1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Support/DataStream.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <deque> 37 using namespace llvm; 38 39 namespace { 40 enum { 41 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 42 }; 43 44 class BitcodeReaderValueList { 45 std::vector<WeakVH> ValuePtrs; 46 47 /// ResolveConstants - As we resolve forward-referenced constants, we add 48 /// information about them to this vector. This allows us to resolve them in 49 /// bulk instead of resolving each reference at a time. See the code in 50 /// ResolveConstantForwardRefs for more information about this. 51 /// 52 /// The key of this vector is the placeholder constant, the value is the slot 53 /// number that holds the resolved value. 54 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 55 ResolveConstantsTy ResolveConstants; 56 LLVMContext &Context; 57 public: 58 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 59 ~BitcodeReaderValueList() { 60 assert(ResolveConstants.empty() && "Constants not resolved?"); 61 } 62 63 // vector compatibility methods 64 unsigned size() const { return ValuePtrs.size(); } 65 void resize(unsigned N) { ValuePtrs.resize(N); } 66 void push_back(Value *V) { 67 ValuePtrs.push_back(V); 68 } 69 70 void clear() { 71 assert(ResolveConstants.empty() && "Constants not resolved?"); 72 ValuePtrs.clear(); 73 } 74 75 Value *operator[](unsigned i) const { 76 assert(i < ValuePtrs.size()); 77 return ValuePtrs[i]; 78 } 79 80 Value *back() const { return ValuePtrs.back(); } 81 void pop_back() { ValuePtrs.pop_back(); } 82 bool empty() const { return ValuePtrs.empty(); } 83 void shrinkTo(unsigned N) { 84 assert(N <= size() && "Invalid shrinkTo request!"); 85 ValuePtrs.resize(N); 86 } 87 88 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 89 Value *getValueFwdRef(unsigned Idx, Type *Ty); 90 91 void AssignValue(Value *V, unsigned Idx); 92 93 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 94 /// resolves any forward references. 95 void ResolveConstantForwardRefs(); 96 }; 97 98 class BitcodeReaderMDValueList { 99 unsigned NumFwdRefs; 100 bool AnyFwdRefs; 101 unsigned MinFwdRef; 102 unsigned MaxFwdRef; 103 std::vector<TrackingMDRef> MDValuePtrs; 104 105 LLVMContext &Context; 106 public: 107 BitcodeReaderMDValueList(LLVMContext &C) 108 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 109 110 // vector compatibility methods 111 unsigned size() const { return MDValuePtrs.size(); } 112 void resize(unsigned N) { MDValuePtrs.resize(N); } 113 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 114 void clear() { MDValuePtrs.clear(); } 115 Metadata *back() const { return MDValuePtrs.back(); } 116 void pop_back() { MDValuePtrs.pop_back(); } 117 bool empty() const { return MDValuePtrs.empty(); } 118 119 Metadata *operator[](unsigned i) const { 120 assert(i < MDValuePtrs.size()); 121 return MDValuePtrs[i]; 122 } 123 124 void shrinkTo(unsigned N) { 125 assert(N <= size() && "Invalid shrinkTo request!"); 126 MDValuePtrs.resize(N); 127 } 128 129 Metadata *getValueFwdRef(unsigned Idx); 130 void AssignValue(Metadata *MD, unsigned Idx); 131 void tryToResolveCycles(); 132 }; 133 134 class BitcodeReader : public GVMaterializer { 135 LLVMContext &Context; 136 DiagnosticHandlerFunction DiagnosticHandler; 137 Module *TheModule; 138 std::unique_ptr<MemoryBuffer> Buffer; 139 std::unique_ptr<BitstreamReader> StreamFile; 140 BitstreamCursor Stream; 141 DataStreamer *LazyStreamer; 142 uint64_t NextUnreadBit; 143 bool SeenValueSymbolTable; 144 145 std::vector<Type*> TypeList; 146 BitcodeReaderValueList ValueList; 147 BitcodeReaderMDValueList MDValueList; 148 std::vector<Comdat *> ComdatList; 149 SmallVector<Instruction *, 64> InstructionList; 150 151 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 152 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 153 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 154 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 155 156 SmallVector<Instruction*, 64> InstsWithTBAATag; 157 158 /// MAttributes - The set of attributes by index. Index zero in the 159 /// file is for null, and is thus not represented here. As such all indices 160 /// are off by one. 161 std::vector<AttributeSet> MAttributes; 162 163 /// \brief The set of attribute groups. 164 std::map<unsigned, AttributeSet> MAttributeGroups; 165 166 /// FunctionBBs - While parsing a function body, this is a list of the basic 167 /// blocks for the function. 168 std::vector<BasicBlock*> FunctionBBs; 169 170 // When reading the module header, this list is populated with functions that 171 // have bodies later in the file. 172 std::vector<Function*> FunctionsWithBodies; 173 174 // When intrinsic functions are encountered which require upgrading they are 175 // stored here with their replacement function. 176 typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap; 177 UpgradedIntrinsicMap UpgradedIntrinsics; 178 179 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 180 DenseMap<unsigned, unsigned> MDKindMap; 181 182 // Several operations happen after the module header has been read, but 183 // before function bodies are processed. This keeps track of whether 184 // we've done this yet. 185 bool SeenFirstFunctionBody; 186 187 /// DeferredFunctionInfo - When function bodies are initially scanned, this 188 /// map contains info about where to find deferred function body in the 189 /// stream. 190 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 191 192 /// When Metadata block is initially scanned when parsing the module, we may 193 /// choose to defer parsing of the metadata. This vector contains info about 194 /// which Metadata blocks are deferred. 195 std::vector<uint64_t> DeferredMetadataInfo; 196 197 /// These are basic blocks forward-referenced by block addresses. They are 198 /// inserted lazily into functions when they're loaded. The basic block ID is 199 /// its index into the vector. 200 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 201 std::deque<Function *> BasicBlockFwdRefQueue; 202 203 /// UseRelativeIDs - Indicates that we are using a new encoding for 204 /// instruction operands where most operands in the current 205 /// FUNCTION_BLOCK are encoded relative to the instruction number, 206 /// for a more compact encoding. Some instruction operands are not 207 /// relative to the instruction ID: basic block numbers, and types. 208 /// Once the old style function blocks have been phased out, we would 209 /// not need this flag. 210 bool UseRelativeIDs; 211 212 /// True if all functions will be materialized, negating the need to process 213 /// (e.g.) blockaddress forward references. 214 bool WillMaterializeAllForwardRefs; 215 216 /// Functions that have block addresses taken. This is usually empty. 217 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 218 219 /// True if any Metadata block has been materialized. 220 bool IsMetadataMaterialized; 221 222 bool StripDebugInfo = false; 223 224 public: 225 std::error_code Error(BitcodeError E, const Twine &Message); 226 std::error_code Error(BitcodeError E); 227 std::error_code Error(const Twine &Message); 228 229 explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 230 DiagnosticHandlerFunction DiagnosticHandler); 231 explicit BitcodeReader(DataStreamer *streamer, LLVMContext &C, 232 DiagnosticHandlerFunction DiagnosticHandler); 233 ~BitcodeReader() override { FreeState(); } 234 235 std::error_code materializeForwardReferencedFunctions(); 236 237 void FreeState(); 238 239 void releaseBuffer(); 240 241 bool isDematerializable(const GlobalValue *GV) const override; 242 std::error_code materialize(GlobalValue *GV) override; 243 std::error_code MaterializeModule(Module *M) override; 244 std::vector<StructType *> getIdentifiedStructTypes() const override; 245 void Dematerialize(GlobalValue *GV) override; 246 247 /// @brief Main interface to parsing a bitcode buffer. 248 /// @returns true if an error occurred. 249 std::error_code ParseBitcodeInto(Module *M, 250 bool ShouldLazyLoadMetadata = false); 251 252 /// @brief Cheap mechanism to just extract module triple 253 /// @returns true if an error occurred. 254 ErrorOr<std::string> parseTriple(); 255 256 static uint64_t decodeSignRotatedValue(uint64_t V); 257 258 /// Materialize any deferred Metadata block. 259 std::error_code materializeMetadata() override; 260 261 void setStripDebugInfo() override; 262 263 private: 264 std::vector<StructType *> IdentifiedStructTypes; 265 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 266 StructType *createIdentifiedStructType(LLVMContext &Context); 267 268 Type *getTypeByID(unsigned ID); 269 Value *getFnValueByID(unsigned ID, Type *Ty) { 270 if (Ty && Ty->isMetadataTy()) 271 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 272 return ValueList.getValueFwdRef(ID, Ty); 273 } 274 Metadata *getFnMetadataByID(unsigned ID) { 275 return MDValueList.getValueFwdRef(ID); 276 } 277 BasicBlock *getBasicBlock(unsigned ID) const { 278 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 279 return FunctionBBs[ID]; 280 } 281 AttributeSet getAttributes(unsigned i) const { 282 if (i-1 < MAttributes.size()) 283 return MAttributes[i-1]; 284 return AttributeSet(); 285 } 286 287 /// getValueTypePair - Read a value/type pair out of the specified record from 288 /// slot 'Slot'. Increment Slot past the number of slots used in the record. 289 /// Return true on failure. 290 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 291 unsigned InstNum, Value *&ResVal) { 292 if (Slot == Record.size()) return true; 293 unsigned ValNo = (unsigned)Record[Slot++]; 294 // Adjust the ValNo, if it was encoded relative to the InstNum. 295 if (UseRelativeIDs) 296 ValNo = InstNum - ValNo; 297 if (ValNo < InstNum) { 298 // If this is not a forward reference, just return the value we already 299 // have. 300 ResVal = getFnValueByID(ValNo, nullptr); 301 return ResVal == nullptr; 302 } 303 if (Slot == Record.size()) 304 return true; 305 306 unsigned TypeNo = (unsigned)Record[Slot++]; 307 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 308 return ResVal == nullptr; 309 } 310 311 /// popValue - Read a value out of the specified record from slot 'Slot'. 312 /// Increment Slot past the number of slots used by the value in the record. 313 /// Return true if there is an error. 314 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 315 unsigned InstNum, Type *Ty, Value *&ResVal) { 316 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 317 return true; 318 // All values currently take a single record slot. 319 ++Slot; 320 return false; 321 } 322 323 /// getValue -- Like popValue, but does not increment the Slot number. 324 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 325 unsigned InstNum, Type *Ty, Value *&ResVal) { 326 ResVal = getValue(Record, Slot, InstNum, Ty); 327 return ResVal == nullptr; 328 } 329 330 /// getValue -- Version of getValue that returns ResVal directly, 331 /// or 0 if there is an error. 332 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 333 unsigned InstNum, Type *Ty) { 334 if (Slot == Record.size()) return nullptr; 335 unsigned ValNo = (unsigned)Record[Slot]; 336 // Adjust the ValNo, if it was encoded relative to the InstNum. 337 if (UseRelativeIDs) 338 ValNo = InstNum - ValNo; 339 return getFnValueByID(ValNo, Ty); 340 } 341 342 /// getValueSigned -- Like getValue, but decodes signed VBRs. 343 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 344 unsigned InstNum, Type *Ty) { 345 if (Slot == Record.size()) return nullptr; 346 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 347 // Adjust the ValNo, if it was encoded relative to the InstNum. 348 if (UseRelativeIDs) 349 ValNo = InstNum - ValNo; 350 return getFnValueByID(ValNo, Ty); 351 } 352 353 /// Converts alignment exponent (i.e. power of two (or zero)) to the 354 /// corresponding alignment to use. If alignment is too large, returns 355 /// a corresponding error code. 356 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 357 std::error_code ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 358 std::error_code ParseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 359 std::error_code ParseAttributeBlock(); 360 std::error_code ParseAttributeGroupBlock(); 361 std::error_code ParseTypeTable(); 362 std::error_code ParseTypeTableBody(); 363 364 std::error_code ParseValueSymbolTable(); 365 std::error_code ParseConstants(); 366 std::error_code RememberAndSkipFunctionBody(); 367 /// Save the positions of the Metadata blocks and skip parsing the blocks. 368 std::error_code rememberAndSkipMetadata(); 369 std::error_code ParseFunctionBody(Function *F); 370 std::error_code GlobalCleanup(); 371 std::error_code ResolveGlobalAndAliasInits(); 372 std::error_code ParseMetadata(); 373 std::error_code ParseMetadataAttachment(Function &F); 374 ErrorOr<std::string> parseModuleTriple(); 375 std::error_code ParseUseLists(); 376 std::error_code InitStream(); 377 std::error_code InitStreamFromBuffer(); 378 std::error_code InitLazyStream(); 379 std::error_code FindFunctionInStream( 380 Function *F, 381 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 382 }; 383 } // namespace 384 385 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 386 DiagnosticSeverity Severity, 387 const Twine &Msg) 388 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 389 390 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 391 392 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 393 std::error_code EC, const Twine &Message) { 394 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 395 DiagnosticHandler(DI); 396 return EC; 397 } 398 399 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 400 std::error_code EC) { 401 return Error(DiagnosticHandler, EC, EC.message()); 402 } 403 404 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 405 return ::Error(DiagnosticHandler, make_error_code(E), Message); 406 } 407 408 std::error_code BitcodeReader::Error(const Twine &Message) { 409 return ::Error(DiagnosticHandler, 410 make_error_code(BitcodeError::CorruptedBitcode), Message); 411 } 412 413 std::error_code BitcodeReader::Error(BitcodeError E) { 414 return ::Error(DiagnosticHandler, make_error_code(E)); 415 } 416 417 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 418 LLVMContext &C) { 419 if (F) 420 return F; 421 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 422 } 423 424 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 425 DiagnosticHandlerFunction DiagnosticHandler) 426 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 427 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 428 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 429 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 430 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 431 432 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 433 DiagnosticHandlerFunction DiagnosticHandler) 434 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 435 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 436 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 437 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 438 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 439 440 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 441 if (WillMaterializeAllForwardRefs) 442 return std::error_code(); 443 444 // Prevent recursion. 445 WillMaterializeAllForwardRefs = true; 446 447 while (!BasicBlockFwdRefQueue.empty()) { 448 Function *F = BasicBlockFwdRefQueue.front(); 449 BasicBlockFwdRefQueue.pop_front(); 450 assert(F && "Expected valid function"); 451 if (!BasicBlockFwdRefs.count(F)) 452 // Already materialized. 453 continue; 454 455 // Check for a function that isn't materializable to prevent an infinite 456 // loop. When parsing a blockaddress stored in a global variable, there 457 // isn't a trivial way to check if a function will have a body without a 458 // linear search through FunctionsWithBodies, so just check it here. 459 if (!F->isMaterializable()) 460 return Error("Never resolved function from blockaddress"); 461 462 // Try to materialize F. 463 if (std::error_code EC = materialize(F)) 464 return EC; 465 } 466 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 467 468 // Reset state. 469 WillMaterializeAllForwardRefs = false; 470 return std::error_code(); 471 } 472 473 void BitcodeReader::FreeState() { 474 Buffer = nullptr; 475 std::vector<Type*>().swap(TypeList); 476 ValueList.clear(); 477 MDValueList.clear(); 478 std::vector<Comdat *>().swap(ComdatList); 479 480 std::vector<AttributeSet>().swap(MAttributes); 481 std::vector<BasicBlock*>().swap(FunctionBBs); 482 std::vector<Function*>().swap(FunctionsWithBodies); 483 DeferredFunctionInfo.clear(); 484 DeferredMetadataInfo.clear(); 485 MDKindMap.clear(); 486 487 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 488 BasicBlockFwdRefQueue.clear(); 489 } 490 491 //===----------------------------------------------------------------------===// 492 // Helper functions to implement forward reference resolution, etc. 493 //===----------------------------------------------------------------------===// 494 495 /// ConvertToString - Convert a string from a record into an std::string, return 496 /// true on failure. 497 template<typename StrTy> 498 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 499 StrTy &Result) { 500 if (Idx > Record.size()) 501 return true; 502 503 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 504 Result += (char)Record[i]; 505 return false; 506 } 507 508 static bool hasImplicitComdat(size_t Val) { 509 switch (Val) { 510 default: 511 return false; 512 case 1: // Old WeakAnyLinkage 513 case 4: // Old LinkOnceAnyLinkage 514 case 10: // Old WeakODRLinkage 515 case 11: // Old LinkOnceODRLinkage 516 return true; 517 } 518 } 519 520 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 521 switch (Val) { 522 default: // Map unknown/new linkages to external 523 case 0: 524 return GlobalValue::ExternalLinkage; 525 case 2: 526 return GlobalValue::AppendingLinkage; 527 case 3: 528 return GlobalValue::InternalLinkage; 529 case 5: 530 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 531 case 6: 532 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 533 case 7: 534 return GlobalValue::ExternalWeakLinkage; 535 case 8: 536 return GlobalValue::CommonLinkage; 537 case 9: 538 return GlobalValue::PrivateLinkage; 539 case 12: 540 return GlobalValue::AvailableExternallyLinkage; 541 case 13: 542 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 543 case 14: 544 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 545 case 15: 546 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 547 case 1: // Old value with implicit comdat. 548 case 16: 549 return GlobalValue::WeakAnyLinkage; 550 case 10: // Old value with implicit comdat. 551 case 17: 552 return GlobalValue::WeakODRLinkage; 553 case 4: // Old value with implicit comdat. 554 case 18: 555 return GlobalValue::LinkOnceAnyLinkage; 556 case 11: // Old value with implicit comdat. 557 case 19: 558 return GlobalValue::LinkOnceODRLinkage; 559 } 560 } 561 562 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 563 switch (Val) { 564 default: // Map unknown visibilities to default. 565 case 0: return GlobalValue::DefaultVisibility; 566 case 1: return GlobalValue::HiddenVisibility; 567 case 2: return GlobalValue::ProtectedVisibility; 568 } 569 } 570 571 static GlobalValue::DLLStorageClassTypes 572 GetDecodedDLLStorageClass(unsigned Val) { 573 switch (Val) { 574 default: // Map unknown values to default. 575 case 0: return GlobalValue::DefaultStorageClass; 576 case 1: return GlobalValue::DLLImportStorageClass; 577 case 2: return GlobalValue::DLLExportStorageClass; 578 } 579 } 580 581 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 582 switch (Val) { 583 case 0: return GlobalVariable::NotThreadLocal; 584 default: // Map unknown non-zero value to general dynamic. 585 case 1: return GlobalVariable::GeneralDynamicTLSModel; 586 case 2: return GlobalVariable::LocalDynamicTLSModel; 587 case 3: return GlobalVariable::InitialExecTLSModel; 588 case 4: return GlobalVariable::LocalExecTLSModel; 589 } 590 } 591 592 static int GetDecodedCastOpcode(unsigned Val) { 593 switch (Val) { 594 default: return -1; 595 case bitc::CAST_TRUNC : return Instruction::Trunc; 596 case bitc::CAST_ZEXT : return Instruction::ZExt; 597 case bitc::CAST_SEXT : return Instruction::SExt; 598 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 599 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 600 case bitc::CAST_UITOFP : return Instruction::UIToFP; 601 case bitc::CAST_SITOFP : return Instruction::SIToFP; 602 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 603 case bitc::CAST_FPEXT : return Instruction::FPExt; 604 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 605 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 606 case bitc::CAST_BITCAST : return Instruction::BitCast; 607 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 608 } 609 } 610 611 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 612 bool IsFP = Ty->isFPOrFPVectorTy(); 613 // BinOps are only valid for int/fp or vector of int/fp types 614 if (!IsFP && !Ty->isIntOrIntVectorTy()) 615 return -1; 616 617 switch (Val) { 618 default: 619 return -1; 620 case bitc::BINOP_ADD: 621 return IsFP ? Instruction::FAdd : Instruction::Add; 622 case bitc::BINOP_SUB: 623 return IsFP ? Instruction::FSub : Instruction::Sub; 624 case bitc::BINOP_MUL: 625 return IsFP ? Instruction::FMul : Instruction::Mul; 626 case bitc::BINOP_UDIV: 627 return IsFP ? -1 : Instruction::UDiv; 628 case bitc::BINOP_SDIV: 629 return IsFP ? Instruction::FDiv : Instruction::SDiv; 630 case bitc::BINOP_UREM: 631 return IsFP ? -1 : Instruction::URem; 632 case bitc::BINOP_SREM: 633 return IsFP ? Instruction::FRem : Instruction::SRem; 634 case bitc::BINOP_SHL: 635 return IsFP ? -1 : Instruction::Shl; 636 case bitc::BINOP_LSHR: 637 return IsFP ? -1 : Instruction::LShr; 638 case bitc::BINOP_ASHR: 639 return IsFP ? -1 : Instruction::AShr; 640 case bitc::BINOP_AND: 641 return IsFP ? -1 : Instruction::And; 642 case bitc::BINOP_OR: 643 return IsFP ? -1 : Instruction::Or; 644 case bitc::BINOP_XOR: 645 return IsFP ? -1 : Instruction::Xor; 646 } 647 } 648 649 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 650 switch (Val) { 651 default: return AtomicRMWInst::BAD_BINOP; 652 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 653 case bitc::RMW_ADD: return AtomicRMWInst::Add; 654 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 655 case bitc::RMW_AND: return AtomicRMWInst::And; 656 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 657 case bitc::RMW_OR: return AtomicRMWInst::Or; 658 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 659 case bitc::RMW_MAX: return AtomicRMWInst::Max; 660 case bitc::RMW_MIN: return AtomicRMWInst::Min; 661 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 662 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 663 } 664 } 665 666 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 667 switch (Val) { 668 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 669 case bitc::ORDERING_UNORDERED: return Unordered; 670 case bitc::ORDERING_MONOTONIC: return Monotonic; 671 case bitc::ORDERING_ACQUIRE: return Acquire; 672 case bitc::ORDERING_RELEASE: return Release; 673 case bitc::ORDERING_ACQREL: return AcquireRelease; 674 default: // Map unknown orderings to sequentially-consistent. 675 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 676 } 677 } 678 679 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 680 switch (Val) { 681 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 682 default: // Map unknown scopes to cross-thread. 683 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 684 } 685 } 686 687 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 688 switch (Val) { 689 default: // Map unknown selection kinds to any. 690 case bitc::COMDAT_SELECTION_KIND_ANY: 691 return Comdat::Any; 692 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 693 return Comdat::ExactMatch; 694 case bitc::COMDAT_SELECTION_KIND_LARGEST: 695 return Comdat::Largest; 696 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 697 return Comdat::NoDuplicates; 698 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 699 return Comdat::SameSize; 700 } 701 } 702 703 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 704 switch (Val) { 705 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 706 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 707 } 708 } 709 710 namespace llvm { 711 namespace { 712 /// @brief A class for maintaining the slot number definition 713 /// as a placeholder for the actual definition for forward constants defs. 714 class ConstantPlaceHolder : public ConstantExpr { 715 void operator=(const ConstantPlaceHolder &) = delete; 716 public: 717 // allocate space for exactly one operand 718 void *operator new(size_t s) { 719 return User::operator new(s, 1); 720 } 721 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 722 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 723 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 724 } 725 726 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 727 static bool classof(const Value *V) { 728 return isa<ConstantExpr>(V) && 729 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 730 } 731 732 733 /// Provide fast operand accessors 734 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 735 }; 736 } 737 738 // FIXME: can we inherit this from ConstantExpr? 739 template <> 740 struct OperandTraits<ConstantPlaceHolder> : 741 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 742 }; 743 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 744 } 745 746 747 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 748 if (Idx == size()) { 749 push_back(V); 750 return; 751 } 752 753 if (Idx >= size()) 754 resize(Idx+1); 755 756 WeakVH &OldV = ValuePtrs[Idx]; 757 if (!OldV) { 758 OldV = V; 759 return; 760 } 761 762 // Handle constants and non-constants (e.g. instrs) differently for 763 // efficiency. 764 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 765 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 766 OldV = V; 767 } else { 768 // If there was a forward reference to this value, replace it. 769 Value *PrevVal = OldV; 770 OldV->replaceAllUsesWith(V); 771 delete PrevVal; 772 } 773 } 774 775 776 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 777 Type *Ty) { 778 if (Idx >= size()) 779 resize(Idx + 1); 780 781 if (Value *V = ValuePtrs[Idx]) { 782 assert(Ty == V->getType() && "Type mismatch in constant table!"); 783 return cast<Constant>(V); 784 } 785 786 // Create and return a placeholder, which will later be RAUW'd. 787 Constant *C = new ConstantPlaceHolder(Ty, Context); 788 ValuePtrs[Idx] = C; 789 return C; 790 } 791 792 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 793 if (Idx >= size()) 794 resize(Idx + 1); 795 796 if (Value *V = ValuePtrs[Idx]) { 797 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 798 return V; 799 } 800 801 // No type specified, must be invalid reference. 802 if (!Ty) return nullptr; 803 804 // Create and return a placeholder, which will later be RAUW'd. 805 Value *V = new Argument(Ty); 806 ValuePtrs[Idx] = V; 807 return V; 808 } 809 810 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 811 /// resolves any forward references. The idea behind this is that we sometimes 812 /// get constants (such as large arrays) which reference *many* forward ref 813 /// constants. Replacing each of these causes a lot of thrashing when 814 /// building/reuniquing the constant. Instead of doing this, we look at all the 815 /// uses and rewrite all the place holders at once for any constant that uses 816 /// a placeholder. 817 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 818 // Sort the values by-pointer so that they are efficient to look up with a 819 // binary search. 820 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 821 822 SmallVector<Constant*, 64> NewOps; 823 824 while (!ResolveConstants.empty()) { 825 Value *RealVal = operator[](ResolveConstants.back().second); 826 Constant *Placeholder = ResolveConstants.back().first; 827 ResolveConstants.pop_back(); 828 829 // Loop over all users of the placeholder, updating them to reference the 830 // new value. If they reference more than one placeholder, update them all 831 // at once. 832 while (!Placeholder->use_empty()) { 833 auto UI = Placeholder->user_begin(); 834 User *U = *UI; 835 836 // If the using object isn't uniqued, just update the operands. This 837 // handles instructions and initializers for global variables. 838 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 839 UI.getUse().set(RealVal); 840 continue; 841 } 842 843 // Otherwise, we have a constant that uses the placeholder. Replace that 844 // constant with a new constant that has *all* placeholder uses updated. 845 Constant *UserC = cast<Constant>(U); 846 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 847 I != E; ++I) { 848 Value *NewOp; 849 if (!isa<ConstantPlaceHolder>(*I)) { 850 // Not a placeholder reference. 851 NewOp = *I; 852 } else if (*I == Placeholder) { 853 // Common case is that it just references this one placeholder. 854 NewOp = RealVal; 855 } else { 856 // Otherwise, look up the placeholder in ResolveConstants. 857 ResolveConstantsTy::iterator It = 858 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 859 std::pair<Constant*, unsigned>(cast<Constant>(*I), 860 0)); 861 assert(It != ResolveConstants.end() && It->first == *I); 862 NewOp = operator[](It->second); 863 } 864 865 NewOps.push_back(cast<Constant>(NewOp)); 866 } 867 868 // Make the new constant. 869 Constant *NewC; 870 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 871 NewC = ConstantArray::get(UserCA->getType(), NewOps); 872 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 873 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 874 } else if (isa<ConstantVector>(UserC)) { 875 NewC = ConstantVector::get(NewOps); 876 } else { 877 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 878 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 879 } 880 881 UserC->replaceAllUsesWith(NewC); 882 UserC->destroyConstant(); 883 NewOps.clear(); 884 } 885 886 // Update all ValueHandles, they should be the only users at this point. 887 Placeholder->replaceAllUsesWith(RealVal); 888 delete Placeholder; 889 } 890 } 891 892 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 893 if (Idx == size()) { 894 push_back(MD); 895 return; 896 } 897 898 if (Idx >= size()) 899 resize(Idx+1); 900 901 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 902 if (!OldMD) { 903 OldMD.reset(MD); 904 return; 905 } 906 907 // If there was a forward reference to this value, replace it. 908 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 909 PrevMD->replaceAllUsesWith(MD); 910 --NumFwdRefs; 911 } 912 913 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 914 if (Idx >= size()) 915 resize(Idx + 1); 916 917 if (Metadata *MD = MDValuePtrs[Idx]) 918 return MD; 919 920 // Track forward refs to be resolved later. 921 if (AnyFwdRefs) { 922 MinFwdRef = std::min(MinFwdRef, Idx); 923 MaxFwdRef = std::max(MaxFwdRef, Idx); 924 } else { 925 AnyFwdRefs = true; 926 MinFwdRef = MaxFwdRef = Idx; 927 } 928 ++NumFwdRefs; 929 930 // Create and return a placeholder, which will later be RAUW'd. 931 Metadata *MD = MDNode::getTemporary(Context, None).release(); 932 MDValuePtrs[Idx].reset(MD); 933 return MD; 934 } 935 936 void BitcodeReaderMDValueList::tryToResolveCycles() { 937 if (!AnyFwdRefs) 938 // Nothing to do. 939 return; 940 941 if (NumFwdRefs) 942 // Still forward references... can't resolve cycles. 943 return; 944 945 // Resolve any cycles. 946 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 947 auto &MD = MDValuePtrs[I]; 948 auto *N = dyn_cast_or_null<MDNode>(MD); 949 if (!N) 950 continue; 951 952 assert(!N->isTemporary() && "Unexpected forward reference"); 953 N->resolveCycles(); 954 } 955 956 // Make sure we return early again until there's another forward ref. 957 AnyFwdRefs = false; 958 } 959 960 Type *BitcodeReader::getTypeByID(unsigned ID) { 961 // The type table size is always specified correctly. 962 if (ID >= TypeList.size()) 963 return nullptr; 964 965 if (Type *Ty = TypeList[ID]) 966 return Ty; 967 968 // If we have a forward reference, the only possible case is when it is to a 969 // named struct. Just create a placeholder for now. 970 return TypeList[ID] = createIdentifiedStructType(Context); 971 } 972 973 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 974 StringRef Name) { 975 auto *Ret = StructType::create(Context, Name); 976 IdentifiedStructTypes.push_back(Ret); 977 return Ret; 978 } 979 980 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 981 auto *Ret = StructType::create(Context); 982 IdentifiedStructTypes.push_back(Ret); 983 return Ret; 984 } 985 986 987 //===----------------------------------------------------------------------===// 988 // Functions for parsing blocks from the bitcode file 989 //===----------------------------------------------------------------------===// 990 991 992 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 993 /// been decoded from the given integer. This function must stay in sync with 994 /// 'encodeLLVMAttributesForBitcode'. 995 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 996 uint64_t EncodedAttrs) { 997 // FIXME: Remove in 4.0. 998 999 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1000 // the bits above 31 down by 11 bits. 1001 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1002 assert((!Alignment || isPowerOf2_32(Alignment)) && 1003 "Alignment must be a power of two."); 1004 1005 if (Alignment) 1006 B.addAlignmentAttr(Alignment); 1007 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1008 (EncodedAttrs & 0xffff)); 1009 } 1010 1011 std::error_code BitcodeReader::ParseAttributeBlock() { 1012 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1013 return Error("Invalid record"); 1014 1015 if (!MAttributes.empty()) 1016 return Error("Invalid multiple blocks"); 1017 1018 SmallVector<uint64_t, 64> Record; 1019 1020 SmallVector<AttributeSet, 8> Attrs; 1021 1022 // Read all the records. 1023 while (1) { 1024 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1025 1026 switch (Entry.Kind) { 1027 case BitstreamEntry::SubBlock: // Handled for us already. 1028 case BitstreamEntry::Error: 1029 return Error("Malformed block"); 1030 case BitstreamEntry::EndBlock: 1031 return std::error_code(); 1032 case BitstreamEntry::Record: 1033 // The interesting case. 1034 break; 1035 } 1036 1037 // Read a record. 1038 Record.clear(); 1039 switch (Stream.readRecord(Entry.ID, Record)) { 1040 default: // Default behavior: ignore. 1041 break; 1042 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1043 // FIXME: Remove in 4.0. 1044 if (Record.size() & 1) 1045 return Error("Invalid record"); 1046 1047 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1048 AttrBuilder B; 1049 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1050 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1051 } 1052 1053 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1054 Attrs.clear(); 1055 break; 1056 } 1057 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1058 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1059 Attrs.push_back(MAttributeGroups[Record[i]]); 1060 1061 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1062 Attrs.clear(); 1063 break; 1064 } 1065 } 1066 } 1067 } 1068 1069 // Returns Attribute::None on unrecognized codes. 1070 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 1071 switch (Code) { 1072 default: 1073 return Attribute::None; 1074 case bitc::ATTR_KIND_ALIGNMENT: 1075 return Attribute::Alignment; 1076 case bitc::ATTR_KIND_ALWAYS_INLINE: 1077 return Attribute::AlwaysInline; 1078 case bitc::ATTR_KIND_BUILTIN: 1079 return Attribute::Builtin; 1080 case bitc::ATTR_KIND_BY_VAL: 1081 return Attribute::ByVal; 1082 case bitc::ATTR_KIND_IN_ALLOCA: 1083 return Attribute::InAlloca; 1084 case bitc::ATTR_KIND_COLD: 1085 return Attribute::Cold; 1086 case bitc::ATTR_KIND_INLINE_HINT: 1087 return Attribute::InlineHint; 1088 case bitc::ATTR_KIND_IN_REG: 1089 return Attribute::InReg; 1090 case bitc::ATTR_KIND_JUMP_TABLE: 1091 return Attribute::JumpTable; 1092 case bitc::ATTR_KIND_MIN_SIZE: 1093 return Attribute::MinSize; 1094 case bitc::ATTR_KIND_NAKED: 1095 return Attribute::Naked; 1096 case bitc::ATTR_KIND_NEST: 1097 return Attribute::Nest; 1098 case bitc::ATTR_KIND_NO_ALIAS: 1099 return Attribute::NoAlias; 1100 case bitc::ATTR_KIND_NO_BUILTIN: 1101 return Attribute::NoBuiltin; 1102 case bitc::ATTR_KIND_NO_CAPTURE: 1103 return Attribute::NoCapture; 1104 case bitc::ATTR_KIND_NO_DUPLICATE: 1105 return Attribute::NoDuplicate; 1106 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1107 return Attribute::NoImplicitFloat; 1108 case bitc::ATTR_KIND_NO_INLINE: 1109 return Attribute::NoInline; 1110 case bitc::ATTR_KIND_NON_LAZY_BIND: 1111 return Attribute::NonLazyBind; 1112 case bitc::ATTR_KIND_NON_NULL: 1113 return Attribute::NonNull; 1114 case bitc::ATTR_KIND_DEREFERENCEABLE: 1115 return Attribute::Dereferenceable; 1116 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1117 return Attribute::DereferenceableOrNull; 1118 case bitc::ATTR_KIND_NO_RED_ZONE: 1119 return Attribute::NoRedZone; 1120 case bitc::ATTR_KIND_NO_RETURN: 1121 return Attribute::NoReturn; 1122 case bitc::ATTR_KIND_NO_UNWIND: 1123 return Attribute::NoUnwind; 1124 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1125 return Attribute::OptimizeForSize; 1126 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1127 return Attribute::OptimizeNone; 1128 case bitc::ATTR_KIND_READ_NONE: 1129 return Attribute::ReadNone; 1130 case bitc::ATTR_KIND_READ_ONLY: 1131 return Attribute::ReadOnly; 1132 case bitc::ATTR_KIND_RETURNED: 1133 return Attribute::Returned; 1134 case bitc::ATTR_KIND_RETURNS_TWICE: 1135 return Attribute::ReturnsTwice; 1136 case bitc::ATTR_KIND_S_EXT: 1137 return Attribute::SExt; 1138 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1139 return Attribute::StackAlignment; 1140 case bitc::ATTR_KIND_STACK_PROTECT: 1141 return Attribute::StackProtect; 1142 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1143 return Attribute::StackProtectReq; 1144 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1145 return Attribute::StackProtectStrong; 1146 case bitc::ATTR_KIND_STRUCT_RET: 1147 return Attribute::StructRet; 1148 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1149 return Attribute::SanitizeAddress; 1150 case bitc::ATTR_KIND_SANITIZE_THREAD: 1151 return Attribute::SanitizeThread; 1152 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1153 return Attribute::SanitizeMemory; 1154 case bitc::ATTR_KIND_UW_TABLE: 1155 return Attribute::UWTable; 1156 case bitc::ATTR_KIND_Z_EXT: 1157 return Attribute::ZExt; 1158 } 1159 } 1160 1161 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1162 unsigned &Alignment) { 1163 // Note: Alignment in bitcode files is incremented by 1, so that zero 1164 // can be used for default alignment. 1165 if (Exponent > Value::MaxAlignmentExponent + 1) 1166 return Error("Invalid alignment value"); 1167 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1168 return std::error_code(); 1169 } 1170 1171 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 1172 Attribute::AttrKind *Kind) { 1173 *Kind = GetAttrFromCode(Code); 1174 if (*Kind == Attribute::None) 1175 return Error(BitcodeError::CorruptedBitcode, 1176 "Unknown attribute kind (" + Twine(Code) + ")"); 1177 return std::error_code(); 1178 } 1179 1180 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 1181 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1182 return Error("Invalid record"); 1183 1184 if (!MAttributeGroups.empty()) 1185 return Error("Invalid multiple blocks"); 1186 1187 SmallVector<uint64_t, 64> Record; 1188 1189 // Read all the records. 1190 while (1) { 1191 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1192 1193 switch (Entry.Kind) { 1194 case BitstreamEntry::SubBlock: // Handled for us already. 1195 case BitstreamEntry::Error: 1196 return Error("Malformed block"); 1197 case BitstreamEntry::EndBlock: 1198 return std::error_code(); 1199 case BitstreamEntry::Record: 1200 // The interesting case. 1201 break; 1202 } 1203 1204 // Read a record. 1205 Record.clear(); 1206 switch (Stream.readRecord(Entry.ID, Record)) { 1207 default: // Default behavior: ignore. 1208 break; 1209 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1210 if (Record.size() < 3) 1211 return Error("Invalid record"); 1212 1213 uint64_t GrpID = Record[0]; 1214 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1215 1216 AttrBuilder B; 1217 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1218 if (Record[i] == 0) { // Enum attribute 1219 Attribute::AttrKind Kind; 1220 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1221 return EC; 1222 1223 B.addAttribute(Kind); 1224 } else if (Record[i] == 1) { // Integer attribute 1225 Attribute::AttrKind Kind; 1226 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1227 return EC; 1228 if (Kind == Attribute::Alignment) 1229 B.addAlignmentAttr(Record[++i]); 1230 else if (Kind == Attribute::StackAlignment) 1231 B.addStackAlignmentAttr(Record[++i]); 1232 else if (Kind == Attribute::Dereferenceable) 1233 B.addDereferenceableAttr(Record[++i]); 1234 else if (Kind == Attribute::DereferenceableOrNull) 1235 B.addDereferenceableOrNullAttr(Record[++i]); 1236 } else { // String attribute 1237 assert((Record[i] == 3 || Record[i] == 4) && 1238 "Invalid attribute group entry"); 1239 bool HasValue = (Record[i++] == 4); 1240 SmallString<64> KindStr; 1241 SmallString<64> ValStr; 1242 1243 while (Record[i] != 0 && i != e) 1244 KindStr += Record[i++]; 1245 assert(Record[i] == 0 && "Kind string not null terminated"); 1246 1247 if (HasValue) { 1248 // Has a value associated with it. 1249 ++i; // Skip the '0' that terminates the "kind" string. 1250 while (Record[i] != 0 && i != e) 1251 ValStr += Record[i++]; 1252 assert(Record[i] == 0 && "Value string not null terminated"); 1253 } 1254 1255 B.addAttribute(KindStr.str(), ValStr.str()); 1256 } 1257 } 1258 1259 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1260 break; 1261 } 1262 } 1263 } 1264 } 1265 1266 std::error_code BitcodeReader::ParseTypeTable() { 1267 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1268 return Error("Invalid record"); 1269 1270 return ParseTypeTableBody(); 1271 } 1272 1273 std::error_code BitcodeReader::ParseTypeTableBody() { 1274 if (!TypeList.empty()) 1275 return Error("Invalid multiple blocks"); 1276 1277 SmallVector<uint64_t, 64> Record; 1278 unsigned NumRecords = 0; 1279 1280 SmallString<64> TypeName; 1281 1282 // Read all the records for this type table. 1283 while (1) { 1284 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1285 1286 switch (Entry.Kind) { 1287 case BitstreamEntry::SubBlock: // Handled for us already. 1288 case BitstreamEntry::Error: 1289 return Error("Malformed block"); 1290 case BitstreamEntry::EndBlock: 1291 if (NumRecords != TypeList.size()) 1292 return Error("Malformed block"); 1293 return std::error_code(); 1294 case BitstreamEntry::Record: 1295 // The interesting case. 1296 break; 1297 } 1298 1299 // Read a record. 1300 Record.clear(); 1301 Type *ResultTy = nullptr; 1302 switch (Stream.readRecord(Entry.ID, Record)) { 1303 default: 1304 return Error("Invalid value"); 1305 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1306 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1307 // type list. This allows us to reserve space. 1308 if (Record.size() < 1) 1309 return Error("Invalid record"); 1310 TypeList.resize(Record[0]); 1311 continue; 1312 case bitc::TYPE_CODE_VOID: // VOID 1313 ResultTy = Type::getVoidTy(Context); 1314 break; 1315 case bitc::TYPE_CODE_HALF: // HALF 1316 ResultTy = Type::getHalfTy(Context); 1317 break; 1318 case bitc::TYPE_CODE_FLOAT: // FLOAT 1319 ResultTy = Type::getFloatTy(Context); 1320 break; 1321 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1322 ResultTy = Type::getDoubleTy(Context); 1323 break; 1324 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1325 ResultTy = Type::getX86_FP80Ty(Context); 1326 break; 1327 case bitc::TYPE_CODE_FP128: // FP128 1328 ResultTy = Type::getFP128Ty(Context); 1329 break; 1330 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1331 ResultTy = Type::getPPC_FP128Ty(Context); 1332 break; 1333 case bitc::TYPE_CODE_LABEL: // LABEL 1334 ResultTy = Type::getLabelTy(Context); 1335 break; 1336 case bitc::TYPE_CODE_METADATA: // METADATA 1337 ResultTy = Type::getMetadataTy(Context); 1338 break; 1339 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1340 ResultTy = Type::getX86_MMXTy(Context); 1341 break; 1342 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1343 if (Record.size() < 1) 1344 return Error("Invalid record"); 1345 1346 uint64_t NumBits = Record[0]; 1347 if (NumBits < IntegerType::MIN_INT_BITS || 1348 NumBits > IntegerType::MAX_INT_BITS) 1349 return Error("Bitwidth for integer type out of range"); 1350 ResultTy = IntegerType::get(Context, NumBits); 1351 break; 1352 } 1353 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1354 // [pointee type, address space] 1355 if (Record.size() < 1) 1356 return Error("Invalid record"); 1357 unsigned AddressSpace = 0; 1358 if (Record.size() == 2) 1359 AddressSpace = Record[1]; 1360 ResultTy = getTypeByID(Record[0]); 1361 if (!ResultTy) 1362 return Error("Invalid type"); 1363 ResultTy = PointerType::get(ResultTy, AddressSpace); 1364 break; 1365 } 1366 case bitc::TYPE_CODE_FUNCTION_OLD: { 1367 // FIXME: attrid is dead, remove it in LLVM 4.0 1368 // FUNCTION: [vararg, attrid, retty, paramty x N] 1369 if (Record.size() < 3) 1370 return Error("Invalid record"); 1371 SmallVector<Type*, 8> ArgTys; 1372 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1373 if (Type *T = getTypeByID(Record[i])) 1374 ArgTys.push_back(T); 1375 else 1376 break; 1377 } 1378 1379 ResultTy = getTypeByID(Record[2]); 1380 if (!ResultTy || ArgTys.size() < Record.size()-3) 1381 return Error("Invalid type"); 1382 1383 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1384 break; 1385 } 1386 case bitc::TYPE_CODE_FUNCTION: { 1387 // FUNCTION: [vararg, retty, paramty x N] 1388 if (Record.size() < 2) 1389 return Error("Invalid record"); 1390 SmallVector<Type*, 8> ArgTys; 1391 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1392 if (Type *T = getTypeByID(Record[i])) 1393 ArgTys.push_back(T); 1394 else 1395 break; 1396 } 1397 1398 ResultTy = getTypeByID(Record[1]); 1399 if (!ResultTy || ArgTys.size() < Record.size()-2) 1400 return Error("Invalid type"); 1401 1402 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1403 break; 1404 } 1405 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1406 if (Record.size() < 1) 1407 return Error("Invalid record"); 1408 SmallVector<Type*, 8> EltTys; 1409 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1410 if (Type *T = getTypeByID(Record[i])) 1411 EltTys.push_back(T); 1412 else 1413 break; 1414 } 1415 if (EltTys.size() != Record.size()-1) 1416 return Error("Invalid type"); 1417 ResultTy = StructType::get(Context, EltTys, Record[0]); 1418 break; 1419 } 1420 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1421 if (ConvertToString(Record, 0, TypeName)) 1422 return Error("Invalid record"); 1423 continue; 1424 1425 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1426 if (Record.size() < 1) 1427 return Error("Invalid record"); 1428 1429 if (NumRecords >= TypeList.size()) 1430 return Error("Invalid TYPE table"); 1431 1432 // Check to see if this was forward referenced, if so fill in the temp. 1433 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1434 if (Res) { 1435 Res->setName(TypeName); 1436 TypeList[NumRecords] = nullptr; 1437 } else // Otherwise, create a new struct. 1438 Res = createIdentifiedStructType(Context, TypeName); 1439 TypeName.clear(); 1440 1441 SmallVector<Type*, 8> EltTys; 1442 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1443 if (Type *T = getTypeByID(Record[i])) 1444 EltTys.push_back(T); 1445 else 1446 break; 1447 } 1448 if (EltTys.size() != Record.size()-1) 1449 return Error("Invalid record"); 1450 Res->setBody(EltTys, Record[0]); 1451 ResultTy = Res; 1452 break; 1453 } 1454 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1455 if (Record.size() != 1) 1456 return Error("Invalid record"); 1457 1458 if (NumRecords >= TypeList.size()) 1459 return Error("Invalid TYPE table"); 1460 1461 // Check to see if this was forward referenced, if so fill in the temp. 1462 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1463 if (Res) { 1464 Res->setName(TypeName); 1465 TypeList[NumRecords] = nullptr; 1466 } else // Otherwise, create a new struct with no body. 1467 Res = createIdentifiedStructType(Context, TypeName); 1468 TypeName.clear(); 1469 ResultTy = Res; 1470 break; 1471 } 1472 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1473 if (Record.size() < 2) 1474 return Error("Invalid record"); 1475 if ((ResultTy = getTypeByID(Record[1]))) 1476 ResultTy = ArrayType::get(ResultTy, Record[0]); 1477 else 1478 return Error("Invalid type"); 1479 break; 1480 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1481 if (Record.size() < 2) 1482 return Error("Invalid record"); 1483 if ((ResultTy = getTypeByID(Record[1]))) 1484 ResultTy = VectorType::get(ResultTy, Record[0]); 1485 else 1486 return Error("Invalid type"); 1487 break; 1488 } 1489 1490 if (NumRecords >= TypeList.size()) 1491 return Error("Invalid TYPE table"); 1492 if (TypeList[NumRecords]) 1493 return Error( 1494 "Invalid TYPE table: Only named structs can be forward referenced"); 1495 assert(ResultTy && "Didn't read a type?"); 1496 TypeList[NumRecords++] = ResultTy; 1497 } 1498 } 1499 1500 std::error_code BitcodeReader::ParseValueSymbolTable() { 1501 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1502 return Error("Invalid record"); 1503 1504 SmallVector<uint64_t, 64> Record; 1505 1506 Triple TT(TheModule->getTargetTriple()); 1507 1508 // Read all the records for this value table. 1509 SmallString<128> ValueName; 1510 while (1) { 1511 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1512 1513 switch (Entry.Kind) { 1514 case BitstreamEntry::SubBlock: // Handled for us already. 1515 case BitstreamEntry::Error: 1516 return Error("Malformed block"); 1517 case BitstreamEntry::EndBlock: 1518 return std::error_code(); 1519 case BitstreamEntry::Record: 1520 // The interesting case. 1521 break; 1522 } 1523 1524 // Read a record. 1525 Record.clear(); 1526 switch (Stream.readRecord(Entry.ID, Record)) { 1527 default: // Default behavior: unknown type. 1528 break; 1529 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1530 if (ConvertToString(Record, 1, ValueName)) 1531 return Error("Invalid record"); 1532 unsigned ValueID = Record[0]; 1533 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1534 return Error("Invalid record"); 1535 Value *V = ValueList[ValueID]; 1536 1537 V->setName(StringRef(ValueName.data(), ValueName.size())); 1538 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1539 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1540 if (TT.isOSBinFormatMachO()) 1541 GO->setComdat(nullptr); 1542 else 1543 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1544 } 1545 } 1546 ValueName.clear(); 1547 break; 1548 } 1549 case bitc::VST_CODE_BBENTRY: { 1550 if (ConvertToString(Record, 1, ValueName)) 1551 return Error("Invalid record"); 1552 BasicBlock *BB = getBasicBlock(Record[0]); 1553 if (!BB) 1554 return Error("Invalid record"); 1555 1556 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1557 ValueName.clear(); 1558 break; 1559 } 1560 } 1561 } 1562 } 1563 1564 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1565 1566 std::error_code BitcodeReader::ParseMetadata() { 1567 IsMetadataMaterialized = true; 1568 unsigned NextMDValueNo = MDValueList.size(); 1569 1570 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1571 return Error("Invalid record"); 1572 1573 SmallVector<uint64_t, 64> Record; 1574 1575 auto getMD = 1576 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1577 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1578 if (ID) 1579 return getMD(ID - 1); 1580 return nullptr; 1581 }; 1582 auto getMDString = [&](unsigned ID) -> MDString *{ 1583 // This requires that the ID is not really a forward reference. In 1584 // particular, the MDString must already have been resolved. 1585 return cast_or_null<MDString>(getMDOrNull(ID)); 1586 }; 1587 1588 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1589 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1590 1591 // Read all the records. 1592 while (1) { 1593 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1594 1595 switch (Entry.Kind) { 1596 case BitstreamEntry::SubBlock: // Handled for us already. 1597 case BitstreamEntry::Error: 1598 return Error("Malformed block"); 1599 case BitstreamEntry::EndBlock: 1600 MDValueList.tryToResolveCycles(); 1601 return std::error_code(); 1602 case BitstreamEntry::Record: 1603 // The interesting case. 1604 break; 1605 } 1606 1607 // Read a record. 1608 Record.clear(); 1609 unsigned Code = Stream.readRecord(Entry.ID, Record); 1610 bool IsDistinct = false; 1611 switch (Code) { 1612 default: // Default behavior: ignore. 1613 break; 1614 case bitc::METADATA_NAME: { 1615 // Read name of the named metadata. 1616 SmallString<8> Name(Record.begin(), Record.end()); 1617 Record.clear(); 1618 Code = Stream.ReadCode(); 1619 1620 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1621 unsigned NextBitCode = Stream.readRecord(Code, Record); 1622 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1623 1624 // Read named metadata elements. 1625 unsigned Size = Record.size(); 1626 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1627 for (unsigned i = 0; i != Size; ++i) { 1628 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1629 if (!MD) 1630 return Error("Invalid record"); 1631 NMD->addOperand(MD); 1632 } 1633 break; 1634 } 1635 case bitc::METADATA_OLD_FN_NODE: { 1636 // FIXME: Remove in 4.0. 1637 // This is a LocalAsMetadata record, the only type of function-local 1638 // metadata. 1639 if (Record.size() % 2 == 1) 1640 return Error("Invalid record"); 1641 1642 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1643 // to be legal, but there's no upgrade path. 1644 auto dropRecord = [&] { 1645 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1646 }; 1647 if (Record.size() != 2) { 1648 dropRecord(); 1649 break; 1650 } 1651 1652 Type *Ty = getTypeByID(Record[0]); 1653 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1654 dropRecord(); 1655 break; 1656 } 1657 1658 MDValueList.AssignValue( 1659 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1660 NextMDValueNo++); 1661 break; 1662 } 1663 case bitc::METADATA_OLD_NODE: { 1664 // FIXME: Remove in 4.0. 1665 if (Record.size() % 2 == 1) 1666 return Error("Invalid record"); 1667 1668 unsigned Size = Record.size(); 1669 SmallVector<Metadata *, 8> Elts; 1670 for (unsigned i = 0; i != Size; i += 2) { 1671 Type *Ty = getTypeByID(Record[i]); 1672 if (!Ty) 1673 return Error("Invalid record"); 1674 if (Ty->isMetadataTy()) 1675 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1676 else if (!Ty->isVoidTy()) { 1677 auto *MD = 1678 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1679 assert(isa<ConstantAsMetadata>(MD) && 1680 "Expected non-function-local metadata"); 1681 Elts.push_back(MD); 1682 } else 1683 Elts.push_back(nullptr); 1684 } 1685 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1686 break; 1687 } 1688 case bitc::METADATA_VALUE: { 1689 if (Record.size() != 2) 1690 return Error("Invalid record"); 1691 1692 Type *Ty = getTypeByID(Record[0]); 1693 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1694 return Error("Invalid record"); 1695 1696 MDValueList.AssignValue( 1697 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1698 NextMDValueNo++); 1699 break; 1700 } 1701 case bitc::METADATA_DISTINCT_NODE: 1702 IsDistinct = true; 1703 // fallthrough... 1704 case bitc::METADATA_NODE: { 1705 SmallVector<Metadata *, 8> Elts; 1706 Elts.reserve(Record.size()); 1707 for (unsigned ID : Record) 1708 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1709 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1710 : MDNode::get(Context, Elts), 1711 NextMDValueNo++); 1712 break; 1713 } 1714 case bitc::METADATA_LOCATION: { 1715 if (Record.size() != 5) 1716 return Error("Invalid record"); 1717 1718 unsigned Line = Record[1]; 1719 unsigned Column = Record[2]; 1720 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1721 Metadata *InlinedAt = 1722 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1723 MDValueList.AssignValue( 1724 GET_OR_DISTINCT(MDLocation, Record[0], 1725 (Context, Line, Column, Scope, InlinedAt)), 1726 NextMDValueNo++); 1727 break; 1728 } 1729 case bitc::METADATA_GENERIC_DEBUG: { 1730 if (Record.size() < 4) 1731 return Error("Invalid record"); 1732 1733 unsigned Tag = Record[1]; 1734 unsigned Version = Record[2]; 1735 1736 if (Tag >= 1u << 16 || Version != 0) 1737 return Error("Invalid record"); 1738 1739 auto *Header = getMDString(Record[3]); 1740 SmallVector<Metadata *, 8> DwarfOps; 1741 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1742 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1743 : nullptr); 1744 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1745 (Context, Tag, Header, DwarfOps)), 1746 NextMDValueNo++); 1747 break; 1748 } 1749 case bitc::METADATA_SUBRANGE: { 1750 if (Record.size() != 3) 1751 return Error("Invalid record"); 1752 1753 MDValueList.AssignValue( 1754 GET_OR_DISTINCT(MDSubrange, Record[0], 1755 (Context, Record[1], unrotateSign(Record[2]))), 1756 NextMDValueNo++); 1757 break; 1758 } 1759 case bitc::METADATA_ENUMERATOR: { 1760 if (Record.size() != 3) 1761 return Error("Invalid record"); 1762 1763 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1764 (Context, unrotateSign(Record[1]), 1765 getMDString(Record[2]))), 1766 NextMDValueNo++); 1767 break; 1768 } 1769 case bitc::METADATA_BASIC_TYPE: { 1770 if (Record.size() != 6) 1771 return Error("Invalid record"); 1772 1773 MDValueList.AssignValue( 1774 GET_OR_DISTINCT(MDBasicType, Record[0], 1775 (Context, Record[1], getMDString(Record[2]), 1776 Record[3], Record[4], Record[5])), 1777 NextMDValueNo++); 1778 break; 1779 } 1780 case bitc::METADATA_DERIVED_TYPE: { 1781 if (Record.size() != 12) 1782 return Error("Invalid record"); 1783 1784 MDValueList.AssignValue( 1785 GET_OR_DISTINCT(MDDerivedType, Record[0], 1786 (Context, Record[1], getMDString(Record[2]), 1787 getMDOrNull(Record[3]), Record[4], 1788 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1789 Record[7], Record[8], Record[9], Record[10], 1790 getMDOrNull(Record[11]))), 1791 NextMDValueNo++); 1792 break; 1793 } 1794 case bitc::METADATA_COMPOSITE_TYPE: { 1795 if (Record.size() != 16) 1796 return Error("Invalid record"); 1797 1798 MDValueList.AssignValue( 1799 GET_OR_DISTINCT(MDCompositeType, Record[0], 1800 (Context, Record[1], getMDString(Record[2]), 1801 getMDOrNull(Record[3]), Record[4], 1802 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1803 Record[7], Record[8], Record[9], Record[10], 1804 getMDOrNull(Record[11]), Record[12], 1805 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1806 getMDString(Record[15]))), 1807 NextMDValueNo++); 1808 break; 1809 } 1810 case bitc::METADATA_SUBROUTINE_TYPE: { 1811 if (Record.size() != 3) 1812 return Error("Invalid record"); 1813 1814 MDValueList.AssignValue( 1815 GET_OR_DISTINCT(MDSubroutineType, Record[0], 1816 (Context, Record[1], getMDOrNull(Record[2]))), 1817 NextMDValueNo++); 1818 break; 1819 } 1820 case bitc::METADATA_FILE: { 1821 if (Record.size() != 3) 1822 return Error("Invalid record"); 1823 1824 MDValueList.AssignValue( 1825 GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]), 1826 getMDString(Record[2]))), 1827 NextMDValueNo++); 1828 break; 1829 } 1830 case bitc::METADATA_COMPILE_UNIT: { 1831 if (Record.size() != 14) 1832 return Error("Invalid record"); 1833 1834 MDValueList.AssignValue( 1835 GET_OR_DISTINCT(MDCompileUnit, Record[0], 1836 (Context, Record[1], getMDOrNull(Record[2]), 1837 getMDString(Record[3]), Record[4], 1838 getMDString(Record[5]), Record[6], 1839 getMDString(Record[7]), Record[8], 1840 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1841 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1842 getMDOrNull(Record[13]))), 1843 NextMDValueNo++); 1844 break; 1845 } 1846 case bitc::METADATA_SUBPROGRAM: { 1847 if (Record.size() != 19) 1848 return Error("Invalid record"); 1849 1850 MDValueList.AssignValue( 1851 GET_OR_DISTINCT( 1852 MDSubprogram, Record[0], 1853 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1854 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1855 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1856 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1857 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1858 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1859 NextMDValueNo++); 1860 break; 1861 } 1862 case bitc::METADATA_LEXICAL_BLOCK: { 1863 if (Record.size() != 5) 1864 return Error("Invalid record"); 1865 1866 MDValueList.AssignValue( 1867 GET_OR_DISTINCT(MDLexicalBlock, Record[0], 1868 (Context, getMDOrNull(Record[1]), 1869 getMDOrNull(Record[2]), Record[3], Record[4])), 1870 NextMDValueNo++); 1871 break; 1872 } 1873 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1874 if (Record.size() != 4) 1875 return Error("Invalid record"); 1876 1877 MDValueList.AssignValue( 1878 GET_OR_DISTINCT(MDLexicalBlockFile, Record[0], 1879 (Context, getMDOrNull(Record[1]), 1880 getMDOrNull(Record[2]), Record[3])), 1881 NextMDValueNo++); 1882 break; 1883 } 1884 case bitc::METADATA_NAMESPACE: { 1885 if (Record.size() != 5) 1886 return Error("Invalid record"); 1887 1888 MDValueList.AssignValue( 1889 GET_OR_DISTINCT(MDNamespace, Record[0], 1890 (Context, getMDOrNull(Record[1]), 1891 getMDOrNull(Record[2]), getMDString(Record[3]), 1892 Record[4])), 1893 NextMDValueNo++); 1894 break; 1895 } 1896 case bitc::METADATA_TEMPLATE_TYPE: { 1897 if (Record.size() != 3) 1898 return Error("Invalid record"); 1899 1900 MDValueList.AssignValue(GET_OR_DISTINCT(MDTemplateTypeParameter, 1901 Record[0], 1902 (Context, getMDString(Record[1]), 1903 getMDOrNull(Record[2]))), 1904 NextMDValueNo++); 1905 break; 1906 } 1907 case bitc::METADATA_TEMPLATE_VALUE: { 1908 if (Record.size() != 5) 1909 return Error("Invalid record"); 1910 1911 MDValueList.AssignValue( 1912 GET_OR_DISTINCT(MDTemplateValueParameter, Record[0], 1913 (Context, Record[1], getMDString(Record[2]), 1914 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1915 NextMDValueNo++); 1916 break; 1917 } 1918 case bitc::METADATA_GLOBAL_VAR: { 1919 if (Record.size() != 11) 1920 return Error("Invalid record"); 1921 1922 MDValueList.AssignValue( 1923 GET_OR_DISTINCT(MDGlobalVariable, Record[0], 1924 (Context, getMDOrNull(Record[1]), 1925 getMDString(Record[2]), getMDString(Record[3]), 1926 getMDOrNull(Record[4]), Record[5], 1927 getMDOrNull(Record[6]), Record[7], Record[8], 1928 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1929 NextMDValueNo++); 1930 break; 1931 } 1932 case bitc::METADATA_LOCAL_VAR: { 1933 // 10th field is for the obseleted 'inlinedAt:' field. 1934 if (Record.size() != 9 && Record.size() != 10) 1935 return Error("Invalid record"); 1936 1937 MDValueList.AssignValue( 1938 GET_OR_DISTINCT(MDLocalVariable, Record[0], 1939 (Context, Record[1], getMDOrNull(Record[2]), 1940 getMDString(Record[3]), getMDOrNull(Record[4]), 1941 Record[5], getMDOrNull(Record[6]), Record[7], 1942 Record[8])), 1943 NextMDValueNo++); 1944 break; 1945 } 1946 case bitc::METADATA_EXPRESSION: { 1947 if (Record.size() < 1) 1948 return Error("Invalid record"); 1949 1950 MDValueList.AssignValue( 1951 GET_OR_DISTINCT(MDExpression, Record[0], 1952 (Context, makeArrayRef(Record).slice(1))), 1953 NextMDValueNo++); 1954 break; 1955 } 1956 case bitc::METADATA_OBJC_PROPERTY: { 1957 if (Record.size() != 8) 1958 return Error("Invalid record"); 1959 1960 MDValueList.AssignValue( 1961 GET_OR_DISTINCT(MDObjCProperty, Record[0], 1962 (Context, getMDString(Record[1]), 1963 getMDOrNull(Record[2]), Record[3], 1964 getMDString(Record[4]), getMDString(Record[5]), 1965 Record[6], getMDOrNull(Record[7]))), 1966 NextMDValueNo++); 1967 break; 1968 } 1969 case bitc::METADATA_IMPORTED_ENTITY: { 1970 if (Record.size() != 6) 1971 return Error("Invalid record"); 1972 1973 MDValueList.AssignValue( 1974 GET_OR_DISTINCT(MDImportedEntity, Record[0], 1975 (Context, Record[1], getMDOrNull(Record[2]), 1976 getMDOrNull(Record[3]), Record[4], 1977 getMDString(Record[5]))), 1978 NextMDValueNo++); 1979 break; 1980 } 1981 case bitc::METADATA_STRING: { 1982 std::string String(Record.begin(), Record.end()); 1983 llvm::UpgradeMDStringConstant(String); 1984 Metadata *MD = MDString::get(Context, String); 1985 MDValueList.AssignValue(MD, NextMDValueNo++); 1986 break; 1987 } 1988 case bitc::METADATA_KIND: { 1989 if (Record.size() < 2) 1990 return Error("Invalid record"); 1991 1992 unsigned Kind = Record[0]; 1993 SmallString<8> Name(Record.begin()+1, Record.end()); 1994 1995 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1996 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1997 return Error("Conflicting METADATA_KIND records"); 1998 break; 1999 } 2000 } 2001 } 2002 #undef GET_OR_DISTINCT 2003 } 2004 2005 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 2006 /// the LSB for dense VBR encoding. 2007 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2008 if ((V & 1) == 0) 2009 return V >> 1; 2010 if (V != 1) 2011 return -(V >> 1); 2012 // There is no such thing as -0 with integers. "-0" really means MININT. 2013 return 1ULL << 63; 2014 } 2015 2016 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 2017 /// values and aliases that we can. 2018 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 2019 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2020 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2021 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2022 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2023 2024 GlobalInitWorklist.swap(GlobalInits); 2025 AliasInitWorklist.swap(AliasInits); 2026 FunctionPrefixWorklist.swap(FunctionPrefixes); 2027 FunctionPrologueWorklist.swap(FunctionPrologues); 2028 2029 while (!GlobalInitWorklist.empty()) { 2030 unsigned ValID = GlobalInitWorklist.back().second; 2031 if (ValID >= ValueList.size()) { 2032 // Not ready to resolve this yet, it requires something later in the file. 2033 GlobalInits.push_back(GlobalInitWorklist.back()); 2034 } else { 2035 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2036 GlobalInitWorklist.back().first->setInitializer(C); 2037 else 2038 return Error("Expected a constant"); 2039 } 2040 GlobalInitWorklist.pop_back(); 2041 } 2042 2043 while (!AliasInitWorklist.empty()) { 2044 unsigned ValID = AliasInitWorklist.back().second; 2045 if (ValID >= ValueList.size()) { 2046 AliasInits.push_back(AliasInitWorklist.back()); 2047 } else { 2048 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2049 AliasInitWorklist.back().first->setAliasee(C); 2050 else 2051 return Error("Expected a constant"); 2052 } 2053 AliasInitWorklist.pop_back(); 2054 } 2055 2056 while (!FunctionPrefixWorklist.empty()) { 2057 unsigned ValID = FunctionPrefixWorklist.back().second; 2058 if (ValID >= ValueList.size()) { 2059 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2060 } else { 2061 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2062 FunctionPrefixWorklist.back().first->setPrefixData(C); 2063 else 2064 return Error("Expected a constant"); 2065 } 2066 FunctionPrefixWorklist.pop_back(); 2067 } 2068 2069 while (!FunctionPrologueWorklist.empty()) { 2070 unsigned ValID = FunctionPrologueWorklist.back().second; 2071 if (ValID >= ValueList.size()) { 2072 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2073 } else { 2074 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2075 FunctionPrologueWorklist.back().first->setPrologueData(C); 2076 else 2077 return Error("Expected a constant"); 2078 } 2079 FunctionPrologueWorklist.pop_back(); 2080 } 2081 2082 return std::error_code(); 2083 } 2084 2085 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2086 SmallVector<uint64_t, 8> Words(Vals.size()); 2087 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2088 BitcodeReader::decodeSignRotatedValue); 2089 2090 return APInt(TypeBits, Words); 2091 } 2092 2093 std::error_code BitcodeReader::ParseConstants() { 2094 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2095 return Error("Invalid record"); 2096 2097 SmallVector<uint64_t, 64> Record; 2098 2099 // Read all the records for this value table. 2100 Type *CurTy = Type::getInt32Ty(Context); 2101 unsigned NextCstNo = ValueList.size(); 2102 while (1) { 2103 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2104 2105 switch (Entry.Kind) { 2106 case BitstreamEntry::SubBlock: // Handled for us already. 2107 case BitstreamEntry::Error: 2108 return Error("Malformed block"); 2109 case BitstreamEntry::EndBlock: 2110 if (NextCstNo != ValueList.size()) 2111 return Error("Invalid ronstant reference"); 2112 2113 // Once all the constants have been read, go through and resolve forward 2114 // references. 2115 ValueList.ResolveConstantForwardRefs(); 2116 return std::error_code(); 2117 case BitstreamEntry::Record: 2118 // The interesting case. 2119 break; 2120 } 2121 2122 // Read a record. 2123 Record.clear(); 2124 Value *V = nullptr; 2125 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2126 switch (BitCode) { 2127 default: // Default behavior: unknown constant 2128 case bitc::CST_CODE_UNDEF: // UNDEF 2129 V = UndefValue::get(CurTy); 2130 break; 2131 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2132 if (Record.empty()) 2133 return Error("Invalid record"); 2134 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2135 return Error("Invalid record"); 2136 CurTy = TypeList[Record[0]]; 2137 continue; // Skip the ValueList manipulation. 2138 case bitc::CST_CODE_NULL: // NULL 2139 V = Constant::getNullValue(CurTy); 2140 break; 2141 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2142 if (!CurTy->isIntegerTy() || Record.empty()) 2143 return Error("Invalid record"); 2144 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2145 break; 2146 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2147 if (!CurTy->isIntegerTy() || Record.empty()) 2148 return Error("Invalid record"); 2149 2150 APInt VInt = ReadWideAPInt(Record, 2151 cast<IntegerType>(CurTy)->getBitWidth()); 2152 V = ConstantInt::get(Context, VInt); 2153 2154 break; 2155 } 2156 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2157 if (Record.empty()) 2158 return Error("Invalid record"); 2159 if (CurTy->isHalfTy()) 2160 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2161 APInt(16, (uint16_t)Record[0]))); 2162 else if (CurTy->isFloatTy()) 2163 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2164 APInt(32, (uint32_t)Record[0]))); 2165 else if (CurTy->isDoubleTy()) 2166 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2167 APInt(64, Record[0]))); 2168 else if (CurTy->isX86_FP80Ty()) { 2169 // Bits are not stored the same way as a normal i80 APInt, compensate. 2170 uint64_t Rearrange[2]; 2171 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2172 Rearrange[1] = Record[0] >> 48; 2173 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2174 APInt(80, Rearrange))); 2175 } else if (CurTy->isFP128Ty()) 2176 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2177 APInt(128, Record))); 2178 else if (CurTy->isPPC_FP128Ty()) 2179 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2180 APInt(128, Record))); 2181 else 2182 V = UndefValue::get(CurTy); 2183 break; 2184 } 2185 2186 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2187 if (Record.empty()) 2188 return Error("Invalid record"); 2189 2190 unsigned Size = Record.size(); 2191 SmallVector<Constant*, 16> Elts; 2192 2193 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2194 for (unsigned i = 0; i != Size; ++i) 2195 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2196 STy->getElementType(i))); 2197 V = ConstantStruct::get(STy, Elts); 2198 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2199 Type *EltTy = ATy->getElementType(); 2200 for (unsigned i = 0; i != Size; ++i) 2201 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2202 V = ConstantArray::get(ATy, Elts); 2203 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2204 Type *EltTy = VTy->getElementType(); 2205 for (unsigned i = 0; i != Size; ++i) 2206 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2207 V = ConstantVector::get(Elts); 2208 } else { 2209 V = UndefValue::get(CurTy); 2210 } 2211 break; 2212 } 2213 case bitc::CST_CODE_STRING: // STRING: [values] 2214 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2215 if (Record.empty()) 2216 return Error("Invalid record"); 2217 2218 SmallString<16> Elts(Record.begin(), Record.end()); 2219 V = ConstantDataArray::getString(Context, Elts, 2220 BitCode == bitc::CST_CODE_CSTRING); 2221 break; 2222 } 2223 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2224 if (Record.empty()) 2225 return Error("Invalid record"); 2226 2227 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2228 unsigned Size = Record.size(); 2229 2230 if (EltTy->isIntegerTy(8)) { 2231 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2232 if (isa<VectorType>(CurTy)) 2233 V = ConstantDataVector::get(Context, Elts); 2234 else 2235 V = ConstantDataArray::get(Context, Elts); 2236 } else if (EltTy->isIntegerTy(16)) { 2237 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2238 if (isa<VectorType>(CurTy)) 2239 V = ConstantDataVector::get(Context, Elts); 2240 else 2241 V = ConstantDataArray::get(Context, Elts); 2242 } else if (EltTy->isIntegerTy(32)) { 2243 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2244 if (isa<VectorType>(CurTy)) 2245 V = ConstantDataVector::get(Context, Elts); 2246 else 2247 V = ConstantDataArray::get(Context, Elts); 2248 } else if (EltTy->isIntegerTy(64)) { 2249 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2250 if (isa<VectorType>(CurTy)) 2251 V = ConstantDataVector::get(Context, Elts); 2252 else 2253 V = ConstantDataArray::get(Context, Elts); 2254 } else if (EltTy->isFloatTy()) { 2255 SmallVector<float, 16> Elts(Size); 2256 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2257 if (isa<VectorType>(CurTy)) 2258 V = ConstantDataVector::get(Context, Elts); 2259 else 2260 V = ConstantDataArray::get(Context, Elts); 2261 } else if (EltTy->isDoubleTy()) { 2262 SmallVector<double, 16> Elts(Size); 2263 std::transform(Record.begin(), Record.end(), Elts.begin(), 2264 BitsToDouble); 2265 if (isa<VectorType>(CurTy)) 2266 V = ConstantDataVector::get(Context, Elts); 2267 else 2268 V = ConstantDataArray::get(Context, Elts); 2269 } else { 2270 return Error("Invalid type for value"); 2271 } 2272 break; 2273 } 2274 2275 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2276 if (Record.size() < 3) 2277 return Error("Invalid record"); 2278 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 2279 if (Opc < 0) { 2280 V = UndefValue::get(CurTy); // Unknown binop. 2281 } else { 2282 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2283 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2284 unsigned Flags = 0; 2285 if (Record.size() >= 4) { 2286 if (Opc == Instruction::Add || 2287 Opc == Instruction::Sub || 2288 Opc == Instruction::Mul || 2289 Opc == Instruction::Shl) { 2290 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2291 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2292 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2293 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2294 } else if (Opc == Instruction::SDiv || 2295 Opc == Instruction::UDiv || 2296 Opc == Instruction::LShr || 2297 Opc == Instruction::AShr) { 2298 if (Record[3] & (1 << bitc::PEO_EXACT)) 2299 Flags |= SDivOperator::IsExact; 2300 } 2301 } 2302 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2303 } 2304 break; 2305 } 2306 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2307 if (Record.size() < 3) 2308 return Error("Invalid record"); 2309 int Opc = GetDecodedCastOpcode(Record[0]); 2310 if (Opc < 0) { 2311 V = UndefValue::get(CurTy); // Unknown cast. 2312 } else { 2313 Type *OpTy = getTypeByID(Record[1]); 2314 if (!OpTy) 2315 return Error("Invalid record"); 2316 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2317 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2318 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2319 } 2320 break; 2321 } 2322 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2323 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2324 unsigned OpNum = 0; 2325 Type *PointeeType = nullptr; 2326 if (Record.size() % 2) 2327 PointeeType = getTypeByID(Record[OpNum++]); 2328 SmallVector<Constant*, 16> Elts; 2329 while (OpNum != Record.size()) { 2330 Type *ElTy = getTypeByID(Record[OpNum++]); 2331 if (!ElTy) 2332 return Error("Invalid record"); 2333 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2334 } 2335 2336 if (PointeeType && 2337 PointeeType != 2338 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2339 ->getElementType()) 2340 return Error("Explicit gep operator type does not match pointee type " 2341 "of pointer operand"); 2342 2343 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2344 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2345 BitCode == 2346 bitc::CST_CODE_CE_INBOUNDS_GEP); 2347 break; 2348 } 2349 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2350 if (Record.size() < 3) 2351 return Error("Invalid record"); 2352 2353 Type *SelectorTy = Type::getInt1Ty(Context); 2354 2355 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2356 // vector. Otherwise, it must be a single bit. 2357 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2358 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2359 VTy->getNumElements()); 2360 2361 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2362 SelectorTy), 2363 ValueList.getConstantFwdRef(Record[1],CurTy), 2364 ValueList.getConstantFwdRef(Record[2],CurTy)); 2365 break; 2366 } 2367 case bitc::CST_CODE_CE_EXTRACTELT 2368 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2369 if (Record.size() < 3) 2370 return Error("Invalid record"); 2371 VectorType *OpTy = 2372 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2373 if (!OpTy) 2374 return Error("Invalid record"); 2375 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2376 Constant *Op1 = nullptr; 2377 if (Record.size() == 4) { 2378 Type *IdxTy = getTypeByID(Record[2]); 2379 if (!IdxTy) 2380 return Error("Invalid record"); 2381 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2382 } else // TODO: Remove with llvm 4.0 2383 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2384 if (!Op1) 2385 return Error("Invalid record"); 2386 V = ConstantExpr::getExtractElement(Op0, Op1); 2387 break; 2388 } 2389 case bitc::CST_CODE_CE_INSERTELT 2390 : { // CE_INSERTELT: [opval, opval, opty, opval] 2391 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2392 if (Record.size() < 3 || !OpTy) 2393 return Error("Invalid record"); 2394 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2395 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2396 OpTy->getElementType()); 2397 Constant *Op2 = nullptr; 2398 if (Record.size() == 4) { 2399 Type *IdxTy = getTypeByID(Record[2]); 2400 if (!IdxTy) 2401 return Error("Invalid record"); 2402 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2403 } else // TODO: Remove with llvm 4.0 2404 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2405 if (!Op2) 2406 return Error("Invalid record"); 2407 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2408 break; 2409 } 2410 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2411 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2412 if (Record.size() < 3 || !OpTy) 2413 return Error("Invalid record"); 2414 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2415 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2416 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2417 OpTy->getNumElements()); 2418 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2419 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2420 break; 2421 } 2422 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2423 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2424 VectorType *OpTy = 2425 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2426 if (Record.size() < 4 || !RTy || !OpTy) 2427 return Error("Invalid record"); 2428 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2429 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2430 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2431 RTy->getNumElements()); 2432 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2433 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2434 break; 2435 } 2436 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2437 if (Record.size() < 4) 2438 return Error("Invalid record"); 2439 Type *OpTy = getTypeByID(Record[0]); 2440 if (!OpTy) 2441 return Error("Invalid record"); 2442 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2443 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2444 2445 if (OpTy->isFPOrFPVectorTy()) 2446 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2447 else 2448 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2449 break; 2450 } 2451 // This maintains backward compatibility, pre-asm dialect keywords. 2452 // FIXME: Remove with the 4.0 release. 2453 case bitc::CST_CODE_INLINEASM_OLD: { 2454 if (Record.size() < 2) 2455 return Error("Invalid record"); 2456 std::string AsmStr, ConstrStr; 2457 bool HasSideEffects = Record[0] & 1; 2458 bool IsAlignStack = Record[0] >> 1; 2459 unsigned AsmStrSize = Record[1]; 2460 if (2+AsmStrSize >= Record.size()) 2461 return Error("Invalid record"); 2462 unsigned ConstStrSize = Record[2+AsmStrSize]; 2463 if (3+AsmStrSize+ConstStrSize > Record.size()) 2464 return Error("Invalid record"); 2465 2466 for (unsigned i = 0; i != AsmStrSize; ++i) 2467 AsmStr += (char)Record[2+i]; 2468 for (unsigned i = 0; i != ConstStrSize; ++i) 2469 ConstrStr += (char)Record[3+AsmStrSize+i]; 2470 PointerType *PTy = cast<PointerType>(CurTy); 2471 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2472 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2473 break; 2474 } 2475 // This version adds support for the asm dialect keywords (e.g., 2476 // inteldialect). 2477 case bitc::CST_CODE_INLINEASM: { 2478 if (Record.size() < 2) 2479 return Error("Invalid record"); 2480 std::string AsmStr, ConstrStr; 2481 bool HasSideEffects = Record[0] & 1; 2482 bool IsAlignStack = (Record[0] >> 1) & 1; 2483 unsigned AsmDialect = Record[0] >> 2; 2484 unsigned AsmStrSize = Record[1]; 2485 if (2+AsmStrSize >= Record.size()) 2486 return Error("Invalid record"); 2487 unsigned ConstStrSize = Record[2+AsmStrSize]; 2488 if (3+AsmStrSize+ConstStrSize > Record.size()) 2489 return Error("Invalid record"); 2490 2491 for (unsigned i = 0; i != AsmStrSize; ++i) 2492 AsmStr += (char)Record[2+i]; 2493 for (unsigned i = 0; i != ConstStrSize; ++i) 2494 ConstrStr += (char)Record[3+AsmStrSize+i]; 2495 PointerType *PTy = cast<PointerType>(CurTy); 2496 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2497 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2498 InlineAsm::AsmDialect(AsmDialect)); 2499 break; 2500 } 2501 case bitc::CST_CODE_BLOCKADDRESS:{ 2502 if (Record.size() < 3) 2503 return Error("Invalid record"); 2504 Type *FnTy = getTypeByID(Record[0]); 2505 if (!FnTy) 2506 return Error("Invalid record"); 2507 Function *Fn = 2508 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2509 if (!Fn) 2510 return Error("Invalid record"); 2511 2512 // Don't let Fn get dematerialized. 2513 BlockAddressesTaken.insert(Fn); 2514 2515 // If the function is already parsed we can insert the block address right 2516 // away. 2517 BasicBlock *BB; 2518 unsigned BBID = Record[2]; 2519 if (!BBID) 2520 // Invalid reference to entry block. 2521 return Error("Invalid ID"); 2522 if (!Fn->empty()) { 2523 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2524 for (size_t I = 0, E = BBID; I != E; ++I) { 2525 if (BBI == BBE) 2526 return Error("Invalid ID"); 2527 ++BBI; 2528 } 2529 BB = BBI; 2530 } else { 2531 // Otherwise insert a placeholder and remember it so it can be inserted 2532 // when the function is parsed. 2533 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2534 if (FwdBBs.empty()) 2535 BasicBlockFwdRefQueue.push_back(Fn); 2536 if (FwdBBs.size() < BBID + 1) 2537 FwdBBs.resize(BBID + 1); 2538 if (!FwdBBs[BBID]) 2539 FwdBBs[BBID] = BasicBlock::Create(Context); 2540 BB = FwdBBs[BBID]; 2541 } 2542 V = BlockAddress::get(Fn, BB); 2543 break; 2544 } 2545 } 2546 2547 ValueList.AssignValue(V, NextCstNo); 2548 ++NextCstNo; 2549 } 2550 } 2551 2552 std::error_code BitcodeReader::ParseUseLists() { 2553 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2554 return Error("Invalid record"); 2555 2556 // Read all the records. 2557 SmallVector<uint64_t, 64> Record; 2558 while (1) { 2559 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2560 2561 switch (Entry.Kind) { 2562 case BitstreamEntry::SubBlock: // Handled for us already. 2563 case BitstreamEntry::Error: 2564 return Error("Malformed block"); 2565 case BitstreamEntry::EndBlock: 2566 return std::error_code(); 2567 case BitstreamEntry::Record: 2568 // The interesting case. 2569 break; 2570 } 2571 2572 // Read a use list record. 2573 Record.clear(); 2574 bool IsBB = false; 2575 switch (Stream.readRecord(Entry.ID, Record)) { 2576 default: // Default behavior: unknown type. 2577 break; 2578 case bitc::USELIST_CODE_BB: 2579 IsBB = true; 2580 // fallthrough 2581 case bitc::USELIST_CODE_DEFAULT: { 2582 unsigned RecordLength = Record.size(); 2583 if (RecordLength < 3) 2584 // Records should have at least an ID and two indexes. 2585 return Error("Invalid record"); 2586 unsigned ID = Record.back(); 2587 Record.pop_back(); 2588 2589 Value *V; 2590 if (IsBB) { 2591 assert(ID < FunctionBBs.size() && "Basic block not found"); 2592 V = FunctionBBs[ID]; 2593 } else 2594 V = ValueList[ID]; 2595 unsigned NumUses = 0; 2596 SmallDenseMap<const Use *, unsigned, 16> Order; 2597 for (const Use &U : V->uses()) { 2598 if (++NumUses > Record.size()) 2599 break; 2600 Order[&U] = Record[NumUses - 1]; 2601 } 2602 if (Order.size() != Record.size() || NumUses > Record.size()) 2603 // Mismatches can happen if the functions are being materialized lazily 2604 // (out-of-order), or a value has been upgraded. 2605 break; 2606 2607 V->sortUseList([&](const Use &L, const Use &R) { 2608 return Order.lookup(&L) < Order.lookup(&R); 2609 }); 2610 break; 2611 } 2612 } 2613 } 2614 } 2615 2616 /// When we see the block for metadata, remember where it is and then skip it. 2617 /// This lets us lazily deserialize the metadata. 2618 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2619 // Save the current stream state. 2620 uint64_t CurBit = Stream.GetCurrentBitNo(); 2621 DeferredMetadataInfo.push_back(CurBit); 2622 2623 // Skip over the block for now. 2624 if (Stream.SkipBlock()) 2625 return Error("Invalid record"); 2626 return std::error_code(); 2627 } 2628 2629 std::error_code BitcodeReader::materializeMetadata() { 2630 for (uint64_t BitPos : DeferredMetadataInfo) { 2631 // Move the bit stream to the saved position. 2632 Stream.JumpToBit(BitPos); 2633 if (std::error_code EC = ParseMetadata()) 2634 return EC; 2635 } 2636 DeferredMetadataInfo.clear(); 2637 return std::error_code(); 2638 } 2639 2640 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2641 2642 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2643 /// remember where it is and then skip it. This lets us lazily deserialize the 2644 /// functions. 2645 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2646 // Get the function we are talking about. 2647 if (FunctionsWithBodies.empty()) 2648 return Error("Insufficient function protos"); 2649 2650 Function *Fn = FunctionsWithBodies.back(); 2651 FunctionsWithBodies.pop_back(); 2652 2653 // Save the current stream state. 2654 uint64_t CurBit = Stream.GetCurrentBitNo(); 2655 DeferredFunctionInfo[Fn] = CurBit; 2656 2657 // Skip over the function block for now. 2658 if (Stream.SkipBlock()) 2659 return Error("Invalid record"); 2660 return std::error_code(); 2661 } 2662 2663 std::error_code BitcodeReader::GlobalCleanup() { 2664 // Patch the initializers for globals and aliases up. 2665 ResolveGlobalAndAliasInits(); 2666 if (!GlobalInits.empty() || !AliasInits.empty()) 2667 return Error("Malformed global initializer set"); 2668 2669 // Look for intrinsic functions which need to be upgraded at some point 2670 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2671 FI != FE; ++FI) { 2672 Function *NewFn; 2673 if (UpgradeIntrinsicFunction(FI, NewFn)) 2674 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2675 } 2676 2677 // Look for global variables which need to be renamed. 2678 for (Module::global_iterator 2679 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2680 GI != GE;) { 2681 GlobalVariable *GV = GI++; 2682 UpgradeGlobalVariable(GV); 2683 } 2684 2685 // Force deallocation of memory for these vectors to favor the client that 2686 // want lazy deserialization. 2687 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2688 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2689 return std::error_code(); 2690 } 2691 2692 std::error_code BitcodeReader::ParseModule(bool Resume, 2693 bool ShouldLazyLoadMetadata) { 2694 if (Resume) 2695 Stream.JumpToBit(NextUnreadBit); 2696 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2697 return Error("Invalid record"); 2698 2699 SmallVector<uint64_t, 64> Record; 2700 std::vector<std::string> SectionTable; 2701 std::vector<std::string> GCTable; 2702 2703 // Read all the records for this module. 2704 while (1) { 2705 BitstreamEntry Entry = Stream.advance(); 2706 2707 switch (Entry.Kind) { 2708 case BitstreamEntry::Error: 2709 return Error("Malformed block"); 2710 case BitstreamEntry::EndBlock: 2711 return GlobalCleanup(); 2712 2713 case BitstreamEntry::SubBlock: 2714 switch (Entry.ID) { 2715 default: // Skip unknown content. 2716 if (Stream.SkipBlock()) 2717 return Error("Invalid record"); 2718 break; 2719 case bitc::BLOCKINFO_BLOCK_ID: 2720 if (Stream.ReadBlockInfoBlock()) 2721 return Error("Malformed block"); 2722 break; 2723 case bitc::PARAMATTR_BLOCK_ID: 2724 if (std::error_code EC = ParseAttributeBlock()) 2725 return EC; 2726 break; 2727 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2728 if (std::error_code EC = ParseAttributeGroupBlock()) 2729 return EC; 2730 break; 2731 case bitc::TYPE_BLOCK_ID_NEW: 2732 if (std::error_code EC = ParseTypeTable()) 2733 return EC; 2734 break; 2735 case bitc::VALUE_SYMTAB_BLOCK_ID: 2736 if (std::error_code EC = ParseValueSymbolTable()) 2737 return EC; 2738 SeenValueSymbolTable = true; 2739 break; 2740 case bitc::CONSTANTS_BLOCK_ID: 2741 if (std::error_code EC = ParseConstants()) 2742 return EC; 2743 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2744 return EC; 2745 break; 2746 case bitc::METADATA_BLOCK_ID: 2747 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2748 if (std::error_code EC = rememberAndSkipMetadata()) 2749 return EC; 2750 break; 2751 } 2752 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2753 if (std::error_code EC = ParseMetadata()) 2754 return EC; 2755 break; 2756 case bitc::FUNCTION_BLOCK_ID: 2757 // If this is the first function body we've seen, reverse the 2758 // FunctionsWithBodies list. 2759 if (!SeenFirstFunctionBody) { 2760 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2761 if (std::error_code EC = GlobalCleanup()) 2762 return EC; 2763 SeenFirstFunctionBody = true; 2764 } 2765 2766 if (std::error_code EC = RememberAndSkipFunctionBody()) 2767 return EC; 2768 // For streaming bitcode, suspend parsing when we reach the function 2769 // bodies. Subsequent materialization calls will resume it when 2770 // necessary. For streaming, the function bodies must be at the end of 2771 // the bitcode. If the bitcode file is old, the symbol table will be 2772 // at the end instead and will not have been seen yet. In this case, 2773 // just finish the parse now. 2774 if (LazyStreamer && SeenValueSymbolTable) { 2775 NextUnreadBit = Stream.GetCurrentBitNo(); 2776 return std::error_code(); 2777 } 2778 break; 2779 case bitc::USELIST_BLOCK_ID: 2780 if (std::error_code EC = ParseUseLists()) 2781 return EC; 2782 break; 2783 } 2784 continue; 2785 2786 case BitstreamEntry::Record: 2787 // The interesting case. 2788 break; 2789 } 2790 2791 2792 // Read a record. 2793 switch (Stream.readRecord(Entry.ID, Record)) { 2794 default: break; // Default behavior, ignore unknown content. 2795 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2796 if (Record.size() < 1) 2797 return Error("Invalid record"); 2798 // Only version #0 and #1 are supported so far. 2799 unsigned module_version = Record[0]; 2800 switch (module_version) { 2801 default: 2802 return Error("Invalid value"); 2803 case 0: 2804 UseRelativeIDs = false; 2805 break; 2806 case 1: 2807 UseRelativeIDs = true; 2808 break; 2809 } 2810 break; 2811 } 2812 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2813 std::string S; 2814 if (ConvertToString(Record, 0, S)) 2815 return Error("Invalid record"); 2816 TheModule->setTargetTriple(S); 2817 break; 2818 } 2819 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2820 std::string S; 2821 if (ConvertToString(Record, 0, S)) 2822 return Error("Invalid record"); 2823 TheModule->setDataLayout(S); 2824 break; 2825 } 2826 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2827 std::string S; 2828 if (ConvertToString(Record, 0, S)) 2829 return Error("Invalid record"); 2830 TheModule->setModuleInlineAsm(S); 2831 break; 2832 } 2833 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2834 // FIXME: Remove in 4.0. 2835 std::string S; 2836 if (ConvertToString(Record, 0, S)) 2837 return Error("Invalid record"); 2838 // Ignore value. 2839 break; 2840 } 2841 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2842 std::string S; 2843 if (ConvertToString(Record, 0, S)) 2844 return Error("Invalid record"); 2845 SectionTable.push_back(S); 2846 break; 2847 } 2848 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2849 std::string S; 2850 if (ConvertToString(Record, 0, S)) 2851 return Error("Invalid record"); 2852 GCTable.push_back(S); 2853 break; 2854 } 2855 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2856 if (Record.size() < 2) 2857 return Error("Invalid record"); 2858 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2859 unsigned ComdatNameSize = Record[1]; 2860 std::string ComdatName; 2861 ComdatName.reserve(ComdatNameSize); 2862 for (unsigned i = 0; i != ComdatNameSize; ++i) 2863 ComdatName += (char)Record[2 + i]; 2864 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2865 C->setSelectionKind(SK); 2866 ComdatList.push_back(C); 2867 break; 2868 } 2869 // GLOBALVAR: [pointer type, isconst, initid, 2870 // linkage, alignment, section, visibility, threadlocal, 2871 // unnamed_addr, externally_initialized, dllstorageclass, 2872 // comdat] 2873 case bitc::MODULE_CODE_GLOBALVAR: { 2874 if (Record.size() < 6) 2875 return Error("Invalid record"); 2876 Type *Ty = getTypeByID(Record[0]); 2877 if (!Ty) 2878 return Error("Invalid record"); 2879 bool isConstant = Record[1] & 1; 2880 bool explicitType = Record[1] & 2; 2881 unsigned AddressSpace; 2882 if (explicitType) { 2883 AddressSpace = Record[1] >> 2; 2884 } else { 2885 if (!Ty->isPointerTy()) 2886 return Error("Invalid type for value"); 2887 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2888 Ty = cast<PointerType>(Ty)->getElementType(); 2889 } 2890 2891 uint64_t RawLinkage = Record[3]; 2892 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2893 unsigned Alignment; 2894 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2895 return EC; 2896 std::string Section; 2897 if (Record[5]) { 2898 if (Record[5]-1 >= SectionTable.size()) 2899 return Error("Invalid ID"); 2900 Section = SectionTable[Record[5]-1]; 2901 } 2902 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2903 // Local linkage must have default visibility. 2904 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2905 // FIXME: Change to an error if non-default in 4.0. 2906 Visibility = GetDecodedVisibility(Record[6]); 2907 2908 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2909 if (Record.size() > 7) 2910 TLM = GetDecodedThreadLocalMode(Record[7]); 2911 2912 bool UnnamedAddr = false; 2913 if (Record.size() > 8) 2914 UnnamedAddr = Record[8]; 2915 2916 bool ExternallyInitialized = false; 2917 if (Record.size() > 9) 2918 ExternallyInitialized = Record[9]; 2919 2920 GlobalVariable *NewGV = 2921 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2922 TLM, AddressSpace, ExternallyInitialized); 2923 NewGV->setAlignment(Alignment); 2924 if (!Section.empty()) 2925 NewGV->setSection(Section); 2926 NewGV->setVisibility(Visibility); 2927 NewGV->setUnnamedAddr(UnnamedAddr); 2928 2929 if (Record.size() > 10) 2930 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2931 else 2932 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2933 2934 ValueList.push_back(NewGV); 2935 2936 // Remember which value to use for the global initializer. 2937 if (unsigned InitID = Record[2]) 2938 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2939 2940 if (Record.size() > 11) { 2941 if (unsigned ComdatID = Record[11]) { 2942 assert(ComdatID <= ComdatList.size()); 2943 NewGV->setComdat(ComdatList[ComdatID - 1]); 2944 } 2945 } else if (hasImplicitComdat(RawLinkage)) { 2946 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2947 } 2948 break; 2949 } 2950 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2951 // alignment, section, visibility, gc, unnamed_addr, 2952 // prologuedata, dllstorageclass, comdat, prefixdata] 2953 case bitc::MODULE_CODE_FUNCTION: { 2954 if (Record.size() < 8) 2955 return Error("Invalid record"); 2956 Type *Ty = getTypeByID(Record[0]); 2957 if (!Ty) 2958 return Error("Invalid record"); 2959 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2960 Ty = PTy->getElementType(); 2961 auto *FTy = dyn_cast<FunctionType>(Ty); 2962 if (!FTy) 2963 return Error("Invalid type for value"); 2964 2965 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2966 "", TheModule); 2967 2968 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2969 bool isProto = Record[2]; 2970 uint64_t RawLinkage = Record[3]; 2971 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2972 Func->setAttributes(getAttributes(Record[4])); 2973 2974 unsigned Alignment; 2975 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 2976 return EC; 2977 Func->setAlignment(Alignment); 2978 if (Record[6]) { 2979 if (Record[6]-1 >= SectionTable.size()) 2980 return Error("Invalid ID"); 2981 Func->setSection(SectionTable[Record[6]-1]); 2982 } 2983 // Local linkage must have default visibility. 2984 if (!Func->hasLocalLinkage()) 2985 // FIXME: Change to an error if non-default in 4.0. 2986 Func->setVisibility(GetDecodedVisibility(Record[7])); 2987 if (Record.size() > 8 && Record[8]) { 2988 if (Record[8]-1 > GCTable.size()) 2989 return Error("Invalid ID"); 2990 Func->setGC(GCTable[Record[8]-1].c_str()); 2991 } 2992 bool UnnamedAddr = false; 2993 if (Record.size() > 9) 2994 UnnamedAddr = Record[9]; 2995 Func->setUnnamedAddr(UnnamedAddr); 2996 if (Record.size() > 10 && Record[10] != 0) 2997 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2998 2999 if (Record.size() > 11) 3000 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 3001 else 3002 UpgradeDLLImportExportLinkage(Func, RawLinkage); 3003 3004 if (Record.size() > 12) { 3005 if (unsigned ComdatID = Record[12]) { 3006 assert(ComdatID <= ComdatList.size()); 3007 Func->setComdat(ComdatList[ComdatID - 1]); 3008 } 3009 } else if (hasImplicitComdat(RawLinkage)) { 3010 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3011 } 3012 3013 if (Record.size() > 13 && Record[13] != 0) 3014 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3015 3016 ValueList.push_back(Func); 3017 3018 // If this is a function with a body, remember the prototype we are 3019 // creating now, so that we can match up the body with them later. 3020 if (!isProto) { 3021 Func->setIsMaterializable(true); 3022 FunctionsWithBodies.push_back(Func); 3023 if (LazyStreamer) 3024 DeferredFunctionInfo[Func] = 0; 3025 } 3026 break; 3027 } 3028 // ALIAS: [alias type, aliasee val#, linkage] 3029 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 3030 case bitc::MODULE_CODE_ALIAS: { 3031 if (Record.size() < 3) 3032 return Error("Invalid record"); 3033 Type *Ty = getTypeByID(Record[0]); 3034 if (!Ty) 3035 return Error("Invalid record"); 3036 auto *PTy = dyn_cast<PointerType>(Ty); 3037 if (!PTy) 3038 return Error("Invalid type for value"); 3039 3040 auto *NewGA = 3041 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 3042 getDecodedLinkage(Record[2]), "", TheModule); 3043 // Old bitcode files didn't have visibility field. 3044 // Local linkage must have default visibility. 3045 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3046 // FIXME: Change to an error if non-default in 4.0. 3047 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 3048 if (Record.size() > 4) 3049 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 3050 else 3051 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 3052 if (Record.size() > 5) 3053 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 3054 if (Record.size() > 6) 3055 NewGA->setUnnamedAddr(Record[6]); 3056 ValueList.push_back(NewGA); 3057 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3058 break; 3059 } 3060 /// MODULE_CODE_PURGEVALS: [numvals] 3061 case bitc::MODULE_CODE_PURGEVALS: 3062 // Trim down the value list to the specified size. 3063 if (Record.size() < 1 || Record[0] > ValueList.size()) 3064 return Error("Invalid record"); 3065 ValueList.shrinkTo(Record[0]); 3066 break; 3067 } 3068 Record.clear(); 3069 } 3070 } 3071 3072 std::error_code BitcodeReader::ParseBitcodeInto(Module *M, 3073 bool ShouldLazyLoadMetadata) { 3074 TheModule = nullptr; 3075 3076 if (std::error_code EC = InitStream()) 3077 return EC; 3078 3079 // Sniff for the signature. 3080 if (Stream.Read(8) != 'B' || 3081 Stream.Read(8) != 'C' || 3082 Stream.Read(4) != 0x0 || 3083 Stream.Read(4) != 0xC || 3084 Stream.Read(4) != 0xE || 3085 Stream.Read(4) != 0xD) 3086 return Error("Invalid bitcode signature"); 3087 3088 // We expect a number of well-defined blocks, though we don't necessarily 3089 // need to understand them all. 3090 while (1) { 3091 if (Stream.AtEndOfStream()) { 3092 if (TheModule) 3093 return std::error_code(); 3094 // We didn't really read a proper Module. 3095 return Error("Malformed IR file"); 3096 } 3097 3098 BitstreamEntry Entry = 3099 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3100 3101 switch (Entry.Kind) { 3102 case BitstreamEntry::Error: 3103 return Error("Malformed block"); 3104 case BitstreamEntry::EndBlock: 3105 return std::error_code(); 3106 3107 case BitstreamEntry::SubBlock: 3108 switch (Entry.ID) { 3109 case bitc::BLOCKINFO_BLOCK_ID: 3110 if (Stream.ReadBlockInfoBlock()) 3111 return Error("Malformed block"); 3112 break; 3113 case bitc::MODULE_BLOCK_ID: 3114 // Reject multiple MODULE_BLOCK's in a single bitstream. 3115 if (TheModule) 3116 return Error("Invalid multiple blocks"); 3117 TheModule = M; 3118 if (std::error_code EC = ParseModule(false, ShouldLazyLoadMetadata)) 3119 return EC; 3120 if (LazyStreamer) 3121 return std::error_code(); 3122 break; 3123 default: 3124 if (Stream.SkipBlock()) 3125 return Error("Invalid record"); 3126 break; 3127 } 3128 continue; 3129 case BitstreamEntry::Record: 3130 // There should be no records in the top-level of blocks. 3131 3132 // The ranlib in Xcode 4 will align archive members by appending newlines 3133 // to the end of them. If this file size is a multiple of 4 but not 8, we 3134 // have to read and ignore these final 4 bytes :-( 3135 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 3136 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 3137 Stream.AtEndOfStream()) 3138 return std::error_code(); 3139 3140 return Error("Invalid record"); 3141 } 3142 } 3143 } 3144 3145 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3146 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3147 return Error("Invalid record"); 3148 3149 SmallVector<uint64_t, 64> Record; 3150 3151 std::string Triple; 3152 // Read all the records for this module. 3153 while (1) { 3154 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3155 3156 switch (Entry.Kind) { 3157 case BitstreamEntry::SubBlock: // Handled for us already. 3158 case BitstreamEntry::Error: 3159 return Error("Malformed block"); 3160 case BitstreamEntry::EndBlock: 3161 return Triple; 3162 case BitstreamEntry::Record: 3163 // The interesting case. 3164 break; 3165 } 3166 3167 // Read a record. 3168 switch (Stream.readRecord(Entry.ID, Record)) { 3169 default: break; // Default behavior, ignore unknown content. 3170 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3171 std::string S; 3172 if (ConvertToString(Record, 0, S)) 3173 return Error("Invalid record"); 3174 Triple = S; 3175 break; 3176 } 3177 } 3178 Record.clear(); 3179 } 3180 llvm_unreachable("Exit infinite loop"); 3181 } 3182 3183 ErrorOr<std::string> BitcodeReader::parseTriple() { 3184 if (std::error_code EC = InitStream()) 3185 return EC; 3186 3187 // Sniff for the signature. 3188 if (Stream.Read(8) != 'B' || 3189 Stream.Read(8) != 'C' || 3190 Stream.Read(4) != 0x0 || 3191 Stream.Read(4) != 0xC || 3192 Stream.Read(4) != 0xE || 3193 Stream.Read(4) != 0xD) 3194 return Error("Invalid bitcode signature"); 3195 3196 // We expect a number of well-defined blocks, though we don't necessarily 3197 // need to understand them all. 3198 while (1) { 3199 BitstreamEntry Entry = Stream.advance(); 3200 3201 switch (Entry.Kind) { 3202 case BitstreamEntry::Error: 3203 return Error("Malformed block"); 3204 case BitstreamEntry::EndBlock: 3205 return std::error_code(); 3206 3207 case BitstreamEntry::SubBlock: 3208 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3209 return parseModuleTriple(); 3210 3211 // Ignore other sub-blocks. 3212 if (Stream.SkipBlock()) 3213 return Error("Malformed block"); 3214 continue; 3215 3216 case BitstreamEntry::Record: 3217 Stream.skipRecord(Entry.ID); 3218 continue; 3219 } 3220 } 3221 } 3222 3223 /// ParseMetadataAttachment - Parse metadata attachments. 3224 std::error_code BitcodeReader::ParseMetadataAttachment(Function &F) { 3225 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3226 return Error("Invalid record"); 3227 3228 SmallVector<uint64_t, 64> Record; 3229 while (1) { 3230 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3231 3232 switch (Entry.Kind) { 3233 case BitstreamEntry::SubBlock: // Handled for us already. 3234 case BitstreamEntry::Error: 3235 return Error("Malformed block"); 3236 case BitstreamEntry::EndBlock: 3237 return std::error_code(); 3238 case BitstreamEntry::Record: 3239 // The interesting case. 3240 break; 3241 } 3242 3243 // Read a metadata attachment record. 3244 Record.clear(); 3245 switch (Stream.readRecord(Entry.ID, Record)) { 3246 default: // Default behavior: ignore. 3247 break; 3248 case bitc::METADATA_ATTACHMENT: { 3249 unsigned RecordLength = Record.size(); 3250 if (Record.empty()) 3251 return Error("Invalid record"); 3252 if (RecordLength % 2 == 0) { 3253 // A function attachment. 3254 for (unsigned I = 0; I != RecordLength; I += 2) { 3255 auto K = MDKindMap.find(Record[I]); 3256 if (K == MDKindMap.end()) 3257 return Error("Invalid ID"); 3258 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3259 F.setMetadata(K->second, cast<MDNode>(MD)); 3260 } 3261 continue; 3262 } 3263 3264 // An instruction attachment. 3265 Instruction *Inst = InstructionList[Record[0]]; 3266 for (unsigned i = 1; i != RecordLength; i = i+2) { 3267 unsigned Kind = Record[i]; 3268 DenseMap<unsigned, unsigned>::iterator I = 3269 MDKindMap.find(Kind); 3270 if (I == MDKindMap.end()) 3271 return Error("Invalid ID"); 3272 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3273 if (isa<LocalAsMetadata>(Node)) 3274 // Drop the attachment. This used to be legal, but there's no 3275 // upgrade path. 3276 break; 3277 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3278 if (I->second == LLVMContext::MD_tbaa) 3279 InstsWithTBAATag.push_back(Inst); 3280 } 3281 break; 3282 } 3283 } 3284 } 3285 } 3286 3287 /// ParseFunctionBody - Lazily parse the specified function body block. 3288 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 3289 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3290 return Error("Invalid record"); 3291 3292 InstructionList.clear(); 3293 unsigned ModuleValueListSize = ValueList.size(); 3294 unsigned ModuleMDValueListSize = MDValueList.size(); 3295 3296 // Add all the function arguments to the value table. 3297 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3298 ValueList.push_back(I); 3299 3300 unsigned NextValueNo = ValueList.size(); 3301 BasicBlock *CurBB = nullptr; 3302 unsigned CurBBNo = 0; 3303 3304 DebugLoc LastLoc; 3305 auto getLastInstruction = [&]() -> Instruction * { 3306 if (CurBB && !CurBB->empty()) 3307 return &CurBB->back(); 3308 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3309 !FunctionBBs[CurBBNo - 1]->empty()) 3310 return &FunctionBBs[CurBBNo - 1]->back(); 3311 return nullptr; 3312 }; 3313 3314 // Read all the records. 3315 SmallVector<uint64_t, 64> Record; 3316 while (1) { 3317 BitstreamEntry Entry = Stream.advance(); 3318 3319 switch (Entry.Kind) { 3320 case BitstreamEntry::Error: 3321 return Error("Malformed block"); 3322 case BitstreamEntry::EndBlock: 3323 goto OutOfRecordLoop; 3324 3325 case BitstreamEntry::SubBlock: 3326 switch (Entry.ID) { 3327 default: // Skip unknown content. 3328 if (Stream.SkipBlock()) 3329 return Error("Invalid record"); 3330 break; 3331 case bitc::CONSTANTS_BLOCK_ID: 3332 if (std::error_code EC = ParseConstants()) 3333 return EC; 3334 NextValueNo = ValueList.size(); 3335 break; 3336 case bitc::VALUE_SYMTAB_BLOCK_ID: 3337 if (std::error_code EC = ParseValueSymbolTable()) 3338 return EC; 3339 break; 3340 case bitc::METADATA_ATTACHMENT_ID: 3341 if (std::error_code EC = ParseMetadataAttachment(*F)) 3342 return EC; 3343 break; 3344 case bitc::METADATA_BLOCK_ID: 3345 if (std::error_code EC = ParseMetadata()) 3346 return EC; 3347 break; 3348 case bitc::USELIST_BLOCK_ID: 3349 if (std::error_code EC = ParseUseLists()) 3350 return EC; 3351 break; 3352 } 3353 continue; 3354 3355 case BitstreamEntry::Record: 3356 // The interesting case. 3357 break; 3358 } 3359 3360 // Read a record. 3361 Record.clear(); 3362 Instruction *I = nullptr; 3363 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3364 switch (BitCode) { 3365 default: // Default behavior: reject 3366 return Error("Invalid value"); 3367 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3368 if (Record.size() < 1 || Record[0] == 0) 3369 return Error("Invalid record"); 3370 // Create all the basic blocks for the function. 3371 FunctionBBs.resize(Record[0]); 3372 3373 // See if anything took the address of blocks in this function. 3374 auto BBFRI = BasicBlockFwdRefs.find(F); 3375 if (BBFRI == BasicBlockFwdRefs.end()) { 3376 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3377 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3378 } else { 3379 auto &BBRefs = BBFRI->second; 3380 // Check for invalid basic block references. 3381 if (BBRefs.size() > FunctionBBs.size()) 3382 return Error("Invalid ID"); 3383 assert(!BBRefs.empty() && "Unexpected empty array"); 3384 assert(!BBRefs.front() && "Invalid reference to entry block"); 3385 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3386 ++I) 3387 if (I < RE && BBRefs[I]) { 3388 BBRefs[I]->insertInto(F); 3389 FunctionBBs[I] = BBRefs[I]; 3390 } else { 3391 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3392 } 3393 3394 // Erase from the table. 3395 BasicBlockFwdRefs.erase(BBFRI); 3396 } 3397 3398 CurBB = FunctionBBs[0]; 3399 continue; 3400 } 3401 3402 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3403 // This record indicates that the last instruction is at the same 3404 // location as the previous instruction with a location. 3405 I = getLastInstruction(); 3406 3407 if (!I) 3408 return Error("Invalid record"); 3409 I->setDebugLoc(LastLoc); 3410 I = nullptr; 3411 continue; 3412 3413 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3414 I = getLastInstruction(); 3415 if (!I || Record.size() < 4) 3416 return Error("Invalid record"); 3417 3418 unsigned Line = Record[0], Col = Record[1]; 3419 unsigned ScopeID = Record[2], IAID = Record[3]; 3420 3421 MDNode *Scope = nullptr, *IA = nullptr; 3422 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3423 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3424 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3425 I->setDebugLoc(LastLoc); 3426 I = nullptr; 3427 continue; 3428 } 3429 3430 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3431 unsigned OpNum = 0; 3432 Value *LHS, *RHS; 3433 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3434 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3435 OpNum+1 > Record.size()) 3436 return Error("Invalid record"); 3437 3438 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3439 if (Opc == -1) 3440 return Error("Invalid record"); 3441 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3442 InstructionList.push_back(I); 3443 if (OpNum < Record.size()) { 3444 if (Opc == Instruction::Add || 3445 Opc == Instruction::Sub || 3446 Opc == Instruction::Mul || 3447 Opc == Instruction::Shl) { 3448 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3449 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3450 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3451 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3452 } else if (Opc == Instruction::SDiv || 3453 Opc == Instruction::UDiv || 3454 Opc == Instruction::LShr || 3455 Opc == Instruction::AShr) { 3456 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3457 cast<BinaryOperator>(I)->setIsExact(true); 3458 } else if (isa<FPMathOperator>(I)) { 3459 FastMathFlags FMF; 3460 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3461 FMF.setUnsafeAlgebra(); 3462 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3463 FMF.setNoNaNs(); 3464 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3465 FMF.setNoInfs(); 3466 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3467 FMF.setNoSignedZeros(); 3468 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3469 FMF.setAllowReciprocal(); 3470 if (FMF.any()) 3471 I->setFastMathFlags(FMF); 3472 } 3473 3474 } 3475 break; 3476 } 3477 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3478 unsigned OpNum = 0; 3479 Value *Op; 3480 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3481 OpNum+2 != Record.size()) 3482 return Error("Invalid record"); 3483 3484 Type *ResTy = getTypeByID(Record[OpNum]); 3485 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 3486 if (Opc == -1 || !ResTy) 3487 return Error("Invalid record"); 3488 Instruction *Temp = nullptr; 3489 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3490 if (Temp) { 3491 InstructionList.push_back(Temp); 3492 CurBB->getInstList().push_back(Temp); 3493 } 3494 } else { 3495 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3496 } 3497 InstructionList.push_back(I); 3498 break; 3499 } 3500 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3501 case bitc::FUNC_CODE_INST_GEP_OLD: 3502 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3503 unsigned OpNum = 0; 3504 3505 Type *Ty; 3506 bool InBounds; 3507 3508 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3509 InBounds = Record[OpNum++]; 3510 Ty = getTypeByID(Record[OpNum++]); 3511 } else { 3512 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3513 Ty = nullptr; 3514 } 3515 3516 Value *BasePtr; 3517 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3518 return Error("Invalid record"); 3519 3520 if (Ty && 3521 Ty != 3522 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3523 ->getElementType()) 3524 return Error( 3525 "Explicit gep type does not match pointee type of pointer operand"); 3526 3527 SmallVector<Value*, 16> GEPIdx; 3528 while (OpNum != Record.size()) { 3529 Value *Op; 3530 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3531 return Error("Invalid record"); 3532 GEPIdx.push_back(Op); 3533 } 3534 3535 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3536 3537 InstructionList.push_back(I); 3538 if (InBounds) 3539 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3540 break; 3541 } 3542 3543 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3544 // EXTRACTVAL: [opty, opval, n x indices] 3545 unsigned OpNum = 0; 3546 Value *Agg; 3547 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3548 return Error("Invalid record"); 3549 3550 SmallVector<unsigned, 4> EXTRACTVALIdx; 3551 Type *CurTy = Agg->getType(); 3552 for (unsigned RecSize = Record.size(); 3553 OpNum != RecSize; ++OpNum) { 3554 bool IsArray = CurTy->isArrayTy(); 3555 bool IsStruct = CurTy->isStructTy(); 3556 uint64_t Index = Record[OpNum]; 3557 3558 if (!IsStruct && !IsArray) 3559 return Error("EXTRACTVAL: Invalid type"); 3560 if ((unsigned)Index != Index) 3561 return Error("Invalid value"); 3562 if (IsStruct && Index >= CurTy->subtypes().size()) 3563 return Error("EXTRACTVAL: Invalid struct index"); 3564 if (IsArray && Index >= CurTy->getArrayNumElements()) 3565 return Error("EXTRACTVAL: Invalid array index"); 3566 EXTRACTVALIdx.push_back((unsigned)Index); 3567 3568 if (IsStruct) 3569 CurTy = CurTy->subtypes()[Index]; 3570 else 3571 CurTy = CurTy->subtypes()[0]; 3572 } 3573 3574 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3575 InstructionList.push_back(I); 3576 break; 3577 } 3578 3579 case bitc::FUNC_CODE_INST_INSERTVAL: { 3580 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3581 unsigned OpNum = 0; 3582 Value *Agg; 3583 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3584 return Error("Invalid record"); 3585 Value *Val; 3586 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3587 return Error("Invalid record"); 3588 3589 SmallVector<unsigned, 4> INSERTVALIdx; 3590 Type *CurTy = Agg->getType(); 3591 for (unsigned RecSize = Record.size(); 3592 OpNum != RecSize; ++OpNum) { 3593 bool IsArray = CurTy->isArrayTy(); 3594 bool IsStruct = CurTy->isStructTy(); 3595 uint64_t Index = Record[OpNum]; 3596 3597 if (!IsStruct && !IsArray) 3598 return Error("INSERTVAL: Invalid type"); 3599 if (!CurTy->isStructTy() && !CurTy->isArrayTy()) 3600 return Error("Invalid type"); 3601 if ((unsigned)Index != Index) 3602 return Error("Invalid value"); 3603 if (IsStruct && Index >= CurTy->subtypes().size()) 3604 return Error("INSERTVAL: Invalid struct index"); 3605 if (IsArray && Index >= CurTy->getArrayNumElements()) 3606 return Error("INSERTVAL: Invalid array index"); 3607 3608 INSERTVALIdx.push_back((unsigned)Index); 3609 if (IsStruct) 3610 CurTy = CurTy->subtypes()[Index]; 3611 else 3612 CurTy = CurTy->subtypes()[0]; 3613 } 3614 3615 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3616 InstructionList.push_back(I); 3617 break; 3618 } 3619 3620 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3621 // obsolete form of select 3622 // handles select i1 ... in old bitcode 3623 unsigned OpNum = 0; 3624 Value *TrueVal, *FalseVal, *Cond; 3625 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3626 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3627 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3628 return Error("Invalid record"); 3629 3630 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3631 InstructionList.push_back(I); 3632 break; 3633 } 3634 3635 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3636 // new form of select 3637 // handles select i1 or select [N x i1] 3638 unsigned OpNum = 0; 3639 Value *TrueVal, *FalseVal, *Cond; 3640 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3641 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3642 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3643 return Error("Invalid record"); 3644 3645 // select condition can be either i1 or [N x i1] 3646 if (VectorType* vector_type = 3647 dyn_cast<VectorType>(Cond->getType())) { 3648 // expect <n x i1> 3649 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3650 return Error("Invalid type for value"); 3651 } else { 3652 // expect i1 3653 if (Cond->getType() != Type::getInt1Ty(Context)) 3654 return Error("Invalid type for value"); 3655 } 3656 3657 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3658 InstructionList.push_back(I); 3659 break; 3660 } 3661 3662 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3663 unsigned OpNum = 0; 3664 Value *Vec, *Idx; 3665 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3666 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3667 return Error("Invalid record"); 3668 if (!Vec->getType()->isVectorTy()) 3669 return Error("Invalid type for value"); 3670 I = ExtractElementInst::Create(Vec, Idx); 3671 InstructionList.push_back(I); 3672 break; 3673 } 3674 3675 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3676 unsigned OpNum = 0; 3677 Value *Vec, *Elt, *Idx; 3678 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3679 return Error("Invalid record"); 3680 if (!Vec->getType()->isVectorTy()) 3681 return Error("Invalid type for value"); 3682 if (popValue(Record, OpNum, NextValueNo, 3683 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3684 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3685 return Error("Invalid record"); 3686 I = InsertElementInst::Create(Vec, Elt, Idx); 3687 InstructionList.push_back(I); 3688 break; 3689 } 3690 3691 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3692 unsigned OpNum = 0; 3693 Value *Vec1, *Vec2, *Mask; 3694 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3695 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3696 return Error("Invalid record"); 3697 3698 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3699 return Error("Invalid record"); 3700 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3701 return Error("Invalid type for value"); 3702 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3703 InstructionList.push_back(I); 3704 break; 3705 } 3706 3707 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3708 // Old form of ICmp/FCmp returning bool 3709 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3710 // both legal on vectors but had different behaviour. 3711 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3712 // FCmp/ICmp returning bool or vector of bool 3713 3714 unsigned OpNum = 0; 3715 Value *LHS, *RHS; 3716 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3717 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3718 OpNum+1 != Record.size()) 3719 return Error("Invalid record"); 3720 3721 if (LHS->getType()->isFPOrFPVectorTy()) 3722 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3723 else 3724 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3725 InstructionList.push_back(I); 3726 break; 3727 } 3728 3729 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3730 { 3731 unsigned Size = Record.size(); 3732 if (Size == 0) { 3733 I = ReturnInst::Create(Context); 3734 InstructionList.push_back(I); 3735 break; 3736 } 3737 3738 unsigned OpNum = 0; 3739 Value *Op = nullptr; 3740 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3741 return Error("Invalid record"); 3742 if (OpNum != Record.size()) 3743 return Error("Invalid record"); 3744 3745 I = ReturnInst::Create(Context, Op); 3746 InstructionList.push_back(I); 3747 break; 3748 } 3749 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3750 if (Record.size() != 1 && Record.size() != 3) 3751 return Error("Invalid record"); 3752 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3753 if (!TrueDest) 3754 return Error("Invalid record"); 3755 3756 if (Record.size() == 1) { 3757 I = BranchInst::Create(TrueDest); 3758 InstructionList.push_back(I); 3759 } 3760 else { 3761 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3762 Value *Cond = getValue(Record, 2, NextValueNo, 3763 Type::getInt1Ty(Context)); 3764 if (!FalseDest || !Cond) 3765 return Error("Invalid record"); 3766 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3767 InstructionList.push_back(I); 3768 } 3769 break; 3770 } 3771 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3772 // Check magic 3773 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3774 // "New" SwitchInst format with case ranges. The changes to write this 3775 // format were reverted but we still recognize bitcode that uses it. 3776 // Hopefully someday we will have support for case ranges and can use 3777 // this format again. 3778 3779 Type *OpTy = getTypeByID(Record[1]); 3780 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3781 3782 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3783 BasicBlock *Default = getBasicBlock(Record[3]); 3784 if (!OpTy || !Cond || !Default) 3785 return Error("Invalid record"); 3786 3787 unsigned NumCases = Record[4]; 3788 3789 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3790 InstructionList.push_back(SI); 3791 3792 unsigned CurIdx = 5; 3793 for (unsigned i = 0; i != NumCases; ++i) { 3794 SmallVector<ConstantInt*, 1> CaseVals; 3795 unsigned NumItems = Record[CurIdx++]; 3796 for (unsigned ci = 0; ci != NumItems; ++ci) { 3797 bool isSingleNumber = Record[CurIdx++]; 3798 3799 APInt Low; 3800 unsigned ActiveWords = 1; 3801 if (ValueBitWidth > 64) 3802 ActiveWords = Record[CurIdx++]; 3803 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3804 ValueBitWidth); 3805 CurIdx += ActiveWords; 3806 3807 if (!isSingleNumber) { 3808 ActiveWords = 1; 3809 if (ValueBitWidth > 64) 3810 ActiveWords = Record[CurIdx++]; 3811 APInt High = 3812 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3813 ValueBitWidth); 3814 CurIdx += ActiveWords; 3815 3816 // FIXME: It is not clear whether values in the range should be 3817 // compared as signed or unsigned values. The partially 3818 // implemented changes that used this format in the past used 3819 // unsigned comparisons. 3820 for ( ; Low.ule(High); ++Low) 3821 CaseVals.push_back(ConstantInt::get(Context, Low)); 3822 } else 3823 CaseVals.push_back(ConstantInt::get(Context, Low)); 3824 } 3825 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3826 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3827 cve = CaseVals.end(); cvi != cve; ++cvi) 3828 SI->addCase(*cvi, DestBB); 3829 } 3830 I = SI; 3831 break; 3832 } 3833 3834 // Old SwitchInst format without case ranges. 3835 3836 if (Record.size() < 3 || (Record.size() & 1) == 0) 3837 return Error("Invalid record"); 3838 Type *OpTy = getTypeByID(Record[0]); 3839 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3840 BasicBlock *Default = getBasicBlock(Record[2]); 3841 if (!OpTy || !Cond || !Default) 3842 return Error("Invalid record"); 3843 unsigned NumCases = (Record.size()-3)/2; 3844 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3845 InstructionList.push_back(SI); 3846 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3847 ConstantInt *CaseVal = 3848 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3849 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3850 if (!CaseVal || !DestBB) { 3851 delete SI; 3852 return Error("Invalid record"); 3853 } 3854 SI->addCase(CaseVal, DestBB); 3855 } 3856 I = SI; 3857 break; 3858 } 3859 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3860 if (Record.size() < 2) 3861 return Error("Invalid record"); 3862 Type *OpTy = getTypeByID(Record[0]); 3863 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3864 if (!OpTy || !Address) 3865 return Error("Invalid record"); 3866 unsigned NumDests = Record.size()-2; 3867 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3868 InstructionList.push_back(IBI); 3869 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3870 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3871 IBI->addDestination(DestBB); 3872 } else { 3873 delete IBI; 3874 return Error("Invalid record"); 3875 } 3876 } 3877 I = IBI; 3878 break; 3879 } 3880 3881 case bitc::FUNC_CODE_INST_INVOKE: { 3882 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3883 if (Record.size() < 4) 3884 return Error("Invalid record"); 3885 unsigned OpNum = 0; 3886 AttributeSet PAL = getAttributes(Record[OpNum++]); 3887 unsigned CCInfo = Record[OpNum++]; 3888 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3889 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3890 3891 FunctionType *FTy = nullptr; 3892 if (CCInfo >> 13 & 1 && 3893 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3894 return Error("Explicit invoke type is not a function type"); 3895 3896 Value *Callee; 3897 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3898 return Error("Invalid record"); 3899 3900 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3901 if (!CalleeTy) 3902 return Error("Callee is not a pointer"); 3903 if (!FTy) { 3904 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3905 if (!FTy) 3906 return Error("Callee is not of pointer to function type"); 3907 } else if (CalleeTy->getElementType() != FTy) 3908 return Error("Explicit invoke type does not match pointee type of " 3909 "callee operand"); 3910 if (Record.size() < FTy->getNumParams() + OpNum) 3911 return Error("Insufficient operands to call"); 3912 3913 SmallVector<Value*, 16> Ops; 3914 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3915 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3916 FTy->getParamType(i))); 3917 if (!Ops.back()) 3918 return Error("Invalid record"); 3919 } 3920 3921 if (!FTy->isVarArg()) { 3922 if (Record.size() != OpNum) 3923 return Error("Invalid record"); 3924 } else { 3925 // Read type/value pairs for varargs params. 3926 while (OpNum != Record.size()) { 3927 Value *Op; 3928 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3929 return Error("Invalid record"); 3930 Ops.push_back(Op); 3931 } 3932 } 3933 3934 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3935 InstructionList.push_back(I); 3936 cast<InvokeInst>(I) 3937 ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo)); 3938 cast<InvokeInst>(I)->setAttributes(PAL); 3939 break; 3940 } 3941 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3942 unsigned Idx = 0; 3943 Value *Val = nullptr; 3944 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3945 return Error("Invalid record"); 3946 I = ResumeInst::Create(Val); 3947 InstructionList.push_back(I); 3948 break; 3949 } 3950 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3951 I = new UnreachableInst(Context); 3952 InstructionList.push_back(I); 3953 break; 3954 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3955 if (Record.size() < 1 || ((Record.size()-1)&1)) 3956 return Error("Invalid record"); 3957 Type *Ty = getTypeByID(Record[0]); 3958 if (!Ty) 3959 return Error("Invalid record"); 3960 3961 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3962 InstructionList.push_back(PN); 3963 3964 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3965 Value *V; 3966 // With the new function encoding, it is possible that operands have 3967 // negative IDs (for forward references). Use a signed VBR 3968 // representation to keep the encoding small. 3969 if (UseRelativeIDs) 3970 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3971 else 3972 V = getValue(Record, 1+i, NextValueNo, Ty); 3973 BasicBlock *BB = getBasicBlock(Record[2+i]); 3974 if (!V || !BB) 3975 return Error("Invalid record"); 3976 PN->addIncoming(V, BB); 3977 } 3978 I = PN; 3979 break; 3980 } 3981 3982 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3983 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3984 unsigned Idx = 0; 3985 if (Record.size() < 4) 3986 return Error("Invalid record"); 3987 Type *Ty = getTypeByID(Record[Idx++]); 3988 if (!Ty) 3989 return Error("Invalid record"); 3990 Value *PersFn = nullptr; 3991 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3992 return Error("Invalid record"); 3993 3994 bool IsCleanup = !!Record[Idx++]; 3995 unsigned NumClauses = Record[Idx++]; 3996 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3997 LP->setCleanup(IsCleanup); 3998 for (unsigned J = 0; J != NumClauses; ++J) { 3999 LandingPadInst::ClauseType CT = 4000 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4001 Value *Val; 4002 4003 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4004 delete LP; 4005 return Error("Invalid record"); 4006 } 4007 4008 assert((CT != LandingPadInst::Catch || 4009 !isa<ArrayType>(Val->getType())) && 4010 "Catch clause has a invalid type!"); 4011 assert((CT != LandingPadInst::Filter || 4012 isa<ArrayType>(Val->getType())) && 4013 "Filter clause has invalid type!"); 4014 LP->addClause(cast<Constant>(Val)); 4015 } 4016 4017 I = LP; 4018 InstructionList.push_back(I); 4019 break; 4020 } 4021 4022 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4023 if (Record.size() != 4) 4024 return Error("Invalid record"); 4025 PointerType *Ty = 4026 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 4027 Type *OpTy = getTypeByID(Record[1]); 4028 Value *Size = getFnValueByID(Record[2], OpTy); 4029 uint64_t AlignRecord = Record[3]; 4030 const uint64_t InAllocaMask = uint64_t(1) << 5; 4031 bool InAlloca = AlignRecord & InAllocaMask; 4032 unsigned Align; 4033 if (std::error_code EC = 4034 parseAlignmentValue(AlignRecord & ~InAllocaMask, Align)) { 4035 return EC; 4036 } 4037 if (!Ty || !Size) 4038 return Error("Invalid record"); 4039 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, Align); 4040 AI->setUsedWithInAlloca(InAlloca); 4041 I = AI; 4042 InstructionList.push_back(I); 4043 break; 4044 } 4045 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4046 unsigned OpNum = 0; 4047 Value *Op; 4048 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4049 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4050 return Error("Invalid record"); 4051 4052 Type *Ty = nullptr; 4053 if (OpNum + 3 == Record.size()) 4054 Ty = getTypeByID(Record[OpNum++]); 4055 if (!Ty) 4056 Ty = cast<PointerType>(Op->getType())->getElementType(); 4057 else if (Ty != cast<PointerType>(Op->getType())->getElementType()) 4058 return Error("Explicit load type does not match pointee type of " 4059 "pointer operand"); 4060 4061 unsigned Align; 4062 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4063 return EC; 4064 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4065 4066 InstructionList.push_back(I); 4067 break; 4068 } 4069 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4070 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4071 unsigned OpNum = 0; 4072 Value *Op; 4073 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4074 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4075 return Error("Invalid record"); 4076 4077 Type *Ty = nullptr; 4078 if (OpNum + 5 == Record.size()) 4079 Ty = getTypeByID(Record[OpNum++]); 4080 4081 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4082 if (Ordering == NotAtomic || Ordering == Release || 4083 Ordering == AcquireRelease) 4084 return Error("Invalid record"); 4085 if (Ordering != NotAtomic && Record[OpNum] == 0) 4086 return Error("Invalid record"); 4087 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4088 4089 unsigned Align; 4090 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4091 return EC; 4092 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4093 4094 (void)Ty; 4095 assert((!Ty || Ty == I->getType()) && 4096 "Explicit type doesn't match pointee type of the first operand"); 4097 4098 InstructionList.push_back(I); 4099 break; 4100 } 4101 case bitc::FUNC_CODE_INST_STORE: 4102 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4103 unsigned OpNum = 0; 4104 Value *Val, *Ptr; 4105 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4106 (BitCode == bitc::FUNC_CODE_INST_STORE 4107 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4108 : popValue(Record, OpNum, NextValueNo, 4109 cast<PointerType>(Ptr->getType())->getElementType(), 4110 Val)) || 4111 OpNum + 2 != Record.size()) 4112 return Error("Invalid record"); 4113 unsigned Align; 4114 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4115 return EC; 4116 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4117 InstructionList.push_back(I); 4118 break; 4119 } 4120 case bitc::FUNC_CODE_INST_STOREATOMIC: 4121 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4122 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4123 unsigned OpNum = 0; 4124 Value *Val, *Ptr; 4125 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4126 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4127 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4128 : popValue(Record, OpNum, NextValueNo, 4129 cast<PointerType>(Ptr->getType())->getElementType(), 4130 Val)) || 4131 OpNum + 4 != Record.size()) 4132 return Error("Invalid record"); 4133 4134 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4135 if (Ordering == NotAtomic || Ordering == Acquire || 4136 Ordering == AcquireRelease) 4137 return Error("Invalid record"); 4138 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4139 if (Ordering != NotAtomic && Record[OpNum] == 0) 4140 return Error("Invalid record"); 4141 4142 unsigned Align; 4143 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4144 return EC; 4145 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4146 InstructionList.push_back(I); 4147 break; 4148 } 4149 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4150 case bitc::FUNC_CODE_INST_CMPXCHG: { 4151 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4152 // failureordering?, isweak?] 4153 unsigned OpNum = 0; 4154 Value *Ptr, *Cmp, *New; 4155 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4156 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4157 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4158 : popValue(Record, OpNum, NextValueNo, 4159 cast<PointerType>(Ptr->getType())->getElementType(), 4160 Cmp)) || 4161 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4162 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4163 return Error("Invalid record"); 4164 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 4165 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4166 return Error("Invalid record"); 4167 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 4168 4169 AtomicOrdering FailureOrdering; 4170 if (Record.size() < 7) 4171 FailureOrdering = 4172 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4173 else 4174 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 4175 4176 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4177 SynchScope); 4178 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4179 4180 if (Record.size() < 8) { 4181 // Before weak cmpxchgs existed, the instruction simply returned the 4182 // value loaded from memory, so bitcode files from that era will be 4183 // expecting the first component of a modern cmpxchg. 4184 CurBB->getInstList().push_back(I); 4185 I = ExtractValueInst::Create(I, 0); 4186 } else { 4187 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4188 } 4189 4190 InstructionList.push_back(I); 4191 break; 4192 } 4193 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4194 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4195 unsigned OpNum = 0; 4196 Value *Ptr, *Val; 4197 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4198 popValue(Record, OpNum, NextValueNo, 4199 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4200 OpNum+4 != Record.size()) 4201 return Error("Invalid record"); 4202 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 4203 if (Operation < AtomicRMWInst::FIRST_BINOP || 4204 Operation > AtomicRMWInst::LAST_BINOP) 4205 return Error("Invalid record"); 4206 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4207 if (Ordering == NotAtomic || Ordering == Unordered) 4208 return Error("Invalid record"); 4209 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4210 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4211 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4212 InstructionList.push_back(I); 4213 break; 4214 } 4215 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4216 if (2 != Record.size()) 4217 return Error("Invalid record"); 4218 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 4219 if (Ordering == NotAtomic || Ordering == Unordered || 4220 Ordering == Monotonic) 4221 return Error("Invalid record"); 4222 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 4223 I = new FenceInst(Context, Ordering, SynchScope); 4224 InstructionList.push_back(I); 4225 break; 4226 } 4227 case bitc::FUNC_CODE_INST_CALL: { 4228 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4229 if (Record.size() < 3) 4230 return Error("Invalid record"); 4231 4232 unsigned OpNum = 0; 4233 AttributeSet PAL = getAttributes(Record[OpNum++]); 4234 unsigned CCInfo = Record[OpNum++]; 4235 4236 FunctionType *FTy = nullptr; 4237 if (CCInfo >> 15 & 1 && 4238 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4239 return Error("Explicit call type is not a function type"); 4240 4241 Value *Callee; 4242 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4243 return Error("Invalid record"); 4244 4245 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4246 if (!OpTy) 4247 return Error("Callee is not a pointer type"); 4248 if (!FTy) { 4249 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4250 if (!FTy) 4251 return Error("Callee is not of pointer to function type"); 4252 } else if (OpTy->getElementType() != FTy) 4253 return Error("Explicit call type does not match pointee type of " 4254 "callee operand"); 4255 if (Record.size() < FTy->getNumParams() + OpNum) 4256 return Error("Insufficient operands to call"); 4257 4258 SmallVector<Value*, 16> Args; 4259 // Read the fixed params. 4260 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4261 if (FTy->getParamType(i)->isLabelTy()) 4262 Args.push_back(getBasicBlock(Record[OpNum])); 4263 else 4264 Args.push_back(getValue(Record, OpNum, NextValueNo, 4265 FTy->getParamType(i))); 4266 if (!Args.back()) 4267 return Error("Invalid record"); 4268 } 4269 4270 // Read type/value pairs for varargs params. 4271 if (!FTy->isVarArg()) { 4272 if (OpNum != Record.size()) 4273 return Error("Invalid record"); 4274 } else { 4275 while (OpNum != Record.size()) { 4276 Value *Op; 4277 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4278 return Error("Invalid record"); 4279 Args.push_back(Op); 4280 } 4281 } 4282 4283 I = CallInst::Create(FTy, Callee, Args); 4284 InstructionList.push_back(I); 4285 cast<CallInst>(I)->setCallingConv( 4286 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4287 CallInst::TailCallKind TCK = CallInst::TCK_None; 4288 if (CCInfo & 1) 4289 TCK = CallInst::TCK_Tail; 4290 if (CCInfo & (1 << 14)) 4291 TCK = CallInst::TCK_MustTail; 4292 cast<CallInst>(I)->setTailCallKind(TCK); 4293 cast<CallInst>(I)->setAttributes(PAL); 4294 break; 4295 } 4296 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4297 if (Record.size() < 3) 4298 return Error("Invalid record"); 4299 Type *OpTy = getTypeByID(Record[0]); 4300 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4301 Type *ResTy = getTypeByID(Record[2]); 4302 if (!OpTy || !Op || !ResTy) 4303 return Error("Invalid record"); 4304 I = new VAArgInst(Op, ResTy); 4305 InstructionList.push_back(I); 4306 break; 4307 } 4308 } 4309 4310 // Add instruction to end of current BB. If there is no current BB, reject 4311 // this file. 4312 if (!CurBB) { 4313 delete I; 4314 return Error("Invalid instruction with no BB"); 4315 } 4316 CurBB->getInstList().push_back(I); 4317 4318 // If this was a terminator instruction, move to the next block. 4319 if (isa<TerminatorInst>(I)) { 4320 ++CurBBNo; 4321 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4322 } 4323 4324 // Non-void values get registered in the value table for future use. 4325 if (I && !I->getType()->isVoidTy()) 4326 ValueList.AssignValue(I, NextValueNo++); 4327 } 4328 4329 OutOfRecordLoop: 4330 4331 // Check the function list for unresolved values. 4332 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4333 if (!A->getParent()) { 4334 // We found at least one unresolved value. Nuke them all to avoid leaks. 4335 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4336 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4337 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4338 delete A; 4339 } 4340 } 4341 return Error("Never resolved value found in function"); 4342 } 4343 } 4344 4345 // FIXME: Check for unresolved forward-declared metadata references 4346 // and clean up leaks. 4347 4348 // Trim the value list down to the size it was before we parsed this function. 4349 ValueList.shrinkTo(ModuleValueListSize); 4350 MDValueList.shrinkTo(ModuleMDValueListSize); 4351 std::vector<BasicBlock*>().swap(FunctionBBs); 4352 return std::error_code(); 4353 } 4354 4355 /// Find the function body in the bitcode stream 4356 std::error_code BitcodeReader::FindFunctionInStream( 4357 Function *F, 4358 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4359 while (DeferredFunctionInfoIterator->second == 0) { 4360 if (Stream.AtEndOfStream()) 4361 return Error("Could not find function in stream"); 4362 // ParseModule will parse the next body in the stream and set its 4363 // position in the DeferredFunctionInfo map. 4364 if (std::error_code EC = ParseModule(true)) 4365 return EC; 4366 } 4367 return std::error_code(); 4368 } 4369 4370 //===----------------------------------------------------------------------===// 4371 // GVMaterializer implementation 4372 //===----------------------------------------------------------------------===// 4373 4374 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4375 4376 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4377 if (std::error_code EC = materializeMetadata()) 4378 return EC; 4379 4380 Function *F = dyn_cast<Function>(GV); 4381 // If it's not a function or is already material, ignore the request. 4382 if (!F || !F->isMaterializable()) 4383 return std::error_code(); 4384 4385 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4386 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4387 // If its position is recorded as 0, its body is somewhere in the stream 4388 // but we haven't seen it yet. 4389 if (DFII->second == 0 && LazyStreamer) 4390 if (std::error_code EC = FindFunctionInStream(F, DFII)) 4391 return EC; 4392 4393 // Move the bit stream to the saved position of the deferred function body. 4394 Stream.JumpToBit(DFII->second); 4395 4396 if (std::error_code EC = ParseFunctionBody(F)) 4397 return EC; 4398 F->setIsMaterializable(false); 4399 4400 if (StripDebugInfo) 4401 stripDebugInfo(*F); 4402 4403 // Upgrade any old intrinsic calls in the function. 4404 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 4405 E = UpgradedIntrinsics.end(); I != E; ++I) { 4406 if (I->first != I->second) { 4407 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4408 UI != UE;) { 4409 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4410 UpgradeIntrinsicCall(CI, I->second); 4411 } 4412 } 4413 } 4414 4415 // Bring in any functions that this function forward-referenced via 4416 // blockaddresses. 4417 return materializeForwardReferencedFunctions(); 4418 } 4419 4420 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4421 const Function *F = dyn_cast<Function>(GV); 4422 if (!F || F->isDeclaration()) 4423 return false; 4424 4425 // Dematerializing F would leave dangling references that wouldn't be 4426 // reconnected on re-materialization. 4427 if (BlockAddressesTaken.count(F)) 4428 return false; 4429 4430 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4431 } 4432 4433 void BitcodeReader::Dematerialize(GlobalValue *GV) { 4434 Function *F = dyn_cast<Function>(GV); 4435 // If this function isn't dematerializable, this is a noop. 4436 if (!F || !isDematerializable(F)) 4437 return; 4438 4439 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4440 4441 // Just forget the function body, we can remat it later. 4442 F->dropAllReferences(); 4443 F->setIsMaterializable(true); 4444 } 4445 4446 std::error_code BitcodeReader::MaterializeModule(Module *M) { 4447 assert(M == TheModule && 4448 "Can only Materialize the Module this BitcodeReader is attached to."); 4449 4450 if (std::error_code EC = materializeMetadata()) 4451 return EC; 4452 4453 // Promise to materialize all forward references. 4454 WillMaterializeAllForwardRefs = true; 4455 4456 // Iterate over the module, deserializing any functions that are still on 4457 // disk. 4458 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4459 F != E; ++F) { 4460 if (std::error_code EC = materialize(F)) 4461 return EC; 4462 } 4463 // At this point, if there are any function bodies, the current bit is 4464 // pointing to the END_BLOCK record after them. Now make sure the rest 4465 // of the bits in the module have been read. 4466 if (NextUnreadBit) 4467 ParseModule(true); 4468 4469 // Check that all block address forward references got resolved (as we 4470 // promised above). 4471 if (!BasicBlockFwdRefs.empty()) 4472 return Error("Never resolved function from blockaddress"); 4473 4474 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4475 // delete the old functions to clean up. We can't do this unless the entire 4476 // module is materialized because there could always be another function body 4477 // with calls to the old function. 4478 for (std::vector<std::pair<Function*, Function*> >::iterator I = 4479 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 4480 if (I->first != I->second) { 4481 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4482 UI != UE;) { 4483 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4484 UpgradeIntrinsicCall(CI, I->second); 4485 } 4486 if (!I->first->use_empty()) 4487 I->first->replaceAllUsesWith(I->second); 4488 I->first->eraseFromParent(); 4489 } 4490 } 4491 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 4492 4493 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4494 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4495 4496 UpgradeDebugInfo(*M); 4497 return std::error_code(); 4498 } 4499 4500 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4501 return IdentifiedStructTypes; 4502 } 4503 4504 std::error_code BitcodeReader::InitStream() { 4505 if (LazyStreamer) 4506 return InitLazyStream(); 4507 return InitStreamFromBuffer(); 4508 } 4509 4510 std::error_code BitcodeReader::InitStreamFromBuffer() { 4511 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4512 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4513 4514 if (Buffer->getBufferSize() & 3) 4515 return Error("Invalid bitcode signature"); 4516 4517 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4518 // The magic number is 0x0B17C0DE stored in little endian. 4519 if (isBitcodeWrapper(BufPtr, BufEnd)) 4520 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4521 return Error("Invalid bitcode wrapper header"); 4522 4523 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4524 Stream.init(&*StreamFile); 4525 4526 return std::error_code(); 4527 } 4528 4529 std::error_code BitcodeReader::InitLazyStream() { 4530 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4531 // see it. 4532 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 4533 StreamingMemoryObject &Bytes = *OwnedBytes; 4534 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4535 Stream.init(&*StreamFile); 4536 4537 unsigned char buf[16]; 4538 if (Bytes.readBytes(buf, 16, 0) != 16) 4539 return Error("Invalid bitcode signature"); 4540 4541 if (!isBitcode(buf, buf + 16)) 4542 return Error("Invalid bitcode signature"); 4543 4544 if (isBitcodeWrapper(buf, buf + 4)) { 4545 const unsigned char *bitcodeStart = buf; 4546 const unsigned char *bitcodeEnd = buf + 16; 4547 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4548 Bytes.dropLeadingBytes(bitcodeStart - buf); 4549 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4550 } 4551 return std::error_code(); 4552 } 4553 4554 namespace { 4555 class BitcodeErrorCategoryType : public std::error_category { 4556 const char *name() const LLVM_NOEXCEPT override { 4557 return "llvm.bitcode"; 4558 } 4559 std::string message(int IE) const override { 4560 BitcodeError E = static_cast<BitcodeError>(IE); 4561 switch (E) { 4562 case BitcodeError::InvalidBitcodeSignature: 4563 return "Invalid bitcode signature"; 4564 case BitcodeError::CorruptedBitcode: 4565 return "Corrupted bitcode"; 4566 } 4567 llvm_unreachable("Unknown error type!"); 4568 } 4569 }; 4570 } 4571 4572 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4573 4574 const std::error_category &llvm::BitcodeErrorCategory() { 4575 return *ErrorCategory; 4576 } 4577 4578 //===----------------------------------------------------------------------===// 4579 // External interface 4580 //===----------------------------------------------------------------------===// 4581 4582 /// \brief Get a lazy one-at-time loading module from bitcode. 4583 /// 4584 /// This isn't always used in a lazy context. In particular, it's also used by 4585 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4586 /// in forward-referenced functions from block address references. 4587 /// 4588 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 4589 /// materialize everything -- in particular, if this isn't truly lazy. 4590 static ErrorOr<Module *> 4591 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4592 LLVMContext &Context, bool WillMaterializeAll, 4593 DiagnosticHandlerFunction DiagnosticHandler, 4594 bool ShouldLazyLoadMetadata = false) { 4595 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 4596 BitcodeReader *R = 4597 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4598 M->setMaterializer(R); 4599 4600 auto cleanupOnError = [&](std::error_code EC) { 4601 R->releaseBuffer(); // Never take ownership on error. 4602 delete M; // Also deletes R. 4603 return EC; 4604 }; 4605 4606 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4607 if (std::error_code EC = R->ParseBitcodeInto(M, ShouldLazyLoadMetadata)) 4608 return cleanupOnError(EC); 4609 4610 if (!WillMaterializeAll) 4611 // Resolve forward references from blockaddresses. 4612 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4613 return cleanupOnError(EC); 4614 4615 Buffer.release(); // The BitcodeReader owns it now. 4616 return M; 4617 } 4618 4619 ErrorOr<Module *> 4620 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 4621 LLVMContext &Context, 4622 DiagnosticHandlerFunction DiagnosticHandler, 4623 bool ShouldLazyLoadMetadata) { 4624 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4625 DiagnosticHandler, ShouldLazyLoadMetadata); 4626 } 4627 4628 ErrorOr<std::unique_ptr<Module>> 4629 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 4630 LLVMContext &Context, 4631 DiagnosticHandlerFunction DiagnosticHandler) { 4632 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4633 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4634 M->setMaterializer(R); 4635 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 4636 return EC; 4637 return std::move(M); 4638 } 4639 4640 ErrorOr<Module *> 4641 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4642 DiagnosticHandlerFunction DiagnosticHandler) { 4643 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4644 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4645 std::move(Buf), Context, true, DiagnosticHandler); 4646 if (!ModuleOrErr) 4647 return ModuleOrErr; 4648 Module *M = ModuleOrErr.get(); 4649 // Read in the entire module, and destroy the BitcodeReader. 4650 if (std::error_code EC = M->materializeAllPermanently()) { 4651 delete M; 4652 return EC; 4653 } 4654 4655 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4656 // written. We must defer until the Module has been fully materialized. 4657 4658 return M; 4659 } 4660 4661 std::string 4662 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4663 DiagnosticHandlerFunction DiagnosticHandler) { 4664 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4665 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4666 DiagnosticHandler); 4667 ErrorOr<std::string> Triple = R->parseTriple(); 4668 if (Triple.getError()) 4669 return ""; 4670 return Triple.get(); 4671 } 4672