1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitstreamReader.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 /// Helper to read the header common to all bitcode files.
109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
110   // Sniff for the signature.
111   if (!Stream.canSkipToPos(4) ||
112       Stream.Read(8) != 'B' ||
113       Stream.Read(8) != 'C' ||
114       Stream.Read(4) != 0x0 ||
115       Stream.Read(4) != 0xC ||
116       Stream.Read(4) != 0xE ||
117       Stream.Read(4) != 0xD)
118     return false;
119   return true;
120 }
121 
122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
123   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
124   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
125 
126   if (Buffer.getBufferSize() & 3)
127     return error("Invalid bitcode signature");
128 
129   // If we have a wrapper header, parse it and ignore the non-bc file contents.
130   // The magic number is 0x0B17C0DE stored in little endian.
131   if (isBitcodeWrapper(BufPtr, BufEnd))
132     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
133       return error("Invalid bitcode wrapper header");
134 
135   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
136   if (!hasValidBitcodeHeader(Stream))
137     return error("Invalid bitcode signature");
138 
139   return std::move(Stream);
140 }
141 
142 /// Convert a string from a record into an std::string, return true on failure.
143 template <typename StrTy>
144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
145                             StrTy &Result) {
146   if (Idx > Record.size())
147     return true;
148 
149   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
150     Result += (char)Record[i];
151   return false;
152 }
153 
154 // Strip all the TBAA attachment for the module.
155 static void stripTBAA(Module *M) {
156   for (auto &F : *M) {
157     if (F.isMaterializable())
158       continue;
159     for (auto &I : instructions(F))
160       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
161   }
162 }
163 
164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
165 /// "epoch" encoded in the bitcode, and return the producer name if any.
166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
167   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
168     return error("Invalid record");
169 
170   // Read all the records.
171   SmallVector<uint64_t, 64> Record;
172 
173   std::string ProducerIdentification;
174 
175   while (true) {
176     BitstreamEntry Entry = Stream.advance();
177 
178     switch (Entry.Kind) {
179     default:
180     case BitstreamEntry::Error:
181       return error("Malformed block");
182     case BitstreamEntry::EndBlock:
183       return ProducerIdentification;
184     case BitstreamEntry::Record:
185       // The interesting case.
186       break;
187     }
188 
189     // Read a record.
190     Record.clear();
191     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
192     switch (BitCode) {
193     default: // Default behavior: reject
194       return error("Invalid value");
195     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
196       convertToString(Record, 0, ProducerIdentification);
197       break;
198     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
199       unsigned epoch = (unsigned)Record[0];
200       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
201         return error(
202           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
203           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
204       }
205     }
206     }
207   }
208 }
209 
210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
211   // We expect a number of well-defined blocks, though we don't necessarily
212   // need to understand them all.
213   while (true) {
214     if (Stream.AtEndOfStream())
215       return "";
216 
217     BitstreamEntry Entry = Stream.advance();
218     switch (Entry.Kind) {
219     case BitstreamEntry::EndBlock:
220     case BitstreamEntry::Error:
221       return error("Malformed block");
222 
223     case BitstreamEntry::SubBlock:
224       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
225         return readIdentificationBlock(Stream);
226 
227       // Ignore other sub-blocks.
228       if (Stream.SkipBlock())
229         return error("Malformed block");
230       continue;
231     case BitstreamEntry::Record:
232       Stream.skipRecord(Entry.ID);
233       continue;
234     }
235   }
236 }
237 
238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
239   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
240     return error("Invalid record");
241 
242   SmallVector<uint64_t, 64> Record;
243   // Read all the records for this module.
244 
245   while (true) {
246     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
247 
248     switch (Entry.Kind) {
249     case BitstreamEntry::SubBlock: // Handled for us already.
250     case BitstreamEntry::Error:
251       return error("Malformed block");
252     case BitstreamEntry::EndBlock:
253       return false;
254     case BitstreamEntry::Record:
255       // The interesting case.
256       break;
257     }
258 
259     // Read a record.
260     switch (Stream.readRecord(Entry.ID, Record)) {
261     default:
262       break; // Default behavior, ignore unknown content.
263     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
264       std::string S;
265       if (convertToString(Record, 0, S))
266         return error("Invalid record");
267       // Check for the i386 and other (x86_64, ARM) conventions
268       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
269           S.find("__OBJC,__category") != std::string::npos)
270         return true;
271       break;
272     }
273     }
274     Record.clear();
275   }
276   llvm_unreachable("Exit infinite loop");
277 }
278 
279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
280   // We expect a number of well-defined blocks, though we don't necessarily
281   // need to understand them all.
282   while (true) {
283     BitstreamEntry Entry = Stream.advance();
284 
285     switch (Entry.Kind) {
286     case BitstreamEntry::Error:
287       return error("Malformed block");
288     case BitstreamEntry::EndBlock:
289       return false;
290 
291     case BitstreamEntry::SubBlock:
292       if (Entry.ID == bitc::MODULE_BLOCK_ID)
293         return hasObjCCategoryInModule(Stream);
294 
295       // Ignore other sub-blocks.
296       if (Stream.SkipBlock())
297         return error("Malformed block");
298       continue;
299 
300     case BitstreamEntry::Record:
301       Stream.skipRecord(Entry.ID);
302       continue;
303     }
304   }
305 }
306 
307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
308   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
309     return error("Invalid record");
310 
311   SmallVector<uint64_t, 64> Record;
312 
313   std::string Triple;
314 
315   // Read all the records for this module.
316   while (true) {
317     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
318 
319     switch (Entry.Kind) {
320     case BitstreamEntry::SubBlock: // Handled for us already.
321     case BitstreamEntry::Error:
322       return error("Malformed block");
323     case BitstreamEntry::EndBlock:
324       return Triple;
325     case BitstreamEntry::Record:
326       // The interesting case.
327       break;
328     }
329 
330     // Read a record.
331     switch (Stream.readRecord(Entry.ID, Record)) {
332     default: break;  // Default behavior, ignore unknown content.
333     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
334       std::string S;
335       if (convertToString(Record, 0, S))
336         return error("Invalid record");
337       Triple = S;
338       break;
339     }
340     }
341     Record.clear();
342   }
343   llvm_unreachable("Exit infinite loop");
344 }
345 
346 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
347   // We expect a number of well-defined blocks, though we don't necessarily
348   // need to understand them all.
349   while (true) {
350     BitstreamEntry Entry = Stream.advance();
351 
352     switch (Entry.Kind) {
353     case BitstreamEntry::Error:
354       return error("Malformed block");
355     case BitstreamEntry::EndBlock:
356       return "";
357 
358     case BitstreamEntry::SubBlock:
359       if (Entry.ID == bitc::MODULE_BLOCK_ID)
360         return readModuleTriple(Stream);
361 
362       // Ignore other sub-blocks.
363       if (Stream.SkipBlock())
364         return error("Malformed block");
365       continue;
366 
367     case BitstreamEntry::Record:
368       Stream.skipRecord(Entry.ID);
369       continue;
370     }
371   }
372 }
373 
374 namespace {
375 
376 class BitcodeReaderBase {
377 protected:
378   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
379       : Stream(std::move(Stream)), Strtab(Strtab) {
380     this->Stream.setBlockInfo(&BlockInfo);
381   }
382 
383   BitstreamBlockInfo BlockInfo;
384   BitstreamCursor Stream;
385   StringRef Strtab;
386 
387   /// In version 2 of the bitcode we store names of global values and comdats in
388   /// a string table rather than in the VST.
389   bool UseStrtab = false;
390 
391   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
392 
393   /// If this module uses a string table, pop the reference to the string table
394   /// and return the referenced string and the rest of the record. Otherwise
395   /// just return the record itself.
396   std::pair<StringRef, ArrayRef<uint64_t>>
397   readNameFromStrtab(ArrayRef<uint64_t> Record);
398 
399   bool readBlockInfo();
400 
401   // Contains an arbitrary and optional string identifying the bitcode producer
402   std::string ProducerIdentification;
403 
404   Error error(const Twine &Message);
405 };
406 
407 } // end anonymous namespace
408 
409 Error BitcodeReaderBase::error(const Twine &Message) {
410   std::string FullMsg = Message.str();
411   if (!ProducerIdentification.empty())
412     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
413                LLVM_VERSION_STRING "')";
414   return ::error(FullMsg);
415 }
416 
417 Expected<unsigned>
418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
419   if (Record.empty())
420     return error("Invalid record");
421   unsigned ModuleVersion = Record[0];
422   if (ModuleVersion > 2)
423     return error("Invalid value");
424   UseStrtab = ModuleVersion >= 2;
425   return ModuleVersion;
426 }
427 
428 std::pair<StringRef, ArrayRef<uint64_t>>
429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
430   if (!UseStrtab)
431     return {"", Record};
432   // Invalid reference. Let the caller complain about the record being empty.
433   if (Record[0] + Record[1] > Strtab.size())
434     return {"", {}};
435   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
436 }
437 
438 namespace {
439 
440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
441   LLVMContext &Context;
442   Module *TheModule = nullptr;
443   // Next offset to start scanning for lazy parsing of function bodies.
444   uint64_t NextUnreadBit = 0;
445   // Last function offset found in the VST.
446   uint64_t LastFunctionBlockBit = 0;
447   bool SeenValueSymbolTable = false;
448   uint64_t VSTOffset = 0;
449 
450   std::vector<std::string> SectionTable;
451   std::vector<std::string> GCTable;
452 
453   std::vector<Type*> TypeList;
454   BitcodeReaderValueList ValueList;
455   Optional<MetadataLoader> MDLoader;
456   std::vector<Comdat *> ComdatList;
457   SmallVector<Instruction *, 64> InstructionList;
458 
459   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
460   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
461   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
462   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
463   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
464 
465   /// The set of attributes by index.  Index zero in the file is for null, and
466   /// is thus not represented here.  As such all indices are off by one.
467   std::vector<AttributeList> MAttributes;
468 
469   /// The set of attribute groups.
470   std::map<unsigned, AttributeList> MAttributeGroups;
471 
472   /// While parsing a function body, this is a list of the basic blocks for the
473   /// function.
474   std::vector<BasicBlock*> FunctionBBs;
475 
476   // When reading the module header, this list is populated with functions that
477   // have bodies later in the file.
478   std::vector<Function*> FunctionsWithBodies;
479 
480   // When intrinsic functions are encountered which require upgrading they are
481   // stored here with their replacement function.
482   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
483   UpdatedIntrinsicMap UpgradedIntrinsics;
484   // Intrinsics which were remangled because of types rename
485   UpdatedIntrinsicMap RemangledIntrinsics;
486 
487   // Several operations happen after the module header has been read, but
488   // before function bodies are processed. This keeps track of whether
489   // we've done this yet.
490   bool SeenFirstFunctionBody = false;
491 
492   /// When function bodies are initially scanned, this map contains info about
493   /// where to find deferred function body in the stream.
494   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
495 
496   /// When Metadata block is initially scanned when parsing the module, we may
497   /// choose to defer parsing of the metadata. This vector contains info about
498   /// which Metadata blocks are deferred.
499   std::vector<uint64_t> DeferredMetadataInfo;
500 
501   /// These are basic blocks forward-referenced by block addresses.  They are
502   /// inserted lazily into functions when they're loaded.  The basic block ID is
503   /// its index into the vector.
504   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
505   std::deque<Function *> BasicBlockFwdRefQueue;
506 
507   /// Indicates that we are using a new encoding for instruction operands where
508   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
509   /// instruction number, for a more compact encoding.  Some instruction
510   /// operands are not relative to the instruction ID: basic block numbers, and
511   /// types. Once the old style function blocks have been phased out, we would
512   /// not need this flag.
513   bool UseRelativeIDs = false;
514 
515   /// True if all functions will be materialized, negating the need to process
516   /// (e.g.) blockaddress forward references.
517   bool WillMaterializeAllForwardRefs = false;
518 
519   bool StripDebugInfo = false;
520   TBAAVerifier TBAAVerifyHelper;
521 
522   std::vector<std::string> BundleTags;
523   SmallVector<SyncScope::ID, 8> SSIDs;
524 
525 public:
526   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
527                 StringRef ProducerIdentification, LLVMContext &Context);
528 
529   Error materializeForwardReferencedFunctions();
530 
531   Error materialize(GlobalValue *GV) override;
532   Error materializeModule() override;
533   std::vector<StructType *> getIdentifiedStructTypes() const override;
534 
535   /// Main interface to parsing a bitcode buffer.
536   /// \returns true if an error occurred.
537   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
538                          bool IsImporting = false);
539 
540   static uint64_t decodeSignRotatedValue(uint64_t V);
541 
542   /// Materialize any deferred Metadata block.
543   Error materializeMetadata() override;
544 
545   void setStripDebugInfo() override;
546 
547 private:
548   std::vector<StructType *> IdentifiedStructTypes;
549   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
550   StructType *createIdentifiedStructType(LLVMContext &Context);
551 
552   Type *getTypeByID(unsigned ID);
553 
554   Value *getFnValueByID(unsigned ID, Type *Ty) {
555     if (Ty && Ty->isMetadataTy())
556       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
557     return ValueList.getValueFwdRef(ID, Ty);
558   }
559 
560   Metadata *getFnMetadataByID(unsigned ID) {
561     return MDLoader->getMetadataFwdRefOrLoad(ID);
562   }
563 
564   BasicBlock *getBasicBlock(unsigned ID) const {
565     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
566     return FunctionBBs[ID];
567   }
568 
569   AttributeList getAttributes(unsigned i) const {
570     if (i-1 < MAttributes.size())
571       return MAttributes[i-1];
572     return AttributeList();
573   }
574 
575   /// Read a value/type pair out of the specified record from slot 'Slot'.
576   /// Increment Slot past the number of slots used in the record. Return true on
577   /// failure.
578   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
579                         unsigned InstNum, Value *&ResVal) {
580     if (Slot == Record.size()) return true;
581     unsigned ValNo = (unsigned)Record[Slot++];
582     // Adjust the ValNo, if it was encoded relative to the InstNum.
583     if (UseRelativeIDs)
584       ValNo = InstNum - ValNo;
585     if (ValNo < InstNum) {
586       // If this is not a forward reference, just return the value we already
587       // have.
588       ResVal = getFnValueByID(ValNo, nullptr);
589       return ResVal == nullptr;
590     }
591     if (Slot == Record.size())
592       return true;
593 
594     unsigned TypeNo = (unsigned)Record[Slot++];
595     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
596     return ResVal == nullptr;
597   }
598 
599   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
600   /// past the number of slots used by the value in the record. Return true if
601   /// there is an error.
602   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
603                 unsigned InstNum, Type *Ty, Value *&ResVal) {
604     if (getValue(Record, Slot, InstNum, Ty, ResVal))
605       return true;
606     // All values currently take a single record slot.
607     ++Slot;
608     return false;
609   }
610 
611   /// Like popValue, but does not increment the Slot number.
612   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
613                 unsigned InstNum, Type *Ty, Value *&ResVal) {
614     ResVal = getValue(Record, Slot, InstNum, Ty);
615     return ResVal == nullptr;
616   }
617 
618   /// Version of getValue that returns ResVal directly, or 0 if there is an
619   /// error.
620   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
621                   unsigned InstNum, Type *Ty) {
622     if (Slot == Record.size()) return nullptr;
623     unsigned ValNo = (unsigned)Record[Slot];
624     // Adjust the ValNo, if it was encoded relative to the InstNum.
625     if (UseRelativeIDs)
626       ValNo = InstNum - ValNo;
627     return getFnValueByID(ValNo, Ty);
628   }
629 
630   /// Like getValue, but decodes signed VBRs.
631   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
632                         unsigned InstNum, Type *Ty) {
633     if (Slot == Record.size()) return nullptr;
634     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
635     // Adjust the ValNo, if it was encoded relative to the InstNum.
636     if (UseRelativeIDs)
637       ValNo = InstNum - ValNo;
638     return getFnValueByID(ValNo, Ty);
639   }
640 
641   /// Converts alignment exponent (i.e. power of two (or zero)) to the
642   /// corresponding alignment to use. If alignment is too large, returns
643   /// a corresponding error code.
644   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
645   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
646   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
647 
648   Error parseComdatRecord(ArrayRef<uint64_t> Record);
649   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
650   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
651   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
652                                         ArrayRef<uint64_t> Record);
653 
654   Error parseAttributeBlock();
655   Error parseAttributeGroupBlock();
656   Error parseTypeTable();
657   Error parseTypeTableBody();
658   Error parseOperandBundleTags();
659   Error parseSyncScopeNames();
660 
661   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
662                                 unsigned NameIndex, Triple &TT);
663   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
664                                ArrayRef<uint64_t> Record);
665   Error parseValueSymbolTable(uint64_t Offset = 0);
666   Error parseGlobalValueSymbolTable();
667   Error parseConstants();
668   Error rememberAndSkipFunctionBodies();
669   Error rememberAndSkipFunctionBody();
670   /// Save the positions of the Metadata blocks and skip parsing the blocks.
671   Error rememberAndSkipMetadata();
672   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
673   Error parseFunctionBody(Function *F);
674   Error globalCleanup();
675   Error resolveGlobalAndIndirectSymbolInits();
676   Error parseUseLists();
677   Error findFunctionInStream(
678       Function *F,
679       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
680 
681   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
682 };
683 
684 /// Class to manage reading and parsing function summary index bitcode
685 /// files/sections.
686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
687   /// The module index built during parsing.
688   ModuleSummaryIndex &TheIndex;
689 
690   /// Indicates whether we have encountered a global value summary section
691   /// yet during parsing.
692   bool SeenGlobalValSummary = false;
693 
694   /// Indicates whether we have already parsed the VST, used for error checking.
695   bool SeenValueSymbolTable = false;
696 
697   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
698   /// Used to enable on-demand parsing of the VST.
699   uint64_t VSTOffset = 0;
700 
701   // Map to save ValueId to ValueInfo association that was recorded in the
702   // ValueSymbolTable. It is used after the VST is parsed to convert
703   // call graph edges read from the function summary from referencing
704   // callees by their ValueId to using the ValueInfo instead, which is how
705   // they are recorded in the summary index being built.
706   // We save a GUID which refers to the same global as the ValueInfo, but
707   // ignoring the linkage, i.e. for values other than local linkage they are
708   // identical.
709   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
710       ValueIdToValueInfoMap;
711 
712   /// Map populated during module path string table parsing, from the
713   /// module ID to a string reference owned by the index's module
714   /// path string table, used to correlate with combined index
715   /// summary records.
716   DenseMap<uint64_t, StringRef> ModuleIdMap;
717 
718   /// Original source file name recorded in a bitcode record.
719   std::string SourceFileName;
720 
721   /// The string identifier given to this module by the client, normally the
722   /// path to the bitcode file.
723   StringRef ModulePath;
724 
725   /// For per-module summary indexes, the unique numerical identifier given to
726   /// this module by the client.
727   unsigned ModuleId;
728 
729 public:
730   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
731                                   ModuleSummaryIndex &TheIndex,
732                                   StringRef ModulePath, unsigned ModuleId);
733 
734   Error parseModule();
735 
736 private:
737   void setValueGUID(uint64_t ValueID, StringRef ValueName,
738                     GlobalValue::LinkageTypes Linkage,
739                     StringRef SourceFileName);
740   Error parseValueSymbolTable(
741       uint64_t Offset,
742       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
743   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
744   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
745                                                     bool IsOldProfileFormat,
746                                                     bool HasProfile,
747                                                     bool HasRelBF);
748   Error parseEntireSummary(unsigned ID);
749   Error parseModuleStringTable();
750 
751   std::pair<ValueInfo, GlobalValue::GUID>
752   getValueInfoFromValueId(unsigned ValueId);
753 
754   void addThisModule();
755   ModuleSummaryIndex::ModuleInfo *getThisModule();
756 };
757 
758 } // end anonymous namespace
759 
760 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
761                                                     Error Err) {
762   if (Err) {
763     std::error_code EC;
764     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
765       EC = EIB.convertToErrorCode();
766       Ctx.emitError(EIB.message());
767     });
768     return EC;
769   }
770   return std::error_code();
771 }
772 
773 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
774                              StringRef ProducerIdentification,
775                              LLVMContext &Context)
776     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
777       ValueList(Context) {
778   this->ProducerIdentification = ProducerIdentification;
779 }
780 
781 Error BitcodeReader::materializeForwardReferencedFunctions() {
782   if (WillMaterializeAllForwardRefs)
783     return Error::success();
784 
785   // Prevent recursion.
786   WillMaterializeAllForwardRefs = true;
787 
788   while (!BasicBlockFwdRefQueue.empty()) {
789     Function *F = BasicBlockFwdRefQueue.front();
790     BasicBlockFwdRefQueue.pop_front();
791     assert(F && "Expected valid function");
792     if (!BasicBlockFwdRefs.count(F))
793       // Already materialized.
794       continue;
795 
796     // Check for a function that isn't materializable to prevent an infinite
797     // loop.  When parsing a blockaddress stored in a global variable, there
798     // isn't a trivial way to check if a function will have a body without a
799     // linear search through FunctionsWithBodies, so just check it here.
800     if (!F->isMaterializable())
801       return error("Never resolved function from blockaddress");
802 
803     // Try to materialize F.
804     if (Error Err = materialize(F))
805       return Err;
806   }
807   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
808 
809   // Reset state.
810   WillMaterializeAllForwardRefs = false;
811   return Error::success();
812 }
813 
814 //===----------------------------------------------------------------------===//
815 //  Helper functions to implement forward reference resolution, etc.
816 //===----------------------------------------------------------------------===//
817 
818 static bool hasImplicitComdat(size_t Val) {
819   switch (Val) {
820   default:
821     return false;
822   case 1:  // Old WeakAnyLinkage
823   case 4:  // Old LinkOnceAnyLinkage
824   case 10: // Old WeakODRLinkage
825   case 11: // Old LinkOnceODRLinkage
826     return true;
827   }
828 }
829 
830 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
831   switch (Val) {
832   default: // Map unknown/new linkages to external
833   case 0:
834     return GlobalValue::ExternalLinkage;
835   case 2:
836     return GlobalValue::AppendingLinkage;
837   case 3:
838     return GlobalValue::InternalLinkage;
839   case 5:
840     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
841   case 6:
842     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
843   case 7:
844     return GlobalValue::ExternalWeakLinkage;
845   case 8:
846     return GlobalValue::CommonLinkage;
847   case 9:
848     return GlobalValue::PrivateLinkage;
849   case 12:
850     return GlobalValue::AvailableExternallyLinkage;
851   case 13:
852     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
853   case 14:
854     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
855   case 15:
856     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
857   case 1: // Old value with implicit comdat.
858   case 16:
859     return GlobalValue::WeakAnyLinkage;
860   case 10: // Old value with implicit comdat.
861   case 17:
862     return GlobalValue::WeakODRLinkage;
863   case 4: // Old value with implicit comdat.
864   case 18:
865     return GlobalValue::LinkOnceAnyLinkage;
866   case 11: // Old value with implicit comdat.
867   case 19:
868     return GlobalValue::LinkOnceODRLinkage;
869   }
870 }
871 
872 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
873   FunctionSummary::FFlags Flags;
874   Flags.ReadNone = RawFlags & 0x1;
875   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
876   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
877   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
878   Flags.NoInline = (RawFlags >> 4) & 0x1;
879   return Flags;
880 }
881 
882 /// Decode the flags for GlobalValue in the summary.
883 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
884                                                             uint64_t Version) {
885   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
886   // like getDecodedLinkage() above. Any future change to the linkage enum and
887   // to getDecodedLinkage() will need to be taken into account here as above.
888   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
889   RawFlags = RawFlags >> 4;
890   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
891   // The Live flag wasn't introduced until version 3. For dead stripping
892   // to work correctly on earlier versions, we must conservatively treat all
893   // values as live.
894   bool Live = (RawFlags & 0x2) || Version < 3;
895   bool Local = (RawFlags & 0x4);
896 
897   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local);
898 }
899 
900 // Decode the flags for GlobalVariable in the summary
901 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
902   return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false);
903 }
904 
905 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
906   switch (Val) {
907   default: // Map unknown visibilities to default.
908   case 0: return GlobalValue::DefaultVisibility;
909   case 1: return GlobalValue::HiddenVisibility;
910   case 2: return GlobalValue::ProtectedVisibility;
911   }
912 }
913 
914 static GlobalValue::DLLStorageClassTypes
915 getDecodedDLLStorageClass(unsigned Val) {
916   switch (Val) {
917   default: // Map unknown values to default.
918   case 0: return GlobalValue::DefaultStorageClass;
919   case 1: return GlobalValue::DLLImportStorageClass;
920   case 2: return GlobalValue::DLLExportStorageClass;
921   }
922 }
923 
924 static bool getDecodedDSOLocal(unsigned Val) {
925   switch(Val) {
926   default: // Map unknown values to preemptable.
927   case 0:  return false;
928   case 1:  return true;
929   }
930 }
931 
932 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
933   switch (Val) {
934     case 0: return GlobalVariable::NotThreadLocal;
935     default: // Map unknown non-zero value to general dynamic.
936     case 1: return GlobalVariable::GeneralDynamicTLSModel;
937     case 2: return GlobalVariable::LocalDynamicTLSModel;
938     case 3: return GlobalVariable::InitialExecTLSModel;
939     case 4: return GlobalVariable::LocalExecTLSModel;
940   }
941 }
942 
943 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
944   switch (Val) {
945     default: // Map unknown to UnnamedAddr::None.
946     case 0: return GlobalVariable::UnnamedAddr::None;
947     case 1: return GlobalVariable::UnnamedAddr::Global;
948     case 2: return GlobalVariable::UnnamedAddr::Local;
949   }
950 }
951 
952 static int getDecodedCastOpcode(unsigned Val) {
953   switch (Val) {
954   default: return -1;
955   case bitc::CAST_TRUNC   : return Instruction::Trunc;
956   case bitc::CAST_ZEXT    : return Instruction::ZExt;
957   case bitc::CAST_SEXT    : return Instruction::SExt;
958   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
959   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
960   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
961   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
962   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
963   case bitc::CAST_FPEXT   : return Instruction::FPExt;
964   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
965   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
966   case bitc::CAST_BITCAST : return Instruction::BitCast;
967   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
968   }
969 }
970 
971 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
972   bool IsFP = Ty->isFPOrFPVectorTy();
973   // UnOps are only valid for int/fp or vector of int/fp types
974   if (!IsFP && !Ty->isIntOrIntVectorTy())
975     return -1;
976 
977   switch (Val) {
978   default:
979     return -1;
980   case bitc::UNOP_NEG:
981     return IsFP ? Instruction::FNeg : -1;
982   }
983 }
984 
985 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
986   bool IsFP = Ty->isFPOrFPVectorTy();
987   // BinOps are only valid for int/fp or vector of int/fp types
988   if (!IsFP && !Ty->isIntOrIntVectorTy())
989     return -1;
990 
991   switch (Val) {
992   default:
993     return -1;
994   case bitc::BINOP_ADD:
995     return IsFP ? Instruction::FAdd : Instruction::Add;
996   case bitc::BINOP_SUB:
997     return IsFP ? Instruction::FSub : Instruction::Sub;
998   case bitc::BINOP_MUL:
999     return IsFP ? Instruction::FMul : Instruction::Mul;
1000   case bitc::BINOP_UDIV:
1001     return IsFP ? -1 : Instruction::UDiv;
1002   case bitc::BINOP_SDIV:
1003     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1004   case bitc::BINOP_UREM:
1005     return IsFP ? -1 : Instruction::URem;
1006   case bitc::BINOP_SREM:
1007     return IsFP ? Instruction::FRem : Instruction::SRem;
1008   case bitc::BINOP_SHL:
1009     return IsFP ? -1 : Instruction::Shl;
1010   case bitc::BINOP_LSHR:
1011     return IsFP ? -1 : Instruction::LShr;
1012   case bitc::BINOP_ASHR:
1013     return IsFP ? -1 : Instruction::AShr;
1014   case bitc::BINOP_AND:
1015     return IsFP ? -1 : Instruction::And;
1016   case bitc::BINOP_OR:
1017     return IsFP ? -1 : Instruction::Or;
1018   case bitc::BINOP_XOR:
1019     return IsFP ? -1 : Instruction::Xor;
1020   }
1021 }
1022 
1023 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1024   switch (Val) {
1025   default: return AtomicRMWInst::BAD_BINOP;
1026   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1027   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1028   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1029   case bitc::RMW_AND: return AtomicRMWInst::And;
1030   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1031   case bitc::RMW_OR: return AtomicRMWInst::Or;
1032   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1033   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1034   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1035   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1036   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1037   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1038   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1039   }
1040 }
1041 
1042 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1043   switch (Val) {
1044   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1045   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1046   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1047   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1048   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1049   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1050   default: // Map unknown orderings to sequentially-consistent.
1051   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1052   }
1053 }
1054 
1055 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1056   switch (Val) {
1057   default: // Map unknown selection kinds to any.
1058   case bitc::COMDAT_SELECTION_KIND_ANY:
1059     return Comdat::Any;
1060   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1061     return Comdat::ExactMatch;
1062   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1063     return Comdat::Largest;
1064   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1065     return Comdat::NoDuplicates;
1066   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1067     return Comdat::SameSize;
1068   }
1069 }
1070 
1071 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1072   FastMathFlags FMF;
1073   if (0 != (Val & bitc::UnsafeAlgebra))
1074     FMF.setFast();
1075   if (0 != (Val & bitc::AllowReassoc))
1076     FMF.setAllowReassoc();
1077   if (0 != (Val & bitc::NoNaNs))
1078     FMF.setNoNaNs();
1079   if (0 != (Val & bitc::NoInfs))
1080     FMF.setNoInfs();
1081   if (0 != (Val & bitc::NoSignedZeros))
1082     FMF.setNoSignedZeros();
1083   if (0 != (Val & bitc::AllowReciprocal))
1084     FMF.setAllowReciprocal();
1085   if (0 != (Val & bitc::AllowContract))
1086     FMF.setAllowContract(true);
1087   if (0 != (Val & bitc::ApproxFunc))
1088     FMF.setApproxFunc();
1089   return FMF;
1090 }
1091 
1092 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1093   switch (Val) {
1094   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1095   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1096   }
1097 }
1098 
1099 Type *BitcodeReader::getTypeByID(unsigned ID) {
1100   // The type table size is always specified correctly.
1101   if (ID >= TypeList.size())
1102     return nullptr;
1103 
1104   if (Type *Ty = TypeList[ID])
1105     return Ty;
1106 
1107   // If we have a forward reference, the only possible case is when it is to a
1108   // named struct.  Just create a placeholder for now.
1109   return TypeList[ID] = createIdentifiedStructType(Context);
1110 }
1111 
1112 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1113                                                       StringRef Name) {
1114   auto *Ret = StructType::create(Context, Name);
1115   IdentifiedStructTypes.push_back(Ret);
1116   return Ret;
1117 }
1118 
1119 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1120   auto *Ret = StructType::create(Context);
1121   IdentifiedStructTypes.push_back(Ret);
1122   return Ret;
1123 }
1124 
1125 //===----------------------------------------------------------------------===//
1126 //  Functions for parsing blocks from the bitcode file
1127 //===----------------------------------------------------------------------===//
1128 
1129 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1130   switch (Val) {
1131   case Attribute::EndAttrKinds:
1132     llvm_unreachable("Synthetic enumerators which should never get here");
1133 
1134   case Attribute::None:            return 0;
1135   case Attribute::ZExt:            return 1 << 0;
1136   case Attribute::SExt:            return 1 << 1;
1137   case Attribute::NoReturn:        return 1 << 2;
1138   case Attribute::InReg:           return 1 << 3;
1139   case Attribute::StructRet:       return 1 << 4;
1140   case Attribute::NoUnwind:        return 1 << 5;
1141   case Attribute::NoAlias:         return 1 << 6;
1142   case Attribute::ByVal:           return 1 << 7;
1143   case Attribute::Nest:            return 1 << 8;
1144   case Attribute::ReadNone:        return 1 << 9;
1145   case Attribute::ReadOnly:        return 1 << 10;
1146   case Attribute::NoInline:        return 1 << 11;
1147   case Attribute::AlwaysInline:    return 1 << 12;
1148   case Attribute::OptimizeForSize: return 1 << 13;
1149   case Attribute::StackProtect:    return 1 << 14;
1150   case Attribute::StackProtectReq: return 1 << 15;
1151   case Attribute::Alignment:       return 31 << 16;
1152   case Attribute::NoCapture:       return 1 << 21;
1153   case Attribute::NoRedZone:       return 1 << 22;
1154   case Attribute::NoImplicitFloat: return 1 << 23;
1155   case Attribute::Naked:           return 1 << 24;
1156   case Attribute::InlineHint:      return 1 << 25;
1157   case Attribute::StackAlignment:  return 7 << 26;
1158   case Attribute::ReturnsTwice:    return 1 << 29;
1159   case Attribute::UWTable:         return 1 << 30;
1160   case Attribute::NonLazyBind:     return 1U << 31;
1161   case Attribute::SanitizeAddress: return 1ULL << 32;
1162   case Attribute::MinSize:         return 1ULL << 33;
1163   case Attribute::NoDuplicate:     return 1ULL << 34;
1164   case Attribute::StackProtectStrong: return 1ULL << 35;
1165   case Attribute::SanitizeThread:  return 1ULL << 36;
1166   case Attribute::SanitizeMemory:  return 1ULL << 37;
1167   case Attribute::NoBuiltin:       return 1ULL << 38;
1168   case Attribute::Returned:        return 1ULL << 39;
1169   case Attribute::Cold:            return 1ULL << 40;
1170   case Attribute::Builtin:         return 1ULL << 41;
1171   case Attribute::OptimizeNone:    return 1ULL << 42;
1172   case Attribute::InAlloca:        return 1ULL << 43;
1173   case Attribute::NonNull:         return 1ULL << 44;
1174   case Attribute::JumpTable:       return 1ULL << 45;
1175   case Attribute::Convergent:      return 1ULL << 46;
1176   case Attribute::SafeStack:       return 1ULL << 47;
1177   case Attribute::NoRecurse:       return 1ULL << 48;
1178   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1179   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1180   case Attribute::SwiftSelf:       return 1ULL << 51;
1181   case Attribute::SwiftError:      return 1ULL << 52;
1182   case Attribute::WriteOnly:       return 1ULL << 53;
1183   case Attribute::Speculatable:    return 1ULL << 54;
1184   case Attribute::StrictFP:        return 1ULL << 55;
1185   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1186   case Attribute::NoCfCheck:       return 1ULL << 57;
1187   case Attribute::OptForFuzzing:   return 1ULL << 58;
1188   case Attribute::ShadowCallStack: return 1ULL << 59;
1189   case Attribute::SpeculativeLoadHardening:
1190     return 1ULL << 60;
1191   case Attribute::Dereferenceable:
1192     llvm_unreachable("dereferenceable attribute not supported in raw format");
1193     break;
1194   case Attribute::DereferenceableOrNull:
1195     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1196                      "format");
1197     break;
1198   case Attribute::ArgMemOnly:
1199     llvm_unreachable("argmemonly attribute not supported in raw format");
1200     break;
1201   case Attribute::AllocSize:
1202     llvm_unreachable("allocsize not supported in raw format");
1203     break;
1204   }
1205   llvm_unreachable("Unsupported attribute type");
1206 }
1207 
1208 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1209   if (!Val) return;
1210 
1211   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1212        I = Attribute::AttrKind(I + 1)) {
1213     if (I == Attribute::Dereferenceable ||
1214         I == Attribute::DereferenceableOrNull ||
1215         I == Attribute::ArgMemOnly ||
1216         I == Attribute::AllocSize)
1217       continue;
1218     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1219       if (I == Attribute::Alignment)
1220         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1221       else if (I == Attribute::StackAlignment)
1222         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1223       else
1224         B.addAttribute(I);
1225     }
1226   }
1227 }
1228 
1229 /// This fills an AttrBuilder object with the LLVM attributes that have
1230 /// been decoded from the given integer. This function must stay in sync with
1231 /// 'encodeLLVMAttributesForBitcode'.
1232 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1233                                            uint64_t EncodedAttrs) {
1234   // FIXME: Remove in 4.0.
1235 
1236   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1237   // the bits above 31 down by 11 bits.
1238   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1239   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1240          "Alignment must be a power of two.");
1241 
1242   if (Alignment)
1243     B.addAlignmentAttr(Alignment);
1244   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1245                           (EncodedAttrs & 0xffff));
1246 }
1247 
1248 Error BitcodeReader::parseAttributeBlock() {
1249   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1250     return error("Invalid record");
1251 
1252   if (!MAttributes.empty())
1253     return error("Invalid multiple blocks");
1254 
1255   SmallVector<uint64_t, 64> Record;
1256 
1257   SmallVector<AttributeList, 8> Attrs;
1258 
1259   // Read all the records.
1260   while (true) {
1261     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1262 
1263     switch (Entry.Kind) {
1264     case BitstreamEntry::SubBlock: // Handled for us already.
1265     case BitstreamEntry::Error:
1266       return error("Malformed block");
1267     case BitstreamEntry::EndBlock:
1268       return Error::success();
1269     case BitstreamEntry::Record:
1270       // The interesting case.
1271       break;
1272     }
1273 
1274     // Read a record.
1275     Record.clear();
1276     switch (Stream.readRecord(Entry.ID, Record)) {
1277     default:  // Default behavior: ignore.
1278       break;
1279     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1280       // FIXME: Remove in 4.0.
1281       if (Record.size() & 1)
1282         return error("Invalid record");
1283 
1284       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1285         AttrBuilder B;
1286         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1287         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1288       }
1289 
1290       MAttributes.push_back(AttributeList::get(Context, Attrs));
1291       Attrs.clear();
1292       break;
1293     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1294       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1295         Attrs.push_back(MAttributeGroups[Record[i]]);
1296 
1297       MAttributes.push_back(AttributeList::get(Context, Attrs));
1298       Attrs.clear();
1299       break;
1300     }
1301   }
1302 }
1303 
1304 // Returns Attribute::None on unrecognized codes.
1305 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1306   switch (Code) {
1307   default:
1308     return Attribute::None;
1309   case bitc::ATTR_KIND_ALIGNMENT:
1310     return Attribute::Alignment;
1311   case bitc::ATTR_KIND_ALWAYS_INLINE:
1312     return Attribute::AlwaysInline;
1313   case bitc::ATTR_KIND_ARGMEMONLY:
1314     return Attribute::ArgMemOnly;
1315   case bitc::ATTR_KIND_BUILTIN:
1316     return Attribute::Builtin;
1317   case bitc::ATTR_KIND_BY_VAL:
1318     return Attribute::ByVal;
1319   case bitc::ATTR_KIND_IN_ALLOCA:
1320     return Attribute::InAlloca;
1321   case bitc::ATTR_KIND_COLD:
1322     return Attribute::Cold;
1323   case bitc::ATTR_KIND_CONVERGENT:
1324     return Attribute::Convergent;
1325   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1326     return Attribute::InaccessibleMemOnly;
1327   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1328     return Attribute::InaccessibleMemOrArgMemOnly;
1329   case bitc::ATTR_KIND_INLINE_HINT:
1330     return Attribute::InlineHint;
1331   case bitc::ATTR_KIND_IN_REG:
1332     return Attribute::InReg;
1333   case bitc::ATTR_KIND_JUMP_TABLE:
1334     return Attribute::JumpTable;
1335   case bitc::ATTR_KIND_MIN_SIZE:
1336     return Attribute::MinSize;
1337   case bitc::ATTR_KIND_NAKED:
1338     return Attribute::Naked;
1339   case bitc::ATTR_KIND_NEST:
1340     return Attribute::Nest;
1341   case bitc::ATTR_KIND_NO_ALIAS:
1342     return Attribute::NoAlias;
1343   case bitc::ATTR_KIND_NO_BUILTIN:
1344     return Attribute::NoBuiltin;
1345   case bitc::ATTR_KIND_NO_CAPTURE:
1346     return Attribute::NoCapture;
1347   case bitc::ATTR_KIND_NO_DUPLICATE:
1348     return Attribute::NoDuplicate;
1349   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1350     return Attribute::NoImplicitFloat;
1351   case bitc::ATTR_KIND_NO_INLINE:
1352     return Attribute::NoInline;
1353   case bitc::ATTR_KIND_NO_RECURSE:
1354     return Attribute::NoRecurse;
1355   case bitc::ATTR_KIND_NON_LAZY_BIND:
1356     return Attribute::NonLazyBind;
1357   case bitc::ATTR_KIND_NON_NULL:
1358     return Attribute::NonNull;
1359   case bitc::ATTR_KIND_DEREFERENCEABLE:
1360     return Attribute::Dereferenceable;
1361   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1362     return Attribute::DereferenceableOrNull;
1363   case bitc::ATTR_KIND_ALLOC_SIZE:
1364     return Attribute::AllocSize;
1365   case bitc::ATTR_KIND_NO_RED_ZONE:
1366     return Attribute::NoRedZone;
1367   case bitc::ATTR_KIND_NO_RETURN:
1368     return Attribute::NoReturn;
1369   case bitc::ATTR_KIND_NOCF_CHECK:
1370     return Attribute::NoCfCheck;
1371   case bitc::ATTR_KIND_NO_UNWIND:
1372     return Attribute::NoUnwind;
1373   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1374     return Attribute::OptForFuzzing;
1375   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1376     return Attribute::OptimizeForSize;
1377   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1378     return Attribute::OptimizeNone;
1379   case bitc::ATTR_KIND_READ_NONE:
1380     return Attribute::ReadNone;
1381   case bitc::ATTR_KIND_READ_ONLY:
1382     return Attribute::ReadOnly;
1383   case bitc::ATTR_KIND_RETURNED:
1384     return Attribute::Returned;
1385   case bitc::ATTR_KIND_RETURNS_TWICE:
1386     return Attribute::ReturnsTwice;
1387   case bitc::ATTR_KIND_S_EXT:
1388     return Attribute::SExt;
1389   case bitc::ATTR_KIND_SPECULATABLE:
1390     return Attribute::Speculatable;
1391   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1392     return Attribute::StackAlignment;
1393   case bitc::ATTR_KIND_STACK_PROTECT:
1394     return Attribute::StackProtect;
1395   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1396     return Attribute::StackProtectReq;
1397   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1398     return Attribute::StackProtectStrong;
1399   case bitc::ATTR_KIND_SAFESTACK:
1400     return Attribute::SafeStack;
1401   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1402     return Attribute::ShadowCallStack;
1403   case bitc::ATTR_KIND_STRICT_FP:
1404     return Attribute::StrictFP;
1405   case bitc::ATTR_KIND_STRUCT_RET:
1406     return Attribute::StructRet;
1407   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1408     return Attribute::SanitizeAddress;
1409   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1410     return Attribute::SanitizeHWAddress;
1411   case bitc::ATTR_KIND_SANITIZE_THREAD:
1412     return Attribute::SanitizeThread;
1413   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1414     return Attribute::SanitizeMemory;
1415   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1416     return Attribute::SpeculativeLoadHardening;
1417   case bitc::ATTR_KIND_SWIFT_ERROR:
1418     return Attribute::SwiftError;
1419   case bitc::ATTR_KIND_SWIFT_SELF:
1420     return Attribute::SwiftSelf;
1421   case bitc::ATTR_KIND_UW_TABLE:
1422     return Attribute::UWTable;
1423   case bitc::ATTR_KIND_WRITEONLY:
1424     return Attribute::WriteOnly;
1425   case bitc::ATTR_KIND_Z_EXT:
1426     return Attribute::ZExt;
1427   }
1428 }
1429 
1430 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1431                                          unsigned &Alignment) {
1432   // Note: Alignment in bitcode files is incremented by 1, so that zero
1433   // can be used for default alignment.
1434   if (Exponent > Value::MaxAlignmentExponent + 1)
1435     return error("Invalid alignment value");
1436   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1437   return Error::success();
1438 }
1439 
1440 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1441   *Kind = getAttrFromCode(Code);
1442   if (*Kind == Attribute::None)
1443     return error("Unknown attribute kind (" + Twine(Code) + ")");
1444   return Error::success();
1445 }
1446 
1447 Error BitcodeReader::parseAttributeGroupBlock() {
1448   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1449     return error("Invalid record");
1450 
1451   if (!MAttributeGroups.empty())
1452     return error("Invalid multiple blocks");
1453 
1454   SmallVector<uint64_t, 64> Record;
1455 
1456   // Read all the records.
1457   while (true) {
1458     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1459 
1460     switch (Entry.Kind) {
1461     case BitstreamEntry::SubBlock: // Handled for us already.
1462     case BitstreamEntry::Error:
1463       return error("Malformed block");
1464     case BitstreamEntry::EndBlock:
1465       return Error::success();
1466     case BitstreamEntry::Record:
1467       // The interesting case.
1468       break;
1469     }
1470 
1471     // Read a record.
1472     Record.clear();
1473     switch (Stream.readRecord(Entry.ID, Record)) {
1474     default:  // Default behavior: ignore.
1475       break;
1476     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1477       if (Record.size() < 3)
1478         return error("Invalid record");
1479 
1480       uint64_t GrpID = Record[0];
1481       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1482 
1483       AttrBuilder B;
1484       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1485         if (Record[i] == 0) {        // Enum attribute
1486           Attribute::AttrKind Kind;
1487           if (Error Err = parseAttrKind(Record[++i], &Kind))
1488             return Err;
1489 
1490           B.addAttribute(Kind);
1491         } else if (Record[i] == 1) { // Integer attribute
1492           Attribute::AttrKind Kind;
1493           if (Error Err = parseAttrKind(Record[++i], &Kind))
1494             return Err;
1495           if (Kind == Attribute::Alignment)
1496             B.addAlignmentAttr(Record[++i]);
1497           else if (Kind == Attribute::StackAlignment)
1498             B.addStackAlignmentAttr(Record[++i]);
1499           else if (Kind == Attribute::Dereferenceable)
1500             B.addDereferenceableAttr(Record[++i]);
1501           else if (Kind == Attribute::DereferenceableOrNull)
1502             B.addDereferenceableOrNullAttr(Record[++i]);
1503           else if (Kind == Attribute::AllocSize)
1504             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1505         } else {                     // String attribute
1506           assert((Record[i] == 3 || Record[i] == 4) &&
1507                  "Invalid attribute group entry");
1508           bool HasValue = (Record[i++] == 4);
1509           SmallString<64> KindStr;
1510           SmallString<64> ValStr;
1511 
1512           while (Record[i] != 0 && i != e)
1513             KindStr += Record[i++];
1514           assert(Record[i] == 0 && "Kind string not null terminated");
1515 
1516           if (HasValue) {
1517             // Has a value associated with it.
1518             ++i; // Skip the '0' that terminates the "kind" string.
1519             while (Record[i] != 0 && i != e)
1520               ValStr += Record[i++];
1521             assert(Record[i] == 0 && "Value string not null terminated");
1522           }
1523 
1524           B.addAttribute(KindStr.str(), ValStr.str());
1525         }
1526       }
1527 
1528       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1529       break;
1530     }
1531     }
1532   }
1533 }
1534 
1535 Error BitcodeReader::parseTypeTable() {
1536   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1537     return error("Invalid record");
1538 
1539   return parseTypeTableBody();
1540 }
1541 
1542 Error BitcodeReader::parseTypeTableBody() {
1543   if (!TypeList.empty())
1544     return error("Invalid multiple blocks");
1545 
1546   SmallVector<uint64_t, 64> Record;
1547   unsigned NumRecords = 0;
1548 
1549   SmallString<64> TypeName;
1550 
1551   // Read all the records for this type table.
1552   while (true) {
1553     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1554 
1555     switch (Entry.Kind) {
1556     case BitstreamEntry::SubBlock: // Handled for us already.
1557     case BitstreamEntry::Error:
1558       return error("Malformed block");
1559     case BitstreamEntry::EndBlock:
1560       if (NumRecords != TypeList.size())
1561         return error("Malformed block");
1562       return Error::success();
1563     case BitstreamEntry::Record:
1564       // The interesting case.
1565       break;
1566     }
1567 
1568     // Read a record.
1569     Record.clear();
1570     Type *ResultTy = nullptr;
1571     switch (Stream.readRecord(Entry.ID, Record)) {
1572     default:
1573       return error("Invalid value");
1574     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1575       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1576       // type list.  This allows us to reserve space.
1577       if (Record.size() < 1)
1578         return error("Invalid record");
1579       TypeList.resize(Record[0]);
1580       continue;
1581     case bitc::TYPE_CODE_VOID:      // VOID
1582       ResultTy = Type::getVoidTy(Context);
1583       break;
1584     case bitc::TYPE_CODE_HALF:     // HALF
1585       ResultTy = Type::getHalfTy(Context);
1586       break;
1587     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1588       ResultTy = Type::getFloatTy(Context);
1589       break;
1590     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1591       ResultTy = Type::getDoubleTy(Context);
1592       break;
1593     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1594       ResultTy = Type::getX86_FP80Ty(Context);
1595       break;
1596     case bitc::TYPE_CODE_FP128:     // FP128
1597       ResultTy = Type::getFP128Ty(Context);
1598       break;
1599     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1600       ResultTy = Type::getPPC_FP128Ty(Context);
1601       break;
1602     case bitc::TYPE_CODE_LABEL:     // LABEL
1603       ResultTy = Type::getLabelTy(Context);
1604       break;
1605     case bitc::TYPE_CODE_METADATA:  // METADATA
1606       ResultTy = Type::getMetadataTy(Context);
1607       break;
1608     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1609       ResultTy = Type::getX86_MMXTy(Context);
1610       break;
1611     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1612       ResultTy = Type::getTokenTy(Context);
1613       break;
1614     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1615       if (Record.size() < 1)
1616         return error("Invalid record");
1617 
1618       uint64_t NumBits = Record[0];
1619       if (NumBits < IntegerType::MIN_INT_BITS ||
1620           NumBits > IntegerType::MAX_INT_BITS)
1621         return error("Bitwidth for integer type out of range");
1622       ResultTy = IntegerType::get(Context, NumBits);
1623       break;
1624     }
1625     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1626                                     //          [pointee type, address space]
1627       if (Record.size() < 1)
1628         return error("Invalid record");
1629       unsigned AddressSpace = 0;
1630       if (Record.size() == 2)
1631         AddressSpace = Record[1];
1632       ResultTy = getTypeByID(Record[0]);
1633       if (!ResultTy ||
1634           !PointerType::isValidElementType(ResultTy))
1635         return error("Invalid type");
1636       ResultTy = PointerType::get(ResultTy, AddressSpace);
1637       break;
1638     }
1639     case bitc::TYPE_CODE_FUNCTION_OLD: {
1640       // FIXME: attrid is dead, remove it in LLVM 4.0
1641       // FUNCTION: [vararg, attrid, retty, paramty x N]
1642       if (Record.size() < 3)
1643         return error("Invalid record");
1644       SmallVector<Type*, 8> ArgTys;
1645       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1646         if (Type *T = getTypeByID(Record[i]))
1647           ArgTys.push_back(T);
1648         else
1649           break;
1650       }
1651 
1652       ResultTy = getTypeByID(Record[2]);
1653       if (!ResultTy || ArgTys.size() < Record.size()-3)
1654         return error("Invalid type");
1655 
1656       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1657       break;
1658     }
1659     case bitc::TYPE_CODE_FUNCTION: {
1660       // FUNCTION: [vararg, retty, paramty x N]
1661       if (Record.size() < 2)
1662         return error("Invalid record");
1663       SmallVector<Type*, 8> ArgTys;
1664       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1665         if (Type *T = getTypeByID(Record[i])) {
1666           if (!FunctionType::isValidArgumentType(T))
1667             return error("Invalid function argument type");
1668           ArgTys.push_back(T);
1669         }
1670         else
1671           break;
1672       }
1673 
1674       ResultTy = getTypeByID(Record[1]);
1675       if (!ResultTy || ArgTys.size() < Record.size()-2)
1676         return error("Invalid type");
1677 
1678       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1679       break;
1680     }
1681     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1682       if (Record.size() < 1)
1683         return error("Invalid record");
1684       SmallVector<Type*, 8> EltTys;
1685       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1686         if (Type *T = getTypeByID(Record[i]))
1687           EltTys.push_back(T);
1688         else
1689           break;
1690       }
1691       if (EltTys.size() != Record.size()-1)
1692         return error("Invalid type");
1693       ResultTy = StructType::get(Context, EltTys, Record[0]);
1694       break;
1695     }
1696     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1697       if (convertToString(Record, 0, TypeName))
1698         return error("Invalid record");
1699       continue;
1700 
1701     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1702       if (Record.size() < 1)
1703         return error("Invalid record");
1704 
1705       if (NumRecords >= TypeList.size())
1706         return error("Invalid TYPE table");
1707 
1708       // Check to see if this was forward referenced, if so fill in the temp.
1709       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1710       if (Res) {
1711         Res->setName(TypeName);
1712         TypeList[NumRecords] = nullptr;
1713       } else  // Otherwise, create a new struct.
1714         Res = createIdentifiedStructType(Context, TypeName);
1715       TypeName.clear();
1716 
1717       SmallVector<Type*, 8> EltTys;
1718       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1719         if (Type *T = getTypeByID(Record[i]))
1720           EltTys.push_back(T);
1721         else
1722           break;
1723       }
1724       if (EltTys.size() != Record.size()-1)
1725         return error("Invalid record");
1726       Res->setBody(EltTys, Record[0]);
1727       ResultTy = Res;
1728       break;
1729     }
1730     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1731       if (Record.size() != 1)
1732         return error("Invalid record");
1733 
1734       if (NumRecords >= TypeList.size())
1735         return error("Invalid TYPE table");
1736 
1737       // Check to see if this was forward referenced, if so fill in the temp.
1738       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1739       if (Res) {
1740         Res->setName(TypeName);
1741         TypeList[NumRecords] = nullptr;
1742       } else  // Otherwise, create a new struct with no body.
1743         Res = createIdentifiedStructType(Context, TypeName);
1744       TypeName.clear();
1745       ResultTy = Res;
1746       break;
1747     }
1748     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1749       if (Record.size() < 2)
1750         return error("Invalid record");
1751       ResultTy = getTypeByID(Record[1]);
1752       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1753         return error("Invalid type");
1754       ResultTy = ArrayType::get(ResultTy, Record[0]);
1755       break;
1756     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1757       if (Record.size() < 2)
1758         return error("Invalid record");
1759       if (Record[0] == 0)
1760         return error("Invalid vector length");
1761       ResultTy = getTypeByID(Record[1]);
1762       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1763         return error("Invalid type");
1764       ResultTy = VectorType::get(ResultTy, Record[0]);
1765       break;
1766     }
1767 
1768     if (NumRecords >= TypeList.size())
1769       return error("Invalid TYPE table");
1770     if (TypeList[NumRecords])
1771       return error(
1772           "Invalid TYPE table: Only named structs can be forward referenced");
1773     assert(ResultTy && "Didn't read a type?");
1774     TypeList[NumRecords++] = ResultTy;
1775   }
1776 }
1777 
1778 Error BitcodeReader::parseOperandBundleTags() {
1779   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1780     return error("Invalid record");
1781 
1782   if (!BundleTags.empty())
1783     return error("Invalid multiple blocks");
1784 
1785   SmallVector<uint64_t, 64> Record;
1786 
1787   while (true) {
1788     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1789 
1790     switch (Entry.Kind) {
1791     case BitstreamEntry::SubBlock: // Handled for us already.
1792     case BitstreamEntry::Error:
1793       return error("Malformed block");
1794     case BitstreamEntry::EndBlock:
1795       return Error::success();
1796     case BitstreamEntry::Record:
1797       // The interesting case.
1798       break;
1799     }
1800 
1801     // Tags are implicitly mapped to integers by their order.
1802 
1803     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1804       return error("Invalid record");
1805 
1806     // OPERAND_BUNDLE_TAG: [strchr x N]
1807     BundleTags.emplace_back();
1808     if (convertToString(Record, 0, BundleTags.back()))
1809       return error("Invalid record");
1810     Record.clear();
1811   }
1812 }
1813 
1814 Error BitcodeReader::parseSyncScopeNames() {
1815   if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1816     return error("Invalid record");
1817 
1818   if (!SSIDs.empty())
1819     return error("Invalid multiple synchronization scope names blocks");
1820 
1821   SmallVector<uint64_t, 64> Record;
1822   while (true) {
1823     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1824     switch (Entry.Kind) {
1825     case BitstreamEntry::SubBlock: // Handled for us already.
1826     case BitstreamEntry::Error:
1827       return error("Malformed block");
1828     case BitstreamEntry::EndBlock:
1829       if (SSIDs.empty())
1830         return error("Invalid empty synchronization scope names block");
1831       return Error::success();
1832     case BitstreamEntry::Record:
1833       // The interesting case.
1834       break;
1835     }
1836 
1837     // Synchronization scope names are implicitly mapped to synchronization
1838     // scope IDs by their order.
1839 
1840     if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME)
1841       return error("Invalid record");
1842 
1843     SmallString<16> SSN;
1844     if (convertToString(Record, 0, SSN))
1845       return error("Invalid record");
1846 
1847     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1848     Record.clear();
1849   }
1850 }
1851 
1852 /// Associate a value with its name from the given index in the provided record.
1853 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1854                                              unsigned NameIndex, Triple &TT) {
1855   SmallString<128> ValueName;
1856   if (convertToString(Record, NameIndex, ValueName))
1857     return error("Invalid record");
1858   unsigned ValueID = Record[0];
1859   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1860     return error("Invalid record");
1861   Value *V = ValueList[ValueID];
1862 
1863   StringRef NameStr(ValueName.data(), ValueName.size());
1864   if (NameStr.find_first_of(0) != StringRef::npos)
1865     return error("Invalid value name");
1866   V->setName(NameStr);
1867   auto *GO = dyn_cast<GlobalObject>(V);
1868   if (GO) {
1869     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1870       if (TT.supportsCOMDAT())
1871         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1872       else
1873         GO->setComdat(nullptr);
1874     }
1875   }
1876   return V;
1877 }
1878 
1879 /// Helper to note and return the current location, and jump to the given
1880 /// offset.
1881 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1882                                        BitstreamCursor &Stream) {
1883   // Save the current parsing location so we can jump back at the end
1884   // of the VST read.
1885   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1886   Stream.JumpToBit(Offset * 32);
1887 #ifndef NDEBUG
1888   // Do some checking if we are in debug mode.
1889   BitstreamEntry Entry = Stream.advance();
1890   assert(Entry.Kind == BitstreamEntry::SubBlock);
1891   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1892 #else
1893   // In NDEBUG mode ignore the output so we don't get an unused variable
1894   // warning.
1895   Stream.advance();
1896 #endif
1897   return CurrentBit;
1898 }
1899 
1900 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
1901                                             Function *F,
1902                                             ArrayRef<uint64_t> Record) {
1903   // Note that we subtract 1 here because the offset is relative to one word
1904   // before the start of the identification or module block, which was
1905   // historically always the start of the regular bitcode header.
1906   uint64_t FuncWordOffset = Record[1] - 1;
1907   uint64_t FuncBitOffset = FuncWordOffset * 32;
1908   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1909   // Set the LastFunctionBlockBit to point to the last function block.
1910   // Later when parsing is resumed after function materialization,
1911   // we can simply skip that last function block.
1912   if (FuncBitOffset > LastFunctionBlockBit)
1913     LastFunctionBlockBit = FuncBitOffset;
1914 }
1915 
1916 /// Read a new-style GlobalValue symbol table.
1917 Error BitcodeReader::parseGlobalValueSymbolTable() {
1918   unsigned FuncBitcodeOffsetDelta =
1919       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1920 
1921   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1922     return error("Invalid record");
1923 
1924   SmallVector<uint64_t, 64> Record;
1925   while (true) {
1926     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1927 
1928     switch (Entry.Kind) {
1929     case BitstreamEntry::SubBlock:
1930     case BitstreamEntry::Error:
1931       return error("Malformed block");
1932     case BitstreamEntry::EndBlock:
1933       return Error::success();
1934     case BitstreamEntry::Record:
1935       break;
1936     }
1937 
1938     Record.clear();
1939     switch (Stream.readRecord(Entry.ID, Record)) {
1940     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
1941       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
1942                               cast<Function>(ValueList[Record[0]]), Record);
1943       break;
1944     }
1945   }
1946 }
1947 
1948 /// Parse the value symbol table at either the current parsing location or
1949 /// at the given bit offset if provided.
1950 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1951   uint64_t CurrentBit;
1952   // Pass in the Offset to distinguish between calling for the module-level
1953   // VST (where we want to jump to the VST offset) and the function-level
1954   // VST (where we don't).
1955   if (Offset > 0) {
1956     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1957     // If this module uses a string table, read this as a module-level VST.
1958     if (UseStrtab) {
1959       if (Error Err = parseGlobalValueSymbolTable())
1960         return Err;
1961       Stream.JumpToBit(CurrentBit);
1962       return Error::success();
1963     }
1964     // Otherwise, the VST will be in a similar format to a function-level VST,
1965     // and will contain symbol names.
1966   }
1967 
1968   // Compute the delta between the bitcode indices in the VST (the word offset
1969   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1970   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1971   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1972   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1973   // just before entering the VST subblock because: 1) the EnterSubBlock
1974   // changes the AbbrevID width; 2) the VST block is nested within the same
1975   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1976   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1977   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1978   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1979   unsigned FuncBitcodeOffsetDelta =
1980       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1981 
1982   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1983     return error("Invalid record");
1984 
1985   SmallVector<uint64_t, 64> Record;
1986 
1987   Triple TT(TheModule->getTargetTriple());
1988 
1989   // Read all the records for this value table.
1990   SmallString<128> ValueName;
1991 
1992   while (true) {
1993     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1994 
1995     switch (Entry.Kind) {
1996     case BitstreamEntry::SubBlock: // Handled for us already.
1997     case BitstreamEntry::Error:
1998       return error("Malformed block");
1999     case BitstreamEntry::EndBlock:
2000       if (Offset > 0)
2001         Stream.JumpToBit(CurrentBit);
2002       return Error::success();
2003     case BitstreamEntry::Record:
2004       // The interesting case.
2005       break;
2006     }
2007 
2008     // Read a record.
2009     Record.clear();
2010     switch (Stream.readRecord(Entry.ID, Record)) {
2011     default:  // Default behavior: unknown type.
2012       break;
2013     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2014       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2015       if (Error Err = ValOrErr.takeError())
2016         return Err;
2017       ValOrErr.get();
2018       break;
2019     }
2020     case bitc::VST_CODE_FNENTRY: {
2021       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2022       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2023       if (Error Err = ValOrErr.takeError())
2024         return Err;
2025       Value *V = ValOrErr.get();
2026 
2027       // Ignore function offsets emitted for aliases of functions in older
2028       // versions of LLVM.
2029       if (auto *F = dyn_cast<Function>(V))
2030         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2031       break;
2032     }
2033     case bitc::VST_CODE_BBENTRY: {
2034       if (convertToString(Record, 1, ValueName))
2035         return error("Invalid record");
2036       BasicBlock *BB = getBasicBlock(Record[0]);
2037       if (!BB)
2038         return error("Invalid record");
2039 
2040       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2041       ValueName.clear();
2042       break;
2043     }
2044     }
2045   }
2046 }
2047 
2048 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2049 /// encoding.
2050 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2051   if ((V & 1) == 0)
2052     return V >> 1;
2053   if (V != 1)
2054     return -(V >> 1);
2055   // There is no such thing as -0 with integers.  "-0" really means MININT.
2056   return 1ULL << 63;
2057 }
2058 
2059 /// Resolve all of the initializers for global values and aliases that we can.
2060 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2061   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2062   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2063       IndirectSymbolInitWorklist;
2064   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2065   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2066   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2067 
2068   GlobalInitWorklist.swap(GlobalInits);
2069   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2070   FunctionPrefixWorklist.swap(FunctionPrefixes);
2071   FunctionPrologueWorklist.swap(FunctionPrologues);
2072   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2073 
2074   while (!GlobalInitWorklist.empty()) {
2075     unsigned ValID = GlobalInitWorklist.back().second;
2076     if (ValID >= ValueList.size()) {
2077       // Not ready to resolve this yet, it requires something later in the file.
2078       GlobalInits.push_back(GlobalInitWorklist.back());
2079     } else {
2080       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2081         GlobalInitWorklist.back().first->setInitializer(C);
2082       else
2083         return error("Expected a constant");
2084     }
2085     GlobalInitWorklist.pop_back();
2086   }
2087 
2088   while (!IndirectSymbolInitWorklist.empty()) {
2089     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2090     if (ValID >= ValueList.size()) {
2091       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2092     } else {
2093       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2094       if (!C)
2095         return error("Expected a constant");
2096       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2097       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2098         return error("Alias and aliasee types don't match");
2099       GIS->setIndirectSymbol(C);
2100     }
2101     IndirectSymbolInitWorklist.pop_back();
2102   }
2103 
2104   while (!FunctionPrefixWorklist.empty()) {
2105     unsigned ValID = FunctionPrefixWorklist.back().second;
2106     if (ValID >= ValueList.size()) {
2107       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2108     } else {
2109       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2110         FunctionPrefixWorklist.back().first->setPrefixData(C);
2111       else
2112         return error("Expected a constant");
2113     }
2114     FunctionPrefixWorklist.pop_back();
2115   }
2116 
2117   while (!FunctionPrologueWorklist.empty()) {
2118     unsigned ValID = FunctionPrologueWorklist.back().second;
2119     if (ValID >= ValueList.size()) {
2120       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2121     } else {
2122       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2123         FunctionPrologueWorklist.back().first->setPrologueData(C);
2124       else
2125         return error("Expected a constant");
2126     }
2127     FunctionPrologueWorklist.pop_back();
2128   }
2129 
2130   while (!FunctionPersonalityFnWorklist.empty()) {
2131     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2132     if (ValID >= ValueList.size()) {
2133       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2134     } else {
2135       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2136         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2137       else
2138         return error("Expected a constant");
2139     }
2140     FunctionPersonalityFnWorklist.pop_back();
2141   }
2142 
2143   return Error::success();
2144 }
2145 
2146 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2147   SmallVector<uint64_t, 8> Words(Vals.size());
2148   transform(Vals, Words.begin(),
2149                  BitcodeReader::decodeSignRotatedValue);
2150 
2151   return APInt(TypeBits, Words);
2152 }
2153 
2154 Error BitcodeReader::parseConstants() {
2155   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2156     return error("Invalid record");
2157 
2158   SmallVector<uint64_t, 64> Record;
2159 
2160   // Read all the records for this value table.
2161   Type *CurTy = Type::getInt32Ty(Context);
2162   unsigned NextCstNo = ValueList.size();
2163 
2164   while (true) {
2165     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2166 
2167     switch (Entry.Kind) {
2168     case BitstreamEntry::SubBlock: // Handled for us already.
2169     case BitstreamEntry::Error:
2170       return error("Malformed block");
2171     case BitstreamEntry::EndBlock:
2172       if (NextCstNo != ValueList.size())
2173         return error("Invalid constant reference");
2174 
2175       // Once all the constants have been read, go through and resolve forward
2176       // references.
2177       ValueList.resolveConstantForwardRefs();
2178       return Error::success();
2179     case BitstreamEntry::Record:
2180       // The interesting case.
2181       break;
2182     }
2183 
2184     // Read a record.
2185     Record.clear();
2186     Type *VoidType = Type::getVoidTy(Context);
2187     Value *V = nullptr;
2188     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2189     switch (BitCode) {
2190     default:  // Default behavior: unknown constant
2191     case bitc::CST_CODE_UNDEF:     // UNDEF
2192       V = UndefValue::get(CurTy);
2193       break;
2194     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2195       if (Record.empty())
2196         return error("Invalid record");
2197       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2198         return error("Invalid record");
2199       if (TypeList[Record[0]] == VoidType)
2200         return error("Invalid constant type");
2201       CurTy = TypeList[Record[0]];
2202       continue;  // Skip the ValueList manipulation.
2203     case bitc::CST_CODE_NULL:      // NULL
2204       V = Constant::getNullValue(CurTy);
2205       break;
2206     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2207       if (!CurTy->isIntegerTy() || Record.empty())
2208         return error("Invalid record");
2209       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2210       break;
2211     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2212       if (!CurTy->isIntegerTy() || Record.empty())
2213         return error("Invalid record");
2214 
2215       APInt VInt =
2216           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2217       V = ConstantInt::get(Context, VInt);
2218 
2219       break;
2220     }
2221     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2222       if (Record.empty())
2223         return error("Invalid record");
2224       if (CurTy->isHalfTy())
2225         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2226                                              APInt(16, (uint16_t)Record[0])));
2227       else if (CurTy->isFloatTy())
2228         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2229                                              APInt(32, (uint32_t)Record[0])));
2230       else if (CurTy->isDoubleTy())
2231         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2232                                              APInt(64, Record[0])));
2233       else if (CurTy->isX86_FP80Ty()) {
2234         // Bits are not stored the same way as a normal i80 APInt, compensate.
2235         uint64_t Rearrange[2];
2236         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2237         Rearrange[1] = Record[0] >> 48;
2238         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2239                                              APInt(80, Rearrange)));
2240       } else if (CurTy->isFP128Ty())
2241         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2242                                              APInt(128, Record)));
2243       else if (CurTy->isPPC_FP128Ty())
2244         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2245                                              APInt(128, Record)));
2246       else
2247         V = UndefValue::get(CurTy);
2248       break;
2249     }
2250 
2251     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2252       if (Record.empty())
2253         return error("Invalid record");
2254 
2255       unsigned Size = Record.size();
2256       SmallVector<Constant*, 16> Elts;
2257 
2258       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2259         for (unsigned i = 0; i != Size; ++i)
2260           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2261                                                      STy->getElementType(i)));
2262         V = ConstantStruct::get(STy, Elts);
2263       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2264         Type *EltTy = ATy->getElementType();
2265         for (unsigned i = 0; i != Size; ++i)
2266           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2267         V = ConstantArray::get(ATy, Elts);
2268       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2269         Type *EltTy = VTy->getElementType();
2270         for (unsigned i = 0; i != Size; ++i)
2271           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2272         V = ConstantVector::get(Elts);
2273       } else {
2274         V = UndefValue::get(CurTy);
2275       }
2276       break;
2277     }
2278     case bitc::CST_CODE_STRING:    // STRING: [values]
2279     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2280       if (Record.empty())
2281         return error("Invalid record");
2282 
2283       SmallString<16> Elts(Record.begin(), Record.end());
2284       V = ConstantDataArray::getString(Context, Elts,
2285                                        BitCode == bitc::CST_CODE_CSTRING);
2286       break;
2287     }
2288     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2289       if (Record.empty())
2290         return error("Invalid record");
2291 
2292       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2293       if (EltTy->isIntegerTy(8)) {
2294         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2295         if (isa<VectorType>(CurTy))
2296           V = ConstantDataVector::get(Context, Elts);
2297         else
2298           V = ConstantDataArray::get(Context, Elts);
2299       } else if (EltTy->isIntegerTy(16)) {
2300         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2301         if (isa<VectorType>(CurTy))
2302           V = ConstantDataVector::get(Context, Elts);
2303         else
2304           V = ConstantDataArray::get(Context, Elts);
2305       } else if (EltTy->isIntegerTy(32)) {
2306         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2307         if (isa<VectorType>(CurTy))
2308           V = ConstantDataVector::get(Context, Elts);
2309         else
2310           V = ConstantDataArray::get(Context, Elts);
2311       } else if (EltTy->isIntegerTy(64)) {
2312         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2313         if (isa<VectorType>(CurTy))
2314           V = ConstantDataVector::get(Context, Elts);
2315         else
2316           V = ConstantDataArray::get(Context, Elts);
2317       } else if (EltTy->isHalfTy()) {
2318         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2319         if (isa<VectorType>(CurTy))
2320           V = ConstantDataVector::getFP(Context, Elts);
2321         else
2322           V = ConstantDataArray::getFP(Context, Elts);
2323       } else if (EltTy->isFloatTy()) {
2324         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2325         if (isa<VectorType>(CurTy))
2326           V = ConstantDataVector::getFP(Context, Elts);
2327         else
2328           V = ConstantDataArray::getFP(Context, Elts);
2329       } else if (EltTy->isDoubleTy()) {
2330         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2331         if (isa<VectorType>(CurTy))
2332           V = ConstantDataVector::getFP(Context, Elts);
2333         else
2334           V = ConstantDataArray::getFP(Context, Elts);
2335       } else {
2336         return error("Invalid type for value");
2337       }
2338       break;
2339     }
2340     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2341       if (Record.size() < 2)
2342         return error("Invalid record");
2343       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2344       if (Opc < 0) {
2345         V = UndefValue::get(CurTy);  // Unknown unop.
2346       } else {
2347         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2348         unsigned Flags = 0;
2349         V = ConstantExpr::get(Opc, LHS, Flags);
2350       }
2351       break;
2352     }
2353     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2354       if (Record.size() < 3)
2355         return error("Invalid record");
2356       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2357       if (Opc < 0) {
2358         V = UndefValue::get(CurTy);  // Unknown binop.
2359       } else {
2360         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2361         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2362         unsigned Flags = 0;
2363         if (Record.size() >= 4) {
2364           if (Opc == Instruction::Add ||
2365               Opc == Instruction::Sub ||
2366               Opc == Instruction::Mul ||
2367               Opc == Instruction::Shl) {
2368             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2369               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2370             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2371               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2372           } else if (Opc == Instruction::SDiv ||
2373                      Opc == Instruction::UDiv ||
2374                      Opc == Instruction::LShr ||
2375                      Opc == Instruction::AShr) {
2376             if (Record[3] & (1 << bitc::PEO_EXACT))
2377               Flags |= SDivOperator::IsExact;
2378           }
2379         }
2380         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2381       }
2382       break;
2383     }
2384     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2385       if (Record.size() < 3)
2386         return error("Invalid record");
2387       int Opc = getDecodedCastOpcode(Record[0]);
2388       if (Opc < 0) {
2389         V = UndefValue::get(CurTy);  // Unknown cast.
2390       } else {
2391         Type *OpTy = getTypeByID(Record[1]);
2392         if (!OpTy)
2393           return error("Invalid record");
2394         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2395         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2396         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2397       }
2398       break;
2399     }
2400     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2401     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2402     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2403                                                      // operands]
2404       unsigned OpNum = 0;
2405       Type *PointeeType = nullptr;
2406       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2407           Record.size() % 2)
2408         PointeeType = getTypeByID(Record[OpNum++]);
2409 
2410       bool InBounds = false;
2411       Optional<unsigned> InRangeIndex;
2412       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2413         uint64_t Op = Record[OpNum++];
2414         InBounds = Op & 1;
2415         InRangeIndex = Op >> 1;
2416       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2417         InBounds = true;
2418 
2419       SmallVector<Constant*, 16> Elts;
2420       while (OpNum != Record.size()) {
2421         Type *ElTy = getTypeByID(Record[OpNum++]);
2422         if (!ElTy)
2423           return error("Invalid record");
2424         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2425       }
2426 
2427       if (Elts.size() < 1)
2428         return error("Invalid gep with no operands");
2429 
2430       Type *ImplicitPointeeType =
2431           cast<PointerType>(Elts[0]->getType()->getScalarType())
2432               ->getElementType();
2433       if (!PointeeType)
2434         PointeeType = ImplicitPointeeType;
2435       else if (PointeeType != ImplicitPointeeType)
2436         return error("Explicit gep operator type does not match pointee type "
2437                      "of pointer operand");
2438 
2439       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2440       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2441                                          InBounds, InRangeIndex);
2442       break;
2443     }
2444     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2445       if (Record.size() < 3)
2446         return error("Invalid record");
2447 
2448       Type *SelectorTy = Type::getInt1Ty(Context);
2449 
2450       // The selector might be an i1 or an <n x i1>
2451       // Get the type from the ValueList before getting a forward ref.
2452       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2453         if (Value *V = ValueList[Record[0]])
2454           if (SelectorTy != V->getType())
2455             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2456 
2457       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2458                                                               SelectorTy),
2459                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2460                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2461       break;
2462     }
2463     case bitc::CST_CODE_CE_EXTRACTELT
2464         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2465       if (Record.size() < 3)
2466         return error("Invalid record");
2467       VectorType *OpTy =
2468         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2469       if (!OpTy)
2470         return error("Invalid record");
2471       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2472       Constant *Op1 = nullptr;
2473       if (Record.size() == 4) {
2474         Type *IdxTy = getTypeByID(Record[2]);
2475         if (!IdxTy)
2476           return error("Invalid record");
2477         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2478       } else // TODO: Remove with llvm 4.0
2479         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2480       if (!Op1)
2481         return error("Invalid record");
2482       V = ConstantExpr::getExtractElement(Op0, Op1);
2483       break;
2484     }
2485     case bitc::CST_CODE_CE_INSERTELT
2486         : { // CE_INSERTELT: [opval, opval, opty, opval]
2487       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2488       if (Record.size() < 3 || !OpTy)
2489         return error("Invalid record");
2490       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2491       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2492                                                   OpTy->getElementType());
2493       Constant *Op2 = nullptr;
2494       if (Record.size() == 4) {
2495         Type *IdxTy = getTypeByID(Record[2]);
2496         if (!IdxTy)
2497           return error("Invalid record");
2498         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2499       } else // TODO: Remove with llvm 4.0
2500         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2501       if (!Op2)
2502         return error("Invalid record");
2503       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2504       break;
2505     }
2506     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2507       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2508       if (Record.size() < 3 || !OpTy)
2509         return error("Invalid record");
2510       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2511       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2512       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2513                                                  OpTy->getNumElements());
2514       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2515       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2516       break;
2517     }
2518     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2519       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2520       VectorType *OpTy =
2521         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2522       if (Record.size() < 4 || !RTy || !OpTy)
2523         return error("Invalid record");
2524       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2525       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2526       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2527                                                  RTy->getNumElements());
2528       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2529       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2530       break;
2531     }
2532     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2533       if (Record.size() < 4)
2534         return error("Invalid record");
2535       Type *OpTy = getTypeByID(Record[0]);
2536       if (!OpTy)
2537         return error("Invalid record");
2538       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2539       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2540 
2541       if (OpTy->isFPOrFPVectorTy())
2542         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2543       else
2544         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2545       break;
2546     }
2547     // This maintains backward compatibility, pre-asm dialect keywords.
2548     // FIXME: Remove with the 4.0 release.
2549     case bitc::CST_CODE_INLINEASM_OLD: {
2550       if (Record.size() < 2)
2551         return error("Invalid record");
2552       std::string AsmStr, ConstrStr;
2553       bool HasSideEffects = Record[0] & 1;
2554       bool IsAlignStack = Record[0] >> 1;
2555       unsigned AsmStrSize = Record[1];
2556       if (2+AsmStrSize >= Record.size())
2557         return error("Invalid record");
2558       unsigned ConstStrSize = Record[2+AsmStrSize];
2559       if (3+AsmStrSize+ConstStrSize > Record.size())
2560         return error("Invalid record");
2561 
2562       for (unsigned i = 0; i != AsmStrSize; ++i)
2563         AsmStr += (char)Record[2+i];
2564       for (unsigned i = 0; i != ConstStrSize; ++i)
2565         ConstrStr += (char)Record[3+AsmStrSize+i];
2566       PointerType *PTy = cast<PointerType>(CurTy);
2567       UpgradeInlineAsmString(&AsmStr);
2568       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2569                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2570       break;
2571     }
2572     // This version adds support for the asm dialect keywords (e.g.,
2573     // inteldialect).
2574     case bitc::CST_CODE_INLINEASM: {
2575       if (Record.size() < 2)
2576         return error("Invalid record");
2577       std::string AsmStr, ConstrStr;
2578       bool HasSideEffects = Record[0] & 1;
2579       bool IsAlignStack = (Record[0] >> 1) & 1;
2580       unsigned AsmDialect = Record[0] >> 2;
2581       unsigned AsmStrSize = Record[1];
2582       if (2+AsmStrSize >= Record.size())
2583         return error("Invalid record");
2584       unsigned ConstStrSize = Record[2+AsmStrSize];
2585       if (3+AsmStrSize+ConstStrSize > Record.size())
2586         return error("Invalid record");
2587 
2588       for (unsigned i = 0; i != AsmStrSize; ++i)
2589         AsmStr += (char)Record[2+i];
2590       for (unsigned i = 0; i != ConstStrSize; ++i)
2591         ConstrStr += (char)Record[3+AsmStrSize+i];
2592       PointerType *PTy = cast<PointerType>(CurTy);
2593       UpgradeInlineAsmString(&AsmStr);
2594       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2595                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2596                          InlineAsm::AsmDialect(AsmDialect));
2597       break;
2598     }
2599     case bitc::CST_CODE_BLOCKADDRESS:{
2600       if (Record.size() < 3)
2601         return error("Invalid record");
2602       Type *FnTy = getTypeByID(Record[0]);
2603       if (!FnTy)
2604         return error("Invalid record");
2605       Function *Fn =
2606         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2607       if (!Fn)
2608         return error("Invalid record");
2609 
2610       // If the function is already parsed we can insert the block address right
2611       // away.
2612       BasicBlock *BB;
2613       unsigned BBID = Record[2];
2614       if (!BBID)
2615         // Invalid reference to entry block.
2616         return error("Invalid ID");
2617       if (!Fn->empty()) {
2618         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2619         for (size_t I = 0, E = BBID; I != E; ++I) {
2620           if (BBI == BBE)
2621             return error("Invalid ID");
2622           ++BBI;
2623         }
2624         BB = &*BBI;
2625       } else {
2626         // Otherwise insert a placeholder and remember it so it can be inserted
2627         // when the function is parsed.
2628         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2629         if (FwdBBs.empty())
2630           BasicBlockFwdRefQueue.push_back(Fn);
2631         if (FwdBBs.size() < BBID + 1)
2632           FwdBBs.resize(BBID + 1);
2633         if (!FwdBBs[BBID])
2634           FwdBBs[BBID] = BasicBlock::Create(Context);
2635         BB = FwdBBs[BBID];
2636       }
2637       V = BlockAddress::get(Fn, BB);
2638       break;
2639     }
2640     }
2641 
2642     ValueList.assignValue(V, NextCstNo);
2643     ++NextCstNo;
2644   }
2645 }
2646 
2647 Error BitcodeReader::parseUseLists() {
2648   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2649     return error("Invalid record");
2650 
2651   // Read all the records.
2652   SmallVector<uint64_t, 64> Record;
2653 
2654   while (true) {
2655     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2656 
2657     switch (Entry.Kind) {
2658     case BitstreamEntry::SubBlock: // Handled for us already.
2659     case BitstreamEntry::Error:
2660       return error("Malformed block");
2661     case BitstreamEntry::EndBlock:
2662       return Error::success();
2663     case BitstreamEntry::Record:
2664       // The interesting case.
2665       break;
2666     }
2667 
2668     // Read a use list record.
2669     Record.clear();
2670     bool IsBB = false;
2671     switch (Stream.readRecord(Entry.ID, Record)) {
2672     default:  // Default behavior: unknown type.
2673       break;
2674     case bitc::USELIST_CODE_BB:
2675       IsBB = true;
2676       LLVM_FALLTHROUGH;
2677     case bitc::USELIST_CODE_DEFAULT: {
2678       unsigned RecordLength = Record.size();
2679       if (RecordLength < 3)
2680         // Records should have at least an ID and two indexes.
2681         return error("Invalid record");
2682       unsigned ID = Record.back();
2683       Record.pop_back();
2684 
2685       Value *V;
2686       if (IsBB) {
2687         assert(ID < FunctionBBs.size() && "Basic block not found");
2688         V = FunctionBBs[ID];
2689       } else
2690         V = ValueList[ID];
2691       unsigned NumUses = 0;
2692       SmallDenseMap<const Use *, unsigned, 16> Order;
2693       for (const Use &U : V->materialized_uses()) {
2694         if (++NumUses > Record.size())
2695           break;
2696         Order[&U] = Record[NumUses - 1];
2697       }
2698       if (Order.size() != Record.size() || NumUses > Record.size())
2699         // Mismatches can happen if the functions are being materialized lazily
2700         // (out-of-order), or a value has been upgraded.
2701         break;
2702 
2703       V->sortUseList([&](const Use &L, const Use &R) {
2704         return Order.lookup(&L) < Order.lookup(&R);
2705       });
2706       break;
2707     }
2708     }
2709   }
2710 }
2711 
2712 /// When we see the block for metadata, remember where it is and then skip it.
2713 /// This lets us lazily deserialize the metadata.
2714 Error BitcodeReader::rememberAndSkipMetadata() {
2715   // Save the current stream state.
2716   uint64_t CurBit = Stream.GetCurrentBitNo();
2717   DeferredMetadataInfo.push_back(CurBit);
2718 
2719   // Skip over the block for now.
2720   if (Stream.SkipBlock())
2721     return error("Invalid record");
2722   return Error::success();
2723 }
2724 
2725 Error BitcodeReader::materializeMetadata() {
2726   for (uint64_t BitPos : DeferredMetadataInfo) {
2727     // Move the bit stream to the saved position.
2728     Stream.JumpToBit(BitPos);
2729     if (Error Err = MDLoader->parseModuleMetadata())
2730       return Err;
2731   }
2732 
2733   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2734   // metadata.
2735   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2736     NamedMDNode *LinkerOpts =
2737         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2738     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2739       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2740   }
2741 
2742   DeferredMetadataInfo.clear();
2743   return Error::success();
2744 }
2745 
2746 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2747 
2748 /// When we see the block for a function body, remember where it is and then
2749 /// skip it.  This lets us lazily deserialize the functions.
2750 Error BitcodeReader::rememberAndSkipFunctionBody() {
2751   // Get the function we are talking about.
2752   if (FunctionsWithBodies.empty())
2753     return error("Insufficient function protos");
2754 
2755   Function *Fn = FunctionsWithBodies.back();
2756   FunctionsWithBodies.pop_back();
2757 
2758   // Save the current stream state.
2759   uint64_t CurBit = Stream.GetCurrentBitNo();
2760   assert(
2761       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2762       "Mismatch between VST and scanned function offsets");
2763   DeferredFunctionInfo[Fn] = CurBit;
2764 
2765   // Skip over the function block for now.
2766   if (Stream.SkipBlock())
2767     return error("Invalid record");
2768   return Error::success();
2769 }
2770 
2771 Error BitcodeReader::globalCleanup() {
2772   // Patch the initializers for globals and aliases up.
2773   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2774     return Err;
2775   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2776     return error("Malformed global initializer set");
2777 
2778   // Look for intrinsic functions which need to be upgraded at some point
2779   for (Function &F : *TheModule) {
2780     MDLoader->upgradeDebugIntrinsics(F);
2781     Function *NewFn;
2782     if (UpgradeIntrinsicFunction(&F, NewFn))
2783       UpgradedIntrinsics[&F] = NewFn;
2784     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2785       // Some types could be renamed during loading if several modules are
2786       // loaded in the same LLVMContext (LTO scenario). In this case we should
2787       // remangle intrinsics names as well.
2788       RemangledIntrinsics[&F] = Remangled.getValue();
2789   }
2790 
2791   // Look for global variables which need to be renamed.
2792   for (GlobalVariable &GV : TheModule->globals())
2793     UpgradeGlobalVariable(&GV);
2794 
2795   // Force deallocation of memory for these vectors to favor the client that
2796   // want lazy deserialization.
2797   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2798   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2799       IndirectSymbolInits);
2800   return Error::success();
2801 }
2802 
2803 /// Support for lazy parsing of function bodies. This is required if we
2804 /// either have an old bitcode file without a VST forward declaration record,
2805 /// or if we have an anonymous function being materialized, since anonymous
2806 /// functions do not have a name and are therefore not in the VST.
2807 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2808   Stream.JumpToBit(NextUnreadBit);
2809 
2810   if (Stream.AtEndOfStream())
2811     return error("Could not find function in stream");
2812 
2813   if (!SeenFirstFunctionBody)
2814     return error("Trying to materialize functions before seeing function blocks");
2815 
2816   // An old bitcode file with the symbol table at the end would have
2817   // finished the parse greedily.
2818   assert(SeenValueSymbolTable);
2819 
2820   SmallVector<uint64_t, 64> Record;
2821 
2822   while (true) {
2823     BitstreamEntry Entry = Stream.advance();
2824     switch (Entry.Kind) {
2825     default:
2826       return error("Expect SubBlock");
2827     case BitstreamEntry::SubBlock:
2828       switch (Entry.ID) {
2829       default:
2830         return error("Expect function block");
2831       case bitc::FUNCTION_BLOCK_ID:
2832         if (Error Err = rememberAndSkipFunctionBody())
2833           return Err;
2834         NextUnreadBit = Stream.GetCurrentBitNo();
2835         return Error::success();
2836       }
2837     }
2838   }
2839 }
2840 
2841 bool BitcodeReaderBase::readBlockInfo() {
2842   Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
2843   if (!NewBlockInfo)
2844     return true;
2845   BlockInfo = std::move(*NewBlockInfo);
2846   return false;
2847 }
2848 
2849 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
2850   // v1: [selection_kind, name]
2851   // v2: [strtab_offset, strtab_size, selection_kind]
2852   StringRef Name;
2853   std::tie(Name, Record) = readNameFromStrtab(Record);
2854 
2855   if (Record.empty())
2856     return error("Invalid record");
2857   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
2858   std::string OldFormatName;
2859   if (!UseStrtab) {
2860     if (Record.size() < 2)
2861       return error("Invalid record");
2862     unsigned ComdatNameSize = Record[1];
2863     OldFormatName.reserve(ComdatNameSize);
2864     for (unsigned i = 0; i != ComdatNameSize; ++i)
2865       OldFormatName += (char)Record[2 + i];
2866     Name = OldFormatName;
2867   }
2868   Comdat *C = TheModule->getOrInsertComdat(Name);
2869   C->setSelectionKind(SK);
2870   ComdatList.push_back(C);
2871   return Error::success();
2872 }
2873 
2874 static void inferDSOLocal(GlobalValue *GV) {
2875   // infer dso_local from linkage and visibility if it is not encoded.
2876   if (GV->hasLocalLinkage() ||
2877       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
2878     GV->setDSOLocal(true);
2879 }
2880 
2881 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
2882   // v1: [pointer type, isconst, initid, linkage, alignment, section,
2883   // visibility, threadlocal, unnamed_addr, externally_initialized,
2884   // dllstorageclass, comdat, attributes, preemption specifier] (name in VST)
2885   // v2: [strtab_offset, strtab_size, v1]
2886   StringRef Name;
2887   std::tie(Name, Record) = readNameFromStrtab(Record);
2888 
2889   if (Record.size() < 6)
2890     return error("Invalid record");
2891   Type *Ty = getTypeByID(Record[0]);
2892   if (!Ty)
2893     return error("Invalid record");
2894   bool isConstant = Record[1] & 1;
2895   bool explicitType = Record[1] & 2;
2896   unsigned AddressSpace;
2897   if (explicitType) {
2898     AddressSpace = Record[1] >> 2;
2899   } else {
2900     if (!Ty->isPointerTy())
2901       return error("Invalid type for value");
2902     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2903     Ty = cast<PointerType>(Ty)->getElementType();
2904   }
2905 
2906   uint64_t RawLinkage = Record[3];
2907   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2908   unsigned Alignment;
2909   if (Error Err = parseAlignmentValue(Record[4], Alignment))
2910     return Err;
2911   std::string Section;
2912   if (Record[5]) {
2913     if (Record[5] - 1 >= SectionTable.size())
2914       return error("Invalid ID");
2915     Section = SectionTable[Record[5] - 1];
2916   }
2917   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2918   // Local linkage must have default visibility.
2919   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
2920     // FIXME: Change to an error if non-default in 4.0.
2921     Visibility = getDecodedVisibility(Record[6]);
2922 
2923   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2924   if (Record.size() > 7)
2925     TLM = getDecodedThreadLocalMode(Record[7]);
2926 
2927   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2928   if (Record.size() > 8)
2929     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2930 
2931   bool ExternallyInitialized = false;
2932   if (Record.size() > 9)
2933     ExternallyInitialized = Record[9];
2934 
2935   GlobalVariable *NewGV =
2936       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
2937                          nullptr, TLM, AddressSpace, ExternallyInitialized);
2938   NewGV->setAlignment(Alignment);
2939   if (!Section.empty())
2940     NewGV->setSection(Section);
2941   NewGV->setVisibility(Visibility);
2942   NewGV->setUnnamedAddr(UnnamedAddr);
2943 
2944   if (Record.size() > 10)
2945     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
2946   else
2947     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
2948 
2949   ValueList.push_back(NewGV);
2950 
2951   // Remember which value to use for the global initializer.
2952   if (unsigned InitID = Record[2])
2953     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
2954 
2955   if (Record.size() > 11) {
2956     if (unsigned ComdatID = Record[11]) {
2957       if (ComdatID > ComdatList.size())
2958         return error("Invalid global variable comdat ID");
2959       NewGV->setComdat(ComdatList[ComdatID - 1]);
2960     }
2961   } else if (hasImplicitComdat(RawLinkage)) {
2962     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2963   }
2964 
2965   if (Record.size() > 12) {
2966     auto AS = getAttributes(Record[12]).getFnAttributes();
2967     NewGV->setAttributes(AS);
2968   }
2969 
2970   if (Record.size() > 13) {
2971     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
2972   }
2973   inferDSOLocal(NewGV);
2974 
2975   return Error::success();
2976 }
2977 
2978 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
2979   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
2980   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
2981   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
2982   // v2: [strtab_offset, strtab_size, v1]
2983   StringRef Name;
2984   std::tie(Name, Record) = readNameFromStrtab(Record);
2985 
2986   if (Record.size() < 8)
2987     return error("Invalid record");
2988   Type *Ty = getTypeByID(Record[0]);
2989   if (!Ty)
2990     return error("Invalid record");
2991   if (auto *PTy = dyn_cast<PointerType>(Ty))
2992     Ty = PTy->getElementType();
2993   auto *FTy = dyn_cast<FunctionType>(Ty);
2994   if (!FTy)
2995     return error("Invalid type for value");
2996   auto CC = static_cast<CallingConv::ID>(Record[1]);
2997   if (CC & ~CallingConv::MaxID)
2998     return error("Invalid calling convention ID");
2999 
3000   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3001   if (Record.size() > 16)
3002     AddrSpace = Record[16];
3003 
3004   Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3005                                     AddrSpace, Name, TheModule);
3006 
3007   Func->setCallingConv(CC);
3008   bool isProto = Record[2];
3009   uint64_t RawLinkage = Record[3];
3010   Func->setLinkage(getDecodedLinkage(RawLinkage));
3011   Func->setAttributes(getAttributes(Record[4]));
3012 
3013   unsigned Alignment;
3014   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3015     return Err;
3016   Func->setAlignment(Alignment);
3017   if (Record[6]) {
3018     if (Record[6] - 1 >= SectionTable.size())
3019       return error("Invalid ID");
3020     Func->setSection(SectionTable[Record[6] - 1]);
3021   }
3022   // Local linkage must have default visibility.
3023   if (!Func->hasLocalLinkage())
3024     // FIXME: Change to an error if non-default in 4.0.
3025     Func->setVisibility(getDecodedVisibility(Record[7]));
3026   if (Record.size() > 8 && Record[8]) {
3027     if (Record[8] - 1 >= GCTable.size())
3028       return error("Invalid ID");
3029     Func->setGC(GCTable[Record[8] - 1]);
3030   }
3031   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3032   if (Record.size() > 9)
3033     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3034   Func->setUnnamedAddr(UnnamedAddr);
3035   if (Record.size() > 10 && Record[10] != 0)
3036     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3037 
3038   if (Record.size() > 11)
3039     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3040   else
3041     upgradeDLLImportExportLinkage(Func, RawLinkage);
3042 
3043   if (Record.size() > 12) {
3044     if (unsigned ComdatID = Record[12]) {
3045       if (ComdatID > ComdatList.size())
3046         return error("Invalid function comdat ID");
3047       Func->setComdat(ComdatList[ComdatID - 1]);
3048     }
3049   } else if (hasImplicitComdat(RawLinkage)) {
3050     Func->setComdat(reinterpret_cast<Comdat *>(1));
3051   }
3052 
3053   if (Record.size() > 13 && Record[13] != 0)
3054     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3055 
3056   if (Record.size() > 14 && Record[14] != 0)
3057     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3058 
3059   if (Record.size() > 15) {
3060     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3061   }
3062   inferDSOLocal(Func);
3063 
3064   ValueList.push_back(Func);
3065 
3066   // If this is a function with a body, remember the prototype we are
3067   // creating now, so that we can match up the body with them later.
3068   if (!isProto) {
3069     Func->setIsMaterializable(true);
3070     FunctionsWithBodies.push_back(Func);
3071     DeferredFunctionInfo[Func] = 0;
3072   }
3073   return Error::success();
3074 }
3075 
3076 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3077     unsigned BitCode, ArrayRef<uint64_t> Record) {
3078   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3079   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3080   // dllstorageclass, threadlocal, unnamed_addr,
3081   // preemption specifier] (name in VST)
3082   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3083   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3084   // preemption specifier] (name in VST)
3085   // v2: [strtab_offset, strtab_size, v1]
3086   StringRef Name;
3087   std::tie(Name, Record) = readNameFromStrtab(Record);
3088 
3089   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3090   if (Record.size() < (3 + (unsigned)NewRecord))
3091     return error("Invalid record");
3092   unsigned OpNum = 0;
3093   Type *Ty = getTypeByID(Record[OpNum++]);
3094   if (!Ty)
3095     return error("Invalid record");
3096 
3097   unsigned AddrSpace;
3098   if (!NewRecord) {
3099     auto *PTy = dyn_cast<PointerType>(Ty);
3100     if (!PTy)
3101       return error("Invalid type for value");
3102     Ty = PTy->getElementType();
3103     AddrSpace = PTy->getAddressSpace();
3104   } else {
3105     AddrSpace = Record[OpNum++];
3106   }
3107 
3108   auto Val = Record[OpNum++];
3109   auto Linkage = Record[OpNum++];
3110   GlobalIndirectSymbol *NewGA;
3111   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3112       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3113     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3114                                 TheModule);
3115   else
3116     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3117                                 nullptr, TheModule);
3118   // Old bitcode files didn't have visibility field.
3119   // Local linkage must have default visibility.
3120   if (OpNum != Record.size()) {
3121     auto VisInd = OpNum++;
3122     if (!NewGA->hasLocalLinkage())
3123       // FIXME: Change to an error if non-default in 4.0.
3124       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3125   }
3126   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3127       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3128     if (OpNum != Record.size())
3129       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3130     else
3131       upgradeDLLImportExportLinkage(NewGA, Linkage);
3132     if (OpNum != Record.size())
3133       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3134     if (OpNum != Record.size())
3135       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3136   }
3137   if (OpNum != Record.size())
3138     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3139   inferDSOLocal(NewGA);
3140 
3141   ValueList.push_back(NewGA);
3142   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3143   return Error::success();
3144 }
3145 
3146 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3147                                  bool ShouldLazyLoadMetadata) {
3148   if (ResumeBit)
3149     Stream.JumpToBit(ResumeBit);
3150   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3151     return error("Invalid record");
3152 
3153   SmallVector<uint64_t, 64> Record;
3154 
3155   // Read all the records for this module.
3156   while (true) {
3157     BitstreamEntry Entry = Stream.advance();
3158 
3159     switch (Entry.Kind) {
3160     case BitstreamEntry::Error:
3161       return error("Malformed block");
3162     case BitstreamEntry::EndBlock:
3163       return globalCleanup();
3164 
3165     case BitstreamEntry::SubBlock:
3166       switch (Entry.ID) {
3167       default:  // Skip unknown content.
3168         if (Stream.SkipBlock())
3169           return error("Invalid record");
3170         break;
3171       case bitc::BLOCKINFO_BLOCK_ID:
3172         if (readBlockInfo())
3173           return error("Malformed block");
3174         break;
3175       case bitc::PARAMATTR_BLOCK_ID:
3176         if (Error Err = parseAttributeBlock())
3177           return Err;
3178         break;
3179       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3180         if (Error Err = parseAttributeGroupBlock())
3181           return Err;
3182         break;
3183       case bitc::TYPE_BLOCK_ID_NEW:
3184         if (Error Err = parseTypeTable())
3185           return Err;
3186         break;
3187       case bitc::VALUE_SYMTAB_BLOCK_ID:
3188         if (!SeenValueSymbolTable) {
3189           // Either this is an old form VST without function index and an
3190           // associated VST forward declaration record (which would have caused
3191           // the VST to be jumped to and parsed before it was encountered
3192           // normally in the stream), or there were no function blocks to
3193           // trigger an earlier parsing of the VST.
3194           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3195           if (Error Err = parseValueSymbolTable())
3196             return Err;
3197           SeenValueSymbolTable = true;
3198         } else {
3199           // We must have had a VST forward declaration record, which caused
3200           // the parser to jump to and parse the VST earlier.
3201           assert(VSTOffset > 0);
3202           if (Stream.SkipBlock())
3203             return error("Invalid record");
3204         }
3205         break;
3206       case bitc::CONSTANTS_BLOCK_ID:
3207         if (Error Err = parseConstants())
3208           return Err;
3209         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3210           return Err;
3211         break;
3212       case bitc::METADATA_BLOCK_ID:
3213         if (ShouldLazyLoadMetadata) {
3214           if (Error Err = rememberAndSkipMetadata())
3215             return Err;
3216           break;
3217         }
3218         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3219         if (Error Err = MDLoader->parseModuleMetadata())
3220           return Err;
3221         break;
3222       case bitc::METADATA_KIND_BLOCK_ID:
3223         if (Error Err = MDLoader->parseMetadataKinds())
3224           return Err;
3225         break;
3226       case bitc::FUNCTION_BLOCK_ID:
3227         // If this is the first function body we've seen, reverse the
3228         // FunctionsWithBodies list.
3229         if (!SeenFirstFunctionBody) {
3230           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3231           if (Error Err = globalCleanup())
3232             return Err;
3233           SeenFirstFunctionBody = true;
3234         }
3235 
3236         if (VSTOffset > 0) {
3237           // If we have a VST forward declaration record, make sure we
3238           // parse the VST now if we haven't already. It is needed to
3239           // set up the DeferredFunctionInfo vector for lazy reading.
3240           if (!SeenValueSymbolTable) {
3241             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3242               return Err;
3243             SeenValueSymbolTable = true;
3244             // Fall through so that we record the NextUnreadBit below.
3245             // This is necessary in case we have an anonymous function that
3246             // is later materialized. Since it will not have a VST entry we
3247             // need to fall back to the lazy parse to find its offset.
3248           } else {
3249             // If we have a VST forward declaration record, but have already
3250             // parsed the VST (just above, when the first function body was
3251             // encountered here), then we are resuming the parse after
3252             // materializing functions. The ResumeBit points to the
3253             // start of the last function block recorded in the
3254             // DeferredFunctionInfo map. Skip it.
3255             if (Stream.SkipBlock())
3256               return error("Invalid record");
3257             continue;
3258           }
3259         }
3260 
3261         // Support older bitcode files that did not have the function
3262         // index in the VST, nor a VST forward declaration record, as
3263         // well as anonymous functions that do not have VST entries.
3264         // Build the DeferredFunctionInfo vector on the fly.
3265         if (Error Err = rememberAndSkipFunctionBody())
3266           return Err;
3267 
3268         // Suspend parsing when we reach the function bodies. Subsequent
3269         // materialization calls will resume it when necessary. If the bitcode
3270         // file is old, the symbol table will be at the end instead and will not
3271         // have been seen yet. In this case, just finish the parse now.
3272         if (SeenValueSymbolTable) {
3273           NextUnreadBit = Stream.GetCurrentBitNo();
3274           // After the VST has been parsed, we need to make sure intrinsic name
3275           // are auto-upgraded.
3276           return globalCleanup();
3277         }
3278         break;
3279       case bitc::USELIST_BLOCK_ID:
3280         if (Error Err = parseUseLists())
3281           return Err;
3282         break;
3283       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3284         if (Error Err = parseOperandBundleTags())
3285           return Err;
3286         break;
3287       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3288         if (Error Err = parseSyncScopeNames())
3289           return Err;
3290         break;
3291       }
3292       continue;
3293 
3294     case BitstreamEntry::Record:
3295       // The interesting case.
3296       break;
3297     }
3298 
3299     // Read a record.
3300     auto BitCode = Stream.readRecord(Entry.ID, Record);
3301     switch (BitCode) {
3302     default: break;  // Default behavior, ignore unknown content.
3303     case bitc::MODULE_CODE_VERSION: {
3304       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3305       if (!VersionOrErr)
3306         return VersionOrErr.takeError();
3307       UseRelativeIDs = *VersionOrErr >= 1;
3308       break;
3309     }
3310     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3311       std::string S;
3312       if (convertToString(Record, 0, S))
3313         return error("Invalid record");
3314       TheModule->setTargetTriple(S);
3315       break;
3316     }
3317     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3318       std::string S;
3319       if (convertToString(Record, 0, S))
3320         return error("Invalid record");
3321       TheModule->setDataLayout(S);
3322       break;
3323     }
3324     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3325       std::string S;
3326       if (convertToString(Record, 0, S))
3327         return error("Invalid record");
3328       TheModule->setModuleInlineAsm(S);
3329       break;
3330     }
3331     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3332       // FIXME: Remove in 4.0.
3333       std::string S;
3334       if (convertToString(Record, 0, S))
3335         return error("Invalid record");
3336       // Ignore value.
3337       break;
3338     }
3339     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3340       std::string S;
3341       if (convertToString(Record, 0, S))
3342         return error("Invalid record");
3343       SectionTable.push_back(S);
3344       break;
3345     }
3346     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3347       std::string S;
3348       if (convertToString(Record, 0, S))
3349         return error("Invalid record");
3350       GCTable.push_back(S);
3351       break;
3352     }
3353     case bitc::MODULE_CODE_COMDAT:
3354       if (Error Err = parseComdatRecord(Record))
3355         return Err;
3356       break;
3357     case bitc::MODULE_CODE_GLOBALVAR:
3358       if (Error Err = parseGlobalVarRecord(Record))
3359         return Err;
3360       break;
3361     case bitc::MODULE_CODE_FUNCTION:
3362       if (Error Err = parseFunctionRecord(Record))
3363         return Err;
3364       break;
3365     case bitc::MODULE_CODE_IFUNC:
3366     case bitc::MODULE_CODE_ALIAS:
3367     case bitc::MODULE_CODE_ALIAS_OLD:
3368       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3369         return Err;
3370       break;
3371     /// MODULE_CODE_VSTOFFSET: [offset]
3372     case bitc::MODULE_CODE_VSTOFFSET:
3373       if (Record.size() < 1)
3374         return error("Invalid record");
3375       // Note that we subtract 1 here because the offset is relative to one word
3376       // before the start of the identification or module block, which was
3377       // historically always the start of the regular bitcode header.
3378       VSTOffset = Record[0] - 1;
3379       break;
3380     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3381     case bitc::MODULE_CODE_SOURCE_FILENAME:
3382       SmallString<128> ValueName;
3383       if (convertToString(Record, 0, ValueName))
3384         return error("Invalid record");
3385       TheModule->setSourceFileName(ValueName);
3386       break;
3387     }
3388     Record.clear();
3389   }
3390 }
3391 
3392 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3393                                       bool IsImporting) {
3394   TheModule = M;
3395   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3396                             [&](unsigned ID) { return getTypeByID(ID); });
3397   return parseModule(0, ShouldLazyLoadMetadata);
3398 }
3399 
3400 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3401   if (!isa<PointerType>(PtrType))
3402     return error("Load/Store operand is not a pointer type");
3403   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3404 
3405   if (ValType && ValType != ElemType)
3406     return error("Explicit load/store type does not match pointee "
3407                  "type of pointer operand");
3408   if (!PointerType::isLoadableOrStorableType(ElemType))
3409     return error("Cannot load/store from pointer");
3410   return Error::success();
3411 }
3412 
3413 /// Lazily parse the specified function body block.
3414 Error BitcodeReader::parseFunctionBody(Function *F) {
3415   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3416     return error("Invalid record");
3417 
3418   // Unexpected unresolved metadata when parsing function.
3419   if (MDLoader->hasFwdRefs())
3420     return error("Invalid function metadata: incoming forward references");
3421 
3422   InstructionList.clear();
3423   unsigned ModuleValueListSize = ValueList.size();
3424   unsigned ModuleMDLoaderSize = MDLoader->size();
3425 
3426   // Add all the function arguments to the value table.
3427   for (Argument &I : F->args())
3428     ValueList.push_back(&I);
3429 
3430   unsigned NextValueNo = ValueList.size();
3431   BasicBlock *CurBB = nullptr;
3432   unsigned CurBBNo = 0;
3433 
3434   DebugLoc LastLoc;
3435   auto getLastInstruction = [&]() -> Instruction * {
3436     if (CurBB && !CurBB->empty())
3437       return &CurBB->back();
3438     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3439              !FunctionBBs[CurBBNo - 1]->empty())
3440       return &FunctionBBs[CurBBNo - 1]->back();
3441     return nullptr;
3442   };
3443 
3444   std::vector<OperandBundleDef> OperandBundles;
3445 
3446   // Read all the records.
3447   SmallVector<uint64_t, 64> Record;
3448 
3449   while (true) {
3450     BitstreamEntry Entry = Stream.advance();
3451 
3452     switch (Entry.Kind) {
3453     case BitstreamEntry::Error:
3454       return error("Malformed block");
3455     case BitstreamEntry::EndBlock:
3456       goto OutOfRecordLoop;
3457 
3458     case BitstreamEntry::SubBlock:
3459       switch (Entry.ID) {
3460       default:  // Skip unknown content.
3461         if (Stream.SkipBlock())
3462           return error("Invalid record");
3463         break;
3464       case bitc::CONSTANTS_BLOCK_ID:
3465         if (Error Err = parseConstants())
3466           return Err;
3467         NextValueNo = ValueList.size();
3468         break;
3469       case bitc::VALUE_SYMTAB_BLOCK_ID:
3470         if (Error Err = parseValueSymbolTable())
3471           return Err;
3472         break;
3473       case bitc::METADATA_ATTACHMENT_ID:
3474         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3475           return Err;
3476         break;
3477       case bitc::METADATA_BLOCK_ID:
3478         assert(DeferredMetadataInfo.empty() &&
3479                "Must read all module-level metadata before function-level");
3480         if (Error Err = MDLoader->parseFunctionMetadata())
3481           return Err;
3482         break;
3483       case bitc::USELIST_BLOCK_ID:
3484         if (Error Err = parseUseLists())
3485           return Err;
3486         break;
3487       }
3488       continue;
3489 
3490     case BitstreamEntry::Record:
3491       // The interesting case.
3492       break;
3493     }
3494 
3495     // Read a record.
3496     Record.clear();
3497     Instruction *I = nullptr;
3498     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3499     switch (BitCode) {
3500     default: // Default behavior: reject
3501       return error("Invalid value");
3502     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3503       if (Record.size() < 1 || Record[0] == 0)
3504         return error("Invalid record");
3505       // Create all the basic blocks for the function.
3506       FunctionBBs.resize(Record[0]);
3507 
3508       // See if anything took the address of blocks in this function.
3509       auto BBFRI = BasicBlockFwdRefs.find(F);
3510       if (BBFRI == BasicBlockFwdRefs.end()) {
3511         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3512           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3513       } else {
3514         auto &BBRefs = BBFRI->second;
3515         // Check for invalid basic block references.
3516         if (BBRefs.size() > FunctionBBs.size())
3517           return error("Invalid ID");
3518         assert(!BBRefs.empty() && "Unexpected empty array");
3519         assert(!BBRefs.front() && "Invalid reference to entry block");
3520         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3521              ++I)
3522           if (I < RE && BBRefs[I]) {
3523             BBRefs[I]->insertInto(F);
3524             FunctionBBs[I] = BBRefs[I];
3525           } else {
3526             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3527           }
3528 
3529         // Erase from the table.
3530         BasicBlockFwdRefs.erase(BBFRI);
3531       }
3532 
3533       CurBB = FunctionBBs[0];
3534       continue;
3535     }
3536 
3537     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3538       // This record indicates that the last instruction is at the same
3539       // location as the previous instruction with a location.
3540       I = getLastInstruction();
3541 
3542       if (!I)
3543         return error("Invalid record");
3544       I->setDebugLoc(LastLoc);
3545       I = nullptr;
3546       continue;
3547 
3548     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3549       I = getLastInstruction();
3550       if (!I || Record.size() < 4)
3551         return error("Invalid record");
3552 
3553       unsigned Line = Record[0], Col = Record[1];
3554       unsigned ScopeID = Record[2], IAID = Record[3];
3555       bool isImplicitCode = Record.size() == 5 && Record[4];
3556 
3557       MDNode *Scope = nullptr, *IA = nullptr;
3558       if (ScopeID) {
3559         Scope = dyn_cast_or_null<MDNode>(
3560             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3561         if (!Scope)
3562           return error("Invalid record");
3563       }
3564       if (IAID) {
3565         IA = dyn_cast_or_null<MDNode>(
3566             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3567         if (!IA)
3568           return error("Invalid record");
3569       }
3570       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3571       I->setDebugLoc(LastLoc);
3572       I = nullptr;
3573       continue;
3574     }
3575     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3576       unsigned OpNum = 0;
3577       Value *LHS;
3578       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3579           OpNum+1 > Record.size())
3580         return error("Invalid record");
3581 
3582       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3583       if (Opc == -1)
3584         return error("Invalid record");
3585       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3586       InstructionList.push_back(I);
3587       if (OpNum < Record.size()) {
3588         if (isa<FPMathOperator>(I)) {
3589           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3590           if (FMF.any())
3591             I->setFastMathFlags(FMF);
3592         }
3593       }
3594       break;
3595     }
3596     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3597       unsigned OpNum = 0;
3598       Value *LHS, *RHS;
3599       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3600           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3601           OpNum+1 > Record.size())
3602         return error("Invalid record");
3603 
3604       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3605       if (Opc == -1)
3606         return error("Invalid record");
3607       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3608       InstructionList.push_back(I);
3609       if (OpNum < Record.size()) {
3610         if (Opc == Instruction::Add ||
3611             Opc == Instruction::Sub ||
3612             Opc == Instruction::Mul ||
3613             Opc == Instruction::Shl) {
3614           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3615             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3616           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3617             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3618         } else if (Opc == Instruction::SDiv ||
3619                    Opc == Instruction::UDiv ||
3620                    Opc == Instruction::LShr ||
3621                    Opc == Instruction::AShr) {
3622           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3623             cast<BinaryOperator>(I)->setIsExact(true);
3624         } else if (isa<FPMathOperator>(I)) {
3625           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3626           if (FMF.any())
3627             I->setFastMathFlags(FMF);
3628         }
3629 
3630       }
3631       break;
3632     }
3633     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3634       unsigned OpNum = 0;
3635       Value *Op;
3636       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3637           OpNum+2 != Record.size())
3638         return error("Invalid record");
3639 
3640       Type *ResTy = getTypeByID(Record[OpNum]);
3641       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3642       if (Opc == -1 || !ResTy)
3643         return error("Invalid record");
3644       Instruction *Temp = nullptr;
3645       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3646         if (Temp) {
3647           InstructionList.push_back(Temp);
3648           CurBB->getInstList().push_back(Temp);
3649         }
3650       } else {
3651         auto CastOp = (Instruction::CastOps)Opc;
3652         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3653           return error("Invalid cast");
3654         I = CastInst::Create(CastOp, Op, ResTy);
3655       }
3656       InstructionList.push_back(I);
3657       break;
3658     }
3659     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3660     case bitc::FUNC_CODE_INST_GEP_OLD:
3661     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3662       unsigned OpNum = 0;
3663 
3664       Type *Ty;
3665       bool InBounds;
3666 
3667       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3668         InBounds = Record[OpNum++];
3669         Ty = getTypeByID(Record[OpNum++]);
3670       } else {
3671         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3672         Ty = nullptr;
3673       }
3674 
3675       Value *BasePtr;
3676       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3677         return error("Invalid record");
3678 
3679       if (!Ty)
3680         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
3681                  ->getElementType();
3682       else if (Ty !=
3683                cast<PointerType>(BasePtr->getType()->getScalarType())
3684                    ->getElementType())
3685         return error(
3686             "Explicit gep type does not match pointee type of pointer operand");
3687 
3688       SmallVector<Value*, 16> GEPIdx;
3689       while (OpNum != Record.size()) {
3690         Value *Op;
3691         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3692           return error("Invalid record");
3693         GEPIdx.push_back(Op);
3694       }
3695 
3696       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3697 
3698       InstructionList.push_back(I);
3699       if (InBounds)
3700         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3701       break;
3702     }
3703 
3704     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3705                                        // EXTRACTVAL: [opty, opval, n x indices]
3706       unsigned OpNum = 0;
3707       Value *Agg;
3708       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3709         return error("Invalid record");
3710 
3711       unsigned RecSize = Record.size();
3712       if (OpNum == RecSize)
3713         return error("EXTRACTVAL: Invalid instruction with 0 indices");
3714 
3715       SmallVector<unsigned, 4> EXTRACTVALIdx;
3716       Type *CurTy = Agg->getType();
3717       for (; OpNum != RecSize; ++OpNum) {
3718         bool IsArray = CurTy->isArrayTy();
3719         bool IsStruct = CurTy->isStructTy();
3720         uint64_t Index = Record[OpNum];
3721 
3722         if (!IsStruct && !IsArray)
3723           return error("EXTRACTVAL: Invalid type");
3724         if ((unsigned)Index != Index)
3725           return error("Invalid value");
3726         if (IsStruct && Index >= CurTy->getStructNumElements())
3727           return error("EXTRACTVAL: Invalid struct index");
3728         if (IsArray && Index >= CurTy->getArrayNumElements())
3729           return error("EXTRACTVAL: Invalid array index");
3730         EXTRACTVALIdx.push_back((unsigned)Index);
3731 
3732         if (IsStruct)
3733           CurTy = CurTy->getStructElementType(Index);
3734         else
3735           CurTy = CurTy->getArrayElementType();
3736       }
3737 
3738       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3739       InstructionList.push_back(I);
3740       break;
3741     }
3742 
3743     case bitc::FUNC_CODE_INST_INSERTVAL: {
3744                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
3745       unsigned OpNum = 0;
3746       Value *Agg;
3747       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3748         return error("Invalid record");
3749       Value *Val;
3750       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3751         return error("Invalid record");
3752 
3753       unsigned RecSize = Record.size();
3754       if (OpNum == RecSize)
3755         return error("INSERTVAL: Invalid instruction with 0 indices");
3756 
3757       SmallVector<unsigned, 4> INSERTVALIdx;
3758       Type *CurTy = Agg->getType();
3759       for (; OpNum != RecSize; ++OpNum) {
3760         bool IsArray = CurTy->isArrayTy();
3761         bool IsStruct = CurTy->isStructTy();
3762         uint64_t Index = Record[OpNum];
3763 
3764         if (!IsStruct && !IsArray)
3765           return error("INSERTVAL: Invalid type");
3766         if ((unsigned)Index != Index)
3767           return error("Invalid value");
3768         if (IsStruct && Index >= CurTy->getStructNumElements())
3769           return error("INSERTVAL: Invalid struct index");
3770         if (IsArray && Index >= CurTy->getArrayNumElements())
3771           return error("INSERTVAL: Invalid array index");
3772 
3773         INSERTVALIdx.push_back((unsigned)Index);
3774         if (IsStruct)
3775           CurTy = CurTy->getStructElementType(Index);
3776         else
3777           CurTy = CurTy->getArrayElementType();
3778       }
3779 
3780       if (CurTy != Val->getType())
3781         return error("Inserted value type doesn't match aggregate type");
3782 
3783       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3784       InstructionList.push_back(I);
3785       break;
3786     }
3787 
3788     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3789       // obsolete form of select
3790       // handles select i1 ... in old bitcode
3791       unsigned OpNum = 0;
3792       Value *TrueVal, *FalseVal, *Cond;
3793       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3794           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3795           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3796         return error("Invalid record");
3797 
3798       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3799       InstructionList.push_back(I);
3800       break;
3801     }
3802 
3803     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3804       // new form of select
3805       // handles select i1 or select [N x i1]
3806       unsigned OpNum = 0;
3807       Value *TrueVal, *FalseVal, *Cond;
3808       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3809           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3810           getValueTypePair(Record, OpNum, NextValueNo, Cond))
3811         return error("Invalid record");
3812 
3813       // select condition can be either i1 or [N x i1]
3814       if (VectorType* vector_type =
3815           dyn_cast<VectorType>(Cond->getType())) {
3816         // expect <n x i1>
3817         if (vector_type->getElementType() != Type::getInt1Ty(Context))
3818           return error("Invalid type for value");
3819       } else {
3820         // expect i1
3821         if (Cond->getType() != Type::getInt1Ty(Context))
3822           return error("Invalid type for value");
3823       }
3824 
3825       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3826       InstructionList.push_back(I);
3827       break;
3828     }
3829 
3830     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3831       unsigned OpNum = 0;
3832       Value *Vec, *Idx;
3833       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3834           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3835         return error("Invalid record");
3836       if (!Vec->getType()->isVectorTy())
3837         return error("Invalid type for value");
3838       I = ExtractElementInst::Create(Vec, Idx);
3839       InstructionList.push_back(I);
3840       break;
3841     }
3842 
3843     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3844       unsigned OpNum = 0;
3845       Value *Vec, *Elt, *Idx;
3846       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
3847         return error("Invalid record");
3848       if (!Vec->getType()->isVectorTy())
3849         return error("Invalid type for value");
3850       if (popValue(Record, OpNum, NextValueNo,
3851                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3852           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3853         return error("Invalid record");
3854       I = InsertElementInst::Create(Vec, Elt, Idx);
3855       InstructionList.push_back(I);
3856       break;
3857     }
3858 
3859     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3860       unsigned OpNum = 0;
3861       Value *Vec1, *Vec2, *Mask;
3862       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3863           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
3864         return error("Invalid record");
3865 
3866       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3867         return error("Invalid record");
3868       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
3869         return error("Invalid type for value");
3870       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3871       InstructionList.push_back(I);
3872       break;
3873     }
3874 
3875     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
3876       // Old form of ICmp/FCmp returning bool
3877       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3878       // both legal on vectors but had different behaviour.
3879     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3880       // FCmp/ICmp returning bool or vector of bool
3881 
3882       unsigned OpNum = 0;
3883       Value *LHS, *RHS;
3884       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3885           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
3886         return error("Invalid record");
3887 
3888       unsigned PredVal = Record[OpNum];
3889       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
3890       FastMathFlags FMF;
3891       if (IsFP && Record.size() > OpNum+1)
3892         FMF = getDecodedFastMathFlags(Record[++OpNum]);
3893 
3894       if (OpNum+1 != Record.size())
3895         return error("Invalid record");
3896 
3897       if (LHS->getType()->isFPOrFPVectorTy())
3898         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
3899       else
3900         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
3901 
3902       if (FMF.any())
3903         I->setFastMathFlags(FMF);
3904       InstructionList.push_back(I);
3905       break;
3906     }
3907 
3908     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3909       {
3910         unsigned Size = Record.size();
3911         if (Size == 0) {
3912           I = ReturnInst::Create(Context);
3913           InstructionList.push_back(I);
3914           break;
3915         }
3916 
3917         unsigned OpNum = 0;
3918         Value *Op = nullptr;
3919         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3920           return error("Invalid record");
3921         if (OpNum != Record.size())
3922           return error("Invalid record");
3923 
3924         I = ReturnInst::Create(Context, Op);
3925         InstructionList.push_back(I);
3926         break;
3927       }
3928     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3929       if (Record.size() != 1 && Record.size() != 3)
3930         return error("Invalid record");
3931       BasicBlock *TrueDest = getBasicBlock(Record[0]);
3932       if (!TrueDest)
3933         return error("Invalid record");
3934 
3935       if (Record.size() == 1) {
3936         I = BranchInst::Create(TrueDest);
3937         InstructionList.push_back(I);
3938       }
3939       else {
3940         BasicBlock *FalseDest = getBasicBlock(Record[1]);
3941         Value *Cond = getValue(Record, 2, NextValueNo,
3942                                Type::getInt1Ty(Context));
3943         if (!FalseDest || !Cond)
3944           return error("Invalid record");
3945         I = BranchInst::Create(TrueDest, FalseDest, Cond);
3946         InstructionList.push_back(I);
3947       }
3948       break;
3949     }
3950     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
3951       if (Record.size() != 1 && Record.size() != 2)
3952         return error("Invalid record");
3953       unsigned Idx = 0;
3954       Value *CleanupPad =
3955           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3956       if (!CleanupPad)
3957         return error("Invalid record");
3958       BasicBlock *UnwindDest = nullptr;
3959       if (Record.size() == 2) {
3960         UnwindDest = getBasicBlock(Record[Idx++]);
3961         if (!UnwindDest)
3962           return error("Invalid record");
3963       }
3964 
3965       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
3966       InstructionList.push_back(I);
3967       break;
3968     }
3969     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
3970       if (Record.size() != 2)
3971         return error("Invalid record");
3972       unsigned Idx = 0;
3973       Value *CatchPad =
3974           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3975       if (!CatchPad)
3976         return error("Invalid record");
3977       BasicBlock *BB = getBasicBlock(Record[Idx++]);
3978       if (!BB)
3979         return error("Invalid record");
3980 
3981       I = CatchReturnInst::Create(CatchPad, BB);
3982       InstructionList.push_back(I);
3983       break;
3984     }
3985     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
3986       // We must have, at minimum, the outer scope and the number of arguments.
3987       if (Record.size() < 2)
3988         return error("Invalid record");
3989 
3990       unsigned Idx = 0;
3991 
3992       Value *ParentPad =
3993           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3994 
3995       unsigned NumHandlers = Record[Idx++];
3996 
3997       SmallVector<BasicBlock *, 2> Handlers;
3998       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
3999         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4000         if (!BB)
4001           return error("Invalid record");
4002         Handlers.push_back(BB);
4003       }
4004 
4005       BasicBlock *UnwindDest = nullptr;
4006       if (Idx + 1 == Record.size()) {
4007         UnwindDest = getBasicBlock(Record[Idx++]);
4008         if (!UnwindDest)
4009           return error("Invalid record");
4010       }
4011 
4012       if (Record.size() != Idx)
4013         return error("Invalid record");
4014 
4015       auto *CatchSwitch =
4016           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4017       for (BasicBlock *Handler : Handlers)
4018         CatchSwitch->addHandler(Handler);
4019       I = CatchSwitch;
4020       InstructionList.push_back(I);
4021       break;
4022     }
4023     case bitc::FUNC_CODE_INST_CATCHPAD:
4024     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4025       // We must have, at minimum, the outer scope and the number of arguments.
4026       if (Record.size() < 2)
4027         return error("Invalid record");
4028 
4029       unsigned Idx = 0;
4030 
4031       Value *ParentPad =
4032           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4033 
4034       unsigned NumArgOperands = Record[Idx++];
4035 
4036       SmallVector<Value *, 2> Args;
4037       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4038         Value *Val;
4039         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4040           return error("Invalid record");
4041         Args.push_back(Val);
4042       }
4043 
4044       if (Record.size() != Idx)
4045         return error("Invalid record");
4046 
4047       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4048         I = CleanupPadInst::Create(ParentPad, Args);
4049       else
4050         I = CatchPadInst::Create(ParentPad, Args);
4051       InstructionList.push_back(I);
4052       break;
4053     }
4054     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4055       // Check magic
4056       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4057         // "New" SwitchInst format with case ranges. The changes to write this
4058         // format were reverted but we still recognize bitcode that uses it.
4059         // Hopefully someday we will have support for case ranges and can use
4060         // this format again.
4061 
4062         Type *OpTy = getTypeByID(Record[1]);
4063         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4064 
4065         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4066         BasicBlock *Default = getBasicBlock(Record[3]);
4067         if (!OpTy || !Cond || !Default)
4068           return error("Invalid record");
4069 
4070         unsigned NumCases = Record[4];
4071 
4072         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4073         InstructionList.push_back(SI);
4074 
4075         unsigned CurIdx = 5;
4076         for (unsigned i = 0; i != NumCases; ++i) {
4077           SmallVector<ConstantInt*, 1> CaseVals;
4078           unsigned NumItems = Record[CurIdx++];
4079           for (unsigned ci = 0; ci != NumItems; ++ci) {
4080             bool isSingleNumber = Record[CurIdx++];
4081 
4082             APInt Low;
4083             unsigned ActiveWords = 1;
4084             if (ValueBitWidth > 64)
4085               ActiveWords = Record[CurIdx++];
4086             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4087                                 ValueBitWidth);
4088             CurIdx += ActiveWords;
4089 
4090             if (!isSingleNumber) {
4091               ActiveWords = 1;
4092               if (ValueBitWidth > 64)
4093                 ActiveWords = Record[CurIdx++];
4094               APInt High = readWideAPInt(
4095                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4096               CurIdx += ActiveWords;
4097 
4098               // FIXME: It is not clear whether values in the range should be
4099               // compared as signed or unsigned values. The partially
4100               // implemented changes that used this format in the past used
4101               // unsigned comparisons.
4102               for ( ; Low.ule(High); ++Low)
4103                 CaseVals.push_back(ConstantInt::get(Context, Low));
4104             } else
4105               CaseVals.push_back(ConstantInt::get(Context, Low));
4106           }
4107           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4108           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4109                  cve = CaseVals.end(); cvi != cve; ++cvi)
4110             SI->addCase(*cvi, DestBB);
4111         }
4112         I = SI;
4113         break;
4114       }
4115 
4116       // Old SwitchInst format without case ranges.
4117 
4118       if (Record.size() < 3 || (Record.size() & 1) == 0)
4119         return error("Invalid record");
4120       Type *OpTy = getTypeByID(Record[0]);
4121       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4122       BasicBlock *Default = getBasicBlock(Record[2]);
4123       if (!OpTy || !Cond || !Default)
4124         return error("Invalid record");
4125       unsigned NumCases = (Record.size()-3)/2;
4126       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4127       InstructionList.push_back(SI);
4128       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4129         ConstantInt *CaseVal =
4130           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4131         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4132         if (!CaseVal || !DestBB) {
4133           delete SI;
4134           return error("Invalid record");
4135         }
4136         SI->addCase(CaseVal, DestBB);
4137       }
4138       I = SI;
4139       break;
4140     }
4141     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4142       if (Record.size() < 2)
4143         return error("Invalid record");
4144       Type *OpTy = getTypeByID(Record[0]);
4145       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4146       if (!OpTy || !Address)
4147         return error("Invalid record");
4148       unsigned NumDests = Record.size()-2;
4149       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4150       InstructionList.push_back(IBI);
4151       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4152         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4153           IBI->addDestination(DestBB);
4154         } else {
4155           delete IBI;
4156           return error("Invalid record");
4157         }
4158       }
4159       I = IBI;
4160       break;
4161     }
4162 
4163     case bitc::FUNC_CODE_INST_INVOKE: {
4164       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4165       if (Record.size() < 4)
4166         return error("Invalid record");
4167       unsigned OpNum = 0;
4168       AttributeList PAL = getAttributes(Record[OpNum++]);
4169       unsigned CCInfo = Record[OpNum++];
4170       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4171       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4172 
4173       FunctionType *FTy = nullptr;
4174       if (CCInfo >> 13 & 1 &&
4175           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4176         return error("Explicit invoke type is not a function type");
4177 
4178       Value *Callee;
4179       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4180         return error("Invalid record");
4181 
4182       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4183       if (!CalleeTy)
4184         return error("Callee is not a pointer");
4185       if (!FTy) {
4186         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4187         if (!FTy)
4188           return error("Callee is not of pointer to function type");
4189       } else if (CalleeTy->getElementType() != FTy)
4190         return error("Explicit invoke type does not match pointee type of "
4191                      "callee operand");
4192       if (Record.size() < FTy->getNumParams() + OpNum)
4193         return error("Insufficient operands to call");
4194 
4195       SmallVector<Value*, 16> Ops;
4196       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4197         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4198                                FTy->getParamType(i)));
4199         if (!Ops.back())
4200           return error("Invalid record");
4201       }
4202 
4203       if (!FTy->isVarArg()) {
4204         if (Record.size() != OpNum)
4205           return error("Invalid record");
4206       } else {
4207         // Read type/value pairs for varargs params.
4208         while (OpNum != Record.size()) {
4209           Value *Op;
4210           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4211             return error("Invalid record");
4212           Ops.push_back(Op);
4213         }
4214       }
4215 
4216       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4217                              OperandBundles);
4218       OperandBundles.clear();
4219       InstructionList.push_back(I);
4220       cast<InvokeInst>(I)->setCallingConv(
4221           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4222       cast<InvokeInst>(I)->setAttributes(PAL);
4223       break;
4224     }
4225     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4226       unsigned Idx = 0;
4227       Value *Val = nullptr;
4228       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4229         return error("Invalid record");
4230       I = ResumeInst::Create(Val);
4231       InstructionList.push_back(I);
4232       break;
4233     }
4234     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4235       I = new UnreachableInst(Context);
4236       InstructionList.push_back(I);
4237       break;
4238     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4239       if (Record.size() < 1 || ((Record.size()-1)&1))
4240         return error("Invalid record");
4241       Type *Ty = getTypeByID(Record[0]);
4242       if (!Ty)
4243         return error("Invalid record");
4244 
4245       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4246       InstructionList.push_back(PN);
4247 
4248       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4249         Value *V;
4250         // With the new function encoding, it is possible that operands have
4251         // negative IDs (for forward references).  Use a signed VBR
4252         // representation to keep the encoding small.
4253         if (UseRelativeIDs)
4254           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4255         else
4256           V = getValue(Record, 1+i, NextValueNo, Ty);
4257         BasicBlock *BB = getBasicBlock(Record[2+i]);
4258         if (!V || !BB)
4259           return error("Invalid record");
4260         PN->addIncoming(V, BB);
4261       }
4262       I = PN;
4263       break;
4264     }
4265 
4266     case bitc::FUNC_CODE_INST_LANDINGPAD:
4267     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4268       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4269       unsigned Idx = 0;
4270       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4271         if (Record.size() < 3)
4272           return error("Invalid record");
4273       } else {
4274         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4275         if (Record.size() < 4)
4276           return error("Invalid record");
4277       }
4278       Type *Ty = getTypeByID(Record[Idx++]);
4279       if (!Ty)
4280         return error("Invalid record");
4281       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4282         Value *PersFn = nullptr;
4283         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4284           return error("Invalid record");
4285 
4286         if (!F->hasPersonalityFn())
4287           F->setPersonalityFn(cast<Constant>(PersFn));
4288         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4289           return error("Personality function mismatch");
4290       }
4291 
4292       bool IsCleanup = !!Record[Idx++];
4293       unsigned NumClauses = Record[Idx++];
4294       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4295       LP->setCleanup(IsCleanup);
4296       for (unsigned J = 0; J != NumClauses; ++J) {
4297         LandingPadInst::ClauseType CT =
4298           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4299         Value *Val;
4300 
4301         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4302           delete LP;
4303           return error("Invalid record");
4304         }
4305 
4306         assert((CT != LandingPadInst::Catch ||
4307                 !isa<ArrayType>(Val->getType())) &&
4308                "Catch clause has a invalid type!");
4309         assert((CT != LandingPadInst::Filter ||
4310                 isa<ArrayType>(Val->getType())) &&
4311                "Filter clause has invalid type!");
4312         LP->addClause(cast<Constant>(Val));
4313       }
4314 
4315       I = LP;
4316       InstructionList.push_back(I);
4317       break;
4318     }
4319 
4320     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4321       if (Record.size() != 4)
4322         return error("Invalid record");
4323       uint64_t AlignRecord = Record[3];
4324       const uint64_t InAllocaMask = uint64_t(1) << 5;
4325       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4326       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4327       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4328                                 SwiftErrorMask;
4329       bool InAlloca = AlignRecord & InAllocaMask;
4330       bool SwiftError = AlignRecord & SwiftErrorMask;
4331       Type *Ty = getTypeByID(Record[0]);
4332       if ((AlignRecord & ExplicitTypeMask) == 0) {
4333         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4334         if (!PTy)
4335           return error("Old-style alloca with a non-pointer type");
4336         Ty = PTy->getElementType();
4337       }
4338       Type *OpTy = getTypeByID(Record[1]);
4339       Value *Size = getFnValueByID(Record[2], OpTy);
4340       unsigned Align;
4341       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4342         return Err;
4343       }
4344       if (!Ty || !Size)
4345         return error("Invalid record");
4346 
4347       // FIXME: Make this an optional field.
4348       const DataLayout &DL = TheModule->getDataLayout();
4349       unsigned AS = DL.getAllocaAddrSpace();
4350 
4351       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4352       AI->setUsedWithInAlloca(InAlloca);
4353       AI->setSwiftError(SwiftError);
4354       I = AI;
4355       InstructionList.push_back(I);
4356       break;
4357     }
4358     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4359       unsigned OpNum = 0;
4360       Value *Op;
4361       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4362           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4363         return error("Invalid record");
4364 
4365       Type *Ty = nullptr;
4366       if (OpNum + 3 == Record.size())
4367         Ty = getTypeByID(Record[OpNum++]);
4368       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4369         return Err;
4370       if (!Ty)
4371         Ty = cast<PointerType>(Op->getType())->getElementType();
4372 
4373       unsigned Align;
4374       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4375         return Err;
4376       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4377 
4378       InstructionList.push_back(I);
4379       break;
4380     }
4381     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4382        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4383       unsigned OpNum = 0;
4384       Value *Op;
4385       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4386           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4387         return error("Invalid record");
4388 
4389       Type *Ty = nullptr;
4390       if (OpNum + 5 == Record.size())
4391         Ty = getTypeByID(Record[OpNum++]);
4392       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4393         return Err;
4394       if (!Ty)
4395         Ty = cast<PointerType>(Op->getType())->getElementType();
4396 
4397       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4398       if (Ordering == AtomicOrdering::NotAtomic ||
4399           Ordering == AtomicOrdering::Release ||
4400           Ordering == AtomicOrdering::AcquireRelease)
4401         return error("Invalid record");
4402       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4403         return error("Invalid record");
4404       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4405 
4406       unsigned Align;
4407       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4408         return Err;
4409       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID);
4410 
4411       InstructionList.push_back(I);
4412       break;
4413     }
4414     case bitc::FUNC_CODE_INST_STORE:
4415     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4416       unsigned OpNum = 0;
4417       Value *Val, *Ptr;
4418       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4419           (BitCode == bitc::FUNC_CODE_INST_STORE
4420                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4421                : popValue(Record, OpNum, NextValueNo,
4422                           cast<PointerType>(Ptr->getType())->getElementType(),
4423                           Val)) ||
4424           OpNum + 2 != Record.size())
4425         return error("Invalid record");
4426 
4427       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4428         return Err;
4429       unsigned Align;
4430       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4431         return Err;
4432       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4433       InstructionList.push_back(I);
4434       break;
4435     }
4436     case bitc::FUNC_CODE_INST_STOREATOMIC:
4437     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4438       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4439       unsigned OpNum = 0;
4440       Value *Val, *Ptr;
4441       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4442           !isa<PointerType>(Ptr->getType()) ||
4443           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4444                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4445                : popValue(Record, OpNum, NextValueNo,
4446                           cast<PointerType>(Ptr->getType())->getElementType(),
4447                           Val)) ||
4448           OpNum + 4 != Record.size())
4449         return error("Invalid record");
4450 
4451       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4452         return Err;
4453       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4454       if (Ordering == AtomicOrdering::NotAtomic ||
4455           Ordering == AtomicOrdering::Acquire ||
4456           Ordering == AtomicOrdering::AcquireRelease)
4457         return error("Invalid record");
4458       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4459       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4460         return error("Invalid record");
4461 
4462       unsigned Align;
4463       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4464         return Err;
4465       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4466       InstructionList.push_back(I);
4467       break;
4468     }
4469     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4470     case bitc::FUNC_CODE_INST_CMPXCHG: {
4471       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4472       //          failureordering?, isweak?]
4473       unsigned OpNum = 0;
4474       Value *Ptr, *Cmp, *New;
4475       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4476           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4477                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4478                : popValue(Record, OpNum, NextValueNo,
4479                           cast<PointerType>(Ptr->getType())->getElementType(),
4480                           Cmp)) ||
4481           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4482           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4483         return error("Invalid record");
4484       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4485       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4486           SuccessOrdering == AtomicOrdering::Unordered)
4487         return error("Invalid record");
4488       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4489 
4490       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4491         return Err;
4492       AtomicOrdering FailureOrdering;
4493       if (Record.size() < 7)
4494         FailureOrdering =
4495             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4496       else
4497         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4498 
4499       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4500                                 SSID);
4501       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4502 
4503       if (Record.size() < 8) {
4504         // Before weak cmpxchgs existed, the instruction simply returned the
4505         // value loaded from memory, so bitcode files from that era will be
4506         // expecting the first component of a modern cmpxchg.
4507         CurBB->getInstList().push_back(I);
4508         I = ExtractValueInst::Create(I, 0);
4509       } else {
4510         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4511       }
4512 
4513       InstructionList.push_back(I);
4514       break;
4515     }
4516     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4517       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4518       unsigned OpNum = 0;
4519       Value *Ptr, *Val;
4520       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4521           !isa<PointerType>(Ptr->getType()) ||
4522           popValue(Record, OpNum, NextValueNo,
4523                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4524           OpNum+4 != Record.size())
4525         return error("Invalid record");
4526       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4527       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4528           Operation > AtomicRMWInst::LAST_BINOP)
4529         return error("Invalid record");
4530       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4531       if (Ordering == AtomicOrdering::NotAtomic ||
4532           Ordering == AtomicOrdering::Unordered)
4533         return error("Invalid record");
4534       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4535       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4536       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4537       InstructionList.push_back(I);
4538       break;
4539     }
4540     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4541       if (2 != Record.size())
4542         return error("Invalid record");
4543       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4544       if (Ordering == AtomicOrdering::NotAtomic ||
4545           Ordering == AtomicOrdering::Unordered ||
4546           Ordering == AtomicOrdering::Monotonic)
4547         return error("Invalid record");
4548       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4549       I = new FenceInst(Context, Ordering, SSID);
4550       InstructionList.push_back(I);
4551       break;
4552     }
4553     case bitc::FUNC_CODE_INST_CALL: {
4554       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4555       if (Record.size() < 3)
4556         return error("Invalid record");
4557 
4558       unsigned OpNum = 0;
4559       AttributeList PAL = getAttributes(Record[OpNum++]);
4560       unsigned CCInfo = Record[OpNum++];
4561 
4562       FastMathFlags FMF;
4563       if ((CCInfo >> bitc::CALL_FMF) & 1) {
4564         FMF = getDecodedFastMathFlags(Record[OpNum++]);
4565         if (!FMF.any())
4566           return error("Fast math flags indicator set for call with no FMF");
4567       }
4568 
4569       FunctionType *FTy = nullptr;
4570       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4571           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4572         return error("Explicit call type is not a function type");
4573 
4574       Value *Callee;
4575       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4576         return error("Invalid record");
4577 
4578       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4579       if (!OpTy)
4580         return error("Callee is not a pointer type");
4581       if (!FTy) {
4582         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4583         if (!FTy)
4584           return error("Callee is not of pointer to function type");
4585       } else if (OpTy->getElementType() != FTy)
4586         return error("Explicit call type does not match pointee type of "
4587                      "callee operand");
4588       if (Record.size() < FTy->getNumParams() + OpNum)
4589         return error("Insufficient operands to call");
4590 
4591       SmallVector<Value*, 16> Args;
4592       // Read the fixed params.
4593       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4594         if (FTy->getParamType(i)->isLabelTy())
4595           Args.push_back(getBasicBlock(Record[OpNum]));
4596         else
4597           Args.push_back(getValue(Record, OpNum, NextValueNo,
4598                                   FTy->getParamType(i)));
4599         if (!Args.back())
4600           return error("Invalid record");
4601       }
4602 
4603       // Read type/value pairs for varargs params.
4604       if (!FTy->isVarArg()) {
4605         if (OpNum != Record.size())
4606           return error("Invalid record");
4607       } else {
4608         while (OpNum != Record.size()) {
4609           Value *Op;
4610           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4611             return error("Invalid record");
4612           Args.push_back(Op);
4613         }
4614       }
4615 
4616       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
4617       OperandBundles.clear();
4618       InstructionList.push_back(I);
4619       cast<CallInst>(I)->setCallingConv(
4620           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4621       CallInst::TailCallKind TCK = CallInst::TCK_None;
4622       if (CCInfo & 1 << bitc::CALL_TAIL)
4623         TCK = CallInst::TCK_Tail;
4624       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
4625         TCK = CallInst::TCK_MustTail;
4626       if (CCInfo & (1 << bitc::CALL_NOTAIL))
4627         TCK = CallInst::TCK_NoTail;
4628       cast<CallInst>(I)->setTailCallKind(TCK);
4629       cast<CallInst>(I)->setAttributes(PAL);
4630       if (FMF.any()) {
4631         if (!isa<FPMathOperator>(I))
4632           return error("Fast-math-flags specified for call without "
4633                        "floating-point scalar or vector return type");
4634         I->setFastMathFlags(FMF);
4635       }
4636       break;
4637     }
4638     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4639       if (Record.size() < 3)
4640         return error("Invalid record");
4641       Type *OpTy = getTypeByID(Record[0]);
4642       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4643       Type *ResTy = getTypeByID(Record[2]);
4644       if (!OpTy || !Op || !ResTy)
4645         return error("Invalid record");
4646       I = new VAArgInst(Op, ResTy);
4647       InstructionList.push_back(I);
4648       break;
4649     }
4650 
4651     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
4652       // A call or an invoke can be optionally prefixed with some variable
4653       // number of operand bundle blocks.  These blocks are read into
4654       // OperandBundles and consumed at the next call or invoke instruction.
4655 
4656       if (Record.size() < 1 || Record[0] >= BundleTags.size())
4657         return error("Invalid record");
4658 
4659       std::vector<Value *> Inputs;
4660 
4661       unsigned OpNum = 1;
4662       while (OpNum != Record.size()) {
4663         Value *Op;
4664         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4665           return error("Invalid record");
4666         Inputs.push_back(Op);
4667       }
4668 
4669       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
4670       continue;
4671     }
4672     }
4673 
4674     // Add instruction to end of current BB.  If there is no current BB, reject
4675     // this file.
4676     if (!CurBB) {
4677       I->deleteValue();
4678       return error("Invalid instruction with no BB");
4679     }
4680     if (!OperandBundles.empty()) {
4681       I->deleteValue();
4682       return error("Operand bundles found with no consumer");
4683     }
4684     CurBB->getInstList().push_back(I);
4685 
4686     // If this was a terminator instruction, move to the next block.
4687     if (I->isTerminator()) {
4688       ++CurBBNo;
4689       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4690     }
4691 
4692     // Non-void values get registered in the value table for future use.
4693     if (I && !I->getType()->isVoidTy())
4694       ValueList.assignValue(I, NextValueNo++);
4695   }
4696 
4697 OutOfRecordLoop:
4698 
4699   if (!OperandBundles.empty())
4700     return error("Operand bundles found with no consumer");
4701 
4702   // Check the function list for unresolved values.
4703   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4704     if (!A->getParent()) {
4705       // We found at least one unresolved value.  Nuke them all to avoid leaks.
4706       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4707         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4708           A->replaceAllUsesWith(UndefValue::get(A->getType()));
4709           delete A;
4710         }
4711       }
4712       return error("Never resolved value found in function");
4713     }
4714   }
4715 
4716   // Unexpected unresolved metadata about to be dropped.
4717   if (MDLoader->hasFwdRefs())
4718     return error("Invalid function metadata: outgoing forward refs");
4719 
4720   // Trim the value list down to the size it was before we parsed this function.
4721   ValueList.shrinkTo(ModuleValueListSize);
4722   MDLoader->shrinkTo(ModuleMDLoaderSize);
4723   std::vector<BasicBlock*>().swap(FunctionBBs);
4724   return Error::success();
4725 }
4726 
4727 /// Find the function body in the bitcode stream
4728 Error BitcodeReader::findFunctionInStream(
4729     Function *F,
4730     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4731   while (DeferredFunctionInfoIterator->second == 0) {
4732     // This is the fallback handling for the old format bitcode that
4733     // didn't contain the function index in the VST, or when we have
4734     // an anonymous function which would not have a VST entry.
4735     // Assert that we have one of those two cases.
4736     assert(VSTOffset == 0 || !F->hasName());
4737     // Parse the next body in the stream and set its position in the
4738     // DeferredFunctionInfo map.
4739     if (Error Err = rememberAndSkipFunctionBodies())
4740       return Err;
4741   }
4742   return Error::success();
4743 }
4744 
4745 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
4746   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
4747     return SyncScope::ID(Val);
4748   if (Val >= SSIDs.size())
4749     return SyncScope::System; // Map unknown synchronization scopes to system.
4750   return SSIDs[Val];
4751 }
4752 
4753 //===----------------------------------------------------------------------===//
4754 // GVMaterializer implementation
4755 //===----------------------------------------------------------------------===//
4756 
4757 Error BitcodeReader::materialize(GlobalValue *GV) {
4758   Function *F = dyn_cast<Function>(GV);
4759   // If it's not a function or is already material, ignore the request.
4760   if (!F || !F->isMaterializable())
4761     return Error::success();
4762 
4763   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4764   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
4765   // If its position is recorded as 0, its body is somewhere in the stream
4766   // but we haven't seen it yet.
4767   if (DFII->second == 0)
4768     if (Error Err = findFunctionInStream(F, DFII))
4769       return Err;
4770 
4771   // Materialize metadata before parsing any function bodies.
4772   if (Error Err = materializeMetadata())
4773     return Err;
4774 
4775   // Move the bit stream to the saved position of the deferred function body.
4776   Stream.JumpToBit(DFII->second);
4777 
4778   if (Error Err = parseFunctionBody(F))
4779     return Err;
4780   F->setIsMaterializable(false);
4781 
4782   if (StripDebugInfo)
4783     stripDebugInfo(*F);
4784 
4785   // Upgrade any old intrinsic calls in the function.
4786   for (auto &I : UpgradedIntrinsics) {
4787     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4788          UI != UE;) {
4789       User *U = *UI;
4790       ++UI;
4791       if (CallInst *CI = dyn_cast<CallInst>(U))
4792         UpgradeIntrinsicCall(CI, I.second);
4793     }
4794   }
4795 
4796   // Update calls to the remangled intrinsics
4797   for (auto &I : RemangledIntrinsics)
4798     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4799          UI != UE;)
4800       // Don't expect any other users than call sites
4801       CallSite(*UI++).setCalledFunction(I.second);
4802 
4803   // Finish fn->subprogram upgrade for materialized functions.
4804   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
4805     F->setSubprogram(SP);
4806 
4807   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
4808   if (!MDLoader->isStrippingTBAA()) {
4809     for (auto &I : instructions(F)) {
4810       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
4811       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
4812         continue;
4813       MDLoader->setStripTBAA(true);
4814       stripTBAA(F->getParent());
4815     }
4816   }
4817 
4818   // Bring in any functions that this function forward-referenced via
4819   // blockaddresses.
4820   return materializeForwardReferencedFunctions();
4821 }
4822 
4823 Error BitcodeReader::materializeModule() {
4824   if (Error Err = materializeMetadata())
4825     return Err;
4826 
4827   // Promise to materialize all forward references.
4828   WillMaterializeAllForwardRefs = true;
4829 
4830   // Iterate over the module, deserializing any functions that are still on
4831   // disk.
4832   for (Function &F : *TheModule) {
4833     if (Error Err = materialize(&F))
4834       return Err;
4835   }
4836   // At this point, if there are any function bodies, parse the rest of
4837   // the bits in the module past the last function block we have recorded
4838   // through either lazy scanning or the VST.
4839   if (LastFunctionBlockBit || NextUnreadBit)
4840     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
4841                                     ? LastFunctionBlockBit
4842                                     : NextUnreadBit))
4843       return Err;
4844 
4845   // Check that all block address forward references got resolved (as we
4846   // promised above).
4847   if (!BasicBlockFwdRefs.empty())
4848     return error("Never resolved function from blockaddress");
4849 
4850   // Upgrade any intrinsic calls that slipped through (should not happen!) and
4851   // delete the old functions to clean up. We can't do this unless the entire
4852   // module is materialized because there could always be another function body
4853   // with calls to the old function.
4854   for (auto &I : UpgradedIntrinsics) {
4855     for (auto *U : I.first->users()) {
4856       if (CallInst *CI = dyn_cast<CallInst>(U))
4857         UpgradeIntrinsicCall(CI, I.second);
4858     }
4859     if (!I.first->use_empty())
4860       I.first->replaceAllUsesWith(I.second);
4861     I.first->eraseFromParent();
4862   }
4863   UpgradedIntrinsics.clear();
4864   // Do the same for remangled intrinsics
4865   for (auto &I : RemangledIntrinsics) {
4866     I.first->replaceAllUsesWith(I.second);
4867     I.first->eraseFromParent();
4868   }
4869   RemangledIntrinsics.clear();
4870 
4871   UpgradeDebugInfo(*TheModule);
4872 
4873   UpgradeModuleFlags(*TheModule);
4874 
4875   UpgradeRetainReleaseMarker(*TheModule);
4876 
4877   return Error::success();
4878 }
4879 
4880 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
4881   return IdentifiedStructTypes;
4882 }
4883 
4884 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
4885     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
4886     StringRef ModulePath, unsigned ModuleId)
4887     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
4888       ModulePath(ModulePath), ModuleId(ModuleId) {}
4889 
4890 void ModuleSummaryIndexBitcodeReader::addThisModule() {
4891   TheIndex.addModule(ModulePath, ModuleId);
4892 }
4893 
4894 ModuleSummaryIndex::ModuleInfo *
4895 ModuleSummaryIndexBitcodeReader::getThisModule() {
4896   return TheIndex.getModule(ModulePath);
4897 }
4898 
4899 std::pair<ValueInfo, GlobalValue::GUID>
4900 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
4901   auto VGI = ValueIdToValueInfoMap[ValueId];
4902   assert(VGI.first);
4903   return VGI;
4904 }
4905 
4906 void ModuleSummaryIndexBitcodeReader::setValueGUID(
4907     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
4908     StringRef SourceFileName) {
4909   std::string GlobalId =
4910       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
4911   auto ValueGUID = GlobalValue::getGUID(GlobalId);
4912   auto OriginalNameID = ValueGUID;
4913   if (GlobalValue::isLocalLinkage(Linkage))
4914     OriginalNameID = GlobalValue::getGUID(ValueName);
4915   if (PrintSummaryGUIDs)
4916     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
4917            << ValueName << "\n";
4918 
4919   // UseStrtab is false for legacy summary formats and value names are
4920   // created on stack. In that case we save the name in a string saver in
4921   // the index so that the value name can be recorded.
4922   ValueIdToValueInfoMap[ValueID] = std::make_pair(
4923       TheIndex.getOrInsertValueInfo(
4924           ValueGUID,
4925           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
4926       OriginalNameID);
4927 }
4928 
4929 // Specialized value symbol table parser used when reading module index
4930 // blocks where we don't actually create global values. The parsed information
4931 // is saved in the bitcode reader for use when later parsing summaries.
4932 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
4933     uint64_t Offset,
4934     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
4935   // With a strtab the VST is not required to parse the summary.
4936   if (UseStrtab)
4937     return Error::success();
4938 
4939   assert(Offset > 0 && "Expected non-zero VST offset");
4940   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
4941 
4942   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
4943     return error("Invalid record");
4944 
4945   SmallVector<uint64_t, 64> Record;
4946 
4947   // Read all the records for this value table.
4948   SmallString<128> ValueName;
4949 
4950   while (true) {
4951     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4952 
4953     switch (Entry.Kind) {
4954     case BitstreamEntry::SubBlock: // Handled for us already.
4955     case BitstreamEntry::Error:
4956       return error("Malformed block");
4957     case BitstreamEntry::EndBlock:
4958       // Done parsing VST, jump back to wherever we came from.
4959       Stream.JumpToBit(CurrentBit);
4960       return Error::success();
4961     case BitstreamEntry::Record:
4962       // The interesting case.
4963       break;
4964     }
4965 
4966     // Read a record.
4967     Record.clear();
4968     switch (Stream.readRecord(Entry.ID, Record)) {
4969     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
4970       break;
4971     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
4972       if (convertToString(Record, 1, ValueName))
4973         return error("Invalid record");
4974       unsigned ValueID = Record[0];
4975       assert(!SourceFileName.empty());
4976       auto VLI = ValueIdToLinkageMap.find(ValueID);
4977       assert(VLI != ValueIdToLinkageMap.end() &&
4978              "No linkage found for VST entry?");
4979       auto Linkage = VLI->second;
4980       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4981       ValueName.clear();
4982       break;
4983     }
4984     case bitc::VST_CODE_FNENTRY: {
4985       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
4986       if (convertToString(Record, 2, ValueName))
4987         return error("Invalid record");
4988       unsigned ValueID = Record[0];
4989       assert(!SourceFileName.empty());
4990       auto VLI = ValueIdToLinkageMap.find(ValueID);
4991       assert(VLI != ValueIdToLinkageMap.end() &&
4992              "No linkage found for VST entry?");
4993       auto Linkage = VLI->second;
4994       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4995       ValueName.clear();
4996       break;
4997     }
4998     case bitc::VST_CODE_COMBINED_ENTRY: {
4999       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5000       unsigned ValueID = Record[0];
5001       GlobalValue::GUID RefGUID = Record[1];
5002       // The "original name", which is the second value of the pair will be
5003       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5004       ValueIdToValueInfoMap[ValueID] =
5005           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5006       break;
5007     }
5008     }
5009   }
5010 }
5011 
5012 // Parse just the blocks needed for building the index out of the module.
5013 // At the end of this routine the module Index is populated with a map
5014 // from global value id to GlobalValueSummary objects.
5015 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5016   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5017     return error("Invalid record");
5018 
5019   SmallVector<uint64_t, 64> Record;
5020   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5021   unsigned ValueId = 0;
5022 
5023   // Read the index for this module.
5024   while (true) {
5025     BitstreamEntry Entry = Stream.advance();
5026 
5027     switch (Entry.Kind) {
5028     case BitstreamEntry::Error:
5029       return error("Malformed block");
5030     case BitstreamEntry::EndBlock:
5031       return Error::success();
5032 
5033     case BitstreamEntry::SubBlock:
5034       switch (Entry.ID) {
5035       default: // Skip unknown content.
5036         if (Stream.SkipBlock())
5037           return error("Invalid record");
5038         break;
5039       case bitc::BLOCKINFO_BLOCK_ID:
5040         // Need to parse these to get abbrev ids (e.g. for VST)
5041         if (readBlockInfo())
5042           return error("Malformed block");
5043         break;
5044       case bitc::VALUE_SYMTAB_BLOCK_ID:
5045         // Should have been parsed earlier via VSTOffset, unless there
5046         // is no summary section.
5047         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5048                 !SeenGlobalValSummary) &&
5049                "Expected early VST parse via VSTOffset record");
5050         if (Stream.SkipBlock())
5051           return error("Invalid record");
5052         break;
5053       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5054       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5055         // Add the module if it is a per-module index (has a source file name).
5056         if (!SourceFileName.empty())
5057           addThisModule();
5058         assert(!SeenValueSymbolTable &&
5059                "Already read VST when parsing summary block?");
5060         // We might not have a VST if there were no values in the
5061         // summary. An empty summary block generated when we are
5062         // performing ThinLTO compiles so we don't later invoke
5063         // the regular LTO process on them.
5064         if (VSTOffset > 0) {
5065           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5066             return Err;
5067           SeenValueSymbolTable = true;
5068         }
5069         SeenGlobalValSummary = true;
5070         if (Error Err = parseEntireSummary(Entry.ID))
5071           return Err;
5072         break;
5073       case bitc::MODULE_STRTAB_BLOCK_ID:
5074         if (Error Err = parseModuleStringTable())
5075           return Err;
5076         break;
5077       }
5078       continue;
5079 
5080     case BitstreamEntry::Record: {
5081         Record.clear();
5082         auto BitCode = Stream.readRecord(Entry.ID, Record);
5083         switch (BitCode) {
5084         default:
5085           break; // Default behavior, ignore unknown content.
5086         case bitc::MODULE_CODE_VERSION: {
5087           if (Error Err = parseVersionRecord(Record).takeError())
5088             return Err;
5089           break;
5090         }
5091         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5092         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5093           SmallString<128> ValueName;
5094           if (convertToString(Record, 0, ValueName))
5095             return error("Invalid record");
5096           SourceFileName = ValueName.c_str();
5097           break;
5098         }
5099         /// MODULE_CODE_HASH: [5*i32]
5100         case bitc::MODULE_CODE_HASH: {
5101           if (Record.size() != 5)
5102             return error("Invalid hash length " + Twine(Record.size()).str());
5103           auto &Hash = getThisModule()->second.second;
5104           int Pos = 0;
5105           for (auto &Val : Record) {
5106             assert(!(Val >> 32) && "Unexpected high bits set");
5107             Hash[Pos++] = Val;
5108           }
5109           break;
5110         }
5111         /// MODULE_CODE_VSTOFFSET: [offset]
5112         case bitc::MODULE_CODE_VSTOFFSET:
5113           if (Record.size() < 1)
5114             return error("Invalid record");
5115           // Note that we subtract 1 here because the offset is relative to one
5116           // word before the start of the identification or module block, which
5117           // was historically always the start of the regular bitcode header.
5118           VSTOffset = Record[0] - 1;
5119           break;
5120         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5121         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5122         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5123         // v2: [strtab offset, strtab size, v1]
5124         case bitc::MODULE_CODE_GLOBALVAR:
5125         case bitc::MODULE_CODE_FUNCTION:
5126         case bitc::MODULE_CODE_ALIAS: {
5127           StringRef Name;
5128           ArrayRef<uint64_t> GVRecord;
5129           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5130           if (GVRecord.size() <= 3)
5131             return error("Invalid record");
5132           uint64_t RawLinkage = GVRecord[3];
5133           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5134           if (!UseStrtab) {
5135             ValueIdToLinkageMap[ValueId++] = Linkage;
5136             break;
5137           }
5138 
5139           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5140           break;
5141         }
5142         }
5143       }
5144       continue;
5145     }
5146   }
5147 }
5148 
5149 std::vector<ValueInfo>
5150 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5151   std::vector<ValueInfo> Ret;
5152   Ret.reserve(Record.size());
5153   for (uint64_t RefValueId : Record)
5154     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5155   return Ret;
5156 }
5157 
5158 std::vector<FunctionSummary::EdgeTy>
5159 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5160                                               bool IsOldProfileFormat,
5161                                               bool HasProfile, bool HasRelBF) {
5162   std::vector<FunctionSummary::EdgeTy> Ret;
5163   Ret.reserve(Record.size());
5164   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5165     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5166     uint64_t RelBF = 0;
5167     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5168     if (IsOldProfileFormat) {
5169       I += 1; // Skip old callsitecount field
5170       if (HasProfile)
5171         I += 1; // Skip old profilecount field
5172     } else if (HasProfile)
5173       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5174     else if (HasRelBF)
5175       RelBF = Record[++I];
5176     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5177   }
5178   return Ret;
5179 }
5180 
5181 static void
5182 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5183                                        WholeProgramDevirtResolution &Wpd) {
5184   uint64_t ArgNum = Record[Slot++];
5185   WholeProgramDevirtResolution::ByArg &B =
5186       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5187   Slot += ArgNum;
5188 
5189   B.TheKind =
5190       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5191   B.Info = Record[Slot++];
5192   B.Byte = Record[Slot++];
5193   B.Bit = Record[Slot++];
5194 }
5195 
5196 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5197                                               StringRef Strtab, size_t &Slot,
5198                                               TypeIdSummary &TypeId) {
5199   uint64_t Id = Record[Slot++];
5200   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5201 
5202   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5203   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5204                         static_cast<size_t>(Record[Slot + 1])};
5205   Slot += 2;
5206 
5207   uint64_t ResByArgNum = Record[Slot++];
5208   for (uint64_t I = 0; I != ResByArgNum; ++I)
5209     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5210 }
5211 
5212 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5213                                      StringRef Strtab,
5214                                      ModuleSummaryIndex &TheIndex) {
5215   size_t Slot = 0;
5216   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5217       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5218   Slot += 2;
5219 
5220   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5221   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5222   TypeId.TTRes.AlignLog2 = Record[Slot++];
5223   TypeId.TTRes.SizeM1 = Record[Slot++];
5224   TypeId.TTRes.BitMask = Record[Slot++];
5225   TypeId.TTRes.InlineBits = Record[Slot++];
5226 
5227   while (Slot < Record.size())
5228     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5229 }
5230 
5231 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) {
5232   // Read-only refs are in the end of the refs list.
5233   for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo)
5234     Refs[RefNo].setReadOnly();
5235 }
5236 
5237 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5238 // objects in the index.
5239 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5240   if (Stream.EnterSubBlock(ID))
5241     return error("Invalid record");
5242   SmallVector<uint64_t, 64> Record;
5243 
5244   // Parse version
5245   {
5246     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5247     if (Entry.Kind != BitstreamEntry::Record)
5248       return error("Invalid Summary Block: record for version expected");
5249     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
5250       return error("Invalid Summary Block: version expected");
5251   }
5252   const uint64_t Version = Record[0];
5253   const bool IsOldProfileFormat = Version == 1;
5254   if (Version < 1 || Version > 6)
5255     return error("Invalid summary version " + Twine(Version) +
5256                  ". Version should be in the range [1-6].");
5257   Record.clear();
5258 
5259   // Keep around the last seen summary to be used when we see an optional
5260   // "OriginalName" attachement.
5261   GlobalValueSummary *LastSeenSummary = nullptr;
5262   GlobalValue::GUID LastSeenGUID = 0;
5263 
5264   // We can expect to see any number of type ID information records before
5265   // each function summary records; these variables store the information
5266   // collected so far so that it can be used to create the summary object.
5267   std::vector<GlobalValue::GUID> PendingTypeTests;
5268   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5269       PendingTypeCheckedLoadVCalls;
5270   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5271       PendingTypeCheckedLoadConstVCalls;
5272 
5273   while (true) {
5274     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5275 
5276     switch (Entry.Kind) {
5277     case BitstreamEntry::SubBlock: // Handled for us already.
5278     case BitstreamEntry::Error:
5279       return error("Malformed block");
5280     case BitstreamEntry::EndBlock:
5281       return Error::success();
5282     case BitstreamEntry::Record:
5283       // The interesting case.
5284       break;
5285     }
5286 
5287     // Read a record. The record format depends on whether this
5288     // is a per-module index or a combined index file. In the per-module
5289     // case the records contain the associated value's ID for correlation
5290     // with VST entries. In the combined index the correlation is done
5291     // via the bitcode offset of the summary records (which were saved
5292     // in the combined index VST entries). The records also contain
5293     // information used for ThinLTO renaming and importing.
5294     Record.clear();
5295     auto BitCode = Stream.readRecord(Entry.ID, Record);
5296     switch (BitCode) {
5297     default: // Default behavior: ignore.
5298       break;
5299     case bitc::FS_FLAGS: {  // [flags]
5300       uint64_t Flags = Record[0];
5301       // Scan flags.
5302       assert(Flags <= 0x1f && "Unexpected bits in flag");
5303 
5304       // 1 bit: WithGlobalValueDeadStripping flag.
5305       // Set on combined index only.
5306       if (Flags & 0x1)
5307         TheIndex.setWithGlobalValueDeadStripping();
5308       // 1 bit: SkipModuleByDistributedBackend flag.
5309       // Set on combined index only.
5310       if (Flags & 0x2)
5311         TheIndex.setSkipModuleByDistributedBackend();
5312       // 1 bit: HasSyntheticEntryCounts flag.
5313       // Set on combined index only.
5314       if (Flags & 0x4)
5315         TheIndex.setHasSyntheticEntryCounts();
5316       // 1 bit: DisableSplitLTOUnit flag.
5317       // Set on per module indexes. It is up to the client to validate
5318       // the consistency of this flag across modules being linked.
5319       if (Flags & 0x8)
5320         TheIndex.setEnableSplitLTOUnit();
5321       // 1 bit: PartiallySplitLTOUnits flag.
5322       // Set on combined index only.
5323       if (Flags & 0x10)
5324         TheIndex.setPartiallySplitLTOUnits();
5325       break;
5326     }
5327     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5328       uint64_t ValueID = Record[0];
5329       GlobalValue::GUID RefGUID = Record[1];
5330       ValueIdToValueInfoMap[ValueID] =
5331           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5332       break;
5333     }
5334     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5335     //                numrefs x valueid, n x (valueid)]
5336     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5337     //                        numrefs x valueid,
5338     //                        n x (valueid, hotness)]
5339     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5340     //                      numrefs x valueid,
5341     //                      n x (valueid, relblockfreq)]
5342     case bitc::FS_PERMODULE:
5343     case bitc::FS_PERMODULE_RELBF:
5344     case bitc::FS_PERMODULE_PROFILE: {
5345       unsigned ValueID = Record[0];
5346       uint64_t RawFlags = Record[1];
5347       unsigned InstCount = Record[2];
5348       uint64_t RawFunFlags = 0;
5349       unsigned NumRefs = Record[3];
5350       unsigned NumImmutableRefs = 0;
5351       int RefListStartIndex = 4;
5352       if (Version >= 4) {
5353         RawFunFlags = Record[3];
5354         NumRefs = Record[4];
5355         RefListStartIndex = 5;
5356         if (Version >= 5) {
5357           NumImmutableRefs = Record[5];
5358           RefListStartIndex = 6;
5359         }
5360       }
5361 
5362       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5363       // The module path string ref set in the summary must be owned by the
5364       // index's module string table. Since we don't have a module path
5365       // string table section in the per-module index, we create a single
5366       // module path string table entry with an empty (0) ID to take
5367       // ownership.
5368       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5369       assert(Record.size() >= RefListStartIndex + NumRefs &&
5370              "Record size inconsistent with number of references");
5371       std::vector<ValueInfo> Refs = makeRefList(
5372           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5373       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5374       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5375       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5376           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5377           IsOldProfileFormat, HasProfile, HasRelBF);
5378       setImmutableRefs(Refs, NumImmutableRefs);
5379       auto FS = llvm::make_unique<FunctionSummary>(
5380           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
5381           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
5382           std::move(PendingTypeTestAssumeVCalls),
5383           std::move(PendingTypeCheckedLoadVCalls),
5384           std::move(PendingTypeTestAssumeConstVCalls),
5385           std::move(PendingTypeCheckedLoadConstVCalls));
5386       PendingTypeTests.clear();
5387       PendingTypeTestAssumeVCalls.clear();
5388       PendingTypeCheckedLoadVCalls.clear();
5389       PendingTypeTestAssumeConstVCalls.clear();
5390       PendingTypeCheckedLoadConstVCalls.clear();
5391       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5392       FS->setModulePath(getThisModule()->first());
5393       FS->setOriginalName(VIAndOriginalGUID.second);
5394       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5395       break;
5396     }
5397     // FS_ALIAS: [valueid, flags, valueid]
5398     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5399     // they expect all aliasee summaries to be available.
5400     case bitc::FS_ALIAS: {
5401       unsigned ValueID = Record[0];
5402       uint64_t RawFlags = Record[1];
5403       unsigned AliaseeID = Record[2];
5404       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5405       auto AS = llvm::make_unique<AliasSummary>(Flags);
5406       // The module path string ref set in the summary must be owned by the
5407       // index's module string table. Since we don't have a module path
5408       // string table section in the per-module index, we create a single
5409       // module path string table entry with an empty (0) ID to take
5410       // ownership.
5411       AS->setModulePath(getThisModule()->first());
5412 
5413       GlobalValue::GUID AliaseeGUID =
5414           getValueInfoFromValueId(AliaseeID).first.getGUID();
5415       auto AliaseeInModule =
5416           TheIndex.findSummaryInModule(AliaseeGUID, ModulePath);
5417       if (!AliaseeInModule)
5418         return error("Alias expects aliasee summary to be parsed");
5419       AS->setAliasee(AliaseeInModule);
5420       AS->setAliaseeGUID(AliaseeGUID);
5421 
5422       auto GUID = getValueInfoFromValueId(ValueID);
5423       AS->setOriginalName(GUID.second);
5424       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5425       break;
5426     }
5427     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
5428     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5429       unsigned ValueID = Record[0];
5430       uint64_t RawFlags = Record[1];
5431       unsigned RefArrayStart = 2;
5432       GlobalVarSummary::GVarFlags GVF;
5433       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5434       if (Version >= 5) {
5435         GVF = getDecodedGVarFlags(Record[2]);
5436         RefArrayStart = 3;
5437       }
5438       std::vector<ValueInfo> Refs =
5439           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5440       auto FS =
5441           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5442       FS->setModulePath(getThisModule()->first());
5443       auto GUID = getValueInfoFromValueId(ValueID);
5444       FS->setOriginalName(GUID.second);
5445       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5446       break;
5447     }
5448     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5449     //               numrefs x valueid, n x (valueid)]
5450     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5451     //                       numrefs x valueid, n x (valueid, hotness)]
5452     case bitc::FS_COMBINED:
5453     case bitc::FS_COMBINED_PROFILE: {
5454       unsigned ValueID = Record[0];
5455       uint64_t ModuleId = Record[1];
5456       uint64_t RawFlags = Record[2];
5457       unsigned InstCount = Record[3];
5458       uint64_t RawFunFlags = 0;
5459       uint64_t EntryCount = 0;
5460       unsigned NumRefs = Record[4];
5461       unsigned NumImmutableRefs = 0;
5462       int RefListStartIndex = 5;
5463 
5464       if (Version >= 4) {
5465         RawFunFlags = Record[4];
5466         RefListStartIndex = 6;
5467         size_t NumRefsIndex = 5;
5468         if (Version >= 5) {
5469           RefListStartIndex = 7;
5470           if (Version >= 6) {
5471             NumRefsIndex = 6;
5472             EntryCount = Record[5];
5473             RefListStartIndex = 8;
5474           }
5475           NumImmutableRefs = Record[RefListStartIndex - 1];
5476         }
5477         NumRefs = Record[NumRefsIndex];
5478       }
5479 
5480       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5481       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5482       assert(Record.size() >= RefListStartIndex + NumRefs &&
5483              "Record size inconsistent with number of references");
5484       std::vector<ValueInfo> Refs = makeRefList(
5485           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5486       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5487       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
5488           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5489           IsOldProfileFormat, HasProfile, false);
5490       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5491       setImmutableRefs(Refs, NumImmutableRefs);
5492       auto FS = llvm::make_unique<FunctionSummary>(
5493           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
5494           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
5495           std::move(PendingTypeTestAssumeVCalls),
5496           std::move(PendingTypeCheckedLoadVCalls),
5497           std::move(PendingTypeTestAssumeConstVCalls),
5498           std::move(PendingTypeCheckedLoadConstVCalls));
5499       PendingTypeTests.clear();
5500       PendingTypeTestAssumeVCalls.clear();
5501       PendingTypeCheckedLoadVCalls.clear();
5502       PendingTypeTestAssumeConstVCalls.clear();
5503       PendingTypeCheckedLoadConstVCalls.clear();
5504       LastSeenSummary = FS.get();
5505       LastSeenGUID = VI.getGUID();
5506       FS->setModulePath(ModuleIdMap[ModuleId]);
5507       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5508       break;
5509     }
5510     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
5511     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
5512     // they expect all aliasee summaries to be available.
5513     case bitc::FS_COMBINED_ALIAS: {
5514       unsigned ValueID = Record[0];
5515       uint64_t ModuleId = Record[1];
5516       uint64_t RawFlags = Record[2];
5517       unsigned AliaseeValueId = Record[3];
5518       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5519       auto AS = llvm::make_unique<AliasSummary>(Flags);
5520       LastSeenSummary = AS.get();
5521       AS->setModulePath(ModuleIdMap[ModuleId]);
5522 
5523       auto AliaseeGUID =
5524           getValueInfoFromValueId(AliaseeValueId).first.getGUID();
5525       auto AliaseeInModule =
5526           TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath());
5527       AS->setAliasee(AliaseeInModule);
5528       AS->setAliaseeGUID(AliaseeGUID);
5529 
5530       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5531       LastSeenGUID = VI.getGUID();
5532       TheIndex.addGlobalValueSummary(VI, std::move(AS));
5533       break;
5534     }
5535     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
5536     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5537       unsigned ValueID = Record[0];
5538       uint64_t ModuleId = Record[1];
5539       uint64_t RawFlags = Record[2];
5540       unsigned RefArrayStart = 3;
5541       GlobalVarSummary::GVarFlags GVF;
5542       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5543       if (Version >= 5) {
5544         GVF = getDecodedGVarFlags(Record[3]);
5545         RefArrayStart = 4;
5546       }
5547       std::vector<ValueInfo> Refs =
5548           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5549       auto FS =
5550           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5551       LastSeenSummary = FS.get();
5552       FS->setModulePath(ModuleIdMap[ModuleId]);
5553       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5554       LastSeenGUID = VI.getGUID();
5555       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5556       break;
5557     }
5558     // FS_COMBINED_ORIGINAL_NAME: [original_name]
5559     case bitc::FS_COMBINED_ORIGINAL_NAME: {
5560       uint64_t OriginalName = Record[0];
5561       if (!LastSeenSummary)
5562         return error("Name attachment that does not follow a combined record");
5563       LastSeenSummary->setOriginalName(OriginalName);
5564       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
5565       // Reset the LastSeenSummary
5566       LastSeenSummary = nullptr;
5567       LastSeenGUID = 0;
5568       break;
5569     }
5570     case bitc::FS_TYPE_TESTS:
5571       assert(PendingTypeTests.empty());
5572       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
5573                               Record.end());
5574       break;
5575 
5576     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
5577       assert(PendingTypeTestAssumeVCalls.empty());
5578       for (unsigned I = 0; I != Record.size(); I += 2)
5579         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
5580       break;
5581 
5582     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
5583       assert(PendingTypeCheckedLoadVCalls.empty());
5584       for (unsigned I = 0; I != Record.size(); I += 2)
5585         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
5586       break;
5587 
5588     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
5589       PendingTypeTestAssumeConstVCalls.push_back(
5590           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5591       break;
5592 
5593     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
5594       PendingTypeCheckedLoadConstVCalls.push_back(
5595           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5596       break;
5597 
5598     case bitc::FS_CFI_FUNCTION_DEFS: {
5599       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
5600       for (unsigned I = 0; I != Record.size(); I += 2)
5601         CfiFunctionDefs.insert(
5602             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5603       break;
5604     }
5605 
5606     case bitc::FS_CFI_FUNCTION_DECLS: {
5607       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
5608       for (unsigned I = 0; I != Record.size(); I += 2)
5609         CfiFunctionDecls.insert(
5610             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5611       break;
5612     }
5613 
5614     case bitc::FS_TYPE_ID:
5615       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
5616       break;
5617     }
5618   }
5619   llvm_unreachable("Exit infinite loop");
5620 }
5621 
5622 // Parse the  module string table block into the Index.
5623 // This populates the ModulePathStringTable map in the index.
5624 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5625   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5626     return error("Invalid record");
5627 
5628   SmallVector<uint64_t, 64> Record;
5629 
5630   SmallString<128> ModulePath;
5631   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
5632 
5633   while (true) {
5634     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5635 
5636     switch (Entry.Kind) {
5637     case BitstreamEntry::SubBlock: // Handled for us already.
5638     case BitstreamEntry::Error:
5639       return error("Malformed block");
5640     case BitstreamEntry::EndBlock:
5641       return Error::success();
5642     case BitstreamEntry::Record:
5643       // The interesting case.
5644       break;
5645     }
5646 
5647     Record.clear();
5648     switch (Stream.readRecord(Entry.ID, Record)) {
5649     default: // Default behavior: ignore.
5650       break;
5651     case bitc::MST_CODE_ENTRY: {
5652       // MST_ENTRY: [modid, namechar x N]
5653       uint64_t ModuleId = Record[0];
5654 
5655       if (convertToString(Record, 1, ModulePath))
5656         return error("Invalid record");
5657 
5658       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
5659       ModuleIdMap[ModuleId] = LastSeenModule->first();
5660 
5661       ModulePath.clear();
5662       break;
5663     }
5664     /// MST_CODE_HASH: [5*i32]
5665     case bitc::MST_CODE_HASH: {
5666       if (Record.size() != 5)
5667         return error("Invalid hash length " + Twine(Record.size()).str());
5668       if (!LastSeenModule)
5669         return error("Invalid hash that does not follow a module path");
5670       int Pos = 0;
5671       for (auto &Val : Record) {
5672         assert(!(Val >> 32) && "Unexpected high bits set");
5673         LastSeenModule->second.second[Pos++] = Val;
5674       }
5675       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
5676       LastSeenModule = nullptr;
5677       break;
5678     }
5679     }
5680   }
5681   llvm_unreachable("Exit infinite loop");
5682 }
5683 
5684 namespace {
5685 
5686 // FIXME: This class is only here to support the transition to llvm::Error. It
5687 // will be removed once this transition is complete. Clients should prefer to
5688 // deal with the Error value directly, rather than converting to error_code.
5689 class BitcodeErrorCategoryType : public std::error_category {
5690   const char *name() const noexcept override {
5691     return "llvm.bitcode";
5692   }
5693 
5694   std::string message(int IE) const override {
5695     BitcodeError E = static_cast<BitcodeError>(IE);
5696     switch (E) {
5697     case BitcodeError::CorruptedBitcode:
5698       return "Corrupted bitcode";
5699     }
5700     llvm_unreachable("Unknown error type!");
5701   }
5702 };
5703 
5704 } // end anonymous namespace
5705 
5706 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
5707 
5708 const std::error_category &llvm::BitcodeErrorCategory() {
5709   return *ErrorCategory;
5710 }
5711 
5712 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
5713                                             unsigned Block, unsigned RecordID) {
5714   if (Stream.EnterSubBlock(Block))
5715     return error("Invalid record");
5716 
5717   StringRef Strtab;
5718   while (true) {
5719     BitstreamEntry Entry = Stream.advance();
5720     switch (Entry.Kind) {
5721     case BitstreamEntry::EndBlock:
5722       return Strtab;
5723 
5724     case BitstreamEntry::Error:
5725       return error("Malformed block");
5726 
5727     case BitstreamEntry::SubBlock:
5728       if (Stream.SkipBlock())
5729         return error("Malformed block");
5730       break;
5731 
5732     case BitstreamEntry::Record:
5733       StringRef Blob;
5734       SmallVector<uint64_t, 1> Record;
5735       if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID)
5736         Strtab = Blob;
5737       break;
5738     }
5739   }
5740 }
5741 
5742 //===----------------------------------------------------------------------===//
5743 // External interface
5744 //===----------------------------------------------------------------------===//
5745 
5746 Expected<std::vector<BitcodeModule>>
5747 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
5748   auto FOrErr = getBitcodeFileContents(Buffer);
5749   if (!FOrErr)
5750     return FOrErr.takeError();
5751   return std::move(FOrErr->Mods);
5752 }
5753 
5754 Expected<BitcodeFileContents>
5755 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
5756   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5757   if (!StreamOrErr)
5758     return StreamOrErr.takeError();
5759   BitstreamCursor &Stream = *StreamOrErr;
5760 
5761   BitcodeFileContents F;
5762   while (true) {
5763     uint64_t BCBegin = Stream.getCurrentByteNo();
5764 
5765     // We may be consuming bitcode from a client that leaves garbage at the end
5766     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
5767     // the end that there cannot possibly be another module, stop looking.
5768     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
5769       return F;
5770 
5771     BitstreamEntry Entry = Stream.advance();
5772     switch (Entry.Kind) {
5773     case BitstreamEntry::EndBlock:
5774     case BitstreamEntry::Error:
5775       return error("Malformed block");
5776 
5777     case BitstreamEntry::SubBlock: {
5778       uint64_t IdentificationBit = -1ull;
5779       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
5780         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5781         if (Stream.SkipBlock())
5782           return error("Malformed block");
5783 
5784         Entry = Stream.advance();
5785         if (Entry.Kind != BitstreamEntry::SubBlock ||
5786             Entry.ID != bitc::MODULE_BLOCK_ID)
5787           return error("Malformed block");
5788       }
5789 
5790       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
5791         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5792         if (Stream.SkipBlock())
5793           return error("Malformed block");
5794 
5795         F.Mods.push_back({Stream.getBitcodeBytes().slice(
5796                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
5797                           Buffer.getBufferIdentifier(), IdentificationBit,
5798                           ModuleBit});
5799         continue;
5800       }
5801 
5802       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
5803         Expected<StringRef> Strtab =
5804             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
5805         if (!Strtab)
5806           return Strtab.takeError();
5807         // This string table is used by every preceding bitcode module that does
5808         // not have its own string table. A bitcode file may have multiple
5809         // string tables if it was created by binary concatenation, for example
5810         // with "llvm-cat -b".
5811         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
5812           if (!I->Strtab.empty())
5813             break;
5814           I->Strtab = *Strtab;
5815         }
5816         // Similarly, the string table is used by every preceding symbol table;
5817         // normally there will be just one unless the bitcode file was created
5818         // by binary concatenation.
5819         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
5820           F.StrtabForSymtab = *Strtab;
5821         continue;
5822       }
5823 
5824       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
5825         Expected<StringRef> SymtabOrErr =
5826             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
5827         if (!SymtabOrErr)
5828           return SymtabOrErr.takeError();
5829 
5830         // We can expect the bitcode file to have multiple symbol tables if it
5831         // was created by binary concatenation. In that case we silently
5832         // ignore any subsequent symbol tables, which is fine because this is a
5833         // low level function. The client is expected to notice that the number
5834         // of modules in the symbol table does not match the number of modules
5835         // in the input file and regenerate the symbol table.
5836         if (F.Symtab.empty())
5837           F.Symtab = *SymtabOrErr;
5838         continue;
5839       }
5840 
5841       if (Stream.SkipBlock())
5842         return error("Malformed block");
5843       continue;
5844     }
5845     case BitstreamEntry::Record:
5846       Stream.skipRecord(Entry.ID);
5847       continue;
5848     }
5849   }
5850 }
5851 
5852 /// Get a lazy one-at-time loading module from bitcode.
5853 ///
5854 /// This isn't always used in a lazy context.  In particular, it's also used by
5855 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
5856 /// in forward-referenced functions from block address references.
5857 ///
5858 /// \param[in] MaterializeAll Set to \c true if we should materialize
5859 /// everything.
5860 Expected<std::unique_ptr<Module>>
5861 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
5862                              bool ShouldLazyLoadMetadata, bool IsImporting) {
5863   BitstreamCursor Stream(Buffer);
5864 
5865   std::string ProducerIdentification;
5866   if (IdentificationBit != -1ull) {
5867     Stream.JumpToBit(IdentificationBit);
5868     Expected<std::string> ProducerIdentificationOrErr =
5869         readIdentificationBlock(Stream);
5870     if (!ProducerIdentificationOrErr)
5871       return ProducerIdentificationOrErr.takeError();
5872 
5873     ProducerIdentification = *ProducerIdentificationOrErr;
5874   }
5875 
5876   Stream.JumpToBit(ModuleBit);
5877   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
5878                               Context);
5879 
5880   std::unique_ptr<Module> M =
5881       llvm::make_unique<Module>(ModuleIdentifier, Context);
5882   M->setMaterializer(R);
5883 
5884   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
5885   if (Error Err =
5886           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
5887     return std::move(Err);
5888 
5889   if (MaterializeAll) {
5890     // Read in the entire module, and destroy the BitcodeReader.
5891     if (Error Err = M->materializeAll())
5892       return std::move(Err);
5893   } else {
5894     // Resolve forward references from blockaddresses.
5895     if (Error Err = R->materializeForwardReferencedFunctions())
5896       return std::move(Err);
5897   }
5898   return std::move(M);
5899 }
5900 
5901 Expected<std::unique_ptr<Module>>
5902 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
5903                              bool IsImporting) {
5904   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
5905 }
5906 
5907 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
5908 // We don't use ModuleIdentifier here because the client may need to control the
5909 // module path used in the combined summary (e.g. when reading summaries for
5910 // regular LTO modules).
5911 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
5912                                  StringRef ModulePath, uint64_t ModuleId) {
5913   BitstreamCursor Stream(Buffer);
5914   Stream.JumpToBit(ModuleBit);
5915 
5916   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
5917                                     ModulePath, ModuleId);
5918   return R.parseModule();
5919 }
5920 
5921 // Parse the specified bitcode buffer, returning the function info index.
5922 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
5923   BitstreamCursor Stream(Buffer);
5924   Stream.JumpToBit(ModuleBit);
5925 
5926   auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
5927   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
5928                                     ModuleIdentifier, 0);
5929 
5930   if (Error Err = R.parseModule())
5931     return std::move(Err);
5932 
5933   return std::move(Index);
5934 }
5935 
5936 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
5937                                                 unsigned ID) {
5938   if (Stream.EnterSubBlock(ID))
5939     return error("Invalid record");
5940   SmallVector<uint64_t, 64> Record;
5941 
5942   while (true) {
5943     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5944 
5945     switch (Entry.Kind) {
5946     case BitstreamEntry::SubBlock: // Handled for us already.
5947     case BitstreamEntry::Error:
5948       return error("Malformed block");
5949     case BitstreamEntry::EndBlock:
5950       // If no flags record found, conservatively return true to mimic
5951       // behavior before this flag was added.
5952       return true;
5953     case BitstreamEntry::Record:
5954       // The interesting case.
5955       break;
5956     }
5957 
5958     // Look for the FS_FLAGS record.
5959     Record.clear();
5960     auto BitCode = Stream.readRecord(Entry.ID, Record);
5961     switch (BitCode) {
5962     default: // Default behavior: ignore.
5963       break;
5964     case bitc::FS_FLAGS: { // [flags]
5965       uint64_t Flags = Record[0];
5966       // Scan flags.
5967       assert(Flags <= 0x1f && "Unexpected bits in flag");
5968 
5969       return Flags & 0x8;
5970     }
5971     }
5972   }
5973   llvm_unreachable("Exit infinite loop");
5974 }
5975 
5976 // Check if the given bitcode buffer contains a global value summary block.
5977 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
5978   BitstreamCursor Stream(Buffer);
5979   Stream.JumpToBit(ModuleBit);
5980 
5981   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5982     return error("Invalid record");
5983 
5984   while (true) {
5985     BitstreamEntry Entry = Stream.advance();
5986 
5987     switch (Entry.Kind) {
5988     case BitstreamEntry::Error:
5989       return error("Malformed block");
5990     case BitstreamEntry::EndBlock:
5991       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
5992                             /*EnableSplitLTOUnit=*/false};
5993 
5994     case BitstreamEntry::SubBlock:
5995       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
5996         Expected<bool> EnableSplitLTOUnit =
5997             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
5998         if (!EnableSplitLTOUnit)
5999           return EnableSplitLTOUnit.takeError();
6000         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6001                               *EnableSplitLTOUnit};
6002       }
6003 
6004       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6005         Expected<bool> EnableSplitLTOUnit =
6006             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6007         if (!EnableSplitLTOUnit)
6008           return EnableSplitLTOUnit.takeError();
6009         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6010                               *EnableSplitLTOUnit};
6011       }
6012 
6013       // Ignore other sub-blocks.
6014       if (Stream.SkipBlock())
6015         return error("Malformed block");
6016       continue;
6017 
6018     case BitstreamEntry::Record:
6019       Stream.skipRecord(Entry.ID);
6020       continue;
6021     }
6022   }
6023 }
6024 
6025 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6026   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6027   if (!MsOrErr)
6028     return MsOrErr.takeError();
6029 
6030   if (MsOrErr->size() != 1)
6031     return error("Expected a single module");
6032 
6033   return (*MsOrErr)[0];
6034 }
6035 
6036 Expected<std::unique_ptr<Module>>
6037 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6038                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6039   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6040   if (!BM)
6041     return BM.takeError();
6042 
6043   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6044 }
6045 
6046 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6047     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6048     bool ShouldLazyLoadMetadata, bool IsImporting) {
6049   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6050                                      IsImporting);
6051   if (MOrErr)
6052     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6053   return MOrErr;
6054 }
6055 
6056 Expected<std::unique_ptr<Module>>
6057 BitcodeModule::parseModule(LLVMContext &Context) {
6058   return getModuleImpl(Context, true, false, false);
6059   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6060   // written.  We must defer until the Module has been fully materialized.
6061 }
6062 
6063 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6064                                                          LLVMContext &Context) {
6065   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6066   if (!BM)
6067     return BM.takeError();
6068 
6069   return BM->parseModule(Context);
6070 }
6071 
6072 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6073   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6074   if (!StreamOrErr)
6075     return StreamOrErr.takeError();
6076 
6077   return readTriple(*StreamOrErr);
6078 }
6079 
6080 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6081   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6082   if (!StreamOrErr)
6083     return StreamOrErr.takeError();
6084 
6085   return hasObjCCategory(*StreamOrErr);
6086 }
6087 
6088 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6089   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6090   if (!StreamOrErr)
6091     return StreamOrErr.takeError();
6092 
6093   return readIdentificationCode(*StreamOrErr);
6094 }
6095 
6096 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6097                                    ModuleSummaryIndex &CombinedIndex,
6098                                    uint64_t ModuleId) {
6099   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6100   if (!BM)
6101     return BM.takeError();
6102 
6103   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6104 }
6105 
6106 Expected<std::unique_ptr<ModuleSummaryIndex>>
6107 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6108   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6109   if (!BM)
6110     return BM.takeError();
6111 
6112   return BM->getSummary();
6113 }
6114 
6115 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6116   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6117   if (!BM)
6118     return BM.takeError();
6119 
6120   return BM->getLTOInfo();
6121 }
6122 
6123 Expected<std::unique_ptr<ModuleSummaryIndex>>
6124 llvm::getModuleSummaryIndexForFile(StringRef Path,
6125                                    bool IgnoreEmptyThinLTOIndexFile) {
6126   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6127       MemoryBuffer::getFileOrSTDIN(Path);
6128   if (!FileOrErr)
6129     return errorCodeToError(FileOrErr.getError());
6130   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6131     return nullptr;
6132   return getModuleSummaryIndex(**FileOrErr);
6133 }
6134