1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/DataStream.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <deque> 40 #include <utility> 41 42 using namespace llvm; 43 44 static cl::opt<bool> PrintSummaryGUIDs( 45 "print-summary-global-ids", cl::init(false), cl::Hidden, 46 cl::desc( 47 "Print the global id for each value when reading the module summary")); 48 49 namespace { 50 enum { 51 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 52 }; 53 54 class BitcodeReaderValueList { 55 std::vector<WeakVH> ValuePtrs; 56 57 /// As we resolve forward-referenced constants, we add information about them 58 /// to this vector. This allows us to resolve them in bulk instead of 59 /// resolving each reference at a time. See the code in 60 /// ResolveConstantForwardRefs for more information about this. 61 /// 62 /// The key of this vector is the placeholder constant, the value is the slot 63 /// number that holds the resolved value. 64 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 65 ResolveConstantsTy ResolveConstants; 66 LLVMContext &Context; 67 public: 68 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 69 ~BitcodeReaderValueList() { 70 assert(ResolveConstants.empty() && "Constants not resolved?"); 71 } 72 73 // vector compatibility methods 74 unsigned size() const { return ValuePtrs.size(); } 75 void resize(unsigned N) { ValuePtrs.resize(N); } 76 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 77 78 void clear() { 79 assert(ResolveConstants.empty() && "Constants not resolved?"); 80 ValuePtrs.clear(); 81 } 82 83 Value *operator[](unsigned i) const { 84 assert(i < ValuePtrs.size()); 85 return ValuePtrs[i]; 86 } 87 88 Value *back() const { return ValuePtrs.back(); } 89 void pop_back() { ValuePtrs.pop_back(); } 90 bool empty() const { return ValuePtrs.empty(); } 91 void shrinkTo(unsigned N) { 92 assert(N <= size() && "Invalid shrinkTo request!"); 93 ValuePtrs.resize(N); 94 } 95 96 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 97 Value *getValueFwdRef(unsigned Idx, Type *Ty); 98 99 void assignValue(Value *V, unsigned Idx); 100 101 /// Once all constants are read, this method bulk resolves any forward 102 /// references. 103 void resolveConstantForwardRefs(); 104 }; 105 106 class BitcodeReaderMetadataList { 107 unsigned NumFwdRefs; 108 bool AnyFwdRefs; 109 unsigned MinFwdRef; 110 unsigned MaxFwdRef; 111 112 /// Array of metadata references. 113 /// 114 /// Don't use std::vector here. Some versions of libc++ copy (instead of 115 /// move) on resize, and TrackingMDRef is very expensive to copy. 116 SmallVector<TrackingMDRef, 1> MetadataPtrs; 117 118 /// Structures for resolving old type refs. 119 struct { 120 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 121 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 122 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 123 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 124 } OldTypeRefs; 125 126 LLVMContext &Context; 127 public: 128 BitcodeReaderMetadataList(LLVMContext &C) 129 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 130 131 // vector compatibility methods 132 unsigned size() const { return MetadataPtrs.size(); } 133 void resize(unsigned N) { MetadataPtrs.resize(N); } 134 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 135 void clear() { MetadataPtrs.clear(); } 136 Metadata *back() const { return MetadataPtrs.back(); } 137 void pop_back() { MetadataPtrs.pop_back(); } 138 bool empty() const { return MetadataPtrs.empty(); } 139 140 Metadata *operator[](unsigned i) const { 141 assert(i < MetadataPtrs.size()); 142 return MetadataPtrs[i]; 143 } 144 145 Metadata *lookup(unsigned I) const { 146 if (I < MetadataPtrs.size()) 147 return MetadataPtrs[I]; 148 return nullptr; 149 } 150 151 void shrinkTo(unsigned N) { 152 assert(N <= size() && "Invalid shrinkTo request!"); 153 assert(!AnyFwdRefs && "Unexpected forward refs"); 154 MetadataPtrs.resize(N); 155 } 156 157 /// Return the given metadata, creating a replaceable forward reference if 158 /// necessary. 159 Metadata *getMetadataFwdRef(unsigned Idx); 160 161 /// Return the the given metadata only if it is fully resolved. 162 /// 163 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 164 /// would give \c false. 165 Metadata *getMetadataIfResolved(unsigned Idx); 166 167 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 168 void assignValue(Metadata *MD, unsigned Idx); 169 void tryToResolveCycles(); 170 bool hasFwdRefs() const { return AnyFwdRefs; } 171 172 /// Upgrade a type that had an MDString reference. 173 void addTypeRef(MDString &UUID, DICompositeType &CT); 174 175 /// Upgrade a type that had an MDString reference. 176 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 177 178 /// Upgrade a type ref array that may have MDString references. 179 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 180 181 private: 182 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 183 }; 184 185 class BitcodeReader : public GVMaterializer { 186 LLVMContext &Context; 187 Module *TheModule = nullptr; 188 std::unique_ptr<MemoryBuffer> Buffer; 189 std::unique_ptr<BitstreamReader> StreamFile; 190 BitstreamCursor Stream; 191 // Next offset to start scanning for lazy parsing of function bodies. 192 uint64_t NextUnreadBit = 0; 193 // Last function offset found in the VST. 194 uint64_t LastFunctionBlockBit = 0; 195 bool SeenValueSymbolTable = false; 196 uint64_t VSTOffset = 0; 197 // Contains an arbitrary and optional string identifying the bitcode producer 198 std::string ProducerIdentification; 199 200 std::vector<Type*> TypeList; 201 BitcodeReaderValueList ValueList; 202 BitcodeReaderMetadataList MetadataList; 203 std::vector<Comdat *> ComdatList; 204 SmallVector<Instruction *, 64> InstructionList; 205 206 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 207 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 208 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 209 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 210 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 211 212 SmallVector<Instruction*, 64> InstsWithTBAATag; 213 214 bool HasSeenOldLoopTags = false; 215 216 /// The set of attributes by index. Index zero in the file is for null, and 217 /// is thus not represented here. As such all indices are off by one. 218 std::vector<AttributeSet> MAttributes; 219 220 /// The set of attribute groups. 221 std::map<unsigned, AttributeSet> MAttributeGroups; 222 223 /// While parsing a function body, this is a list of the basic blocks for the 224 /// function. 225 std::vector<BasicBlock*> FunctionBBs; 226 227 // When reading the module header, this list is populated with functions that 228 // have bodies later in the file. 229 std::vector<Function*> FunctionsWithBodies; 230 231 // When intrinsic functions are encountered which require upgrading they are 232 // stored here with their replacement function. 233 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 234 UpgradedIntrinsicMap UpgradedIntrinsics; 235 236 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 237 DenseMap<unsigned, unsigned> MDKindMap; 238 239 // Several operations happen after the module header has been read, but 240 // before function bodies are processed. This keeps track of whether 241 // we've done this yet. 242 bool SeenFirstFunctionBody = false; 243 244 /// When function bodies are initially scanned, this map contains info about 245 /// where to find deferred function body in the stream. 246 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 247 248 /// When Metadata block is initially scanned when parsing the module, we may 249 /// choose to defer parsing of the metadata. This vector contains info about 250 /// which Metadata blocks are deferred. 251 std::vector<uint64_t> DeferredMetadataInfo; 252 253 /// These are basic blocks forward-referenced by block addresses. They are 254 /// inserted lazily into functions when they're loaded. The basic block ID is 255 /// its index into the vector. 256 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 257 std::deque<Function *> BasicBlockFwdRefQueue; 258 259 /// Indicates that we are using a new encoding for instruction operands where 260 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 261 /// instruction number, for a more compact encoding. Some instruction 262 /// operands are not relative to the instruction ID: basic block numbers, and 263 /// types. Once the old style function blocks have been phased out, we would 264 /// not need this flag. 265 bool UseRelativeIDs = false; 266 267 /// True if all functions will be materialized, negating the need to process 268 /// (e.g.) blockaddress forward references. 269 bool WillMaterializeAllForwardRefs = false; 270 271 /// True if any Metadata block has been materialized. 272 bool IsMetadataMaterialized = false; 273 274 bool StripDebugInfo = false; 275 276 /// Functions that need to be matched with subprograms when upgrading old 277 /// metadata. 278 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 279 280 std::vector<std::string> BundleTags; 281 282 public: 283 std::error_code error(BitcodeError E, const Twine &Message); 284 std::error_code error(BitcodeError E); 285 std::error_code error(const Twine &Message); 286 287 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 288 BitcodeReader(LLVMContext &Context); 289 ~BitcodeReader() override { freeState(); } 290 291 std::error_code materializeForwardReferencedFunctions(); 292 293 void freeState(); 294 295 void releaseBuffer(); 296 297 std::error_code materialize(GlobalValue *GV) override; 298 std::error_code materializeModule() override; 299 std::vector<StructType *> getIdentifiedStructTypes() const override; 300 301 /// \brief Main interface to parsing a bitcode buffer. 302 /// \returns true if an error occurred. 303 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 304 Module *M, 305 bool ShouldLazyLoadMetadata = false); 306 307 /// \brief Cheap mechanism to just extract module triple 308 /// \returns true if an error occurred. 309 ErrorOr<std::string> parseTriple(); 310 311 /// Cheap mechanism to just extract the identification block out of bitcode. 312 ErrorOr<std::string> parseIdentificationBlock(); 313 314 static uint64_t decodeSignRotatedValue(uint64_t V); 315 316 /// Materialize any deferred Metadata block. 317 std::error_code materializeMetadata() override; 318 319 void setStripDebugInfo() override; 320 321 private: 322 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 323 // ProducerIdentification data member, and do some basic enforcement on the 324 // "epoch" encoded in the bitcode. 325 std::error_code parseBitcodeVersion(); 326 327 std::vector<StructType *> IdentifiedStructTypes; 328 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 329 StructType *createIdentifiedStructType(LLVMContext &Context); 330 331 Type *getTypeByID(unsigned ID); 332 Value *getFnValueByID(unsigned ID, Type *Ty) { 333 if (Ty && Ty->isMetadataTy()) 334 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 335 return ValueList.getValueFwdRef(ID, Ty); 336 } 337 Metadata *getFnMetadataByID(unsigned ID) { 338 return MetadataList.getMetadataFwdRef(ID); 339 } 340 BasicBlock *getBasicBlock(unsigned ID) const { 341 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 342 return FunctionBBs[ID]; 343 } 344 AttributeSet getAttributes(unsigned i) const { 345 if (i-1 < MAttributes.size()) 346 return MAttributes[i-1]; 347 return AttributeSet(); 348 } 349 350 /// Read a value/type pair out of the specified record from slot 'Slot'. 351 /// Increment Slot past the number of slots used in the record. Return true on 352 /// failure. 353 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 354 unsigned InstNum, Value *&ResVal) { 355 if (Slot == Record.size()) return true; 356 unsigned ValNo = (unsigned)Record[Slot++]; 357 // Adjust the ValNo, if it was encoded relative to the InstNum. 358 if (UseRelativeIDs) 359 ValNo = InstNum - ValNo; 360 if (ValNo < InstNum) { 361 // If this is not a forward reference, just return the value we already 362 // have. 363 ResVal = getFnValueByID(ValNo, nullptr); 364 return ResVal == nullptr; 365 } 366 if (Slot == Record.size()) 367 return true; 368 369 unsigned TypeNo = (unsigned)Record[Slot++]; 370 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 371 return ResVal == nullptr; 372 } 373 374 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 375 /// past the number of slots used by the value in the record. Return true if 376 /// there is an error. 377 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 378 unsigned InstNum, Type *Ty, Value *&ResVal) { 379 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 380 return true; 381 // All values currently take a single record slot. 382 ++Slot; 383 return false; 384 } 385 386 /// Like popValue, but does not increment the Slot number. 387 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 388 unsigned InstNum, Type *Ty, Value *&ResVal) { 389 ResVal = getValue(Record, Slot, InstNum, Ty); 390 return ResVal == nullptr; 391 } 392 393 /// Version of getValue that returns ResVal directly, or 0 if there is an 394 /// error. 395 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 396 unsigned InstNum, Type *Ty) { 397 if (Slot == Record.size()) return nullptr; 398 unsigned ValNo = (unsigned)Record[Slot]; 399 // Adjust the ValNo, if it was encoded relative to the InstNum. 400 if (UseRelativeIDs) 401 ValNo = InstNum - ValNo; 402 return getFnValueByID(ValNo, Ty); 403 } 404 405 /// Like getValue, but decodes signed VBRs. 406 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 407 unsigned InstNum, Type *Ty) { 408 if (Slot == Record.size()) return nullptr; 409 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 410 // Adjust the ValNo, if it was encoded relative to the InstNum. 411 if (UseRelativeIDs) 412 ValNo = InstNum - ValNo; 413 return getFnValueByID(ValNo, Ty); 414 } 415 416 /// Converts alignment exponent (i.e. power of two (or zero)) to the 417 /// corresponding alignment to use. If alignment is too large, returns 418 /// a corresponding error code. 419 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 420 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 421 std::error_code parseModule(uint64_t ResumeBit, 422 bool ShouldLazyLoadMetadata = false); 423 std::error_code parseAttributeBlock(); 424 std::error_code parseAttributeGroupBlock(); 425 std::error_code parseTypeTable(); 426 std::error_code parseTypeTableBody(); 427 std::error_code parseOperandBundleTags(); 428 429 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 430 unsigned NameIndex, Triple &TT); 431 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 432 std::error_code parseConstants(); 433 std::error_code rememberAndSkipFunctionBodies(); 434 std::error_code rememberAndSkipFunctionBody(); 435 /// Save the positions of the Metadata blocks and skip parsing the blocks. 436 std::error_code rememberAndSkipMetadata(); 437 std::error_code parseFunctionBody(Function *F); 438 std::error_code globalCleanup(); 439 std::error_code resolveGlobalAndIndirectSymbolInits(); 440 std::error_code parseMetadata(bool ModuleLevel = false); 441 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 442 StringRef Blob, 443 unsigned &NextMetadataNo); 444 std::error_code parseMetadataKinds(); 445 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 446 std::error_code 447 parseGlobalObjectAttachment(GlobalObject &GO, 448 ArrayRef<uint64_t> Record); 449 std::error_code parseMetadataAttachment(Function &F); 450 ErrorOr<std::string> parseModuleTriple(); 451 std::error_code parseUseLists(); 452 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 453 std::error_code initStreamFromBuffer(); 454 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 455 std::error_code findFunctionInStream( 456 Function *F, 457 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 458 }; 459 460 /// Class to manage reading and parsing function summary index bitcode 461 /// files/sections. 462 class ModuleSummaryIndexBitcodeReader { 463 DiagnosticHandlerFunction DiagnosticHandler; 464 465 /// Eventually points to the module index built during parsing. 466 ModuleSummaryIndex *TheIndex = nullptr; 467 468 std::unique_ptr<MemoryBuffer> Buffer; 469 std::unique_ptr<BitstreamReader> StreamFile; 470 BitstreamCursor Stream; 471 472 /// Used to indicate whether caller only wants to check for the presence 473 /// of the global value summary bitcode section. All blocks are skipped, 474 /// but the SeenGlobalValSummary boolean is set. 475 bool CheckGlobalValSummaryPresenceOnly = false; 476 477 /// Indicates whether we have encountered a global value summary section 478 /// yet during parsing, used when checking if file contains global value 479 /// summary section. 480 bool SeenGlobalValSummary = false; 481 482 /// Indicates whether we have already parsed the VST, used for error checking. 483 bool SeenValueSymbolTable = false; 484 485 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 486 /// Used to enable on-demand parsing of the VST. 487 uint64_t VSTOffset = 0; 488 489 // Map to save ValueId to GUID association that was recorded in the 490 // ValueSymbolTable. It is used after the VST is parsed to convert 491 // call graph edges read from the function summary from referencing 492 // callees by their ValueId to using the GUID instead, which is how 493 // they are recorded in the summary index being built. 494 // We save a second GUID which is the same as the first one, but ignoring the 495 // linkage, i.e. for value other than local linkage they are identical. 496 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 497 ValueIdToCallGraphGUIDMap; 498 499 /// Map populated during module path string table parsing, from the 500 /// module ID to a string reference owned by the index's module 501 /// path string table, used to correlate with combined index 502 /// summary records. 503 DenseMap<uint64_t, StringRef> ModuleIdMap; 504 505 /// Original source file name recorded in a bitcode record. 506 std::string SourceFileName; 507 508 public: 509 std::error_code error(BitcodeError E, const Twine &Message); 510 std::error_code error(BitcodeError E); 511 std::error_code error(const Twine &Message); 512 513 ModuleSummaryIndexBitcodeReader( 514 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 515 bool CheckGlobalValSummaryPresenceOnly = false); 516 ModuleSummaryIndexBitcodeReader( 517 DiagnosticHandlerFunction DiagnosticHandler, 518 bool CheckGlobalValSummaryPresenceOnly = false); 519 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 520 521 void freeState(); 522 523 void releaseBuffer(); 524 525 /// Check if the parser has encountered a summary section. 526 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 527 528 /// \brief Main interface to parsing a bitcode buffer. 529 /// \returns true if an error occurred. 530 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 531 ModuleSummaryIndex *I); 532 533 private: 534 std::error_code parseModule(); 535 std::error_code parseValueSymbolTable( 536 uint64_t Offset, 537 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 538 std::error_code parseEntireSummary(); 539 std::error_code parseModuleStringTable(); 540 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 541 std::error_code initStreamFromBuffer(); 542 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 543 std::pair<GlobalValue::GUID, GlobalValue::GUID> 544 getGUIDFromValueId(unsigned ValueId); 545 }; 546 } // end anonymous namespace 547 548 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 549 DiagnosticSeverity Severity, 550 const Twine &Msg) 551 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 552 553 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 554 555 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 556 std::error_code EC, const Twine &Message) { 557 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 558 DiagnosticHandler(DI); 559 return EC; 560 } 561 562 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 563 std::error_code EC) { 564 return error(DiagnosticHandler, EC, EC.message()); 565 } 566 567 static std::error_code error(LLVMContext &Context, std::error_code EC, 568 const Twine &Message) { 569 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 570 Message); 571 } 572 573 static std::error_code error(LLVMContext &Context, std::error_code EC) { 574 return error(Context, EC, EC.message()); 575 } 576 577 static std::error_code error(LLVMContext &Context, const Twine &Message) { 578 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 579 Message); 580 } 581 582 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 583 if (!ProducerIdentification.empty()) { 584 return ::error(Context, make_error_code(E), 585 Message + " (Producer: '" + ProducerIdentification + 586 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 587 } 588 return ::error(Context, make_error_code(E), Message); 589 } 590 591 std::error_code BitcodeReader::error(const Twine &Message) { 592 if (!ProducerIdentification.empty()) { 593 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 594 Message + " (Producer: '" + ProducerIdentification + 595 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 596 } 597 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 598 Message); 599 } 600 601 std::error_code BitcodeReader::error(BitcodeError E) { 602 return ::error(Context, make_error_code(E)); 603 } 604 605 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 606 : Context(Context), Buffer(Buffer), ValueList(Context), 607 MetadataList(Context) {} 608 609 BitcodeReader::BitcodeReader(LLVMContext &Context) 610 : Context(Context), Buffer(nullptr), ValueList(Context), 611 MetadataList(Context) {} 612 613 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 614 if (WillMaterializeAllForwardRefs) 615 return std::error_code(); 616 617 // Prevent recursion. 618 WillMaterializeAllForwardRefs = true; 619 620 while (!BasicBlockFwdRefQueue.empty()) { 621 Function *F = BasicBlockFwdRefQueue.front(); 622 BasicBlockFwdRefQueue.pop_front(); 623 assert(F && "Expected valid function"); 624 if (!BasicBlockFwdRefs.count(F)) 625 // Already materialized. 626 continue; 627 628 // Check for a function that isn't materializable to prevent an infinite 629 // loop. When parsing a blockaddress stored in a global variable, there 630 // isn't a trivial way to check if a function will have a body without a 631 // linear search through FunctionsWithBodies, so just check it here. 632 if (!F->isMaterializable()) 633 return error("Never resolved function from blockaddress"); 634 635 // Try to materialize F. 636 if (std::error_code EC = materialize(F)) 637 return EC; 638 } 639 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 640 641 // Reset state. 642 WillMaterializeAllForwardRefs = false; 643 return std::error_code(); 644 } 645 646 void BitcodeReader::freeState() { 647 Buffer = nullptr; 648 std::vector<Type*>().swap(TypeList); 649 ValueList.clear(); 650 MetadataList.clear(); 651 std::vector<Comdat *>().swap(ComdatList); 652 653 std::vector<AttributeSet>().swap(MAttributes); 654 std::vector<BasicBlock*>().swap(FunctionBBs); 655 std::vector<Function*>().swap(FunctionsWithBodies); 656 DeferredFunctionInfo.clear(); 657 DeferredMetadataInfo.clear(); 658 MDKindMap.clear(); 659 660 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 661 BasicBlockFwdRefQueue.clear(); 662 } 663 664 //===----------------------------------------------------------------------===// 665 // Helper functions to implement forward reference resolution, etc. 666 //===----------------------------------------------------------------------===// 667 668 /// Convert a string from a record into an std::string, return true on failure. 669 template <typename StrTy> 670 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 671 StrTy &Result) { 672 if (Idx > Record.size()) 673 return true; 674 675 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 676 Result += (char)Record[i]; 677 return false; 678 } 679 680 static bool hasImplicitComdat(size_t Val) { 681 switch (Val) { 682 default: 683 return false; 684 case 1: // Old WeakAnyLinkage 685 case 4: // Old LinkOnceAnyLinkage 686 case 10: // Old WeakODRLinkage 687 case 11: // Old LinkOnceODRLinkage 688 return true; 689 } 690 } 691 692 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 693 switch (Val) { 694 default: // Map unknown/new linkages to external 695 case 0: 696 return GlobalValue::ExternalLinkage; 697 case 2: 698 return GlobalValue::AppendingLinkage; 699 case 3: 700 return GlobalValue::InternalLinkage; 701 case 5: 702 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 703 case 6: 704 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 705 case 7: 706 return GlobalValue::ExternalWeakLinkage; 707 case 8: 708 return GlobalValue::CommonLinkage; 709 case 9: 710 return GlobalValue::PrivateLinkage; 711 case 12: 712 return GlobalValue::AvailableExternallyLinkage; 713 case 13: 714 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 715 case 14: 716 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 717 case 15: 718 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 719 case 1: // Old value with implicit comdat. 720 case 16: 721 return GlobalValue::WeakAnyLinkage; 722 case 10: // Old value with implicit comdat. 723 case 17: 724 return GlobalValue::WeakODRLinkage; 725 case 4: // Old value with implicit comdat. 726 case 18: 727 return GlobalValue::LinkOnceAnyLinkage; 728 case 11: // Old value with implicit comdat. 729 case 19: 730 return GlobalValue::LinkOnceODRLinkage; 731 } 732 } 733 734 // Decode the flags for GlobalValue in the summary 735 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 736 uint64_t Version) { 737 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 738 // like getDecodedLinkage() above. Any future change to the linkage enum and 739 // to getDecodedLinkage() will need to be taken into account here as above. 740 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 741 RawFlags = RawFlags >> 4; 742 auto HasSection = RawFlags & 0x1; // bool 743 return GlobalValueSummary::GVFlags(Linkage, HasSection); 744 } 745 746 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 747 switch (Val) { 748 default: // Map unknown visibilities to default. 749 case 0: return GlobalValue::DefaultVisibility; 750 case 1: return GlobalValue::HiddenVisibility; 751 case 2: return GlobalValue::ProtectedVisibility; 752 } 753 } 754 755 static GlobalValue::DLLStorageClassTypes 756 getDecodedDLLStorageClass(unsigned Val) { 757 switch (Val) { 758 default: // Map unknown values to default. 759 case 0: return GlobalValue::DefaultStorageClass; 760 case 1: return GlobalValue::DLLImportStorageClass; 761 case 2: return GlobalValue::DLLExportStorageClass; 762 } 763 } 764 765 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 766 switch (Val) { 767 case 0: return GlobalVariable::NotThreadLocal; 768 default: // Map unknown non-zero value to general dynamic. 769 case 1: return GlobalVariable::GeneralDynamicTLSModel; 770 case 2: return GlobalVariable::LocalDynamicTLSModel; 771 case 3: return GlobalVariable::InitialExecTLSModel; 772 case 4: return GlobalVariable::LocalExecTLSModel; 773 } 774 } 775 776 static int getDecodedCastOpcode(unsigned Val) { 777 switch (Val) { 778 default: return -1; 779 case bitc::CAST_TRUNC : return Instruction::Trunc; 780 case bitc::CAST_ZEXT : return Instruction::ZExt; 781 case bitc::CAST_SEXT : return Instruction::SExt; 782 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 783 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 784 case bitc::CAST_UITOFP : return Instruction::UIToFP; 785 case bitc::CAST_SITOFP : return Instruction::SIToFP; 786 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 787 case bitc::CAST_FPEXT : return Instruction::FPExt; 788 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 789 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 790 case bitc::CAST_BITCAST : return Instruction::BitCast; 791 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 792 } 793 } 794 795 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 796 bool IsFP = Ty->isFPOrFPVectorTy(); 797 // BinOps are only valid for int/fp or vector of int/fp types 798 if (!IsFP && !Ty->isIntOrIntVectorTy()) 799 return -1; 800 801 switch (Val) { 802 default: 803 return -1; 804 case bitc::BINOP_ADD: 805 return IsFP ? Instruction::FAdd : Instruction::Add; 806 case bitc::BINOP_SUB: 807 return IsFP ? Instruction::FSub : Instruction::Sub; 808 case bitc::BINOP_MUL: 809 return IsFP ? Instruction::FMul : Instruction::Mul; 810 case bitc::BINOP_UDIV: 811 return IsFP ? -1 : Instruction::UDiv; 812 case bitc::BINOP_SDIV: 813 return IsFP ? Instruction::FDiv : Instruction::SDiv; 814 case bitc::BINOP_UREM: 815 return IsFP ? -1 : Instruction::URem; 816 case bitc::BINOP_SREM: 817 return IsFP ? Instruction::FRem : Instruction::SRem; 818 case bitc::BINOP_SHL: 819 return IsFP ? -1 : Instruction::Shl; 820 case bitc::BINOP_LSHR: 821 return IsFP ? -1 : Instruction::LShr; 822 case bitc::BINOP_ASHR: 823 return IsFP ? -1 : Instruction::AShr; 824 case bitc::BINOP_AND: 825 return IsFP ? -1 : Instruction::And; 826 case bitc::BINOP_OR: 827 return IsFP ? -1 : Instruction::Or; 828 case bitc::BINOP_XOR: 829 return IsFP ? -1 : Instruction::Xor; 830 } 831 } 832 833 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 834 switch (Val) { 835 default: return AtomicRMWInst::BAD_BINOP; 836 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 837 case bitc::RMW_ADD: return AtomicRMWInst::Add; 838 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 839 case bitc::RMW_AND: return AtomicRMWInst::And; 840 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 841 case bitc::RMW_OR: return AtomicRMWInst::Or; 842 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 843 case bitc::RMW_MAX: return AtomicRMWInst::Max; 844 case bitc::RMW_MIN: return AtomicRMWInst::Min; 845 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 846 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 847 } 848 } 849 850 static AtomicOrdering getDecodedOrdering(unsigned Val) { 851 switch (Val) { 852 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 853 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 854 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 855 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 856 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 857 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 858 default: // Map unknown orderings to sequentially-consistent. 859 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 860 } 861 } 862 863 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 864 switch (Val) { 865 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 866 default: // Map unknown scopes to cross-thread. 867 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 868 } 869 } 870 871 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 872 switch (Val) { 873 default: // Map unknown selection kinds to any. 874 case bitc::COMDAT_SELECTION_KIND_ANY: 875 return Comdat::Any; 876 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 877 return Comdat::ExactMatch; 878 case bitc::COMDAT_SELECTION_KIND_LARGEST: 879 return Comdat::Largest; 880 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 881 return Comdat::NoDuplicates; 882 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 883 return Comdat::SameSize; 884 } 885 } 886 887 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 888 FastMathFlags FMF; 889 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 890 FMF.setUnsafeAlgebra(); 891 if (0 != (Val & FastMathFlags::NoNaNs)) 892 FMF.setNoNaNs(); 893 if (0 != (Val & FastMathFlags::NoInfs)) 894 FMF.setNoInfs(); 895 if (0 != (Val & FastMathFlags::NoSignedZeros)) 896 FMF.setNoSignedZeros(); 897 if (0 != (Val & FastMathFlags::AllowReciprocal)) 898 FMF.setAllowReciprocal(); 899 return FMF; 900 } 901 902 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 903 switch (Val) { 904 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 905 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 906 } 907 } 908 909 namespace llvm { 910 namespace { 911 /// \brief A class for maintaining the slot number definition 912 /// as a placeholder for the actual definition for forward constants defs. 913 class ConstantPlaceHolder : public ConstantExpr { 914 void operator=(const ConstantPlaceHolder &) = delete; 915 916 public: 917 // allocate space for exactly one operand 918 void *operator new(size_t s) { return User::operator new(s, 1); } 919 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 920 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 921 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 922 } 923 924 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 925 static bool classof(const Value *V) { 926 return isa<ConstantExpr>(V) && 927 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 928 } 929 930 /// Provide fast operand accessors 931 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 932 }; 933 } // end anonymous namespace 934 935 // FIXME: can we inherit this from ConstantExpr? 936 template <> 937 struct OperandTraits<ConstantPlaceHolder> : 938 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 939 }; 940 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 941 } // end namespace llvm 942 943 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 944 if (Idx == size()) { 945 push_back(V); 946 return; 947 } 948 949 if (Idx >= size()) 950 resize(Idx+1); 951 952 WeakVH &OldV = ValuePtrs[Idx]; 953 if (!OldV) { 954 OldV = V; 955 return; 956 } 957 958 // Handle constants and non-constants (e.g. instrs) differently for 959 // efficiency. 960 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 961 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 962 OldV = V; 963 } else { 964 // If there was a forward reference to this value, replace it. 965 Value *PrevVal = OldV; 966 OldV->replaceAllUsesWith(V); 967 delete PrevVal; 968 } 969 } 970 971 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 972 Type *Ty) { 973 if (Idx >= size()) 974 resize(Idx + 1); 975 976 if (Value *V = ValuePtrs[Idx]) { 977 if (Ty != V->getType()) 978 report_fatal_error("Type mismatch in constant table!"); 979 return cast<Constant>(V); 980 } 981 982 // Create and return a placeholder, which will later be RAUW'd. 983 Constant *C = new ConstantPlaceHolder(Ty, Context); 984 ValuePtrs[Idx] = C; 985 return C; 986 } 987 988 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 989 // Bail out for a clearly invalid value. This would make us call resize(0) 990 if (Idx == UINT_MAX) 991 return nullptr; 992 993 if (Idx >= size()) 994 resize(Idx + 1); 995 996 if (Value *V = ValuePtrs[Idx]) { 997 // If the types don't match, it's invalid. 998 if (Ty && Ty != V->getType()) 999 return nullptr; 1000 return V; 1001 } 1002 1003 // No type specified, must be invalid reference. 1004 if (!Ty) return nullptr; 1005 1006 // Create and return a placeholder, which will later be RAUW'd. 1007 Value *V = new Argument(Ty); 1008 ValuePtrs[Idx] = V; 1009 return V; 1010 } 1011 1012 /// Once all constants are read, this method bulk resolves any forward 1013 /// references. The idea behind this is that we sometimes get constants (such 1014 /// as large arrays) which reference *many* forward ref constants. Replacing 1015 /// each of these causes a lot of thrashing when building/reuniquing the 1016 /// constant. Instead of doing this, we look at all the uses and rewrite all 1017 /// the place holders at once for any constant that uses a placeholder. 1018 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1019 // Sort the values by-pointer so that they are efficient to look up with a 1020 // binary search. 1021 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1022 1023 SmallVector<Constant*, 64> NewOps; 1024 1025 while (!ResolveConstants.empty()) { 1026 Value *RealVal = operator[](ResolveConstants.back().second); 1027 Constant *Placeholder = ResolveConstants.back().first; 1028 ResolveConstants.pop_back(); 1029 1030 // Loop over all users of the placeholder, updating them to reference the 1031 // new value. If they reference more than one placeholder, update them all 1032 // at once. 1033 while (!Placeholder->use_empty()) { 1034 auto UI = Placeholder->user_begin(); 1035 User *U = *UI; 1036 1037 // If the using object isn't uniqued, just update the operands. This 1038 // handles instructions and initializers for global variables. 1039 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1040 UI.getUse().set(RealVal); 1041 continue; 1042 } 1043 1044 // Otherwise, we have a constant that uses the placeholder. Replace that 1045 // constant with a new constant that has *all* placeholder uses updated. 1046 Constant *UserC = cast<Constant>(U); 1047 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1048 I != E; ++I) { 1049 Value *NewOp; 1050 if (!isa<ConstantPlaceHolder>(*I)) { 1051 // Not a placeholder reference. 1052 NewOp = *I; 1053 } else if (*I == Placeholder) { 1054 // Common case is that it just references this one placeholder. 1055 NewOp = RealVal; 1056 } else { 1057 // Otherwise, look up the placeholder in ResolveConstants. 1058 ResolveConstantsTy::iterator It = 1059 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1060 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1061 0)); 1062 assert(It != ResolveConstants.end() && It->first == *I); 1063 NewOp = operator[](It->second); 1064 } 1065 1066 NewOps.push_back(cast<Constant>(NewOp)); 1067 } 1068 1069 // Make the new constant. 1070 Constant *NewC; 1071 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1072 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1073 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1074 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1075 } else if (isa<ConstantVector>(UserC)) { 1076 NewC = ConstantVector::get(NewOps); 1077 } else { 1078 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1079 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1080 } 1081 1082 UserC->replaceAllUsesWith(NewC); 1083 UserC->destroyConstant(); 1084 NewOps.clear(); 1085 } 1086 1087 // Update all ValueHandles, they should be the only users at this point. 1088 Placeholder->replaceAllUsesWith(RealVal); 1089 delete Placeholder; 1090 } 1091 } 1092 1093 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1094 if (Idx == size()) { 1095 push_back(MD); 1096 return; 1097 } 1098 1099 if (Idx >= size()) 1100 resize(Idx+1); 1101 1102 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1103 if (!OldMD) { 1104 OldMD.reset(MD); 1105 return; 1106 } 1107 1108 // If there was a forward reference to this value, replace it. 1109 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1110 PrevMD->replaceAllUsesWith(MD); 1111 --NumFwdRefs; 1112 } 1113 1114 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1115 if (Idx >= size()) 1116 resize(Idx + 1); 1117 1118 if (Metadata *MD = MetadataPtrs[Idx]) 1119 return MD; 1120 1121 // Track forward refs to be resolved later. 1122 if (AnyFwdRefs) { 1123 MinFwdRef = std::min(MinFwdRef, Idx); 1124 MaxFwdRef = std::max(MaxFwdRef, Idx); 1125 } else { 1126 AnyFwdRefs = true; 1127 MinFwdRef = MaxFwdRef = Idx; 1128 } 1129 ++NumFwdRefs; 1130 1131 // Create and return a placeholder, which will later be RAUW'd. 1132 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1133 MetadataPtrs[Idx].reset(MD); 1134 return MD; 1135 } 1136 1137 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1138 Metadata *MD = lookup(Idx); 1139 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1140 if (!N->isResolved()) 1141 return nullptr; 1142 return MD; 1143 } 1144 1145 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1146 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1147 } 1148 1149 void BitcodeReaderMetadataList::tryToResolveCycles() { 1150 if (NumFwdRefs) 1151 // Still forward references... can't resolve cycles. 1152 return; 1153 1154 bool DidReplaceTypeRefs = false; 1155 1156 // Give up on finding a full definition for any forward decls that remain. 1157 for (const auto &Ref : OldTypeRefs.FwdDecls) 1158 OldTypeRefs.Final.insert(Ref); 1159 OldTypeRefs.FwdDecls.clear(); 1160 1161 // Upgrade from old type ref arrays. In strange cases, this could add to 1162 // OldTypeRefs.Unknown. 1163 for (const auto &Array : OldTypeRefs.Arrays) { 1164 DidReplaceTypeRefs = true; 1165 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1166 } 1167 OldTypeRefs.Arrays.clear(); 1168 1169 // Replace old string-based type refs with the resolved node, if possible. 1170 // If we haven't seen the node, leave it to the verifier to complain about 1171 // the invalid string reference. 1172 for (const auto &Ref : OldTypeRefs.Unknown) { 1173 DidReplaceTypeRefs = true; 1174 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1175 Ref.second->replaceAllUsesWith(CT); 1176 else 1177 Ref.second->replaceAllUsesWith(Ref.first); 1178 } 1179 OldTypeRefs.Unknown.clear(); 1180 1181 // Make sure all the upgraded types are resolved. 1182 if (DidReplaceTypeRefs) { 1183 AnyFwdRefs = true; 1184 MinFwdRef = 0; 1185 MaxFwdRef = MetadataPtrs.size() - 1; 1186 } 1187 1188 if (!AnyFwdRefs) 1189 // Nothing to do. 1190 return; 1191 1192 // Resolve any cycles. 1193 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1194 auto &MD = MetadataPtrs[I]; 1195 auto *N = dyn_cast_or_null<MDNode>(MD); 1196 if (!N) 1197 continue; 1198 1199 assert(!N->isTemporary() && "Unexpected forward reference"); 1200 N->resolveCycles(); 1201 } 1202 1203 // Make sure we return early again until there's another forward ref. 1204 AnyFwdRefs = false; 1205 } 1206 1207 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1208 DICompositeType &CT) { 1209 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1210 if (CT.isForwardDecl()) 1211 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1212 else 1213 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1214 } 1215 1216 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1217 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1218 if (LLVM_LIKELY(!UUID)) 1219 return MaybeUUID; 1220 1221 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1222 return CT; 1223 1224 auto &Ref = OldTypeRefs.Unknown[UUID]; 1225 if (!Ref) 1226 Ref = MDNode::getTemporary(Context, None); 1227 return Ref.get(); 1228 } 1229 1230 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1231 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1232 if (!Tuple || Tuple->isDistinct()) 1233 return MaybeTuple; 1234 1235 // Look through the array immediately if possible. 1236 if (!Tuple->isTemporary()) 1237 return resolveTypeRefArray(Tuple); 1238 1239 // Create and return a placeholder to use for now. Eventually 1240 // resolveTypeRefArrays() will be resolve this forward reference. 1241 OldTypeRefs.Arrays.emplace_back(); 1242 OldTypeRefs.Arrays.back().first.reset(Tuple); 1243 OldTypeRefs.Arrays.back().second = MDTuple::getTemporary(Context, None); 1244 return OldTypeRefs.Arrays.back().second.get(); 1245 } 1246 1247 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1248 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1249 if (!Tuple || Tuple->isDistinct()) 1250 return MaybeTuple; 1251 1252 // Look through the DITypeRefArray, upgrading each DITypeRef. 1253 SmallVector<Metadata *, 32> Ops; 1254 Ops.reserve(Tuple->getNumOperands()); 1255 for (Metadata *MD : Tuple->operands()) 1256 Ops.push_back(upgradeTypeRef(MD)); 1257 1258 return MDTuple::get(Context, Ops); 1259 } 1260 1261 Type *BitcodeReader::getTypeByID(unsigned ID) { 1262 // The type table size is always specified correctly. 1263 if (ID >= TypeList.size()) 1264 return nullptr; 1265 1266 if (Type *Ty = TypeList[ID]) 1267 return Ty; 1268 1269 // If we have a forward reference, the only possible case is when it is to a 1270 // named struct. Just create a placeholder for now. 1271 return TypeList[ID] = createIdentifiedStructType(Context); 1272 } 1273 1274 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1275 StringRef Name) { 1276 auto *Ret = StructType::create(Context, Name); 1277 IdentifiedStructTypes.push_back(Ret); 1278 return Ret; 1279 } 1280 1281 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1282 auto *Ret = StructType::create(Context); 1283 IdentifiedStructTypes.push_back(Ret); 1284 return Ret; 1285 } 1286 1287 //===----------------------------------------------------------------------===// 1288 // Functions for parsing blocks from the bitcode file 1289 //===----------------------------------------------------------------------===// 1290 1291 1292 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1293 /// been decoded from the given integer. This function must stay in sync with 1294 /// 'encodeLLVMAttributesForBitcode'. 1295 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1296 uint64_t EncodedAttrs) { 1297 // FIXME: Remove in 4.0. 1298 1299 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1300 // the bits above 31 down by 11 bits. 1301 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1302 assert((!Alignment || isPowerOf2_32(Alignment)) && 1303 "Alignment must be a power of two."); 1304 1305 if (Alignment) 1306 B.addAlignmentAttr(Alignment); 1307 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1308 (EncodedAttrs & 0xffff)); 1309 } 1310 1311 std::error_code BitcodeReader::parseAttributeBlock() { 1312 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1313 return error("Invalid record"); 1314 1315 if (!MAttributes.empty()) 1316 return error("Invalid multiple blocks"); 1317 1318 SmallVector<uint64_t, 64> Record; 1319 1320 SmallVector<AttributeSet, 8> Attrs; 1321 1322 // Read all the records. 1323 while (1) { 1324 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1325 1326 switch (Entry.Kind) { 1327 case BitstreamEntry::SubBlock: // Handled for us already. 1328 case BitstreamEntry::Error: 1329 return error("Malformed block"); 1330 case BitstreamEntry::EndBlock: 1331 return std::error_code(); 1332 case BitstreamEntry::Record: 1333 // The interesting case. 1334 break; 1335 } 1336 1337 // Read a record. 1338 Record.clear(); 1339 switch (Stream.readRecord(Entry.ID, Record)) { 1340 default: // Default behavior: ignore. 1341 break; 1342 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1343 // FIXME: Remove in 4.0. 1344 if (Record.size() & 1) 1345 return error("Invalid record"); 1346 1347 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1348 AttrBuilder B; 1349 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1350 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1351 } 1352 1353 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1354 Attrs.clear(); 1355 break; 1356 } 1357 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1358 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1359 Attrs.push_back(MAttributeGroups[Record[i]]); 1360 1361 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1362 Attrs.clear(); 1363 break; 1364 } 1365 } 1366 } 1367 } 1368 1369 // Returns Attribute::None on unrecognized codes. 1370 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1371 switch (Code) { 1372 default: 1373 return Attribute::None; 1374 case bitc::ATTR_KIND_ALIGNMENT: 1375 return Attribute::Alignment; 1376 case bitc::ATTR_KIND_ALWAYS_INLINE: 1377 return Attribute::AlwaysInline; 1378 case bitc::ATTR_KIND_ARGMEMONLY: 1379 return Attribute::ArgMemOnly; 1380 case bitc::ATTR_KIND_BUILTIN: 1381 return Attribute::Builtin; 1382 case bitc::ATTR_KIND_BY_VAL: 1383 return Attribute::ByVal; 1384 case bitc::ATTR_KIND_IN_ALLOCA: 1385 return Attribute::InAlloca; 1386 case bitc::ATTR_KIND_COLD: 1387 return Attribute::Cold; 1388 case bitc::ATTR_KIND_CONVERGENT: 1389 return Attribute::Convergent; 1390 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1391 return Attribute::InaccessibleMemOnly; 1392 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1393 return Attribute::InaccessibleMemOrArgMemOnly; 1394 case bitc::ATTR_KIND_INLINE_HINT: 1395 return Attribute::InlineHint; 1396 case bitc::ATTR_KIND_IN_REG: 1397 return Attribute::InReg; 1398 case bitc::ATTR_KIND_JUMP_TABLE: 1399 return Attribute::JumpTable; 1400 case bitc::ATTR_KIND_MIN_SIZE: 1401 return Attribute::MinSize; 1402 case bitc::ATTR_KIND_NAKED: 1403 return Attribute::Naked; 1404 case bitc::ATTR_KIND_NEST: 1405 return Attribute::Nest; 1406 case bitc::ATTR_KIND_NO_ALIAS: 1407 return Attribute::NoAlias; 1408 case bitc::ATTR_KIND_NO_BUILTIN: 1409 return Attribute::NoBuiltin; 1410 case bitc::ATTR_KIND_NO_CAPTURE: 1411 return Attribute::NoCapture; 1412 case bitc::ATTR_KIND_NO_DUPLICATE: 1413 return Attribute::NoDuplicate; 1414 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1415 return Attribute::NoImplicitFloat; 1416 case bitc::ATTR_KIND_NO_INLINE: 1417 return Attribute::NoInline; 1418 case bitc::ATTR_KIND_NO_RECURSE: 1419 return Attribute::NoRecurse; 1420 case bitc::ATTR_KIND_NON_LAZY_BIND: 1421 return Attribute::NonLazyBind; 1422 case bitc::ATTR_KIND_NON_NULL: 1423 return Attribute::NonNull; 1424 case bitc::ATTR_KIND_DEREFERENCEABLE: 1425 return Attribute::Dereferenceable; 1426 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1427 return Attribute::DereferenceableOrNull; 1428 case bitc::ATTR_KIND_ALLOC_SIZE: 1429 return Attribute::AllocSize; 1430 case bitc::ATTR_KIND_NO_RED_ZONE: 1431 return Attribute::NoRedZone; 1432 case bitc::ATTR_KIND_NO_RETURN: 1433 return Attribute::NoReturn; 1434 case bitc::ATTR_KIND_NO_UNWIND: 1435 return Attribute::NoUnwind; 1436 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1437 return Attribute::OptimizeForSize; 1438 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1439 return Attribute::OptimizeNone; 1440 case bitc::ATTR_KIND_READ_NONE: 1441 return Attribute::ReadNone; 1442 case bitc::ATTR_KIND_READ_ONLY: 1443 return Attribute::ReadOnly; 1444 case bitc::ATTR_KIND_RETURNED: 1445 return Attribute::Returned; 1446 case bitc::ATTR_KIND_RETURNS_TWICE: 1447 return Attribute::ReturnsTwice; 1448 case bitc::ATTR_KIND_S_EXT: 1449 return Attribute::SExt; 1450 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1451 return Attribute::StackAlignment; 1452 case bitc::ATTR_KIND_STACK_PROTECT: 1453 return Attribute::StackProtect; 1454 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1455 return Attribute::StackProtectReq; 1456 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1457 return Attribute::StackProtectStrong; 1458 case bitc::ATTR_KIND_SAFESTACK: 1459 return Attribute::SafeStack; 1460 case bitc::ATTR_KIND_STRUCT_RET: 1461 return Attribute::StructRet; 1462 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1463 return Attribute::SanitizeAddress; 1464 case bitc::ATTR_KIND_SANITIZE_THREAD: 1465 return Attribute::SanitizeThread; 1466 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1467 return Attribute::SanitizeMemory; 1468 case bitc::ATTR_KIND_SWIFT_ERROR: 1469 return Attribute::SwiftError; 1470 case bitc::ATTR_KIND_SWIFT_SELF: 1471 return Attribute::SwiftSelf; 1472 case bitc::ATTR_KIND_UW_TABLE: 1473 return Attribute::UWTable; 1474 case bitc::ATTR_KIND_Z_EXT: 1475 return Attribute::ZExt; 1476 } 1477 } 1478 1479 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1480 unsigned &Alignment) { 1481 // Note: Alignment in bitcode files is incremented by 1, so that zero 1482 // can be used for default alignment. 1483 if (Exponent > Value::MaxAlignmentExponent + 1) 1484 return error("Invalid alignment value"); 1485 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1486 return std::error_code(); 1487 } 1488 1489 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1490 Attribute::AttrKind *Kind) { 1491 *Kind = getAttrFromCode(Code); 1492 if (*Kind == Attribute::None) 1493 return error(BitcodeError::CorruptedBitcode, 1494 "Unknown attribute kind (" + Twine(Code) + ")"); 1495 return std::error_code(); 1496 } 1497 1498 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1499 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1500 return error("Invalid record"); 1501 1502 if (!MAttributeGroups.empty()) 1503 return error("Invalid multiple blocks"); 1504 1505 SmallVector<uint64_t, 64> Record; 1506 1507 // Read all the records. 1508 while (1) { 1509 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1510 1511 switch (Entry.Kind) { 1512 case BitstreamEntry::SubBlock: // Handled for us already. 1513 case BitstreamEntry::Error: 1514 return error("Malformed block"); 1515 case BitstreamEntry::EndBlock: 1516 return std::error_code(); 1517 case BitstreamEntry::Record: 1518 // The interesting case. 1519 break; 1520 } 1521 1522 // Read a record. 1523 Record.clear(); 1524 switch (Stream.readRecord(Entry.ID, Record)) { 1525 default: // Default behavior: ignore. 1526 break; 1527 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1528 if (Record.size() < 3) 1529 return error("Invalid record"); 1530 1531 uint64_t GrpID = Record[0]; 1532 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1533 1534 AttrBuilder B; 1535 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1536 if (Record[i] == 0) { // Enum attribute 1537 Attribute::AttrKind Kind; 1538 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1539 return EC; 1540 1541 B.addAttribute(Kind); 1542 } else if (Record[i] == 1) { // Integer attribute 1543 Attribute::AttrKind Kind; 1544 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1545 return EC; 1546 if (Kind == Attribute::Alignment) 1547 B.addAlignmentAttr(Record[++i]); 1548 else if (Kind == Attribute::StackAlignment) 1549 B.addStackAlignmentAttr(Record[++i]); 1550 else if (Kind == Attribute::Dereferenceable) 1551 B.addDereferenceableAttr(Record[++i]); 1552 else if (Kind == Attribute::DereferenceableOrNull) 1553 B.addDereferenceableOrNullAttr(Record[++i]); 1554 else if (Kind == Attribute::AllocSize) 1555 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1556 } else { // String attribute 1557 assert((Record[i] == 3 || Record[i] == 4) && 1558 "Invalid attribute group entry"); 1559 bool HasValue = (Record[i++] == 4); 1560 SmallString<64> KindStr; 1561 SmallString<64> ValStr; 1562 1563 while (Record[i] != 0 && i != e) 1564 KindStr += Record[i++]; 1565 assert(Record[i] == 0 && "Kind string not null terminated"); 1566 1567 if (HasValue) { 1568 // Has a value associated with it. 1569 ++i; // Skip the '0' that terminates the "kind" string. 1570 while (Record[i] != 0 && i != e) 1571 ValStr += Record[i++]; 1572 assert(Record[i] == 0 && "Value string not null terminated"); 1573 } 1574 1575 B.addAttribute(KindStr.str(), ValStr.str()); 1576 } 1577 } 1578 1579 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1580 break; 1581 } 1582 } 1583 } 1584 } 1585 1586 std::error_code BitcodeReader::parseTypeTable() { 1587 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1588 return error("Invalid record"); 1589 1590 return parseTypeTableBody(); 1591 } 1592 1593 std::error_code BitcodeReader::parseTypeTableBody() { 1594 if (!TypeList.empty()) 1595 return error("Invalid multiple blocks"); 1596 1597 SmallVector<uint64_t, 64> Record; 1598 unsigned NumRecords = 0; 1599 1600 SmallString<64> TypeName; 1601 1602 // Read all the records for this type table. 1603 while (1) { 1604 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1605 1606 switch (Entry.Kind) { 1607 case BitstreamEntry::SubBlock: // Handled for us already. 1608 case BitstreamEntry::Error: 1609 return error("Malformed block"); 1610 case BitstreamEntry::EndBlock: 1611 if (NumRecords != TypeList.size()) 1612 return error("Malformed block"); 1613 return std::error_code(); 1614 case BitstreamEntry::Record: 1615 // The interesting case. 1616 break; 1617 } 1618 1619 // Read a record. 1620 Record.clear(); 1621 Type *ResultTy = nullptr; 1622 switch (Stream.readRecord(Entry.ID, Record)) { 1623 default: 1624 return error("Invalid value"); 1625 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1626 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1627 // type list. This allows us to reserve space. 1628 if (Record.size() < 1) 1629 return error("Invalid record"); 1630 TypeList.resize(Record[0]); 1631 continue; 1632 case bitc::TYPE_CODE_VOID: // VOID 1633 ResultTy = Type::getVoidTy(Context); 1634 break; 1635 case bitc::TYPE_CODE_HALF: // HALF 1636 ResultTy = Type::getHalfTy(Context); 1637 break; 1638 case bitc::TYPE_CODE_FLOAT: // FLOAT 1639 ResultTy = Type::getFloatTy(Context); 1640 break; 1641 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1642 ResultTy = Type::getDoubleTy(Context); 1643 break; 1644 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1645 ResultTy = Type::getX86_FP80Ty(Context); 1646 break; 1647 case bitc::TYPE_CODE_FP128: // FP128 1648 ResultTy = Type::getFP128Ty(Context); 1649 break; 1650 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1651 ResultTy = Type::getPPC_FP128Ty(Context); 1652 break; 1653 case bitc::TYPE_CODE_LABEL: // LABEL 1654 ResultTy = Type::getLabelTy(Context); 1655 break; 1656 case bitc::TYPE_CODE_METADATA: // METADATA 1657 ResultTy = Type::getMetadataTy(Context); 1658 break; 1659 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1660 ResultTy = Type::getX86_MMXTy(Context); 1661 break; 1662 case bitc::TYPE_CODE_TOKEN: // TOKEN 1663 ResultTy = Type::getTokenTy(Context); 1664 break; 1665 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1666 if (Record.size() < 1) 1667 return error("Invalid record"); 1668 1669 uint64_t NumBits = Record[0]; 1670 if (NumBits < IntegerType::MIN_INT_BITS || 1671 NumBits > IntegerType::MAX_INT_BITS) 1672 return error("Bitwidth for integer type out of range"); 1673 ResultTy = IntegerType::get(Context, NumBits); 1674 break; 1675 } 1676 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1677 // [pointee type, address space] 1678 if (Record.size() < 1) 1679 return error("Invalid record"); 1680 unsigned AddressSpace = 0; 1681 if (Record.size() == 2) 1682 AddressSpace = Record[1]; 1683 ResultTy = getTypeByID(Record[0]); 1684 if (!ResultTy || 1685 !PointerType::isValidElementType(ResultTy)) 1686 return error("Invalid type"); 1687 ResultTy = PointerType::get(ResultTy, AddressSpace); 1688 break; 1689 } 1690 case bitc::TYPE_CODE_FUNCTION_OLD: { 1691 // FIXME: attrid is dead, remove it in LLVM 4.0 1692 // FUNCTION: [vararg, attrid, retty, paramty x N] 1693 if (Record.size() < 3) 1694 return error("Invalid record"); 1695 SmallVector<Type*, 8> ArgTys; 1696 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1697 if (Type *T = getTypeByID(Record[i])) 1698 ArgTys.push_back(T); 1699 else 1700 break; 1701 } 1702 1703 ResultTy = getTypeByID(Record[2]); 1704 if (!ResultTy || ArgTys.size() < Record.size()-3) 1705 return error("Invalid type"); 1706 1707 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1708 break; 1709 } 1710 case bitc::TYPE_CODE_FUNCTION: { 1711 // FUNCTION: [vararg, retty, paramty x N] 1712 if (Record.size() < 2) 1713 return error("Invalid record"); 1714 SmallVector<Type*, 8> ArgTys; 1715 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1716 if (Type *T = getTypeByID(Record[i])) { 1717 if (!FunctionType::isValidArgumentType(T)) 1718 return error("Invalid function argument type"); 1719 ArgTys.push_back(T); 1720 } 1721 else 1722 break; 1723 } 1724 1725 ResultTy = getTypeByID(Record[1]); 1726 if (!ResultTy || ArgTys.size() < Record.size()-2) 1727 return error("Invalid type"); 1728 1729 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1730 break; 1731 } 1732 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1733 if (Record.size() < 1) 1734 return error("Invalid record"); 1735 SmallVector<Type*, 8> EltTys; 1736 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1737 if (Type *T = getTypeByID(Record[i])) 1738 EltTys.push_back(T); 1739 else 1740 break; 1741 } 1742 if (EltTys.size() != Record.size()-1) 1743 return error("Invalid type"); 1744 ResultTy = StructType::get(Context, EltTys, Record[0]); 1745 break; 1746 } 1747 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1748 if (convertToString(Record, 0, TypeName)) 1749 return error("Invalid record"); 1750 continue; 1751 1752 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1753 if (Record.size() < 1) 1754 return error("Invalid record"); 1755 1756 if (NumRecords >= TypeList.size()) 1757 return error("Invalid TYPE table"); 1758 1759 // Check to see if this was forward referenced, if so fill in the temp. 1760 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1761 if (Res) { 1762 Res->setName(TypeName); 1763 TypeList[NumRecords] = nullptr; 1764 } else // Otherwise, create a new struct. 1765 Res = createIdentifiedStructType(Context, TypeName); 1766 TypeName.clear(); 1767 1768 SmallVector<Type*, 8> EltTys; 1769 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1770 if (Type *T = getTypeByID(Record[i])) 1771 EltTys.push_back(T); 1772 else 1773 break; 1774 } 1775 if (EltTys.size() != Record.size()-1) 1776 return error("Invalid record"); 1777 Res->setBody(EltTys, Record[0]); 1778 ResultTy = Res; 1779 break; 1780 } 1781 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1782 if (Record.size() != 1) 1783 return error("Invalid record"); 1784 1785 if (NumRecords >= TypeList.size()) 1786 return error("Invalid TYPE table"); 1787 1788 // Check to see if this was forward referenced, if so fill in the temp. 1789 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1790 if (Res) { 1791 Res->setName(TypeName); 1792 TypeList[NumRecords] = nullptr; 1793 } else // Otherwise, create a new struct with no body. 1794 Res = createIdentifiedStructType(Context, TypeName); 1795 TypeName.clear(); 1796 ResultTy = Res; 1797 break; 1798 } 1799 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1800 if (Record.size() < 2) 1801 return error("Invalid record"); 1802 ResultTy = getTypeByID(Record[1]); 1803 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1804 return error("Invalid type"); 1805 ResultTy = ArrayType::get(ResultTy, Record[0]); 1806 break; 1807 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1808 if (Record.size() < 2) 1809 return error("Invalid record"); 1810 if (Record[0] == 0) 1811 return error("Invalid vector length"); 1812 ResultTy = getTypeByID(Record[1]); 1813 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1814 return error("Invalid type"); 1815 ResultTy = VectorType::get(ResultTy, Record[0]); 1816 break; 1817 } 1818 1819 if (NumRecords >= TypeList.size()) 1820 return error("Invalid TYPE table"); 1821 if (TypeList[NumRecords]) 1822 return error( 1823 "Invalid TYPE table: Only named structs can be forward referenced"); 1824 assert(ResultTy && "Didn't read a type?"); 1825 TypeList[NumRecords++] = ResultTy; 1826 } 1827 } 1828 1829 std::error_code BitcodeReader::parseOperandBundleTags() { 1830 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1831 return error("Invalid record"); 1832 1833 if (!BundleTags.empty()) 1834 return error("Invalid multiple blocks"); 1835 1836 SmallVector<uint64_t, 64> Record; 1837 1838 while (1) { 1839 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1840 1841 switch (Entry.Kind) { 1842 case BitstreamEntry::SubBlock: // Handled for us already. 1843 case BitstreamEntry::Error: 1844 return error("Malformed block"); 1845 case BitstreamEntry::EndBlock: 1846 return std::error_code(); 1847 case BitstreamEntry::Record: 1848 // The interesting case. 1849 break; 1850 } 1851 1852 // Tags are implicitly mapped to integers by their order. 1853 1854 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1855 return error("Invalid record"); 1856 1857 // OPERAND_BUNDLE_TAG: [strchr x N] 1858 BundleTags.emplace_back(); 1859 if (convertToString(Record, 0, BundleTags.back())) 1860 return error("Invalid record"); 1861 Record.clear(); 1862 } 1863 } 1864 1865 /// Associate a value with its name from the given index in the provided record. 1866 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1867 unsigned NameIndex, Triple &TT) { 1868 SmallString<128> ValueName; 1869 if (convertToString(Record, NameIndex, ValueName)) 1870 return error("Invalid record"); 1871 unsigned ValueID = Record[0]; 1872 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1873 return error("Invalid record"); 1874 Value *V = ValueList[ValueID]; 1875 1876 StringRef NameStr(ValueName.data(), ValueName.size()); 1877 if (NameStr.find_first_of(0) != StringRef::npos) 1878 return error("Invalid value name"); 1879 V->setName(NameStr); 1880 auto *GO = dyn_cast<GlobalObject>(V); 1881 if (GO) { 1882 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1883 if (TT.isOSBinFormatMachO()) 1884 GO->setComdat(nullptr); 1885 else 1886 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1887 } 1888 } 1889 return V; 1890 } 1891 1892 /// Helper to note and return the current location, and jump to the given 1893 /// offset. 1894 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1895 BitstreamCursor &Stream) { 1896 // Save the current parsing location so we can jump back at the end 1897 // of the VST read. 1898 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1899 Stream.JumpToBit(Offset * 32); 1900 #ifndef NDEBUG 1901 // Do some checking if we are in debug mode. 1902 BitstreamEntry Entry = Stream.advance(); 1903 assert(Entry.Kind == BitstreamEntry::SubBlock); 1904 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1905 #else 1906 // In NDEBUG mode ignore the output so we don't get an unused variable 1907 // warning. 1908 Stream.advance(); 1909 #endif 1910 return CurrentBit; 1911 } 1912 1913 /// Parse the value symbol table at either the current parsing location or 1914 /// at the given bit offset if provided. 1915 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1916 uint64_t CurrentBit; 1917 // Pass in the Offset to distinguish between calling for the module-level 1918 // VST (where we want to jump to the VST offset) and the function-level 1919 // VST (where we don't). 1920 if (Offset > 0) 1921 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1922 1923 // Compute the delta between the bitcode indices in the VST (the word offset 1924 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1925 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1926 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1927 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1928 // just before entering the VST subblock because: 1) the EnterSubBlock 1929 // changes the AbbrevID width; 2) the VST block is nested within the same 1930 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1931 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1932 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1933 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1934 unsigned FuncBitcodeOffsetDelta = 1935 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1936 1937 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1938 return error("Invalid record"); 1939 1940 SmallVector<uint64_t, 64> Record; 1941 1942 Triple TT(TheModule->getTargetTriple()); 1943 1944 // Read all the records for this value table. 1945 SmallString<128> ValueName; 1946 while (1) { 1947 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1948 1949 switch (Entry.Kind) { 1950 case BitstreamEntry::SubBlock: // Handled for us already. 1951 case BitstreamEntry::Error: 1952 return error("Malformed block"); 1953 case BitstreamEntry::EndBlock: 1954 if (Offset > 0) 1955 Stream.JumpToBit(CurrentBit); 1956 return std::error_code(); 1957 case BitstreamEntry::Record: 1958 // The interesting case. 1959 break; 1960 } 1961 1962 // Read a record. 1963 Record.clear(); 1964 switch (Stream.readRecord(Entry.ID, Record)) { 1965 default: // Default behavior: unknown type. 1966 break; 1967 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1968 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1969 if (std::error_code EC = ValOrErr.getError()) 1970 return EC; 1971 ValOrErr.get(); 1972 break; 1973 } 1974 case bitc::VST_CODE_FNENTRY: { 1975 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1976 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1977 if (std::error_code EC = ValOrErr.getError()) 1978 return EC; 1979 Value *V = ValOrErr.get(); 1980 1981 auto *GO = dyn_cast<GlobalObject>(V); 1982 if (!GO) { 1983 // If this is an alias, need to get the actual Function object 1984 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1985 auto *GA = dyn_cast<GlobalAlias>(V); 1986 if (GA) 1987 GO = GA->getBaseObject(); 1988 assert(GO); 1989 } 1990 1991 uint64_t FuncWordOffset = Record[1]; 1992 Function *F = dyn_cast<Function>(GO); 1993 assert(F); 1994 uint64_t FuncBitOffset = FuncWordOffset * 32; 1995 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1996 // Set the LastFunctionBlockBit to point to the last function block. 1997 // Later when parsing is resumed after function materialization, 1998 // we can simply skip that last function block. 1999 if (FuncBitOffset > LastFunctionBlockBit) 2000 LastFunctionBlockBit = FuncBitOffset; 2001 break; 2002 } 2003 case bitc::VST_CODE_BBENTRY: { 2004 if (convertToString(Record, 1, ValueName)) 2005 return error("Invalid record"); 2006 BasicBlock *BB = getBasicBlock(Record[0]); 2007 if (!BB) 2008 return error("Invalid record"); 2009 2010 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2011 ValueName.clear(); 2012 break; 2013 } 2014 } 2015 } 2016 } 2017 2018 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2019 std::error_code 2020 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 2021 if (Record.size() < 2) 2022 return error("Invalid record"); 2023 2024 unsigned Kind = Record[0]; 2025 SmallString<8> Name(Record.begin() + 1, Record.end()); 2026 2027 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2028 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2029 return error("Conflicting METADATA_KIND records"); 2030 return std::error_code(); 2031 } 2032 2033 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2034 2035 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2036 StringRef Blob, 2037 unsigned &NextMetadataNo) { 2038 // All the MDStrings in the block are emitted together in a single 2039 // record. The strings are concatenated and stored in a blob along with 2040 // their sizes. 2041 if (Record.size() != 2) 2042 return error("Invalid record: metadata strings layout"); 2043 2044 unsigned NumStrings = Record[0]; 2045 unsigned StringsOffset = Record[1]; 2046 if (!NumStrings) 2047 return error("Invalid record: metadata strings with no strings"); 2048 if (StringsOffset > Blob.size()) 2049 return error("Invalid record: metadata strings corrupt offset"); 2050 2051 StringRef Lengths = Blob.slice(0, StringsOffset); 2052 SimpleBitstreamCursor R(*StreamFile); 2053 R.jumpToPointer(Lengths.begin()); 2054 2055 // Ensure that Blob doesn't get invalidated, even if this is reading from 2056 // a StreamingMemoryObject with corrupt data. 2057 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 2058 2059 StringRef Strings = Blob.drop_front(StringsOffset); 2060 do { 2061 if (R.AtEndOfStream()) 2062 return error("Invalid record: metadata strings bad length"); 2063 2064 unsigned Size = R.ReadVBR(6); 2065 if (Strings.size() < Size) 2066 return error("Invalid record: metadata strings truncated chars"); 2067 2068 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2069 NextMetadataNo++); 2070 Strings = Strings.drop_front(Size); 2071 } while (--NumStrings); 2072 2073 return std::error_code(); 2074 } 2075 2076 namespace { 2077 class PlaceholderQueue { 2078 // Placeholders would thrash around when moved, so store in a std::deque 2079 // instead of some sort of vector. 2080 std::deque<DistinctMDOperandPlaceholder> PHs; 2081 2082 public: 2083 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2084 void flush(BitcodeReaderMetadataList &MetadataList); 2085 }; 2086 } // end namespace 2087 2088 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2089 PHs.emplace_back(ID); 2090 return PHs.back(); 2091 } 2092 2093 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2094 while (!PHs.empty()) { 2095 PHs.front().replaceUseWith( 2096 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2097 PHs.pop_front(); 2098 } 2099 } 2100 2101 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2102 /// module level metadata. 2103 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 2104 assert((ModuleLevel || DeferredMetadataInfo.empty()) && 2105 "Must read all module-level metadata before function-level"); 2106 2107 IsMetadataMaterialized = true; 2108 unsigned NextMetadataNo = MetadataList.size(); 2109 2110 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2111 return error("Invalid metadata: fwd refs into function blocks"); 2112 2113 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2114 return error("Invalid record"); 2115 2116 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2117 SmallVector<uint64_t, 64> Record; 2118 2119 PlaceholderQueue Placeholders; 2120 bool IsDistinct; 2121 auto getMD = [&](unsigned ID) -> Metadata * { 2122 if (!IsDistinct) 2123 return MetadataList.getMetadataFwdRef(ID); 2124 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2125 return MD; 2126 return &Placeholders.getPlaceholderOp(ID); 2127 }; 2128 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2129 if (ID) 2130 return getMD(ID - 1); 2131 return nullptr; 2132 }; 2133 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2134 if (ID) 2135 return MetadataList.getMetadataFwdRef(ID - 1); 2136 return nullptr; 2137 }; 2138 auto getMDString = [&](unsigned ID) -> MDString *{ 2139 // This requires that the ID is not really a forward reference. In 2140 // particular, the MDString must already have been resolved. 2141 return cast_or_null<MDString>(getMDOrNull(ID)); 2142 }; 2143 2144 // Support for old type refs. 2145 auto getDITypeRefOrNull = [&](unsigned ID) { 2146 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2147 }; 2148 2149 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2150 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2151 2152 // Read all the records. 2153 while (1) { 2154 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2155 2156 switch (Entry.Kind) { 2157 case BitstreamEntry::SubBlock: // Handled for us already. 2158 case BitstreamEntry::Error: 2159 return error("Malformed block"); 2160 case BitstreamEntry::EndBlock: 2161 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2162 for (auto CU_SP : CUSubprograms) 2163 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2164 for (auto &Op : SPs->operands()) 2165 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2166 SP->replaceOperandWith(7, CU_SP.first); 2167 2168 MetadataList.tryToResolveCycles(); 2169 Placeholders.flush(MetadataList); 2170 return std::error_code(); 2171 case BitstreamEntry::Record: 2172 // The interesting case. 2173 break; 2174 } 2175 2176 // Read a record. 2177 Record.clear(); 2178 StringRef Blob; 2179 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2180 IsDistinct = false; 2181 switch (Code) { 2182 default: // Default behavior: ignore. 2183 break; 2184 case bitc::METADATA_NAME: { 2185 // Read name of the named metadata. 2186 SmallString<8> Name(Record.begin(), Record.end()); 2187 Record.clear(); 2188 Code = Stream.ReadCode(); 2189 2190 unsigned NextBitCode = Stream.readRecord(Code, Record); 2191 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2192 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2193 2194 // Read named metadata elements. 2195 unsigned Size = Record.size(); 2196 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2197 for (unsigned i = 0; i != Size; ++i) { 2198 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2199 if (!MD) 2200 return error("Invalid record"); 2201 NMD->addOperand(MD); 2202 } 2203 break; 2204 } 2205 case bitc::METADATA_OLD_FN_NODE: { 2206 // FIXME: Remove in 4.0. 2207 // This is a LocalAsMetadata record, the only type of function-local 2208 // metadata. 2209 if (Record.size() % 2 == 1) 2210 return error("Invalid record"); 2211 2212 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2213 // to be legal, but there's no upgrade path. 2214 auto dropRecord = [&] { 2215 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2216 }; 2217 if (Record.size() != 2) { 2218 dropRecord(); 2219 break; 2220 } 2221 2222 Type *Ty = getTypeByID(Record[0]); 2223 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2224 dropRecord(); 2225 break; 2226 } 2227 2228 MetadataList.assignValue( 2229 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2230 NextMetadataNo++); 2231 break; 2232 } 2233 case bitc::METADATA_OLD_NODE: { 2234 // FIXME: Remove in 4.0. 2235 if (Record.size() % 2 == 1) 2236 return error("Invalid record"); 2237 2238 unsigned Size = Record.size(); 2239 SmallVector<Metadata *, 8> Elts; 2240 for (unsigned i = 0; i != Size; i += 2) { 2241 Type *Ty = getTypeByID(Record[i]); 2242 if (!Ty) 2243 return error("Invalid record"); 2244 if (Ty->isMetadataTy()) 2245 Elts.push_back(getMD(Record[i + 1])); 2246 else if (!Ty->isVoidTy()) { 2247 auto *MD = 2248 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2249 assert(isa<ConstantAsMetadata>(MD) && 2250 "Expected non-function-local metadata"); 2251 Elts.push_back(MD); 2252 } else 2253 Elts.push_back(nullptr); 2254 } 2255 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2256 break; 2257 } 2258 case bitc::METADATA_VALUE: { 2259 if (Record.size() != 2) 2260 return error("Invalid record"); 2261 2262 Type *Ty = getTypeByID(Record[0]); 2263 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2264 return error("Invalid record"); 2265 2266 MetadataList.assignValue( 2267 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2268 NextMetadataNo++); 2269 break; 2270 } 2271 case bitc::METADATA_DISTINCT_NODE: 2272 IsDistinct = true; 2273 // fallthrough... 2274 case bitc::METADATA_NODE: { 2275 SmallVector<Metadata *, 8> Elts; 2276 Elts.reserve(Record.size()); 2277 for (unsigned ID : Record) 2278 Elts.push_back(getMDOrNull(ID)); 2279 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2280 : MDNode::get(Context, Elts), 2281 NextMetadataNo++); 2282 break; 2283 } 2284 case bitc::METADATA_LOCATION: { 2285 if (Record.size() != 5) 2286 return error("Invalid record"); 2287 2288 IsDistinct = Record[0]; 2289 unsigned Line = Record[1]; 2290 unsigned Column = Record[2]; 2291 Metadata *Scope = getMD(Record[3]); 2292 Metadata *InlinedAt = getMDOrNull(Record[4]); 2293 MetadataList.assignValue( 2294 GET_OR_DISTINCT(DILocation, 2295 (Context, Line, Column, Scope, InlinedAt)), 2296 NextMetadataNo++); 2297 break; 2298 } 2299 case bitc::METADATA_GENERIC_DEBUG: { 2300 if (Record.size() < 4) 2301 return error("Invalid record"); 2302 2303 IsDistinct = Record[0]; 2304 unsigned Tag = Record[1]; 2305 unsigned Version = Record[2]; 2306 2307 if (Tag >= 1u << 16 || Version != 0) 2308 return error("Invalid record"); 2309 2310 auto *Header = getMDString(Record[3]); 2311 SmallVector<Metadata *, 8> DwarfOps; 2312 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2313 DwarfOps.push_back(getMDOrNull(Record[I])); 2314 MetadataList.assignValue( 2315 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2316 NextMetadataNo++); 2317 break; 2318 } 2319 case bitc::METADATA_SUBRANGE: { 2320 if (Record.size() != 3) 2321 return error("Invalid record"); 2322 2323 IsDistinct = Record[0]; 2324 MetadataList.assignValue( 2325 GET_OR_DISTINCT(DISubrange, 2326 (Context, Record[1], unrotateSign(Record[2]))), 2327 NextMetadataNo++); 2328 break; 2329 } 2330 case bitc::METADATA_ENUMERATOR: { 2331 if (Record.size() != 3) 2332 return error("Invalid record"); 2333 2334 IsDistinct = Record[0]; 2335 MetadataList.assignValue( 2336 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2337 getMDString(Record[2]))), 2338 NextMetadataNo++); 2339 break; 2340 } 2341 case bitc::METADATA_BASIC_TYPE: { 2342 if (Record.size() != 6) 2343 return error("Invalid record"); 2344 2345 IsDistinct = Record[0]; 2346 MetadataList.assignValue( 2347 GET_OR_DISTINCT(DIBasicType, 2348 (Context, Record[1], getMDString(Record[2]), 2349 Record[3], Record[4], Record[5])), 2350 NextMetadataNo++); 2351 break; 2352 } 2353 case bitc::METADATA_DERIVED_TYPE: { 2354 if (Record.size() != 12) 2355 return error("Invalid record"); 2356 2357 IsDistinct = Record[0]; 2358 MetadataList.assignValue( 2359 GET_OR_DISTINCT( 2360 DIDerivedType, 2361 (Context, Record[1], getMDString(Record[2]), 2362 getMDOrNull(Record[3]), Record[4], getDITypeRefOrNull(Record[5]), 2363 getDITypeRefOrNull(Record[6]), Record[7], Record[8], Record[9], 2364 Record[10], getDITypeRefOrNull(Record[11]))), 2365 NextMetadataNo++); 2366 break; 2367 } 2368 case bitc::METADATA_COMPOSITE_TYPE: { 2369 if (Record.size() != 16) 2370 return error("Invalid record"); 2371 2372 // If we have a UUID and this is not a forward declaration, lookup the 2373 // mapping. 2374 IsDistinct = Record[0] & 0x1; 2375 bool IsNotUsedInTypeRef = Record[0] >= 2; 2376 unsigned Tag = Record[1]; 2377 MDString *Name = getMDString(Record[2]); 2378 Metadata *File = getMDOrNull(Record[3]); 2379 unsigned Line = Record[4]; 2380 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2381 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2382 uint64_t SizeInBits = Record[7]; 2383 uint64_t AlignInBits = Record[8]; 2384 uint64_t OffsetInBits = Record[9]; 2385 unsigned Flags = Record[10]; 2386 Metadata *Elements = getMDOrNull(Record[11]); 2387 unsigned RuntimeLang = Record[12]; 2388 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2389 Metadata *TemplateParams = getMDOrNull(Record[14]); 2390 auto *Identifier = getMDString(Record[15]); 2391 DICompositeType *CT = nullptr; 2392 if (Identifier) 2393 CT = DICompositeType::buildODRType( 2394 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2395 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2396 VTableHolder, TemplateParams); 2397 2398 // Create a node if we didn't get a lazy ODR type. 2399 if (!CT) 2400 CT = GET_OR_DISTINCT(DICompositeType, 2401 (Context, Tag, Name, File, Line, Scope, BaseType, 2402 SizeInBits, AlignInBits, OffsetInBits, Flags, 2403 Elements, RuntimeLang, VTableHolder, 2404 TemplateParams, Identifier)); 2405 if (!IsNotUsedInTypeRef && Identifier) 2406 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2407 2408 MetadataList.assignValue(CT, NextMetadataNo++); 2409 break; 2410 } 2411 case bitc::METADATA_SUBROUTINE_TYPE: { 2412 if (Record.size() != 3) 2413 return error("Invalid record"); 2414 2415 IsDistinct = Record[0] & 0x1; 2416 bool IsOldTypeRefArray = Record[0] < 2; 2417 Metadata *Types = getMDOrNull(Record[2]); 2418 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2419 Types = MetadataList.upgradeTypeRefArray(Types); 2420 2421 MetadataList.assignValue( 2422 GET_OR_DISTINCT(DISubroutineType, (Context, Record[1], Types)), 2423 NextMetadataNo++); 2424 break; 2425 } 2426 2427 case bitc::METADATA_MODULE: { 2428 if (Record.size() != 6) 2429 return error("Invalid record"); 2430 2431 IsDistinct = Record[0]; 2432 MetadataList.assignValue( 2433 GET_OR_DISTINCT(DIModule, 2434 (Context, getMDOrNull(Record[1]), 2435 getMDString(Record[2]), getMDString(Record[3]), 2436 getMDString(Record[4]), getMDString(Record[5]))), 2437 NextMetadataNo++); 2438 break; 2439 } 2440 2441 case bitc::METADATA_FILE: { 2442 if (Record.size() != 3) 2443 return error("Invalid record"); 2444 2445 IsDistinct = Record[0]; 2446 MetadataList.assignValue( 2447 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2448 getMDString(Record[2]))), 2449 NextMetadataNo++); 2450 break; 2451 } 2452 case bitc::METADATA_COMPILE_UNIT: { 2453 if (Record.size() < 14 || Record.size() > 16) 2454 return error("Invalid record"); 2455 2456 // Ignore Record[0], which indicates whether this compile unit is 2457 // distinct. It's always distinct. 2458 IsDistinct = true; 2459 auto *CU = DICompileUnit::getDistinct( 2460 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2461 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2462 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2463 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2464 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2465 Record.size() <= 14 ? 0 : Record[14]); 2466 2467 MetadataList.assignValue(CU, NextMetadataNo++); 2468 2469 // Move the Upgrade the list of subprograms. 2470 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2471 CUSubprograms.push_back({CU, SPs}); 2472 break; 2473 } 2474 case bitc::METADATA_SUBPROGRAM: { 2475 if (Record.size() != 18 && Record.size() != 19) 2476 return error("Invalid record"); 2477 2478 IsDistinct = 2479 (Record[0] & 1) || Record[8]; // All definitions should be distinct. 2480 // Version 1 has a Function as Record[15]. 2481 // Version 2 has removed Record[15]. 2482 // Version 3 has the Unit as Record[15]. 2483 bool HasUnit = Record[0] >= 2; 2484 if (HasUnit && Record.size() != 19) 2485 return error("Invalid record"); 2486 Metadata *CUorFn = getMDOrNull(Record[15]); 2487 unsigned Offset = Record.size() == 19 ? 1 : 0; 2488 bool HasFn = Offset && !HasUnit; 2489 DISubprogram *SP = GET_OR_DISTINCT( 2490 DISubprogram, 2491 (Context, getDITypeRefOrNull(Record[1]), getMDString(Record[2]), 2492 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2493 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2494 getDITypeRefOrNull(Record[10]), Record[11], Record[12], Record[13], 2495 Record[14], HasUnit ? CUorFn : nullptr, 2496 getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]), 2497 getMDOrNull(Record[17 + Offset]))); 2498 MetadataList.assignValue(SP, NextMetadataNo++); 2499 2500 // Upgrade sp->function mapping to function->sp mapping. 2501 if (HasFn) { 2502 if (auto *CMD = dyn_cast_or_null<ConstantAsMetadata>(CUorFn)) 2503 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2504 if (F->isMaterializable()) 2505 // Defer until materialized; unmaterialized functions may not have 2506 // metadata. 2507 FunctionsWithSPs[F] = SP; 2508 else if (!F->empty()) 2509 F->setSubprogram(SP); 2510 } 2511 } 2512 break; 2513 } 2514 case bitc::METADATA_LEXICAL_BLOCK: { 2515 if (Record.size() != 5) 2516 return error("Invalid record"); 2517 2518 IsDistinct = Record[0]; 2519 MetadataList.assignValue( 2520 GET_OR_DISTINCT(DILexicalBlock, 2521 (Context, getMDOrNull(Record[1]), 2522 getMDOrNull(Record[2]), Record[3], Record[4])), 2523 NextMetadataNo++); 2524 break; 2525 } 2526 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2527 if (Record.size() != 4) 2528 return error("Invalid record"); 2529 2530 IsDistinct = Record[0]; 2531 MetadataList.assignValue( 2532 GET_OR_DISTINCT(DILexicalBlockFile, 2533 (Context, getMDOrNull(Record[1]), 2534 getMDOrNull(Record[2]), Record[3])), 2535 NextMetadataNo++); 2536 break; 2537 } 2538 case bitc::METADATA_NAMESPACE: { 2539 if (Record.size() != 5) 2540 return error("Invalid record"); 2541 2542 IsDistinct = Record[0]; 2543 MetadataList.assignValue( 2544 GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]), 2545 getMDOrNull(Record[2]), 2546 getMDString(Record[3]), Record[4])), 2547 NextMetadataNo++); 2548 break; 2549 } 2550 case bitc::METADATA_MACRO: { 2551 if (Record.size() != 5) 2552 return error("Invalid record"); 2553 2554 IsDistinct = Record[0]; 2555 MetadataList.assignValue( 2556 GET_OR_DISTINCT(DIMacro, 2557 (Context, Record[1], Record[2], 2558 getMDString(Record[3]), getMDString(Record[4]))), 2559 NextMetadataNo++); 2560 break; 2561 } 2562 case bitc::METADATA_MACRO_FILE: { 2563 if (Record.size() != 5) 2564 return error("Invalid record"); 2565 2566 IsDistinct = Record[0]; 2567 MetadataList.assignValue( 2568 GET_OR_DISTINCT(DIMacroFile, 2569 (Context, Record[1], Record[2], 2570 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2571 NextMetadataNo++); 2572 break; 2573 } 2574 case bitc::METADATA_TEMPLATE_TYPE: { 2575 if (Record.size() != 3) 2576 return error("Invalid record"); 2577 2578 IsDistinct = Record[0]; 2579 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2580 (Context, getMDString(Record[1]), 2581 getDITypeRefOrNull(Record[2]))), 2582 NextMetadataNo++); 2583 break; 2584 } 2585 case bitc::METADATA_TEMPLATE_VALUE: { 2586 if (Record.size() != 5) 2587 return error("Invalid record"); 2588 2589 IsDistinct = Record[0]; 2590 MetadataList.assignValue( 2591 GET_OR_DISTINCT(DITemplateValueParameter, 2592 (Context, Record[1], getMDString(Record[2]), 2593 getDITypeRefOrNull(Record[3]), 2594 getMDOrNull(Record[4]))), 2595 NextMetadataNo++); 2596 break; 2597 } 2598 case bitc::METADATA_GLOBAL_VAR: { 2599 if (Record.size() != 11) 2600 return error("Invalid record"); 2601 2602 IsDistinct = Record[0]; 2603 MetadataList.assignValue( 2604 GET_OR_DISTINCT(DIGlobalVariable, 2605 (Context, getMDOrNull(Record[1]), 2606 getMDString(Record[2]), getMDString(Record[3]), 2607 getMDOrNull(Record[4]), Record[5], 2608 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2609 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2610 NextMetadataNo++); 2611 break; 2612 } 2613 case bitc::METADATA_LOCAL_VAR: { 2614 // 10th field is for the obseleted 'inlinedAt:' field. 2615 if (Record.size() < 8 || Record.size() > 10) 2616 return error("Invalid record"); 2617 2618 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2619 // DW_TAG_arg_variable. 2620 IsDistinct = Record[0]; 2621 bool HasTag = Record.size() > 8; 2622 MetadataList.assignValue( 2623 GET_OR_DISTINCT(DILocalVariable, 2624 (Context, getMDOrNull(Record[1 + HasTag]), 2625 getMDString(Record[2 + HasTag]), 2626 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2627 getDITypeRefOrNull(Record[5 + HasTag]), 2628 Record[6 + HasTag], Record[7 + HasTag])), 2629 NextMetadataNo++); 2630 break; 2631 } 2632 case bitc::METADATA_EXPRESSION: { 2633 if (Record.size() < 1) 2634 return error("Invalid record"); 2635 2636 IsDistinct = Record[0]; 2637 MetadataList.assignValue( 2638 GET_OR_DISTINCT(DIExpression, 2639 (Context, makeArrayRef(Record).slice(1))), 2640 NextMetadataNo++); 2641 break; 2642 } 2643 case bitc::METADATA_OBJC_PROPERTY: { 2644 if (Record.size() != 8) 2645 return error("Invalid record"); 2646 2647 IsDistinct = Record[0]; 2648 MetadataList.assignValue( 2649 GET_OR_DISTINCT(DIObjCProperty, 2650 (Context, getMDString(Record[1]), 2651 getMDOrNull(Record[2]), Record[3], 2652 getMDString(Record[4]), getMDString(Record[5]), 2653 Record[6], getDITypeRefOrNull(Record[7]))), 2654 NextMetadataNo++); 2655 break; 2656 } 2657 case bitc::METADATA_IMPORTED_ENTITY: { 2658 if (Record.size() != 6) 2659 return error("Invalid record"); 2660 2661 IsDistinct = Record[0]; 2662 MetadataList.assignValue( 2663 GET_OR_DISTINCT(DIImportedEntity, 2664 (Context, Record[1], getMDOrNull(Record[2]), 2665 getDITypeRefOrNull(Record[3]), Record[4], 2666 getMDString(Record[5]))), 2667 NextMetadataNo++); 2668 break; 2669 } 2670 case bitc::METADATA_STRING_OLD: { 2671 std::string String(Record.begin(), Record.end()); 2672 2673 // Test for upgrading !llvm.loop. 2674 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2675 2676 Metadata *MD = MDString::get(Context, String); 2677 MetadataList.assignValue(MD, NextMetadataNo++); 2678 break; 2679 } 2680 case bitc::METADATA_STRINGS: 2681 if (std::error_code EC = 2682 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2683 return EC; 2684 break; 2685 case bitc::METADATA_KIND: { 2686 // Support older bitcode files that had METADATA_KIND records in a 2687 // block with METADATA_BLOCK_ID. 2688 if (std::error_code EC = parseMetadataKindRecord(Record)) 2689 return EC; 2690 break; 2691 } 2692 } 2693 } 2694 #undef GET_OR_DISTINCT 2695 } 2696 2697 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2698 std::error_code BitcodeReader::parseMetadataKinds() { 2699 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2700 return error("Invalid record"); 2701 2702 SmallVector<uint64_t, 64> Record; 2703 2704 // Read all the records. 2705 while (1) { 2706 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2707 2708 switch (Entry.Kind) { 2709 case BitstreamEntry::SubBlock: // Handled for us already. 2710 case BitstreamEntry::Error: 2711 return error("Malformed block"); 2712 case BitstreamEntry::EndBlock: 2713 return std::error_code(); 2714 case BitstreamEntry::Record: 2715 // The interesting case. 2716 break; 2717 } 2718 2719 // Read a record. 2720 Record.clear(); 2721 unsigned Code = Stream.readRecord(Entry.ID, Record); 2722 switch (Code) { 2723 default: // Default behavior: ignore. 2724 break; 2725 case bitc::METADATA_KIND: { 2726 if (std::error_code EC = parseMetadataKindRecord(Record)) 2727 return EC; 2728 break; 2729 } 2730 } 2731 } 2732 } 2733 2734 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2735 /// encoding. 2736 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2737 if ((V & 1) == 0) 2738 return V >> 1; 2739 if (V != 1) 2740 return -(V >> 1); 2741 // There is no such thing as -0 with integers. "-0" really means MININT. 2742 return 1ULL << 63; 2743 } 2744 2745 /// Resolve all of the initializers for global values and aliases that we can. 2746 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2747 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2748 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2749 IndirectSymbolInitWorklist; 2750 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2751 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2752 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2753 2754 GlobalInitWorklist.swap(GlobalInits); 2755 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2756 FunctionPrefixWorklist.swap(FunctionPrefixes); 2757 FunctionPrologueWorklist.swap(FunctionPrologues); 2758 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2759 2760 while (!GlobalInitWorklist.empty()) { 2761 unsigned ValID = GlobalInitWorklist.back().second; 2762 if (ValID >= ValueList.size()) { 2763 // Not ready to resolve this yet, it requires something later in the file. 2764 GlobalInits.push_back(GlobalInitWorklist.back()); 2765 } else { 2766 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2767 GlobalInitWorklist.back().first->setInitializer(C); 2768 else 2769 return error("Expected a constant"); 2770 } 2771 GlobalInitWorklist.pop_back(); 2772 } 2773 2774 while (!IndirectSymbolInitWorklist.empty()) { 2775 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2776 if (ValID >= ValueList.size()) { 2777 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2778 } else { 2779 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2780 if (!C) 2781 return error("Expected a constant"); 2782 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2783 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2784 return error("Alias and aliasee types don't match"); 2785 GIS->setIndirectSymbol(C); 2786 } 2787 IndirectSymbolInitWorklist.pop_back(); 2788 } 2789 2790 while (!FunctionPrefixWorklist.empty()) { 2791 unsigned ValID = FunctionPrefixWorklist.back().second; 2792 if (ValID >= ValueList.size()) { 2793 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2794 } else { 2795 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2796 FunctionPrefixWorklist.back().first->setPrefixData(C); 2797 else 2798 return error("Expected a constant"); 2799 } 2800 FunctionPrefixWorklist.pop_back(); 2801 } 2802 2803 while (!FunctionPrologueWorklist.empty()) { 2804 unsigned ValID = FunctionPrologueWorklist.back().second; 2805 if (ValID >= ValueList.size()) { 2806 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2807 } else { 2808 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2809 FunctionPrologueWorklist.back().first->setPrologueData(C); 2810 else 2811 return error("Expected a constant"); 2812 } 2813 FunctionPrologueWorklist.pop_back(); 2814 } 2815 2816 while (!FunctionPersonalityFnWorklist.empty()) { 2817 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2818 if (ValID >= ValueList.size()) { 2819 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2820 } else { 2821 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2822 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2823 else 2824 return error("Expected a constant"); 2825 } 2826 FunctionPersonalityFnWorklist.pop_back(); 2827 } 2828 2829 return std::error_code(); 2830 } 2831 2832 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2833 SmallVector<uint64_t, 8> Words(Vals.size()); 2834 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2835 BitcodeReader::decodeSignRotatedValue); 2836 2837 return APInt(TypeBits, Words); 2838 } 2839 2840 std::error_code BitcodeReader::parseConstants() { 2841 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2842 return error("Invalid record"); 2843 2844 SmallVector<uint64_t, 64> Record; 2845 2846 // Read all the records for this value table. 2847 Type *CurTy = Type::getInt32Ty(Context); 2848 unsigned NextCstNo = ValueList.size(); 2849 while (1) { 2850 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2851 2852 switch (Entry.Kind) { 2853 case BitstreamEntry::SubBlock: // Handled for us already. 2854 case BitstreamEntry::Error: 2855 return error("Malformed block"); 2856 case BitstreamEntry::EndBlock: 2857 if (NextCstNo != ValueList.size()) 2858 return error("Invalid constant reference"); 2859 2860 // Once all the constants have been read, go through and resolve forward 2861 // references. 2862 ValueList.resolveConstantForwardRefs(); 2863 return std::error_code(); 2864 case BitstreamEntry::Record: 2865 // The interesting case. 2866 break; 2867 } 2868 2869 // Read a record. 2870 Record.clear(); 2871 Type *VoidType = Type::getVoidTy(Context); 2872 Value *V = nullptr; 2873 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2874 switch (BitCode) { 2875 default: // Default behavior: unknown constant 2876 case bitc::CST_CODE_UNDEF: // UNDEF 2877 V = UndefValue::get(CurTy); 2878 break; 2879 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2880 if (Record.empty()) 2881 return error("Invalid record"); 2882 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2883 return error("Invalid record"); 2884 if (TypeList[Record[0]] == VoidType) 2885 return error("Invalid constant type"); 2886 CurTy = TypeList[Record[0]]; 2887 continue; // Skip the ValueList manipulation. 2888 case bitc::CST_CODE_NULL: // NULL 2889 V = Constant::getNullValue(CurTy); 2890 break; 2891 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2892 if (!CurTy->isIntegerTy() || Record.empty()) 2893 return error("Invalid record"); 2894 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2895 break; 2896 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2897 if (!CurTy->isIntegerTy() || Record.empty()) 2898 return error("Invalid record"); 2899 2900 APInt VInt = 2901 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2902 V = ConstantInt::get(Context, VInt); 2903 2904 break; 2905 } 2906 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2907 if (Record.empty()) 2908 return error("Invalid record"); 2909 if (CurTy->isHalfTy()) 2910 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2911 APInt(16, (uint16_t)Record[0]))); 2912 else if (CurTy->isFloatTy()) 2913 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2914 APInt(32, (uint32_t)Record[0]))); 2915 else if (CurTy->isDoubleTy()) 2916 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2917 APInt(64, Record[0]))); 2918 else if (CurTy->isX86_FP80Ty()) { 2919 // Bits are not stored the same way as a normal i80 APInt, compensate. 2920 uint64_t Rearrange[2]; 2921 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2922 Rearrange[1] = Record[0] >> 48; 2923 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2924 APInt(80, Rearrange))); 2925 } else if (CurTy->isFP128Ty()) 2926 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2927 APInt(128, Record))); 2928 else if (CurTy->isPPC_FP128Ty()) 2929 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2930 APInt(128, Record))); 2931 else 2932 V = UndefValue::get(CurTy); 2933 break; 2934 } 2935 2936 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2937 if (Record.empty()) 2938 return error("Invalid record"); 2939 2940 unsigned Size = Record.size(); 2941 SmallVector<Constant*, 16> Elts; 2942 2943 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2944 for (unsigned i = 0; i != Size; ++i) 2945 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2946 STy->getElementType(i))); 2947 V = ConstantStruct::get(STy, Elts); 2948 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2949 Type *EltTy = ATy->getElementType(); 2950 for (unsigned i = 0; i != Size; ++i) 2951 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2952 V = ConstantArray::get(ATy, Elts); 2953 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2954 Type *EltTy = VTy->getElementType(); 2955 for (unsigned i = 0; i != Size; ++i) 2956 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2957 V = ConstantVector::get(Elts); 2958 } else { 2959 V = UndefValue::get(CurTy); 2960 } 2961 break; 2962 } 2963 case bitc::CST_CODE_STRING: // STRING: [values] 2964 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2965 if (Record.empty()) 2966 return error("Invalid record"); 2967 2968 SmallString<16> Elts(Record.begin(), Record.end()); 2969 V = ConstantDataArray::getString(Context, Elts, 2970 BitCode == bitc::CST_CODE_CSTRING); 2971 break; 2972 } 2973 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2974 if (Record.empty()) 2975 return error("Invalid record"); 2976 2977 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2978 if (EltTy->isIntegerTy(8)) { 2979 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2980 if (isa<VectorType>(CurTy)) 2981 V = ConstantDataVector::get(Context, Elts); 2982 else 2983 V = ConstantDataArray::get(Context, Elts); 2984 } else if (EltTy->isIntegerTy(16)) { 2985 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2986 if (isa<VectorType>(CurTy)) 2987 V = ConstantDataVector::get(Context, Elts); 2988 else 2989 V = ConstantDataArray::get(Context, Elts); 2990 } else if (EltTy->isIntegerTy(32)) { 2991 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2992 if (isa<VectorType>(CurTy)) 2993 V = ConstantDataVector::get(Context, Elts); 2994 else 2995 V = ConstantDataArray::get(Context, Elts); 2996 } else if (EltTy->isIntegerTy(64)) { 2997 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2998 if (isa<VectorType>(CurTy)) 2999 V = ConstantDataVector::get(Context, Elts); 3000 else 3001 V = ConstantDataArray::get(Context, Elts); 3002 } else if (EltTy->isHalfTy()) { 3003 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3004 if (isa<VectorType>(CurTy)) 3005 V = ConstantDataVector::getFP(Context, Elts); 3006 else 3007 V = ConstantDataArray::getFP(Context, Elts); 3008 } else if (EltTy->isFloatTy()) { 3009 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3010 if (isa<VectorType>(CurTy)) 3011 V = ConstantDataVector::getFP(Context, Elts); 3012 else 3013 V = ConstantDataArray::getFP(Context, Elts); 3014 } else if (EltTy->isDoubleTy()) { 3015 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3016 if (isa<VectorType>(CurTy)) 3017 V = ConstantDataVector::getFP(Context, Elts); 3018 else 3019 V = ConstantDataArray::getFP(Context, Elts); 3020 } else { 3021 return error("Invalid type for value"); 3022 } 3023 break; 3024 } 3025 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3026 if (Record.size() < 3) 3027 return error("Invalid record"); 3028 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3029 if (Opc < 0) { 3030 V = UndefValue::get(CurTy); // Unknown binop. 3031 } else { 3032 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3033 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3034 unsigned Flags = 0; 3035 if (Record.size() >= 4) { 3036 if (Opc == Instruction::Add || 3037 Opc == Instruction::Sub || 3038 Opc == Instruction::Mul || 3039 Opc == Instruction::Shl) { 3040 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3041 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3042 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3043 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3044 } else if (Opc == Instruction::SDiv || 3045 Opc == Instruction::UDiv || 3046 Opc == Instruction::LShr || 3047 Opc == Instruction::AShr) { 3048 if (Record[3] & (1 << bitc::PEO_EXACT)) 3049 Flags |= SDivOperator::IsExact; 3050 } 3051 } 3052 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3053 } 3054 break; 3055 } 3056 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3057 if (Record.size() < 3) 3058 return error("Invalid record"); 3059 int Opc = getDecodedCastOpcode(Record[0]); 3060 if (Opc < 0) { 3061 V = UndefValue::get(CurTy); // Unknown cast. 3062 } else { 3063 Type *OpTy = getTypeByID(Record[1]); 3064 if (!OpTy) 3065 return error("Invalid record"); 3066 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3067 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3068 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3069 } 3070 break; 3071 } 3072 case bitc::CST_CODE_CE_INBOUNDS_GEP: 3073 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 3074 unsigned OpNum = 0; 3075 Type *PointeeType = nullptr; 3076 if (Record.size() % 2) 3077 PointeeType = getTypeByID(Record[OpNum++]); 3078 SmallVector<Constant*, 16> Elts; 3079 while (OpNum != Record.size()) { 3080 Type *ElTy = getTypeByID(Record[OpNum++]); 3081 if (!ElTy) 3082 return error("Invalid record"); 3083 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3084 } 3085 3086 if (PointeeType && 3087 PointeeType != 3088 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 3089 ->getElementType()) 3090 return error("Explicit gep operator type does not match pointee type " 3091 "of pointer operand"); 3092 3093 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3094 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3095 BitCode == 3096 bitc::CST_CODE_CE_INBOUNDS_GEP); 3097 break; 3098 } 3099 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3100 if (Record.size() < 3) 3101 return error("Invalid record"); 3102 3103 Type *SelectorTy = Type::getInt1Ty(Context); 3104 3105 // The selector might be an i1 or an <n x i1> 3106 // Get the type from the ValueList before getting a forward ref. 3107 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3108 if (Value *V = ValueList[Record[0]]) 3109 if (SelectorTy != V->getType()) 3110 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3111 3112 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3113 SelectorTy), 3114 ValueList.getConstantFwdRef(Record[1],CurTy), 3115 ValueList.getConstantFwdRef(Record[2],CurTy)); 3116 break; 3117 } 3118 case bitc::CST_CODE_CE_EXTRACTELT 3119 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3120 if (Record.size() < 3) 3121 return error("Invalid record"); 3122 VectorType *OpTy = 3123 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3124 if (!OpTy) 3125 return error("Invalid record"); 3126 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3127 Constant *Op1 = nullptr; 3128 if (Record.size() == 4) { 3129 Type *IdxTy = getTypeByID(Record[2]); 3130 if (!IdxTy) 3131 return error("Invalid record"); 3132 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3133 } else // TODO: Remove with llvm 4.0 3134 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3135 if (!Op1) 3136 return error("Invalid record"); 3137 V = ConstantExpr::getExtractElement(Op0, Op1); 3138 break; 3139 } 3140 case bitc::CST_CODE_CE_INSERTELT 3141 : { // CE_INSERTELT: [opval, opval, opty, opval] 3142 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3143 if (Record.size() < 3 || !OpTy) 3144 return error("Invalid record"); 3145 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3146 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3147 OpTy->getElementType()); 3148 Constant *Op2 = nullptr; 3149 if (Record.size() == 4) { 3150 Type *IdxTy = getTypeByID(Record[2]); 3151 if (!IdxTy) 3152 return error("Invalid record"); 3153 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3154 } else // TODO: Remove with llvm 4.0 3155 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3156 if (!Op2) 3157 return error("Invalid record"); 3158 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3159 break; 3160 } 3161 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3162 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3163 if (Record.size() < 3 || !OpTy) 3164 return error("Invalid record"); 3165 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3166 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3167 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3168 OpTy->getNumElements()); 3169 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3170 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3171 break; 3172 } 3173 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3174 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3175 VectorType *OpTy = 3176 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3177 if (Record.size() < 4 || !RTy || !OpTy) 3178 return error("Invalid record"); 3179 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3180 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3181 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3182 RTy->getNumElements()); 3183 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3184 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3185 break; 3186 } 3187 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3188 if (Record.size() < 4) 3189 return error("Invalid record"); 3190 Type *OpTy = getTypeByID(Record[0]); 3191 if (!OpTy) 3192 return error("Invalid record"); 3193 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3194 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3195 3196 if (OpTy->isFPOrFPVectorTy()) 3197 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3198 else 3199 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3200 break; 3201 } 3202 // This maintains backward compatibility, pre-asm dialect keywords. 3203 // FIXME: Remove with the 4.0 release. 3204 case bitc::CST_CODE_INLINEASM_OLD: { 3205 if (Record.size() < 2) 3206 return error("Invalid record"); 3207 std::string AsmStr, ConstrStr; 3208 bool HasSideEffects = Record[0] & 1; 3209 bool IsAlignStack = Record[0] >> 1; 3210 unsigned AsmStrSize = Record[1]; 3211 if (2+AsmStrSize >= Record.size()) 3212 return error("Invalid record"); 3213 unsigned ConstStrSize = Record[2+AsmStrSize]; 3214 if (3+AsmStrSize+ConstStrSize > Record.size()) 3215 return error("Invalid record"); 3216 3217 for (unsigned i = 0; i != AsmStrSize; ++i) 3218 AsmStr += (char)Record[2+i]; 3219 for (unsigned i = 0; i != ConstStrSize; ++i) 3220 ConstrStr += (char)Record[3+AsmStrSize+i]; 3221 PointerType *PTy = cast<PointerType>(CurTy); 3222 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3223 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3224 break; 3225 } 3226 // This version adds support for the asm dialect keywords (e.g., 3227 // inteldialect). 3228 case bitc::CST_CODE_INLINEASM: { 3229 if (Record.size() < 2) 3230 return error("Invalid record"); 3231 std::string AsmStr, ConstrStr; 3232 bool HasSideEffects = Record[0] & 1; 3233 bool IsAlignStack = (Record[0] >> 1) & 1; 3234 unsigned AsmDialect = Record[0] >> 2; 3235 unsigned AsmStrSize = Record[1]; 3236 if (2+AsmStrSize >= Record.size()) 3237 return error("Invalid record"); 3238 unsigned ConstStrSize = Record[2+AsmStrSize]; 3239 if (3+AsmStrSize+ConstStrSize > Record.size()) 3240 return error("Invalid record"); 3241 3242 for (unsigned i = 0; i != AsmStrSize; ++i) 3243 AsmStr += (char)Record[2+i]; 3244 for (unsigned i = 0; i != ConstStrSize; ++i) 3245 ConstrStr += (char)Record[3+AsmStrSize+i]; 3246 PointerType *PTy = cast<PointerType>(CurTy); 3247 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3248 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3249 InlineAsm::AsmDialect(AsmDialect)); 3250 break; 3251 } 3252 case bitc::CST_CODE_BLOCKADDRESS:{ 3253 if (Record.size() < 3) 3254 return error("Invalid record"); 3255 Type *FnTy = getTypeByID(Record[0]); 3256 if (!FnTy) 3257 return error("Invalid record"); 3258 Function *Fn = 3259 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3260 if (!Fn) 3261 return error("Invalid record"); 3262 3263 // If the function is already parsed we can insert the block address right 3264 // away. 3265 BasicBlock *BB; 3266 unsigned BBID = Record[2]; 3267 if (!BBID) 3268 // Invalid reference to entry block. 3269 return error("Invalid ID"); 3270 if (!Fn->empty()) { 3271 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3272 for (size_t I = 0, E = BBID; I != E; ++I) { 3273 if (BBI == BBE) 3274 return error("Invalid ID"); 3275 ++BBI; 3276 } 3277 BB = &*BBI; 3278 } else { 3279 // Otherwise insert a placeholder and remember it so it can be inserted 3280 // when the function is parsed. 3281 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3282 if (FwdBBs.empty()) 3283 BasicBlockFwdRefQueue.push_back(Fn); 3284 if (FwdBBs.size() < BBID + 1) 3285 FwdBBs.resize(BBID + 1); 3286 if (!FwdBBs[BBID]) 3287 FwdBBs[BBID] = BasicBlock::Create(Context); 3288 BB = FwdBBs[BBID]; 3289 } 3290 V = BlockAddress::get(Fn, BB); 3291 break; 3292 } 3293 } 3294 3295 ValueList.assignValue(V, NextCstNo); 3296 ++NextCstNo; 3297 } 3298 } 3299 3300 std::error_code BitcodeReader::parseUseLists() { 3301 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3302 return error("Invalid record"); 3303 3304 // Read all the records. 3305 SmallVector<uint64_t, 64> Record; 3306 while (1) { 3307 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3308 3309 switch (Entry.Kind) { 3310 case BitstreamEntry::SubBlock: // Handled for us already. 3311 case BitstreamEntry::Error: 3312 return error("Malformed block"); 3313 case BitstreamEntry::EndBlock: 3314 return std::error_code(); 3315 case BitstreamEntry::Record: 3316 // The interesting case. 3317 break; 3318 } 3319 3320 // Read a use list record. 3321 Record.clear(); 3322 bool IsBB = false; 3323 switch (Stream.readRecord(Entry.ID, Record)) { 3324 default: // Default behavior: unknown type. 3325 break; 3326 case bitc::USELIST_CODE_BB: 3327 IsBB = true; 3328 // fallthrough 3329 case bitc::USELIST_CODE_DEFAULT: { 3330 unsigned RecordLength = Record.size(); 3331 if (RecordLength < 3) 3332 // Records should have at least an ID and two indexes. 3333 return error("Invalid record"); 3334 unsigned ID = Record.back(); 3335 Record.pop_back(); 3336 3337 Value *V; 3338 if (IsBB) { 3339 assert(ID < FunctionBBs.size() && "Basic block not found"); 3340 V = FunctionBBs[ID]; 3341 } else 3342 V = ValueList[ID]; 3343 unsigned NumUses = 0; 3344 SmallDenseMap<const Use *, unsigned, 16> Order; 3345 for (const Use &U : V->materialized_uses()) { 3346 if (++NumUses > Record.size()) 3347 break; 3348 Order[&U] = Record[NumUses - 1]; 3349 } 3350 if (Order.size() != Record.size() || NumUses > Record.size()) 3351 // Mismatches can happen if the functions are being materialized lazily 3352 // (out-of-order), or a value has been upgraded. 3353 break; 3354 3355 V->sortUseList([&](const Use &L, const Use &R) { 3356 return Order.lookup(&L) < Order.lookup(&R); 3357 }); 3358 break; 3359 } 3360 } 3361 } 3362 } 3363 3364 /// When we see the block for metadata, remember where it is and then skip it. 3365 /// This lets us lazily deserialize the metadata. 3366 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3367 // Save the current stream state. 3368 uint64_t CurBit = Stream.GetCurrentBitNo(); 3369 DeferredMetadataInfo.push_back(CurBit); 3370 3371 // Skip over the block for now. 3372 if (Stream.SkipBlock()) 3373 return error("Invalid record"); 3374 return std::error_code(); 3375 } 3376 3377 std::error_code BitcodeReader::materializeMetadata() { 3378 for (uint64_t BitPos : DeferredMetadataInfo) { 3379 // Move the bit stream to the saved position. 3380 Stream.JumpToBit(BitPos); 3381 if (std::error_code EC = parseMetadata(true)) 3382 return EC; 3383 } 3384 DeferredMetadataInfo.clear(); 3385 return std::error_code(); 3386 } 3387 3388 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3389 3390 /// When we see the block for a function body, remember where it is and then 3391 /// skip it. This lets us lazily deserialize the functions. 3392 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3393 // Get the function we are talking about. 3394 if (FunctionsWithBodies.empty()) 3395 return error("Insufficient function protos"); 3396 3397 Function *Fn = FunctionsWithBodies.back(); 3398 FunctionsWithBodies.pop_back(); 3399 3400 // Save the current stream state. 3401 uint64_t CurBit = Stream.GetCurrentBitNo(); 3402 assert( 3403 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3404 "Mismatch between VST and scanned function offsets"); 3405 DeferredFunctionInfo[Fn] = CurBit; 3406 3407 // Skip over the function block for now. 3408 if (Stream.SkipBlock()) 3409 return error("Invalid record"); 3410 return std::error_code(); 3411 } 3412 3413 std::error_code BitcodeReader::globalCleanup() { 3414 // Patch the initializers for globals and aliases up. 3415 resolveGlobalAndIndirectSymbolInits(); 3416 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3417 return error("Malformed global initializer set"); 3418 3419 // Look for intrinsic functions which need to be upgraded at some point 3420 for (Function &F : *TheModule) { 3421 Function *NewFn; 3422 if (UpgradeIntrinsicFunction(&F, NewFn)) 3423 UpgradedIntrinsics[&F] = NewFn; 3424 } 3425 3426 // Look for global variables which need to be renamed. 3427 for (GlobalVariable &GV : TheModule->globals()) 3428 UpgradeGlobalVariable(&GV); 3429 3430 // Force deallocation of memory for these vectors to favor the client that 3431 // want lazy deserialization. 3432 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3433 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3434 IndirectSymbolInits); 3435 return std::error_code(); 3436 } 3437 3438 /// Support for lazy parsing of function bodies. This is required if we 3439 /// either have an old bitcode file without a VST forward declaration record, 3440 /// or if we have an anonymous function being materialized, since anonymous 3441 /// functions do not have a name and are therefore not in the VST. 3442 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3443 Stream.JumpToBit(NextUnreadBit); 3444 3445 if (Stream.AtEndOfStream()) 3446 return error("Could not find function in stream"); 3447 3448 if (!SeenFirstFunctionBody) 3449 return error("Trying to materialize functions before seeing function blocks"); 3450 3451 // An old bitcode file with the symbol table at the end would have 3452 // finished the parse greedily. 3453 assert(SeenValueSymbolTable); 3454 3455 SmallVector<uint64_t, 64> Record; 3456 3457 while (1) { 3458 BitstreamEntry Entry = Stream.advance(); 3459 switch (Entry.Kind) { 3460 default: 3461 return error("Expect SubBlock"); 3462 case BitstreamEntry::SubBlock: 3463 switch (Entry.ID) { 3464 default: 3465 return error("Expect function block"); 3466 case bitc::FUNCTION_BLOCK_ID: 3467 if (std::error_code EC = rememberAndSkipFunctionBody()) 3468 return EC; 3469 NextUnreadBit = Stream.GetCurrentBitNo(); 3470 return std::error_code(); 3471 } 3472 } 3473 } 3474 } 3475 3476 std::error_code BitcodeReader::parseBitcodeVersion() { 3477 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3478 return error("Invalid record"); 3479 3480 // Read all the records. 3481 SmallVector<uint64_t, 64> Record; 3482 while (1) { 3483 BitstreamEntry Entry = Stream.advance(); 3484 3485 switch (Entry.Kind) { 3486 default: 3487 case BitstreamEntry::Error: 3488 return error("Malformed block"); 3489 case BitstreamEntry::EndBlock: 3490 return std::error_code(); 3491 case BitstreamEntry::Record: 3492 // The interesting case. 3493 break; 3494 } 3495 3496 // Read a record. 3497 Record.clear(); 3498 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3499 switch (BitCode) { 3500 default: // Default behavior: reject 3501 return error("Invalid value"); 3502 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3503 // N] 3504 convertToString(Record, 0, ProducerIdentification); 3505 break; 3506 } 3507 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3508 unsigned epoch = (unsigned)Record[0]; 3509 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3510 return error( 3511 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3512 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3513 } 3514 } 3515 } 3516 } 3517 } 3518 3519 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3520 bool ShouldLazyLoadMetadata) { 3521 if (ResumeBit) 3522 Stream.JumpToBit(ResumeBit); 3523 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3524 return error("Invalid record"); 3525 3526 SmallVector<uint64_t, 64> Record; 3527 std::vector<std::string> SectionTable; 3528 std::vector<std::string> GCTable; 3529 3530 // Read all the records for this module. 3531 while (1) { 3532 BitstreamEntry Entry = Stream.advance(); 3533 3534 switch (Entry.Kind) { 3535 case BitstreamEntry::Error: 3536 return error("Malformed block"); 3537 case BitstreamEntry::EndBlock: 3538 return globalCleanup(); 3539 3540 case BitstreamEntry::SubBlock: 3541 switch (Entry.ID) { 3542 default: // Skip unknown content. 3543 if (Stream.SkipBlock()) 3544 return error("Invalid record"); 3545 break; 3546 case bitc::BLOCKINFO_BLOCK_ID: 3547 if (Stream.ReadBlockInfoBlock()) 3548 return error("Malformed block"); 3549 break; 3550 case bitc::PARAMATTR_BLOCK_ID: 3551 if (std::error_code EC = parseAttributeBlock()) 3552 return EC; 3553 break; 3554 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3555 if (std::error_code EC = parseAttributeGroupBlock()) 3556 return EC; 3557 break; 3558 case bitc::TYPE_BLOCK_ID_NEW: 3559 if (std::error_code EC = parseTypeTable()) 3560 return EC; 3561 break; 3562 case bitc::VALUE_SYMTAB_BLOCK_ID: 3563 if (!SeenValueSymbolTable) { 3564 // Either this is an old form VST without function index and an 3565 // associated VST forward declaration record (which would have caused 3566 // the VST to be jumped to and parsed before it was encountered 3567 // normally in the stream), or there were no function blocks to 3568 // trigger an earlier parsing of the VST. 3569 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3570 if (std::error_code EC = parseValueSymbolTable()) 3571 return EC; 3572 SeenValueSymbolTable = true; 3573 } else { 3574 // We must have had a VST forward declaration record, which caused 3575 // the parser to jump to and parse the VST earlier. 3576 assert(VSTOffset > 0); 3577 if (Stream.SkipBlock()) 3578 return error("Invalid record"); 3579 } 3580 break; 3581 case bitc::CONSTANTS_BLOCK_ID: 3582 if (std::error_code EC = parseConstants()) 3583 return EC; 3584 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3585 return EC; 3586 break; 3587 case bitc::METADATA_BLOCK_ID: 3588 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3589 if (std::error_code EC = rememberAndSkipMetadata()) 3590 return EC; 3591 break; 3592 } 3593 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3594 if (std::error_code EC = parseMetadata(true)) 3595 return EC; 3596 break; 3597 case bitc::METADATA_KIND_BLOCK_ID: 3598 if (std::error_code EC = parseMetadataKinds()) 3599 return EC; 3600 break; 3601 case bitc::FUNCTION_BLOCK_ID: 3602 // If this is the first function body we've seen, reverse the 3603 // FunctionsWithBodies list. 3604 if (!SeenFirstFunctionBody) { 3605 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3606 if (std::error_code EC = globalCleanup()) 3607 return EC; 3608 SeenFirstFunctionBody = true; 3609 } 3610 3611 if (VSTOffset > 0) { 3612 // If we have a VST forward declaration record, make sure we 3613 // parse the VST now if we haven't already. It is needed to 3614 // set up the DeferredFunctionInfo vector for lazy reading. 3615 if (!SeenValueSymbolTable) { 3616 if (std::error_code EC = 3617 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3618 return EC; 3619 SeenValueSymbolTable = true; 3620 // Fall through so that we record the NextUnreadBit below. 3621 // This is necessary in case we have an anonymous function that 3622 // is later materialized. Since it will not have a VST entry we 3623 // need to fall back to the lazy parse to find its offset. 3624 } else { 3625 // If we have a VST forward declaration record, but have already 3626 // parsed the VST (just above, when the first function body was 3627 // encountered here), then we are resuming the parse after 3628 // materializing functions. The ResumeBit points to the 3629 // start of the last function block recorded in the 3630 // DeferredFunctionInfo map. Skip it. 3631 if (Stream.SkipBlock()) 3632 return error("Invalid record"); 3633 continue; 3634 } 3635 } 3636 3637 // Support older bitcode files that did not have the function 3638 // index in the VST, nor a VST forward declaration record, as 3639 // well as anonymous functions that do not have VST entries. 3640 // Build the DeferredFunctionInfo vector on the fly. 3641 if (std::error_code EC = rememberAndSkipFunctionBody()) 3642 return EC; 3643 3644 // Suspend parsing when we reach the function bodies. Subsequent 3645 // materialization calls will resume it when necessary. If the bitcode 3646 // file is old, the symbol table will be at the end instead and will not 3647 // have been seen yet. In this case, just finish the parse now. 3648 if (SeenValueSymbolTable) { 3649 NextUnreadBit = Stream.GetCurrentBitNo(); 3650 return std::error_code(); 3651 } 3652 break; 3653 case bitc::USELIST_BLOCK_ID: 3654 if (std::error_code EC = parseUseLists()) 3655 return EC; 3656 break; 3657 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3658 if (std::error_code EC = parseOperandBundleTags()) 3659 return EC; 3660 break; 3661 } 3662 continue; 3663 3664 case BitstreamEntry::Record: 3665 // The interesting case. 3666 break; 3667 } 3668 3669 // Read a record. 3670 auto BitCode = Stream.readRecord(Entry.ID, Record); 3671 switch (BitCode) { 3672 default: break; // Default behavior, ignore unknown content. 3673 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3674 if (Record.size() < 1) 3675 return error("Invalid record"); 3676 // Only version #0 and #1 are supported so far. 3677 unsigned module_version = Record[0]; 3678 switch (module_version) { 3679 default: 3680 return error("Invalid value"); 3681 case 0: 3682 UseRelativeIDs = false; 3683 break; 3684 case 1: 3685 UseRelativeIDs = true; 3686 break; 3687 } 3688 break; 3689 } 3690 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3691 std::string S; 3692 if (convertToString(Record, 0, S)) 3693 return error("Invalid record"); 3694 TheModule->setTargetTriple(S); 3695 break; 3696 } 3697 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3698 std::string S; 3699 if (convertToString(Record, 0, S)) 3700 return error("Invalid record"); 3701 TheModule->setDataLayout(S); 3702 break; 3703 } 3704 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3705 std::string S; 3706 if (convertToString(Record, 0, S)) 3707 return error("Invalid record"); 3708 TheModule->setModuleInlineAsm(S); 3709 break; 3710 } 3711 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3712 // FIXME: Remove in 4.0. 3713 std::string S; 3714 if (convertToString(Record, 0, S)) 3715 return error("Invalid record"); 3716 // Ignore value. 3717 break; 3718 } 3719 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3720 std::string S; 3721 if (convertToString(Record, 0, S)) 3722 return error("Invalid record"); 3723 SectionTable.push_back(S); 3724 break; 3725 } 3726 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3727 std::string S; 3728 if (convertToString(Record, 0, S)) 3729 return error("Invalid record"); 3730 GCTable.push_back(S); 3731 break; 3732 } 3733 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3734 if (Record.size() < 2) 3735 return error("Invalid record"); 3736 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3737 unsigned ComdatNameSize = Record[1]; 3738 std::string ComdatName; 3739 ComdatName.reserve(ComdatNameSize); 3740 for (unsigned i = 0; i != ComdatNameSize; ++i) 3741 ComdatName += (char)Record[2 + i]; 3742 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3743 C->setSelectionKind(SK); 3744 ComdatList.push_back(C); 3745 break; 3746 } 3747 // GLOBALVAR: [pointer type, isconst, initid, 3748 // linkage, alignment, section, visibility, threadlocal, 3749 // unnamed_addr, externally_initialized, dllstorageclass, 3750 // comdat] 3751 case bitc::MODULE_CODE_GLOBALVAR: { 3752 if (Record.size() < 6) 3753 return error("Invalid record"); 3754 Type *Ty = getTypeByID(Record[0]); 3755 if (!Ty) 3756 return error("Invalid record"); 3757 bool isConstant = Record[1] & 1; 3758 bool explicitType = Record[1] & 2; 3759 unsigned AddressSpace; 3760 if (explicitType) { 3761 AddressSpace = Record[1] >> 2; 3762 } else { 3763 if (!Ty->isPointerTy()) 3764 return error("Invalid type for value"); 3765 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3766 Ty = cast<PointerType>(Ty)->getElementType(); 3767 } 3768 3769 uint64_t RawLinkage = Record[3]; 3770 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3771 unsigned Alignment; 3772 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3773 return EC; 3774 std::string Section; 3775 if (Record[5]) { 3776 if (Record[5]-1 >= SectionTable.size()) 3777 return error("Invalid ID"); 3778 Section = SectionTable[Record[5]-1]; 3779 } 3780 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3781 // Local linkage must have default visibility. 3782 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3783 // FIXME: Change to an error if non-default in 4.0. 3784 Visibility = getDecodedVisibility(Record[6]); 3785 3786 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3787 if (Record.size() > 7) 3788 TLM = getDecodedThreadLocalMode(Record[7]); 3789 3790 bool UnnamedAddr = false; 3791 if (Record.size() > 8) 3792 UnnamedAddr = Record[8]; 3793 3794 bool ExternallyInitialized = false; 3795 if (Record.size() > 9) 3796 ExternallyInitialized = Record[9]; 3797 3798 GlobalVariable *NewGV = 3799 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3800 TLM, AddressSpace, ExternallyInitialized); 3801 NewGV->setAlignment(Alignment); 3802 if (!Section.empty()) 3803 NewGV->setSection(Section); 3804 NewGV->setVisibility(Visibility); 3805 NewGV->setUnnamedAddr(UnnamedAddr); 3806 3807 if (Record.size() > 10) 3808 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3809 else 3810 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3811 3812 ValueList.push_back(NewGV); 3813 3814 // Remember which value to use for the global initializer. 3815 if (unsigned InitID = Record[2]) 3816 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3817 3818 if (Record.size() > 11) { 3819 if (unsigned ComdatID = Record[11]) { 3820 if (ComdatID > ComdatList.size()) 3821 return error("Invalid global variable comdat ID"); 3822 NewGV->setComdat(ComdatList[ComdatID - 1]); 3823 } 3824 } else if (hasImplicitComdat(RawLinkage)) { 3825 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3826 } 3827 break; 3828 } 3829 case bitc::MODULE_CODE_GLOBALVAR_ATTACHMENT: { 3830 if (Record.size() % 2 == 0) 3831 return error("Invalid record"); 3832 unsigned ValueID = Record[0]; 3833 if (ValueID >= ValueList.size()) 3834 return error("Invalid record"); 3835 if (auto *GV = dyn_cast<GlobalVariable>(ValueList[ValueID])) 3836 parseGlobalObjectAttachment(*GV, ArrayRef<uint64_t>(Record).slice(1)); 3837 break; 3838 } 3839 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3840 // alignment, section, visibility, gc, unnamed_addr, 3841 // prologuedata, dllstorageclass, comdat, prefixdata] 3842 case bitc::MODULE_CODE_FUNCTION: { 3843 if (Record.size() < 8) 3844 return error("Invalid record"); 3845 Type *Ty = getTypeByID(Record[0]); 3846 if (!Ty) 3847 return error("Invalid record"); 3848 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3849 Ty = PTy->getElementType(); 3850 auto *FTy = dyn_cast<FunctionType>(Ty); 3851 if (!FTy) 3852 return error("Invalid type for value"); 3853 auto CC = static_cast<CallingConv::ID>(Record[1]); 3854 if (CC & ~CallingConv::MaxID) 3855 return error("Invalid calling convention ID"); 3856 3857 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3858 "", TheModule); 3859 3860 Func->setCallingConv(CC); 3861 bool isProto = Record[2]; 3862 uint64_t RawLinkage = Record[3]; 3863 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3864 Func->setAttributes(getAttributes(Record[4])); 3865 3866 unsigned Alignment; 3867 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3868 return EC; 3869 Func->setAlignment(Alignment); 3870 if (Record[6]) { 3871 if (Record[6]-1 >= SectionTable.size()) 3872 return error("Invalid ID"); 3873 Func->setSection(SectionTable[Record[6]-1]); 3874 } 3875 // Local linkage must have default visibility. 3876 if (!Func->hasLocalLinkage()) 3877 // FIXME: Change to an error if non-default in 4.0. 3878 Func->setVisibility(getDecodedVisibility(Record[7])); 3879 if (Record.size() > 8 && Record[8]) { 3880 if (Record[8]-1 >= GCTable.size()) 3881 return error("Invalid ID"); 3882 Func->setGC(GCTable[Record[8] - 1]); 3883 } 3884 bool UnnamedAddr = false; 3885 if (Record.size() > 9) 3886 UnnamedAddr = Record[9]; 3887 Func->setUnnamedAddr(UnnamedAddr); 3888 if (Record.size() > 10 && Record[10] != 0) 3889 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3890 3891 if (Record.size() > 11) 3892 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3893 else 3894 upgradeDLLImportExportLinkage(Func, RawLinkage); 3895 3896 if (Record.size() > 12) { 3897 if (unsigned ComdatID = Record[12]) { 3898 if (ComdatID > ComdatList.size()) 3899 return error("Invalid function comdat ID"); 3900 Func->setComdat(ComdatList[ComdatID - 1]); 3901 } 3902 } else if (hasImplicitComdat(RawLinkage)) { 3903 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3904 } 3905 3906 if (Record.size() > 13 && Record[13] != 0) 3907 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3908 3909 if (Record.size() > 14 && Record[14] != 0) 3910 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3911 3912 ValueList.push_back(Func); 3913 3914 // If this is a function with a body, remember the prototype we are 3915 // creating now, so that we can match up the body with them later. 3916 if (!isProto) { 3917 Func->setIsMaterializable(true); 3918 FunctionsWithBodies.push_back(Func); 3919 DeferredFunctionInfo[Func] = 0; 3920 } 3921 break; 3922 } 3923 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3924 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3925 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3926 case bitc::MODULE_CODE_IFUNC: 3927 case bitc::MODULE_CODE_ALIAS: 3928 case bitc::MODULE_CODE_ALIAS_OLD: { 3929 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3930 if (Record.size() < (3 + (unsigned)NewRecord)) 3931 return error("Invalid record"); 3932 unsigned OpNum = 0; 3933 Type *Ty = getTypeByID(Record[OpNum++]); 3934 if (!Ty) 3935 return error("Invalid record"); 3936 3937 unsigned AddrSpace; 3938 if (!NewRecord) { 3939 auto *PTy = dyn_cast<PointerType>(Ty); 3940 if (!PTy) 3941 return error("Invalid type for value"); 3942 Ty = PTy->getElementType(); 3943 AddrSpace = PTy->getAddressSpace(); 3944 } else { 3945 AddrSpace = Record[OpNum++]; 3946 } 3947 3948 auto Val = Record[OpNum++]; 3949 auto Linkage = Record[OpNum++]; 3950 GlobalIndirectSymbol *NewGA; 3951 if (BitCode == bitc::MODULE_CODE_ALIAS || 3952 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3953 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3954 "", TheModule); 3955 else 3956 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3957 "", nullptr, TheModule); 3958 // Old bitcode files didn't have visibility field. 3959 // Local linkage must have default visibility. 3960 if (OpNum != Record.size()) { 3961 auto VisInd = OpNum++; 3962 if (!NewGA->hasLocalLinkage()) 3963 // FIXME: Change to an error if non-default in 4.0. 3964 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3965 } 3966 if (OpNum != Record.size()) 3967 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3968 else 3969 upgradeDLLImportExportLinkage(NewGA, Linkage); 3970 if (OpNum != Record.size()) 3971 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3972 if (OpNum != Record.size()) 3973 NewGA->setUnnamedAddr(Record[OpNum++]); 3974 ValueList.push_back(NewGA); 3975 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3976 break; 3977 } 3978 /// MODULE_CODE_PURGEVALS: [numvals] 3979 case bitc::MODULE_CODE_PURGEVALS: 3980 // Trim down the value list to the specified size. 3981 if (Record.size() < 1 || Record[0] > ValueList.size()) 3982 return error("Invalid record"); 3983 ValueList.shrinkTo(Record[0]); 3984 break; 3985 /// MODULE_CODE_VSTOFFSET: [offset] 3986 case bitc::MODULE_CODE_VSTOFFSET: 3987 if (Record.size() < 1) 3988 return error("Invalid record"); 3989 VSTOffset = Record[0]; 3990 break; 3991 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3992 case bitc::MODULE_CODE_SOURCE_FILENAME: 3993 SmallString<128> ValueName; 3994 if (convertToString(Record, 0, ValueName)) 3995 return error("Invalid record"); 3996 TheModule->setSourceFileName(ValueName); 3997 break; 3998 } 3999 Record.clear(); 4000 } 4001 } 4002 4003 /// Helper to read the header common to all bitcode files. 4004 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 4005 // Sniff for the signature. 4006 if (Stream.Read(8) != 'B' || 4007 Stream.Read(8) != 'C' || 4008 Stream.Read(4) != 0x0 || 4009 Stream.Read(4) != 0xC || 4010 Stream.Read(4) != 0xE || 4011 Stream.Read(4) != 0xD) 4012 return false; 4013 return true; 4014 } 4015 4016 std::error_code 4017 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 4018 Module *M, bool ShouldLazyLoadMetadata) { 4019 TheModule = M; 4020 4021 if (std::error_code EC = initStream(std::move(Streamer))) 4022 return EC; 4023 4024 // Sniff for the signature. 4025 if (!hasValidBitcodeHeader(Stream)) 4026 return error("Invalid bitcode signature"); 4027 4028 // We expect a number of well-defined blocks, though we don't necessarily 4029 // need to understand them all. 4030 while (1) { 4031 if (Stream.AtEndOfStream()) { 4032 // We didn't really read a proper Module. 4033 return error("Malformed IR file"); 4034 } 4035 4036 BitstreamEntry Entry = 4037 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 4038 4039 if (Entry.Kind != BitstreamEntry::SubBlock) 4040 return error("Malformed block"); 4041 4042 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4043 parseBitcodeVersion(); 4044 continue; 4045 } 4046 4047 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4048 return parseModule(0, ShouldLazyLoadMetadata); 4049 4050 if (Stream.SkipBlock()) 4051 return error("Invalid record"); 4052 } 4053 } 4054 4055 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 4056 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4057 return error("Invalid record"); 4058 4059 SmallVector<uint64_t, 64> Record; 4060 4061 std::string Triple; 4062 // Read all the records for this module. 4063 while (1) { 4064 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4065 4066 switch (Entry.Kind) { 4067 case BitstreamEntry::SubBlock: // Handled for us already. 4068 case BitstreamEntry::Error: 4069 return error("Malformed block"); 4070 case BitstreamEntry::EndBlock: 4071 return Triple; 4072 case BitstreamEntry::Record: 4073 // The interesting case. 4074 break; 4075 } 4076 4077 // Read a record. 4078 switch (Stream.readRecord(Entry.ID, Record)) { 4079 default: break; // Default behavior, ignore unknown content. 4080 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4081 std::string S; 4082 if (convertToString(Record, 0, S)) 4083 return error("Invalid record"); 4084 Triple = S; 4085 break; 4086 } 4087 } 4088 Record.clear(); 4089 } 4090 llvm_unreachable("Exit infinite loop"); 4091 } 4092 4093 ErrorOr<std::string> BitcodeReader::parseTriple() { 4094 if (std::error_code EC = initStream(nullptr)) 4095 return EC; 4096 4097 // Sniff for the signature. 4098 if (!hasValidBitcodeHeader(Stream)) 4099 return error("Invalid bitcode signature"); 4100 4101 // We expect a number of well-defined blocks, though we don't necessarily 4102 // need to understand them all. 4103 while (1) { 4104 BitstreamEntry Entry = Stream.advance(); 4105 4106 switch (Entry.Kind) { 4107 case BitstreamEntry::Error: 4108 return error("Malformed block"); 4109 case BitstreamEntry::EndBlock: 4110 return std::error_code(); 4111 4112 case BitstreamEntry::SubBlock: 4113 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4114 return parseModuleTriple(); 4115 4116 // Ignore other sub-blocks. 4117 if (Stream.SkipBlock()) 4118 return error("Malformed block"); 4119 continue; 4120 4121 case BitstreamEntry::Record: 4122 Stream.skipRecord(Entry.ID); 4123 continue; 4124 } 4125 } 4126 } 4127 4128 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 4129 if (std::error_code EC = initStream(nullptr)) 4130 return EC; 4131 4132 // Sniff for the signature. 4133 if (!hasValidBitcodeHeader(Stream)) 4134 return error("Invalid bitcode signature"); 4135 4136 // We expect a number of well-defined blocks, though we don't necessarily 4137 // need to understand them all. 4138 while (1) { 4139 BitstreamEntry Entry = Stream.advance(); 4140 switch (Entry.Kind) { 4141 case BitstreamEntry::Error: 4142 return error("Malformed block"); 4143 case BitstreamEntry::EndBlock: 4144 return std::error_code(); 4145 4146 case BitstreamEntry::SubBlock: 4147 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4148 if (std::error_code EC = parseBitcodeVersion()) 4149 return EC; 4150 return ProducerIdentification; 4151 } 4152 // Ignore other sub-blocks. 4153 if (Stream.SkipBlock()) 4154 return error("Malformed block"); 4155 continue; 4156 case BitstreamEntry::Record: 4157 Stream.skipRecord(Entry.ID); 4158 continue; 4159 } 4160 } 4161 } 4162 4163 std::error_code BitcodeReader::parseGlobalObjectAttachment( 4164 GlobalObject &GO, ArrayRef<uint64_t> Record) { 4165 assert(Record.size() % 2 == 0); 4166 for (unsigned I = 0, E = Record.size(); I != E; I += 2) { 4167 auto K = MDKindMap.find(Record[I]); 4168 if (K == MDKindMap.end()) 4169 return error("Invalid ID"); 4170 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4171 if (!MD) 4172 return error("Invalid metadata attachment"); 4173 GO.addMetadata(K->second, *MD); 4174 } 4175 return std::error_code(); 4176 } 4177 4178 /// Parse metadata attachments. 4179 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 4180 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4181 return error("Invalid record"); 4182 4183 SmallVector<uint64_t, 64> Record; 4184 while (1) { 4185 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4186 4187 switch (Entry.Kind) { 4188 case BitstreamEntry::SubBlock: // Handled for us already. 4189 case BitstreamEntry::Error: 4190 return error("Malformed block"); 4191 case BitstreamEntry::EndBlock: 4192 return std::error_code(); 4193 case BitstreamEntry::Record: 4194 // The interesting case. 4195 break; 4196 } 4197 4198 // Read a metadata attachment record. 4199 Record.clear(); 4200 switch (Stream.readRecord(Entry.ID, Record)) { 4201 default: // Default behavior: ignore. 4202 break; 4203 case bitc::METADATA_ATTACHMENT: { 4204 unsigned RecordLength = Record.size(); 4205 if (Record.empty()) 4206 return error("Invalid record"); 4207 if (RecordLength % 2 == 0) { 4208 // A function attachment. 4209 if (std::error_code EC = parseGlobalObjectAttachment(F, Record)) 4210 return EC; 4211 continue; 4212 } 4213 4214 // An instruction attachment. 4215 Instruction *Inst = InstructionList[Record[0]]; 4216 for (unsigned i = 1; i != RecordLength; i = i+2) { 4217 unsigned Kind = Record[i]; 4218 DenseMap<unsigned, unsigned>::iterator I = 4219 MDKindMap.find(Kind); 4220 if (I == MDKindMap.end()) 4221 return error("Invalid ID"); 4222 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4223 if (isa<LocalAsMetadata>(Node)) 4224 // Drop the attachment. This used to be legal, but there's no 4225 // upgrade path. 4226 break; 4227 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4228 if (!MD) 4229 return error("Invalid metadata attachment"); 4230 4231 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4232 MD = upgradeInstructionLoopAttachment(*MD); 4233 4234 Inst->setMetadata(I->second, MD); 4235 if (I->second == LLVMContext::MD_tbaa) { 4236 InstsWithTBAATag.push_back(Inst); 4237 continue; 4238 } 4239 } 4240 break; 4241 } 4242 } 4243 } 4244 } 4245 4246 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4247 LLVMContext &Context = PtrType->getContext(); 4248 if (!isa<PointerType>(PtrType)) 4249 return error(Context, "Load/Store operand is not a pointer type"); 4250 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4251 4252 if (ValType && ValType != ElemType) 4253 return error(Context, "Explicit load/store type does not match pointee " 4254 "type of pointer operand"); 4255 if (!PointerType::isLoadableOrStorableType(ElemType)) 4256 return error(Context, "Cannot load/store from pointer"); 4257 return std::error_code(); 4258 } 4259 4260 /// Lazily parse the specified function body block. 4261 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4262 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4263 return error("Invalid record"); 4264 4265 // Unexpected unresolved metadata when parsing function. 4266 if (MetadataList.hasFwdRefs()) 4267 return error("Invalid function metadata: incoming forward references"); 4268 4269 InstructionList.clear(); 4270 unsigned ModuleValueListSize = ValueList.size(); 4271 unsigned ModuleMetadataListSize = MetadataList.size(); 4272 4273 // Add all the function arguments to the value table. 4274 for (Argument &I : F->args()) 4275 ValueList.push_back(&I); 4276 4277 unsigned NextValueNo = ValueList.size(); 4278 BasicBlock *CurBB = nullptr; 4279 unsigned CurBBNo = 0; 4280 4281 DebugLoc LastLoc; 4282 auto getLastInstruction = [&]() -> Instruction * { 4283 if (CurBB && !CurBB->empty()) 4284 return &CurBB->back(); 4285 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4286 !FunctionBBs[CurBBNo - 1]->empty()) 4287 return &FunctionBBs[CurBBNo - 1]->back(); 4288 return nullptr; 4289 }; 4290 4291 std::vector<OperandBundleDef> OperandBundles; 4292 4293 // Read all the records. 4294 SmallVector<uint64_t, 64> Record; 4295 while (1) { 4296 BitstreamEntry Entry = Stream.advance(); 4297 4298 switch (Entry.Kind) { 4299 case BitstreamEntry::Error: 4300 return error("Malformed block"); 4301 case BitstreamEntry::EndBlock: 4302 goto OutOfRecordLoop; 4303 4304 case BitstreamEntry::SubBlock: 4305 switch (Entry.ID) { 4306 default: // Skip unknown content. 4307 if (Stream.SkipBlock()) 4308 return error("Invalid record"); 4309 break; 4310 case bitc::CONSTANTS_BLOCK_ID: 4311 if (std::error_code EC = parseConstants()) 4312 return EC; 4313 NextValueNo = ValueList.size(); 4314 break; 4315 case bitc::VALUE_SYMTAB_BLOCK_ID: 4316 if (std::error_code EC = parseValueSymbolTable()) 4317 return EC; 4318 break; 4319 case bitc::METADATA_ATTACHMENT_ID: 4320 if (std::error_code EC = parseMetadataAttachment(*F)) 4321 return EC; 4322 break; 4323 case bitc::METADATA_BLOCK_ID: 4324 if (std::error_code EC = parseMetadata()) 4325 return EC; 4326 break; 4327 case bitc::USELIST_BLOCK_ID: 4328 if (std::error_code EC = parseUseLists()) 4329 return EC; 4330 break; 4331 } 4332 continue; 4333 4334 case BitstreamEntry::Record: 4335 // The interesting case. 4336 break; 4337 } 4338 4339 // Read a record. 4340 Record.clear(); 4341 Instruction *I = nullptr; 4342 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4343 switch (BitCode) { 4344 default: // Default behavior: reject 4345 return error("Invalid value"); 4346 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4347 if (Record.size() < 1 || Record[0] == 0) 4348 return error("Invalid record"); 4349 // Create all the basic blocks for the function. 4350 FunctionBBs.resize(Record[0]); 4351 4352 // See if anything took the address of blocks in this function. 4353 auto BBFRI = BasicBlockFwdRefs.find(F); 4354 if (BBFRI == BasicBlockFwdRefs.end()) { 4355 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4356 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4357 } else { 4358 auto &BBRefs = BBFRI->second; 4359 // Check for invalid basic block references. 4360 if (BBRefs.size() > FunctionBBs.size()) 4361 return error("Invalid ID"); 4362 assert(!BBRefs.empty() && "Unexpected empty array"); 4363 assert(!BBRefs.front() && "Invalid reference to entry block"); 4364 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4365 ++I) 4366 if (I < RE && BBRefs[I]) { 4367 BBRefs[I]->insertInto(F); 4368 FunctionBBs[I] = BBRefs[I]; 4369 } else { 4370 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4371 } 4372 4373 // Erase from the table. 4374 BasicBlockFwdRefs.erase(BBFRI); 4375 } 4376 4377 CurBB = FunctionBBs[0]; 4378 continue; 4379 } 4380 4381 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4382 // This record indicates that the last instruction is at the same 4383 // location as the previous instruction with a location. 4384 I = getLastInstruction(); 4385 4386 if (!I) 4387 return error("Invalid record"); 4388 I->setDebugLoc(LastLoc); 4389 I = nullptr; 4390 continue; 4391 4392 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4393 I = getLastInstruction(); 4394 if (!I || Record.size() < 4) 4395 return error("Invalid record"); 4396 4397 unsigned Line = Record[0], Col = Record[1]; 4398 unsigned ScopeID = Record[2], IAID = Record[3]; 4399 4400 MDNode *Scope = nullptr, *IA = nullptr; 4401 if (ScopeID) { 4402 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4403 if (!Scope) 4404 return error("Invalid record"); 4405 } 4406 if (IAID) { 4407 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4408 if (!IA) 4409 return error("Invalid record"); 4410 } 4411 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4412 I->setDebugLoc(LastLoc); 4413 I = nullptr; 4414 continue; 4415 } 4416 4417 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4418 unsigned OpNum = 0; 4419 Value *LHS, *RHS; 4420 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4421 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4422 OpNum+1 > Record.size()) 4423 return error("Invalid record"); 4424 4425 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4426 if (Opc == -1) 4427 return error("Invalid record"); 4428 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4429 InstructionList.push_back(I); 4430 if (OpNum < Record.size()) { 4431 if (Opc == Instruction::Add || 4432 Opc == Instruction::Sub || 4433 Opc == Instruction::Mul || 4434 Opc == Instruction::Shl) { 4435 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4436 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4437 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4438 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4439 } else if (Opc == Instruction::SDiv || 4440 Opc == Instruction::UDiv || 4441 Opc == Instruction::LShr || 4442 Opc == Instruction::AShr) { 4443 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4444 cast<BinaryOperator>(I)->setIsExact(true); 4445 } else if (isa<FPMathOperator>(I)) { 4446 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4447 if (FMF.any()) 4448 I->setFastMathFlags(FMF); 4449 } 4450 4451 } 4452 break; 4453 } 4454 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4455 unsigned OpNum = 0; 4456 Value *Op; 4457 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4458 OpNum+2 != Record.size()) 4459 return error("Invalid record"); 4460 4461 Type *ResTy = getTypeByID(Record[OpNum]); 4462 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4463 if (Opc == -1 || !ResTy) 4464 return error("Invalid record"); 4465 Instruction *Temp = nullptr; 4466 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4467 if (Temp) { 4468 InstructionList.push_back(Temp); 4469 CurBB->getInstList().push_back(Temp); 4470 } 4471 } else { 4472 auto CastOp = (Instruction::CastOps)Opc; 4473 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4474 return error("Invalid cast"); 4475 I = CastInst::Create(CastOp, Op, ResTy); 4476 } 4477 InstructionList.push_back(I); 4478 break; 4479 } 4480 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4481 case bitc::FUNC_CODE_INST_GEP_OLD: 4482 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4483 unsigned OpNum = 0; 4484 4485 Type *Ty; 4486 bool InBounds; 4487 4488 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4489 InBounds = Record[OpNum++]; 4490 Ty = getTypeByID(Record[OpNum++]); 4491 } else { 4492 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4493 Ty = nullptr; 4494 } 4495 4496 Value *BasePtr; 4497 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4498 return error("Invalid record"); 4499 4500 if (!Ty) 4501 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4502 ->getElementType(); 4503 else if (Ty != 4504 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4505 ->getElementType()) 4506 return error( 4507 "Explicit gep type does not match pointee type of pointer operand"); 4508 4509 SmallVector<Value*, 16> GEPIdx; 4510 while (OpNum != Record.size()) { 4511 Value *Op; 4512 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4513 return error("Invalid record"); 4514 GEPIdx.push_back(Op); 4515 } 4516 4517 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4518 4519 InstructionList.push_back(I); 4520 if (InBounds) 4521 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4522 break; 4523 } 4524 4525 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4526 // EXTRACTVAL: [opty, opval, n x indices] 4527 unsigned OpNum = 0; 4528 Value *Agg; 4529 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4530 return error("Invalid record"); 4531 4532 unsigned RecSize = Record.size(); 4533 if (OpNum == RecSize) 4534 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4535 4536 SmallVector<unsigned, 4> EXTRACTVALIdx; 4537 Type *CurTy = Agg->getType(); 4538 for (; OpNum != RecSize; ++OpNum) { 4539 bool IsArray = CurTy->isArrayTy(); 4540 bool IsStruct = CurTy->isStructTy(); 4541 uint64_t Index = Record[OpNum]; 4542 4543 if (!IsStruct && !IsArray) 4544 return error("EXTRACTVAL: Invalid type"); 4545 if ((unsigned)Index != Index) 4546 return error("Invalid value"); 4547 if (IsStruct && Index >= CurTy->subtypes().size()) 4548 return error("EXTRACTVAL: Invalid struct index"); 4549 if (IsArray && Index >= CurTy->getArrayNumElements()) 4550 return error("EXTRACTVAL: Invalid array index"); 4551 EXTRACTVALIdx.push_back((unsigned)Index); 4552 4553 if (IsStruct) 4554 CurTy = CurTy->subtypes()[Index]; 4555 else 4556 CurTy = CurTy->subtypes()[0]; 4557 } 4558 4559 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4560 InstructionList.push_back(I); 4561 break; 4562 } 4563 4564 case bitc::FUNC_CODE_INST_INSERTVAL: { 4565 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4566 unsigned OpNum = 0; 4567 Value *Agg; 4568 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4569 return error("Invalid record"); 4570 Value *Val; 4571 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4572 return error("Invalid record"); 4573 4574 unsigned RecSize = Record.size(); 4575 if (OpNum == RecSize) 4576 return error("INSERTVAL: Invalid instruction with 0 indices"); 4577 4578 SmallVector<unsigned, 4> INSERTVALIdx; 4579 Type *CurTy = Agg->getType(); 4580 for (; OpNum != RecSize; ++OpNum) { 4581 bool IsArray = CurTy->isArrayTy(); 4582 bool IsStruct = CurTy->isStructTy(); 4583 uint64_t Index = Record[OpNum]; 4584 4585 if (!IsStruct && !IsArray) 4586 return error("INSERTVAL: Invalid type"); 4587 if ((unsigned)Index != Index) 4588 return error("Invalid value"); 4589 if (IsStruct && Index >= CurTy->subtypes().size()) 4590 return error("INSERTVAL: Invalid struct index"); 4591 if (IsArray && Index >= CurTy->getArrayNumElements()) 4592 return error("INSERTVAL: Invalid array index"); 4593 4594 INSERTVALIdx.push_back((unsigned)Index); 4595 if (IsStruct) 4596 CurTy = CurTy->subtypes()[Index]; 4597 else 4598 CurTy = CurTy->subtypes()[0]; 4599 } 4600 4601 if (CurTy != Val->getType()) 4602 return error("Inserted value type doesn't match aggregate type"); 4603 4604 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4605 InstructionList.push_back(I); 4606 break; 4607 } 4608 4609 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4610 // obsolete form of select 4611 // handles select i1 ... in old bitcode 4612 unsigned OpNum = 0; 4613 Value *TrueVal, *FalseVal, *Cond; 4614 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4615 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4616 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4617 return error("Invalid record"); 4618 4619 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4620 InstructionList.push_back(I); 4621 break; 4622 } 4623 4624 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4625 // new form of select 4626 // handles select i1 or select [N x i1] 4627 unsigned OpNum = 0; 4628 Value *TrueVal, *FalseVal, *Cond; 4629 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4630 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4631 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4632 return error("Invalid record"); 4633 4634 // select condition can be either i1 or [N x i1] 4635 if (VectorType* vector_type = 4636 dyn_cast<VectorType>(Cond->getType())) { 4637 // expect <n x i1> 4638 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4639 return error("Invalid type for value"); 4640 } else { 4641 // expect i1 4642 if (Cond->getType() != Type::getInt1Ty(Context)) 4643 return error("Invalid type for value"); 4644 } 4645 4646 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4647 InstructionList.push_back(I); 4648 break; 4649 } 4650 4651 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4652 unsigned OpNum = 0; 4653 Value *Vec, *Idx; 4654 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4655 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4656 return error("Invalid record"); 4657 if (!Vec->getType()->isVectorTy()) 4658 return error("Invalid type for value"); 4659 I = ExtractElementInst::Create(Vec, Idx); 4660 InstructionList.push_back(I); 4661 break; 4662 } 4663 4664 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4665 unsigned OpNum = 0; 4666 Value *Vec, *Elt, *Idx; 4667 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4668 return error("Invalid record"); 4669 if (!Vec->getType()->isVectorTy()) 4670 return error("Invalid type for value"); 4671 if (popValue(Record, OpNum, NextValueNo, 4672 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4673 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4674 return error("Invalid record"); 4675 I = InsertElementInst::Create(Vec, Elt, Idx); 4676 InstructionList.push_back(I); 4677 break; 4678 } 4679 4680 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4681 unsigned OpNum = 0; 4682 Value *Vec1, *Vec2, *Mask; 4683 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4684 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4685 return error("Invalid record"); 4686 4687 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4688 return error("Invalid record"); 4689 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4690 return error("Invalid type for value"); 4691 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4692 InstructionList.push_back(I); 4693 break; 4694 } 4695 4696 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4697 // Old form of ICmp/FCmp returning bool 4698 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4699 // both legal on vectors but had different behaviour. 4700 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4701 // FCmp/ICmp returning bool or vector of bool 4702 4703 unsigned OpNum = 0; 4704 Value *LHS, *RHS; 4705 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4706 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4707 return error("Invalid record"); 4708 4709 unsigned PredVal = Record[OpNum]; 4710 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4711 FastMathFlags FMF; 4712 if (IsFP && Record.size() > OpNum+1) 4713 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4714 4715 if (OpNum+1 != Record.size()) 4716 return error("Invalid record"); 4717 4718 if (LHS->getType()->isFPOrFPVectorTy()) 4719 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4720 else 4721 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4722 4723 if (FMF.any()) 4724 I->setFastMathFlags(FMF); 4725 InstructionList.push_back(I); 4726 break; 4727 } 4728 4729 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4730 { 4731 unsigned Size = Record.size(); 4732 if (Size == 0) { 4733 I = ReturnInst::Create(Context); 4734 InstructionList.push_back(I); 4735 break; 4736 } 4737 4738 unsigned OpNum = 0; 4739 Value *Op = nullptr; 4740 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4741 return error("Invalid record"); 4742 if (OpNum != Record.size()) 4743 return error("Invalid record"); 4744 4745 I = ReturnInst::Create(Context, Op); 4746 InstructionList.push_back(I); 4747 break; 4748 } 4749 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4750 if (Record.size() != 1 && Record.size() != 3) 4751 return error("Invalid record"); 4752 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4753 if (!TrueDest) 4754 return error("Invalid record"); 4755 4756 if (Record.size() == 1) { 4757 I = BranchInst::Create(TrueDest); 4758 InstructionList.push_back(I); 4759 } 4760 else { 4761 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4762 Value *Cond = getValue(Record, 2, NextValueNo, 4763 Type::getInt1Ty(Context)); 4764 if (!FalseDest || !Cond) 4765 return error("Invalid record"); 4766 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4767 InstructionList.push_back(I); 4768 } 4769 break; 4770 } 4771 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4772 if (Record.size() != 1 && Record.size() != 2) 4773 return error("Invalid record"); 4774 unsigned Idx = 0; 4775 Value *CleanupPad = 4776 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4777 if (!CleanupPad) 4778 return error("Invalid record"); 4779 BasicBlock *UnwindDest = nullptr; 4780 if (Record.size() == 2) { 4781 UnwindDest = getBasicBlock(Record[Idx++]); 4782 if (!UnwindDest) 4783 return error("Invalid record"); 4784 } 4785 4786 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4787 InstructionList.push_back(I); 4788 break; 4789 } 4790 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4791 if (Record.size() != 2) 4792 return error("Invalid record"); 4793 unsigned Idx = 0; 4794 Value *CatchPad = 4795 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4796 if (!CatchPad) 4797 return error("Invalid record"); 4798 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4799 if (!BB) 4800 return error("Invalid record"); 4801 4802 I = CatchReturnInst::Create(CatchPad, BB); 4803 InstructionList.push_back(I); 4804 break; 4805 } 4806 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4807 // We must have, at minimum, the outer scope and the number of arguments. 4808 if (Record.size() < 2) 4809 return error("Invalid record"); 4810 4811 unsigned Idx = 0; 4812 4813 Value *ParentPad = 4814 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4815 4816 unsigned NumHandlers = Record[Idx++]; 4817 4818 SmallVector<BasicBlock *, 2> Handlers; 4819 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4820 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4821 if (!BB) 4822 return error("Invalid record"); 4823 Handlers.push_back(BB); 4824 } 4825 4826 BasicBlock *UnwindDest = nullptr; 4827 if (Idx + 1 == Record.size()) { 4828 UnwindDest = getBasicBlock(Record[Idx++]); 4829 if (!UnwindDest) 4830 return error("Invalid record"); 4831 } 4832 4833 if (Record.size() != Idx) 4834 return error("Invalid record"); 4835 4836 auto *CatchSwitch = 4837 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4838 for (BasicBlock *Handler : Handlers) 4839 CatchSwitch->addHandler(Handler); 4840 I = CatchSwitch; 4841 InstructionList.push_back(I); 4842 break; 4843 } 4844 case bitc::FUNC_CODE_INST_CATCHPAD: 4845 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4846 // We must have, at minimum, the outer scope and the number of arguments. 4847 if (Record.size() < 2) 4848 return error("Invalid record"); 4849 4850 unsigned Idx = 0; 4851 4852 Value *ParentPad = 4853 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4854 4855 unsigned NumArgOperands = Record[Idx++]; 4856 4857 SmallVector<Value *, 2> Args; 4858 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4859 Value *Val; 4860 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4861 return error("Invalid record"); 4862 Args.push_back(Val); 4863 } 4864 4865 if (Record.size() != Idx) 4866 return error("Invalid record"); 4867 4868 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4869 I = CleanupPadInst::Create(ParentPad, Args); 4870 else 4871 I = CatchPadInst::Create(ParentPad, Args); 4872 InstructionList.push_back(I); 4873 break; 4874 } 4875 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4876 // Check magic 4877 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4878 // "New" SwitchInst format with case ranges. The changes to write this 4879 // format were reverted but we still recognize bitcode that uses it. 4880 // Hopefully someday we will have support for case ranges and can use 4881 // this format again. 4882 4883 Type *OpTy = getTypeByID(Record[1]); 4884 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4885 4886 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4887 BasicBlock *Default = getBasicBlock(Record[3]); 4888 if (!OpTy || !Cond || !Default) 4889 return error("Invalid record"); 4890 4891 unsigned NumCases = Record[4]; 4892 4893 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4894 InstructionList.push_back(SI); 4895 4896 unsigned CurIdx = 5; 4897 for (unsigned i = 0; i != NumCases; ++i) { 4898 SmallVector<ConstantInt*, 1> CaseVals; 4899 unsigned NumItems = Record[CurIdx++]; 4900 for (unsigned ci = 0; ci != NumItems; ++ci) { 4901 bool isSingleNumber = Record[CurIdx++]; 4902 4903 APInt Low; 4904 unsigned ActiveWords = 1; 4905 if (ValueBitWidth > 64) 4906 ActiveWords = Record[CurIdx++]; 4907 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4908 ValueBitWidth); 4909 CurIdx += ActiveWords; 4910 4911 if (!isSingleNumber) { 4912 ActiveWords = 1; 4913 if (ValueBitWidth > 64) 4914 ActiveWords = Record[CurIdx++]; 4915 APInt High = readWideAPInt( 4916 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4917 CurIdx += ActiveWords; 4918 4919 // FIXME: It is not clear whether values in the range should be 4920 // compared as signed or unsigned values. The partially 4921 // implemented changes that used this format in the past used 4922 // unsigned comparisons. 4923 for ( ; Low.ule(High); ++Low) 4924 CaseVals.push_back(ConstantInt::get(Context, Low)); 4925 } else 4926 CaseVals.push_back(ConstantInt::get(Context, Low)); 4927 } 4928 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4929 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4930 cve = CaseVals.end(); cvi != cve; ++cvi) 4931 SI->addCase(*cvi, DestBB); 4932 } 4933 I = SI; 4934 break; 4935 } 4936 4937 // Old SwitchInst format without case ranges. 4938 4939 if (Record.size() < 3 || (Record.size() & 1) == 0) 4940 return error("Invalid record"); 4941 Type *OpTy = getTypeByID(Record[0]); 4942 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4943 BasicBlock *Default = getBasicBlock(Record[2]); 4944 if (!OpTy || !Cond || !Default) 4945 return error("Invalid record"); 4946 unsigned NumCases = (Record.size()-3)/2; 4947 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4948 InstructionList.push_back(SI); 4949 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4950 ConstantInt *CaseVal = 4951 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4952 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4953 if (!CaseVal || !DestBB) { 4954 delete SI; 4955 return error("Invalid record"); 4956 } 4957 SI->addCase(CaseVal, DestBB); 4958 } 4959 I = SI; 4960 break; 4961 } 4962 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4963 if (Record.size() < 2) 4964 return error("Invalid record"); 4965 Type *OpTy = getTypeByID(Record[0]); 4966 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4967 if (!OpTy || !Address) 4968 return error("Invalid record"); 4969 unsigned NumDests = Record.size()-2; 4970 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4971 InstructionList.push_back(IBI); 4972 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4973 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4974 IBI->addDestination(DestBB); 4975 } else { 4976 delete IBI; 4977 return error("Invalid record"); 4978 } 4979 } 4980 I = IBI; 4981 break; 4982 } 4983 4984 case bitc::FUNC_CODE_INST_INVOKE: { 4985 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4986 if (Record.size() < 4) 4987 return error("Invalid record"); 4988 unsigned OpNum = 0; 4989 AttributeSet PAL = getAttributes(Record[OpNum++]); 4990 unsigned CCInfo = Record[OpNum++]; 4991 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4992 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4993 4994 FunctionType *FTy = nullptr; 4995 if (CCInfo >> 13 & 1 && 4996 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4997 return error("Explicit invoke type is not a function type"); 4998 4999 Value *Callee; 5000 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5001 return error("Invalid record"); 5002 5003 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 5004 if (!CalleeTy) 5005 return error("Callee is not a pointer"); 5006 if (!FTy) { 5007 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 5008 if (!FTy) 5009 return error("Callee is not of pointer to function type"); 5010 } else if (CalleeTy->getElementType() != FTy) 5011 return error("Explicit invoke type does not match pointee type of " 5012 "callee operand"); 5013 if (Record.size() < FTy->getNumParams() + OpNum) 5014 return error("Insufficient operands to call"); 5015 5016 SmallVector<Value*, 16> Ops; 5017 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5018 Ops.push_back(getValue(Record, OpNum, NextValueNo, 5019 FTy->getParamType(i))); 5020 if (!Ops.back()) 5021 return error("Invalid record"); 5022 } 5023 5024 if (!FTy->isVarArg()) { 5025 if (Record.size() != OpNum) 5026 return error("Invalid record"); 5027 } else { 5028 // Read type/value pairs for varargs params. 5029 while (OpNum != Record.size()) { 5030 Value *Op; 5031 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5032 return error("Invalid record"); 5033 Ops.push_back(Op); 5034 } 5035 } 5036 5037 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5038 OperandBundles.clear(); 5039 InstructionList.push_back(I); 5040 cast<InvokeInst>(I)->setCallingConv( 5041 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5042 cast<InvokeInst>(I)->setAttributes(PAL); 5043 break; 5044 } 5045 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5046 unsigned Idx = 0; 5047 Value *Val = nullptr; 5048 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5049 return error("Invalid record"); 5050 I = ResumeInst::Create(Val); 5051 InstructionList.push_back(I); 5052 break; 5053 } 5054 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5055 I = new UnreachableInst(Context); 5056 InstructionList.push_back(I); 5057 break; 5058 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5059 if (Record.size() < 1 || ((Record.size()-1)&1)) 5060 return error("Invalid record"); 5061 Type *Ty = getTypeByID(Record[0]); 5062 if (!Ty) 5063 return error("Invalid record"); 5064 5065 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5066 InstructionList.push_back(PN); 5067 5068 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5069 Value *V; 5070 // With the new function encoding, it is possible that operands have 5071 // negative IDs (for forward references). Use a signed VBR 5072 // representation to keep the encoding small. 5073 if (UseRelativeIDs) 5074 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5075 else 5076 V = getValue(Record, 1+i, NextValueNo, Ty); 5077 BasicBlock *BB = getBasicBlock(Record[2+i]); 5078 if (!V || !BB) 5079 return error("Invalid record"); 5080 PN->addIncoming(V, BB); 5081 } 5082 I = PN; 5083 break; 5084 } 5085 5086 case bitc::FUNC_CODE_INST_LANDINGPAD: 5087 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5088 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5089 unsigned Idx = 0; 5090 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5091 if (Record.size() < 3) 5092 return error("Invalid record"); 5093 } else { 5094 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5095 if (Record.size() < 4) 5096 return error("Invalid record"); 5097 } 5098 Type *Ty = getTypeByID(Record[Idx++]); 5099 if (!Ty) 5100 return error("Invalid record"); 5101 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5102 Value *PersFn = nullptr; 5103 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5104 return error("Invalid record"); 5105 5106 if (!F->hasPersonalityFn()) 5107 F->setPersonalityFn(cast<Constant>(PersFn)); 5108 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5109 return error("Personality function mismatch"); 5110 } 5111 5112 bool IsCleanup = !!Record[Idx++]; 5113 unsigned NumClauses = Record[Idx++]; 5114 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5115 LP->setCleanup(IsCleanup); 5116 for (unsigned J = 0; J != NumClauses; ++J) { 5117 LandingPadInst::ClauseType CT = 5118 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5119 Value *Val; 5120 5121 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5122 delete LP; 5123 return error("Invalid record"); 5124 } 5125 5126 assert((CT != LandingPadInst::Catch || 5127 !isa<ArrayType>(Val->getType())) && 5128 "Catch clause has a invalid type!"); 5129 assert((CT != LandingPadInst::Filter || 5130 isa<ArrayType>(Val->getType())) && 5131 "Filter clause has invalid type!"); 5132 LP->addClause(cast<Constant>(Val)); 5133 } 5134 5135 I = LP; 5136 InstructionList.push_back(I); 5137 break; 5138 } 5139 5140 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5141 if (Record.size() != 4) 5142 return error("Invalid record"); 5143 uint64_t AlignRecord = Record[3]; 5144 const uint64_t InAllocaMask = uint64_t(1) << 5; 5145 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5146 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5147 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5148 SwiftErrorMask; 5149 bool InAlloca = AlignRecord & InAllocaMask; 5150 bool SwiftError = AlignRecord & SwiftErrorMask; 5151 Type *Ty = getTypeByID(Record[0]); 5152 if ((AlignRecord & ExplicitTypeMask) == 0) { 5153 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5154 if (!PTy) 5155 return error("Old-style alloca with a non-pointer type"); 5156 Ty = PTy->getElementType(); 5157 } 5158 Type *OpTy = getTypeByID(Record[1]); 5159 Value *Size = getFnValueByID(Record[2], OpTy); 5160 unsigned Align; 5161 if (std::error_code EC = 5162 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5163 return EC; 5164 } 5165 if (!Ty || !Size) 5166 return error("Invalid record"); 5167 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5168 AI->setUsedWithInAlloca(InAlloca); 5169 AI->setSwiftError(SwiftError); 5170 I = AI; 5171 InstructionList.push_back(I); 5172 break; 5173 } 5174 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5175 unsigned OpNum = 0; 5176 Value *Op; 5177 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5178 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5179 return error("Invalid record"); 5180 5181 Type *Ty = nullptr; 5182 if (OpNum + 3 == Record.size()) 5183 Ty = getTypeByID(Record[OpNum++]); 5184 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5185 return EC; 5186 if (!Ty) 5187 Ty = cast<PointerType>(Op->getType())->getElementType(); 5188 5189 unsigned Align; 5190 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5191 return EC; 5192 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5193 5194 InstructionList.push_back(I); 5195 break; 5196 } 5197 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5198 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5199 unsigned OpNum = 0; 5200 Value *Op; 5201 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5202 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5203 return error("Invalid record"); 5204 5205 Type *Ty = nullptr; 5206 if (OpNum + 5 == Record.size()) 5207 Ty = getTypeByID(Record[OpNum++]); 5208 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5209 return EC; 5210 if (!Ty) 5211 Ty = cast<PointerType>(Op->getType())->getElementType(); 5212 5213 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5214 if (Ordering == AtomicOrdering::NotAtomic || 5215 Ordering == AtomicOrdering::Release || 5216 Ordering == AtomicOrdering::AcquireRelease) 5217 return error("Invalid record"); 5218 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5219 return error("Invalid record"); 5220 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5221 5222 unsigned Align; 5223 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5224 return EC; 5225 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5226 5227 InstructionList.push_back(I); 5228 break; 5229 } 5230 case bitc::FUNC_CODE_INST_STORE: 5231 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5232 unsigned OpNum = 0; 5233 Value *Val, *Ptr; 5234 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5235 (BitCode == bitc::FUNC_CODE_INST_STORE 5236 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5237 : popValue(Record, OpNum, NextValueNo, 5238 cast<PointerType>(Ptr->getType())->getElementType(), 5239 Val)) || 5240 OpNum + 2 != Record.size()) 5241 return error("Invalid record"); 5242 5243 if (std::error_code EC = 5244 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5245 return EC; 5246 unsigned Align; 5247 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5248 return EC; 5249 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5250 InstructionList.push_back(I); 5251 break; 5252 } 5253 case bitc::FUNC_CODE_INST_STOREATOMIC: 5254 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5255 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5256 unsigned OpNum = 0; 5257 Value *Val, *Ptr; 5258 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5259 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5260 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5261 : popValue(Record, OpNum, NextValueNo, 5262 cast<PointerType>(Ptr->getType())->getElementType(), 5263 Val)) || 5264 OpNum + 4 != Record.size()) 5265 return error("Invalid record"); 5266 5267 if (std::error_code EC = 5268 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5269 return EC; 5270 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5271 if (Ordering == AtomicOrdering::NotAtomic || 5272 Ordering == AtomicOrdering::Acquire || 5273 Ordering == AtomicOrdering::AcquireRelease) 5274 return error("Invalid record"); 5275 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5276 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5277 return error("Invalid record"); 5278 5279 unsigned Align; 5280 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5281 return EC; 5282 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5283 InstructionList.push_back(I); 5284 break; 5285 } 5286 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5287 case bitc::FUNC_CODE_INST_CMPXCHG: { 5288 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5289 // failureordering?, isweak?] 5290 unsigned OpNum = 0; 5291 Value *Ptr, *Cmp, *New; 5292 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5293 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5294 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5295 : popValue(Record, OpNum, NextValueNo, 5296 cast<PointerType>(Ptr->getType())->getElementType(), 5297 Cmp)) || 5298 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5299 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5300 return error("Invalid record"); 5301 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5302 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5303 SuccessOrdering == AtomicOrdering::Unordered) 5304 return error("Invalid record"); 5305 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5306 5307 if (std::error_code EC = 5308 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5309 return EC; 5310 AtomicOrdering FailureOrdering; 5311 if (Record.size() < 7) 5312 FailureOrdering = 5313 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5314 else 5315 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5316 5317 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5318 SynchScope); 5319 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5320 5321 if (Record.size() < 8) { 5322 // Before weak cmpxchgs existed, the instruction simply returned the 5323 // value loaded from memory, so bitcode files from that era will be 5324 // expecting the first component of a modern cmpxchg. 5325 CurBB->getInstList().push_back(I); 5326 I = ExtractValueInst::Create(I, 0); 5327 } else { 5328 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5329 } 5330 5331 InstructionList.push_back(I); 5332 break; 5333 } 5334 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5335 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5336 unsigned OpNum = 0; 5337 Value *Ptr, *Val; 5338 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5339 popValue(Record, OpNum, NextValueNo, 5340 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5341 OpNum+4 != Record.size()) 5342 return error("Invalid record"); 5343 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5344 if (Operation < AtomicRMWInst::FIRST_BINOP || 5345 Operation > AtomicRMWInst::LAST_BINOP) 5346 return error("Invalid record"); 5347 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5348 if (Ordering == AtomicOrdering::NotAtomic || 5349 Ordering == AtomicOrdering::Unordered) 5350 return error("Invalid record"); 5351 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5352 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5353 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5354 InstructionList.push_back(I); 5355 break; 5356 } 5357 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5358 if (2 != Record.size()) 5359 return error("Invalid record"); 5360 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5361 if (Ordering == AtomicOrdering::NotAtomic || 5362 Ordering == AtomicOrdering::Unordered || 5363 Ordering == AtomicOrdering::Monotonic) 5364 return error("Invalid record"); 5365 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5366 I = new FenceInst(Context, Ordering, SynchScope); 5367 InstructionList.push_back(I); 5368 break; 5369 } 5370 case bitc::FUNC_CODE_INST_CALL: { 5371 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5372 if (Record.size() < 3) 5373 return error("Invalid record"); 5374 5375 unsigned OpNum = 0; 5376 AttributeSet PAL = getAttributes(Record[OpNum++]); 5377 unsigned CCInfo = Record[OpNum++]; 5378 5379 FastMathFlags FMF; 5380 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5381 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5382 if (!FMF.any()) 5383 return error("Fast math flags indicator set for call with no FMF"); 5384 } 5385 5386 FunctionType *FTy = nullptr; 5387 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5388 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5389 return error("Explicit call type is not a function type"); 5390 5391 Value *Callee; 5392 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5393 return error("Invalid record"); 5394 5395 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5396 if (!OpTy) 5397 return error("Callee is not a pointer type"); 5398 if (!FTy) { 5399 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5400 if (!FTy) 5401 return error("Callee is not of pointer to function type"); 5402 } else if (OpTy->getElementType() != FTy) 5403 return error("Explicit call type does not match pointee type of " 5404 "callee operand"); 5405 if (Record.size() < FTy->getNumParams() + OpNum) 5406 return error("Insufficient operands to call"); 5407 5408 SmallVector<Value*, 16> Args; 5409 // Read the fixed params. 5410 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5411 if (FTy->getParamType(i)->isLabelTy()) 5412 Args.push_back(getBasicBlock(Record[OpNum])); 5413 else 5414 Args.push_back(getValue(Record, OpNum, NextValueNo, 5415 FTy->getParamType(i))); 5416 if (!Args.back()) 5417 return error("Invalid record"); 5418 } 5419 5420 // Read type/value pairs for varargs params. 5421 if (!FTy->isVarArg()) { 5422 if (OpNum != Record.size()) 5423 return error("Invalid record"); 5424 } else { 5425 while (OpNum != Record.size()) { 5426 Value *Op; 5427 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5428 return error("Invalid record"); 5429 Args.push_back(Op); 5430 } 5431 } 5432 5433 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5434 OperandBundles.clear(); 5435 InstructionList.push_back(I); 5436 cast<CallInst>(I)->setCallingConv( 5437 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5438 CallInst::TailCallKind TCK = CallInst::TCK_None; 5439 if (CCInfo & 1 << bitc::CALL_TAIL) 5440 TCK = CallInst::TCK_Tail; 5441 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5442 TCK = CallInst::TCK_MustTail; 5443 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5444 TCK = CallInst::TCK_NoTail; 5445 cast<CallInst>(I)->setTailCallKind(TCK); 5446 cast<CallInst>(I)->setAttributes(PAL); 5447 if (FMF.any()) { 5448 if (!isa<FPMathOperator>(I)) 5449 return error("Fast-math-flags specified for call without " 5450 "floating-point scalar or vector return type"); 5451 I->setFastMathFlags(FMF); 5452 } 5453 break; 5454 } 5455 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5456 if (Record.size() < 3) 5457 return error("Invalid record"); 5458 Type *OpTy = getTypeByID(Record[0]); 5459 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5460 Type *ResTy = getTypeByID(Record[2]); 5461 if (!OpTy || !Op || !ResTy) 5462 return error("Invalid record"); 5463 I = new VAArgInst(Op, ResTy); 5464 InstructionList.push_back(I); 5465 break; 5466 } 5467 5468 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5469 // A call or an invoke can be optionally prefixed with some variable 5470 // number of operand bundle blocks. These blocks are read into 5471 // OperandBundles and consumed at the next call or invoke instruction. 5472 5473 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5474 return error("Invalid record"); 5475 5476 std::vector<Value *> Inputs; 5477 5478 unsigned OpNum = 1; 5479 while (OpNum != Record.size()) { 5480 Value *Op; 5481 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5482 return error("Invalid record"); 5483 Inputs.push_back(Op); 5484 } 5485 5486 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5487 continue; 5488 } 5489 } 5490 5491 // Add instruction to end of current BB. If there is no current BB, reject 5492 // this file. 5493 if (!CurBB) { 5494 delete I; 5495 return error("Invalid instruction with no BB"); 5496 } 5497 if (!OperandBundles.empty()) { 5498 delete I; 5499 return error("Operand bundles found with no consumer"); 5500 } 5501 CurBB->getInstList().push_back(I); 5502 5503 // If this was a terminator instruction, move to the next block. 5504 if (isa<TerminatorInst>(I)) { 5505 ++CurBBNo; 5506 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5507 } 5508 5509 // Non-void values get registered in the value table for future use. 5510 if (I && !I->getType()->isVoidTy()) 5511 ValueList.assignValue(I, NextValueNo++); 5512 } 5513 5514 OutOfRecordLoop: 5515 5516 if (!OperandBundles.empty()) 5517 return error("Operand bundles found with no consumer"); 5518 5519 // Check the function list for unresolved values. 5520 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5521 if (!A->getParent()) { 5522 // We found at least one unresolved value. Nuke them all to avoid leaks. 5523 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5524 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5525 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5526 delete A; 5527 } 5528 } 5529 return error("Never resolved value found in function"); 5530 } 5531 } 5532 5533 // Unexpected unresolved metadata about to be dropped. 5534 if (MetadataList.hasFwdRefs()) 5535 return error("Invalid function metadata: outgoing forward refs"); 5536 5537 // Trim the value list down to the size it was before we parsed this function. 5538 ValueList.shrinkTo(ModuleValueListSize); 5539 MetadataList.shrinkTo(ModuleMetadataListSize); 5540 std::vector<BasicBlock*>().swap(FunctionBBs); 5541 return std::error_code(); 5542 } 5543 5544 /// Find the function body in the bitcode stream 5545 std::error_code BitcodeReader::findFunctionInStream( 5546 Function *F, 5547 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5548 while (DeferredFunctionInfoIterator->second == 0) { 5549 // This is the fallback handling for the old format bitcode that 5550 // didn't contain the function index in the VST, or when we have 5551 // an anonymous function which would not have a VST entry. 5552 // Assert that we have one of those two cases. 5553 assert(VSTOffset == 0 || !F->hasName()); 5554 // Parse the next body in the stream and set its position in the 5555 // DeferredFunctionInfo map. 5556 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5557 return EC; 5558 } 5559 return std::error_code(); 5560 } 5561 5562 //===----------------------------------------------------------------------===// 5563 // GVMaterializer implementation 5564 //===----------------------------------------------------------------------===// 5565 5566 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5567 5568 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5569 Function *F = dyn_cast<Function>(GV); 5570 // If it's not a function or is already material, ignore the request. 5571 if (!F || !F->isMaterializable()) 5572 return std::error_code(); 5573 5574 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5575 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5576 // If its position is recorded as 0, its body is somewhere in the stream 5577 // but we haven't seen it yet. 5578 if (DFII->second == 0) 5579 if (std::error_code EC = findFunctionInStream(F, DFII)) 5580 return EC; 5581 5582 // Materialize metadata before parsing any function bodies. 5583 if (std::error_code EC = materializeMetadata()) 5584 return EC; 5585 5586 // Move the bit stream to the saved position of the deferred function body. 5587 Stream.JumpToBit(DFII->second); 5588 5589 if (std::error_code EC = parseFunctionBody(F)) 5590 return EC; 5591 F->setIsMaterializable(false); 5592 5593 if (StripDebugInfo) 5594 stripDebugInfo(*F); 5595 5596 // Upgrade any old intrinsic calls in the function. 5597 for (auto &I : UpgradedIntrinsics) { 5598 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5599 UI != UE;) { 5600 User *U = *UI; 5601 ++UI; 5602 if (CallInst *CI = dyn_cast<CallInst>(U)) 5603 UpgradeIntrinsicCall(CI, I.second); 5604 } 5605 } 5606 5607 // Finish fn->subprogram upgrade for materialized functions. 5608 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5609 F->setSubprogram(SP); 5610 5611 // Bring in any functions that this function forward-referenced via 5612 // blockaddresses. 5613 return materializeForwardReferencedFunctions(); 5614 } 5615 5616 std::error_code BitcodeReader::materializeModule() { 5617 if (std::error_code EC = materializeMetadata()) 5618 return EC; 5619 5620 // Promise to materialize all forward references. 5621 WillMaterializeAllForwardRefs = true; 5622 5623 // Iterate over the module, deserializing any functions that are still on 5624 // disk. 5625 for (Function &F : *TheModule) { 5626 if (std::error_code EC = materialize(&F)) 5627 return EC; 5628 } 5629 // At this point, if there are any function bodies, parse the rest of 5630 // the bits in the module past the last function block we have recorded 5631 // through either lazy scanning or the VST. 5632 if (LastFunctionBlockBit || NextUnreadBit) 5633 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5634 : NextUnreadBit); 5635 5636 // Check that all block address forward references got resolved (as we 5637 // promised above). 5638 if (!BasicBlockFwdRefs.empty()) 5639 return error("Never resolved function from blockaddress"); 5640 5641 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5642 // to prevent this instructions with TBAA tags should be upgraded first. 5643 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5644 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5645 5646 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5647 // delete the old functions to clean up. We can't do this unless the entire 5648 // module is materialized because there could always be another function body 5649 // with calls to the old function. 5650 for (auto &I : UpgradedIntrinsics) { 5651 for (auto *U : I.first->users()) { 5652 if (CallInst *CI = dyn_cast<CallInst>(U)) 5653 UpgradeIntrinsicCall(CI, I.second); 5654 } 5655 if (!I.first->use_empty()) 5656 I.first->replaceAllUsesWith(I.second); 5657 I.first->eraseFromParent(); 5658 } 5659 UpgradedIntrinsics.clear(); 5660 5661 UpgradeDebugInfo(*TheModule); 5662 5663 UpgradeModuleFlags(*TheModule); 5664 return std::error_code(); 5665 } 5666 5667 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5668 return IdentifiedStructTypes; 5669 } 5670 5671 std::error_code 5672 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5673 if (Streamer) 5674 return initLazyStream(std::move(Streamer)); 5675 return initStreamFromBuffer(); 5676 } 5677 5678 std::error_code BitcodeReader::initStreamFromBuffer() { 5679 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5680 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5681 5682 if (Buffer->getBufferSize() & 3) 5683 return error("Invalid bitcode signature"); 5684 5685 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5686 // The magic number is 0x0B17C0DE stored in little endian. 5687 if (isBitcodeWrapper(BufPtr, BufEnd)) 5688 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5689 return error("Invalid bitcode wrapper header"); 5690 5691 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5692 Stream.init(&*StreamFile); 5693 5694 return std::error_code(); 5695 } 5696 5697 std::error_code 5698 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5699 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5700 // see it. 5701 auto OwnedBytes = 5702 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5703 StreamingMemoryObject &Bytes = *OwnedBytes; 5704 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5705 Stream.init(&*StreamFile); 5706 5707 unsigned char buf[16]; 5708 if (Bytes.readBytes(buf, 16, 0) != 16) 5709 return error("Invalid bitcode signature"); 5710 5711 if (!isBitcode(buf, buf + 16)) 5712 return error("Invalid bitcode signature"); 5713 5714 if (isBitcodeWrapper(buf, buf + 4)) { 5715 const unsigned char *bitcodeStart = buf; 5716 const unsigned char *bitcodeEnd = buf + 16; 5717 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5718 Bytes.dropLeadingBytes(bitcodeStart - buf); 5719 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5720 } 5721 return std::error_code(); 5722 } 5723 5724 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5725 const Twine &Message) { 5726 return ::error(DiagnosticHandler, make_error_code(E), Message); 5727 } 5728 5729 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5730 return ::error(DiagnosticHandler, 5731 make_error_code(BitcodeError::CorruptedBitcode), Message); 5732 } 5733 5734 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5735 return ::error(DiagnosticHandler, make_error_code(E)); 5736 } 5737 5738 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5739 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5740 bool CheckGlobalValSummaryPresenceOnly) 5741 : DiagnosticHandler(std::move(DiagnosticHandler)), Buffer(Buffer), 5742 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5743 5744 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5745 DiagnosticHandlerFunction DiagnosticHandler, 5746 bool CheckGlobalValSummaryPresenceOnly) 5747 : DiagnosticHandler(std::move(DiagnosticHandler)), Buffer(nullptr), 5748 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5749 5750 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5751 5752 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5753 5754 std::pair<GlobalValue::GUID, GlobalValue::GUID> 5755 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5756 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5757 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5758 return VGI->second; 5759 } 5760 5761 // Specialized value symbol table parser used when reading module index 5762 // blocks where we don't actually create global values. The parsed information 5763 // is saved in the bitcode reader for use when later parsing summaries. 5764 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5765 uint64_t Offset, 5766 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5767 assert(Offset > 0 && "Expected non-zero VST offset"); 5768 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5769 5770 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5771 return error("Invalid record"); 5772 5773 SmallVector<uint64_t, 64> Record; 5774 5775 // Read all the records for this value table. 5776 SmallString<128> ValueName; 5777 while (1) { 5778 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5779 5780 switch (Entry.Kind) { 5781 case BitstreamEntry::SubBlock: // Handled for us already. 5782 case BitstreamEntry::Error: 5783 return error("Malformed block"); 5784 case BitstreamEntry::EndBlock: 5785 // Done parsing VST, jump back to wherever we came from. 5786 Stream.JumpToBit(CurrentBit); 5787 return std::error_code(); 5788 case BitstreamEntry::Record: 5789 // The interesting case. 5790 break; 5791 } 5792 5793 // Read a record. 5794 Record.clear(); 5795 switch (Stream.readRecord(Entry.ID, Record)) { 5796 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5797 break; 5798 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5799 if (convertToString(Record, 1, ValueName)) 5800 return error("Invalid record"); 5801 unsigned ValueID = Record[0]; 5802 assert(!SourceFileName.empty()); 5803 auto VLI = ValueIdToLinkageMap.find(ValueID); 5804 assert(VLI != ValueIdToLinkageMap.end() && 5805 "No linkage found for VST entry?"); 5806 auto Linkage = VLI->second; 5807 std::string GlobalId = 5808 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5809 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5810 auto OriginalNameID = ValueGUID; 5811 if (GlobalValue::isLocalLinkage(Linkage)) 5812 OriginalNameID = GlobalValue::getGUID(ValueName); 5813 if (PrintSummaryGUIDs) 5814 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5815 << ValueName << "\n"; 5816 ValueIdToCallGraphGUIDMap[ValueID] = 5817 std::make_pair(ValueGUID, OriginalNameID); 5818 ValueName.clear(); 5819 break; 5820 } 5821 case bitc::VST_CODE_FNENTRY: { 5822 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5823 if (convertToString(Record, 2, ValueName)) 5824 return error("Invalid record"); 5825 unsigned ValueID = Record[0]; 5826 assert(!SourceFileName.empty()); 5827 auto VLI = ValueIdToLinkageMap.find(ValueID); 5828 assert(VLI != ValueIdToLinkageMap.end() && 5829 "No linkage found for VST entry?"); 5830 auto Linkage = VLI->second; 5831 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5832 ValueName, VLI->second, SourceFileName); 5833 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5834 auto OriginalNameID = FunctionGUID; 5835 if (GlobalValue::isLocalLinkage(Linkage)) 5836 OriginalNameID = GlobalValue::getGUID(ValueName); 5837 if (PrintSummaryGUIDs) 5838 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 5839 << ValueName << "\n"; 5840 ValueIdToCallGraphGUIDMap[ValueID] = 5841 std::make_pair(FunctionGUID, OriginalNameID); 5842 5843 ValueName.clear(); 5844 break; 5845 } 5846 case bitc::VST_CODE_COMBINED_ENTRY: { 5847 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5848 unsigned ValueID = Record[0]; 5849 GlobalValue::GUID RefGUID = Record[1]; 5850 // The "original name", which is the second value of the pair will be 5851 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5852 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 5853 break; 5854 } 5855 } 5856 } 5857 } 5858 5859 // Parse just the blocks needed for building the index out of the module. 5860 // At the end of this routine the module Index is populated with a map 5861 // from global value id to GlobalValueSummary objects. 5862 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5863 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5864 return error("Invalid record"); 5865 5866 SmallVector<uint64_t, 64> Record; 5867 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5868 unsigned ValueId = 0; 5869 5870 // Read the index for this module. 5871 while (1) { 5872 BitstreamEntry Entry = Stream.advance(); 5873 5874 switch (Entry.Kind) { 5875 case BitstreamEntry::Error: 5876 return error("Malformed block"); 5877 case BitstreamEntry::EndBlock: 5878 return std::error_code(); 5879 5880 case BitstreamEntry::SubBlock: 5881 if (CheckGlobalValSummaryPresenceOnly) { 5882 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5883 SeenGlobalValSummary = true; 5884 // No need to parse the rest since we found the summary. 5885 return std::error_code(); 5886 } 5887 if (Stream.SkipBlock()) 5888 return error("Invalid record"); 5889 continue; 5890 } 5891 switch (Entry.ID) { 5892 default: // Skip unknown content. 5893 if (Stream.SkipBlock()) 5894 return error("Invalid record"); 5895 break; 5896 case bitc::BLOCKINFO_BLOCK_ID: 5897 // Need to parse these to get abbrev ids (e.g. for VST) 5898 if (Stream.ReadBlockInfoBlock()) 5899 return error("Malformed block"); 5900 break; 5901 case bitc::VALUE_SYMTAB_BLOCK_ID: 5902 // Should have been parsed earlier via VSTOffset, unless there 5903 // is no summary section. 5904 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5905 !SeenGlobalValSummary) && 5906 "Expected early VST parse via VSTOffset record"); 5907 if (Stream.SkipBlock()) 5908 return error("Invalid record"); 5909 break; 5910 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5911 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5912 assert(!SeenValueSymbolTable && 5913 "Already read VST when parsing summary block?"); 5914 if (std::error_code EC = 5915 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5916 return EC; 5917 SeenValueSymbolTable = true; 5918 SeenGlobalValSummary = true; 5919 if (std::error_code EC = parseEntireSummary()) 5920 return EC; 5921 break; 5922 case bitc::MODULE_STRTAB_BLOCK_ID: 5923 if (std::error_code EC = parseModuleStringTable()) 5924 return EC; 5925 break; 5926 } 5927 continue; 5928 5929 case BitstreamEntry::Record: { 5930 Record.clear(); 5931 auto BitCode = Stream.readRecord(Entry.ID, Record); 5932 switch (BitCode) { 5933 default: 5934 break; // Default behavior, ignore unknown content. 5935 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5936 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5937 SmallString<128> ValueName; 5938 if (convertToString(Record, 0, ValueName)) 5939 return error("Invalid record"); 5940 SourceFileName = ValueName.c_str(); 5941 break; 5942 } 5943 /// MODULE_CODE_HASH: [5*i32] 5944 case bitc::MODULE_CODE_HASH: { 5945 if (Record.size() != 5) 5946 return error("Invalid hash length " + Twine(Record.size()).str()); 5947 if (!TheIndex) 5948 break; 5949 if (TheIndex->modulePaths().empty()) 5950 // Does not have any summary emitted. 5951 break; 5952 if (TheIndex->modulePaths().size() != 1) 5953 return error("Don't expect multiple modules defined?"); 5954 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5955 int Pos = 0; 5956 for (auto &Val : Record) { 5957 assert(!(Val >> 32) && "Unexpected high bits set"); 5958 Hash[Pos++] = Val; 5959 } 5960 break; 5961 } 5962 /// MODULE_CODE_VSTOFFSET: [offset] 5963 case bitc::MODULE_CODE_VSTOFFSET: 5964 if (Record.size() < 1) 5965 return error("Invalid record"); 5966 VSTOffset = Record[0]; 5967 break; 5968 // GLOBALVAR: [pointer type, isconst, initid, 5969 // linkage, alignment, section, visibility, threadlocal, 5970 // unnamed_addr, externally_initialized, dllstorageclass, 5971 // comdat] 5972 case bitc::MODULE_CODE_GLOBALVAR: { 5973 if (Record.size() < 6) 5974 return error("Invalid record"); 5975 uint64_t RawLinkage = Record[3]; 5976 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5977 ValueIdToLinkageMap[ValueId++] = Linkage; 5978 break; 5979 } 5980 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5981 // alignment, section, visibility, gc, unnamed_addr, 5982 // prologuedata, dllstorageclass, comdat, prefixdata] 5983 case bitc::MODULE_CODE_FUNCTION: { 5984 if (Record.size() < 8) 5985 return error("Invalid record"); 5986 uint64_t RawLinkage = Record[3]; 5987 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5988 ValueIdToLinkageMap[ValueId++] = Linkage; 5989 break; 5990 } 5991 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5992 // dllstorageclass] 5993 case bitc::MODULE_CODE_ALIAS: { 5994 if (Record.size() < 6) 5995 return error("Invalid record"); 5996 uint64_t RawLinkage = Record[3]; 5997 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5998 ValueIdToLinkageMap[ValueId++] = Linkage; 5999 break; 6000 } 6001 } 6002 } 6003 continue; 6004 } 6005 } 6006 } 6007 6008 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6009 // objects in the index. 6010 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 6011 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 6012 return error("Invalid record"); 6013 SmallVector<uint64_t, 64> Record; 6014 6015 // Parse version 6016 { 6017 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6018 if (Entry.Kind != BitstreamEntry::Record) 6019 return error("Invalid Summary Block: record for version expected"); 6020 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 6021 return error("Invalid Summary Block: version expected"); 6022 } 6023 const uint64_t Version = Record[0]; 6024 if (Version != 1) 6025 return error("Invalid summary version " + Twine(Version) + ", 1 expected"); 6026 Record.clear(); 6027 6028 // Keep around the last seen summary to be used when we see an optional 6029 // "OriginalName" attachement. 6030 GlobalValueSummary *LastSeenSummary = nullptr; 6031 bool Combined = false; 6032 while (1) { 6033 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6034 6035 switch (Entry.Kind) { 6036 case BitstreamEntry::SubBlock: // Handled for us already. 6037 case BitstreamEntry::Error: 6038 return error("Malformed block"); 6039 case BitstreamEntry::EndBlock: 6040 // For a per-module index, remove any entries that still have empty 6041 // summaries. The VST parsing creates entries eagerly for all symbols, 6042 // but not all have associated summaries (e.g. it doesn't know how to 6043 // distinguish between VST_CODE_ENTRY for function declarations vs global 6044 // variables with initializers that end up with a summary). Remove those 6045 // entries now so that we don't need to rely on the combined index merger 6046 // to clean them up (especially since that may not run for the first 6047 // module's index if we merge into that). 6048 if (!Combined) 6049 TheIndex->removeEmptySummaryEntries(); 6050 return std::error_code(); 6051 case BitstreamEntry::Record: 6052 // The interesting case. 6053 break; 6054 } 6055 6056 // Read a record. The record format depends on whether this 6057 // is a per-module index or a combined index file. In the per-module 6058 // case the records contain the associated value's ID for correlation 6059 // with VST entries. In the combined index the correlation is done 6060 // via the bitcode offset of the summary records (which were saved 6061 // in the combined index VST entries). The records also contain 6062 // information used for ThinLTO renaming and importing. 6063 Record.clear(); 6064 auto BitCode = Stream.readRecord(Entry.ID, Record); 6065 switch (BitCode) { 6066 default: // Default behavior: ignore. 6067 break; 6068 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6069 // n x (valueid, callsitecount)] 6070 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6071 // numrefs x valueid, 6072 // n x (valueid, callsitecount, profilecount)] 6073 case bitc::FS_PERMODULE: 6074 case bitc::FS_PERMODULE_PROFILE: { 6075 unsigned ValueID = Record[0]; 6076 uint64_t RawFlags = Record[1]; 6077 unsigned InstCount = Record[2]; 6078 unsigned NumRefs = Record[3]; 6079 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6080 std::unique_ptr<FunctionSummary> FS = 6081 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6082 // The module path string ref set in the summary must be owned by the 6083 // index's module string table. Since we don't have a module path 6084 // string table section in the per-module index, we create a single 6085 // module path string table entry with an empty (0) ID to take 6086 // ownership. 6087 FS->setModulePath( 6088 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6089 static int RefListStartIndex = 4; 6090 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6091 assert(Record.size() >= RefListStartIndex + NumRefs && 6092 "Record size inconsistent with number of references"); 6093 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6094 unsigned RefValueId = Record[I]; 6095 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6096 FS->addRefEdge(RefGUID); 6097 } 6098 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6099 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6100 ++I) { 6101 unsigned CalleeValueId = Record[I]; 6102 unsigned CallsiteCount = Record[++I]; 6103 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6104 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6105 FS->addCallGraphEdge(CalleeGUID, 6106 CalleeInfo(CallsiteCount, ProfileCount)); 6107 } 6108 auto GUID = getGUIDFromValueId(ValueID); 6109 FS->setOriginalName(GUID.second); 6110 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6111 break; 6112 } 6113 // FS_ALIAS: [valueid, flags, valueid] 6114 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6115 // they expect all aliasee summaries to be available. 6116 case bitc::FS_ALIAS: { 6117 unsigned ValueID = Record[0]; 6118 uint64_t RawFlags = Record[1]; 6119 unsigned AliaseeID = Record[2]; 6120 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6121 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6122 // The module path string ref set in the summary must be owned by the 6123 // index's module string table. Since we don't have a module path 6124 // string table section in the per-module index, we create a single 6125 // module path string table entry with an empty (0) ID to take 6126 // ownership. 6127 AS->setModulePath( 6128 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6129 6130 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6131 auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID); 6132 if (!AliaseeSummary) 6133 return error("Alias expects aliasee summary to be parsed"); 6134 AS->setAliasee(AliaseeSummary); 6135 6136 auto GUID = getGUIDFromValueId(ValueID); 6137 AS->setOriginalName(GUID.second); 6138 TheIndex->addGlobalValueSummary(GUID.first, std::move(AS)); 6139 break; 6140 } 6141 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6142 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6143 unsigned ValueID = Record[0]; 6144 uint64_t RawFlags = Record[1]; 6145 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6146 std::unique_ptr<GlobalVarSummary> FS = 6147 llvm::make_unique<GlobalVarSummary>(Flags); 6148 FS->setModulePath( 6149 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6150 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6151 unsigned RefValueId = Record[I]; 6152 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6153 FS->addRefEdge(RefGUID); 6154 } 6155 auto GUID = getGUIDFromValueId(ValueID); 6156 FS->setOriginalName(GUID.second); 6157 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6158 break; 6159 } 6160 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 6161 // numrefs x valueid, n x (valueid, callsitecount)] 6162 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 6163 // numrefs x valueid, 6164 // n x (valueid, callsitecount, profilecount)] 6165 case bitc::FS_COMBINED: 6166 case bitc::FS_COMBINED_PROFILE: { 6167 unsigned ValueID = Record[0]; 6168 uint64_t ModuleId = Record[1]; 6169 uint64_t RawFlags = Record[2]; 6170 unsigned InstCount = Record[3]; 6171 unsigned NumRefs = Record[4]; 6172 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6173 std::unique_ptr<FunctionSummary> FS = 6174 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6175 LastSeenSummary = FS.get(); 6176 FS->setModulePath(ModuleIdMap[ModuleId]); 6177 static int RefListStartIndex = 5; 6178 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6179 assert(Record.size() >= RefListStartIndex + NumRefs && 6180 "Record size inconsistent with number of references"); 6181 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 6182 ++I) { 6183 unsigned RefValueId = Record[I]; 6184 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6185 FS->addRefEdge(RefGUID); 6186 } 6187 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6188 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6189 ++I) { 6190 unsigned CalleeValueId = Record[I]; 6191 unsigned CallsiteCount = Record[++I]; 6192 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6193 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6194 FS->addCallGraphEdge(CalleeGUID, 6195 CalleeInfo(CallsiteCount, ProfileCount)); 6196 } 6197 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6198 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6199 Combined = true; 6200 break; 6201 } 6202 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6203 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6204 // they expect all aliasee summaries to be available. 6205 case bitc::FS_COMBINED_ALIAS: { 6206 unsigned ValueID = Record[0]; 6207 uint64_t ModuleId = Record[1]; 6208 uint64_t RawFlags = Record[2]; 6209 unsigned AliaseeValueId = Record[3]; 6210 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6211 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6212 LastSeenSummary = AS.get(); 6213 AS->setModulePath(ModuleIdMap[ModuleId]); 6214 6215 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 6216 auto AliaseeInModule = 6217 TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath()); 6218 if (!AliaseeInModule) 6219 return error("Alias expects aliasee summary to be parsed"); 6220 AS->setAliasee(AliaseeInModule); 6221 6222 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6223 TheIndex->addGlobalValueSummary(GUID, std::move(AS)); 6224 Combined = true; 6225 break; 6226 } 6227 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6228 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6229 unsigned ValueID = Record[0]; 6230 uint64_t ModuleId = Record[1]; 6231 uint64_t RawFlags = Record[2]; 6232 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6233 std::unique_ptr<GlobalVarSummary> FS = 6234 llvm::make_unique<GlobalVarSummary>(Flags); 6235 LastSeenSummary = FS.get(); 6236 FS->setModulePath(ModuleIdMap[ModuleId]); 6237 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 6238 unsigned RefValueId = Record[I]; 6239 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6240 FS->addRefEdge(RefGUID); 6241 } 6242 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6243 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6244 Combined = true; 6245 break; 6246 } 6247 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6248 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6249 uint64_t OriginalName = Record[0]; 6250 if (!LastSeenSummary) 6251 return error("Name attachment that does not follow a combined record"); 6252 LastSeenSummary->setOriginalName(OriginalName); 6253 // Reset the LastSeenSummary 6254 LastSeenSummary = nullptr; 6255 } 6256 } 6257 } 6258 llvm_unreachable("Exit infinite loop"); 6259 } 6260 6261 // Parse the module string table block into the Index. 6262 // This populates the ModulePathStringTable map in the index. 6263 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6264 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6265 return error("Invalid record"); 6266 6267 SmallVector<uint64_t, 64> Record; 6268 6269 SmallString<128> ModulePath; 6270 ModulePathStringTableTy::iterator LastSeenModulePath; 6271 while (1) { 6272 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6273 6274 switch (Entry.Kind) { 6275 case BitstreamEntry::SubBlock: // Handled for us already. 6276 case BitstreamEntry::Error: 6277 return error("Malformed block"); 6278 case BitstreamEntry::EndBlock: 6279 return std::error_code(); 6280 case BitstreamEntry::Record: 6281 // The interesting case. 6282 break; 6283 } 6284 6285 Record.clear(); 6286 switch (Stream.readRecord(Entry.ID, Record)) { 6287 default: // Default behavior: ignore. 6288 break; 6289 case bitc::MST_CODE_ENTRY: { 6290 // MST_ENTRY: [modid, namechar x N] 6291 uint64_t ModuleId = Record[0]; 6292 6293 if (convertToString(Record, 1, ModulePath)) 6294 return error("Invalid record"); 6295 6296 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6297 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6298 6299 ModulePath.clear(); 6300 break; 6301 } 6302 /// MST_CODE_HASH: [5*i32] 6303 case bitc::MST_CODE_HASH: { 6304 if (Record.size() != 5) 6305 return error("Invalid hash length " + Twine(Record.size()).str()); 6306 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6307 return error("Invalid hash that does not follow a module path"); 6308 int Pos = 0; 6309 for (auto &Val : Record) { 6310 assert(!(Val >> 32) && "Unexpected high bits set"); 6311 LastSeenModulePath->second.second[Pos++] = Val; 6312 } 6313 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6314 LastSeenModulePath = TheIndex->modulePaths().end(); 6315 break; 6316 } 6317 } 6318 } 6319 llvm_unreachable("Exit infinite loop"); 6320 } 6321 6322 // Parse the function info index from the bitcode streamer into the given index. 6323 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6324 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6325 TheIndex = I; 6326 6327 if (std::error_code EC = initStream(std::move(Streamer))) 6328 return EC; 6329 6330 // Sniff for the signature. 6331 if (!hasValidBitcodeHeader(Stream)) 6332 return error("Invalid bitcode signature"); 6333 6334 // We expect a number of well-defined blocks, though we don't necessarily 6335 // need to understand them all. 6336 while (1) { 6337 if (Stream.AtEndOfStream()) { 6338 // We didn't really read a proper Module block. 6339 return error("Malformed block"); 6340 } 6341 6342 BitstreamEntry Entry = 6343 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6344 6345 if (Entry.Kind != BitstreamEntry::SubBlock) 6346 return error("Malformed block"); 6347 6348 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6349 // building the function summary index. 6350 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6351 return parseModule(); 6352 6353 if (Stream.SkipBlock()) 6354 return error("Invalid record"); 6355 } 6356 } 6357 6358 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6359 std::unique_ptr<DataStreamer> Streamer) { 6360 if (Streamer) 6361 return initLazyStream(std::move(Streamer)); 6362 return initStreamFromBuffer(); 6363 } 6364 6365 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6366 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6367 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6368 6369 if (Buffer->getBufferSize() & 3) 6370 return error("Invalid bitcode signature"); 6371 6372 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6373 // The magic number is 0x0B17C0DE stored in little endian. 6374 if (isBitcodeWrapper(BufPtr, BufEnd)) 6375 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6376 return error("Invalid bitcode wrapper header"); 6377 6378 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6379 Stream.init(&*StreamFile); 6380 6381 return std::error_code(); 6382 } 6383 6384 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6385 std::unique_ptr<DataStreamer> Streamer) { 6386 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6387 // see it. 6388 auto OwnedBytes = 6389 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6390 StreamingMemoryObject &Bytes = *OwnedBytes; 6391 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6392 Stream.init(&*StreamFile); 6393 6394 unsigned char buf[16]; 6395 if (Bytes.readBytes(buf, 16, 0) != 16) 6396 return error("Invalid bitcode signature"); 6397 6398 if (!isBitcode(buf, buf + 16)) 6399 return error("Invalid bitcode signature"); 6400 6401 if (isBitcodeWrapper(buf, buf + 4)) { 6402 const unsigned char *bitcodeStart = buf; 6403 const unsigned char *bitcodeEnd = buf + 16; 6404 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6405 Bytes.dropLeadingBytes(bitcodeStart - buf); 6406 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6407 } 6408 return std::error_code(); 6409 } 6410 6411 namespace { 6412 // FIXME: This class is only here to support the transition to llvm::Error. It 6413 // will be removed once this transition is complete. Clients should prefer to 6414 // deal with the Error value directly, rather than converting to error_code. 6415 class BitcodeErrorCategoryType : public std::error_category { 6416 const char *name() const LLVM_NOEXCEPT override { 6417 return "llvm.bitcode"; 6418 } 6419 std::string message(int IE) const override { 6420 BitcodeError E = static_cast<BitcodeError>(IE); 6421 switch (E) { 6422 case BitcodeError::InvalidBitcodeSignature: 6423 return "Invalid bitcode signature"; 6424 case BitcodeError::CorruptedBitcode: 6425 return "Corrupted bitcode"; 6426 } 6427 llvm_unreachable("Unknown error type!"); 6428 } 6429 }; 6430 } // end anonymous namespace 6431 6432 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6433 6434 const std::error_category &llvm::BitcodeErrorCategory() { 6435 return *ErrorCategory; 6436 } 6437 6438 //===----------------------------------------------------------------------===// 6439 // External interface 6440 //===----------------------------------------------------------------------===// 6441 6442 static ErrorOr<std::unique_ptr<Module>> 6443 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6444 BitcodeReader *R, LLVMContext &Context, 6445 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6446 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6447 M->setMaterializer(R); 6448 6449 auto cleanupOnError = [&](std::error_code EC) { 6450 R->releaseBuffer(); // Never take ownership on error. 6451 return EC; 6452 }; 6453 6454 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6455 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6456 ShouldLazyLoadMetadata)) 6457 return cleanupOnError(EC); 6458 6459 if (MaterializeAll) { 6460 // Read in the entire module, and destroy the BitcodeReader. 6461 if (std::error_code EC = M->materializeAll()) 6462 return cleanupOnError(EC); 6463 } else { 6464 // Resolve forward references from blockaddresses. 6465 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6466 return cleanupOnError(EC); 6467 } 6468 return std::move(M); 6469 } 6470 6471 /// \brief Get a lazy one-at-time loading module from bitcode. 6472 /// 6473 /// This isn't always used in a lazy context. In particular, it's also used by 6474 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6475 /// in forward-referenced functions from block address references. 6476 /// 6477 /// \param[in] MaterializeAll Set to \c true if we should materialize 6478 /// everything. 6479 static ErrorOr<std::unique_ptr<Module>> 6480 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6481 LLVMContext &Context, bool MaterializeAll, 6482 bool ShouldLazyLoadMetadata = false) { 6483 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6484 6485 ErrorOr<std::unique_ptr<Module>> Ret = 6486 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6487 MaterializeAll, ShouldLazyLoadMetadata); 6488 if (!Ret) 6489 return Ret; 6490 6491 Buffer.release(); // The BitcodeReader owns it now. 6492 return Ret; 6493 } 6494 6495 ErrorOr<std::unique_ptr<Module>> 6496 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6497 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6498 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6499 ShouldLazyLoadMetadata); 6500 } 6501 6502 ErrorOr<std::unique_ptr<Module>> 6503 llvm::getStreamedBitcodeModule(StringRef Name, 6504 std::unique_ptr<DataStreamer> Streamer, 6505 LLVMContext &Context) { 6506 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6507 BitcodeReader *R = new BitcodeReader(Context); 6508 6509 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6510 false); 6511 } 6512 6513 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6514 LLVMContext &Context) { 6515 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6516 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6517 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6518 // written. We must defer until the Module has been fully materialized. 6519 } 6520 6521 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6522 LLVMContext &Context) { 6523 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6524 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6525 ErrorOr<std::string> Triple = R->parseTriple(); 6526 if (Triple.getError()) 6527 return ""; 6528 return Triple.get(); 6529 } 6530 6531 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6532 LLVMContext &Context) { 6533 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6534 BitcodeReader R(Buf.release(), Context); 6535 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6536 if (ProducerString.getError()) 6537 return ""; 6538 return ProducerString.get(); 6539 } 6540 6541 // Parse the specified bitcode buffer, returning the function info index. 6542 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6543 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6544 DiagnosticHandlerFunction DiagnosticHandler) { 6545 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6546 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6547 6548 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6549 6550 auto cleanupOnError = [&](std::error_code EC) { 6551 R.releaseBuffer(); // Never take ownership on error. 6552 return EC; 6553 }; 6554 6555 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6556 return cleanupOnError(EC); 6557 6558 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6559 return std::move(Index); 6560 } 6561 6562 // Check if the given bitcode buffer contains a global value summary block. 6563 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6564 DiagnosticHandlerFunction DiagnosticHandler) { 6565 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6566 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true); 6567 6568 auto cleanupOnError = [&](std::error_code EC) { 6569 R.releaseBuffer(); // Never take ownership on error. 6570 return false; 6571 }; 6572 6573 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6574 return cleanupOnError(EC); 6575 6576 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6577 return R.foundGlobalValSummary(); 6578 } 6579