1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This header defines the BitcodeReader class.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/Bitcode/ReaderWriter.h"
15 #include "BitcodeReader.h"
16 #include "llvm/Constants.h"
17 #include "llvm/DerivedTypes.h"
18 #include "llvm/InlineAsm.h"
19 #include "llvm/IntrinsicInst.h"
20 #include "llvm/Module.h"
21 #include "llvm/Operator.h"
22 #include "llvm/AutoUpgrade.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/Support/MathExtras.h"
26 #include "llvm/Support/MemoryBuffer.h"
27 #include "llvm/OperandTraits.h"
28 using namespace llvm;
29 
30 void BitcodeReader::FreeState() {
31   if (BufferOwned)
32     delete Buffer;
33   Buffer = 0;
34   std::vector<PATypeHolder>().swap(TypeList);
35   ValueList.clear();
36   MDValueList.clear();
37 
38   std::vector<AttrListPtr>().swap(MAttributes);
39   std::vector<BasicBlock*>().swap(FunctionBBs);
40   std::vector<Function*>().swap(FunctionsWithBodies);
41   DeferredFunctionInfo.clear();
42 }
43 
44 //===----------------------------------------------------------------------===//
45 //  Helper functions to implement forward reference resolution, etc.
46 //===----------------------------------------------------------------------===//
47 
48 /// ConvertToString - Convert a string from a record into an std::string, return
49 /// true on failure.
50 template<typename StrTy>
51 static bool ConvertToString(SmallVector<uint64_t, 64> &Record, unsigned Idx,
52                             StrTy &Result) {
53   if (Idx > Record.size())
54     return true;
55 
56   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
57     Result += (char)Record[i];
58   return false;
59 }
60 
61 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) {
62   switch (Val) {
63   default: // Map unknown/new linkages to external
64   case 0:  return GlobalValue::ExternalLinkage;
65   case 1:  return GlobalValue::WeakAnyLinkage;
66   case 2:  return GlobalValue::AppendingLinkage;
67   case 3:  return GlobalValue::InternalLinkage;
68   case 4:  return GlobalValue::LinkOnceAnyLinkage;
69   case 5:  return GlobalValue::DLLImportLinkage;
70   case 6:  return GlobalValue::DLLExportLinkage;
71   case 7:  return GlobalValue::ExternalWeakLinkage;
72   case 8:  return GlobalValue::CommonLinkage;
73   case 9:  return GlobalValue::PrivateLinkage;
74   case 10: return GlobalValue::WeakODRLinkage;
75   case 11: return GlobalValue::LinkOnceODRLinkage;
76   case 12: return GlobalValue::AvailableExternallyLinkage;
77   case 13: return GlobalValue::LinkerPrivateLinkage;
78   case 14: return GlobalValue::LinkerPrivateWeakLinkage;
79   }
80 }
81 
82 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) {
83   switch (Val) {
84   default: // Map unknown visibilities to default.
85   case 0: return GlobalValue::DefaultVisibility;
86   case 1: return GlobalValue::HiddenVisibility;
87   case 2: return GlobalValue::ProtectedVisibility;
88   }
89 }
90 
91 static int GetDecodedCastOpcode(unsigned Val) {
92   switch (Val) {
93   default: return -1;
94   case bitc::CAST_TRUNC   : return Instruction::Trunc;
95   case bitc::CAST_ZEXT    : return Instruction::ZExt;
96   case bitc::CAST_SEXT    : return Instruction::SExt;
97   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
98   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
99   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
100   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
101   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
102   case bitc::CAST_FPEXT   : return Instruction::FPExt;
103   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
104   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
105   case bitc::CAST_BITCAST : return Instruction::BitCast;
106   }
107 }
108 static int GetDecodedBinaryOpcode(unsigned Val, const Type *Ty) {
109   switch (Val) {
110   default: return -1;
111   case bitc::BINOP_ADD:
112     return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add;
113   case bitc::BINOP_SUB:
114     return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub;
115   case bitc::BINOP_MUL:
116     return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul;
117   case bitc::BINOP_UDIV: return Instruction::UDiv;
118   case bitc::BINOP_SDIV:
119     return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv;
120   case bitc::BINOP_UREM: return Instruction::URem;
121   case bitc::BINOP_SREM:
122     return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem;
123   case bitc::BINOP_SHL:  return Instruction::Shl;
124   case bitc::BINOP_LSHR: return Instruction::LShr;
125   case bitc::BINOP_ASHR: return Instruction::AShr;
126   case bitc::BINOP_AND:  return Instruction::And;
127   case bitc::BINOP_OR:   return Instruction::Or;
128   case bitc::BINOP_XOR:  return Instruction::Xor;
129   }
130 }
131 
132 namespace llvm {
133 namespace {
134   /// @brief A class for maintaining the slot number definition
135   /// as a placeholder for the actual definition for forward constants defs.
136   class ConstantPlaceHolder : public ConstantExpr {
137     ConstantPlaceHolder();                       // DO NOT IMPLEMENT
138     void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT
139   public:
140     // allocate space for exactly one operand
141     void *operator new(size_t s) {
142       return User::operator new(s, 1);
143     }
144     explicit ConstantPlaceHolder(const Type *Ty, LLVMContext& Context)
145       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
146       Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
147     }
148 
149     /// @brief Methods to support type inquiry through isa, cast, and dyn_cast.
150     static inline bool classof(const ConstantPlaceHolder *) { return true; }
151     static bool classof(const Value *V) {
152       return isa<ConstantExpr>(V) &&
153              cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
154     }
155 
156 
157     /// Provide fast operand accessors
158     //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
159   };
160 }
161 
162 // FIXME: can we inherit this from ConstantExpr?
163 template <>
164 struct OperandTraits<ConstantPlaceHolder> : public FixedNumOperandTraits<1> {
165 };
166 }
167 
168 
169 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) {
170   if (Idx == size()) {
171     push_back(V);
172     return;
173   }
174 
175   if (Idx >= size())
176     resize(Idx+1);
177 
178   WeakVH &OldV = ValuePtrs[Idx];
179   if (OldV == 0) {
180     OldV = V;
181     return;
182   }
183 
184   // Handle constants and non-constants (e.g. instrs) differently for
185   // efficiency.
186   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
187     ResolveConstants.push_back(std::make_pair(PHC, Idx));
188     OldV = V;
189   } else {
190     // If there was a forward reference to this value, replace it.
191     Value *PrevVal = OldV;
192     OldV->replaceAllUsesWith(V);
193     delete PrevVal;
194   }
195 }
196 
197 
198 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
199                                                     const Type *Ty) {
200   if (Idx >= size())
201     resize(Idx + 1);
202 
203   if (Value *V = ValuePtrs[Idx]) {
204     assert(Ty == V->getType() && "Type mismatch in constant table!");
205     return cast<Constant>(V);
206   }
207 
208   // Create and return a placeholder, which will later be RAUW'd.
209   Constant *C = new ConstantPlaceHolder(Ty, Context);
210   ValuePtrs[Idx] = C;
211   return C;
212 }
213 
214 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, const Type *Ty) {
215   if (Idx >= size())
216     resize(Idx + 1);
217 
218   if (Value *V = ValuePtrs[Idx]) {
219     assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!");
220     return V;
221   }
222 
223   // No type specified, must be invalid reference.
224   if (Ty == 0) return 0;
225 
226   // Create and return a placeholder, which will later be RAUW'd.
227   Value *V = new Argument(Ty);
228   ValuePtrs[Idx] = V;
229   return V;
230 }
231 
232 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk
233 /// resolves any forward references.  The idea behind this is that we sometimes
234 /// get constants (such as large arrays) which reference *many* forward ref
235 /// constants.  Replacing each of these causes a lot of thrashing when
236 /// building/reuniquing the constant.  Instead of doing this, we look at all the
237 /// uses and rewrite all the place holders at once for any constant that uses
238 /// a placeholder.
239 void BitcodeReaderValueList::ResolveConstantForwardRefs() {
240   // Sort the values by-pointer so that they are efficient to look up with a
241   // binary search.
242   std::sort(ResolveConstants.begin(), ResolveConstants.end());
243 
244   SmallVector<Constant*, 64> NewOps;
245 
246   while (!ResolveConstants.empty()) {
247     Value *RealVal = operator[](ResolveConstants.back().second);
248     Constant *Placeholder = ResolveConstants.back().first;
249     ResolveConstants.pop_back();
250 
251     // Loop over all users of the placeholder, updating them to reference the
252     // new value.  If they reference more than one placeholder, update them all
253     // at once.
254     while (!Placeholder->use_empty()) {
255       Value::use_iterator UI = Placeholder->use_begin();
256       User *U = *UI;
257 
258       // If the using object isn't uniqued, just update the operands.  This
259       // handles instructions and initializers for global variables.
260       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
261         UI.getUse().set(RealVal);
262         continue;
263       }
264 
265       // Otherwise, we have a constant that uses the placeholder.  Replace that
266       // constant with a new constant that has *all* placeholder uses updated.
267       Constant *UserC = cast<Constant>(U);
268       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
269            I != E; ++I) {
270         Value *NewOp;
271         if (!isa<ConstantPlaceHolder>(*I)) {
272           // Not a placeholder reference.
273           NewOp = *I;
274         } else if (*I == Placeholder) {
275           // Common case is that it just references this one placeholder.
276           NewOp = RealVal;
277         } else {
278           // Otherwise, look up the placeholder in ResolveConstants.
279           ResolveConstantsTy::iterator It =
280             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
281                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
282                                                             0));
283           assert(It != ResolveConstants.end() && It->first == *I);
284           NewOp = operator[](It->second);
285         }
286 
287         NewOps.push_back(cast<Constant>(NewOp));
288       }
289 
290       // Make the new constant.
291       Constant *NewC;
292       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
293         NewC = ConstantArray::get(UserCA->getType(), &NewOps[0],
294                                         NewOps.size());
295       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
296         NewC = ConstantStruct::get(Context, &NewOps[0], NewOps.size(),
297                                          UserCS->getType()->isPacked());
298       } else if (ConstantUnion *UserCU = dyn_cast<ConstantUnion>(UserC)) {
299         NewC = ConstantUnion::get(UserCU->getType(), NewOps[0]);
300       } else if (isa<ConstantVector>(UserC)) {
301         NewC = ConstantVector::get(&NewOps[0], NewOps.size());
302       } else {
303         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
304         NewC = cast<ConstantExpr>(UserC)->getWithOperands(&NewOps[0],
305                                                           NewOps.size());
306       }
307 
308       UserC->replaceAllUsesWith(NewC);
309       UserC->destroyConstant();
310       NewOps.clear();
311     }
312 
313     // Update all ValueHandles, they should be the only users at this point.
314     Placeholder->replaceAllUsesWith(RealVal);
315     delete Placeholder;
316   }
317 }
318 
319 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) {
320   if (Idx == size()) {
321     push_back(V);
322     return;
323   }
324 
325   if (Idx >= size())
326     resize(Idx+1);
327 
328   WeakVH &OldV = MDValuePtrs[Idx];
329   if (OldV == 0) {
330     OldV = V;
331     return;
332   }
333 
334   // If there was a forward reference to this value, replace it.
335   Value *PrevVal = OldV;
336   OldV->replaceAllUsesWith(V);
337   delete PrevVal;
338   // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new
339   // value for Idx.
340   MDValuePtrs[Idx] = V;
341 }
342 
343 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) {
344   if (Idx >= size())
345     resize(Idx + 1);
346 
347   if (Value *V = MDValuePtrs[Idx]) {
348     assert(V->getType()->isMetadataTy() && "Type mismatch in value table!");
349     return V;
350   }
351 
352   // Create and return a placeholder, which will later be RAUW'd.
353   Value *V = new Argument(Type::getMetadataTy(Context));
354   MDValuePtrs[Idx] = V;
355   return V;
356 }
357 
358 const Type *BitcodeReader::getTypeByID(unsigned ID, bool isTypeTable) {
359   // If the TypeID is in range, return it.
360   if (ID < TypeList.size())
361     return TypeList[ID].get();
362   if (!isTypeTable) return 0;
363 
364   // The type table allows forward references.  Push as many Opaque types as
365   // needed to get up to ID.
366   while (TypeList.size() <= ID)
367     TypeList.push_back(OpaqueType::get(Context));
368   return TypeList.back().get();
369 }
370 
371 //===----------------------------------------------------------------------===//
372 //  Functions for parsing blocks from the bitcode file
373 //===----------------------------------------------------------------------===//
374 
375 bool BitcodeReader::ParseAttributeBlock() {
376   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
377     return Error("Malformed block record");
378 
379   if (!MAttributes.empty())
380     return Error("Multiple PARAMATTR blocks found!");
381 
382   SmallVector<uint64_t, 64> Record;
383 
384   SmallVector<AttributeWithIndex, 8> Attrs;
385 
386   // Read all the records.
387   while (1) {
388     unsigned Code = Stream.ReadCode();
389     if (Code == bitc::END_BLOCK) {
390       if (Stream.ReadBlockEnd())
391         return Error("Error at end of PARAMATTR block");
392       return false;
393     }
394 
395     if (Code == bitc::ENTER_SUBBLOCK) {
396       // No known subblocks, always skip them.
397       Stream.ReadSubBlockID();
398       if (Stream.SkipBlock())
399         return Error("Malformed block record");
400       continue;
401     }
402 
403     if (Code == bitc::DEFINE_ABBREV) {
404       Stream.ReadAbbrevRecord();
405       continue;
406     }
407 
408     // Read a record.
409     Record.clear();
410     switch (Stream.ReadRecord(Code, Record)) {
411     default:  // Default behavior: ignore.
412       break;
413     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...]
414       if (Record.size() & 1)
415         return Error("Invalid ENTRY record");
416 
417       // FIXME : Remove this autoupgrade code in LLVM 3.0.
418       // If Function attributes are using index 0 then transfer them
419       // to index ~0. Index 0 is used for return value attributes but used to be
420       // used for function attributes.
421       Attributes RetAttribute = Attribute::None;
422       Attributes FnAttribute = Attribute::None;
423       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
424         // FIXME: remove in LLVM 3.0
425         // The alignment is stored as a 16-bit raw value from bits 31--16.
426         // We shift the bits above 31 down by 11 bits.
427 
428         unsigned Alignment = (Record[i+1] & (0xffffull << 16)) >> 16;
429         if (Alignment && !isPowerOf2_32(Alignment))
430           return Error("Alignment is not a power of two.");
431 
432         Attributes ReconstitutedAttr = Record[i+1] & 0xffff;
433         if (Alignment)
434           ReconstitutedAttr |= Attribute::constructAlignmentFromInt(Alignment);
435         ReconstitutedAttr |= (Record[i+1] & (0xffffull << 32)) >> 11;
436         Record[i+1] = ReconstitutedAttr;
437 
438         if (Record[i] == 0)
439           RetAttribute = Record[i+1];
440         else if (Record[i] == ~0U)
441           FnAttribute = Record[i+1];
442       }
443 
444       unsigned OldRetAttrs = (Attribute::NoUnwind|Attribute::NoReturn|
445                               Attribute::ReadOnly|Attribute::ReadNone);
446 
447       if (FnAttribute == Attribute::None && RetAttribute != Attribute::None &&
448           (RetAttribute & OldRetAttrs) != 0) {
449         if (FnAttribute == Attribute::None) { // add a slot so they get added.
450           Record.push_back(~0U);
451           Record.push_back(0);
452         }
453 
454         FnAttribute  |= RetAttribute & OldRetAttrs;
455         RetAttribute &= ~OldRetAttrs;
456       }
457 
458       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
459         if (Record[i] == 0) {
460           if (RetAttribute != Attribute::None)
461             Attrs.push_back(AttributeWithIndex::get(0, RetAttribute));
462         } else if (Record[i] == ~0U) {
463           if (FnAttribute != Attribute::None)
464             Attrs.push_back(AttributeWithIndex::get(~0U, FnAttribute));
465         } else if (Record[i+1] != Attribute::None)
466           Attrs.push_back(AttributeWithIndex::get(Record[i], Record[i+1]));
467       }
468 
469       MAttributes.push_back(AttrListPtr::get(Attrs.begin(), Attrs.end()));
470       Attrs.clear();
471       break;
472     }
473     }
474   }
475 }
476 
477 
478 bool BitcodeReader::ParseTypeTable() {
479   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID))
480     return Error("Malformed block record");
481 
482   if (!TypeList.empty())
483     return Error("Multiple TYPE_BLOCKs found!");
484 
485   SmallVector<uint64_t, 64> Record;
486   unsigned NumRecords = 0;
487 
488   // Read all the records for this type table.
489   while (1) {
490     unsigned Code = Stream.ReadCode();
491     if (Code == bitc::END_BLOCK) {
492       if (NumRecords != TypeList.size())
493         return Error("Invalid type forward reference in TYPE_BLOCK");
494       if (Stream.ReadBlockEnd())
495         return Error("Error at end of type table block");
496       return false;
497     }
498 
499     if (Code == bitc::ENTER_SUBBLOCK) {
500       // No known subblocks, always skip them.
501       Stream.ReadSubBlockID();
502       if (Stream.SkipBlock())
503         return Error("Malformed block record");
504       continue;
505     }
506 
507     if (Code == bitc::DEFINE_ABBREV) {
508       Stream.ReadAbbrevRecord();
509       continue;
510     }
511 
512     // Read a record.
513     Record.clear();
514     const Type *ResultTy = 0;
515     switch (Stream.ReadRecord(Code, Record)) {
516     default:  // Default behavior: unknown type.
517       ResultTy = 0;
518       break;
519     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
520       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
521       // type list.  This allows us to reserve space.
522       if (Record.size() < 1)
523         return Error("Invalid TYPE_CODE_NUMENTRY record");
524       TypeList.reserve(Record[0]);
525       continue;
526     case bitc::TYPE_CODE_VOID:      // VOID
527       ResultTy = Type::getVoidTy(Context);
528       break;
529     case bitc::TYPE_CODE_FLOAT:     // FLOAT
530       ResultTy = Type::getFloatTy(Context);
531       break;
532     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
533       ResultTy = Type::getDoubleTy(Context);
534       break;
535     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
536       ResultTy = Type::getX86_FP80Ty(Context);
537       break;
538     case bitc::TYPE_CODE_FP128:     // FP128
539       ResultTy = Type::getFP128Ty(Context);
540       break;
541     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
542       ResultTy = Type::getPPC_FP128Ty(Context);
543       break;
544     case bitc::TYPE_CODE_LABEL:     // LABEL
545       ResultTy = Type::getLabelTy(Context);
546       break;
547     case bitc::TYPE_CODE_OPAQUE:    // OPAQUE
548       ResultTy = 0;
549       break;
550     case bitc::TYPE_CODE_METADATA:  // METADATA
551       ResultTy = Type::getMetadataTy(Context);
552       break;
553     case bitc::TYPE_CODE_INTEGER:   // INTEGER: [width]
554       if (Record.size() < 1)
555         return Error("Invalid Integer type record");
556 
557       ResultTy = IntegerType::get(Context, Record[0]);
558       break;
559     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
560                                     //          [pointee type, address space]
561       if (Record.size() < 1)
562         return Error("Invalid POINTER type record");
563       unsigned AddressSpace = 0;
564       if (Record.size() == 2)
565         AddressSpace = Record[1];
566       ResultTy = PointerType::get(getTypeByID(Record[0], true),
567                                         AddressSpace);
568       break;
569     }
570     case bitc::TYPE_CODE_FUNCTION: {
571       // FIXME: attrid is dead, remove it in LLVM 3.0
572       // FUNCTION: [vararg, attrid, retty, paramty x N]
573       if (Record.size() < 3)
574         return Error("Invalid FUNCTION type record");
575       std::vector<const Type*> ArgTys;
576       for (unsigned i = 3, e = Record.size(); i != e; ++i)
577         ArgTys.push_back(getTypeByID(Record[i], true));
578 
579       ResultTy = FunctionType::get(getTypeByID(Record[2], true), ArgTys,
580                                    Record[0]);
581       break;
582     }
583     case bitc::TYPE_CODE_STRUCT: {  // STRUCT: [ispacked, eltty x N]
584       if (Record.size() < 1)
585         return Error("Invalid STRUCT type record");
586       std::vector<const Type*> EltTys;
587       for (unsigned i = 1, e = Record.size(); i != e; ++i)
588         EltTys.push_back(getTypeByID(Record[i], true));
589       ResultTy = StructType::get(Context, EltTys, Record[0]);
590       break;
591     }
592     case bitc::TYPE_CODE_UNION: {  // UNION: [eltty x N]
593       SmallVector<const Type*, 8> EltTys;
594       for (unsigned i = 0, e = Record.size(); i != e; ++i)
595         EltTys.push_back(getTypeByID(Record[i], true));
596       ResultTy = UnionType::get(&EltTys[0], EltTys.size());
597       break;
598     }
599     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
600       if (Record.size() < 2)
601         return Error("Invalid ARRAY type record");
602       ResultTy = ArrayType::get(getTypeByID(Record[1], true), Record[0]);
603       break;
604     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
605       if (Record.size() < 2)
606         return Error("Invalid VECTOR type record");
607       ResultTy = VectorType::get(getTypeByID(Record[1], true), Record[0]);
608       break;
609     }
610 
611     if (NumRecords == TypeList.size()) {
612       // If this is a new type slot, just append it.
613       TypeList.push_back(ResultTy ? ResultTy : OpaqueType::get(Context));
614       ++NumRecords;
615     } else if (ResultTy == 0) {
616       // Otherwise, this was forward referenced, so an opaque type was created,
617       // but the result type is actually just an opaque.  Leave the one we
618       // created previously.
619       ++NumRecords;
620     } else {
621       // Otherwise, this was forward referenced, so an opaque type was created.
622       // Resolve the opaque type to the real type now.
623       assert(NumRecords < TypeList.size() && "Typelist imbalance");
624       const OpaqueType *OldTy = cast<OpaqueType>(TypeList[NumRecords++].get());
625 
626       // Don't directly push the new type on the Tab. Instead we want to replace
627       // the opaque type we previously inserted with the new concrete value. The
628       // refinement from the abstract (opaque) type to the new type causes all
629       // uses of the abstract type to use the concrete type (NewTy). This will
630       // also cause the opaque type to be deleted.
631       const_cast<OpaqueType*>(OldTy)->refineAbstractTypeTo(ResultTy);
632 
633       // This should have replaced the old opaque type with the new type in the
634       // value table... or with a preexisting type that was already in the
635       // system.  Let's just make sure it did.
636       assert(TypeList[NumRecords-1].get() != OldTy &&
637              "refineAbstractType didn't work!");
638     }
639   }
640 }
641 
642 
643 bool BitcodeReader::ParseTypeSymbolTable() {
644   if (Stream.EnterSubBlock(bitc::TYPE_SYMTAB_BLOCK_ID))
645     return Error("Malformed block record");
646 
647   SmallVector<uint64_t, 64> Record;
648 
649   // Read all the records for this type table.
650   std::string TypeName;
651   while (1) {
652     unsigned Code = Stream.ReadCode();
653     if (Code == bitc::END_BLOCK) {
654       if (Stream.ReadBlockEnd())
655         return Error("Error at end of type symbol table block");
656       return false;
657     }
658 
659     if (Code == bitc::ENTER_SUBBLOCK) {
660       // No known subblocks, always skip them.
661       Stream.ReadSubBlockID();
662       if (Stream.SkipBlock())
663         return Error("Malformed block record");
664       continue;
665     }
666 
667     if (Code == bitc::DEFINE_ABBREV) {
668       Stream.ReadAbbrevRecord();
669       continue;
670     }
671 
672     // Read a record.
673     Record.clear();
674     switch (Stream.ReadRecord(Code, Record)) {
675     default:  // Default behavior: unknown type.
676       break;
677     case bitc::TST_CODE_ENTRY:    // TST_ENTRY: [typeid, namechar x N]
678       if (ConvertToString(Record, 1, TypeName))
679         return Error("Invalid TST_ENTRY record");
680       unsigned TypeID = Record[0];
681       if (TypeID >= TypeList.size())
682         return Error("Invalid Type ID in TST_ENTRY record");
683 
684       TheModule->addTypeName(TypeName, TypeList[TypeID].get());
685       TypeName.clear();
686       break;
687     }
688   }
689 }
690 
691 bool BitcodeReader::ParseValueSymbolTable() {
692   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
693     return Error("Malformed block record");
694 
695   SmallVector<uint64_t, 64> Record;
696 
697   // Read all the records for this value table.
698   SmallString<128> ValueName;
699   while (1) {
700     unsigned Code = Stream.ReadCode();
701     if (Code == bitc::END_BLOCK) {
702       if (Stream.ReadBlockEnd())
703         return Error("Error at end of value symbol table block");
704       return false;
705     }
706     if (Code == bitc::ENTER_SUBBLOCK) {
707       // No known subblocks, always skip them.
708       Stream.ReadSubBlockID();
709       if (Stream.SkipBlock())
710         return Error("Malformed block record");
711       continue;
712     }
713 
714     if (Code == bitc::DEFINE_ABBREV) {
715       Stream.ReadAbbrevRecord();
716       continue;
717     }
718 
719     // Read a record.
720     Record.clear();
721     switch (Stream.ReadRecord(Code, Record)) {
722     default:  // Default behavior: unknown type.
723       break;
724     case bitc::VST_CODE_ENTRY: {  // VST_ENTRY: [valueid, namechar x N]
725       if (ConvertToString(Record, 1, ValueName))
726         return Error("Invalid VST_ENTRY record");
727       unsigned ValueID = Record[0];
728       if (ValueID >= ValueList.size())
729         return Error("Invalid Value ID in VST_ENTRY record");
730       Value *V = ValueList[ValueID];
731 
732       V->setName(StringRef(ValueName.data(), ValueName.size()));
733       ValueName.clear();
734       break;
735     }
736     case bitc::VST_CODE_BBENTRY: {
737       if (ConvertToString(Record, 1, ValueName))
738         return Error("Invalid VST_BBENTRY record");
739       BasicBlock *BB = getBasicBlock(Record[0]);
740       if (BB == 0)
741         return Error("Invalid BB ID in VST_BBENTRY record");
742 
743       BB->setName(StringRef(ValueName.data(), ValueName.size()));
744       ValueName.clear();
745       break;
746     }
747     }
748   }
749 }
750 
751 bool BitcodeReader::ParseMetadata() {
752   unsigned NextMDValueNo = MDValueList.size();
753 
754   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
755     return Error("Malformed block record");
756 
757   SmallVector<uint64_t, 64> Record;
758 
759   // Read all the records.
760   while (1) {
761     unsigned Code = Stream.ReadCode();
762     if (Code == bitc::END_BLOCK) {
763       if (Stream.ReadBlockEnd())
764         return Error("Error at end of PARAMATTR block");
765       return false;
766     }
767 
768     if (Code == bitc::ENTER_SUBBLOCK) {
769       // No known subblocks, always skip them.
770       Stream.ReadSubBlockID();
771       if (Stream.SkipBlock())
772         return Error("Malformed block record");
773       continue;
774     }
775 
776     if (Code == bitc::DEFINE_ABBREV) {
777       Stream.ReadAbbrevRecord();
778       continue;
779     }
780 
781     bool IsFunctionLocal = false;
782     // Read a record.
783     Record.clear();
784     switch (Stream.ReadRecord(Code, Record)) {
785     default:  // Default behavior: ignore.
786       break;
787     case bitc::METADATA_NAME: {
788       // Read named of the named metadata.
789       unsigned NameLength = Record.size();
790       SmallString<8> Name;
791       Name.resize(NameLength);
792       for (unsigned i = 0; i != NameLength; ++i)
793         Name[i] = Record[i];
794       Record.clear();
795       Code = Stream.ReadCode();
796 
797       // METADATA_NAME is always followed by METADATA_NAMED_NODE.
798       if (Stream.ReadRecord(Code, Record) != bitc::METADATA_NAMED_NODE)
799         assert ( 0 && "Inavlid Named Metadata record");
800 
801       // Read named metadata elements.
802       unsigned Size = Record.size();
803       SmallVector<MDNode *, 8> Elts;
804       for (unsigned i = 0; i != Size; ++i) {
805         if (Record[i] == ~0U) {
806           Elts.push_back(NULL);
807           continue;
808         }
809         MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i]));
810         if (MD == 0)
811           return Error("Malformed metadata record");
812         Elts.push_back(MD);
813       }
814       Value *V = NamedMDNode::Create(Context, Name.str(), Elts.data(),
815                                      Elts.size(), TheModule);
816       MDValueList.AssignValue(V, NextMDValueNo++);
817       break;
818     }
819     case bitc::METADATA_FN_NODE:
820       IsFunctionLocal = true;
821       // fall-through
822     case bitc::METADATA_NODE: {
823       if (Record.empty() || Record.size() % 2 == 1)
824         return Error("Invalid METADATA_NODE record");
825 
826       unsigned Size = Record.size();
827       SmallVector<Value*, 8> Elts;
828       for (unsigned i = 0; i != Size; i += 2) {
829         const Type *Ty = getTypeByID(Record[i], false);
830         if (Ty->isMetadataTy())
831           Elts.push_back(MDValueList.getValueFwdRef(Record[i+1]));
832         else if (!Ty->isVoidTy())
833           Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty));
834         else
835           Elts.push_back(NULL);
836       }
837       Value *V = MDNode::getWhenValsUnresolved(Context, &Elts[0], Elts.size(),
838                                                IsFunctionLocal);
839       IsFunctionLocal = false;
840       MDValueList.AssignValue(V, NextMDValueNo++);
841       break;
842     }
843     case bitc::METADATA_STRING: {
844       unsigned MDStringLength = Record.size();
845       SmallString<8> String;
846       String.resize(MDStringLength);
847       for (unsigned i = 0; i != MDStringLength; ++i)
848         String[i] = Record[i];
849       Value *V = MDString::get(Context,
850                                StringRef(String.data(), String.size()));
851       MDValueList.AssignValue(V, NextMDValueNo++);
852       break;
853     }
854     case bitc::METADATA_KIND: {
855       unsigned RecordLength = Record.size();
856       if (Record.empty() || RecordLength < 2)
857         return Error("Invalid METADATA_KIND record");
858       SmallString<8> Name;
859       Name.resize(RecordLength-1);
860       unsigned Kind = Record[0];
861       (void) Kind;
862       for (unsigned i = 1; i != RecordLength; ++i)
863         Name[i-1] = Record[i];
864 
865       unsigned NewKind = TheModule->getMDKindID(Name.str());
866       assert(Kind == NewKind &&
867              "FIXME: Unable to handle custom metadata mismatch!");(void)NewKind;
868       break;
869     }
870     }
871   }
872 }
873 
874 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in
875 /// the LSB for dense VBR encoding.
876 static uint64_t DecodeSignRotatedValue(uint64_t V) {
877   if ((V & 1) == 0)
878     return V >> 1;
879   if (V != 1)
880     return -(V >> 1);
881   // There is no such thing as -0 with integers.  "-0" really means MININT.
882   return 1ULL << 63;
883 }
884 
885 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global
886 /// values and aliases that we can.
887 bool BitcodeReader::ResolveGlobalAndAliasInits() {
888   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
889   std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist;
890 
891   GlobalInitWorklist.swap(GlobalInits);
892   AliasInitWorklist.swap(AliasInits);
893 
894   while (!GlobalInitWorklist.empty()) {
895     unsigned ValID = GlobalInitWorklist.back().second;
896     if (ValID >= ValueList.size()) {
897       // Not ready to resolve this yet, it requires something later in the file.
898       GlobalInits.push_back(GlobalInitWorklist.back());
899     } else {
900       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
901         GlobalInitWorklist.back().first->setInitializer(C);
902       else
903         return Error("Global variable initializer is not a constant!");
904     }
905     GlobalInitWorklist.pop_back();
906   }
907 
908   while (!AliasInitWorklist.empty()) {
909     unsigned ValID = AliasInitWorklist.back().second;
910     if (ValID >= ValueList.size()) {
911       AliasInits.push_back(AliasInitWorklist.back());
912     } else {
913       if (Constant *C = dyn_cast<Constant>(ValueList[ValID]))
914         AliasInitWorklist.back().first->setAliasee(C);
915       else
916         return Error("Alias initializer is not a constant!");
917     }
918     AliasInitWorklist.pop_back();
919   }
920   return false;
921 }
922 
923 bool BitcodeReader::ParseConstants() {
924   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
925     return Error("Malformed block record");
926 
927   SmallVector<uint64_t, 64> Record;
928 
929   // Read all the records for this value table.
930   const Type *CurTy = Type::getInt32Ty(Context);
931   unsigned NextCstNo = ValueList.size();
932   while (1) {
933     unsigned Code = Stream.ReadCode();
934     if (Code == bitc::END_BLOCK)
935       break;
936 
937     if (Code == bitc::ENTER_SUBBLOCK) {
938       // No known subblocks, always skip them.
939       Stream.ReadSubBlockID();
940       if (Stream.SkipBlock())
941         return Error("Malformed block record");
942       continue;
943     }
944 
945     if (Code == bitc::DEFINE_ABBREV) {
946       Stream.ReadAbbrevRecord();
947       continue;
948     }
949 
950     // Read a record.
951     Record.clear();
952     Value *V = 0;
953     unsigned BitCode = Stream.ReadRecord(Code, Record);
954     switch (BitCode) {
955     default:  // Default behavior: unknown constant
956     case bitc::CST_CODE_UNDEF:     // UNDEF
957       V = UndefValue::get(CurTy);
958       break;
959     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
960       if (Record.empty())
961         return Error("Malformed CST_SETTYPE record");
962       if (Record[0] >= TypeList.size())
963         return Error("Invalid Type ID in CST_SETTYPE record");
964       CurTy = TypeList[Record[0]];
965       continue;  // Skip the ValueList manipulation.
966     case bitc::CST_CODE_NULL:      // NULL
967       V = Constant::getNullValue(CurTy);
968       break;
969     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
970       if (!CurTy->isIntegerTy() || Record.empty())
971         return Error("Invalid CST_INTEGER record");
972       V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0]));
973       break;
974     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
975       if (!CurTy->isIntegerTy() || Record.empty())
976         return Error("Invalid WIDE_INTEGER record");
977 
978       unsigned NumWords = Record.size();
979       SmallVector<uint64_t, 8> Words;
980       Words.resize(NumWords);
981       for (unsigned i = 0; i != NumWords; ++i)
982         Words[i] = DecodeSignRotatedValue(Record[i]);
983       V = ConstantInt::get(Context,
984                            APInt(cast<IntegerType>(CurTy)->getBitWidth(),
985                            NumWords, &Words[0]));
986       break;
987     }
988     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
989       if (Record.empty())
990         return Error("Invalid FLOAT record");
991       if (CurTy->isFloatTy())
992         V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0])));
993       else if (CurTy->isDoubleTy())
994         V = ConstantFP::get(Context, APFloat(APInt(64, Record[0])));
995       else if (CurTy->isX86_FP80Ty()) {
996         // Bits are not stored the same way as a normal i80 APInt, compensate.
997         uint64_t Rearrange[2];
998         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
999         Rearrange[1] = Record[0] >> 48;
1000         V = ConstantFP::get(Context, APFloat(APInt(80, 2, Rearrange)));
1001       } else if (CurTy->isFP128Ty())
1002         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0]), true));
1003       else if (CurTy->isPPC_FP128Ty())
1004         V = ConstantFP::get(Context, APFloat(APInt(128, 2, &Record[0])));
1005       else
1006         V = UndefValue::get(CurTy);
1007       break;
1008     }
1009 
1010     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
1011       if (Record.empty())
1012         return Error("Invalid CST_AGGREGATE record");
1013 
1014       unsigned Size = Record.size();
1015       std::vector<Constant*> Elts;
1016 
1017       if (const StructType *STy = dyn_cast<StructType>(CurTy)) {
1018         for (unsigned i = 0; i != Size; ++i)
1019           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
1020                                                      STy->getElementType(i)));
1021         V = ConstantStruct::get(STy, Elts);
1022       } else if (const UnionType *UnTy = dyn_cast<UnionType>(CurTy)) {
1023         uint64_t Index = Record[0];
1024         Constant *Val = ValueList.getConstantFwdRef(Record[1],
1025                                         UnTy->getElementType(Index));
1026         V = ConstantUnion::get(UnTy, Val);
1027       } else if (const ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
1028         const Type *EltTy = ATy->getElementType();
1029         for (unsigned i = 0; i != Size; ++i)
1030           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1031         V = ConstantArray::get(ATy, Elts);
1032       } else if (const VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
1033         const Type *EltTy = VTy->getElementType();
1034         for (unsigned i = 0; i != Size; ++i)
1035           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
1036         V = ConstantVector::get(Elts);
1037       } else {
1038         V = UndefValue::get(CurTy);
1039       }
1040       break;
1041     }
1042     case bitc::CST_CODE_STRING: { // STRING: [values]
1043       if (Record.empty())
1044         return Error("Invalid CST_AGGREGATE record");
1045 
1046       const ArrayType *ATy = cast<ArrayType>(CurTy);
1047       const Type *EltTy = ATy->getElementType();
1048 
1049       unsigned Size = Record.size();
1050       std::vector<Constant*> Elts;
1051       for (unsigned i = 0; i != Size; ++i)
1052         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1053       V = ConstantArray::get(ATy, Elts);
1054       break;
1055     }
1056     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
1057       if (Record.empty())
1058         return Error("Invalid CST_AGGREGATE record");
1059 
1060       const ArrayType *ATy = cast<ArrayType>(CurTy);
1061       const Type *EltTy = ATy->getElementType();
1062 
1063       unsigned Size = Record.size();
1064       std::vector<Constant*> Elts;
1065       for (unsigned i = 0; i != Size; ++i)
1066         Elts.push_back(ConstantInt::get(EltTy, Record[i]));
1067       Elts.push_back(Constant::getNullValue(EltTy));
1068       V = ConstantArray::get(ATy, Elts);
1069       break;
1070     }
1071     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
1072       if (Record.size() < 3) return Error("Invalid CE_BINOP record");
1073       int Opc = GetDecodedBinaryOpcode(Record[0], CurTy);
1074       if (Opc < 0) {
1075         V = UndefValue::get(CurTy);  // Unknown binop.
1076       } else {
1077         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
1078         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
1079         unsigned Flags = 0;
1080         if (Record.size() >= 4) {
1081           if (Opc == Instruction::Add ||
1082               Opc == Instruction::Sub ||
1083               Opc == Instruction::Mul) {
1084             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1085               Flags |= OverflowingBinaryOperator::NoSignedWrap;
1086             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1087               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
1088           } else if (Opc == Instruction::SDiv) {
1089             if (Record[3] & (1 << bitc::SDIV_EXACT))
1090               Flags |= SDivOperator::IsExact;
1091           }
1092         }
1093         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
1094       }
1095       break;
1096     }
1097     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
1098       if (Record.size() < 3) return Error("Invalid CE_CAST record");
1099       int Opc = GetDecodedCastOpcode(Record[0]);
1100       if (Opc < 0) {
1101         V = UndefValue::get(CurTy);  // Unknown cast.
1102       } else {
1103         const Type *OpTy = getTypeByID(Record[1]);
1104         if (!OpTy) return Error("Invalid CE_CAST record");
1105         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
1106         V = ConstantExpr::getCast(Opc, Op, CurTy);
1107       }
1108       break;
1109     }
1110     case bitc::CST_CODE_CE_INBOUNDS_GEP:
1111     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
1112       if (Record.size() & 1) return Error("Invalid CE_GEP record");
1113       SmallVector<Constant*, 16> Elts;
1114       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1115         const Type *ElTy = getTypeByID(Record[i]);
1116         if (!ElTy) return Error("Invalid CE_GEP record");
1117         Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy));
1118       }
1119       if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
1120         V = ConstantExpr::getInBoundsGetElementPtr(Elts[0], &Elts[1],
1121                                                    Elts.size()-1);
1122       else
1123         V = ConstantExpr::getGetElementPtr(Elts[0], &Elts[1],
1124                                            Elts.size()-1);
1125       break;
1126     }
1127     case bitc::CST_CODE_CE_SELECT:  // CE_SELECT: [opval#, opval#, opval#]
1128       if (Record.size() < 3) return Error("Invalid CE_SELECT record");
1129       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
1130                                                               Type::getInt1Ty(Context)),
1131                                   ValueList.getConstantFwdRef(Record[1],CurTy),
1132                                   ValueList.getConstantFwdRef(Record[2],CurTy));
1133       break;
1134     case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval]
1135       if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record");
1136       const VectorType *OpTy =
1137         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
1138       if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record");
1139       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1140       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1141       V = ConstantExpr::getExtractElement(Op0, Op1);
1142       break;
1143     }
1144     case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval]
1145       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1146       if (Record.size() < 3 || OpTy == 0)
1147         return Error("Invalid CE_INSERTELT record");
1148       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1149       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
1150                                                   OpTy->getElementType());
1151       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
1152       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
1153       break;
1154     }
1155     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
1156       const VectorType *OpTy = dyn_cast<VectorType>(CurTy);
1157       if (Record.size() < 3 || OpTy == 0)
1158         return Error("Invalid CE_SHUFFLEVEC record");
1159       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
1160       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
1161       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1162                                                  OpTy->getNumElements());
1163       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
1164       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1165       break;
1166     }
1167     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
1168       const VectorType *RTy = dyn_cast<VectorType>(CurTy);
1169       const VectorType *OpTy = dyn_cast<VectorType>(getTypeByID(Record[0]));
1170       if (Record.size() < 4 || RTy == 0 || OpTy == 0)
1171         return Error("Invalid CE_SHUFVEC_EX record");
1172       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1173       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1174       const Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
1175                                                  RTy->getNumElements());
1176       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
1177       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
1178       break;
1179     }
1180     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
1181       if (Record.size() < 4) return Error("Invalid CE_CMP record");
1182       const Type *OpTy = getTypeByID(Record[0]);
1183       if (OpTy == 0) return Error("Invalid CE_CMP record");
1184       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
1185       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
1186 
1187       if (OpTy->isFPOrFPVectorTy())
1188         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
1189       else
1190         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
1191       break;
1192     }
1193     case bitc::CST_CODE_INLINEASM: {
1194       if (Record.size() < 2) return Error("Invalid INLINEASM record");
1195       std::string AsmStr, ConstrStr;
1196       bool HasSideEffects = Record[0] & 1;
1197       bool IsAlignStack = Record[0] >> 1;
1198       unsigned AsmStrSize = Record[1];
1199       if (2+AsmStrSize >= Record.size())
1200         return Error("Invalid INLINEASM record");
1201       unsigned ConstStrSize = Record[2+AsmStrSize];
1202       if (3+AsmStrSize+ConstStrSize > Record.size())
1203         return Error("Invalid INLINEASM record");
1204 
1205       for (unsigned i = 0; i != AsmStrSize; ++i)
1206         AsmStr += (char)Record[2+i];
1207       for (unsigned i = 0; i != ConstStrSize; ++i)
1208         ConstrStr += (char)Record[3+AsmStrSize+i];
1209       const PointerType *PTy = cast<PointerType>(CurTy);
1210       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
1211                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
1212       break;
1213     }
1214     case bitc::CST_CODE_BLOCKADDRESS:{
1215       if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record");
1216       const Type *FnTy = getTypeByID(Record[0]);
1217       if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record");
1218       Function *Fn =
1219         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
1220       if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record");
1221 
1222       GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(),
1223                                                   Type::getInt8Ty(Context),
1224                                             false, GlobalValue::InternalLinkage,
1225                                                   0, "");
1226       BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef));
1227       V = FwdRef;
1228       break;
1229     }
1230     }
1231 
1232     ValueList.AssignValue(V, NextCstNo);
1233     ++NextCstNo;
1234   }
1235 
1236   if (NextCstNo != ValueList.size())
1237     return Error("Invalid constant reference!");
1238 
1239   if (Stream.ReadBlockEnd())
1240     return Error("Error at end of constants block");
1241 
1242   // Once all the constants have been read, go through and resolve forward
1243   // references.
1244   ValueList.ResolveConstantForwardRefs();
1245   return false;
1246 }
1247 
1248 /// RememberAndSkipFunctionBody - When we see the block for a function body,
1249 /// remember where it is and then skip it.  This lets us lazily deserialize the
1250 /// functions.
1251 bool BitcodeReader::RememberAndSkipFunctionBody() {
1252   // Get the function we are talking about.
1253   if (FunctionsWithBodies.empty())
1254     return Error("Insufficient function protos");
1255 
1256   Function *Fn = FunctionsWithBodies.back();
1257   FunctionsWithBodies.pop_back();
1258 
1259   // Save the current stream state.
1260   uint64_t CurBit = Stream.GetCurrentBitNo();
1261   DeferredFunctionInfo[Fn] = CurBit;
1262 
1263   // Skip over the function block for now.
1264   if (Stream.SkipBlock())
1265     return Error("Malformed block record");
1266   return false;
1267 }
1268 
1269 bool BitcodeReader::ParseModule() {
1270   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
1271     return Error("Malformed block record");
1272 
1273   SmallVector<uint64_t, 64> Record;
1274   std::vector<std::string> SectionTable;
1275   std::vector<std::string> GCTable;
1276 
1277   // Read all the records for this module.
1278   while (!Stream.AtEndOfStream()) {
1279     unsigned Code = Stream.ReadCode();
1280     if (Code == bitc::END_BLOCK) {
1281       if (Stream.ReadBlockEnd())
1282         return Error("Error at end of module block");
1283 
1284       // Patch the initializers for globals and aliases up.
1285       ResolveGlobalAndAliasInits();
1286       if (!GlobalInits.empty() || !AliasInits.empty())
1287         return Error("Malformed global initializer set");
1288       if (!FunctionsWithBodies.empty())
1289         return Error("Too few function bodies found");
1290 
1291       // Look for intrinsic functions which need to be upgraded at some point
1292       for (Module::iterator FI = TheModule->begin(), FE = TheModule->end();
1293            FI != FE; ++FI) {
1294         Function* NewFn;
1295         if (UpgradeIntrinsicFunction(FI, NewFn))
1296           UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn));
1297       }
1298 
1299       // Force deallocation of memory for these vectors to favor the client that
1300       // want lazy deserialization.
1301       std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
1302       std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits);
1303       std::vector<Function*>().swap(FunctionsWithBodies);
1304       return false;
1305     }
1306 
1307     if (Code == bitc::ENTER_SUBBLOCK) {
1308       switch (Stream.ReadSubBlockID()) {
1309       default:  // Skip unknown content.
1310         if (Stream.SkipBlock())
1311           return Error("Malformed block record");
1312         break;
1313       case bitc::BLOCKINFO_BLOCK_ID:
1314         if (Stream.ReadBlockInfoBlock())
1315           return Error("Malformed BlockInfoBlock");
1316         break;
1317       case bitc::PARAMATTR_BLOCK_ID:
1318         if (ParseAttributeBlock())
1319           return true;
1320         break;
1321       case bitc::TYPE_BLOCK_ID:
1322         if (ParseTypeTable())
1323           return true;
1324         break;
1325       case bitc::TYPE_SYMTAB_BLOCK_ID:
1326         if (ParseTypeSymbolTable())
1327           return true;
1328         break;
1329       case bitc::VALUE_SYMTAB_BLOCK_ID:
1330         if (ParseValueSymbolTable())
1331           return true;
1332         break;
1333       case bitc::CONSTANTS_BLOCK_ID:
1334         if (ParseConstants() || ResolveGlobalAndAliasInits())
1335           return true;
1336         break;
1337       case bitc::METADATA_BLOCK_ID:
1338         if (ParseMetadata())
1339           return true;
1340         break;
1341       case bitc::FUNCTION_BLOCK_ID:
1342         // If this is the first function body we've seen, reverse the
1343         // FunctionsWithBodies list.
1344         if (!HasReversedFunctionsWithBodies) {
1345           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
1346           HasReversedFunctionsWithBodies = true;
1347         }
1348 
1349         if (RememberAndSkipFunctionBody())
1350           return true;
1351         break;
1352       }
1353       continue;
1354     }
1355 
1356     if (Code == bitc::DEFINE_ABBREV) {
1357       Stream.ReadAbbrevRecord();
1358       continue;
1359     }
1360 
1361     // Read a record.
1362     switch (Stream.ReadRecord(Code, Record)) {
1363     default: break;  // Default behavior, ignore unknown content.
1364     case bitc::MODULE_CODE_VERSION:  // VERSION: [version#]
1365       if (Record.size() < 1)
1366         return Error("Malformed MODULE_CODE_VERSION");
1367       // Only version #0 is supported so far.
1368       if (Record[0] != 0)
1369         return Error("Unknown bitstream version!");
1370       break;
1371     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
1372       std::string S;
1373       if (ConvertToString(Record, 0, S))
1374         return Error("Invalid MODULE_CODE_TRIPLE record");
1375       TheModule->setTargetTriple(S);
1376       break;
1377     }
1378     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
1379       std::string S;
1380       if (ConvertToString(Record, 0, S))
1381         return Error("Invalid MODULE_CODE_DATALAYOUT record");
1382       TheModule->setDataLayout(S);
1383       break;
1384     }
1385     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
1386       std::string S;
1387       if (ConvertToString(Record, 0, S))
1388         return Error("Invalid MODULE_CODE_ASM record");
1389       TheModule->setModuleInlineAsm(S);
1390       break;
1391     }
1392     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
1393       std::string S;
1394       if (ConvertToString(Record, 0, S))
1395         return Error("Invalid MODULE_CODE_DEPLIB record");
1396       TheModule->addLibrary(S);
1397       break;
1398     }
1399     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
1400       std::string S;
1401       if (ConvertToString(Record, 0, S))
1402         return Error("Invalid MODULE_CODE_SECTIONNAME record");
1403       SectionTable.push_back(S);
1404       break;
1405     }
1406     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
1407       std::string S;
1408       if (ConvertToString(Record, 0, S))
1409         return Error("Invalid MODULE_CODE_GCNAME record");
1410       GCTable.push_back(S);
1411       break;
1412     }
1413     // GLOBALVAR: [pointer type, isconst, initid,
1414     //             linkage, alignment, section, visibility, threadlocal]
1415     case bitc::MODULE_CODE_GLOBALVAR: {
1416       if (Record.size() < 6)
1417         return Error("Invalid MODULE_CODE_GLOBALVAR record");
1418       const Type *Ty = getTypeByID(Record[0]);
1419       if (!Ty->isPointerTy())
1420         return Error("Global not a pointer type!");
1421       unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
1422       Ty = cast<PointerType>(Ty)->getElementType();
1423 
1424       bool isConstant = Record[1];
1425       GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]);
1426       unsigned Alignment = (1 << Record[4]) >> 1;
1427       std::string Section;
1428       if (Record[5]) {
1429         if (Record[5]-1 >= SectionTable.size())
1430           return Error("Invalid section ID");
1431         Section = SectionTable[Record[5]-1];
1432       }
1433       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
1434       if (Record.size() > 6)
1435         Visibility = GetDecodedVisibility(Record[6]);
1436       bool isThreadLocal = false;
1437       if (Record.size() > 7)
1438         isThreadLocal = Record[7];
1439 
1440       GlobalVariable *NewGV =
1441         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0,
1442                            isThreadLocal, AddressSpace);
1443       NewGV->setAlignment(Alignment);
1444       if (!Section.empty())
1445         NewGV->setSection(Section);
1446       NewGV->setVisibility(Visibility);
1447       NewGV->setThreadLocal(isThreadLocal);
1448 
1449       ValueList.push_back(NewGV);
1450 
1451       // Remember which value to use for the global initializer.
1452       if (unsigned InitID = Record[2])
1453         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
1454       break;
1455     }
1456     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
1457     //             alignment, section, visibility, gc]
1458     case bitc::MODULE_CODE_FUNCTION: {
1459       if (Record.size() < 8)
1460         return Error("Invalid MODULE_CODE_FUNCTION record");
1461       const Type *Ty = getTypeByID(Record[0]);
1462       if (!Ty->isPointerTy())
1463         return Error("Function not a pointer type!");
1464       const FunctionType *FTy =
1465         dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType());
1466       if (!FTy)
1467         return Error("Function not a pointer to function type!");
1468 
1469       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
1470                                         "", TheModule);
1471 
1472       Func->setCallingConv(static_cast<CallingConv::ID>(Record[1]));
1473       bool isProto = Record[2];
1474       Func->setLinkage(GetDecodedLinkage(Record[3]));
1475       Func->setAttributes(getAttributes(Record[4]));
1476 
1477       Func->setAlignment((1 << Record[5]) >> 1);
1478       if (Record[6]) {
1479         if (Record[6]-1 >= SectionTable.size())
1480           return Error("Invalid section ID");
1481         Func->setSection(SectionTable[Record[6]-1]);
1482       }
1483       Func->setVisibility(GetDecodedVisibility(Record[7]));
1484       if (Record.size() > 8 && Record[8]) {
1485         if (Record[8]-1 > GCTable.size())
1486           return Error("Invalid GC ID");
1487         Func->setGC(GCTable[Record[8]-1].c_str());
1488       }
1489       ValueList.push_back(Func);
1490 
1491       // If this is a function with a body, remember the prototype we are
1492       // creating now, so that we can match up the body with them later.
1493       if (!isProto)
1494         FunctionsWithBodies.push_back(Func);
1495       break;
1496     }
1497     // ALIAS: [alias type, aliasee val#, linkage]
1498     // ALIAS: [alias type, aliasee val#, linkage, visibility]
1499     case bitc::MODULE_CODE_ALIAS: {
1500       if (Record.size() < 3)
1501         return Error("Invalid MODULE_ALIAS record");
1502       const Type *Ty = getTypeByID(Record[0]);
1503       if (!Ty->isPointerTy())
1504         return Error("Function not a pointer type!");
1505 
1506       GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]),
1507                                            "", 0, TheModule);
1508       // Old bitcode files didn't have visibility field.
1509       if (Record.size() > 3)
1510         NewGA->setVisibility(GetDecodedVisibility(Record[3]));
1511       ValueList.push_back(NewGA);
1512       AliasInits.push_back(std::make_pair(NewGA, Record[1]));
1513       break;
1514     }
1515     /// MODULE_CODE_PURGEVALS: [numvals]
1516     case bitc::MODULE_CODE_PURGEVALS:
1517       // Trim down the value list to the specified size.
1518       if (Record.size() < 1 || Record[0] > ValueList.size())
1519         return Error("Invalid MODULE_PURGEVALS record");
1520       ValueList.shrinkTo(Record[0]);
1521       break;
1522     }
1523     Record.clear();
1524   }
1525 
1526   return Error("Premature end of bitstream");
1527 }
1528 
1529 bool BitcodeReader::ParseBitcodeInto(Module *M) {
1530   TheModule = 0;
1531 
1532   unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart();
1533   unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
1534 
1535   if (Buffer->getBufferSize() & 3) {
1536     if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd))
1537       return Error("Invalid bitcode signature");
1538     else
1539       return Error("Bitcode stream should be a multiple of 4 bytes in length");
1540   }
1541 
1542   // If we have a wrapper header, parse it and ignore the non-bc file contents.
1543   // The magic number is 0x0B17C0DE stored in little endian.
1544   if (isBitcodeWrapper(BufPtr, BufEnd))
1545     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd))
1546       return Error("Invalid bitcode wrapper header");
1547 
1548   StreamFile.init(BufPtr, BufEnd);
1549   Stream.init(StreamFile);
1550 
1551   // Sniff for the signature.
1552   if (Stream.Read(8) != 'B' ||
1553       Stream.Read(8) != 'C' ||
1554       Stream.Read(4) != 0x0 ||
1555       Stream.Read(4) != 0xC ||
1556       Stream.Read(4) != 0xE ||
1557       Stream.Read(4) != 0xD)
1558     return Error("Invalid bitcode signature");
1559 
1560   // We expect a number of well-defined blocks, though we don't necessarily
1561   // need to understand them all.
1562   while (!Stream.AtEndOfStream()) {
1563     unsigned Code = Stream.ReadCode();
1564 
1565     if (Code != bitc::ENTER_SUBBLOCK)
1566       return Error("Invalid record at top-level");
1567 
1568     unsigned BlockID = Stream.ReadSubBlockID();
1569 
1570     // We only know the MODULE subblock ID.
1571     switch (BlockID) {
1572     case bitc::BLOCKINFO_BLOCK_ID:
1573       if (Stream.ReadBlockInfoBlock())
1574         return Error("Malformed BlockInfoBlock");
1575       break;
1576     case bitc::MODULE_BLOCK_ID:
1577       // Reject multiple MODULE_BLOCK's in a single bitstream.
1578       if (TheModule)
1579         return Error("Multiple MODULE_BLOCKs in same stream");
1580       TheModule = M;
1581       if (ParseModule())
1582         return true;
1583       break;
1584     default:
1585       if (Stream.SkipBlock())
1586         return Error("Malformed block record");
1587       break;
1588     }
1589   }
1590 
1591   return false;
1592 }
1593 
1594 /// ParseMetadataAttachment - Parse metadata attachments.
1595 bool BitcodeReader::ParseMetadataAttachment() {
1596   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
1597     return Error("Malformed block record");
1598 
1599   SmallVector<uint64_t, 64> Record;
1600   while(1) {
1601     unsigned Code = Stream.ReadCode();
1602     if (Code == bitc::END_BLOCK) {
1603       if (Stream.ReadBlockEnd())
1604         return Error("Error at end of PARAMATTR block");
1605       break;
1606     }
1607     if (Code == bitc::DEFINE_ABBREV) {
1608       Stream.ReadAbbrevRecord();
1609       continue;
1610     }
1611     // Read a metadata attachment record.
1612     Record.clear();
1613     switch (Stream.ReadRecord(Code, Record)) {
1614     default:  // Default behavior: ignore.
1615       break;
1616     case bitc::METADATA_ATTACHMENT: {
1617       unsigned RecordLength = Record.size();
1618       if (Record.empty() || (RecordLength - 1) % 2 == 1)
1619         return Error ("Invalid METADATA_ATTACHMENT reader!");
1620       Instruction *Inst = InstructionList[Record[0]];
1621       for (unsigned i = 1; i != RecordLength; i = i+2) {
1622         unsigned Kind = Record[i];
1623         Value *Node = MDValueList.getValueFwdRef(Record[i+1]);
1624         Inst->setMetadata(Kind, cast<MDNode>(Node));
1625       }
1626       break;
1627     }
1628     }
1629   }
1630   return false;
1631 }
1632 
1633 /// ParseFunctionBody - Lazily parse the specified function body block.
1634 bool BitcodeReader::ParseFunctionBody(Function *F) {
1635   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
1636     return Error("Malformed block record");
1637 
1638   InstructionList.clear();
1639   unsigned ModuleValueListSize = ValueList.size();
1640 
1641   // Add all the function arguments to the value table.
1642   for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I)
1643     ValueList.push_back(I);
1644 
1645   unsigned NextValueNo = ValueList.size();
1646   BasicBlock *CurBB = 0;
1647   unsigned CurBBNo = 0;
1648 
1649   DebugLoc LastLoc;
1650 
1651   // Read all the records.
1652   SmallVector<uint64_t, 64> Record;
1653   while (1) {
1654     unsigned Code = Stream.ReadCode();
1655     if (Code == bitc::END_BLOCK) {
1656       if (Stream.ReadBlockEnd())
1657         return Error("Error at end of function block");
1658       break;
1659     }
1660 
1661     if (Code == bitc::ENTER_SUBBLOCK) {
1662       switch (Stream.ReadSubBlockID()) {
1663       default:  // Skip unknown content.
1664         if (Stream.SkipBlock())
1665           return Error("Malformed block record");
1666         break;
1667       case bitc::CONSTANTS_BLOCK_ID:
1668         if (ParseConstants()) return true;
1669         NextValueNo = ValueList.size();
1670         break;
1671       case bitc::VALUE_SYMTAB_BLOCK_ID:
1672         if (ParseValueSymbolTable()) return true;
1673         break;
1674       case bitc::METADATA_ATTACHMENT_ID:
1675         if (ParseMetadataAttachment()) return true;
1676         break;
1677       case bitc::METADATA_BLOCK_ID:
1678         if (ParseMetadata()) return true;
1679         break;
1680       }
1681       continue;
1682     }
1683 
1684     if (Code == bitc::DEFINE_ABBREV) {
1685       Stream.ReadAbbrevRecord();
1686       continue;
1687     }
1688 
1689     // Read a record.
1690     Record.clear();
1691     Instruction *I = 0;
1692     unsigned BitCode = Stream.ReadRecord(Code, Record);
1693     switch (BitCode) {
1694     default: // Default behavior: reject
1695       return Error("Unknown instruction");
1696     case bitc::FUNC_CODE_DECLAREBLOCKS:     // DECLAREBLOCKS: [nblocks]
1697       if (Record.size() < 1 || Record[0] == 0)
1698         return Error("Invalid DECLAREBLOCKS record");
1699       // Create all the basic blocks for the function.
1700       FunctionBBs.resize(Record[0]);
1701       for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
1702         FunctionBBs[i] = BasicBlock::Create(Context, "", F);
1703       CurBB = FunctionBBs[0];
1704       continue;
1705 
1706 
1707     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
1708       // This record indicates that the last instruction is at the same
1709       // location as the previous instruction with a location.
1710       I = 0;
1711 
1712       // Get the last instruction emitted.
1713       if (CurBB && !CurBB->empty())
1714         I = &CurBB->back();
1715       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1716                !FunctionBBs[CurBBNo-1]->empty())
1717         I = &FunctionBBs[CurBBNo-1]->back();
1718 
1719       if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record");
1720       I->setDebugLoc(LastLoc);
1721       I = 0;
1722       continue;
1723 
1724     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
1725       I = 0;     // Get the last instruction emitted.
1726       if (CurBB && !CurBB->empty())
1727         I = &CurBB->back();
1728       else if (CurBBNo && FunctionBBs[CurBBNo-1] &&
1729                !FunctionBBs[CurBBNo-1]->empty())
1730         I = &FunctionBBs[CurBBNo-1]->back();
1731       if (I == 0 || Record.size() < 4)
1732         return Error("Invalid FUNC_CODE_DEBUG_LOC record");
1733 
1734       unsigned Line = Record[0], Col = Record[1];
1735       unsigned ScopeID = Record[2], IAID = Record[3];
1736 
1737       MDNode *Scope = 0, *IA = 0;
1738       if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1));
1739       if (IAID)    IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1));
1740       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
1741       I->setDebugLoc(LastLoc);
1742       I = 0;
1743       continue;
1744     }
1745 
1746     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
1747       unsigned OpNum = 0;
1748       Value *LHS, *RHS;
1749       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1750           getValue(Record, OpNum, LHS->getType(), RHS) ||
1751           OpNum+1 > Record.size())
1752         return Error("Invalid BINOP record");
1753 
1754       int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
1755       if (Opc == -1) return Error("Invalid BINOP record");
1756       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
1757       InstructionList.push_back(I);
1758       if (OpNum < Record.size()) {
1759         if (Opc == Instruction::Add ||
1760             Opc == Instruction::Sub ||
1761             Opc == Instruction::Mul) {
1762           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
1763             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
1764           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
1765             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
1766         } else if (Opc == Instruction::SDiv) {
1767           if (Record[OpNum] & (1 << bitc::SDIV_EXACT))
1768             cast<BinaryOperator>(I)->setIsExact(true);
1769         }
1770       }
1771       break;
1772     }
1773     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
1774       unsigned OpNum = 0;
1775       Value *Op;
1776       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
1777           OpNum+2 != Record.size())
1778         return Error("Invalid CAST record");
1779 
1780       const Type *ResTy = getTypeByID(Record[OpNum]);
1781       int Opc = GetDecodedCastOpcode(Record[OpNum+1]);
1782       if (Opc == -1 || ResTy == 0)
1783         return Error("Invalid CAST record");
1784       I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy);
1785       InstructionList.push_back(I);
1786       break;
1787     }
1788     case bitc::FUNC_CODE_INST_INBOUNDS_GEP:
1789     case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands]
1790       unsigned OpNum = 0;
1791       Value *BasePtr;
1792       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
1793         return Error("Invalid GEP record");
1794 
1795       SmallVector<Value*, 16> GEPIdx;
1796       while (OpNum != Record.size()) {
1797         Value *Op;
1798         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1799           return Error("Invalid GEP record");
1800         GEPIdx.push_back(Op);
1801       }
1802 
1803       I = GetElementPtrInst::Create(BasePtr, GEPIdx.begin(), GEPIdx.end());
1804       InstructionList.push_back(I);
1805       if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP)
1806         cast<GetElementPtrInst>(I)->setIsInBounds(true);
1807       break;
1808     }
1809 
1810     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
1811                                        // EXTRACTVAL: [opty, opval, n x indices]
1812       unsigned OpNum = 0;
1813       Value *Agg;
1814       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1815         return Error("Invalid EXTRACTVAL record");
1816 
1817       SmallVector<unsigned, 4> EXTRACTVALIdx;
1818       for (unsigned RecSize = Record.size();
1819            OpNum != RecSize; ++OpNum) {
1820         uint64_t Index = Record[OpNum];
1821         if ((unsigned)Index != Index)
1822           return Error("Invalid EXTRACTVAL index");
1823         EXTRACTVALIdx.push_back((unsigned)Index);
1824       }
1825 
1826       I = ExtractValueInst::Create(Agg,
1827                                    EXTRACTVALIdx.begin(), EXTRACTVALIdx.end());
1828       InstructionList.push_back(I);
1829       break;
1830     }
1831 
1832     case bitc::FUNC_CODE_INST_INSERTVAL: {
1833                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
1834       unsigned OpNum = 0;
1835       Value *Agg;
1836       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
1837         return Error("Invalid INSERTVAL record");
1838       Value *Val;
1839       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
1840         return Error("Invalid INSERTVAL record");
1841 
1842       SmallVector<unsigned, 4> INSERTVALIdx;
1843       for (unsigned RecSize = Record.size();
1844            OpNum != RecSize; ++OpNum) {
1845         uint64_t Index = Record[OpNum];
1846         if ((unsigned)Index != Index)
1847           return Error("Invalid INSERTVAL index");
1848         INSERTVALIdx.push_back((unsigned)Index);
1849       }
1850 
1851       I = InsertValueInst::Create(Agg, Val,
1852                                   INSERTVALIdx.begin(), INSERTVALIdx.end());
1853       InstructionList.push_back(I);
1854       break;
1855     }
1856 
1857     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
1858       // obsolete form of select
1859       // handles select i1 ... in old bitcode
1860       unsigned OpNum = 0;
1861       Value *TrueVal, *FalseVal, *Cond;
1862       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1863           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1864           getValue(Record, OpNum, Type::getInt1Ty(Context), Cond))
1865         return Error("Invalid SELECT record");
1866 
1867       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1868       InstructionList.push_back(I);
1869       break;
1870     }
1871 
1872     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
1873       // new form of select
1874       // handles select i1 or select [N x i1]
1875       unsigned OpNum = 0;
1876       Value *TrueVal, *FalseVal, *Cond;
1877       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
1878           getValue(Record, OpNum, TrueVal->getType(), FalseVal) ||
1879           getValueTypePair(Record, OpNum, NextValueNo, Cond))
1880         return Error("Invalid SELECT record");
1881 
1882       // select condition can be either i1 or [N x i1]
1883       if (const VectorType* vector_type =
1884           dyn_cast<const VectorType>(Cond->getType())) {
1885         // expect <n x i1>
1886         if (vector_type->getElementType() != Type::getInt1Ty(Context))
1887           return Error("Invalid SELECT condition type");
1888       } else {
1889         // expect i1
1890         if (Cond->getType() != Type::getInt1Ty(Context))
1891           return Error("Invalid SELECT condition type");
1892       }
1893 
1894       I = SelectInst::Create(Cond, TrueVal, FalseVal);
1895       InstructionList.push_back(I);
1896       break;
1897     }
1898 
1899     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
1900       unsigned OpNum = 0;
1901       Value *Vec, *Idx;
1902       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1903           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1904         return Error("Invalid EXTRACTELT record");
1905       I = ExtractElementInst::Create(Vec, Idx);
1906       InstructionList.push_back(I);
1907       break;
1908     }
1909 
1910     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
1911       unsigned OpNum = 0;
1912       Value *Vec, *Elt, *Idx;
1913       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
1914           getValue(Record, OpNum,
1915                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
1916           getValue(Record, OpNum, Type::getInt32Ty(Context), Idx))
1917         return Error("Invalid INSERTELT record");
1918       I = InsertElementInst::Create(Vec, Elt, Idx);
1919       InstructionList.push_back(I);
1920       break;
1921     }
1922 
1923     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
1924       unsigned OpNum = 0;
1925       Value *Vec1, *Vec2, *Mask;
1926       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
1927           getValue(Record, OpNum, Vec1->getType(), Vec2))
1928         return Error("Invalid SHUFFLEVEC record");
1929 
1930       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
1931         return Error("Invalid SHUFFLEVEC record");
1932       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
1933       InstructionList.push_back(I);
1934       break;
1935     }
1936 
1937     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
1938       // Old form of ICmp/FCmp returning bool
1939       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
1940       // both legal on vectors but had different behaviour.
1941     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
1942       // FCmp/ICmp returning bool or vector of bool
1943 
1944       unsigned OpNum = 0;
1945       Value *LHS, *RHS;
1946       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
1947           getValue(Record, OpNum, LHS->getType(), RHS) ||
1948           OpNum+1 != Record.size())
1949         return Error("Invalid CMP record");
1950 
1951       if (LHS->getType()->isFPOrFPVectorTy())
1952         I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS);
1953       else
1954         I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS);
1955       InstructionList.push_back(I);
1956       break;
1957     }
1958 
1959     case bitc::FUNC_CODE_INST_GETRESULT: { // GETRESULT: [ty, val, n]
1960       if (Record.size() != 2)
1961         return Error("Invalid GETRESULT record");
1962       unsigned OpNum = 0;
1963       Value *Op;
1964       getValueTypePair(Record, OpNum, NextValueNo, Op);
1965       unsigned Index = Record[1];
1966       I = ExtractValueInst::Create(Op, Index);
1967       InstructionList.push_back(I);
1968       break;
1969     }
1970 
1971     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
1972       {
1973         unsigned Size = Record.size();
1974         if (Size == 0) {
1975           I = ReturnInst::Create(Context);
1976           InstructionList.push_back(I);
1977           break;
1978         }
1979 
1980         unsigned OpNum = 0;
1981         SmallVector<Value *,4> Vs;
1982         do {
1983           Value *Op = NULL;
1984           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
1985             return Error("Invalid RET record");
1986           Vs.push_back(Op);
1987         } while(OpNum != Record.size());
1988 
1989         const Type *ReturnType = F->getReturnType();
1990         if (Vs.size() > 1 ||
1991             (ReturnType->isStructTy() &&
1992              (Vs.empty() || Vs[0]->getType() != ReturnType))) {
1993           Value *RV = UndefValue::get(ReturnType);
1994           for (unsigned i = 0, e = Vs.size(); i != e; ++i) {
1995             I = InsertValueInst::Create(RV, Vs[i], i, "mrv");
1996             InstructionList.push_back(I);
1997             CurBB->getInstList().push_back(I);
1998             ValueList.AssignValue(I, NextValueNo++);
1999             RV = I;
2000           }
2001           I = ReturnInst::Create(Context, RV);
2002           InstructionList.push_back(I);
2003           break;
2004         }
2005 
2006         I = ReturnInst::Create(Context, Vs[0]);
2007         InstructionList.push_back(I);
2008         break;
2009       }
2010     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
2011       if (Record.size() != 1 && Record.size() != 3)
2012         return Error("Invalid BR record");
2013       BasicBlock *TrueDest = getBasicBlock(Record[0]);
2014       if (TrueDest == 0)
2015         return Error("Invalid BR record");
2016 
2017       if (Record.size() == 1) {
2018         I = BranchInst::Create(TrueDest);
2019         InstructionList.push_back(I);
2020       }
2021       else {
2022         BasicBlock *FalseDest = getBasicBlock(Record[1]);
2023         Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context));
2024         if (FalseDest == 0 || Cond == 0)
2025           return Error("Invalid BR record");
2026         I = BranchInst::Create(TrueDest, FalseDest, Cond);
2027         InstructionList.push_back(I);
2028       }
2029       break;
2030     }
2031     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
2032       if (Record.size() < 3 || (Record.size() & 1) == 0)
2033         return Error("Invalid SWITCH record");
2034       const Type *OpTy = getTypeByID(Record[0]);
2035       Value *Cond = getFnValueByID(Record[1], OpTy);
2036       BasicBlock *Default = getBasicBlock(Record[2]);
2037       if (OpTy == 0 || Cond == 0 || Default == 0)
2038         return Error("Invalid SWITCH record");
2039       unsigned NumCases = (Record.size()-3)/2;
2040       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
2041       InstructionList.push_back(SI);
2042       for (unsigned i = 0, e = NumCases; i != e; ++i) {
2043         ConstantInt *CaseVal =
2044           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
2045         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
2046         if (CaseVal == 0 || DestBB == 0) {
2047           delete SI;
2048           return Error("Invalid SWITCH record!");
2049         }
2050         SI->addCase(CaseVal, DestBB);
2051       }
2052       I = SI;
2053       break;
2054     }
2055     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
2056       if (Record.size() < 2)
2057         return Error("Invalid INDIRECTBR record");
2058       const Type *OpTy = getTypeByID(Record[0]);
2059       Value *Address = getFnValueByID(Record[1], OpTy);
2060       if (OpTy == 0 || Address == 0)
2061         return Error("Invalid INDIRECTBR record");
2062       unsigned NumDests = Record.size()-2;
2063       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
2064       InstructionList.push_back(IBI);
2065       for (unsigned i = 0, e = NumDests; i != e; ++i) {
2066         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
2067           IBI->addDestination(DestBB);
2068         } else {
2069           delete IBI;
2070           return Error("Invalid INDIRECTBR record!");
2071         }
2072       }
2073       I = IBI;
2074       break;
2075     }
2076 
2077     case bitc::FUNC_CODE_INST_INVOKE: {
2078       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
2079       if (Record.size() < 4) return Error("Invalid INVOKE record");
2080       AttrListPtr PAL = getAttributes(Record[0]);
2081       unsigned CCInfo = Record[1];
2082       BasicBlock *NormalBB = getBasicBlock(Record[2]);
2083       BasicBlock *UnwindBB = getBasicBlock(Record[3]);
2084 
2085       unsigned OpNum = 4;
2086       Value *Callee;
2087       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2088         return Error("Invalid INVOKE record");
2089 
2090       const PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
2091       const FunctionType *FTy = !CalleeTy ? 0 :
2092         dyn_cast<FunctionType>(CalleeTy->getElementType());
2093 
2094       // Check that the right number of fixed parameters are here.
2095       if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 ||
2096           Record.size() < OpNum+FTy->getNumParams())
2097         return Error("Invalid INVOKE record");
2098 
2099       SmallVector<Value*, 16> Ops;
2100       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2101         Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2102         if (Ops.back() == 0) return Error("Invalid INVOKE record");
2103       }
2104 
2105       if (!FTy->isVarArg()) {
2106         if (Record.size() != OpNum)
2107           return Error("Invalid INVOKE record");
2108       } else {
2109         // Read type/value pairs for varargs params.
2110         while (OpNum != Record.size()) {
2111           Value *Op;
2112           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2113             return Error("Invalid INVOKE record");
2114           Ops.push_back(Op);
2115         }
2116       }
2117 
2118       I = InvokeInst::Create(Callee, NormalBB, UnwindBB,
2119                              Ops.begin(), Ops.end());
2120       InstructionList.push_back(I);
2121       cast<InvokeInst>(I)->setCallingConv(
2122         static_cast<CallingConv::ID>(CCInfo));
2123       cast<InvokeInst>(I)->setAttributes(PAL);
2124       break;
2125     }
2126     case bitc::FUNC_CODE_INST_UNWIND: // UNWIND
2127       I = new UnwindInst(Context);
2128       InstructionList.push_back(I);
2129       break;
2130     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
2131       I = new UnreachableInst(Context);
2132       InstructionList.push_back(I);
2133       break;
2134     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
2135       if (Record.size() < 1 || ((Record.size()-1)&1))
2136         return Error("Invalid PHI record");
2137       const Type *Ty = getTypeByID(Record[0]);
2138       if (!Ty) return Error("Invalid PHI record");
2139 
2140       PHINode *PN = PHINode::Create(Ty);
2141       InstructionList.push_back(PN);
2142       PN->reserveOperandSpace((Record.size()-1)/2);
2143 
2144       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
2145         Value *V = getFnValueByID(Record[1+i], Ty);
2146         BasicBlock *BB = getBasicBlock(Record[2+i]);
2147         if (!V || !BB) return Error("Invalid PHI record");
2148         PN->addIncoming(V, BB);
2149       }
2150       I = PN;
2151       break;
2152     }
2153 
2154     case bitc::FUNC_CODE_INST_MALLOC: { // MALLOC: [instty, op, align]
2155       // Autoupgrade malloc instruction to malloc call.
2156       // FIXME: Remove in LLVM 3.0.
2157       if (Record.size() < 3)
2158         return Error("Invalid MALLOC record");
2159       const PointerType *Ty =
2160         dyn_cast_or_null<PointerType>(getTypeByID(Record[0]));
2161       Value *Size = getFnValueByID(Record[1], Type::getInt32Ty(Context));
2162       if (!Ty || !Size) return Error("Invalid MALLOC record");
2163       if (!CurBB) return Error("Invalid malloc instruction with no BB");
2164       const Type *Int32Ty = IntegerType::getInt32Ty(CurBB->getContext());
2165       Constant *AllocSize = ConstantExpr::getSizeOf(Ty->getElementType());
2166       AllocSize = ConstantExpr::getTruncOrBitCast(AllocSize, Int32Ty);
2167       I = CallInst::CreateMalloc(CurBB, Int32Ty, Ty->getElementType(),
2168                                  AllocSize, Size, NULL);
2169       InstructionList.push_back(I);
2170       break;
2171     }
2172     case bitc::FUNC_CODE_INST_FREE: { // FREE: [op, opty]
2173       unsigned OpNum = 0;
2174       Value *Op;
2175       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2176           OpNum != Record.size())
2177         return Error("Invalid FREE record");
2178       if (!CurBB) return Error("Invalid free instruction with no BB");
2179       I = CallInst::CreateFree(Op, CurBB);
2180       InstructionList.push_back(I);
2181       break;
2182     }
2183     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
2184       // For backward compatibility, tolerate a lack of an opty, and use i32.
2185       // LLVM 3.0: Remove this.
2186       if (Record.size() < 3 || Record.size() > 4)
2187         return Error("Invalid ALLOCA record");
2188       unsigned OpNum = 0;
2189       const PointerType *Ty =
2190         dyn_cast_or_null<PointerType>(getTypeByID(Record[OpNum++]));
2191       const Type *OpTy = Record.size() == 4 ? getTypeByID(Record[OpNum++]) :
2192                                               Type::getInt32Ty(Context);
2193       Value *Size = getFnValueByID(Record[OpNum++], OpTy);
2194       unsigned Align = Record[OpNum++];
2195       if (!Ty || !Size) return Error("Invalid ALLOCA record");
2196       I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1);
2197       InstructionList.push_back(I);
2198       break;
2199     }
2200     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
2201       unsigned OpNum = 0;
2202       Value *Op;
2203       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
2204           OpNum+2 != Record.size())
2205         return Error("Invalid LOAD record");
2206 
2207       I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2208       InstructionList.push_back(I);
2209       break;
2210     }
2211     case bitc::FUNC_CODE_INST_STORE2: { // STORE2:[ptrty, ptr, val, align, vol]
2212       unsigned OpNum = 0;
2213       Value *Val, *Ptr;
2214       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
2215           getValue(Record, OpNum,
2216                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
2217           OpNum+2 != Record.size())
2218         return Error("Invalid STORE record");
2219 
2220       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2221       InstructionList.push_back(I);
2222       break;
2223     }
2224     case bitc::FUNC_CODE_INST_STORE: { // STORE:[val, valty, ptr, align, vol]
2225       // FIXME: Legacy form of store instruction. Should be removed in LLVM 3.0.
2226       unsigned OpNum = 0;
2227       Value *Val, *Ptr;
2228       if (getValueTypePair(Record, OpNum, NextValueNo, Val) ||
2229           getValue(Record, OpNum,
2230                    PointerType::getUnqual(Val->getType()), Ptr)||
2231           OpNum+2 != Record.size())
2232         return Error("Invalid STORE record");
2233 
2234       I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1);
2235       InstructionList.push_back(I);
2236       break;
2237     }
2238     case bitc::FUNC_CODE_INST_CALL: {
2239       // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...]
2240       if (Record.size() < 3)
2241         return Error("Invalid CALL record");
2242 
2243       AttrListPtr PAL = getAttributes(Record[0]);
2244       unsigned CCInfo = Record[1];
2245 
2246       unsigned OpNum = 2;
2247       Value *Callee;
2248       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
2249         return Error("Invalid CALL record");
2250 
2251       const PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
2252       const FunctionType *FTy = 0;
2253       if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType());
2254       if (!FTy || Record.size() < FTy->getNumParams()+OpNum)
2255         return Error("Invalid CALL record");
2256 
2257       SmallVector<Value*, 16> Args;
2258       // Read the fixed params.
2259       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
2260         if (FTy->getParamType(i)->getTypeID()==Type::LabelTyID)
2261           Args.push_back(getBasicBlock(Record[OpNum]));
2262         else
2263           Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i)));
2264         if (Args.back() == 0) return Error("Invalid CALL record");
2265       }
2266 
2267       // Read type/value pairs for varargs params.
2268       if (!FTy->isVarArg()) {
2269         if (OpNum != Record.size())
2270           return Error("Invalid CALL record");
2271       } else {
2272         while (OpNum != Record.size()) {
2273           Value *Op;
2274           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
2275             return Error("Invalid CALL record");
2276           Args.push_back(Op);
2277         }
2278       }
2279 
2280       I = CallInst::Create(Callee, Args.begin(), Args.end());
2281       InstructionList.push_back(I);
2282       cast<CallInst>(I)->setCallingConv(
2283         static_cast<CallingConv::ID>(CCInfo>>1));
2284       cast<CallInst>(I)->setTailCall(CCInfo & 1);
2285       cast<CallInst>(I)->setAttributes(PAL);
2286       break;
2287     }
2288     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
2289       if (Record.size() < 3)
2290         return Error("Invalid VAARG record");
2291       const Type *OpTy = getTypeByID(Record[0]);
2292       Value *Op = getFnValueByID(Record[1], OpTy);
2293       const Type *ResTy = getTypeByID(Record[2]);
2294       if (!OpTy || !Op || !ResTy)
2295         return Error("Invalid VAARG record");
2296       I = new VAArgInst(Op, ResTy);
2297       InstructionList.push_back(I);
2298       break;
2299     }
2300     }
2301 
2302     // Add instruction to end of current BB.  If there is no current BB, reject
2303     // this file.
2304     if (CurBB == 0) {
2305       delete I;
2306       return Error("Invalid instruction with no BB");
2307     }
2308     CurBB->getInstList().push_back(I);
2309 
2310     // If this was a terminator instruction, move to the next block.
2311     if (isa<TerminatorInst>(I)) {
2312       ++CurBBNo;
2313       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0;
2314     }
2315 
2316     // Non-void values get registered in the value table for future use.
2317     if (I && !I->getType()->isVoidTy())
2318       ValueList.AssignValue(I, NextValueNo++);
2319   }
2320 
2321   // Check the function list for unresolved values.
2322   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
2323     if (A->getParent() == 0) {
2324       // We found at least one unresolved value.  Nuke them all to avoid leaks.
2325       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
2326         if ((A = dyn_cast<Argument>(ValueList.back())) && A->getParent() == 0) {
2327           A->replaceAllUsesWith(UndefValue::get(A->getType()));
2328           delete A;
2329         }
2330       }
2331       return Error("Never resolved value found in function!");
2332     }
2333   }
2334 
2335   // See if anything took the address of blocks in this function.  If so,
2336   // resolve them now.
2337   DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI =
2338     BlockAddrFwdRefs.find(F);
2339   if (BAFRI != BlockAddrFwdRefs.end()) {
2340     std::vector<BlockAddrRefTy> &RefList = BAFRI->second;
2341     for (unsigned i = 0, e = RefList.size(); i != e; ++i) {
2342       unsigned BlockIdx = RefList[i].first;
2343       if (BlockIdx >= FunctionBBs.size())
2344         return Error("Invalid blockaddress block #");
2345 
2346       GlobalVariable *FwdRef = RefList[i].second;
2347       FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx]));
2348       FwdRef->eraseFromParent();
2349     }
2350 
2351     BlockAddrFwdRefs.erase(BAFRI);
2352   }
2353 
2354   // Trim the value list down to the size it was before we parsed this function.
2355   ValueList.shrinkTo(ModuleValueListSize);
2356   std::vector<BasicBlock*>().swap(FunctionBBs);
2357 
2358   return false;
2359 }
2360 
2361 //===----------------------------------------------------------------------===//
2362 // GVMaterializer implementation
2363 //===----------------------------------------------------------------------===//
2364 
2365 
2366 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const {
2367   if (const Function *F = dyn_cast<Function>(GV)) {
2368     return F->isDeclaration() &&
2369       DeferredFunctionInfo.count(const_cast<Function*>(F));
2370   }
2371   return false;
2372 }
2373 
2374 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) {
2375   Function *F = dyn_cast<Function>(GV);
2376   // If it's not a function or is already material, ignore the request.
2377   if (!F || !F->isMaterializable()) return false;
2378 
2379   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
2380   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
2381 
2382   // Move the bit stream to the saved position of the deferred function body.
2383   Stream.JumpToBit(DFII->second);
2384 
2385   if (ParseFunctionBody(F)) {
2386     if (ErrInfo) *ErrInfo = ErrorString;
2387     return true;
2388   }
2389 
2390   // Upgrade any old intrinsic calls in the function.
2391   for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(),
2392        E = UpgradedIntrinsics.end(); I != E; ++I) {
2393     if (I->first != I->second) {
2394       for (Value::use_iterator UI = I->first->use_begin(),
2395            UE = I->first->use_end(); UI != UE; ) {
2396         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2397           UpgradeIntrinsicCall(CI, I->second);
2398       }
2399     }
2400   }
2401 
2402   return false;
2403 }
2404 
2405 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const {
2406   const Function *F = dyn_cast<Function>(GV);
2407   if (!F || F->isDeclaration())
2408     return false;
2409   return DeferredFunctionInfo.count(const_cast<Function*>(F));
2410 }
2411 
2412 void BitcodeReader::Dematerialize(GlobalValue *GV) {
2413   Function *F = dyn_cast<Function>(GV);
2414   // If this function isn't dematerializable, this is a noop.
2415   if (!F || !isDematerializable(F))
2416     return;
2417 
2418   assert(DeferredFunctionInfo.count(F) && "No info to read function later?");
2419 
2420   // Just forget the function body, we can remat it later.
2421   F->deleteBody();
2422 }
2423 
2424 
2425 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) {
2426   assert(M == TheModule &&
2427          "Can only Materialize the Module this BitcodeReader is attached to.");
2428   // Iterate over the module, deserializing any functions that are still on
2429   // disk.
2430   for (Module::iterator F = TheModule->begin(), E = TheModule->end();
2431        F != E; ++F)
2432     if (F->isMaterializable() &&
2433         Materialize(F, ErrInfo))
2434       return true;
2435 
2436   // Upgrade any intrinsic calls that slipped through (should not happen!) and
2437   // delete the old functions to clean up. We can't do this unless the entire
2438   // module is materialized because there could always be another function body
2439   // with calls to the old function.
2440   for (std::vector<std::pair<Function*, Function*> >::iterator I =
2441        UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) {
2442     if (I->first != I->second) {
2443       for (Value::use_iterator UI = I->first->use_begin(),
2444            UE = I->first->use_end(); UI != UE; ) {
2445         if (CallInst* CI = dyn_cast<CallInst>(*UI++))
2446           UpgradeIntrinsicCall(CI, I->second);
2447       }
2448       if (!I->first->use_empty())
2449         I->first->replaceAllUsesWith(I->second);
2450       I->first->eraseFromParent();
2451     }
2452   }
2453   std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics);
2454 
2455   // Check debug info intrinsics.
2456   CheckDebugInfoIntrinsics(TheModule);
2457 
2458   return false;
2459 }
2460 
2461 
2462 //===----------------------------------------------------------------------===//
2463 // External interface
2464 //===----------------------------------------------------------------------===//
2465 
2466 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file.
2467 ///
2468 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer,
2469                                    LLVMContext& Context,
2470                                    std::string *ErrMsg) {
2471   Module *M = new Module(Buffer->getBufferIdentifier(), Context);
2472   BitcodeReader *R = new BitcodeReader(Buffer, Context);
2473   M->setMaterializer(R);
2474   if (R->ParseBitcodeInto(M)) {
2475     if (ErrMsg)
2476       *ErrMsg = R->getErrorString();
2477 
2478     delete M;  // Also deletes R.
2479     return 0;
2480   }
2481   // Have the BitcodeReader dtor delete 'Buffer'.
2482   R->setBufferOwned(true);
2483   return M;
2484 }
2485 
2486 /// ParseBitcodeFile - Read the specified bitcode file, returning the module.
2487 /// If an error occurs, return null and fill in *ErrMsg if non-null.
2488 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context,
2489                                std::string *ErrMsg){
2490   Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg);
2491   if (!M) return 0;
2492 
2493   // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether
2494   // there was an error.
2495   static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false);
2496 
2497   // Read in the entire module, and destroy the BitcodeReader.
2498   if (M->MaterializeAllPermanently(ErrMsg)) {
2499     delete M;
2500     return NULL;
2501   }
2502   return M;
2503 }
2504