1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 14 #include "llvm/ADT/APFloat.h" 15 #include "llvm/ADT/APInt.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/ADT/Triple.h" 24 #include "llvm/ADT/Twine.h" 25 #include "llvm/Bitcode/BitstreamReader.h" 26 #include "llvm/Bitcode/LLVMBitCodes.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/CallSite.h" 33 #include "llvm/IR/Comdat.h" 34 #include "llvm/IR/Constant.h" 35 #include "llvm/IR/Constants.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/DiagnosticInfo.h" 41 #include "llvm/IR/DiagnosticPrinter.h" 42 #include "llvm/IR/Function.h" 43 #include "llvm/IR/GlobalAlias.h" 44 #include "llvm/IR/GlobalIFunc.h" 45 #include "llvm/IR/GlobalIndirectSymbol.h" 46 #include "llvm/IR/GlobalObject.h" 47 #include "llvm/IR/GlobalValue.h" 48 #include "llvm/IR/GlobalVariable.h" 49 #include "llvm/IR/GVMaterializer.h" 50 #include "llvm/IR/InlineAsm.h" 51 #include "llvm/IR/InstrTypes.h" 52 #include "llvm/IR/Instruction.h" 53 #include "llvm/IR/Instructions.h" 54 #include "llvm/IR/Intrinsics.h" 55 #include "llvm/IR/LLVMContext.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/OperandTraits.h" 59 #include "llvm/IR/Operator.h" 60 #include "llvm/IR/TrackingMDRef.h" 61 #include "llvm/IR/Type.h" 62 #include "llvm/IR/ValueHandle.h" 63 #include "llvm/Support/AtomicOrdering.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/Debug.h" 68 #include "llvm/Support/Error.h" 69 #include "llvm/Support/ErrorHandling.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <deque> 78 #include <limits> 79 #include <map> 80 #include <memory> 81 #include <string> 82 #include <system_error> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 static cl::opt<bool> PrintSummaryGUIDs( 90 "print-summary-global-ids", cl::init(false), cl::Hidden, 91 cl::desc( 92 "Print the global id for each value when reading the module summary")); 93 94 namespace { 95 96 enum { 97 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 98 }; 99 100 Error error(const Twine &Message) { 101 return make_error<StringError>( 102 Message, make_error_code(BitcodeError::CorruptedBitcode)); 103 } 104 105 /// Helper to read the header common to all bitcode files. 106 bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 107 // Sniff for the signature. 108 if (!Stream.canSkipToPos(4) || 109 Stream.Read(8) != 'B' || 110 Stream.Read(8) != 'C' || 111 Stream.Read(4) != 0x0 || 112 Stream.Read(4) != 0xC || 113 Stream.Read(4) != 0xE || 114 Stream.Read(4) != 0xD) 115 return false; 116 return true; 117 } 118 119 Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 120 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 121 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 122 123 if (Buffer.getBufferSize() & 3) 124 return error("Invalid bitcode signature"); 125 126 // If we have a wrapper header, parse it and ignore the non-bc file contents. 127 // The magic number is 0x0B17C0DE stored in little endian. 128 if (isBitcodeWrapper(BufPtr, BufEnd)) 129 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 130 return error("Invalid bitcode wrapper header"); 131 132 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 133 if (!hasValidBitcodeHeader(Stream)) 134 return error("Invalid bitcode signature"); 135 136 return std::move(Stream); 137 } 138 139 /// Convert a string from a record into an std::string, return true on failure. 140 template <typename StrTy> 141 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 142 StrTy &Result) { 143 if (Idx > Record.size()) 144 return true; 145 146 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 147 Result += (char)Record[i]; 148 return false; 149 } 150 151 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 152 /// "epoch" encoded in the bitcode, and return the producer name if any. 153 Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 154 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 155 return error("Invalid record"); 156 157 // Read all the records. 158 SmallVector<uint64_t, 64> Record; 159 160 std::string ProducerIdentification; 161 162 while (true) { 163 BitstreamEntry Entry = Stream.advance(); 164 165 switch (Entry.Kind) { 166 default: 167 case BitstreamEntry::Error: 168 return error("Malformed block"); 169 case BitstreamEntry::EndBlock: 170 return ProducerIdentification; 171 case BitstreamEntry::Record: 172 // The interesting case. 173 break; 174 } 175 176 // Read a record. 177 Record.clear(); 178 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 179 switch (BitCode) { 180 default: // Default behavior: reject 181 return error("Invalid value"); 182 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 183 convertToString(Record, 0, ProducerIdentification); 184 break; 185 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 186 unsigned epoch = (unsigned)Record[0]; 187 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 188 return error( 189 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 190 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 191 } 192 } 193 } 194 } 195 } 196 197 Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 198 // We expect a number of well-defined blocks, though we don't necessarily 199 // need to understand them all. 200 while (true) { 201 if (Stream.AtEndOfStream()) 202 return ""; 203 204 BitstreamEntry Entry = Stream.advance(); 205 switch (Entry.Kind) { 206 case BitstreamEntry::EndBlock: 207 case BitstreamEntry::Error: 208 return error("Malformed block"); 209 210 case BitstreamEntry::SubBlock: 211 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 212 return readIdentificationBlock(Stream); 213 214 // Ignore other sub-blocks. 215 if (Stream.SkipBlock()) 216 return error("Malformed block"); 217 continue; 218 case BitstreamEntry::Record: 219 Stream.skipRecord(Entry.ID); 220 continue; 221 } 222 } 223 } 224 225 Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 226 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 227 return error("Invalid record"); 228 229 SmallVector<uint64_t, 64> Record; 230 // Read all the records for this module. 231 232 while (true) { 233 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 234 235 switch (Entry.Kind) { 236 case BitstreamEntry::SubBlock: // Handled for us already. 237 case BitstreamEntry::Error: 238 return error("Malformed block"); 239 case BitstreamEntry::EndBlock: 240 return false; 241 case BitstreamEntry::Record: 242 // The interesting case. 243 break; 244 } 245 246 // Read a record. 247 switch (Stream.readRecord(Entry.ID, Record)) { 248 default: 249 break; // Default behavior, ignore unknown content. 250 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 251 std::string S; 252 if (convertToString(Record, 0, S)) 253 return error("Invalid record"); 254 // Check for the i386 and other (x86_64, ARM) conventions 255 if (S.find("__DATA, __objc_catlist") != std::string::npos || 256 S.find("__OBJC,__category") != std::string::npos) 257 return true; 258 break; 259 } 260 } 261 Record.clear(); 262 } 263 llvm_unreachable("Exit infinite loop"); 264 } 265 266 Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 267 // We expect a number of well-defined blocks, though we don't necessarily 268 // need to understand them all. 269 while (true) { 270 BitstreamEntry Entry = Stream.advance(); 271 272 switch (Entry.Kind) { 273 case BitstreamEntry::Error: 274 return error("Malformed block"); 275 case BitstreamEntry::EndBlock: 276 return false; 277 278 case BitstreamEntry::SubBlock: 279 if (Entry.ID == bitc::MODULE_BLOCK_ID) 280 return hasObjCCategoryInModule(Stream); 281 282 // Ignore other sub-blocks. 283 if (Stream.SkipBlock()) 284 return error("Malformed block"); 285 continue; 286 287 case BitstreamEntry::Record: 288 Stream.skipRecord(Entry.ID); 289 continue; 290 } 291 } 292 } 293 294 Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 295 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 296 return error("Invalid record"); 297 298 SmallVector<uint64_t, 64> Record; 299 300 std::string Triple; 301 302 // Read all the records for this module. 303 while (true) { 304 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 305 306 switch (Entry.Kind) { 307 case BitstreamEntry::SubBlock: // Handled for us already. 308 case BitstreamEntry::Error: 309 return error("Malformed block"); 310 case BitstreamEntry::EndBlock: 311 return Triple; 312 case BitstreamEntry::Record: 313 // The interesting case. 314 break; 315 } 316 317 // Read a record. 318 switch (Stream.readRecord(Entry.ID, Record)) { 319 default: break; // Default behavior, ignore unknown content. 320 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 321 std::string S; 322 if (convertToString(Record, 0, S)) 323 return error("Invalid record"); 324 Triple = S; 325 break; 326 } 327 } 328 Record.clear(); 329 } 330 llvm_unreachable("Exit infinite loop"); 331 } 332 333 Expected<std::string> readTriple(BitstreamCursor &Stream) { 334 // We expect a number of well-defined blocks, though we don't necessarily 335 // need to understand them all. 336 while (true) { 337 BitstreamEntry Entry = Stream.advance(); 338 339 switch (Entry.Kind) { 340 case BitstreamEntry::Error: 341 return error("Malformed block"); 342 case BitstreamEntry::EndBlock: 343 return ""; 344 345 case BitstreamEntry::SubBlock: 346 if (Entry.ID == bitc::MODULE_BLOCK_ID) 347 return readModuleTriple(Stream); 348 349 // Ignore other sub-blocks. 350 if (Stream.SkipBlock()) 351 return error("Malformed block"); 352 continue; 353 354 case BitstreamEntry::Record: 355 Stream.skipRecord(Entry.ID); 356 continue; 357 } 358 } 359 } 360 361 class BitcodeReaderBase { 362 protected: 363 BitcodeReaderBase(BitstreamCursor Stream) : Stream(std::move(Stream)) { 364 this->Stream.setBlockInfo(&BlockInfo); 365 } 366 367 BitstreamBlockInfo BlockInfo; 368 BitstreamCursor Stream; 369 370 bool readBlockInfo(); 371 372 // Contains an arbitrary and optional string identifying the bitcode producer 373 std::string ProducerIdentification; 374 375 Error error(const Twine &Message); 376 }; 377 378 Error BitcodeReaderBase::error(const Twine &Message) { 379 std::string FullMsg = Message.str(); 380 if (!ProducerIdentification.empty()) 381 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 382 LLVM_VERSION_STRING "')"; 383 return ::error(FullMsg); 384 } 385 386 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 387 LLVMContext &Context; 388 Module *TheModule = nullptr; 389 // Next offset to start scanning for lazy parsing of function bodies. 390 uint64_t NextUnreadBit = 0; 391 // Last function offset found in the VST. 392 uint64_t LastFunctionBlockBit = 0; 393 bool SeenValueSymbolTable = false; 394 uint64_t VSTOffset = 0; 395 396 std::vector<Type*> TypeList; 397 BitcodeReaderValueList ValueList; 398 Optional<MetadataLoader> MDLoader; 399 std::vector<Comdat *> ComdatList; 400 SmallVector<Instruction *, 64> InstructionList; 401 402 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 403 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 404 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 405 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 406 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 407 408 /// The set of attributes by index. Index zero in the file is for null, and 409 /// is thus not represented here. As such all indices are off by one. 410 std::vector<AttributeSet> MAttributes; 411 412 /// The set of attribute groups. 413 std::map<unsigned, AttributeSet> MAttributeGroups; 414 415 /// While parsing a function body, this is a list of the basic blocks for the 416 /// function. 417 std::vector<BasicBlock*> FunctionBBs; 418 419 // When reading the module header, this list is populated with functions that 420 // have bodies later in the file. 421 std::vector<Function*> FunctionsWithBodies; 422 423 // When intrinsic functions are encountered which require upgrading they are 424 // stored here with their replacement function. 425 typedef DenseMap<Function*, Function*> UpdatedIntrinsicMap; 426 UpdatedIntrinsicMap UpgradedIntrinsics; 427 // Intrinsics which were remangled because of types rename 428 UpdatedIntrinsicMap RemangledIntrinsics; 429 430 // Several operations happen after the module header has been read, but 431 // before function bodies are processed. This keeps track of whether 432 // we've done this yet. 433 bool SeenFirstFunctionBody = false; 434 435 /// When function bodies are initially scanned, this map contains info about 436 /// where to find deferred function body in the stream. 437 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 438 439 /// When Metadata block is initially scanned when parsing the module, we may 440 /// choose to defer parsing of the metadata. This vector contains info about 441 /// which Metadata blocks are deferred. 442 std::vector<uint64_t> DeferredMetadataInfo; 443 444 /// These are basic blocks forward-referenced by block addresses. They are 445 /// inserted lazily into functions when they're loaded. The basic block ID is 446 /// its index into the vector. 447 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 448 std::deque<Function *> BasicBlockFwdRefQueue; 449 450 /// Indicates that we are using a new encoding for instruction operands where 451 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 452 /// instruction number, for a more compact encoding. Some instruction 453 /// operands are not relative to the instruction ID: basic block numbers, and 454 /// types. Once the old style function blocks have been phased out, we would 455 /// not need this flag. 456 bool UseRelativeIDs = false; 457 458 /// True if all functions will be materialized, negating the need to process 459 /// (e.g.) blockaddress forward references. 460 bool WillMaterializeAllForwardRefs = false; 461 462 bool StripDebugInfo = false; 463 464 std::vector<std::string> BundleTags; 465 466 public: 467 BitcodeReader(BitstreamCursor Stream, StringRef ProducerIdentification, 468 LLVMContext &Context); 469 470 Error materializeForwardReferencedFunctions(); 471 472 Error materialize(GlobalValue *GV) override; 473 Error materializeModule() override; 474 std::vector<StructType *> getIdentifiedStructTypes() const override; 475 476 /// \brief Main interface to parsing a bitcode buffer. 477 /// \returns true if an error occurred. 478 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false); 479 480 static uint64_t decodeSignRotatedValue(uint64_t V); 481 482 /// Materialize any deferred Metadata block. 483 Error materializeMetadata() override; 484 485 void setStripDebugInfo() override; 486 487 private: 488 std::vector<StructType *> IdentifiedStructTypes; 489 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 490 StructType *createIdentifiedStructType(LLVMContext &Context); 491 492 Type *getTypeByID(unsigned ID); 493 494 Value *getFnValueByID(unsigned ID, Type *Ty) { 495 if (Ty && Ty->isMetadataTy()) 496 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 497 return ValueList.getValueFwdRef(ID, Ty); 498 } 499 500 Metadata *getFnMetadataByID(unsigned ID) { 501 return MDLoader->getMetadataFwdRef(ID); 502 } 503 504 BasicBlock *getBasicBlock(unsigned ID) const { 505 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 506 return FunctionBBs[ID]; 507 } 508 509 AttributeSet getAttributes(unsigned i) const { 510 if (i-1 < MAttributes.size()) 511 return MAttributes[i-1]; 512 return AttributeSet(); 513 } 514 515 /// Read a value/type pair out of the specified record from slot 'Slot'. 516 /// Increment Slot past the number of slots used in the record. Return true on 517 /// failure. 518 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 519 unsigned InstNum, Value *&ResVal) { 520 if (Slot == Record.size()) return true; 521 unsigned ValNo = (unsigned)Record[Slot++]; 522 // Adjust the ValNo, if it was encoded relative to the InstNum. 523 if (UseRelativeIDs) 524 ValNo = InstNum - ValNo; 525 if (ValNo < InstNum) { 526 // If this is not a forward reference, just return the value we already 527 // have. 528 ResVal = getFnValueByID(ValNo, nullptr); 529 return ResVal == nullptr; 530 } 531 if (Slot == Record.size()) 532 return true; 533 534 unsigned TypeNo = (unsigned)Record[Slot++]; 535 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 536 return ResVal == nullptr; 537 } 538 539 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 540 /// past the number of slots used by the value in the record. Return true if 541 /// there is an error. 542 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 543 unsigned InstNum, Type *Ty, Value *&ResVal) { 544 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 545 return true; 546 // All values currently take a single record slot. 547 ++Slot; 548 return false; 549 } 550 551 /// Like popValue, but does not increment the Slot number. 552 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 553 unsigned InstNum, Type *Ty, Value *&ResVal) { 554 ResVal = getValue(Record, Slot, InstNum, Ty); 555 return ResVal == nullptr; 556 } 557 558 /// Version of getValue that returns ResVal directly, or 0 if there is an 559 /// error. 560 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 561 unsigned InstNum, Type *Ty) { 562 if (Slot == Record.size()) return nullptr; 563 unsigned ValNo = (unsigned)Record[Slot]; 564 // Adjust the ValNo, if it was encoded relative to the InstNum. 565 if (UseRelativeIDs) 566 ValNo = InstNum - ValNo; 567 return getFnValueByID(ValNo, Ty); 568 } 569 570 /// Like getValue, but decodes signed VBRs. 571 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 572 unsigned InstNum, Type *Ty) { 573 if (Slot == Record.size()) return nullptr; 574 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 575 // Adjust the ValNo, if it was encoded relative to the InstNum. 576 if (UseRelativeIDs) 577 ValNo = InstNum - ValNo; 578 return getFnValueByID(ValNo, Ty); 579 } 580 581 /// Converts alignment exponent (i.e. power of two (or zero)) to the 582 /// corresponding alignment to use. If alignment is too large, returns 583 /// a corresponding error code. 584 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 585 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 586 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 587 Error parseAttributeBlock(); 588 Error parseAttributeGroupBlock(); 589 Error parseTypeTable(); 590 Error parseTypeTableBody(); 591 Error parseOperandBundleTags(); 592 593 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 594 unsigned NameIndex, Triple &TT); 595 Error parseValueSymbolTable(uint64_t Offset = 0); 596 Error parseConstants(); 597 Error rememberAndSkipFunctionBodies(); 598 Error rememberAndSkipFunctionBody(); 599 /// Save the positions of the Metadata blocks and skip parsing the blocks. 600 Error rememberAndSkipMetadata(); 601 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 602 Error parseFunctionBody(Function *F); 603 Error globalCleanup(); 604 Error resolveGlobalAndIndirectSymbolInits(); 605 Error parseUseLists(); 606 Error findFunctionInStream( 607 Function *F, 608 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 609 }; 610 611 /// Class to manage reading and parsing function summary index bitcode 612 /// files/sections. 613 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 614 /// The module index built during parsing. 615 ModuleSummaryIndex &TheIndex; 616 617 /// Indicates whether we have encountered a global value summary section 618 /// yet during parsing. 619 bool SeenGlobalValSummary = false; 620 621 /// Indicates whether we have already parsed the VST, used for error checking. 622 bool SeenValueSymbolTable = false; 623 624 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 625 /// Used to enable on-demand parsing of the VST. 626 uint64_t VSTOffset = 0; 627 628 // Map to save ValueId to GUID association that was recorded in the 629 // ValueSymbolTable. It is used after the VST is parsed to convert 630 // call graph edges read from the function summary from referencing 631 // callees by their ValueId to using the GUID instead, which is how 632 // they are recorded in the summary index being built. 633 // We save a second GUID which is the same as the first one, but ignoring the 634 // linkage, i.e. for value other than local linkage they are identical. 635 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 636 ValueIdToCallGraphGUIDMap; 637 638 /// Map populated during module path string table parsing, from the 639 /// module ID to a string reference owned by the index's module 640 /// path string table, used to correlate with combined index 641 /// summary records. 642 DenseMap<uint64_t, StringRef> ModuleIdMap; 643 644 /// Original source file name recorded in a bitcode record. 645 std::string SourceFileName; 646 647 public: 648 ModuleSummaryIndexBitcodeReader( 649 BitstreamCursor Stream, ModuleSummaryIndex &TheIndex); 650 651 Error parseModule(StringRef ModulePath); 652 653 private: 654 Error parseValueSymbolTable( 655 uint64_t Offset, 656 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 657 Error parseEntireSummary(StringRef ModulePath); 658 Error parseModuleStringTable(); 659 std::pair<GlobalValue::GUID, GlobalValue::GUID> 660 661 getGUIDFromValueId(unsigned ValueId); 662 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType> 663 readCallGraphEdge(const SmallVector<uint64_t, 64> &Record, unsigned int &I, 664 bool IsOldProfileFormat, bool HasProfile); 665 }; 666 667 } // end anonymous namespace 668 669 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 670 Error Err) { 671 if (Err) { 672 std::error_code EC; 673 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 674 EC = EIB.convertToErrorCode(); 675 Ctx.emitError(EIB.message()); 676 }); 677 return EC; 678 } 679 return std::error_code(); 680 } 681 682 BitcodeReader::BitcodeReader(BitstreamCursor Stream, 683 StringRef ProducerIdentification, 684 LLVMContext &Context) 685 : BitcodeReaderBase(std::move(Stream)), Context(Context), 686 ValueList(Context) { 687 this->ProducerIdentification = ProducerIdentification; 688 } 689 690 Error BitcodeReader::materializeForwardReferencedFunctions() { 691 if (WillMaterializeAllForwardRefs) 692 return Error::success(); 693 694 // Prevent recursion. 695 WillMaterializeAllForwardRefs = true; 696 697 while (!BasicBlockFwdRefQueue.empty()) { 698 Function *F = BasicBlockFwdRefQueue.front(); 699 BasicBlockFwdRefQueue.pop_front(); 700 assert(F && "Expected valid function"); 701 if (!BasicBlockFwdRefs.count(F)) 702 // Already materialized. 703 continue; 704 705 // Check for a function that isn't materializable to prevent an infinite 706 // loop. When parsing a blockaddress stored in a global variable, there 707 // isn't a trivial way to check if a function will have a body without a 708 // linear search through FunctionsWithBodies, so just check it here. 709 if (!F->isMaterializable()) 710 return error("Never resolved function from blockaddress"); 711 712 // Try to materialize F. 713 if (Error Err = materialize(F)) 714 return Err; 715 } 716 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 717 718 // Reset state. 719 WillMaterializeAllForwardRefs = false; 720 return Error::success(); 721 } 722 723 //===----------------------------------------------------------------------===// 724 // Helper functions to implement forward reference resolution, etc. 725 //===----------------------------------------------------------------------===// 726 727 static bool hasImplicitComdat(size_t Val) { 728 switch (Val) { 729 default: 730 return false; 731 case 1: // Old WeakAnyLinkage 732 case 4: // Old LinkOnceAnyLinkage 733 case 10: // Old WeakODRLinkage 734 case 11: // Old LinkOnceODRLinkage 735 return true; 736 } 737 } 738 739 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 740 switch (Val) { 741 default: // Map unknown/new linkages to external 742 case 0: 743 return GlobalValue::ExternalLinkage; 744 case 2: 745 return GlobalValue::AppendingLinkage; 746 case 3: 747 return GlobalValue::InternalLinkage; 748 case 5: 749 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 750 case 6: 751 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 752 case 7: 753 return GlobalValue::ExternalWeakLinkage; 754 case 8: 755 return GlobalValue::CommonLinkage; 756 case 9: 757 return GlobalValue::PrivateLinkage; 758 case 12: 759 return GlobalValue::AvailableExternallyLinkage; 760 case 13: 761 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 762 case 14: 763 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 764 case 15: 765 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 766 case 1: // Old value with implicit comdat. 767 case 16: 768 return GlobalValue::WeakAnyLinkage; 769 case 10: // Old value with implicit comdat. 770 case 17: 771 return GlobalValue::WeakODRLinkage; 772 case 4: // Old value with implicit comdat. 773 case 18: 774 return GlobalValue::LinkOnceAnyLinkage; 775 case 11: // Old value with implicit comdat. 776 case 19: 777 return GlobalValue::LinkOnceODRLinkage; 778 } 779 } 780 781 /// Decode the flags for GlobalValue in the summary. 782 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 783 uint64_t Version) { 784 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 785 // like getDecodedLinkage() above. Any future change to the linkage enum and 786 // to getDecodedLinkage() will need to be taken into account here as above. 787 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 788 RawFlags = RawFlags >> 4; 789 bool NoRename = RawFlags & 0x1; 790 bool IsNotViableToInline = RawFlags & 0x2; 791 bool HasInlineAsmMaybeReferencingInternal = RawFlags & 0x4; 792 return GlobalValueSummary::GVFlags(Linkage, NoRename, 793 HasInlineAsmMaybeReferencingInternal, 794 IsNotViableToInline); 795 } 796 797 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 798 switch (Val) { 799 default: // Map unknown visibilities to default. 800 case 0: return GlobalValue::DefaultVisibility; 801 case 1: return GlobalValue::HiddenVisibility; 802 case 2: return GlobalValue::ProtectedVisibility; 803 } 804 } 805 806 static GlobalValue::DLLStorageClassTypes 807 getDecodedDLLStorageClass(unsigned Val) { 808 switch (Val) { 809 default: // Map unknown values to default. 810 case 0: return GlobalValue::DefaultStorageClass; 811 case 1: return GlobalValue::DLLImportStorageClass; 812 case 2: return GlobalValue::DLLExportStorageClass; 813 } 814 } 815 816 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 817 switch (Val) { 818 case 0: return GlobalVariable::NotThreadLocal; 819 default: // Map unknown non-zero value to general dynamic. 820 case 1: return GlobalVariable::GeneralDynamicTLSModel; 821 case 2: return GlobalVariable::LocalDynamicTLSModel; 822 case 3: return GlobalVariable::InitialExecTLSModel; 823 case 4: return GlobalVariable::LocalExecTLSModel; 824 } 825 } 826 827 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 828 switch (Val) { 829 default: // Map unknown to UnnamedAddr::None. 830 case 0: return GlobalVariable::UnnamedAddr::None; 831 case 1: return GlobalVariable::UnnamedAddr::Global; 832 case 2: return GlobalVariable::UnnamedAddr::Local; 833 } 834 } 835 836 static int getDecodedCastOpcode(unsigned Val) { 837 switch (Val) { 838 default: return -1; 839 case bitc::CAST_TRUNC : return Instruction::Trunc; 840 case bitc::CAST_ZEXT : return Instruction::ZExt; 841 case bitc::CAST_SEXT : return Instruction::SExt; 842 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 843 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 844 case bitc::CAST_UITOFP : return Instruction::UIToFP; 845 case bitc::CAST_SITOFP : return Instruction::SIToFP; 846 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 847 case bitc::CAST_FPEXT : return Instruction::FPExt; 848 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 849 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 850 case bitc::CAST_BITCAST : return Instruction::BitCast; 851 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 852 } 853 } 854 855 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 856 bool IsFP = Ty->isFPOrFPVectorTy(); 857 // BinOps are only valid for int/fp or vector of int/fp types 858 if (!IsFP && !Ty->isIntOrIntVectorTy()) 859 return -1; 860 861 switch (Val) { 862 default: 863 return -1; 864 case bitc::BINOP_ADD: 865 return IsFP ? Instruction::FAdd : Instruction::Add; 866 case bitc::BINOP_SUB: 867 return IsFP ? Instruction::FSub : Instruction::Sub; 868 case bitc::BINOP_MUL: 869 return IsFP ? Instruction::FMul : Instruction::Mul; 870 case bitc::BINOP_UDIV: 871 return IsFP ? -1 : Instruction::UDiv; 872 case bitc::BINOP_SDIV: 873 return IsFP ? Instruction::FDiv : Instruction::SDiv; 874 case bitc::BINOP_UREM: 875 return IsFP ? -1 : Instruction::URem; 876 case bitc::BINOP_SREM: 877 return IsFP ? Instruction::FRem : Instruction::SRem; 878 case bitc::BINOP_SHL: 879 return IsFP ? -1 : Instruction::Shl; 880 case bitc::BINOP_LSHR: 881 return IsFP ? -1 : Instruction::LShr; 882 case bitc::BINOP_ASHR: 883 return IsFP ? -1 : Instruction::AShr; 884 case bitc::BINOP_AND: 885 return IsFP ? -1 : Instruction::And; 886 case bitc::BINOP_OR: 887 return IsFP ? -1 : Instruction::Or; 888 case bitc::BINOP_XOR: 889 return IsFP ? -1 : Instruction::Xor; 890 } 891 } 892 893 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 894 switch (Val) { 895 default: return AtomicRMWInst::BAD_BINOP; 896 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 897 case bitc::RMW_ADD: return AtomicRMWInst::Add; 898 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 899 case bitc::RMW_AND: return AtomicRMWInst::And; 900 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 901 case bitc::RMW_OR: return AtomicRMWInst::Or; 902 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 903 case bitc::RMW_MAX: return AtomicRMWInst::Max; 904 case bitc::RMW_MIN: return AtomicRMWInst::Min; 905 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 906 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 907 } 908 } 909 910 static AtomicOrdering getDecodedOrdering(unsigned Val) { 911 switch (Val) { 912 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 913 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 914 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 915 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 916 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 917 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 918 default: // Map unknown orderings to sequentially-consistent. 919 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 920 } 921 } 922 923 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 924 switch (Val) { 925 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 926 default: // Map unknown scopes to cross-thread. 927 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 928 } 929 } 930 931 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 932 switch (Val) { 933 default: // Map unknown selection kinds to any. 934 case bitc::COMDAT_SELECTION_KIND_ANY: 935 return Comdat::Any; 936 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 937 return Comdat::ExactMatch; 938 case bitc::COMDAT_SELECTION_KIND_LARGEST: 939 return Comdat::Largest; 940 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 941 return Comdat::NoDuplicates; 942 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 943 return Comdat::SameSize; 944 } 945 } 946 947 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 948 FastMathFlags FMF; 949 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 950 FMF.setUnsafeAlgebra(); 951 if (0 != (Val & FastMathFlags::NoNaNs)) 952 FMF.setNoNaNs(); 953 if (0 != (Val & FastMathFlags::NoInfs)) 954 FMF.setNoInfs(); 955 if (0 != (Val & FastMathFlags::NoSignedZeros)) 956 FMF.setNoSignedZeros(); 957 if (0 != (Val & FastMathFlags::AllowReciprocal)) 958 FMF.setAllowReciprocal(); 959 return FMF; 960 } 961 962 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 963 switch (Val) { 964 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 965 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 966 } 967 } 968 969 970 Type *BitcodeReader::getTypeByID(unsigned ID) { 971 // The type table size is always specified correctly. 972 if (ID >= TypeList.size()) 973 return nullptr; 974 975 if (Type *Ty = TypeList[ID]) 976 return Ty; 977 978 // If we have a forward reference, the only possible case is when it is to a 979 // named struct. Just create a placeholder for now. 980 return TypeList[ID] = createIdentifiedStructType(Context); 981 } 982 983 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 984 StringRef Name) { 985 auto *Ret = StructType::create(Context, Name); 986 IdentifiedStructTypes.push_back(Ret); 987 return Ret; 988 } 989 990 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 991 auto *Ret = StructType::create(Context); 992 IdentifiedStructTypes.push_back(Ret); 993 return Ret; 994 } 995 996 //===----------------------------------------------------------------------===// 997 // Functions for parsing blocks from the bitcode file 998 //===----------------------------------------------------------------------===// 999 1000 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1001 switch (Val) { 1002 case Attribute::EndAttrKinds: 1003 llvm_unreachable("Synthetic enumerators which should never get here"); 1004 1005 case Attribute::None: return 0; 1006 case Attribute::ZExt: return 1 << 0; 1007 case Attribute::SExt: return 1 << 1; 1008 case Attribute::NoReturn: return 1 << 2; 1009 case Attribute::InReg: return 1 << 3; 1010 case Attribute::StructRet: return 1 << 4; 1011 case Attribute::NoUnwind: return 1 << 5; 1012 case Attribute::NoAlias: return 1 << 6; 1013 case Attribute::ByVal: return 1 << 7; 1014 case Attribute::Nest: return 1 << 8; 1015 case Attribute::ReadNone: return 1 << 9; 1016 case Attribute::ReadOnly: return 1 << 10; 1017 case Attribute::NoInline: return 1 << 11; 1018 case Attribute::AlwaysInline: return 1 << 12; 1019 case Attribute::OptimizeForSize: return 1 << 13; 1020 case Attribute::StackProtect: return 1 << 14; 1021 case Attribute::StackProtectReq: return 1 << 15; 1022 case Attribute::Alignment: return 31 << 16; 1023 case Attribute::NoCapture: return 1 << 21; 1024 case Attribute::NoRedZone: return 1 << 22; 1025 case Attribute::NoImplicitFloat: return 1 << 23; 1026 case Attribute::Naked: return 1 << 24; 1027 case Attribute::InlineHint: return 1 << 25; 1028 case Attribute::StackAlignment: return 7 << 26; 1029 case Attribute::ReturnsTwice: return 1 << 29; 1030 case Attribute::UWTable: return 1 << 30; 1031 case Attribute::NonLazyBind: return 1U << 31; 1032 case Attribute::SanitizeAddress: return 1ULL << 32; 1033 case Attribute::MinSize: return 1ULL << 33; 1034 case Attribute::NoDuplicate: return 1ULL << 34; 1035 case Attribute::StackProtectStrong: return 1ULL << 35; 1036 case Attribute::SanitizeThread: return 1ULL << 36; 1037 case Attribute::SanitizeMemory: return 1ULL << 37; 1038 case Attribute::NoBuiltin: return 1ULL << 38; 1039 case Attribute::Returned: return 1ULL << 39; 1040 case Attribute::Cold: return 1ULL << 40; 1041 case Attribute::Builtin: return 1ULL << 41; 1042 case Attribute::OptimizeNone: return 1ULL << 42; 1043 case Attribute::InAlloca: return 1ULL << 43; 1044 case Attribute::NonNull: return 1ULL << 44; 1045 case Attribute::JumpTable: return 1ULL << 45; 1046 case Attribute::Convergent: return 1ULL << 46; 1047 case Attribute::SafeStack: return 1ULL << 47; 1048 case Attribute::NoRecurse: return 1ULL << 48; 1049 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1050 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1051 case Attribute::SwiftSelf: return 1ULL << 51; 1052 case Attribute::SwiftError: return 1ULL << 52; 1053 case Attribute::WriteOnly: return 1ULL << 53; 1054 case Attribute::Dereferenceable: 1055 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1056 break; 1057 case Attribute::DereferenceableOrNull: 1058 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1059 "format"); 1060 break; 1061 case Attribute::ArgMemOnly: 1062 llvm_unreachable("argmemonly attribute not supported in raw format"); 1063 break; 1064 case Attribute::AllocSize: 1065 llvm_unreachable("allocsize not supported in raw format"); 1066 break; 1067 } 1068 llvm_unreachable("Unsupported attribute type"); 1069 } 1070 1071 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1072 if (!Val) return; 1073 1074 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1075 I = Attribute::AttrKind(I + 1)) { 1076 if (I == Attribute::Dereferenceable || 1077 I == Attribute::DereferenceableOrNull || 1078 I == Attribute::ArgMemOnly || 1079 I == Attribute::AllocSize) 1080 continue; 1081 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1082 if (I == Attribute::Alignment) 1083 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1084 else if (I == Attribute::StackAlignment) 1085 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1086 else 1087 B.addAttribute(I); 1088 } 1089 } 1090 } 1091 1092 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1093 /// been decoded from the given integer. This function must stay in sync with 1094 /// 'encodeLLVMAttributesForBitcode'. 1095 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1096 uint64_t EncodedAttrs) { 1097 // FIXME: Remove in 4.0. 1098 1099 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1100 // the bits above 31 down by 11 bits. 1101 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1102 assert((!Alignment || isPowerOf2_32(Alignment)) && 1103 "Alignment must be a power of two."); 1104 1105 if (Alignment) 1106 B.addAlignmentAttr(Alignment); 1107 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1108 (EncodedAttrs & 0xffff)); 1109 } 1110 1111 Error BitcodeReader::parseAttributeBlock() { 1112 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1113 return error("Invalid record"); 1114 1115 if (!MAttributes.empty()) 1116 return error("Invalid multiple blocks"); 1117 1118 SmallVector<uint64_t, 64> Record; 1119 1120 SmallVector<AttributeSet, 8> Attrs; 1121 1122 // Read all the records. 1123 while (true) { 1124 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1125 1126 switch (Entry.Kind) { 1127 case BitstreamEntry::SubBlock: // Handled for us already. 1128 case BitstreamEntry::Error: 1129 return error("Malformed block"); 1130 case BitstreamEntry::EndBlock: 1131 return Error::success(); 1132 case BitstreamEntry::Record: 1133 // The interesting case. 1134 break; 1135 } 1136 1137 // Read a record. 1138 Record.clear(); 1139 switch (Stream.readRecord(Entry.ID, Record)) { 1140 default: // Default behavior: ignore. 1141 break; 1142 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1143 // FIXME: Remove in 4.0. 1144 if (Record.size() & 1) 1145 return error("Invalid record"); 1146 1147 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1148 AttrBuilder B; 1149 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1150 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1151 } 1152 1153 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1154 Attrs.clear(); 1155 break; 1156 } 1157 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1158 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1159 Attrs.push_back(MAttributeGroups[Record[i]]); 1160 1161 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1162 Attrs.clear(); 1163 break; 1164 } 1165 } 1166 } 1167 } 1168 1169 // Returns Attribute::None on unrecognized codes. 1170 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1171 switch (Code) { 1172 default: 1173 return Attribute::None; 1174 case bitc::ATTR_KIND_ALIGNMENT: 1175 return Attribute::Alignment; 1176 case bitc::ATTR_KIND_ALWAYS_INLINE: 1177 return Attribute::AlwaysInline; 1178 case bitc::ATTR_KIND_ARGMEMONLY: 1179 return Attribute::ArgMemOnly; 1180 case bitc::ATTR_KIND_BUILTIN: 1181 return Attribute::Builtin; 1182 case bitc::ATTR_KIND_BY_VAL: 1183 return Attribute::ByVal; 1184 case bitc::ATTR_KIND_IN_ALLOCA: 1185 return Attribute::InAlloca; 1186 case bitc::ATTR_KIND_COLD: 1187 return Attribute::Cold; 1188 case bitc::ATTR_KIND_CONVERGENT: 1189 return Attribute::Convergent; 1190 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1191 return Attribute::InaccessibleMemOnly; 1192 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1193 return Attribute::InaccessibleMemOrArgMemOnly; 1194 case bitc::ATTR_KIND_INLINE_HINT: 1195 return Attribute::InlineHint; 1196 case bitc::ATTR_KIND_IN_REG: 1197 return Attribute::InReg; 1198 case bitc::ATTR_KIND_JUMP_TABLE: 1199 return Attribute::JumpTable; 1200 case bitc::ATTR_KIND_MIN_SIZE: 1201 return Attribute::MinSize; 1202 case bitc::ATTR_KIND_NAKED: 1203 return Attribute::Naked; 1204 case bitc::ATTR_KIND_NEST: 1205 return Attribute::Nest; 1206 case bitc::ATTR_KIND_NO_ALIAS: 1207 return Attribute::NoAlias; 1208 case bitc::ATTR_KIND_NO_BUILTIN: 1209 return Attribute::NoBuiltin; 1210 case bitc::ATTR_KIND_NO_CAPTURE: 1211 return Attribute::NoCapture; 1212 case bitc::ATTR_KIND_NO_DUPLICATE: 1213 return Attribute::NoDuplicate; 1214 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1215 return Attribute::NoImplicitFloat; 1216 case bitc::ATTR_KIND_NO_INLINE: 1217 return Attribute::NoInline; 1218 case bitc::ATTR_KIND_NO_RECURSE: 1219 return Attribute::NoRecurse; 1220 case bitc::ATTR_KIND_NON_LAZY_BIND: 1221 return Attribute::NonLazyBind; 1222 case bitc::ATTR_KIND_NON_NULL: 1223 return Attribute::NonNull; 1224 case bitc::ATTR_KIND_DEREFERENCEABLE: 1225 return Attribute::Dereferenceable; 1226 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1227 return Attribute::DereferenceableOrNull; 1228 case bitc::ATTR_KIND_ALLOC_SIZE: 1229 return Attribute::AllocSize; 1230 case bitc::ATTR_KIND_NO_RED_ZONE: 1231 return Attribute::NoRedZone; 1232 case bitc::ATTR_KIND_NO_RETURN: 1233 return Attribute::NoReturn; 1234 case bitc::ATTR_KIND_NO_UNWIND: 1235 return Attribute::NoUnwind; 1236 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1237 return Attribute::OptimizeForSize; 1238 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1239 return Attribute::OptimizeNone; 1240 case bitc::ATTR_KIND_READ_NONE: 1241 return Attribute::ReadNone; 1242 case bitc::ATTR_KIND_READ_ONLY: 1243 return Attribute::ReadOnly; 1244 case bitc::ATTR_KIND_RETURNED: 1245 return Attribute::Returned; 1246 case bitc::ATTR_KIND_RETURNS_TWICE: 1247 return Attribute::ReturnsTwice; 1248 case bitc::ATTR_KIND_S_EXT: 1249 return Attribute::SExt; 1250 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1251 return Attribute::StackAlignment; 1252 case bitc::ATTR_KIND_STACK_PROTECT: 1253 return Attribute::StackProtect; 1254 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1255 return Attribute::StackProtectReq; 1256 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1257 return Attribute::StackProtectStrong; 1258 case bitc::ATTR_KIND_SAFESTACK: 1259 return Attribute::SafeStack; 1260 case bitc::ATTR_KIND_STRUCT_RET: 1261 return Attribute::StructRet; 1262 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1263 return Attribute::SanitizeAddress; 1264 case bitc::ATTR_KIND_SANITIZE_THREAD: 1265 return Attribute::SanitizeThread; 1266 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1267 return Attribute::SanitizeMemory; 1268 case bitc::ATTR_KIND_SWIFT_ERROR: 1269 return Attribute::SwiftError; 1270 case bitc::ATTR_KIND_SWIFT_SELF: 1271 return Attribute::SwiftSelf; 1272 case bitc::ATTR_KIND_UW_TABLE: 1273 return Attribute::UWTable; 1274 case bitc::ATTR_KIND_WRITEONLY: 1275 return Attribute::WriteOnly; 1276 case bitc::ATTR_KIND_Z_EXT: 1277 return Attribute::ZExt; 1278 } 1279 } 1280 1281 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1282 unsigned &Alignment) { 1283 // Note: Alignment in bitcode files is incremented by 1, so that zero 1284 // can be used for default alignment. 1285 if (Exponent > Value::MaxAlignmentExponent + 1) 1286 return error("Invalid alignment value"); 1287 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1288 return Error::success(); 1289 } 1290 1291 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1292 *Kind = getAttrFromCode(Code); 1293 if (*Kind == Attribute::None) 1294 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1295 return Error::success(); 1296 } 1297 1298 Error BitcodeReader::parseAttributeGroupBlock() { 1299 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1300 return error("Invalid record"); 1301 1302 if (!MAttributeGroups.empty()) 1303 return error("Invalid multiple blocks"); 1304 1305 SmallVector<uint64_t, 64> Record; 1306 1307 // Read all the records. 1308 while (true) { 1309 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1310 1311 switch (Entry.Kind) { 1312 case BitstreamEntry::SubBlock: // Handled for us already. 1313 case BitstreamEntry::Error: 1314 return error("Malformed block"); 1315 case BitstreamEntry::EndBlock: 1316 return Error::success(); 1317 case BitstreamEntry::Record: 1318 // The interesting case. 1319 break; 1320 } 1321 1322 // Read a record. 1323 Record.clear(); 1324 switch (Stream.readRecord(Entry.ID, Record)) { 1325 default: // Default behavior: ignore. 1326 break; 1327 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1328 if (Record.size() < 3) 1329 return error("Invalid record"); 1330 1331 uint64_t GrpID = Record[0]; 1332 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1333 1334 AttrBuilder B; 1335 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1336 if (Record[i] == 0) { // Enum attribute 1337 Attribute::AttrKind Kind; 1338 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1339 return Err; 1340 1341 B.addAttribute(Kind); 1342 } else if (Record[i] == 1) { // Integer attribute 1343 Attribute::AttrKind Kind; 1344 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1345 return Err; 1346 if (Kind == Attribute::Alignment) 1347 B.addAlignmentAttr(Record[++i]); 1348 else if (Kind == Attribute::StackAlignment) 1349 B.addStackAlignmentAttr(Record[++i]); 1350 else if (Kind == Attribute::Dereferenceable) 1351 B.addDereferenceableAttr(Record[++i]); 1352 else if (Kind == Attribute::DereferenceableOrNull) 1353 B.addDereferenceableOrNullAttr(Record[++i]); 1354 else if (Kind == Attribute::AllocSize) 1355 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1356 } else { // String attribute 1357 assert((Record[i] == 3 || Record[i] == 4) && 1358 "Invalid attribute group entry"); 1359 bool HasValue = (Record[i++] == 4); 1360 SmallString<64> KindStr; 1361 SmallString<64> ValStr; 1362 1363 while (Record[i] != 0 && i != e) 1364 KindStr += Record[i++]; 1365 assert(Record[i] == 0 && "Kind string not null terminated"); 1366 1367 if (HasValue) { 1368 // Has a value associated with it. 1369 ++i; // Skip the '0' that terminates the "kind" string. 1370 while (Record[i] != 0 && i != e) 1371 ValStr += Record[i++]; 1372 assert(Record[i] == 0 && "Value string not null terminated"); 1373 } 1374 1375 B.addAttribute(KindStr.str(), ValStr.str()); 1376 } 1377 } 1378 1379 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1380 break; 1381 } 1382 } 1383 } 1384 } 1385 1386 Error BitcodeReader::parseTypeTable() { 1387 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1388 return error("Invalid record"); 1389 1390 return parseTypeTableBody(); 1391 } 1392 1393 Error BitcodeReader::parseTypeTableBody() { 1394 if (!TypeList.empty()) 1395 return error("Invalid multiple blocks"); 1396 1397 SmallVector<uint64_t, 64> Record; 1398 unsigned NumRecords = 0; 1399 1400 SmallString<64> TypeName; 1401 1402 // Read all the records for this type table. 1403 while (true) { 1404 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1405 1406 switch (Entry.Kind) { 1407 case BitstreamEntry::SubBlock: // Handled for us already. 1408 case BitstreamEntry::Error: 1409 return error("Malformed block"); 1410 case BitstreamEntry::EndBlock: 1411 if (NumRecords != TypeList.size()) 1412 return error("Malformed block"); 1413 return Error::success(); 1414 case BitstreamEntry::Record: 1415 // The interesting case. 1416 break; 1417 } 1418 1419 // Read a record. 1420 Record.clear(); 1421 Type *ResultTy = nullptr; 1422 switch (Stream.readRecord(Entry.ID, Record)) { 1423 default: 1424 return error("Invalid value"); 1425 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1426 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1427 // type list. This allows us to reserve space. 1428 if (Record.size() < 1) 1429 return error("Invalid record"); 1430 TypeList.resize(Record[0]); 1431 continue; 1432 case bitc::TYPE_CODE_VOID: // VOID 1433 ResultTy = Type::getVoidTy(Context); 1434 break; 1435 case bitc::TYPE_CODE_HALF: // HALF 1436 ResultTy = Type::getHalfTy(Context); 1437 break; 1438 case bitc::TYPE_CODE_FLOAT: // FLOAT 1439 ResultTy = Type::getFloatTy(Context); 1440 break; 1441 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1442 ResultTy = Type::getDoubleTy(Context); 1443 break; 1444 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1445 ResultTy = Type::getX86_FP80Ty(Context); 1446 break; 1447 case bitc::TYPE_CODE_FP128: // FP128 1448 ResultTy = Type::getFP128Ty(Context); 1449 break; 1450 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1451 ResultTy = Type::getPPC_FP128Ty(Context); 1452 break; 1453 case bitc::TYPE_CODE_LABEL: // LABEL 1454 ResultTy = Type::getLabelTy(Context); 1455 break; 1456 case bitc::TYPE_CODE_METADATA: // METADATA 1457 ResultTy = Type::getMetadataTy(Context); 1458 break; 1459 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1460 ResultTy = Type::getX86_MMXTy(Context); 1461 break; 1462 case bitc::TYPE_CODE_TOKEN: // TOKEN 1463 ResultTy = Type::getTokenTy(Context); 1464 break; 1465 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1466 if (Record.size() < 1) 1467 return error("Invalid record"); 1468 1469 uint64_t NumBits = Record[0]; 1470 if (NumBits < IntegerType::MIN_INT_BITS || 1471 NumBits > IntegerType::MAX_INT_BITS) 1472 return error("Bitwidth for integer type out of range"); 1473 ResultTy = IntegerType::get(Context, NumBits); 1474 break; 1475 } 1476 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1477 // [pointee type, address space] 1478 if (Record.size() < 1) 1479 return error("Invalid record"); 1480 unsigned AddressSpace = 0; 1481 if (Record.size() == 2) 1482 AddressSpace = Record[1]; 1483 ResultTy = getTypeByID(Record[0]); 1484 if (!ResultTy || 1485 !PointerType::isValidElementType(ResultTy)) 1486 return error("Invalid type"); 1487 ResultTy = PointerType::get(ResultTy, AddressSpace); 1488 break; 1489 } 1490 case bitc::TYPE_CODE_FUNCTION_OLD: { 1491 // FIXME: attrid is dead, remove it in LLVM 4.0 1492 // FUNCTION: [vararg, attrid, retty, paramty x N] 1493 if (Record.size() < 3) 1494 return error("Invalid record"); 1495 SmallVector<Type*, 8> ArgTys; 1496 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1497 if (Type *T = getTypeByID(Record[i])) 1498 ArgTys.push_back(T); 1499 else 1500 break; 1501 } 1502 1503 ResultTy = getTypeByID(Record[2]); 1504 if (!ResultTy || ArgTys.size() < Record.size()-3) 1505 return error("Invalid type"); 1506 1507 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1508 break; 1509 } 1510 case bitc::TYPE_CODE_FUNCTION: { 1511 // FUNCTION: [vararg, retty, paramty x N] 1512 if (Record.size() < 2) 1513 return error("Invalid record"); 1514 SmallVector<Type*, 8> ArgTys; 1515 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1516 if (Type *T = getTypeByID(Record[i])) { 1517 if (!FunctionType::isValidArgumentType(T)) 1518 return error("Invalid function argument type"); 1519 ArgTys.push_back(T); 1520 } 1521 else 1522 break; 1523 } 1524 1525 ResultTy = getTypeByID(Record[1]); 1526 if (!ResultTy || ArgTys.size() < Record.size()-2) 1527 return error("Invalid type"); 1528 1529 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1530 break; 1531 } 1532 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1533 if (Record.size() < 1) 1534 return error("Invalid record"); 1535 SmallVector<Type*, 8> EltTys; 1536 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1537 if (Type *T = getTypeByID(Record[i])) 1538 EltTys.push_back(T); 1539 else 1540 break; 1541 } 1542 if (EltTys.size() != Record.size()-1) 1543 return error("Invalid type"); 1544 ResultTy = StructType::get(Context, EltTys, Record[0]); 1545 break; 1546 } 1547 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1548 if (convertToString(Record, 0, TypeName)) 1549 return error("Invalid record"); 1550 continue; 1551 1552 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1553 if (Record.size() < 1) 1554 return error("Invalid record"); 1555 1556 if (NumRecords >= TypeList.size()) 1557 return error("Invalid TYPE table"); 1558 1559 // Check to see if this was forward referenced, if so fill in the temp. 1560 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1561 if (Res) { 1562 Res->setName(TypeName); 1563 TypeList[NumRecords] = nullptr; 1564 } else // Otherwise, create a new struct. 1565 Res = createIdentifiedStructType(Context, TypeName); 1566 TypeName.clear(); 1567 1568 SmallVector<Type*, 8> EltTys; 1569 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1570 if (Type *T = getTypeByID(Record[i])) 1571 EltTys.push_back(T); 1572 else 1573 break; 1574 } 1575 if (EltTys.size() != Record.size()-1) 1576 return error("Invalid record"); 1577 Res->setBody(EltTys, Record[0]); 1578 ResultTy = Res; 1579 break; 1580 } 1581 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1582 if (Record.size() != 1) 1583 return error("Invalid record"); 1584 1585 if (NumRecords >= TypeList.size()) 1586 return error("Invalid TYPE table"); 1587 1588 // Check to see if this was forward referenced, if so fill in the temp. 1589 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1590 if (Res) { 1591 Res->setName(TypeName); 1592 TypeList[NumRecords] = nullptr; 1593 } else // Otherwise, create a new struct with no body. 1594 Res = createIdentifiedStructType(Context, TypeName); 1595 TypeName.clear(); 1596 ResultTy = Res; 1597 break; 1598 } 1599 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1600 if (Record.size() < 2) 1601 return error("Invalid record"); 1602 ResultTy = getTypeByID(Record[1]); 1603 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1604 return error("Invalid type"); 1605 ResultTy = ArrayType::get(ResultTy, Record[0]); 1606 break; 1607 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1608 if (Record.size() < 2) 1609 return error("Invalid record"); 1610 if (Record[0] == 0) 1611 return error("Invalid vector length"); 1612 ResultTy = getTypeByID(Record[1]); 1613 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1614 return error("Invalid type"); 1615 ResultTy = VectorType::get(ResultTy, Record[0]); 1616 break; 1617 } 1618 1619 if (NumRecords >= TypeList.size()) 1620 return error("Invalid TYPE table"); 1621 if (TypeList[NumRecords]) 1622 return error( 1623 "Invalid TYPE table: Only named structs can be forward referenced"); 1624 assert(ResultTy && "Didn't read a type?"); 1625 TypeList[NumRecords++] = ResultTy; 1626 } 1627 } 1628 1629 Error BitcodeReader::parseOperandBundleTags() { 1630 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1631 return error("Invalid record"); 1632 1633 if (!BundleTags.empty()) 1634 return error("Invalid multiple blocks"); 1635 1636 SmallVector<uint64_t, 64> Record; 1637 1638 while (true) { 1639 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1640 1641 switch (Entry.Kind) { 1642 case BitstreamEntry::SubBlock: // Handled for us already. 1643 case BitstreamEntry::Error: 1644 return error("Malformed block"); 1645 case BitstreamEntry::EndBlock: 1646 return Error::success(); 1647 case BitstreamEntry::Record: 1648 // The interesting case. 1649 break; 1650 } 1651 1652 // Tags are implicitly mapped to integers by their order. 1653 1654 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1655 return error("Invalid record"); 1656 1657 // OPERAND_BUNDLE_TAG: [strchr x N] 1658 BundleTags.emplace_back(); 1659 if (convertToString(Record, 0, BundleTags.back())) 1660 return error("Invalid record"); 1661 Record.clear(); 1662 } 1663 } 1664 1665 /// Associate a value with its name from the given index in the provided record. 1666 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1667 unsigned NameIndex, Triple &TT) { 1668 SmallString<128> ValueName; 1669 if (convertToString(Record, NameIndex, ValueName)) 1670 return error("Invalid record"); 1671 unsigned ValueID = Record[0]; 1672 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1673 return error("Invalid record"); 1674 Value *V = ValueList[ValueID]; 1675 1676 StringRef NameStr(ValueName.data(), ValueName.size()); 1677 if (NameStr.find_first_of(0) != StringRef::npos) 1678 return error("Invalid value name"); 1679 V->setName(NameStr); 1680 auto *GO = dyn_cast<GlobalObject>(V); 1681 if (GO) { 1682 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1683 if (TT.isOSBinFormatMachO()) 1684 GO->setComdat(nullptr); 1685 else 1686 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1687 } 1688 } 1689 return V; 1690 } 1691 1692 /// Helper to note and return the current location, and jump to the given 1693 /// offset. 1694 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1695 BitstreamCursor &Stream) { 1696 // Save the current parsing location so we can jump back at the end 1697 // of the VST read. 1698 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1699 Stream.JumpToBit(Offset * 32); 1700 #ifndef NDEBUG 1701 // Do some checking if we are in debug mode. 1702 BitstreamEntry Entry = Stream.advance(); 1703 assert(Entry.Kind == BitstreamEntry::SubBlock); 1704 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1705 #else 1706 // In NDEBUG mode ignore the output so we don't get an unused variable 1707 // warning. 1708 Stream.advance(); 1709 #endif 1710 return CurrentBit; 1711 } 1712 1713 /// Parse the value symbol table at either the current parsing location or 1714 /// at the given bit offset if provided. 1715 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1716 uint64_t CurrentBit; 1717 // Pass in the Offset to distinguish between calling for the module-level 1718 // VST (where we want to jump to the VST offset) and the function-level 1719 // VST (where we don't). 1720 if (Offset > 0) 1721 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1722 1723 // Compute the delta between the bitcode indices in the VST (the word offset 1724 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1725 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1726 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1727 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1728 // just before entering the VST subblock because: 1) the EnterSubBlock 1729 // changes the AbbrevID width; 2) the VST block is nested within the same 1730 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1731 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1732 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1733 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1734 unsigned FuncBitcodeOffsetDelta = 1735 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1736 1737 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1738 return error("Invalid record"); 1739 1740 SmallVector<uint64_t, 64> Record; 1741 1742 Triple TT(TheModule->getTargetTriple()); 1743 1744 // Read all the records for this value table. 1745 SmallString<128> ValueName; 1746 1747 while (true) { 1748 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1749 1750 switch (Entry.Kind) { 1751 case BitstreamEntry::SubBlock: // Handled for us already. 1752 case BitstreamEntry::Error: 1753 return error("Malformed block"); 1754 case BitstreamEntry::EndBlock: 1755 if (Offset > 0) 1756 Stream.JumpToBit(CurrentBit); 1757 return Error::success(); 1758 case BitstreamEntry::Record: 1759 // The interesting case. 1760 break; 1761 } 1762 1763 // Read a record. 1764 Record.clear(); 1765 switch (Stream.readRecord(Entry.ID, Record)) { 1766 default: // Default behavior: unknown type. 1767 break; 1768 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1769 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1770 if (Error Err = ValOrErr.takeError()) 1771 return Err; 1772 ValOrErr.get(); 1773 break; 1774 } 1775 case bitc::VST_CODE_FNENTRY: { 1776 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1777 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1778 if (Error Err = ValOrErr.takeError()) 1779 return Err; 1780 Value *V = ValOrErr.get(); 1781 1782 auto *GO = dyn_cast<GlobalObject>(V); 1783 if (!GO) { 1784 // If this is an alias, need to get the actual Function object 1785 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1786 auto *GA = dyn_cast<GlobalAlias>(V); 1787 if (GA) 1788 GO = GA->getBaseObject(); 1789 assert(GO); 1790 } 1791 1792 // Note that we subtract 1 here because the offset is relative to one word 1793 // before the start of the identification or module block, which was 1794 // historically always the start of the regular bitcode header. 1795 uint64_t FuncWordOffset = Record[1] - 1; 1796 Function *F = dyn_cast<Function>(GO); 1797 assert(F); 1798 uint64_t FuncBitOffset = FuncWordOffset * 32; 1799 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1800 // Set the LastFunctionBlockBit to point to the last function block. 1801 // Later when parsing is resumed after function materialization, 1802 // we can simply skip that last function block. 1803 if (FuncBitOffset > LastFunctionBlockBit) 1804 LastFunctionBlockBit = FuncBitOffset; 1805 break; 1806 } 1807 case bitc::VST_CODE_BBENTRY: { 1808 if (convertToString(Record, 1, ValueName)) 1809 return error("Invalid record"); 1810 BasicBlock *BB = getBasicBlock(Record[0]); 1811 if (!BB) 1812 return error("Invalid record"); 1813 1814 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1815 ValueName.clear(); 1816 break; 1817 } 1818 } 1819 } 1820 } 1821 1822 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 1823 /// encoding. 1824 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1825 if ((V & 1) == 0) 1826 return V >> 1; 1827 if (V != 1) 1828 return -(V >> 1); 1829 // There is no such thing as -0 with integers. "-0" really means MININT. 1830 return 1ULL << 63; 1831 } 1832 1833 /// Resolve all of the initializers for global values and aliases that we can. 1834 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 1835 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1836 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 1837 IndirectSymbolInitWorklist; 1838 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1839 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1840 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 1841 1842 GlobalInitWorklist.swap(GlobalInits); 1843 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 1844 FunctionPrefixWorklist.swap(FunctionPrefixes); 1845 FunctionPrologueWorklist.swap(FunctionPrologues); 1846 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 1847 1848 while (!GlobalInitWorklist.empty()) { 1849 unsigned ValID = GlobalInitWorklist.back().second; 1850 if (ValID >= ValueList.size()) { 1851 // Not ready to resolve this yet, it requires something later in the file. 1852 GlobalInits.push_back(GlobalInitWorklist.back()); 1853 } else { 1854 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1855 GlobalInitWorklist.back().first->setInitializer(C); 1856 else 1857 return error("Expected a constant"); 1858 } 1859 GlobalInitWorklist.pop_back(); 1860 } 1861 1862 while (!IndirectSymbolInitWorklist.empty()) { 1863 unsigned ValID = IndirectSymbolInitWorklist.back().second; 1864 if (ValID >= ValueList.size()) { 1865 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 1866 } else { 1867 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 1868 if (!C) 1869 return error("Expected a constant"); 1870 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 1871 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 1872 return error("Alias and aliasee types don't match"); 1873 GIS->setIndirectSymbol(C); 1874 } 1875 IndirectSymbolInitWorklist.pop_back(); 1876 } 1877 1878 while (!FunctionPrefixWorklist.empty()) { 1879 unsigned ValID = FunctionPrefixWorklist.back().second; 1880 if (ValID >= ValueList.size()) { 1881 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1882 } else { 1883 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1884 FunctionPrefixWorklist.back().first->setPrefixData(C); 1885 else 1886 return error("Expected a constant"); 1887 } 1888 FunctionPrefixWorklist.pop_back(); 1889 } 1890 1891 while (!FunctionPrologueWorklist.empty()) { 1892 unsigned ValID = FunctionPrologueWorklist.back().second; 1893 if (ValID >= ValueList.size()) { 1894 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1895 } else { 1896 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1897 FunctionPrologueWorklist.back().first->setPrologueData(C); 1898 else 1899 return error("Expected a constant"); 1900 } 1901 FunctionPrologueWorklist.pop_back(); 1902 } 1903 1904 while (!FunctionPersonalityFnWorklist.empty()) { 1905 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 1906 if (ValID >= ValueList.size()) { 1907 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 1908 } else { 1909 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1910 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 1911 else 1912 return error("Expected a constant"); 1913 } 1914 FunctionPersonalityFnWorklist.pop_back(); 1915 } 1916 1917 return Error::success(); 1918 } 1919 1920 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1921 SmallVector<uint64_t, 8> Words(Vals.size()); 1922 transform(Vals, Words.begin(), 1923 BitcodeReader::decodeSignRotatedValue); 1924 1925 return APInt(TypeBits, Words); 1926 } 1927 1928 Error BitcodeReader::parseConstants() { 1929 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1930 return error("Invalid record"); 1931 1932 SmallVector<uint64_t, 64> Record; 1933 1934 // Read all the records for this value table. 1935 Type *CurTy = Type::getInt32Ty(Context); 1936 unsigned NextCstNo = ValueList.size(); 1937 1938 while (true) { 1939 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1940 1941 switch (Entry.Kind) { 1942 case BitstreamEntry::SubBlock: // Handled for us already. 1943 case BitstreamEntry::Error: 1944 return error("Malformed block"); 1945 case BitstreamEntry::EndBlock: 1946 if (NextCstNo != ValueList.size()) 1947 return error("Invalid constant reference"); 1948 1949 // Once all the constants have been read, go through and resolve forward 1950 // references. 1951 ValueList.resolveConstantForwardRefs(); 1952 return Error::success(); 1953 case BitstreamEntry::Record: 1954 // The interesting case. 1955 break; 1956 } 1957 1958 // Read a record. 1959 Record.clear(); 1960 Type *VoidType = Type::getVoidTy(Context); 1961 Value *V = nullptr; 1962 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1963 switch (BitCode) { 1964 default: // Default behavior: unknown constant 1965 case bitc::CST_CODE_UNDEF: // UNDEF 1966 V = UndefValue::get(CurTy); 1967 break; 1968 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1969 if (Record.empty()) 1970 return error("Invalid record"); 1971 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1972 return error("Invalid record"); 1973 if (TypeList[Record[0]] == VoidType) 1974 return error("Invalid constant type"); 1975 CurTy = TypeList[Record[0]]; 1976 continue; // Skip the ValueList manipulation. 1977 case bitc::CST_CODE_NULL: // NULL 1978 V = Constant::getNullValue(CurTy); 1979 break; 1980 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1981 if (!CurTy->isIntegerTy() || Record.empty()) 1982 return error("Invalid record"); 1983 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1984 break; 1985 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1986 if (!CurTy->isIntegerTy() || Record.empty()) 1987 return error("Invalid record"); 1988 1989 APInt VInt = 1990 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 1991 V = ConstantInt::get(Context, VInt); 1992 1993 break; 1994 } 1995 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1996 if (Record.empty()) 1997 return error("Invalid record"); 1998 if (CurTy->isHalfTy()) 1999 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2000 APInt(16, (uint16_t)Record[0]))); 2001 else if (CurTy->isFloatTy()) 2002 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2003 APInt(32, (uint32_t)Record[0]))); 2004 else if (CurTy->isDoubleTy()) 2005 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2006 APInt(64, Record[0]))); 2007 else if (CurTy->isX86_FP80Ty()) { 2008 // Bits are not stored the same way as a normal i80 APInt, compensate. 2009 uint64_t Rearrange[2]; 2010 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2011 Rearrange[1] = Record[0] >> 48; 2012 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2013 APInt(80, Rearrange))); 2014 } else if (CurTy->isFP128Ty()) 2015 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2016 APInt(128, Record))); 2017 else if (CurTy->isPPC_FP128Ty()) 2018 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2019 APInt(128, Record))); 2020 else 2021 V = UndefValue::get(CurTy); 2022 break; 2023 } 2024 2025 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2026 if (Record.empty()) 2027 return error("Invalid record"); 2028 2029 unsigned Size = Record.size(); 2030 SmallVector<Constant*, 16> Elts; 2031 2032 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2033 for (unsigned i = 0; i != Size; ++i) 2034 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2035 STy->getElementType(i))); 2036 V = ConstantStruct::get(STy, Elts); 2037 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2038 Type *EltTy = ATy->getElementType(); 2039 for (unsigned i = 0; i != Size; ++i) 2040 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2041 V = ConstantArray::get(ATy, Elts); 2042 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2043 Type *EltTy = VTy->getElementType(); 2044 for (unsigned i = 0; i != Size; ++i) 2045 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2046 V = ConstantVector::get(Elts); 2047 } else { 2048 V = UndefValue::get(CurTy); 2049 } 2050 break; 2051 } 2052 case bitc::CST_CODE_STRING: // STRING: [values] 2053 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2054 if (Record.empty()) 2055 return error("Invalid record"); 2056 2057 SmallString<16> Elts(Record.begin(), Record.end()); 2058 V = ConstantDataArray::getString(Context, Elts, 2059 BitCode == bitc::CST_CODE_CSTRING); 2060 break; 2061 } 2062 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2063 if (Record.empty()) 2064 return error("Invalid record"); 2065 2066 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2067 if (EltTy->isIntegerTy(8)) { 2068 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2069 if (isa<VectorType>(CurTy)) 2070 V = ConstantDataVector::get(Context, Elts); 2071 else 2072 V = ConstantDataArray::get(Context, Elts); 2073 } else if (EltTy->isIntegerTy(16)) { 2074 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2075 if (isa<VectorType>(CurTy)) 2076 V = ConstantDataVector::get(Context, Elts); 2077 else 2078 V = ConstantDataArray::get(Context, Elts); 2079 } else if (EltTy->isIntegerTy(32)) { 2080 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2081 if (isa<VectorType>(CurTy)) 2082 V = ConstantDataVector::get(Context, Elts); 2083 else 2084 V = ConstantDataArray::get(Context, Elts); 2085 } else if (EltTy->isIntegerTy(64)) { 2086 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2087 if (isa<VectorType>(CurTy)) 2088 V = ConstantDataVector::get(Context, Elts); 2089 else 2090 V = ConstantDataArray::get(Context, Elts); 2091 } else if (EltTy->isHalfTy()) { 2092 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2093 if (isa<VectorType>(CurTy)) 2094 V = ConstantDataVector::getFP(Context, Elts); 2095 else 2096 V = ConstantDataArray::getFP(Context, Elts); 2097 } else if (EltTy->isFloatTy()) { 2098 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2099 if (isa<VectorType>(CurTy)) 2100 V = ConstantDataVector::getFP(Context, Elts); 2101 else 2102 V = ConstantDataArray::getFP(Context, Elts); 2103 } else if (EltTy->isDoubleTy()) { 2104 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2105 if (isa<VectorType>(CurTy)) 2106 V = ConstantDataVector::getFP(Context, Elts); 2107 else 2108 V = ConstantDataArray::getFP(Context, Elts); 2109 } else { 2110 return error("Invalid type for value"); 2111 } 2112 break; 2113 } 2114 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2115 if (Record.size() < 3) 2116 return error("Invalid record"); 2117 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2118 if (Opc < 0) { 2119 V = UndefValue::get(CurTy); // Unknown binop. 2120 } else { 2121 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2122 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2123 unsigned Flags = 0; 2124 if (Record.size() >= 4) { 2125 if (Opc == Instruction::Add || 2126 Opc == Instruction::Sub || 2127 Opc == Instruction::Mul || 2128 Opc == Instruction::Shl) { 2129 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2130 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2131 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2132 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2133 } else if (Opc == Instruction::SDiv || 2134 Opc == Instruction::UDiv || 2135 Opc == Instruction::LShr || 2136 Opc == Instruction::AShr) { 2137 if (Record[3] & (1 << bitc::PEO_EXACT)) 2138 Flags |= SDivOperator::IsExact; 2139 } 2140 } 2141 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2142 } 2143 break; 2144 } 2145 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2146 if (Record.size() < 3) 2147 return error("Invalid record"); 2148 int Opc = getDecodedCastOpcode(Record[0]); 2149 if (Opc < 0) { 2150 V = UndefValue::get(CurTy); // Unknown cast. 2151 } else { 2152 Type *OpTy = getTypeByID(Record[1]); 2153 if (!OpTy) 2154 return error("Invalid record"); 2155 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2156 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2157 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2158 } 2159 break; 2160 } 2161 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2162 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2163 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2164 // operands] 2165 unsigned OpNum = 0; 2166 Type *PointeeType = nullptr; 2167 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2168 Record.size() % 2) 2169 PointeeType = getTypeByID(Record[OpNum++]); 2170 2171 bool InBounds = false; 2172 Optional<unsigned> InRangeIndex; 2173 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2174 uint64_t Op = Record[OpNum++]; 2175 InBounds = Op & 1; 2176 InRangeIndex = Op >> 1; 2177 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2178 InBounds = true; 2179 2180 SmallVector<Constant*, 16> Elts; 2181 while (OpNum != Record.size()) { 2182 Type *ElTy = getTypeByID(Record[OpNum++]); 2183 if (!ElTy) 2184 return error("Invalid record"); 2185 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2186 } 2187 2188 if (PointeeType && 2189 PointeeType != 2190 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2191 ->getElementType()) 2192 return error("Explicit gep operator type does not match pointee type " 2193 "of pointer operand"); 2194 2195 if (Elts.size() < 1) 2196 return error("Invalid gep with no operands"); 2197 2198 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2199 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2200 InBounds, InRangeIndex); 2201 break; 2202 } 2203 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2204 if (Record.size() < 3) 2205 return error("Invalid record"); 2206 2207 Type *SelectorTy = Type::getInt1Ty(Context); 2208 2209 // The selector might be an i1 or an <n x i1> 2210 // Get the type from the ValueList before getting a forward ref. 2211 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2212 if (Value *V = ValueList[Record[0]]) 2213 if (SelectorTy != V->getType()) 2214 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2215 2216 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2217 SelectorTy), 2218 ValueList.getConstantFwdRef(Record[1],CurTy), 2219 ValueList.getConstantFwdRef(Record[2],CurTy)); 2220 break; 2221 } 2222 case bitc::CST_CODE_CE_EXTRACTELT 2223 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2224 if (Record.size() < 3) 2225 return error("Invalid record"); 2226 VectorType *OpTy = 2227 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2228 if (!OpTy) 2229 return error("Invalid record"); 2230 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2231 Constant *Op1 = nullptr; 2232 if (Record.size() == 4) { 2233 Type *IdxTy = getTypeByID(Record[2]); 2234 if (!IdxTy) 2235 return error("Invalid record"); 2236 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2237 } else // TODO: Remove with llvm 4.0 2238 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2239 if (!Op1) 2240 return error("Invalid record"); 2241 V = ConstantExpr::getExtractElement(Op0, Op1); 2242 break; 2243 } 2244 case bitc::CST_CODE_CE_INSERTELT 2245 : { // CE_INSERTELT: [opval, opval, opty, opval] 2246 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2247 if (Record.size() < 3 || !OpTy) 2248 return error("Invalid record"); 2249 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2250 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2251 OpTy->getElementType()); 2252 Constant *Op2 = nullptr; 2253 if (Record.size() == 4) { 2254 Type *IdxTy = getTypeByID(Record[2]); 2255 if (!IdxTy) 2256 return error("Invalid record"); 2257 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2258 } else // TODO: Remove with llvm 4.0 2259 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2260 if (!Op2) 2261 return error("Invalid record"); 2262 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2263 break; 2264 } 2265 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2266 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2267 if (Record.size() < 3 || !OpTy) 2268 return error("Invalid record"); 2269 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2270 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2271 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2272 OpTy->getNumElements()); 2273 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2274 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2275 break; 2276 } 2277 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2278 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2279 VectorType *OpTy = 2280 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2281 if (Record.size() < 4 || !RTy || !OpTy) 2282 return error("Invalid record"); 2283 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2284 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2285 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2286 RTy->getNumElements()); 2287 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2288 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2289 break; 2290 } 2291 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2292 if (Record.size() < 4) 2293 return error("Invalid record"); 2294 Type *OpTy = getTypeByID(Record[0]); 2295 if (!OpTy) 2296 return error("Invalid record"); 2297 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2298 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2299 2300 if (OpTy->isFPOrFPVectorTy()) 2301 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2302 else 2303 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2304 break; 2305 } 2306 // This maintains backward compatibility, pre-asm dialect keywords. 2307 // FIXME: Remove with the 4.0 release. 2308 case bitc::CST_CODE_INLINEASM_OLD: { 2309 if (Record.size() < 2) 2310 return error("Invalid record"); 2311 std::string AsmStr, ConstrStr; 2312 bool HasSideEffects = Record[0] & 1; 2313 bool IsAlignStack = Record[0] >> 1; 2314 unsigned AsmStrSize = Record[1]; 2315 if (2+AsmStrSize >= Record.size()) 2316 return error("Invalid record"); 2317 unsigned ConstStrSize = Record[2+AsmStrSize]; 2318 if (3+AsmStrSize+ConstStrSize > Record.size()) 2319 return error("Invalid record"); 2320 2321 for (unsigned i = 0; i != AsmStrSize; ++i) 2322 AsmStr += (char)Record[2+i]; 2323 for (unsigned i = 0; i != ConstStrSize; ++i) 2324 ConstrStr += (char)Record[3+AsmStrSize+i]; 2325 PointerType *PTy = cast<PointerType>(CurTy); 2326 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2327 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2328 break; 2329 } 2330 // This version adds support for the asm dialect keywords (e.g., 2331 // inteldialect). 2332 case bitc::CST_CODE_INLINEASM: { 2333 if (Record.size() < 2) 2334 return error("Invalid record"); 2335 std::string AsmStr, ConstrStr; 2336 bool HasSideEffects = Record[0] & 1; 2337 bool IsAlignStack = (Record[0] >> 1) & 1; 2338 unsigned AsmDialect = Record[0] >> 2; 2339 unsigned AsmStrSize = Record[1]; 2340 if (2+AsmStrSize >= Record.size()) 2341 return error("Invalid record"); 2342 unsigned ConstStrSize = Record[2+AsmStrSize]; 2343 if (3+AsmStrSize+ConstStrSize > Record.size()) 2344 return error("Invalid record"); 2345 2346 for (unsigned i = 0; i != AsmStrSize; ++i) 2347 AsmStr += (char)Record[2+i]; 2348 for (unsigned i = 0; i != ConstStrSize; ++i) 2349 ConstrStr += (char)Record[3+AsmStrSize+i]; 2350 PointerType *PTy = cast<PointerType>(CurTy); 2351 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2352 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2353 InlineAsm::AsmDialect(AsmDialect)); 2354 break; 2355 } 2356 case bitc::CST_CODE_BLOCKADDRESS:{ 2357 if (Record.size() < 3) 2358 return error("Invalid record"); 2359 Type *FnTy = getTypeByID(Record[0]); 2360 if (!FnTy) 2361 return error("Invalid record"); 2362 Function *Fn = 2363 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2364 if (!Fn) 2365 return error("Invalid record"); 2366 2367 // If the function is already parsed we can insert the block address right 2368 // away. 2369 BasicBlock *BB; 2370 unsigned BBID = Record[2]; 2371 if (!BBID) 2372 // Invalid reference to entry block. 2373 return error("Invalid ID"); 2374 if (!Fn->empty()) { 2375 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2376 for (size_t I = 0, E = BBID; I != E; ++I) { 2377 if (BBI == BBE) 2378 return error("Invalid ID"); 2379 ++BBI; 2380 } 2381 BB = &*BBI; 2382 } else { 2383 // Otherwise insert a placeholder and remember it so it can be inserted 2384 // when the function is parsed. 2385 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2386 if (FwdBBs.empty()) 2387 BasicBlockFwdRefQueue.push_back(Fn); 2388 if (FwdBBs.size() < BBID + 1) 2389 FwdBBs.resize(BBID + 1); 2390 if (!FwdBBs[BBID]) 2391 FwdBBs[BBID] = BasicBlock::Create(Context); 2392 BB = FwdBBs[BBID]; 2393 } 2394 V = BlockAddress::get(Fn, BB); 2395 break; 2396 } 2397 } 2398 2399 ValueList.assignValue(V, NextCstNo); 2400 ++NextCstNo; 2401 } 2402 } 2403 2404 Error BitcodeReader::parseUseLists() { 2405 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2406 return error("Invalid record"); 2407 2408 // Read all the records. 2409 SmallVector<uint64_t, 64> Record; 2410 2411 while (true) { 2412 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2413 2414 switch (Entry.Kind) { 2415 case BitstreamEntry::SubBlock: // Handled for us already. 2416 case BitstreamEntry::Error: 2417 return error("Malformed block"); 2418 case BitstreamEntry::EndBlock: 2419 return Error::success(); 2420 case BitstreamEntry::Record: 2421 // The interesting case. 2422 break; 2423 } 2424 2425 // Read a use list record. 2426 Record.clear(); 2427 bool IsBB = false; 2428 switch (Stream.readRecord(Entry.ID, Record)) { 2429 default: // Default behavior: unknown type. 2430 break; 2431 case bitc::USELIST_CODE_BB: 2432 IsBB = true; 2433 LLVM_FALLTHROUGH; 2434 case bitc::USELIST_CODE_DEFAULT: { 2435 unsigned RecordLength = Record.size(); 2436 if (RecordLength < 3) 2437 // Records should have at least an ID and two indexes. 2438 return error("Invalid record"); 2439 unsigned ID = Record.back(); 2440 Record.pop_back(); 2441 2442 Value *V; 2443 if (IsBB) { 2444 assert(ID < FunctionBBs.size() && "Basic block not found"); 2445 V = FunctionBBs[ID]; 2446 } else 2447 V = ValueList[ID]; 2448 unsigned NumUses = 0; 2449 SmallDenseMap<const Use *, unsigned, 16> Order; 2450 for (const Use &U : V->materialized_uses()) { 2451 if (++NumUses > Record.size()) 2452 break; 2453 Order[&U] = Record[NumUses - 1]; 2454 } 2455 if (Order.size() != Record.size() || NumUses > Record.size()) 2456 // Mismatches can happen if the functions are being materialized lazily 2457 // (out-of-order), or a value has been upgraded. 2458 break; 2459 2460 V->sortUseList([&](const Use &L, const Use &R) { 2461 return Order.lookup(&L) < Order.lookup(&R); 2462 }); 2463 break; 2464 } 2465 } 2466 } 2467 } 2468 2469 /// When we see the block for metadata, remember where it is and then skip it. 2470 /// This lets us lazily deserialize the metadata. 2471 Error BitcodeReader::rememberAndSkipMetadata() { 2472 // Save the current stream state. 2473 uint64_t CurBit = Stream.GetCurrentBitNo(); 2474 DeferredMetadataInfo.push_back(CurBit); 2475 2476 // Skip over the block for now. 2477 if (Stream.SkipBlock()) 2478 return error("Invalid record"); 2479 return Error::success(); 2480 } 2481 2482 Error BitcodeReader::materializeMetadata() { 2483 for (uint64_t BitPos : DeferredMetadataInfo) { 2484 // Move the bit stream to the saved position. 2485 Stream.JumpToBit(BitPos); 2486 if (Error Err = MDLoader->parseModuleMetadata()) 2487 return Err; 2488 } 2489 DeferredMetadataInfo.clear(); 2490 return Error::success(); 2491 } 2492 2493 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2494 2495 /// When we see the block for a function body, remember where it is and then 2496 /// skip it. This lets us lazily deserialize the functions. 2497 Error BitcodeReader::rememberAndSkipFunctionBody() { 2498 // Get the function we are talking about. 2499 if (FunctionsWithBodies.empty()) 2500 return error("Insufficient function protos"); 2501 2502 Function *Fn = FunctionsWithBodies.back(); 2503 FunctionsWithBodies.pop_back(); 2504 2505 // Save the current stream state. 2506 uint64_t CurBit = Stream.GetCurrentBitNo(); 2507 assert( 2508 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2509 "Mismatch between VST and scanned function offsets"); 2510 DeferredFunctionInfo[Fn] = CurBit; 2511 2512 // Skip over the function block for now. 2513 if (Stream.SkipBlock()) 2514 return error("Invalid record"); 2515 return Error::success(); 2516 } 2517 2518 Error BitcodeReader::globalCleanup() { 2519 // Patch the initializers for globals and aliases up. 2520 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2521 return Err; 2522 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2523 return error("Malformed global initializer set"); 2524 2525 // Look for intrinsic functions which need to be upgraded at some point 2526 for (Function &F : *TheModule) { 2527 Function *NewFn; 2528 if (UpgradeIntrinsicFunction(&F, NewFn)) 2529 UpgradedIntrinsics[&F] = NewFn; 2530 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2531 // Some types could be renamed during loading if several modules are 2532 // loaded in the same LLVMContext (LTO scenario). In this case we should 2533 // remangle intrinsics names as well. 2534 RemangledIntrinsics[&F] = Remangled.getValue(); 2535 } 2536 2537 // Look for global variables which need to be renamed. 2538 for (GlobalVariable &GV : TheModule->globals()) 2539 UpgradeGlobalVariable(&GV); 2540 2541 // Force deallocation of memory for these vectors to favor the client that 2542 // want lazy deserialization. 2543 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2544 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 2545 IndirectSymbolInits); 2546 return Error::success(); 2547 } 2548 2549 /// Support for lazy parsing of function bodies. This is required if we 2550 /// either have an old bitcode file without a VST forward declaration record, 2551 /// or if we have an anonymous function being materialized, since anonymous 2552 /// functions do not have a name and are therefore not in the VST. 2553 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2554 Stream.JumpToBit(NextUnreadBit); 2555 2556 if (Stream.AtEndOfStream()) 2557 return error("Could not find function in stream"); 2558 2559 if (!SeenFirstFunctionBody) 2560 return error("Trying to materialize functions before seeing function blocks"); 2561 2562 // An old bitcode file with the symbol table at the end would have 2563 // finished the parse greedily. 2564 assert(SeenValueSymbolTable); 2565 2566 SmallVector<uint64_t, 64> Record; 2567 2568 while (true) { 2569 BitstreamEntry Entry = Stream.advance(); 2570 switch (Entry.Kind) { 2571 default: 2572 return error("Expect SubBlock"); 2573 case BitstreamEntry::SubBlock: 2574 switch (Entry.ID) { 2575 default: 2576 return error("Expect function block"); 2577 case bitc::FUNCTION_BLOCK_ID: 2578 if (Error Err = rememberAndSkipFunctionBody()) 2579 return Err; 2580 NextUnreadBit = Stream.GetCurrentBitNo(); 2581 return Error::success(); 2582 } 2583 } 2584 } 2585 } 2586 2587 bool BitcodeReaderBase::readBlockInfo() { 2588 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2589 if (!NewBlockInfo) 2590 return true; 2591 BlockInfo = std::move(*NewBlockInfo); 2592 return false; 2593 } 2594 2595 Error BitcodeReader::parseModule(uint64_t ResumeBit, 2596 bool ShouldLazyLoadMetadata) { 2597 if (ResumeBit) 2598 Stream.JumpToBit(ResumeBit); 2599 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2600 return error("Invalid record"); 2601 2602 SmallVector<uint64_t, 64> Record; 2603 std::vector<std::string> SectionTable; 2604 std::vector<std::string> GCTable; 2605 2606 // Read all the records for this module. 2607 while (true) { 2608 BitstreamEntry Entry = Stream.advance(); 2609 2610 switch (Entry.Kind) { 2611 case BitstreamEntry::Error: 2612 return error("Malformed block"); 2613 case BitstreamEntry::EndBlock: 2614 return globalCleanup(); 2615 2616 case BitstreamEntry::SubBlock: 2617 switch (Entry.ID) { 2618 default: // Skip unknown content. 2619 if (Stream.SkipBlock()) 2620 return error("Invalid record"); 2621 break; 2622 case bitc::BLOCKINFO_BLOCK_ID: 2623 if (readBlockInfo()) 2624 return error("Malformed block"); 2625 break; 2626 case bitc::PARAMATTR_BLOCK_ID: 2627 if (Error Err = parseAttributeBlock()) 2628 return Err; 2629 break; 2630 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2631 if (Error Err = parseAttributeGroupBlock()) 2632 return Err; 2633 break; 2634 case bitc::TYPE_BLOCK_ID_NEW: 2635 if (Error Err = parseTypeTable()) 2636 return Err; 2637 break; 2638 case bitc::VALUE_SYMTAB_BLOCK_ID: 2639 if (!SeenValueSymbolTable) { 2640 // Either this is an old form VST without function index and an 2641 // associated VST forward declaration record (which would have caused 2642 // the VST to be jumped to and parsed before it was encountered 2643 // normally in the stream), or there were no function blocks to 2644 // trigger an earlier parsing of the VST. 2645 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 2646 if (Error Err = parseValueSymbolTable()) 2647 return Err; 2648 SeenValueSymbolTable = true; 2649 } else { 2650 // We must have had a VST forward declaration record, which caused 2651 // the parser to jump to and parse the VST earlier. 2652 assert(VSTOffset > 0); 2653 if (Stream.SkipBlock()) 2654 return error("Invalid record"); 2655 } 2656 break; 2657 case bitc::CONSTANTS_BLOCK_ID: 2658 if (Error Err = parseConstants()) 2659 return Err; 2660 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2661 return Err; 2662 break; 2663 case bitc::METADATA_BLOCK_ID: 2664 if (ShouldLazyLoadMetadata) { 2665 if (Error Err = rememberAndSkipMetadata()) 2666 return Err; 2667 break; 2668 } 2669 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2670 if (Error Err = MDLoader->parseModuleMetadata()) 2671 return Err; 2672 break; 2673 case bitc::METADATA_KIND_BLOCK_ID: 2674 if (Error Err = MDLoader->parseMetadataKinds()) 2675 return Err; 2676 break; 2677 case bitc::FUNCTION_BLOCK_ID: 2678 // If this is the first function body we've seen, reverse the 2679 // FunctionsWithBodies list. 2680 if (!SeenFirstFunctionBody) { 2681 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2682 if (Error Err = globalCleanup()) 2683 return Err; 2684 SeenFirstFunctionBody = true; 2685 } 2686 2687 if (VSTOffset > 0) { 2688 // If we have a VST forward declaration record, make sure we 2689 // parse the VST now if we haven't already. It is needed to 2690 // set up the DeferredFunctionInfo vector for lazy reading. 2691 if (!SeenValueSymbolTable) { 2692 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 2693 return Err; 2694 SeenValueSymbolTable = true; 2695 // Fall through so that we record the NextUnreadBit below. 2696 // This is necessary in case we have an anonymous function that 2697 // is later materialized. Since it will not have a VST entry we 2698 // need to fall back to the lazy parse to find its offset. 2699 } else { 2700 // If we have a VST forward declaration record, but have already 2701 // parsed the VST (just above, when the first function body was 2702 // encountered here), then we are resuming the parse after 2703 // materializing functions. The ResumeBit points to the 2704 // start of the last function block recorded in the 2705 // DeferredFunctionInfo map. Skip it. 2706 if (Stream.SkipBlock()) 2707 return error("Invalid record"); 2708 continue; 2709 } 2710 } 2711 2712 // Support older bitcode files that did not have the function 2713 // index in the VST, nor a VST forward declaration record, as 2714 // well as anonymous functions that do not have VST entries. 2715 // Build the DeferredFunctionInfo vector on the fly. 2716 if (Error Err = rememberAndSkipFunctionBody()) 2717 return Err; 2718 2719 // Suspend parsing when we reach the function bodies. Subsequent 2720 // materialization calls will resume it when necessary. If the bitcode 2721 // file is old, the symbol table will be at the end instead and will not 2722 // have been seen yet. In this case, just finish the parse now. 2723 if (SeenValueSymbolTable) { 2724 NextUnreadBit = Stream.GetCurrentBitNo(); 2725 // After the VST has been parsed, we need to make sure intrinsic name 2726 // are auto-upgraded. 2727 return globalCleanup(); 2728 } 2729 break; 2730 case bitc::USELIST_BLOCK_ID: 2731 if (Error Err = parseUseLists()) 2732 return Err; 2733 break; 2734 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 2735 if (Error Err = parseOperandBundleTags()) 2736 return Err; 2737 break; 2738 } 2739 continue; 2740 2741 case BitstreamEntry::Record: 2742 // The interesting case. 2743 break; 2744 } 2745 2746 // Read a record. 2747 auto BitCode = Stream.readRecord(Entry.ID, Record); 2748 switch (BitCode) { 2749 default: break; // Default behavior, ignore unknown content. 2750 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2751 if (Record.size() < 1) 2752 return error("Invalid record"); 2753 // Only version #0 and #1 are supported so far. 2754 unsigned module_version = Record[0]; 2755 switch (module_version) { 2756 default: 2757 return error("Invalid value"); 2758 case 0: 2759 UseRelativeIDs = false; 2760 break; 2761 case 1: 2762 UseRelativeIDs = true; 2763 break; 2764 } 2765 break; 2766 } 2767 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2768 std::string S; 2769 if (convertToString(Record, 0, S)) 2770 return error("Invalid record"); 2771 TheModule->setTargetTriple(S); 2772 break; 2773 } 2774 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2775 std::string S; 2776 if (convertToString(Record, 0, S)) 2777 return error("Invalid record"); 2778 TheModule->setDataLayout(S); 2779 break; 2780 } 2781 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2782 std::string S; 2783 if (convertToString(Record, 0, S)) 2784 return error("Invalid record"); 2785 TheModule->setModuleInlineAsm(S); 2786 break; 2787 } 2788 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2789 // FIXME: Remove in 4.0. 2790 std::string S; 2791 if (convertToString(Record, 0, S)) 2792 return error("Invalid record"); 2793 // Ignore value. 2794 break; 2795 } 2796 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2797 std::string S; 2798 if (convertToString(Record, 0, S)) 2799 return error("Invalid record"); 2800 SectionTable.push_back(S); 2801 break; 2802 } 2803 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2804 std::string S; 2805 if (convertToString(Record, 0, S)) 2806 return error("Invalid record"); 2807 GCTable.push_back(S); 2808 break; 2809 } 2810 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2811 if (Record.size() < 2) 2812 return error("Invalid record"); 2813 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2814 unsigned ComdatNameSize = Record[1]; 2815 std::string ComdatName; 2816 ComdatName.reserve(ComdatNameSize); 2817 for (unsigned i = 0; i != ComdatNameSize; ++i) 2818 ComdatName += (char)Record[2 + i]; 2819 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2820 C->setSelectionKind(SK); 2821 ComdatList.push_back(C); 2822 break; 2823 } 2824 // GLOBALVAR: [pointer type, isconst, initid, 2825 // linkage, alignment, section, visibility, threadlocal, 2826 // unnamed_addr, externally_initialized, dllstorageclass, 2827 // comdat] 2828 case bitc::MODULE_CODE_GLOBALVAR: { 2829 if (Record.size() < 6) 2830 return error("Invalid record"); 2831 Type *Ty = getTypeByID(Record[0]); 2832 if (!Ty) 2833 return error("Invalid record"); 2834 bool isConstant = Record[1] & 1; 2835 bool explicitType = Record[1] & 2; 2836 unsigned AddressSpace; 2837 if (explicitType) { 2838 AddressSpace = Record[1] >> 2; 2839 } else { 2840 if (!Ty->isPointerTy()) 2841 return error("Invalid type for value"); 2842 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2843 Ty = cast<PointerType>(Ty)->getElementType(); 2844 } 2845 2846 uint64_t RawLinkage = Record[3]; 2847 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2848 unsigned Alignment; 2849 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2850 return Err; 2851 std::string Section; 2852 if (Record[5]) { 2853 if (Record[5]-1 >= SectionTable.size()) 2854 return error("Invalid ID"); 2855 Section = SectionTable[Record[5]-1]; 2856 } 2857 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2858 // Local linkage must have default visibility. 2859 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2860 // FIXME: Change to an error if non-default in 4.0. 2861 Visibility = getDecodedVisibility(Record[6]); 2862 2863 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2864 if (Record.size() > 7) 2865 TLM = getDecodedThreadLocalMode(Record[7]); 2866 2867 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2868 if (Record.size() > 8) 2869 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2870 2871 bool ExternallyInitialized = false; 2872 if (Record.size() > 9) 2873 ExternallyInitialized = Record[9]; 2874 2875 GlobalVariable *NewGV = 2876 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2877 TLM, AddressSpace, ExternallyInitialized); 2878 NewGV->setAlignment(Alignment); 2879 if (!Section.empty()) 2880 NewGV->setSection(Section); 2881 NewGV->setVisibility(Visibility); 2882 NewGV->setUnnamedAddr(UnnamedAddr); 2883 2884 if (Record.size() > 10) 2885 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2886 else 2887 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2888 2889 ValueList.push_back(NewGV); 2890 2891 // Remember which value to use for the global initializer. 2892 if (unsigned InitID = Record[2]) 2893 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2894 2895 if (Record.size() > 11) { 2896 if (unsigned ComdatID = Record[11]) { 2897 if (ComdatID > ComdatList.size()) 2898 return error("Invalid global variable comdat ID"); 2899 NewGV->setComdat(ComdatList[ComdatID - 1]); 2900 } 2901 } else if (hasImplicitComdat(RawLinkage)) { 2902 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2903 } 2904 2905 break; 2906 } 2907 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2908 // alignment, section, visibility, gc, unnamed_addr, 2909 // prologuedata, dllstorageclass, comdat, prefixdata] 2910 case bitc::MODULE_CODE_FUNCTION: { 2911 if (Record.size() < 8) 2912 return error("Invalid record"); 2913 Type *Ty = getTypeByID(Record[0]); 2914 if (!Ty) 2915 return error("Invalid record"); 2916 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2917 Ty = PTy->getElementType(); 2918 auto *FTy = dyn_cast<FunctionType>(Ty); 2919 if (!FTy) 2920 return error("Invalid type for value"); 2921 auto CC = static_cast<CallingConv::ID>(Record[1]); 2922 if (CC & ~CallingConv::MaxID) 2923 return error("Invalid calling convention ID"); 2924 2925 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2926 "", TheModule); 2927 2928 Func->setCallingConv(CC); 2929 bool isProto = Record[2]; 2930 uint64_t RawLinkage = Record[3]; 2931 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2932 Func->setAttributes(getAttributes(Record[4])); 2933 2934 unsigned Alignment; 2935 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2936 return Err; 2937 Func->setAlignment(Alignment); 2938 if (Record[6]) { 2939 if (Record[6]-1 >= SectionTable.size()) 2940 return error("Invalid ID"); 2941 Func->setSection(SectionTable[Record[6]-1]); 2942 } 2943 // Local linkage must have default visibility. 2944 if (!Func->hasLocalLinkage()) 2945 // FIXME: Change to an error if non-default in 4.0. 2946 Func->setVisibility(getDecodedVisibility(Record[7])); 2947 if (Record.size() > 8 && Record[8]) { 2948 if (Record[8]-1 >= GCTable.size()) 2949 return error("Invalid ID"); 2950 Func->setGC(GCTable[Record[8] - 1]); 2951 } 2952 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2953 if (Record.size() > 9) 2954 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2955 Func->setUnnamedAddr(UnnamedAddr); 2956 if (Record.size() > 10 && Record[10] != 0) 2957 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2958 2959 if (Record.size() > 11) 2960 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2961 else 2962 upgradeDLLImportExportLinkage(Func, RawLinkage); 2963 2964 if (Record.size() > 12) { 2965 if (unsigned ComdatID = Record[12]) { 2966 if (ComdatID > ComdatList.size()) 2967 return error("Invalid function comdat ID"); 2968 Func->setComdat(ComdatList[ComdatID - 1]); 2969 } 2970 } else if (hasImplicitComdat(RawLinkage)) { 2971 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2972 } 2973 2974 if (Record.size() > 13 && Record[13] != 0) 2975 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2976 2977 if (Record.size() > 14 && Record[14] != 0) 2978 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 2979 2980 ValueList.push_back(Func); 2981 2982 // If this is a function with a body, remember the prototype we are 2983 // creating now, so that we can match up the body with them later. 2984 if (!isProto) { 2985 Func->setIsMaterializable(true); 2986 FunctionsWithBodies.push_back(Func); 2987 DeferredFunctionInfo[Func] = 0; 2988 } 2989 break; 2990 } 2991 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 2992 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 2993 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 2994 case bitc::MODULE_CODE_IFUNC: 2995 case bitc::MODULE_CODE_ALIAS: 2996 case bitc::MODULE_CODE_ALIAS_OLD: { 2997 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 2998 if (Record.size() < (3 + (unsigned)NewRecord)) 2999 return error("Invalid record"); 3000 unsigned OpNum = 0; 3001 Type *Ty = getTypeByID(Record[OpNum++]); 3002 if (!Ty) 3003 return error("Invalid record"); 3004 3005 unsigned AddrSpace; 3006 if (!NewRecord) { 3007 auto *PTy = dyn_cast<PointerType>(Ty); 3008 if (!PTy) 3009 return error("Invalid type for value"); 3010 Ty = PTy->getElementType(); 3011 AddrSpace = PTy->getAddressSpace(); 3012 } else { 3013 AddrSpace = Record[OpNum++]; 3014 } 3015 3016 auto Val = Record[OpNum++]; 3017 auto Linkage = Record[OpNum++]; 3018 GlobalIndirectSymbol *NewGA; 3019 if (BitCode == bitc::MODULE_CODE_ALIAS || 3020 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3021 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3022 "", TheModule); 3023 else 3024 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3025 "", nullptr, TheModule); 3026 // Old bitcode files didn't have visibility field. 3027 // Local linkage must have default visibility. 3028 if (OpNum != Record.size()) { 3029 auto VisInd = OpNum++; 3030 if (!NewGA->hasLocalLinkage()) 3031 // FIXME: Change to an error if non-default in 4.0. 3032 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3033 } 3034 if (OpNum != Record.size()) 3035 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3036 else 3037 upgradeDLLImportExportLinkage(NewGA, Linkage); 3038 if (OpNum != Record.size()) 3039 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3040 if (OpNum != Record.size()) 3041 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3042 ValueList.push_back(NewGA); 3043 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3044 break; 3045 } 3046 /// MODULE_CODE_PURGEVALS: [numvals] 3047 case bitc::MODULE_CODE_PURGEVALS: 3048 // Trim down the value list to the specified size. 3049 if (Record.size() < 1 || Record[0] > ValueList.size()) 3050 return error("Invalid record"); 3051 ValueList.shrinkTo(Record[0]); 3052 break; 3053 /// MODULE_CODE_VSTOFFSET: [offset] 3054 case bitc::MODULE_CODE_VSTOFFSET: 3055 if (Record.size() < 1) 3056 return error("Invalid record"); 3057 // Note that we subtract 1 here because the offset is relative to one word 3058 // before the start of the identification or module block, which was 3059 // historically always the start of the regular bitcode header. 3060 VSTOffset = Record[0] - 1; 3061 break; 3062 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3063 case bitc::MODULE_CODE_SOURCE_FILENAME: 3064 SmallString<128> ValueName; 3065 if (convertToString(Record, 0, ValueName)) 3066 return error("Invalid record"); 3067 TheModule->setSourceFileName(ValueName); 3068 break; 3069 } 3070 Record.clear(); 3071 } 3072 } 3073 3074 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata) { 3075 TheModule = M; 3076 MDLoader = MetadataLoader(Stream, *M, ValueList, 3077 [&](unsigned ID) { return getTypeByID(ID); }); 3078 return parseModule(0, ShouldLazyLoadMetadata); 3079 } 3080 3081 3082 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3083 if (!isa<PointerType>(PtrType)) 3084 return error("Load/Store operand is not a pointer type"); 3085 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3086 3087 if (ValType && ValType != ElemType) 3088 return error("Explicit load/store type does not match pointee " 3089 "type of pointer operand"); 3090 if (!PointerType::isLoadableOrStorableType(ElemType)) 3091 return error("Cannot load/store from pointer"); 3092 return Error::success(); 3093 } 3094 3095 /// Lazily parse the specified function body block. 3096 Error BitcodeReader::parseFunctionBody(Function *F) { 3097 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3098 return error("Invalid record"); 3099 3100 // Unexpected unresolved metadata when parsing function. 3101 if (MDLoader->hasFwdRefs()) 3102 return error("Invalid function metadata: incoming forward references"); 3103 3104 InstructionList.clear(); 3105 unsigned ModuleValueListSize = ValueList.size(); 3106 unsigned ModuleMDLoaderSize = MDLoader->size(); 3107 3108 // Add all the function arguments to the value table. 3109 for (Argument &I : F->args()) 3110 ValueList.push_back(&I); 3111 3112 unsigned NextValueNo = ValueList.size(); 3113 BasicBlock *CurBB = nullptr; 3114 unsigned CurBBNo = 0; 3115 3116 DebugLoc LastLoc; 3117 auto getLastInstruction = [&]() -> Instruction * { 3118 if (CurBB && !CurBB->empty()) 3119 return &CurBB->back(); 3120 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3121 !FunctionBBs[CurBBNo - 1]->empty()) 3122 return &FunctionBBs[CurBBNo - 1]->back(); 3123 return nullptr; 3124 }; 3125 3126 std::vector<OperandBundleDef> OperandBundles; 3127 3128 // Read all the records. 3129 SmallVector<uint64_t, 64> Record; 3130 3131 while (true) { 3132 BitstreamEntry Entry = Stream.advance(); 3133 3134 switch (Entry.Kind) { 3135 case BitstreamEntry::Error: 3136 return error("Malformed block"); 3137 case BitstreamEntry::EndBlock: 3138 goto OutOfRecordLoop; 3139 3140 case BitstreamEntry::SubBlock: 3141 switch (Entry.ID) { 3142 default: // Skip unknown content. 3143 if (Stream.SkipBlock()) 3144 return error("Invalid record"); 3145 break; 3146 case bitc::CONSTANTS_BLOCK_ID: 3147 if (Error Err = parseConstants()) 3148 return Err; 3149 NextValueNo = ValueList.size(); 3150 break; 3151 case bitc::VALUE_SYMTAB_BLOCK_ID: 3152 if (Error Err = parseValueSymbolTable()) 3153 return Err; 3154 break; 3155 case bitc::METADATA_ATTACHMENT_ID: 3156 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3157 return Err; 3158 break; 3159 case bitc::METADATA_BLOCK_ID: 3160 assert(DeferredMetadataInfo.empty() && 3161 "Must read all module-level metadata before function-level"); 3162 if (Error Err = MDLoader->parseFunctionMetadata()) 3163 return Err; 3164 break; 3165 case bitc::USELIST_BLOCK_ID: 3166 if (Error Err = parseUseLists()) 3167 return Err; 3168 break; 3169 } 3170 continue; 3171 3172 case BitstreamEntry::Record: 3173 // The interesting case. 3174 break; 3175 } 3176 3177 // Read a record. 3178 Record.clear(); 3179 Instruction *I = nullptr; 3180 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3181 switch (BitCode) { 3182 default: // Default behavior: reject 3183 return error("Invalid value"); 3184 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3185 if (Record.size() < 1 || Record[0] == 0) 3186 return error("Invalid record"); 3187 // Create all the basic blocks for the function. 3188 FunctionBBs.resize(Record[0]); 3189 3190 // See if anything took the address of blocks in this function. 3191 auto BBFRI = BasicBlockFwdRefs.find(F); 3192 if (BBFRI == BasicBlockFwdRefs.end()) { 3193 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3194 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3195 } else { 3196 auto &BBRefs = BBFRI->second; 3197 // Check for invalid basic block references. 3198 if (BBRefs.size() > FunctionBBs.size()) 3199 return error("Invalid ID"); 3200 assert(!BBRefs.empty() && "Unexpected empty array"); 3201 assert(!BBRefs.front() && "Invalid reference to entry block"); 3202 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3203 ++I) 3204 if (I < RE && BBRefs[I]) { 3205 BBRefs[I]->insertInto(F); 3206 FunctionBBs[I] = BBRefs[I]; 3207 } else { 3208 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3209 } 3210 3211 // Erase from the table. 3212 BasicBlockFwdRefs.erase(BBFRI); 3213 } 3214 3215 CurBB = FunctionBBs[0]; 3216 continue; 3217 } 3218 3219 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3220 // This record indicates that the last instruction is at the same 3221 // location as the previous instruction with a location. 3222 I = getLastInstruction(); 3223 3224 if (!I) 3225 return error("Invalid record"); 3226 I->setDebugLoc(LastLoc); 3227 I = nullptr; 3228 continue; 3229 3230 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3231 I = getLastInstruction(); 3232 if (!I || Record.size() < 4) 3233 return error("Invalid record"); 3234 3235 unsigned Line = Record[0], Col = Record[1]; 3236 unsigned ScopeID = Record[2], IAID = Record[3]; 3237 3238 MDNode *Scope = nullptr, *IA = nullptr; 3239 if (ScopeID) { 3240 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3241 if (!Scope) 3242 return error("Invalid record"); 3243 } 3244 if (IAID) { 3245 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3246 if (!IA) 3247 return error("Invalid record"); 3248 } 3249 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3250 I->setDebugLoc(LastLoc); 3251 I = nullptr; 3252 continue; 3253 } 3254 3255 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3256 unsigned OpNum = 0; 3257 Value *LHS, *RHS; 3258 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3259 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3260 OpNum+1 > Record.size()) 3261 return error("Invalid record"); 3262 3263 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3264 if (Opc == -1) 3265 return error("Invalid record"); 3266 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3267 InstructionList.push_back(I); 3268 if (OpNum < Record.size()) { 3269 if (Opc == Instruction::Add || 3270 Opc == Instruction::Sub || 3271 Opc == Instruction::Mul || 3272 Opc == Instruction::Shl) { 3273 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3274 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3275 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3276 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3277 } else if (Opc == Instruction::SDiv || 3278 Opc == Instruction::UDiv || 3279 Opc == Instruction::LShr || 3280 Opc == Instruction::AShr) { 3281 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3282 cast<BinaryOperator>(I)->setIsExact(true); 3283 } else if (isa<FPMathOperator>(I)) { 3284 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3285 if (FMF.any()) 3286 I->setFastMathFlags(FMF); 3287 } 3288 3289 } 3290 break; 3291 } 3292 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3293 unsigned OpNum = 0; 3294 Value *Op; 3295 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3296 OpNum+2 != Record.size()) 3297 return error("Invalid record"); 3298 3299 Type *ResTy = getTypeByID(Record[OpNum]); 3300 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3301 if (Opc == -1 || !ResTy) 3302 return error("Invalid record"); 3303 Instruction *Temp = nullptr; 3304 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3305 if (Temp) { 3306 InstructionList.push_back(Temp); 3307 CurBB->getInstList().push_back(Temp); 3308 } 3309 } else { 3310 auto CastOp = (Instruction::CastOps)Opc; 3311 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3312 return error("Invalid cast"); 3313 I = CastInst::Create(CastOp, Op, ResTy); 3314 } 3315 InstructionList.push_back(I); 3316 break; 3317 } 3318 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3319 case bitc::FUNC_CODE_INST_GEP_OLD: 3320 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3321 unsigned OpNum = 0; 3322 3323 Type *Ty; 3324 bool InBounds; 3325 3326 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3327 InBounds = Record[OpNum++]; 3328 Ty = getTypeByID(Record[OpNum++]); 3329 } else { 3330 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3331 Ty = nullptr; 3332 } 3333 3334 Value *BasePtr; 3335 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3336 return error("Invalid record"); 3337 3338 if (!Ty) 3339 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3340 ->getElementType(); 3341 else if (Ty != 3342 cast<PointerType>(BasePtr->getType()->getScalarType()) 3343 ->getElementType()) 3344 return error( 3345 "Explicit gep type does not match pointee type of pointer operand"); 3346 3347 SmallVector<Value*, 16> GEPIdx; 3348 while (OpNum != Record.size()) { 3349 Value *Op; 3350 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3351 return error("Invalid record"); 3352 GEPIdx.push_back(Op); 3353 } 3354 3355 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3356 3357 InstructionList.push_back(I); 3358 if (InBounds) 3359 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3360 break; 3361 } 3362 3363 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3364 // EXTRACTVAL: [opty, opval, n x indices] 3365 unsigned OpNum = 0; 3366 Value *Agg; 3367 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3368 return error("Invalid record"); 3369 3370 unsigned RecSize = Record.size(); 3371 if (OpNum == RecSize) 3372 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3373 3374 SmallVector<unsigned, 4> EXTRACTVALIdx; 3375 Type *CurTy = Agg->getType(); 3376 for (; OpNum != RecSize; ++OpNum) { 3377 bool IsArray = CurTy->isArrayTy(); 3378 bool IsStruct = CurTy->isStructTy(); 3379 uint64_t Index = Record[OpNum]; 3380 3381 if (!IsStruct && !IsArray) 3382 return error("EXTRACTVAL: Invalid type"); 3383 if ((unsigned)Index != Index) 3384 return error("Invalid value"); 3385 if (IsStruct && Index >= CurTy->subtypes().size()) 3386 return error("EXTRACTVAL: Invalid struct index"); 3387 if (IsArray && Index >= CurTy->getArrayNumElements()) 3388 return error("EXTRACTVAL: Invalid array index"); 3389 EXTRACTVALIdx.push_back((unsigned)Index); 3390 3391 if (IsStruct) 3392 CurTy = CurTy->subtypes()[Index]; 3393 else 3394 CurTy = CurTy->subtypes()[0]; 3395 } 3396 3397 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3398 InstructionList.push_back(I); 3399 break; 3400 } 3401 3402 case bitc::FUNC_CODE_INST_INSERTVAL: { 3403 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3404 unsigned OpNum = 0; 3405 Value *Agg; 3406 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3407 return error("Invalid record"); 3408 Value *Val; 3409 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3410 return error("Invalid record"); 3411 3412 unsigned RecSize = Record.size(); 3413 if (OpNum == RecSize) 3414 return error("INSERTVAL: Invalid instruction with 0 indices"); 3415 3416 SmallVector<unsigned, 4> INSERTVALIdx; 3417 Type *CurTy = Agg->getType(); 3418 for (; OpNum != RecSize; ++OpNum) { 3419 bool IsArray = CurTy->isArrayTy(); 3420 bool IsStruct = CurTy->isStructTy(); 3421 uint64_t Index = Record[OpNum]; 3422 3423 if (!IsStruct && !IsArray) 3424 return error("INSERTVAL: Invalid type"); 3425 if ((unsigned)Index != Index) 3426 return error("Invalid value"); 3427 if (IsStruct && Index >= CurTy->subtypes().size()) 3428 return error("INSERTVAL: Invalid struct index"); 3429 if (IsArray && Index >= CurTy->getArrayNumElements()) 3430 return error("INSERTVAL: Invalid array index"); 3431 3432 INSERTVALIdx.push_back((unsigned)Index); 3433 if (IsStruct) 3434 CurTy = CurTy->subtypes()[Index]; 3435 else 3436 CurTy = CurTy->subtypes()[0]; 3437 } 3438 3439 if (CurTy != Val->getType()) 3440 return error("Inserted value type doesn't match aggregate type"); 3441 3442 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3443 InstructionList.push_back(I); 3444 break; 3445 } 3446 3447 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3448 // obsolete form of select 3449 // handles select i1 ... in old bitcode 3450 unsigned OpNum = 0; 3451 Value *TrueVal, *FalseVal, *Cond; 3452 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3453 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3454 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3455 return error("Invalid record"); 3456 3457 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3458 InstructionList.push_back(I); 3459 break; 3460 } 3461 3462 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3463 // new form of select 3464 // handles select i1 or select [N x i1] 3465 unsigned OpNum = 0; 3466 Value *TrueVal, *FalseVal, *Cond; 3467 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3468 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3469 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3470 return error("Invalid record"); 3471 3472 // select condition can be either i1 or [N x i1] 3473 if (VectorType* vector_type = 3474 dyn_cast<VectorType>(Cond->getType())) { 3475 // expect <n x i1> 3476 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3477 return error("Invalid type for value"); 3478 } else { 3479 // expect i1 3480 if (Cond->getType() != Type::getInt1Ty(Context)) 3481 return error("Invalid type for value"); 3482 } 3483 3484 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3485 InstructionList.push_back(I); 3486 break; 3487 } 3488 3489 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3490 unsigned OpNum = 0; 3491 Value *Vec, *Idx; 3492 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3493 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3494 return error("Invalid record"); 3495 if (!Vec->getType()->isVectorTy()) 3496 return error("Invalid type for value"); 3497 I = ExtractElementInst::Create(Vec, Idx); 3498 InstructionList.push_back(I); 3499 break; 3500 } 3501 3502 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3503 unsigned OpNum = 0; 3504 Value *Vec, *Elt, *Idx; 3505 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3506 return error("Invalid record"); 3507 if (!Vec->getType()->isVectorTy()) 3508 return error("Invalid type for value"); 3509 if (popValue(Record, OpNum, NextValueNo, 3510 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3511 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3512 return error("Invalid record"); 3513 I = InsertElementInst::Create(Vec, Elt, Idx); 3514 InstructionList.push_back(I); 3515 break; 3516 } 3517 3518 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3519 unsigned OpNum = 0; 3520 Value *Vec1, *Vec2, *Mask; 3521 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3522 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3523 return error("Invalid record"); 3524 3525 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3526 return error("Invalid record"); 3527 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3528 return error("Invalid type for value"); 3529 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3530 InstructionList.push_back(I); 3531 break; 3532 } 3533 3534 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3535 // Old form of ICmp/FCmp returning bool 3536 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3537 // both legal on vectors but had different behaviour. 3538 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3539 // FCmp/ICmp returning bool or vector of bool 3540 3541 unsigned OpNum = 0; 3542 Value *LHS, *RHS; 3543 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3544 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3545 return error("Invalid record"); 3546 3547 unsigned PredVal = Record[OpNum]; 3548 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3549 FastMathFlags FMF; 3550 if (IsFP && Record.size() > OpNum+1) 3551 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3552 3553 if (OpNum+1 != Record.size()) 3554 return error("Invalid record"); 3555 3556 if (LHS->getType()->isFPOrFPVectorTy()) 3557 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3558 else 3559 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3560 3561 if (FMF.any()) 3562 I->setFastMathFlags(FMF); 3563 InstructionList.push_back(I); 3564 break; 3565 } 3566 3567 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3568 { 3569 unsigned Size = Record.size(); 3570 if (Size == 0) { 3571 I = ReturnInst::Create(Context); 3572 InstructionList.push_back(I); 3573 break; 3574 } 3575 3576 unsigned OpNum = 0; 3577 Value *Op = nullptr; 3578 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3579 return error("Invalid record"); 3580 if (OpNum != Record.size()) 3581 return error("Invalid record"); 3582 3583 I = ReturnInst::Create(Context, Op); 3584 InstructionList.push_back(I); 3585 break; 3586 } 3587 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3588 if (Record.size() != 1 && Record.size() != 3) 3589 return error("Invalid record"); 3590 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3591 if (!TrueDest) 3592 return error("Invalid record"); 3593 3594 if (Record.size() == 1) { 3595 I = BranchInst::Create(TrueDest); 3596 InstructionList.push_back(I); 3597 } 3598 else { 3599 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3600 Value *Cond = getValue(Record, 2, NextValueNo, 3601 Type::getInt1Ty(Context)); 3602 if (!FalseDest || !Cond) 3603 return error("Invalid record"); 3604 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3605 InstructionList.push_back(I); 3606 } 3607 break; 3608 } 3609 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3610 if (Record.size() != 1 && Record.size() != 2) 3611 return error("Invalid record"); 3612 unsigned Idx = 0; 3613 Value *CleanupPad = 3614 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3615 if (!CleanupPad) 3616 return error("Invalid record"); 3617 BasicBlock *UnwindDest = nullptr; 3618 if (Record.size() == 2) { 3619 UnwindDest = getBasicBlock(Record[Idx++]); 3620 if (!UnwindDest) 3621 return error("Invalid record"); 3622 } 3623 3624 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3625 InstructionList.push_back(I); 3626 break; 3627 } 3628 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3629 if (Record.size() != 2) 3630 return error("Invalid record"); 3631 unsigned Idx = 0; 3632 Value *CatchPad = 3633 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3634 if (!CatchPad) 3635 return error("Invalid record"); 3636 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3637 if (!BB) 3638 return error("Invalid record"); 3639 3640 I = CatchReturnInst::Create(CatchPad, BB); 3641 InstructionList.push_back(I); 3642 break; 3643 } 3644 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3645 // We must have, at minimum, the outer scope and the number of arguments. 3646 if (Record.size() < 2) 3647 return error("Invalid record"); 3648 3649 unsigned Idx = 0; 3650 3651 Value *ParentPad = 3652 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3653 3654 unsigned NumHandlers = Record[Idx++]; 3655 3656 SmallVector<BasicBlock *, 2> Handlers; 3657 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3658 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3659 if (!BB) 3660 return error("Invalid record"); 3661 Handlers.push_back(BB); 3662 } 3663 3664 BasicBlock *UnwindDest = nullptr; 3665 if (Idx + 1 == Record.size()) { 3666 UnwindDest = getBasicBlock(Record[Idx++]); 3667 if (!UnwindDest) 3668 return error("Invalid record"); 3669 } 3670 3671 if (Record.size() != Idx) 3672 return error("Invalid record"); 3673 3674 auto *CatchSwitch = 3675 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3676 for (BasicBlock *Handler : Handlers) 3677 CatchSwitch->addHandler(Handler); 3678 I = CatchSwitch; 3679 InstructionList.push_back(I); 3680 break; 3681 } 3682 case bitc::FUNC_CODE_INST_CATCHPAD: 3683 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3684 // We must have, at minimum, the outer scope and the number of arguments. 3685 if (Record.size() < 2) 3686 return error("Invalid record"); 3687 3688 unsigned Idx = 0; 3689 3690 Value *ParentPad = 3691 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3692 3693 unsigned NumArgOperands = Record[Idx++]; 3694 3695 SmallVector<Value *, 2> Args; 3696 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3697 Value *Val; 3698 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3699 return error("Invalid record"); 3700 Args.push_back(Val); 3701 } 3702 3703 if (Record.size() != Idx) 3704 return error("Invalid record"); 3705 3706 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3707 I = CleanupPadInst::Create(ParentPad, Args); 3708 else 3709 I = CatchPadInst::Create(ParentPad, Args); 3710 InstructionList.push_back(I); 3711 break; 3712 } 3713 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3714 // Check magic 3715 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3716 // "New" SwitchInst format with case ranges. The changes to write this 3717 // format were reverted but we still recognize bitcode that uses it. 3718 // Hopefully someday we will have support for case ranges and can use 3719 // this format again. 3720 3721 Type *OpTy = getTypeByID(Record[1]); 3722 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3723 3724 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3725 BasicBlock *Default = getBasicBlock(Record[3]); 3726 if (!OpTy || !Cond || !Default) 3727 return error("Invalid record"); 3728 3729 unsigned NumCases = Record[4]; 3730 3731 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3732 InstructionList.push_back(SI); 3733 3734 unsigned CurIdx = 5; 3735 for (unsigned i = 0; i != NumCases; ++i) { 3736 SmallVector<ConstantInt*, 1> CaseVals; 3737 unsigned NumItems = Record[CurIdx++]; 3738 for (unsigned ci = 0; ci != NumItems; ++ci) { 3739 bool isSingleNumber = Record[CurIdx++]; 3740 3741 APInt Low; 3742 unsigned ActiveWords = 1; 3743 if (ValueBitWidth > 64) 3744 ActiveWords = Record[CurIdx++]; 3745 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3746 ValueBitWidth); 3747 CurIdx += ActiveWords; 3748 3749 if (!isSingleNumber) { 3750 ActiveWords = 1; 3751 if (ValueBitWidth > 64) 3752 ActiveWords = Record[CurIdx++]; 3753 APInt High = readWideAPInt( 3754 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 3755 CurIdx += ActiveWords; 3756 3757 // FIXME: It is not clear whether values in the range should be 3758 // compared as signed or unsigned values. The partially 3759 // implemented changes that used this format in the past used 3760 // unsigned comparisons. 3761 for ( ; Low.ule(High); ++Low) 3762 CaseVals.push_back(ConstantInt::get(Context, Low)); 3763 } else 3764 CaseVals.push_back(ConstantInt::get(Context, Low)); 3765 } 3766 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3767 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3768 cve = CaseVals.end(); cvi != cve; ++cvi) 3769 SI->addCase(*cvi, DestBB); 3770 } 3771 I = SI; 3772 break; 3773 } 3774 3775 // Old SwitchInst format without case ranges. 3776 3777 if (Record.size() < 3 || (Record.size() & 1) == 0) 3778 return error("Invalid record"); 3779 Type *OpTy = getTypeByID(Record[0]); 3780 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3781 BasicBlock *Default = getBasicBlock(Record[2]); 3782 if (!OpTy || !Cond || !Default) 3783 return error("Invalid record"); 3784 unsigned NumCases = (Record.size()-3)/2; 3785 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3786 InstructionList.push_back(SI); 3787 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3788 ConstantInt *CaseVal = 3789 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3790 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3791 if (!CaseVal || !DestBB) { 3792 delete SI; 3793 return error("Invalid record"); 3794 } 3795 SI->addCase(CaseVal, DestBB); 3796 } 3797 I = SI; 3798 break; 3799 } 3800 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3801 if (Record.size() < 2) 3802 return error("Invalid record"); 3803 Type *OpTy = getTypeByID(Record[0]); 3804 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3805 if (!OpTy || !Address) 3806 return error("Invalid record"); 3807 unsigned NumDests = Record.size()-2; 3808 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3809 InstructionList.push_back(IBI); 3810 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3811 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3812 IBI->addDestination(DestBB); 3813 } else { 3814 delete IBI; 3815 return error("Invalid record"); 3816 } 3817 } 3818 I = IBI; 3819 break; 3820 } 3821 3822 case bitc::FUNC_CODE_INST_INVOKE: { 3823 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3824 if (Record.size() < 4) 3825 return error("Invalid record"); 3826 unsigned OpNum = 0; 3827 AttributeSet PAL = getAttributes(Record[OpNum++]); 3828 unsigned CCInfo = Record[OpNum++]; 3829 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3830 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3831 3832 FunctionType *FTy = nullptr; 3833 if (CCInfo >> 13 & 1 && 3834 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3835 return error("Explicit invoke type is not a function type"); 3836 3837 Value *Callee; 3838 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3839 return error("Invalid record"); 3840 3841 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3842 if (!CalleeTy) 3843 return error("Callee is not a pointer"); 3844 if (!FTy) { 3845 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3846 if (!FTy) 3847 return error("Callee is not of pointer to function type"); 3848 } else if (CalleeTy->getElementType() != FTy) 3849 return error("Explicit invoke type does not match pointee type of " 3850 "callee operand"); 3851 if (Record.size() < FTy->getNumParams() + OpNum) 3852 return error("Insufficient operands to call"); 3853 3854 SmallVector<Value*, 16> Ops; 3855 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3856 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3857 FTy->getParamType(i))); 3858 if (!Ops.back()) 3859 return error("Invalid record"); 3860 } 3861 3862 if (!FTy->isVarArg()) { 3863 if (Record.size() != OpNum) 3864 return error("Invalid record"); 3865 } else { 3866 // Read type/value pairs for varargs params. 3867 while (OpNum != Record.size()) { 3868 Value *Op; 3869 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3870 return error("Invalid record"); 3871 Ops.push_back(Op); 3872 } 3873 } 3874 3875 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 3876 OperandBundles.clear(); 3877 InstructionList.push_back(I); 3878 cast<InvokeInst>(I)->setCallingConv( 3879 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 3880 cast<InvokeInst>(I)->setAttributes(PAL); 3881 break; 3882 } 3883 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3884 unsigned Idx = 0; 3885 Value *Val = nullptr; 3886 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3887 return error("Invalid record"); 3888 I = ResumeInst::Create(Val); 3889 InstructionList.push_back(I); 3890 break; 3891 } 3892 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3893 I = new UnreachableInst(Context); 3894 InstructionList.push_back(I); 3895 break; 3896 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3897 if (Record.size() < 1 || ((Record.size()-1)&1)) 3898 return error("Invalid record"); 3899 Type *Ty = getTypeByID(Record[0]); 3900 if (!Ty) 3901 return error("Invalid record"); 3902 3903 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3904 InstructionList.push_back(PN); 3905 3906 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3907 Value *V; 3908 // With the new function encoding, it is possible that operands have 3909 // negative IDs (for forward references). Use a signed VBR 3910 // representation to keep the encoding small. 3911 if (UseRelativeIDs) 3912 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3913 else 3914 V = getValue(Record, 1+i, NextValueNo, Ty); 3915 BasicBlock *BB = getBasicBlock(Record[2+i]); 3916 if (!V || !BB) 3917 return error("Invalid record"); 3918 PN->addIncoming(V, BB); 3919 } 3920 I = PN; 3921 break; 3922 } 3923 3924 case bitc::FUNC_CODE_INST_LANDINGPAD: 3925 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 3926 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3927 unsigned Idx = 0; 3928 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 3929 if (Record.size() < 3) 3930 return error("Invalid record"); 3931 } else { 3932 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 3933 if (Record.size() < 4) 3934 return error("Invalid record"); 3935 } 3936 Type *Ty = getTypeByID(Record[Idx++]); 3937 if (!Ty) 3938 return error("Invalid record"); 3939 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 3940 Value *PersFn = nullptr; 3941 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3942 return error("Invalid record"); 3943 3944 if (!F->hasPersonalityFn()) 3945 F->setPersonalityFn(cast<Constant>(PersFn)); 3946 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 3947 return error("Personality function mismatch"); 3948 } 3949 3950 bool IsCleanup = !!Record[Idx++]; 3951 unsigned NumClauses = Record[Idx++]; 3952 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 3953 LP->setCleanup(IsCleanup); 3954 for (unsigned J = 0; J != NumClauses; ++J) { 3955 LandingPadInst::ClauseType CT = 3956 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3957 Value *Val; 3958 3959 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3960 delete LP; 3961 return error("Invalid record"); 3962 } 3963 3964 assert((CT != LandingPadInst::Catch || 3965 !isa<ArrayType>(Val->getType())) && 3966 "Catch clause has a invalid type!"); 3967 assert((CT != LandingPadInst::Filter || 3968 isa<ArrayType>(Val->getType())) && 3969 "Filter clause has invalid type!"); 3970 LP->addClause(cast<Constant>(Val)); 3971 } 3972 3973 I = LP; 3974 InstructionList.push_back(I); 3975 break; 3976 } 3977 3978 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3979 if (Record.size() != 4) 3980 return error("Invalid record"); 3981 uint64_t AlignRecord = Record[3]; 3982 const uint64_t InAllocaMask = uint64_t(1) << 5; 3983 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 3984 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 3985 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 3986 SwiftErrorMask; 3987 bool InAlloca = AlignRecord & InAllocaMask; 3988 bool SwiftError = AlignRecord & SwiftErrorMask; 3989 Type *Ty = getTypeByID(Record[0]); 3990 if ((AlignRecord & ExplicitTypeMask) == 0) { 3991 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 3992 if (!PTy) 3993 return error("Old-style alloca with a non-pointer type"); 3994 Ty = PTy->getElementType(); 3995 } 3996 Type *OpTy = getTypeByID(Record[1]); 3997 Value *Size = getFnValueByID(Record[2], OpTy); 3998 unsigned Align; 3999 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4000 return Err; 4001 } 4002 if (!Ty || !Size) 4003 return error("Invalid record"); 4004 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4005 AI->setUsedWithInAlloca(InAlloca); 4006 AI->setSwiftError(SwiftError); 4007 I = AI; 4008 InstructionList.push_back(I); 4009 break; 4010 } 4011 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4012 unsigned OpNum = 0; 4013 Value *Op; 4014 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4015 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4016 return error("Invalid record"); 4017 4018 Type *Ty = nullptr; 4019 if (OpNum + 3 == Record.size()) 4020 Ty = getTypeByID(Record[OpNum++]); 4021 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4022 return Err; 4023 if (!Ty) 4024 Ty = cast<PointerType>(Op->getType())->getElementType(); 4025 4026 unsigned Align; 4027 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4028 return Err; 4029 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4030 4031 InstructionList.push_back(I); 4032 break; 4033 } 4034 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4035 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4036 unsigned OpNum = 0; 4037 Value *Op; 4038 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4039 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4040 return error("Invalid record"); 4041 4042 Type *Ty = nullptr; 4043 if (OpNum + 5 == Record.size()) 4044 Ty = getTypeByID(Record[OpNum++]); 4045 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4046 return Err; 4047 if (!Ty) 4048 Ty = cast<PointerType>(Op->getType())->getElementType(); 4049 4050 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4051 if (Ordering == AtomicOrdering::NotAtomic || 4052 Ordering == AtomicOrdering::Release || 4053 Ordering == AtomicOrdering::AcquireRelease) 4054 return error("Invalid record"); 4055 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4056 return error("Invalid record"); 4057 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4058 4059 unsigned Align; 4060 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4061 return Err; 4062 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4063 4064 InstructionList.push_back(I); 4065 break; 4066 } 4067 case bitc::FUNC_CODE_INST_STORE: 4068 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4069 unsigned OpNum = 0; 4070 Value *Val, *Ptr; 4071 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4072 (BitCode == bitc::FUNC_CODE_INST_STORE 4073 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4074 : popValue(Record, OpNum, NextValueNo, 4075 cast<PointerType>(Ptr->getType())->getElementType(), 4076 Val)) || 4077 OpNum + 2 != Record.size()) 4078 return error("Invalid record"); 4079 4080 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4081 return Err; 4082 unsigned Align; 4083 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4084 return Err; 4085 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4086 InstructionList.push_back(I); 4087 break; 4088 } 4089 case bitc::FUNC_CODE_INST_STOREATOMIC: 4090 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4091 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4092 unsigned OpNum = 0; 4093 Value *Val, *Ptr; 4094 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4095 !isa<PointerType>(Ptr->getType()) || 4096 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4097 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4098 : popValue(Record, OpNum, NextValueNo, 4099 cast<PointerType>(Ptr->getType())->getElementType(), 4100 Val)) || 4101 OpNum + 4 != Record.size()) 4102 return error("Invalid record"); 4103 4104 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4105 return Err; 4106 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4107 if (Ordering == AtomicOrdering::NotAtomic || 4108 Ordering == AtomicOrdering::Acquire || 4109 Ordering == AtomicOrdering::AcquireRelease) 4110 return error("Invalid record"); 4111 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4112 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4113 return error("Invalid record"); 4114 4115 unsigned Align; 4116 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4117 return Err; 4118 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4119 InstructionList.push_back(I); 4120 break; 4121 } 4122 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4123 case bitc::FUNC_CODE_INST_CMPXCHG: { 4124 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4125 // failureordering?, isweak?] 4126 unsigned OpNum = 0; 4127 Value *Ptr, *Cmp, *New; 4128 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4129 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4130 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4131 : popValue(Record, OpNum, NextValueNo, 4132 cast<PointerType>(Ptr->getType())->getElementType(), 4133 Cmp)) || 4134 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4135 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4136 return error("Invalid record"); 4137 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4138 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4139 SuccessOrdering == AtomicOrdering::Unordered) 4140 return error("Invalid record"); 4141 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 4142 4143 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4144 return Err; 4145 AtomicOrdering FailureOrdering; 4146 if (Record.size() < 7) 4147 FailureOrdering = 4148 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4149 else 4150 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4151 4152 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4153 SynchScope); 4154 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4155 4156 if (Record.size() < 8) { 4157 // Before weak cmpxchgs existed, the instruction simply returned the 4158 // value loaded from memory, so bitcode files from that era will be 4159 // expecting the first component of a modern cmpxchg. 4160 CurBB->getInstList().push_back(I); 4161 I = ExtractValueInst::Create(I, 0); 4162 } else { 4163 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4164 } 4165 4166 InstructionList.push_back(I); 4167 break; 4168 } 4169 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4170 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4171 unsigned OpNum = 0; 4172 Value *Ptr, *Val; 4173 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4174 !isa<PointerType>(Ptr->getType()) || 4175 popValue(Record, OpNum, NextValueNo, 4176 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4177 OpNum+4 != Record.size()) 4178 return error("Invalid record"); 4179 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4180 if (Operation < AtomicRMWInst::FIRST_BINOP || 4181 Operation > AtomicRMWInst::LAST_BINOP) 4182 return error("Invalid record"); 4183 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4184 if (Ordering == AtomicOrdering::NotAtomic || 4185 Ordering == AtomicOrdering::Unordered) 4186 return error("Invalid record"); 4187 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 4188 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4189 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4190 InstructionList.push_back(I); 4191 break; 4192 } 4193 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4194 if (2 != Record.size()) 4195 return error("Invalid record"); 4196 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4197 if (Ordering == AtomicOrdering::NotAtomic || 4198 Ordering == AtomicOrdering::Unordered || 4199 Ordering == AtomicOrdering::Monotonic) 4200 return error("Invalid record"); 4201 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 4202 I = new FenceInst(Context, Ordering, SynchScope); 4203 InstructionList.push_back(I); 4204 break; 4205 } 4206 case bitc::FUNC_CODE_INST_CALL: { 4207 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4208 if (Record.size() < 3) 4209 return error("Invalid record"); 4210 4211 unsigned OpNum = 0; 4212 AttributeSet PAL = getAttributes(Record[OpNum++]); 4213 unsigned CCInfo = Record[OpNum++]; 4214 4215 FastMathFlags FMF; 4216 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4217 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4218 if (!FMF.any()) 4219 return error("Fast math flags indicator set for call with no FMF"); 4220 } 4221 4222 FunctionType *FTy = nullptr; 4223 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4224 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4225 return error("Explicit call type is not a function type"); 4226 4227 Value *Callee; 4228 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4229 return error("Invalid record"); 4230 4231 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4232 if (!OpTy) 4233 return error("Callee is not a pointer type"); 4234 if (!FTy) { 4235 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4236 if (!FTy) 4237 return error("Callee is not of pointer to function type"); 4238 } else if (OpTy->getElementType() != FTy) 4239 return error("Explicit call type does not match pointee type of " 4240 "callee operand"); 4241 if (Record.size() < FTy->getNumParams() + OpNum) 4242 return error("Insufficient operands to call"); 4243 4244 SmallVector<Value*, 16> Args; 4245 // Read the fixed params. 4246 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4247 if (FTy->getParamType(i)->isLabelTy()) 4248 Args.push_back(getBasicBlock(Record[OpNum])); 4249 else 4250 Args.push_back(getValue(Record, OpNum, NextValueNo, 4251 FTy->getParamType(i))); 4252 if (!Args.back()) 4253 return error("Invalid record"); 4254 } 4255 4256 // Read type/value pairs for varargs params. 4257 if (!FTy->isVarArg()) { 4258 if (OpNum != Record.size()) 4259 return error("Invalid record"); 4260 } else { 4261 while (OpNum != Record.size()) { 4262 Value *Op; 4263 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4264 return error("Invalid record"); 4265 Args.push_back(Op); 4266 } 4267 } 4268 4269 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4270 OperandBundles.clear(); 4271 InstructionList.push_back(I); 4272 cast<CallInst>(I)->setCallingConv( 4273 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4274 CallInst::TailCallKind TCK = CallInst::TCK_None; 4275 if (CCInfo & 1 << bitc::CALL_TAIL) 4276 TCK = CallInst::TCK_Tail; 4277 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4278 TCK = CallInst::TCK_MustTail; 4279 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4280 TCK = CallInst::TCK_NoTail; 4281 cast<CallInst>(I)->setTailCallKind(TCK); 4282 cast<CallInst>(I)->setAttributes(PAL); 4283 if (FMF.any()) { 4284 if (!isa<FPMathOperator>(I)) 4285 return error("Fast-math-flags specified for call without " 4286 "floating-point scalar or vector return type"); 4287 I->setFastMathFlags(FMF); 4288 } 4289 break; 4290 } 4291 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4292 if (Record.size() < 3) 4293 return error("Invalid record"); 4294 Type *OpTy = getTypeByID(Record[0]); 4295 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4296 Type *ResTy = getTypeByID(Record[2]); 4297 if (!OpTy || !Op || !ResTy) 4298 return error("Invalid record"); 4299 I = new VAArgInst(Op, ResTy); 4300 InstructionList.push_back(I); 4301 break; 4302 } 4303 4304 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4305 // A call or an invoke can be optionally prefixed with some variable 4306 // number of operand bundle blocks. These blocks are read into 4307 // OperandBundles and consumed at the next call or invoke instruction. 4308 4309 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4310 return error("Invalid record"); 4311 4312 std::vector<Value *> Inputs; 4313 4314 unsigned OpNum = 1; 4315 while (OpNum != Record.size()) { 4316 Value *Op; 4317 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4318 return error("Invalid record"); 4319 Inputs.push_back(Op); 4320 } 4321 4322 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4323 continue; 4324 } 4325 } 4326 4327 // Add instruction to end of current BB. If there is no current BB, reject 4328 // this file. 4329 if (!CurBB) { 4330 delete I; 4331 return error("Invalid instruction with no BB"); 4332 } 4333 if (!OperandBundles.empty()) { 4334 delete I; 4335 return error("Operand bundles found with no consumer"); 4336 } 4337 CurBB->getInstList().push_back(I); 4338 4339 // If this was a terminator instruction, move to the next block. 4340 if (isa<TerminatorInst>(I)) { 4341 ++CurBBNo; 4342 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4343 } 4344 4345 // Non-void values get registered in the value table for future use. 4346 if (I && !I->getType()->isVoidTy()) 4347 ValueList.assignValue(I, NextValueNo++); 4348 } 4349 4350 OutOfRecordLoop: 4351 4352 if (!OperandBundles.empty()) 4353 return error("Operand bundles found with no consumer"); 4354 4355 // Check the function list for unresolved values. 4356 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4357 if (!A->getParent()) { 4358 // We found at least one unresolved value. Nuke them all to avoid leaks. 4359 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4360 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4361 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4362 delete A; 4363 } 4364 } 4365 return error("Never resolved value found in function"); 4366 } 4367 } 4368 4369 // Unexpected unresolved metadata about to be dropped. 4370 if (MDLoader->hasFwdRefs()) 4371 return error("Invalid function metadata: outgoing forward refs"); 4372 4373 // Trim the value list down to the size it was before we parsed this function. 4374 ValueList.shrinkTo(ModuleValueListSize); 4375 MDLoader->shrinkTo(ModuleMDLoaderSize); 4376 std::vector<BasicBlock*>().swap(FunctionBBs); 4377 return Error::success(); 4378 } 4379 4380 /// Find the function body in the bitcode stream 4381 Error BitcodeReader::findFunctionInStream( 4382 Function *F, 4383 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4384 while (DeferredFunctionInfoIterator->second == 0) { 4385 // This is the fallback handling for the old format bitcode that 4386 // didn't contain the function index in the VST, or when we have 4387 // an anonymous function which would not have a VST entry. 4388 // Assert that we have one of those two cases. 4389 assert(VSTOffset == 0 || !F->hasName()); 4390 // Parse the next body in the stream and set its position in the 4391 // DeferredFunctionInfo map. 4392 if (Error Err = rememberAndSkipFunctionBodies()) 4393 return Err; 4394 } 4395 return Error::success(); 4396 } 4397 4398 //===----------------------------------------------------------------------===// 4399 // GVMaterializer implementation 4400 //===----------------------------------------------------------------------===// 4401 4402 Error BitcodeReader::materialize(GlobalValue *GV) { 4403 Function *F = dyn_cast<Function>(GV); 4404 // If it's not a function or is already material, ignore the request. 4405 if (!F || !F->isMaterializable()) 4406 return Error::success(); 4407 4408 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4409 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4410 // If its position is recorded as 0, its body is somewhere in the stream 4411 // but we haven't seen it yet. 4412 if (DFII->second == 0) 4413 if (Error Err = findFunctionInStream(F, DFII)) 4414 return Err; 4415 4416 // Materialize metadata before parsing any function bodies. 4417 if (Error Err = materializeMetadata()) 4418 return Err; 4419 4420 // Move the bit stream to the saved position of the deferred function body. 4421 Stream.JumpToBit(DFII->second); 4422 4423 if (Error Err = parseFunctionBody(F)) 4424 return Err; 4425 F->setIsMaterializable(false); 4426 4427 if (StripDebugInfo) 4428 stripDebugInfo(*F); 4429 4430 // Upgrade any old intrinsic calls in the function. 4431 for (auto &I : UpgradedIntrinsics) { 4432 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4433 UI != UE;) { 4434 User *U = *UI; 4435 ++UI; 4436 if (CallInst *CI = dyn_cast<CallInst>(U)) 4437 UpgradeIntrinsicCall(CI, I.second); 4438 } 4439 } 4440 4441 // Update calls to the remangled intrinsics 4442 for (auto &I : RemangledIntrinsics) 4443 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4444 UI != UE;) 4445 // Don't expect any other users than call sites 4446 CallSite(*UI++).setCalledFunction(I.second); 4447 4448 // Finish fn->subprogram upgrade for materialized functions. 4449 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4450 F->setSubprogram(SP); 4451 4452 // Bring in any functions that this function forward-referenced via 4453 // blockaddresses. 4454 return materializeForwardReferencedFunctions(); 4455 } 4456 4457 Error BitcodeReader::materializeModule() { 4458 if (Error Err = materializeMetadata()) 4459 return Err; 4460 4461 // Promise to materialize all forward references. 4462 WillMaterializeAllForwardRefs = true; 4463 4464 // Iterate over the module, deserializing any functions that are still on 4465 // disk. 4466 for (Function &F : *TheModule) { 4467 if (Error Err = materialize(&F)) 4468 return Err; 4469 } 4470 // At this point, if there are any function bodies, parse the rest of 4471 // the bits in the module past the last function block we have recorded 4472 // through either lazy scanning or the VST. 4473 if (LastFunctionBlockBit || NextUnreadBit) 4474 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4475 ? LastFunctionBlockBit 4476 : NextUnreadBit)) 4477 return Err; 4478 4479 // Check that all block address forward references got resolved (as we 4480 // promised above). 4481 if (!BasicBlockFwdRefs.empty()) 4482 return error("Never resolved function from blockaddress"); 4483 4484 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4485 // delete the old functions to clean up. We can't do this unless the entire 4486 // module is materialized because there could always be another function body 4487 // with calls to the old function. 4488 for (auto &I : UpgradedIntrinsics) { 4489 for (auto *U : I.first->users()) { 4490 if (CallInst *CI = dyn_cast<CallInst>(U)) 4491 UpgradeIntrinsicCall(CI, I.second); 4492 } 4493 if (!I.first->use_empty()) 4494 I.first->replaceAllUsesWith(I.second); 4495 I.first->eraseFromParent(); 4496 } 4497 UpgradedIntrinsics.clear(); 4498 // Do the same for remangled intrinsics 4499 for (auto &I : RemangledIntrinsics) { 4500 I.first->replaceAllUsesWith(I.second); 4501 I.first->eraseFromParent(); 4502 } 4503 RemangledIntrinsics.clear(); 4504 4505 UpgradeDebugInfo(*TheModule); 4506 4507 UpgradeModuleFlags(*TheModule); 4508 return Error::success(); 4509 } 4510 4511 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4512 return IdentifiedStructTypes; 4513 } 4514 4515 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4516 BitstreamCursor Cursor, ModuleSummaryIndex &TheIndex) 4517 : BitcodeReaderBase(std::move(Cursor)), TheIndex(TheIndex) {} 4518 4519 std::pair<GlobalValue::GUID, GlobalValue::GUID> 4520 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 4521 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 4522 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 4523 return VGI->second; 4524 } 4525 4526 // Specialized value symbol table parser used when reading module index 4527 // blocks where we don't actually create global values. The parsed information 4528 // is saved in the bitcode reader for use when later parsing summaries. 4529 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4530 uint64_t Offset, 4531 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4532 assert(Offset > 0 && "Expected non-zero VST offset"); 4533 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4534 4535 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4536 return error("Invalid record"); 4537 4538 SmallVector<uint64_t, 64> Record; 4539 4540 // Read all the records for this value table. 4541 SmallString<128> ValueName; 4542 4543 while (true) { 4544 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4545 4546 switch (Entry.Kind) { 4547 case BitstreamEntry::SubBlock: // Handled for us already. 4548 case BitstreamEntry::Error: 4549 return error("Malformed block"); 4550 case BitstreamEntry::EndBlock: 4551 // Done parsing VST, jump back to wherever we came from. 4552 Stream.JumpToBit(CurrentBit); 4553 return Error::success(); 4554 case BitstreamEntry::Record: 4555 // The interesting case. 4556 break; 4557 } 4558 4559 // Read a record. 4560 Record.clear(); 4561 switch (Stream.readRecord(Entry.ID, Record)) { 4562 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4563 break; 4564 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4565 if (convertToString(Record, 1, ValueName)) 4566 return error("Invalid record"); 4567 unsigned ValueID = Record[0]; 4568 assert(!SourceFileName.empty()); 4569 auto VLI = ValueIdToLinkageMap.find(ValueID); 4570 assert(VLI != ValueIdToLinkageMap.end() && 4571 "No linkage found for VST entry?"); 4572 auto Linkage = VLI->second; 4573 std::string GlobalId = 4574 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4575 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4576 auto OriginalNameID = ValueGUID; 4577 if (GlobalValue::isLocalLinkage(Linkage)) 4578 OriginalNameID = GlobalValue::getGUID(ValueName); 4579 if (PrintSummaryGUIDs) 4580 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4581 << ValueName << "\n"; 4582 ValueIdToCallGraphGUIDMap[ValueID] = 4583 std::make_pair(ValueGUID, OriginalNameID); 4584 ValueName.clear(); 4585 break; 4586 } 4587 case bitc::VST_CODE_FNENTRY: { 4588 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4589 if (convertToString(Record, 2, ValueName)) 4590 return error("Invalid record"); 4591 unsigned ValueID = Record[0]; 4592 assert(!SourceFileName.empty()); 4593 auto VLI = ValueIdToLinkageMap.find(ValueID); 4594 assert(VLI != ValueIdToLinkageMap.end() && 4595 "No linkage found for VST entry?"); 4596 auto Linkage = VLI->second; 4597 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 4598 ValueName, VLI->second, SourceFileName); 4599 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 4600 auto OriginalNameID = FunctionGUID; 4601 if (GlobalValue::isLocalLinkage(Linkage)) 4602 OriginalNameID = GlobalValue::getGUID(ValueName); 4603 if (PrintSummaryGUIDs) 4604 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 4605 << ValueName << "\n"; 4606 ValueIdToCallGraphGUIDMap[ValueID] = 4607 std::make_pair(FunctionGUID, OriginalNameID); 4608 4609 ValueName.clear(); 4610 break; 4611 } 4612 case bitc::VST_CODE_COMBINED_ENTRY: { 4613 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4614 unsigned ValueID = Record[0]; 4615 GlobalValue::GUID RefGUID = Record[1]; 4616 // The "original name", which is the second value of the pair will be 4617 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4618 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 4619 break; 4620 } 4621 } 4622 } 4623 } 4624 4625 // Parse just the blocks needed for building the index out of the module. 4626 // At the end of this routine the module Index is populated with a map 4627 // from global value id to GlobalValueSummary objects. 4628 Error ModuleSummaryIndexBitcodeReader::parseModule(StringRef ModulePath) { 4629 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4630 return error("Invalid record"); 4631 4632 SmallVector<uint64_t, 64> Record; 4633 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4634 unsigned ValueId = 0; 4635 4636 // Read the index for this module. 4637 while (true) { 4638 BitstreamEntry Entry = Stream.advance(); 4639 4640 switch (Entry.Kind) { 4641 case BitstreamEntry::Error: 4642 return error("Malformed block"); 4643 case BitstreamEntry::EndBlock: 4644 return Error::success(); 4645 4646 case BitstreamEntry::SubBlock: 4647 switch (Entry.ID) { 4648 default: // Skip unknown content. 4649 if (Stream.SkipBlock()) 4650 return error("Invalid record"); 4651 break; 4652 case bitc::BLOCKINFO_BLOCK_ID: 4653 // Need to parse these to get abbrev ids (e.g. for VST) 4654 if (readBlockInfo()) 4655 return error("Malformed block"); 4656 break; 4657 case bitc::VALUE_SYMTAB_BLOCK_ID: 4658 // Should have been parsed earlier via VSTOffset, unless there 4659 // is no summary section. 4660 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4661 !SeenGlobalValSummary) && 4662 "Expected early VST parse via VSTOffset record"); 4663 if (Stream.SkipBlock()) 4664 return error("Invalid record"); 4665 break; 4666 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4667 assert(!SeenValueSymbolTable && 4668 "Already read VST when parsing summary block?"); 4669 // We might not have a VST if there were no values in the 4670 // summary. An empty summary block generated when we are 4671 // performing ThinLTO compiles so we don't later invoke 4672 // the regular LTO process on them. 4673 if (VSTOffset > 0) { 4674 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4675 return Err; 4676 SeenValueSymbolTable = true; 4677 } 4678 SeenGlobalValSummary = true; 4679 if (Error Err = parseEntireSummary(ModulePath)) 4680 return Err; 4681 break; 4682 case bitc::MODULE_STRTAB_BLOCK_ID: 4683 if (Error Err = parseModuleStringTable()) 4684 return Err; 4685 break; 4686 } 4687 continue; 4688 4689 case BitstreamEntry::Record: { 4690 Record.clear(); 4691 auto BitCode = Stream.readRecord(Entry.ID, Record); 4692 switch (BitCode) { 4693 default: 4694 break; // Default behavior, ignore unknown content. 4695 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4696 case bitc::MODULE_CODE_SOURCE_FILENAME: { 4697 SmallString<128> ValueName; 4698 if (convertToString(Record, 0, ValueName)) 4699 return error("Invalid record"); 4700 SourceFileName = ValueName.c_str(); 4701 break; 4702 } 4703 /// MODULE_CODE_HASH: [5*i32] 4704 case bitc::MODULE_CODE_HASH: { 4705 if (Record.size() != 5) 4706 return error("Invalid hash length " + Twine(Record.size()).str()); 4707 if (TheIndex.modulePaths().empty()) 4708 // We always seed the index with the module. 4709 TheIndex.addModulePath(ModulePath, 0); 4710 if (TheIndex.modulePaths().size() != 1) 4711 return error("Don't expect multiple modules defined?"); 4712 auto &Hash = TheIndex.modulePaths().begin()->second.second; 4713 int Pos = 0; 4714 for (auto &Val : Record) { 4715 assert(!(Val >> 32) && "Unexpected high bits set"); 4716 Hash[Pos++] = Val; 4717 } 4718 break; 4719 } 4720 /// MODULE_CODE_VSTOFFSET: [offset] 4721 case bitc::MODULE_CODE_VSTOFFSET: 4722 if (Record.size() < 1) 4723 return error("Invalid record"); 4724 // Note that we subtract 1 here because the offset is relative to one 4725 // word before the start of the identification or module block, which 4726 // was historically always the start of the regular bitcode header. 4727 VSTOffset = Record[0] - 1; 4728 break; 4729 // GLOBALVAR: [pointer type, isconst, initid, 4730 // linkage, alignment, section, visibility, threadlocal, 4731 // unnamed_addr, externally_initialized, dllstorageclass, 4732 // comdat] 4733 case bitc::MODULE_CODE_GLOBALVAR: { 4734 if (Record.size() < 6) 4735 return error("Invalid record"); 4736 uint64_t RawLinkage = Record[3]; 4737 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4738 ValueIdToLinkageMap[ValueId++] = Linkage; 4739 break; 4740 } 4741 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 4742 // alignment, section, visibility, gc, unnamed_addr, 4743 // prologuedata, dllstorageclass, comdat, prefixdata] 4744 case bitc::MODULE_CODE_FUNCTION: { 4745 if (Record.size() < 8) 4746 return error("Invalid record"); 4747 uint64_t RawLinkage = Record[3]; 4748 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4749 ValueIdToLinkageMap[ValueId++] = Linkage; 4750 break; 4751 } 4752 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 4753 // dllstorageclass] 4754 case bitc::MODULE_CODE_ALIAS: { 4755 if (Record.size() < 6) 4756 return error("Invalid record"); 4757 uint64_t RawLinkage = Record[3]; 4758 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 4759 ValueIdToLinkageMap[ValueId++] = Linkage; 4760 break; 4761 } 4762 } 4763 } 4764 continue; 4765 } 4766 } 4767 } 4768 4769 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 4770 // objects in the index. 4771 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary( 4772 StringRef ModulePath) { 4773 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 4774 return error("Invalid record"); 4775 SmallVector<uint64_t, 64> Record; 4776 4777 // Parse version 4778 { 4779 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4780 if (Entry.Kind != BitstreamEntry::Record) 4781 return error("Invalid Summary Block: record for version expected"); 4782 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 4783 return error("Invalid Summary Block: version expected"); 4784 } 4785 const uint64_t Version = Record[0]; 4786 const bool IsOldProfileFormat = Version == 1; 4787 if (!IsOldProfileFormat && Version != 2) 4788 return error("Invalid summary version " + Twine(Version) + 4789 ", 1 or 2 expected"); 4790 Record.clear(); 4791 4792 // Keep around the last seen summary to be used when we see an optional 4793 // "OriginalName" attachement. 4794 GlobalValueSummary *LastSeenSummary = nullptr; 4795 bool Combined = false; 4796 4797 while (true) { 4798 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4799 4800 switch (Entry.Kind) { 4801 case BitstreamEntry::SubBlock: // Handled for us already. 4802 case BitstreamEntry::Error: 4803 return error("Malformed block"); 4804 case BitstreamEntry::EndBlock: 4805 // For a per-module index, remove any entries that still have empty 4806 // summaries. The VST parsing creates entries eagerly for all symbols, 4807 // but not all have associated summaries (e.g. it doesn't know how to 4808 // distinguish between VST_CODE_ENTRY for function declarations vs global 4809 // variables with initializers that end up with a summary). Remove those 4810 // entries now so that we don't need to rely on the combined index merger 4811 // to clean them up (especially since that may not run for the first 4812 // module's index if we merge into that). 4813 if (!Combined) 4814 TheIndex.removeEmptySummaryEntries(); 4815 return Error::success(); 4816 case BitstreamEntry::Record: 4817 // The interesting case. 4818 break; 4819 } 4820 4821 // Read a record. The record format depends on whether this 4822 // is a per-module index or a combined index file. In the per-module 4823 // case the records contain the associated value's ID for correlation 4824 // with VST entries. In the combined index the correlation is done 4825 // via the bitcode offset of the summary records (which were saved 4826 // in the combined index VST entries). The records also contain 4827 // information used for ThinLTO renaming and importing. 4828 Record.clear(); 4829 auto BitCode = Stream.readRecord(Entry.ID, Record); 4830 switch (BitCode) { 4831 default: // Default behavior: ignore. 4832 break; 4833 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 4834 // n x (valueid)] 4835 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 4836 // numrefs x valueid, 4837 // n x (valueid, hotness)] 4838 case bitc::FS_PERMODULE: 4839 case bitc::FS_PERMODULE_PROFILE: { 4840 unsigned ValueID = Record[0]; 4841 uint64_t RawFlags = Record[1]; 4842 unsigned InstCount = Record[2]; 4843 unsigned NumRefs = Record[3]; 4844 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4845 std::unique_ptr<FunctionSummary> FS = 4846 llvm::make_unique<FunctionSummary>(Flags, InstCount); 4847 // The module path string ref set in the summary must be owned by the 4848 // index's module string table. Since we don't have a module path 4849 // string table section in the per-module index, we create a single 4850 // module path string table entry with an empty (0) ID to take 4851 // ownership. 4852 FS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 4853 static int RefListStartIndex = 4; 4854 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 4855 assert(Record.size() >= RefListStartIndex + NumRefs && 4856 "Record size inconsistent with number of references"); 4857 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 4858 unsigned RefValueId = Record[I]; 4859 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 4860 FS->addRefEdge(RefGUID); 4861 } 4862 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 4863 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 4864 ++I) { 4865 CalleeInfo::HotnessType Hotness; 4866 GlobalValue::GUID CalleeGUID; 4867 std::tie(CalleeGUID, Hotness) = 4868 readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile); 4869 FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness)); 4870 } 4871 auto GUID = getGUIDFromValueId(ValueID); 4872 FS->setOriginalName(GUID.second); 4873 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 4874 break; 4875 } 4876 // FS_ALIAS: [valueid, flags, valueid] 4877 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 4878 // they expect all aliasee summaries to be available. 4879 case bitc::FS_ALIAS: { 4880 unsigned ValueID = Record[0]; 4881 uint64_t RawFlags = Record[1]; 4882 unsigned AliaseeID = Record[2]; 4883 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4884 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 4885 // The module path string ref set in the summary must be owned by the 4886 // index's module string table. Since we don't have a module path 4887 // string table section in the per-module index, we create a single 4888 // module path string table entry with an empty (0) ID to take 4889 // ownership. 4890 AS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 4891 4892 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 4893 auto *AliaseeSummary = TheIndex.getGlobalValueSummary(AliaseeGUID); 4894 if (!AliaseeSummary) 4895 return error("Alias expects aliasee summary to be parsed"); 4896 AS->setAliasee(AliaseeSummary); 4897 4898 auto GUID = getGUIDFromValueId(ValueID); 4899 AS->setOriginalName(GUID.second); 4900 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 4901 break; 4902 } 4903 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 4904 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 4905 unsigned ValueID = Record[0]; 4906 uint64_t RawFlags = Record[1]; 4907 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4908 std::unique_ptr<GlobalVarSummary> FS = 4909 llvm::make_unique<GlobalVarSummary>(Flags); 4910 FS->setModulePath(TheIndex.addModulePath(ModulePath, 0)->first()); 4911 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 4912 unsigned RefValueId = Record[I]; 4913 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 4914 FS->addRefEdge(RefGUID); 4915 } 4916 auto GUID = getGUIDFromValueId(ValueID); 4917 FS->setOriginalName(GUID.second); 4918 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 4919 break; 4920 } 4921 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 4922 // numrefs x valueid, n x (valueid)] 4923 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 4924 // numrefs x valueid, n x (valueid, hotness)] 4925 case bitc::FS_COMBINED: 4926 case bitc::FS_COMBINED_PROFILE: { 4927 unsigned ValueID = Record[0]; 4928 uint64_t ModuleId = Record[1]; 4929 uint64_t RawFlags = Record[2]; 4930 unsigned InstCount = Record[3]; 4931 unsigned NumRefs = Record[4]; 4932 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4933 std::unique_ptr<FunctionSummary> FS = 4934 llvm::make_unique<FunctionSummary>(Flags, InstCount); 4935 LastSeenSummary = FS.get(); 4936 FS->setModulePath(ModuleIdMap[ModuleId]); 4937 static int RefListStartIndex = 5; 4938 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 4939 assert(Record.size() >= RefListStartIndex + NumRefs && 4940 "Record size inconsistent with number of references"); 4941 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 4942 ++I) { 4943 unsigned RefValueId = Record[I]; 4944 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 4945 FS->addRefEdge(RefGUID); 4946 } 4947 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 4948 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 4949 ++I) { 4950 CalleeInfo::HotnessType Hotness; 4951 GlobalValue::GUID CalleeGUID; 4952 std::tie(CalleeGUID, Hotness) = 4953 readCallGraphEdge(Record, I, IsOldProfileFormat, HasProfile); 4954 FS->addCallGraphEdge(CalleeGUID, CalleeInfo(Hotness)); 4955 } 4956 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 4957 TheIndex.addGlobalValueSummary(GUID, std::move(FS)); 4958 Combined = true; 4959 break; 4960 } 4961 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 4962 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 4963 // they expect all aliasee summaries to be available. 4964 case bitc::FS_COMBINED_ALIAS: { 4965 unsigned ValueID = Record[0]; 4966 uint64_t ModuleId = Record[1]; 4967 uint64_t RawFlags = Record[2]; 4968 unsigned AliaseeValueId = Record[3]; 4969 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4970 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 4971 LastSeenSummary = AS.get(); 4972 AS->setModulePath(ModuleIdMap[ModuleId]); 4973 4974 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 4975 auto AliaseeInModule = 4976 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 4977 if (!AliaseeInModule) 4978 return error("Alias expects aliasee summary to be parsed"); 4979 AS->setAliasee(AliaseeInModule); 4980 4981 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 4982 TheIndex.addGlobalValueSummary(GUID, std::move(AS)); 4983 Combined = true; 4984 break; 4985 } 4986 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 4987 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 4988 unsigned ValueID = Record[0]; 4989 uint64_t ModuleId = Record[1]; 4990 uint64_t RawFlags = Record[2]; 4991 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 4992 std::unique_ptr<GlobalVarSummary> FS = 4993 llvm::make_unique<GlobalVarSummary>(Flags); 4994 LastSeenSummary = FS.get(); 4995 FS->setModulePath(ModuleIdMap[ModuleId]); 4996 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 4997 unsigned RefValueId = Record[I]; 4998 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 4999 FS->addRefEdge(RefGUID); 5000 } 5001 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 5002 TheIndex.addGlobalValueSummary(GUID, std::move(FS)); 5003 Combined = true; 5004 break; 5005 } 5006 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5007 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5008 uint64_t OriginalName = Record[0]; 5009 if (!LastSeenSummary) 5010 return error("Name attachment that does not follow a combined record"); 5011 LastSeenSummary->setOriginalName(OriginalName); 5012 // Reset the LastSeenSummary 5013 LastSeenSummary = nullptr; 5014 } 5015 } 5016 } 5017 llvm_unreachable("Exit infinite loop"); 5018 } 5019 5020 std::pair<GlobalValue::GUID, CalleeInfo::HotnessType> 5021 ModuleSummaryIndexBitcodeReader::readCallGraphEdge( 5022 const SmallVector<uint64_t, 64> &Record, unsigned int &I, 5023 const bool IsOldProfileFormat, const bool HasProfile) { 5024 5025 auto Hotness = CalleeInfo::HotnessType::Unknown; 5026 unsigned CalleeValueId = Record[I]; 5027 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 5028 if (IsOldProfileFormat) { 5029 I += 1; // Skip old callsitecount field 5030 if (HasProfile) 5031 I += 1; // Skip old profilecount field 5032 } else if (HasProfile) 5033 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5034 return {CalleeGUID, Hotness}; 5035 } 5036 5037 // Parse the module string table block into the Index. 5038 // This populates the ModulePathStringTable map in the index. 5039 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5040 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5041 return error("Invalid record"); 5042 5043 SmallVector<uint64_t, 64> Record; 5044 5045 SmallString<128> ModulePath; 5046 ModulePathStringTableTy::iterator LastSeenModulePath; 5047 5048 while (true) { 5049 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5050 5051 switch (Entry.Kind) { 5052 case BitstreamEntry::SubBlock: // Handled for us already. 5053 case BitstreamEntry::Error: 5054 return error("Malformed block"); 5055 case BitstreamEntry::EndBlock: 5056 return Error::success(); 5057 case BitstreamEntry::Record: 5058 // The interesting case. 5059 break; 5060 } 5061 5062 Record.clear(); 5063 switch (Stream.readRecord(Entry.ID, Record)) { 5064 default: // Default behavior: ignore. 5065 break; 5066 case bitc::MST_CODE_ENTRY: { 5067 // MST_ENTRY: [modid, namechar x N] 5068 uint64_t ModuleId = Record[0]; 5069 5070 if (convertToString(Record, 1, ModulePath)) 5071 return error("Invalid record"); 5072 5073 LastSeenModulePath = TheIndex.addModulePath(ModulePath, ModuleId); 5074 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 5075 5076 ModulePath.clear(); 5077 break; 5078 } 5079 /// MST_CODE_HASH: [5*i32] 5080 case bitc::MST_CODE_HASH: { 5081 if (Record.size() != 5) 5082 return error("Invalid hash length " + Twine(Record.size()).str()); 5083 if (LastSeenModulePath == TheIndex.modulePaths().end()) 5084 return error("Invalid hash that does not follow a module path"); 5085 int Pos = 0; 5086 for (auto &Val : Record) { 5087 assert(!(Val >> 32) && "Unexpected high bits set"); 5088 LastSeenModulePath->second.second[Pos++] = Val; 5089 } 5090 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 5091 LastSeenModulePath = TheIndex.modulePaths().end(); 5092 break; 5093 } 5094 } 5095 } 5096 llvm_unreachable("Exit infinite loop"); 5097 } 5098 5099 namespace { 5100 5101 // FIXME: This class is only here to support the transition to llvm::Error. It 5102 // will be removed once this transition is complete. Clients should prefer to 5103 // deal with the Error value directly, rather than converting to error_code. 5104 class BitcodeErrorCategoryType : public std::error_category { 5105 const char *name() const noexcept override { 5106 return "llvm.bitcode"; 5107 } 5108 std::string message(int IE) const override { 5109 BitcodeError E = static_cast<BitcodeError>(IE); 5110 switch (E) { 5111 case BitcodeError::CorruptedBitcode: 5112 return "Corrupted bitcode"; 5113 } 5114 llvm_unreachable("Unknown error type!"); 5115 } 5116 }; 5117 5118 } // end anonymous namespace 5119 5120 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5121 5122 const std::error_category &llvm::BitcodeErrorCategory() { 5123 return *ErrorCategory; 5124 } 5125 5126 //===----------------------------------------------------------------------===// 5127 // External interface 5128 //===----------------------------------------------------------------------===// 5129 5130 Expected<std::vector<BitcodeModule>> 5131 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5132 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5133 if (!StreamOrErr) 5134 return StreamOrErr.takeError(); 5135 BitstreamCursor &Stream = *StreamOrErr; 5136 5137 std::vector<BitcodeModule> Modules; 5138 while (true) { 5139 uint64_t BCBegin = Stream.getCurrentByteNo(); 5140 5141 // We may be consuming bitcode from a client that leaves garbage at the end 5142 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5143 // the end that there cannot possibly be another module, stop looking. 5144 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5145 return Modules; 5146 5147 BitstreamEntry Entry = Stream.advance(); 5148 switch (Entry.Kind) { 5149 case BitstreamEntry::EndBlock: 5150 case BitstreamEntry::Error: 5151 return error("Malformed block"); 5152 5153 case BitstreamEntry::SubBlock: { 5154 uint64_t IdentificationBit = -1ull; 5155 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5156 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5157 if (Stream.SkipBlock()) 5158 return error("Malformed block"); 5159 5160 Entry = Stream.advance(); 5161 if (Entry.Kind != BitstreamEntry::SubBlock || 5162 Entry.ID != bitc::MODULE_BLOCK_ID) 5163 return error("Malformed block"); 5164 } 5165 5166 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5167 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5168 if (Stream.SkipBlock()) 5169 return error("Malformed block"); 5170 5171 Modules.push_back({Stream.getBitcodeBytes().slice( 5172 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5173 Buffer.getBufferIdentifier(), IdentificationBit, 5174 ModuleBit}); 5175 continue; 5176 } 5177 5178 if (Stream.SkipBlock()) 5179 return error("Malformed block"); 5180 continue; 5181 } 5182 case BitstreamEntry::Record: 5183 Stream.skipRecord(Entry.ID); 5184 continue; 5185 } 5186 } 5187 } 5188 5189 /// \brief Get a lazy one-at-time loading module from bitcode. 5190 /// 5191 /// This isn't always used in a lazy context. In particular, it's also used by 5192 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5193 /// in forward-referenced functions from block address references. 5194 /// 5195 /// \param[in] MaterializeAll Set to \c true if we should materialize 5196 /// everything. 5197 Expected<std::unique_ptr<Module>> 5198 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5199 bool ShouldLazyLoadMetadata) { 5200 BitstreamCursor Stream(Buffer); 5201 5202 std::string ProducerIdentification; 5203 if (IdentificationBit != -1ull) { 5204 Stream.JumpToBit(IdentificationBit); 5205 Expected<std::string> ProducerIdentificationOrErr = 5206 readIdentificationBlock(Stream); 5207 if (!ProducerIdentificationOrErr) 5208 return ProducerIdentificationOrErr.takeError(); 5209 5210 ProducerIdentification = *ProducerIdentificationOrErr; 5211 } 5212 5213 Stream.JumpToBit(ModuleBit); 5214 auto *R = 5215 new BitcodeReader(std::move(Stream), ProducerIdentification, Context); 5216 5217 std::unique_ptr<Module> M = 5218 llvm::make_unique<Module>(ModuleIdentifier, Context); 5219 M->setMaterializer(R); 5220 5221 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5222 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata)) 5223 return std::move(Err); 5224 5225 if (MaterializeAll) { 5226 // Read in the entire module, and destroy the BitcodeReader. 5227 if (Error Err = M->materializeAll()) 5228 return std::move(Err); 5229 } else { 5230 // Resolve forward references from blockaddresses. 5231 if (Error Err = R->materializeForwardReferencedFunctions()) 5232 return std::move(Err); 5233 } 5234 return std::move(M); 5235 } 5236 5237 Expected<std::unique_ptr<Module>> 5238 BitcodeModule::getLazyModule(LLVMContext &Context, 5239 bool ShouldLazyLoadMetadata) { 5240 return getModuleImpl(Context, false, ShouldLazyLoadMetadata); 5241 } 5242 5243 // Parse the specified bitcode buffer, returning the function info index. 5244 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5245 BitstreamCursor Stream(Buffer); 5246 Stream.JumpToBit(ModuleBit); 5247 5248 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 5249 ModuleSummaryIndexBitcodeReader R(std::move(Stream), *Index); 5250 5251 if (Error Err = R.parseModule(ModuleIdentifier)) 5252 return std::move(Err); 5253 5254 return std::move(Index); 5255 } 5256 5257 // Check if the given bitcode buffer contains a global value summary block. 5258 Expected<bool> BitcodeModule::hasSummary() { 5259 BitstreamCursor Stream(Buffer); 5260 Stream.JumpToBit(ModuleBit); 5261 5262 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5263 return error("Invalid record"); 5264 5265 while (true) { 5266 BitstreamEntry Entry = Stream.advance(); 5267 5268 switch (Entry.Kind) { 5269 case BitstreamEntry::Error: 5270 return error("Malformed block"); 5271 case BitstreamEntry::EndBlock: 5272 return false; 5273 5274 case BitstreamEntry::SubBlock: 5275 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5276 return true; 5277 5278 // Ignore other sub-blocks. 5279 if (Stream.SkipBlock()) 5280 return error("Malformed block"); 5281 continue; 5282 5283 case BitstreamEntry::Record: 5284 Stream.skipRecord(Entry.ID); 5285 continue; 5286 } 5287 } 5288 } 5289 5290 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5291 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5292 if (!MsOrErr) 5293 return MsOrErr.takeError(); 5294 5295 if (MsOrErr->size() != 1) 5296 return error("Expected a single module"); 5297 5298 return (*MsOrErr)[0]; 5299 } 5300 5301 Expected<std::unique_ptr<Module>> 5302 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, 5303 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 5304 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5305 if (!BM) 5306 return BM.takeError(); 5307 5308 return BM->getLazyModule(Context, ShouldLazyLoadMetadata); 5309 } 5310 5311 Expected<std::unique_ptr<Module>> 5312 llvm::getOwningLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 5313 LLVMContext &Context, 5314 bool ShouldLazyLoadMetadata) { 5315 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata); 5316 if (MOrErr) 5317 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5318 return MOrErr; 5319 } 5320 5321 Expected<std::unique_ptr<Module>> 5322 BitcodeModule::parseModule(LLVMContext &Context) { 5323 return getModuleImpl(Context, true, false); 5324 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5325 // written. We must defer until the Module has been fully materialized. 5326 } 5327 5328 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5329 LLVMContext &Context) { 5330 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5331 if (!BM) 5332 return BM.takeError(); 5333 5334 return BM->parseModule(Context); 5335 } 5336 5337 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5338 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5339 if (!StreamOrErr) 5340 return StreamOrErr.takeError(); 5341 5342 return readTriple(*StreamOrErr); 5343 } 5344 5345 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5346 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5347 if (!StreamOrErr) 5348 return StreamOrErr.takeError(); 5349 5350 return hasObjCCategory(*StreamOrErr); 5351 } 5352 5353 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5354 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5355 if (!StreamOrErr) 5356 return StreamOrErr.takeError(); 5357 5358 return readIdentificationCode(*StreamOrErr); 5359 } 5360 5361 Expected<std::unique_ptr<ModuleSummaryIndex>> 5362 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5363 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5364 if (!BM) 5365 return BM.takeError(); 5366 5367 return BM->getSummary(); 5368 } 5369 5370 Expected<bool> llvm::hasGlobalValueSummary(MemoryBufferRef Buffer) { 5371 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5372 if (!BM) 5373 return BM.takeError(); 5374 5375 return BM->hasSummary(); 5376 } 5377