927 } 4928 4929 // Specialized value symbol table parser used when reading module index 4930 // blocks where we don't actually create global values. The parsed information 4931 // is saved in the bitcode reader for use when later parsing summaries. 4932 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4933 uint64_t Offset, 4934 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4935 // With a strtab the VST is not required to parse the summary. 4936 if (UseStrtab) 4937 return Error::success(); 4938 4939 assert(Offset > 0 && "Expected non-zero VST offset"); 4940 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4941 4942 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4943 return error("Invalid record"); 4944 4945 SmallVector<uint64_t, 64> Record; 4946 4947 // Read all the records for this value table. 4948 SmallString<128> ValueName; 4949 4950 while (true) { 4951 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4952 4953 switch (Entry.Kind) { 4954 case BitstreamEntry::SubBlock: // Handled for us already. 4955 case BitstreamEntry::Error: 4956 return error("Malformed block"); 4957 case BitstreamEntry::EndBlock: 4958 // Done parsing VST, jump back to wherever we came from. 4959 Stream.JumpToBit(CurrentBit); 4960 return Error::success(); 4961 case BitstreamEntry::Record: 4962 // The interesting case. 4963 break; 4964 } 4965 4966 // Read a record. 4967 Record.clear(); 4968 switch (Stream.readRecord(Entry.ID, Record)) { 4969 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4970 break; 4971 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4972 if (convertToString(Record, 1, ValueName)) 4973 return error("Invalid record"); 4974 unsigned ValueID = Record[0]; 4975 assert(!SourceFileName.empty()); 4976 auto VLI = ValueIdToLinkageMap.find(ValueID); 4977 assert(VLI != ValueIdToLinkageMap.end() && 4978 "No linkage found for VST entry?"); 4979 auto Linkage = VLI->second; 4980 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4981 ValueName.clear(); 4982 break; 4983 } 4984 case bitc::VST_CODE_FNENTRY: { 4985 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4986 if (convertToString(Record, 2, ValueName)) 4987 return error("Invalid record"); 4988 unsigned ValueID = Record[0]; 4989 assert(!SourceFileName.empty()); 4990 auto VLI = ValueIdToLinkageMap.find(ValueID); 4991 assert(VLI != ValueIdToLinkageMap.end() && 4992 "No linkage found for VST entry?"); 4993 auto Linkage = VLI->second; 4994 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4995 ValueName.clear(); 4996 break; 4997 } 4998 case bitc::VST_CODE_COMBINED_ENTRY: { 4999 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5000 unsigned ValueID = Record[0]; 5001 GlobalValue::GUID RefGUID = Record[1]; 5002 // The "original name", which is the second value of the pair will be 5003 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5004 ValueIdToValueInfoMap[ValueID] = 5005 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5006 break; 5007 } 5008 } 5009 } 5010 } 5011 5012 // Parse just the blocks needed for building the index out of the module. 5013 // At the end of this routine the module Index is populated with a map 5014 // from global value id to GlobalValueSummary objects. 5015 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5016 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5017 return error("Invalid record"); 5018 5019 SmallVector<uint64_t, 64> Record; 5020 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5021 unsigned ValueId = 0; 5022 5023 // Read the index for this module. 5024 while (true) { 5025 BitstreamEntry Entry = Stream.advance(); 5026 5027 switch (Entry.Kind) { 5028 case BitstreamEntry::Error: 5029 return error("Malformed block"); 5030 case BitstreamEntry::EndBlock: 5031 return Error::success(); 5032 5033 case BitstreamEntry::SubBlock: 5034 switch (Entry.ID) { 5035 default: // Skip unknown content. 5036 if (Stream.SkipBlock()) 5037 return error("Invalid record"); 5038 break; 5039 case bitc::BLOCKINFO_BLOCK_ID: 5040 // Need to parse these to get abbrev ids (e.g. for VST) 5041 if (readBlockInfo()) 5042 return error("Malformed block"); 5043 break; 5044 case bitc::VALUE_SYMTAB_BLOCK_ID: 5045 // Should have been parsed earlier via VSTOffset, unless there 5046 // is no summary section. 5047 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5048 !SeenGlobalValSummary) && 5049 "Expected early VST parse via VSTOffset record"); 5050 if (Stream.SkipBlock()) 5051 return error("Invalid record"); 5052 break; 5053 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5054 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5055 // Add the module if it is a per-module index (has a source file name). 5056 if (!SourceFileName.empty()) 5057 addThisModule(); 5058 assert(!SeenValueSymbolTable && 5059 "Already read VST when parsing summary block?"); 5060 // We might not have a VST if there were no values in the 5061 // summary. An empty summary block generated when we are 5062 // performing ThinLTO compiles so we don't later invoke 5063 // the regular LTO process on them. 5064 if (VSTOffset > 0) { 5065 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5066 return Err; 5067 SeenValueSymbolTable = true; 5068 } 5069 SeenGlobalValSummary = true; 5070 if (Error Err = parseEntireSummary(Entry.ID)) 5071 return Err; 5072 break; 5073 case bitc::MODULE_STRTAB_BLOCK_ID: 5074 if (Error Err = parseModuleStringTable()) 5075 return Err; 5076 break; 5077 } 5078 continue; 5079 5080 case BitstreamEntry::Record: { 5081 Record.clear(); 5082 auto BitCode = Stream.readRecord(Entry.ID, Record); 5083 switch (BitCode) { 5084 default: 5085 break; // Default behavior, ignore unknown content. 5086 case bitc::MODULE_CODE_VERSION: { 5087 if (Error Err = parseVersionRecord(Record).takeError()) 5088 return Err; 5089 break; 5090 } 5091 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5092 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5093 SmallString<128> ValueName; 5094 if (convertToString(Record, 0, ValueName)) 5095 return error("Invalid record"); 5096 SourceFileName = ValueName.c_str(); 5097 break; 5098 } 5099 /// MODULE_CODE_HASH: [5*i32] 5100 case bitc::MODULE_CODE_HASH: { 5101 if (Record.size() != 5) 5102 return error("Invalid hash length " + Twine(Record.size()).str()); 5103 auto &Hash = getThisModule()->second.second; 5104 int Pos = 0; 5105 for (auto &Val : Record) { 5106 assert(!(Val >> 32) && "Unexpected high bits set"); 5107 Hash[Pos++] = Val; 5108 } 5109 break; 5110 } 5111 /// MODULE_CODE_VSTOFFSET: [offset] 5112 case bitc::MODULE_CODE_VSTOFFSET: 5113 if (Record.size() < 1) 5114 return error("Invalid record"); 5115 // Note that we subtract 1 here because the offset is relative to one 5116 // word before the start of the identification or module block, which 5117 // was historically always the start of the regular bitcode header. 5118 VSTOffset = Record[0] - 1; 5119 break; 5120 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5121 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5122 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5123 // v2: [strtab offset, strtab size, v1] 5124 case bitc::MODULE_CODE_GLOBALVAR: 5125 case bitc::MODULE_CODE_FUNCTION: 5126 case bitc::MODULE_CODE_ALIAS: { 5127 StringRef Name; 5128 ArrayRef<uint64_t> GVRecord; 5129 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5130 if (GVRecord.size() <= 3) 5131 return error("Invalid record"); 5132 uint64_t RawLinkage = GVRecord[3]; 5133 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5134 if (!UseStrtab) { 5135 ValueIdToLinkageMap[ValueId++] = Linkage; 5136 break; 5137 } 5138 5139 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5140 break; 5141 } 5142 } 5143 } 5144 continue; 5145 } 5146 } 5147 } 5148 5149 std::vector<ValueInfo> 5150 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5151 std::vector<ValueInfo> Ret; 5152 Ret.reserve(Record.size()); 5153 for (uint64_t RefValueId : Record) 5154 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5155 return Ret; 5156 } 5157 5158 std::vector<FunctionSummary::EdgeTy> 5159 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5160 bool IsOldProfileFormat, 5161 bool HasProfile, bool HasRelBF) { 5162 std::vector<FunctionSummary::EdgeTy> Ret; 5163 Ret.reserve(Record.size()); 5164 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5165 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5166 uint64_t RelBF = 0; 5167 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5168 if (IsOldProfileFormat) { 5169 I += 1; // Skip old callsitecount field 5170 if (HasProfile) 5171 I += 1; // Skip old profilecount field 5172 } else if (HasProfile) 5173 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5174 else if (HasRelBF) 5175 RelBF = Record[++I]; 5176 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5177 } 5178 return Ret; 5179 } 5180 5181 static void 5182 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5183 WholeProgramDevirtResolution &Wpd) { 5184 uint64_t ArgNum = Record[Slot++]; 5185 WholeProgramDevirtResolution::ByArg &B = 5186 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5187 Slot += ArgNum; 5188 5189 B.TheKind = 5190 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5191 B.Info = Record[Slot++]; 5192 B.Byte = Record[Slot++]; 5193 B.Bit = Record[Slot++]; 5194 } 5195 5196 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5197 StringRef Strtab, size_t &Slot, 5198 TypeIdSummary &TypeId) { 5199 uint64_t Id = Record[Slot++]; 5200 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5201 5202 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5203 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5204 static_cast<size_t>(Record[Slot + 1])}; 5205 Slot += 2; 5206 5207 uint64_t ResByArgNum = Record[Slot++]; 5208 for (uint64_t I = 0; I != ResByArgNum; ++I) 5209 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5210 } 5211 5212 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5213 StringRef Strtab, 5214 ModuleSummaryIndex &TheIndex) { 5215 size_t Slot = 0; 5216 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5217 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5218 Slot += 2; 5219 5220 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5221 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5222 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5223 TypeId.TTRes.SizeM1 = Record[Slot++]; 5224 TypeId.TTRes.BitMask = Record[Slot++]; 5225 TypeId.TTRes.InlineBits = Record[Slot++]; 5226 5227 while (Slot < Record.size()) 5228 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5229 } 5230 5231 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) { 5232 // Read-only refs are in the end of the refs list. 5233 for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo) 5234 Refs[RefNo].setReadOnly(); 5235 } 5236 5237 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5238 // objects in the index. 5239 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5240 if (Stream.EnterSubBlock(ID)) 5241 return error("Invalid record"); 5242 SmallVector<uint64_t, 64> Record; 5243 5244 // Parse version 5245 { 5246 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5247 if (Entry.Kind != BitstreamEntry::Record) 5248 return error("Invalid Summary Block: record for version expected"); 5249 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5250 return error("Invalid Summary Block: version expected"); 5251 } 5252 const uint64_t Version = Record[0]; 5253 const bool IsOldProfileFormat = Version == 1; 5254 if (Version < 1 || Version > 6) 5255 return error("Invalid summary version " + Twine(Version) + 5256 ". Version should be in the range [1-6]."); 5257 Record.clear(); 5258 5259 // Keep around the last seen summary to be used when we see an optional 5260 // "OriginalName" attachement. 5261 GlobalValueSummary *LastSeenSummary = nullptr; 5262 GlobalValue::GUID LastSeenGUID = 0; 5263 5264 // We can expect to see any number of type ID information records before 5265 // each function summary records; these variables store the information 5266 // collected so far so that it can be used to create the summary object. 5267 std::vector<GlobalValue::GUID> PendingTypeTests; 5268 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5269 PendingTypeCheckedLoadVCalls; 5270 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5271 PendingTypeCheckedLoadConstVCalls; 5272 5273 while (true) { 5274 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5275 5276 switch (Entry.Kind) { 5277 case BitstreamEntry::SubBlock: // Handled for us already. 5278 case BitstreamEntry::Error: 5279 return error("Malformed block"); 5280 case BitstreamEntry::EndBlock: 5281 return Error::success(); 5282 case BitstreamEntry::Record: 5283 // The interesting case. 5284 break; 5285 } 5286 5287 // Read a record. The record format depends on whether this 5288 // is a per-module index or a combined index file. In the per-module 5289 // case the records contain the associated value's ID for correlation 5290 // with VST entries. In the combined index the correlation is done 5291 // via the bitcode offset of the summary records (which were saved 5292 // in the combined index VST entries). The records also contain 5293 // information used for ThinLTO renaming and importing. 5294 Record.clear(); 5295 auto BitCode = Stream.readRecord(Entry.ID, Record); 5296 switch (BitCode) { 5297 default: // Default behavior: ignore. 5298 break; 5299 case bitc::FS_FLAGS: { // [flags] 5300 uint64_t Flags = Record[0]; 5301 // Scan flags. 5302 assert(Flags <= 0x1f && "Unexpected bits in flag"); 5303 5304 // 1 bit: WithGlobalValueDeadStripping flag. 5305 // Set on combined index only. 5306 if (Flags & 0x1) 5307 TheIndex.setWithGlobalValueDeadStripping(); 5308 // 1 bit: SkipModuleByDistributedBackend flag. 5309 // Set on combined index only. 5310 if (Flags & 0x2) 5311 TheIndex.setSkipModuleByDistributedBackend(); 5312 // 1 bit: HasSyntheticEntryCounts flag. 5313 // Set on combined index only. 5314 if (Flags & 0x4) 5315 TheIndex.setHasSyntheticEntryCounts(); 5316 // 1 bit: DisableSplitLTOUnit flag. 5317 // Set on per module indexes. It is up to the client to validate 5318 // the consistency of this flag across modules being linked. 5319 if (Flags & 0x8) 5320 TheIndex.setEnableSplitLTOUnit(); 5321 // 1 bit: PartiallySplitLTOUnits flag. 5322 // Set on combined index only. 5323 if (Flags & 0x10) 5324 TheIndex.setPartiallySplitLTOUnits(); 5325 break; 5326 } 5327 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5328 uint64_t ValueID = Record[0]; 5329 GlobalValue::GUID RefGUID = Record[1]; 5330 ValueIdToValueInfoMap[ValueID] = 5331 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5332 break; 5333 } 5334 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5335 // numrefs x valueid, n x (valueid)] 5336 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5337 // numrefs x valueid, 5338 // n x (valueid, hotness)] 5339 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5340 // numrefs x valueid, 5341 // n x (valueid, relblockfreq)] 5342 case bitc::FS_PERMODULE: 5343 case bitc::FS_PERMODULE_RELBF: 5344 case bitc::FS_PERMODULE_PROFILE: { 5345 unsigned ValueID = Record[0]; 5346 uint64_t RawFlags = Record[1]; 5347 unsigned InstCount = Record[2]; 5348 uint64_t RawFunFlags = 0; 5349 unsigned NumRefs = Record[3]; 5350 unsigned NumImmutableRefs = 0; 5351 int RefListStartIndex = 4; 5352 if (Version >= 4) { 5353 RawFunFlags = Record[3]; 5354 NumRefs = Record[4]; 5355 RefListStartIndex = 5; 5356 if (Version >= 5) { 5357 NumImmutableRefs = Record[5]; 5358 RefListStartIndex = 6; 5359 } 5360 } 5361 5362 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5363 // The module path string ref set in the summary must be owned by the 5364 // index's module string table. Since we don't have a module path 5365 // string table section in the per-module index, we create a single 5366 // module path string table entry with an empty (0) ID to take 5367 // ownership. 5368 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5369 assert(Record.size() >= RefListStartIndex + NumRefs && 5370 "Record size inconsistent with number of references"); 5371 std::vector<ValueInfo> Refs = makeRefList( 5372 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5373 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5374 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5375 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5376 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5377 IsOldProfileFormat, HasProfile, HasRelBF); 5378 setImmutableRefs(Refs, NumImmutableRefs); 5379 auto FS = llvm::make_unique<FunctionSummary>( 5380 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5381 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5382 std::move(PendingTypeTestAssumeVCalls), 5383 std::move(PendingTypeCheckedLoadVCalls), 5384 std::move(PendingTypeTestAssumeConstVCalls), 5385 std::move(PendingTypeCheckedLoadConstVCalls)); 5386 PendingTypeTests.clear(); 5387 PendingTypeTestAssumeVCalls.clear(); 5388 PendingTypeCheckedLoadVCalls.clear(); 5389 PendingTypeTestAssumeConstVCalls.clear(); 5390 PendingTypeCheckedLoadConstVCalls.clear(); 5391 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5392 FS->setModulePath(getThisModule()->first()); 5393 FS->setOriginalName(VIAndOriginalGUID.second); 5394 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5395 break; 5396 } 5397 // FS_ALIAS: [valueid, flags, valueid] 5398 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5399 // they expect all aliasee summaries to be available. 5400 case bitc::FS_ALIAS: { 5401 unsigned ValueID = Record[0]; 5402 uint64_t RawFlags = Record[1]; 5403 unsigned AliaseeID = Record[2]; 5404 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5405 auto AS = llvm::make_unique<AliasSummary>(Flags); 5406 // The module path string ref set in the summary must be owned by the 5407 // index's module string table. Since we don't have a module path 5408 // string table section in the per-module index, we create a single 5409 // module path string table entry with an empty (0) ID to take 5410 // ownership. 5411 AS->setModulePath(getThisModule()->first()); 5412 5413 GlobalValue::GUID AliaseeGUID = 5414 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5415 auto AliaseeInModule = 5416 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5417 if (!AliaseeInModule) 5418 return error("Alias expects aliasee summary to be parsed"); 5419 AS->setAliasee(AliaseeInModule); 5420 AS->setAliaseeGUID(AliaseeGUID); 5421 5422 auto GUID = getValueInfoFromValueId(ValueID); 5423 AS->setOriginalName(GUID.second); 5424 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5425 break; 5426 } 5427 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5428 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5429 unsigned ValueID = Record[0]; 5430 uint64_t RawFlags = Record[1]; 5431 unsigned RefArrayStart = 2; 5432 GlobalVarSummary::GVarFlags GVF; 5433 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5434 if (Version >= 5) { 5435 GVF = getDecodedGVarFlags(Record[2]); 5436 RefArrayStart = 3; 5437 } 5438 std::vector<ValueInfo> Refs = 5439 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5440 auto FS = 5441 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5442 FS->setModulePath(getThisModule()->first()); 5443 auto GUID = getValueInfoFromValueId(ValueID); 5444 FS->setOriginalName(GUID.second); 5445 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5446 break; 5447 } 5448 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5449 // numrefs x valueid, n x (valueid)] 5450 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5451 // numrefs x valueid, n x (valueid, hotness)] 5452 case bitc::FS_COMBINED: 5453 case bitc::FS_COMBINED_PROFILE: { 5454 unsigned ValueID = Record[0]; 5455 uint64_t ModuleId = Record[1]; 5456 uint64_t RawFlags = Record[2]; 5457 unsigned InstCount = Record[3]; 5458 uint64_t RawFunFlags = 0; 5459 uint64_t EntryCount = 0; 5460 unsigned NumRefs = Record[4]; 5461 unsigned NumImmutableRefs = 0; 5462 int RefListStartIndex = 5; 5463 5464 if (Version >= 4) { 5465 RawFunFlags = Record[4]; 5466 RefListStartIndex = 6; 5467 size_t NumRefsIndex = 5; 5468 if (Version >= 5) { 5469 RefListStartIndex = 7; 5470 if (Version >= 6) { 5471 NumRefsIndex = 6; 5472 EntryCount = Record[5]; 5473 RefListStartIndex = 8; 5474 } 5475 NumImmutableRefs = Record[RefListStartIndex - 1]; 5476 } 5477 NumRefs = Record[NumRefsIndex]; 5478 } 5479 5480 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5481 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5482 assert(Record.size() >= RefListStartIndex + NumRefs && 5483 "Record size inconsistent with number of references"); 5484 std::vector<ValueInfo> Refs = makeRefList( 5485 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5486 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5487 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5488 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5489 IsOldProfileFormat, HasProfile, false); 5490 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5491 setImmutableRefs(Refs, NumImmutableRefs); 5492 auto FS = llvm::make_unique<FunctionSummary>( 5493 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 5494 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 5495 std::move(PendingTypeTestAssumeVCalls), 5496 std::move(PendingTypeCheckedLoadVCalls), 5497 std::move(PendingTypeTestAssumeConstVCalls), 5498 std::move(PendingTypeCheckedLoadConstVCalls)); 5499 PendingTypeTests.clear(); 5500 PendingTypeTestAssumeVCalls.clear(); 5501 PendingTypeCheckedLoadVCalls.clear(); 5502 PendingTypeTestAssumeConstVCalls.clear(); 5503 PendingTypeCheckedLoadConstVCalls.clear(); 5504 LastSeenSummary = FS.get(); 5505 LastSeenGUID = VI.getGUID(); 5506 FS->setModulePath(ModuleIdMap[ModuleId]); 5507 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5508 break; 5509 } 5510 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5511 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5512 // they expect all aliasee summaries to be available. 5513 case bitc::FS_COMBINED_ALIAS: { 5514 unsigned ValueID = Record[0]; 5515 uint64_t ModuleId = Record[1]; 5516 uint64_t RawFlags = Record[2]; 5517 unsigned AliaseeValueId = Record[3]; 5518 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5519 auto AS = llvm::make_unique<AliasSummary>(Flags); 5520 LastSeenSummary = AS.get(); 5521 AS->setModulePath(ModuleIdMap[ModuleId]); 5522 5523 auto AliaseeGUID = 5524 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5525 auto AliaseeInModule = 5526 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5527 AS->setAliasee(AliaseeInModule); 5528 AS->setAliaseeGUID(AliaseeGUID); 5529 5530 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5531 LastSeenGUID = VI.getGUID(); 5532 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5533 break; 5534 } 5535 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5536 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5537 unsigned ValueID = Record[0]; 5538 uint64_t ModuleId = Record[1]; 5539 uint64_t RawFlags = Record[2]; 5540 unsigned RefArrayStart = 3; 5541 GlobalVarSummary::GVarFlags GVF; 5542 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5543 if (Version >= 5) { 5544 GVF = getDecodedGVarFlags(Record[3]); 5545 RefArrayStart = 4; 5546 } 5547 std::vector<ValueInfo> Refs = 5548 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5549 auto FS = 5550 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5551 LastSeenSummary = FS.get(); 5552 FS->setModulePath(ModuleIdMap[ModuleId]); 5553 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5554 LastSeenGUID = VI.getGUID(); 5555 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5556 break; 5557 } 5558 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5559 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5560 uint64_t OriginalName = Record[0]; 5561 if (!LastSeenSummary) 5562 return error("Name attachment that does not follow a combined record"); 5563 LastSeenSummary->setOriginalName(OriginalName); 5564 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5565 // Reset the LastSeenSummary 5566 LastSeenSummary = nullptr; 5567 LastSeenGUID = 0; 5568 break; 5569 } 5570 case bitc::FS_TYPE_TESTS: 5571 assert(PendingTypeTests.empty()); 5572 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5573 Record.end()); 5574 break; 5575 5576 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5577 assert(PendingTypeTestAssumeVCalls.empty()); 5578 for (unsigned I = 0; I != Record.size(); I += 2) 5579 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5580 break; 5581 5582 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5583 assert(PendingTypeCheckedLoadVCalls.empty()); 5584 for (unsigned I = 0; I != Record.size(); I += 2) 5585 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5586 break; 5587 5588 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5589 PendingTypeTestAssumeConstVCalls.push_back( 5590 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5591 break; 5592 5593 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5594 PendingTypeCheckedLoadConstVCalls.push_back( 5595 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5596 break; 5597 5598 case bitc::FS_CFI_FUNCTION_DEFS: { 5599 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5600 for (unsigned I = 0; I != Record.size(); I += 2) 5601 CfiFunctionDefs.insert( 5602 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5603 break; 5604 } 5605 5606 case bitc::FS_CFI_FUNCTION_DECLS: { 5607 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5608 for (unsigned I = 0; I != Record.size(); I += 2) 5609 CfiFunctionDecls.insert( 5610 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5611 break; 5612 } 5613 5614 case bitc::FS_TYPE_ID: 5615 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 5616 break; 5617 } 5618 } 5619 llvm_unreachable("Exit infinite loop"); 5620 } 5621 5622 // Parse the module string table block into the Index. 5623 // This populates the ModulePathStringTable map in the index. 5624 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5625 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5626 return error("Invalid record"); 5627 5628 SmallVector<uint64_t, 64> Record; 5629 5630 SmallString<128> ModulePath; 5631 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5632 5633 while (true) { 5634 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5635 5636 switch (Entry.Kind) { 5637 case BitstreamEntry::SubBlock: // Handled for us already. 5638 case BitstreamEntry::Error: 5639 return error("Malformed block"); 5640 case BitstreamEntry::EndBlock: 5641 return Error::success(); 5642 case BitstreamEntry::Record: 5643 // The interesting case. 5644 break; 5645 } 5646 5647 Record.clear(); 5648 switch (Stream.readRecord(Entry.ID, Record)) { 5649 default: // Default behavior: ignore. 5650 break; 5651 case bitc::MST_CODE_ENTRY: { 5652 // MST_ENTRY: [modid, namechar x N] 5653 uint64_t ModuleId = Record[0]; 5654 5655 if (convertToString(Record, 1, ModulePath)) 5656 return error("Invalid record"); 5657 5658 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5659 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5660 5661 ModulePath.clear(); 5662 break; 5663 } 5664 /// MST_CODE_HASH: [5*i32] 5665 case bitc::MST_CODE_HASH: { 5666 if (Record.size() != 5) 5667 return error("Invalid hash length " + Twine(Record.size()).str()); 5668 if (!LastSeenModule) 5669 return error("Invalid hash that does not follow a module path"); 5670 int Pos = 0; 5671 for (auto &Val : Record) { 5672 assert(!(Val >> 32) && "Unexpected high bits set"); 5673 LastSeenModule->second.second[Pos++] = Val; 5674 } 5675 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5676 LastSeenModule = nullptr; 5677 break; 5678 } 5679 } 5680 } 5681 llvm_unreachable("Exit infinite loop"); 5682 } 5683 5684 namespace { 5685 5686 // FIXME: This class is only here to support the transition to llvm::Error. It 5687 // will be removed once this transition is complete. Clients should prefer to 5688 // deal with the Error value directly, rather than converting to error_code. 5689 class BitcodeErrorCategoryType : public std::error_category { 5690 const char *name() const noexcept override { 5691 return "llvm.bitcode"; 5692 } 5693 5694 std::string message(int IE) const override { 5695 BitcodeError E = static_cast<BitcodeError>(IE); 5696 switch (E) { 5697 case BitcodeError::CorruptedBitcode: 5698 return "Corrupted bitcode"; 5699 } 5700 llvm_unreachable("Unknown error type!"); 5701 } 5702 }; 5703 5704 } // end anonymous namespace 5705 5706 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5707 5708 const std::error_category &llvm::BitcodeErrorCategory() { 5709 return *ErrorCategory; 5710 } 5711 5712 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5713 unsigned Block, unsigned RecordID) { 5714 if (Stream.EnterSubBlock(Block)) 5715 return error("Invalid record"); 5716 5717 StringRef Strtab; 5718 while (true) { 5719 BitstreamEntry Entry = Stream.advance(); 5720 switch (Entry.Kind) { 5721 case BitstreamEntry::EndBlock: 5722 return Strtab; 5723 5724 case BitstreamEntry::Error: 5725 return error("Malformed block"); 5726 5727 case BitstreamEntry::SubBlock: 5728 if (Stream.SkipBlock()) 5729 return error("Malformed block"); 5730 break; 5731 5732 case BitstreamEntry::Record: 5733 StringRef Blob; 5734 SmallVector<uint64_t, 1> Record; 5735 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5736 Strtab = Blob; 5737 break; 5738 } 5739 } 5740 } 5741 5742 //===----------------------------------------------------------------------===// 5743 // External interface 5744 //===----------------------------------------------------------------------===// 5745 5746 Expected<std::vector<BitcodeModule>> 5747 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5748 auto FOrErr = getBitcodeFileContents(Buffer); 5749 if (!FOrErr) 5750 return FOrErr.takeError(); 5751 return std::move(FOrErr->Mods); 5752 } 5753 5754 Expected<BitcodeFileContents> 5755 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5756 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5757 if (!StreamOrErr) 5758 return StreamOrErr.takeError(); 5759 BitstreamCursor &Stream = *StreamOrErr; 5760 5761 BitcodeFileContents F; 5762 while (true) { 5763 uint64_t BCBegin = Stream.getCurrentByteNo(); 5764 5765 // We may be consuming bitcode from a client that leaves garbage at the end 5766 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5767 // the end that there cannot possibly be another module, stop looking. 5768 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5769 return F; 5770 5771 BitstreamEntry Entry = Stream.advance(); 5772 switch (Entry.Kind) { 5773 case BitstreamEntry::EndBlock: 5774 case BitstreamEntry::Error: 5775 return error("Malformed block"); 5776 5777 case BitstreamEntry::SubBlock: { 5778 uint64_t IdentificationBit = -1ull; 5779 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5780 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5781 if (Stream.SkipBlock()) 5782 return error("Malformed block"); 5783 5784 Entry = Stream.advance(); 5785 if (Entry.Kind != BitstreamEntry::SubBlock || 5786 Entry.ID != bitc::MODULE_BLOCK_ID) 5787 return error("Malformed block"); 5788 } 5789 5790 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5791 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5792 if (Stream.SkipBlock()) 5793 return error("Malformed block"); 5794 5795 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5796 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5797 Buffer.getBufferIdentifier(), IdentificationBit, 5798 ModuleBit}); 5799 continue; 5800 } 5801 5802 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5803 Expected<StringRef> Strtab = 5804 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5805 if (!Strtab) 5806 return Strtab.takeError(); 5807 // This string table is used by every preceding bitcode module that does 5808 // not have its own string table. A bitcode file may have multiple 5809 // string tables if it was created by binary concatenation, for example 5810 // with "llvm-cat -b". 5811 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5812 if (!I->Strtab.empty()) 5813 break; 5814 I->Strtab = *Strtab; 5815 } 5816 // Similarly, the string table is used by every preceding symbol table; 5817 // normally there will be just one unless the bitcode file was created 5818 // by binary concatenation. 5819 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5820 F.StrtabForSymtab = *Strtab; 5821 continue; 5822 } 5823 5824 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5825 Expected<StringRef> SymtabOrErr = 5826 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5827 if (!SymtabOrErr) 5828 return SymtabOrErr.takeError(); 5829 5830 // We can expect the bitcode file to have multiple symbol tables if it 5831 // was created by binary concatenation. In that case we silently 5832 // ignore any subsequent symbol tables, which is fine because this is a 5833 // low level function. The client is expected to notice that the number 5834 // of modules in the symbol table does not match the number of modules 5835 // in the input file and regenerate the symbol table. 5836 if (F.Symtab.empty()) 5837 F.Symtab = *SymtabOrErr; 5838 continue; 5839 } 5840 5841 if (Stream.SkipBlock()) 5842 return error("Malformed block"); 5843 continue; 5844 } 5845 case BitstreamEntry::Record: 5846 Stream.skipRecord(Entry.ID); 5847 continue; 5848 } 5849 } 5850 } 5851 5852 /// Get a lazy one-at-time loading module from bitcode. 5853 /// 5854 /// This isn't always used in a lazy context. In particular, it's also used by 5855 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5856 /// in forward-referenced functions from block address references. 5857 /// 5858 /// \param[in] MaterializeAll Set to \c true if we should materialize 5859 /// everything. 5860 Expected<std::unique_ptr<Module>> 5861 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5862 bool ShouldLazyLoadMetadata, bool IsImporting) { 5863 BitstreamCursor Stream(Buffer); 5864 5865 std::string ProducerIdentification; 5866 if (IdentificationBit != -1ull) { 5867 Stream.JumpToBit(IdentificationBit); 5868 Expected<std::string> ProducerIdentificationOrErr = 5869 readIdentificationBlock(Stream); 5870 if (!ProducerIdentificationOrErr) 5871 return ProducerIdentificationOrErr.takeError(); 5872 5873 ProducerIdentification = *ProducerIdentificationOrErr; 5874 } 5875 5876 Stream.JumpToBit(ModuleBit); 5877 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5878 Context); 5879 5880 std::unique_ptr<Module> M = 5881 llvm::make_unique<Module>(ModuleIdentifier, Context); 5882 M->setMaterializer(R); 5883 5884 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5885 if (Error Err = 5886 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5887 return std::move(Err); 5888 5889 if (MaterializeAll) { 5890 // Read in the entire module, and destroy the BitcodeReader. 5891 if (Error Err = M->materializeAll()) 5892 return std::move(Err); 5893 } else { 5894 // Resolve forward references from blockaddresses. 5895 if (Error Err = R->materializeForwardReferencedFunctions()) 5896 return std::move(Err); 5897 } 5898 return std::move(M); 5899 } 5900 5901 Expected<std::unique_ptr<Module>> 5902 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5903 bool IsImporting) { 5904 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5905 } 5906 5907 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5908 // We don't use ModuleIdentifier here because the client may need to control the 5909 // module path used in the combined summary (e.g. when reading summaries for 5910 // regular LTO modules). 5911 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5912 StringRef ModulePath, uint64_t ModuleId) { 5913 BitstreamCursor Stream(Buffer); 5914 Stream.JumpToBit(ModuleBit); 5915 5916 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5917 ModulePath, ModuleId); 5918 return R.parseModule(); 5919 } 5920 5921 // Parse the specified bitcode buffer, returning the function info index. 5922 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5923 BitstreamCursor Stream(Buffer); 5924 Stream.JumpToBit(ModuleBit); 5925 5926 auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 5927 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5928 ModuleIdentifier, 0); 5929 5930 if (Error Err = R.parseModule()) 5931 return std::move(Err); 5932 5933 return std::move(Index); 5934 } 5935 5936 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 5937 unsigned ID) { 5938 if (Stream.EnterSubBlock(ID)) 5939 return error("Invalid record"); 5940 SmallVector<uint64_t, 64> Record; 5941 5942 while (true) { 5943 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5944 5945 switch (Entry.Kind) { 5946 case BitstreamEntry::SubBlock: // Handled for us already. 5947 case BitstreamEntry::Error: 5948 return error("Malformed block"); 5949 case BitstreamEntry::EndBlock: 5950 // If no flags record found, conservatively return true to mimic 5951 // behavior before this flag was added. 5952 return true; 5953 case BitstreamEntry::Record: 5954 // The interesting case. 5955 break; 5956 } 5957 5958 // Look for the FS_FLAGS record. 5959 Record.clear(); 5960 auto BitCode = Stream.readRecord(Entry.ID, Record); 5961 switch (BitCode) { 5962 default: // Default behavior: ignore. 5963 break; 5964 case bitc::FS_FLAGS: { // [flags] 5965 uint64_t Flags = Record[0]; 5966 // Scan flags. 5967 assert(Flags <= 0x1f && "Unexpected bits in flag"); 5968 5969 return Flags & 0x8; 5970 } 5971 } 5972 } 5973 llvm_unreachable("Exit infinite loop"); 5974 } 5975 5976 // Check if the given bitcode buffer contains a global value summary block. 5977 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 5978 BitstreamCursor Stream(Buffer); 5979 Stream.JumpToBit(ModuleBit); 5980 5981 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5982 return error("Invalid record"); 5983 5984 while (true) { 5985 BitstreamEntry Entry = Stream.advance(); 5986 5987 switch (Entry.Kind) { 5988 case BitstreamEntry::Error: 5989 return error("Malformed block"); 5990 case BitstreamEntry::EndBlock: 5991 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 5992 /*EnableSplitLTOUnit=*/false}; 5993 5994 case BitstreamEntry::SubBlock: 5995 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5996 Expected<bool> EnableSplitLTOUnit = 5997 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 5998 if (!EnableSplitLTOUnit) 5999 return EnableSplitLTOUnit.takeError(); 6000 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6001 *EnableSplitLTOUnit}; 6002 } 6003 6004 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6005 Expected<bool> EnableSplitLTOUnit = 6006 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6007 if (!EnableSplitLTOUnit) 6008 return EnableSplitLTOUnit.takeError(); 6009 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6010 *EnableSplitLTOUnit}; 6011 } 6012 6013 // Ignore other sub-blocks. 6014 if (Stream.SkipBlock()) 6015 return error("Malformed block"); 6016 continue; 6017 6018 case BitstreamEntry::Record: 6019 Stream.skipRecord(Entry.ID); 6020 continue; 6021 } 6022 } 6023 } 6024 6025 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6026 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6027 if (!MsOrErr) 6028 return MsOrErr.takeError(); 6029 6030 if (MsOrErr->size() != 1) 6031 return error("Expected a single module"); 6032 6033 return (*MsOrErr)[0]; 6034 } 6035 6036 Expected<std::unique_ptr<Module>> 6037 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6038 bool ShouldLazyLoadMetadata, bool IsImporting) { 6039 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6040 if (!BM) 6041 return BM.takeError(); 6042 6043 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6044 } 6045 6046 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6047 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6048 bool ShouldLazyLoadMetadata, bool IsImporting) { 6049 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6050 IsImporting); 6051 if (MOrErr) 6052 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6053 return MOrErr; 6054 } 6055 6056 Expected<std::unique_ptr<Module>> 6057 BitcodeModule::parseModule(LLVMContext &Context) { 6058 return getModuleImpl(Context, true, false, false); 6059 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6060 // written. We must defer until the Module has been fully materialized. 6061 } 6062 6063 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6064 LLVMContext &Context) { 6065 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6066 if (!BM) 6067 return BM.takeError(); 6068 6069 return BM->parseModule(Context); 6070 } 6071 6072 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6073 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6074 if (!StreamOrErr) 6075 return StreamOrErr.takeError(); 6076 6077 return readTriple(*StreamOrErr); 6078 } 6079 6080 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6081 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6082 if (!StreamOrErr) 6083 return StreamOrErr.takeError(); 6084 6085 return hasObjCCategory(*StreamOrErr); 6086 } 6087 6088 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6089 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6090 if (!StreamOrErr) 6091 return StreamOrErr.takeError(); 6092 6093 return readIdentificationCode(*StreamOrErr); 6094 } 6095 6096 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6097 ModuleSummaryIndex &CombinedIndex, 6098 uint64_t ModuleId) { 6099 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6100 if (!BM) 6101 return BM.takeError(); 6102 6103 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6104 } 6105 6106 Expected<std::unique_ptr<ModuleSummaryIndex>> 6107 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6108 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6109 if (!BM) 6110 return BM.takeError(); 6111 6112 return BM->getSummary(); 6113 } 6114 6115 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6116 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6117 if (!BM) 6118 return BM.takeError(); 6119 6120 return BM->getLTOInfo(); 6121 } 6122 6123 Expected<std::unique_ptr<ModuleSummaryIndex>> 6124 llvm::getModuleSummaryIndexForFile(StringRef Path, 6125 bool IgnoreEmptyThinLTOIndexFile) { 6126 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6127 MemoryBuffer::getFileOrSTDIN(Path); 6128 if (!FileOrErr) 6129 return errorCodeToError(FileOrErr.getError()); 6130 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6131 return nullptr; 6132 return getModuleSummaryIndex(**FileOrErr); 6133 } 6134