1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/DiagnosticPrinter.h" 22 #include "llvm/IR/GVMaterializer.h" 23 #include "llvm/IR/InlineAsm.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/IR/OperandTraits.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/ValueHandle.h" 30 #include "llvm/Support/DataStream.h" 31 #include "llvm/Support/ManagedStatic.h" 32 #include "llvm/Support/MathExtras.h" 33 #include "llvm/Support/MemoryBuffer.h" 34 #include "llvm/Support/raw_ostream.h" 35 #include <deque> 36 using namespace llvm; 37 38 namespace { 39 enum { 40 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 41 }; 42 43 class BitcodeReaderValueList { 44 std::vector<WeakVH> ValuePtrs; 45 46 /// ResolveConstants - As we resolve forward-referenced constants, we add 47 /// information about them to this vector. This allows us to resolve them in 48 /// bulk instead of resolving each reference at a time. See the code in 49 /// ResolveConstantForwardRefs for more information about this. 50 /// 51 /// The key of this vector is the placeholder constant, the value is the slot 52 /// number that holds the resolved value. 53 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 54 ResolveConstantsTy ResolveConstants; 55 LLVMContext &Context; 56 public: 57 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 58 ~BitcodeReaderValueList() { 59 assert(ResolveConstants.empty() && "Constants not resolved?"); 60 } 61 62 // vector compatibility methods 63 unsigned size() const { return ValuePtrs.size(); } 64 void resize(unsigned N) { ValuePtrs.resize(N); } 65 void push_back(Value *V) { 66 ValuePtrs.push_back(V); 67 } 68 69 void clear() { 70 assert(ResolveConstants.empty() && "Constants not resolved?"); 71 ValuePtrs.clear(); 72 } 73 74 Value *operator[](unsigned i) const { 75 assert(i < ValuePtrs.size()); 76 return ValuePtrs[i]; 77 } 78 79 Value *back() const { return ValuePtrs.back(); } 80 void pop_back() { ValuePtrs.pop_back(); } 81 bool empty() const { return ValuePtrs.empty(); } 82 void shrinkTo(unsigned N) { 83 assert(N <= size() && "Invalid shrinkTo request!"); 84 ValuePtrs.resize(N); 85 } 86 87 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 88 Value *getValueFwdRef(unsigned Idx, Type *Ty); 89 90 void AssignValue(Value *V, unsigned Idx); 91 92 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 93 /// resolves any forward references. 94 void ResolveConstantForwardRefs(); 95 }; 96 97 class BitcodeReaderMDValueList { 98 unsigned NumFwdRefs; 99 bool AnyFwdRefs; 100 unsigned MinFwdRef; 101 unsigned MaxFwdRef; 102 std::vector<TrackingMDRef> MDValuePtrs; 103 104 LLVMContext &Context; 105 public: 106 BitcodeReaderMDValueList(LLVMContext &C) 107 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 108 109 // vector compatibility methods 110 unsigned size() const { return MDValuePtrs.size(); } 111 void resize(unsigned N) { MDValuePtrs.resize(N); } 112 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 113 void clear() { MDValuePtrs.clear(); } 114 Metadata *back() const { return MDValuePtrs.back(); } 115 void pop_back() { MDValuePtrs.pop_back(); } 116 bool empty() const { return MDValuePtrs.empty(); } 117 118 Metadata *operator[](unsigned i) const { 119 assert(i < MDValuePtrs.size()); 120 return MDValuePtrs[i]; 121 } 122 123 void shrinkTo(unsigned N) { 124 assert(N <= size() && "Invalid shrinkTo request!"); 125 MDValuePtrs.resize(N); 126 } 127 128 Metadata *getValueFwdRef(unsigned Idx); 129 void AssignValue(Metadata *MD, unsigned Idx); 130 void tryToResolveCycles(); 131 }; 132 133 class BitcodeReader : public GVMaterializer { 134 LLVMContext &Context; 135 DiagnosticHandlerFunction DiagnosticHandler; 136 Module *TheModule; 137 std::unique_ptr<MemoryBuffer> Buffer; 138 std::unique_ptr<BitstreamReader> StreamFile; 139 BitstreamCursor Stream; 140 DataStreamer *LazyStreamer; 141 uint64_t NextUnreadBit; 142 bool SeenValueSymbolTable; 143 144 std::vector<Type*> TypeList; 145 BitcodeReaderValueList ValueList; 146 BitcodeReaderMDValueList MDValueList; 147 std::vector<Comdat *> ComdatList; 148 SmallVector<Instruction *, 64> InstructionList; 149 150 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 151 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 152 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 153 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 154 155 SmallVector<Instruction*, 64> InstsWithTBAATag; 156 157 /// MAttributes - The set of attributes by index. Index zero in the 158 /// file is for null, and is thus not represented here. As such all indices 159 /// are off by one. 160 std::vector<AttributeSet> MAttributes; 161 162 /// \brief The set of attribute groups. 163 std::map<unsigned, AttributeSet> MAttributeGroups; 164 165 /// FunctionBBs - While parsing a function body, this is a list of the basic 166 /// blocks for the function. 167 std::vector<BasicBlock*> FunctionBBs; 168 169 // When reading the module header, this list is populated with functions that 170 // have bodies later in the file. 171 std::vector<Function*> FunctionsWithBodies; 172 173 // When intrinsic functions are encountered which require upgrading they are 174 // stored here with their replacement function. 175 typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap; 176 UpgradedIntrinsicMap UpgradedIntrinsics; 177 178 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 179 DenseMap<unsigned, unsigned> MDKindMap; 180 181 // Several operations happen after the module header has been read, but 182 // before function bodies are processed. This keeps track of whether 183 // we've done this yet. 184 bool SeenFirstFunctionBody; 185 186 /// DeferredFunctionInfo - When function bodies are initially scanned, this 187 /// map contains info about where to find deferred function body in the 188 /// stream. 189 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 190 191 /// When Metadata block is initially scanned when parsing the module, we may 192 /// choose to defer parsing of the metadata. This vector contains info about 193 /// which Metadata blocks are deferred. 194 std::vector<uint64_t> DeferredMetadataInfo; 195 196 /// These are basic blocks forward-referenced by block addresses. They are 197 /// inserted lazily into functions when they're loaded. The basic block ID is 198 /// its index into the vector. 199 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 200 std::deque<Function *> BasicBlockFwdRefQueue; 201 202 /// UseRelativeIDs - Indicates that we are using a new encoding for 203 /// instruction operands where most operands in the current 204 /// FUNCTION_BLOCK are encoded relative to the instruction number, 205 /// for a more compact encoding. Some instruction operands are not 206 /// relative to the instruction ID: basic block numbers, and types. 207 /// Once the old style function blocks have been phased out, we would 208 /// not need this flag. 209 bool UseRelativeIDs; 210 211 /// True if all functions will be materialized, negating the need to process 212 /// (e.g.) blockaddress forward references. 213 bool WillMaterializeAllForwardRefs; 214 215 /// Functions that have block addresses taken. This is usually empty. 216 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 217 218 /// True if any Metadata block has been materialized. 219 bool IsMetadataMaterialized; 220 221 public: 222 std::error_code Error(BitcodeError E, const Twine &Message); 223 std::error_code Error(BitcodeError E); 224 std::error_code Error(const Twine &Message); 225 226 explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 227 DiagnosticHandlerFunction DiagnosticHandler); 228 explicit BitcodeReader(DataStreamer *streamer, LLVMContext &C, 229 DiagnosticHandlerFunction DiagnosticHandler); 230 ~BitcodeReader() { FreeState(); } 231 232 std::error_code materializeForwardReferencedFunctions(); 233 234 void FreeState(); 235 236 void releaseBuffer(); 237 238 bool isDematerializable(const GlobalValue *GV) const override; 239 std::error_code materialize(GlobalValue *GV) override; 240 std::error_code MaterializeModule(Module *M) override; 241 std::vector<StructType *> getIdentifiedStructTypes() const override; 242 void Dematerialize(GlobalValue *GV) override; 243 244 /// @brief Main interface to parsing a bitcode buffer. 245 /// @returns true if an error occurred. 246 std::error_code ParseBitcodeInto(Module *M, 247 bool ShouldLazyLoadMetadata = false); 248 249 /// @brief Cheap mechanism to just extract module triple 250 /// @returns true if an error occurred. 251 ErrorOr<std::string> parseTriple(); 252 253 static uint64_t decodeSignRotatedValue(uint64_t V); 254 255 /// Materialize any deferred Metadata block. 256 std::error_code materializeMetadata() override; 257 258 private: 259 std::vector<StructType *> IdentifiedStructTypes; 260 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 261 StructType *createIdentifiedStructType(LLVMContext &Context); 262 263 Type *getTypeByID(unsigned ID); 264 Value *getFnValueByID(unsigned ID, Type *Ty) { 265 if (Ty && Ty->isMetadataTy()) 266 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 267 return ValueList.getValueFwdRef(ID, Ty); 268 } 269 Metadata *getFnMetadataByID(unsigned ID) { 270 return MDValueList.getValueFwdRef(ID); 271 } 272 BasicBlock *getBasicBlock(unsigned ID) const { 273 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 274 return FunctionBBs[ID]; 275 } 276 AttributeSet getAttributes(unsigned i) const { 277 if (i-1 < MAttributes.size()) 278 return MAttributes[i-1]; 279 return AttributeSet(); 280 } 281 282 /// getValueTypePair - Read a value/type pair out of the specified record from 283 /// slot 'Slot'. Increment Slot past the number of slots used in the record. 284 /// Return true on failure. 285 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 286 unsigned InstNum, Value *&ResVal) { 287 if (Slot == Record.size()) return true; 288 unsigned ValNo = (unsigned)Record[Slot++]; 289 // Adjust the ValNo, if it was encoded relative to the InstNum. 290 if (UseRelativeIDs) 291 ValNo = InstNum - ValNo; 292 if (ValNo < InstNum) { 293 // If this is not a forward reference, just return the value we already 294 // have. 295 ResVal = getFnValueByID(ValNo, nullptr); 296 return ResVal == nullptr; 297 } else if (Slot == Record.size()) { 298 return true; 299 } 300 301 unsigned TypeNo = (unsigned)Record[Slot++]; 302 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 303 return ResVal == nullptr; 304 } 305 306 /// popValue - Read a value out of the specified record from slot 'Slot'. 307 /// Increment Slot past the number of slots used by the value in the record. 308 /// Return true if there is an error. 309 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 310 unsigned InstNum, Type *Ty, Value *&ResVal) { 311 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 312 return true; 313 // All values currently take a single record slot. 314 ++Slot; 315 return false; 316 } 317 318 /// getValue -- Like popValue, but does not increment the Slot number. 319 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 320 unsigned InstNum, Type *Ty, Value *&ResVal) { 321 ResVal = getValue(Record, Slot, InstNum, Ty); 322 return ResVal == nullptr; 323 } 324 325 /// getValue -- Version of getValue that returns ResVal directly, 326 /// or 0 if there is an error. 327 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 328 unsigned InstNum, Type *Ty) { 329 if (Slot == Record.size()) return nullptr; 330 unsigned ValNo = (unsigned)Record[Slot]; 331 // Adjust the ValNo, if it was encoded relative to the InstNum. 332 if (UseRelativeIDs) 333 ValNo = InstNum - ValNo; 334 return getFnValueByID(ValNo, Ty); 335 } 336 337 /// getValueSigned -- Like getValue, but decodes signed VBRs. 338 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 339 unsigned InstNum, Type *Ty) { 340 if (Slot == Record.size()) return nullptr; 341 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 342 // Adjust the ValNo, if it was encoded relative to the InstNum. 343 if (UseRelativeIDs) 344 ValNo = InstNum - ValNo; 345 return getFnValueByID(ValNo, Ty); 346 } 347 348 /// Converts alignment exponent (i.e. power of two (or zero)) to the 349 /// corresponding alignment to use. If alignment is too large, returns 350 /// a corresponding error code. 351 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 352 std::error_code ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 353 std::error_code ParseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 354 std::error_code ParseAttributeBlock(); 355 std::error_code ParseAttributeGroupBlock(); 356 std::error_code ParseTypeTable(); 357 std::error_code ParseTypeTableBody(); 358 359 std::error_code ParseValueSymbolTable(); 360 std::error_code ParseConstants(); 361 std::error_code RememberAndSkipFunctionBody(); 362 /// Save the positions of the Metadata blocks and skip parsing the blocks. 363 std::error_code rememberAndSkipMetadata(); 364 std::error_code ParseFunctionBody(Function *F); 365 std::error_code GlobalCleanup(); 366 std::error_code ResolveGlobalAndAliasInits(); 367 std::error_code ParseMetadata(); 368 std::error_code ParseMetadataAttachment(); 369 ErrorOr<std::string> parseModuleTriple(); 370 std::error_code ParseUseLists(); 371 std::error_code InitStream(); 372 std::error_code InitStreamFromBuffer(); 373 std::error_code InitLazyStream(); 374 std::error_code FindFunctionInStream( 375 Function *F, 376 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 377 }; 378 } // namespace 379 380 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 381 DiagnosticSeverity Severity, 382 const Twine &Msg) 383 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 384 385 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 386 387 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 388 std::error_code EC, const Twine &Message) { 389 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 390 DiagnosticHandler(DI); 391 return EC; 392 } 393 394 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 395 std::error_code EC) { 396 return Error(DiagnosticHandler, EC, EC.message()); 397 } 398 399 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 400 return ::Error(DiagnosticHandler, make_error_code(E), Message); 401 } 402 403 std::error_code BitcodeReader::Error(const Twine &Message) { 404 return ::Error(DiagnosticHandler, 405 make_error_code(BitcodeError::CorruptedBitcode), Message); 406 } 407 408 std::error_code BitcodeReader::Error(BitcodeError E) { 409 return ::Error(DiagnosticHandler, make_error_code(E)); 410 } 411 412 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 413 LLVMContext &C) { 414 if (F) 415 return F; 416 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 417 } 418 419 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 420 DiagnosticHandlerFunction DiagnosticHandler) 421 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 422 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 423 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 424 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 425 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 426 427 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 428 DiagnosticHandlerFunction DiagnosticHandler) 429 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 430 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 431 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 432 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 433 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 434 435 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 436 if (WillMaterializeAllForwardRefs) 437 return std::error_code(); 438 439 // Prevent recursion. 440 WillMaterializeAllForwardRefs = true; 441 442 while (!BasicBlockFwdRefQueue.empty()) { 443 Function *F = BasicBlockFwdRefQueue.front(); 444 BasicBlockFwdRefQueue.pop_front(); 445 assert(F && "Expected valid function"); 446 if (!BasicBlockFwdRefs.count(F)) 447 // Already materialized. 448 continue; 449 450 // Check for a function that isn't materializable to prevent an infinite 451 // loop. When parsing a blockaddress stored in a global variable, there 452 // isn't a trivial way to check if a function will have a body without a 453 // linear search through FunctionsWithBodies, so just check it here. 454 if (!F->isMaterializable()) 455 return Error("Never resolved function from blockaddress"); 456 457 // Try to materialize F. 458 if (std::error_code EC = materialize(F)) 459 return EC; 460 } 461 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 462 463 // Reset state. 464 WillMaterializeAllForwardRefs = false; 465 return std::error_code(); 466 } 467 468 void BitcodeReader::FreeState() { 469 Buffer = nullptr; 470 std::vector<Type*>().swap(TypeList); 471 ValueList.clear(); 472 MDValueList.clear(); 473 std::vector<Comdat *>().swap(ComdatList); 474 475 std::vector<AttributeSet>().swap(MAttributes); 476 std::vector<BasicBlock*>().swap(FunctionBBs); 477 std::vector<Function*>().swap(FunctionsWithBodies); 478 DeferredFunctionInfo.clear(); 479 DeferredMetadataInfo.clear(); 480 MDKindMap.clear(); 481 482 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 483 BasicBlockFwdRefQueue.clear(); 484 } 485 486 //===----------------------------------------------------------------------===// 487 // Helper functions to implement forward reference resolution, etc. 488 //===----------------------------------------------------------------------===// 489 490 /// ConvertToString - Convert a string from a record into an std::string, return 491 /// true on failure. 492 template<typename StrTy> 493 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 494 StrTy &Result) { 495 if (Idx > Record.size()) 496 return true; 497 498 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 499 Result += (char)Record[i]; 500 return false; 501 } 502 503 static bool hasImplicitComdat(size_t Val) { 504 switch (Val) { 505 default: 506 return false; 507 case 1: // Old WeakAnyLinkage 508 case 4: // Old LinkOnceAnyLinkage 509 case 10: // Old WeakODRLinkage 510 case 11: // Old LinkOnceODRLinkage 511 return true; 512 } 513 } 514 515 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 516 switch (Val) { 517 default: // Map unknown/new linkages to external 518 case 0: 519 return GlobalValue::ExternalLinkage; 520 case 2: 521 return GlobalValue::AppendingLinkage; 522 case 3: 523 return GlobalValue::InternalLinkage; 524 case 5: 525 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 526 case 6: 527 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 528 case 7: 529 return GlobalValue::ExternalWeakLinkage; 530 case 8: 531 return GlobalValue::CommonLinkage; 532 case 9: 533 return GlobalValue::PrivateLinkage; 534 case 12: 535 return GlobalValue::AvailableExternallyLinkage; 536 case 13: 537 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 538 case 14: 539 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 540 case 15: 541 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 542 case 1: // Old value with implicit comdat. 543 case 16: 544 return GlobalValue::WeakAnyLinkage; 545 case 10: // Old value with implicit comdat. 546 case 17: 547 return GlobalValue::WeakODRLinkage; 548 case 4: // Old value with implicit comdat. 549 case 18: 550 return GlobalValue::LinkOnceAnyLinkage; 551 case 11: // Old value with implicit comdat. 552 case 19: 553 return GlobalValue::LinkOnceODRLinkage; 554 } 555 } 556 557 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 558 switch (Val) { 559 default: // Map unknown visibilities to default. 560 case 0: return GlobalValue::DefaultVisibility; 561 case 1: return GlobalValue::HiddenVisibility; 562 case 2: return GlobalValue::ProtectedVisibility; 563 } 564 } 565 566 static GlobalValue::DLLStorageClassTypes 567 GetDecodedDLLStorageClass(unsigned Val) { 568 switch (Val) { 569 default: // Map unknown values to default. 570 case 0: return GlobalValue::DefaultStorageClass; 571 case 1: return GlobalValue::DLLImportStorageClass; 572 case 2: return GlobalValue::DLLExportStorageClass; 573 } 574 } 575 576 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 577 switch (Val) { 578 case 0: return GlobalVariable::NotThreadLocal; 579 default: // Map unknown non-zero value to general dynamic. 580 case 1: return GlobalVariable::GeneralDynamicTLSModel; 581 case 2: return GlobalVariable::LocalDynamicTLSModel; 582 case 3: return GlobalVariable::InitialExecTLSModel; 583 case 4: return GlobalVariable::LocalExecTLSModel; 584 } 585 } 586 587 static int GetDecodedCastOpcode(unsigned Val) { 588 switch (Val) { 589 default: return -1; 590 case bitc::CAST_TRUNC : return Instruction::Trunc; 591 case bitc::CAST_ZEXT : return Instruction::ZExt; 592 case bitc::CAST_SEXT : return Instruction::SExt; 593 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 594 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 595 case bitc::CAST_UITOFP : return Instruction::UIToFP; 596 case bitc::CAST_SITOFP : return Instruction::SIToFP; 597 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 598 case bitc::CAST_FPEXT : return Instruction::FPExt; 599 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 600 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 601 case bitc::CAST_BITCAST : return Instruction::BitCast; 602 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 603 } 604 } 605 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 606 switch (Val) { 607 default: return -1; 608 case bitc::BINOP_ADD: 609 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 610 case bitc::BINOP_SUB: 611 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 612 case bitc::BINOP_MUL: 613 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 614 case bitc::BINOP_UDIV: return Instruction::UDiv; 615 case bitc::BINOP_SDIV: 616 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 617 case bitc::BINOP_UREM: return Instruction::URem; 618 case bitc::BINOP_SREM: 619 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 620 case bitc::BINOP_SHL: return Instruction::Shl; 621 case bitc::BINOP_LSHR: return Instruction::LShr; 622 case bitc::BINOP_ASHR: return Instruction::AShr; 623 case bitc::BINOP_AND: return Instruction::And; 624 case bitc::BINOP_OR: return Instruction::Or; 625 case bitc::BINOP_XOR: return Instruction::Xor; 626 } 627 } 628 629 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 630 switch (Val) { 631 default: return AtomicRMWInst::BAD_BINOP; 632 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 633 case bitc::RMW_ADD: return AtomicRMWInst::Add; 634 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 635 case bitc::RMW_AND: return AtomicRMWInst::And; 636 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 637 case bitc::RMW_OR: return AtomicRMWInst::Or; 638 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 639 case bitc::RMW_MAX: return AtomicRMWInst::Max; 640 case bitc::RMW_MIN: return AtomicRMWInst::Min; 641 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 642 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 643 } 644 } 645 646 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 647 switch (Val) { 648 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 649 case bitc::ORDERING_UNORDERED: return Unordered; 650 case bitc::ORDERING_MONOTONIC: return Monotonic; 651 case bitc::ORDERING_ACQUIRE: return Acquire; 652 case bitc::ORDERING_RELEASE: return Release; 653 case bitc::ORDERING_ACQREL: return AcquireRelease; 654 default: // Map unknown orderings to sequentially-consistent. 655 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 656 } 657 } 658 659 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 660 switch (Val) { 661 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 662 default: // Map unknown scopes to cross-thread. 663 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 664 } 665 } 666 667 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 668 switch (Val) { 669 default: // Map unknown selection kinds to any. 670 case bitc::COMDAT_SELECTION_KIND_ANY: 671 return Comdat::Any; 672 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 673 return Comdat::ExactMatch; 674 case bitc::COMDAT_SELECTION_KIND_LARGEST: 675 return Comdat::Largest; 676 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 677 return Comdat::NoDuplicates; 678 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 679 return Comdat::SameSize; 680 } 681 } 682 683 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 684 switch (Val) { 685 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 686 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 687 } 688 } 689 690 namespace llvm { 691 namespace { 692 /// @brief A class for maintaining the slot number definition 693 /// as a placeholder for the actual definition for forward constants defs. 694 class ConstantPlaceHolder : public ConstantExpr { 695 void operator=(const ConstantPlaceHolder &) = delete; 696 public: 697 // allocate space for exactly one operand 698 void *operator new(size_t s) { 699 return User::operator new(s, 1); 700 } 701 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 702 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 703 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 704 } 705 706 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 707 static bool classof(const Value *V) { 708 return isa<ConstantExpr>(V) && 709 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 710 } 711 712 713 /// Provide fast operand accessors 714 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 715 }; 716 } 717 718 // FIXME: can we inherit this from ConstantExpr? 719 template <> 720 struct OperandTraits<ConstantPlaceHolder> : 721 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 722 }; 723 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 724 } 725 726 727 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 728 if (Idx == size()) { 729 push_back(V); 730 return; 731 } 732 733 if (Idx >= size()) 734 resize(Idx+1); 735 736 WeakVH &OldV = ValuePtrs[Idx]; 737 if (!OldV) { 738 OldV = V; 739 return; 740 } 741 742 // Handle constants and non-constants (e.g. instrs) differently for 743 // efficiency. 744 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 745 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 746 OldV = V; 747 } else { 748 // If there was a forward reference to this value, replace it. 749 Value *PrevVal = OldV; 750 OldV->replaceAllUsesWith(V); 751 delete PrevVal; 752 } 753 } 754 755 756 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 757 Type *Ty) { 758 if (Idx >= size()) 759 resize(Idx + 1); 760 761 if (Value *V = ValuePtrs[Idx]) { 762 assert(Ty == V->getType() && "Type mismatch in constant table!"); 763 return cast<Constant>(V); 764 } 765 766 // Create and return a placeholder, which will later be RAUW'd. 767 Constant *C = new ConstantPlaceHolder(Ty, Context); 768 ValuePtrs[Idx] = C; 769 return C; 770 } 771 772 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 773 if (Idx >= size()) 774 resize(Idx + 1); 775 776 if (Value *V = ValuePtrs[Idx]) { 777 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 778 return V; 779 } 780 781 // No type specified, must be invalid reference. 782 if (!Ty) return nullptr; 783 784 // Create and return a placeholder, which will later be RAUW'd. 785 Value *V = new Argument(Ty); 786 ValuePtrs[Idx] = V; 787 return V; 788 } 789 790 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 791 /// resolves any forward references. The idea behind this is that we sometimes 792 /// get constants (such as large arrays) which reference *many* forward ref 793 /// constants. Replacing each of these causes a lot of thrashing when 794 /// building/reuniquing the constant. Instead of doing this, we look at all the 795 /// uses and rewrite all the place holders at once for any constant that uses 796 /// a placeholder. 797 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 798 // Sort the values by-pointer so that they are efficient to look up with a 799 // binary search. 800 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 801 802 SmallVector<Constant*, 64> NewOps; 803 804 while (!ResolveConstants.empty()) { 805 Value *RealVal = operator[](ResolveConstants.back().second); 806 Constant *Placeholder = ResolveConstants.back().first; 807 ResolveConstants.pop_back(); 808 809 // Loop over all users of the placeholder, updating them to reference the 810 // new value. If they reference more than one placeholder, update them all 811 // at once. 812 while (!Placeholder->use_empty()) { 813 auto UI = Placeholder->user_begin(); 814 User *U = *UI; 815 816 // If the using object isn't uniqued, just update the operands. This 817 // handles instructions and initializers for global variables. 818 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 819 UI.getUse().set(RealVal); 820 continue; 821 } 822 823 // Otherwise, we have a constant that uses the placeholder. Replace that 824 // constant with a new constant that has *all* placeholder uses updated. 825 Constant *UserC = cast<Constant>(U); 826 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 827 I != E; ++I) { 828 Value *NewOp; 829 if (!isa<ConstantPlaceHolder>(*I)) { 830 // Not a placeholder reference. 831 NewOp = *I; 832 } else if (*I == Placeholder) { 833 // Common case is that it just references this one placeholder. 834 NewOp = RealVal; 835 } else { 836 // Otherwise, look up the placeholder in ResolveConstants. 837 ResolveConstantsTy::iterator It = 838 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 839 std::pair<Constant*, unsigned>(cast<Constant>(*I), 840 0)); 841 assert(It != ResolveConstants.end() && It->first == *I); 842 NewOp = operator[](It->second); 843 } 844 845 NewOps.push_back(cast<Constant>(NewOp)); 846 } 847 848 // Make the new constant. 849 Constant *NewC; 850 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 851 NewC = ConstantArray::get(UserCA->getType(), NewOps); 852 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 853 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 854 } else if (isa<ConstantVector>(UserC)) { 855 NewC = ConstantVector::get(NewOps); 856 } else { 857 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 858 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 859 } 860 861 UserC->replaceAllUsesWith(NewC); 862 UserC->destroyConstant(); 863 NewOps.clear(); 864 } 865 866 // Update all ValueHandles, they should be the only users at this point. 867 Placeholder->replaceAllUsesWith(RealVal); 868 delete Placeholder; 869 } 870 } 871 872 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 873 if (Idx == size()) { 874 push_back(MD); 875 return; 876 } 877 878 if (Idx >= size()) 879 resize(Idx+1); 880 881 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 882 if (!OldMD) { 883 OldMD.reset(MD); 884 return; 885 } 886 887 // If there was a forward reference to this value, replace it. 888 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 889 PrevMD->replaceAllUsesWith(MD); 890 --NumFwdRefs; 891 } 892 893 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 894 if (Idx >= size()) 895 resize(Idx + 1); 896 897 if (Metadata *MD = MDValuePtrs[Idx]) 898 return MD; 899 900 // Track forward refs to be resolved later. 901 if (AnyFwdRefs) { 902 MinFwdRef = std::min(MinFwdRef, Idx); 903 MaxFwdRef = std::max(MaxFwdRef, Idx); 904 } else { 905 AnyFwdRefs = true; 906 MinFwdRef = MaxFwdRef = Idx; 907 } 908 ++NumFwdRefs; 909 910 // Create and return a placeholder, which will later be RAUW'd. 911 Metadata *MD = MDNode::getTemporary(Context, None).release(); 912 MDValuePtrs[Idx].reset(MD); 913 return MD; 914 } 915 916 void BitcodeReaderMDValueList::tryToResolveCycles() { 917 if (!AnyFwdRefs) 918 // Nothing to do. 919 return; 920 921 if (NumFwdRefs) 922 // Still forward references... can't resolve cycles. 923 return; 924 925 // Resolve any cycles. 926 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 927 auto &MD = MDValuePtrs[I]; 928 auto *N = dyn_cast_or_null<MDNode>(MD); 929 if (!N) 930 continue; 931 932 assert(!N->isTemporary() && "Unexpected forward reference"); 933 N->resolveCycles(); 934 } 935 936 // Make sure we return early again until there's another forward ref. 937 AnyFwdRefs = false; 938 } 939 940 Type *BitcodeReader::getTypeByID(unsigned ID) { 941 // The type table size is always specified correctly. 942 if (ID >= TypeList.size()) 943 return nullptr; 944 945 if (Type *Ty = TypeList[ID]) 946 return Ty; 947 948 // If we have a forward reference, the only possible case is when it is to a 949 // named struct. Just create a placeholder for now. 950 return TypeList[ID] = createIdentifiedStructType(Context); 951 } 952 953 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 954 StringRef Name) { 955 auto *Ret = StructType::create(Context, Name); 956 IdentifiedStructTypes.push_back(Ret); 957 return Ret; 958 } 959 960 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 961 auto *Ret = StructType::create(Context); 962 IdentifiedStructTypes.push_back(Ret); 963 return Ret; 964 } 965 966 967 //===----------------------------------------------------------------------===// 968 // Functions for parsing blocks from the bitcode file 969 //===----------------------------------------------------------------------===// 970 971 972 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 973 /// been decoded from the given integer. This function must stay in sync with 974 /// 'encodeLLVMAttributesForBitcode'. 975 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 976 uint64_t EncodedAttrs) { 977 // FIXME: Remove in 4.0. 978 979 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 980 // the bits above 31 down by 11 bits. 981 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 982 assert((!Alignment || isPowerOf2_32(Alignment)) && 983 "Alignment must be a power of two."); 984 985 if (Alignment) 986 B.addAlignmentAttr(Alignment); 987 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 988 (EncodedAttrs & 0xffff)); 989 } 990 991 std::error_code BitcodeReader::ParseAttributeBlock() { 992 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 993 return Error("Invalid record"); 994 995 if (!MAttributes.empty()) 996 return Error("Invalid multiple blocks"); 997 998 SmallVector<uint64_t, 64> Record; 999 1000 SmallVector<AttributeSet, 8> Attrs; 1001 1002 // Read all the records. 1003 while (1) { 1004 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1005 1006 switch (Entry.Kind) { 1007 case BitstreamEntry::SubBlock: // Handled for us already. 1008 case BitstreamEntry::Error: 1009 return Error("Malformed block"); 1010 case BitstreamEntry::EndBlock: 1011 return std::error_code(); 1012 case BitstreamEntry::Record: 1013 // The interesting case. 1014 break; 1015 } 1016 1017 // Read a record. 1018 Record.clear(); 1019 switch (Stream.readRecord(Entry.ID, Record)) { 1020 default: // Default behavior: ignore. 1021 break; 1022 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1023 // FIXME: Remove in 4.0. 1024 if (Record.size() & 1) 1025 return Error("Invalid record"); 1026 1027 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1028 AttrBuilder B; 1029 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1030 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1031 } 1032 1033 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1034 Attrs.clear(); 1035 break; 1036 } 1037 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1038 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1039 Attrs.push_back(MAttributeGroups[Record[i]]); 1040 1041 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1042 Attrs.clear(); 1043 break; 1044 } 1045 } 1046 } 1047 } 1048 1049 // Returns Attribute::None on unrecognized codes. 1050 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 1051 switch (Code) { 1052 default: 1053 return Attribute::None; 1054 case bitc::ATTR_KIND_ALIGNMENT: 1055 return Attribute::Alignment; 1056 case bitc::ATTR_KIND_ALWAYS_INLINE: 1057 return Attribute::AlwaysInline; 1058 case bitc::ATTR_KIND_BUILTIN: 1059 return Attribute::Builtin; 1060 case bitc::ATTR_KIND_BY_VAL: 1061 return Attribute::ByVal; 1062 case bitc::ATTR_KIND_IN_ALLOCA: 1063 return Attribute::InAlloca; 1064 case bitc::ATTR_KIND_COLD: 1065 return Attribute::Cold; 1066 case bitc::ATTR_KIND_INLINE_HINT: 1067 return Attribute::InlineHint; 1068 case bitc::ATTR_KIND_IN_REG: 1069 return Attribute::InReg; 1070 case bitc::ATTR_KIND_JUMP_TABLE: 1071 return Attribute::JumpTable; 1072 case bitc::ATTR_KIND_MIN_SIZE: 1073 return Attribute::MinSize; 1074 case bitc::ATTR_KIND_NAKED: 1075 return Attribute::Naked; 1076 case bitc::ATTR_KIND_NEST: 1077 return Attribute::Nest; 1078 case bitc::ATTR_KIND_NO_ALIAS: 1079 return Attribute::NoAlias; 1080 case bitc::ATTR_KIND_NO_BUILTIN: 1081 return Attribute::NoBuiltin; 1082 case bitc::ATTR_KIND_NO_CAPTURE: 1083 return Attribute::NoCapture; 1084 case bitc::ATTR_KIND_NO_DUPLICATE: 1085 return Attribute::NoDuplicate; 1086 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1087 return Attribute::NoImplicitFloat; 1088 case bitc::ATTR_KIND_NO_INLINE: 1089 return Attribute::NoInline; 1090 case bitc::ATTR_KIND_NON_LAZY_BIND: 1091 return Attribute::NonLazyBind; 1092 case bitc::ATTR_KIND_NON_NULL: 1093 return Attribute::NonNull; 1094 case bitc::ATTR_KIND_DEREFERENCEABLE: 1095 return Attribute::Dereferenceable; 1096 case bitc::ATTR_KIND_NO_RED_ZONE: 1097 return Attribute::NoRedZone; 1098 case bitc::ATTR_KIND_NO_RETURN: 1099 return Attribute::NoReturn; 1100 case bitc::ATTR_KIND_NO_UNWIND: 1101 return Attribute::NoUnwind; 1102 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1103 return Attribute::OptimizeForSize; 1104 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1105 return Attribute::OptimizeNone; 1106 case bitc::ATTR_KIND_READ_NONE: 1107 return Attribute::ReadNone; 1108 case bitc::ATTR_KIND_READ_ONLY: 1109 return Attribute::ReadOnly; 1110 case bitc::ATTR_KIND_RETURNED: 1111 return Attribute::Returned; 1112 case bitc::ATTR_KIND_RETURNS_TWICE: 1113 return Attribute::ReturnsTwice; 1114 case bitc::ATTR_KIND_S_EXT: 1115 return Attribute::SExt; 1116 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1117 return Attribute::StackAlignment; 1118 case bitc::ATTR_KIND_STACK_PROTECT: 1119 return Attribute::StackProtect; 1120 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1121 return Attribute::StackProtectReq; 1122 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1123 return Attribute::StackProtectStrong; 1124 case bitc::ATTR_KIND_STRUCT_RET: 1125 return Attribute::StructRet; 1126 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1127 return Attribute::SanitizeAddress; 1128 case bitc::ATTR_KIND_SANITIZE_THREAD: 1129 return Attribute::SanitizeThread; 1130 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1131 return Attribute::SanitizeMemory; 1132 case bitc::ATTR_KIND_UW_TABLE: 1133 return Attribute::UWTable; 1134 case bitc::ATTR_KIND_Z_EXT: 1135 return Attribute::ZExt; 1136 } 1137 } 1138 1139 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1140 unsigned &Alignment) { 1141 // Note: Alignment in bitcode files is incremented by 1, so that zero 1142 // can be used for default alignment. 1143 if (Exponent > Value::MaxAlignmentExponent + 1) 1144 return Error("Invalid alignment value"); 1145 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1146 return std::error_code(); 1147 } 1148 1149 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 1150 Attribute::AttrKind *Kind) { 1151 *Kind = GetAttrFromCode(Code); 1152 if (*Kind == Attribute::None) 1153 return Error(BitcodeError::CorruptedBitcode, 1154 "Unknown attribute kind (" + Twine(Code) + ")"); 1155 return std::error_code(); 1156 } 1157 1158 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 1159 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1160 return Error("Invalid record"); 1161 1162 if (!MAttributeGroups.empty()) 1163 return Error("Invalid multiple blocks"); 1164 1165 SmallVector<uint64_t, 64> Record; 1166 1167 // Read all the records. 1168 while (1) { 1169 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1170 1171 switch (Entry.Kind) { 1172 case BitstreamEntry::SubBlock: // Handled for us already. 1173 case BitstreamEntry::Error: 1174 return Error("Malformed block"); 1175 case BitstreamEntry::EndBlock: 1176 return std::error_code(); 1177 case BitstreamEntry::Record: 1178 // The interesting case. 1179 break; 1180 } 1181 1182 // Read a record. 1183 Record.clear(); 1184 switch (Stream.readRecord(Entry.ID, Record)) { 1185 default: // Default behavior: ignore. 1186 break; 1187 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1188 if (Record.size() < 3) 1189 return Error("Invalid record"); 1190 1191 uint64_t GrpID = Record[0]; 1192 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1193 1194 AttrBuilder B; 1195 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1196 if (Record[i] == 0) { // Enum attribute 1197 Attribute::AttrKind Kind; 1198 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1199 return EC; 1200 1201 B.addAttribute(Kind); 1202 } else if (Record[i] == 1) { // Integer attribute 1203 Attribute::AttrKind Kind; 1204 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1205 return EC; 1206 if (Kind == Attribute::Alignment) 1207 B.addAlignmentAttr(Record[++i]); 1208 else if (Kind == Attribute::StackAlignment) 1209 B.addStackAlignmentAttr(Record[++i]); 1210 else if (Kind == Attribute::Dereferenceable) 1211 B.addDereferenceableAttr(Record[++i]); 1212 } else { // String attribute 1213 assert((Record[i] == 3 || Record[i] == 4) && 1214 "Invalid attribute group entry"); 1215 bool HasValue = (Record[i++] == 4); 1216 SmallString<64> KindStr; 1217 SmallString<64> ValStr; 1218 1219 while (Record[i] != 0 && i != e) 1220 KindStr += Record[i++]; 1221 assert(Record[i] == 0 && "Kind string not null terminated"); 1222 1223 if (HasValue) { 1224 // Has a value associated with it. 1225 ++i; // Skip the '0' that terminates the "kind" string. 1226 while (Record[i] != 0 && i != e) 1227 ValStr += Record[i++]; 1228 assert(Record[i] == 0 && "Value string not null terminated"); 1229 } 1230 1231 B.addAttribute(KindStr.str(), ValStr.str()); 1232 } 1233 } 1234 1235 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1236 break; 1237 } 1238 } 1239 } 1240 } 1241 1242 std::error_code BitcodeReader::ParseTypeTable() { 1243 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1244 return Error("Invalid record"); 1245 1246 return ParseTypeTableBody(); 1247 } 1248 1249 std::error_code BitcodeReader::ParseTypeTableBody() { 1250 if (!TypeList.empty()) 1251 return Error("Invalid multiple blocks"); 1252 1253 SmallVector<uint64_t, 64> Record; 1254 unsigned NumRecords = 0; 1255 1256 SmallString<64> TypeName; 1257 1258 // Read all the records for this type table. 1259 while (1) { 1260 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1261 1262 switch (Entry.Kind) { 1263 case BitstreamEntry::SubBlock: // Handled for us already. 1264 case BitstreamEntry::Error: 1265 return Error("Malformed block"); 1266 case BitstreamEntry::EndBlock: 1267 if (NumRecords != TypeList.size()) 1268 return Error("Malformed block"); 1269 return std::error_code(); 1270 case BitstreamEntry::Record: 1271 // The interesting case. 1272 break; 1273 } 1274 1275 // Read a record. 1276 Record.clear(); 1277 Type *ResultTy = nullptr; 1278 switch (Stream.readRecord(Entry.ID, Record)) { 1279 default: 1280 return Error("Invalid value"); 1281 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1282 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1283 // type list. This allows us to reserve space. 1284 if (Record.size() < 1) 1285 return Error("Invalid record"); 1286 TypeList.resize(Record[0]); 1287 continue; 1288 case bitc::TYPE_CODE_VOID: // VOID 1289 ResultTy = Type::getVoidTy(Context); 1290 break; 1291 case bitc::TYPE_CODE_HALF: // HALF 1292 ResultTy = Type::getHalfTy(Context); 1293 break; 1294 case bitc::TYPE_CODE_FLOAT: // FLOAT 1295 ResultTy = Type::getFloatTy(Context); 1296 break; 1297 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1298 ResultTy = Type::getDoubleTy(Context); 1299 break; 1300 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1301 ResultTy = Type::getX86_FP80Ty(Context); 1302 break; 1303 case bitc::TYPE_CODE_FP128: // FP128 1304 ResultTy = Type::getFP128Ty(Context); 1305 break; 1306 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1307 ResultTy = Type::getPPC_FP128Ty(Context); 1308 break; 1309 case bitc::TYPE_CODE_LABEL: // LABEL 1310 ResultTy = Type::getLabelTy(Context); 1311 break; 1312 case bitc::TYPE_CODE_METADATA: // METADATA 1313 ResultTy = Type::getMetadataTy(Context); 1314 break; 1315 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1316 ResultTy = Type::getX86_MMXTy(Context); 1317 break; 1318 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1319 if (Record.size() < 1) 1320 return Error("Invalid record"); 1321 1322 uint64_t NumBits = Record[0]; 1323 if (NumBits < IntegerType::MIN_INT_BITS || 1324 NumBits > IntegerType::MAX_INT_BITS) 1325 return Error("Bitwidth for integer type out of range"); 1326 ResultTy = IntegerType::get(Context, NumBits); 1327 break; 1328 } 1329 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1330 // [pointee type, address space] 1331 if (Record.size() < 1) 1332 return Error("Invalid record"); 1333 unsigned AddressSpace = 0; 1334 if (Record.size() == 2) 1335 AddressSpace = Record[1]; 1336 ResultTy = getTypeByID(Record[0]); 1337 if (!ResultTy) 1338 return Error("Invalid type"); 1339 ResultTy = PointerType::get(ResultTy, AddressSpace); 1340 break; 1341 } 1342 case bitc::TYPE_CODE_FUNCTION_OLD: { 1343 // FIXME: attrid is dead, remove it in LLVM 4.0 1344 // FUNCTION: [vararg, attrid, retty, paramty x N] 1345 if (Record.size() < 3) 1346 return Error("Invalid record"); 1347 SmallVector<Type*, 8> ArgTys; 1348 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1349 if (Type *T = getTypeByID(Record[i])) 1350 ArgTys.push_back(T); 1351 else 1352 break; 1353 } 1354 1355 ResultTy = getTypeByID(Record[2]); 1356 if (!ResultTy || ArgTys.size() < Record.size()-3) 1357 return Error("Invalid type"); 1358 1359 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1360 break; 1361 } 1362 case bitc::TYPE_CODE_FUNCTION: { 1363 // FUNCTION: [vararg, retty, paramty x N] 1364 if (Record.size() < 2) 1365 return Error("Invalid record"); 1366 SmallVector<Type*, 8> ArgTys; 1367 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1368 if (Type *T = getTypeByID(Record[i])) 1369 ArgTys.push_back(T); 1370 else 1371 break; 1372 } 1373 1374 ResultTy = getTypeByID(Record[1]); 1375 if (!ResultTy || ArgTys.size() < Record.size()-2) 1376 return Error("Invalid type"); 1377 1378 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1379 break; 1380 } 1381 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1382 if (Record.size() < 1) 1383 return Error("Invalid record"); 1384 SmallVector<Type*, 8> EltTys; 1385 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1386 if (Type *T = getTypeByID(Record[i])) 1387 EltTys.push_back(T); 1388 else 1389 break; 1390 } 1391 if (EltTys.size() != Record.size()-1) 1392 return Error("Invalid type"); 1393 ResultTy = StructType::get(Context, EltTys, Record[0]); 1394 break; 1395 } 1396 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1397 if (ConvertToString(Record, 0, TypeName)) 1398 return Error("Invalid record"); 1399 continue; 1400 1401 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1402 if (Record.size() < 1) 1403 return Error("Invalid record"); 1404 1405 if (NumRecords >= TypeList.size()) 1406 return Error("Invalid TYPE table"); 1407 1408 // Check to see if this was forward referenced, if so fill in the temp. 1409 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1410 if (Res) { 1411 Res->setName(TypeName); 1412 TypeList[NumRecords] = nullptr; 1413 } else // Otherwise, create a new struct. 1414 Res = createIdentifiedStructType(Context, TypeName); 1415 TypeName.clear(); 1416 1417 SmallVector<Type*, 8> EltTys; 1418 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1419 if (Type *T = getTypeByID(Record[i])) 1420 EltTys.push_back(T); 1421 else 1422 break; 1423 } 1424 if (EltTys.size() != Record.size()-1) 1425 return Error("Invalid record"); 1426 Res->setBody(EltTys, Record[0]); 1427 ResultTy = Res; 1428 break; 1429 } 1430 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1431 if (Record.size() != 1) 1432 return Error("Invalid record"); 1433 1434 if (NumRecords >= TypeList.size()) 1435 return Error("Invalid TYPE table"); 1436 1437 // Check to see if this was forward referenced, if so fill in the temp. 1438 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1439 if (Res) { 1440 Res->setName(TypeName); 1441 TypeList[NumRecords] = nullptr; 1442 } else // Otherwise, create a new struct with no body. 1443 Res = createIdentifiedStructType(Context, TypeName); 1444 TypeName.clear(); 1445 ResultTy = Res; 1446 break; 1447 } 1448 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1449 if (Record.size() < 2) 1450 return Error("Invalid record"); 1451 if ((ResultTy = getTypeByID(Record[1]))) 1452 ResultTy = ArrayType::get(ResultTy, Record[0]); 1453 else 1454 return Error("Invalid type"); 1455 break; 1456 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1457 if (Record.size() < 2) 1458 return Error("Invalid record"); 1459 if ((ResultTy = getTypeByID(Record[1]))) 1460 ResultTy = VectorType::get(ResultTy, Record[0]); 1461 else 1462 return Error("Invalid type"); 1463 break; 1464 } 1465 1466 if (NumRecords >= TypeList.size()) 1467 return Error("Invalid TYPE table"); 1468 if (TypeList[NumRecords]) 1469 return Error( 1470 "Invalid TYPE table: Only named structs can be forward referenced"); 1471 assert(ResultTy && "Didn't read a type?"); 1472 TypeList[NumRecords++] = ResultTy; 1473 } 1474 } 1475 1476 std::error_code BitcodeReader::ParseValueSymbolTable() { 1477 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1478 return Error("Invalid record"); 1479 1480 SmallVector<uint64_t, 64> Record; 1481 1482 Triple TT(TheModule->getTargetTriple()); 1483 1484 // Read all the records for this value table. 1485 SmallString<128> ValueName; 1486 while (1) { 1487 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1488 1489 switch (Entry.Kind) { 1490 case BitstreamEntry::SubBlock: // Handled for us already. 1491 case BitstreamEntry::Error: 1492 return Error("Malformed block"); 1493 case BitstreamEntry::EndBlock: 1494 return std::error_code(); 1495 case BitstreamEntry::Record: 1496 // The interesting case. 1497 break; 1498 } 1499 1500 // Read a record. 1501 Record.clear(); 1502 switch (Stream.readRecord(Entry.ID, Record)) { 1503 default: // Default behavior: unknown type. 1504 break; 1505 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1506 if (ConvertToString(Record, 1, ValueName)) 1507 return Error("Invalid record"); 1508 unsigned ValueID = Record[0]; 1509 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1510 return Error("Invalid record"); 1511 Value *V = ValueList[ValueID]; 1512 1513 V->setName(StringRef(ValueName.data(), ValueName.size())); 1514 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1515 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1516 if (TT.isOSBinFormatMachO()) 1517 GO->setComdat(nullptr); 1518 else 1519 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1520 } 1521 } 1522 ValueName.clear(); 1523 break; 1524 } 1525 case bitc::VST_CODE_BBENTRY: { 1526 if (ConvertToString(Record, 1, ValueName)) 1527 return Error("Invalid record"); 1528 BasicBlock *BB = getBasicBlock(Record[0]); 1529 if (!BB) 1530 return Error("Invalid record"); 1531 1532 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1533 ValueName.clear(); 1534 break; 1535 } 1536 } 1537 } 1538 } 1539 1540 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1541 1542 std::error_code BitcodeReader::ParseMetadata() { 1543 IsMetadataMaterialized = true; 1544 unsigned NextMDValueNo = MDValueList.size(); 1545 1546 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1547 return Error("Invalid record"); 1548 1549 SmallVector<uint64_t, 64> Record; 1550 1551 auto getMD = 1552 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1553 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1554 if (ID) 1555 return getMD(ID - 1); 1556 return nullptr; 1557 }; 1558 auto getMDString = [&](unsigned ID) -> MDString *{ 1559 // This requires that the ID is not really a forward reference. In 1560 // particular, the MDString must already have been resolved. 1561 return cast_or_null<MDString>(getMDOrNull(ID)); 1562 }; 1563 1564 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1565 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1566 1567 // Read all the records. 1568 while (1) { 1569 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1570 1571 switch (Entry.Kind) { 1572 case BitstreamEntry::SubBlock: // Handled for us already. 1573 case BitstreamEntry::Error: 1574 return Error("Malformed block"); 1575 case BitstreamEntry::EndBlock: 1576 MDValueList.tryToResolveCycles(); 1577 return std::error_code(); 1578 case BitstreamEntry::Record: 1579 // The interesting case. 1580 break; 1581 } 1582 1583 // Read a record. 1584 Record.clear(); 1585 unsigned Code = Stream.readRecord(Entry.ID, Record); 1586 bool IsDistinct = false; 1587 switch (Code) { 1588 default: // Default behavior: ignore. 1589 break; 1590 case bitc::METADATA_NAME: { 1591 // Read name of the named metadata. 1592 SmallString<8> Name(Record.begin(), Record.end()); 1593 Record.clear(); 1594 Code = Stream.ReadCode(); 1595 1596 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1597 unsigned NextBitCode = Stream.readRecord(Code, Record); 1598 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1599 1600 // Read named metadata elements. 1601 unsigned Size = Record.size(); 1602 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1603 for (unsigned i = 0; i != Size; ++i) { 1604 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1605 if (!MD) 1606 return Error("Invalid record"); 1607 NMD->addOperand(MD); 1608 } 1609 break; 1610 } 1611 case bitc::METADATA_OLD_FN_NODE: { 1612 // FIXME: Remove in 4.0. 1613 // This is a LocalAsMetadata record, the only type of function-local 1614 // metadata. 1615 if (Record.size() % 2 == 1) 1616 return Error("Invalid record"); 1617 1618 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1619 // to be legal, but there's no upgrade path. 1620 auto dropRecord = [&] { 1621 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1622 }; 1623 if (Record.size() != 2) { 1624 dropRecord(); 1625 break; 1626 } 1627 1628 Type *Ty = getTypeByID(Record[0]); 1629 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1630 dropRecord(); 1631 break; 1632 } 1633 1634 MDValueList.AssignValue( 1635 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1636 NextMDValueNo++); 1637 break; 1638 } 1639 case bitc::METADATA_OLD_NODE: { 1640 // FIXME: Remove in 4.0. 1641 if (Record.size() % 2 == 1) 1642 return Error("Invalid record"); 1643 1644 unsigned Size = Record.size(); 1645 SmallVector<Metadata *, 8> Elts; 1646 for (unsigned i = 0; i != Size; i += 2) { 1647 Type *Ty = getTypeByID(Record[i]); 1648 if (!Ty) 1649 return Error("Invalid record"); 1650 if (Ty->isMetadataTy()) 1651 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1652 else if (!Ty->isVoidTy()) { 1653 auto *MD = 1654 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1655 assert(isa<ConstantAsMetadata>(MD) && 1656 "Expected non-function-local metadata"); 1657 Elts.push_back(MD); 1658 } else 1659 Elts.push_back(nullptr); 1660 } 1661 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1662 break; 1663 } 1664 case bitc::METADATA_VALUE: { 1665 if (Record.size() != 2) 1666 return Error("Invalid record"); 1667 1668 Type *Ty = getTypeByID(Record[0]); 1669 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1670 return Error("Invalid record"); 1671 1672 MDValueList.AssignValue( 1673 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1674 NextMDValueNo++); 1675 break; 1676 } 1677 case bitc::METADATA_DISTINCT_NODE: 1678 IsDistinct = true; 1679 // fallthrough... 1680 case bitc::METADATA_NODE: { 1681 SmallVector<Metadata *, 8> Elts; 1682 Elts.reserve(Record.size()); 1683 for (unsigned ID : Record) 1684 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1685 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1686 : MDNode::get(Context, Elts), 1687 NextMDValueNo++); 1688 break; 1689 } 1690 case bitc::METADATA_LOCATION: { 1691 if (Record.size() != 5) 1692 return Error("Invalid record"); 1693 1694 unsigned Line = Record[1]; 1695 unsigned Column = Record[2]; 1696 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1697 Metadata *InlinedAt = 1698 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1699 MDValueList.AssignValue( 1700 GET_OR_DISTINCT(MDLocation, Record[0], 1701 (Context, Line, Column, Scope, InlinedAt)), 1702 NextMDValueNo++); 1703 break; 1704 } 1705 case bitc::METADATA_GENERIC_DEBUG: { 1706 if (Record.size() < 4) 1707 return Error("Invalid record"); 1708 1709 unsigned Tag = Record[1]; 1710 unsigned Version = Record[2]; 1711 1712 if (Tag >= 1u << 16 || Version != 0) 1713 return Error("Invalid record"); 1714 1715 auto *Header = getMDString(Record[3]); 1716 SmallVector<Metadata *, 8> DwarfOps; 1717 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1718 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1719 : nullptr); 1720 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1721 (Context, Tag, Header, DwarfOps)), 1722 NextMDValueNo++); 1723 break; 1724 } 1725 case bitc::METADATA_SUBRANGE: { 1726 if (Record.size() != 3) 1727 return Error("Invalid record"); 1728 1729 MDValueList.AssignValue( 1730 GET_OR_DISTINCT(MDSubrange, Record[0], 1731 (Context, Record[1], unrotateSign(Record[2]))), 1732 NextMDValueNo++); 1733 break; 1734 } 1735 case bitc::METADATA_ENUMERATOR: { 1736 if (Record.size() != 3) 1737 return Error("Invalid record"); 1738 1739 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1740 (Context, unrotateSign(Record[1]), 1741 getMDString(Record[2]))), 1742 NextMDValueNo++); 1743 break; 1744 } 1745 case bitc::METADATA_BASIC_TYPE: { 1746 if (Record.size() != 6) 1747 return Error("Invalid record"); 1748 1749 MDValueList.AssignValue( 1750 GET_OR_DISTINCT(MDBasicType, Record[0], 1751 (Context, Record[1], getMDString(Record[2]), 1752 Record[3], Record[4], Record[5])), 1753 NextMDValueNo++); 1754 break; 1755 } 1756 case bitc::METADATA_DERIVED_TYPE: { 1757 if (Record.size() != 12) 1758 return Error("Invalid record"); 1759 1760 MDValueList.AssignValue( 1761 GET_OR_DISTINCT(MDDerivedType, Record[0], 1762 (Context, Record[1], getMDString(Record[2]), 1763 getMDOrNull(Record[3]), Record[4], 1764 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1765 Record[7], Record[8], Record[9], Record[10], 1766 getMDOrNull(Record[11]))), 1767 NextMDValueNo++); 1768 break; 1769 } 1770 case bitc::METADATA_COMPOSITE_TYPE: { 1771 if (Record.size() != 16) 1772 return Error("Invalid record"); 1773 1774 MDValueList.AssignValue( 1775 GET_OR_DISTINCT(MDCompositeType, Record[0], 1776 (Context, Record[1], getMDString(Record[2]), 1777 getMDOrNull(Record[3]), Record[4], 1778 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1779 Record[7], Record[8], Record[9], Record[10], 1780 getMDOrNull(Record[11]), Record[12], 1781 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1782 getMDString(Record[15]))), 1783 NextMDValueNo++); 1784 break; 1785 } 1786 case bitc::METADATA_SUBROUTINE_TYPE: { 1787 if (Record.size() != 3) 1788 return Error("Invalid record"); 1789 1790 MDValueList.AssignValue( 1791 GET_OR_DISTINCT(MDSubroutineType, Record[0], 1792 (Context, Record[1], getMDOrNull(Record[2]))), 1793 NextMDValueNo++); 1794 break; 1795 } 1796 case bitc::METADATA_FILE: { 1797 if (Record.size() != 3) 1798 return Error("Invalid record"); 1799 1800 MDValueList.AssignValue( 1801 GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]), 1802 getMDString(Record[2]))), 1803 NextMDValueNo++); 1804 break; 1805 } 1806 case bitc::METADATA_COMPILE_UNIT: { 1807 if (Record.size() != 14) 1808 return Error("Invalid record"); 1809 1810 MDValueList.AssignValue( 1811 GET_OR_DISTINCT(MDCompileUnit, Record[0], 1812 (Context, Record[1], getMDOrNull(Record[2]), 1813 getMDString(Record[3]), Record[4], 1814 getMDString(Record[5]), Record[6], 1815 getMDString(Record[7]), Record[8], 1816 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1817 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1818 getMDOrNull(Record[13]))), 1819 NextMDValueNo++); 1820 break; 1821 } 1822 case bitc::METADATA_SUBPROGRAM: { 1823 if (Record.size() != 19) 1824 return Error("Invalid record"); 1825 1826 MDValueList.AssignValue( 1827 GET_OR_DISTINCT( 1828 MDSubprogram, Record[0], 1829 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1830 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1831 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1832 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1833 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1834 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1835 NextMDValueNo++); 1836 break; 1837 } 1838 case bitc::METADATA_LEXICAL_BLOCK: { 1839 if (Record.size() != 5) 1840 return Error("Invalid record"); 1841 1842 MDValueList.AssignValue( 1843 GET_OR_DISTINCT(MDLexicalBlock, Record[0], 1844 (Context, getMDOrNull(Record[1]), 1845 getMDOrNull(Record[2]), Record[3], Record[4])), 1846 NextMDValueNo++); 1847 break; 1848 } 1849 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1850 if (Record.size() != 4) 1851 return Error("Invalid record"); 1852 1853 MDValueList.AssignValue( 1854 GET_OR_DISTINCT(MDLexicalBlockFile, Record[0], 1855 (Context, getMDOrNull(Record[1]), 1856 getMDOrNull(Record[2]), Record[3])), 1857 NextMDValueNo++); 1858 break; 1859 } 1860 case bitc::METADATA_NAMESPACE: { 1861 if (Record.size() != 5) 1862 return Error("Invalid record"); 1863 1864 MDValueList.AssignValue( 1865 GET_OR_DISTINCT(MDNamespace, Record[0], 1866 (Context, getMDOrNull(Record[1]), 1867 getMDOrNull(Record[2]), getMDString(Record[3]), 1868 Record[4])), 1869 NextMDValueNo++); 1870 break; 1871 } 1872 case bitc::METADATA_TEMPLATE_TYPE: { 1873 if (Record.size() != 3) 1874 return Error("Invalid record"); 1875 1876 MDValueList.AssignValue(GET_OR_DISTINCT(MDTemplateTypeParameter, 1877 Record[0], 1878 (Context, getMDString(Record[1]), 1879 getMDOrNull(Record[2]))), 1880 NextMDValueNo++); 1881 break; 1882 } 1883 case bitc::METADATA_TEMPLATE_VALUE: { 1884 if (Record.size() != 5) 1885 return Error("Invalid record"); 1886 1887 MDValueList.AssignValue( 1888 GET_OR_DISTINCT(MDTemplateValueParameter, Record[0], 1889 (Context, Record[1], getMDString(Record[2]), 1890 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1891 NextMDValueNo++); 1892 break; 1893 } 1894 case bitc::METADATA_GLOBAL_VAR: { 1895 if (Record.size() != 11) 1896 return Error("Invalid record"); 1897 1898 MDValueList.AssignValue( 1899 GET_OR_DISTINCT(MDGlobalVariable, Record[0], 1900 (Context, getMDOrNull(Record[1]), 1901 getMDString(Record[2]), getMDString(Record[3]), 1902 getMDOrNull(Record[4]), Record[5], 1903 getMDOrNull(Record[6]), Record[7], Record[8], 1904 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1905 NextMDValueNo++); 1906 break; 1907 } 1908 case bitc::METADATA_LOCAL_VAR: { 1909 if (Record.size() != 10) 1910 return Error("Invalid record"); 1911 1912 MDValueList.AssignValue( 1913 GET_OR_DISTINCT(MDLocalVariable, Record[0], 1914 (Context, Record[1], getMDOrNull(Record[2]), 1915 getMDString(Record[3]), getMDOrNull(Record[4]), 1916 Record[5], getMDOrNull(Record[6]), Record[7], 1917 Record[8], getMDOrNull(Record[9]))), 1918 NextMDValueNo++); 1919 break; 1920 } 1921 case bitc::METADATA_EXPRESSION: { 1922 if (Record.size() < 1) 1923 return Error("Invalid record"); 1924 1925 MDValueList.AssignValue( 1926 GET_OR_DISTINCT(MDExpression, Record[0], 1927 (Context, makeArrayRef(Record).slice(1))), 1928 NextMDValueNo++); 1929 break; 1930 } 1931 case bitc::METADATA_OBJC_PROPERTY: { 1932 if (Record.size() != 8) 1933 return Error("Invalid record"); 1934 1935 MDValueList.AssignValue( 1936 GET_OR_DISTINCT(MDObjCProperty, Record[0], 1937 (Context, getMDString(Record[1]), 1938 getMDOrNull(Record[2]), Record[3], 1939 getMDString(Record[4]), getMDString(Record[5]), 1940 Record[6], getMDOrNull(Record[7]))), 1941 NextMDValueNo++); 1942 break; 1943 } 1944 case bitc::METADATA_IMPORTED_ENTITY: { 1945 if (Record.size() != 6) 1946 return Error("Invalid record"); 1947 1948 MDValueList.AssignValue( 1949 GET_OR_DISTINCT(MDImportedEntity, Record[0], 1950 (Context, Record[1], getMDOrNull(Record[2]), 1951 getMDOrNull(Record[3]), Record[4], 1952 getMDString(Record[5]))), 1953 NextMDValueNo++); 1954 break; 1955 } 1956 case bitc::METADATA_STRING: { 1957 std::string String(Record.begin(), Record.end()); 1958 llvm::UpgradeMDStringConstant(String); 1959 Metadata *MD = MDString::get(Context, String); 1960 MDValueList.AssignValue(MD, NextMDValueNo++); 1961 break; 1962 } 1963 case bitc::METADATA_KIND: { 1964 if (Record.size() < 2) 1965 return Error("Invalid record"); 1966 1967 unsigned Kind = Record[0]; 1968 SmallString<8> Name(Record.begin()+1, Record.end()); 1969 1970 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1971 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1972 return Error("Conflicting METADATA_KIND records"); 1973 break; 1974 } 1975 } 1976 } 1977 #undef GET_OR_DISTINCT 1978 } 1979 1980 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1981 /// the LSB for dense VBR encoding. 1982 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1983 if ((V & 1) == 0) 1984 return V >> 1; 1985 if (V != 1) 1986 return -(V >> 1); 1987 // There is no such thing as -0 with integers. "-0" really means MININT. 1988 return 1ULL << 63; 1989 } 1990 1991 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1992 /// values and aliases that we can. 1993 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1994 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1995 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1996 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1997 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1998 1999 GlobalInitWorklist.swap(GlobalInits); 2000 AliasInitWorklist.swap(AliasInits); 2001 FunctionPrefixWorklist.swap(FunctionPrefixes); 2002 FunctionPrologueWorklist.swap(FunctionPrologues); 2003 2004 while (!GlobalInitWorklist.empty()) { 2005 unsigned ValID = GlobalInitWorklist.back().second; 2006 if (ValID >= ValueList.size()) { 2007 // Not ready to resolve this yet, it requires something later in the file. 2008 GlobalInits.push_back(GlobalInitWorklist.back()); 2009 } else { 2010 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2011 GlobalInitWorklist.back().first->setInitializer(C); 2012 else 2013 return Error("Expected a constant"); 2014 } 2015 GlobalInitWorklist.pop_back(); 2016 } 2017 2018 while (!AliasInitWorklist.empty()) { 2019 unsigned ValID = AliasInitWorklist.back().second; 2020 if (ValID >= ValueList.size()) { 2021 AliasInits.push_back(AliasInitWorklist.back()); 2022 } else { 2023 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2024 AliasInitWorklist.back().first->setAliasee(C); 2025 else 2026 return Error("Expected a constant"); 2027 } 2028 AliasInitWorklist.pop_back(); 2029 } 2030 2031 while (!FunctionPrefixWorklist.empty()) { 2032 unsigned ValID = FunctionPrefixWorklist.back().second; 2033 if (ValID >= ValueList.size()) { 2034 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2035 } else { 2036 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2037 FunctionPrefixWorklist.back().first->setPrefixData(C); 2038 else 2039 return Error("Expected a constant"); 2040 } 2041 FunctionPrefixWorklist.pop_back(); 2042 } 2043 2044 while (!FunctionPrologueWorklist.empty()) { 2045 unsigned ValID = FunctionPrologueWorklist.back().second; 2046 if (ValID >= ValueList.size()) { 2047 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2048 } else { 2049 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2050 FunctionPrologueWorklist.back().first->setPrologueData(C); 2051 else 2052 return Error("Expected a constant"); 2053 } 2054 FunctionPrologueWorklist.pop_back(); 2055 } 2056 2057 return std::error_code(); 2058 } 2059 2060 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2061 SmallVector<uint64_t, 8> Words(Vals.size()); 2062 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2063 BitcodeReader::decodeSignRotatedValue); 2064 2065 return APInt(TypeBits, Words); 2066 } 2067 2068 std::error_code BitcodeReader::ParseConstants() { 2069 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2070 return Error("Invalid record"); 2071 2072 SmallVector<uint64_t, 64> Record; 2073 2074 // Read all the records for this value table. 2075 Type *CurTy = Type::getInt32Ty(Context); 2076 unsigned NextCstNo = ValueList.size(); 2077 while (1) { 2078 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2079 2080 switch (Entry.Kind) { 2081 case BitstreamEntry::SubBlock: // Handled for us already. 2082 case BitstreamEntry::Error: 2083 return Error("Malformed block"); 2084 case BitstreamEntry::EndBlock: 2085 if (NextCstNo != ValueList.size()) 2086 return Error("Invalid ronstant reference"); 2087 2088 // Once all the constants have been read, go through and resolve forward 2089 // references. 2090 ValueList.ResolveConstantForwardRefs(); 2091 return std::error_code(); 2092 case BitstreamEntry::Record: 2093 // The interesting case. 2094 break; 2095 } 2096 2097 // Read a record. 2098 Record.clear(); 2099 Value *V = nullptr; 2100 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2101 switch (BitCode) { 2102 default: // Default behavior: unknown constant 2103 case bitc::CST_CODE_UNDEF: // UNDEF 2104 V = UndefValue::get(CurTy); 2105 break; 2106 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2107 if (Record.empty()) 2108 return Error("Invalid record"); 2109 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2110 return Error("Invalid record"); 2111 CurTy = TypeList[Record[0]]; 2112 continue; // Skip the ValueList manipulation. 2113 case bitc::CST_CODE_NULL: // NULL 2114 V = Constant::getNullValue(CurTy); 2115 break; 2116 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2117 if (!CurTy->isIntegerTy() || Record.empty()) 2118 return Error("Invalid record"); 2119 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2120 break; 2121 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2122 if (!CurTy->isIntegerTy() || Record.empty()) 2123 return Error("Invalid record"); 2124 2125 APInt VInt = ReadWideAPInt(Record, 2126 cast<IntegerType>(CurTy)->getBitWidth()); 2127 V = ConstantInt::get(Context, VInt); 2128 2129 break; 2130 } 2131 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2132 if (Record.empty()) 2133 return Error("Invalid record"); 2134 if (CurTy->isHalfTy()) 2135 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2136 APInt(16, (uint16_t)Record[0]))); 2137 else if (CurTy->isFloatTy()) 2138 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2139 APInt(32, (uint32_t)Record[0]))); 2140 else if (CurTy->isDoubleTy()) 2141 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2142 APInt(64, Record[0]))); 2143 else if (CurTy->isX86_FP80Ty()) { 2144 // Bits are not stored the same way as a normal i80 APInt, compensate. 2145 uint64_t Rearrange[2]; 2146 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2147 Rearrange[1] = Record[0] >> 48; 2148 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2149 APInt(80, Rearrange))); 2150 } else if (CurTy->isFP128Ty()) 2151 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2152 APInt(128, Record))); 2153 else if (CurTy->isPPC_FP128Ty()) 2154 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2155 APInt(128, Record))); 2156 else 2157 V = UndefValue::get(CurTy); 2158 break; 2159 } 2160 2161 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2162 if (Record.empty()) 2163 return Error("Invalid record"); 2164 2165 unsigned Size = Record.size(); 2166 SmallVector<Constant*, 16> Elts; 2167 2168 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2169 for (unsigned i = 0; i != Size; ++i) 2170 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2171 STy->getElementType(i))); 2172 V = ConstantStruct::get(STy, Elts); 2173 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2174 Type *EltTy = ATy->getElementType(); 2175 for (unsigned i = 0; i != Size; ++i) 2176 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2177 V = ConstantArray::get(ATy, Elts); 2178 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2179 Type *EltTy = VTy->getElementType(); 2180 for (unsigned i = 0; i != Size; ++i) 2181 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2182 V = ConstantVector::get(Elts); 2183 } else { 2184 V = UndefValue::get(CurTy); 2185 } 2186 break; 2187 } 2188 case bitc::CST_CODE_STRING: // STRING: [values] 2189 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2190 if (Record.empty()) 2191 return Error("Invalid record"); 2192 2193 SmallString<16> Elts(Record.begin(), Record.end()); 2194 V = ConstantDataArray::getString(Context, Elts, 2195 BitCode == bitc::CST_CODE_CSTRING); 2196 break; 2197 } 2198 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2199 if (Record.empty()) 2200 return Error("Invalid record"); 2201 2202 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2203 unsigned Size = Record.size(); 2204 2205 if (EltTy->isIntegerTy(8)) { 2206 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2207 if (isa<VectorType>(CurTy)) 2208 V = ConstantDataVector::get(Context, Elts); 2209 else 2210 V = ConstantDataArray::get(Context, Elts); 2211 } else if (EltTy->isIntegerTy(16)) { 2212 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2213 if (isa<VectorType>(CurTy)) 2214 V = ConstantDataVector::get(Context, Elts); 2215 else 2216 V = ConstantDataArray::get(Context, Elts); 2217 } else if (EltTy->isIntegerTy(32)) { 2218 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2219 if (isa<VectorType>(CurTy)) 2220 V = ConstantDataVector::get(Context, Elts); 2221 else 2222 V = ConstantDataArray::get(Context, Elts); 2223 } else if (EltTy->isIntegerTy(64)) { 2224 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2225 if (isa<VectorType>(CurTy)) 2226 V = ConstantDataVector::get(Context, Elts); 2227 else 2228 V = ConstantDataArray::get(Context, Elts); 2229 } else if (EltTy->isFloatTy()) { 2230 SmallVector<float, 16> Elts(Size); 2231 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2232 if (isa<VectorType>(CurTy)) 2233 V = ConstantDataVector::get(Context, Elts); 2234 else 2235 V = ConstantDataArray::get(Context, Elts); 2236 } else if (EltTy->isDoubleTy()) { 2237 SmallVector<double, 16> Elts(Size); 2238 std::transform(Record.begin(), Record.end(), Elts.begin(), 2239 BitsToDouble); 2240 if (isa<VectorType>(CurTy)) 2241 V = ConstantDataVector::get(Context, Elts); 2242 else 2243 V = ConstantDataArray::get(Context, Elts); 2244 } else { 2245 return Error("Invalid type for value"); 2246 } 2247 break; 2248 } 2249 2250 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2251 if (Record.size() < 3) 2252 return Error("Invalid record"); 2253 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 2254 if (Opc < 0) { 2255 V = UndefValue::get(CurTy); // Unknown binop. 2256 } else { 2257 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2258 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2259 unsigned Flags = 0; 2260 if (Record.size() >= 4) { 2261 if (Opc == Instruction::Add || 2262 Opc == Instruction::Sub || 2263 Opc == Instruction::Mul || 2264 Opc == Instruction::Shl) { 2265 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2266 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2267 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2268 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2269 } else if (Opc == Instruction::SDiv || 2270 Opc == Instruction::UDiv || 2271 Opc == Instruction::LShr || 2272 Opc == Instruction::AShr) { 2273 if (Record[3] & (1 << bitc::PEO_EXACT)) 2274 Flags |= SDivOperator::IsExact; 2275 } 2276 } 2277 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2278 } 2279 break; 2280 } 2281 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2282 if (Record.size() < 3) 2283 return Error("Invalid record"); 2284 int Opc = GetDecodedCastOpcode(Record[0]); 2285 if (Opc < 0) { 2286 V = UndefValue::get(CurTy); // Unknown cast. 2287 } else { 2288 Type *OpTy = getTypeByID(Record[1]); 2289 if (!OpTy) 2290 return Error("Invalid record"); 2291 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2292 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2293 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2294 } 2295 break; 2296 } 2297 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2298 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2299 unsigned OpNum = 0; 2300 Type *PointeeType = nullptr; 2301 if (Record.size() % 2) 2302 PointeeType = getTypeByID(Record[OpNum++]); 2303 SmallVector<Constant*, 16> Elts; 2304 while (OpNum != Record.size()) { 2305 Type *ElTy = getTypeByID(Record[OpNum++]); 2306 if (!ElTy) 2307 return Error("Invalid record"); 2308 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2309 } 2310 2311 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2312 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 2313 BitCode == 2314 bitc::CST_CODE_CE_INBOUNDS_GEP); 2315 if (PointeeType && 2316 PointeeType != cast<GEPOperator>(V)->getSourceElementType()) 2317 return Error("Explicit gep operator type does not match pointee type " 2318 "of pointer operand"); 2319 break; 2320 } 2321 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2322 if (Record.size() < 3) 2323 return Error("Invalid record"); 2324 2325 Type *SelectorTy = Type::getInt1Ty(Context); 2326 2327 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2328 // vector. Otherwise, it must be a single bit. 2329 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2330 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2331 VTy->getNumElements()); 2332 2333 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2334 SelectorTy), 2335 ValueList.getConstantFwdRef(Record[1],CurTy), 2336 ValueList.getConstantFwdRef(Record[2],CurTy)); 2337 break; 2338 } 2339 case bitc::CST_CODE_CE_EXTRACTELT 2340 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2341 if (Record.size() < 3) 2342 return Error("Invalid record"); 2343 VectorType *OpTy = 2344 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2345 if (!OpTy) 2346 return Error("Invalid record"); 2347 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2348 Constant *Op1 = nullptr; 2349 if (Record.size() == 4) { 2350 Type *IdxTy = getTypeByID(Record[2]); 2351 if (!IdxTy) 2352 return Error("Invalid record"); 2353 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2354 } else // TODO: Remove with llvm 4.0 2355 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2356 if (!Op1) 2357 return Error("Invalid record"); 2358 V = ConstantExpr::getExtractElement(Op0, Op1); 2359 break; 2360 } 2361 case bitc::CST_CODE_CE_INSERTELT 2362 : { // CE_INSERTELT: [opval, opval, opty, opval] 2363 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2364 if (Record.size() < 3 || !OpTy) 2365 return Error("Invalid record"); 2366 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2367 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2368 OpTy->getElementType()); 2369 Constant *Op2 = nullptr; 2370 if (Record.size() == 4) { 2371 Type *IdxTy = getTypeByID(Record[2]); 2372 if (!IdxTy) 2373 return Error("Invalid record"); 2374 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2375 } else // TODO: Remove with llvm 4.0 2376 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2377 if (!Op2) 2378 return Error("Invalid record"); 2379 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2380 break; 2381 } 2382 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2383 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2384 if (Record.size() < 3 || !OpTy) 2385 return Error("Invalid record"); 2386 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2387 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2388 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2389 OpTy->getNumElements()); 2390 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2391 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2392 break; 2393 } 2394 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2395 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2396 VectorType *OpTy = 2397 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2398 if (Record.size() < 4 || !RTy || !OpTy) 2399 return Error("Invalid record"); 2400 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2401 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2402 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2403 RTy->getNumElements()); 2404 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2405 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2406 break; 2407 } 2408 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2409 if (Record.size() < 4) 2410 return Error("Invalid record"); 2411 Type *OpTy = getTypeByID(Record[0]); 2412 if (!OpTy) 2413 return Error("Invalid record"); 2414 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2415 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2416 2417 if (OpTy->isFPOrFPVectorTy()) 2418 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2419 else 2420 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2421 break; 2422 } 2423 // This maintains backward compatibility, pre-asm dialect keywords. 2424 // FIXME: Remove with the 4.0 release. 2425 case bitc::CST_CODE_INLINEASM_OLD: { 2426 if (Record.size() < 2) 2427 return Error("Invalid record"); 2428 std::string AsmStr, ConstrStr; 2429 bool HasSideEffects = Record[0] & 1; 2430 bool IsAlignStack = Record[0] >> 1; 2431 unsigned AsmStrSize = Record[1]; 2432 if (2+AsmStrSize >= Record.size()) 2433 return Error("Invalid record"); 2434 unsigned ConstStrSize = Record[2+AsmStrSize]; 2435 if (3+AsmStrSize+ConstStrSize > Record.size()) 2436 return Error("Invalid record"); 2437 2438 for (unsigned i = 0; i != AsmStrSize; ++i) 2439 AsmStr += (char)Record[2+i]; 2440 for (unsigned i = 0; i != ConstStrSize; ++i) 2441 ConstrStr += (char)Record[3+AsmStrSize+i]; 2442 PointerType *PTy = cast<PointerType>(CurTy); 2443 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2444 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2445 break; 2446 } 2447 // This version adds support for the asm dialect keywords (e.g., 2448 // inteldialect). 2449 case bitc::CST_CODE_INLINEASM: { 2450 if (Record.size() < 2) 2451 return Error("Invalid record"); 2452 std::string AsmStr, ConstrStr; 2453 bool HasSideEffects = Record[0] & 1; 2454 bool IsAlignStack = (Record[0] >> 1) & 1; 2455 unsigned AsmDialect = Record[0] >> 2; 2456 unsigned AsmStrSize = Record[1]; 2457 if (2+AsmStrSize >= Record.size()) 2458 return Error("Invalid record"); 2459 unsigned ConstStrSize = Record[2+AsmStrSize]; 2460 if (3+AsmStrSize+ConstStrSize > Record.size()) 2461 return Error("Invalid record"); 2462 2463 for (unsigned i = 0; i != AsmStrSize; ++i) 2464 AsmStr += (char)Record[2+i]; 2465 for (unsigned i = 0; i != ConstStrSize; ++i) 2466 ConstrStr += (char)Record[3+AsmStrSize+i]; 2467 PointerType *PTy = cast<PointerType>(CurTy); 2468 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2469 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2470 InlineAsm::AsmDialect(AsmDialect)); 2471 break; 2472 } 2473 case bitc::CST_CODE_BLOCKADDRESS:{ 2474 if (Record.size() < 3) 2475 return Error("Invalid record"); 2476 Type *FnTy = getTypeByID(Record[0]); 2477 if (!FnTy) 2478 return Error("Invalid record"); 2479 Function *Fn = 2480 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2481 if (!Fn) 2482 return Error("Invalid record"); 2483 2484 // Don't let Fn get dematerialized. 2485 BlockAddressesTaken.insert(Fn); 2486 2487 // If the function is already parsed we can insert the block address right 2488 // away. 2489 BasicBlock *BB; 2490 unsigned BBID = Record[2]; 2491 if (!BBID) 2492 // Invalid reference to entry block. 2493 return Error("Invalid ID"); 2494 if (!Fn->empty()) { 2495 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2496 for (size_t I = 0, E = BBID; I != E; ++I) { 2497 if (BBI == BBE) 2498 return Error("Invalid ID"); 2499 ++BBI; 2500 } 2501 BB = BBI; 2502 } else { 2503 // Otherwise insert a placeholder and remember it so it can be inserted 2504 // when the function is parsed. 2505 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2506 if (FwdBBs.empty()) 2507 BasicBlockFwdRefQueue.push_back(Fn); 2508 if (FwdBBs.size() < BBID + 1) 2509 FwdBBs.resize(BBID + 1); 2510 if (!FwdBBs[BBID]) 2511 FwdBBs[BBID] = BasicBlock::Create(Context); 2512 BB = FwdBBs[BBID]; 2513 } 2514 V = BlockAddress::get(Fn, BB); 2515 break; 2516 } 2517 } 2518 2519 ValueList.AssignValue(V, NextCstNo); 2520 ++NextCstNo; 2521 } 2522 } 2523 2524 std::error_code BitcodeReader::ParseUseLists() { 2525 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2526 return Error("Invalid record"); 2527 2528 // Read all the records. 2529 SmallVector<uint64_t, 64> Record; 2530 while (1) { 2531 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2532 2533 switch (Entry.Kind) { 2534 case BitstreamEntry::SubBlock: // Handled for us already. 2535 case BitstreamEntry::Error: 2536 return Error("Malformed block"); 2537 case BitstreamEntry::EndBlock: 2538 return std::error_code(); 2539 case BitstreamEntry::Record: 2540 // The interesting case. 2541 break; 2542 } 2543 2544 // Read a use list record. 2545 Record.clear(); 2546 bool IsBB = false; 2547 switch (Stream.readRecord(Entry.ID, Record)) { 2548 default: // Default behavior: unknown type. 2549 break; 2550 case bitc::USELIST_CODE_BB: 2551 IsBB = true; 2552 // fallthrough 2553 case bitc::USELIST_CODE_DEFAULT: { 2554 unsigned RecordLength = Record.size(); 2555 if (RecordLength < 3) 2556 // Records should have at least an ID and two indexes. 2557 return Error("Invalid record"); 2558 unsigned ID = Record.back(); 2559 Record.pop_back(); 2560 2561 Value *V; 2562 if (IsBB) { 2563 assert(ID < FunctionBBs.size() && "Basic block not found"); 2564 V = FunctionBBs[ID]; 2565 } else 2566 V = ValueList[ID]; 2567 unsigned NumUses = 0; 2568 SmallDenseMap<const Use *, unsigned, 16> Order; 2569 for (const Use &U : V->uses()) { 2570 if (++NumUses > Record.size()) 2571 break; 2572 Order[&U] = Record[NumUses - 1]; 2573 } 2574 if (Order.size() != Record.size() || NumUses > Record.size()) 2575 // Mismatches can happen if the functions are being materialized lazily 2576 // (out-of-order), or a value has been upgraded. 2577 break; 2578 2579 V->sortUseList([&](const Use &L, const Use &R) { 2580 return Order.lookup(&L) < Order.lookup(&R); 2581 }); 2582 break; 2583 } 2584 } 2585 } 2586 } 2587 2588 /// When we see the block for metadata, remember where it is and then skip it. 2589 /// This lets us lazily deserialize the metadata. 2590 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2591 // Save the current stream state. 2592 uint64_t CurBit = Stream.GetCurrentBitNo(); 2593 DeferredMetadataInfo.push_back(CurBit); 2594 2595 // Skip over the block for now. 2596 if (Stream.SkipBlock()) 2597 return Error("Invalid record"); 2598 return std::error_code(); 2599 } 2600 2601 std::error_code BitcodeReader::materializeMetadata() { 2602 for (uint64_t BitPos : DeferredMetadataInfo) { 2603 // Move the bit stream to the saved position. 2604 Stream.JumpToBit(BitPos); 2605 if (std::error_code EC = ParseMetadata()) 2606 return EC; 2607 } 2608 DeferredMetadataInfo.clear(); 2609 return std::error_code(); 2610 } 2611 2612 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2613 /// remember where it is and then skip it. This lets us lazily deserialize the 2614 /// functions. 2615 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2616 // Get the function we are talking about. 2617 if (FunctionsWithBodies.empty()) 2618 return Error("Insufficient function protos"); 2619 2620 Function *Fn = FunctionsWithBodies.back(); 2621 FunctionsWithBodies.pop_back(); 2622 2623 // Save the current stream state. 2624 uint64_t CurBit = Stream.GetCurrentBitNo(); 2625 DeferredFunctionInfo[Fn] = CurBit; 2626 2627 // Skip over the function block for now. 2628 if (Stream.SkipBlock()) 2629 return Error("Invalid record"); 2630 return std::error_code(); 2631 } 2632 2633 std::error_code BitcodeReader::GlobalCleanup() { 2634 // Patch the initializers for globals and aliases up. 2635 ResolveGlobalAndAliasInits(); 2636 if (!GlobalInits.empty() || !AliasInits.empty()) 2637 return Error("Malformed global initializer set"); 2638 2639 // Look for intrinsic functions which need to be upgraded at some point 2640 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2641 FI != FE; ++FI) { 2642 Function *NewFn; 2643 if (UpgradeIntrinsicFunction(FI, NewFn)) 2644 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2645 } 2646 2647 // Look for global variables which need to be renamed. 2648 for (Module::global_iterator 2649 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2650 GI != GE;) { 2651 GlobalVariable *GV = GI++; 2652 UpgradeGlobalVariable(GV); 2653 } 2654 2655 // Force deallocation of memory for these vectors to favor the client that 2656 // want lazy deserialization. 2657 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2658 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2659 return std::error_code(); 2660 } 2661 2662 std::error_code BitcodeReader::ParseModule(bool Resume, 2663 bool ShouldLazyLoadMetadata) { 2664 if (Resume) 2665 Stream.JumpToBit(NextUnreadBit); 2666 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2667 return Error("Invalid record"); 2668 2669 SmallVector<uint64_t, 64> Record; 2670 std::vector<std::string> SectionTable; 2671 std::vector<std::string> GCTable; 2672 2673 // Read all the records for this module. 2674 while (1) { 2675 BitstreamEntry Entry = Stream.advance(); 2676 2677 switch (Entry.Kind) { 2678 case BitstreamEntry::Error: 2679 return Error("Malformed block"); 2680 case BitstreamEntry::EndBlock: 2681 return GlobalCleanup(); 2682 2683 case BitstreamEntry::SubBlock: 2684 switch (Entry.ID) { 2685 default: // Skip unknown content. 2686 if (Stream.SkipBlock()) 2687 return Error("Invalid record"); 2688 break; 2689 case bitc::BLOCKINFO_BLOCK_ID: 2690 if (Stream.ReadBlockInfoBlock()) 2691 return Error("Malformed block"); 2692 break; 2693 case bitc::PARAMATTR_BLOCK_ID: 2694 if (std::error_code EC = ParseAttributeBlock()) 2695 return EC; 2696 break; 2697 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2698 if (std::error_code EC = ParseAttributeGroupBlock()) 2699 return EC; 2700 break; 2701 case bitc::TYPE_BLOCK_ID_NEW: 2702 if (std::error_code EC = ParseTypeTable()) 2703 return EC; 2704 break; 2705 case bitc::VALUE_SYMTAB_BLOCK_ID: 2706 if (std::error_code EC = ParseValueSymbolTable()) 2707 return EC; 2708 SeenValueSymbolTable = true; 2709 break; 2710 case bitc::CONSTANTS_BLOCK_ID: 2711 if (std::error_code EC = ParseConstants()) 2712 return EC; 2713 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2714 return EC; 2715 break; 2716 case bitc::METADATA_BLOCK_ID: 2717 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2718 if (std::error_code EC = rememberAndSkipMetadata()) 2719 return EC; 2720 break; 2721 } 2722 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2723 if (std::error_code EC = ParseMetadata()) 2724 return EC; 2725 break; 2726 case bitc::FUNCTION_BLOCK_ID: 2727 // If this is the first function body we've seen, reverse the 2728 // FunctionsWithBodies list. 2729 if (!SeenFirstFunctionBody) { 2730 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2731 if (std::error_code EC = GlobalCleanup()) 2732 return EC; 2733 SeenFirstFunctionBody = true; 2734 } 2735 2736 if (std::error_code EC = RememberAndSkipFunctionBody()) 2737 return EC; 2738 // For streaming bitcode, suspend parsing when we reach the function 2739 // bodies. Subsequent materialization calls will resume it when 2740 // necessary. For streaming, the function bodies must be at the end of 2741 // the bitcode. If the bitcode file is old, the symbol table will be 2742 // at the end instead and will not have been seen yet. In this case, 2743 // just finish the parse now. 2744 if (LazyStreamer && SeenValueSymbolTable) { 2745 NextUnreadBit = Stream.GetCurrentBitNo(); 2746 return std::error_code(); 2747 } 2748 break; 2749 case bitc::USELIST_BLOCK_ID: 2750 if (std::error_code EC = ParseUseLists()) 2751 return EC; 2752 break; 2753 } 2754 continue; 2755 2756 case BitstreamEntry::Record: 2757 // The interesting case. 2758 break; 2759 } 2760 2761 2762 // Read a record. 2763 switch (Stream.readRecord(Entry.ID, Record)) { 2764 default: break; // Default behavior, ignore unknown content. 2765 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2766 if (Record.size() < 1) 2767 return Error("Invalid record"); 2768 // Only version #0 and #1 are supported so far. 2769 unsigned module_version = Record[0]; 2770 switch (module_version) { 2771 default: 2772 return Error("Invalid value"); 2773 case 0: 2774 UseRelativeIDs = false; 2775 break; 2776 case 1: 2777 UseRelativeIDs = true; 2778 break; 2779 } 2780 break; 2781 } 2782 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2783 std::string S; 2784 if (ConvertToString(Record, 0, S)) 2785 return Error("Invalid record"); 2786 TheModule->setTargetTriple(S); 2787 break; 2788 } 2789 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2790 std::string S; 2791 if (ConvertToString(Record, 0, S)) 2792 return Error("Invalid record"); 2793 TheModule->setDataLayout(S); 2794 break; 2795 } 2796 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2797 std::string S; 2798 if (ConvertToString(Record, 0, S)) 2799 return Error("Invalid record"); 2800 TheModule->setModuleInlineAsm(S); 2801 break; 2802 } 2803 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2804 // FIXME: Remove in 4.0. 2805 std::string S; 2806 if (ConvertToString(Record, 0, S)) 2807 return Error("Invalid record"); 2808 // Ignore value. 2809 break; 2810 } 2811 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2812 std::string S; 2813 if (ConvertToString(Record, 0, S)) 2814 return Error("Invalid record"); 2815 SectionTable.push_back(S); 2816 break; 2817 } 2818 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2819 std::string S; 2820 if (ConvertToString(Record, 0, S)) 2821 return Error("Invalid record"); 2822 GCTable.push_back(S); 2823 break; 2824 } 2825 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2826 if (Record.size() < 2) 2827 return Error("Invalid record"); 2828 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2829 unsigned ComdatNameSize = Record[1]; 2830 std::string ComdatName; 2831 ComdatName.reserve(ComdatNameSize); 2832 for (unsigned i = 0; i != ComdatNameSize; ++i) 2833 ComdatName += (char)Record[2 + i]; 2834 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2835 C->setSelectionKind(SK); 2836 ComdatList.push_back(C); 2837 break; 2838 } 2839 // GLOBALVAR: [pointer type, isconst, initid, 2840 // linkage, alignment, section, visibility, threadlocal, 2841 // unnamed_addr, externally_initialized, dllstorageclass, 2842 // comdat] 2843 case bitc::MODULE_CODE_GLOBALVAR: { 2844 if (Record.size() < 6) 2845 return Error("Invalid record"); 2846 Type *Ty = getTypeByID(Record[0]); 2847 if (!Ty) 2848 return Error("Invalid record"); 2849 if (!Ty->isPointerTy()) 2850 return Error("Invalid type for value"); 2851 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2852 Ty = cast<PointerType>(Ty)->getElementType(); 2853 2854 bool isConstant = Record[1]; 2855 uint64_t RawLinkage = Record[3]; 2856 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2857 unsigned Alignment; 2858 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2859 return EC; 2860 std::string Section; 2861 if (Record[5]) { 2862 if (Record[5]-1 >= SectionTable.size()) 2863 return Error("Invalid ID"); 2864 Section = SectionTable[Record[5]-1]; 2865 } 2866 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2867 // Local linkage must have default visibility. 2868 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2869 // FIXME: Change to an error if non-default in 4.0. 2870 Visibility = GetDecodedVisibility(Record[6]); 2871 2872 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2873 if (Record.size() > 7) 2874 TLM = GetDecodedThreadLocalMode(Record[7]); 2875 2876 bool UnnamedAddr = false; 2877 if (Record.size() > 8) 2878 UnnamedAddr = Record[8]; 2879 2880 bool ExternallyInitialized = false; 2881 if (Record.size() > 9) 2882 ExternallyInitialized = Record[9]; 2883 2884 GlobalVariable *NewGV = 2885 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2886 TLM, AddressSpace, ExternallyInitialized); 2887 NewGV->setAlignment(Alignment); 2888 if (!Section.empty()) 2889 NewGV->setSection(Section); 2890 NewGV->setVisibility(Visibility); 2891 NewGV->setUnnamedAddr(UnnamedAddr); 2892 2893 if (Record.size() > 10) 2894 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2895 else 2896 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2897 2898 ValueList.push_back(NewGV); 2899 2900 // Remember which value to use for the global initializer. 2901 if (unsigned InitID = Record[2]) 2902 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2903 2904 if (Record.size() > 11) { 2905 if (unsigned ComdatID = Record[11]) { 2906 assert(ComdatID <= ComdatList.size()); 2907 NewGV->setComdat(ComdatList[ComdatID - 1]); 2908 } 2909 } else if (hasImplicitComdat(RawLinkage)) { 2910 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2911 } 2912 break; 2913 } 2914 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2915 // alignment, section, visibility, gc, unnamed_addr, 2916 // prologuedata, dllstorageclass, comdat, prefixdata] 2917 case bitc::MODULE_CODE_FUNCTION: { 2918 if (Record.size() < 8) 2919 return Error("Invalid record"); 2920 Type *Ty = getTypeByID(Record[0]); 2921 if (!Ty) 2922 return Error("Invalid record"); 2923 if (!Ty->isPointerTy()) 2924 return Error("Invalid type for value"); 2925 FunctionType *FTy = 2926 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2927 if (!FTy) 2928 return Error("Invalid type for value"); 2929 2930 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2931 "", TheModule); 2932 2933 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2934 bool isProto = Record[2]; 2935 uint64_t RawLinkage = Record[3]; 2936 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2937 Func->setAttributes(getAttributes(Record[4])); 2938 2939 unsigned Alignment; 2940 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 2941 return EC; 2942 Func->setAlignment(Alignment); 2943 if (Record[6]) { 2944 if (Record[6]-1 >= SectionTable.size()) 2945 return Error("Invalid ID"); 2946 Func->setSection(SectionTable[Record[6]-1]); 2947 } 2948 // Local linkage must have default visibility. 2949 if (!Func->hasLocalLinkage()) 2950 // FIXME: Change to an error if non-default in 4.0. 2951 Func->setVisibility(GetDecodedVisibility(Record[7])); 2952 if (Record.size() > 8 && Record[8]) { 2953 if (Record[8]-1 > GCTable.size()) 2954 return Error("Invalid ID"); 2955 Func->setGC(GCTable[Record[8]-1].c_str()); 2956 } 2957 bool UnnamedAddr = false; 2958 if (Record.size() > 9) 2959 UnnamedAddr = Record[9]; 2960 Func->setUnnamedAddr(UnnamedAddr); 2961 if (Record.size() > 10 && Record[10] != 0) 2962 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2963 2964 if (Record.size() > 11) 2965 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2966 else 2967 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2968 2969 if (Record.size() > 12) { 2970 if (unsigned ComdatID = Record[12]) { 2971 assert(ComdatID <= ComdatList.size()); 2972 Func->setComdat(ComdatList[ComdatID - 1]); 2973 } 2974 } else if (hasImplicitComdat(RawLinkage)) { 2975 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2976 } 2977 2978 if (Record.size() > 13 && Record[13] != 0) 2979 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2980 2981 ValueList.push_back(Func); 2982 2983 // If this is a function with a body, remember the prototype we are 2984 // creating now, so that we can match up the body with them later. 2985 if (!isProto) { 2986 Func->setIsMaterializable(true); 2987 FunctionsWithBodies.push_back(Func); 2988 if (LazyStreamer) 2989 DeferredFunctionInfo[Func] = 0; 2990 } 2991 break; 2992 } 2993 // ALIAS: [alias type, aliasee val#, linkage] 2994 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2995 case bitc::MODULE_CODE_ALIAS: { 2996 if (Record.size() < 3) 2997 return Error("Invalid record"); 2998 Type *Ty = getTypeByID(Record[0]); 2999 if (!Ty) 3000 return Error("Invalid record"); 3001 auto *PTy = dyn_cast<PointerType>(Ty); 3002 if (!PTy) 3003 return Error("Invalid type for value"); 3004 3005 auto *NewGA = 3006 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 3007 getDecodedLinkage(Record[2]), "", TheModule); 3008 // Old bitcode files didn't have visibility field. 3009 // Local linkage must have default visibility. 3010 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3011 // FIXME: Change to an error if non-default in 4.0. 3012 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 3013 if (Record.size() > 4) 3014 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 3015 else 3016 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 3017 if (Record.size() > 5) 3018 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 3019 if (Record.size() > 6) 3020 NewGA->setUnnamedAddr(Record[6]); 3021 ValueList.push_back(NewGA); 3022 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3023 break; 3024 } 3025 /// MODULE_CODE_PURGEVALS: [numvals] 3026 case bitc::MODULE_CODE_PURGEVALS: 3027 // Trim down the value list to the specified size. 3028 if (Record.size() < 1 || Record[0] > ValueList.size()) 3029 return Error("Invalid record"); 3030 ValueList.shrinkTo(Record[0]); 3031 break; 3032 } 3033 Record.clear(); 3034 } 3035 } 3036 3037 std::error_code BitcodeReader::ParseBitcodeInto(Module *M, 3038 bool ShouldLazyLoadMetadata) { 3039 TheModule = nullptr; 3040 3041 if (std::error_code EC = InitStream()) 3042 return EC; 3043 3044 // Sniff for the signature. 3045 if (Stream.Read(8) != 'B' || 3046 Stream.Read(8) != 'C' || 3047 Stream.Read(4) != 0x0 || 3048 Stream.Read(4) != 0xC || 3049 Stream.Read(4) != 0xE || 3050 Stream.Read(4) != 0xD) 3051 return Error("Invalid bitcode signature"); 3052 3053 // We expect a number of well-defined blocks, though we don't necessarily 3054 // need to understand them all. 3055 while (1) { 3056 if (Stream.AtEndOfStream()) 3057 return std::error_code(); 3058 3059 BitstreamEntry Entry = 3060 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3061 3062 switch (Entry.Kind) { 3063 case BitstreamEntry::Error: 3064 return Error("Malformed block"); 3065 case BitstreamEntry::EndBlock: 3066 return std::error_code(); 3067 3068 case BitstreamEntry::SubBlock: 3069 switch (Entry.ID) { 3070 case bitc::BLOCKINFO_BLOCK_ID: 3071 if (Stream.ReadBlockInfoBlock()) 3072 return Error("Malformed block"); 3073 break; 3074 case bitc::MODULE_BLOCK_ID: 3075 // Reject multiple MODULE_BLOCK's in a single bitstream. 3076 if (TheModule) 3077 return Error("Invalid multiple blocks"); 3078 TheModule = M; 3079 if (std::error_code EC = ParseModule(false, ShouldLazyLoadMetadata)) 3080 return EC; 3081 if (LazyStreamer) 3082 return std::error_code(); 3083 break; 3084 default: 3085 if (Stream.SkipBlock()) 3086 return Error("Invalid record"); 3087 break; 3088 } 3089 continue; 3090 case BitstreamEntry::Record: 3091 // There should be no records in the top-level of blocks. 3092 3093 // The ranlib in Xcode 4 will align archive members by appending newlines 3094 // to the end of them. If this file size is a multiple of 4 but not 8, we 3095 // have to read and ignore these final 4 bytes :-( 3096 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 3097 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 3098 Stream.AtEndOfStream()) 3099 return std::error_code(); 3100 3101 return Error("Invalid record"); 3102 } 3103 } 3104 } 3105 3106 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3107 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3108 return Error("Invalid record"); 3109 3110 SmallVector<uint64_t, 64> Record; 3111 3112 std::string Triple; 3113 // Read all the records for this module. 3114 while (1) { 3115 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3116 3117 switch (Entry.Kind) { 3118 case BitstreamEntry::SubBlock: // Handled for us already. 3119 case BitstreamEntry::Error: 3120 return Error("Malformed block"); 3121 case BitstreamEntry::EndBlock: 3122 return Triple; 3123 case BitstreamEntry::Record: 3124 // The interesting case. 3125 break; 3126 } 3127 3128 // Read a record. 3129 switch (Stream.readRecord(Entry.ID, Record)) { 3130 default: break; // Default behavior, ignore unknown content. 3131 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3132 std::string S; 3133 if (ConvertToString(Record, 0, S)) 3134 return Error("Invalid record"); 3135 Triple = S; 3136 break; 3137 } 3138 } 3139 Record.clear(); 3140 } 3141 llvm_unreachable("Exit infinite loop"); 3142 } 3143 3144 ErrorOr<std::string> BitcodeReader::parseTriple() { 3145 if (std::error_code EC = InitStream()) 3146 return EC; 3147 3148 // Sniff for the signature. 3149 if (Stream.Read(8) != 'B' || 3150 Stream.Read(8) != 'C' || 3151 Stream.Read(4) != 0x0 || 3152 Stream.Read(4) != 0xC || 3153 Stream.Read(4) != 0xE || 3154 Stream.Read(4) != 0xD) 3155 return Error("Invalid bitcode signature"); 3156 3157 // We expect a number of well-defined blocks, though we don't necessarily 3158 // need to understand them all. 3159 while (1) { 3160 BitstreamEntry Entry = Stream.advance(); 3161 3162 switch (Entry.Kind) { 3163 case BitstreamEntry::Error: 3164 return Error("Malformed block"); 3165 case BitstreamEntry::EndBlock: 3166 return std::error_code(); 3167 3168 case BitstreamEntry::SubBlock: 3169 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3170 return parseModuleTriple(); 3171 3172 // Ignore other sub-blocks. 3173 if (Stream.SkipBlock()) 3174 return Error("Malformed block"); 3175 continue; 3176 3177 case BitstreamEntry::Record: 3178 Stream.skipRecord(Entry.ID); 3179 continue; 3180 } 3181 } 3182 } 3183 3184 /// ParseMetadataAttachment - Parse metadata attachments. 3185 std::error_code BitcodeReader::ParseMetadataAttachment() { 3186 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3187 return Error("Invalid record"); 3188 3189 SmallVector<uint64_t, 64> Record; 3190 while (1) { 3191 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3192 3193 switch (Entry.Kind) { 3194 case BitstreamEntry::SubBlock: // Handled for us already. 3195 case BitstreamEntry::Error: 3196 return Error("Malformed block"); 3197 case BitstreamEntry::EndBlock: 3198 return std::error_code(); 3199 case BitstreamEntry::Record: 3200 // The interesting case. 3201 break; 3202 } 3203 3204 // Read a metadata attachment record. 3205 Record.clear(); 3206 switch (Stream.readRecord(Entry.ID, Record)) { 3207 default: // Default behavior: ignore. 3208 break; 3209 case bitc::METADATA_ATTACHMENT: { 3210 unsigned RecordLength = Record.size(); 3211 if (Record.empty() || (RecordLength - 1) % 2 == 1) 3212 return Error("Invalid record"); 3213 Instruction *Inst = InstructionList[Record[0]]; 3214 for (unsigned i = 1; i != RecordLength; i = i+2) { 3215 unsigned Kind = Record[i]; 3216 DenseMap<unsigned, unsigned>::iterator I = 3217 MDKindMap.find(Kind); 3218 if (I == MDKindMap.end()) 3219 return Error("Invalid ID"); 3220 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3221 if (isa<LocalAsMetadata>(Node)) 3222 // Drop the attachment. This used to be legal, but there's no 3223 // upgrade path. 3224 break; 3225 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3226 if (I->second == LLVMContext::MD_tbaa) 3227 InstsWithTBAATag.push_back(Inst); 3228 } 3229 break; 3230 } 3231 } 3232 } 3233 } 3234 3235 /// ParseFunctionBody - Lazily parse the specified function body block. 3236 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 3237 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3238 return Error("Invalid record"); 3239 3240 InstructionList.clear(); 3241 unsigned ModuleValueListSize = ValueList.size(); 3242 unsigned ModuleMDValueListSize = MDValueList.size(); 3243 3244 // Add all the function arguments to the value table. 3245 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3246 ValueList.push_back(I); 3247 3248 unsigned NextValueNo = ValueList.size(); 3249 BasicBlock *CurBB = nullptr; 3250 unsigned CurBBNo = 0; 3251 3252 DebugLoc LastLoc; 3253 auto getLastInstruction = [&]() -> Instruction * { 3254 if (CurBB && !CurBB->empty()) 3255 return &CurBB->back(); 3256 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3257 !FunctionBBs[CurBBNo - 1]->empty()) 3258 return &FunctionBBs[CurBBNo - 1]->back(); 3259 return nullptr; 3260 }; 3261 3262 // Read all the records. 3263 SmallVector<uint64_t, 64> Record; 3264 while (1) { 3265 BitstreamEntry Entry = Stream.advance(); 3266 3267 switch (Entry.Kind) { 3268 case BitstreamEntry::Error: 3269 return Error("Malformed block"); 3270 case BitstreamEntry::EndBlock: 3271 goto OutOfRecordLoop; 3272 3273 case BitstreamEntry::SubBlock: 3274 switch (Entry.ID) { 3275 default: // Skip unknown content. 3276 if (Stream.SkipBlock()) 3277 return Error("Invalid record"); 3278 break; 3279 case bitc::CONSTANTS_BLOCK_ID: 3280 if (std::error_code EC = ParseConstants()) 3281 return EC; 3282 NextValueNo = ValueList.size(); 3283 break; 3284 case bitc::VALUE_SYMTAB_BLOCK_ID: 3285 if (std::error_code EC = ParseValueSymbolTable()) 3286 return EC; 3287 break; 3288 case bitc::METADATA_ATTACHMENT_ID: 3289 if (std::error_code EC = ParseMetadataAttachment()) 3290 return EC; 3291 break; 3292 case bitc::METADATA_BLOCK_ID: 3293 if (std::error_code EC = ParseMetadata()) 3294 return EC; 3295 break; 3296 case bitc::USELIST_BLOCK_ID: 3297 if (std::error_code EC = ParseUseLists()) 3298 return EC; 3299 break; 3300 } 3301 continue; 3302 3303 case BitstreamEntry::Record: 3304 // The interesting case. 3305 break; 3306 } 3307 3308 // Read a record. 3309 Record.clear(); 3310 Instruction *I = nullptr; 3311 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3312 switch (BitCode) { 3313 default: // Default behavior: reject 3314 return Error("Invalid value"); 3315 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3316 if (Record.size() < 1 || Record[0] == 0) 3317 return Error("Invalid record"); 3318 // Create all the basic blocks for the function. 3319 FunctionBBs.resize(Record[0]); 3320 3321 // See if anything took the address of blocks in this function. 3322 auto BBFRI = BasicBlockFwdRefs.find(F); 3323 if (BBFRI == BasicBlockFwdRefs.end()) { 3324 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3325 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3326 } else { 3327 auto &BBRefs = BBFRI->second; 3328 // Check for invalid basic block references. 3329 if (BBRefs.size() > FunctionBBs.size()) 3330 return Error("Invalid ID"); 3331 assert(!BBRefs.empty() && "Unexpected empty array"); 3332 assert(!BBRefs.front() && "Invalid reference to entry block"); 3333 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3334 ++I) 3335 if (I < RE && BBRefs[I]) { 3336 BBRefs[I]->insertInto(F); 3337 FunctionBBs[I] = BBRefs[I]; 3338 } else { 3339 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3340 } 3341 3342 // Erase from the table. 3343 BasicBlockFwdRefs.erase(BBFRI); 3344 } 3345 3346 CurBB = FunctionBBs[0]; 3347 continue; 3348 } 3349 3350 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3351 // This record indicates that the last instruction is at the same 3352 // location as the previous instruction with a location. 3353 I = getLastInstruction(); 3354 3355 if (!I) 3356 return Error("Invalid record"); 3357 I->setDebugLoc(LastLoc); 3358 I = nullptr; 3359 continue; 3360 3361 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3362 I = getLastInstruction(); 3363 if (!I || Record.size() < 4) 3364 return Error("Invalid record"); 3365 3366 unsigned Line = Record[0], Col = Record[1]; 3367 unsigned ScopeID = Record[2], IAID = Record[3]; 3368 3369 MDNode *Scope = nullptr, *IA = nullptr; 3370 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3371 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3372 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3373 I->setDebugLoc(LastLoc); 3374 I = nullptr; 3375 continue; 3376 } 3377 3378 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3379 unsigned OpNum = 0; 3380 Value *LHS, *RHS; 3381 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3382 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3383 OpNum+1 > Record.size()) 3384 return Error("Invalid record"); 3385 3386 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3387 if (Opc == -1) 3388 return Error("Invalid record"); 3389 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3390 InstructionList.push_back(I); 3391 if (OpNum < Record.size()) { 3392 if (Opc == Instruction::Add || 3393 Opc == Instruction::Sub || 3394 Opc == Instruction::Mul || 3395 Opc == Instruction::Shl) { 3396 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3397 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3398 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3399 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3400 } else if (Opc == Instruction::SDiv || 3401 Opc == Instruction::UDiv || 3402 Opc == Instruction::LShr || 3403 Opc == Instruction::AShr) { 3404 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3405 cast<BinaryOperator>(I)->setIsExact(true); 3406 } else if (isa<FPMathOperator>(I)) { 3407 FastMathFlags FMF; 3408 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3409 FMF.setUnsafeAlgebra(); 3410 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3411 FMF.setNoNaNs(); 3412 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3413 FMF.setNoInfs(); 3414 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3415 FMF.setNoSignedZeros(); 3416 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3417 FMF.setAllowReciprocal(); 3418 if (FMF.any()) 3419 I->setFastMathFlags(FMF); 3420 } 3421 3422 } 3423 break; 3424 } 3425 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3426 unsigned OpNum = 0; 3427 Value *Op; 3428 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3429 OpNum+2 != Record.size()) 3430 return Error("Invalid record"); 3431 3432 Type *ResTy = getTypeByID(Record[OpNum]); 3433 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 3434 if (Opc == -1 || !ResTy) 3435 return Error("Invalid record"); 3436 Instruction *Temp = nullptr; 3437 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3438 if (Temp) { 3439 InstructionList.push_back(Temp); 3440 CurBB->getInstList().push_back(Temp); 3441 } 3442 } else { 3443 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3444 } 3445 InstructionList.push_back(I); 3446 break; 3447 } 3448 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3449 case bitc::FUNC_CODE_INST_GEP_OLD: 3450 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3451 unsigned OpNum = 0; 3452 3453 Type *Ty; 3454 bool InBounds; 3455 3456 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3457 InBounds = Record[OpNum++]; 3458 Ty = getTypeByID(Record[OpNum++]); 3459 } else { 3460 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3461 Ty = nullptr; 3462 } 3463 3464 Value *BasePtr; 3465 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3466 return Error("Invalid record"); 3467 3468 if (Ty && 3469 Ty != 3470 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3471 ->getElementType()) 3472 return Error( 3473 "Explicit gep type does not match pointee type of pointer operand"); 3474 3475 SmallVector<Value*, 16> GEPIdx; 3476 while (OpNum != Record.size()) { 3477 Value *Op; 3478 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3479 return Error("Invalid record"); 3480 GEPIdx.push_back(Op); 3481 } 3482 3483 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3484 3485 InstructionList.push_back(I); 3486 if (InBounds) 3487 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3488 break; 3489 } 3490 3491 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3492 // EXTRACTVAL: [opty, opval, n x indices] 3493 unsigned OpNum = 0; 3494 Value *Agg; 3495 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3496 return Error("Invalid record"); 3497 3498 SmallVector<unsigned, 4> EXTRACTVALIdx; 3499 Type *CurTy = Agg->getType(); 3500 for (unsigned RecSize = Record.size(); 3501 OpNum != RecSize; ++OpNum) { 3502 bool IsArray = CurTy->isArrayTy(); 3503 bool IsStruct = CurTy->isStructTy(); 3504 uint64_t Index = Record[OpNum]; 3505 3506 if (!IsStruct && !IsArray) 3507 return Error("EXTRACTVAL: Invalid type"); 3508 if ((unsigned)Index != Index) 3509 return Error("Invalid value"); 3510 if (IsStruct && Index >= CurTy->subtypes().size()) 3511 return Error("EXTRACTVAL: Invalid struct index"); 3512 if (IsArray && Index >= CurTy->getArrayNumElements()) 3513 return Error("EXTRACTVAL: Invalid array index"); 3514 EXTRACTVALIdx.push_back((unsigned)Index); 3515 3516 if (IsStruct) 3517 CurTy = CurTy->subtypes()[Index]; 3518 else 3519 CurTy = CurTy->subtypes()[0]; 3520 } 3521 3522 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3523 InstructionList.push_back(I); 3524 break; 3525 } 3526 3527 case bitc::FUNC_CODE_INST_INSERTVAL: { 3528 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3529 unsigned OpNum = 0; 3530 Value *Agg; 3531 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3532 return Error("Invalid record"); 3533 Value *Val; 3534 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3535 return Error("Invalid record"); 3536 3537 SmallVector<unsigned, 4> INSERTVALIdx; 3538 Type *CurTy = Agg->getType(); 3539 for (unsigned RecSize = Record.size(); 3540 OpNum != RecSize; ++OpNum) { 3541 bool IsArray = CurTy->isArrayTy(); 3542 bool IsStruct = CurTy->isStructTy(); 3543 uint64_t Index = Record[OpNum]; 3544 3545 if (!IsStruct && !IsArray) 3546 return Error("INSERTVAL: Invalid type"); 3547 if (!CurTy->isStructTy() && !CurTy->isArrayTy()) 3548 return Error("Invalid type"); 3549 if ((unsigned)Index != Index) 3550 return Error("Invalid value"); 3551 if (IsStruct && Index >= CurTy->subtypes().size()) 3552 return Error("INSERTVAL: Invalid struct index"); 3553 if (IsArray && Index >= CurTy->getArrayNumElements()) 3554 return Error("INSERTVAL: Invalid array index"); 3555 3556 INSERTVALIdx.push_back((unsigned)Index); 3557 if (IsStruct) 3558 CurTy = CurTy->subtypes()[Index]; 3559 else 3560 CurTy = CurTy->subtypes()[0]; 3561 } 3562 3563 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3564 InstructionList.push_back(I); 3565 break; 3566 } 3567 3568 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3569 // obsolete form of select 3570 // handles select i1 ... in old bitcode 3571 unsigned OpNum = 0; 3572 Value *TrueVal, *FalseVal, *Cond; 3573 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3574 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3575 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3576 return Error("Invalid record"); 3577 3578 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3579 InstructionList.push_back(I); 3580 break; 3581 } 3582 3583 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3584 // new form of select 3585 // handles select i1 or select [N x i1] 3586 unsigned OpNum = 0; 3587 Value *TrueVal, *FalseVal, *Cond; 3588 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3589 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3590 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3591 return Error("Invalid record"); 3592 3593 // select condition can be either i1 or [N x i1] 3594 if (VectorType* vector_type = 3595 dyn_cast<VectorType>(Cond->getType())) { 3596 // expect <n x i1> 3597 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3598 return Error("Invalid type for value"); 3599 } else { 3600 // expect i1 3601 if (Cond->getType() != Type::getInt1Ty(Context)) 3602 return Error("Invalid type for value"); 3603 } 3604 3605 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3606 InstructionList.push_back(I); 3607 break; 3608 } 3609 3610 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3611 unsigned OpNum = 0; 3612 Value *Vec, *Idx; 3613 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3614 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3615 return Error("Invalid record"); 3616 I = ExtractElementInst::Create(Vec, Idx); 3617 InstructionList.push_back(I); 3618 break; 3619 } 3620 3621 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3622 unsigned OpNum = 0; 3623 Value *Vec, *Elt, *Idx; 3624 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3625 popValue(Record, OpNum, NextValueNo, 3626 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3627 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3628 return Error("Invalid record"); 3629 I = InsertElementInst::Create(Vec, Elt, Idx); 3630 InstructionList.push_back(I); 3631 break; 3632 } 3633 3634 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3635 unsigned OpNum = 0; 3636 Value *Vec1, *Vec2, *Mask; 3637 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3638 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3639 return Error("Invalid record"); 3640 3641 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3642 return Error("Invalid record"); 3643 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3644 InstructionList.push_back(I); 3645 break; 3646 } 3647 3648 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3649 // Old form of ICmp/FCmp returning bool 3650 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3651 // both legal on vectors but had different behaviour. 3652 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3653 // FCmp/ICmp returning bool or vector of bool 3654 3655 unsigned OpNum = 0; 3656 Value *LHS, *RHS; 3657 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3658 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3659 OpNum+1 != Record.size()) 3660 return Error("Invalid record"); 3661 3662 if (LHS->getType()->isFPOrFPVectorTy()) 3663 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3664 else 3665 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3666 InstructionList.push_back(I); 3667 break; 3668 } 3669 3670 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3671 { 3672 unsigned Size = Record.size(); 3673 if (Size == 0) { 3674 I = ReturnInst::Create(Context); 3675 InstructionList.push_back(I); 3676 break; 3677 } 3678 3679 unsigned OpNum = 0; 3680 Value *Op = nullptr; 3681 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3682 return Error("Invalid record"); 3683 if (OpNum != Record.size()) 3684 return Error("Invalid record"); 3685 3686 I = ReturnInst::Create(Context, Op); 3687 InstructionList.push_back(I); 3688 break; 3689 } 3690 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3691 if (Record.size() != 1 && Record.size() != 3) 3692 return Error("Invalid record"); 3693 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3694 if (!TrueDest) 3695 return Error("Invalid record"); 3696 3697 if (Record.size() == 1) { 3698 I = BranchInst::Create(TrueDest); 3699 InstructionList.push_back(I); 3700 } 3701 else { 3702 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3703 Value *Cond = getValue(Record, 2, NextValueNo, 3704 Type::getInt1Ty(Context)); 3705 if (!FalseDest || !Cond) 3706 return Error("Invalid record"); 3707 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3708 InstructionList.push_back(I); 3709 } 3710 break; 3711 } 3712 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3713 // Check magic 3714 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3715 // "New" SwitchInst format with case ranges. The changes to write this 3716 // format were reverted but we still recognize bitcode that uses it. 3717 // Hopefully someday we will have support for case ranges and can use 3718 // this format again. 3719 3720 Type *OpTy = getTypeByID(Record[1]); 3721 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3722 3723 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3724 BasicBlock *Default = getBasicBlock(Record[3]); 3725 if (!OpTy || !Cond || !Default) 3726 return Error("Invalid record"); 3727 3728 unsigned NumCases = Record[4]; 3729 3730 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3731 InstructionList.push_back(SI); 3732 3733 unsigned CurIdx = 5; 3734 for (unsigned i = 0; i != NumCases; ++i) { 3735 SmallVector<ConstantInt*, 1> CaseVals; 3736 unsigned NumItems = Record[CurIdx++]; 3737 for (unsigned ci = 0; ci != NumItems; ++ci) { 3738 bool isSingleNumber = Record[CurIdx++]; 3739 3740 APInt Low; 3741 unsigned ActiveWords = 1; 3742 if (ValueBitWidth > 64) 3743 ActiveWords = Record[CurIdx++]; 3744 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3745 ValueBitWidth); 3746 CurIdx += ActiveWords; 3747 3748 if (!isSingleNumber) { 3749 ActiveWords = 1; 3750 if (ValueBitWidth > 64) 3751 ActiveWords = Record[CurIdx++]; 3752 APInt High = 3753 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3754 ValueBitWidth); 3755 CurIdx += ActiveWords; 3756 3757 // FIXME: It is not clear whether values in the range should be 3758 // compared as signed or unsigned values. The partially 3759 // implemented changes that used this format in the past used 3760 // unsigned comparisons. 3761 for ( ; Low.ule(High); ++Low) 3762 CaseVals.push_back(ConstantInt::get(Context, Low)); 3763 } else 3764 CaseVals.push_back(ConstantInt::get(Context, Low)); 3765 } 3766 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3767 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3768 cve = CaseVals.end(); cvi != cve; ++cvi) 3769 SI->addCase(*cvi, DestBB); 3770 } 3771 I = SI; 3772 break; 3773 } 3774 3775 // Old SwitchInst format without case ranges. 3776 3777 if (Record.size() < 3 || (Record.size() & 1) == 0) 3778 return Error("Invalid record"); 3779 Type *OpTy = getTypeByID(Record[0]); 3780 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3781 BasicBlock *Default = getBasicBlock(Record[2]); 3782 if (!OpTy || !Cond || !Default) 3783 return Error("Invalid record"); 3784 unsigned NumCases = (Record.size()-3)/2; 3785 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3786 InstructionList.push_back(SI); 3787 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3788 ConstantInt *CaseVal = 3789 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3790 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3791 if (!CaseVal || !DestBB) { 3792 delete SI; 3793 return Error("Invalid record"); 3794 } 3795 SI->addCase(CaseVal, DestBB); 3796 } 3797 I = SI; 3798 break; 3799 } 3800 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3801 if (Record.size() < 2) 3802 return Error("Invalid record"); 3803 Type *OpTy = getTypeByID(Record[0]); 3804 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3805 if (!OpTy || !Address) 3806 return Error("Invalid record"); 3807 unsigned NumDests = Record.size()-2; 3808 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3809 InstructionList.push_back(IBI); 3810 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3811 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3812 IBI->addDestination(DestBB); 3813 } else { 3814 delete IBI; 3815 return Error("Invalid record"); 3816 } 3817 } 3818 I = IBI; 3819 break; 3820 } 3821 3822 case bitc::FUNC_CODE_INST_INVOKE: { 3823 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3824 if (Record.size() < 4) 3825 return Error("Invalid record"); 3826 AttributeSet PAL = getAttributes(Record[0]); 3827 unsigned CCInfo = Record[1]; 3828 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3829 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3830 3831 unsigned OpNum = 4; 3832 Value *Callee; 3833 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3834 return Error("Invalid record"); 3835 3836 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3837 FunctionType *FTy = !CalleeTy ? nullptr : 3838 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3839 3840 // Check that the right number of fixed parameters are here. 3841 if (!FTy || !NormalBB || !UnwindBB || 3842 Record.size() < OpNum+FTy->getNumParams()) 3843 return Error("Invalid record"); 3844 3845 SmallVector<Value*, 16> Ops; 3846 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3847 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3848 FTy->getParamType(i))); 3849 if (!Ops.back()) 3850 return Error("Invalid record"); 3851 } 3852 3853 if (!FTy->isVarArg()) { 3854 if (Record.size() != OpNum) 3855 return Error("Invalid record"); 3856 } else { 3857 // Read type/value pairs for varargs params. 3858 while (OpNum != Record.size()) { 3859 Value *Op; 3860 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3861 return Error("Invalid record"); 3862 Ops.push_back(Op); 3863 } 3864 } 3865 3866 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3867 InstructionList.push_back(I); 3868 cast<InvokeInst>(I)->setCallingConv( 3869 static_cast<CallingConv::ID>(CCInfo)); 3870 cast<InvokeInst>(I)->setAttributes(PAL); 3871 break; 3872 } 3873 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3874 unsigned Idx = 0; 3875 Value *Val = nullptr; 3876 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3877 return Error("Invalid record"); 3878 I = ResumeInst::Create(Val); 3879 InstructionList.push_back(I); 3880 break; 3881 } 3882 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3883 I = new UnreachableInst(Context); 3884 InstructionList.push_back(I); 3885 break; 3886 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3887 if (Record.size() < 1 || ((Record.size()-1)&1)) 3888 return Error("Invalid record"); 3889 Type *Ty = getTypeByID(Record[0]); 3890 if (!Ty) 3891 return Error("Invalid record"); 3892 3893 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3894 InstructionList.push_back(PN); 3895 3896 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3897 Value *V; 3898 // With the new function encoding, it is possible that operands have 3899 // negative IDs (for forward references). Use a signed VBR 3900 // representation to keep the encoding small. 3901 if (UseRelativeIDs) 3902 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3903 else 3904 V = getValue(Record, 1+i, NextValueNo, Ty); 3905 BasicBlock *BB = getBasicBlock(Record[2+i]); 3906 if (!V || !BB) 3907 return Error("Invalid record"); 3908 PN->addIncoming(V, BB); 3909 } 3910 I = PN; 3911 break; 3912 } 3913 3914 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3915 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3916 unsigned Idx = 0; 3917 if (Record.size() < 4) 3918 return Error("Invalid record"); 3919 Type *Ty = getTypeByID(Record[Idx++]); 3920 if (!Ty) 3921 return Error("Invalid record"); 3922 Value *PersFn = nullptr; 3923 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3924 return Error("Invalid record"); 3925 3926 bool IsCleanup = !!Record[Idx++]; 3927 unsigned NumClauses = Record[Idx++]; 3928 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3929 LP->setCleanup(IsCleanup); 3930 for (unsigned J = 0; J != NumClauses; ++J) { 3931 LandingPadInst::ClauseType CT = 3932 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3933 Value *Val; 3934 3935 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3936 delete LP; 3937 return Error("Invalid record"); 3938 } 3939 3940 assert((CT != LandingPadInst::Catch || 3941 !isa<ArrayType>(Val->getType())) && 3942 "Catch clause has a invalid type!"); 3943 assert((CT != LandingPadInst::Filter || 3944 isa<ArrayType>(Val->getType())) && 3945 "Filter clause has invalid type!"); 3946 LP->addClause(cast<Constant>(Val)); 3947 } 3948 3949 I = LP; 3950 InstructionList.push_back(I); 3951 break; 3952 } 3953 3954 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3955 if (Record.size() != 4) 3956 return Error("Invalid record"); 3957 PointerType *Ty = 3958 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3959 Type *OpTy = getTypeByID(Record[1]); 3960 Value *Size = getFnValueByID(Record[2], OpTy); 3961 uint64_t AlignRecord = Record[3]; 3962 const uint64_t InAllocaMask = uint64_t(1) << 5; 3963 bool InAlloca = AlignRecord & InAllocaMask; 3964 unsigned Align; 3965 if (std::error_code EC = 3966 parseAlignmentValue(AlignRecord & ~InAllocaMask, Align)) { 3967 return EC; 3968 } 3969 if (!Ty || !Size) 3970 return Error("Invalid record"); 3971 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, Align); 3972 AI->setUsedWithInAlloca(InAlloca); 3973 I = AI; 3974 InstructionList.push_back(I); 3975 break; 3976 } 3977 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3978 unsigned OpNum = 0; 3979 Value *Op; 3980 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3981 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 3982 return Error("Invalid record"); 3983 3984 Type *Ty = nullptr; 3985 if (OpNum + 3 == Record.size()) 3986 Ty = getTypeByID(Record[OpNum++]); 3987 3988 unsigned Align; 3989 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 3990 return EC; 3991 I = new LoadInst(Op, "", Record[OpNum+1], Align); 3992 3993 if (Ty && Ty != I->getType()) 3994 return Error("Explicit load type does not match pointee type of " 3995 "pointer operand"); 3996 3997 InstructionList.push_back(I); 3998 break; 3999 } 4000 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4001 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4002 unsigned OpNum = 0; 4003 Value *Op; 4004 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4005 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4006 return Error("Invalid record"); 4007 4008 Type *Ty = nullptr; 4009 if (OpNum + 5 == Record.size()) 4010 Ty = getTypeByID(Record[OpNum++]); 4011 4012 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4013 if (Ordering == NotAtomic || Ordering == Release || 4014 Ordering == AcquireRelease) 4015 return Error("Invalid record"); 4016 if (Ordering != NotAtomic && Record[OpNum] == 0) 4017 return Error("Invalid record"); 4018 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4019 4020 unsigned Align; 4021 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4022 return EC; 4023 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4024 4025 (void)Ty; 4026 assert((!Ty || Ty == I->getType()) && 4027 "Explicit type doesn't match pointee type of the first operand"); 4028 4029 InstructionList.push_back(I); 4030 break; 4031 } 4032 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 4033 unsigned OpNum = 0; 4034 Value *Val, *Ptr; 4035 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4036 popValue(Record, OpNum, NextValueNo, 4037 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4038 OpNum+2 != Record.size()) 4039 return Error("Invalid record"); 4040 unsigned Align; 4041 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4042 return EC; 4043 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4044 InstructionList.push_back(I); 4045 break; 4046 } 4047 case bitc::FUNC_CODE_INST_STOREATOMIC: { 4048 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4049 unsigned OpNum = 0; 4050 Value *Val, *Ptr; 4051 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4052 popValue(Record, OpNum, NextValueNo, 4053 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4054 OpNum+4 != Record.size()) 4055 return Error("Invalid record"); 4056 4057 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4058 if (Ordering == NotAtomic || Ordering == Acquire || 4059 Ordering == AcquireRelease) 4060 return Error("Invalid record"); 4061 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4062 if (Ordering != NotAtomic && Record[OpNum] == 0) 4063 return Error("Invalid record"); 4064 4065 unsigned Align; 4066 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4067 return EC; 4068 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4069 InstructionList.push_back(I); 4070 break; 4071 } 4072 case bitc::FUNC_CODE_INST_CMPXCHG: { 4073 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4074 // failureordering?, isweak?] 4075 unsigned OpNum = 0; 4076 Value *Ptr, *Cmp, *New; 4077 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4078 popValue(Record, OpNum, NextValueNo, 4079 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 4080 popValue(Record, OpNum, NextValueNo, 4081 cast<PointerType>(Ptr->getType())->getElementType(), New) || 4082 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 4083 return Error("Invalid record"); 4084 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 4085 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4086 return Error("Invalid record"); 4087 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 4088 4089 AtomicOrdering FailureOrdering; 4090 if (Record.size() < 7) 4091 FailureOrdering = 4092 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4093 else 4094 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 4095 4096 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4097 SynchScope); 4098 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4099 4100 if (Record.size() < 8) { 4101 // Before weak cmpxchgs existed, the instruction simply returned the 4102 // value loaded from memory, so bitcode files from that era will be 4103 // expecting the first component of a modern cmpxchg. 4104 CurBB->getInstList().push_back(I); 4105 I = ExtractValueInst::Create(I, 0); 4106 } else { 4107 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4108 } 4109 4110 InstructionList.push_back(I); 4111 break; 4112 } 4113 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4114 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4115 unsigned OpNum = 0; 4116 Value *Ptr, *Val; 4117 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4118 popValue(Record, OpNum, NextValueNo, 4119 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4120 OpNum+4 != Record.size()) 4121 return Error("Invalid record"); 4122 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 4123 if (Operation < AtomicRMWInst::FIRST_BINOP || 4124 Operation > AtomicRMWInst::LAST_BINOP) 4125 return Error("Invalid record"); 4126 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4127 if (Ordering == NotAtomic || Ordering == Unordered) 4128 return Error("Invalid record"); 4129 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4130 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4131 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4132 InstructionList.push_back(I); 4133 break; 4134 } 4135 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4136 if (2 != Record.size()) 4137 return Error("Invalid record"); 4138 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 4139 if (Ordering == NotAtomic || Ordering == Unordered || 4140 Ordering == Monotonic) 4141 return Error("Invalid record"); 4142 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 4143 I = new FenceInst(Context, Ordering, SynchScope); 4144 InstructionList.push_back(I); 4145 break; 4146 } 4147 case bitc::FUNC_CODE_INST_CALL: { 4148 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4149 if (Record.size() < 3) 4150 return Error("Invalid record"); 4151 4152 AttributeSet PAL = getAttributes(Record[0]); 4153 unsigned CCInfo = Record[1]; 4154 4155 unsigned OpNum = 2; 4156 Value *Callee; 4157 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4158 return Error("Invalid record"); 4159 4160 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4161 FunctionType *FTy = nullptr; 4162 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4163 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 4164 return Error("Invalid record"); 4165 4166 SmallVector<Value*, 16> Args; 4167 // Read the fixed params. 4168 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4169 if (FTy->getParamType(i)->isLabelTy()) 4170 Args.push_back(getBasicBlock(Record[OpNum])); 4171 else 4172 Args.push_back(getValue(Record, OpNum, NextValueNo, 4173 FTy->getParamType(i))); 4174 if (!Args.back()) 4175 return Error("Invalid record"); 4176 } 4177 4178 // Read type/value pairs for varargs params. 4179 if (!FTy->isVarArg()) { 4180 if (OpNum != Record.size()) 4181 return Error("Invalid record"); 4182 } else { 4183 while (OpNum != Record.size()) { 4184 Value *Op; 4185 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4186 return Error("Invalid record"); 4187 Args.push_back(Op); 4188 } 4189 } 4190 4191 I = CallInst::Create(Callee, Args); 4192 InstructionList.push_back(I); 4193 cast<CallInst>(I)->setCallingConv( 4194 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4195 CallInst::TailCallKind TCK = CallInst::TCK_None; 4196 if (CCInfo & 1) 4197 TCK = CallInst::TCK_Tail; 4198 if (CCInfo & (1 << 14)) 4199 TCK = CallInst::TCK_MustTail; 4200 cast<CallInst>(I)->setTailCallKind(TCK); 4201 cast<CallInst>(I)->setAttributes(PAL); 4202 break; 4203 } 4204 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4205 if (Record.size() < 3) 4206 return Error("Invalid record"); 4207 Type *OpTy = getTypeByID(Record[0]); 4208 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4209 Type *ResTy = getTypeByID(Record[2]); 4210 if (!OpTy || !Op || !ResTy) 4211 return Error("Invalid record"); 4212 I = new VAArgInst(Op, ResTy); 4213 InstructionList.push_back(I); 4214 break; 4215 } 4216 } 4217 4218 // Add instruction to end of current BB. If there is no current BB, reject 4219 // this file. 4220 if (!CurBB) { 4221 delete I; 4222 return Error("Invalid instruction with no BB"); 4223 } 4224 CurBB->getInstList().push_back(I); 4225 4226 // If this was a terminator instruction, move to the next block. 4227 if (isa<TerminatorInst>(I)) { 4228 ++CurBBNo; 4229 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4230 } 4231 4232 // Non-void values get registered in the value table for future use. 4233 if (I && !I->getType()->isVoidTy()) 4234 ValueList.AssignValue(I, NextValueNo++); 4235 } 4236 4237 OutOfRecordLoop: 4238 4239 // Check the function list for unresolved values. 4240 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4241 if (!A->getParent()) { 4242 // We found at least one unresolved value. Nuke them all to avoid leaks. 4243 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4244 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4245 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4246 delete A; 4247 } 4248 } 4249 return Error("Never resolved value found in function"); 4250 } 4251 } 4252 4253 // FIXME: Check for unresolved forward-declared metadata references 4254 // and clean up leaks. 4255 4256 // Trim the value list down to the size it was before we parsed this function. 4257 ValueList.shrinkTo(ModuleValueListSize); 4258 MDValueList.shrinkTo(ModuleMDValueListSize); 4259 std::vector<BasicBlock*>().swap(FunctionBBs); 4260 return std::error_code(); 4261 } 4262 4263 /// Find the function body in the bitcode stream 4264 std::error_code BitcodeReader::FindFunctionInStream( 4265 Function *F, 4266 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4267 while (DeferredFunctionInfoIterator->second == 0) { 4268 if (Stream.AtEndOfStream()) 4269 return Error("Could not find function in stream"); 4270 // ParseModule will parse the next body in the stream and set its 4271 // position in the DeferredFunctionInfo map. 4272 if (std::error_code EC = ParseModule(true)) 4273 return EC; 4274 } 4275 return std::error_code(); 4276 } 4277 4278 //===----------------------------------------------------------------------===// 4279 // GVMaterializer implementation 4280 //===----------------------------------------------------------------------===// 4281 4282 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4283 4284 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4285 if (std::error_code EC = materializeMetadata()) 4286 return EC; 4287 4288 Function *F = dyn_cast<Function>(GV); 4289 // If it's not a function or is already material, ignore the request. 4290 if (!F || !F->isMaterializable()) 4291 return std::error_code(); 4292 4293 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4294 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4295 // If its position is recorded as 0, its body is somewhere in the stream 4296 // but we haven't seen it yet. 4297 if (DFII->second == 0 && LazyStreamer) 4298 if (std::error_code EC = FindFunctionInStream(F, DFII)) 4299 return EC; 4300 4301 // Move the bit stream to the saved position of the deferred function body. 4302 Stream.JumpToBit(DFII->second); 4303 4304 if (std::error_code EC = ParseFunctionBody(F)) 4305 return EC; 4306 F->setIsMaterializable(false); 4307 4308 // Upgrade any old intrinsic calls in the function. 4309 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 4310 E = UpgradedIntrinsics.end(); I != E; ++I) { 4311 if (I->first != I->second) { 4312 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4313 UI != UE;) { 4314 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4315 UpgradeIntrinsicCall(CI, I->second); 4316 } 4317 } 4318 } 4319 4320 // Bring in any functions that this function forward-referenced via 4321 // blockaddresses. 4322 return materializeForwardReferencedFunctions(); 4323 } 4324 4325 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4326 const Function *F = dyn_cast<Function>(GV); 4327 if (!F || F->isDeclaration()) 4328 return false; 4329 4330 // Dematerializing F would leave dangling references that wouldn't be 4331 // reconnected on re-materialization. 4332 if (BlockAddressesTaken.count(F)) 4333 return false; 4334 4335 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4336 } 4337 4338 void BitcodeReader::Dematerialize(GlobalValue *GV) { 4339 Function *F = dyn_cast<Function>(GV); 4340 // If this function isn't dematerializable, this is a noop. 4341 if (!F || !isDematerializable(F)) 4342 return; 4343 4344 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4345 4346 // Just forget the function body, we can remat it later. 4347 F->dropAllReferences(); 4348 F->setIsMaterializable(true); 4349 } 4350 4351 std::error_code BitcodeReader::MaterializeModule(Module *M) { 4352 assert(M == TheModule && 4353 "Can only Materialize the Module this BitcodeReader is attached to."); 4354 4355 if (std::error_code EC = materializeMetadata()) 4356 return EC; 4357 4358 // Promise to materialize all forward references. 4359 WillMaterializeAllForwardRefs = true; 4360 4361 // Iterate over the module, deserializing any functions that are still on 4362 // disk. 4363 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4364 F != E; ++F) { 4365 if (std::error_code EC = materialize(F)) 4366 return EC; 4367 } 4368 // At this point, if there are any function bodies, the current bit is 4369 // pointing to the END_BLOCK record after them. Now make sure the rest 4370 // of the bits in the module have been read. 4371 if (NextUnreadBit) 4372 ParseModule(true); 4373 4374 // Check that all block address forward references got resolved (as we 4375 // promised above). 4376 if (!BasicBlockFwdRefs.empty()) 4377 return Error("Never resolved function from blockaddress"); 4378 4379 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4380 // delete the old functions to clean up. We can't do this unless the entire 4381 // module is materialized because there could always be another function body 4382 // with calls to the old function. 4383 for (std::vector<std::pair<Function*, Function*> >::iterator I = 4384 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 4385 if (I->first != I->second) { 4386 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4387 UI != UE;) { 4388 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4389 UpgradeIntrinsicCall(CI, I->second); 4390 } 4391 if (!I->first->use_empty()) 4392 I->first->replaceAllUsesWith(I->second); 4393 I->first->eraseFromParent(); 4394 } 4395 } 4396 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 4397 4398 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4399 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4400 4401 UpgradeDebugInfo(*M); 4402 return std::error_code(); 4403 } 4404 4405 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4406 return IdentifiedStructTypes; 4407 } 4408 4409 std::error_code BitcodeReader::InitStream() { 4410 if (LazyStreamer) 4411 return InitLazyStream(); 4412 return InitStreamFromBuffer(); 4413 } 4414 4415 std::error_code BitcodeReader::InitStreamFromBuffer() { 4416 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4417 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4418 4419 if (Buffer->getBufferSize() & 3) 4420 return Error("Invalid bitcode signature"); 4421 4422 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4423 // The magic number is 0x0B17C0DE stored in little endian. 4424 if (isBitcodeWrapper(BufPtr, BufEnd)) 4425 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4426 return Error("Invalid bitcode wrapper header"); 4427 4428 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4429 Stream.init(&*StreamFile); 4430 4431 return std::error_code(); 4432 } 4433 4434 std::error_code BitcodeReader::InitLazyStream() { 4435 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4436 // see it. 4437 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 4438 StreamingMemoryObject &Bytes = *OwnedBytes; 4439 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4440 Stream.init(&*StreamFile); 4441 4442 unsigned char buf[16]; 4443 if (Bytes.readBytes(buf, 16, 0) != 16) 4444 return Error("Invalid bitcode signature"); 4445 4446 if (!isBitcode(buf, buf + 16)) 4447 return Error("Invalid bitcode signature"); 4448 4449 if (isBitcodeWrapper(buf, buf + 4)) { 4450 const unsigned char *bitcodeStart = buf; 4451 const unsigned char *bitcodeEnd = buf + 16; 4452 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4453 Bytes.dropLeadingBytes(bitcodeStart - buf); 4454 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4455 } 4456 return std::error_code(); 4457 } 4458 4459 namespace { 4460 class BitcodeErrorCategoryType : public std::error_category { 4461 const char *name() const LLVM_NOEXCEPT override { 4462 return "llvm.bitcode"; 4463 } 4464 std::string message(int IE) const override { 4465 BitcodeError E = static_cast<BitcodeError>(IE); 4466 switch (E) { 4467 case BitcodeError::InvalidBitcodeSignature: 4468 return "Invalid bitcode signature"; 4469 case BitcodeError::CorruptedBitcode: 4470 return "Corrupted bitcode"; 4471 } 4472 llvm_unreachable("Unknown error type!"); 4473 } 4474 }; 4475 } 4476 4477 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4478 4479 const std::error_category &llvm::BitcodeErrorCategory() { 4480 return *ErrorCategory; 4481 } 4482 4483 //===----------------------------------------------------------------------===// 4484 // External interface 4485 //===----------------------------------------------------------------------===// 4486 4487 /// \brief Get a lazy one-at-time loading module from bitcode. 4488 /// 4489 /// This isn't always used in a lazy context. In particular, it's also used by 4490 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4491 /// in forward-referenced functions from block address references. 4492 /// 4493 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 4494 /// materialize everything -- in particular, if this isn't truly lazy. 4495 static ErrorOr<Module *> 4496 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4497 LLVMContext &Context, bool WillMaterializeAll, 4498 DiagnosticHandlerFunction DiagnosticHandler, 4499 bool ShouldLazyLoadMetadata = false) { 4500 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 4501 BitcodeReader *R = 4502 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4503 M->setMaterializer(R); 4504 4505 auto cleanupOnError = [&](std::error_code EC) { 4506 R->releaseBuffer(); // Never take ownership on error. 4507 delete M; // Also deletes R. 4508 return EC; 4509 }; 4510 4511 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4512 if (std::error_code EC = R->ParseBitcodeInto(M, ShouldLazyLoadMetadata)) 4513 return cleanupOnError(EC); 4514 4515 if (!WillMaterializeAll) 4516 // Resolve forward references from blockaddresses. 4517 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4518 return cleanupOnError(EC); 4519 4520 Buffer.release(); // The BitcodeReader owns it now. 4521 return M; 4522 } 4523 4524 ErrorOr<Module *> 4525 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 4526 LLVMContext &Context, 4527 DiagnosticHandlerFunction DiagnosticHandler, 4528 bool ShouldLazyLoadMetadata) { 4529 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4530 DiagnosticHandler, ShouldLazyLoadMetadata); 4531 } 4532 4533 ErrorOr<std::unique_ptr<Module>> 4534 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 4535 LLVMContext &Context, 4536 DiagnosticHandlerFunction DiagnosticHandler) { 4537 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4538 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4539 M->setMaterializer(R); 4540 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 4541 return EC; 4542 return std::move(M); 4543 } 4544 4545 ErrorOr<Module *> 4546 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4547 DiagnosticHandlerFunction DiagnosticHandler) { 4548 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4549 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4550 std::move(Buf), Context, true, DiagnosticHandler); 4551 if (!ModuleOrErr) 4552 return ModuleOrErr; 4553 Module *M = ModuleOrErr.get(); 4554 // Read in the entire module, and destroy the BitcodeReader. 4555 if (std::error_code EC = M->materializeAllPermanently()) { 4556 delete M; 4557 return EC; 4558 } 4559 4560 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4561 // written. We must defer until the Module has been fully materialized. 4562 4563 return M; 4564 } 4565 4566 std::string 4567 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4568 DiagnosticHandlerFunction DiagnosticHandler) { 4569 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4570 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4571 DiagnosticHandler); 4572 ErrorOr<std::string> Triple = R->parseTriple(); 4573 if (Triple.getError()) 4574 return ""; 4575 return Triple.get(); 4576 } 4577