1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/IR/AutoUpgrade.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DebugInfoMetadata.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/DiagnosticPrinter.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/OperandTraits.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/Support/DataStream.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/MemoryBuffer.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 35 enum { 36 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 37 }; 38 39 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 40 DiagnosticSeverity Severity, 41 const Twine &Msg) 42 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 43 44 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 45 46 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 47 std::error_code EC, const Twine &Message) { 48 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 49 DiagnosticHandler(DI); 50 return EC; 51 } 52 53 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 54 std::error_code EC) { 55 return Error(DiagnosticHandler, EC, EC.message()); 56 } 57 58 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 59 return ::Error(DiagnosticHandler, make_error_code(E), Message); 60 } 61 62 std::error_code BitcodeReader::Error(const Twine &Message) { 63 return ::Error(DiagnosticHandler, 64 make_error_code(BitcodeError::CorruptedBitcode), Message); 65 } 66 67 std::error_code BitcodeReader::Error(BitcodeError E) { 68 return ::Error(DiagnosticHandler, make_error_code(E)); 69 } 70 71 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 72 LLVMContext &C) { 73 if (F) 74 return F; 75 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 76 } 77 78 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 79 DiagnosticHandlerFunction DiagnosticHandler) 80 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 81 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 82 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 83 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 84 WillMaterializeAllForwardRefs(false) {} 85 86 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 87 DiagnosticHandlerFunction DiagnosticHandler) 88 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 89 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 90 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 91 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 92 WillMaterializeAllForwardRefs(false) {} 93 94 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 95 if (WillMaterializeAllForwardRefs) 96 return std::error_code(); 97 98 // Prevent recursion. 99 WillMaterializeAllForwardRefs = true; 100 101 while (!BasicBlockFwdRefQueue.empty()) { 102 Function *F = BasicBlockFwdRefQueue.front(); 103 BasicBlockFwdRefQueue.pop_front(); 104 assert(F && "Expected valid function"); 105 if (!BasicBlockFwdRefs.count(F)) 106 // Already materialized. 107 continue; 108 109 // Check for a function that isn't materializable to prevent an infinite 110 // loop. When parsing a blockaddress stored in a global variable, there 111 // isn't a trivial way to check if a function will have a body without a 112 // linear search through FunctionsWithBodies, so just check it here. 113 if (!F->isMaterializable()) 114 return Error("Never resolved function from blockaddress"); 115 116 // Try to materialize F. 117 if (std::error_code EC = materialize(F)) 118 return EC; 119 } 120 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 121 122 // Reset state. 123 WillMaterializeAllForwardRefs = false; 124 return std::error_code(); 125 } 126 127 void BitcodeReader::FreeState() { 128 Buffer = nullptr; 129 std::vector<Type*>().swap(TypeList); 130 ValueList.clear(); 131 MDValueList.clear(); 132 std::vector<Comdat *>().swap(ComdatList); 133 134 std::vector<AttributeSet>().swap(MAttributes); 135 std::vector<BasicBlock*>().swap(FunctionBBs); 136 std::vector<Function*>().swap(FunctionsWithBodies); 137 DeferredFunctionInfo.clear(); 138 MDKindMap.clear(); 139 140 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 141 BasicBlockFwdRefQueue.clear(); 142 } 143 144 //===----------------------------------------------------------------------===// 145 // Helper functions to implement forward reference resolution, etc. 146 //===----------------------------------------------------------------------===// 147 148 /// ConvertToString - Convert a string from a record into an std::string, return 149 /// true on failure. 150 template<typename StrTy> 151 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 static bool hasImplicitComdat(size_t Val) { 162 switch (Val) { 163 default: 164 return false; 165 case 1: // Old WeakAnyLinkage 166 case 4: // Old LinkOnceAnyLinkage 167 case 10: // Old WeakODRLinkage 168 case 11: // Old LinkOnceODRLinkage 169 return true; 170 } 171 } 172 173 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 174 switch (Val) { 175 default: // Map unknown/new linkages to external 176 case 0: 177 return GlobalValue::ExternalLinkage; 178 case 2: 179 return GlobalValue::AppendingLinkage; 180 case 3: 181 return GlobalValue::InternalLinkage; 182 case 5: 183 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 184 case 6: 185 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 186 case 7: 187 return GlobalValue::ExternalWeakLinkage; 188 case 8: 189 return GlobalValue::CommonLinkage; 190 case 9: 191 return GlobalValue::PrivateLinkage; 192 case 12: 193 return GlobalValue::AvailableExternallyLinkage; 194 case 13: 195 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 196 case 14: 197 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 198 case 15: 199 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 200 case 1: // Old value with implicit comdat. 201 case 16: 202 return GlobalValue::WeakAnyLinkage; 203 case 10: // Old value with implicit comdat. 204 case 17: 205 return GlobalValue::WeakODRLinkage; 206 case 4: // Old value with implicit comdat. 207 case 18: 208 return GlobalValue::LinkOnceAnyLinkage; 209 case 11: // Old value with implicit comdat. 210 case 19: 211 return GlobalValue::LinkOnceODRLinkage; 212 } 213 } 214 215 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 216 switch (Val) { 217 default: // Map unknown visibilities to default. 218 case 0: return GlobalValue::DefaultVisibility; 219 case 1: return GlobalValue::HiddenVisibility; 220 case 2: return GlobalValue::ProtectedVisibility; 221 } 222 } 223 224 static GlobalValue::DLLStorageClassTypes 225 GetDecodedDLLStorageClass(unsigned Val) { 226 switch (Val) { 227 default: // Map unknown values to default. 228 case 0: return GlobalValue::DefaultStorageClass; 229 case 1: return GlobalValue::DLLImportStorageClass; 230 case 2: return GlobalValue::DLLExportStorageClass; 231 } 232 } 233 234 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 235 switch (Val) { 236 case 0: return GlobalVariable::NotThreadLocal; 237 default: // Map unknown non-zero value to general dynamic. 238 case 1: return GlobalVariable::GeneralDynamicTLSModel; 239 case 2: return GlobalVariable::LocalDynamicTLSModel; 240 case 3: return GlobalVariable::InitialExecTLSModel; 241 case 4: return GlobalVariable::LocalExecTLSModel; 242 } 243 } 244 245 static int GetDecodedCastOpcode(unsigned Val) { 246 switch (Val) { 247 default: return -1; 248 case bitc::CAST_TRUNC : return Instruction::Trunc; 249 case bitc::CAST_ZEXT : return Instruction::ZExt; 250 case bitc::CAST_SEXT : return Instruction::SExt; 251 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 252 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 253 case bitc::CAST_UITOFP : return Instruction::UIToFP; 254 case bitc::CAST_SITOFP : return Instruction::SIToFP; 255 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 256 case bitc::CAST_FPEXT : return Instruction::FPExt; 257 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 258 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 259 case bitc::CAST_BITCAST : return Instruction::BitCast; 260 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 261 } 262 } 263 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 264 switch (Val) { 265 default: return -1; 266 case bitc::BINOP_ADD: 267 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 268 case bitc::BINOP_SUB: 269 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 270 case bitc::BINOP_MUL: 271 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 272 case bitc::BINOP_UDIV: return Instruction::UDiv; 273 case bitc::BINOP_SDIV: 274 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 275 case bitc::BINOP_UREM: return Instruction::URem; 276 case bitc::BINOP_SREM: 277 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 278 case bitc::BINOP_SHL: return Instruction::Shl; 279 case bitc::BINOP_LSHR: return Instruction::LShr; 280 case bitc::BINOP_ASHR: return Instruction::AShr; 281 case bitc::BINOP_AND: return Instruction::And; 282 case bitc::BINOP_OR: return Instruction::Or; 283 case bitc::BINOP_XOR: return Instruction::Xor; 284 } 285 } 286 287 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 288 switch (Val) { 289 default: return AtomicRMWInst::BAD_BINOP; 290 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 291 case bitc::RMW_ADD: return AtomicRMWInst::Add; 292 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 293 case bitc::RMW_AND: return AtomicRMWInst::And; 294 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 295 case bitc::RMW_OR: return AtomicRMWInst::Or; 296 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 297 case bitc::RMW_MAX: return AtomicRMWInst::Max; 298 case bitc::RMW_MIN: return AtomicRMWInst::Min; 299 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 300 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 301 } 302 } 303 304 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 305 switch (Val) { 306 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 307 case bitc::ORDERING_UNORDERED: return Unordered; 308 case bitc::ORDERING_MONOTONIC: return Monotonic; 309 case bitc::ORDERING_ACQUIRE: return Acquire; 310 case bitc::ORDERING_RELEASE: return Release; 311 case bitc::ORDERING_ACQREL: return AcquireRelease; 312 default: // Map unknown orderings to sequentially-consistent. 313 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 314 } 315 } 316 317 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 318 switch (Val) { 319 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 320 default: // Map unknown scopes to cross-thread. 321 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 322 } 323 } 324 325 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 326 switch (Val) { 327 default: // Map unknown selection kinds to any. 328 case bitc::COMDAT_SELECTION_KIND_ANY: 329 return Comdat::Any; 330 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 331 return Comdat::ExactMatch; 332 case bitc::COMDAT_SELECTION_KIND_LARGEST: 333 return Comdat::Largest; 334 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 335 return Comdat::NoDuplicates; 336 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 337 return Comdat::SameSize; 338 } 339 } 340 341 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 342 switch (Val) { 343 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 344 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 345 } 346 } 347 348 namespace llvm { 349 namespace { 350 /// @brief A class for maintaining the slot number definition 351 /// as a placeholder for the actual definition for forward constants defs. 352 class ConstantPlaceHolder : public ConstantExpr { 353 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 354 public: 355 // allocate space for exactly one operand 356 void *operator new(size_t s) { 357 return User::operator new(s, 1); 358 } 359 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 360 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 361 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 362 } 363 364 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 365 static bool classof(const Value *V) { 366 return isa<ConstantExpr>(V) && 367 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 368 } 369 370 371 /// Provide fast operand accessors 372 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 373 }; 374 } 375 376 // FIXME: can we inherit this from ConstantExpr? 377 template <> 378 struct OperandTraits<ConstantPlaceHolder> : 379 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 380 }; 381 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 382 } 383 384 385 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 386 if (Idx == size()) { 387 push_back(V); 388 return; 389 } 390 391 if (Idx >= size()) 392 resize(Idx+1); 393 394 WeakVH &OldV = ValuePtrs[Idx]; 395 if (!OldV) { 396 OldV = V; 397 return; 398 } 399 400 // Handle constants and non-constants (e.g. instrs) differently for 401 // efficiency. 402 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 403 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 404 OldV = V; 405 } else { 406 // If there was a forward reference to this value, replace it. 407 Value *PrevVal = OldV; 408 OldV->replaceAllUsesWith(V); 409 delete PrevVal; 410 } 411 } 412 413 414 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 415 Type *Ty) { 416 if (Idx >= size()) 417 resize(Idx + 1); 418 419 if (Value *V = ValuePtrs[Idx]) { 420 assert(Ty == V->getType() && "Type mismatch in constant table!"); 421 return cast<Constant>(V); 422 } 423 424 // Create and return a placeholder, which will later be RAUW'd. 425 Constant *C = new ConstantPlaceHolder(Ty, Context); 426 ValuePtrs[Idx] = C; 427 return C; 428 } 429 430 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 431 if (Idx >= size()) 432 resize(Idx + 1); 433 434 if (Value *V = ValuePtrs[Idx]) { 435 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 436 return V; 437 } 438 439 // No type specified, must be invalid reference. 440 if (!Ty) return nullptr; 441 442 // Create and return a placeholder, which will later be RAUW'd. 443 Value *V = new Argument(Ty); 444 ValuePtrs[Idx] = V; 445 return V; 446 } 447 448 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 449 /// resolves any forward references. The idea behind this is that we sometimes 450 /// get constants (such as large arrays) which reference *many* forward ref 451 /// constants. Replacing each of these causes a lot of thrashing when 452 /// building/reuniquing the constant. Instead of doing this, we look at all the 453 /// uses and rewrite all the place holders at once for any constant that uses 454 /// a placeholder. 455 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 456 // Sort the values by-pointer so that they are efficient to look up with a 457 // binary search. 458 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 459 460 SmallVector<Constant*, 64> NewOps; 461 462 while (!ResolveConstants.empty()) { 463 Value *RealVal = operator[](ResolveConstants.back().second); 464 Constant *Placeholder = ResolveConstants.back().first; 465 ResolveConstants.pop_back(); 466 467 // Loop over all users of the placeholder, updating them to reference the 468 // new value. If they reference more than one placeholder, update them all 469 // at once. 470 while (!Placeholder->use_empty()) { 471 auto UI = Placeholder->user_begin(); 472 User *U = *UI; 473 474 // If the using object isn't uniqued, just update the operands. This 475 // handles instructions and initializers for global variables. 476 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 477 UI.getUse().set(RealVal); 478 continue; 479 } 480 481 // Otherwise, we have a constant that uses the placeholder. Replace that 482 // constant with a new constant that has *all* placeholder uses updated. 483 Constant *UserC = cast<Constant>(U); 484 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 485 I != E; ++I) { 486 Value *NewOp; 487 if (!isa<ConstantPlaceHolder>(*I)) { 488 // Not a placeholder reference. 489 NewOp = *I; 490 } else if (*I == Placeholder) { 491 // Common case is that it just references this one placeholder. 492 NewOp = RealVal; 493 } else { 494 // Otherwise, look up the placeholder in ResolveConstants. 495 ResolveConstantsTy::iterator It = 496 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 497 std::pair<Constant*, unsigned>(cast<Constant>(*I), 498 0)); 499 assert(It != ResolveConstants.end() && It->first == *I); 500 NewOp = operator[](It->second); 501 } 502 503 NewOps.push_back(cast<Constant>(NewOp)); 504 } 505 506 // Make the new constant. 507 Constant *NewC; 508 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 509 NewC = ConstantArray::get(UserCA->getType(), NewOps); 510 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 511 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 512 } else if (isa<ConstantVector>(UserC)) { 513 NewC = ConstantVector::get(NewOps); 514 } else { 515 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 516 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 517 } 518 519 UserC->replaceAllUsesWith(NewC); 520 UserC->destroyConstant(); 521 NewOps.clear(); 522 } 523 524 // Update all ValueHandles, they should be the only users at this point. 525 Placeholder->replaceAllUsesWith(RealVal); 526 delete Placeholder; 527 } 528 } 529 530 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 531 if (Idx == size()) { 532 push_back(MD); 533 return; 534 } 535 536 if (Idx >= size()) 537 resize(Idx+1); 538 539 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 540 if (!OldMD) { 541 OldMD.reset(MD); 542 return; 543 } 544 545 // If there was a forward reference to this value, replace it. 546 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 547 PrevMD->replaceAllUsesWith(MD); 548 --NumFwdRefs; 549 } 550 551 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 552 if (Idx >= size()) 553 resize(Idx + 1); 554 555 if (Metadata *MD = MDValuePtrs[Idx]) 556 return MD; 557 558 // Create and return a placeholder, which will later be RAUW'd. 559 AnyFwdRefs = true; 560 ++NumFwdRefs; 561 Metadata *MD = MDNode::getTemporary(Context, None).release(); 562 MDValuePtrs[Idx].reset(MD); 563 return MD; 564 } 565 566 void BitcodeReaderMDValueList::tryToResolveCycles() { 567 if (!AnyFwdRefs) 568 // Nothing to do. 569 return; 570 571 if (NumFwdRefs) 572 // Still forward references... can't resolve cycles. 573 return; 574 575 // Resolve any cycles. 576 for (auto &MD : MDValuePtrs) { 577 auto *N = dyn_cast_or_null<MDNode>(MD); 578 if (!N) 579 continue; 580 581 assert(!N->isTemporary() && "Unexpected forward reference"); 582 N->resolveCycles(); 583 } 584 } 585 586 Type *BitcodeReader::getTypeByID(unsigned ID) { 587 // The type table size is always specified correctly. 588 if (ID >= TypeList.size()) 589 return nullptr; 590 591 if (Type *Ty = TypeList[ID]) 592 return Ty; 593 594 // If we have a forward reference, the only possible case is when it is to a 595 // named struct. Just create a placeholder for now. 596 return TypeList[ID] = createIdentifiedStructType(Context); 597 } 598 599 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 600 StringRef Name) { 601 auto *Ret = StructType::create(Context, Name); 602 IdentifiedStructTypes.push_back(Ret); 603 return Ret; 604 } 605 606 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 607 auto *Ret = StructType::create(Context); 608 IdentifiedStructTypes.push_back(Ret); 609 return Ret; 610 } 611 612 613 //===----------------------------------------------------------------------===// 614 // Functions for parsing blocks from the bitcode file 615 //===----------------------------------------------------------------------===// 616 617 618 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 619 /// been decoded from the given integer. This function must stay in sync with 620 /// 'encodeLLVMAttributesForBitcode'. 621 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 622 uint64_t EncodedAttrs) { 623 // FIXME: Remove in 4.0. 624 625 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 626 // the bits above 31 down by 11 bits. 627 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 628 assert((!Alignment || isPowerOf2_32(Alignment)) && 629 "Alignment must be a power of two."); 630 631 if (Alignment) 632 B.addAlignmentAttr(Alignment); 633 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 634 (EncodedAttrs & 0xffff)); 635 } 636 637 std::error_code BitcodeReader::ParseAttributeBlock() { 638 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 639 return Error("Invalid record"); 640 641 if (!MAttributes.empty()) 642 return Error("Invalid multiple blocks"); 643 644 SmallVector<uint64_t, 64> Record; 645 646 SmallVector<AttributeSet, 8> Attrs; 647 648 // Read all the records. 649 while (1) { 650 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 651 652 switch (Entry.Kind) { 653 case BitstreamEntry::SubBlock: // Handled for us already. 654 case BitstreamEntry::Error: 655 return Error("Malformed block"); 656 case BitstreamEntry::EndBlock: 657 return std::error_code(); 658 case BitstreamEntry::Record: 659 // The interesting case. 660 break; 661 } 662 663 // Read a record. 664 Record.clear(); 665 switch (Stream.readRecord(Entry.ID, Record)) { 666 default: // Default behavior: ignore. 667 break; 668 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 669 // FIXME: Remove in 4.0. 670 if (Record.size() & 1) 671 return Error("Invalid record"); 672 673 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 674 AttrBuilder B; 675 decodeLLVMAttributesForBitcode(B, Record[i+1]); 676 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 677 } 678 679 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 680 Attrs.clear(); 681 break; 682 } 683 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 684 for (unsigned i = 0, e = Record.size(); i != e; ++i) 685 Attrs.push_back(MAttributeGroups[Record[i]]); 686 687 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 688 Attrs.clear(); 689 break; 690 } 691 } 692 } 693 } 694 695 // Returns Attribute::None on unrecognized codes. 696 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 697 switch (Code) { 698 default: 699 return Attribute::None; 700 case bitc::ATTR_KIND_ALIGNMENT: 701 return Attribute::Alignment; 702 case bitc::ATTR_KIND_ALWAYS_INLINE: 703 return Attribute::AlwaysInline; 704 case bitc::ATTR_KIND_BUILTIN: 705 return Attribute::Builtin; 706 case bitc::ATTR_KIND_BY_VAL: 707 return Attribute::ByVal; 708 case bitc::ATTR_KIND_IN_ALLOCA: 709 return Attribute::InAlloca; 710 case bitc::ATTR_KIND_COLD: 711 return Attribute::Cold; 712 case bitc::ATTR_KIND_INLINE_HINT: 713 return Attribute::InlineHint; 714 case bitc::ATTR_KIND_IN_REG: 715 return Attribute::InReg; 716 case bitc::ATTR_KIND_JUMP_TABLE: 717 return Attribute::JumpTable; 718 case bitc::ATTR_KIND_MIN_SIZE: 719 return Attribute::MinSize; 720 case bitc::ATTR_KIND_NAKED: 721 return Attribute::Naked; 722 case bitc::ATTR_KIND_NEST: 723 return Attribute::Nest; 724 case bitc::ATTR_KIND_NO_ALIAS: 725 return Attribute::NoAlias; 726 case bitc::ATTR_KIND_NO_BUILTIN: 727 return Attribute::NoBuiltin; 728 case bitc::ATTR_KIND_NO_CAPTURE: 729 return Attribute::NoCapture; 730 case bitc::ATTR_KIND_NO_DUPLICATE: 731 return Attribute::NoDuplicate; 732 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 733 return Attribute::NoImplicitFloat; 734 case bitc::ATTR_KIND_NO_INLINE: 735 return Attribute::NoInline; 736 case bitc::ATTR_KIND_NON_LAZY_BIND: 737 return Attribute::NonLazyBind; 738 case bitc::ATTR_KIND_NON_NULL: 739 return Attribute::NonNull; 740 case bitc::ATTR_KIND_DEREFERENCEABLE: 741 return Attribute::Dereferenceable; 742 case bitc::ATTR_KIND_NO_RED_ZONE: 743 return Attribute::NoRedZone; 744 case bitc::ATTR_KIND_NO_RETURN: 745 return Attribute::NoReturn; 746 case bitc::ATTR_KIND_NO_UNWIND: 747 return Attribute::NoUnwind; 748 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 749 return Attribute::OptimizeForSize; 750 case bitc::ATTR_KIND_OPTIMIZE_NONE: 751 return Attribute::OptimizeNone; 752 case bitc::ATTR_KIND_READ_NONE: 753 return Attribute::ReadNone; 754 case bitc::ATTR_KIND_READ_ONLY: 755 return Attribute::ReadOnly; 756 case bitc::ATTR_KIND_RETURNED: 757 return Attribute::Returned; 758 case bitc::ATTR_KIND_RETURNS_TWICE: 759 return Attribute::ReturnsTwice; 760 case bitc::ATTR_KIND_S_EXT: 761 return Attribute::SExt; 762 case bitc::ATTR_KIND_STACK_ALIGNMENT: 763 return Attribute::StackAlignment; 764 case bitc::ATTR_KIND_STACK_PROTECT: 765 return Attribute::StackProtect; 766 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 767 return Attribute::StackProtectReq; 768 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 769 return Attribute::StackProtectStrong; 770 case bitc::ATTR_KIND_STRUCT_RET: 771 return Attribute::StructRet; 772 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 773 return Attribute::SanitizeAddress; 774 case bitc::ATTR_KIND_SANITIZE_THREAD: 775 return Attribute::SanitizeThread; 776 case bitc::ATTR_KIND_SANITIZE_MEMORY: 777 return Attribute::SanitizeMemory; 778 case bitc::ATTR_KIND_UW_TABLE: 779 return Attribute::UWTable; 780 case bitc::ATTR_KIND_Z_EXT: 781 return Attribute::ZExt; 782 } 783 } 784 785 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 786 Attribute::AttrKind *Kind) { 787 *Kind = GetAttrFromCode(Code); 788 if (*Kind == Attribute::None) 789 return Error(BitcodeError::CorruptedBitcode, 790 "Unknown attribute kind (" + Twine(Code) + ")"); 791 return std::error_code(); 792 } 793 794 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 795 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 796 return Error("Invalid record"); 797 798 if (!MAttributeGroups.empty()) 799 return Error("Invalid multiple blocks"); 800 801 SmallVector<uint64_t, 64> Record; 802 803 // Read all the records. 804 while (1) { 805 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 806 807 switch (Entry.Kind) { 808 case BitstreamEntry::SubBlock: // Handled for us already. 809 case BitstreamEntry::Error: 810 return Error("Malformed block"); 811 case BitstreamEntry::EndBlock: 812 return std::error_code(); 813 case BitstreamEntry::Record: 814 // The interesting case. 815 break; 816 } 817 818 // Read a record. 819 Record.clear(); 820 switch (Stream.readRecord(Entry.ID, Record)) { 821 default: // Default behavior: ignore. 822 break; 823 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 824 if (Record.size() < 3) 825 return Error("Invalid record"); 826 827 uint64_t GrpID = Record[0]; 828 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 829 830 AttrBuilder B; 831 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 832 if (Record[i] == 0) { // Enum attribute 833 Attribute::AttrKind Kind; 834 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 835 return EC; 836 837 B.addAttribute(Kind); 838 } else if (Record[i] == 1) { // Integer attribute 839 Attribute::AttrKind Kind; 840 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 841 return EC; 842 if (Kind == Attribute::Alignment) 843 B.addAlignmentAttr(Record[++i]); 844 else if (Kind == Attribute::StackAlignment) 845 B.addStackAlignmentAttr(Record[++i]); 846 else if (Kind == Attribute::Dereferenceable) 847 B.addDereferenceableAttr(Record[++i]); 848 } else { // String attribute 849 assert((Record[i] == 3 || Record[i] == 4) && 850 "Invalid attribute group entry"); 851 bool HasValue = (Record[i++] == 4); 852 SmallString<64> KindStr; 853 SmallString<64> ValStr; 854 855 while (Record[i] != 0 && i != e) 856 KindStr += Record[i++]; 857 assert(Record[i] == 0 && "Kind string not null terminated"); 858 859 if (HasValue) { 860 // Has a value associated with it. 861 ++i; // Skip the '0' that terminates the "kind" string. 862 while (Record[i] != 0 && i != e) 863 ValStr += Record[i++]; 864 assert(Record[i] == 0 && "Value string not null terminated"); 865 } 866 867 B.addAttribute(KindStr.str(), ValStr.str()); 868 } 869 } 870 871 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 872 break; 873 } 874 } 875 } 876 } 877 878 std::error_code BitcodeReader::ParseTypeTable() { 879 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 880 return Error("Invalid record"); 881 882 return ParseTypeTableBody(); 883 } 884 885 std::error_code BitcodeReader::ParseTypeTableBody() { 886 if (!TypeList.empty()) 887 return Error("Invalid multiple blocks"); 888 889 SmallVector<uint64_t, 64> Record; 890 unsigned NumRecords = 0; 891 892 SmallString<64> TypeName; 893 894 // Read all the records for this type table. 895 while (1) { 896 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 897 898 switch (Entry.Kind) { 899 case BitstreamEntry::SubBlock: // Handled for us already. 900 case BitstreamEntry::Error: 901 return Error("Malformed block"); 902 case BitstreamEntry::EndBlock: 903 if (NumRecords != TypeList.size()) 904 return Error("Malformed block"); 905 return std::error_code(); 906 case BitstreamEntry::Record: 907 // The interesting case. 908 break; 909 } 910 911 // Read a record. 912 Record.clear(); 913 Type *ResultTy = nullptr; 914 switch (Stream.readRecord(Entry.ID, Record)) { 915 default: 916 return Error("Invalid value"); 917 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 918 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 919 // type list. This allows us to reserve space. 920 if (Record.size() < 1) 921 return Error("Invalid record"); 922 TypeList.resize(Record[0]); 923 continue; 924 case bitc::TYPE_CODE_VOID: // VOID 925 ResultTy = Type::getVoidTy(Context); 926 break; 927 case bitc::TYPE_CODE_HALF: // HALF 928 ResultTy = Type::getHalfTy(Context); 929 break; 930 case bitc::TYPE_CODE_FLOAT: // FLOAT 931 ResultTy = Type::getFloatTy(Context); 932 break; 933 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 934 ResultTy = Type::getDoubleTy(Context); 935 break; 936 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 937 ResultTy = Type::getX86_FP80Ty(Context); 938 break; 939 case bitc::TYPE_CODE_FP128: // FP128 940 ResultTy = Type::getFP128Ty(Context); 941 break; 942 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 943 ResultTy = Type::getPPC_FP128Ty(Context); 944 break; 945 case bitc::TYPE_CODE_LABEL: // LABEL 946 ResultTy = Type::getLabelTy(Context); 947 break; 948 case bitc::TYPE_CODE_METADATA: // METADATA 949 ResultTy = Type::getMetadataTy(Context); 950 break; 951 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 952 ResultTy = Type::getX86_MMXTy(Context); 953 break; 954 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 955 if (Record.size() < 1) 956 return Error("Invalid record"); 957 958 uint64_t NumBits = Record[0]; 959 if (NumBits < IntegerType::MIN_INT_BITS || 960 NumBits > IntegerType::MAX_INT_BITS) 961 return Error("Bitwidth for integer type out of range"); 962 ResultTy = IntegerType::get(Context, NumBits); 963 break; 964 } 965 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 966 // [pointee type, address space] 967 if (Record.size() < 1) 968 return Error("Invalid record"); 969 unsigned AddressSpace = 0; 970 if (Record.size() == 2) 971 AddressSpace = Record[1]; 972 ResultTy = getTypeByID(Record[0]); 973 if (!ResultTy) 974 return Error("Invalid type"); 975 ResultTy = PointerType::get(ResultTy, AddressSpace); 976 break; 977 } 978 case bitc::TYPE_CODE_FUNCTION_OLD: { 979 // FIXME: attrid is dead, remove it in LLVM 4.0 980 // FUNCTION: [vararg, attrid, retty, paramty x N] 981 if (Record.size() < 3) 982 return Error("Invalid record"); 983 SmallVector<Type*, 8> ArgTys; 984 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 985 if (Type *T = getTypeByID(Record[i])) 986 ArgTys.push_back(T); 987 else 988 break; 989 } 990 991 ResultTy = getTypeByID(Record[2]); 992 if (!ResultTy || ArgTys.size() < Record.size()-3) 993 return Error("Invalid type"); 994 995 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 996 break; 997 } 998 case bitc::TYPE_CODE_FUNCTION: { 999 // FUNCTION: [vararg, retty, paramty x N] 1000 if (Record.size() < 2) 1001 return Error("Invalid record"); 1002 SmallVector<Type*, 8> ArgTys; 1003 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1004 if (Type *T = getTypeByID(Record[i])) 1005 ArgTys.push_back(T); 1006 else 1007 break; 1008 } 1009 1010 ResultTy = getTypeByID(Record[1]); 1011 if (!ResultTy || ArgTys.size() < Record.size()-2) 1012 return Error("Invalid type"); 1013 1014 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1015 break; 1016 } 1017 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1018 if (Record.size() < 1) 1019 return Error("Invalid record"); 1020 SmallVector<Type*, 8> EltTys; 1021 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1022 if (Type *T = getTypeByID(Record[i])) 1023 EltTys.push_back(T); 1024 else 1025 break; 1026 } 1027 if (EltTys.size() != Record.size()-1) 1028 return Error("Invalid type"); 1029 ResultTy = StructType::get(Context, EltTys, Record[0]); 1030 break; 1031 } 1032 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1033 if (ConvertToString(Record, 0, TypeName)) 1034 return Error("Invalid record"); 1035 continue; 1036 1037 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1038 if (Record.size() < 1) 1039 return Error("Invalid record"); 1040 1041 if (NumRecords >= TypeList.size()) 1042 return Error("Invalid TYPE table"); 1043 1044 // Check to see if this was forward referenced, if so fill in the temp. 1045 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1046 if (Res) { 1047 Res->setName(TypeName); 1048 TypeList[NumRecords] = nullptr; 1049 } else // Otherwise, create a new struct. 1050 Res = createIdentifiedStructType(Context, TypeName); 1051 TypeName.clear(); 1052 1053 SmallVector<Type*, 8> EltTys; 1054 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1055 if (Type *T = getTypeByID(Record[i])) 1056 EltTys.push_back(T); 1057 else 1058 break; 1059 } 1060 if (EltTys.size() != Record.size()-1) 1061 return Error("Invalid record"); 1062 Res->setBody(EltTys, Record[0]); 1063 ResultTy = Res; 1064 break; 1065 } 1066 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1067 if (Record.size() != 1) 1068 return Error("Invalid record"); 1069 1070 if (NumRecords >= TypeList.size()) 1071 return Error("Invalid TYPE table"); 1072 1073 // Check to see if this was forward referenced, if so fill in the temp. 1074 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1075 if (Res) { 1076 Res->setName(TypeName); 1077 TypeList[NumRecords] = nullptr; 1078 } else // Otherwise, create a new struct with no body. 1079 Res = createIdentifiedStructType(Context, TypeName); 1080 TypeName.clear(); 1081 ResultTy = Res; 1082 break; 1083 } 1084 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1085 if (Record.size() < 2) 1086 return Error("Invalid record"); 1087 if ((ResultTy = getTypeByID(Record[1]))) 1088 ResultTy = ArrayType::get(ResultTy, Record[0]); 1089 else 1090 return Error("Invalid type"); 1091 break; 1092 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1093 if (Record.size() < 2) 1094 return Error("Invalid record"); 1095 if ((ResultTy = getTypeByID(Record[1]))) 1096 ResultTy = VectorType::get(ResultTy, Record[0]); 1097 else 1098 return Error("Invalid type"); 1099 break; 1100 } 1101 1102 if (NumRecords >= TypeList.size()) 1103 return Error("Invalid TYPE table"); 1104 if (TypeList[NumRecords]) 1105 return Error( 1106 "Invalid TYPE table: Only named structs can be forward referenced"); 1107 assert(ResultTy && "Didn't read a type?"); 1108 TypeList[NumRecords++] = ResultTy; 1109 } 1110 } 1111 1112 std::error_code BitcodeReader::ParseValueSymbolTable() { 1113 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1114 return Error("Invalid record"); 1115 1116 SmallVector<uint64_t, 64> Record; 1117 1118 Triple TT(TheModule->getTargetTriple()); 1119 1120 // Read all the records for this value table. 1121 SmallString<128> ValueName; 1122 while (1) { 1123 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1124 1125 switch (Entry.Kind) { 1126 case BitstreamEntry::SubBlock: // Handled for us already. 1127 case BitstreamEntry::Error: 1128 return Error("Malformed block"); 1129 case BitstreamEntry::EndBlock: 1130 return std::error_code(); 1131 case BitstreamEntry::Record: 1132 // The interesting case. 1133 break; 1134 } 1135 1136 // Read a record. 1137 Record.clear(); 1138 switch (Stream.readRecord(Entry.ID, Record)) { 1139 default: // Default behavior: unknown type. 1140 break; 1141 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1142 if (ConvertToString(Record, 1, ValueName)) 1143 return Error("Invalid record"); 1144 unsigned ValueID = Record[0]; 1145 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1146 return Error("Invalid record"); 1147 Value *V = ValueList[ValueID]; 1148 1149 V->setName(StringRef(ValueName.data(), ValueName.size())); 1150 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1151 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1152 if (TT.isOSBinFormatMachO()) 1153 GO->setComdat(nullptr); 1154 else 1155 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1156 } 1157 } 1158 ValueName.clear(); 1159 break; 1160 } 1161 case bitc::VST_CODE_BBENTRY: { 1162 if (ConvertToString(Record, 1, ValueName)) 1163 return Error("Invalid record"); 1164 BasicBlock *BB = getBasicBlock(Record[0]); 1165 if (!BB) 1166 return Error("Invalid record"); 1167 1168 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1169 ValueName.clear(); 1170 break; 1171 } 1172 } 1173 } 1174 } 1175 1176 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1177 1178 std::error_code BitcodeReader::ParseMetadata() { 1179 unsigned NextMDValueNo = MDValueList.size(); 1180 1181 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1182 return Error("Invalid record"); 1183 1184 SmallVector<uint64_t, 64> Record; 1185 1186 auto getMD = 1187 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1188 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1189 if (ID) 1190 return getMD(ID - 1); 1191 return nullptr; 1192 }; 1193 auto getMDString = [&](unsigned ID) -> MDString *{ 1194 // This requires that the ID is not really a forward reference. In 1195 // particular, the MDString must already have been resolved. 1196 return cast_or_null<MDString>(getMDOrNull(ID)); 1197 }; 1198 1199 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1200 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1201 1202 // Read all the records. 1203 while (1) { 1204 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1205 1206 switch (Entry.Kind) { 1207 case BitstreamEntry::SubBlock: // Handled for us already. 1208 case BitstreamEntry::Error: 1209 return Error("Malformed block"); 1210 case BitstreamEntry::EndBlock: 1211 MDValueList.tryToResolveCycles(); 1212 return std::error_code(); 1213 case BitstreamEntry::Record: 1214 // The interesting case. 1215 break; 1216 } 1217 1218 // Read a record. 1219 Record.clear(); 1220 unsigned Code = Stream.readRecord(Entry.ID, Record); 1221 bool IsDistinct = false; 1222 switch (Code) { 1223 default: // Default behavior: ignore. 1224 break; 1225 case bitc::METADATA_NAME: { 1226 // Read name of the named metadata. 1227 SmallString<8> Name(Record.begin(), Record.end()); 1228 Record.clear(); 1229 Code = Stream.ReadCode(); 1230 1231 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1232 unsigned NextBitCode = Stream.readRecord(Code, Record); 1233 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1234 1235 // Read named metadata elements. 1236 unsigned Size = Record.size(); 1237 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1238 for (unsigned i = 0; i != Size; ++i) { 1239 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1240 if (!MD) 1241 return Error("Invalid record"); 1242 NMD->addOperand(MD); 1243 } 1244 break; 1245 } 1246 case bitc::METADATA_OLD_FN_NODE: { 1247 // FIXME: Remove in 4.0. 1248 // This is a LocalAsMetadata record, the only type of function-local 1249 // metadata. 1250 if (Record.size() % 2 == 1) 1251 return Error("Invalid record"); 1252 1253 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1254 // to be legal, but there's no upgrade path. 1255 auto dropRecord = [&] { 1256 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1257 }; 1258 if (Record.size() != 2) { 1259 dropRecord(); 1260 break; 1261 } 1262 1263 Type *Ty = getTypeByID(Record[0]); 1264 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1265 dropRecord(); 1266 break; 1267 } 1268 1269 MDValueList.AssignValue( 1270 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1271 NextMDValueNo++); 1272 break; 1273 } 1274 case bitc::METADATA_OLD_NODE: { 1275 // FIXME: Remove in 4.0. 1276 if (Record.size() % 2 == 1) 1277 return Error("Invalid record"); 1278 1279 unsigned Size = Record.size(); 1280 SmallVector<Metadata *, 8> Elts; 1281 for (unsigned i = 0; i != Size; i += 2) { 1282 Type *Ty = getTypeByID(Record[i]); 1283 if (!Ty) 1284 return Error("Invalid record"); 1285 if (Ty->isMetadataTy()) 1286 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1287 else if (!Ty->isVoidTy()) { 1288 auto *MD = 1289 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1290 assert(isa<ConstantAsMetadata>(MD) && 1291 "Expected non-function-local metadata"); 1292 Elts.push_back(MD); 1293 } else 1294 Elts.push_back(nullptr); 1295 } 1296 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1297 break; 1298 } 1299 case bitc::METADATA_VALUE: { 1300 if (Record.size() != 2) 1301 return Error("Invalid record"); 1302 1303 Type *Ty = getTypeByID(Record[0]); 1304 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1305 return Error("Invalid record"); 1306 1307 MDValueList.AssignValue( 1308 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1309 NextMDValueNo++); 1310 break; 1311 } 1312 case bitc::METADATA_DISTINCT_NODE: 1313 IsDistinct = true; 1314 // fallthrough... 1315 case bitc::METADATA_NODE: { 1316 SmallVector<Metadata *, 8> Elts; 1317 Elts.reserve(Record.size()); 1318 for (unsigned ID : Record) 1319 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1320 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1321 : MDNode::get(Context, Elts), 1322 NextMDValueNo++); 1323 break; 1324 } 1325 case bitc::METADATA_LOCATION: { 1326 if (Record.size() != 5) 1327 return Error("Invalid record"); 1328 1329 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1330 unsigned Line = Record[1]; 1331 unsigned Column = Record[2]; 1332 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1333 Metadata *InlinedAt = 1334 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1335 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1336 NextMDValueNo++); 1337 break; 1338 } 1339 case bitc::METADATA_GENERIC_DEBUG: { 1340 if (Record.size() < 4) 1341 return Error("Invalid record"); 1342 1343 unsigned Tag = Record[1]; 1344 unsigned Version = Record[2]; 1345 1346 if (Tag >= 1u << 16 || Version != 0) 1347 return Error("Invalid record"); 1348 1349 auto *Header = getMDString(Record[3]); 1350 SmallVector<Metadata *, 8> DwarfOps; 1351 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1352 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1353 : nullptr); 1354 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1355 (Context, Tag, Header, DwarfOps)), 1356 NextMDValueNo++); 1357 break; 1358 } 1359 case bitc::METADATA_SUBRANGE: { 1360 if (Record.size() != 3) 1361 return Error("Invalid record"); 1362 1363 MDValueList.AssignValue( 1364 GET_OR_DISTINCT(MDSubrange, Record[0], 1365 (Context, Record[1], unrotateSign(Record[2]))), 1366 NextMDValueNo++); 1367 break; 1368 } 1369 case bitc::METADATA_ENUMERATOR: { 1370 if (Record.size() != 3) 1371 return Error("Invalid record"); 1372 1373 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1374 (Context, unrotateSign(Record[1]), 1375 getMDString(Record[2]))), 1376 NextMDValueNo++); 1377 break; 1378 } 1379 case bitc::METADATA_BASIC_TYPE: { 1380 if (Record.size() != 6) 1381 return Error("Invalid record"); 1382 1383 MDValueList.AssignValue( 1384 GET_OR_DISTINCT(MDBasicType, Record[0], 1385 (Context, Record[1], getMDString(Record[2]), 1386 Record[3], Record[4], Record[5])), 1387 NextMDValueNo++); 1388 break; 1389 } 1390 case bitc::METADATA_DERIVED_TYPE: { 1391 if (Record.size() != 12) 1392 return Error("Invalid record"); 1393 1394 MDValueList.AssignValue( 1395 GET_OR_DISTINCT(MDDerivedType, Record[0], 1396 (Context, Record[1], getMDString(Record[2]), 1397 getMDOrNull(Record[3]), Record[4], 1398 getMDOrNull(Record[5]), getMD(Record[6]), Record[7], 1399 Record[8], Record[9], Record[10], 1400 getMDOrNull(Record[11]))), 1401 NextMDValueNo++); 1402 break; 1403 } 1404 case bitc::METADATA_COMPOSITE_TYPE: { 1405 if (Record.size() != 16) 1406 return Error("Invalid record"); 1407 1408 MDValueList.AssignValue( 1409 GET_OR_DISTINCT(MDCompositeType, Record[0], 1410 (Context, Record[1], getMDString(Record[2]), 1411 getMDOrNull(Record[3]), Record[4], 1412 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1413 Record[7], Record[8], Record[9], Record[10], 1414 getMDOrNull(Record[11]), Record[12], 1415 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1416 getMDString(Record[15]))), 1417 NextMDValueNo++); 1418 break; 1419 } 1420 case bitc::METADATA_SUBROUTINE_TYPE: { 1421 if (Record.size() != 3) 1422 return Error("Invalid record"); 1423 1424 MDValueList.AssignValue( 1425 GET_OR_DISTINCT(MDSubroutineType, Record[0], 1426 (Context, Record[1], getMDOrNull(Record[2]))), 1427 NextMDValueNo++); 1428 break; 1429 } 1430 case bitc::METADATA_FILE: { 1431 if (Record.size() != 3) 1432 return Error("Invalid record"); 1433 1434 MDValueList.AssignValue( 1435 GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]), 1436 getMDString(Record[2]))), 1437 NextMDValueNo++); 1438 break; 1439 } 1440 case bitc::METADATA_COMPILE_UNIT: { 1441 if (Record.size() != 14) 1442 return Error("Invalid record"); 1443 1444 MDValueList.AssignValue( 1445 GET_OR_DISTINCT( 1446 MDCompileUnit, Record[0], 1447 (Context, Record[1], getMD(Record[2]), getMDString(Record[3]), 1448 Record[4], getMDString(Record[5]), Record[6], 1449 getMDString(Record[7]), Record[8], getMDOrNull(Record[9]), 1450 getMDOrNull(Record[10]), getMDOrNull(Record[11]), 1451 getMDOrNull(Record[12]), getMDOrNull(Record[13]))), 1452 NextMDValueNo++); 1453 break; 1454 } 1455 case bitc::METADATA_SUBPROGRAM: { 1456 if (Record.size() != 19) 1457 return Error("Invalid record"); 1458 1459 MDValueList.AssignValue( 1460 GET_OR_DISTINCT( 1461 MDSubprogram, Record[0], 1462 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1463 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1464 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1465 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1466 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1467 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1468 NextMDValueNo++); 1469 break; 1470 } 1471 case bitc::METADATA_LEXICAL_BLOCK: { 1472 if (Record.size() != 5) 1473 return Error("Invalid record"); 1474 1475 MDValueList.AssignValue( 1476 GET_OR_DISTINCT(MDLexicalBlock, Record[0], 1477 (Context, getMDOrNull(Record[1]), 1478 getMDOrNull(Record[2]), Record[3], Record[4])), 1479 NextMDValueNo++); 1480 break; 1481 } 1482 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1483 if (Record.size() != 4) 1484 return Error("Invalid record"); 1485 1486 MDValueList.AssignValue( 1487 GET_OR_DISTINCT(MDLexicalBlockFile, Record[0], 1488 (Context, getMDOrNull(Record[1]), 1489 getMDOrNull(Record[2]), Record[3])), 1490 NextMDValueNo++); 1491 break; 1492 } 1493 case bitc::METADATA_NAMESPACE: { 1494 if (Record.size() != 5) 1495 return Error("Invalid record"); 1496 1497 MDValueList.AssignValue( 1498 GET_OR_DISTINCT(MDNamespace, Record[0], 1499 (Context, getMDOrNull(Record[1]), 1500 getMDOrNull(Record[2]), getMDString(Record[3]), 1501 Record[4])), 1502 NextMDValueNo++); 1503 break; 1504 } 1505 case bitc::METADATA_TEMPLATE_TYPE: { 1506 if (Record.size() != 4) 1507 return Error("Invalid record"); 1508 1509 MDValueList.AssignValue( 1510 GET_OR_DISTINCT(MDTemplateTypeParameter, Record[0], 1511 (Context, getMDOrNull(Record[1]), 1512 getMDString(Record[2]), getMDOrNull(Record[3]))), 1513 NextMDValueNo++); 1514 break; 1515 } 1516 case bitc::METADATA_TEMPLATE_VALUE: { 1517 if (Record.size() != 6) 1518 return Error("Invalid record"); 1519 1520 MDValueList.AssignValue( 1521 GET_OR_DISTINCT(MDTemplateValueParameter, Record[0], 1522 (Context, Record[1], getMDOrNull(Record[2]), 1523 getMDString(Record[3]), getMDOrNull(Record[4]), 1524 getMDOrNull(Record[5]))), 1525 NextMDValueNo++); 1526 break; 1527 } 1528 case bitc::METADATA_STRING: { 1529 std::string String(Record.begin(), Record.end()); 1530 llvm::UpgradeMDStringConstant(String); 1531 Metadata *MD = MDString::get(Context, String); 1532 MDValueList.AssignValue(MD, NextMDValueNo++); 1533 break; 1534 } 1535 case bitc::METADATA_KIND: { 1536 if (Record.size() < 2) 1537 return Error("Invalid record"); 1538 1539 unsigned Kind = Record[0]; 1540 SmallString<8> Name(Record.begin()+1, Record.end()); 1541 1542 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1543 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1544 return Error("Conflicting METADATA_KIND records"); 1545 break; 1546 } 1547 } 1548 } 1549 #undef GET_OR_DISTINCT 1550 } 1551 1552 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1553 /// the LSB for dense VBR encoding. 1554 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1555 if ((V & 1) == 0) 1556 return V >> 1; 1557 if (V != 1) 1558 return -(V >> 1); 1559 // There is no such thing as -0 with integers. "-0" really means MININT. 1560 return 1ULL << 63; 1561 } 1562 1563 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1564 /// values and aliases that we can. 1565 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1566 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1567 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1568 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1569 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1570 1571 GlobalInitWorklist.swap(GlobalInits); 1572 AliasInitWorklist.swap(AliasInits); 1573 FunctionPrefixWorklist.swap(FunctionPrefixes); 1574 FunctionPrologueWorklist.swap(FunctionPrologues); 1575 1576 while (!GlobalInitWorklist.empty()) { 1577 unsigned ValID = GlobalInitWorklist.back().second; 1578 if (ValID >= ValueList.size()) { 1579 // Not ready to resolve this yet, it requires something later in the file. 1580 GlobalInits.push_back(GlobalInitWorklist.back()); 1581 } else { 1582 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1583 GlobalInitWorklist.back().first->setInitializer(C); 1584 else 1585 return Error("Expected a constant"); 1586 } 1587 GlobalInitWorklist.pop_back(); 1588 } 1589 1590 while (!AliasInitWorklist.empty()) { 1591 unsigned ValID = AliasInitWorklist.back().second; 1592 if (ValID >= ValueList.size()) { 1593 AliasInits.push_back(AliasInitWorklist.back()); 1594 } else { 1595 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1596 AliasInitWorklist.back().first->setAliasee(C); 1597 else 1598 return Error("Expected a constant"); 1599 } 1600 AliasInitWorklist.pop_back(); 1601 } 1602 1603 while (!FunctionPrefixWorklist.empty()) { 1604 unsigned ValID = FunctionPrefixWorklist.back().second; 1605 if (ValID >= ValueList.size()) { 1606 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1607 } else { 1608 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1609 FunctionPrefixWorklist.back().first->setPrefixData(C); 1610 else 1611 return Error("Expected a constant"); 1612 } 1613 FunctionPrefixWorklist.pop_back(); 1614 } 1615 1616 while (!FunctionPrologueWorklist.empty()) { 1617 unsigned ValID = FunctionPrologueWorklist.back().second; 1618 if (ValID >= ValueList.size()) { 1619 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1620 } else { 1621 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1622 FunctionPrologueWorklist.back().first->setPrologueData(C); 1623 else 1624 return Error("Expected a constant"); 1625 } 1626 FunctionPrologueWorklist.pop_back(); 1627 } 1628 1629 return std::error_code(); 1630 } 1631 1632 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1633 SmallVector<uint64_t, 8> Words(Vals.size()); 1634 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1635 BitcodeReader::decodeSignRotatedValue); 1636 1637 return APInt(TypeBits, Words); 1638 } 1639 1640 std::error_code BitcodeReader::ParseConstants() { 1641 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1642 return Error("Invalid record"); 1643 1644 SmallVector<uint64_t, 64> Record; 1645 1646 // Read all the records for this value table. 1647 Type *CurTy = Type::getInt32Ty(Context); 1648 unsigned NextCstNo = ValueList.size(); 1649 while (1) { 1650 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1651 1652 switch (Entry.Kind) { 1653 case BitstreamEntry::SubBlock: // Handled for us already. 1654 case BitstreamEntry::Error: 1655 return Error("Malformed block"); 1656 case BitstreamEntry::EndBlock: 1657 if (NextCstNo != ValueList.size()) 1658 return Error("Invalid ronstant reference"); 1659 1660 // Once all the constants have been read, go through and resolve forward 1661 // references. 1662 ValueList.ResolveConstantForwardRefs(); 1663 return std::error_code(); 1664 case BitstreamEntry::Record: 1665 // The interesting case. 1666 break; 1667 } 1668 1669 // Read a record. 1670 Record.clear(); 1671 Value *V = nullptr; 1672 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1673 switch (BitCode) { 1674 default: // Default behavior: unknown constant 1675 case bitc::CST_CODE_UNDEF: // UNDEF 1676 V = UndefValue::get(CurTy); 1677 break; 1678 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1679 if (Record.empty()) 1680 return Error("Invalid record"); 1681 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1682 return Error("Invalid record"); 1683 CurTy = TypeList[Record[0]]; 1684 continue; // Skip the ValueList manipulation. 1685 case bitc::CST_CODE_NULL: // NULL 1686 V = Constant::getNullValue(CurTy); 1687 break; 1688 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1689 if (!CurTy->isIntegerTy() || Record.empty()) 1690 return Error("Invalid record"); 1691 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1692 break; 1693 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1694 if (!CurTy->isIntegerTy() || Record.empty()) 1695 return Error("Invalid record"); 1696 1697 APInt VInt = ReadWideAPInt(Record, 1698 cast<IntegerType>(CurTy)->getBitWidth()); 1699 V = ConstantInt::get(Context, VInt); 1700 1701 break; 1702 } 1703 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1704 if (Record.empty()) 1705 return Error("Invalid record"); 1706 if (CurTy->isHalfTy()) 1707 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1708 APInt(16, (uint16_t)Record[0]))); 1709 else if (CurTy->isFloatTy()) 1710 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1711 APInt(32, (uint32_t)Record[0]))); 1712 else if (CurTy->isDoubleTy()) 1713 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1714 APInt(64, Record[0]))); 1715 else if (CurTy->isX86_FP80Ty()) { 1716 // Bits are not stored the same way as a normal i80 APInt, compensate. 1717 uint64_t Rearrange[2]; 1718 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1719 Rearrange[1] = Record[0] >> 48; 1720 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1721 APInt(80, Rearrange))); 1722 } else if (CurTy->isFP128Ty()) 1723 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1724 APInt(128, Record))); 1725 else if (CurTy->isPPC_FP128Ty()) 1726 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1727 APInt(128, Record))); 1728 else 1729 V = UndefValue::get(CurTy); 1730 break; 1731 } 1732 1733 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1734 if (Record.empty()) 1735 return Error("Invalid record"); 1736 1737 unsigned Size = Record.size(); 1738 SmallVector<Constant*, 16> Elts; 1739 1740 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1741 for (unsigned i = 0; i != Size; ++i) 1742 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1743 STy->getElementType(i))); 1744 V = ConstantStruct::get(STy, Elts); 1745 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1746 Type *EltTy = ATy->getElementType(); 1747 for (unsigned i = 0; i != Size; ++i) 1748 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1749 V = ConstantArray::get(ATy, Elts); 1750 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1751 Type *EltTy = VTy->getElementType(); 1752 for (unsigned i = 0; i != Size; ++i) 1753 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1754 V = ConstantVector::get(Elts); 1755 } else { 1756 V = UndefValue::get(CurTy); 1757 } 1758 break; 1759 } 1760 case bitc::CST_CODE_STRING: // STRING: [values] 1761 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1762 if (Record.empty()) 1763 return Error("Invalid record"); 1764 1765 SmallString<16> Elts(Record.begin(), Record.end()); 1766 V = ConstantDataArray::getString(Context, Elts, 1767 BitCode == bitc::CST_CODE_CSTRING); 1768 break; 1769 } 1770 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1771 if (Record.empty()) 1772 return Error("Invalid record"); 1773 1774 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1775 unsigned Size = Record.size(); 1776 1777 if (EltTy->isIntegerTy(8)) { 1778 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1779 if (isa<VectorType>(CurTy)) 1780 V = ConstantDataVector::get(Context, Elts); 1781 else 1782 V = ConstantDataArray::get(Context, Elts); 1783 } else if (EltTy->isIntegerTy(16)) { 1784 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1785 if (isa<VectorType>(CurTy)) 1786 V = ConstantDataVector::get(Context, Elts); 1787 else 1788 V = ConstantDataArray::get(Context, Elts); 1789 } else if (EltTy->isIntegerTy(32)) { 1790 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1791 if (isa<VectorType>(CurTy)) 1792 V = ConstantDataVector::get(Context, Elts); 1793 else 1794 V = ConstantDataArray::get(Context, Elts); 1795 } else if (EltTy->isIntegerTy(64)) { 1796 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1797 if (isa<VectorType>(CurTy)) 1798 V = ConstantDataVector::get(Context, Elts); 1799 else 1800 V = ConstantDataArray::get(Context, Elts); 1801 } else if (EltTy->isFloatTy()) { 1802 SmallVector<float, 16> Elts(Size); 1803 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1804 if (isa<VectorType>(CurTy)) 1805 V = ConstantDataVector::get(Context, Elts); 1806 else 1807 V = ConstantDataArray::get(Context, Elts); 1808 } else if (EltTy->isDoubleTy()) { 1809 SmallVector<double, 16> Elts(Size); 1810 std::transform(Record.begin(), Record.end(), Elts.begin(), 1811 BitsToDouble); 1812 if (isa<VectorType>(CurTy)) 1813 V = ConstantDataVector::get(Context, Elts); 1814 else 1815 V = ConstantDataArray::get(Context, Elts); 1816 } else { 1817 return Error("Invalid type for value"); 1818 } 1819 break; 1820 } 1821 1822 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1823 if (Record.size() < 3) 1824 return Error("Invalid record"); 1825 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1826 if (Opc < 0) { 1827 V = UndefValue::get(CurTy); // Unknown binop. 1828 } else { 1829 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1830 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1831 unsigned Flags = 0; 1832 if (Record.size() >= 4) { 1833 if (Opc == Instruction::Add || 1834 Opc == Instruction::Sub || 1835 Opc == Instruction::Mul || 1836 Opc == Instruction::Shl) { 1837 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1838 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1839 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1840 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1841 } else if (Opc == Instruction::SDiv || 1842 Opc == Instruction::UDiv || 1843 Opc == Instruction::LShr || 1844 Opc == Instruction::AShr) { 1845 if (Record[3] & (1 << bitc::PEO_EXACT)) 1846 Flags |= SDivOperator::IsExact; 1847 } 1848 } 1849 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1850 } 1851 break; 1852 } 1853 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1854 if (Record.size() < 3) 1855 return Error("Invalid record"); 1856 int Opc = GetDecodedCastOpcode(Record[0]); 1857 if (Opc < 0) { 1858 V = UndefValue::get(CurTy); // Unknown cast. 1859 } else { 1860 Type *OpTy = getTypeByID(Record[1]); 1861 if (!OpTy) 1862 return Error("Invalid record"); 1863 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1864 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1865 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1866 } 1867 break; 1868 } 1869 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1870 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1871 if (Record.size() & 1) 1872 return Error("Invalid record"); 1873 SmallVector<Constant*, 16> Elts; 1874 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1875 Type *ElTy = getTypeByID(Record[i]); 1876 if (!ElTy) 1877 return Error("Invalid record"); 1878 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1879 } 1880 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1881 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1882 BitCode == 1883 bitc::CST_CODE_CE_INBOUNDS_GEP); 1884 break; 1885 } 1886 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1887 if (Record.size() < 3) 1888 return Error("Invalid record"); 1889 1890 Type *SelectorTy = Type::getInt1Ty(Context); 1891 1892 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1893 // vector. Otherwise, it must be a single bit. 1894 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1895 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1896 VTy->getNumElements()); 1897 1898 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1899 SelectorTy), 1900 ValueList.getConstantFwdRef(Record[1],CurTy), 1901 ValueList.getConstantFwdRef(Record[2],CurTy)); 1902 break; 1903 } 1904 case bitc::CST_CODE_CE_EXTRACTELT 1905 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1906 if (Record.size() < 3) 1907 return Error("Invalid record"); 1908 VectorType *OpTy = 1909 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1910 if (!OpTy) 1911 return Error("Invalid record"); 1912 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1913 Constant *Op1 = nullptr; 1914 if (Record.size() == 4) { 1915 Type *IdxTy = getTypeByID(Record[2]); 1916 if (!IdxTy) 1917 return Error("Invalid record"); 1918 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1919 } else // TODO: Remove with llvm 4.0 1920 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1921 if (!Op1) 1922 return Error("Invalid record"); 1923 V = ConstantExpr::getExtractElement(Op0, Op1); 1924 break; 1925 } 1926 case bitc::CST_CODE_CE_INSERTELT 1927 : { // CE_INSERTELT: [opval, opval, opty, opval] 1928 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1929 if (Record.size() < 3 || !OpTy) 1930 return Error("Invalid record"); 1931 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1932 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1933 OpTy->getElementType()); 1934 Constant *Op2 = nullptr; 1935 if (Record.size() == 4) { 1936 Type *IdxTy = getTypeByID(Record[2]); 1937 if (!IdxTy) 1938 return Error("Invalid record"); 1939 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1940 } else // TODO: Remove with llvm 4.0 1941 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1942 if (!Op2) 1943 return Error("Invalid record"); 1944 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1945 break; 1946 } 1947 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1948 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1949 if (Record.size() < 3 || !OpTy) 1950 return Error("Invalid record"); 1951 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1952 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1953 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1954 OpTy->getNumElements()); 1955 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1956 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1957 break; 1958 } 1959 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1960 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1961 VectorType *OpTy = 1962 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1963 if (Record.size() < 4 || !RTy || !OpTy) 1964 return Error("Invalid record"); 1965 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1966 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1967 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1968 RTy->getNumElements()); 1969 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1970 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1971 break; 1972 } 1973 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1974 if (Record.size() < 4) 1975 return Error("Invalid record"); 1976 Type *OpTy = getTypeByID(Record[0]); 1977 if (!OpTy) 1978 return Error("Invalid record"); 1979 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1980 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1981 1982 if (OpTy->isFPOrFPVectorTy()) 1983 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1984 else 1985 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1986 break; 1987 } 1988 // This maintains backward compatibility, pre-asm dialect keywords. 1989 // FIXME: Remove with the 4.0 release. 1990 case bitc::CST_CODE_INLINEASM_OLD: { 1991 if (Record.size() < 2) 1992 return Error("Invalid record"); 1993 std::string AsmStr, ConstrStr; 1994 bool HasSideEffects = Record[0] & 1; 1995 bool IsAlignStack = Record[0] >> 1; 1996 unsigned AsmStrSize = Record[1]; 1997 if (2+AsmStrSize >= Record.size()) 1998 return Error("Invalid record"); 1999 unsigned ConstStrSize = Record[2+AsmStrSize]; 2000 if (3+AsmStrSize+ConstStrSize > Record.size()) 2001 return Error("Invalid record"); 2002 2003 for (unsigned i = 0; i != AsmStrSize; ++i) 2004 AsmStr += (char)Record[2+i]; 2005 for (unsigned i = 0; i != ConstStrSize; ++i) 2006 ConstrStr += (char)Record[3+AsmStrSize+i]; 2007 PointerType *PTy = cast<PointerType>(CurTy); 2008 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2009 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2010 break; 2011 } 2012 // This version adds support for the asm dialect keywords (e.g., 2013 // inteldialect). 2014 case bitc::CST_CODE_INLINEASM: { 2015 if (Record.size() < 2) 2016 return Error("Invalid record"); 2017 std::string AsmStr, ConstrStr; 2018 bool HasSideEffects = Record[0] & 1; 2019 bool IsAlignStack = (Record[0] >> 1) & 1; 2020 unsigned AsmDialect = Record[0] >> 2; 2021 unsigned AsmStrSize = Record[1]; 2022 if (2+AsmStrSize >= Record.size()) 2023 return Error("Invalid record"); 2024 unsigned ConstStrSize = Record[2+AsmStrSize]; 2025 if (3+AsmStrSize+ConstStrSize > Record.size()) 2026 return Error("Invalid record"); 2027 2028 for (unsigned i = 0; i != AsmStrSize; ++i) 2029 AsmStr += (char)Record[2+i]; 2030 for (unsigned i = 0; i != ConstStrSize; ++i) 2031 ConstrStr += (char)Record[3+AsmStrSize+i]; 2032 PointerType *PTy = cast<PointerType>(CurTy); 2033 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2034 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2035 InlineAsm::AsmDialect(AsmDialect)); 2036 break; 2037 } 2038 case bitc::CST_CODE_BLOCKADDRESS:{ 2039 if (Record.size() < 3) 2040 return Error("Invalid record"); 2041 Type *FnTy = getTypeByID(Record[0]); 2042 if (!FnTy) 2043 return Error("Invalid record"); 2044 Function *Fn = 2045 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2046 if (!Fn) 2047 return Error("Invalid record"); 2048 2049 // Don't let Fn get dematerialized. 2050 BlockAddressesTaken.insert(Fn); 2051 2052 // If the function is already parsed we can insert the block address right 2053 // away. 2054 BasicBlock *BB; 2055 unsigned BBID = Record[2]; 2056 if (!BBID) 2057 // Invalid reference to entry block. 2058 return Error("Invalid ID"); 2059 if (!Fn->empty()) { 2060 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2061 for (size_t I = 0, E = BBID; I != E; ++I) { 2062 if (BBI == BBE) 2063 return Error("Invalid ID"); 2064 ++BBI; 2065 } 2066 BB = BBI; 2067 } else { 2068 // Otherwise insert a placeholder and remember it so it can be inserted 2069 // when the function is parsed. 2070 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2071 if (FwdBBs.empty()) 2072 BasicBlockFwdRefQueue.push_back(Fn); 2073 if (FwdBBs.size() < BBID + 1) 2074 FwdBBs.resize(BBID + 1); 2075 if (!FwdBBs[BBID]) 2076 FwdBBs[BBID] = BasicBlock::Create(Context); 2077 BB = FwdBBs[BBID]; 2078 } 2079 V = BlockAddress::get(Fn, BB); 2080 break; 2081 } 2082 } 2083 2084 ValueList.AssignValue(V, NextCstNo); 2085 ++NextCstNo; 2086 } 2087 } 2088 2089 std::error_code BitcodeReader::ParseUseLists() { 2090 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2091 return Error("Invalid record"); 2092 2093 // Read all the records. 2094 SmallVector<uint64_t, 64> Record; 2095 while (1) { 2096 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2097 2098 switch (Entry.Kind) { 2099 case BitstreamEntry::SubBlock: // Handled for us already. 2100 case BitstreamEntry::Error: 2101 return Error("Malformed block"); 2102 case BitstreamEntry::EndBlock: 2103 return std::error_code(); 2104 case BitstreamEntry::Record: 2105 // The interesting case. 2106 break; 2107 } 2108 2109 // Read a use list record. 2110 Record.clear(); 2111 bool IsBB = false; 2112 switch (Stream.readRecord(Entry.ID, Record)) { 2113 default: // Default behavior: unknown type. 2114 break; 2115 case bitc::USELIST_CODE_BB: 2116 IsBB = true; 2117 // fallthrough 2118 case bitc::USELIST_CODE_DEFAULT: { 2119 unsigned RecordLength = Record.size(); 2120 if (RecordLength < 3) 2121 // Records should have at least an ID and two indexes. 2122 return Error("Invalid record"); 2123 unsigned ID = Record.back(); 2124 Record.pop_back(); 2125 2126 Value *V; 2127 if (IsBB) { 2128 assert(ID < FunctionBBs.size() && "Basic block not found"); 2129 V = FunctionBBs[ID]; 2130 } else 2131 V = ValueList[ID]; 2132 unsigned NumUses = 0; 2133 SmallDenseMap<const Use *, unsigned, 16> Order; 2134 for (const Use &U : V->uses()) { 2135 if (++NumUses > Record.size()) 2136 break; 2137 Order[&U] = Record[NumUses - 1]; 2138 } 2139 if (Order.size() != Record.size() || NumUses > Record.size()) 2140 // Mismatches can happen if the functions are being materialized lazily 2141 // (out-of-order), or a value has been upgraded. 2142 break; 2143 2144 V->sortUseList([&](const Use &L, const Use &R) { 2145 return Order.lookup(&L) < Order.lookup(&R); 2146 }); 2147 break; 2148 } 2149 } 2150 } 2151 } 2152 2153 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2154 /// remember where it is and then skip it. This lets us lazily deserialize the 2155 /// functions. 2156 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2157 // Get the function we are talking about. 2158 if (FunctionsWithBodies.empty()) 2159 return Error("Insufficient function protos"); 2160 2161 Function *Fn = FunctionsWithBodies.back(); 2162 FunctionsWithBodies.pop_back(); 2163 2164 // Save the current stream state. 2165 uint64_t CurBit = Stream.GetCurrentBitNo(); 2166 DeferredFunctionInfo[Fn] = CurBit; 2167 2168 // Skip over the function block for now. 2169 if (Stream.SkipBlock()) 2170 return Error("Invalid record"); 2171 return std::error_code(); 2172 } 2173 2174 std::error_code BitcodeReader::GlobalCleanup() { 2175 // Patch the initializers for globals and aliases up. 2176 ResolveGlobalAndAliasInits(); 2177 if (!GlobalInits.empty() || !AliasInits.empty()) 2178 return Error("Malformed global initializer set"); 2179 2180 // Look for intrinsic functions which need to be upgraded at some point 2181 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2182 FI != FE; ++FI) { 2183 Function *NewFn; 2184 if (UpgradeIntrinsicFunction(FI, NewFn)) 2185 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2186 } 2187 2188 // Look for global variables which need to be renamed. 2189 for (Module::global_iterator 2190 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2191 GI != GE;) { 2192 GlobalVariable *GV = GI++; 2193 UpgradeGlobalVariable(GV); 2194 } 2195 2196 // Force deallocation of memory for these vectors to favor the client that 2197 // want lazy deserialization. 2198 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2199 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2200 return std::error_code(); 2201 } 2202 2203 std::error_code BitcodeReader::ParseModule(bool Resume) { 2204 if (Resume) 2205 Stream.JumpToBit(NextUnreadBit); 2206 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2207 return Error("Invalid record"); 2208 2209 SmallVector<uint64_t, 64> Record; 2210 std::vector<std::string> SectionTable; 2211 std::vector<std::string> GCTable; 2212 2213 // Read all the records for this module. 2214 while (1) { 2215 BitstreamEntry Entry = Stream.advance(); 2216 2217 switch (Entry.Kind) { 2218 case BitstreamEntry::Error: 2219 return Error("Malformed block"); 2220 case BitstreamEntry::EndBlock: 2221 return GlobalCleanup(); 2222 2223 case BitstreamEntry::SubBlock: 2224 switch (Entry.ID) { 2225 default: // Skip unknown content. 2226 if (Stream.SkipBlock()) 2227 return Error("Invalid record"); 2228 break; 2229 case bitc::BLOCKINFO_BLOCK_ID: 2230 if (Stream.ReadBlockInfoBlock()) 2231 return Error("Malformed block"); 2232 break; 2233 case bitc::PARAMATTR_BLOCK_ID: 2234 if (std::error_code EC = ParseAttributeBlock()) 2235 return EC; 2236 break; 2237 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2238 if (std::error_code EC = ParseAttributeGroupBlock()) 2239 return EC; 2240 break; 2241 case bitc::TYPE_BLOCK_ID_NEW: 2242 if (std::error_code EC = ParseTypeTable()) 2243 return EC; 2244 break; 2245 case bitc::VALUE_SYMTAB_BLOCK_ID: 2246 if (std::error_code EC = ParseValueSymbolTable()) 2247 return EC; 2248 SeenValueSymbolTable = true; 2249 break; 2250 case bitc::CONSTANTS_BLOCK_ID: 2251 if (std::error_code EC = ParseConstants()) 2252 return EC; 2253 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2254 return EC; 2255 break; 2256 case bitc::METADATA_BLOCK_ID: 2257 if (std::error_code EC = ParseMetadata()) 2258 return EC; 2259 break; 2260 case bitc::FUNCTION_BLOCK_ID: 2261 // If this is the first function body we've seen, reverse the 2262 // FunctionsWithBodies list. 2263 if (!SeenFirstFunctionBody) { 2264 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2265 if (std::error_code EC = GlobalCleanup()) 2266 return EC; 2267 SeenFirstFunctionBody = true; 2268 } 2269 2270 if (std::error_code EC = RememberAndSkipFunctionBody()) 2271 return EC; 2272 // For streaming bitcode, suspend parsing when we reach the function 2273 // bodies. Subsequent materialization calls will resume it when 2274 // necessary. For streaming, the function bodies must be at the end of 2275 // the bitcode. If the bitcode file is old, the symbol table will be 2276 // at the end instead and will not have been seen yet. In this case, 2277 // just finish the parse now. 2278 if (LazyStreamer && SeenValueSymbolTable) { 2279 NextUnreadBit = Stream.GetCurrentBitNo(); 2280 return std::error_code(); 2281 } 2282 break; 2283 case bitc::USELIST_BLOCK_ID: 2284 if (std::error_code EC = ParseUseLists()) 2285 return EC; 2286 break; 2287 } 2288 continue; 2289 2290 case BitstreamEntry::Record: 2291 // The interesting case. 2292 break; 2293 } 2294 2295 2296 // Read a record. 2297 switch (Stream.readRecord(Entry.ID, Record)) { 2298 default: break; // Default behavior, ignore unknown content. 2299 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2300 if (Record.size() < 1) 2301 return Error("Invalid record"); 2302 // Only version #0 and #1 are supported so far. 2303 unsigned module_version = Record[0]; 2304 switch (module_version) { 2305 default: 2306 return Error("Invalid value"); 2307 case 0: 2308 UseRelativeIDs = false; 2309 break; 2310 case 1: 2311 UseRelativeIDs = true; 2312 break; 2313 } 2314 break; 2315 } 2316 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2317 std::string S; 2318 if (ConvertToString(Record, 0, S)) 2319 return Error("Invalid record"); 2320 TheModule->setTargetTriple(S); 2321 break; 2322 } 2323 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2324 std::string S; 2325 if (ConvertToString(Record, 0, S)) 2326 return Error("Invalid record"); 2327 TheModule->setDataLayout(S); 2328 break; 2329 } 2330 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2331 std::string S; 2332 if (ConvertToString(Record, 0, S)) 2333 return Error("Invalid record"); 2334 TheModule->setModuleInlineAsm(S); 2335 break; 2336 } 2337 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2338 // FIXME: Remove in 4.0. 2339 std::string S; 2340 if (ConvertToString(Record, 0, S)) 2341 return Error("Invalid record"); 2342 // Ignore value. 2343 break; 2344 } 2345 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2346 std::string S; 2347 if (ConvertToString(Record, 0, S)) 2348 return Error("Invalid record"); 2349 SectionTable.push_back(S); 2350 break; 2351 } 2352 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2353 std::string S; 2354 if (ConvertToString(Record, 0, S)) 2355 return Error("Invalid record"); 2356 GCTable.push_back(S); 2357 break; 2358 } 2359 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2360 if (Record.size() < 2) 2361 return Error("Invalid record"); 2362 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2363 unsigned ComdatNameSize = Record[1]; 2364 std::string ComdatName; 2365 ComdatName.reserve(ComdatNameSize); 2366 for (unsigned i = 0; i != ComdatNameSize; ++i) 2367 ComdatName += (char)Record[2 + i]; 2368 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2369 C->setSelectionKind(SK); 2370 ComdatList.push_back(C); 2371 break; 2372 } 2373 // GLOBALVAR: [pointer type, isconst, initid, 2374 // linkage, alignment, section, visibility, threadlocal, 2375 // unnamed_addr, externally_initialized, dllstorageclass, 2376 // comdat] 2377 case bitc::MODULE_CODE_GLOBALVAR: { 2378 if (Record.size() < 6) 2379 return Error("Invalid record"); 2380 Type *Ty = getTypeByID(Record[0]); 2381 if (!Ty) 2382 return Error("Invalid record"); 2383 if (!Ty->isPointerTy()) 2384 return Error("Invalid type for value"); 2385 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2386 Ty = cast<PointerType>(Ty)->getElementType(); 2387 2388 bool isConstant = Record[1]; 2389 uint64_t RawLinkage = Record[3]; 2390 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2391 unsigned Alignment = (1 << Record[4]) >> 1; 2392 std::string Section; 2393 if (Record[5]) { 2394 if (Record[5]-1 >= SectionTable.size()) 2395 return Error("Invalid ID"); 2396 Section = SectionTable[Record[5]-1]; 2397 } 2398 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2399 // Local linkage must have default visibility. 2400 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2401 // FIXME: Change to an error if non-default in 4.0. 2402 Visibility = GetDecodedVisibility(Record[6]); 2403 2404 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2405 if (Record.size() > 7) 2406 TLM = GetDecodedThreadLocalMode(Record[7]); 2407 2408 bool UnnamedAddr = false; 2409 if (Record.size() > 8) 2410 UnnamedAddr = Record[8]; 2411 2412 bool ExternallyInitialized = false; 2413 if (Record.size() > 9) 2414 ExternallyInitialized = Record[9]; 2415 2416 GlobalVariable *NewGV = 2417 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2418 TLM, AddressSpace, ExternallyInitialized); 2419 NewGV->setAlignment(Alignment); 2420 if (!Section.empty()) 2421 NewGV->setSection(Section); 2422 NewGV->setVisibility(Visibility); 2423 NewGV->setUnnamedAddr(UnnamedAddr); 2424 2425 if (Record.size() > 10) 2426 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2427 else 2428 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2429 2430 ValueList.push_back(NewGV); 2431 2432 // Remember which value to use for the global initializer. 2433 if (unsigned InitID = Record[2]) 2434 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2435 2436 if (Record.size() > 11) { 2437 if (unsigned ComdatID = Record[11]) { 2438 assert(ComdatID <= ComdatList.size()); 2439 NewGV->setComdat(ComdatList[ComdatID - 1]); 2440 } 2441 } else if (hasImplicitComdat(RawLinkage)) { 2442 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2443 } 2444 break; 2445 } 2446 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2447 // alignment, section, visibility, gc, unnamed_addr, 2448 // prologuedata, dllstorageclass, comdat, prefixdata] 2449 case bitc::MODULE_CODE_FUNCTION: { 2450 if (Record.size() < 8) 2451 return Error("Invalid record"); 2452 Type *Ty = getTypeByID(Record[0]); 2453 if (!Ty) 2454 return Error("Invalid record"); 2455 if (!Ty->isPointerTy()) 2456 return Error("Invalid type for value"); 2457 FunctionType *FTy = 2458 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2459 if (!FTy) 2460 return Error("Invalid type for value"); 2461 2462 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2463 "", TheModule); 2464 2465 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2466 bool isProto = Record[2]; 2467 uint64_t RawLinkage = Record[3]; 2468 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2469 Func->setAttributes(getAttributes(Record[4])); 2470 2471 Func->setAlignment((1 << Record[5]) >> 1); 2472 if (Record[6]) { 2473 if (Record[6]-1 >= SectionTable.size()) 2474 return Error("Invalid ID"); 2475 Func->setSection(SectionTable[Record[6]-1]); 2476 } 2477 // Local linkage must have default visibility. 2478 if (!Func->hasLocalLinkage()) 2479 // FIXME: Change to an error if non-default in 4.0. 2480 Func->setVisibility(GetDecodedVisibility(Record[7])); 2481 if (Record.size() > 8 && Record[8]) { 2482 if (Record[8]-1 > GCTable.size()) 2483 return Error("Invalid ID"); 2484 Func->setGC(GCTable[Record[8]-1].c_str()); 2485 } 2486 bool UnnamedAddr = false; 2487 if (Record.size() > 9) 2488 UnnamedAddr = Record[9]; 2489 Func->setUnnamedAddr(UnnamedAddr); 2490 if (Record.size() > 10 && Record[10] != 0) 2491 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2492 2493 if (Record.size() > 11) 2494 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2495 else 2496 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2497 2498 if (Record.size() > 12) { 2499 if (unsigned ComdatID = Record[12]) { 2500 assert(ComdatID <= ComdatList.size()); 2501 Func->setComdat(ComdatList[ComdatID - 1]); 2502 } 2503 } else if (hasImplicitComdat(RawLinkage)) { 2504 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2505 } 2506 2507 if (Record.size() > 13 && Record[13] != 0) 2508 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2509 2510 ValueList.push_back(Func); 2511 2512 // If this is a function with a body, remember the prototype we are 2513 // creating now, so that we can match up the body with them later. 2514 if (!isProto) { 2515 Func->setIsMaterializable(true); 2516 FunctionsWithBodies.push_back(Func); 2517 if (LazyStreamer) 2518 DeferredFunctionInfo[Func] = 0; 2519 } 2520 break; 2521 } 2522 // ALIAS: [alias type, aliasee val#, linkage] 2523 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2524 case bitc::MODULE_CODE_ALIAS: { 2525 if (Record.size() < 3) 2526 return Error("Invalid record"); 2527 Type *Ty = getTypeByID(Record[0]); 2528 if (!Ty) 2529 return Error("Invalid record"); 2530 auto *PTy = dyn_cast<PointerType>(Ty); 2531 if (!PTy) 2532 return Error("Invalid type for value"); 2533 2534 auto *NewGA = 2535 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2536 getDecodedLinkage(Record[2]), "", TheModule); 2537 // Old bitcode files didn't have visibility field. 2538 // Local linkage must have default visibility. 2539 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2540 // FIXME: Change to an error if non-default in 4.0. 2541 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2542 if (Record.size() > 4) 2543 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2544 else 2545 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2546 if (Record.size() > 5) 2547 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2548 if (Record.size() > 6) 2549 NewGA->setUnnamedAddr(Record[6]); 2550 ValueList.push_back(NewGA); 2551 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2552 break; 2553 } 2554 /// MODULE_CODE_PURGEVALS: [numvals] 2555 case bitc::MODULE_CODE_PURGEVALS: 2556 // Trim down the value list to the specified size. 2557 if (Record.size() < 1 || Record[0] > ValueList.size()) 2558 return Error("Invalid record"); 2559 ValueList.shrinkTo(Record[0]); 2560 break; 2561 } 2562 Record.clear(); 2563 } 2564 } 2565 2566 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2567 TheModule = nullptr; 2568 2569 if (std::error_code EC = InitStream()) 2570 return EC; 2571 2572 // Sniff for the signature. 2573 if (Stream.Read(8) != 'B' || 2574 Stream.Read(8) != 'C' || 2575 Stream.Read(4) != 0x0 || 2576 Stream.Read(4) != 0xC || 2577 Stream.Read(4) != 0xE || 2578 Stream.Read(4) != 0xD) 2579 return Error("Invalid bitcode signature"); 2580 2581 // We expect a number of well-defined blocks, though we don't necessarily 2582 // need to understand them all. 2583 while (1) { 2584 if (Stream.AtEndOfStream()) 2585 return std::error_code(); 2586 2587 BitstreamEntry Entry = 2588 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2589 2590 switch (Entry.Kind) { 2591 case BitstreamEntry::Error: 2592 return Error("Malformed block"); 2593 case BitstreamEntry::EndBlock: 2594 return std::error_code(); 2595 2596 case BitstreamEntry::SubBlock: 2597 switch (Entry.ID) { 2598 case bitc::BLOCKINFO_BLOCK_ID: 2599 if (Stream.ReadBlockInfoBlock()) 2600 return Error("Malformed block"); 2601 break; 2602 case bitc::MODULE_BLOCK_ID: 2603 // Reject multiple MODULE_BLOCK's in a single bitstream. 2604 if (TheModule) 2605 return Error("Invalid multiple blocks"); 2606 TheModule = M; 2607 if (std::error_code EC = ParseModule(false)) 2608 return EC; 2609 if (LazyStreamer) 2610 return std::error_code(); 2611 break; 2612 default: 2613 if (Stream.SkipBlock()) 2614 return Error("Invalid record"); 2615 break; 2616 } 2617 continue; 2618 case BitstreamEntry::Record: 2619 // There should be no records in the top-level of blocks. 2620 2621 // The ranlib in Xcode 4 will align archive members by appending newlines 2622 // to the end of them. If this file size is a multiple of 4 but not 8, we 2623 // have to read and ignore these final 4 bytes :-( 2624 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2625 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2626 Stream.AtEndOfStream()) 2627 return std::error_code(); 2628 2629 return Error("Invalid record"); 2630 } 2631 } 2632 } 2633 2634 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2635 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2636 return Error("Invalid record"); 2637 2638 SmallVector<uint64_t, 64> Record; 2639 2640 std::string Triple; 2641 // Read all the records for this module. 2642 while (1) { 2643 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2644 2645 switch (Entry.Kind) { 2646 case BitstreamEntry::SubBlock: // Handled for us already. 2647 case BitstreamEntry::Error: 2648 return Error("Malformed block"); 2649 case BitstreamEntry::EndBlock: 2650 return Triple; 2651 case BitstreamEntry::Record: 2652 // The interesting case. 2653 break; 2654 } 2655 2656 // Read a record. 2657 switch (Stream.readRecord(Entry.ID, Record)) { 2658 default: break; // Default behavior, ignore unknown content. 2659 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2660 std::string S; 2661 if (ConvertToString(Record, 0, S)) 2662 return Error("Invalid record"); 2663 Triple = S; 2664 break; 2665 } 2666 } 2667 Record.clear(); 2668 } 2669 llvm_unreachable("Exit infinite loop"); 2670 } 2671 2672 ErrorOr<std::string> BitcodeReader::parseTriple() { 2673 if (std::error_code EC = InitStream()) 2674 return EC; 2675 2676 // Sniff for the signature. 2677 if (Stream.Read(8) != 'B' || 2678 Stream.Read(8) != 'C' || 2679 Stream.Read(4) != 0x0 || 2680 Stream.Read(4) != 0xC || 2681 Stream.Read(4) != 0xE || 2682 Stream.Read(4) != 0xD) 2683 return Error("Invalid bitcode signature"); 2684 2685 // We expect a number of well-defined blocks, though we don't necessarily 2686 // need to understand them all. 2687 while (1) { 2688 BitstreamEntry Entry = Stream.advance(); 2689 2690 switch (Entry.Kind) { 2691 case BitstreamEntry::Error: 2692 return Error("Malformed block"); 2693 case BitstreamEntry::EndBlock: 2694 return std::error_code(); 2695 2696 case BitstreamEntry::SubBlock: 2697 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2698 return parseModuleTriple(); 2699 2700 // Ignore other sub-blocks. 2701 if (Stream.SkipBlock()) 2702 return Error("Malformed block"); 2703 continue; 2704 2705 case BitstreamEntry::Record: 2706 Stream.skipRecord(Entry.ID); 2707 continue; 2708 } 2709 } 2710 } 2711 2712 /// ParseMetadataAttachment - Parse metadata attachments. 2713 std::error_code BitcodeReader::ParseMetadataAttachment() { 2714 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2715 return Error("Invalid record"); 2716 2717 SmallVector<uint64_t, 64> Record; 2718 while (1) { 2719 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2720 2721 switch (Entry.Kind) { 2722 case BitstreamEntry::SubBlock: // Handled for us already. 2723 case BitstreamEntry::Error: 2724 return Error("Malformed block"); 2725 case BitstreamEntry::EndBlock: 2726 return std::error_code(); 2727 case BitstreamEntry::Record: 2728 // The interesting case. 2729 break; 2730 } 2731 2732 // Read a metadata attachment record. 2733 Record.clear(); 2734 switch (Stream.readRecord(Entry.ID, Record)) { 2735 default: // Default behavior: ignore. 2736 break; 2737 case bitc::METADATA_ATTACHMENT: { 2738 unsigned RecordLength = Record.size(); 2739 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2740 return Error("Invalid record"); 2741 Instruction *Inst = InstructionList[Record[0]]; 2742 for (unsigned i = 1; i != RecordLength; i = i+2) { 2743 unsigned Kind = Record[i]; 2744 DenseMap<unsigned, unsigned>::iterator I = 2745 MDKindMap.find(Kind); 2746 if (I == MDKindMap.end()) 2747 return Error("Invalid ID"); 2748 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2749 if (isa<LocalAsMetadata>(Node)) 2750 // Drop the attachment. This used to be legal, but there's no 2751 // upgrade path. 2752 break; 2753 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2754 if (I->second == LLVMContext::MD_tbaa) 2755 InstsWithTBAATag.push_back(Inst); 2756 } 2757 break; 2758 } 2759 } 2760 } 2761 } 2762 2763 /// ParseFunctionBody - Lazily parse the specified function body block. 2764 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2765 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2766 return Error("Invalid record"); 2767 2768 InstructionList.clear(); 2769 unsigned ModuleValueListSize = ValueList.size(); 2770 unsigned ModuleMDValueListSize = MDValueList.size(); 2771 2772 // Add all the function arguments to the value table. 2773 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2774 ValueList.push_back(I); 2775 2776 unsigned NextValueNo = ValueList.size(); 2777 BasicBlock *CurBB = nullptr; 2778 unsigned CurBBNo = 0; 2779 2780 DebugLoc LastLoc; 2781 auto getLastInstruction = [&]() -> Instruction * { 2782 if (CurBB && !CurBB->empty()) 2783 return &CurBB->back(); 2784 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2785 !FunctionBBs[CurBBNo - 1]->empty()) 2786 return &FunctionBBs[CurBBNo - 1]->back(); 2787 return nullptr; 2788 }; 2789 2790 // Read all the records. 2791 SmallVector<uint64_t, 64> Record; 2792 while (1) { 2793 BitstreamEntry Entry = Stream.advance(); 2794 2795 switch (Entry.Kind) { 2796 case BitstreamEntry::Error: 2797 return Error("Malformed block"); 2798 case BitstreamEntry::EndBlock: 2799 goto OutOfRecordLoop; 2800 2801 case BitstreamEntry::SubBlock: 2802 switch (Entry.ID) { 2803 default: // Skip unknown content. 2804 if (Stream.SkipBlock()) 2805 return Error("Invalid record"); 2806 break; 2807 case bitc::CONSTANTS_BLOCK_ID: 2808 if (std::error_code EC = ParseConstants()) 2809 return EC; 2810 NextValueNo = ValueList.size(); 2811 break; 2812 case bitc::VALUE_SYMTAB_BLOCK_ID: 2813 if (std::error_code EC = ParseValueSymbolTable()) 2814 return EC; 2815 break; 2816 case bitc::METADATA_ATTACHMENT_ID: 2817 if (std::error_code EC = ParseMetadataAttachment()) 2818 return EC; 2819 break; 2820 case bitc::METADATA_BLOCK_ID: 2821 if (std::error_code EC = ParseMetadata()) 2822 return EC; 2823 break; 2824 case bitc::USELIST_BLOCK_ID: 2825 if (std::error_code EC = ParseUseLists()) 2826 return EC; 2827 break; 2828 } 2829 continue; 2830 2831 case BitstreamEntry::Record: 2832 // The interesting case. 2833 break; 2834 } 2835 2836 // Read a record. 2837 Record.clear(); 2838 Instruction *I = nullptr; 2839 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2840 switch (BitCode) { 2841 default: // Default behavior: reject 2842 return Error("Invalid value"); 2843 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2844 if (Record.size() < 1 || Record[0] == 0) 2845 return Error("Invalid record"); 2846 // Create all the basic blocks for the function. 2847 FunctionBBs.resize(Record[0]); 2848 2849 // See if anything took the address of blocks in this function. 2850 auto BBFRI = BasicBlockFwdRefs.find(F); 2851 if (BBFRI == BasicBlockFwdRefs.end()) { 2852 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2853 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2854 } else { 2855 auto &BBRefs = BBFRI->second; 2856 // Check for invalid basic block references. 2857 if (BBRefs.size() > FunctionBBs.size()) 2858 return Error("Invalid ID"); 2859 assert(!BBRefs.empty() && "Unexpected empty array"); 2860 assert(!BBRefs.front() && "Invalid reference to entry block"); 2861 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2862 ++I) 2863 if (I < RE && BBRefs[I]) { 2864 BBRefs[I]->insertInto(F); 2865 FunctionBBs[I] = BBRefs[I]; 2866 } else { 2867 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2868 } 2869 2870 // Erase from the table. 2871 BasicBlockFwdRefs.erase(BBFRI); 2872 } 2873 2874 CurBB = FunctionBBs[0]; 2875 continue; 2876 } 2877 2878 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2879 // This record indicates that the last instruction is at the same 2880 // location as the previous instruction with a location. 2881 I = getLastInstruction(); 2882 2883 if (!I) 2884 return Error("Invalid record"); 2885 I->setDebugLoc(LastLoc); 2886 I = nullptr; 2887 continue; 2888 2889 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2890 I = getLastInstruction(); 2891 if (!I || Record.size() < 4) 2892 return Error("Invalid record"); 2893 2894 unsigned Line = Record[0], Col = Record[1]; 2895 unsigned ScopeID = Record[2], IAID = Record[3]; 2896 2897 MDNode *Scope = nullptr, *IA = nullptr; 2898 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2899 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2900 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2901 I->setDebugLoc(LastLoc); 2902 I = nullptr; 2903 continue; 2904 } 2905 2906 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2907 unsigned OpNum = 0; 2908 Value *LHS, *RHS; 2909 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2910 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2911 OpNum+1 > Record.size()) 2912 return Error("Invalid record"); 2913 2914 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2915 if (Opc == -1) 2916 return Error("Invalid record"); 2917 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2918 InstructionList.push_back(I); 2919 if (OpNum < Record.size()) { 2920 if (Opc == Instruction::Add || 2921 Opc == Instruction::Sub || 2922 Opc == Instruction::Mul || 2923 Opc == Instruction::Shl) { 2924 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2925 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2926 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2927 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2928 } else if (Opc == Instruction::SDiv || 2929 Opc == Instruction::UDiv || 2930 Opc == Instruction::LShr || 2931 Opc == Instruction::AShr) { 2932 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2933 cast<BinaryOperator>(I)->setIsExact(true); 2934 } else if (isa<FPMathOperator>(I)) { 2935 FastMathFlags FMF; 2936 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2937 FMF.setUnsafeAlgebra(); 2938 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2939 FMF.setNoNaNs(); 2940 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2941 FMF.setNoInfs(); 2942 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2943 FMF.setNoSignedZeros(); 2944 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2945 FMF.setAllowReciprocal(); 2946 if (FMF.any()) 2947 I->setFastMathFlags(FMF); 2948 } 2949 2950 } 2951 break; 2952 } 2953 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2954 unsigned OpNum = 0; 2955 Value *Op; 2956 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2957 OpNum+2 != Record.size()) 2958 return Error("Invalid record"); 2959 2960 Type *ResTy = getTypeByID(Record[OpNum]); 2961 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2962 if (Opc == -1 || !ResTy) 2963 return Error("Invalid record"); 2964 Instruction *Temp = nullptr; 2965 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2966 if (Temp) { 2967 InstructionList.push_back(Temp); 2968 CurBB->getInstList().push_back(Temp); 2969 } 2970 } else { 2971 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2972 } 2973 InstructionList.push_back(I); 2974 break; 2975 } 2976 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2977 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2978 unsigned OpNum = 0; 2979 Value *BasePtr; 2980 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2981 return Error("Invalid record"); 2982 2983 SmallVector<Value*, 16> GEPIdx; 2984 while (OpNum != Record.size()) { 2985 Value *Op; 2986 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2987 return Error("Invalid record"); 2988 GEPIdx.push_back(Op); 2989 } 2990 2991 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2992 InstructionList.push_back(I); 2993 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2994 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2995 break; 2996 } 2997 2998 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2999 // EXTRACTVAL: [opty, opval, n x indices] 3000 unsigned OpNum = 0; 3001 Value *Agg; 3002 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3003 return Error("Invalid record"); 3004 3005 SmallVector<unsigned, 4> EXTRACTVALIdx; 3006 for (unsigned RecSize = Record.size(); 3007 OpNum != RecSize; ++OpNum) { 3008 uint64_t Index = Record[OpNum]; 3009 if ((unsigned)Index != Index) 3010 return Error("Invalid value"); 3011 EXTRACTVALIdx.push_back((unsigned)Index); 3012 } 3013 3014 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3015 InstructionList.push_back(I); 3016 break; 3017 } 3018 3019 case bitc::FUNC_CODE_INST_INSERTVAL: { 3020 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3021 unsigned OpNum = 0; 3022 Value *Agg; 3023 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3024 return Error("Invalid record"); 3025 Value *Val; 3026 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3027 return Error("Invalid record"); 3028 3029 SmallVector<unsigned, 4> INSERTVALIdx; 3030 for (unsigned RecSize = Record.size(); 3031 OpNum != RecSize; ++OpNum) { 3032 uint64_t Index = Record[OpNum]; 3033 if ((unsigned)Index != Index) 3034 return Error("Invalid value"); 3035 INSERTVALIdx.push_back((unsigned)Index); 3036 } 3037 3038 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3039 InstructionList.push_back(I); 3040 break; 3041 } 3042 3043 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3044 // obsolete form of select 3045 // handles select i1 ... in old bitcode 3046 unsigned OpNum = 0; 3047 Value *TrueVal, *FalseVal, *Cond; 3048 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3049 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3050 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3051 return Error("Invalid record"); 3052 3053 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3054 InstructionList.push_back(I); 3055 break; 3056 } 3057 3058 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3059 // new form of select 3060 // handles select i1 or select [N x i1] 3061 unsigned OpNum = 0; 3062 Value *TrueVal, *FalseVal, *Cond; 3063 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3064 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3065 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3066 return Error("Invalid record"); 3067 3068 // select condition can be either i1 or [N x i1] 3069 if (VectorType* vector_type = 3070 dyn_cast<VectorType>(Cond->getType())) { 3071 // expect <n x i1> 3072 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3073 return Error("Invalid type for value"); 3074 } else { 3075 // expect i1 3076 if (Cond->getType() != Type::getInt1Ty(Context)) 3077 return Error("Invalid type for value"); 3078 } 3079 3080 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3081 InstructionList.push_back(I); 3082 break; 3083 } 3084 3085 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3086 unsigned OpNum = 0; 3087 Value *Vec, *Idx; 3088 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3089 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3090 return Error("Invalid record"); 3091 I = ExtractElementInst::Create(Vec, Idx); 3092 InstructionList.push_back(I); 3093 break; 3094 } 3095 3096 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3097 unsigned OpNum = 0; 3098 Value *Vec, *Elt, *Idx; 3099 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3100 popValue(Record, OpNum, NextValueNo, 3101 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3102 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3103 return Error("Invalid record"); 3104 I = InsertElementInst::Create(Vec, Elt, Idx); 3105 InstructionList.push_back(I); 3106 break; 3107 } 3108 3109 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3110 unsigned OpNum = 0; 3111 Value *Vec1, *Vec2, *Mask; 3112 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3113 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3114 return Error("Invalid record"); 3115 3116 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3117 return Error("Invalid record"); 3118 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3119 InstructionList.push_back(I); 3120 break; 3121 } 3122 3123 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3124 // Old form of ICmp/FCmp returning bool 3125 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3126 // both legal on vectors but had different behaviour. 3127 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3128 // FCmp/ICmp returning bool or vector of bool 3129 3130 unsigned OpNum = 0; 3131 Value *LHS, *RHS; 3132 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3133 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3134 OpNum+1 != Record.size()) 3135 return Error("Invalid record"); 3136 3137 if (LHS->getType()->isFPOrFPVectorTy()) 3138 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3139 else 3140 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3141 InstructionList.push_back(I); 3142 break; 3143 } 3144 3145 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3146 { 3147 unsigned Size = Record.size(); 3148 if (Size == 0) { 3149 I = ReturnInst::Create(Context); 3150 InstructionList.push_back(I); 3151 break; 3152 } 3153 3154 unsigned OpNum = 0; 3155 Value *Op = nullptr; 3156 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3157 return Error("Invalid record"); 3158 if (OpNum != Record.size()) 3159 return Error("Invalid record"); 3160 3161 I = ReturnInst::Create(Context, Op); 3162 InstructionList.push_back(I); 3163 break; 3164 } 3165 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3166 if (Record.size() != 1 && Record.size() != 3) 3167 return Error("Invalid record"); 3168 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3169 if (!TrueDest) 3170 return Error("Invalid record"); 3171 3172 if (Record.size() == 1) { 3173 I = BranchInst::Create(TrueDest); 3174 InstructionList.push_back(I); 3175 } 3176 else { 3177 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3178 Value *Cond = getValue(Record, 2, NextValueNo, 3179 Type::getInt1Ty(Context)); 3180 if (!FalseDest || !Cond) 3181 return Error("Invalid record"); 3182 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3183 InstructionList.push_back(I); 3184 } 3185 break; 3186 } 3187 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3188 // Check magic 3189 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3190 // "New" SwitchInst format with case ranges. The changes to write this 3191 // format were reverted but we still recognize bitcode that uses it. 3192 // Hopefully someday we will have support for case ranges and can use 3193 // this format again. 3194 3195 Type *OpTy = getTypeByID(Record[1]); 3196 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3197 3198 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3199 BasicBlock *Default = getBasicBlock(Record[3]); 3200 if (!OpTy || !Cond || !Default) 3201 return Error("Invalid record"); 3202 3203 unsigned NumCases = Record[4]; 3204 3205 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3206 InstructionList.push_back(SI); 3207 3208 unsigned CurIdx = 5; 3209 for (unsigned i = 0; i != NumCases; ++i) { 3210 SmallVector<ConstantInt*, 1> CaseVals; 3211 unsigned NumItems = Record[CurIdx++]; 3212 for (unsigned ci = 0; ci != NumItems; ++ci) { 3213 bool isSingleNumber = Record[CurIdx++]; 3214 3215 APInt Low; 3216 unsigned ActiveWords = 1; 3217 if (ValueBitWidth > 64) 3218 ActiveWords = Record[CurIdx++]; 3219 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3220 ValueBitWidth); 3221 CurIdx += ActiveWords; 3222 3223 if (!isSingleNumber) { 3224 ActiveWords = 1; 3225 if (ValueBitWidth > 64) 3226 ActiveWords = Record[CurIdx++]; 3227 APInt High = 3228 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3229 ValueBitWidth); 3230 CurIdx += ActiveWords; 3231 3232 // FIXME: It is not clear whether values in the range should be 3233 // compared as signed or unsigned values. The partially 3234 // implemented changes that used this format in the past used 3235 // unsigned comparisons. 3236 for ( ; Low.ule(High); ++Low) 3237 CaseVals.push_back(ConstantInt::get(Context, Low)); 3238 } else 3239 CaseVals.push_back(ConstantInt::get(Context, Low)); 3240 } 3241 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3242 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3243 cve = CaseVals.end(); cvi != cve; ++cvi) 3244 SI->addCase(*cvi, DestBB); 3245 } 3246 I = SI; 3247 break; 3248 } 3249 3250 // Old SwitchInst format without case ranges. 3251 3252 if (Record.size() < 3 || (Record.size() & 1) == 0) 3253 return Error("Invalid record"); 3254 Type *OpTy = getTypeByID(Record[0]); 3255 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3256 BasicBlock *Default = getBasicBlock(Record[2]); 3257 if (!OpTy || !Cond || !Default) 3258 return Error("Invalid record"); 3259 unsigned NumCases = (Record.size()-3)/2; 3260 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3261 InstructionList.push_back(SI); 3262 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3263 ConstantInt *CaseVal = 3264 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3265 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3266 if (!CaseVal || !DestBB) { 3267 delete SI; 3268 return Error("Invalid record"); 3269 } 3270 SI->addCase(CaseVal, DestBB); 3271 } 3272 I = SI; 3273 break; 3274 } 3275 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3276 if (Record.size() < 2) 3277 return Error("Invalid record"); 3278 Type *OpTy = getTypeByID(Record[0]); 3279 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3280 if (!OpTy || !Address) 3281 return Error("Invalid record"); 3282 unsigned NumDests = Record.size()-2; 3283 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3284 InstructionList.push_back(IBI); 3285 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3286 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3287 IBI->addDestination(DestBB); 3288 } else { 3289 delete IBI; 3290 return Error("Invalid record"); 3291 } 3292 } 3293 I = IBI; 3294 break; 3295 } 3296 3297 case bitc::FUNC_CODE_INST_INVOKE: { 3298 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3299 if (Record.size() < 4) 3300 return Error("Invalid record"); 3301 AttributeSet PAL = getAttributes(Record[0]); 3302 unsigned CCInfo = Record[1]; 3303 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3304 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3305 3306 unsigned OpNum = 4; 3307 Value *Callee; 3308 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3309 return Error("Invalid record"); 3310 3311 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3312 FunctionType *FTy = !CalleeTy ? nullptr : 3313 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3314 3315 // Check that the right number of fixed parameters are here. 3316 if (!FTy || !NormalBB || !UnwindBB || 3317 Record.size() < OpNum+FTy->getNumParams()) 3318 return Error("Invalid record"); 3319 3320 SmallVector<Value*, 16> Ops; 3321 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3322 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3323 FTy->getParamType(i))); 3324 if (!Ops.back()) 3325 return Error("Invalid record"); 3326 } 3327 3328 if (!FTy->isVarArg()) { 3329 if (Record.size() != OpNum) 3330 return Error("Invalid record"); 3331 } else { 3332 // Read type/value pairs for varargs params. 3333 while (OpNum != Record.size()) { 3334 Value *Op; 3335 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3336 return Error("Invalid record"); 3337 Ops.push_back(Op); 3338 } 3339 } 3340 3341 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3342 InstructionList.push_back(I); 3343 cast<InvokeInst>(I)->setCallingConv( 3344 static_cast<CallingConv::ID>(CCInfo)); 3345 cast<InvokeInst>(I)->setAttributes(PAL); 3346 break; 3347 } 3348 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3349 unsigned Idx = 0; 3350 Value *Val = nullptr; 3351 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3352 return Error("Invalid record"); 3353 I = ResumeInst::Create(Val); 3354 InstructionList.push_back(I); 3355 break; 3356 } 3357 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3358 I = new UnreachableInst(Context); 3359 InstructionList.push_back(I); 3360 break; 3361 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3362 if (Record.size() < 1 || ((Record.size()-1)&1)) 3363 return Error("Invalid record"); 3364 Type *Ty = getTypeByID(Record[0]); 3365 if (!Ty) 3366 return Error("Invalid record"); 3367 3368 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3369 InstructionList.push_back(PN); 3370 3371 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3372 Value *V; 3373 // With the new function encoding, it is possible that operands have 3374 // negative IDs (for forward references). Use a signed VBR 3375 // representation to keep the encoding small. 3376 if (UseRelativeIDs) 3377 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3378 else 3379 V = getValue(Record, 1+i, NextValueNo, Ty); 3380 BasicBlock *BB = getBasicBlock(Record[2+i]); 3381 if (!V || !BB) 3382 return Error("Invalid record"); 3383 PN->addIncoming(V, BB); 3384 } 3385 I = PN; 3386 break; 3387 } 3388 3389 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3390 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3391 unsigned Idx = 0; 3392 if (Record.size() < 4) 3393 return Error("Invalid record"); 3394 Type *Ty = getTypeByID(Record[Idx++]); 3395 if (!Ty) 3396 return Error("Invalid record"); 3397 Value *PersFn = nullptr; 3398 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3399 return Error("Invalid record"); 3400 3401 bool IsCleanup = !!Record[Idx++]; 3402 unsigned NumClauses = Record[Idx++]; 3403 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3404 LP->setCleanup(IsCleanup); 3405 for (unsigned J = 0; J != NumClauses; ++J) { 3406 LandingPadInst::ClauseType CT = 3407 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3408 Value *Val; 3409 3410 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3411 delete LP; 3412 return Error("Invalid record"); 3413 } 3414 3415 assert((CT != LandingPadInst::Catch || 3416 !isa<ArrayType>(Val->getType())) && 3417 "Catch clause has a invalid type!"); 3418 assert((CT != LandingPadInst::Filter || 3419 isa<ArrayType>(Val->getType())) && 3420 "Filter clause has invalid type!"); 3421 LP->addClause(cast<Constant>(Val)); 3422 } 3423 3424 I = LP; 3425 InstructionList.push_back(I); 3426 break; 3427 } 3428 3429 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3430 if (Record.size() != 4) 3431 return Error("Invalid record"); 3432 PointerType *Ty = 3433 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3434 Type *OpTy = getTypeByID(Record[1]); 3435 Value *Size = getFnValueByID(Record[2], OpTy); 3436 unsigned AlignRecord = Record[3]; 3437 bool InAlloca = AlignRecord & (1 << 5); 3438 unsigned Align = AlignRecord & ((1 << 5) - 1); 3439 if (!Ty || !Size) 3440 return Error("Invalid record"); 3441 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3442 AI->setUsedWithInAlloca(InAlloca); 3443 I = AI; 3444 InstructionList.push_back(I); 3445 break; 3446 } 3447 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3448 unsigned OpNum = 0; 3449 Value *Op; 3450 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3451 OpNum+2 != Record.size()) 3452 return Error("Invalid record"); 3453 3454 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3455 InstructionList.push_back(I); 3456 break; 3457 } 3458 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3459 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3460 unsigned OpNum = 0; 3461 Value *Op; 3462 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3463 OpNum+4 != Record.size()) 3464 return Error("Invalid record"); 3465 3466 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3467 if (Ordering == NotAtomic || Ordering == Release || 3468 Ordering == AcquireRelease) 3469 return Error("Invalid record"); 3470 if (Ordering != NotAtomic && Record[OpNum] == 0) 3471 return Error("Invalid record"); 3472 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3473 3474 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3475 Ordering, SynchScope); 3476 InstructionList.push_back(I); 3477 break; 3478 } 3479 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3480 unsigned OpNum = 0; 3481 Value *Val, *Ptr; 3482 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3483 popValue(Record, OpNum, NextValueNo, 3484 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3485 OpNum+2 != Record.size()) 3486 return Error("Invalid record"); 3487 3488 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3489 InstructionList.push_back(I); 3490 break; 3491 } 3492 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3493 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3494 unsigned OpNum = 0; 3495 Value *Val, *Ptr; 3496 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3497 popValue(Record, OpNum, NextValueNo, 3498 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3499 OpNum+4 != Record.size()) 3500 return Error("Invalid record"); 3501 3502 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3503 if (Ordering == NotAtomic || Ordering == Acquire || 3504 Ordering == AcquireRelease) 3505 return Error("Invalid record"); 3506 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3507 if (Ordering != NotAtomic && Record[OpNum] == 0) 3508 return Error("Invalid record"); 3509 3510 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3511 Ordering, SynchScope); 3512 InstructionList.push_back(I); 3513 break; 3514 } 3515 case bitc::FUNC_CODE_INST_CMPXCHG: { 3516 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3517 // failureordering?, isweak?] 3518 unsigned OpNum = 0; 3519 Value *Ptr, *Cmp, *New; 3520 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3521 popValue(Record, OpNum, NextValueNo, 3522 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3523 popValue(Record, OpNum, NextValueNo, 3524 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3525 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3526 return Error("Invalid record"); 3527 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3528 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3529 return Error("Invalid record"); 3530 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3531 3532 AtomicOrdering FailureOrdering; 3533 if (Record.size() < 7) 3534 FailureOrdering = 3535 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3536 else 3537 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3538 3539 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3540 SynchScope); 3541 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3542 3543 if (Record.size() < 8) { 3544 // Before weak cmpxchgs existed, the instruction simply returned the 3545 // value loaded from memory, so bitcode files from that era will be 3546 // expecting the first component of a modern cmpxchg. 3547 CurBB->getInstList().push_back(I); 3548 I = ExtractValueInst::Create(I, 0); 3549 } else { 3550 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3551 } 3552 3553 InstructionList.push_back(I); 3554 break; 3555 } 3556 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3557 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3558 unsigned OpNum = 0; 3559 Value *Ptr, *Val; 3560 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3561 popValue(Record, OpNum, NextValueNo, 3562 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3563 OpNum+4 != Record.size()) 3564 return Error("Invalid record"); 3565 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3566 if (Operation < AtomicRMWInst::FIRST_BINOP || 3567 Operation > AtomicRMWInst::LAST_BINOP) 3568 return Error("Invalid record"); 3569 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3570 if (Ordering == NotAtomic || Ordering == Unordered) 3571 return Error("Invalid record"); 3572 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3573 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3574 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3575 InstructionList.push_back(I); 3576 break; 3577 } 3578 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3579 if (2 != Record.size()) 3580 return Error("Invalid record"); 3581 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3582 if (Ordering == NotAtomic || Ordering == Unordered || 3583 Ordering == Monotonic) 3584 return Error("Invalid record"); 3585 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3586 I = new FenceInst(Context, Ordering, SynchScope); 3587 InstructionList.push_back(I); 3588 break; 3589 } 3590 case bitc::FUNC_CODE_INST_CALL: { 3591 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3592 if (Record.size() < 3) 3593 return Error("Invalid record"); 3594 3595 AttributeSet PAL = getAttributes(Record[0]); 3596 unsigned CCInfo = Record[1]; 3597 3598 unsigned OpNum = 2; 3599 Value *Callee; 3600 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3601 return Error("Invalid record"); 3602 3603 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3604 FunctionType *FTy = nullptr; 3605 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3606 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3607 return Error("Invalid record"); 3608 3609 SmallVector<Value*, 16> Args; 3610 // Read the fixed params. 3611 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3612 if (FTy->getParamType(i)->isLabelTy()) 3613 Args.push_back(getBasicBlock(Record[OpNum])); 3614 else 3615 Args.push_back(getValue(Record, OpNum, NextValueNo, 3616 FTy->getParamType(i))); 3617 if (!Args.back()) 3618 return Error("Invalid record"); 3619 } 3620 3621 // Read type/value pairs for varargs params. 3622 if (!FTy->isVarArg()) { 3623 if (OpNum != Record.size()) 3624 return Error("Invalid record"); 3625 } else { 3626 while (OpNum != Record.size()) { 3627 Value *Op; 3628 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3629 return Error("Invalid record"); 3630 Args.push_back(Op); 3631 } 3632 } 3633 3634 I = CallInst::Create(Callee, Args); 3635 InstructionList.push_back(I); 3636 cast<CallInst>(I)->setCallingConv( 3637 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3638 CallInst::TailCallKind TCK = CallInst::TCK_None; 3639 if (CCInfo & 1) 3640 TCK = CallInst::TCK_Tail; 3641 if (CCInfo & (1 << 14)) 3642 TCK = CallInst::TCK_MustTail; 3643 cast<CallInst>(I)->setTailCallKind(TCK); 3644 cast<CallInst>(I)->setAttributes(PAL); 3645 break; 3646 } 3647 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3648 if (Record.size() < 3) 3649 return Error("Invalid record"); 3650 Type *OpTy = getTypeByID(Record[0]); 3651 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3652 Type *ResTy = getTypeByID(Record[2]); 3653 if (!OpTy || !Op || !ResTy) 3654 return Error("Invalid record"); 3655 I = new VAArgInst(Op, ResTy); 3656 InstructionList.push_back(I); 3657 break; 3658 } 3659 } 3660 3661 // Add instruction to end of current BB. If there is no current BB, reject 3662 // this file. 3663 if (!CurBB) { 3664 delete I; 3665 return Error("Invalid instruction with no BB"); 3666 } 3667 CurBB->getInstList().push_back(I); 3668 3669 // If this was a terminator instruction, move to the next block. 3670 if (isa<TerminatorInst>(I)) { 3671 ++CurBBNo; 3672 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3673 } 3674 3675 // Non-void values get registered in the value table for future use. 3676 if (I && !I->getType()->isVoidTy()) 3677 ValueList.AssignValue(I, NextValueNo++); 3678 } 3679 3680 OutOfRecordLoop: 3681 3682 // Check the function list for unresolved values. 3683 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3684 if (!A->getParent()) { 3685 // We found at least one unresolved value. Nuke them all to avoid leaks. 3686 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3687 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3688 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3689 delete A; 3690 } 3691 } 3692 return Error("Never resolved value found in function"); 3693 } 3694 } 3695 3696 // FIXME: Check for unresolved forward-declared metadata references 3697 // and clean up leaks. 3698 3699 // Trim the value list down to the size it was before we parsed this function. 3700 ValueList.shrinkTo(ModuleValueListSize); 3701 MDValueList.shrinkTo(ModuleMDValueListSize); 3702 std::vector<BasicBlock*>().swap(FunctionBBs); 3703 return std::error_code(); 3704 } 3705 3706 /// Find the function body in the bitcode stream 3707 std::error_code BitcodeReader::FindFunctionInStream( 3708 Function *F, 3709 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3710 while (DeferredFunctionInfoIterator->second == 0) { 3711 if (Stream.AtEndOfStream()) 3712 return Error("Could not find function in stream"); 3713 // ParseModule will parse the next body in the stream and set its 3714 // position in the DeferredFunctionInfo map. 3715 if (std::error_code EC = ParseModule(true)) 3716 return EC; 3717 } 3718 return std::error_code(); 3719 } 3720 3721 //===----------------------------------------------------------------------===// 3722 // GVMaterializer implementation 3723 //===----------------------------------------------------------------------===// 3724 3725 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3726 3727 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3728 Function *F = dyn_cast<Function>(GV); 3729 // If it's not a function or is already material, ignore the request. 3730 if (!F || !F->isMaterializable()) 3731 return std::error_code(); 3732 3733 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3734 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3735 // If its position is recorded as 0, its body is somewhere in the stream 3736 // but we haven't seen it yet. 3737 if (DFII->second == 0 && LazyStreamer) 3738 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3739 return EC; 3740 3741 // Move the bit stream to the saved position of the deferred function body. 3742 Stream.JumpToBit(DFII->second); 3743 3744 if (std::error_code EC = ParseFunctionBody(F)) 3745 return EC; 3746 F->setIsMaterializable(false); 3747 3748 // Upgrade any old intrinsic calls in the function. 3749 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3750 E = UpgradedIntrinsics.end(); I != E; ++I) { 3751 if (I->first != I->second) { 3752 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3753 UI != UE;) { 3754 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3755 UpgradeIntrinsicCall(CI, I->second); 3756 } 3757 } 3758 } 3759 3760 // Bring in any functions that this function forward-referenced via 3761 // blockaddresses. 3762 return materializeForwardReferencedFunctions(); 3763 } 3764 3765 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3766 const Function *F = dyn_cast<Function>(GV); 3767 if (!F || F->isDeclaration()) 3768 return false; 3769 3770 // Dematerializing F would leave dangling references that wouldn't be 3771 // reconnected on re-materialization. 3772 if (BlockAddressesTaken.count(F)) 3773 return false; 3774 3775 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3776 } 3777 3778 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3779 Function *F = dyn_cast<Function>(GV); 3780 // If this function isn't dematerializable, this is a noop. 3781 if (!F || !isDematerializable(F)) 3782 return; 3783 3784 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3785 3786 // Just forget the function body, we can remat it later. 3787 F->dropAllReferences(); 3788 F->setIsMaterializable(true); 3789 } 3790 3791 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3792 assert(M == TheModule && 3793 "Can only Materialize the Module this BitcodeReader is attached to."); 3794 3795 // Promise to materialize all forward references. 3796 WillMaterializeAllForwardRefs = true; 3797 3798 // Iterate over the module, deserializing any functions that are still on 3799 // disk. 3800 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3801 F != E; ++F) { 3802 if (std::error_code EC = materialize(F)) 3803 return EC; 3804 } 3805 // At this point, if there are any function bodies, the current bit is 3806 // pointing to the END_BLOCK record after them. Now make sure the rest 3807 // of the bits in the module have been read. 3808 if (NextUnreadBit) 3809 ParseModule(true); 3810 3811 // Check that all block address forward references got resolved (as we 3812 // promised above). 3813 if (!BasicBlockFwdRefs.empty()) 3814 return Error("Never resolved function from blockaddress"); 3815 3816 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3817 // delete the old functions to clean up. We can't do this unless the entire 3818 // module is materialized because there could always be another function body 3819 // with calls to the old function. 3820 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3821 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3822 if (I->first != I->second) { 3823 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3824 UI != UE;) { 3825 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3826 UpgradeIntrinsicCall(CI, I->second); 3827 } 3828 if (!I->first->use_empty()) 3829 I->first->replaceAllUsesWith(I->second); 3830 I->first->eraseFromParent(); 3831 } 3832 } 3833 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3834 3835 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3836 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3837 3838 UpgradeDebugInfo(*M); 3839 return std::error_code(); 3840 } 3841 3842 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3843 return IdentifiedStructTypes; 3844 } 3845 3846 std::error_code BitcodeReader::InitStream() { 3847 if (LazyStreamer) 3848 return InitLazyStream(); 3849 return InitStreamFromBuffer(); 3850 } 3851 3852 std::error_code BitcodeReader::InitStreamFromBuffer() { 3853 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3854 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3855 3856 if (Buffer->getBufferSize() & 3) 3857 return Error("Invalid bitcode signature"); 3858 3859 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3860 // The magic number is 0x0B17C0DE stored in little endian. 3861 if (isBitcodeWrapper(BufPtr, BufEnd)) 3862 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3863 return Error("Invalid bitcode wrapper header"); 3864 3865 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3866 Stream.init(&*StreamFile); 3867 3868 return std::error_code(); 3869 } 3870 3871 std::error_code BitcodeReader::InitLazyStream() { 3872 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3873 // see it. 3874 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3875 StreamingMemoryObject &Bytes = *OwnedBytes; 3876 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3877 Stream.init(&*StreamFile); 3878 3879 unsigned char buf[16]; 3880 if (Bytes.readBytes(buf, 16, 0) != 16) 3881 return Error("Invalid bitcode signature"); 3882 3883 if (!isBitcode(buf, buf + 16)) 3884 return Error("Invalid bitcode signature"); 3885 3886 if (isBitcodeWrapper(buf, buf + 4)) { 3887 const unsigned char *bitcodeStart = buf; 3888 const unsigned char *bitcodeEnd = buf + 16; 3889 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3890 Bytes.dropLeadingBytes(bitcodeStart - buf); 3891 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3892 } 3893 return std::error_code(); 3894 } 3895 3896 namespace { 3897 class BitcodeErrorCategoryType : public std::error_category { 3898 const char *name() const LLVM_NOEXCEPT override { 3899 return "llvm.bitcode"; 3900 } 3901 std::string message(int IE) const override { 3902 BitcodeError E = static_cast<BitcodeError>(IE); 3903 switch (E) { 3904 case BitcodeError::InvalidBitcodeSignature: 3905 return "Invalid bitcode signature"; 3906 case BitcodeError::CorruptedBitcode: 3907 return "Corrupted bitcode"; 3908 } 3909 llvm_unreachable("Unknown error type!"); 3910 } 3911 }; 3912 } 3913 3914 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3915 3916 const std::error_category &llvm::BitcodeErrorCategory() { 3917 return *ErrorCategory; 3918 } 3919 3920 //===----------------------------------------------------------------------===// 3921 // External interface 3922 //===----------------------------------------------------------------------===// 3923 3924 /// \brief Get a lazy one-at-time loading module from bitcode. 3925 /// 3926 /// This isn't always used in a lazy context. In particular, it's also used by 3927 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3928 /// in forward-referenced functions from block address references. 3929 /// 3930 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3931 /// materialize everything -- in particular, if this isn't truly lazy. 3932 static ErrorOr<Module *> 3933 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3934 LLVMContext &Context, bool WillMaterializeAll, 3935 DiagnosticHandlerFunction DiagnosticHandler) { 3936 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3937 BitcodeReader *R = 3938 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 3939 M->setMaterializer(R); 3940 3941 auto cleanupOnError = [&](std::error_code EC) { 3942 R->releaseBuffer(); // Never take ownership on error. 3943 delete M; // Also deletes R. 3944 return EC; 3945 }; 3946 3947 if (std::error_code EC = R->ParseBitcodeInto(M)) 3948 return cleanupOnError(EC); 3949 3950 if (!WillMaterializeAll) 3951 // Resolve forward references from blockaddresses. 3952 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3953 return cleanupOnError(EC); 3954 3955 Buffer.release(); // The BitcodeReader owns it now. 3956 return M; 3957 } 3958 3959 ErrorOr<Module *> 3960 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3961 LLVMContext &Context, 3962 DiagnosticHandlerFunction DiagnosticHandler) { 3963 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 3964 DiagnosticHandler); 3965 } 3966 3967 ErrorOr<std::unique_ptr<Module>> 3968 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 3969 LLVMContext &Context, 3970 DiagnosticHandlerFunction DiagnosticHandler) { 3971 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 3972 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 3973 M->setMaterializer(R); 3974 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 3975 return EC; 3976 return std::move(M); 3977 } 3978 3979 ErrorOr<Module *> 3980 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 3981 DiagnosticHandlerFunction DiagnosticHandler) { 3982 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3983 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 3984 std::move(Buf), Context, true, DiagnosticHandler); 3985 if (!ModuleOrErr) 3986 return ModuleOrErr; 3987 Module *M = ModuleOrErr.get(); 3988 // Read in the entire module, and destroy the BitcodeReader. 3989 if (std::error_code EC = M->materializeAllPermanently()) { 3990 delete M; 3991 return EC; 3992 } 3993 3994 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3995 // written. We must defer until the Module has been fully materialized. 3996 3997 return M; 3998 } 3999 4000 std::string 4001 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4002 DiagnosticHandlerFunction DiagnosticHandler) { 4003 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4004 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4005 DiagnosticHandler); 4006 ErrorOr<std::string> Triple = R->parseTriple(); 4007 if (Triple.getError()) 4008 return ""; 4009 return Triple.get(); 4010 } 4011