1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/ADT/STLExtras.h"
11 #include "llvm/ADT/SmallString.h"
12 #include "llvm/ADT/SmallVector.h"
13 #include "llvm/ADT/Triple.h"
14 #include "llvm/Bitcode/BitstreamReader.h"
15 #include "llvm/Bitcode/LLVMBitCodes.h"
16 #include "llvm/Bitcode/ReaderWriter.h"
17 #include "llvm/IR/AutoUpgrade.h"
18 #include "llvm/IR/Constants.h"
19 #include "llvm/IR/DebugInfo.h"
20 #include "llvm/IR/DebugInfoMetadata.h"
21 #include "llvm/IR/DerivedTypes.h"
22 #include "llvm/IR/DiagnosticPrinter.h"
23 #include "llvm/IR/GVMaterializer.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/IntrinsicInst.h"
26 #include "llvm/IR/LLVMContext.h"
27 #include "llvm/IR/Module.h"
28 #include "llvm/IR/ModuleSummaryIndex.h"
29 #include "llvm/IR/OperandTraits.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/ValueHandle.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/DataStream.h"
34 #include "llvm/Support/Debug.h"
35 #include "llvm/Support/ManagedStatic.h"
36 #include "llvm/Support/MathExtras.h"
37 #include "llvm/Support/MemoryBuffer.h"
38 #include "llvm/Support/raw_ostream.h"
39 #include <deque>
40 
41 using namespace llvm;
42 
43 static cl::opt<bool> PrintSummaryGUIDs(
44     "print-summary-global-ids", cl::init(false), cl::Hidden,
45     cl::desc(
46         "Print the global id for each value when reading the module summary"));
47 
48 namespace {
49 enum {
50   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
51 };
52 
53 class BitcodeReaderValueList {
54   std::vector<WeakVH> ValuePtrs;
55 
56   /// As we resolve forward-referenced constants, we add information about them
57   /// to this vector.  This allows us to resolve them in bulk instead of
58   /// resolving each reference at a time.  See the code in
59   /// ResolveConstantForwardRefs for more information about this.
60   ///
61   /// The key of this vector is the placeholder constant, the value is the slot
62   /// number that holds the resolved value.
63   typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy;
64   ResolveConstantsTy ResolveConstants;
65   LLVMContext &Context;
66 public:
67   BitcodeReaderValueList(LLVMContext &C) : Context(C) {}
68   ~BitcodeReaderValueList() {
69     assert(ResolveConstants.empty() && "Constants not resolved?");
70   }
71 
72   // vector compatibility methods
73   unsigned size() const { return ValuePtrs.size(); }
74   void resize(unsigned N) { ValuePtrs.resize(N); }
75   void push_back(Value *V) { ValuePtrs.emplace_back(V); }
76 
77   void clear() {
78     assert(ResolveConstants.empty() && "Constants not resolved?");
79     ValuePtrs.clear();
80   }
81 
82   Value *operator[](unsigned i) const {
83     assert(i < ValuePtrs.size());
84     return ValuePtrs[i];
85   }
86 
87   Value *back() const { return ValuePtrs.back(); }
88   void pop_back() { ValuePtrs.pop_back(); }
89   bool empty() const { return ValuePtrs.empty(); }
90   void shrinkTo(unsigned N) {
91     assert(N <= size() && "Invalid shrinkTo request!");
92     ValuePtrs.resize(N);
93   }
94 
95   Constant *getConstantFwdRef(unsigned Idx, Type *Ty);
96   Value *getValueFwdRef(unsigned Idx, Type *Ty);
97 
98   void assignValue(Value *V, unsigned Idx);
99 
100   /// Once all constants are read, this method bulk resolves any forward
101   /// references.
102   void resolveConstantForwardRefs();
103 };
104 
105 class BitcodeReaderMetadataList {
106   unsigned NumFwdRefs;
107   bool AnyFwdRefs;
108   unsigned MinFwdRef;
109   unsigned MaxFwdRef;
110 
111   /// Array of metadata references.
112   ///
113   /// Don't use std::vector here.  Some versions of libc++ copy (instead of
114   /// move) on resize, and TrackingMDRef is very expensive to copy.
115   SmallVector<TrackingMDRef, 1> MetadataPtrs;
116 
117   /// Structures for resolving old type refs.
118   struct {
119     SmallDenseMap<MDString *, TempMDTuple, 1> Unknown;
120     SmallDenseMap<MDString *, DICompositeType *, 1> Final;
121     SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls;
122     SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays;
123   } OldTypeRefs;
124 
125   LLVMContext &Context;
126 public:
127   BitcodeReaderMetadataList(LLVMContext &C)
128       : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {}
129 
130   // vector compatibility methods
131   unsigned size() const { return MetadataPtrs.size(); }
132   void resize(unsigned N) { MetadataPtrs.resize(N); }
133   void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); }
134   void clear() { MetadataPtrs.clear(); }
135   Metadata *back() const { return MetadataPtrs.back(); }
136   void pop_back() { MetadataPtrs.pop_back(); }
137   bool empty() const { return MetadataPtrs.empty(); }
138 
139   Metadata *operator[](unsigned i) const {
140     assert(i < MetadataPtrs.size());
141     return MetadataPtrs[i];
142   }
143 
144   Metadata *lookup(unsigned I) const {
145     if (I < MetadataPtrs.size())
146       return MetadataPtrs[I];
147     return nullptr;
148   }
149 
150   void shrinkTo(unsigned N) {
151     assert(N <= size() && "Invalid shrinkTo request!");
152     assert(!AnyFwdRefs && "Unexpected forward refs");
153     MetadataPtrs.resize(N);
154   }
155 
156   /// Return the given metadata, creating a replaceable forward reference if
157   /// necessary.
158   Metadata *getMetadataFwdRef(unsigned Idx);
159 
160   /// Return the the given metadata only if it is fully resolved.
161   ///
162   /// Gives the same result as \a lookup(), unless \a MDNode::isResolved()
163   /// would give \c false.
164   Metadata *getMetadataIfResolved(unsigned Idx);
165 
166   MDNode *getMDNodeFwdRefOrNull(unsigned Idx);
167   void assignValue(Metadata *MD, unsigned Idx);
168   void tryToResolveCycles();
169   bool hasFwdRefs() const { return AnyFwdRefs; }
170 
171   /// Upgrade a type that had an MDString reference.
172   void addTypeRef(MDString &UUID, DICompositeType &CT);
173 
174   /// Upgrade a type that had an MDString reference.
175   Metadata *upgradeTypeRef(Metadata *MaybeUUID);
176 
177   /// Upgrade a type ref array that may have MDString references.
178   Metadata *upgradeTypeRefArray(Metadata *MaybeTuple);
179 
180 private:
181   Metadata *resolveTypeRefArray(Metadata *MaybeTuple);
182 };
183 
184 class BitcodeReader : public GVMaterializer {
185   LLVMContext &Context;
186   Module *TheModule = nullptr;
187   std::unique_ptr<MemoryBuffer> Buffer;
188   std::unique_ptr<BitstreamReader> StreamFile;
189   BitstreamCursor Stream;
190   // Next offset to start scanning for lazy parsing of function bodies.
191   uint64_t NextUnreadBit = 0;
192   // Last function offset found in the VST.
193   uint64_t LastFunctionBlockBit = 0;
194   bool SeenValueSymbolTable = false;
195   uint64_t VSTOffset = 0;
196   // Contains an arbitrary and optional string identifying the bitcode producer
197   std::string ProducerIdentification;
198 
199   std::vector<Type*> TypeList;
200   BitcodeReaderValueList ValueList;
201   BitcodeReaderMetadataList MetadataList;
202   std::vector<Comdat *> ComdatList;
203   SmallVector<Instruction *, 64> InstructionList;
204 
205   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits;
206   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits;
207   std::vector<std::pair<Function*, unsigned> > FunctionPrefixes;
208   std::vector<std::pair<Function*, unsigned> > FunctionPrologues;
209   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns;
210 
211   SmallVector<Instruction*, 64> InstsWithTBAATag;
212 
213   bool HasSeenOldLoopTags = false;
214 
215   /// The set of attributes by index.  Index zero in the file is for null, and
216   /// is thus not represented here.  As such all indices are off by one.
217   std::vector<AttributeSet> MAttributes;
218 
219   /// The set of attribute groups.
220   std::map<unsigned, AttributeSet> MAttributeGroups;
221 
222   /// While parsing a function body, this is a list of the basic blocks for the
223   /// function.
224   std::vector<BasicBlock*> FunctionBBs;
225 
226   // When reading the module header, this list is populated with functions that
227   // have bodies later in the file.
228   std::vector<Function*> FunctionsWithBodies;
229 
230   // When intrinsic functions are encountered which require upgrading they are
231   // stored here with their replacement function.
232   typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap;
233   UpgradedIntrinsicMap UpgradedIntrinsics;
234 
235   // Map the bitcode's custom MDKind ID to the Module's MDKind ID.
236   DenseMap<unsigned, unsigned> MDKindMap;
237 
238   // Several operations happen after the module header has been read, but
239   // before function bodies are processed. This keeps track of whether
240   // we've done this yet.
241   bool SeenFirstFunctionBody = false;
242 
243   /// When function bodies are initially scanned, this map contains info about
244   /// where to find deferred function body in the stream.
245   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
246 
247   /// When Metadata block is initially scanned when parsing the module, we may
248   /// choose to defer parsing of the metadata. This vector contains info about
249   /// which Metadata blocks are deferred.
250   std::vector<uint64_t> DeferredMetadataInfo;
251 
252   /// These are basic blocks forward-referenced by block addresses.  They are
253   /// inserted lazily into functions when they're loaded.  The basic block ID is
254   /// its index into the vector.
255   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
256   std::deque<Function *> BasicBlockFwdRefQueue;
257 
258   /// Indicates that we are using a new encoding for instruction operands where
259   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
260   /// instruction number, for a more compact encoding.  Some instruction
261   /// operands are not relative to the instruction ID: basic block numbers, and
262   /// types. Once the old style function blocks have been phased out, we would
263   /// not need this flag.
264   bool UseRelativeIDs = false;
265 
266   /// True if all functions will be materialized, negating the need to process
267   /// (e.g.) blockaddress forward references.
268   bool WillMaterializeAllForwardRefs = false;
269 
270   /// True if any Metadata block has been materialized.
271   bool IsMetadataMaterialized = false;
272 
273   bool StripDebugInfo = false;
274 
275   /// Functions that need to be matched with subprograms when upgrading old
276   /// metadata.
277   SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs;
278 
279   std::vector<std::string> BundleTags;
280 
281 public:
282   std::error_code error(BitcodeError E, const Twine &Message);
283   std::error_code error(BitcodeError E);
284   std::error_code error(const Twine &Message);
285 
286   BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context);
287   BitcodeReader(LLVMContext &Context);
288   ~BitcodeReader() override { freeState(); }
289 
290   std::error_code materializeForwardReferencedFunctions();
291 
292   void freeState();
293 
294   void releaseBuffer();
295 
296   std::error_code materialize(GlobalValue *GV) override;
297   std::error_code materializeModule() override;
298   std::vector<StructType *> getIdentifiedStructTypes() const override;
299 
300   /// \brief Main interface to parsing a bitcode buffer.
301   /// \returns true if an error occurred.
302   std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
303                                    Module *M,
304                                    bool ShouldLazyLoadMetadata = false);
305 
306   /// \brief Cheap mechanism to just extract module triple
307   /// \returns true if an error occurred.
308   ErrorOr<std::string> parseTriple();
309 
310   /// Cheap mechanism to just extract the identification block out of bitcode.
311   ErrorOr<std::string> parseIdentificationBlock();
312 
313   static uint64_t decodeSignRotatedValue(uint64_t V);
314 
315   /// Materialize any deferred Metadata block.
316   std::error_code materializeMetadata() override;
317 
318   void setStripDebugInfo() override;
319 
320 private:
321   /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the
322   // ProducerIdentification data member, and do some basic enforcement on the
323   // "epoch" encoded in the bitcode.
324   std::error_code parseBitcodeVersion();
325 
326   std::vector<StructType *> IdentifiedStructTypes;
327   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
328   StructType *createIdentifiedStructType(LLVMContext &Context);
329 
330   Type *getTypeByID(unsigned ID);
331   Value *getFnValueByID(unsigned ID, Type *Ty) {
332     if (Ty && Ty->isMetadataTy())
333       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
334     return ValueList.getValueFwdRef(ID, Ty);
335   }
336   Metadata *getFnMetadataByID(unsigned ID) {
337     return MetadataList.getMetadataFwdRef(ID);
338   }
339   BasicBlock *getBasicBlock(unsigned ID) const {
340     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
341     return FunctionBBs[ID];
342   }
343   AttributeSet getAttributes(unsigned i) const {
344     if (i-1 < MAttributes.size())
345       return MAttributes[i-1];
346     return AttributeSet();
347   }
348 
349   /// Read a value/type pair out of the specified record from slot 'Slot'.
350   /// Increment Slot past the number of slots used in the record. Return true on
351   /// failure.
352   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
353                         unsigned InstNum, Value *&ResVal) {
354     if (Slot == Record.size()) return true;
355     unsigned ValNo = (unsigned)Record[Slot++];
356     // Adjust the ValNo, if it was encoded relative to the InstNum.
357     if (UseRelativeIDs)
358       ValNo = InstNum - ValNo;
359     if (ValNo < InstNum) {
360       // If this is not a forward reference, just return the value we already
361       // have.
362       ResVal = getFnValueByID(ValNo, nullptr);
363       return ResVal == nullptr;
364     }
365     if (Slot == Record.size())
366       return true;
367 
368     unsigned TypeNo = (unsigned)Record[Slot++];
369     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
370     return ResVal == nullptr;
371   }
372 
373   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
374   /// past the number of slots used by the value in the record. Return true if
375   /// there is an error.
376   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
377                 unsigned InstNum, Type *Ty, Value *&ResVal) {
378     if (getValue(Record, Slot, InstNum, Ty, ResVal))
379       return true;
380     // All values currently take a single record slot.
381     ++Slot;
382     return false;
383   }
384 
385   /// Like popValue, but does not increment the Slot number.
386   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
387                 unsigned InstNum, Type *Ty, Value *&ResVal) {
388     ResVal = getValue(Record, Slot, InstNum, Ty);
389     return ResVal == nullptr;
390   }
391 
392   /// Version of getValue that returns ResVal directly, or 0 if there is an
393   /// error.
394   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
395                   unsigned InstNum, Type *Ty) {
396     if (Slot == Record.size()) return nullptr;
397     unsigned ValNo = (unsigned)Record[Slot];
398     // Adjust the ValNo, if it was encoded relative to the InstNum.
399     if (UseRelativeIDs)
400       ValNo = InstNum - ValNo;
401     return getFnValueByID(ValNo, Ty);
402   }
403 
404   /// Like getValue, but decodes signed VBRs.
405   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
406                         unsigned InstNum, Type *Ty) {
407     if (Slot == Record.size()) return nullptr;
408     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
409     // Adjust the ValNo, if it was encoded relative to the InstNum.
410     if (UseRelativeIDs)
411       ValNo = InstNum - ValNo;
412     return getFnValueByID(ValNo, Ty);
413   }
414 
415   /// Converts alignment exponent (i.e. power of two (or zero)) to the
416   /// corresponding alignment to use. If alignment is too large, returns
417   /// a corresponding error code.
418   std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
419   std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
420   std::error_code parseModule(uint64_t ResumeBit,
421                               bool ShouldLazyLoadMetadata = false);
422   std::error_code parseAttributeBlock();
423   std::error_code parseAttributeGroupBlock();
424   std::error_code parseTypeTable();
425   std::error_code parseTypeTableBody();
426   std::error_code parseOperandBundleTags();
427 
428   ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
429                                unsigned NameIndex, Triple &TT);
430   std::error_code parseValueSymbolTable(uint64_t Offset = 0);
431   std::error_code parseConstants();
432   std::error_code rememberAndSkipFunctionBodies();
433   std::error_code rememberAndSkipFunctionBody();
434   /// Save the positions of the Metadata blocks and skip parsing the blocks.
435   std::error_code rememberAndSkipMetadata();
436   std::error_code parseFunctionBody(Function *F);
437   std::error_code globalCleanup();
438   std::error_code resolveGlobalAndIndirectSymbolInits();
439   std::error_code parseMetadata(bool ModuleLevel = false);
440   std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record,
441                                        StringRef Blob,
442                                        unsigned &NextMetadataNo);
443   std::error_code parseMetadataKinds();
444   std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record);
445   std::error_code parseMetadataAttachment(Function &F);
446   ErrorOr<std::string> parseModuleTriple();
447   std::error_code parseUseLists();
448   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
449   std::error_code initStreamFromBuffer();
450   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
451   std::error_code findFunctionInStream(
452       Function *F,
453       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
454 };
455 
456 /// Class to manage reading and parsing function summary index bitcode
457 /// files/sections.
458 class ModuleSummaryIndexBitcodeReader {
459   DiagnosticHandlerFunction DiagnosticHandler;
460 
461   /// Eventually points to the module index built during parsing.
462   ModuleSummaryIndex *TheIndex = nullptr;
463 
464   std::unique_ptr<MemoryBuffer> Buffer;
465   std::unique_ptr<BitstreamReader> StreamFile;
466   BitstreamCursor Stream;
467 
468   /// Used to indicate whether caller only wants to check for the presence
469   /// of the global value summary bitcode section. All blocks are skipped,
470   /// but the SeenGlobalValSummary boolean is set.
471   bool CheckGlobalValSummaryPresenceOnly = false;
472 
473   /// Indicates whether we have encountered a global value summary section
474   /// yet during parsing, used when checking if file contains global value
475   /// summary section.
476   bool SeenGlobalValSummary = false;
477 
478   /// Indicates whether we have already parsed the VST, used for error checking.
479   bool SeenValueSymbolTable = false;
480 
481   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
482   /// Used to enable on-demand parsing of the VST.
483   uint64_t VSTOffset = 0;
484 
485   // Map to save ValueId to GUID association that was recorded in the
486   // ValueSymbolTable. It is used after the VST is parsed to convert
487   // call graph edges read from the function summary from referencing
488   // callees by their ValueId to using the GUID instead, which is how
489   // they are recorded in the summary index being built.
490   // We save a second GUID which is the same as the first one, but ignoring the
491   // linkage, i.e. for value other than local linkage they are identical.
492   DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>>
493       ValueIdToCallGraphGUIDMap;
494 
495   /// Map to save the association between summary offset in the VST to the
496   /// GUID created when parsing it. Used to add newly parsed summaries to
497   /// the index.
498   DenseMap<uint64_t, GlobalValue::GUID> SummaryOffsetToGUIDMap;
499 
500   /// Map populated during module path string table parsing, from the
501   /// module ID to a string reference owned by the index's module
502   /// path string table, used to correlate with combined index
503   /// summary records.
504   DenseMap<uint64_t, StringRef> ModuleIdMap;
505 
506   /// Original source file name recorded in a bitcode record.
507   std::string SourceFileName;
508 
509 public:
510   std::error_code error(BitcodeError E, const Twine &Message);
511   std::error_code error(BitcodeError E);
512   std::error_code error(const Twine &Message);
513 
514   ModuleSummaryIndexBitcodeReader(
515       MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
516       bool CheckGlobalValSummaryPresenceOnly = false);
517   ModuleSummaryIndexBitcodeReader(
518       DiagnosticHandlerFunction DiagnosticHandler,
519       bool CheckGlobalValSummaryPresenceOnly = false);
520   ~ModuleSummaryIndexBitcodeReader() { freeState(); }
521 
522   void freeState();
523 
524   void releaseBuffer();
525 
526   /// Check if the parser has encountered a summary section.
527   bool foundGlobalValSummary() { return SeenGlobalValSummary; }
528 
529   /// \brief Main interface to parsing a bitcode buffer.
530   /// \returns true if an error occurred.
531   std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer,
532                                         ModuleSummaryIndex *I);
533 
534   /// \brief Interface for parsing a summary lazily.
535   std::error_code
536   parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer,
537                           ModuleSummaryIndex *I, size_t SummaryOffset);
538 
539 private:
540   std::error_code parseModule();
541   std::error_code parseValueSymbolTable(
542       uint64_t Offset,
543       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
544   std::error_code parseEntireSummary();
545   std::error_code parseModuleStringTable();
546   std::error_code initStream(std::unique_ptr<DataStreamer> Streamer);
547   std::error_code initStreamFromBuffer();
548   std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer);
549   std::pair<GlobalValue::GUID, GlobalValue::GUID>
550   getGUIDFromValueId(unsigned ValueId);
551   GlobalValue::GUID getGUIDFromOffset(uint64_t Offset);
552 };
553 } // end anonymous namespace
554 
555 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC,
556                                              DiagnosticSeverity Severity,
557                                              const Twine &Msg)
558     : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {}
559 
560 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; }
561 
562 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
563                              std::error_code EC, const Twine &Message) {
564   BitcodeDiagnosticInfo DI(EC, DS_Error, Message);
565   DiagnosticHandler(DI);
566   return EC;
567 }
568 
569 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler,
570                              std::error_code EC) {
571   return error(DiagnosticHandler, EC, EC.message());
572 }
573 
574 static std::error_code error(LLVMContext &Context, std::error_code EC,
575                              const Twine &Message) {
576   return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC,
577                Message);
578 }
579 
580 static std::error_code error(LLVMContext &Context, std::error_code EC) {
581   return error(Context, EC, EC.message());
582 }
583 
584 static std::error_code error(LLVMContext &Context, const Twine &Message) {
585   return error(Context, make_error_code(BitcodeError::CorruptedBitcode),
586                Message);
587 }
588 
589 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) {
590   if (!ProducerIdentification.empty()) {
591     return ::error(Context, make_error_code(E),
592                    Message + " (Producer: '" + ProducerIdentification +
593                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
594   }
595   return ::error(Context, make_error_code(E), Message);
596 }
597 
598 std::error_code BitcodeReader::error(const Twine &Message) {
599   if (!ProducerIdentification.empty()) {
600     return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
601                    Message + " (Producer: '" + ProducerIdentification +
602                        "' Reader: 'LLVM " + LLVM_VERSION_STRING "')");
603   }
604   return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode),
605                  Message);
606 }
607 
608 std::error_code BitcodeReader::error(BitcodeError E) {
609   return ::error(Context, make_error_code(E));
610 }
611 
612 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context)
613     : Context(Context), Buffer(Buffer), ValueList(Context),
614       MetadataList(Context) {}
615 
616 BitcodeReader::BitcodeReader(LLVMContext &Context)
617     : Context(Context), Buffer(nullptr), ValueList(Context),
618       MetadataList(Context) {}
619 
620 std::error_code BitcodeReader::materializeForwardReferencedFunctions() {
621   if (WillMaterializeAllForwardRefs)
622     return std::error_code();
623 
624   // Prevent recursion.
625   WillMaterializeAllForwardRefs = true;
626 
627   while (!BasicBlockFwdRefQueue.empty()) {
628     Function *F = BasicBlockFwdRefQueue.front();
629     BasicBlockFwdRefQueue.pop_front();
630     assert(F && "Expected valid function");
631     if (!BasicBlockFwdRefs.count(F))
632       // Already materialized.
633       continue;
634 
635     // Check for a function that isn't materializable to prevent an infinite
636     // loop.  When parsing a blockaddress stored in a global variable, there
637     // isn't a trivial way to check if a function will have a body without a
638     // linear search through FunctionsWithBodies, so just check it here.
639     if (!F->isMaterializable())
640       return error("Never resolved function from blockaddress");
641 
642     // Try to materialize F.
643     if (std::error_code EC = materialize(F))
644       return EC;
645   }
646   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
647 
648   // Reset state.
649   WillMaterializeAllForwardRefs = false;
650   return std::error_code();
651 }
652 
653 void BitcodeReader::freeState() {
654   Buffer = nullptr;
655   std::vector<Type*>().swap(TypeList);
656   ValueList.clear();
657   MetadataList.clear();
658   std::vector<Comdat *>().swap(ComdatList);
659 
660   std::vector<AttributeSet>().swap(MAttributes);
661   std::vector<BasicBlock*>().swap(FunctionBBs);
662   std::vector<Function*>().swap(FunctionsWithBodies);
663   DeferredFunctionInfo.clear();
664   DeferredMetadataInfo.clear();
665   MDKindMap.clear();
666 
667   assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references");
668   BasicBlockFwdRefQueue.clear();
669 }
670 
671 //===----------------------------------------------------------------------===//
672 //  Helper functions to implement forward reference resolution, etc.
673 //===----------------------------------------------------------------------===//
674 
675 /// Convert a string from a record into an std::string, return true on failure.
676 template <typename StrTy>
677 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
678                             StrTy &Result) {
679   if (Idx > Record.size())
680     return true;
681 
682   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
683     Result += (char)Record[i];
684   return false;
685 }
686 
687 static bool hasImplicitComdat(size_t Val) {
688   switch (Val) {
689   default:
690     return false;
691   case 1:  // Old WeakAnyLinkage
692   case 4:  // Old LinkOnceAnyLinkage
693   case 10: // Old WeakODRLinkage
694   case 11: // Old LinkOnceODRLinkage
695     return true;
696   }
697 }
698 
699 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
700   switch (Val) {
701   default: // Map unknown/new linkages to external
702   case 0:
703     return GlobalValue::ExternalLinkage;
704   case 2:
705     return GlobalValue::AppendingLinkage;
706   case 3:
707     return GlobalValue::InternalLinkage;
708   case 5:
709     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
710   case 6:
711     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
712   case 7:
713     return GlobalValue::ExternalWeakLinkage;
714   case 8:
715     return GlobalValue::CommonLinkage;
716   case 9:
717     return GlobalValue::PrivateLinkage;
718   case 12:
719     return GlobalValue::AvailableExternallyLinkage;
720   case 13:
721     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
722   case 14:
723     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
724   case 15:
725     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
726   case 1: // Old value with implicit comdat.
727   case 16:
728     return GlobalValue::WeakAnyLinkage;
729   case 10: // Old value with implicit comdat.
730   case 17:
731     return GlobalValue::WeakODRLinkage;
732   case 4: // Old value with implicit comdat.
733   case 18:
734     return GlobalValue::LinkOnceAnyLinkage;
735   case 11: // Old value with implicit comdat.
736   case 19:
737     return GlobalValue::LinkOnceODRLinkage;
738   }
739 }
740 
741 // Decode the flags for GlobalValue in the summary
742 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
743                                                             uint64_t Version) {
744   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
745   // like getDecodedLinkage() above. Any future change to the linkage enum and
746   // to getDecodedLinkage() will need to be taken into account here as above.
747   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
748   RawFlags = RawFlags >> 4;
749   auto HasSection = RawFlags & 0x1; // bool
750   return GlobalValueSummary::GVFlags(Linkage, HasSection);
751 }
752 
753 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
754   switch (Val) {
755   default: // Map unknown visibilities to default.
756   case 0: return GlobalValue::DefaultVisibility;
757   case 1: return GlobalValue::HiddenVisibility;
758   case 2: return GlobalValue::ProtectedVisibility;
759   }
760 }
761 
762 static GlobalValue::DLLStorageClassTypes
763 getDecodedDLLStorageClass(unsigned Val) {
764   switch (Val) {
765   default: // Map unknown values to default.
766   case 0: return GlobalValue::DefaultStorageClass;
767   case 1: return GlobalValue::DLLImportStorageClass;
768   case 2: return GlobalValue::DLLExportStorageClass;
769   }
770 }
771 
772 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
773   switch (Val) {
774     case 0: return GlobalVariable::NotThreadLocal;
775     default: // Map unknown non-zero value to general dynamic.
776     case 1: return GlobalVariable::GeneralDynamicTLSModel;
777     case 2: return GlobalVariable::LocalDynamicTLSModel;
778     case 3: return GlobalVariable::InitialExecTLSModel;
779     case 4: return GlobalVariable::LocalExecTLSModel;
780   }
781 }
782 
783 static int getDecodedCastOpcode(unsigned Val) {
784   switch (Val) {
785   default: return -1;
786   case bitc::CAST_TRUNC   : return Instruction::Trunc;
787   case bitc::CAST_ZEXT    : return Instruction::ZExt;
788   case bitc::CAST_SEXT    : return Instruction::SExt;
789   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
790   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
791   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
792   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
793   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
794   case bitc::CAST_FPEXT   : return Instruction::FPExt;
795   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
796   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
797   case bitc::CAST_BITCAST : return Instruction::BitCast;
798   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
799   }
800 }
801 
802 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
803   bool IsFP = Ty->isFPOrFPVectorTy();
804   // BinOps are only valid for int/fp or vector of int/fp types
805   if (!IsFP && !Ty->isIntOrIntVectorTy())
806     return -1;
807 
808   switch (Val) {
809   default:
810     return -1;
811   case bitc::BINOP_ADD:
812     return IsFP ? Instruction::FAdd : Instruction::Add;
813   case bitc::BINOP_SUB:
814     return IsFP ? Instruction::FSub : Instruction::Sub;
815   case bitc::BINOP_MUL:
816     return IsFP ? Instruction::FMul : Instruction::Mul;
817   case bitc::BINOP_UDIV:
818     return IsFP ? -1 : Instruction::UDiv;
819   case bitc::BINOP_SDIV:
820     return IsFP ? Instruction::FDiv : Instruction::SDiv;
821   case bitc::BINOP_UREM:
822     return IsFP ? -1 : Instruction::URem;
823   case bitc::BINOP_SREM:
824     return IsFP ? Instruction::FRem : Instruction::SRem;
825   case bitc::BINOP_SHL:
826     return IsFP ? -1 : Instruction::Shl;
827   case bitc::BINOP_LSHR:
828     return IsFP ? -1 : Instruction::LShr;
829   case bitc::BINOP_ASHR:
830     return IsFP ? -1 : Instruction::AShr;
831   case bitc::BINOP_AND:
832     return IsFP ? -1 : Instruction::And;
833   case bitc::BINOP_OR:
834     return IsFP ? -1 : Instruction::Or;
835   case bitc::BINOP_XOR:
836     return IsFP ? -1 : Instruction::Xor;
837   }
838 }
839 
840 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
841   switch (Val) {
842   default: return AtomicRMWInst::BAD_BINOP;
843   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
844   case bitc::RMW_ADD: return AtomicRMWInst::Add;
845   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
846   case bitc::RMW_AND: return AtomicRMWInst::And;
847   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
848   case bitc::RMW_OR: return AtomicRMWInst::Or;
849   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
850   case bitc::RMW_MAX: return AtomicRMWInst::Max;
851   case bitc::RMW_MIN: return AtomicRMWInst::Min;
852   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
853   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
854   }
855 }
856 
857 static AtomicOrdering getDecodedOrdering(unsigned Val) {
858   switch (Val) {
859   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
860   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
861   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
862   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
863   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
864   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
865   default: // Map unknown orderings to sequentially-consistent.
866   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
867   }
868 }
869 
870 static SynchronizationScope getDecodedSynchScope(unsigned Val) {
871   switch (Val) {
872   case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread;
873   default: // Map unknown scopes to cross-thread.
874   case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread;
875   }
876 }
877 
878 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
879   switch (Val) {
880   default: // Map unknown selection kinds to any.
881   case bitc::COMDAT_SELECTION_KIND_ANY:
882     return Comdat::Any;
883   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
884     return Comdat::ExactMatch;
885   case bitc::COMDAT_SELECTION_KIND_LARGEST:
886     return Comdat::Largest;
887   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
888     return Comdat::NoDuplicates;
889   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
890     return Comdat::SameSize;
891   }
892 }
893 
894 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
895   FastMathFlags FMF;
896   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
897     FMF.setUnsafeAlgebra();
898   if (0 != (Val & FastMathFlags::NoNaNs))
899     FMF.setNoNaNs();
900   if (0 != (Val & FastMathFlags::NoInfs))
901     FMF.setNoInfs();
902   if (0 != (Val & FastMathFlags::NoSignedZeros))
903     FMF.setNoSignedZeros();
904   if (0 != (Val & FastMathFlags::AllowReciprocal))
905     FMF.setAllowReciprocal();
906   return FMF;
907 }
908 
909 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) {
910   switch (Val) {
911   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
912   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
913   }
914 }
915 
916 namespace llvm {
917 namespace {
918 /// \brief A class for maintaining the slot number definition
919 /// as a placeholder for the actual definition for forward constants defs.
920 class ConstantPlaceHolder : public ConstantExpr {
921   void operator=(const ConstantPlaceHolder &) = delete;
922 
923 public:
924   // allocate space for exactly one operand
925   void *operator new(size_t s) { return User::operator new(s, 1); }
926   explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context)
927       : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) {
928     Op<0>() = UndefValue::get(Type::getInt32Ty(Context));
929   }
930 
931   /// \brief Methods to support type inquiry through isa, cast, and dyn_cast.
932   static bool classof(const Value *V) {
933     return isa<ConstantExpr>(V) &&
934            cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1;
935   }
936 
937   /// Provide fast operand accessors
938   DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
939 };
940 } // end anonymous namespace
941 
942 // FIXME: can we inherit this from ConstantExpr?
943 template <>
944 struct OperandTraits<ConstantPlaceHolder> :
945   public FixedNumOperandTraits<ConstantPlaceHolder, 1> {
946 };
947 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value)
948 } // end namespace llvm
949 
950 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) {
951   if (Idx == size()) {
952     push_back(V);
953     return;
954   }
955 
956   if (Idx >= size())
957     resize(Idx+1);
958 
959   WeakVH &OldV = ValuePtrs[Idx];
960   if (!OldV) {
961     OldV = V;
962     return;
963   }
964 
965   // Handle constants and non-constants (e.g. instrs) differently for
966   // efficiency.
967   if (Constant *PHC = dyn_cast<Constant>(&*OldV)) {
968     ResolveConstants.push_back(std::make_pair(PHC, Idx));
969     OldV = V;
970   } else {
971     // If there was a forward reference to this value, replace it.
972     Value *PrevVal = OldV;
973     OldV->replaceAllUsesWith(V);
974     delete PrevVal;
975   }
976 }
977 
978 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx,
979                                                     Type *Ty) {
980   if (Idx >= size())
981     resize(Idx + 1);
982 
983   if (Value *V = ValuePtrs[Idx]) {
984     if (Ty != V->getType())
985       report_fatal_error("Type mismatch in constant table!");
986     return cast<Constant>(V);
987   }
988 
989   // Create and return a placeholder, which will later be RAUW'd.
990   Constant *C = new ConstantPlaceHolder(Ty, Context);
991   ValuePtrs[Idx] = C;
992   return C;
993 }
994 
995 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) {
996   // Bail out for a clearly invalid value. This would make us call resize(0)
997   if (Idx == UINT_MAX)
998     return nullptr;
999 
1000   if (Idx >= size())
1001     resize(Idx + 1);
1002 
1003   if (Value *V = ValuePtrs[Idx]) {
1004     // If the types don't match, it's invalid.
1005     if (Ty && Ty != V->getType())
1006       return nullptr;
1007     return V;
1008   }
1009 
1010   // No type specified, must be invalid reference.
1011   if (!Ty) return nullptr;
1012 
1013   // Create and return a placeholder, which will later be RAUW'd.
1014   Value *V = new Argument(Ty);
1015   ValuePtrs[Idx] = V;
1016   return V;
1017 }
1018 
1019 /// Once all constants are read, this method bulk resolves any forward
1020 /// references.  The idea behind this is that we sometimes get constants (such
1021 /// as large arrays) which reference *many* forward ref constants.  Replacing
1022 /// each of these causes a lot of thrashing when building/reuniquing the
1023 /// constant.  Instead of doing this, we look at all the uses and rewrite all
1024 /// the place holders at once for any constant that uses a placeholder.
1025 void BitcodeReaderValueList::resolveConstantForwardRefs() {
1026   // Sort the values by-pointer so that they are efficient to look up with a
1027   // binary search.
1028   std::sort(ResolveConstants.begin(), ResolveConstants.end());
1029 
1030   SmallVector<Constant*, 64> NewOps;
1031 
1032   while (!ResolveConstants.empty()) {
1033     Value *RealVal = operator[](ResolveConstants.back().second);
1034     Constant *Placeholder = ResolveConstants.back().first;
1035     ResolveConstants.pop_back();
1036 
1037     // Loop over all users of the placeholder, updating them to reference the
1038     // new value.  If they reference more than one placeholder, update them all
1039     // at once.
1040     while (!Placeholder->use_empty()) {
1041       auto UI = Placeholder->user_begin();
1042       User *U = *UI;
1043 
1044       // If the using object isn't uniqued, just update the operands.  This
1045       // handles instructions and initializers for global variables.
1046       if (!isa<Constant>(U) || isa<GlobalValue>(U)) {
1047         UI.getUse().set(RealVal);
1048         continue;
1049       }
1050 
1051       // Otherwise, we have a constant that uses the placeholder.  Replace that
1052       // constant with a new constant that has *all* placeholder uses updated.
1053       Constant *UserC = cast<Constant>(U);
1054       for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end();
1055            I != E; ++I) {
1056         Value *NewOp;
1057         if (!isa<ConstantPlaceHolder>(*I)) {
1058           // Not a placeholder reference.
1059           NewOp = *I;
1060         } else if (*I == Placeholder) {
1061           // Common case is that it just references this one placeholder.
1062           NewOp = RealVal;
1063         } else {
1064           // Otherwise, look up the placeholder in ResolveConstants.
1065           ResolveConstantsTy::iterator It =
1066             std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(),
1067                              std::pair<Constant*, unsigned>(cast<Constant>(*I),
1068                                                             0));
1069           assert(It != ResolveConstants.end() && It->first == *I);
1070           NewOp = operator[](It->second);
1071         }
1072 
1073         NewOps.push_back(cast<Constant>(NewOp));
1074       }
1075 
1076       // Make the new constant.
1077       Constant *NewC;
1078       if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) {
1079         NewC = ConstantArray::get(UserCA->getType(), NewOps);
1080       } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) {
1081         NewC = ConstantStruct::get(UserCS->getType(), NewOps);
1082       } else if (isa<ConstantVector>(UserC)) {
1083         NewC = ConstantVector::get(NewOps);
1084       } else {
1085         assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr.");
1086         NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps);
1087       }
1088 
1089       UserC->replaceAllUsesWith(NewC);
1090       UserC->destroyConstant();
1091       NewOps.clear();
1092     }
1093 
1094     // Update all ValueHandles, they should be the only users at this point.
1095     Placeholder->replaceAllUsesWith(RealVal);
1096     delete Placeholder;
1097   }
1098 }
1099 
1100 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) {
1101   if (Idx == size()) {
1102     push_back(MD);
1103     return;
1104   }
1105 
1106   if (Idx >= size())
1107     resize(Idx+1);
1108 
1109   TrackingMDRef &OldMD = MetadataPtrs[Idx];
1110   if (!OldMD) {
1111     OldMD.reset(MD);
1112     return;
1113   }
1114 
1115   // If there was a forward reference to this value, replace it.
1116   TempMDTuple PrevMD(cast<MDTuple>(OldMD.get()));
1117   PrevMD->replaceAllUsesWith(MD);
1118   --NumFwdRefs;
1119 }
1120 
1121 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) {
1122   if (Idx >= size())
1123     resize(Idx + 1);
1124 
1125   if (Metadata *MD = MetadataPtrs[Idx])
1126     return MD;
1127 
1128   // Track forward refs to be resolved later.
1129   if (AnyFwdRefs) {
1130     MinFwdRef = std::min(MinFwdRef, Idx);
1131     MaxFwdRef = std::max(MaxFwdRef, Idx);
1132   } else {
1133     AnyFwdRefs = true;
1134     MinFwdRef = MaxFwdRef = Idx;
1135   }
1136   ++NumFwdRefs;
1137 
1138   // Create and return a placeholder, which will later be RAUW'd.
1139   Metadata *MD = MDNode::getTemporary(Context, None).release();
1140   MetadataPtrs[Idx].reset(MD);
1141   return MD;
1142 }
1143 
1144 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) {
1145   Metadata *MD = lookup(Idx);
1146   if (auto *N = dyn_cast_or_null<MDNode>(MD))
1147     if (!N->isResolved())
1148       return nullptr;
1149   return MD;
1150 }
1151 
1152 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) {
1153   return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx));
1154 }
1155 
1156 void BitcodeReaderMetadataList::tryToResolveCycles() {
1157   if (NumFwdRefs)
1158     // Still forward references... can't resolve cycles.
1159     return;
1160 
1161   bool DidReplaceTypeRefs = false;
1162 
1163   // Give up on finding a full definition for any forward decls that remain.
1164   for (const auto &Ref : OldTypeRefs.FwdDecls)
1165     OldTypeRefs.Final.insert(Ref);
1166   OldTypeRefs.FwdDecls.clear();
1167 
1168   // Upgrade from old type ref arrays.  In strange cases, this could add to
1169   // OldTypeRefs.Unknown.
1170   for (const auto &Array : OldTypeRefs.Arrays) {
1171     DidReplaceTypeRefs = true;
1172     Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get()));
1173   }
1174   OldTypeRefs.Arrays.clear();
1175 
1176   // Replace old string-based type refs with the resolved node, if possible.
1177   // If we haven't seen the node, leave it to the verifier to complain about
1178   // the invalid string reference.
1179   for (const auto &Ref : OldTypeRefs.Unknown) {
1180     DidReplaceTypeRefs = true;
1181     if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first))
1182       Ref.second->replaceAllUsesWith(CT);
1183     else
1184       Ref.second->replaceAllUsesWith(Ref.first);
1185   }
1186   OldTypeRefs.Unknown.clear();
1187 
1188   // Make sure all the upgraded types are resolved.
1189   if (DidReplaceTypeRefs) {
1190     AnyFwdRefs = true;
1191     MinFwdRef = 0;
1192     MaxFwdRef = MetadataPtrs.size() - 1;
1193   }
1194 
1195   if (!AnyFwdRefs)
1196     // Nothing to do.
1197     return;
1198 
1199   // Resolve any cycles.
1200   for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) {
1201     auto &MD = MetadataPtrs[I];
1202     auto *N = dyn_cast_or_null<MDNode>(MD);
1203     if (!N)
1204       continue;
1205 
1206     assert(!N->isTemporary() && "Unexpected forward reference");
1207     N->resolveCycles();
1208   }
1209 
1210   // Make sure we return early again until there's another forward ref.
1211   AnyFwdRefs = false;
1212 }
1213 
1214 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID,
1215                                            DICompositeType &CT) {
1216   assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID");
1217   if (CT.isForwardDecl())
1218     OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT));
1219   else
1220     OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT));
1221 }
1222 
1223 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) {
1224   auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID);
1225   if (LLVM_LIKELY(!UUID))
1226     return MaybeUUID;
1227 
1228   if (auto *CT = OldTypeRefs.Final.lookup(UUID))
1229     return CT;
1230 
1231   auto &Ref = OldTypeRefs.Unknown[UUID];
1232   if (!Ref)
1233     Ref = MDNode::getTemporary(Context, None);
1234   return Ref.get();
1235 }
1236 
1237 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) {
1238   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1239   if (!Tuple || Tuple->isDistinct())
1240     return MaybeTuple;
1241 
1242   // Look through the array immediately if possible.
1243   if (!Tuple->isTemporary())
1244     return resolveTypeRefArray(Tuple);
1245 
1246   // Create and return a placeholder to use for now.  Eventually
1247   // resolveTypeRefArrays() will be resolve this forward reference.
1248   OldTypeRefs.Arrays.emplace_back();
1249   OldTypeRefs.Arrays.back().first.reset(Tuple);
1250   OldTypeRefs.Arrays.back().second = MDTuple::getTemporary(Context, None);
1251   return OldTypeRefs.Arrays.back().second.get();
1252 }
1253 
1254 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) {
1255   auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple);
1256   if (!Tuple || Tuple->isDistinct())
1257     return MaybeTuple;
1258 
1259   // Look through the DITypeRefArray, upgrading each DITypeRef.
1260   SmallVector<Metadata *, 32> Ops;
1261   Ops.reserve(Tuple->getNumOperands());
1262   for (Metadata *MD : Tuple->operands())
1263     Ops.push_back(upgradeTypeRef(MD));
1264 
1265   return MDTuple::get(Context, Ops);
1266 }
1267 
1268 Type *BitcodeReader::getTypeByID(unsigned ID) {
1269   // The type table size is always specified correctly.
1270   if (ID >= TypeList.size())
1271     return nullptr;
1272 
1273   if (Type *Ty = TypeList[ID])
1274     return Ty;
1275 
1276   // If we have a forward reference, the only possible case is when it is to a
1277   // named struct.  Just create a placeholder for now.
1278   return TypeList[ID] = createIdentifiedStructType(Context);
1279 }
1280 
1281 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1282                                                       StringRef Name) {
1283   auto *Ret = StructType::create(Context, Name);
1284   IdentifiedStructTypes.push_back(Ret);
1285   return Ret;
1286 }
1287 
1288 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1289   auto *Ret = StructType::create(Context);
1290   IdentifiedStructTypes.push_back(Ret);
1291   return Ret;
1292 }
1293 
1294 //===----------------------------------------------------------------------===//
1295 //  Functions for parsing blocks from the bitcode file
1296 //===----------------------------------------------------------------------===//
1297 
1298 
1299 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1300 /// been decoded from the given integer. This function must stay in sync with
1301 /// 'encodeLLVMAttributesForBitcode'.
1302 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1303                                            uint64_t EncodedAttrs) {
1304   // FIXME: Remove in 4.0.
1305 
1306   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1307   // the bits above 31 down by 11 bits.
1308   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1309   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1310          "Alignment must be a power of two.");
1311 
1312   if (Alignment)
1313     B.addAlignmentAttr(Alignment);
1314   B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1315                 (EncodedAttrs & 0xffff));
1316 }
1317 
1318 std::error_code BitcodeReader::parseAttributeBlock() {
1319   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1320     return error("Invalid record");
1321 
1322   if (!MAttributes.empty())
1323     return error("Invalid multiple blocks");
1324 
1325   SmallVector<uint64_t, 64> Record;
1326 
1327   SmallVector<AttributeSet, 8> Attrs;
1328 
1329   // Read all the records.
1330   while (1) {
1331     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1332 
1333     switch (Entry.Kind) {
1334     case BitstreamEntry::SubBlock: // Handled for us already.
1335     case BitstreamEntry::Error:
1336       return error("Malformed block");
1337     case BitstreamEntry::EndBlock:
1338       return std::error_code();
1339     case BitstreamEntry::Record:
1340       // The interesting case.
1341       break;
1342     }
1343 
1344     // Read a record.
1345     Record.clear();
1346     switch (Stream.readRecord(Entry.ID, Record)) {
1347     default:  // Default behavior: ignore.
1348       break;
1349     case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...]
1350       // FIXME: Remove in 4.0.
1351       if (Record.size() & 1)
1352         return error("Invalid record");
1353 
1354       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1355         AttrBuilder B;
1356         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1357         Attrs.push_back(AttributeSet::get(Context, Record[i], B));
1358       }
1359 
1360       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1361       Attrs.clear();
1362       break;
1363     }
1364     case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...]
1365       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1366         Attrs.push_back(MAttributeGroups[Record[i]]);
1367 
1368       MAttributes.push_back(AttributeSet::get(Context, Attrs));
1369       Attrs.clear();
1370       break;
1371     }
1372     }
1373   }
1374 }
1375 
1376 // Returns Attribute::None on unrecognized codes.
1377 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1378   switch (Code) {
1379   default:
1380     return Attribute::None;
1381   case bitc::ATTR_KIND_ALIGNMENT:
1382     return Attribute::Alignment;
1383   case bitc::ATTR_KIND_ALWAYS_INLINE:
1384     return Attribute::AlwaysInline;
1385   case bitc::ATTR_KIND_ARGMEMONLY:
1386     return Attribute::ArgMemOnly;
1387   case bitc::ATTR_KIND_BUILTIN:
1388     return Attribute::Builtin;
1389   case bitc::ATTR_KIND_BY_VAL:
1390     return Attribute::ByVal;
1391   case bitc::ATTR_KIND_IN_ALLOCA:
1392     return Attribute::InAlloca;
1393   case bitc::ATTR_KIND_COLD:
1394     return Attribute::Cold;
1395   case bitc::ATTR_KIND_CONVERGENT:
1396     return Attribute::Convergent;
1397   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1398     return Attribute::InaccessibleMemOnly;
1399   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1400     return Attribute::InaccessibleMemOrArgMemOnly;
1401   case bitc::ATTR_KIND_INLINE_HINT:
1402     return Attribute::InlineHint;
1403   case bitc::ATTR_KIND_IN_REG:
1404     return Attribute::InReg;
1405   case bitc::ATTR_KIND_JUMP_TABLE:
1406     return Attribute::JumpTable;
1407   case bitc::ATTR_KIND_MIN_SIZE:
1408     return Attribute::MinSize;
1409   case bitc::ATTR_KIND_NAKED:
1410     return Attribute::Naked;
1411   case bitc::ATTR_KIND_NEST:
1412     return Attribute::Nest;
1413   case bitc::ATTR_KIND_NO_ALIAS:
1414     return Attribute::NoAlias;
1415   case bitc::ATTR_KIND_NO_BUILTIN:
1416     return Attribute::NoBuiltin;
1417   case bitc::ATTR_KIND_NO_CAPTURE:
1418     return Attribute::NoCapture;
1419   case bitc::ATTR_KIND_NO_DUPLICATE:
1420     return Attribute::NoDuplicate;
1421   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1422     return Attribute::NoImplicitFloat;
1423   case bitc::ATTR_KIND_NO_INLINE:
1424     return Attribute::NoInline;
1425   case bitc::ATTR_KIND_NO_RECURSE:
1426     return Attribute::NoRecurse;
1427   case bitc::ATTR_KIND_NON_LAZY_BIND:
1428     return Attribute::NonLazyBind;
1429   case bitc::ATTR_KIND_NON_NULL:
1430     return Attribute::NonNull;
1431   case bitc::ATTR_KIND_DEREFERENCEABLE:
1432     return Attribute::Dereferenceable;
1433   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1434     return Attribute::DereferenceableOrNull;
1435   case bitc::ATTR_KIND_ALLOC_SIZE:
1436     return Attribute::AllocSize;
1437   case bitc::ATTR_KIND_NO_RED_ZONE:
1438     return Attribute::NoRedZone;
1439   case bitc::ATTR_KIND_NO_RETURN:
1440     return Attribute::NoReturn;
1441   case bitc::ATTR_KIND_NO_UNWIND:
1442     return Attribute::NoUnwind;
1443   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1444     return Attribute::OptimizeForSize;
1445   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1446     return Attribute::OptimizeNone;
1447   case bitc::ATTR_KIND_READ_NONE:
1448     return Attribute::ReadNone;
1449   case bitc::ATTR_KIND_READ_ONLY:
1450     return Attribute::ReadOnly;
1451   case bitc::ATTR_KIND_RETURNED:
1452     return Attribute::Returned;
1453   case bitc::ATTR_KIND_RETURNS_TWICE:
1454     return Attribute::ReturnsTwice;
1455   case bitc::ATTR_KIND_S_EXT:
1456     return Attribute::SExt;
1457   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1458     return Attribute::StackAlignment;
1459   case bitc::ATTR_KIND_STACK_PROTECT:
1460     return Attribute::StackProtect;
1461   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1462     return Attribute::StackProtectReq;
1463   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1464     return Attribute::StackProtectStrong;
1465   case bitc::ATTR_KIND_SAFESTACK:
1466     return Attribute::SafeStack;
1467   case bitc::ATTR_KIND_STRUCT_RET:
1468     return Attribute::StructRet;
1469   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1470     return Attribute::SanitizeAddress;
1471   case bitc::ATTR_KIND_SANITIZE_THREAD:
1472     return Attribute::SanitizeThread;
1473   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1474     return Attribute::SanitizeMemory;
1475   case bitc::ATTR_KIND_SWIFT_ERROR:
1476     return Attribute::SwiftError;
1477   case bitc::ATTR_KIND_SWIFT_SELF:
1478     return Attribute::SwiftSelf;
1479   case bitc::ATTR_KIND_UW_TABLE:
1480     return Attribute::UWTable;
1481   case bitc::ATTR_KIND_Z_EXT:
1482     return Attribute::ZExt;
1483   }
1484 }
1485 
1486 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1487                                                    unsigned &Alignment) {
1488   // Note: Alignment in bitcode files is incremented by 1, so that zero
1489   // can be used for default alignment.
1490   if (Exponent > Value::MaxAlignmentExponent + 1)
1491     return error("Invalid alignment value");
1492   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1493   return std::error_code();
1494 }
1495 
1496 std::error_code BitcodeReader::parseAttrKind(uint64_t Code,
1497                                              Attribute::AttrKind *Kind) {
1498   *Kind = getAttrFromCode(Code);
1499   if (*Kind == Attribute::None)
1500     return error(BitcodeError::CorruptedBitcode,
1501                  "Unknown attribute kind (" + Twine(Code) + ")");
1502   return std::error_code();
1503 }
1504 
1505 std::error_code BitcodeReader::parseAttributeGroupBlock() {
1506   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1507     return error("Invalid record");
1508 
1509   if (!MAttributeGroups.empty())
1510     return error("Invalid multiple blocks");
1511 
1512   SmallVector<uint64_t, 64> Record;
1513 
1514   // Read all the records.
1515   while (1) {
1516     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1517 
1518     switch (Entry.Kind) {
1519     case BitstreamEntry::SubBlock: // Handled for us already.
1520     case BitstreamEntry::Error:
1521       return error("Malformed block");
1522     case BitstreamEntry::EndBlock:
1523       return std::error_code();
1524     case BitstreamEntry::Record:
1525       // The interesting case.
1526       break;
1527     }
1528 
1529     // Read a record.
1530     Record.clear();
1531     switch (Stream.readRecord(Entry.ID, Record)) {
1532     default:  // Default behavior: ignore.
1533       break;
1534     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1535       if (Record.size() < 3)
1536         return error("Invalid record");
1537 
1538       uint64_t GrpID = Record[0];
1539       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1540 
1541       AttrBuilder B;
1542       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1543         if (Record[i] == 0) {        // Enum attribute
1544           Attribute::AttrKind Kind;
1545           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1546             return EC;
1547 
1548           B.addAttribute(Kind);
1549         } else if (Record[i] == 1) { // Integer attribute
1550           Attribute::AttrKind Kind;
1551           if (std::error_code EC = parseAttrKind(Record[++i], &Kind))
1552             return EC;
1553           if (Kind == Attribute::Alignment)
1554             B.addAlignmentAttr(Record[++i]);
1555           else if (Kind == Attribute::StackAlignment)
1556             B.addStackAlignmentAttr(Record[++i]);
1557           else if (Kind == Attribute::Dereferenceable)
1558             B.addDereferenceableAttr(Record[++i]);
1559           else if (Kind == Attribute::DereferenceableOrNull)
1560             B.addDereferenceableOrNullAttr(Record[++i]);
1561           else if (Kind == Attribute::AllocSize)
1562             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1563         } else {                     // String attribute
1564           assert((Record[i] == 3 || Record[i] == 4) &&
1565                  "Invalid attribute group entry");
1566           bool HasValue = (Record[i++] == 4);
1567           SmallString<64> KindStr;
1568           SmallString<64> ValStr;
1569 
1570           while (Record[i] != 0 && i != e)
1571             KindStr += Record[i++];
1572           assert(Record[i] == 0 && "Kind string not null terminated");
1573 
1574           if (HasValue) {
1575             // Has a value associated with it.
1576             ++i; // Skip the '0' that terminates the "kind" string.
1577             while (Record[i] != 0 && i != e)
1578               ValStr += Record[i++];
1579             assert(Record[i] == 0 && "Value string not null terminated");
1580           }
1581 
1582           B.addAttribute(KindStr.str(), ValStr.str());
1583         }
1584       }
1585 
1586       MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B);
1587       break;
1588     }
1589     }
1590   }
1591 }
1592 
1593 std::error_code BitcodeReader::parseTypeTable() {
1594   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1595     return error("Invalid record");
1596 
1597   return parseTypeTableBody();
1598 }
1599 
1600 std::error_code BitcodeReader::parseTypeTableBody() {
1601   if (!TypeList.empty())
1602     return error("Invalid multiple blocks");
1603 
1604   SmallVector<uint64_t, 64> Record;
1605   unsigned NumRecords = 0;
1606 
1607   SmallString<64> TypeName;
1608 
1609   // Read all the records for this type table.
1610   while (1) {
1611     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1612 
1613     switch (Entry.Kind) {
1614     case BitstreamEntry::SubBlock: // Handled for us already.
1615     case BitstreamEntry::Error:
1616       return error("Malformed block");
1617     case BitstreamEntry::EndBlock:
1618       if (NumRecords != TypeList.size())
1619         return error("Malformed block");
1620       return std::error_code();
1621     case BitstreamEntry::Record:
1622       // The interesting case.
1623       break;
1624     }
1625 
1626     // Read a record.
1627     Record.clear();
1628     Type *ResultTy = nullptr;
1629     switch (Stream.readRecord(Entry.ID, Record)) {
1630     default:
1631       return error("Invalid value");
1632     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1633       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1634       // type list.  This allows us to reserve space.
1635       if (Record.size() < 1)
1636         return error("Invalid record");
1637       TypeList.resize(Record[0]);
1638       continue;
1639     case bitc::TYPE_CODE_VOID:      // VOID
1640       ResultTy = Type::getVoidTy(Context);
1641       break;
1642     case bitc::TYPE_CODE_HALF:     // HALF
1643       ResultTy = Type::getHalfTy(Context);
1644       break;
1645     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1646       ResultTy = Type::getFloatTy(Context);
1647       break;
1648     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1649       ResultTy = Type::getDoubleTy(Context);
1650       break;
1651     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1652       ResultTy = Type::getX86_FP80Ty(Context);
1653       break;
1654     case bitc::TYPE_CODE_FP128:     // FP128
1655       ResultTy = Type::getFP128Ty(Context);
1656       break;
1657     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1658       ResultTy = Type::getPPC_FP128Ty(Context);
1659       break;
1660     case bitc::TYPE_CODE_LABEL:     // LABEL
1661       ResultTy = Type::getLabelTy(Context);
1662       break;
1663     case bitc::TYPE_CODE_METADATA:  // METADATA
1664       ResultTy = Type::getMetadataTy(Context);
1665       break;
1666     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1667       ResultTy = Type::getX86_MMXTy(Context);
1668       break;
1669     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1670       ResultTy = Type::getTokenTy(Context);
1671       break;
1672     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1673       if (Record.size() < 1)
1674         return error("Invalid record");
1675 
1676       uint64_t NumBits = Record[0];
1677       if (NumBits < IntegerType::MIN_INT_BITS ||
1678           NumBits > IntegerType::MAX_INT_BITS)
1679         return error("Bitwidth for integer type out of range");
1680       ResultTy = IntegerType::get(Context, NumBits);
1681       break;
1682     }
1683     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1684                                     //          [pointee type, address space]
1685       if (Record.size() < 1)
1686         return error("Invalid record");
1687       unsigned AddressSpace = 0;
1688       if (Record.size() == 2)
1689         AddressSpace = Record[1];
1690       ResultTy = getTypeByID(Record[0]);
1691       if (!ResultTy ||
1692           !PointerType::isValidElementType(ResultTy))
1693         return error("Invalid type");
1694       ResultTy = PointerType::get(ResultTy, AddressSpace);
1695       break;
1696     }
1697     case bitc::TYPE_CODE_FUNCTION_OLD: {
1698       // FIXME: attrid is dead, remove it in LLVM 4.0
1699       // FUNCTION: [vararg, attrid, retty, paramty x N]
1700       if (Record.size() < 3)
1701         return error("Invalid record");
1702       SmallVector<Type*, 8> ArgTys;
1703       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1704         if (Type *T = getTypeByID(Record[i]))
1705           ArgTys.push_back(T);
1706         else
1707           break;
1708       }
1709 
1710       ResultTy = getTypeByID(Record[2]);
1711       if (!ResultTy || ArgTys.size() < Record.size()-3)
1712         return error("Invalid type");
1713 
1714       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1715       break;
1716     }
1717     case bitc::TYPE_CODE_FUNCTION: {
1718       // FUNCTION: [vararg, retty, paramty x N]
1719       if (Record.size() < 2)
1720         return error("Invalid record");
1721       SmallVector<Type*, 8> ArgTys;
1722       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1723         if (Type *T = getTypeByID(Record[i])) {
1724           if (!FunctionType::isValidArgumentType(T))
1725             return error("Invalid function argument type");
1726           ArgTys.push_back(T);
1727         }
1728         else
1729           break;
1730       }
1731 
1732       ResultTy = getTypeByID(Record[1]);
1733       if (!ResultTy || ArgTys.size() < Record.size()-2)
1734         return error("Invalid type");
1735 
1736       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1737       break;
1738     }
1739     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1740       if (Record.size() < 1)
1741         return error("Invalid record");
1742       SmallVector<Type*, 8> EltTys;
1743       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1744         if (Type *T = getTypeByID(Record[i]))
1745           EltTys.push_back(T);
1746         else
1747           break;
1748       }
1749       if (EltTys.size() != Record.size()-1)
1750         return error("Invalid type");
1751       ResultTy = StructType::get(Context, EltTys, Record[0]);
1752       break;
1753     }
1754     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1755       if (convertToString(Record, 0, TypeName))
1756         return error("Invalid record");
1757       continue;
1758 
1759     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1760       if (Record.size() < 1)
1761         return error("Invalid record");
1762 
1763       if (NumRecords >= TypeList.size())
1764         return error("Invalid TYPE table");
1765 
1766       // Check to see if this was forward referenced, if so fill in the temp.
1767       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1768       if (Res) {
1769         Res->setName(TypeName);
1770         TypeList[NumRecords] = nullptr;
1771       } else  // Otherwise, create a new struct.
1772         Res = createIdentifiedStructType(Context, TypeName);
1773       TypeName.clear();
1774 
1775       SmallVector<Type*, 8> EltTys;
1776       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1777         if (Type *T = getTypeByID(Record[i]))
1778           EltTys.push_back(T);
1779         else
1780           break;
1781       }
1782       if (EltTys.size() != Record.size()-1)
1783         return error("Invalid record");
1784       Res->setBody(EltTys, Record[0]);
1785       ResultTy = Res;
1786       break;
1787     }
1788     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1789       if (Record.size() != 1)
1790         return error("Invalid record");
1791 
1792       if (NumRecords >= TypeList.size())
1793         return error("Invalid TYPE table");
1794 
1795       // Check to see if this was forward referenced, if so fill in the temp.
1796       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1797       if (Res) {
1798         Res->setName(TypeName);
1799         TypeList[NumRecords] = nullptr;
1800       } else  // Otherwise, create a new struct with no body.
1801         Res = createIdentifiedStructType(Context, TypeName);
1802       TypeName.clear();
1803       ResultTy = Res;
1804       break;
1805     }
1806     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1807       if (Record.size() < 2)
1808         return error("Invalid record");
1809       ResultTy = getTypeByID(Record[1]);
1810       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1811         return error("Invalid type");
1812       ResultTy = ArrayType::get(ResultTy, Record[0]);
1813       break;
1814     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1815       if (Record.size() < 2)
1816         return error("Invalid record");
1817       if (Record[0] == 0)
1818         return error("Invalid vector length");
1819       ResultTy = getTypeByID(Record[1]);
1820       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1821         return error("Invalid type");
1822       ResultTy = VectorType::get(ResultTy, Record[0]);
1823       break;
1824     }
1825 
1826     if (NumRecords >= TypeList.size())
1827       return error("Invalid TYPE table");
1828     if (TypeList[NumRecords])
1829       return error(
1830           "Invalid TYPE table: Only named structs can be forward referenced");
1831     assert(ResultTy && "Didn't read a type?");
1832     TypeList[NumRecords++] = ResultTy;
1833   }
1834 }
1835 
1836 std::error_code BitcodeReader::parseOperandBundleTags() {
1837   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1838     return error("Invalid record");
1839 
1840   if (!BundleTags.empty())
1841     return error("Invalid multiple blocks");
1842 
1843   SmallVector<uint64_t, 64> Record;
1844 
1845   while (1) {
1846     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1847 
1848     switch (Entry.Kind) {
1849     case BitstreamEntry::SubBlock: // Handled for us already.
1850     case BitstreamEntry::Error:
1851       return error("Malformed block");
1852     case BitstreamEntry::EndBlock:
1853       return std::error_code();
1854     case BitstreamEntry::Record:
1855       // The interesting case.
1856       break;
1857     }
1858 
1859     // Tags are implicitly mapped to integers by their order.
1860 
1861     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1862       return error("Invalid record");
1863 
1864     // OPERAND_BUNDLE_TAG: [strchr x N]
1865     BundleTags.emplace_back();
1866     if (convertToString(Record, 0, BundleTags.back()))
1867       return error("Invalid record");
1868     Record.clear();
1869   }
1870 }
1871 
1872 /// Associate a value with its name from the given index in the provided record.
1873 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1874                                             unsigned NameIndex, Triple &TT) {
1875   SmallString<128> ValueName;
1876   if (convertToString(Record, NameIndex, ValueName))
1877     return error("Invalid record");
1878   unsigned ValueID = Record[0];
1879   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1880     return error("Invalid record");
1881   Value *V = ValueList[ValueID];
1882 
1883   StringRef NameStr(ValueName.data(), ValueName.size());
1884   if (NameStr.find_first_of(0) != StringRef::npos)
1885     return error("Invalid value name");
1886   V->setName(NameStr);
1887   auto *GO = dyn_cast<GlobalObject>(V);
1888   if (GO) {
1889     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1890       if (TT.isOSBinFormatMachO())
1891         GO->setComdat(nullptr);
1892       else
1893         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1894     }
1895   }
1896   return V;
1897 }
1898 
1899 /// Helper to note and return the current location, and jump to the given
1900 /// offset.
1901 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1902                                        BitstreamCursor &Stream) {
1903   // Save the current parsing location so we can jump back at the end
1904   // of the VST read.
1905   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1906   Stream.JumpToBit(Offset * 32);
1907 #ifndef NDEBUG
1908   // Do some checking if we are in debug mode.
1909   BitstreamEntry Entry = Stream.advance();
1910   assert(Entry.Kind == BitstreamEntry::SubBlock);
1911   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1912 #else
1913   // In NDEBUG mode ignore the output so we don't get an unused variable
1914   // warning.
1915   Stream.advance();
1916 #endif
1917   return CurrentBit;
1918 }
1919 
1920 /// Parse the value symbol table at either the current parsing location or
1921 /// at the given bit offset if provided.
1922 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1923   uint64_t CurrentBit;
1924   // Pass in the Offset to distinguish between calling for the module-level
1925   // VST (where we want to jump to the VST offset) and the function-level
1926   // VST (where we don't).
1927   if (Offset > 0)
1928     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1929 
1930   // Compute the delta between the bitcode indices in the VST (the word offset
1931   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1932   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1933   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1934   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1935   // just before entering the VST subblock because: 1) the EnterSubBlock
1936   // changes the AbbrevID width; 2) the VST block is nested within the same
1937   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1938   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1939   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1940   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1941   unsigned FuncBitcodeOffsetDelta =
1942       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1943 
1944   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1945     return error("Invalid record");
1946 
1947   SmallVector<uint64_t, 64> Record;
1948 
1949   Triple TT(TheModule->getTargetTriple());
1950 
1951   // Read all the records for this value table.
1952   SmallString<128> ValueName;
1953   while (1) {
1954     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1955 
1956     switch (Entry.Kind) {
1957     case BitstreamEntry::SubBlock: // Handled for us already.
1958     case BitstreamEntry::Error:
1959       return error("Malformed block");
1960     case BitstreamEntry::EndBlock:
1961       if (Offset > 0)
1962         Stream.JumpToBit(CurrentBit);
1963       return std::error_code();
1964     case BitstreamEntry::Record:
1965       // The interesting case.
1966       break;
1967     }
1968 
1969     // Read a record.
1970     Record.clear();
1971     switch (Stream.readRecord(Entry.ID, Record)) {
1972     default:  // Default behavior: unknown type.
1973       break;
1974     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1975       ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT);
1976       if (std::error_code EC = ValOrErr.getError())
1977         return EC;
1978       ValOrErr.get();
1979       break;
1980     }
1981     case bitc::VST_CODE_FNENTRY: {
1982       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1983       ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT);
1984       if (std::error_code EC = ValOrErr.getError())
1985         return EC;
1986       Value *V = ValOrErr.get();
1987 
1988       auto *GO = dyn_cast<GlobalObject>(V);
1989       if (!GO) {
1990         // If this is an alias, need to get the actual Function object
1991         // it aliases, in order to set up the DeferredFunctionInfo entry below.
1992         auto *GA = dyn_cast<GlobalAlias>(V);
1993         if (GA)
1994           GO = GA->getBaseObject();
1995         assert(GO);
1996       }
1997 
1998       uint64_t FuncWordOffset = Record[1];
1999       Function *F = dyn_cast<Function>(GO);
2000       assert(F);
2001       uint64_t FuncBitOffset = FuncWordOffset * 32;
2002       DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2003       // Set the LastFunctionBlockBit to point to the last function block.
2004       // Later when parsing is resumed after function materialization,
2005       // we can simply skip that last function block.
2006       if (FuncBitOffset > LastFunctionBlockBit)
2007         LastFunctionBlockBit = FuncBitOffset;
2008       break;
2009     }
2010     case bitc::VST_CODE_BBENTRY: {
2011       if (convertToString(Record, 1, ValueName))
2012         return error("Invalid record");
2013       BasicBlock *BB = getBasicBlock(Record[0]);
2014       if (!BB)
2015         return error("Invalid record");
2016 
2017       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2018       ValueName.clear();
2019       break;
2020     }
2021     }
2022   }
2023 }
2024 
2025 /// Parse a single METADATA_KIND record, inserting result in MDKindMap.
2026 std::error_code
2027 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) {
2028   if (Record.size() < 2)
2029     return error("Invalid record");
2030 
2031   unsigned Kind = Record[0];
2032   SmallString<8> Name(Record.begin() + 1, Record.end());
2033 
2034   unsigned NewKind = TheModule->getMDKindID(Name.str());
2035   if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second)
2036     return error("Conflicting METADATA_KIND records");
2037   return std::error_code();
2038 }
2039 
2040 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; }
2041 
2042 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record,
2043                                                     StringRef Blob,
2044                                                     unsigned &NextMetadataNo) {
2045   // All the MDStrings in the block are emitted together in a single
2046   // record.  The strings are concatenated and stored in a blob along with
2047   // their sizes.
2048   if (Record.size() != 2)
2049     return error("Invalid record: metadata strings layout");
2050 
2051   unsigned NumStrings = Record[0];
2052   unsigned StringsOffset = Record[1];
2053   if (!NumStrings)
2054     return error("Invalid record: metadata strings with no strings");
2055   if (StringsOffset > Blob.size())
2056     return error("Invalid record: metadata strings corrupt offset");
2057 
2058   StringRef Lengths = Blob.slice(0, StringsOffset);
2059   SimpleBitstreamCursor R(*StreamFile);
2060   R.jumpToPointer(Lengths.begin());
2061 
2062   // Ensure that Blob doesn't get invalidated, even if this is reading from
2063   // a StreamingMemoryObject with corrupt data.
2064   R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset);
2065 
2066   StringRef Strings = Blob.drop_front(StringsOffset);
2067   do {
2068     if (R.AtEndOfStream())
2069       return error("Invalid record: metadata strings bad length");
2070 
2071     unsigned Size = R.ReadVBR(6);
2072     if (Strings.size() < Size)
2073       return error("Invalid record: metadata strings truncated chars");
2074 
2075     MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)),
2076                              NextMetadataNo++);
2077     Strings = Strings.drop_front(Size);
2078   } while (--NumStrings);
2079 
2080   return std::error_code();
2081 }
2082 
2083 namespace {
2084 class PlaceholderQueue {
2085   // Placeholders would thrash around when moved, so store in a std::deque
2086   // instead of some sort of vector.
2087   std::deque<DistinctMDOperandPlaceholder> PHs;
2088 
2089 public:
2090   DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID);
2091   void flush(BitcodeReaderMetadataList &MetadataList);
2092 };
2093 } // end namespace
2094 
2095 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) {
2096   PHs.emplace_back(ID);
2097   return PHs.back();
2098 }
2099 
2100 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) {
2101   while (!PHs.empty()) {
2102     PHs.front().replaceUseWith(
2103         MetadataList.getMetadataFwdRef(PHs.front().getID()));
2104     PHs.pop_front();
2105   }
2106 }
2107 
2108 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing
2109 /// module level metadata.
2110 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) {
2111   IsMetadataMaterialized = true;
2112   unsigned NextMetadataNo = MetadataList.size();
2113 
2114   if (!ModuleLevel && MetadataList.hasFwdRefs())
2115     return error("Invalid metadata: fwd refs into function blocks");
2116 
2117   if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID))
2118     return error("Invalid record");
2119 
2120   std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms;
2121   SmallVector<uint64_t, 64> Record;
2122 
2123   PlaceholderQueue Placeholders;
2124   bool IsDistinct;
2125   auto getMD = [&](unsigned ID) -> Metadata * {
2126     if (!IsDistinct)
2127       return MetadataList.getMetadataFwdRef(ID);
2128     if (auto *MD = MetadataList.getMetadataIfResolved(ID))
2129       return MD;
2130     return &Placeholders.getPlaceholderOp(ID);
2131   };
2132   auto getMDOrNull = [&](unsigned ID) -> Metadata * {
2133     if (ID)
2134       return getMD(ID - 1);
2135     return nullptr;
2136   };
2137   auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * {
2138     if (ID)
2139       return MetadataList.getMetadataFwdRef(ID - 1);
2140     return nullptr;
2141   };
2142   auto getMDString = [&](unsigned ID) -> MDString *{
2143     // This requires that the ID is not really a forward reference.  In
2144     // particular, the MDString must already have been resolved.
2145     return cast_or_null<MDString>(getMDOrNull(ID));
2146   };
2147 
2148   // Support for old type refs.
2149   auto getDITypeRefOrNull = [&](unsigned ID) {
2150     return MetadataList.upgradeTypeRef(getMDOrNull(ID));
2151   };
2152 
2153 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
2154   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
2155 
2156   // Read all the records.
2157   while (1) {
2158     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2159 
2160     switch (Entry.Kind) {
2161     case BitstreamEntry::SubBlock: // Handled for us already.
2162     case BitstreamEntry::Error:
2163       return error("Malformed block");
2164     case BitstreamEntry::EndBlock:
2165       // Upgrade old-style CU <-> SP pointers to point from SP to CU.
2166       for (auto CU_SP : CUSubprograms)
2167         if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second))
2168           for (auto &Op : SPs->operands())
2169             if (auto *SP = dyn_cast_or_null<MDNode>(Op))
2170               SP->replaceOperandWith(7, CU_SP.first);
2171 
2172       MetadataList.tryToResolveCycles();
2173       Placeholders.flush(MetadataList);
2174       return std::error_code();
2175     case BitstreamEntry::Record:
2176       // The interesting case.
2177       break;
2178     }
2179 
2180     // Read a record.
2181     Record.clear();
2182     StringRef Blob;
2183     unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob);
2184     IsDistinct = false;
2185     switch (Code) {
2186     default:  // Default behavior: ignore.
2187       break;
2188     case bitc::METADATA_NAME: {
2189       // Read name of the named metadata.
2190       SmallString<8> Name(Record.begin(), Record.end());
2191       Record.clear();
2192       Code = Stream.ReadCode();
2193 
2194       unsigned NextBitCode = Stream.readRecord(Code, Record);
2195       if (NextBitCode != bitc::METADATA_NAMED_NODE)
2196         return error("METADATA_NAME not followed by METADATA_NAMED_NODE");
2197 
2198       // Read named metadata elements.
2199       unsigned Size = Record.size();
2200       NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name);
2201       for (unsigned i = 0; i != Size; ++i) {
2202         MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]);
2203         if (!MD)
2204           return error("Invalid record");
2205         NMD->addOperand(MD);
2206       }
2207       break;
2208     }
2209     case bitc::METADATA_OLD_FN_NODE: {
2210       // FIXME: Remove in 4.0.
2211       // This is a LocalAsMetadata record, the only type of function-local
2212       // metadata.
2213       if (Record.size() % 2 == 1)
2214         return error("Invalid record");
2215 
2216       // If this isn't a LocalAsMetadata record, we're dropping it.  This used
2217       // to be legal, but there's no upgrade path.
2218       auto dropRecord = [&] {
2219         MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++);
2220       };
2221       if (Record.size() != 2) {
2222         dropRecord();
2223         break;
2224       }
2225 
2226       Type *Ty = getTypeByID(Record[0]);
2227       if (Ty->isMetadataTy() || Ty->isVoidTy()) {
2228         dropRecord();
2229         break;
2230       }
2231 
2232       MetadataList.assignValue(
2233           LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2234           NextMetadataNo++);
2235       break;
2236     }
2237     case bitc::METADATA_OLD_NODE: {
2238       // FIXME: Remove in 4.0.
2239       if (Record.size() % 2 == 1)
2240         return error("Invalid record");
2241 
2242       unsigned Size = Record.size();
2243       SmallVector<Metadata *, 8> Elts;
2244       for (unsigned i = 0; i != Size; i += 2) {
2245         Type *Ty = getTypeByID(Record[i]);
2246         if (!Ty)
2247           return error("Invalid record");
2248         if (Ty->isMetadataTy())
2249           Elts.push_back(getMD(Record[i + 1]));
2250         else if (!Ty->isVoidTy()) {
2251           auto *MD =
2252               ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty));
2253           assert(isa<ConstantAsMetadata>(MD) &&
2254                  "Expected non-function-local metadata");
2255           Elts.push_back(MD);
2256         } else
2257           Elts.push_back(nullptr);
2258       }
2259       MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++);
2260       break;
2261     }
2262     case bitc::METADATA_VALUE: {
2263       if (Record.size() != 2)
2264         return error("Invalid record");
2265 
2266       Type *Ty = getTypeByID(Record[0]);
2267       if (Ty->isMetadataTy() || Ty->isVoidTy())
2268         return error("Invalid record");
2269 
2270       MetadataList.assignValue(
2271           ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)),
2272           NextMetadataNo++);
2273       break;
2274     }
2275     case bitc::METADATA_DISTINCT_NODE:
2276       IsDistinct = true;
2277       // fallthrough...
2278     case bitc::METADATA_NODE: {
2279       SmallVector<Metadata *, 8> Elts;
2280       Elts.reserve(Record.size());
2281       for (unsigned ID : Record)
2282         Elts.push_back(getMDOrNull(ID));
2283       MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts)
2284                                           : MDNode::get(Context, Elts),
2285                                NextMetadataNo++);
2286       break;
2287     }
2288     case bitc::METADATA_LOCATION: {
2289       if (Record.size() != 5)
2290         return error("Invalid record");
2291 
2292       IsDistinct = Record[0];
2293       unsigned Line = Record[1];
2294       unsigned Column = Record[2];
2295       Metadata *Scope = getMD(Record[3]);
2296       Metadata *InlinedAt = getMDOrNull(Record[4]);
2297       MetadataList.assignValue(
2298           GET_OR_DISTINCT(DILocation,
2299                           (Context, Line, Column, Scope, InlinedAt)),
2300           NextMetadataNo++);
2301       break;
2302     }
2303     case bitc::METADATA_GENERIC_DEBUG: {
2304       if (Record.size() < 4)
2305         return error("Invalid record");
2306 
2307       IsDistinct = Record[0];
2308       unsigned Tag = Record[1];
2309       unsigned Version = Record[2];
2310 
2311       if (Tag >= 1u << 16 || Version != 0)
2312         return error("Invalid record");
2313 
2314       auto *Header = getMDString(Record[3]);
2315       SmallVector<Metadata *, 8> DwarfOps;
2316       for (unsigned I = 4, E = Record.size(); I != E; ++I)
2317         DwarfOps.push_back(getMDOrNull(Record[I]));
2318       MetadataList.assignValue(
2319           GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)),
2320           NextMetadataNo++);
2321       break;
2322     }
2323     case bitc::METADATA_SUBRANGE: {
2324       if (Record.size() != 3)
2325         return error("Invalid record");
2326 
2327       IsDistinct = Record[0];
2328       MetadataList.assignValue(
2329           GET_OR_DISTINCT(DISubrange,
2330                           (Context, Record[1], unrotateSign(Record[2]))),
2331           NextMetadataNo++);
2332       break;
2333     }
2334     case bitc::METADATA_ENUMERATOR: {
2335       if (Record.size() != 3)
2336         return error("Invalid record");
2337 
2338       IsDistinct = Record[0];
2339       MetadataList.assignValue(
2340           GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]),
2341                                          getMDString(Record[2]))),
2342           NextMetadataNo++);
2343       break;
2344     }
2345     case bitc::METADATA_BASIC_TYPE: {
2346       if (Record.size() != 6)
2347         return error("Invalid record");
2348 
2349       IsDistinct = Record[0];
2350       MetadataList.assignValue(
2351           GET_OR_DISTINCT(DIBasicType,
2352                           (Context, Record[1], getMDString(Record[2]),
2353                            Record[3], Record[4], Record[5])),
2354           NextMetadataNo++);
2355       break;
2356     }
2357     case bitc::METADATA_DERIVED_TYPE: {
2358       if (Record.size() != 12)
2359         return error("Invalid record");
2360 
2361       IsDistinct = Record[0];
2362       MetadataList.assignValue(
2363           GET_OR_DISTINCT(
2364               DIDerivedType,
2365               (Context, Record[1], getMDString(Record[2]),
2366                getMDOrNull(Record[3]), Record[4], getDITypeRefOrNull(Record[5]),
2367                getDITypeRefOrNull(Record[6]), Record[7], Record[8], Record[9],
2368                Record[10], getDITypeRefOrNull(Record[11]))),
2369           NextMetadataNo++);
2370       break;
2371     }
2372     case bitc::METADATA_COMPOSITE_TYPE: {
2373       if (Record.size() != 16)
2374         return error("Invalid record");
2375 
2376       // If we have a UUID and this is not a forward declaration, lookup the
2377       // mapping.
2378       IsDistinct = Record[0] & 0x1;
2379       bool IsNotUsedInTypeRef = Record[0] >= 2;
2380       unsigned Tag = Record[1];
2381       MDString *Name = getMDString(Record[2]);
2382       Metadata *File = getMDOrNull(Record[3]);
2383       unsigned Line = Record[4];
2384       Metadata *Scope = getDITypeRefOrNull(Record[5]);
2385       Metadata *BaseType = getDITypeRefOrNull(Record[6]);
2386       uint64_t SizeInBits = Record[7];
2387       uint64_t AlignInBits = Record[8];
2388       uint64_t OffsetInBits = Record[9];
2389       unsigned Flags = Record[10];
2390       Metadata *Elements = getMDOrNull(Record[11]);
2391       unsigned RuntimeLang = Record[12];
2392       Metadata *VTableHolder = getDITypeRefOrNull(Record[13]);
2393       Metadata *TemplateParams = getMDOrNull(Record[14]);
2394       auto *Identifier = getMDString(Record[15]);
2395       DICompositeType *CT = nullptr;
2396       if (Identifier)
2397         CT = DICompositeType::buildODRType(
2398             Context, *Identifier, Tag, Name, File, Line, Scope, BaseType,
2399             SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang,
2400             VTableHolder, TemplateParams);
2401 
2402       // Create a node if we didn't get a lazy ODR type.
2403       if (!CT)
2404         CT = GET_OR_DISTINCT(DICompositeType,
2405                              (Context, Tag, Name, File, Line, Scope, BaseType,
2406                               SizeInBits, AlignInBits, OffsetInBits, Flags,
2407                               Elements, RuntimeLang, VTableHolder,
2408                               TemplateParams, Identifier));
2409       if (!IsNotUsedInTypeRef && Identifier)
2410         MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT));
2411 
2412       MetadataList.assignValue(CT, NextMetadataNo++);
2413       break;
2414     }
2415     case bitc::METADATA_SUBROUTINE_TYPE: {
2416       if (Record.size() != 3)
2417         return error("Invalid record");
2418 
2419       IsDistinct = Record[0] & 0x1;
2420       bool IsOldTypeRefArray = Record[0] < 2;
2421       Metadata *Types = getMDOrNull(Record[2]);
2422       if (LLVM_UNLIKELY(IsOldTypeRefArray))
2423         Types = MetadataList.upgradeTypeRefArray(Types);
2424 
2425       MetadataList.assignValue(
2426           GET_OR_DISTINCT(DISubroutineType, (Context, Record[1], Types)),
2427           NextMetadataNo++);
2428       break;
2429     }
2430 
2431     case bitc::METADATA_MODULE: {
2432       if (Record.size() != 6)
2433         return error("Invalid record");
2434 
2435       IsDistinct = Record[0];
2436       MetadataList.assignValue(
2437           GET_OR_DISTINCT(DIModule,
2438                           (Context, getMDOrNull(Record[1]),
2439                            getMDString(Record[2]), getMDString(Record[3]),
2440                            getMDString(Record[4]), getMDString(Record[5]))),
2441           NextMetadataNo++);
2442       break;
2443     }
2444 
2445     case bitc::METADATA_FILE: {
2446       if (Record.size() != 3)
2447         return error("Invalid record");
2448 
2449       IsDistinct = Record[0];
2450       MetadataList.assignValue(
2451           GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]),
2452                                    getMDString(Record[2]))),
2453           NextMetadataNo++);
2454       break;
2455     }
2456     case bitc::METADATA_COMPILE_UNIT: {
2457       if (Record.size() < 14 || Record.size() > 16)
2458         return error("Invalid record");
2459 
2460       // Ignore Record[0], which indicates whether this compile unit is
2461       // distinct.  It's always distinct.
2462       IsDistinct = true;
2463       auto *CU = DICompileUnit::getDistinct(
2464           Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]),
2465           Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]),
2466           Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]),
2467           getMDOrNull(Record[12]), getMDOrNull(Record[13]),
2468           Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]),
2469           Record.size() <= 14 ? 0 : Record[14]);
2470 
2471       MetadataList.assignValue(CU, NextMetadataNo++);
2472 
2473       // Move the Upgrade the list of subprograms.
2474       if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11]))
2475         CUSubprograms.push_back({CU, SPs});
2476       break;
2477     }
2478     case bitc::METADATA_SUBPROGRAM: {
2479       if (Record.size() != 18 && Record.size() != 19)
2480         return error("Invalid record");
2481 
2482       IsDistinct =
2483           Record[0] || Record[8]; // All definitions should be distinct.
2484       // Version 1 has a Function as Record[15].
2485       // Version 2 has removed Record[15].
2486       // Version 3 has the Unit as Record[15].
2487       Metadata *CUorFn = getMDOrNull(Record[15]);
2488       unsigned Offset = Record.size() == 19 ? 1 : 0;
2489       bool HasFn = Offset && dyn_cast_or_null<ConstantAsMetadata>(CUorFn);
2490       bool HasCU = Offset && !HasFn;
2491       DISubprogram *SP = GET_OR_DISTINCT(
2492           DISubprogram,
2493           (Context, getDITypeRefOrNull(Record[1]), getMDString(Record[2]),
2494            getMDString(Record[3]), getMDOrNull(Record[4]), Record[5],
2495            getMDOrNull(Record[6]), Record[7], Record[8], Record[9],
2496            getDITypeRefOrNull(Record[10]), Record[11], Record[12], Record[13],
2497            Record[14], HasCU ? CUorFn : nullptr,
2498            getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]),
2499            getMDOrNull(Record[17 + Offset])));
2500       MetadataList.assignValue(SP, NextMetadataNo++);
2501 
2502       // Upgrade sp->function mapping to function->sp mapping.
2503       if (HasFn) {
2504         if (auto *CMD = dyn_cast<ConstantAsMetadata>(CUorFn))
2505           if (auto *F = dyn_cast<Function>(CMD->getValue())) {
2506             if (F->isMaterializable())
2507               // Defer until materialized; unmaterialized functions may not have
2508               // metadata.
2509               FunctionsWithSPs[F] = SP;
2510             else if (!F->empty())
2511               F->setSubprogram(SP);
2512           }
2513       }
2514       break;
2515     }
2516     case bitc::METADATA_LEXICAL_BLOCK: {
2517       if (Record.size() != 5)
2518         return error("Invalid record");
2519 
2520       IsDistinct = Record[0];
2521       MetadataList.assignValue(
2522           GET_OR_DISTINCT(DILexicalBlock,
2523                           (Context, getMDOrNull(Record[1]),
2524                            getMDOrNull(Record[2]), Record[3], Record[4])),
2525           NextMetadataNo++);
2526       break;
2527     }
2528     case bitc::METADATA_LEXICAL_BLOCK_FILE: {
2529       if (Record.size() != 4)
2530         return error("Invalid record");
2531 
2532       IsDistinct = Record[0];
2533       MetadataList.assignValue(
2534           GET_OR_DISTINCT(DILexicalBlockFile,
2535                           (Context, getMDOrNull(Record[1]),
2536                            getMDOrNull(Record[2]), Record[3])),
2537           NextMetadataNo++);
2538       break;
2539     }
2540     case bitc::METADATA_NAMESPACE: {
2541       if (Record.size() != 5)
2542         return error("Invalid record");
2543 
2544       IsDistinct = Record[0];
2545       MetadataList.assignValue(
2546           GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]),
2547                                         getMDOrNull(Record[2]),
2548                                         getMDString(Record[3]), Record[4])),
2549           NextMetadataNo++);
2550       break;
2551     }
2552     case bitc::METADATA_MACRO: {
2553       if (Record.size() != 5)
2554         return error("Invalid record");
2555 
2556       IsDistinct = Record[0];
2557       MetadataList.assignValue(
2558           GET_OR_DISTINCT(DIMacro,
2559                           (Context, Record[1], Record[2],
2560                            getMDString(Record[3]), getMDString(Record[4]))),
2561           NextMetadataNo++);
2562       break;
2563     }
2564     case bitc::METADATA_MACRO_FILE: {
2565       if (Record.size() != 5)
2566         return error("Invalid record");
2567 
2568       IsDistinct = Record[0];
2569       MetadataList.assignValue(
2570           GET_OR_DISTINCT(DIMacroFile,
2571                           (Context, Record[1], Record[2],
2572                            getMDOrNull(Record[3]), getMDOrNull(Record[4]))),
2573           NextMetadataNo++);
2574       break;
2575     }
2576     case bitc::METADATA_TEMPLATE_TYPE: {
2577       if (Record.size() != 3)
2578         return error("Invalid record");
2579 
2580       IsDistinct = Record[0];
2581       MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter,
2582                                                (Context, getMDString(Record[1]),
2583                                                 getDITypeRefOrNull(Record[2]))),
2584                                NextMetadataNo++);
2585       break;
2586     }
2587     case bitc::METADATA_TEMPLATE_VALUE: {
2588       if (Record.size() != 5)
2589         return error("Invalid record");
2590 
2591       IsDistinct = Record[0];
2592       MetadataList.assignValue(
2593           GET_OR_DISTINCT(DITemplateValueParameter,
2594                           (Context, Record[1], getMDString(Record[2]),
2595                            getDITypeRefOrNull(Record[3]),
2596                            getMDOrNull(Record[4]))),
2597           NextMetadataNo++);
2598       break;
2599     }
2600     case bitc::METADATA_GLOBAL_VAR: {
2601       if (Record.size() != 11)
2602         return error("Invalid record");
2603 
2604       IsDistinct = Record[0];
2605       MetadataList.assignValue(
2606           GET_OR_DISTINCT(DIGlobalVariable,
2607                           (Context, getMDOrNull(Record[1]),
2608                            getMDString(Record[2]), getMDString(Record[3]),
2609                            getMDOrNull(Record[4]), Record[5],
2610                            getDITypeRefOrNull(Record[6]), Record[7], Record[8],
2611                            getMDOrNull(Record[9]), getMDOrNull(Record[10]))),
2612           NextMetadataNo++);
2613       break;
2614     }
2615     case bitc::METADATA_LOCAL_VAR: {
2616       // 10th field is for the obseleted 'inlinedAt:' field.
2617       if (Record.size() < 8 || Record.size() > 10)
2618         return error("Invalid record");
2619 
2620       // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or
2621       // DW_TAG_arg_variable.
2622       IsDistinct = Record[0];
2623       bool HasTag = Record.size() > 8;
2624       MetadataList.assignValue(
2625           GET_OR_DISTINCT(DILocalVariable,
2626                           (Context, getMDOrNull(Record[1 + HasTag]),
2627                            getMDString(Record[2 + HasTag]),
2628                            getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag],
2629                            getDITypeRefOrNull(Record[5 + HasTag]),
2630                            Record[6 + HasTag], Record[7 + HasTag])),
2631           NextMetadataNo++);
2632       break;
2633     }
2634     case bitc::METADATA_EXPRESSION: {
2635       if (Record.size() < 1)
2636         return error("Invalid record");
2637 
2638       IsDistinct = Record[0];
2639       MetadataList.assignValue(
2640           GET_OR_DISTINCT(DIExpression,
2641                           (Context, makeArrayRef(Record).slice(1))),
2642           NextMetadataNo++);
2643       break;
2644     }
2645     case bitc::METADATA_OBJC_PROPERTY: {
2646       if (Record.size() != 8)
2647         return error("Invalid record");
2648 
2649       IsDistinct = Record[0];
2650       MetadataList.assignValue(
2651           GET_OR_DISTINCT(DIObjCProperty,
2652                           (Context, getMDString(Record[1]),
2653                            getMDOrNull(Record[2]), Record[3],
2654                            getMDString(Record[4]), getMDString(Record[5]),
2655                            Record[6], getDITypeRefOrNull(Record[7]))),
2656           NextMetadataNo++);
2657       break;
2658     }
2659     case bitc::METADATA_IMPORTED_ENTITY: {
2660       if (Record.size() != 6)
2661         return error("Invalid record");
2662 
2663       IsDistinct = Record[0];
2664       MetadataList.assignValue(
2665           GET_OR_DISTINCT(DIImportedEntity,
2666                           (Context, Record[1], getMDOrNull(Record[2]),
2667                            getDITypeRefOrNull(Record[3]), Record[4],
2668                            getMDString(Record[5]))),
2669           NextMetadataNo++);
2670       break;
2671     }
2672     case bitc::METADATA_STRING_OLD: {
2673       std::string String(Record.begin(), Record.end());
2674 
2675       // Test for upgrading !llvm.loop.
2676       HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String);
2677 
2678       Metadata *MD = MDString::get(Context, String);
2679       MetadataList.assignValue(MD, NextMetadataNo++);
2680       break;
2681     }
2682     case bitc::METADATA_STRINGS:
2683       if (std::error_code EC =
2684               parseMetadataStrings(Record, Blob, NextMetadataNo))
2685         return EC;
2686       break;
2687     case bitc::METADATA_KIND: {
2688       // Support older bitcode files that had METADATA_KIND records in a
2689       // block with METADATA_BLOCK_ID.
2690       if (std::error_code EC = parseMetadataKindRecord(Record))
2691         return EC;
2692       break;
2693     }
2694     }
2695   }
2696 #undef GET_OR_DISTINCT
2697 }
2698 
2699 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK.
2700 std::error_code BitcodeReader::parseMetadataKinds() {
2701   if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID))
2702     return error("Invalid record");
2703 
2704   SmallVector<uint64_t, 64> Record;
2705 
2706   // Read all the records.
2707   while (1) {
2708     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2709 
2710     switch (Entry.Kind) {
2711     case BitstreamEntry::SubBlock: // Handled for us already.
2712     case BitstreamEntry::Error:
2713       return error("Malformed block");
2714     case BitstreamEntry::EndBlock:
2715       return std::error_code();
2716     case BitstreamEntry::Record:
2717       // The interesting case.
2718       break;
2719     }
2720 
2721     // Read a record.
2722     Record.clear();
2723     unsigned Code = Stream.readRecord(Entry.ID, Record);
2724     switch (Code) {
2725     default: // Default behavior: ignore.
2726       break;
2727     case bitc::METADATA_KIND: {
2728       if (std::error_code EC = parseMetadataKindRecord(Record))
2729         return EC;
2730       break;
2731     }
2732     }
2733   }
2734 }
2735 
2736 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2737 /// encoding.
2738 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2739   if ((V & 1) == 0)
2740     return V >> 1;
2741   if (V != 1)
2742     return -(V >> 1);
2743   // There is no such thing as -0 with integers.  "-0" really means MININT.
2744   return 1ULL << 63;
2745 }
2746 
2747 /// Resolve all of the initializers for global values and aliases that we can.
2748 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2749   std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist;
2750   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >
2751       IndirectSymbolInitWorklist;
2752   std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist;
2753   std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist;
2754   std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist;
2755 
2756   GlobalInitWorklist.swap(GlobalInits);
2757   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2758   FunctionPrefixWorklist.swap(FunctionPrefixes);
2759   FunctionPrologueWorklist.swap(FunctionPrologues);
2760   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2761 
2762   while (!GlobalInitWorklist.empty()) {
2763     unsigned ValID = GlobalInitWorklist.back().second;
2764     if (ValID >= ValueList.size()) {
2765       // Not ready to resolve this yet, it requires something later in the file.
2766       GlobalInits.push_back(GlobalInitWorklist.back());
2767     } else {
2768       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2769         GlobalInitWorklist.back().first->setInitializer(C);
2770       else
2771         return error("Expected a constant");
2772     }
2773     GlobalInitWorklist.pop_back();
2774   }
2775 
2776   while (!IndirectSymbolInitWorklist.empty()) {
2777     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2778     if (ValID >= ValueList.size()) {
2779       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2780     } else {
2781       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2782       if (!C)
2783         return error("Expected a constant");
2784       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2785       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2786         return error("Alias and aliasee types don't match");
2787       GIS->setIndirectSymbol(C);
2788     }
2789     IndirectSymbolInitWorklist.pop_back();
2790   }
2791 
2792   while (!FunctionPrefixWorklist.empty()) {
2793     unsigned ValID = FunctionPrefixWorklist.back().second;
2794     if (ValID >= ValueList.size()) {
2795       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2796     } else {
2797       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2798         FunctionPrefixWorklist.back().first->setPrefixData(C);
2799       else
2800         return error("Expected a constant");
2801     }
2802     FunctionPrefixWorklist.pop_back();
2803   }
2804 
2805   while (!FunctionPrologueWorklist.empty()) {
2806     unsigned ValID = FunctionPrologueWorklist.back().second;
2807     if (ValID >= ValueList.size()) {
2808       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2809     } else {
2810       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2811         FunctionPrologueWorklist.back().first->setPrologueData(C);
2812       else
2813         return error("Expected a constant");
2814     }
2815     FunctionPrologueWorklist.pop_back();
2816   }
2817 
2818   while (!FunctionPersonalityFnWorklist.empty()) {
2819     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2820     if (ValID >= ValueList.size()) {
2821       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2822     } else {
2823       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2824         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2825       else
2826         return error("Expected a constant");
2827     }
2828     FunctionPersonalityFnWorklist.pop_back();
2829   }
2830 
2831   return std::error_code();
2832 }
2833 
2834 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2835   SmallVector<uint64_t, 8> Words(Vals.size());
2836   std::transform(Vals.begin(), Vals.end(), Words.begin(),
2837                  BitcodeReader::decodeSignRotatedValue);
2838 
2839   return APInt(TypeBits, Words);
2840 }
2841 
2842 std::error_code BitcodeReader::parseConstants() {
2843   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2844     return error("Invalid record");
2845 
2846   SmallVector<uint64_t, 64> Record;
2847 
2848   // Read all the records for this value table.
2849   Type *CurTy = Type::getInt32Ty(Context);
2850   unsigned NextCstNo = ValueList.size();
2851   while (1) {
2852     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2853 
2854     switch (Entry.Kind) {
2855     case BitstreamEntry::SubBlock: // Handled for us already.
2856     case BitstreamEntry::Error:
2857       return error("Malformed block");
2858     case BitstreamEntry::EndBlock:
2859       if (NextCstNo != ValueList.size())
2860         return error("Invalid constant reference");
2861 
2862       // Once all the constants have been read, go through and resolve forward
2863       // references.
2864       ValueList.resolveConstantForwardRefs();
2865       return std::error_code();
2866     case BitstreamEntry::Record:
2867       // The interesting case.
2868       break;
2869     }
2870 
2871     // Read a record.
2872     Record.clear();
2873     Value *V = nullptr;
2874     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2875     switch (BitCode) {
2876     default:  // Default behavior: unknown constant
2877     case bitc::CST_CODE_UNDEF:     // UNDEF
2878       V = UndefValue::get(CurTy);
2879       break;
2880     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2881       if (Record.empty())
2882         return error("Invalid record");
2883       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2884         return error("Invalid record");
2885       CurTy = TypeList[Record[0]];
2886       continue;  // Skip the ValueList manipulation.
2887     case bitc::CST_CODE_NULL:      // NULL
2888       V = Constant::getNullValue(CurTy);
2889       break;
2890     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2891       if (!CurTy->isIntegerTy() || Record.empty())
2892         return error("Invalid record");
2893       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2894       break;
2895     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2896       if (!CurTy->isIntegerTy() || Record.empty())
2897         return error("Invalid record");
2898 
2899       APInt VInt =
2900           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2901       V = ConstantInt::get(Context, VInt);
2902 
2903       break;
2904     }
2905     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2906       if (Record.empty())
2907         return error("Invalid record");
2908       if (CurTy->isHalfTy())
2909         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf,
2910                                              APInt(16, (uint16_t)Record[0])));
2911       else if (CurTy->isFloatTy())
2912         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle,
2913                                              APInt(32, (uint32_t)Record[0])));
2914       else if (CurTy->isDoubleTy())
2915         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble,
2916                                              APInt(64, Record[0])));
2917       else if (CurTy->isX86_FP80Ty()) {
2918         // Bits are not stored the same way as a normal i80 APInt, compensate.
2919         uint64_t Rearrange[2];
2920         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2921         Rearrange[1] = Record[0] >> 48;
2922         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended,
2923                                              APInt(80, Rearrange)));
2924       } else if (CurTy->isFP128Ty())
2925         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad,
2926                                              APInt(128, Record)));
2927       else if (CurTy->isPPC_FP128Ty())
2928         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble,
2929                                              APInt(128, Record)));
2930       else
2931         V = UndefValue::get(CurTy);
2932       break;
2933     }
2934 
2935     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2936       if (Record.empty())
2937         return error("Invalid record");
2938 
2939       unsigned Size = Record.size();
2940       SmallVector<Constant*, 16> Elts;
2941 
2942       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2943         for (unsigned i = 0; i != Size; ++i)
2944           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2945                                                      STy->getElementType(i)));
2946         V = ConstantStruct::get(STy, Elts);
2947       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2948         Type *EltTy = ATy->getElementType();
2949         for (unsigned i = 0; i != Size; ++i)
2950           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2951         V = ConstantArray::get(ATy, Elts);
2952       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2953         Type *EltTy = VTy->getElementType();
2954         for (unsigned i = 0; i != Size; ++i)
2955           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2956         V = ConstantVector::get(Elts);
2957       } else {
2958         V = UndefValue::get(CurTy);
2959       }
2960       break;
2961     }
2962     case bitc::CST_CODE_STRING:    // STRING: [values]
2963     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2964       if (Record.empty())
2965         return error("Invalid record");
2966 
2967       SmallString<16> Elts(Record.begin(), Record.end());
2968       V = ConstantDataArray::getString(Context, Elts,
2969                                        BitCode == bitc::CST_CODE_CSTRING);
2970       break;
2971     }
2972     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2973       if (Record.empty())
2974         return error("Invalid record");
2975 
2976       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2977       if (EltTy->isIntegerTy(8)) {
2978         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2979         if (isa<VectorType>(CurTy))
2980           V = ConstantDataVector::get(Context, Elts);
2981         else
2982           V = ConstantDataArray::get(Context, Elts);
2983       } else if (EltTy->isIntegerTy(16)) {
2984         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2985         if (isa<VectorType>(CurTy))
2986           V = ConstantDataVector::get(Context, Elts);
2987         else
2988           V = ConstantDataArray::get(Context, Elts);
2989       } else if (EltTy->isIntegerTy(32)) {
2990         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2991         if (isa<VectorType>(CurTy))
2992           V = ConstantDataVector::get(Context, Elts);
2993         else
2994           V = ConstantDataArray::get(Context, Elts);
2995       } else if (EltTy->isIntegerTy(64)) {
2996         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2997         if (isa<VectorType>(CurTy))
2998           V = ConstantDataVector::get(Context, Elts);
2999         else
3000           V = ConstantDataArray::get(Context, Elts);
3001       } else if (EltTy->isHalfTy()) {
3002         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
3003         if (isa<VectorType>(CurTy))
3004           V = ConstantDataVector::getFP(Context, Elts);
3005         else
3006           V = ConstantDataArray::getFP(Context, Elts);
3007       } else if (EltTy->isFloatTy()) {
3008         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
3009         if (isa<VectorType>(CurTy))
3010           V = ConstantDataVector::getFP(Context, Elts);
3011         else
3012           V = ConstantDataArray::getFP(Context, Elts);
3013       } else if (EltTy->isDoubleTy()) {
3014         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
3015         if (isa<VectorType>(CurTy))
3016           V = ConstantDataVector::getFP(Context, Elts);
3017         else
3018           V = ConstantDataArray::getFP(Context, Elts);
3019       } else {
3020         return error("Invalid type for value");
3021       }
3022       break;
3023     }
3024     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
3025       if (Record.size() < 3)
3026         return error("Invalid record");
3027       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
3028       if (Opc < 0) {
3029         V = UndefValue::get(CurTy);  // Unknown binop.
3030       } else {
3031         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
3032         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
3033         unsigned Flags = 0;
3034         if (Record.size() >= 4) {
3035           if (Opc == Instruction::Add ||
3036               Opc == Instruction::Sub ||
3037               Opc == Instruction::Mul ||
3038               Opc == Instruction::Shl) {
3039             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3040               Flags |= OverflowingBinaryOperator::NoSignedWrap;
3041             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3042               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3043           } else if (Opc == Instruction::SDiv ||
3044                      Opc == Instruction::UDiv ||
3045                      Opc == Instruction::LShr ||
3046                      Opc == Instruction::AShr) {
3047             if (Record[3] & (1 << bitc::PEO_EXACT))
3048               Flags |= SDivOperator::IsExact;
3049           }
3050         }
3051         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
3052       }
3053       break;
3054     }
3055     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
3056       if (Record.size() < 3)
3057         return error("Invalid record");
3058       int Opc = getDecodedCastOpcode(Record[0]);
3059       if (Opc < 0) {
3060         V = UndefValue::get(CurTy);  // Unknown cast.
3061       } else {
3062         Type *OpTy = getTypeByID(Record[1]);
3063         if (!OpTy)
3064           return error("Invalid record");
3065         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
3066         V = UpgradeBitCastExpr(Opc, Op, CurTy);
3067         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
3068       }
3069       break;
3070     }
3071     case bitc::CST_CODE_CE_INBOUNDS_GEP:
3072     case bitc::CST_CODE_CE_GEP: {  // CE_GEP:        [n x operands]
3073       unsigned OpNum = 0;
3074       Type *PointeeType = nullptr;
3075       if (Record.size() % 2)
3076         PointeeType = getTypeByID(Record[OpNum++]);
3077       SmallVector<Constant*, 16> Elts;
3078       while (OpNum != Record.size()) {
3079         Type *ElTy = getTypeByID(Record[OpNum++]);
3080         if (!ElTy)
3081           return error("Invalid record");
3082         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
3083       }
3084 
3085       if (PointeeType &&
3086           PointeeType !=
3087               cast<SequentialType>(Elts[0]->getType()->getScalarType())
3088                   ->getElementType())
3089         return error("Explicit gep operator type does not match pointee type "
3090                      "of pointer operand");
3091 
3092       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3093       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
3094                                          BitCode ==
3095                                              bitc::CST_CODE_CE_INBOUNDS_GEP);
3096       break;
3097     }
3098     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
3099       if (Record.size() < 3)
3100         return error("Invalid record");
3101 
3102       Type *SelectorTy = Type::getInt1Ty(Context);
3103 
3104       // The selector might be an i1 or an <n x i1>
3105       // Get the type from the ValueList before getting a forward ref.
3106       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
3107         if (Value *V = ValueList[Record[0]])
3108           if (SelectorTy != V->getType())
3109             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
3110 
3111       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
3112                                                               SelectorTy),
3113                                   ValueList.getConstantFwdRef(Record[1],CurTy),
3114                                   ValueList.getConstantFwdRef(Record[2],CurTy));
3115       break;
3116     }
3117     case bitc::CST_CODE_CE_EXTRACTELT
3118         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
3119       if (Record.size() < 3)
3120         return error("Invalid record");
3121       VectorType *OpTy =
3122         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3123       if (!OpTy)
3124         return error("Invalid record");
3125       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3126       Constant *Op1 = nullptr;
3127       if (Record.size() == 4) {
3128         Type *IdxTy = getTypeByID(Record[2]);
3129         if (!IdxTy)
3130           return error("Invalid record");
3131         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3132       } else // TODO: Remove with llvm 4.0
3133         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3134       if (!Op1)
3135         return error("Invalid record");
3136       V = ConstantExpr::getExtractElement(Op0, Op1);
3137       break;
3138     }
3139     case bitc::CST_CODE_CE_INSERTELT
3140         : { // CE_INSERTELT: [opval, opval, opty, opval]
3141       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3142       if (Record.size() < 3 || !OpTy)
3143         return error("Invalid record");
3144       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3145       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
3146                                                   OpTy->getElementType());
3147       Constant *Op2 = nullptr;
3148       if (Record.size() == 4) {
3149         Type *IdxTy = getTypeByID(Record[2]);
3150         if (!IdxTy)
3151           return error("Invalid record");
3152         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
3153       } else // TODO: Remove with llvm 4.0
3154         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
3155       if (!Op2)
3156         return error("Invalid record");
3157       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
3158       break;
3159     }
3160     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
3161       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
3162       if (Record.size() < 3 || !OpTy)
3163         return error("Invalid record");
3164       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
3165       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
3166       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3167                                                  OpTy->getNumElements());
3168       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
3169       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3170       break;
3171     }
3172     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
3173       VectorType *RTy = dyn_cast<VectorType>(CurTy);
3174       VectorType *OpTy =
3175         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
3176       if (Record.size() < 4 || !RTy || !OpTy)
3177         return error("Invalid record");
3178       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3179       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3180       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
3181                                                  RTy->getNumElements());
3182       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
3183       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
3184       break;
3185     }
3186     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
3187       if (Record.size() < 4)
3188         return error("Invalid record");
3189       Type *OpTy = getTypeByID(Record[0]);
3190       if (!OpTy)
3191         return error("Invalid record");
3192       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
3193       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
3194 
3195       if (OpTy->isFPOrFPVectorTy())
3196         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
3197       else
3198         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
3199       break;
3200     }
3201     // This maintains backward compatibility, pre-asm dialect keywords.
3202     // FIXME: Remove with the 4.0 release.
3203     case bitc::CST_CODE_INLINEASM_OLD: {
3204       if (Record.size() < 2)
3205         return error("Invalid record");
3206       std::string AsmStr, ConstrStr;
3207       bool HasSideEffects = Record[0] & 1;
3208       bool IsAlignStack = Record[0] >> 1;
3209       unsigned AsmStrSize = Record[1];
3210       if (2+AsmStrSize >= Record.size())
3211         return error("Invalid record");
3212       unsigned ConstStrSize = Record[2+AsmStrSize];
3213       if (3+AsmStrSize+ConstStrSize > Record.size())
3214         return error("Invalid record");
3215 
3216       for (unsigned i = 0; i != AsmStrSize; ++i)
3217         AsmStr += (char)Record[2+i];
3218       for (unsigned i = 0; i != ConstStrSize; ++i)
3219         ConstrStr += (char)Record[3+AsmStrSize+i];
3220       PointerType *PTy = cast<PointerType>(CurTy);
3221       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3222                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
3223       break;
3224     }
3225     // This version adds support for the asm dialect keywords (e.g.,
3226     // inteldialect).
3227     case bitc::CST_CODE_INLINEASM: {
3228       if (Record.size() < 2)
3229         return error("Invalid record");
3230       std::string AsmStr, ConstrStr;
3231       bool HasSideEffects = Record[0] & 1;
3232       bool IsAlignStack = (Record[0] >> 1) & 1;
3233       unsigned AsmDialect = Record[0] >> 2;
3234       unsigned AsmStrSize = Record[1];
3235       if (2+AsmStrSize >= Record.size())
3236         return error("Invalid record");
3237       unsigned ConstStrSize = Record[2+AsmStrSize];
3238       if (3+AsmStrSize+ConstStrSize > Record.size())
3239         return error("Invalid record");
3240 
3241       for (unsigned i = 0; i != AsmStrSize; ++i)
3242         AsmStr += (char)Record[2+i];
3243       for (unsigned i = 0; i != ConstStrSize; ++i)
3244         ConstrStr += (char)Record[3+AsmStrSize+i];
3245       PointerType *PTy = cast<PointerType>(CurTy);
3246       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
3247                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
3248                          InlineAsm::AsmDialect(AsmDialect));
3249       break;
3250     }
3251     case bitc::CST_CODE_BLOCKADDRESS:{
3252       if (Record.size() < 3)
3253         return error("Invalid record");
3254       Type *FnTy = getTypeByID(Record[0]);
3255       if (!FnTy)
3256         return error("Invalid record");
3257       Function *Fn =
3258         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
3259       if (!Fn)
3260         return error("Invalid record");
3261 
3262       // If the function is already parsed we can insert the block address right
3263       // away.
3264       BasicBlock *BB;
3265       unsigned BBID = Record[2];
3266       if (!BBID)
3267         // Invalid reference to entry block.
3268         return error("Invalid ID");
3269       if (!Fn->empty()) {
3270         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
3271         for (size_t I = 0, E = BBID; I != E; ++I) {
3272           if (BBI == BBE)
3273             return error("Invalid ID");
3274           ++BBI;
3275         }
3276         BB = &*BBI;
3277       } else {
3278         // Otherwise insert a placeholder and remember it so it can be inserted
3279         // when the function is parsed.
3280         auto &FwdBBs = BasicBlockFwdRefs[Fn];
3281         if (FwdBBs.empty())
3282           BasicBlockFwdRefQueue.push_back(Fn);
3283         if (FwdBBs.size() < BBID + 1)
3284           FwdBBs.resize(BBID + 1);
3285         if (!FwdBBs[BBID])
3286           FwdBBs[BBID] = BasicBlock::Create(Context);
3287         BB = FwdBBs[BBID];
3288       }
3289       V = BlockAddress::get(Fn, BB);
3290       break;
3291     }
3292     }
3293 
3294     ValueList.assignValue(V, NextCstNo);
3295     ++NextCstNo;
3296   }
3297 }
3298 
3299 std::error_code BitcodeReader::parseUseLists() {
3300   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
3301     return error("Invalid record");
3302 
3303   // Read all the records.
3304   SmallVector<uint64_t, 64> Record;
3305   while (1) {
3306     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
3307 
3308     switch (Entry.Kind) {
3309     case BitstreamEntry::SubBlock: // Handled for us already.
3310     case BitstreamEntry::Error:
3311       return error("Malformed block");
3312     case BitstreamEntry::EndBlock:
3313       return std::error_code();
3314     case BitstreamEntry::Record:
3315       // The interesting case.
3316       break;
3317     }
3318 
3319     // Read a use list record.
3320     Record.clear();
3321     bool IsBB = false;
3322     switch (Stream.readRecord(Entry.ID, Record)) {
3323     default:  // Default behavior: unknown type.
3324       break;
3325     case bitc::USELIST_CODE_BB:
3326       IsBB = true;
3327       // fallthrough
3328     case bitc::USELIST_CODE_DEFAULT: {
3329       unsigned RecordLength = Record.size();
3330       if (RecordLength < 3)
3331         // Records should have at least an ID and two indexes.
3332         return error("Invalid record");
3333       unsigned ID = Record.back();
3334       Record.pop_back();
3335 
3336       Value *V;
3337       if (IsBB) {
3338         assert(ID < FunctionBBs.size() && "Basic block not found");
3339         V = FunctionBBs[ID];
3340       } else
3341         V = ValueList[ID];
3342       unsigned NumUses = 0;
3343       SmallDenseMap<const Use *, unsigned, 16> Order;
3344       for (const Use &U : V->materialized_uses()) {
3345         if (++NumUses > Record.size())
3346           break;
3347         Order[&U] = Record[NumUses - 1];
3348       }
3349       if (Order.size() != Record.size() || NumUses > Record.size())
3350         // Mismatches can happen if the functions are being materialized lazily
3351         // (out-of-order), or a value has been upgraded.
3352         break;
3353 
3354       V->sortUseList([&](const Use &L, const Use &R) {
3355         return Order.lookup(&L) < Order.lookup(&R);
3356       });
3357       break;
3358     }
3359     }
3360   }
3361 }
3362 
3363 /// When we see the block for metadata, remember where it is and then skip it.
3364 /// This lets us lazily deserialize the metadata.
3365 std::error_code BitcodeReader::rememberAndSkipMetadata() {
3366   // Save the current stream state.
3367   uint64_t CurBit = Stream.GetCurrentBitNo();
3368   DeferredMetadataInfo.push_back(CurBit);
3369 
3370   // Skip over the block for now.
3371   if (Stream.SkipBlock())
3372     return error("Invalid record");
3373   return std::error_code();
3374 }
3375 
3376 std::error_code BitcodeReader::materializeMetadata() {
3377   for (uint64_t BitPos : DeferredMetadataInfo) {
3378     // Move the bit stream to the saved position.
3379     Stream.JumpToBit(BitPos);
3380     if (std::error_code EC = parseMetadata(true))
3381       return EC;
3382   }
3383   DeferredMetadataInfo.clear();
3384   return std::error_code();
3385 }
3386 
3387 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3388 
3389 /// When we see the block for a function body, remember where it is and then
3390 /// skip it.  This lets us lazily deserialize the functions.
3391 std::error_code BitcodeReader::rememberAndSkipFunctionBody() {
3392   // Get the function we are talking about.
3393   if (FunctionsWithBodies.empty())
3394     return error("Insufficient function protos");
3395 
3396   Function *Fn = FunctionsWithBodies.back();
3397   FunctionsWithBodies.pop_back();
3398 
3399   // Save the current stream state.
3400   uint64_t CurBit = Stream.GetCurrentBitNo();
3401   assert(
3402       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3403       "Mismatch between VST and scanned function offsets");
3404   DeferredFunctionInfo[Fn] = CurBit;
3405 
3406   // Skip over the function block for now.
3407   if (Stream.SkipBlock())
3408     return error("Invalid record");
3409   return std::error_code();
3410 }
3411 
3412 std::error_code BitcodeReader::globalCleanup() {
3413   // Patch the initializers for globals and aliases up.
3414   resolveGlobalAndIndirectSymbolInits();
3415   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3416     return error("Malformed global initializer set");
3417 
3418   // Look for intrinsic functions which need to be upgraded at some point
3419   for (Function &F : *TheModule) {
3420     Function *NewFn;
3421     if (UpgradeIntrinsicFunction(&F, NewFn))
3422       UpgradedIntrinsics[&F] = NewFn;
3423   }
3424 
3425   // Look for global variables which need to be renamed.
3426   for (GlobalVariable &GV : TheModule->globals())
3427     UpgradeGlobalVariable(&GV);
3428 
3429   // Force deallocation of memory for these vectors to favor the client that
3430   // want lazy deserialization.
3431   std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits);
3432   std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap(
3433       IndirectSymbolInits);
3434   return std::error_code();
3435 }
3436 
3437 /// Support for lazy parsing of function bodies. This is required if we
3438 /// either have an old bitcode file without a VST forward declaration record,
3439 /// or if we have an anonymous function being materialized, since anonymous
3440 /// functions do not have a name and are therefore not in the VST.
3441 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() {
3442   Stream.JumpToBit(NextUnreadBit);
3443 
3444   if (Stream.AtEndOfStream())
3445     return error("Could not find function in stream");
3446 
3447   if (!SeenFirstFunctionBody)
3448     return error("Trying to materialize functions before seeing function blocks");
3449 
3450   // An old bitcode file with the symbol table at the end would have
3451   // finished the parse greedily.
3452   assert(SeenValueSymbolTable);
3453 
3454   SmallVector<uint64_t, 64> Record;
3455 
3456   while (1) {
3457     BitstreamEntry Entry = Stream.advance();
3458     switch (Entry.Kind) {
3459     default:
3460       return error("Expect SubBlock");
3461     case BitstreamEntry::SubBlock:
3462       switch (Entry.ID) {
3463       default:
3464         return error("Expect function block");
3465       case bitc::FUNCTION_BLOCK_ID:
3466         if (std::error_code EC = rememberAndSkipFunctionBody())
3467           return EC;
3468         NextUnreadBit = Stream.GetCurrentBitNo();
3469         return std::error_code();
3470       }
3471     }
3472   }
3473 }
3474 
3475 std::error_code BitcodeReader::parseBitcodeVersion() {
3476   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
3477     return error("Invalid record");
3478 
3479   // Read all the records.
3480   SmallVector<uint64_t, 64> Record;
3481   while (1) {
3482     BitstreamEntry Entry = Stream.advance();
3483 
3484     switch (Entry.Kind) {
3485     default:
3486     case BitstreamEntry::Error:
3487       return error("Malformed block");
3488     case BitstreamEntry::EndBlock:
3489       return std::error_code();
3490     case BitstreamEntry::Record:
3491       // The interesting case.
3492       break;
3493     }
3494 
3495     // Read a record.
3496     Record.clear();
3497     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3498     switch (BitCode) {
3499     default: // Default behavior: reject
3500       return error("Invalid value");
3501     case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION:      [strchr x
3502                                              // N]
3503       convertToString(Record, 0, ProducerIdentification);
3504       break;
3505     }
3506     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH:      [epoch#]
3507       unsigned epoch = (unsigned)Record[0];
3508       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
3509         return error(
3510           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
3511           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
3512       }
3513     }
3514     }
3515   }
3516 }
3517 
3518 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit,
3519                                            bool ShouldLazyLoadMetadata) {
3520   if (ResumeBit)
3521     Stream.JumpToBit(ResumeBit);
3522   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3523     return error("Invalid record");
3524 
3525   SmallVector<uint64_t, 64> Record;
3526   std::vector<std::string> SectionTable;
3527   std::vector<std::string> GCTable;
3528 
3529   // Read all the records for this module.
3530   while (1) {
3531     BitstreamEntry Entry = Stream.advance();
3532 
3533     switch (Entry.Kind) {
3534     case BitstreamEntry::Error:
3535       return error("Malformed block");
3536     case BitstreamEntry::EndBlock:
3537       return globalCleanup();
3538 
3539     case BitstreamEntry::SubBlock:
3540       switch (Entry.ID) {
3541       default:  // Skip unknown content.
3542         if (Stream.SkipBlock())
3543           return error("Invalid record");
3544         break;
3545       case bitc::BLOCKINFO_BLOCK_ID:
3546         if (Stream.ReadBlockInfoBlock())
3547           return error("Malformed block");
3548         break;
3549       case bitc::PARAMATTR_BLOCK_ID:
3550         if (std::error_code EC = parseAttributeBlock())
3551           return EC;
3552         break;
3553       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3554         if (std::error_code EC = parseAttributeGroupBlock())
3555           return EC;
3556         break;
3557       case bitc::TYPE_BLOCK_ID_NEW:
3558         if (std::error_code EC = parseTypeTable())
3559           return EC;
3560         break;
3561       case bitc::VALUE_SYMTAB_BLOCK_ID:
3562         if (!SeenValueSymbolTable) {
3563           // Either this is an old form VST without function index and an
3564           // associated VST forward declaration record (which would have caused
3565           // the VST to be jumped to and parsed before it was encountered
3566           // normally in the stream), or there were no function blocks to
3567           // trigger an earlier parsing of the VST.
3568           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3569           if (std::error_code EC = parseValueSymbolTable())
3570             return EC;
3571           SeenValueSymbolTable = true;
3572         } else {
3573           // We must have had a VST forward declaration record, which caused
3574           // the parser to jump to and parse the VST earlier.
3575           assert(VSTOffset > 0);
3576           if (Stream.SkipBlock())
3577             return error("Invalid record");
3578         }
3579         break;
3580       case bitc::CONSTANTS_BLOCK_ID:
3581         if (std::error_code EC = parseConstants())
3582           return EC;
3583         if (std::error_code EC = resolveGlobalAndIndirectSymbolInits())
3584           return EC;
3585         break;
3586       case bitc::METADATA_BLOCK_ID:
3587         if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) {
3588           if (std::error_code EC = rememberAndSkipMetadata())
3589             return EC;
3590           break;
3591         }
3592         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3593         if (std::error_code EC = parseMetadata(true))
3594           return EC;
3595         break;
3596       case bitc::METADATA_KIND_BLOCK_ID:
3597         if (std::error_code EC = parseMetadataKinds())
3598           return EC;
3599         break;
3600       case bitc::FUNCTION_BLOCK_ID:
3601         // If this is the first function body we've seen, reverse the
3602         // FunctionsWithBodies list.
3603         if (!SeenFirstFunctionBody) {
3604           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3605           if (std::error_code EC = globalCleanup())
3606             return EC;
3607           SeenFirstFunctionBody = true;
3608         }
3609 
3610         if (VSTOffset > 0) {
3611           // If we have a VST forward declaration record, make sure we
3612           // parse the VST now if we haven't already. It is needed to
3613           // set up the DeferredFunctionInfo vector for lazy reading.
3614           if (!SeenValueSymbolTable) {
3615             if (std::error_code EC =
3616                     BitcodeReader::parseValueSymbolTable(VSTOffset))
3617               return EC;
3618             SeenValueSymbolTable = true;
3619             // Fall through so that we record the NextUnreadBit below.
3620             // This is necessary in case we have an anonymous function that
3621             // is later materialized. Since it will not have a VST entry we
3622             // need to fall back to the lazy parse to find its offset.
3623           } else {
3624             // If we have a VST forward declaration record, but have already
3625             // parsed the VST (just above, when the first function body was
3626             // encountered here), then we are resuming the parse after
3627             // materializing functions. The ResumeBit points to the
3628             // start of the last function block recorded in the
3629             // DeferredFunctionInfo map. Skip it.
3630             if (Stream.SkipBlock())
3631               return error("Invalid record");
3632             continue;
3633           }
3634         }
3635 
3636         // Support older bitcode files that did not have the function
3637         // index in the VST, nor a VST forward declaration record, as
3638         // well as anonymous functions that do not have VST entries.
3639         // Build the DeferredFunctionInfo vector on the fly.
3640         if (std::error_code EC = rememberAndSkipFunctionBody())
3641           return EC;
3642 
3643         // Suspend parsing when we reach the function bodies. Subsequent
3644         // materialization calls will resume it when necessary. If the bitcode
3645         // file is old, the symbol table will be at the end instead and will not
3646         // have been seen yet. In this case, just finish the parse now.
3647         if (SeenValueSymbolTable) {
3648           NextUnreadBit = Stream.GetCurrentBitNo();
3649           return std::error_code();
3650         }
3651         break;
3652       case bitc::USELIST_BLOCK_ID:
3653         if (std::error_code EC = parseUseLists())
3654           return EC;
3655         break;
3656       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3657         if (std::error_code EC = parseOperandBundleTags())
3658           return EC;
3659         break;
3660       }
3661       continue;
3662 
3663     case BitstreamEntry::Record:
3664       // The interesting case.
3665       break;
3666     }
3667 
3668     // Read a record.
3669     auto BitCode = Stream.readRecord(Entry.ID, Record);
3670     switch (BitCode) {
3671     default: break;  // Default behavior, ignore unknown content.
3672     case bitc::MODULE_CODE_VERSION: {  // VERSION: [version#]
3673       if (Record.size() < 1)
3674         return error("Invalid record");
3675       // Only version #0 and #1 are supported so far.
3676       unsigned module_version = Record[0];
3677       switch (module_version) {
3678         default:
3679           return error("Invalid value");
3680         case 0:
3681           UseRelativeIDs = false;
3682           break;
3683         case 1:
3684           UseRelativeIDs = true;
3685           break;
3686       }
3687       break;
3688     }
3689     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3690       std::string S;
3691       if (convertToString(Record, 0, S))
3692         return error("Invalid record");
3693       TheModule->setTargetTriple(S);
3694       break;
3695     }
3696     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3697       std::string S;
3698       if (convertToString(Record, 0, S))
3699         return error("Invalid record");
3700       TheModule->setDataLayout(S);
3701       break;
3702     }
3703     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3704       std::string S;
3705       if (convertToString(Record, 0, S))
3706         return error("Invalid record");
3707       TheModule->setModuleInlineAsm(S);
3708       break;
3709     }
3710     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3711       // FIXME: Remove in 4.0.
3712       std::string S;
3713       if (convertToString(Record, 0, S))
3714         return error("Invalid record");
3715       // Ignore value.
3716       break;
3717     }
3718     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3719       std::string S;
3720       if (convertToString(Record, 0, S))
3721         return error("Invalid record");
3722       SectionTable.push_back(S);
3723       break;
3724     }
3725     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3726       std::string S;
3727       if (convertToString(Record, 0, S))
3728         return error("Invalid record");
3729       GCTable.push_back(S);
3730       break;
3731     }
3732     case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name]
3733       if (Record.size() < 2)
3734         return error("Invalid record");
3735       Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3736       unsigned ComdatNameSize = Record[1];
3737       std::string ComdatName;
3738       ComdatName.reserve(ComdatNameSize);
3739       for (unsigned i = 0; i != ComdatNameSize; ++i)
3740         ComdatName += (char)Record[2 + i];
3741       Comdat *C = TheModule->getOrInsertComdat(ComdatName);
3742       C->setSelectionKind(SK);
3743       ComdatList.push_back(C);
3744       break;
3745     }
3746     // GLOBALVAR: [pointer type, isconst, initid,
3747     //             linkage, alignment, section, visibility, threadlocal,
3748     //             unnamed_addr, externally_initialized, dllstorageclass,
3749     //             comdat]
3750     case bitc::MODULE_CODE_GLOBALVAR: {
3751       if (Record.size() < 6)
3752         return error("Invalid record");
3753       Type *Ty = getTypeByID(Record[0]);
3754       if (!Ty)
3755         return error("Invalid record");
3756       bool isConstant = Record[1] & 1;
3757       bool explicitType = Record[1] & 2;
3758       unsigned AddressSpace;
3759       if (explicitType) {
3760         AddressSpace = Record[1] >> 2;
3761       } else {
3762         if (!Ty->isPointerTy())
3763           return error("Invalid type for value");
3764         AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3765         Ty = cast<PointerType>(Ty)->getElementType();
3766       }
3767 
3768       uint64_t RawLinkage = Record[3];
3769       GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3770       unsigned Alignment;
3771       if (std::error_code EC = parseAlignmentValue(Record[4], Alignment))
3772         return EC;
3773       std::string Section;
3774       if (Record[5]) {
3775         if (Record[5]-1 >= SectionTable.size())
3776           return error("Invalid ID");
3777         Section = SectionTable[Record[5]-1];
3778       }
3779       GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3780       // Local linkage must have default visibility.
3781       if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3782         // FIXME: Change to an error if non-default in 4.0.
3783         Visibility = getDecodedVisibility(Record[6]);
3784 
3785       GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3786       if (Record.size() > 7)
3787         TLM = getDecodedThreadLocalMode(Record[7]);
3788 
3789       bool UnnamedAddr = false;
3790       if (Record.size() > 8)
3791         UnnamedAddr = Record[8];
3792 
3793       bool ExternallyInitialized = false;
3794       if (Record.size() > 9)
3795         ExternallyInitialized = Record[9];
3796 
3797       GlobalVariable *NewGV =
3798         new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr,
3799                            TLM, AddressSpace, ExternallyInitialized);
3800       NewGV->setAlignment(Alignment);
3801       if (!Section.empty())
3802         NewGV->setSection(Section);
3803       NewGV->setVisibility(Visibility);
3804       NewGV->setUnnamedAddr(UnnamedAddr);
3805 
3806       if (Record.size() > 10)
3807         NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3808       else
3809         upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3810 
3811       ValueList.push_back(NewGV);
3812 
3813       // Remember which value to use for the global initializer.
3814       if (unsigned InitID = Record[2])
3815         GlobalInits.push_back(std::make_pair(NewGV, InitID-1));
3816 
3817       if (Record.size() > 11) {
3818         if (unsigned ComdatID = Record[11]) {
3819           if (ComdatID > ComdatList.size())
3820             return error("Invalid global variable comdat ID");
3821           NewGV->setComdat(ComdatList[ComdatID - 1]);
3822         }
3823       } else if (hasImplicitComdat(RawLinkage)) {
3824         NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3825       }
3826       break;
3827     }
3828     // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
3829     //             alignment, section, visibility, gc, unnamed_addr,
3830     //             prologuedata, dllstorageclass, comdat, prefixdata]
3831     case bitc::MODULE_CODE_FUNCTION: {
3832       if (Record.size() < 8)
3833         return error("Invalid record");
3834       Type *Ty = getTypeByID(Record[0]);
3835       if (!Ty)
3836         return error("Invalid record");
3837       if (auto *PTy = dyn_cast<PointerType>(Ty))
3838         Ty = PTy->getElementType();
3839       auto *FTy = dyn_cast<FunctionType>(Ty);
3840       if (!FTy)
3841         return error("Invalid type for value");
3842       auto CC = static_cast<CallingConv::ID>(Record[1]);
3843       if (CC & ~CallingConv::MaxID)
3844         return error("Invalid calling convention ID");
3845 
3846       Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3847                                         "", TheModule);
3848 
3849       Func->setCallingConv(CC);
3850       bool isProto = Record[2];
3851       uint64_t RawLinkage = Record[3];
3852       Func->setLinkage(getDecodedLinkage(RawLinkage));
3853       Func->setAttributes(getAttributes(Record[4]));
3854 
3855       unsigned Alignment;
3856       if (std::error_code EC = parseAlignmentValue(Record[5], Alignment))
3857         return EC;
3858       Func->setAlignment(Alignment);
3859       if (Record[6]) {
3860         if (Record[6]-1 >= SectionTable.size())
3861           return error("Invalid ID");
3862         Func->setSection(SectionTable[Record[6]-1]);
3863       }
3864       // Local linkage must have default visibility.
3865       if (!Func->hasLocalLinkage())
3866         // FIXME: Change to an error if non-default in 4.0.
3867         Func->setVisibility(getDecodedVisibility(Record[7]));
3868       if (Record.size() > 8 && Record[8]) {
3869         if (Record[8]-1 >= GCTable.size())
3870           return error("Invalid ID");
3871         Func->setGC(GCTable[Record[8]-1].c_str());
3872       }
3873       bool UnnamedAddr = false;
3874       if (Record.size() > 9)
3875         UnnamedAddr = Record[9];
3876       Func->setUnnamedAddr(UnnamedAddr);
3877       if (Record.size() > 10 && Record[10] != 0)
3878         FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1));
3879 
3880       if (Record.size() > 11)
3881         Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3882       else
3883         upgradeDLLImportExportLinkage(Func, RawLinkage);
3884 
3885       if (Record.size() > 12) {
3886         if (unsigned ComdatID = Record[12]) {
3887           if (ComdatID > ComdatList.size())
3888             return error("Invalid function comdat ID");
3889           Func->setComdat(ComdatList[ComdatID - 1]);
3890         }
3891       } else if (hasImplicitComdat(RawLinkage)) {
3892         Func->setComdat(reinterpret_cast<Comdat *>(1));
3893       }
3894 
3895       if (Record.size() > 13 && Record[13] != 0)
3896         FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1));
3897 
3898       if (Record.size() > 14 && Record[14] != 0)
3899         FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3900 
3901       ValueList.push_back(Func);
3902 
3903       // If this is a function with a body, remember the prototype we are
3904       // creating now, so that we can match up the body with them later.
3905       if (!isProto) {
3906         Func->setIsMaterializable(true);
3907         FunctionsWithBodies.push_back(Func);
3908         DeferredFunctionInfo[Func] = 0;
3909       }
3910       break;
3911     }
3912     // ALIAS: [alias type, addrspace, aliasee val#, linkage]
3913     // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3914     // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass]
3915     case bitc::MODULE_CODE_IFUNC:
3916     case bitc::MODULE_CODE_ALIAS:
3917     case bitc::MODULE_CODE_ALIAS_OLD: {
3918       bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3919       if (Record.size() < (3 + (unsigned)NewRecord))
3920         return error("Invalid record");
3921       unsigned OpNum = 0;
3922       Type *Ty = getTypeByID(Record[OpNum++]);
3923       if (!Ty)
3924         return error("Invalid record");
3925 
3926       unsigned AddrSpace;
3927       if (!NewRecord) {
3928         auto *PTy = dyn_cast<PointerType>(Ty);
3929         if (!PTy)
3930           return error("Invalid type for value");
3931         Ty = PTy->getElementType();
3932         AddrSpace = PTy->getAddressSpace();
3933       } else {
3934         AddrSpace = Record[OpNum++];
3935       }
3936 
3937       auto Val = Record[OpNum++];
3938       auto Linkage = Record[OpNum++];
3939       GlobalIndirectSymbol *NewGA;
3940       if (BitCode == bitc::MODULE_CODE_ALIAS ||
3941           BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3942         NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
3943                                     "", TheModule);
3944       else
3945         NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage),
3946                                     "", nullptr, TheModule);
3947       // Old bitcode files didn't have visibility field.
3948       // Local linkage must have default visibility.
3949       if (OpNum != Record.size()) {
3950         auto VisInd = OpNum++;
3951         if (!NewGA->hasLocalLinkage())
3952           // FIXME: Change to an error if non-default in 4.0.
3953           NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3954       }
3955       if (OpNum != Record.size())
3956         NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3957       else
3958         upgradeDLLImportExportLinkage(NewGA, Linkage);
3959       if (OpNum != Record.size())
3960         NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3961       if (OpNum != Record.size())
3962         NewGA->setUnnamedAddr(Record[OpNum++]);
3963       ValueList.push_back(NewGA);
3964       IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3965       break;
3966     }
3967     /// MODULE_CODE_PURGEVALS: [numvals]
3968     case bitc::MODULE_CODE_PURGEVALS:
3969       // Trim down the value list to the specified size.
3970       if (Record.size() < 1 || Record[0] > ValueList.size())
3971         return error("Invalid record");
3972       ValueList.shrinkTo(Record[0]);
3973       break;
3974     /// MODULE_CODE_VSTOFFSET: [offset]
3975     case bitc::MODULE_CODE_VSTOFFSET:
3976       if (Record.size() < 1)
3977         return error("Invalid record");
3978       VSTOffset = Record[0];
3979       break;
3980     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3981     case bitc::MODULE_CODE_SOURCE_FILENAME:
3982       SmallString<128> ValueName;
3983       if (convertToString(Record, 0, ValueName))
3984         return error("Invalid record");
3985       TheModule->setSourceFileName(ValueName);
3986       break;
3987     }
3988     Record.clear();
3989   }
3990 }
3991 
3992 /// Helper to read the header common to all bitcode files.
3993 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
3994   // Sniff for the signature.
3995   if (Stream.Read(8) != 'B' ||
3996       Stream.Read(8) != 'C' ||
3997       Stream.Read(4) != 0x0 ||
3998       Stream.Read(4) != 0xC ||
3999       Stream.Read(4) != 0xE ||
4000       Stream.Read(4) != 0xD)
4001     return false;
4002   return true;
4003 }
4004 
4005 std::error_code
4006 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer,
4007                                 Module *M, bool ShouldLazyLoadMetadata) {
4008   TheModule = M;
4009 
4010   if (std::error_code EC = initStream(std::move(Streamer)))
4011     return EC;
4012 
4013   // Sniff for the signature.
4014   if (!hasValidBitcodeHeader(Stream))
4015     return error("Invalid bitcode signature");
4016 
4017   // We expect a number of well-defined blocks, though we don't necessarily
4018   // need to understand them all.
4019   while (1) {
4020     if (Stream.AtEndOfStream()) {
4021       // We didn't really read a proper Module.
4022       return error("Malformed IR file");
4023     }
4024 
4025     BitstreamEntry Entry =
4026       Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
4027 
4028     if (Entry.Kind != BitstreamEntry::SubBlock)
4029       return error("Malformed block");
4030 
4031     if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
4032       parseBitcodeVersion();
4033       continue;
4034     }
4035 
4036     if (Entry.ID == bitc::MODULE_BLOCK_ID)
4037       return parseModule(0, ShouldLazyLoadMetadata);
4038 
4039     if (Stream.SkipBlock())
4040       return error("Invalid record");
4041   }
4042 }
4043 
4044 ErrorOr<std::string> BitcodeReader::parseModuleTriple() {
4045   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4046     return error("Invalid record");
4047 
4048   SmallVector<uint64_t, 64> Record;
4049 
4050   std::string Triple;
4051   // Read all the records for this module.
4052   while (1) {
4053     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4054 
4055     switch (Entry.Kind) {
4056     case BitstreamEntry::SubBlock: // Handled for us already.
4057     case BitstreamEntry::Error:
4058       return error("Malformed block");
4059     case BitstreamEntry::EndBlock:
4060       return Triple;
4061     case BitstreamEntry::Record:
4062       // The interesting case.
4063       break;
4064     }
4065 
4066     // Read a record.
4067     switch (Stream.readRecord(Entry.ID, Record)) {
4068     default: break;  // Default behavior, ignore unknown content.
4069     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
4070       std::string S;
4071       if (convertToString(Record, 0, S))
4072         return error("Invalid record");
4073       Triple = S;
4074       break;
4075     }
4076     }
4077     Record.clear();
4078   }
4079   llvm_unreachable("Exit infinite loop");
4080 }
4081 
4082 ErrorOr<std::string> BitcodeReader::parseTriple() {
4083   if (std::error_code EC = initStream(nullptr))
4084     return EC;
4085 
4086   // Sniff for the signature.
4087   if (!hasValidBitcodeHeader(Stream))
4088     return error("Invalid bitcode signature");
4089 
4090   // We expect a number of well-defined blocks, though we don't necessarily
4091   // need to understand them all.
4092   while (1) {
4093     BitstreamEntry Entry = Stream.advance();
4094 
4095     switch (Entry.Kind) {
4096     case BitstreamEntry::Error:
4097       return error("Malformed block");
4098     case BitstreamEntry::EndBlock:
4099       return std::error_code();
4100 
4101     case BitstreamEntry::SubBlock:
4102       if (Entry.ID == bitc::MODULE_BLOCK_ID)
4103         return parseModuleTriple();
4104 
4105       // Ignore other sub-blocks.
4106       if (Stream.SkipBlock())
4107         return error("Malformed block");
4108       continue;
4109 
4110     case BitstreamEntry::Record:
4111       Stream.skipRecord(Entry.ID);
4112       continue;
4113     }
4114   }
4115 }
4116 
4117 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() {
4118   if (std::error_code EC = initStream(nullptr))
4119     return EC;
4120 
4121   // Sniff for the signature.
4122   if (!hasValidBitcodeHeader(Stream))
4123     return error("Invalid bitcode signature");
4124 
4125   // We expect a number of well-defined blocks, though we don't necessarily
4126   // need to understand them all.
4127   while (1) {
4128     BitstreamEntry Entry = Stream.advance();
4129     switch (Entry.Kind) {
4130     case BitstreamEntry::Error:
4131       return error("Malformed block");
4132     case BitstreamEntry::EndBlock:
4133       return std::error_code();
4134 
4135     case BitstreamEntry::SubBlock:
4136       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
4137         if (std::error_code EC = parseBitcodeVersion())
4138           return EC;
4139         return ProducerIdentification;
4140       }
4141       // Ignore other sub-blocks.
4142       if (Stream.SkipBlock())
4143         return error("Malformed block");
4144       continue;
4145     case BitstreamEntry::Record:
4146       Stream.skipRecord(Entry.ID);
4147       continue;
4148     }
4149   }
4150 }
4151 
4152 /// Parse metadata attachments.
4153 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) {
4154   if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID))
4155     return error("Invalid record");
4156 
4157   SmallVector<uint64_t, 64> Record;
4158   while (1) {
4159     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4160 
4161     switch (Entry.Kind) {
4162     case BitstreamEntry::SubBlock: // Handled for us already.
4163     case BitstreamEntry::Error:
4164       return error("Malformed block");
4165     case BitstreamEntry::EndBlock:
4166       return std::error_code();
4167     case BitstreamEntry::Record:
4168       // The interesting case.
4169       break;
4170     }
4171 
4172     // Read a metadata attachment record.
4173     Record.clear();
4174     switch (Stream.readRecord(Entry.ID, Record)) {
4175     default:  // Default behavior: ignore.
4176       break;
4177     case bitc::METADATA_ATTACHMENT: {
4178       unsigned RecordLength = Record.size();
4179       if (Record.empty())
4180         return error("Invalid record");
4181       if (RecordLength % 2 == 0) {
4182         // A function attachment.
4183         for (unsigned I = 0; I != RecordLength; I += 2) {
4184           auto K = MDKindMap.find(Record[I]);
4185           if (K == MDKindMap.end())
4186             return error("Invalid ID");
4187           MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]);
4188           if (!MD)
4189             return error("Invalid metadata attachment");
4190           F.setMetadata(K->second, MD);
4191         }
4192         continue;
4193       }
4194 
4195       // An instruction attachment.
4196       Instruction *Inst = InstructionList[Record[0]];
4197       for (unsigned i = 1; i != RecordLength; i = i+2) {
4198         unsigned Kind = Record[i];
4199         DenseMap<unsigned, unsigned>::iterator I =
4200           MDKindMap.find(Kind);
4201         if (I == MDKindMap.end())
4202           return error("Invalid ID");
4203         Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]);
4204         if (isa<LocalAsMetadata>(Node))
4205           // Drop the attachment.  This used to be legal, but there's no
4206           // upgrade path.
4207           break;
4208         MDNode *MD = dyn_cast_or_null<MDNode>(Node);
4209         if (!MD)
4210           return error("Invalid metadata attachment");
4211 
4212         if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop)
4213           MD = upgradeInstructionLoopAttachment(*MD);
4214 
4215         Inst->setMetadata(I->second, MD);
4216         if (I->second == LLVMContext::MD_tbaa) {
4217           InstsWithTBAATag.push_back(Inst);
4218           continue;
4219         }
4220       }
4221       break;
4222     }
4223     }
4224   }
4225 }
4226 
4227 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
4228   LLVMContext &Context = PtrType->getContext();
4229   if (!isa<PointerType>(PtrType))
4230     return error(Context, "Load/Store operand is not a pointer type");
4231   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
4232 
4233   if (ValType && ValType != ElemType)
4234     return error(Context, "Explicit load/store type does not match pointee "
4235                           "type of pointer operand");
4236   if (!PointerType::isLoadableOrStorableType(ElemType))
4237     return error(Context, "Cannot load/store from pointer");
4238   return std::error_code();
4239 }
4240 
4241 /// Lazily parse the specified function body block.
4242 std::error_code BitcodeReader::parseFunctionBody(Function *F) {
4243   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
4244     return error("Invalid record");
4245 
4246   // Unexpected unresolved metadata when parsing function.
4247   if (MetadataList.hasFwdRefs())
4248     return error("Invalid function metadata: incoming forward references");
4249 
4250   InstructionList.clear();
4251   unsigned ModuleValueListSize = ValueList.size();
4252   unsigned ModuleMetadataListSize = MetadataList.size();
4253 
4254   // Add all the function arguments to the value table.
4255   for (Argument &I : F->args())
4256     ValueList.push_back(&I);
4257 
4258   unsigned NextValueNo = ValueList.size();
4259   BasicBlock *CurBB = nullptr;
4260   unsigned CurBBNo = 0;
4261 
4262   DebugLoc LastLoc;
4263   auto getLastInstruction = [&]() -> Instruction * {
4264     if (CurBB && !CurBB->empty())
4265       return &CurBB->back();
4266     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
4267              !FunctionBBs[CurBBNo - 1]->empty())
4268       return &FunctionBBs[CurBBNo - 1]->back();
4269     return nullptr;
4270   };
4271 
4272   std::vector<OperandBundleDef> OperandBundles;
4273 
4274   // Read all the records.
4275   SmallVector<uint64_t, 64> Record;
4276   while (1) {
4277     BitstreamEntry Entry = Stream.advance();
4278 
4279     switch (Entry.Kind) {
4280     case BitstreamEntry::Error:
4281       return error("Malformed block");
4282     case BitstreamEntry::EndBlock:
4283       goto OutOfRecordLoop;
4284 
4285     case BitstreamEntry::SubBlock:
4286       switch (Entry.ID) {
4287       default:  // Skip unknown content.
4288         if (Stream.SkipBlock())
4289           return error("Invalid record");
4290         break;
4291       case bitc::CONSTANTS_BLOCK_ID:
4292         if (std::error_code EC = parseConstants())
4293           return EC;
4294         NextValueNo = ValueList.size();
4295         break;
4296       case bitc::VALUE_SYMTAB_BLOCK_ID:
4297         if (std::error_code EC = parseValueSymbolTable())
4298           return EC;
4299         break;
4300       case bitc::METADATA_ATTACHMENT_ID:
4301         if (std::error_code EC = parseMetadataAttachment(*F))
4302           return EC;
4303         break;
4304       case bitc::METADATA_BLOCK_ID:
4305         if (std::error_code EC = parseMetadata())
4306           return EC;
4307         break;
4308       case bitc::USELIST_BLOCK_ID:
4309         if (std::error_code EC = parseUseLists())
4310           return EC;
4311         break;
4312       }
4313       continue;
4314 
4315     case BitstreamEntry::Record:
4316       // The interesting case.
4317       break;
4318     }
4319 
4320     // Read a record.
4321     Record.clear();
4322     Instruction *I = nullptr;
4323     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
4324     switch (BitCode) {
4325     default: // Default behavior: reject
4326       return error("Invalid value");
4327     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
4328       if (Record.size() < 1 || Record[0] == 0)
4329         return error("Invalid record");
4330       // Create all the basic blocks for the function.
4331       FunctionBBs.resize(Record[0]);
4332 
4333       // See if anything took the address of blocks in this function.
4334       auto BBFRI = BasicBlockFwdRefs.find(F);
4335       if (BBFRI == BasicBlockFwdRefs.end()) {
4336         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
4337           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
4338       } else {
4339         auto &BBRefs = BBFRI->second;
4340         // Check for invalid basic block references.
4341         if (BBRefs.size() > FunctionBBs.size())
4342           return error("Invalid ID");
4343         assert(!BBRefs.empty() && "Unexpected empty array");
4344         assert(!BBRefs.front() && "Invalid reference to entry block");
4345         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
4346              ++I)
4347           if (I < RE && BBRefs[I]) {
4348             BBRefs[I]->insertInto(F);
4349             FunctionBBs[I] = BBRefs[I];
4350           } else {
4351             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
4352           }
4353 
4354         // Erase from the table.
4355         BasicBlockFwdRefs.erase(BBFRI);
4356       }
4357 
4358       CurBB = FunctionBBs[0];
4359       continue;
4360     }
4361 
4362     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
4363       // This record indicates that the last instruction is at the same
4364       // location as the previous instruction with a location.
4365       I = getLastInstruction();
4366 
4367       if (!I)
4368         return error("Invalid record");
4369       I->setDebugLoc(LastLoc);
4370       I = nullptr;
4371       continue;
4372 
4373     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4374       I = getLastInstruction();
4375       if (!I || Record.size() < 4)
4376         return error("Invalid record");
4377 
4378       unsigned Line = Record[0], Col = Record[1];
4379       unsigned ScopeID = Record[2], IAID = Record[3];
4380 
4381       MDNode *Scope = nullptr, *IA = nullptr;
4382       if (ScopeID) {
4383         Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1);
4384         if (!Scope)
4385           return error("Invalid record");
4386       }
4387       if (IAID) {
4388         IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1);
4389         if (!IA)
4390           return error("Invalid record");
4391       }
4392       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
4393       I->setDebugLoc(LastLoc);
4394       I = nullptr;
4395       continue;
4396     }
4397 
4398     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4399       unsigned OpNum = 0;
4400       Value *LHS, *RHS;
4401       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4402           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4403           OpNum+1 > Record.size())
4404         return error("Invalid record");
4405 
4406       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4407       if (Opc == -1)
4408         return error("Invalid record");
4409       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4410       InstructionList.push_back(I);
4411       if (OpNum < Record.size()) {
4412         if (Opc == Instruction::Add ||
4413             Opc == Instruction::Sub ||
4414             Opc == Instruction::Mul ||
4415             Opc == Instruction::Shl) {
4416           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4417             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4418           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4419             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4420         } else if (Opc == Instruction::SDiv ||
4421                    Opc == Instruction::UDiv ||
4422                    Opc == Instruction::LShr ||
4423                    Opc == Instruction::AShr) {
4424           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4425             cast<BinaryOperator>(I)->setIsExact(true);
4426         } else if (isa<FPMathOperator>(I)) {
4427           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4428           if (FMF.any())
4429             I->setFastMathFlags(FMF);
4430         }
4431 
4432       }
4433       break;
4434     }
4435     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4436       unsigned OpNum = 0;
4437       Value *Op;
4438       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4439           OpNum+2 != Record.size())
4440         return error("Invalid record");
4441 
4442       Type *ResTy = getTypeByID(Record[OpNum]);
4443       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4444       if (Opc == -1 || !ResTy)
4445         return error("Invalid record");
4446       Instruction *Temp = nullptr;
4447       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4448         if (Temp) {
4449           InstructionList.push_back(Temp);
4450           CurBB->getInstList().push_back(Temp);
4451         }
4452       } else {
4453         auto CastOp = (Instruction::CastOps)Opc;
4454         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4455           return error("Invalid cast");
4456         I = CastInst::Create(CastOp, Op, ResTy);
4457       }
4458       InstructionList.push_back(I);
4459       break;
4460     }
4461     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4462     case bitc::FUNC_CODE_INST_GEP_OLD:
4463     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4464       unsigned OpNum = 0;
4465 
4466       Type *Ty;
4467       bool InBounds;
4468 
4469       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4470         InBounds = Record[OpNum++];
4471         Ty = getTypeByID(Record[OpNum++]);
4472       } else {
4473         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4474         Ty = nullptr;
4475       }
4476 
4477       Value *BasePtr;
4478       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4479         return error("Invalid record");
4480 
4481       if (!Ty)
4482         Ty = cast<SequentialType>(BasePtr->getType()->getScalarType())
4483                  ->getElementType();
4484       else if (Ty !=
4485                cast<SequentialType>(BasePtr->getType()->getScalarType())
4486                    ->getElementType())
4487         return error(
4488             "Explicit gep type does not match pointee type of pointer operand");
4489 
4490       SmallVector<Value*, 16> GEPIdx;
4491       while (OpNum != Record.size()) {
4492         Value *Op;
4493         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4494           return error("Invalid record");
4495         GEPIdx.push_back(Op);
4496       }
4497 
4498       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4499 
4500       InstructionList.push_back(I);
4501       if (InBounds)
4502         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4503       break;
4504     }
4505 
4506     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4507                                        // EXTRACTVAL: [opty, opval, n x indices]
4508       unsigned OpNum = 0;
4509       Value *Agg;
4510       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4511         return error("Invalid record");
4512 
4513       unsigned RecSize = Record.size();
4514       if (OpNum == RecSize)
4515         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4516 
4517       SmallVector<unsigned, 4> EXTRACTVALIdx;
4518       Type *CurTy = Agg->getType();
4519       for (; OpNum != RecSize; ++OpNum) {
4520         bool IsArray = CurTy->isArrayTy();
4521         bool IsStruct = CurTy->isStructTy();
4522         uint64_t Index = Record[OpNum];
4523 
4524         if (!IsStruct && !IsArray)
4525           return error("EXTRACTVAL: Invalid type");
4526         if ((unsigned)Index != Index)
4527           return error("Invalid value");
4528         if (IsStruct && Index >= CurTy->subtypes().size())
4529           return error("EXTRACTVAL: Invalid struct index");
4530         if (IsArray && Index >= CurTy->getArrayNumElements())
4531           return error("EXTRACTVAL: Invalid array index");
4532         EXTRACTVALIdx.push_back((unsigned)Index);
4533 
4534         if (IsStruct)
4535           CurTy = CurTy->subtypes()[Index];
4536         else
4537           CurTy = CurTy->subtypes()[0];
4538       }
4539 
4540       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4541       InstructionList.push_back(I);
4542       break;
4543     }
4544 
4545     case bitc::FUNC_CODE_INST_INSERTVAL: {
4546                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4547       unsigned OpNum = 0;
4548       Value *Agg;
4549       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4550         return error("Invalid record");
4551       Value *Val;
4552       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4553         return error("Invalid record");
4554 
4555       unsigned RecSize = Record.size();
4556       if (OpNum == RecSize)
4557         return error("INSERTVAL: Invalid instruction with 0 indices");
4558 
4559       SmallVector<unsigned, 4> INSERTVALIdx;
4560       Type *CurTy = Agg->getType();
4561       for (; OpNum != RecSize; ++OpNum) {
4562         bool IsArray = CurTy->isArrayTy();
4563         bool IsStruct = CurTy->isStructTy();
4564         uint64_t Index = Record[OpNum];
4565 
4566         if (!IsStruct && !IsArray)
4567           return error("INSERTVAL: Invalid type");
4568         if ((unsigned)Index != Index)
4569           return error("Invalid value");
4570         if (IsStruct && Index >= CurTy->subtypes().size())
4571           return error("INSERTVAL: Invalid struct index");
4572         if (IsArray && Index >= CurTy->getArrayNumElements())
4573           return error("INSERTVAL: Invalid array index");
4574 
4575         INSERTVALIdx.push_back((unsigned)Index);
4576         if (IsStruct)
4577           CurTy = CurTy->subtypes()[Index];
4578         else
4579           CurTy = CurTy->subtypes()[0];
4580       }
4581 
4582       if (CurTy != Val->getType())
4583         return error("Inserted value type doesn't match aggregate type");
4584 
4585       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4586       InstructionList.push_back(I);
4587       break;
4588     }
4589 
4590     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4591       // obsolete form of select
4592       // handles select i1 ... in old bitcode
4593       unsigned OpNum = 0;
4594       Value *TrueVal, *FalseVal, *Cond;
4595       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4596           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4597           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4598         return error("Invalid record");
4599 
4600       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4601       InstructionList.push_back(I);
4602       break;
4603     }
4604 
4605     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4606       // new form of select
4607       // handles select i1 or select [N x i1]
4608       unsigned OpNum = 0;
4609       Value *TrueVal, *FalseVal, *Cond;
4610       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4611           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4612           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4613         return error("Invalid record");
4614 
4615       // select condition can be either i1 or [N x i1]
4616       if (VectorType* vector_type =
4617           dyn_cast<VectorType>(Cond->getType())) {
4618         // expect <n x i1>
4619         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4620           return error("Invalid type for value");
4621       } else {
4622         // expect i1
4623         if (Cond->getType() != Type::getInt1Ty(Context))
4624           return error("Invalid type for value");
4625       }
4626 
4627       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4628       InstructionList.push_back(I);
4629       break;
4630     }
4631 
4632     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4633       unsigned OpNum = 0;
4634       Value *Vec, *Idx;
4635       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4636           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4637         return error("Invalid record");
4638       if (!Vec->getType()->isVectorTy())
4639         return error("Invalid type for value");
4640       I = ExtractElementInst::Create(Vec, Idx);
4641       InstructionList.push_back(I);
4642       break;
4643     }
4644 
4645     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4646       unsigned OpNum = 0;
4647       Value *Vec, *Elt, *Idx;
4648       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4649         return error("Invalid record");
4650       if (!Vec->getType()->isVectorTy())
4651         return error("Invalid type for value");
4652       if (popValue(Record, OpNum, NextValueNo,
4653                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4654           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4655         return error("Invalid record");
4656       I = InsertElementInst::Create(Vec, Elt, Idx);
4657       InstructionList.push_back(I);
4658       break;
4659     }
4660 
4661     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4662       unsigned OpNum = 0;
4663       Value *Vec1, *Vec2, *Mask;
4664       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4665           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4666         return error("Invalid record");
4667 
4668       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4669         return error("Invalid record");
4670       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4671         return error("Invalid type for value");
4672       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4673       InstructionList.push_back(I);
4674       break;
4675     }
4676 
4677     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4678       // Old form of ICmp/FCmp returning bool
4679       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4680       // both legal on vectors but had different behaviour.
4681     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4682       // FCmp/ICmp returning bool or vector of bool
4683 
4684       unsigned OpNum = 0;
4685       Value *LHS, *RHS;
4686       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4687           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4688         return error("Invalid record");
4689 
4690       unsigned PredVal = Record[OpNum];
4691       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4692       FastMathFlags FMF;
4693       if (IsFP && Record.size() > OpNum+1)
4694         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4695 
4696       if (OpNum+1 != Record.size())
4697         return error("Invalid record");
4698 
4699       if (LHS->getType()->isFPOrFPVectorTy())
4700         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4701       else
4702         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4703 
4704       if (FMF.any())
4705         I->setFastMathFlags(FMF);
4706       InstructionList.push_back(I);
4707       break;
4708     }
4709 
4710     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4711       {
4712         unsigned Size = Record.size();
4713         if (Size == 0) {
4714           I = ReturnInst::Create(Context);
4715           InstructionList.push_back(I);
4716           break;
4717         }
4718 
4719         unsigned OpNum = 0;
4720         Value *Op = nullptr;
4721         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4722           return error("Invalid record");
4723         if (OpNum != Record.size())
4724           return error("Invalid record");
4725 
4726         I = ReturnInst::Create(Context, Op);
4727         InstructionList.push_back(I);
4728         break;
4729       }
4730     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4731       if (Record.size() != 1 && Record.size() != 3)
4732         return error("Invalid record");
4733       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4734       if (!TrueDest)
4735         return error("Invalid record");
4736 
4737       if (Record.size() == 1) {
4738         I = BranchInst::Create(TrueDest);
4739         InstructionList.push_back(I);
4740       }
4741       else {
4742         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4743         Value *Cond = getValue(Record, 2, NextValueNo,
4744                                Type::getInt1Ty(Context));
4745         if (!FalseDest || !Cond)
4746           return error("Invalid record");
4747         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4748         InstructionList.push_back(I);
4749       }
4750       break;
4751     }
4752     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4753       if (Record.size() != 1 && Record.size() != 2)
4754         return error("Invalid record");
4755       unsigned Idx = 0;
4756       Value *CleanupPad =
4757           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4758       if (!CleanupPad)
4759         return error("Invalid record");
4760       BasicBlock *UnwindDest = nullptr;
4761       if (Record.size() == 2) {
4762         UnwindDest = getBasicBlock(Record[Idx++]);
4763         if (!UnwindDest)
4764           return error("Invalid record");
4765       }
4766 
4767       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4768       InstructionList.push_back(I);
4769       break;
4770     }
4771     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4772       if (Record.size() != 2)
4773         return error("Invalid record");
4774       unsigned Idx = 0;
4775       Value *CatchPad =
4776           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4777       if (!CatchPad)
4778         return error("Invalid record");
4779       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4780       if (!BB)
4781         return error("Invalid record");
4782 
4783       I = CatchReturnInst::Create(CatchPad, BB);
4784       InstructionList.push_back(I);
4785       break;
4786     }
4787     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4788       // We must have, at minimum, the outer scope and the number of arguments.
4789       if (Record.size() < 2)
4790         return error("Invalid record");
4791 
4792       unsigned Idx = 0;
4793 
4794       Value *ParentPad =
4795           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4796 
4797       unsigned NumHandlers = Record[Idx++];
4798 
4799       SmallVector<BasicBlock *, 2> Handlers;
4800       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4801         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4802         if (!BB)
4803           return error("Invalid record");
4804         Handlers.push_back(BB);
4805       }
4806 
4807       BasicBlock *UnwindDest = nullptr;
4808       if (Idx + 1 == Record.size()) {
4809         UnwindDest = getBasicBlock(Record[Idx++]);
4810         if (!UnwindDest)
4811           return error("Invalid record");
4812       }
4813 
4814       if (Record.size() != Idx)
4815         return error("Invalid record");
4816 
4817       auto *CatchSwitch =
4818           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4819       for (BasicBlock *Handler : Handlers)
4820         CatchSwitch->addHandler(Handler);
4821       I = CatchSwitch;
4822       InstructionList.push_back(I);
4823       break;
4824     }
4825     case bitc::FUNC_CODE_INST_CATCHPAD:
4826     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4827       // We must have, at minimum, the outer scope and the number of arguments.
4828       if (Record.size() < 2)
4829         return error("Invalid record");
4830 
4831       unsigned Idx = 0;
4832 
4833       Value *ParentPad =
4834           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4835 
4836       unsigned NumArgOperands = Record[Idx++];
4837 
4838       SmallVector<Value *, 2> Args;
4839       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4840         Value *Val;
4841         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4842           return error("Invalid record");
4843         Args.push_back(Val);
4844       }
4845 
4846       if (Record.size() != Idx)
4847         return error("Invalid record");
4848 
4849       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4850         I = CleanupPadInst::Create(ParentPad, Args);
4851       else
4852         I = CatchPadInst::Create(ParentPad, Args);
4853       InstructionList.push_back(I);
4854       break;
4855     }
4856     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4857       // Check magic
4858       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4859         // "New" SwitchInst format with case ranges. The changes to write this
4860         // format were reverted but we still recognize bitcode that uses it.
4861         // Hopefully someday we will have support for case ranges and can use
4862         // this format again.
4863 
4864         Type *OpTy = getTypeByID(Record[1]);
4865         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4866 
4867         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4868         BasicBlock *Default = getBasicBlock(Record[3]);
4869         if (!OpTy || !Cond || !Default)
4870           return error("Invalid record");
4871 
4872         unsigned NumCases = Record[4];
4873 
4874         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4875         InstructionList.push_back(SI);
4876 
4877         unsigned CurIdx = 5;
4878         for (unsigned i = 0; i != NumCases; ++i) {
4879           SmallVector<ConstantInt*, 1> CaseVals;
4880           unsigned NumItems = Record[CurIdx++];
4881           for (unsigned ci = 0; ci != NumItems; ++ci) {
4882             bool isSingleNumber = Record[CurIdx++];
4883 
4884             APInt Low;
4885             unsigned ActiveWords = 1;
4886             if (ValueBitWidth > 64)
4887               ActiveWords = Record[CurIdx++];
4888             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4889                                 ValueBitWidth);
4890             CurIdx += ActiveWords;
4891 
4892             if (!isSingleNumber) {
4893               ActiveWords = 1;
4894               if (ValueBitWidth > 64)
4895                 ActiveWords = Record[CurIdx++];
4896               APInt High = readWideAPInt(
4897                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4898               CurIdx += ActiveWords;
4899 
4900               // FIXME: It is not clear whether values in the range should be
4901               // compared as signed or unsigned values. The partially
4902               // implemented changes that used this format in the past used
4903               // unsigned comparisons.
4904               for ( ; Low.ule(High); ++Low)
4905                 CaseVals.push_back(ConstantInt::get(Context, Low));
4906             } else
4907               CaseVals.push_back(ConstantInt::get(Context, Low));
4908           }
4909           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4910           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4911                  cve = CaseVals.end(); cvi != cve; ++cvi)
4912             SI->addCase(*cvi, DestBB);
4913         }
4914         I = SI;
4915         break;
4916       }
4917 
4918       // Old SwitchInst format without case ranges.
4919 
4920       if (Record.size() < 3 || (Record.size() & 1) == 0)
4921         return error("Invalid record");
4922       Type *OpTy = getTypeByID(Record[0]);
4923       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4924       BasicBlock *Default = getBasicBlock(Record[2]);
4925       if (!OpTy || !Cond || !Default)
4926         return error("Invalid record");
4927       unsigned NumCases = (Record.size()-3)/2;
4928       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4929       InstructionList.push_back(SI);
4930       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4931         ConstantInt *CaseVal =
4932           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4933         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4934         if (!CaseVal || !DestBB) {
4935           delete SI;
4936           return error("Invalid record");
4937         }
4938         SI->addCase(CaseVal, DestBB);
4939       }
4940       I = SI;
4941       break;
4942     }
4943     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4944       if (Record.size() < 2)
4945         return error("Invalid record");
4946       Type *OpTy = getTypeByID(Record[0]);
4947       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4948       if (!OpTy || !Address)
4949         return error("Invalid record");
4950       unsigned NumDests = Record.size()-2;
4951       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4952       InstructionList.push_back(IBI);
4953       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4954         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4955           IBI->addDestination(DestBB);
4956         } else {
4957           delete IBI;
4958           return error("Invalid record");
4959         }
4960       }
4961       I = IBI;
4962       break;
4963     }
4964 
4965     case bitc::FUNC_CODE_INST_INVOKE: {
4966       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4967       if (Record.size() < 4)
4968         return error("Invalid record");
4969       unsigned OpNum = 0;
4970       AttributeSet PAL = getAttributes(Record[OpNum++]);
4971       unsigned CCInfo = Record[OpNum++];
4972       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4973       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4974 
4975       FunctionType *FTy = nullptr;
4976       if (CCInfo >> 13 & 1 &&
4977           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4978         return error("Explicit invoke type is not a function type");
4979 
4980       Value *Callee;
4981       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4982         return error("Invalid record");
4983 
4984       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4985       if (!CalleeTy)
4986         return error("Callee is not a pointer");
4987       if (!FTy) {
4988         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4989         if (!FTy)
4990           return error("Callee is not of pointer to function type");
4991       } else if (CalleeTy->getElementType() != FTy)
4992         return error("Explicit invoke type does not match pointee type of "
4993                      "callee operand");
4994       if (Record.size() < FTy->getNumParams() + OpNum)
4995         return error("Insufficient operands to call");
4996 
4997       SmallVector<Value*, 16> Ops;
4998       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4999         Ops.push_back(getValue(Record, OpNum, NextValueNo,
5000                                FTy->getParamType(i)));
5001         if (!Ops.back())
5002           return error("Invalid record");
5003       }
5004 
5005       if (!FTy->isVarArg()) {
5006         if (Record.size() != OpNum)
5007           return error("Invalid record");
5008       } else {
5009         // Read type/value pairs for varargs params.
5010         while (OpNum != Record.size()) {
5011           Value *Op;
5012           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5013             return error("Invalid record");
5014           Ops.push_back(Op);
5015         }
5016       }
5017 
5018       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
5019       OperandBundles.clear();
5020       InstructionList.push_back(I);
5021       cast<InvokeInst>(I)->setCallingConv(
5022           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
5023       cast<InvokeInst>(I)->setAttributes(PAL);
5024       break;
5025     }
5026     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
5027       unsigned Idx = 0;
5028       Value *Val = nullptr;
5029       if (getValueTypePair(Record, Idx, NextValueNo, Val))
5030         return error("Invalid record");
5031       I = ResumeInst::Create(Val);
5032       InstructionList.push_back(I);
5033       break;
5034     }
5035     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
5036       I = new UnreachableInst(Context);
5037       InstructionList.push_back(I);
5038       break;
5039     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
5040       if (Record.size() < 1 || ((Record.size()-1)&1))
5041         return error("Invalid record");
5042       Type *Ty = getTypeByID(Record[0]);
5043       if (!Ty)
5044         return error("Invalid record");
5045 
5046       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
5047       InstructionList.push_back(PN);
5048 
5049       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
5050         Value *V;
5051         // With the new function encoding, it is possible that operands have
5052         // negative IDs (for forward references).  Use a signed VBR
5053         // representation to keep the encoding small.
5054         if (UseRelativeIDs)
5055           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
5056         else
5057           V = getValue(Record, 1+i, NextValueNo, Ty);
5058         BasicBlock *BB = getBasicBlock(Record[2+i]);
5059         if (!V || !BB)
5060           return error("Invalid record");
5061         PN->addIncoming(V, BB);
5062       }
5063       I = PN;
5064       break;
5065     }
5066 
5067     case bitc::FUNC_CODE_INST_LANDINGPAD:
5068     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
5069       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
5070       unsigned Idx = 0;
5071       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
5072         if (Record.size() < 3)
5073           return error("Invalid record");
5074       } else {
5075         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
5076         if (Record.size() < 4)
5077           return error("Invalid record");
5078       }
5079       Type *Ty = getTypeByID(Record[Idx++]);
5080       if (!Ty)
5081         return error("Invalid record");
5082       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
5083         Value *PersFn = nullptr;
5084         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
5085           return error("Invalid record");
5086 
5087         if (!F->hasPersonalityFn())
5088           F->setPersonalityFn(cast<Constant>(PersFn));
5089         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
5090           return error("Personality function mismatch");
5091       }
5092 
5093       bool IsCleanup = !!Record[Idx++];
5094       unsigned NumClauses = Record[Idx++];
5095       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
5096       LP->setCleanup(IsCleanup);
5097       for (unsigned J = 0; J != NumClauses; ++J) {
5098         LandingPadInst::ClauseType CT =
5099           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
5100         Value *Val;
5101 
5102         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
5103           delete LP;
5104           return error("Invalid record");
5105         }
5106 
5107         assert((CT != LandingPadInst::Catch ||
5108                 !isa<ArrayType>(Val->getType())) &&
5109                "Catch clause has a invalid type!");
5110         assert((CT != LandingPadInst::Filter ||
5111                 isa<ArrayType>(Val->getType())) &&
5112                "Filter clause has invalid type!");
5113         LP->addClause(cast<Constant>(Val));
5114       }
5115 
5116       I = LP;
5117       InstructionList.push_back(I);
5118       break;
5119     }
5120 
5121     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
5122       if (Record.size() != 4)
5123         return error("Invalid record");
5124       uint64_t AlignRecord = Record[3];
5125       const uint64_t InAllocaMask = uint64_t(1) << 5;
5126       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
5127       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
5128       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
5129                                 SwiftErrorMask;
5130       bool InAlloca = AlignRecord & InAllocaMask;
5131       bool SwiftError = AlignRecord & SwiftErrorMask;
5132       Type *Ty = getTypeByID(Record[0]);
5133       if ((AlignRecord & ExplicitTypeMask) == 0) {
5134         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
5135         if (!PTy)
5136           return error("Old-style alloca with a non-pointer type");
5137         Ty = PTy->getElementType();
5138       }
5139       Type *OpTy = getTypeByID(Record[1]);
5140       Value *Size = getFnValueByID(Record[2], OpTy);
5141       unsigned Align;
5142       if (std::error_code EC =
5143               parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
5144         return EC;
5145       }
5146       if (!Ty || !Size)
5147         return error("Invalid record");
5148       AllocaInst *AI = new AllocaInst(Ty, Size, Align);
5149       AI->setUsedWithInAlloca(InAlloca);
5150       AI->setSwiftError(SwiftError);
5151       I = AI;
5152       InstructionList.push_back(I);
5153       break;
5154     }
5155     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
5156       unsigned OpNum = 0;
5157       Value *Op;
5158       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5159           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
5160         return error("Invalid record");
5161 
5162       Type *Ty = nullptr;
5163       if (OpNum + 3 == Record.size())
5164         Ty = getTypeByID(Record[OpNum++]);
5165       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
5166         return EC;
5167       if (!Ty)
5168         Ty = cast<PointerType>(Op->getType())->getElementType();
5169 
5170       unsigned Align;
5171       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5172         return EC;
5173       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
5174 
5175       InstructionList.push_back(I);
5176       break;
5177     }
5178     case bitc::FUNC_CODE_INST_LOADATOMIC: {
5179        // LOADATOMIC: [opty, op, align, vol, ordering, synchscope]
5180       unsigned OpNum = 0;
5181       Value *Op;
5182       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
5183           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
5184         return error("Invalid record");
5185 
5186       Type *Ty = nullptr;
5187       if (OpNum + 5 == Record.size())
5188         Ty = getTypeByID(Record[OpNum++]);
5189       if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType()))
5190         return EC;
5191       if (!Ty)
5192         Ty = cast<PointerType>(Op->getType())->getElementType();
5193 
5194       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5195       if (Ordering == AtomicOrdering::NotAtomic ||
5196           Ordering == AtomicOrdering::Release ||
5197           Ordering == AtomicOrdering::AcquireRelease)
5198         return error("Invalid record");
5199       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5200         return error("Invalid record");
5201       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5202 
5203       unsigned Align;
5204       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5205         return EC;
5206       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope);
5207 
5208       InstructionList.push_back(I);
5209       break;
5210     }
5211     case bitc::FUNC_CODE_INST_STORE:
5212     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5213       unsigned OpNum = 0;
5214       Value *Val, *Ptr;
5215       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5216           (BitCode == bitc::FUNC_CODE_INST_STORE
5217                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5218                : popValue(Record, OpNum, NextValueNo,
5219                           cast<PointerType>(Ptr->getType())->getElementType(),
5220                           Val)) ||
5221           OpNum + 2 != Record.size())
5222         return error("Invalid record");
5223 
5224       if (std::error_code EC =
5225               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5226         return EC;
5227       unsigned Align;
5228       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5229         return EC;
5230       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
5231       InstructionList.push_back(I);
5232       break;
5233     }
5234     case bitc::FUNC_CODE_INST_STOREATOMIC:
5235     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5236       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope]
5237       unsigned OpNum = 0;
5238       Value *Val, *Ptr;
5239       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5240           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5241                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5242                : popValue(Record, OpNum, NextValueNo,
5243                           cast<PointerType>(Ptr->getType())->getElementType(),
5244                           Val)) ||
5245           OpNum + 4 != Record.size())
5246         return error("Invalid record");
5247 
5248       if (std::error_code EC =
5249               typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5250         return EC;
5251       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5252       if (Ordering == AtomicOrdering::NotAtomic ||
5253           Ordering == AtomicOrdering::Acquire ||
5254           Ordering == AtomicOrdering::AcquireRelease)
5255         return error("Invalid record");
5256       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5257       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5258         return error("Invalid record");
5259 
5260       unsigned Align;
5261       if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align))
5262         return EC;
5263       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope);
5264       InstructionList.push_back(I);
5265       break;
5266     }
5267     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
5268     case bitc::FUNC_CODE_INST_CMPXCHG: {
5269       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope,
5270       //          failureordering?, isweak?]
5271       unsigned OpNum = 0;
5272       Value *Ptr, *Cmp, *New;
5273       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5274           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
5275                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
5276                : popValue(Record, OpNum, NextValueNo,
5277                           cast<PointerType>(Ptr->getType())->getElementType(),
5278                           Cmp)) ||
5279           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5280           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
5281         return error("Invalid record");
5282       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
5283       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5284           SuccessOrdering == AtomicOrdering::Unordered)
5285         return error("Invalid record");
5286       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]);
5287 
5288       if (std::error_code EC =
5289               typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5290         return EC;
5291       AtomicOrdering FailureOrdering;
5292       if (Record.size() < 7)
5293         FailureOrdering =
5294             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
5295       else
5296         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
5297 
5298       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
5299                                 SynchScope);
5300       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5301 
5302       if (Record.size() < 8) {
5303         // Before weak cmpxchgs existed, the instruction simply returned the
5304         // value loaded from memory, so bitcode files from that era will be
5305         // expecting the first component of a modern cmpxchg.
5306         CurBB->getInstList().push_back(I);
5307         I = ExtractValueInst::Create(I, 0);
5308       } else {
5309         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
5310       }
5311 
5312       InstructionList.push_back(I);
5313       break;
5314     }
5315     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5316       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope]
5317       unsigned OpNum = 0;
5318       Value *Ptr, *Val;
5319       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5320           popValue(Record, OpNum, NextValueNo,
5321                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
5322           OpNum+4 != Record.size())
5323         return error("Invalid record");
5324       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
5325       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5326           Operation > AtomicRMWInst::LAST_BINOP)
5327         return error("Invalid record");
5328       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5329       if (Ordering == AtomicOrdering::NotAtomic ||
5330           Ordering == AtomicOrdering::Unordered)
5331         return error("Invalid record");
5332       SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]);
5333       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope);
5334       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
5335       InstructionList.push_back(I);
5336       break;
5337     }
5338     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope]
5339       if (2 != Record.size())
5340         return error("Invalid record");
5341       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5342       if (Ordering == AtomicOrdering::NotAtomic ||
5343           Ordering == AtomicOrdering::Unordered ||
5344           Ordering == AtomicOrdering::Monotonic)
5345         return error("Invalid record");
5346       SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]);
5347       I = new FenceInst(Context, Ordering, SynchScope);
5348       InstructionList.push_back(I);
5349       break;
5350     }
5351     case bitc::FUNC_CODE_INST_CALL: {
5352       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5353       if (Record.size() < 3)
5354         return error("Invalid record");
5355 
5356       unsigned OpNum = 0;
5357       AttributeSet PAL = getAttributes(Record[OpNum++]);
5358       unsigned CCInfo = Record[OpNum++];
5359 
5360       FastMathFlags FMF;
5361       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5362         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5363         if (!FMF.any())
5364           return error("Fast math flags indicator set for call with no FMF");
5365       }
5366 
5367       FunctionType *FTy = nullptr;
5368       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
5369           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
5370         return error("Explicit call type is not a function type");
5371 
5372       Value *Callee;
5373       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5374         return error("Invalid record");
5375 
5376       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5377       if (!OpTy)
5378         return error("Callee is not a pointer type");
5379       if (!FTy) {
5380         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
5381         if (!FTy)
5382           return error("Callee is not of pointer to function type");
5383       } else if (OpTy->getElementType() != FTy)
5384         return error("Explicit call type does not match pointee type of "
5385                      "callee operand");
5386       if (Record.size() < FTy->getNumParams() + OpNum)
5387         return error("Insufficient operands to call");
5388 
5389       SmallVector<Value*, 16> Args;
5390       // Read the fixed params.
5391       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5392         if (FTy->getParamType(i)->isLabelTy())
5393           Args.push_back(getBasicBlock(Record[OpNum]));
5394         else
5395           Args.push_back(getValue(Record, OpNum, NextValueNo,
5396                                   FTy->getParamType(i)));
5397         if (!Args.back())
5398           return error("Invalid record");
5399       }
5400 
5401       // Read type/value pairs for varargs params.
5402       if (!FTy->isVarArg()) {
5403         if (OpNum != Record.size())
5404           return error("Invalid record");
5405       } else {
5406         while (OpNum != Record.size()) {
5407           Value *Op;
5408           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5409             return error("Invalid record");
5410           Args.push_back(Op);
5411         }
5412       }
5413 
5414       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5415       OperandBundles.clear();
5416       InstructionList.push_back(I);
5417       cast<CallInst>(I)->setCallingConv(
5418           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5419       CallInst::TailCallKind TCK = CallInst::TCK_None;
5420       if (CCInfo & 1 << bitc::CALL_TAIL)
5421         TCK = CallInst::TCK_Tail;
5422       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5423         TCK = CallInst::TCK_MustTail;
5424       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5425         TCK = CallInst::TCK_NoTail;
5426       cast<CallInst>(I)->setTailCallKind(TCK);
5427       cast<CallInst>(I)->setAttributes(PAL);
5428       if (FMF.any()) {
5429         if (!isa<FPMathOperator>(I))
5430           return error("Fast-math-flags specified for call without "
5431                        "floating-point scalar or vector return type");
5432         I->setFastMathFlags(FMF);
5433       }
5434       break;
5435     }
5436     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5437       if (Record.size() < 3)
5438         return error("Invalid record");
5439       Type *OpTy = getTypeByID(Record[0]);
5440       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5441       Type *ResTy = getTypeByID(Record[2]);
5442       if (!OpTy || !Op || !ResTy)
5443         return error("Invalid record");
5444       I = new VAArgInst(Op, ResTy);
5445       InstructionList.push_back(I);
5446       break;
5447     }
5448 
5449     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5450       // A call or an invoke can be optionally prefixed with some variable
5451       // number of operand bundle blocks.  These blocks are read into
5452       // OperandBundles and consumed at the next call or invoke instruction.
5453 
5454       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5455         return error("Invalid record");
5456 
5457       std::vector<Value *> Inputs;
5458 
5459       unsigned OpNum = 1;
5460       while (OpNum != Record.size()) {
5461         Value *Op;
5462         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5463           return error("Invalid record");
5464         Inputs.push_back(Op);
5465       }
5466 
5467       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5468       continue;
5469     }
5470     }
5471 
5472     // Add instruction to end of current BB.  If there is no current BB, reject
5473     // this file.
5474     if (!CurBB) {
5475       delete I;
5476       return error("Invalid instruction with no BB");
5477     }
5478     if (!OperandBundles.empty()) {
5479       delete I;
5480       return error("Operand bundles found with no consumer");
5481     }
5482     CurBB->getInstList().push_back(I);
5483 
5484     // If this was a terminator instruction, move to the next block.
5485     if (isa<TerminatorInst>(I)) {
5486       ++CurBBNo;
5487       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5488     }
5489 
5490     // Non-void values get registered in the value table for future use.
5491     if (I && !I->getType()->isVoidTy())
5492       ValueList.assignValue(I, NextValueNo++);
5493   }
5494 
5495 OutOfRecordLoop:
5496 
5497   if (!OperandBundles.empty())
5498     return error("Operand bundles found with no consumer");
5499 
5500   // Check the function list for unresolved values.
5501   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5502     if (!A->getParent()) {
5503       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5504       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5505         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5506           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5507           delete A;
5508         }
5509       }
5510       return error("Never resolved value found in function");
5511     }
5512   }
5513 
5514   // Unexpected unresolved metadata about to be dropped.
5515   if (MetadataList.hasFwdRefs())
5516     return error("Invalid function metadata: outgoing forward refs");
5517 
5518   // Trim the value list down to the size it was before we parsed this function.
5519   ValueList.shrinkTo(ModuleValueListSize);
5520   MetadataList.shrinkTo(ModuleMetadataListSize);
5521   std::vector<BasicBlock*>().swap(FunctionBBs);
5522   return std::error_code();
5523 }
5524 
5525 /// Find the function body in the bitcode stream
5526 std::error_code BitcodeReader::findFunctionInStream(
5527     Function *F,
5528     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5529   while (DeferredFunctionInfoIterator->second == 0) {
5530     // This is the fallback handling for the old format bitcode that
5531     // didn't contain the function index in the VST, or when we have
5532     // an anonymous function which would not have a VST entry.
5533     // Assert that we have one of those two cases.
5534     assert(VSTOffset == 0 || !F->hasName());
5535     // Parse the next body in the stream and set its position in the
5536     // DeferredFunctionInfo map.
5537     if (std::error_code EC = rememberAndSkipFunctionBodies())
5538       return EC;
5539   }
5540   return std::error_code();
5541 }
5542 
5543 //===----------------------------------------------------------------------===//
5544 // GVMaterializer implementation
5545 //===----------------------------------------------------------------------===//
5546 
5547 void BitcodeReader::releaseBuffer() { Buffer.release(); }
5548 
5549 std::error_code BitcodeReader::materialize(GlobalValue *GV) {
5550   if (std::error_code EC = materializeMetadata())
5551     return EC;
5552 
5553   Function *F = dyn_cast<Function>(GV);
5554   // If it's not a function or is already material, ignore the request.
5555   if (!F || !F->isMaterializable())
5556     return std::error_code();
5557 
5558   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5559   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5560   // If its position is recorded as 0, its body is somewhere in the stream
5561   // but we haven't seen it yet.
5562   if (DFII->second == 0)
5563     if (std::error_code EC = findFunctionInStream(F, DFII))
5564       return EC;
5565 
5566   // Move the bit stream to the saved position of the deferred function body.
5567   Stream.JumpToBit(DFII->second);
5568 
5569   if (std::error_code EC = parseFunctionBody(F))
5570     return EC;
5571   F->setIsMaterializable(false);
5572 
5573   if (StripDebugInfo)
5574     stripDebugInfo(*F);
5575 
5576   // Upgrade any old intrinsic calls in the function.
5577   for (auto &I : UpgradedIntrinsics) {
5578     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5579          UI != UE;) {
5580       User *U = *UI;
5581       ++UI;
5582       if (CallInst *CI = dyn_cast<CallInst>(U))
5583         UpgradeIntrinsicCall(CI, I.second);
5584     }
5585   }
5586 
5587   // Finish fn->subprogram upgrade for materialized functions.
5588   if (DISubprogram *SP = FunctionsWithSPs.lookup(F))
5589     F->setSubprogram(SP);
5590 
5591   // Bring in any functions that this function forward-referenced via
5592   // blockaddresses.
5593   return materializeForwardReferencedFunctions();
5594 }
5595 
5596 std::error_code BitcodeReader::materializeModule() {
5597   if (std::error_code EC = materializeMetadata())
5598     return EC;
5599 
5600   // Promise to materialize all forward references.
5601   WillMaterializeAllForwardRefs = true;
5602 
5603   // Iterate over the module, deserializing any functions that are still on
5604   // disk.
5605   for (Function &F : *TheModule) {
5606     if (std::error_code EC = materialize(&F))
5607       return EC;
5608   }
5609   // At this point, if there are any function bodies, parse the rest of
5610   // the bits in the module past the last function block we have recorded
5611   // through either lazy scanning or the VST.
5612   if (LastFunctionBlockBit || NextUnreadBit)
5613     parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit
5614                                                      : NextUnreadBit);
5615 
5616   // Check that all block address forward references got resolved (as we
5617   // promised above).
5618   if (!BasicBlockFwdRefs.empty())
5619     return error("Never resolved function from blockaddress");
5620 
5621   // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost,
5622   // to prevent this instructions with TBAA tags should be upgraded first.
5623   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
5624     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
5625 
5626   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5627   // delete the old functions to clean up. We can't do this unless the entire
5628   // module is materialized because there could always be another function body
5629   // with calls to the old function.
5630   for (auto &I : UpgradedIntrinsics) {
5631     for (auto *U : I.first->users()) {
5632       if (CallInst *CI = dyn_cast<CallInst>(U))
5633         UpgradeIntrinsicCall(CI, I.second);
5634     }
5635     if (!I.first->use_empty())
5636       I.first->replaceAllUsesWith(I.second);
5637     I.first->eraseFromParent();
5638   }
5639   UpgradedIntrinsics.clear();
5640 
5641   UpgradeDebugInfo(*TheModule);
5642   return std::error_code();
5643 }
5644 
5645 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5646   return IdentifiedStructTypes;
5647 }
5648 
5649 std::error_code
5650 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) {
5651   if (Streamer)
5652     return initLazyStream(std::move(Streamer));
5653   return initStreamFromBuffer();
5654 }
5655 
5656 std::error_code BitcodeReader::initStreamFromBuffer() {
5657   const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart();
5658   const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize();
5659 
5660   if (Buffer->getBufferSize() & 3)
5661     return error("Invalid bitcode signature");
5662 
5663   // If we have a wrapper header, parse it and ignore the non-bc file contents.
5664   // The magic number is 0x0B17C0DE stored in little endian.
5665   if (isBitcodeWrapper(BufPtr, BufEnd))
5666     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
5667       return error("Invalid bitcode wrapper header");
5668 
5669   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
5670   Stream.init(&*StreamFile);
5671 
5672   return std::error_code();
5673 }
5674 
5675 std::error_code
5676 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) {
5677   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
5678   // see it.
5679   auto OwnedBytes =
5680       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
5681   StreamingMemoryObject &Bytes = *OwnedBytes;
5682   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
5683   Stream.init(&*StreamFile);
5684 
5685   unsigned char buf[16];
5686   if (Bytes.readBytes(buf, 16, 0) != 16)
5687     return error("Invalid bitcode signature");
5688 
5689   if (!isBitcode(buf, buf + 16))
5690     return error("Invalid bitcode signature");
5691 
5692   if (isBitcodeWrapper(buf, buf + 4)) {
5693     const unsigned char *bitcodeStart = buf;
5694     const unsigned char *bitcodeEnd = buf + 16;
5695     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
5696     Bytes.dropLeadingBytes(bitcodeStart - buf);
5697     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
5698   }
5699   return std::error_code();
5700 }
5701 
5702 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E,
5703                                                        const Twine &Message) {
5704   return ::error(DiagnosticHandler, make_error_code(E), Message);
5705 }
5706 
5707 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) {
5708   return ::error(DiagnosticHandler,
5709                  make_error_code(BitcodeError::CorruptedBitcode), Message);
5710 }
5711 
5712 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) {
5713   return ::error(DiagnosticHandler, make_error_code(E));
5714 }
5715 
5716 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5717     MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler,
5718     bool CheckGlobalValSummaryPresenceOnly)
5719     : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer),
5720       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5721 
5722 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5723     DiagnosticHandlerFunction DiagnosticHandler,
5724     bool CheckGlobalValSummaryPresenceOnly)
5725     : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr),
5726       CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {}
5727 
5728 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; }
5729 
5730 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); }
5731 
5732 std::pair<GlobalValue::GUID, GlobalValue::GUID>
5733 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) {
5734   auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId);
5735   assert(VGI != ValueIdToCallGraphGUIDMap.end());
5736   return VGI->second;
5737 }
5738 
5739 GlobalValue::GUID
5740 ModuleSummaryIndexBitcodeReader::getGUIDFromOffset(uint64_t Offset) {
5741   auto I = SummaryOffsetToGUIDMap.find(Offset);
5742   assert(I != SummaryOffsetToGUIDMap.end());
5743   return I->second;
5744 }
5745 
5746 // Specialized value symbol table parser used when reading module index
5747 // blocks where we don't actually create global values. The parsed information
5748 // is saved in the bitcode reader for use when later parsing summaries.
5749 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5750     uint64_t Offset,
5751     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5752   assert(Offset > 0 && "Expected non-zero VST offset");
5753   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
5754 
5755   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5756     return error("Invalid record");
5757 
5758   SmallVector<uint64_t, 64> Record;
5759 
5760   // Read all the records for this value table.
5761   SmallString<128> ValueName;
5762   while (1) {
5763     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5764 
5765     switch (Entry.Kind) {
5766     case BitstreamEntry::SubBlock: // Handled for us already.
5767     case BitstreamEntry::Error:
5768       return error("Malformed block");
5769     case BitstreamEntry::EndBlock:
5770       // Done parsing VST, jump back to wherever we came from.
5771       Stream.JumpToBit(CurrentBit);
5772       return std::error_code();
5773     case BitstreamEntry::Record:
5774       // The interesting case.
5775       break;
5776     }
5777 
5778     // Read a record.
5779     Record.clear();
5780     switch (Stream.readRecord(Entry.ID, Record)) {
5781     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5782       break;
5783     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5784       if (convertToString(Record, 1, ValueName))
5785         return error("Invalid record");
5786       unsigned ValueID = Record[0];
5787       assert(!SourceFileName.empty());
5788       auto VLI = ValueIdToLinkageMap.find(ValueID);
5789       assert(VLI != ValueIdToLinkageMap.end() &&
5790              "No linkage found for VST entry?");
5791       auto Linkage = VLI->second;
5792       std::string GlobalId =
5793           GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5794       auto ValueGUID = GlobalValue::getGUID(GlobalId);
5795       auto OriginalNameID = ValueGUID;
5796       if (GlobalValue::isLocalLinkage(Linkage))
5797         OriginalNameID = GlobalValue::getGUID(ValueName);
5798       if (PrintSummaryGUIDs)
5799         dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5800                << ValueName << "\n";
5801       ValueIdToCallGraphGUIDMap[ValueID] =
5802           std::make_pair(ValueGUID, OriginalNameID);
5803       ValueName.clear();
5804       break;
5805     }
5806     case bitc::VST_CODE_FNENTRY: {
5807       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5808       if (convertToString(Record, 2, ValueName))
5809         return error("Invalid record");
5810       unsigned ValueID = Record[0];
5811       assert(!SourceFileName.empty());
5812       auto VLI = ValueIdToLinkageMap.find(ValueID);
5813       assert(VLI != ValueIdToLinkageMap.end() &&
5814              "No linkage found for VST entry?");
5815       auto Linkage = VLI->second;
5816       std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier(
5817           ValueName, VLI->second, SourceFileName);
5818       auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId);
5819       auto OriginalNameID = FunctionGUID;
5820       if (GlobalValue::isLocalLinkage(Linkage))
5821         OriginalNameID = GlobalValue::getGUID(ValueName);
5822       if (PrintSummaryGUIDs)
5823         dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is "
5824                << ValueName << "\n";
5825       ValueIdToCallGraphGUIDMap[ValueID] =
5826           std::make_pair(FunctionGUID, OriginalNameID);
5827 
5828       ValueName.clear();
5829       break;
5830     }
5831     case bitc::VST_CODE_COMBINED_GVDEFENTRY: {
5832       // VST_CODE_COMBINED_GVDEFENTRY: [valueid, offset, guid]
5833       unsigned ValueID = Record[0];
5834       uint64_t GlobalValSummaryOffset = Record[1];
5835       GlobalValue::GUID GlobalValGUID = Record[2];
5836       SummaryOffsetToGUIDMap[GlobalValSummaryOffset] = GlobalValGUID;
5837       // The "original name", which is the second value of the pair will be
5838       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5839       ValueIdToCallGraphGUIDMap[ValueID] =
5840           std::make_pair(GlobalValGUID, GlobalValGUID);
5841       break;
5842     }
5843     case bitc::VST_CODE_COMBINED_ENTRY: {
5844       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5845       unsigned ValueID = Record[0];
5846       GlobalValue::GUID RefGUID = Record[1];
5847       // The "original name", which is the second value of the pair will be
5848       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5849       ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID);
5850       break;
5851     }
5852     }
5853   }
5854 }
5855 
5856 // Parse just the blocks needed for building the index out of the module.
5857 // At the end of this routine the module Index is populated with a map
5858 // from global value id to GlobalValueSummary objects.
5859 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() {
5860   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5861     return error("Invalid record");
5862 
5863   SmallVector<uint64_t, 64> Record;
5864   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5865   unsigned ValueId = 0;
5866 
5867   // Read the index for this module.
5868   while (1) {
5869     BitstreamEntry Entry = Stream.advance();
5870 
5871     switch (Entry.Kind) {
5872     case BitstreamEntry::Error:
5873       return error("Malformed block");
5874     case BitstreamEntry::EndBlock:
5875       return std::error_code();
5876 
5877     case BitstreamEntry::SubBlock:
5878       if (CheckGlobalValSummaryPresenceOnly) {
5879         if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
5880           SeenGlobalValSummary = true;
5881           // No need to parse the rest since we found the summary.
5882           return std::error_code();
5883         }
5884         if (Stream.SkipBlock())
5885           return error("Invalid record");
5886         continue;
5887       }
5888       switch (Entry.ID) {
5889       default: // Skip unknown content.
5890         if (Stream.SkipBlock())
5891           return error("Invalid record");
5892         break;
5893       case bitc::BLOCKINFO_BLOCK_ID:
5894         // Need to parse these to get abbrev ids (e.g. for VST)
5895         if (Stream.ReadBlockInfoBlock())
5896           return error("Malformed block");
5897         break;
5898       case bitc::VALUE_SYMTAB_BLOCK_ID:
5899         // Should have been parsed earlier via VSTOffset, unless there
5900         // is no summary section.
5901         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5902                 !SeenGlobalValSummary) &&
5903                "Expected early VST parse via VSTOffset record");
5904         if (Stream.SkipBlock())
5905           return error("Invalid record");
5906         break;
5907       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5908         assert(VSTOffset > 0 && "Expected non-zero VST offset");
5909         assert(!SeenValueSymbolTable &&
5910                "Already read VST when parsing summary block?");
5911         if (std::error_code EC =
5912                 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5913           return EC;
5914         SeenValueSymbolTable = true;
5915         SeenGlobalValSummary = true;
5916         if (std::error_code EC = parseEntireSummary())
5917           return EC;
5918         break;
5919       case bitc::MODULE_STRTAB_BLOCK_ID:
5920         if (std::error_code EC = parseModuleStringTable())
5921           return EC;
5922         break;
5923       }
5924       continue;
5925 
5926     case BitstreamEntry::Record: {
5927         Record.clear();
5928         auto BitCode = Stream.readRecord(Entry.ID, Record);
5929         switch (BitCode) {
5930         default:
5931           break; // Default behavior, ignore unknown content.
5932         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5933         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5934           SmallString<128> ValueName;
5935           if (convertToString(Record, 0, ValueName))
5936             return error("Invalid record");
5937           SourceFileName = ValueName.c_str();
5938           break;
5939         }
5940         /// MODULE_CODE_HASH: [5*i32]
5941         case bitc::MODULE_CODE_HASH: {
5942           if (Record.size() != 5)
5943             return error("Invalid hash length " + Twine(Record.size()).str());
5944           if (!TheIndex)
5945             break;
5946           if (TheIndex->modulePaths().empty())
5947             // Does not have any summary emitted.
5948             break;
5949           if (TheIndex->modulePaths().size() != 1)
5950             return error("Don't expect multiple modules defined?");
5951           auto &Hash = TheIndex->modulePaths().begin()->second.second;
5952           int Pos = 0;
5953           for (auto &Val : Record) {
5954             assert(!(Val >> 32) && "Unexpected high bits set");
5955             Hash[Pos++] = Val;
5956           }
5957           break;
5958         }
5959         /// MODULE_CODE_VSTOFFSET: [offset]
5960         case bitc::MODULE_CODE_VSTOFFSET:
5961           if (Record.size() < 1)
5962             return error("Invalid record");
5963           VSTOffset = Record[0];
5964           break;
5965         // GLOBALVAR: [pointer type, isconst, initid,
5966         //             linkage, alignment, section, visibility, threadlocal,
5967         //             unnamed_addr, externally_initialized, dllstorageclass,
5968         //             comdat]
5969         case bitc::MODULE_CODE_GLOBALVAR: {
5970           if (Record.size() < 6)
5971             return error("Invalid record");
5972           uint64_t RawLinkage = Record[3];
5973           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5974           ValueIdToLinkageMap[ValueId++] = Linkage;
5975           break;
5976         }
5977         // FUNCTION:  [type, callingconv, isproto, linkage, paramattr,
5978         //             alignment, section, visibility, gc, unnamed_addr,
5979         //             prologuedata, dllstorageclass, comdat, prefixdata]
5980         case bitc::MODULE_CODE_FUNCTION: {
5981           if (Record.size() < 8)
5982             return error("Invalid record");
5983           uint64_t RawLinkage = Record[3];
5984           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5985           ValueIdToLinkageMap[ValueId++] = Linkage;
5986           break;
5987         }
5988         // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
5989         // dllstorageclass]
5990         case bitc::MODULE_CODE_ALIAS: {
5991           if (Record.size() < 6)
5992             return error("Invalid record");
5993           uint64_t RawLinkage = Record[3];
5994           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5995           ValueIdToLinkageMap[ValueId++] = Linkage;
5996           break;
5997         }
5998         }
5999       }
6000       continue;
6001     }
6002   }
6003 }
6004 
6005 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6006 // objects in the index.
6007 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() {
6008   if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID))
6009     return error("Invalid record");
6010   SmallVector<uint64_t, 64> Record;
6011 
6012   // Parse version
6013   {
6014     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6015     if (Entry.Kind != BitstreamEntry::Record)
6016       return error("Invalid Summary Block: record for version expected");
6017     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
6018       return error("Invalid Summary Block: version expected");
6019   }
6020   const uint64_t Version = Record[0];
6021   if (Version != 1)
6022     return error("Invalid summary version " + Twine(Version) + ", 1 expected");
6023   Record.clear();
6024 
6025   // Keep around the last seen summary to be used when we see an optional
6026   // "OriginalName" attachement.
6027   GlobalValueSummary *LastSeenSummary = nullptr;
6028   bool Combined = false;
6029   // For aliases in the combined summary, we need to know which summary
6030   // corresponds to the aliasee offset saved in the alias summary. It isn't
6031   // sufficient to just map to the aliasee GUID, since in the combined summary
6032   // there may be multiple values with the same GUID.
6033   DenseMap<uint64_t, GlobalValueSummary *> OffsetToSummaryMap;
6034   while (1) {
6035     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6036 
6037     switch (Entry.Kind) {
6038     case BitstreamEntry::SubBlock: // Handled for us already.
6039     case BitstreamEntry::Error:
6040       return error("Malformed block");
6041     case BitstreamEntry::EndBlock:
6042       // For a per-module index, remove any entries that still have empty
6043       // summaries. The VST parsing creates entries eagerly for all symbols,
6044       // but not all have associated summaries (e.g. it doesn't know how to
6045       // distinguish between VST_CODE_ENTRY for function declarations vs global
6046       // variables with initializers that end up with a summary). Remove those
6047       // entries now so that we don't need to rely on the combined index merger
6048       // to clean them up (especially since that may not run for the first
6049       // module's index if we merge into that).
6050       if (!Combined)
6051         TheIndex->removeEmptySummaryEntries();
6052       return std::error_code();
6053     case BitstreamEntry::Record:
6054       // The interesting case.
6055       break;
6056     }
6057 
6058     // Read a record. The record format depends on whether this
6059     // is a per-module index or a combined index file. In the per-module
6060     // case the records contain the associated value's ID for correlation
6061     // with VST entries. In the combined index the correlation is done
6062     // via the bitcode offset of the summary records (which were saved
6063     // in the combined index VST entries). The records also contain
6064     // information used for ThinLTO renaming and importing.
6065     Record.clear();
6066     uint64_t CurRecordBit = Stream.GetCurrentBitNo();
6067     auto BitCode = Stream.readRecord(Entry.ID, Record);
6068     switch (BitCode) {
6069     default: // Default behavior: ignore.
6070       break;
6071     // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid,
6072     //                n x (valueid, callsitecount)]
6073     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs,
6074     //                        numrefs x valueid,
6075     //                        n x (valueid, callsitecount, profilecount)]
6076     case bitc::FS_PERMODULE:
6077     case bitc::FS_PERMODULE_PROFILE: {
6078       unsigned ValueID = Record[0];
6079       uint64_t RawFlags = Record[1];
6080       unsigned InstCount = Record[2];
6081       unsigned NumRefs = Record[3];
6082       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6083       std::unique_ptr<FunctionSummary> FS =
6084           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6085       // The module path string ref set in the summary must be owned by the
6086       // index's module string table. Since we don't have a module path
6087       // string table section in the per-module index, we create a single
6088       // module path string table entry with an empty (0) ID to take
6089       // ownership.
6090       FS->setModulePath(
6091           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6092       static int RefListStartIndex = 4;
6093       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6094       assert(Record.size() >= RefListStartIndex + NumRefs &&
6095              "Record size inconsistent with number of references");
6096       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
6097         unsigned RefValueId = Record[I];
6098         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6099         FS->addRefEdge(RefGUID);
6100       }
6101       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6102       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6103            ++I) {
6104         unsigned CalleeValueId = Record[I];
6105         unsigned CallsiteCount = Record[++I];
6106         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
6107         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first;
6108         FS->addCallGraphEdge(CalleeGUID,
6109                              CalleeInfo(CallsiteCount, ProfileCount));
6110       }
6111       auto GUID = getGUIDFromValueId(ValueID);
6112       FS->setOriginalName(GUID.second);
6113       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6114       break;
6115     }
6116     // FS_ALIAS: [valueid, flags, valueid]
6117     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6118     // they expect all aliasee summaries to be available.
6119     case bitc::FS_ALIAS: {
6120       unsigned ValueID = Record[0];
6121       uint64_t RawFlags = Record[1];
6122       unsigned AliaseeID = Record[2];
6123       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6124       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6125       // The module path string ref set in the summary must be owned by the
6126       // index's module string table. Since we don't have a module path
6127       // string table section in the per-module index, we create a single
6128       // module path string table entry with an empty (0) ID to take
6129       // ownership.
6130       AS->setModulePath(
6131           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6132 
6133       GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first;
6134       auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID);
6135       if (!AliaseeSummary)
6136         return error("Alias expects aliasee summary to be parsed");
6137       AS->setAliasee(AliaseeSummary);
6138 
6139       auto GUID = getGUIDFromValueId(ValueID);
6140       AS->setOriginalName(GUID.second);
6141       TheIndex->addGlobalValueSummary(GUID.first, std::move(AS));
6142       break;
6143     }
6144     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
6145     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6146       unsigned ValueID = Record[0];
6147       uint64_t RawFlags = Record[1];
6148       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6149       std::unique_ptr<GlobalVarSummary> FS =
6150           llvm::make_unique<GlobalVarSummary>(Flags);
6151       FS->setModulePath(
6152           TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first());
6153       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
6154         unsigned RefValueId = Record[I];
6155         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6156         FS->addRefEdge(RefGUID);
6157       }
6158       auto GUID = getGUIDFromValueId(ValueID);
6159       FS->setOriginalName(GUID.second);
6160       TheIndex->addGlobalValueSummary(GUID.first, std::move(FS));
6161       break;
6162     }
6163     // FS_COMBINED: [modid, flags, instcount, numrefs, numrefs x valueid,
6164     //               n x (valueid, callsitecount)]
6165     // FS_COMBINED_PROFILE: [modid, flags, instcount, numrefs,
6166     //                       numrefs x valueid,
6167     //                       n x (valueid, callsitecount, profilecount)]
6168     case bitc::FS_COMBINED:
6169     case bitc::FS_COMBINED_PROFILE: {
6170       uint64_t ModuleId = Record[0];
6171       uint64_t RawFlags = Record[1];
6172       unsigned InstCount = Record[2];
6173       unsigned NumRefs = Record[3];
6174       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6175       std::unique_ptr<FunctionSummary> FS =
6176           llvm::make_unique<FunctionSummary>(Flags, InstCount);
6177       LastSeenSummary = FS.get();
6178       FS->setModulePath(ModuleIdMap[ModuleId]);
6179       static int RefListStartIndex = 4;
6180       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6181       assert(Record.size() >= RefListStartIndex + NumRefs &&
6182              "Record size inconsistent with number of references");
6183       for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) {
6184         unsigned RefValueId = Record[I];
6185         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6186         FS->addRefEdge(RefGUID);
6187       }
6188       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6189       for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E;
6190            ++I) {
6191         unsigned CalleeValueId = Record[I];
6192         unsigned CallsiteCount = Record[++I];
6193         uint64_t ProfileCount = HasProfile ? Record[++I] : 0;
6194         GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first;
6195         FS->addCallGraphEdge(CalleeGUID,
6196                              CalleeInfo(CallsiteCount, ProfileCount));
6197       }
6198       GlobalValue::GUID GUID = getGUIDFromOffset(CurRecordBit);
6199       OffsetToSummaryMap[CurRecordBit] = FS.get();
6200       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6201       Combined = true;
6202       break;
6203     }
6204     // FS_COMBINED_ALIAS: [modid, flags, offset]
6205     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6206     // they expect all aliasee summaries to be available.
6207     case bitc::FS_COMBINED_ALIAS: {
6208       uint64_t ModuleId = Record[0];
6209       uint64_t RawFlags = Record[1];
6210       uint64_t AliaseeSummaryOffset = Record[2];
6211       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6212       std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags);
6213       LastSeenSummary = AS.get();
6214       AS->setModulePath(ModuleIdMap[ModuleId]);
6215 
6216       auto *AliaseeSummary = OffsetToSummaryMap[AliaseeSummaryOffset];
6217       if (!AliaseeSummary)
6218         return error("Alias expects aliasee summary to be parsed");
6219       AS->setAliasee(AliaseeSummary);
6220 
6221       GlobalValue::GUID GUID = getGUIDFromOffset(CurRecordBit);
6222       TheIndex->addGlobalValueSummary(GUID, std::move(AS));
6223       Combined = true;
6224       break;
6225     }
6226     // FS_COMBINED_GLOBALVAR_INIT_REFS: [modid, flags, n x valueid]
6227     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6228       uint64_t ModuleId = Record[0];
6229       uint64_t RawFlags = Record[1];
6230       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6231       std::unique_ptr<GlobalVarSummary> FS =
6232           llvm::make_unique<GlobalVarSummary>(Flags);
6233       LastSeenSummary = FS.get();
6234       FS->setModulePath(ModuleIdMap[ModuleId]);
6235       for (unsigned I = 2, E = Record.size(); I != E; ++I) {
6236         unsigned RefValueId = Record[I];
6237         GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first;
6238         FS->addRefEdge(RefGUID);
6239       }
6240       GlobalValue::GUID GUID = getGUIDFromOffset(CurRecordBit);
6241       OffsetToSummaryMap[CurRecordBit] = FS.get();
6242       TheIndex->addGlobalValueSummary(GUID, std::move(FS));
6243       Combined = true;
6244       break;
6245     }
6246     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6247     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6248       uint64_t OriginalName = Record[0];
6249       if (!LastSeenSummary)
6250         return error("Name attachment that does not follow a combined record");
6251       LastSeenSummary->setOriginalName(OriginalName);
6252       // Reset the LastSeenSummary
6253       LastSeenSummary = nullptr;
6254     }
6255     }
6256   }
6257   llvm_unreachable("Exit infinite loop");
6258 }
6259 
6260 // Parse the  module string table block into the Index.
6261 // This populates the ModulePathStringTable map in the index.
6262 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6263   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6264     return error("Invalid record");
6265 
6266   SmallVector<uint64_t, 64> Record;
6267 
6268   SmallString<128> ModulePath;
6269   ModulePathStringTableTy::iterator LastSeenModulePath;
6270   while (1) {
6271     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6272 
6273     switch (Entry.Kind) {
6274     case BitstreamEntry::SubBlock: // Handled for us already.
6275     case BitstreamEntry::Error:
6276       return error("Malformed block");
6277     case BitstreamEntry::EndBlock:
6278       return std::error_code();
6279     case BitstreamEntry::Record:
6280       // The interesting case.
6281       break;
6282     }
6283 
6284     Record.clear();
6285     switch (Stream.readRecord(Entry.ID, Record)) {
6286     default: // Default behavior: ignore.
6287       break;
6288     case bitc::MST_CODE_ENTRY: {
6289       // MST_ENTRY: [modid, namechar x N]
6290       uint64_t ModuleId = Record[0];
6291 
6292       if (convertToString(Record, 1, ModulePath))
6293         return error("Invalid record");
6294 
6295       LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId);
6296       ModuleIdMap[ModuleId] = LastSeenModulePath->first();
6297 
6298       ModulePath.clear();
6299       break;
6300     }
6301     /// MST_CODE_HASH: [5*i32]
6302     case bitc::MST_CODE_HASH: {
6303       if (Record.size() != 5)
6304         return error("Invalid hash length " + Twine(Record.size()).str());
6305       if (LastSeenModulePath == TheIndex->modulePaths().end())
6306         return error("Invalid hash that does not follow a module path");
6307       int Pos = 0;
6308       for (auto &Val : Record) {
6309         assert(!(Val >> 32) && "Unexpected high bits set");
6310         LastSeenModulePath->second.second[Pos++] = Val;
6311       }
6312       // Reset LastSeenModulePath to avoid overriding the hash unexpectedly.
6313       LastSeenModulePath = TheIndex->modulePaths().end();
6314       break;
6315     }
6316     }
6317   }
6318   llvm_unreachable("Exit infinite loop");
6319 }
6320 
6321 // Parse the function info index from the bitcode streamer into the given index.
6322 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto(
6323     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) {
6324   TheIndex = I;
6325 
6326   if (std::error_code EC = initStream(std::move(Streamer)))
6327     return EC;
6328 
6329   // Sniff for the signature.
6330   if (!hasValidBitcodeHeader(Stream))
6331     return error("Invalid bitcode signature");
6332 
6333   // We expect a number of well-defined blocks, though we don't necessarily
6334   // need to understand them all.
6335   while (1) {
6336     if (Stream.AtEndOfStream()) {
6337       // We didn't really read a proper Module block.
6338       return error("Malformed block");
6339     }
6340 
6341     BitstreamEntry Entry =
6342         Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs);
6343 
6344     if (Entry.Kind != BitstreamEntry::SubBlock)
6345       return error("Malformed block");
6346 
6347     // If we see a MODULE_BLOCK, parse it to find the blocks needed for
6348     // building the function summary index.
6349     if (Entry.ID == bitc::MODULE_BLOCK_ID)
6350       return parseModule();
6351 
6352     if (Stream.SkipBlock())
6353       return error("Invalid record");
6354   }
6355 }
6356 
6357 // Parse the summary information at the given offset in the buffer into
6358 // the index. Used to support lazy parsing of summaries from the
6359 // combined index during importing.
6360 // TODO: This function is not yet complete as it won't have a consumer
6361 // until ThinLTO function importing is added.
6362 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary(
6363     std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I,
6364     size_t SummaryOffset) {
6365   TheIndex = I;
6366 
6367   if (std::error_code EC = initStream(std::move(Streamer)))
6368     return EC;
6369 
6370   // Sniff for the signature.
6371   if (!hasValidBitcodeHeader(Stream))
6372     return error("Invalid bitcode signature");
6373 
6374   Stream.JumpToBit(SummaryOffset);
6375 
6376   BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
6377 
6378   switch (Entry.Kind) {
6379   default:
6380     return error("Malformed block");
6381   case BitstreamEntry::Record:
6382     // The expected case.
6383     break;
6384   }
6385 
6386   // TODO: Read a record. This interface will be completed when ThinLTO
6387   // importing is added so that it can be tested.
6388   SmallVector<uint64_t, 64> Record;
6389   switch (Stream.readRecord(Entry.ID, Record)) {
6390   case bitc::FS_COMBINED:
6391   case bitc::FS_COMBINED_PROFILE:
6392   case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS:
6393   default:
6394     return error("Invalid record");
6395   }
6396 
6397   return std::error_code();
6398 }
6399 
6400 std::error_code ModuleSummaryIndexBitcodeReader::initStream(
6401     std::unique_ptr<DataStreamer> Streamer) {
6402   if (Streamer)
6403     return initLazyStream(std::move(Streamer));
6404   return initStreamFromBuffer();
6405 }
6406 
6407 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() {
6408   const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart();
6409   const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize();
6410 
6411   if (Buffer->getBufferSize() & 3)
6412     return error("Invalid bitcode signature");
6413 
6414   // If we have a wrapper header, parse it and ignore the non-bc file contents.
6415   // The magic number is 0x0B17C0DE stored in little endian.
6416   if (isBitcodeWrapper(BufPtr, BufEnd))
6417     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
6418       return error("Invalid bitcode wrapper header");
6419 
6420   StreamFile.reset(new BitstreamReader(BufPtr, BufEnd));
6421   Stream.init(&*StreamFile);
6422 
6423   return std::error_code();
6424 }
6425 
6426 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream(
6427     std::unique_ptr<DataStreamer> Streamer) {
6428   // Check and strip off the bitcode wrapper; BitstreamReader expects never to
6429   // see it.
6430   auto OwnedBytes =
6431       llvm::make_unique<StreamingMemoryObject>(std::move(Streamer));
6432   StreamingMemoryObject &Bytes = *OwnedBytes;
6433   StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes));
6434   Stream.init(&*StreamFile);
6435 
6436   unsigned char buf[16];
6437   if (Bytes.readBytes(buf, 16, 0) != 16)
6438     return error("Invalid bitcode signature");
6439 
6440   if (!isBitcode(buf, buf + 16))
6441     return error("Invalid bitcode signature");
6442 
6443   if (isBitcodeWrapper(buf, buf + 4)) {
6444     const unsigned char *bitcodeStart = buf;
6445     const unsigned char *bitcodeEnd = buf + 16;
6446     SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false);
6447     Bytes.dropLeadingBytes(bitcodeStart - buf);
6448     Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart);
6449   }
6450   return std::error_code();
6451 }
6452 
6453 namespace {
6454 class BitcodeErrorCategoryType : public std::error_category {
6455   const char *name() const LLVM_NOEXCEPT override {
6456     return "llvm.bitcode";
6457   }
6458   std::string message(int IE) const override {
6459     BitcodeError E = static_cast<BitcodeError>(IE);
6460     switch (E) {
6461     case BitcodeError::InvalidBitcodeSignature:
6462       return "Invalid bitcode signature";
6463     case BitcodeError::CorruptedBitcode:
6464       return "Corrupted bitcode";
6465     }
6466     llvm_unreachable("Unknown error type!");
6467   }
6468 };
6469 } // end anonymous namespace
6470 
6471 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6472 
6473 const std::error_category &llvm::BitcodeErrorCategory() {
6474   return *ErrorCategory;
6475 }
6476 
6477 //===----------------------------------------------------------------------===//
6478 // External interface
6479 //===----------------------------------------------------------------------===//
6480 
6481 static ErrorOr<std::unique_ptr<Module>>
6482 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name,
6483                      BitcodeReader *R, LLVMContext &Context,
6484                      bool MaterializeAll, bool ShouldLazyLoadMetadata) {
6485   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6486   M->setMaterializer(R);
6487 
6488   auto cleanupOnError = [&](std::error_code EC) {
6489     R->releaseBuffer(); // Never take ownership on error.
6490     return EC;
6491   };
6492 
6493   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6494   if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(),
6495                                                ShouldLazyLoadMetadata))
6496     return cleanupOnError(EC);
6497 
6498   if (MaterializeAll) {
6499     // Read in the entire module, and destroy the BitcodeReader.
6500     if (std::error_code EC = M->materializeAll())
6501       return cleanupOnError(EC);
6502   } else {
6503     // Resolve forward references from blockaddresses.
6504     if (std::error_code EC = R->materializeForwardReferencedFunctions())
6505       return cleanupOnError(EC);
6506   }
6507   return std::move(M);
6508 }
6509 
6510 /// \brief Get a lazy one-at-time loading module from bitcode.
6511 ///
6512 /// This isn't always used in a lazy context.  In particular, it's also used by
6513 /// \a parseBitcodeFile().  If this is truly lazy, then we need to eagerly pull
6514 /// in forward-referenced functions from block address references.
6515 ///
6516 /// \param[in] MaterializeAll Set to \c true if we should materialize
6517 /// everything.
6518 static ErrorOr<std::unique_ptr<Module>>
6519 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer,
6520                          LLVMContext &Context, bool MaterializeAll,
6521                          bool ShouldLazyLoadMetadata = false) {
6522   BitcodeReader *R = new BitcodeReader(Buffer.get(), Context);
6523 
6524   ErrorOr<std::unique_ptr<Module>> Ret =
6525       getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context,
6526                            MaterializeAll, ShouldLazyLoadMetadata);
6527   if (!Ret)
6528     return Ret;
6529 
6530   Buffer.release(); // The BitcodeReader owns it now.
6531   return Ret;
6532 }
6533 
6534 ErrorOr<std::unique_ptr<Module>>
6535 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer,
6536                            LLVMContext &Context, bool ShouldLazyLoadMetadata) {
6537   return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false,
6538                                   ShouldLazyLoadMetadata);
6539 }
6540 
6541 ErrorOr<std::unique_ptr<Module>>
6542 llvm::getStreamedBitcodeModule(StringRef Name,
6543                                std::unique_ptr<DataStreamer> Streamer,
6544                                LLVMContext &Context) {
6545   std::unique_ptr<Module> M = make_unique<Module>(Name, Context);
6546   BitcodeReader *R = new BitcodeReader(Context);
6547 
6548   return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false,
6549                               false);
6550 }
6551 
6552 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6553                                                         LLVMContext &Context) {
6554   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6555   return getLazyBitcodeModuleImpl(std::move(Buf), Context, true);
6556   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6557   // written.  We must defer until the Module has been fully materialized.
6558 }
6559 
6560 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer,
6561                                          LLVMContext &Context) {
6562   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6563   auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context);
6564   ErrorOr<std::string> Triple = R->parseTriple();
6565   if (Triple.getError())
6566     return "";
6567   return Triple.get();
6568 }
6569 
6570 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer,
6571                                            LLVMContext &Context) {
6572   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6573   BitcodeReader R(Buf.release(), Context);
6574   ErrorOr<std::string> ProducerString = R.parseIdentificationBlock();
6575   if (ProducerString.getError())
6576     return "";
6577   return ProducerString.get();
6578 }
6579 
6580 // Parse the specified bitcode buffer, returning the function info index.
6581 ErrorOr<std::unique_ptr<ModuleSummaryIndex>>
6582 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer,
6583                             DiagnosticHandlerFunction DiagnosticHandler) {
6584   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6585   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler);
6586 
6587   auto Index = llvm::make_unique<ModuleSummaryIndex>();
6588 
6589   auto cleanupOnError = [&](std::error_code EC) {
6590     R.releaseBuffer(); // Never take ownership on error.
6591     return EC;
6592   };
6593 
6594   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get()))
6595     return cleanupOnError(EC);
6596 
6597   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6598   return std::move(Index);
6599 }
6600 
6601 // Check if the given bitcode buffer contains a global value summary block.
6602 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer,
6603                                  DiagnosticHandlerFunction DiagnosticHandler) {
6604   std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false);
6605   ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true);
6606 
6607   auto cleanupOnError = [&](std::error_code EC) {
6608     R.releaseBuffer(); // Never take ownership on error.
6609     return false;
6610   };
6611 
6612   if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr))
6613     return cleanupOnError(EC);
6614 
6615   Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now.
6616   return R.foundGlobalValSummary();
6617 }
6618