1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/AutoUpgrade.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/IR/Constants.h" 17 #include "llvm/IR/DerivedTypes.h" 18 #include "llvm/IR/InlineAsm.h" 19 #include "llvm/IR/IntrinsicInst.h" 20 #include "llvm/IR/LLVMContext.h" 21 #include "llvm/IR/Module.h" 22 #include "llvm/IR/OperandTraits.h" 23 #include "llvm/IR/Operator.h" 24 #include "llvm/Support/DataStream.h" 25 #include "llvm/Support/MathExtras.h" 26 #include "llvm/Support/MemoryBuffer.h" 27 #include "llvm/Support/raw_ostream.h" 28 using namespace llvm; 29 30 enum { 31 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 32 }; 33 34 void BitcodeReader::materializeForwardReferencedFunctions() { 35 while (!BlockAddrFwdRefs.empty()) { 36 Function *F = BlockAddrFwdRefs.begin()->first; 37 F->Materialize(); 38 } 39 } 40 41 void BitcodeReader::FreeState() { 42 if (BufferOwned) 43 delete Buffer; 44 Buffer = 0; 45 std::vector<Type*>().swap(TypeList); 46 ValueList.clear(); 47 MDValueList.clear(); 48 49 std::vector<AttributeSet>().swap(MAttributes); 50 std::vector<BasicBlock*>().swap(FunctionBBs); 51 std::vector<Function*>().swap(FunctionsWithBodies); 52 DeferredFunctionInfo.clear(); 53 MDKindMap.clear(); 54 55 assert(BlockAddrFwdRefs.empty() && "Unresolved blockaddress fwd references"); 56 } 57 58 //===----------------------------------------------------------------------===// 59 // Helper functions to implement forward reference resolution, etc. 60 //===----------------------------------------------------------------------===// 61 62 /// ConvertToString - Convert a string from a record into an std::string, return 63 /// true on failure. 64 template<typename StrTy> 65 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 66 StrTy &Result) { 67 if (Idx > Record.size()) 68 return true; 69 70 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 71 Result += (char)Record[i]; 72 return false; 73 } 74 75 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 76 switch (Val) { 77 default: // Map unknown/new linkages to external 78 case 0: return GlobalValue::ExternalLinkage; 79 case 1: return GlobalValue::WeakAnyLinkage; 80 case 2: return GlobalValue::AppendingLinkage; 81 case 3: return GlobalValue::InternalLinkage; 82 case 4: return GlobalValue::LinkOnceAnyLinkage; 83 case 5: return GlobalValue::DLLImportLinkage; 84 case 6: return GlobalValue::DLLExportLinkage; 85 case 7: return GlobalValue::ExternalWeakLinkage; 86 case 8: return GlobalValue::CommonLinkage; 87 case 9: return GlobalValue::PrivateLinkage; 88 case 10: return GlobalValue::WeakODRLinkage; 89 case 11: return GlobalValue::LinkOnceODRLinkage; 90 case 12: return GlobalValue::AvailableExternallyLinkage; 91 case 13: return GlobalValue::LinkerPrivateLinkage; 92 case 14: return GlobalValue::LinkerPrivateWeakLinkage; 93 case 15: return GlobalValue::LinkOnceODRAutoHideLinkage; 94 } 95 } 96 97 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 98 switch (Val) { 99 default: // Map unknown visibilities to default. 100 case 0: return GlobalValue::DefaultVisibility; 101 case 1: return GlobalValue::HiddenVisibility; 102 case 2: return GlobalValue::ProtectedVisibility; 103 } 104 } 105 106 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 107 switch (Val) { 108 case 0: return GlobalVariable::NotThreadLocal; 109 default: // Map unknown non-zero value to general dynamic. 110 case 1: return GlobalVariable::GeneralDynamicTLSModel; 111 case 2: return GlobalVariable::LocalDynamicTLSModel; 112 case 3: return GlobalVariable::InitialExecTLSModel; 113 case 4: return GlobalVariable::LocalExecTLSModel; 114 } 115 } 116 117 static int GetDecodedCastOpcode(unsigned Val) { 118 switch (Val) { 119 default: return -1; 120 case bitc::CAST_TRUNC : return Instruction::Trunc; 121 case bitc::CAST_ZEXT : return Instruction::ZExt; 122 case bitc::CAST_SEXT : return Instruction::SExt; 123 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 124 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 125 case bitc::CAST_UITOFP : return Instruction::UIToFP; 126 case bitc::CAST_SITOFP : return Instruction::SIToFP; 127 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 128 case bitc::CAST_FPEXT : return Instruction::FPExt; 129 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 130 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 131 case bitc::CAST_BITCAST : return Instruction::BitCast; 132 } 133 } 134 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 135 switch (Val) { 136 default: return -1; 137 case bitc::BINOP_ADD: 138 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 139 case bitc::BINOP_SUB: 140 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 141 case bitc::BINOP_MUL: 142 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 143 case bitc::BINOP_UDIV: return Instruction::UDiv; 144 case bitc::BINOP_SDIV: 145 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 146 case bitc::BINOP_UREM: return Instruction::URem; 147 case bitc::BINOP_SREM: 148 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 149 case bitc::BINOP_SHL: return Instruction::Shl; 150 case bitc::BINOP_LSHR: return Instruction::LShr; 151 case bitc::BINOP_ASHR: return Instruction::AShr; 152 case bitc::BINOP_AND: return Instruction::And; 153 case bitc::BINOP_OR: return Instruction::Or; 154 case bitc::BINOP_XOR: return Instruction::Xor; 155 } 156 } 157 158 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 159 switch (Val) { 160 default: return AtomicRMWInst::BAD_BINOP; 161 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 162 case bitc::RMW_ADD: return AtomicRMWInst::Add; 163 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 164 case bitc::RMW_AND: return AtomicRMWInst::And; 165 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 166 case bitc::RMW_OR: return AtomicRMWInst::Or; 167 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 168 case bitc::RMW_MAX: return AtomicRMWInst::Max; 169 case bitc::RMW_MIN: return AtomicRMWInst::Min; 170 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 171 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 172 } 173 } 174 175 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 176 switch (Val) { 177 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 178 case bitc::ORDERING_UNORDERED: return Unordered; 179 case bitc::ORDERING_MONOTONIC: return Monotonic; 180 case bitc::ORDERING_ACQUIRE: return Acquire; 181 case bitc::ORDERING_RELEASE: return Release; 182 case bitc::ORDERING_ACQREL: return AcquireRelease; 183 default: // Map unknown orderings to sequentially-consistent. 184 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 185 } 186 } 187 188 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 189 switch (Val) { 190 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 191 default: // Map unknown scopes to cross-thread. 192 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 193 } 194 } 195 196 namespace llvm { 197 namespace { 198 /// @brief A class for maintaining the slot number definition 199 /// as a placeholder for the actual definition for forward constants defs. 200 class ConstantPlaceHolder : public ConstantExpr { 201 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 202 public: 203 // allocate space for exactly one operand 204 void *operator new(size_t s) { 205 return User::operator new(s, 1); 206 } 207 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 208 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 209 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 210 } 211 212 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 213 static bool classof(const Value *V) { 214 return isa<ConstantExpr>(V) && 215 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 216 } 217 218 219 /// Provide fast operand accessors 220 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 221 }; 222 } 223 224 // FIXME: can we inherit this from ConstantExpr? 225 template <> 226 struct OperandTraits<ConstantPlaceHolder> : 227 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 228 }; 229 } 230 231 232 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 233 if (Idx == size()) { 234 push_back(V); 235 return; 236 } 237 238 if (Idx >= size()) 239 resize(Idx+1); 240 241 WeakVH &OldV = ValuePtrs[Idx]; 242 if (OldV == 0) { 243 OldV = V; 244 return; 245 } 246 247 // Handle constants and non-constants (e.g. instrs) differently for 248 // efficiency. 249 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 250 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 251 OldV = V; 252 } else { 253 // If there was a forward reference to this value, replace it. 254 Value *PrevVal = OldV; 255 OldV->replaceAllUsesWith(V); 256 delete PrevVal; 257 } 258 } 259 260 261 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 262 Type *Ty) { 263 if (Idx >= size()) 264 resize(Idx + 1); 265 266 if (Value *V = ValuePtrs[Idx]) { 267 assert(Ty == V->getType() && "Type mismatch in constant table!"); 268 return cast<Constant>(V); 269 } 270 271 // Create and return a placeholder, which will later be RAUW'd. 272 Constant *C = new ConstantPlaceHolder(Ty, Context); 273 ValuePtrs[Idx] = C; 274 return C; 275 } 276 277 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 278 if (Idx >= size()) 279 resize(Idx + 1); 280 281 if (Value *V = ValuePtrs[Idx]) { 282 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 283 return V; 284 } 285 286 // No type specified, must be invalid reference. 287 if (Ty == 0) return 0; 288 289 // Create and return a placeholder, which will later be RAUW'd. 290 Value *V = new Argument(Ty); 291 ValuePtrs[Idx] = V; 292 return V; 293 } 294 295 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 296 /// resolves any forward references. The idea behind this is that we sometimes 297 /// get constants (such as large arrays) which reference *many* forward ref 298 /// constants. Replacing each of these causes a lot of thrashing when 299 /// building/reuniquing the constant. Instead of doing this, we look at all the 300 /// uses and rewrite all the place holders at once for any constant that uses 301 /// a placeholder. 302 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 303 // Sort the values by-pointer so that they are efficient to look up with a 304 // binary search. 305 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 306 307 SmallVector<Constant*, 64> NewOps; 308 309 while (!ResolveConstants.empty()) { 310 Value *RealVal = operator[](ResolveConstants.back().second); 311 Constant *Placeholder = ResolveConstants.back().first; 312 ResolveConstants.pop_back(); 313 314 // Loop over all users of the placeholder, updating them to reference the 315 // new value. If they reference more than one placeholder, update them all 316 // at once. 317 while (!Placeholder->use_empty()) { 318 Value::use_iterator UI = Placeholder->use_begin(); 319 User *U = *UI; 320 321 // If the using object isn't uniqued, just update the operands. This 322 // handles instructions and initializers for global variables. 323 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 324 UI.getUse().set(RealVal); 325 continue; 326 } 327 328 // Otherwise, we have a constant that uses the placeholder. Replace that 329 // constant with a new constant that has *all* placeholder uses updated. 330 Constant *UserC = cast<Constant>(U); 331 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 332 I != E; ++I) { 333 Value *NewOp; 334 if (!isa<ConstantPlaceHolder>(*I)) { 335 // Not a placeholder reference. 336 NewOp = *I; 337 } else if (*I == Placeholder) { 338 // Common case is that it just references this one placeholder. 339 NewOp = RealVal; 340 } else { 341 // Otherwise, look up the placeholder in ResolveConstants. 342 ResolveConstantsTy::iterator It = 343 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 344 std::pair<Constant*, unsigned>(cast<Constant>(*I), 345 0)); 346 assert(It != ResolveConstants.end() && It->first == *I); 347 NewOp = operator[](It->second); 348 } 349 350 NewOps.push_back(cast<Constant>(NewOp)); 351 } 352 353 // Make the new constant. 354 Constant *NewC; 355 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 356 NewC = ConstantArray::get(UserCA->getType(), NewOps); 357 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 358 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 359 } else if (isa<ConstantVector>(UserC)) { 360 NewC = ConstantVector::get(NewOps); 361 } else { 362 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 363 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 364 } 365 366 UserC->replaceAllUsesWith(NewC); 367 UserC->destroyConstant(); 368 NewOps.clear(); 369 } 370 371 // Update all ValueHandles, they should be the only users at this point. 372 Placeholder->replaceAllUsesWith(RealVal); 373 delete Placeholder; 374 } 375 } 376 377 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 378 if (Idx == size()) { 379 push_back(V); 380 return; 381 } 382 383 if (Idx >= size()) 384 resize(Idx+1); 385 386 WeakVH &OldV = MDValuePtrs[Idx]; 387 if (OldV == 0) { 388 OldV = V; 389 return; 390 } 391 392 // If there was a forward reference to this value, replace it. 393 MDNode *PrevVal = cast<MDNode>(OldV); 394 OldV->replaceAllUsesWith(V); 395 MDNode::deleteTemporary(PrevVal); 396 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 397 // value for Idx. 398 MDValuePtrs[Idx] = V; 399 } 400 401 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 402 if (Idx >= size()) 403 resize(Idx + 1); 404 405 if (Value *V = MDValuePtrs[Idx]) { 406 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 407 return V; 408 } 409 410 // Create and return a placeholder, which will later be RAUW'd. 411 Value *V = MDNode::getTemporary(Context, None); 412 MDValuePtrs[Idx] = V; 413 return V; 414 } 415 416 Type *BitcodeReader::getTypeByID(unsigned ID) { 417 // The type table size is always specified correctly. 418 if (ID >= TypeList.size()) 419 return 0; 420 421 if (Type *Ty = TypeList[ID]) 422 return Ty; 423 424 // If we have a forward reference, the only possible case is when it is to a 425 // named struct. Just create a placeholder for now. 426 return TypeList[ID] = StructType::create(Context); 427 } 428 429 430 //===----------------------------------------------------------------------===// 431 // Functions for parsing blocks from the bitcode file 432 //===----------------------------------------------------------------------===// 433 434 435 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 436 /// been decoded from the given integer. This function must stay in sync with 437 /// 'encodeLLVMAttributesForBitcode'. 438 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 439 uint64_t EncodedAttrs) { 440 // FIXME: Remove in 4.0. 441 442 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 443 // the bits above 31 down by 11 bits. 444 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 445 assert((!Alignment || isPowerOf2_32(Alignment)) && 446 "Alignment must be a power of two."); 447 448 if (Alignment) 449 B.addAlignmentAttr(Alignment); 450 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 451 (EncodedAttrs & 0xffff)); 452 } 453 454 bool BitcodeReader::ParseAttributeBlock() { 455 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 456 return Error("Malformed block record"); 457 458 if (!MAttributes.empty()) 459 return Error("Multiple PARAMATTR blocks found!"); 460 461 SmallVector<uint64_t, 64> Record; 462 463 SmallVector<AttributeSet, 8> Attrs; 464 465 // Read all the records. 466 while (1) { 467 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 468 469 switch (Entry.Kind) { 470 case BitstreamEntry::SubBlock: // Handled for us already. 471 case BitstreamEntry::Error: 472 return Error("Error at end of PARAMATTR block"); 473 case BitstreamEntry::EndBlock: 474 return false; 475 case BitstreamEntry::Record: 476 // The interesting case. 477 break; 478 } 479 480 // Read a record. 481 Record.clear(); 482 switch (Stream.readRecord(Entry.ID, Record)) { 483 default: // Default behavior: ignore. 484 break; 485 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 486 // FIXME: Remove in 4.0. 487 if (Record.size() & 1) 488 return Error("Invalid ENTRY record"); 489 490 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 491 AttrBuilder B; 492 decodeLLVMAttributesForBitcode(B, Record[i+1]); 493 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 494 } 495 496 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 497 Attrs.clear(); 498 break; 499 } 500 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 501 for (unsigned i = 0, e = Record.size(); i != e; ++i) 502 Attrs.push_back(MAttributeGroups[Record[i]]); 503 504 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 505 Attrs.clear(); 506 break; 507 } 508 } 509 } 510 } 511 512 bool BitcodeReader::ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 513 switch (Code) { 514 case bitc::ATTR_KIND_ALIGNMENT: 515 *Kind = Attribute::Alignment; 516 return false; 517 case bitc::ATTR_KIND_ALWAYS_INLINE: 518 *Kind = Attribute::AlwaysInline; 519 return false; 520 case bitc::ATTR_KIND_BUILTIN: 521 *Kind = Attribute::Builtin; 522 return false; 523 case bitc::ATTR_KIND_BY_VAL: 524 *Kind = Attribute::ByVal; 525 return false; 526 case bitc::ATTR_KIND_COLD: 527 *Kind = Attribute::Cold; 528 return false; 529 case bitc::ATTR_KIND_INLINE_HINT: 530 *Kind = Attribute::InlineHint; 531 return false; 532 case bitc::ATTR_KIND_IN_REG: 533 *Kind = Attribute::InReg; 534 return false; 535 case bitc::ATTR_KIND_MIN_SIZE: 536 *Kind = Attribute::MinSize; 537 return false; 538 case bitc::ATTR_KIND_NAKED: 539 *Kind = Attribute::Naked; 540 return false; 541 case bitc::ATTR_KIND_NEST: 542 *Kind = Attribute::Nest; 543 return false; 544 case bitc::ATTR_KIND_NO_ALIAS: 545 *Kind = Attribute::NoAlias; 546 return false; 547 case bitc::ATTR_KIND_NO_BUILTIN: 548 *Kind = Attribute::NoBuiltin; 549 return false; 550 case bitc::ATTR_KIND_NO_CAPTURE: 551 *Kind = Attribute::NoCapture; 552 return false; 553 case bitc::ATTR_KIND_NO_DUPLICATE: 554 *Kind = Attribute::NoDuplicate; 555 return false; 556 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 557 *Kind = Attribute::NoImplicitFloat; 558 return false; 559 case bitc::ATTR_KIND_NO_INLINE: 560 *Kind = Attribute::NoInline; 561 return false; 562 case bitc::ATTR_KIND_NON_LAZY_BIND: 563 *Kind = Attribute::NonLazyBind; 564 return false; 565 case bitc::ATTR_KIND_NO_RED_ZONE: 566 *Kind = Attribute::NoRedZone; 567 return false; 568 case bitc::ATTR_KIND_NO_RETURN: 569 *Kind = Attribute::NoReturn; 570 return false; 571 case bitc::ATTR_KIND_NO_UNWIND: 572 *Kind = Attribute::NoUnwind; 573 return false; 574 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 575 *Kind = Attribute::OptimizeForSize; 576 return false; 577 case bitc::ATTR_KIND_OPTIMIZE_NONE: 578 *Kind = Attribute::OptimizeNone; 579 return false; 580 case bitc::ATTR_KIND_READ_NONE: 581 *Kind = Attribute::ReadNone; 582 return false; 583 case bitc::ATTR_KIND_READ_ONLY: 584 *Kind = Attribute::ReadOnly; 585 return false; 586 case bitc::ATTR_KIND_RETURNED: 587 *Kind = Attribute::Returned; 588 return false; 589 case bitc::ATTR_KIND_RETURNS_TWICE: 590 *Kind = Attribute::ReturnsTwice; 591 return false; 592 case bitc::ATTR_KIND_S_EXT: 593 *Kind = Attribute::SExt; 594 return false; 595 case bitc::ATTR_KIND_STACK_ALIGNMENT: 596 *Kind = Attribute::StackAlignment; 597 return false; 598 case bitc::ATTR_KIND_STACK_PROTECT: 599 *Kind = Attribute::StackProtect; 600 return false; 601 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 602 *Kind = Attribute::StackProtectReq; 603 return false; 604 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 605 *Kind = Attribute::StackProtectStrong; 606 return false; 607 case bitc::ATTR_KIND_STRUCT_RET: 608 *Kind = Attribute::StructRet; 609 return false; 610 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 611 *Kind = Attribute::SanitizeAddress; 612 return false; 613 case bitc::ATTR_KIND_SANITIZE_THREAD: 614 *Kind = Attribute::SanitizeThread; 615 return false; 616 case bitc::ATTR_KIND_SANITIZE_MEMORY: 617 *Kind = Attribute::SanitizeMemory; 618 return false; 619 case bitc::ATTR_KIND_UW_TABLE: 620 *Kind = Attribute::UWTable; 621 return false; 622 case bitc::ATTR_KIND_Z_EXT: 623 *Kind = Attribute::ZExt; 624 return false; 625 default: 626 return Error("Unknown attribute kind"); 627 } 628 } 629 630 bool BitcodeReader::ParseAttributeGroupBlock() { 631 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 632 return Error("Malformed block record"); 633 634 if (!MAttributeGroups.empty()) 635 return Error("Multiple PARAMATTR_GROUP blocks found!"); 636 637 SmallVector<uint64_t, 64> Record; 638 639 // Read all the records. 640 while (1) { 641 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 642 643 switch (Entry.Kind) { 644 case BitstreamEntry::SubBlock: // Handled for us already. 645 case BitstreamEntry::Error: 646 return Error("Error at end of PARAMATTR_GROUP block"); 647 case BitstreamEntry::EndBlock: 648 return false; 649 case BitstreamEntry::Record: 650 // The interesting case. 651 break; 652 } 653 654 // Read a record. 655 Record.clear(); 656 switch (Stream.readRecord(Entry.ID, Record)) { 657 default: // Default behavior: ignore. 658 break; 659 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 660 if (Record.size() < 3) 661 return Error("Invalid ENTRY record"); 662 663 uint64_t GrpID = Record[0]; 664 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 665 666 AttrBuilder B; 667 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 668 if (Record[i] == 0) { // Enum attribute 669 Attribute::AttrKind Kind; 670 if (ParseAttrKind(Record[++i], &Kind)) 671 return true; 672 673 B.addAttribute(Kind); 674 } else if (Record[i] == 1) { // Align attribute 675 Attribute::AttrKind Kind; 676 if (ParseAttrKind(Record[++i], &Kind)) 677 return true; 678 if (Kind == Attribute::Alignment) 679 B.addAlignmentAttr(Record[++i]); 680 else 681 B.addStackAlignmentAttr(Record[++i]); 682 } else { // String attribute 683 assert((Record[i] == 3 || Record[i] == 4) && 684 "Invalid attribute group entry"); 685 bool HasValue = (Record[i++] == 4); 686 SmallString<64> KindStr; 687 SmallString<64> ValStr; 688 689 while (Record[i] != 0 && i != e) 690 KindStr += Record[i++]; 691 assert(Record[i] == 0 && "Kind string not null terminated"); 692 693 if (HasValue) { 694 // Has a value associated with it. 695 ++i; // Skip the '0' that terminates the "kind" string. 696 while (Record[i] != 0 && i != e) 697 ValStr += Record[i++]; 698 assert(Record[i] == 0 && "Value string not null terminated"); 699 } 700 701 B.addAttribute(KindStr.str(), ValStr.str()); 702 } 703 } 704 705 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 706 break; 707 } 708 } 709 } 710 } 711 712 bool BitcodeReader::ParseTypeTable() { 713 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 714 return Error("Malformed block record"); 715 716 return ParseTypeTableBody(); 717 } 718 719 bool BitcodeReader::ParseTypeTableBody() { 720 if (!TypeList.empty()) 721 return Error("Multiple TYPE_BLOCKs found!"); 722 723 SmallVector<uint64_t, 64> Record; 724 unsigned NumRecords = 0; 725 726 SmallString<64> TypeName; 727 728 // Read all the records for this type table. 729 while (1) { 730 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 731 732 switch (Entry.Kind) { 733 case BitstreamEntry::SubBlock: // Handled for us already. 734 case BitstreamEntry::Error: 735 Error("Error in the type table block"); 736 return true; 737 case BitstreamEntry::EndBlock: 738 if (NumRecords != TypeList.size()) 739 return Error("Invalid type forward reference in TYPE_BLOCK"); 740 return false; 741 case BitstreamEntry::Record: 742 // The interesting case. 743 break; 744 } 745 746 // Read a record. 747 Record.clear(); 748 Type *ResultTy = 0; 749 switch (Stream.readRecord(Entry.ID, Record)) { 750 default: return Error("unknown type in type table"); 751 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 752 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 753 // type list. This allows us to reserve space. 754 if (Record.size() < 1) 755 return Error("Invalid TYPE_CODE_NUMENTRY record"); 756 TypeList.resize(Record[0]); 757 continue; 758 case bitc::TYPE_CODE_VOID: // VOID 759 ResultTy = Type::getVoidTy(Context); 760 break; 761 case bitc::TYPE_CODE_HALF: // HALF 762 ResultTy = Type::getHalfTy(Context); 763 break; 764 case bitc::TYPE_CODE_FLOAT: // FLOAT 765 ResultTy = Type::getFloatTy(Context); 766 break; 767 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 768 ResultTy = Type::getDoubleTy(Context); 769 break; 770 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 771 ResultTy = Type::getX86_FP80Ty(Context); 772 break; 773 case bitc::TYPE_CODE_FP128: // FP128 774 ResultTy = Type::getFP128Ty(Context); 775 break; 776 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 777 ResultTy = Type::getPPC_FP128Ty(Context); 778 break; 779 case bitc::TYPE_CODE_LABEL: // LABEL 780 ResultTy = Type::getLabelTy(Context); 781 break; 782 case bitc::TYPE_CODE_METADATA: // METADATA 783 ResultTy = Type::getMetadataTy(Context); 784 break; 785 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 786 ResultTy = Type::getX86_MMXTy(Context); 787 break; 788 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 789 if (Record.size() < 1) 790 return Error("Invalid Integer type record"); 791 792 ResultTy = IntegerType::get(Context, Record[0]); 793 break; 794 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 795 // [pointee type, address space] 796 if (Record.size() < 1) 797 return Error("Invalid POINTER type record"); 798 unsigned AddressSpace = 0; 799 if (Record.size() == 2) 800 AddressSpace = Record[1]; 801 ResultTy = getTypeByID(Record[0]); 802 if (ResultTy == 0) return Error("invalid element type in pointer type"); 803 ResultTy = PointerType::get(ResultTy, AddressSpace); 804 break; 805 } 806 case bitc::TYPE_CODE_FUNCTION_OLD: { 807 // FIXME: attrid is dead, remove it in LLVM 4.0 808 // FUNCTION: [vararg, attrid, retty, paramty x N] 809 if (Record.size() < 3) 810 return Error("Invalid FUNCTION type record"); 811 SmallVector<Type*, 8> ArgTys; 812 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 813 if (Type *T = getTypeByID(Record[i])) 814 ArgTys.push_back(T); 815 else 816 break; 817 } 818 819 ResultTy = getTypeByID(Record[2]); 820 if (ResultTy == 0 || ArgTys.size() < Record.size()-3) 821 return Error("invalid type in function type"); 822 823 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 824 break; 825 } 826 case bitc::TYPE_CODE_FUNCTION: { 827 // FUNCTION: [vararg, retty, paramty x N] 828 if (Record.size() < 2) 829 return Error("Invalid FUNCTION type record"); 830 SmallVector<Type*, 8> ArgTys; 831 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 832 if (Type *T = getTypeByID(Record[i])) 833 ArgTys.push_back(T); 834 else 835 break; 836 } 837 838 ResultTy = getTypeByID(Record[1]); 839 if (ResultTy == 0 || ArgTys.size() < Record.size()-2) 840 return Error("invalid type in function type"); 841 842 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 843 break; 844 } 845 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 846 if (Record.size() < 1) 847 return Error("Invalid STRUCT type record"); 848 SmallVector<Type*, 8> EltTys; 849 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 850 if (Type *T = getTypeByID(Record[i])) 851 EltTys.push_back(T); 852 else 853 break; 854 } 855 if (EltTys.size() != Record.size()-1) 856 return Error("invalid type in struct type"); 857 ResultTy = StructType::get(Context, EltTys, Record[0]); 858 break; 859 } 860 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 861 if (ConvertToString(Record, 0, TypeName)) 862 return Error("Invalid STRUCT_NAME record"); 863 continue; 864 865 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 866 if (Record.size() < 1) 867 return Error("Invalid STRUCT type record"); 868 869 if (NumRecords >= TypeList.size()) 870 return Error("invalid TYPE table"); 871 872 // Check to see if this was forward referenced, if so fill in the temp. 873 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 874 if (Res) { 875 Res->setName(TypeName); 876 TypeList[NumRecords] = 0; 877 } else // Otherwise, create a new struct. 878 Res = StructType::create(Context, TypeName); 879 TypeName.clear(); 880 881 SmallVector<Type*, 8> EltTys; 882 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 883 if (Type *T = getTypeByID(Record[i])) 884 EltTys.push_back(T); 885 else 886 break; 887 } 888 if (EltTys.size() != Record.size()-1) 889 return Error("invalid STRUCT type record"); 890 Res->setBody(EltTys, Record[0]); 891 ResultTy = Res; 892 break; 893 } 894 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 895 if (Record.size() != 1) 896 return Error("Invalid OPAQUE type record"); 897 898 if (NumRecords >= TypeList.size()) 899 return Error("invalid TYPE table"); 900 901 // Check to see if this was forward referenced, if so fill in the temp. 902 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 903 if (Res) { 904 Res->setName(TypeName); 905 TypeList[NumRecords] = 0; 906 } else // Otherwise, create a new struct with no body. 907 Res = StructType::create(Context, TypeName); 908 TypeName.clear(); 909 ResultTy = Res; 910 break; 911 } 912 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 913 if (Record.size() < 2) 914 return Error("Invalid ARRAY type record"); 915 if ((ResultTy = getTypeByID(Record[1]))) 916 ResultTy = ArrayType::get(ResultTy, Record[0]); 917 else 918 return Error("Invalid ARRAY type element"); 919 break; 920 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 921 if (Record.size() < 2) 922 return Error("Invalid VECTOR type record"); 923 if ((ResultTy = getTypeByID(Record[1]))) 924 ResultTy = VectorType::get(ResultTy, Record[0]); 925 else 926 return Error("Invalid ARRAY type element"); 927 break; 928 } 929 930 if (NumRecords >= TypeList.size()) 931 return Error("invalid TYPE table"); 932 assert(ResultTy && "Didn't read a type?"); 933 assert(TypeList[NumRecords] == 0 && "Already read type?"); 934 TypeList[NumRecords++] = ResultTy; 935 } 936 } 937 938 bool BitcodeReader::ParseValueSymbolTable() { 939 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 940 return Error("Malformed block record"); 941 942 SmallVector<uint64_t, 64> Record; 943 944 // Read all the records for this value table. 945 SmallString<128> ValueName; 946 while (1) { 947 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 948 949 switch (Entry.Kind) { 950 case BitstreamEntry::SubBlock: // Handled for us already. 951 case BitstreamEntry::Error: 952 return Error("malformed value symbol table block"); 953 case BitstreamEntry::EndBlock: 954 return false; 955 case BitstreamEntry::Record: 956 // The interesting case. 957 break; 958 } 959 960 // Read a record. 961 Record.clear(); 962 switch (Stream.readRecord(Entry.ID, Record)) { 963 default: // Default behavior: unknown type. 964 break; 965 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 966 if (ConvertToString(Record, 1, ValueName)) 967 return Error("Invalid VST_ENTRY record"); 968 unsigned ValueID = Record[0]; 969 if (ValueID >= ValueList.size()) 970 return Error("Invalid Value ID in VST_ENTRY record"); 971 Value *V = ValueList[ValueID]; 972 973 V->setName(StringRef(ValueName.data(), ValueName.size())); 974 ValueName.clear(); 975 break; 976 } 977 case bitc::VST_CODE_BBENTRY: { 978 if (ConvertToString(Record, 1, ValueName)) 979 return Error("Invalid VST_BBENTRY record"); 980 BasicBlock *BB = getBasicBlock(Record[0]); 981 if (BB == 0) 982 return Error("Invalid BB ID in VST_BBENTRY record"); 983 984 BB->setName(StringRef(ValueName.data(), ValueName.size())); 985 ValueName.clear(); 986 break; 987 } 988 } 989 } 990 } 991 992 bool BitcodeReader::ParseMetadata() { 993 unsigned NextMDValueNo = MDValueList.size(); 994 995 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 996 return Error("Malformed block record"); 997 998 SmallVector<uint64_t, 64> Record; 999 1000 // Read all the records. 1001 while (1) { 1002 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1003 1004 switch (Entry.Kind) { 1005 case BitstreamEntry::SubBlock: // Handled for us already. 1006 case BitstreamEntry::Error: 1007 Error("malformed metadata block"); 1008 return true; 1009 case BitstreamEntry::EndBlock: 1010 return false; 1011 case BitstreamEntry::Record: 1012 // The interesting case. 1013 break; 1014 } 1015 1016 bool IsFunctionLocal = false; 1017 // Read a record. 1018 Record.clear(); 1019 unsigned Code = Stream.readRecord(Entry.ID, Record); 1020 switch (Code) { 1021 default: // Default behavior: ignore. 1022 break; 1023 case bitc::METADATA_NAME: { 1024 // Read name of the named metadata. 1025 SmallString<8> Name(Record.begin(), Record.end()); 1026 Record.clear(); 1027 Code = Stream.ReadCode(); 1028 1029 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1030 unsigned NextBitCode = Stream.readRecord(Code, Record); 1031 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1032 1033 // Read named metadata elements. 1034 unsigned Size = Record.size(); 1035 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1036 for (unsigned i = 0; i != Size; ++i) { 1037 MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1038 if (MD == 0) 1039 return Error("Malformed metadata record"); 1040 NMD->addOperand(MD); 1041 } 1042 break; 1043 } 1044 case bitc::METADATA_FN_NODE: 1045 IsFunctionLocal = true; 1046 // fall-through 1047 case bitc::METADATA_NODE: { 1048 if (Record.size() % 2 == 1) 1049 return Error("Invalid METADATA_NODE record"); 1050 1051 unsigned Size = Record.size(); 1052 SmallVector<Value*, 8> Elts; 1053 for (unsigned i = 0; i != Size; i += 2) { 1054 Type *Ty = getTypeByID(Record[i]); 1055 if (!Ty) return Error("Invalid METADATA_NODE record"); 1056 if (Ty->isMetadataTy()) 1057 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1058 else if (!Ty->isVoidTy()) 1059 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 1060 else 1061 Elts.push_back(NULL); 1062 } 1063 Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal); 1064 IsFunctionLocal = false; 1065 MDValueList.AssignValue(V, NextMDValueNo++); 1066 break; 1067 } 1068 case bitc::METADATA_STRING: { 1069 SmallString<8> String(Record.begin(), Record.end()); 1070 Value *V = MDString::get(Context, String); 1071 MDValueList.AssignValue(V, NextMDValueNo++); 1072 break; 1073 } 1074 case bitc::METADATA_KIND: { 1075 if (Record.size() < 2) 1076 return Error("Invalid METADATA_KIND record"); 1077 1078 unsigned Kind = Record[0]; 1079 SmallString<8> Name(Record.begin()+1, Record.end()); 1080 1081 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1082 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1083 return Error("Conflicting METADATA_KIND records"); 1084 break; 1085 } 1086 } 1087 } 1088 } 1089 1090 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1091 /// the LSB for dense VBR encoding. 1092 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1093 if ((V & 1) == 0) 1094 return V >> 1; 1095 if (V != 1) 1096 return -(V >> 1); 1097 // There is no such thing as -0 with integers. "-0" really means MININT. 1098 return 1ULL << 63; 1099 } 1100 1101 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1102 /// values and aliases that we can. 1103 bool BitcodeReader::ResolveGlobalAndAliasInits() { 1104 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1105 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1106 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1107 1108 GlobalInitWorklist.swap(GlobalInits); 1109 AliasInitWorklist.swap(AliasInits); 1110 FunctionPrefixWorklist.swap(FunctionPrefixes); 1111 1112 while (!GlobalInitWorklist.empty()) { 1113 unsigned ValID = GlobalInitWorklist.back().second; 1114 if (ValID >= ValueList.size()) { 1115 // Not ready to resolve this yet, it requires something later in the file. 1116 GlobalInits.push_back(GlobalInitWorklist.back()); 1117 } else { 1118 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 1119 GlobalInitWorklist.back().first->setInitializer(C); 1120 else 1121 return Error("Global variable initializer is not a constant!"); 1122 } 1123 GlobalInitWorklist.pop_back(); 1124 } 1125 1126 while (!AliasInitWorklist.empty()) { 1127 unsigned ValID = AliasInitWorklist.back().second; 1128 if (ValID >= ValueList.size()) { 1129 AliasInits.push_back(AliasInitWorklist.back()); 1130 } else { 1131 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 1132 AliasInitWorklist.back().first->setAliasee(C); 1133 else 1134 return Error("Alias initializer is not a constant!"); 1135 } 1136 AliasInitWorklist.pop_back(); 1137 } 1138 1139 while (!FunctionPrefixWorklist.empty()) { 1140 unsigned ValID = FunctionPrefixWorklist.back().second; 1141 if (ValID >= ValueList.size()) { 1142 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1143 } else { 1144 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 1145 FunctionPrefixWorklist.back().first->setPrefixData(C); 1146 else 1147 return Error("Function prefix is not a constant!"); 1148 } 1149 FunctionPrefixWorklist.pop_back(); 1150 } 1151 1152 return false; 1153 } 1154 1155 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1156 SmallVector<uint64_t, 8> Words(Vals.size()); 1157 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1158 BitcodeReader::decodeSignRotatedValue); 1159 1160 return APInt(TypeBits, Words); 1161 } 1162 1163 bool BitcodeReader::ParseConstants() { 1164 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1165 return Error("Malformed block record"); 1166 1167 SmallVector<uint64_t, 64> Record; 1168 1169 // Read all the records for this value table. 1170 Type *CurTy = Type::getInt32Ty(Context); 1171 unsigned NextCstNo = ValueList.size(); 1172 while (1) { 1173 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1174 1175 switch (Entry.Kind) { 1176 case BitstreamEntry::SubBlock: // Handled for us already. 1177 case BitstreamEntry::Error: 1178 return Error("malformed block record in AST file"); 1179 case BitstreamEntry::EndBlock: 1180 if (NextCstNo != ValueList.size()) 1181 return Error("Invalid constant reference!"); 1182 1183 // Once all the constants have been read, go through and resolve forward 1184 // references. 1185 ValueList.ResolveConstantForwardRefs(); 1186 return false; 1187 case BitstreamEntry::Record: 1188 // The interesting case. 1189 break; 1190 } 1191 1192 // Read a record. 1193 Record.clear(); 1194 Value *V = 0; 1195 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1196 switch (BitCode) { 1197 default: // Default behavior: unknown constant 1198 case bitc::CST_CODE_UNDEF: // UNDEF 1199 V = UndefValue::get(CurTy); 1200 break; 1201 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1202 if (Record.empty()) 1203 return Error("Malformed CST_SETTYPE record"); 1204 if (Record[0] >= TypeList.size()) 1205 return Error("Invalid Type ID in CST_SETTYPE record"); 1206 CurTy = TypeList[Record[0]]; 1207 continue; // Skip the ValueList manipulation. 1208 case bitc::CST_CODE_NULL: // NULL 1209 V = Constant::getNullValue(CurTy); 1210 break; 1211 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1212 if (!CurTy->isIntegerTy() || Record.empty()) 1213 return Error("Invalid CST_INTEGER record"); 1214 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1215 break; 1216 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1217 if (!CurTy->isIntegerTy() || Record.empty()) 1218 return Error("Invalid WIDE_INTEGER record"); 1219 1220 APInt VInt = ReadWideAPInt(Record, 1221 cast<IntegerType>(CurTy)->getBitWidth()); 1222 V = ConstantInt::get(Context, VInt); 1223 1224 break; 1225 } 1226 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1227 if (Record.empty()) 1228 return Error("Invalid FLOAT record"); 1229 if (CurTy->isHalfTy()) 1230 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1231 APInt(16, (uint16_t)Record[0]))); 1232 else if (CurTy->isFloatTy()) 1233 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1234 APInt(32, (uint32_t)Record[0]))); 1235 else if (CurTy->isDoubleTy()) 1236 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1237 APInt(64, Record[0]))); 1238 else if (CurTy->isX86_FP80Ty()) { 1239 // Bits are not stored the same way as a normal i80 APInt, compensate. 1240 uint64_t Rearrange[2]; 1241 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1242 Rearrange[1] = Record[0] >> 48; 1243 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1244 APInt(80, Rearrange))); 1245 } else if (CurTy->isFP128Ty()) 1246 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1247 APInt(128, Record))); 1248 else if (CurTy->isPPC_FP128Ty()) 1249 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1250 APInt(128, Record))); 1251 else 1252 V = UndefValue::get(CurTy); 1253 break; 1254 } 1255 1256 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1257 if (Record.empty()) 1258 return Error("Invalid CST_AGGREGATE record"); 1259 1260 unsigned Size = Record.size(); 1261 SmallVector<Constant*, 16> Elts; 1262 1263 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1264 for (unsigned i = 0; i != Size; ++i) 1265 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1266 STy->getElementType(i))); 1267 V = ConstantStruct::get(STy, Elts); 1268 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1269 Type *EltTy = ATy->getElementType(); 1270 for (unsigned i = 0; i != Size; ++i) 1271 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1272 V = ConstantArray::get(ATy, Elts); 1273 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1274 Type *EltTy = VTy->getElementType(); 1275 for (unsigned i = 0; i != Size; ++i) 1276 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1277 V = ConstantVector::get(Elts); 1278 } else { 1279 V = UndefValue::get(CurTy); 1280 } 1281 break; 1282 } 1283 case bitc::CST_CODE_STRING: // STRING: [values] 1284 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1285 if (Record.empty()) 1286 return Error("Invalid CST_STRING record"); 1287 1288 SmallString<16> Elts(Record.begin(), Record.end()); 1289 V = ConstantDataArray::getString(Context, Elts, 1290 BitCode == bitc::CST_CODE_CSTRING); 1291 break; 1292 } 1293 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1294 if (Record.empty()) 1295 return Error("Invalid CST_DATA record"); 1296 1297 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1298 unsigned Size = Record.size(); 1299 1300 if (EltTy->isIntegerTy(8)) { 1301 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1302 if (isa<VectorType>(CurTy)) 1303 V = ConstantDataVector::get(Context, Elts); 1304 else 1305 V = ConstantDataArray::get(Context, Elts); 1306 } else if (EltTy->isIntegerTy(16)) { 1307 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1308 if (isa<VectorType>(CurTy)) 1309 V = ConstantDataVector::get(Context, Elts); 1310 else 1311 V = ConstantDataArray::get(Context, Elts); 1312 } else if (EltTy->isIntegerTy(32)) { 1313 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1314 if (isa<VectorType>(CurTy)) 1315 V = ConstantDataVector::get(Context, Elts); 1316 else 1317 V = ConstantDataArray::get(Context, Elts); 1318 } else if (EltTy->isIntegerTy(64)) { 1319 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1320 if (isa<VectorType>(CurTy)) 1321 V = ConstantDataVector::get(Context, Elts); 1322 else 1323 V = ConstantDataArray::get(Context, Elts); 1324 } else if (EltTy->isFloatTy()) { 1325 SmallVector<float, 16> Elts(Size); 1326 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1327 if (isa<VectorType>(CurTy)) 1328 V = ConstantDataVector::get(Context, Elts); 1329 else 1330 V = ConstantDataArray::get(Context, Elts); 1331 } else if (EltTy->isDoubleTy()) { 1332 SmallVector<double, 16> Elts(Size); 1333 std::transform(Record.begin(), Record.end(), Elts.begin(), 1334 BitsToDouble); 1335 if (isa<VectorType>(CurTy)) 1336 V = ConstantDataVector::get(Context, Elts); 1337 else 1338 V = ConstantDataArray::get(Context, Elts); 1339 } else { 1340 return Error("Unknown element type in CE_DATA"); 1341 } 1342 break; 1343 } 1344 1345 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1346 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 1347 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1348 if (Opc < 0) { 1349 V = UndefValue::get(CurTy); // Unknown binop. 1350 } else { 1351 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1352 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1353 unsigned Flags = 0; 1354 if (Record.size() >= 4) { 1355 if (Opc == Instruction::Add || 1356 Opc == Instruction::Sub || 1357 Opc == Instruction::Mul || 1358 Opc == Instruction::Shl) { 1359 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1360 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1361 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1362 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1363 } else if (Opc == Instruction::SDiv || 1364 Opc == Instruction::UDiv || 1365 Opc == Instruction::LShr || 1366 Opc == Instruction::AShr) { 1367 if (Record[3] & (1 << bitc::PEO_EXACT)) 1368 Flags |= SDivOperator::IsExact; 1369 } 1370 } 1371 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1372 } 1373 break; 1374 } 1375 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1376 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 1377 int Opc = GetDecodedCastOpcode(Record[0]); 1378 if (Opc < 0) { 1379 V = UndefValue::get(CurTy); // Unknown cast. 1380 } else { 1381 Type *OpTy = getTypeByID(Record[1]); 1382 if (!OpTy) return Error("Invalid CE_CAST record"); 1383 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1384 V = ConstantExpr::getCast(Opc, Op, CurTy); 1385 } 1386 break; 1387 } 1388 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1389 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1390 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 1391 SmallVector<Constant*, 16> Elts; 1392 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1393 Type *ElTy = getTypeByID(Record[i]); 1394 if (!ElTy) return Error("Invalid CE_GEP record"); 1395 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1396 } 1397 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1398 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1399 BitCode == 1400 bitc::CST_CODE_CE_INBOUNDS_GEP); 1401 break; 1402 } 1403 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1404 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 1405 1406 Type *SelectorTy = Type::getInt1Ty(Context); 1407 1408 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1409 // vector. Otherwise, it must be a single bit. 1410 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1411 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1412 VTy->getNumElements()); 1413 1414 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1415 SelectorTy), 1416 ValueList.getConstantFwdRef(Record[1],CurTy), 1417 ValueList.getConstantFwdRef(Record[2],CurTy)); 1418 break; 1419 } 1420 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 1421 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 1422 VectorType *OpTy = 1423 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1424 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 1425 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1426 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], 1427 Type::getInt32Ty(Context)); 1428 V = ConstantExpr::getExtractElement(Op0, Op1); 1429 break; 1430 } 1431 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 1432 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1433 if (Record.size() < 3 || OpTy == 0) 1434 return Error("Invalid CE_INSERTELT record"); 1435 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1436 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1437 OpTy->getElementType()); 1438 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], 1439 Type::getInt32Ty(Context)); 1440 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1441 break; 1442 } 1443 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1444 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1445 if (Record.size() < 3 || OpTy == 0) 1446 return Error("Invalid CE_SHUFFLEVEC record"); 1447 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1448 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1449 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1450 OpTy->getNumElements()); 1451 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1452 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1453 break; 1454 } 1455 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1456 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1457 VectorType *OpTy = 1458 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1459 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 1460 return Error("Invalid CE_SHUFVEC_EX record"); 1461 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1462 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1463 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1464 RTy->getNumElements()); 1465 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1466 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1467 break; 1468 } 1469 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1470 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 1471 Type *OpTy = getTypeByID(Record[0]); 1472 if (OpTy == 0) return Error("Invalid CE_CMP record"); 1473 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1474 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1475 1476 if (OpTy->isFPOrFPVectorTy()) 1477 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1478 else 1479 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1480 break; 1481 } 1482 // This maintains backward compatibility, pre-asm dialect keywords. 1483 // FIXME: Remove with the 4.0 release. 1484 case bitc::CST_CODE_INLINEASM_OLD: { 1485 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 1486 std::string AsmStr, ConstrStr; 1487 bool HasSideEffects = Record[0] & 1; 1488 bool IsAlignStack = Record[0] >> 1; 1489 unsigned AsmStrSize = Record[1]; 1490 if (2+AsmStrSize >= Record.size()) 1491 return Error("Invalid INLINEASM record"); 1492 unsigned ConstStrSize = Record[2+AsmStrSize]; 1493 if (3+AsmStrSize+ConstStrSize > Record.size()) 1494 return Error("Invalid INLINEASM record"); 1495 1496 for (unsigned i = 0; i != AsmStrSize; ++i) 1497 AsmStr += (char)Record[2+i]; 1498 for (unsigned i = 0; i != ConstStrSize; ++i) 1499 ConstrStr += (char)Record[3+AsmStrSize+i]; 1500 PointerType *PTy = cast<PointerType>(CurTy); 1501 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1502 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1503 break; 1504 } 1505 // This version adds support for the asm dialect keywords (e.g., 1506 // inteldialect). 1507 case bitc::CST_CODE_INLINEASM: { 1508 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 1509 std::string AsmStr, ConstrStr; 1510 bool HasSideEffects = Record[0] & 1; 1511 bool IsAlignStack = (Record[0] >> 1) & 1; 1512 unsigned AsmDialect = Record[0] >> 2; 1513 unsigned AsmStrSize = Record[1]; 1514 if (2+AsmStrSize >= Record.size()) 1515 return Error("Invalid INLINEASM record"); 1516 unsigned ConstStrSize = Record[2+AsmStrSize]; 1517 if (3+AsmStrSize+ConstStrSize > Record.size()) 1518 return Error("Invalid INLINEASM record"); 1519 1520 for (unsigned i = 0; i != AsmStrSize; ++i) 1521 AsmStr += (char)Record[2+i]; 1522 for (unsigned i = 0; i != ConstStrSize; ++i) 1523 ConstrStr += (char)Record[3+AsmStrSize+i]; 1524 PointerType *PTy = cast<PointerType>(CurTy); 1525 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1526 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1527 InlineAsm::AsmDialect(AsmDialect)); 1528 break; 1529 } 1530 case bitc::CST_CODE_BLOCKADDRESS:{ 1531 if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record"); 1532 Type *FnTy = getTypeByID(Record[0]); 1533 if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1534 Function *Fn = 1535 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1536 if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1537 1538 // If the function is already parsed we can insert the block address right 1539 // away. 1540 if (!Fn->empty()) { 1541 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1542 for (size_t I = 0, E = Record[2]; I != E; ++I) { 1543 if (BBI == BBE) 1544 return Error("Invalid blockaddress block #"); 1545 ++BBI; 1546 } 1547 V = BlockAddress::get(Fn, BBI); 1548 } else { 1549 // Otherwise insert a placeholder and remember it so it can be inserted 1550 // when the function is parsed. 1551 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), 1552 Type::getInt8Ty(Context), 1553 false, GlobalValue::InternalLinkage, 1554 0, ""); 1555 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); 1556 V = FwdRef; 1557 } 1558 break; 1559 } 1560 } 1561 1562 ValueList.AssignValue(V, NextCstNo); 1563 ++NextCstNo; 1564 } 1565 } 1566 1567 bool BitcodeReader::ParseUseLists() { 1568 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1569 return Error("Malformed block record"); 1570 1571 SmallVector<uint64_t, 64> Record; 1572 1573 // Read all the records. 1574 while (1) { 1575 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1576 1577 switch (Entry.Kind) { 1578 case BitstreamEntry::SubBlock: // Handled for us already. 1579 case BitstreamEntry::Error: 1580 return Error("malformed use list block"); 1581 case BitstreamEntry::EndBlock: 1582 return false; 1583 case BitstreamEntry::Record: 1584 // The interesting case. 1585 break; 1586 } 1587 1588 // Read a use list record. 1589 Record.clear(); 1590 switch (Stream.readRecord(Entry.ID, Record)) { 1591 default: // Default behavior: unknown type. 1592 break; 1593 case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD. 1594 unsigned RecordLength = Record.size(); 1595 if (RecordLength < 1) 1596 return Error ("Invalid UseList reader!"); 1597 UseListRecords.push_back(Record); 1598 break; 1599 } 1600 } 1601 } 1602 } 1603 1604 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1605 /// remember where it is and then skip it. This lets us lazily deserialize the 1606 /// functions. 1607 bool BitcodeReader::RememberAndSkipFunctionBody() { 1608 // Get the function we are talking about. 1609 if (FunctionsWithBodies.empty()) 1610 return Error("Insufficient function protos"); 1611 1612 Function *Fn = FunctionsWithBodies.back(); 1613 FunctionsWithBodies.pop_back(); 1614 1615 // Save the current stream state. 1616 uint64_t CurBit = Stream.GetCurrentBitNo(); 1617 DeferredFunctionInfo[Fn] = CurBit; 1618 1619 // Skip over the function block for now. 1620 if (Stream.SkipBlock()) 1621 return Error("Malformed block record"); 1622 return false; 1623 } 1624 1625 bool BitcodeReader::GlobalCleanup() { 1626 // Patch the initializers for globals and aliases up. 1627 ResolveGlobalAndAliasInits(); 1628 if (!GlobalInits.empty() || !AliasInits.empty()) 1629 return Error("Malformed global initializer set"); 1630 1631 // Look for intrinsic functions which need to be upgraded at some point 1632 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1633 FI != FE; ++FI) { 1634 Function *NewFn; 1635 if (UpgradeIntrinsicFunction(FI, NewFn)) 1636 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1637 } 1638 1639 // Look for global variables which need to be renamed. 1640 for (Module::global_iterator 1641 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1642 GI != GE; ++GI) 1643 UpgradeGlobalVariable(GI); 1644 // Force deallocation of memory for these vectors to favor the client that 1645 // want lazy deserialization. 1646 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1647 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1648 return false; 1649 } 1650 1651 bool BitcodeReader::ParseModule(bool Resume) { 1652 if (Resume) 1653 Stream.JumpToBit(NextUnreadBit); 1654 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1655 return Error("Malformed block record"); 1656 1657 SmallVector<uint64_t, 64> Record; 1658 std::vector<std::string> SectionTable; 1659 std::vector<std::string> GCTable; 1660 1661 // Read all the records for this module. 1662 while (1) { 1663 BitstreamEntry Entry = Stream.advance(); 1664 1665 switch (Entry.Kind) { 1666 case BitstreamEntry::Error: 1667 Error("malformed module block"); 1668 return true; 1669 case BitstreamEntry::EndBlock: 1670 return GlobalCleanup(); 1671 1672 case BitstreamEntry::SubBlock: 1673 switch (Entry.ID) { 1674 default: // Skip unknown content. 1675 if (Stream.SkipBlock()) 1676 return Error("Malformed block record"); 1677 break; 1678 case bitc::BLOCKINFO_BLOCK_ID: 1679 if (Stream.ReadBlockInfoBlock()) 1680 return Error("Malformed BlockInfoBlock"); 1681 break; 1682 case bitc::PARAMATTR_BLOCK_ID: 1683 if (ParseAttributeBlock()) 1684 return true; 1685 break; 1686 case bitc::PARAMATTR_GROUP_BLOCK_ID: 1687 if (ParseAttributeGroupBlock()) 1688 return true; 1689 break; 1690 case bitc::TYPE_BLOCK_ID_NEW: 1691 if (ParseTypeTable()) 1692 return true; 1693 break; 1694 case bitc::VALUE_SYMTAB_BLOCK_ID: 1695 if (ParseValueSymbolTable()) 1696 return true; 1697 SeenValueSymbolTable = true; 1698 break; 1699 case bitc::CONSTANTS_BLOCK_ID: 1700 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1701 return true; 1702 break; 1703 case bitc::METADATA_BLOCK_ID: 1704 if (ParseMetadata()) 1705 return true; 1706 break; 1707 case bitc::FUNCTION_BLOCK_ID: 1708 // If this is the first function body we've seen, reverse the 1709 // FunctionsWithBodies list. 1710 if (!SeenFirstFunctionBody) { 1711 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1712 if (GlobalCleanup()) 1713 return true; 1714 SeenFirstFunctionBody = true; 1715 } 1716 1717 if (RememberAndSkipFunctionBody()) 1718 return true; 1719 // For streaming bitcode, suspend parsing when we reach the function 1720 // bodies. Subsequent materialization calls will resume it when 1721 // necessary. For streaming, the function bodies must be at the end of 1722 // the bitcode. If the bitcode file is old, the symbol table will be 1723 // at the end instead and will not have been seen yet. In this case, 1724 // just finish the parse now. 1725 if (LazyStreamer && SeenValueSymbolTable) { 1726 NextUnreadBit = Stream.GetCurrentBitNo(); 1727 return false; 1728 } 1729 break; 1730 case bitc::USELIST_BLOCK_ID: 1731 if (ParseUseLists()) 1732 return true; 1733 break; 1734 } 1735 continue; 1736 1737 case BitstreamEntry::Record: 1738 // The interesting case. 1739 break; 1740 } 1741 1742 1743 // Read a record. 1744 switch (Stream.readRecord(Entry.ID, Record)) { 1745 default: break; // Default behavior, ignore unknown content. 1746 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 1747 if (Record.size() < 1) 1748 return Error("Malformed MODULE_CODE_VERSION"); 1749 // Only version #0 and #1 are supported so far. 1750 unsigned module_version = Record[0]; 1751 switch (module_version) { 1752 default: return Error("Unknown bitstream version!"); 1753 case 0: 1754 UseRelativeIDs = false; 1755 break; 1756 case 1: 1757 UseRelativeIDs = true; 1758 break; 1759 } 1760 break; 1761 } 1762 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1763 std::string S; 1764 if (ConvertToString(Record, 0, S)) 1765 return Error("Invalid MODULE_CODE_TRIPLE record"); 1766 TheModule->setTargetTriple(S); 1767 break; 1768 } 1769 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1770 std::string S; 1771 if (ConvertToString(Record, 0, S)) 1772 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1773 TheModule->setDataLayout(S); 1774 break; 1775 } 1776 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1777 std::string S; 1778 if (ConvertToString(Record, 0, S)) 1779 return Error("Invalid MODULE_CODE_ASM record"); 1780 TheModule->setModuleInlineAsm(S); 1781 break; 1782 } 1783 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1784 // FIXME: Remove in 4.0. 1785 std::string S; 1786 if (ConvertToString(Record, 0, S)) 1787 return Error("Invalid MODULE_CODE_DEPLIB record"); 1788 // Ignore value. 1789 break; 1790 } 1791 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1792 std::string S; 1793 if (ConvertToString(Record, 0, S)) 1794 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1795 SectionTable.push_back(S); 1796 break; 1797 } 1798 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1799 std::string S; 1800 if (ConvertToString(Record, 0, S)) 1801 return Error("Invalid MODULE_CODE_GCNAME record"); 1802 GCTable.push_back(S); 1803 break; 1804 } 1805 // GLOBALVAR: [pointer type, isconst, initid, 1806 // linkage, alignment, section, visibility, threadlocal, 1807 // unnamed_addr] 1808 case bitc::MODULE_CODE_GLOBALVAR: { 1809 if (Record.size() < 6) 1810 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1811 Type *Ty = getTypeByID(Record[0]); 1812 if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1813 if (!Ty->isPointerTy()) 1814 return Error("Global not a pointer type!"); 1815 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1816 Ty = cast<PointerType>(Ty)->getElementType(); 1817 1818 bool isConstant = Record[1]; 1819 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1820 unsigned Alignment = (1 << Record[4]) >> 1; 1821 std::string Section; 1822 if (Record[5]) { 1823 if (Record[5]-1 >= SectionTable.size()) 1824 return Error("Invalid section ID"); 1825 Section = SectionTable[Record[5]-1]; 1826 } 1827 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1828 if (Record.size() > 6) 1829 Visibility = GetDecodedVisibility(Record[6]); 1830 1831 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 1832 if (Record.size() > 7) 1833 TLM = GetDecodedThreadLocalMode(Record[7]); 1834 1835 bool UnnamedAddr = false; 1836 if (Record.size() > 8) 1837 UnnamedAddr = Record[8]; 1838 1839 bool ExternallyInitialized = false; 1840 if (Record.size() > 9) 1841 ExternallyInitialized = Record[9]; 1842 1843 GlobalVariable *NewGV = 1844 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0, 1845 TLM, AddressSpace, ExternallyInitialized); 1846 NewGV->setAlignment(Alignment); 1847 if (!Section.empty()) 1848 NewGV->setSection(Section); 1849 NewGV->setVisibility(Visibility); 1850 NewGV->setUnnamedAddr(UnnamedAddr); 1851 1852 ValueList.push_back(NewGV); 1853 1854 // Remember which value to use for the global initializer. 1855 if (unsigned InitID = Record[2]) 1856 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1857 break; 1858 } 1859 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1860 // alignment, section, visibility, gc, unnamed_addr] 1861 case bitc::MODULE_CODE_FUNCTION: { 1862 if (Record.size() < 8) 1863 return Error("Invalid MODULE_CODE_FUNCTION record"); 1864 Type *Ty = getTypeByID(Record[0]); 1865 if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record"); 1866 if (!Ty->isPointerTy()) 1867 return Error("Function not a pointer type!"); 1868 FunctionType *FTy = 1869 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1870 if (!FTy) 1871 return Error("Function not a pointer to function type!"); 1872 1873 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1874 "", TheModule); 1875 1876 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1877 bool isProto = Record[2]; 1878 Func->setLinkage(GetDecodedLinkage(Record[3])); 1879 Func->setAttributes(getAttributes(Record[4])); 1880 1881 Func->setAlignment((1 << Record[5]) >> 1); 1882 if (Record[6]) { 1883 if (Record[6]-1 >= SectionTable.size()) 1884 return Error("Invalid section ID"); 1885 Func->setSection(SectionTable[Record[6]-1]); 1886 } 1887 Func->setVisibility(GetDecodedVisibility(Record[7])); 1888 if (Record.size() > 8 && Record[8]) { 1889 if (Record[8]-1 > GCTable.size()) 1890 return Error("Invalid GC ID"); 1891 Func->setGC(GCTable[Record[8]-1].c_str()); 1892 } 1893 bool UnnamedAddr = false; 1894 if (Record.size() > 9) 1895 UnnamedAddr = Record[9]; 1896 Func->setUnnamedAddr(UnnamedAddr); 1897 if (Record.size() > 10 && Record[10] != 0) 1898 FunctionPrefixes.push_back(std::make_pair(Func, Record[10]-1)); 1899 ValueList.push_back(Func); 1900 1901 // If this is a function with a body, remember the prototype we are 1902 // creating now, so that we can match up the body with them later. 1903 if (!isProto) { 1904 FunctionsWithBodies.push_back(Func); 1905 if (LazyStreamer) DeferredFunctionInfo[Func] = 0; 1906 } 1907 break; 1908 } 1909 // ALIAS: [alias type, aliasee val#, linkage] 1910 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1911 case bitc::MODULE_CODE_ALIAS: { 1912 if (Record.size() < 3) 1913 return Error("Invalid MODULE_ALIAS record"); 1914 Type *Ty = getTypeByID(Record[0]); 1915 if (!Ty) return Error("Invalid MODULE_ALIAS record"); 1916 if (!Ty->isPointerTy()) 1917 return Error("Function not a pointer type!"); 1918 1919 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1920 "", 0, TheModule); 1921 // Old bitcode files didn't have visibility field. 1922 if (Record.size() > 3) 1923 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1924 ValueList.push_back(NewGA); 1925 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1926 break; 1927 } 1928 /// MODULE_CODE_PURGEVALS: [numvals] 1929 case bitc::MODULE_CODE_PURGEVALS: 1930 // Trim down the value list to the specified size. 1931 if (Record.size() < 1 || Record[0] > ValueList.size()) 1932 return Error("Invalid MODULE_PURGEVALS record"); 1933 ValueList.shrinkTo(Record[0]); 1934 break; 1935 } 1936 Record.clear(); 1937 } 1938 } 1939 1940 bool BitcodeReader::ParseBitcodeInto(Module *M) { 1941 TheModule = 0; 1942 1943 if (InitStream()) return true; 1944 1945 // Sniff for the signature. 1946 if (Stream.Read(8) != 'B' || 1947 Stream.Read(8) != 'C' || 1948 Stream.Read(4) != 0x0 || 1949 Stream.Read(4) != 0xC || 1950 Stream.Read(4) != 0xE || 1951 Stream.Read(4) != 0xD) 1952 return Error("Invalid bitcode signature"); 1953 1954 // We expect a number of well-defined blocks, though we don't necessarily 1955 // need to understand them all. 1956 while (1) { 1957 if (Stream.AtEndOfStream()) 1958 return false; 1959 1960 BitstreamEntry Entry = 1961 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 1962 1963 switch (Entry.Kind) { 1964 case BitstreamEntry::Error: 1965 Error("malformed module file"); 1966 return true; 1967 case BitstreamEntry::EndBlock: 1968 return false; 1969 1970 case BitstreamEntry::SubBlock: 1971 switch (Entry.ID) { 1972 case bitc::BLOCKINFO_BLOCK_ID: 1973 if (Stream.ReadBlockInfoBlock()) 1974 return Error("Malformed BlockInfoBlock"); 1975 break; 1976 case bitc::MODULE_BLOCK_ID: 1977 // Reject multiple MODULE_BLOCK's in a single bitstream. 1978 if (TheModule) 1979 return Error("Multiple MODULE_BLOCKs in same stream"); 1980 TheModule = M; 1981 if (ParseModule(false)) 1982 return true; 1983 if (LazyStreamer) return false; 1984 break; 1985 default: 1986 if (Stream.SkipBlock()) 1987 return Error("Malformed block record"); 1988 break; 1989 } 1990 continue; 1991 case BitstreamEntry::Record: 1992 // There should be no records in the top-level of blocks. 1993 1994 // The ranlib in Xcode 4 will align archive members by appending newlines 1995 // to the end of them. If this file size is a multiple of 4 but not 8, we 1996 // have to read and ignore these final 4 bytes :-( 1997 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 1998 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 1999 Stream.AtEndOfStream()) 2000 return false; 2001 2002 return Error("Invalid record at top-level"); 2003 } 2004 } 2005 } 2006 2007 bool BitcodeReader::ParseModuleTriple(std::string &Triple) { 2008 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2009 return Error("Malformed block record"); 2010 2011 SmallVector<uint64_t, 64> Record; 2012 2013 // Read all the records for this module. 2014 while (1) { 2015 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2016 2017 switch (Entry.Kind) { 2018 case BitstreamEntry::SubBlock: // Handled for us already. 2019 case BitstreamEntry::Error: 2020 return Error("malformed module block"); 2021 case BitstreamEntry::EndBlock: 2022 return false; 2023 case BitstreamEntry::Record: 2024 // The interesting case. 2025 break; 2026 } 2027 2028 // Read a record. 2029 switch (Stream.readRecord(Entry.ID, Record)) { 2030 default: break; // Default behavior, ignore unknown content. 2031 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2032 std::string S; 2033 if (ConvertToString(Record, 0, S)) 2034 return Error("Invalid MODULE_CODE_TRIPLE record"); 2035 Triple = S; 2036 break; 2037 } 2038 } 2039 Record.clear(); 2040 } 2041 } 2042 2043 bool BitcodeReader::ParseTriple(std::string &Triple) { 2044 if (InitStream()) return true; 2045 2046 // Sniff for the signature. 2047 if (Stream.Read(8) != 'B' || 2048 Stream.Read(8) != 'C' || 2049 Stream.Read(4) != 0x0 || 2050 Stream.Read(4) != 0xC || 2051 Stream.Read(4) != 0xE || 2052 Stream.Read(4) != 0xD) 2053 return Error("Invalid bitcode signature"); 2054 2055 // We expect a number of well-defined blocks, though we don't necessarily 2056 // need to understand them all. 2057 while (1) { 2058 BitstreamEntry Entry = Stream.advance(); 2059 2060 switch (Entry.Kind) { 2061 case BitstreamEntry::Error: 2062 Error("malformed module file"); 2063 return true; 2064 case BitstreamEntry::EndBlock: 2065 return false; 2066 2067 case BitstreamEntry::SubBlock: 2068 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2069 return ParseModuleTriple(Triple); 2070 2071 // Ignore other sub-blocks. 2072 if (Stream.SkipBlock()) { 2073 Error("malformed block record in AST file"); 2074 return true; 2075 } 2076 continue; 2077 2078 case BitstreamEntry::Record: 2079 Stream.skipRecord(Entry.ID); 2080 continue; 2081 } 2082 } 2083 } 2084 2085 /// ParseMetadataAttachment - Parse metadata attachments. 2086 bool BitcodeReader::ParseMetadataAttachment() { 2087 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2088 return Error("Malformed block record"); 2089 2090 SmallVector<uint64_t, 64> Record; 2091 while (1) { 2092 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2093 2094 switch (Entry.Kind) { 2095 case BitstreamEntry::SubBlock: // Handled for us already. 2096 case BitstreamEntry::Error: 2097 return Error("malformed metadata block"); 2098 case BitstreamEntry::EndBlock: 2099 return false; 2100 case BitstreamEntry::Record: 2101 // The interesting case. 2102 break; 2103 } 2104 2105 // Read a metadata attachment record. 2106 Record.clear(); 2107 switch (Stream.readRecord(Entry.ID, Record)) { 2108 default: // Default behavior: ignore. 2109 break; 2110 case bitc::METADATA_ATTACHMENT: { 2111 unsigned RecordLength = Record.size(); 2112 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2113 return Error ("Invalid METADATA_ATTACHMENT reader!"); 2114 Instruction *Inst = InstructionList[Record[0]]; 2115 for (unsigned i = 1; i != RecordLength; i = i+2) { 2116 unsigned Kind = Record[i]; 2117 DenseMap<unsigned, unsigned>::iterator I = 2118 MDKindMap.find(Kind); 2119 if (I == MDKindMap.end()) 2120 return Error("Invalid metadata kind ID"); 2121 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 2122 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2123 if (I->second == LLVMContext::MD_tbaa) 2124 InstsWithTBAATag.push_back(Inst); 2125 } 2126 break; 2127 } 2128 } 2129 } 2130 } 2131 2132 /// ParseFunctionBody - Lazily parse the specified function body block. 2133 bool BitcodeReader::ParseFunctionBody(Function *F) { 2134 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2135 return Error("Malformed block record"); 2136 2137 InstructionList.clear(); 2138 unsigned ModuleValueListSize = ValueList.size(); 2139 unsigned ModuleMDValueListSize = MDValueList.size(); 2140 2141 // Add all the function arguments to the value table. 2142 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2143 ValueList.push_back(I); 2144 2145 unsigned NextValueNo = ValueList.size(); 2146 BasicBlock *CurBB = 0; 2147 unsigned CurBBNo = 0; 2148 2149 DebugLoc LastLoc; 2150 2151 // Read all the records. 2152 SmallVector<uint64_t, 64> Record; 2153 while (1) { 2154 BitstreamEntry Entry = Stream.advance(); 2155 2156 switch (Entry.Kind) { 2157 case BitstreamEntry::Error: 2158 return Error("Bitcode error in function block"); 2159 case BitstreamEntry::EndBlock: 2160 goto OutOfRecordLoop; 2161 2162 case BitstreamEntry::SubBlock: 2163 switch (Entry.ID) { 2164 default: // Skip unknown content. 2165 if (Stream.SkipBlock()) 2166 return Error("Malformed block record"); 2167 break; 2168 case bitc::CONSTANTS_BLOCK_ID: 2169 if (ParseConstants()) return true; 2170 NextValueNo = ValueList.size(); 2171 break; 2172 case bitc::VALUE_SYMTAB_BLOCK_ID: 2173 if (ParseValueSymbolTable()) return true; 2174 break; 2175 case bitc::METADATA_ATTACHMENT_ID: 2176 if (ParseMetadataAttachment()) return true; 2177 break; 2178 case bitc::METADATA_BLOCK_ID: 2179 if (ParseMetadata()) return true; 2180 break; 2181 } 2182 continue; 2183 2184 case BitstreamEntry::Record: 2185 // The interesting case. 2186 break; 2187 } 2188 2189 // Read a record. 2190 Record.clear(); 2191 Instruction *I = 0; 2192 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2193 switch (BitCode) { 2194 default: // Default behavior: reject 2195 return Error("Unknown instruction"); 2196 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 2197 if (Record.size() < 1 || Record[0] == 0) 2198 return Error("Invalid DECLAREBLOCKS record"); 2199 // Create all the basic blocks for the function. 2200 FunctionBBs.resize(Record[0]); 2201 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2202 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2203 CurBB = FunctionBBs[0]; 2204 continue; 2205 2206 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2207 // This record indicates that the last instruction is at the same 2208 // location as the previous instruction with a location. 2209 I = 0; 2210 2211 // Get the last instruction emitted. 2212 if (CurBB && !CurBB->empty()) 2213 I = &CurBB->back(); 2214 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2215 !FunctionBBs[CurBBNo-1]->empty()) 2216 I = &FunctionBBs[CurBBNo-1]->back(); 2217 2218 if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record"); 2219 I->setDebugLoc(LastLoc); 2220 I = 0; 2221 continue; 2222 2223 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2224 I = 0; // Get the last instruction emitted. 2225 if (CurBB && !CurBB->empty()) 2226 I = &CurBB->back(); 2227 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 2228 !FunctionBBs[CurBBNo-1]->empty()) 2229 I = &FunctionBBs[CurBBNo-1]->back(); 2230 if (I == 0 || Record.size() < 4) 2231 return Error("Invalid FUNC_CODE_DEBUG_LOC record"); 2232 2233 unsigned Line = Record[0], Col = Record[1]; 2234 unsigned ScopeID = Record[2], IAID = Record[3]; 2235 2236 MDNode *Scope = 0, *IA = 0; 2237 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2238 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2239 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2240 I->setDebugLoc(LastLoc); 2241 I = 0; 2242 continue; 2243 } 2244 2245 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2246 unsigned OpNum = 0; 2247 Value *LHS, *RHS; 2248 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2249 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2250 OpNum+1 > Record.size()) 2251 return Error("Invalid BINOP record"); 2252 2253 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2254 if (Opc == -1) return Error("Invalid BINOP record"); 2255 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2256 InstructionList.push_back(I); 2257 if (OpNum < Record.size()) { 2258 if (Opc == Instruction::Add || 2259 Opc == Instruction::Sub || 2260 Opc == Instruction::Mul || 2261 Opc == Instruction::Shl) { 2262 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2263 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2264 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2265 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2266 } else if (Opc == Instruction::SDiv || 2267 Opc == Instruction::UDiv || 2268 Opc == Instruction::LShr || 2269 Opc == Instruction::AShr) { 2270 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2271 cast<BinaryOperator>(I)->setIsExact(true); 2272 } else if (isa<FPMathOperator>(I)) { 2273 FastMathFlags FMF; 2274 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2275 FMF.setUnsafeAlgebra(); 2276 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2277 FMF.setNoNaNs(); 2278 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2279 FMF.setNoInfs(); 2280 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2281 FMF.setNoSignedZeros(); 2282 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2283 FMF.setAllowReciprocal(); 2284 if (FMF.any()) 2285 I->setFastMathFlags(FMF); 2286 } 2287 2288 } 2289 break; 2290 } 2291 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2292 unsigned OpNum = 0; 2293 Value *Op; 2294 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2295 OpNum+2 != Record.size()) 2296 return Error("Invalid CAST record"); 2297 2298 Type *ResTy = getTypeByID(Record[OpNum]); 2299 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2300 if (Opc == -1 || ResTy == 0) 2301 return Error("Invalid CAST record"); 2302 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2303 InstructionList.push_back(I); 2304 break; 2305 } 2306 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2307 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2308 unsigned OpNum = 0; 2309 Value *BasePtr; 2310 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2311 return Error("Invalid GEP record"); 2312 2313 SmallVector<Value*, 16> GEPIdx; 2314 while (OpNum != Record.size()) { 2315 Value *Op; 2316 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2317 return Error("Invalid GEP record"); 2318 GEPIdx.push_back(Op); 2319 } 2320 2321 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2322 InstructionList.push_back(I); 2323 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2324 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2325 break; 2326 } 2327 2328 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2329 // EXTRACTVAL: [opty, opval, n x indices] 2330 unsigned OpNum = 0; 2331 Value *Agg; 2332 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2333 return Error("Invalid EXTRACTVAL record"); 2334 2335 SmallVector<unsigned, 4> EXTRACTVALIdx; 2336 for (unsigned RecSize = Record.size(); 2337 OpNum != RecSize; ++OpNum) { 2338 uint64_t Index = Record[OpNum]; 2339 if ((unsigned)Index != Index) 2340 return Error("Invalid EXTRACTVAL index"); 2341 EXTRACTVALIdx.push_back((unsigned)Index); 2342 } 2343 2344 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2345 InstructionList.push_back(I); 2346 break; 2347 } 2348 2349 case bitc::FUNC_CODE_INST_INSERTVAL: { 2350 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2351 unsigned OpNum = 0; 2352 Value *Agg; 2353 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2354 return Error("Invalid INSERTVAL record"); 2355 Value *Val; 2356 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2357 return Error("Invalid INSERTVAL record"); 2358 2359 SmallVector<unsigned, 4> INSERTVALIdx; 2360 for (unsigned RecSize = Record.size(); 2361 OpNum != RecSize; ++OpNum) { 2362 uint64_t Index = Record[OpNum]; 2363 if ((unsigned)Index != Index) 2364 return Error("Invalid INSERTVAL index"); 2365 INSERTVALIdx.push_back((unsigned)Index); 2366 } 2367 2368 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2369 InstructionList.push_back(I); 2370 break; 2371 } 2372 2373 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2374 // obsolete form of select 2375 // handles select i1 ... in old bitcode 2376 unsigned OpNum = 0; 2377 Value *TrueVal, *FalseVal, *Cond; 2378 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2379 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2380 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2381 return Error("Invalid SELECT record"); 2382 2383 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2384 InstructionList.push_back(I); 2385 break; 2386 } 2387 2388 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2389 // new form of select 2390 // handles select i1 or select [N x i1] 2391 unsigned OpNum = 0; 2392 Value *TrueVal, *FalseVal, *Cond; 2393 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2394 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2395 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2396 return Error("Invalid SELECT record"); 2397 2398 // select condition can be either i1 or [N x i1] 2399 if (VectorType* vector_type = 2400 dyn_cast<VectorType>(Cond->getType())) { 2401 // expect <n x i1> 2402 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2403 return Error("Invalid SELECT condition type"); 2404 } else { 2405 // expect i1 2406 if (Cond->getType() != Type::getInt1Ty(Context)) 2407 return Error("Invalid SELECT condition type"); 2408 } 2409 2410 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2411 InstructionList.push_back(I); 2412 break; 2413 } 2414 2415 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2416 unsigned OpNum = 0; 2417 Value *Vec, *Idx; 2418 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2419 popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx)) 2420 return Error("Invalid EXTRACTELT record"); 2421 I = ExtractElementInst::Create(Vec, Idx); 2422 InstructionList.push_back(I); 2423 break; 2424 } 2425 2426 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2427 unsigned OpNum = 0; 2428 Value *Vec, *Elt, *Idx; 2429 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2430 popValue(Record, OpNum, NextValueNo, 2431 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2432 popValue(Record, OpNum, NextValueNo, Type::getInt32Ty(Context), Idx)) 2433 return Error("Invalid INSERTELT record"); 2434 I = InsertElementInst::Create(Vec, Elt, Idx); 2435 InstructionList.push_back(I); 2436 break; 2437 } 2438 2439 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2440 unsigned OpNum = 0; 2441 Value *Vec1, *Vec2, *Mask; 2442 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2443 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 2444 return Error("Invalid SHUFFLEVEC record"); 2445 2446 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2447 return Error("Invalid SHUFFLEVEC record"); 2448 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2449 InstructionList.push_back(I); 2450 break; 2451 } 2452 2453 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2454 // Old form of ICmp/FCmp returning bool 2455 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2456 // both legal on vectors but had different behaviour. 2457 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2458 // FCmp/ICmp returning bool or vector of bool 2459 2460 unsigned OpNum = 0; 2461 Value *LHS, *RHS; 2462 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2463 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2464 OpNum+1 != Record.size()) 2465 return Error("Invalid CMP record"); 2466 2467 if (LHS->getType()->isFPOrFPVectorTy()) 2468 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2469 else 2470 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2471 InstructionList.push_back(I); 2472 break; 2473 } 2474 2475 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2476 { 2477 unsigned Size = Record.size(); 2478 if (Size == 0) { 2479 I = ReturnInst::Create(Context); 2480 InstructionList.push_back(I); 2481 break; 2482 } 2483 2484 unsigned OpNum = 0; 2485 Value *Op = NULL; 2486 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2487 return Error("Invalid RET record"); 2488 if (OpNum != Record.size()) 2489 return Error("Invalid RET record"); 2490 2491 I = ReturnInst::Create(Context, Op); 2492 InstructionList.push_back(I); 2493 break; 2494 } 2495 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2496 if (Record.size() != 1 && Record.size() != 3) 2497 return Error("Invalid BR record"); 2498 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2499 if (TrueDest == 0) 2500 return Error("Invalid BR record"); 2501 2502 if (Record.size() == 1) { 2503 I = BranchInst::Create(TrueDest); 2504 InstructionList.push_back(I); 2505 } 2506 else { 2507 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2508 Value *Cond = getValue(Record, 2, NextValueNo, 2509 Type::getInt1Ty(Context)); 2510 if (FalseDest == 0 || Cond == 0) 2511 return Error("Invalid BR record"); 2512 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2513 InstructionList.push_back(I); 2514 } 2515 break; 2516 } 2517 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2518 // Check magic 2519 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2520 // "New" SwitchInst format with case ranges. The changes to write this 2521 // format were reverted but we still recognize bitcode that uses it. 2522 // Hopefully someday we will have support for case ranges and can use 2523 // this format again. 2524 2525 Type *OpTy = getTypeByID(Record[1]); 2526 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2527 2528 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 2529 BasicBlock *Default = getBasicBlock(Record[3]); 2530 if (OpTy == 0 || Cond == 0 || Default == 0) 2531 return Error("Invalid SWITCH record"); 2532 2533 unsigned NumCases = Record[4]; 2534 2535 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2536 InstructionList.push_back(SI); 2537 2538 unsigned CurIdx = 5; 2539 for (unsigned i = 0; i != NumCases; ++i) { 2540 SmallVector<ConstantInt*, 1> CaseVals; 2541 unsigned NumItems = Record[CurIdx++]; 2542 for (unsigned ci = 0; ci != NumItems; ++ci) { 2543 bool isSingleNumber = Record[CurIdx++]; 2544 2545 APInt Low; 2546 unsigned ActiveWords = 1; 2547 if (ValueBitWidth > 64) 2548 ActiveWords = Record[CurIdx++]; 2549 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2550 ValueBitWidth); 2551 CurIdx += ActiveWords; 2552 2553 if (!isSingleNumber) { 2554 ActiveWords = 1; 2555 if (ValueBitWidth > 64) 2556 ActiveWords = Record[CurIdx++]; 2557 APInt High = 2558 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2559 ValueBitWidth); 2560 CurIdx += ActiveWords; 2561 2562 // FIXME: It is not clear whether values in the range should be 2563 // compared as signed or unsigned values. The partially 2564 // implemented changes that used this format in the past used 2565 // unsigned comparisons. 2566 for ( ; Low.ule(High); ++Low) 2567 CaseVals.push_back(ConstantInt::get(Context, Low)); 2568 } else 2569 CaseVals.push_back(ConstantInt::get(Context, Low)); 2570 } 2571 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 2572 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 2573 cve = CaseVals.end(); cvi != cve; ++cvi) 2574 SI->addCase(*cvi, DestBB); 2575 } 2576 I = SI; 2577 break; 2578 } 2579 2580 // Old SwitchInst format without case ranges. 2581 2582 if (Record.size() < 3 || (Record.size() & 1) == 0) 2583 return Error("Invalid SWITCH record"); 2584 Type *OpTy = getTypeByID(Record[0]); 2585 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 2586 BasicBlock *Default = getBasicBlock(Record[2]); 2587 if (OpTy == 0 || Cond == 0 || Default == 0) 2588 return Error("Invalid SWITCH record"); 2589 unsigned NumCases = (Record.size()-3)/2; 2590 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2591 InstructionList.push_back(SI); 2592 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2593 ConstantInt *CaseVal = 2594 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2595 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2596 if (CaseVal == 0 || DestBB == 0) { 2597 delete SI; 2598 return Error("Invalid SWITCH record!"); 2599 } 2600 SI->addCase(CaseVal, DestBB); 2601 } 2602 I = SI; 2603 break; 2604 } 2605 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2606 if (Record.size() < 2) 2607 return Error("Invalid INDIRECTBR record"); 2608 Type *OpTy = getTypeByID(Record[0]); 2609 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 2610 if (OpTy == 0 || Address == 0) 2611 return Error("Invalid INDIRECTBR record"); 2612 unsigned NumDests = Record.size()-2; 2613 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2614 InstructionList.push_back(IBI); 2615 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2616 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2617 IBI->addDestination(DestBB); 2618 } else { 2619 delete IBI; 2620 return Error("Invalid INDIRECTBR record!"); 2621 } 2622 } 2623 I = IBI; 2624 break; 2625 } 2626 2627 case bitc::FUNC_CODE_INST_INVOKE: { 2628 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2629 if (Record.size() < 4) return Error("Invalid INVOKE record"); 2630 AttributeSet PAL = getAttributes(Record[0]); 2631 unsigned CCInfo = Record[1]; 2632 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2633 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2634 2635 unsigned OpNum = 4; 2636 Value *Callee; 2637 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2638 return Error("Invalid INVOKE record"); 2639 2640 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2641 FunctionType *FTy = !CalleeTy ? 0 : 2642 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2643 2644 // Check that the right number of fixed parameters are here. 2645 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 2646 Record.size() < OpNum+FTy->getNumParams()) 2647 return Error("Invalid INVOKE record"); 2648 2649 SmallVector<Value*, 16> Ops; 2650 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2651 Ops.push_back(getValue(Record, OpNum, NextValueNo, 2652 FTy->getParamType(i))); 2653 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 2654 } 2655 2656 if (!FTy->isVarArg()) { 2657 if (Record.size() != OpNum) 2658 return Error("Invalid INVOKE record"); 2659 } else { 2660 // Read type/value pairs for varargs params. 2661 while (OpNum != Record.size()) { 2662 Value *Op; 2663 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2664 return Error("Invalid INVOKE record"); 2665 Ops.push_back(Op); 2666 } 2667 } 2668 2669 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 2670 InstructionList.push_back(I); 2671 cast<InvokeInst>(I)->setCallingConv( 2672 static_cast<CallingConv::ID>(CCInfo)); 2673 cast<InvokeInst>(I)->setAttributes(PAL); 2674 break; 2675 } 2676 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 2677 unsigned Idx = 0; 2678 Value *Val = 0; 2679 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 2680 return Error("Invalid RESUME record"); 2681 I = ResumeInst::Create(Val); 2682 InstructionList.push_back(I); 2683 break; 2684 } 2685 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2686 I = new UnreachableInst(Context); 2687 InstructionList.push_back(I); 2688 break; 2689 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2690 if (Record.size() < 1 || ((Record.size()-1)&1)) 2691 return Error("Invalid PHI record"); 2692 Type *Ty = getTypeByID(Record[0]); 2693 if (!Ty) return Error("Invalid PHI record"); 2694 2695 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 2696 InstructionList.push_back(PN); 2697 2698 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2699 Value *V; 2700 // With the new function encoding, it is possible that operands have 2701 // negative IDs (for forward references). Use a signed VBR 2702 // representation to keep the encoding small. 2703 if (UseRelativeIDs) 2704 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 2705 else 2706 V = getValue(Record, 1+i, NextValueNo, Ty); 2707 BasicBlock *BB = getBasicBlock(Record[2+i]); 2708 if (!V || !BB) return Error("Invalid PHI record"); 2709 PN->addIncoming(V, BB); 2710 } 2711 I = PN; 2712 break; 2713 } 2714 2715 case bitc::FUNC_CODE_INST_LANDINGPAD: { 2716 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 2717 unsigned Idx = 0; 2718 if (Record.size() < 4) 2719 return Error("Invalid LANDINGPAD record"); 2720 Type *Ty = getTypeByID(Record[Idx++]); 2721 if (!Ty) return Error("Invalid LANDINGPAD record"); 2722 Value *PersFn = 0; 2723 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 2724 return Error("Invalid LANDINGPAD record"); 2725 2726 bool IsCleanup = !!Record[Idx++]; 2727 unsigned NumClauses = Record[Idx++]; 2728 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 2729 LP->setCleanup(IsCleanup); 2730 for (unsigned J = 0; J != NumClauses; ++J) { 2731 LandingPadInst::ClauseType CT = 2732 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 2733 Value *Val; 2734 2735 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 2736 delete LP; 2737 return Error("Invalid LANDINGPAD record"); 2738 } 2739 2740 assert((CT != LandingPadInst::Catch || 2741 !isa<ArrayType>(Val->getType())) && 2742 "Catch clause has a invalid type!"); 2743 assert((CT != LandingPadInst::Filter || 2744 isa<ArrayType>(Val->getType())) && 2745 "Filter clause has invalid type!"); 2746 LP->addClause(Val); 2747 } 2748 2749 I = LP; 2750 InstructionList.push_back(I); 2751 break; 2752 } 2753 2754 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 2755 if (Record.size() != 4) 2756 return Error("Invalid ALLOCA record"); 2757 PointerType *Ty = 2758 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2759 Type *OpTy = getTypeByID(Record[1]); 2760 Value *Size = getFnValueByID(Record[2], OpTy); 2761 unsigned Align = Record[3]; 2762 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 2763 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2764 InstructionList.push_back(I); 2765 break; 2766 } 2767 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2768 unsigned OpNum = 0; 2769 Value *Op; 2770 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2771 OpNum+2 != Record.size()) 2772 return Error("Invalid LOAD record"); 2773 2774 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2775 InstructionList.push_back(I); 2776 break; 2777 } 2778 case bitc::FUNC_CODE_INST_LOADATOMIC: { 2779 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 2780 unsigned OpNum = 0; 2781 Value *Op; 2782 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2783 OpNum+4 != Record.size()) 2784 return Error("Invalid LOADATOMIC record"); 2785 2786 2787 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2788 if (Ordering == NotAtomic || Ordering == Release || 2789 Ordering == AcquireRelease) 2790 return Error("Invalid LOADATOMIC record"); 2791 if (Ordering != NotAtomic && Record[OpNum] == 0) 2792 return Error("Invalid LOADATOMIC record"); 2793 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2794 2795 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 2796 Ordering, SynchScope); 2797 InstructionList.push_back(I); 2798 break; 2799 } 2800 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 2801 unsigned OpNum = 0; 2802 Value *Val, *Ptr; 2803 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2804 popValue(Record, OpNum, NextValueNo, 2805 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2806 OpNum+2 != Record.size()) 2807 return Error("Invalid STORE record"); 2808 2809 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2810 InstructionList.push_back(I); 2811 break; 2812 } 2813 case bitc::FUNC_CODE_INST_STOREATOMIC: { 2814 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 2815 unsigned OpNum = 0; 2816 Value *Val, *Ptr; 2817 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2818 popValue(Record, OpNum, NextValueNo, 2819 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2820 OpNum+4 != Record.size()) 2821 return Error("Invalid STOREATOMIC record"); 2822 2823 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2824 if (Ordering == NotAtomic || Ordering == Acquire || 2825 Ordering == AcquireRelease) 2826 return Error("Invalid STOREATOMIC record"); 2827 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2828 if (Ordering != NotAtomic && Record[OpNum] == 0) 2829 return Error("Invalid STOREATOMIC record"); 2830 2831 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 2832 Ordering, SynchScope); 2833 InstructionList.push_back(I); 2834 break; 2835 } 2836 case bitc::FUNC_CODE_INST_CMPXCHG: { 2837 // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope] 2838 unsigned OpNum = 0; 2839 Value *Ptr, *Cmp, *New; 2840 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2841 popValue(Record, OpNum, NextValueNo, 2842 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 2843 popValue(Record, OpNum, NextValueNo, 2844 cast<PointerType>(Ptr->getType())->getElementType(), New) || 2845 OpNum+3 != Record.size()) 2846 return Error("Invalid CMPXCHG record"); 2847 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]); 2848 if (Ordering == NotAtomic || Ordering == Unordered) 2849 return Error("Invalid CMPXCHG record"); 2850 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 2851 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope); 2852 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 2853 InstructionList.push_back(I); 2854 break; 2855 } 2856 case bitc::FUNC_CODE_INST_ATOMICRMW: { 2857 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 2858 unsigned OpNum = 0; 2859 Value *Ptr, *Val; 2860 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2861 popValue(Record, OpNum, NextValueNo, 2862 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2863 OpNum+4 != Record.size()) 2864 return Error("Invalid ATOMICRMW record"); 2865 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 2866 if (Operation < AtomicRMWInst::FIRST_BINOP || 2867 Operation > AtomicRMWInst::LAST_BINOP) 2868 return Error("Invalid ATOMICRMW record"); 2869 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2870 if (Ordering == NotAtomic || Ordering == Unordered) 2871 return Error("Invalid ATOMICRMW record"); 2872 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2873 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 2874 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 2875 InstructionList.push_back(I); 2876 break; 2877 } 2878 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 2879 if (2 != Record.size()) 2880 return Error("Invalid FENCE record"); 2881 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 2882 if (Ordering == NotAtomic || Ordering == Unordered || 2883 Ordering == Monotonic) 2884 return Error("Invalid FENCE record"); 2885 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 2886 I = new FenceInst(Context, Ordering, SynchScope); 2887 InstructionList.push_back(I); 2888 break; 2889 } 2890 case bitc::FUNC_CODE_INST_CALL: { 2891 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 2892 if (Record.size() < 3) 2893 return Error("Invalid CALL record"); 2894 2895 AttributeSet PAL = getAttributes(Record[0]); 2896 unsigned CCInfo = Record[1]; 2897 2898 unsigned OpNum = 2; 2899 Value *Callee; 2900 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2901 return Error("Invalid CALL record"); 2902 2903 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 2904 FunctionType *FTy = 0; 2905 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 2906 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 2907 return Error("Invalid CALL record"); 2908 2909 SmallVector<Value*, 16> Args; 2910 // Read the fixed params. 2911 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2912 if (FTy->getParamType(i)->isLabelTy()) 2913 Args.push_back(getBasicBlock(Record[OpNum])); 2914 else 2915 Args.push_back(getValue(Record, OpNum, NextValueNo, 2916 FTy->getParamType(i))); 2917 if (Args.back() == 0) return Error("Invalid CALL record"); 2918 } 2919 2920 // Read type/value pairs for varargs params. 2921 if (!FTy->isVarArg()) { 2922 if (OpNum != Record.size()) 2923 return Error("Invalid CALL record"); 2924 } else { 2925 while (OpNum != Record.size()) { 2926 Value *Op; 2927 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2928 return Error("Invalid CALL record"); 2929 Args.push_back(Op); 2930 } 2931 } 2932 2933 I = CallInst::Create(Callee, Args); 2934 InstructionList.push_back(I); 2935 cast<CallInst>(I)->setCallingConv( 2936 static_cast<CallingConv::ID>(CCInfo>>1)); 2937 cast<CallInst>(I)->setTailCall(CCInfo & 1); 2938 cast<CallInst>(I)->setAttributes(PAL); 2939 break; 2940 } 2941 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 2942 if (Record.size() < 3) 2943 return Error("Invalid VAARG record"); 2944 Type *OpTy = getTypeByID(Record[0]); 2945 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 2946 Type *ResTy = getTypeByID(Record[2]); 2947 if (!OpTy || !Op || !ResTy) 2948 return Error("Invalid VAARG record"); 2949 I = new VAArgInst(Op, ResTy); 2950 InstructionList.push_back(I); 2951 break; 2952 } 2953 } 2954 2955 // Add instruction to end of current BB. If there is no current BB, reject 2956 // this file. 2957 if (CurBB == 0) { 2958 delete I; 2959 return Error("Invalid instruction with no BB"); 2960 } 2961 CurBB->getInstList().push_back(I); 2962 2963 // If this was a terminator instruction, move to the next block. 2964 if (isa<TerminatorInst>(I)) { 2965 ++CurBBNo; 2966 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 2967 } 2968 2969 // Non-void values get registered in the value table for future use. 2970 if (I && !I->getType()->isVoidTy()) 2971 ValueList.AssignValue(I, NextValueNo++); 2972 } 2973 2974 OutOfRecordLoop: 2975 2976 // Check the function list for unresolved values. 2977 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 2978 if (A->getParent() == 0) { 2979 // We found at least one unresolved value. Nuke them all to avoid leaks. 2980 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 2981 if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) { 2982 A->replaceAllUsesWith(UndefValue::get(A->getType())); 2983 delete A; 2984 } 2985 } 2986 return Error("Never resolved value found in function!"); 2987 } 2988 } 2989 2990 // FIXME: Check for unresolved forward-declared metadata references 2991 // and clean up leaks. 2992 2993 // See if anything took the address of blocks in this function. If so, 2994 // resolve them now. 2995 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = 2996 BlockAddrFwdRefs.find(F); 2997 if (BAFRI != BlockAddrFwdRefs.end()) { 2998 std::vector<BlockAddrRefTy> &RefList = BAFRI->second; 2999 for (unsigned i = 0, e = RefList.size(); i != e; ++i) { 3000 unsigned BlockIdx = RefList[i].first; 3001 if (BlockIdx >= FunctionBBs.size()) 3002 return Error("Invalid blockaddress block #"); 3003 3004 GlobalVariable *FwdRef = RefList[i].second; 3005 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); 3006 FwdRef->eraseFromParent(); 3007 } 3008 3009 BlockAddrFwdRefs.erase(BAFRI); 3010 } 3011 3012 // Trim the value list down to the size it was before we parsed this function. 3013 ValueList.shrinkTo(ModuleValueListSize); 3014 MDValueList.shrinkTo(ModuleMDValueListSize); 3015 std::vector<BasicBlock*>().swap(FunctionBBs); 3016 return false; 3017 } 3018 3019 /// FindFunctionInStream - Find the function body in the bitcode stream 3020 bool BitcodeReader::FindFunctionInStream(Function *F, 3021 DenseMap<Function*, uint64_t>::iterator DeferredFunctionInfoIterator) { 3022 while (DeferredFunctionInfoIterator->second == 0) { 3023 if (Stream.AtEndOfStream()) 3024 return Error("Could not find Function in stream"); 3025 // ParseModule will parse the next body in the stream and set its 3026 // position in the DeferredFunctionInfo map. 3027 if (ParseModule(true)) return true; 3028 } 3029 return false; 3030 } 3031 3032 //===----------------------------------------------------------------------===// 3033 // GVMaterializer implementation 3034 //===----------------------------------------------------------------------===// 3035 3036 3037 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { 3038 if (const Function *F = dyn_cast<Function>(GV)) { 3039 return F->isDeclaration() && 3040 DeferredFunctionInfo.count(const_cast<Function*>(F)); 3041 } 3042 return false; 3043 } 3044 3045 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) { 3046 Function *F = dyn_cast<Function>(GV); 3047 // If it's not a function or is already material, ignore the request. 3048 if (!F || !F->isMaterializable()) return false; 3049 3050 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3051 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3052 // If its position is recorded as 0, its body is somewhere in the stream 3053 // but we haven't seen it yet. 3054 if (DFII->second == 0) 3055 if (LazyStreamer && FindFunctionInStream(F, DFII)) return true; 3056 3057 // Move the bit stream to the saved position of the deferred function body. 3058 Stream.JumpToBit(DFII->second); 3059 3060 if (ParseFunctionBody(F)) { 3061 if (ErrInfo) *ErrInfo = ErrorString; 3062 return true; 3063 } 3064 3065 // Upgrade any old intrinsic calls in the function. 3066 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3067 E = UpgradedIntrinsics.end(); I != E; ++I) { 3068 if (I->first != I->second) { 3069 for (Value::use_iterator UI = I->first->use_begin(), 3070 UE = I->first->use_end(); UI != UE; ) { 3071 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3072 UpgradeIntrinsicCall(CI, I->second); 3073 } 3074 } 3075 } 3076 3077 return false; 3078 } 3079 3080 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3081 const Function *F = dyn_cast<Function>(GV); 3082 if (!F || F->isDeclaration()) 3083 return false; 3084 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3085 } 3086 3087 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3088 Function *F = dyn_cast<Function>(GV); 3089 // If this function isn't dematerializable, this is a noop. 3090 if (!F || !isDematerializable(F)) 3091 return; 3092 3093 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3094 3095 // Just forget the function body, we can remat it later. 3096 F->deleteBody(); 3097 } 3098 3099 3100 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) { 3101 assert(M == TheModule && 3102 "Can only Materialize the Module this BitcodeReader is attached to."); 3103 // Iterate over the module, deserializing any functions that are still on 3104 // disk. 3105 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3106 F != E; ++F) 3107 if (F->isMaterializable() && 3108 Materialize(F, ErrInfo)) 3109 return true; 3110 3111 // At this point, if there are any function bodies, the current bit is 3112 // pointing to the END_BLOCK record after them. Now make sure the rest 3113 // of the bits in the module have been read. 3114 if (NextUnreadBit) 3115 ParseModule(true); 3116 3117 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3118 // delete the old functions to clean up. We can't do this unless the entire 3119 // module is materialized because there could always be another function body 3120 // with calls to the old function. 3121 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3122 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3123 if (I->first != I->second) { 3124 for (Value::use_iterator UI = I->first->use_begin(), 3125 UE = I->first->use_end(); UI != UE; ) { 3126 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3127 UpgradeIntrinsicCall(CI, I->second); 3128 } 3129 if (!I->first->use_empty()) 3130 I->first->replaceAllUsesWith(I->second); 3131 I->first->eraseFromParent(); 3132 } 3133 } 3134 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3135 3136 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3137 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3138 3139 return false; 3140 } 3141 3142 bool BitcodeReader::InitStream() { 3143 if (LazyStreamer) return InitLazyStream(); 3144 return InitStreamFromBuffer(); 3145 } 3146 3147 bool BitcodeReader::InitStreamFromBuffer() { 3148 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3149 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3150 3151 if (Buffer->getBufferSize() & 3) { 3152 if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd)) 3153 return Error("Invalid bitcode signature"); 3154 else 3155 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 3156 } 3157 3158 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3159 // The magic number is 0x0B17C0DE stored in little endian. 3160 if (isBitcodeWrapper(BufPtr, BufEnd)) 3161 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3162 return Error("Invalid bitcode wrapper header"); 3163 3164 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3165 Stream.init(*StreamFile); 3166 3167 return false; 3168 } 3169 3170 bool BitcodeReader::InitLazyStream() { 3171 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3172 // see it. 3173 StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer); 3174 StreamFile.reset(new BitstreamReader(Bytes)); 3175 Stream.init(*StreamFile); 3176 3177 unsigned char buf[16]; 3178 if (Bytes->readBytes(0, 16, buf) == -1) 3179 return Error("Bitcode stream must be at least 16 bytes in length"); 3180 3181 if (!isBitcode(buf, buf + 16)) 3182 return Error("Invalid bitcode signature"); 3183 3184 if (isBitcodeWrapper(buf, buf + 4)) { 3185 const unsigned char *bitcodeStart = buf; 3186 const unsigned char *bitcodeEnd = buf + 16; 3187 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3188 Bytes->dropLeadingBytes(bitcodeStart - buf); 3189 Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart); 3190 } 3191 return false; 3192 } 3193 3194 //===----------------------------------------------------------------------===// 3195 // External interface 3196 //===----------------------------------------------------------------------===// 3197 3198 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file. 3199 /// 3200 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer, 3201 LLVMContext& Context, 3202 std::string *ErrMsg) { 3203 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3204 BitcodeReader *R = new BitcodeReader(Buffer, Context); 3205 M->setMaterializer(R); 3206 if (R->ParseBitcodeInto(M)) { 3207 if (ErrMsg) 3208 *ErrMsg = R->getErrorString(); 3209 3210 delete M; // Also deletes R. 3211 return 0; 3212 } 3213 // Have the BitcodeReader dtor delete 'Buffer'. 3214 R->setBufferOwned(true); 3215 3216 R->materializeForwardReferencedFunctions(); 3217 3218 return M; 3219 } 3220 3221 3222 Module *llvm::getStreamedBitcodeModule(const std::string &name, 3223 DataStreamer *streamer, 3224 LLVMContext &Context, 3225 std::string *ErrMsg) { 3226 Module *M = new Module(name, Context); 3227 BitcodeReader *R = new BitcodeReader(streamer, Context); 3228 M->setMaterializer(R); 3229 if (R->ParseBitcodeInto(M)) { 3230 if (ErrMsg) 3231 *ErrMsg = R->getErrorString(); 3232 delete M; // Also deletes R. 3233 return 0; 3234 } 3235 R->setBufferOwned(false); // no buffer to delete 3236 return M; 3237 } 3238 3239 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 3240 /// If an error occurs, return null and fill in *ErrMsg if non-null. 3241 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, 3242 std::string *ErrMsg){ 3243 Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg); 3244 if (!M) return 0; 3245 3246 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 3247 // there was an error. 3248 static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false); 3249 3250 // Read in the entire module, and destroy the BitcodeReader. 3251 if (M->MaterializeAllPermanently(ErrMsg)) { 3252 delete M; 3253 return 0; 3254 } 3255 3256 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3257 // written. We must defer until the Module has been fully materialized. 3258 3259 return M; 3260 } 3261 3262 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer, 3263 LLVMContext& Context, 3264 std::string *ErrMsg) { 3265 BitcodeReader *R = new BitcodeReader(Buffer, Context); 3266 // Don't let the BitcodeReader dtor delete 'Buffer'. 3267 R->setBufferOwned(false); 3268 3269 std::string Triple(""); 3270 if (R->ParseTriple(Triple)) 3271 if (ErrMsg) 3272 *ErrMsg = R->getErrorString(); 3273 3274 delete R; 3275 return Triple; 3276 } 3277