1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   Result.append(Record.begin() + Idx, Record.end());
157   return false;
158 }
159 
160 // Strip all the TBAA attachment for the module.
161 static void stripTBAA(Module *M) {
162   for (auto &F : *M) {
163     if (F.isMaterializable())
164       continue;
165     for (auto &I : instructions(F))
166       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
167   }
168 }
169 
170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
171 /// "epoch" encoded in the bitcode, and return the producer name if any.
172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
173   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
174     return std::move(Err);
175 
176   // Read all the records.
177   SmallVector<uint64_t, 64> Record;
178 
179   std::string ProducerIdentification;
180 
181   while (true) {
182     BitstreamEntry Entry;
183     if (Expected<BitstreamEntry> Res = Stream.advance())
184       Entry = Res.get();
185     else
186       return Res.takeError();
187 
188     switch (Entry.Kind) {
189     default:
190     case BitstreamEntry::Error:
191       return error("Malformed block");
192     case BitstreamEntry::EndBlock:
193       return ProducerIdentification;
194     case BitstreamEntry::Record:
195       // The interesting case.
196       break;
197     }
198 
199     // Read a record.
200     Record.clear();
201     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
202     if (!MaybeBitCode)
203       return MaybeBitCode.takeError();
204     switch (MaybeBitCode.get()) {
205     default: // Default behavior: reject
206       return error("Invalid value");
207     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
208       convertToString(Record, 0, ProducerIdentification);
209       break;
210     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
211       unsigned epoch = (unsigned)Record[0];
212       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
213         return error(
214           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
215           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
216       }
217     }
218     }
219   }
220 }
221 
222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
223   // We expect a number of well-defined blocks, though we don't necessarily
224   // need to understand them all.
225   while (true) {
226     if (Stream.AtEndOfStream())
227       return "";
228 
229     BitstreamEntry Entry;
230     if (Expected<BitstreamEntry> Res = Stream.advance())
231       Entry = std::move(Res.get());
232     else
233       return Res.takeError();
234 
235     switch (Entry.Kind) {
236     case BitstreamEntry::EndBlock:
237     case BitstreamEntry::Error:
238       return error("Malformed block");
239 
240     case BitstreamEntry::SubBlock:
241       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
242         return readIdentificationBlock(Stream);
243 
244       // Ignore other sub-blocks.
245       if (Error Err = Stream.SkipBlock())
246         return std::move(Err);
247       continue;
248     case BitstreamEntry::Record:
249       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
250         continue;
251       else
252         return Skipped.takeError();
253     }
254   }
255 }
256 
257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
258   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
259     return std::move(Err);
260 
261   SmallVector<uint64_t, 64> Record;
262   // Read all the records for this module.
263 
264   while (true) {
265     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
266     if (!MaybeEntry)
267       return MaybeEntry.takeError();
268     BitstreamEntry Entry = MaybeEntry.get();
269 
270     switch (Entry.Kind) {
271     case BitstreamEntry::SubBlock: // Handled for us already.
272     case BitstreamEntry::Error:
273       return error("Malformed block");
274     case BitstreamEntry::EndBlock:
275       return false;
276     case BitstreamEntry::Record:
277       // The interesting case.
278       break;
279     }
280 
281     // Read a record.
282     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
283     if (!MaybeRecord)
284       return MaybeRecord.takeError();
285     switch (MaybeRecord.get()) {
286     default:
287       break; // Default behavior, ignore unknown content.
288     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
289       std::string S;
290       if (convertToString(Record, 0, S))
291         return error("Invalid record");
292       // Check for the i386 and other (x86_64, ARM) conventions
293       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
294           S.find("__OBJC,__category") != std::string::npos)
295         return true;
296       break;
297     }
298     }
299     Record.clear();
300   }
301   llvm_unreachable("Exit infinite loop");
302 }
303 
304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
305   // We expect a number of well-defined blocks, though we don't necessarily
306   // need to understand them all.
307   while (true) {
308     BitstreamEntry Entry;
309     if (Expected<BitstreamEntry> Res = Stream.advance())
310       Entry = std::move(Res.get());
311     else
312       return Res.takeError();
313 
314     switch (Entry.Kind) {
315     case BitstreamEntry::Error:
316       return error("Malformed block");
317     case BitstreamEntry::EndBlock:
318       return false;
319 
320     case BitstreamEntry::SubBlock:
321       if (Entry.ID == bitc::MODULE_BLOCK_ID)
322         return hasObjCCategoryInModule(Stream);
323 
324       // Ignore other sub-blocks.
325       if (Error Err = Stream.SkipBlock())
326         return std::move(Err);
327       continue;
328 
329     case BitstreamEntry::Record:
330       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
331         continue;
332       else
333         return Skipped.takeError();
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   bool readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
483   LLVMContext &Context;
484   Module *TheModule = nullptr;
485   // Next offset to start scanning for lazy parsing of function bodies.
486   uint64_t NextUnreadBit = 0;
487   // Last function offset found in the VST.
488   uint64_t LastFunctionBlockBit = 0;
489   bool SeenValueSymbolTable = false;
490   uint64_t VSTOffset = 0;
491 
492   std::vector<std::string> SectionTable;
493   std::vector<std::string> GCTable;
494 
495   std::vector<Type*> TypeList;
496   DenseMap<Function *, FunctionType *> FunctionTypes;
497   BitcodeReaderValueList ValueList;
498   Optional<MetadataLoader> MDLoader;
499   std::vector<Comdat *> ComdatList;
500   SmallVector<Instruction *, 64> InstructionList;
501 
502   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
503   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
504   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
506   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
507 
508   /// The set of attributes by index.  Index zero in the file is for null, and
509   /// is thus not represented here.  As such all indices are off by one.
510   std::vector<AttributeList> MAttributes;
511 
512   /// The set of attribute groups.
513   std::map<unsigned, AttributeList> MAttributeGroups;
514 
515   /// While parsing a function body, this is a list of the basic blocks for the
516   /// function.
517   std::vector<BasicBlock*> FunctionBBs;
518 
519   // When reading the module header, this list is populated with functions that
520   // have bodies later in the file.
521   std::vector<Function*> FunctionsWithBodies;
522 
523   // When intrinsic functions are encountered which require upgrading they are
524   // stored here with their replacement function.
525   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
526   UpdatedIntrinsicMap UpgradedIntrinsics;
527   // Intrinsics which were remangled because of types rename
528   UpdatedIntrinsicMap RemangledIntrinsics;
529 
530   // Several operations happen after the module header has been read, but
531   // before function bodies are processed. This keeps track of whether
532   // we've done this yet.
533   bool SeenFirstFunctionBody = false;
534 
535   /// When function bodies are initially scanned, this map contains info about
536   /// where to find deferred function body in the stream.
537   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
538 
539   /// When Metadata block is initially scanned when parsing the module, we may
540   /// choose to defer parsing of the metadata. This vector contains info about
541   /// which Metadata blocks are deferred.
542   std::vector<uint64_t> DeferredMetadataInfo;
543 
544   /// These are basic blocks forward-referenced by block addresses.  They are
545   /// inserted lazily into functions when they're loaded.  The basic block ID is
546   /// its index into the vector.
547   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
548   std::deque<Function *> BasicBlockFwdRefQueue;
549 
550   /// Indicates that we are using a new encoding for instruction operands where
551   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
552   /// instruction number, for a more compact encoding.  Some instruction
553   /// operands are not relative to the instruction ID: basic block numbers, and
554   /// types. Once the old style function blocks have been phased out, we would
555   /// not need this flag.
556   bool UseRelativeIDs = false;
557 
558   /// True if all functions will be materialized, negating the need to process
559   /// (e.g.) blockaddress forward references.
560   bool WillMaterializeAllForwardRefs = false;
561 
562   bool StripDebugInfo = false;
563   TBAAVerifier TBAAVerifyHelper;
564 
565   std::vector<std::string> BundleTags;
566   SmallVector<SyncScope::ID, 8> SSIDs;
567 
568 public:
569   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
570                 StringRef ProducerIdentification, LLVMContext &Context);
571 
572   Error materializeForwardReferencedFunctions();
573 
574   Error materialize(GlobalValue *GV) override;
575   Error materializeModule() override;
576   std::vector<StructType *> getIdentifiedStructTypes() const override;
577 
578   /// Main interface to parsing a bitcode buffer.
579   /// \returns true if an error occurred.
580   Error parseBitcodeInto(
581       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
582       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   Type *getTypeByID(unsigned ID);
597 
598   Value *getFnValueByID(unsigned ID, Type *Ty) {
599     if (Ty && Ty->isMetadataTy())
600       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
601     return ValueList.getValueFwdRef(ID, Ty);
602   }
603 
604   Metadata *getFnMetadataByID(unsigned ID) {
605     return MDLoader->getMetadataFwdRefOrLoad(ID);
606   }
607 
608   BasicBlock *getBasicBlock(unsigned ID) const {
609     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
610     return FunctionBBs[ID];
611   }
612 
613   AttributeList getAttributes(unsigned i) const {
614     if (i-1 < MAttributes.size())
615       return MAttributes[i-1];
616     return AttributeList();
617   }
618 
619   /// Read a value/type pair out of the specified record from slot 'Slot'.
620   /// Increment Slot past the number of slots used in the record. Return true on
621   /// failure.
622   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
623                         unsigned InstNum, Value *&ResVal) {
624     if (Slot == Record.size()) return true;
625     unsigned ValNo = (unsigned)Record[Slot++];
626     // Adjust the ValNo, if it was encoded relative to the InstNum.
627     if (UseRelativeIDs)
628       ValNo = InstNum - ValNo;
629     if (ValNo < InstNum) {
630       // If this is not a forward reference, just return the value we already
631       // have.
632       ResVal = getFnValueByID(ValNo, nullptr);
633       return ResVal == nullptr;
634     }
635     if (Slot == Record.size())
636       return true;
637 
638     unsigned TypeNo = (unsigned)Record[Slot++];
639     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
640     return ResVal == nullptr;
641   }
642 
643   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
644   /// past the number of slots used by the value in the record. Return true if
645   /// there is an error.
646   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
647                 unsigned InstNum, Type *Ty, Value *&ResVal) {
648     if (getValue(Record, Slot, InstNum, Ty, ResVal))
649       return true;
650     // All values currently take a single record slot.
651     ++Slot;
652     return false;
653   }
654 
655   /// Like popValue, but does not increment the Slot number.
656   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
657                 unsigned InstNum, Type *Ty, Value *&ResVal) {
658     ResVal = getValue(Record, Slot, InstNum, Ty);
659     return ResVal == nullptr;
660   }
661 
662   /// Version of getValue that returns ResVal directly, or 0 if there is an
663   /// error.
664   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
665                   unsigned InstNum, Type *Ty) {
666     if (Slot == Record.size()) return nullptr;
667     unsigned ValNo = (unsigned)Record[Slot];
668     // Adjust the ValNo, if it was encoded relative to the InstNum.
669     if (UseRelativeIDs)
670       ValNo = InstNum - ValNo;
671     return getFnValueByID(ValNo, Ty);
672   }
673 
674   /// Like getValue, but decodes signed VBRs.
675   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
676                         unsigned InstNum, Type *Ty) {
677     if (Slot == Record.size()) return nullptr;
678     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
679     // Adjust the ValNo, if it was encoded relative to the InstNum.
680     if (UseRelativeIDs)
681       ValNo = InstNum - ValNo;
682     return getFnValueByID(ValNo, Ty);
683   }
684 
685   /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the
686   /// corresponding argument's pointee type. Also upgrades intrinsics that now
687   /// require an elementtype attribute.
688   void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys);
689 
690   /// Converts alignment exponent (i.e. power of two (or zero)) to the
691   /// corresponding alignment to use. If alignment is too large, returns
692   /// a corresponding error code.
693   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
694   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
695   Error parseModule(
696       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
697       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
698 
699   Error parseComdatRecord(ArrayRef<uint64_t> Record);
700   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
701   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
702   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
703                                         ArrayRef<uint64_t> Record);
704 
705   Error parseAttributeBlock();
706   Error parseAttributeGroupBlock();
707   Error parseTypeTable();
708   Error parseTypeTableBody();
709   Error parseOperandBundleTags();
710   Error parseSyncScopeNames();
711 
712   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
713                                 unsigned NameIndex, Triple &TT);
714   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
715                                ArrayRef<uint64_t> Record);
716   Error parseValueSymbolTable(uint64_t Offset = 0);
717   Error parseGlobalValueSymbolTable();
718   Error parseConstants();
719   Error rememberAndSkipFunctionBodies();
720   Error rememberAndSkipFunctionBody();
721   /// Save the positions of the Metadata blocks and skip parsing the blocks.
722   Error rememberAndSkipMetadata();
723   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
724   Error parseFunctionBody(Function *F);
725   Error globalCleanup();
726   Error resolveGlobalAndIndirectSymbolInits();
727   Error parseUseLists();
728   Error findFunctionInStream(
729       Function *F,
730       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
731 
732   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
733 };
734 
735 /// Class to manage reading and parsing function summary index bitcode
736 /// files/sections.
737 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
738   /// The module index built during parsing.
739   ModuleSummaryIndex &TheIndex;
740 
741   /// Indicates whether we have encountered a global value summary section
742   /// yet during parsing.
743   bool SeenGlobalValSummary = false;
744 
745   /// Indicates whether we have already parsed the VST, used for error checking.
746   bool SeenValueSymbolTable = false;
747 
748   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
749   /// Used to enable on-demand parsing of the VST.
750   uint64_t VSTOffset = 0;
751 
752   // Map to save ValueId to ValueInfo association that was recorded in the
753   // ValueSymbolTable. It is used after the VST is parsed to convert
754   // call graph edges read from the function summary from referencing
755   // callees by their ValueId to using the ValueInfo instead, which is how
756   // they are recorded in the summary index being built.
757   // We save a GUID which refers to the same global as the ValueInfo, but
758   // ignoring the linkage, i.e. for values other than local linkage they are
759   // identical.
760   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
761       ValueIdToValueInfoMap;
762 
763   /// Map populated during module path string table parsing, from the
764   /// module ID to a string reference owned by the index's module
765   /// path string table, used to correlate with combined index
766   /// summary records.
767   DenseMap<uint64_t, StringRef> ModuleIdMap;
768 
769   /// Original source file name recorded in a bitcode record.
770   std::string SourceFileName;
771 
772   /// The string identifier given to this module by the client, normally the
773   /// path to the bitcode file.
774   StringRef ModulePath;
775 
776   /// For per-module summary indexes, the unique numerical identifier given to
777   /// this module by the client.
778   unsigned ModuleId;
779 
780 public:
781   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
782                                   ModuleSummaryIndex &TheIndex,
783                                   StringRef ModulePath, unsigned ModuleId);
784 
785   Error parseModule();
786 
787 private:
788   void setValueGUID(uint64_t ValueID, StringRef ValueName,
789                     GlobalValue::LinkageTypes Linkage,
790                     StringRef SourceFileName);
791   Error parseValueSymbolTable(
792       uint64_t Offset,
793       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
794   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
795   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
796                                                     bool IsOldProfileFormat,
797                                                     bool HasProfile,
798                                                     bool HasRelBF);
799   Error parseEntireSummary(unsigned ID);
800   Error parseModuleStringTable();
801   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
802   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
803                                        TypeIdCompatibleVtableInfo &TypeId);
804   std::vector<FunctionSummary::ParamAccess>
805   parseParamAccesses(ArrayRef<uint64_t> Record);
806 
807   std::pair<ValueInfo, GlobalValue::GUID>
808   getValueInfoFromValueId(unsigned ValueId);
809 
810   void addThisModule();
811   ModuleSummaryIndex::ModuleInfo *getThisModule();
812 };
813 
814 } // end anonymous namespace
815 
816 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
817                                                     Error Err) {
818   if (Err) {
819     std::error_code EC;
820     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
821       EC = EIB.convertToErrorCode();
822       Ctx.emitError(EIB.message());
823     });
824     return EC;
825   }
826   return std::error_code();
827 }
828 
829 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
830                              StringRef ProducerIdentification,
831                              LLVMContext &Context)
832     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
833       ValueList(Context, Stream.SizeInBytes()) {
834   this->ProducerIdentification = std::string(ProducerIdentification);
835 }
836 
837 Error BitcodeReader::materializeForwardReferencedFunctions() {
838   if (WillMaterializeAllForwardRefs)
839     return Error::success();
840 
841   // Prevent recursion.
842   WillMaterializeAllForwardRefs = true;
843 
844   while (!BasicBlockFwdRefQueue.empty()) {
845     Function *F = BasicBlockFwdRefQueue.front();
846     BasicBlockFwdRefQueue.pop_front();
847     assert(F && "Expected valid function");
848     if (!BasicBlockFwdRefs.count(F))
849       // Already materialized.
850       continue;
851 
852     // Check for a function that isn't materializable to prevent an infinite
853     // loop.  When parsing a blockaddress stored in a global variable, there
854     // isn't a trivial way to check if a function will have a body without a
855     // linear search through FunctionsWithBodies, so just check it here.
856     if (!F->isMaterializable())
857       return error("Never resolved function from blockaddress");
858 
859     // Try to materialize F.
860     if (Error Err = materialize(F))
861       return Err;
862   }
863   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
864 
865   // Reset state.
866   WillMaterializeAllForwardRefs = false;
867   return Error::success();
868 }
869 
870 //===----------------------------------------------------------------------===//
871 //  Helper functions to implement forward reference resolution, etc.
872 //===----------------------------------------------------------------------===//
873 
874 static bool hasImplicitComdat(size_t Val) {
875   switch (Val) {
876   default:
877     return false;
878   case 1:  // Old WeakAnyLinkage
879   case 4:  // Old LinkOnceAnyLinkage
880   case 10: // Old WeakODRLinkage
881   case 11: // Old LinkOnceODRLinkage
882     return true;
883   }
884 }
885 
886 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
887   switch (Val) {
888   default: // Map unknown/new linkages to external
889   case 0:
890     return GlobalValue::ExternalLinkage;
891   case 2:
892     return GlobalValue::AppendingLinkage;
893   case 3:
894     return GlobalValue::InternalLinkage;
895   case 5:
896     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
897   case 6:
898     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
899   case 7:
900     return GlobalValue::ExternalWeakLinkage;
901   case 8:
902     return GlobalValue::CommonLinkage;
903   case 9:
904     return GlobalValue::PrivateLinkage;
905   case 12:
906     return GlobalValue::AvailableExternallyLinkage;
907   case 13:
908     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
909   case 14:
910     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
911   case 15:
912     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
913   case 1: // Old value with implicit comdat.
914   case 16:
915     return GlobalValue::WeakAnyLinkage;
916   case 10: // Old value with implicit comdat.
917   case 17:
918     return GlobalValue::WeakODRLinkage;
919   case 4: // Old value with implicit comdat.
920   case 18:
921     return GlobalValue::LinkOnceAnyLinkage;
922   case 11: // Old value with implicit comdat.
923   case 19:
924     return GlobalValue::LinkOnceODRLinkage;
925   }
926 }
927 
928 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
929   FunctionSummary::FFlags Flags;
930   Flags.ReadNone = RawFlags & 0x1;
931   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
932   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
933   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
934   Flags.NoInline = (RawFlags >> 4) & 0x1;
935   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
936   return Flags;
937 }
938 
939 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
940 //
941 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
942 // visibility: [8, 10).
943 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
944                                                             uint64_t Version) {
945   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
946   // like getDecodedLinkage() above. Any future change to the linkage enum and
947   // to getDecodedLinkage() will need to be taken into account here as above.
948   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
949   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
950   RawFlags = RawFlags >> 4;
951   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
952   // The Live flag wasn't introduced until version 3. For dead stripping
953   // to work correctly on earlier versions, we must conservatively treat all
954   // values as live.
955   bool Live = (RawFlags & 0x2) || Version < 3;
956   bool Local = (RawFlags & 0x4);
957   bool AutoHide = (RawFlags & 0x8);
958 
959   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
960                                      Live, Local, AutoHide);
961 }
962 
963 // Decode the flags for GlobalVariable in the summary
964 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
965   return GlobalVarSummary::GVarFlags(
966       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
967       (RawFlags & 0x4) ? true : false,
968       (GlobalObject::VCallVisibility)(RawFlags >> 3));
969 }
970 
971 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
972   switch (Val) {
973   default: // Map unknown visibilities to default.
974   case 0: return GlobalValue::DefaultVisibility;
975   case 1: return GlobalValue::HiddenVisibility;
976   case 2: return GlobalValue::ProtectedVisibility;
977   }
978 }
979 
980 static GlobalValue::DLLStorageClassTypes
981 getDecodedDLLStorageClass(unsigned Val) {
982   switch (Val) {
983   default: // Map unknown values to default.
984   case 0: return GlobalValue::DefaultStorageClass;
985   case 1: return GlobalValue::DLLImportStorageClass;
986   case 2: return GlobalValue::DLLExportStorageClass;
987   }
988 }
989 
990 static bool getDecodedDSOLocal(unsigned Val) {
991   switch(Val) {
992   default: // Map unknown values to preemptable.
993   case 0:  return false;
994   case 1:  return true;
995   }
996 }
997 
998 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
999   switch (Val) {
1000     case 0: return GlobalVariable::NotThreadLocal;
1001     default: // Map unknown non-zero value to general dynamic.
1002     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1003     case 2: return GlobalVariable::LocalDynamicTLSModel;
1004     case 3: return GlobalVariable::InitialExecTLSModel;
1005     case 4: return GlobalVariable::LocalExecTLSModel;
1006   }
1007 }
1008 
1009 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1010   switch (Val) {
1011     default: // Map unknown to UnnamedAddr::None.
1012     case 0: return GlobalVariable::UnnamedAddr::None;
1013     case 1: return GlobalVariable::UnnamedAddr::Global;
1014     case 2: return GlobalVariable::UnnamedAddr::Local;
1015   }
1016 }
1017 
1018 static int getDecodedCastOpcode(unsigned Val) {
1019   switch (Val) {
1020   default: return -1;
1021   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1022   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1023   case bitc::CAST_SEXT    : return Instruction::SExt;
1024   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1025   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1026   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1027   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1028   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1029   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1030   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1031   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1032   case bitc::CAST_BITCAST : return Instruction::BitCast;
1033   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1034   }
1035 }
1036 
1037 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1038   bool IsFP = Ty->isFPOrFPVectorTy();
1039   // UnOps are only valid for int/fp or vector of int/fp types
1040   if (!IsFP && !Ty->isIntOrIntVectorTy())
1041     return -1;
1042 
1043   switch (Val) {
1044   default:
1045     return -1;
1046   case bitc::UNOP_FNEG:
1047     return IsFP ? Instruction::FNeg : -1;
1048   }
1049 }
1050 
1051 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1052   bool IsFP = Ty->isFPOrFPVectorTy();
1053   // BinOps are only valid for int/fp or vector of int/fp types
1054   if (!IsFP && !Ty->isIntOrIntVectorTy())
1055     return -1;
1056 
1057   switch (Val) {
1058   default:
1059     return -1;
1060   case bitc::BINOP_ADD:
1061     return IsFP ? Instruction::FAdd : Instruction::Add;
1062   case bitc::BINOP_SUB:
1063     return IsFP ? Instruction::FSub : Instruction::Sub;
1064   case bitc::BINOP_MUL:
1065     return IsFP ? Instruction::FMul : Instruction::Mul;
1066   case bitc::BINOP_UDIV:
1067     return IsFP ? -1 : Instruction::UDiv;
1068   case bitc::BINOP_SDIV:
1069     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1070   case bitc::BINOP_UREM:
1071     return IsFP ? -1 : Instruction::URem;
1072   case bitc::BINOP_SREM:
1073     return IsFP ? Instruction::FRem : Instruction::SRem;
1074   case bitc::BINOP_SHL:
1075     return IsFP ? -1 : Instruction::Shl;
1076   case bitc::BINOP_LSHR:
1077     return IsFP ? -1 : Instruction::LShr;
1078   case bitc::BINOP_ASHR:
1079     return IsFP ? -1 : Instruction::AShr;
1080   case bitc::BINOP_AND:
1081     return IsFP ? -1 : Instruction::And;
1082   case bitc::BINOP_OR:
1083     return IsFP ? -1 : Instruction::Or;
1084   case bitc::BINOP_XOR:
1085     return IsFP ? -1 : Instruction::Xor;
1086   }
1087 }
1088 
1089 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1090   switch (Val) {
1091   default: return AtomicRMWInst::BAD_BINOP;
1092   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1093   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1094   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1095   case bitc::RMW_AND: return AtomicRMWInst::And;
1096   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1097   case bitc::RMW_OR: return AtomicRMWInst::Or;
1098   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1099   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1100   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1101   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1102   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1103   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1104   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1105   }
1106 }
1107 
1108 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1109   switch (Val) {
1110   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1111   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1112   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1113   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1114   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1115   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1116   default: // Map unknown orderings to sequentially-consistent.
1117   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1118   }
1119 }
1120 
1121 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1122   switch (Val) {
1123   default: // Map unknown selection kinds to any.
1124   case bitc::COMDAT_SELECTION_KIND_ANY:
1125     return Comdat::Any;
1126   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1127     return Comdat::ExactMatch;
1128   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1129     return Comdat::Largest;
1130   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1131     return Comdat::NoDeduplicate;
1132   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1133     return Comdat::SameSize;
1134   }
1135 }
1136 
1137 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1138   FastMathFlags FMF;
1139   if (0 != (Val & bitc::UnsafeAlgebra))
1140     FMF.setFast();
1141   if (0 != (Val & bitc::AllowReassoc))
1142     FMF.setAllowReassoc();
1143   if (0 != (Val & bitc::NoNaNs))
1144     FMF.setNoNaNs();
1145   if (0 != (Val & bitc::NoInfs))
1146     FMF.setNoInfs();
1147   if (0 != (Val & bitc::NoSignedZeros))
1148     FMF.setNoSignedZeros();
1149   if (0 != (Val & bitc::AllowReciprocal))
1150     FMF.setAllowReciprocal();
1151   if (0 != (Val & bitc::AllowContract))
1152     FMF.setAllowContract(true);
1153   if (0 != (Val & bitc::ApproxFunc))
1154     FMF.setApproxFunc();
1155   return FMF;
1156 }
1157 
1158 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1159   switch (Val) {
1160   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1161   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1162   }
1163 }
1164 
1165 Type *BitcodeReader::getTypeByID(unsigned ID) {
1166   // The type table size is always specified correctly.
1167   if (ID >= TypeList.size())
1168     return nullptr;
1169 
1170   if (Type *Ty = TypeList[ID])
1171     return Ty;
1172 
1173   // If we have a forward reference, the only possible case is when it is to a
1174   // named struct.  Just create a placeholder for now.
1175   return TypeList[ID] = createIdentifiedStructType(Context);
1176 }
1177 
1178 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1179                                                       StringRef Name) {
1180   auto *Ret = StructType::create(Context, Name);
1181   IdentifiedStructTypes.push_back(Ret);
1182   return Ret;
1183 }
1184 
1185 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1186   auto *Ret = StructType::create(Context);
1187   IdentifiedStructTypes.push_back(Ret);
1188   return Ret;
1189 }
1190 
1191 //===----------------------------------------------------------------------===//
1192 //  Functions for parsing blocks from the bitcode file
1193 //===----------------------------------------------------------------------===//
1194 
1195 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1196   switch (Val) {
1197   case Attribute::EndAttrKinds:
1198   case Attribute::EmptyKey:
1199   case Attribute::TombstoneKey:
1200     llvm_unreachable("Synthetic enumerators which should never get here");
1201 
1202   case Attribute::None:            return 0;
1203   case Attribute::ZExt:            return 1 << 0;
1204   case Attribute::SExt:            return 1 << 1;
1205   case Attribute::NoReturn:        return 1 << 2;
1206   case Attribute::InReg:           return 1 << 3;
1207   case Attribute::StructRet:       return 1 << 4;
1208   case Attribute::NoUnwind:        return 1 << 5;
1209   case Attribute::NoAlias:         return 1 << 6;
1210   case Attribute::ByVal:           return 1 << 7;
1211   case Attribute::Nest:            return 1 << 8;
1212   case Attribute::ReadNone:        return 1 << 9;
1213   case Attribute::ReadOnly:        return 1 << 10;
1214   case Attribute::NoInline:        return 1 << 11;
1215   case Attribute::AlwaysInline:    return 1 << 12;
1216   case Attribute::OptimizeForSize: return 1 << 13;
1217   case Attribute::StackProtect:    return 1 << 14;
1218   case Attribute::StackProtectReq: return 1 << 15;
1219   case Attribute::Alignment:       return 31 << 16;
1220   case Attribute::NoCapture:       return 1 << 21;
1221   case Attribute::NoRedZone:       return 1 << 22;
1222   case Attribute::NoImplicitFloat: return 1 << 23;
1223   case Attribute::Naked:           return 1 << 24;
1224   case Attribute::InlineHint:      return 1 << 25;
1225   case Attribute::StackAlignment:  return 7 << 26;
1226   case Attribute::ReturnsTwice:    return 1 << 29;
1227   case Attribute::UWTable:         return 1 << 30;
1228   case Attribute::NonLazyBind:     return 1U << 31;
1229   case Attribute::SanitizeAddress: return 1ULL << 32;
1230   case Attribute::MinSize:         return 1ULL << 33;
1231   case Attribute::NoDuplicate:     return 1ULL << 34;
1232   case Attribute::StackProtectStrong: return 1ULL << 35;
1233   case Attribute::SanitizeThread:  return 1ULL << 36;
1234   case Attribute::SanitizeMemory:  return 1ULL << 37;
1235   case Attribute::NoBuiltin:       return 1ULL << 38;
1236   case Attribute::Returned:        return 1ULL << 39;
1237   case Attribute::Cold:            return 1ULL << 40;
1238   case Attribute::Builtin:         return 1ULL << 41;
1239   case Attribute::OptimizeNone:    return 1ULL << 42;
1240   case Attribute::InAlloca:        return 1ULL << 43;
1241   case Attribute::NonNull:         return 1ULL << 44;
1242   case Attribute::JumpTable:       return 1ULL << 45;
1243   case Attribute::Convergent:      return 1ULL << 46;
1244   case Attribute::SafeStack:       return 1ULL << 47;
1245   case Attribute::NoRecurse:       return 1ULL << 48;
1246   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1247   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1248   case Attribute::SwiftSelf:       return 1ULL << 51;
1249   case Attribute::SwiftError:      return 1ULL << 52;
1250   case Attribute::WriteOnly:       return 1ULL << 53;
1251   case Attribute::Speculatable:    return 1ULL << 54;
1252   case Attribute::StrictFP:        return 1ULL << 55;
1253   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1254   case Attribute::NoCfCheck:       return 1ULL << 57;
1255   case Attribute::OptForFuzzing:   return 1ULL << 58;
1256   case Attribute::ShadowCallStack: return 1ULL << 59;
1257   case Attribute::SpeculativeLoadHardening:
1258     return 1ULL << 60;
1259   case Attribute::ImmArg:
1260     return 1ULL << 61;
1261   case Attribute::WillReturn:
1262     return 1ULL << 62;
1263   case Attribute::NoFree:
1264     return 1ULL << 63;
1265   default:
1266     // Other attributes are not supported in the raw format,
1267     // as we ran out of space.
1268     return 0;
1269   }
1270   llvm_unreachable("Unsupported attribute type");
1271 }
1272 
1273 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1274   if (!Val) return;
1275 
1276   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1277        I = Attribute::AttrKind(I + 1)) {
1278     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1279       if (I == Attribute::Alignment)
1280         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1281       else if (I == Attribute::StackAlignment)
1282         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1283       else if (Attribute::isTypeAttrKind(I))
1284         B.addTypeAttr(I, nullptr); // Type will be auto-upgraded.
1285       else
1286         B.addAttribute(I);
1287     }
1288   }
1289 }
1290 
1291 /// This fills an AttrBuilder object with the LLVM attributes that have
1292 /// been decoded from the given integer. This function must stay in sync with
1293 /// 'encodeLLVMAttributesForBitcode'.
1294 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1295                                            uint64_t EncodedAttrs) {
1296   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1297   // the bits above 31 down by 11 bits.
1298   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1299   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1300          "Alignment must be a power of two.");
1301 
1302   if (Alignment)
1303     B.addAlignmentAttr(Alignment);
1304   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1305                           (EncodedAttrs & 0xffff));
1306 }
1307 
1308 Error BitcodeReader::parseAttributeBlock() {
1309   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1310     return Err;
1311 
1312   if (!MAttributes.empty())
1313     return error("Invalid multiple blocks");
1314 
1315   SmallVector<uint64_t, 64> Record;
1316 
1317   SmallVector<AttributeList, 8> Attrs;
1318 
1319   // Read all the records.
1320   while (true) {
1321     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1322     if (!MaybeEntry)
1323       return MaybeEntry.takeError();
1324     BitstreamEntry Entry = MaybeEntry.get();
1325 
1326     switch (Entry.Kind) {
1327     case BitstreamEntry::SubBlock: // Handled for us already.
1328     case BitstreamEntry::Error:
1329       return error("Malformed block");
1330     case BitstreamEntry::EndBlock:
1331       return Error::success();
1332     case BitstreamEntry::Record:
1333       // The interesting case.
1334       break;
1335     }
1336 
1337     // Read a record.
1338     Record.clear();
1339     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1340     if (!MaybeRecord)
1341       return MaybeRecord.takeError();
1342     switch (MaybeRecord.get()) {
1343     default:  // Default behavior: ignore.
1344       break;
1345     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1346       // Deprecated, but still needed to read old bitcode files.
1347       if (Record.size() & 1)
1348         return error("Invalid record");
1349 
1350       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1351         AttrBuilder B;
1352         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1353         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1354       }
1355 
1356       MAttributes.push_back(AttributeList::get(Context, Attrs));
1357       Attrs.clear();
1358       break;
1359     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1360       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1361         Attrs.push_back(MAttributeGroups[Record[i]]);
1362 
1363       MAttributes.push_back(AttributeList::get(Context, Attrs));
1364       Attrs.clear();
1365       break;
1366     }
1367   }
1368 }
1369 
1370 // Returns Attribute::None on unrecognized codes.
1371 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1372   switch (Code) {
1373   default:
1374     return Attribute::None;
1375   case bitc::ATTR_KIND_ALIGNMENT:
1376     return Attribute::Alignment;
1377   case bitc::ATTR_KIND_ALWAYS_INLINE:
1378     return Attribute::AlwaysInline;
1379   case bitc::ATTR_KIND_ARGMEMONLY:
1380     return Attribute::ArgMemOnly;
1381   case bitc::ATTR_KIND_BUILTIN:
1382     return Attribute::Builtin;
1383   case bitc::ATTR_KIND_BY_VAL:
1384     return Attribute::ByVal;
1385   case bitc::ATTR_KIND_IN_ALLOCA:
1386     return Attribute::InAlloca;
1387   case bitc::ATTR_KIND_COLD:
1388     return Attribute::Cold;
1389   case bitc::ATTR_KIND_CONVERGENT:
1390     return Attribute::Convergent;
1391   case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION:
1392     return Attribute::DisableSanitizerInstrumentation;
1393   case bitc::ATTR_KIND_ELEMENTTYPE:
1394     return Attribute::ElementType;
1395   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1396     return Attribute::InaccessibleMemOnly;
1397   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1398     return Attribute::InaccessibleMemOrArgMemOnly;
1399   case bitc::ATTR_KIND_INLINE_HINT:
1400     return Attribute::InlineHint;
1401   case bitc::ATTR_KIND_IN_REG:
1402     return Attribute::InReg;
1403   case bitc::ATTR_KIND_JUMP_TABLE:
1404     return Attribute::JumpTable;
1405   case bitc::ATTR_KIND_MIN_SIZE:
1406     return Attribute::MinSize;
1407   case bitc::ATTR_KIND_NAKED:
1408     return Attribute::Naked;
1409   case bitc::ATTR_KIND_NEST:
1410     return Attribute::Nest;
1411   case bitc::ATTR_KIND_NO_ALIAS:
1412     return Attribute::NoAlias;
1413   case bitc::ATTR_KIND_NO_BUILTIN:
1414     return Attribute::NoBuiltin;
1415   case bitc::ATTR_KIND_NO_CALLBACK:
1416     return Attribute::NoCallback;
1417   case bitc::ATTR_KIND_NO_CAPTURE:
1418     return Attribute::NoCapture;
1419   case bitc::ATTR_KIND_NO_DUPLICATE:
1420     return Attribute::NoDuplicate;
1421   case bitc::ATTR_KIND_NOFREE:
1422     return Attribute::NoFree;
1423   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1424     return Attribute::NoImplicitFloat;
1425   case bitc::ATTR_KIND_NO_INLINE:
1426     return Attribute::NoInline;
1427   case bitc::ATTR_KIND_NO_RECURSE:
1428     return Attribute::NoRecurse;
1429   case bitc::ATTR_KIND_NO_MERGE:
1430     return Attribute::NoMerge;
1431   case bitc::ATTR_KIND_NON_LAZY_BIND:
1432     return Attribute::NonLazyBind;
1433   case bitc::ATTR_KIND_NON_NULL:
1434     return Attribute::NonNull;
1435   case bitc::ATTR_KIND_DEREFERENCEABLE:
1436     return Attribute::Dereferenceable;
1437   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1438     return Attribute::DereferenceableOrNull;
1439   case bitc::ATTR_KIND_ALLOC_SIZE:
1440     return Attribute::AllocSize;
1441   case bitc::ATTR_KIND_NO_RED_ZONE:
1442     return Attribute::NoRedZone;
1443   case bitc::ATTR_KIND_NO_RETURN:
1444     return Attribute::NoReturn;
1445   case bitc::ATTR_KIND_NOSYNC:
1446     return Attribute::NoSync;
1447   case bitc::ATTR_KIND_NOCF_CHECK:
1448     return Attribute::NoCfCheck;
1449   case bitc::ATTR_KIND_NO_PROFILE:
1450     return Attribute::NoProfile;
1451   case bitc::ATTR_KIND_NO_UNWIND:
1452     return Attribute::NoUnwind;
1453   case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE:
1454     return Attribute::NoSanitizeCoverage;
1455   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1456     return Attribute::NullPointerIsValid;
1457   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1458     return Attribute::OptForFuzzing;
1459   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1460     return Attribute::OptimizeForSize;
1461   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1462     return Attribute::OptimizeNone;
1463   case bitc::ATTR_KIND_READ_NONE:
1464     return Attribute::ReadNone;
1465   case bitc::ATTR_KIND_READ_ONLY:
1466     return Attribute::ReadOnly;
1467   case bitc::ATTR_KIND_RETURNED:
1468     return Attribute::Returned;
1469   case bitc::ATTR_KIND_RETURNS_TWICE:
1470     return Attribute::ReturnsTwice;
1471   case bitc::ATTR_KIND_S_EXT:
1472     return Attribute::SExt;
1473   case bitc::ATTR_KIND_SPECULATABLE:
1474     return Attribute::Speculatable;
1475   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1476     return Attribute::StackAlignment;
1477   case bitc::ATTR_KIND_STACK_PROTECT:
1478     return Attribute::StackProtect;
1479   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1480     return Attribute::StackProtectReq;
1481   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1482     return Attribute::StackProtectStrong;
1483   case bitc::ATTR_KIND_SAFESTACK:
1484     return Attribute::SafeStack;
1485   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1486     return Attribute::ShadowCallStack;
1487   case bitc::ATTR_KIND_STRICT_FP:
1488     return Attribute::StrictFP;
1489   case bitc::ATTR_KIND_STRUCT_RET:
1490     return Attribute::StructRet;
1491   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1492     return Attribute::SanitizeAddress;
1493   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1494     return Attribute::SanitizeHWAddress;
1495   case bitc::ATTR_KIND_SANITIZE_THREAD:
1496     return Attribute::SanitizeThread;
1497   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1498     return Attribute::SanitizeMemory;
1499   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1500     return Attribute::SpeculativeLoadHardening;
1501   case bitc::ATTR_KIND_SWIFT_ERROR:
1502     return Attribute::SwiftError;
1503   case bitc::ATTR_KIND_SWIFT_SELF:
1504     return Attribute::SwiftSelf;
1505   case bitc::ATTR_KIND_SWIFT_ASYNC:
1506     return Attribute::SwiftAsync;
1507   case bitc::ATTR_KIND_UW_TABLE:
1508     return Attribute::UWTable;
1509   case bitc::ATTR_KIND_VSCALE_RANGE:
1510     return Attribute::VScaleRange;
1511   case bitc::ATTR_KIND_WILLRETURN:
1512     return Attribute::WillReturn;
1513   case bitc::ATTR_KIND_WRITEONLY:
1514     return Attribute::WriteOnly;
1515   case bitc::ATTR_KIND_Z_EXT:
1516     return Attribute::ZExt;
1517   case bitc::ATTR_KIND_IMMARG:
1518     return Attribute::ImmArg;
1519   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1520     return Attribute::SanitizeMemTag;
1521   case bitc::ATTR_KIND_PREALLOCATED:
1522     return Attribute::Preallocated;
1523   case bitc::ATTR_KIND_NOUNDEF:
1524     return Attribute::NoUndef;
1525   case bitc::ATTR_KIND_BYREF:
1526     return Attribute::ByRef;
1527   case bitc::ATTR_KIND_MUSTPROGRESS:
1528     return Attribute::MustProgress;
1529   case bitc::ATTR_KIND_HOT:
1530     return Attribute::Hot;
1531   }
1532 }
1533 
1534 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1535                                          MaybeAlign &Alignment) {
1536   // Note: Alignment in bitcode files is incremented by 1, so that zero
1537   // can be used for default alignment.
1538   if (Exponent > Value::MaxAlignmentExponent + 1)
1539     return error("Invalid alignment value");
1540   Alignment = decodeMaybeAlign(Exponent);
1541   return Error::success();
1542 }
1543 
1544 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1545   *Kind = getAttrFromCode(Code);
1546   if (*Kind == Attribute::None)
1547     return error("Unknown attribute kind (" + Twine(Code) + ")");
1548   return Error::success();
1549 }
1550 
1551 Error BitcodeReader::parseAttributeGroupBlock() {
1552   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1553     return Err;
1554 
1555   if (!MAttributeGroups.empty())
1556     return error("Invalid multiple blocks");
1557 
1558   SmallVector<uint64_t, 64> Record;
1559 
1560   // Read all the records.
1561   while (true) {
1562     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1563     if (!MaybeEntry)
1564       return MaybeEntry.takeError();
1565     BitstreamEntry Entry = MaybeEntry.get();
1566 
1567     switch (Entry.Kind) {
1568     case BitstreamEntry::SubBlock: // Handled for us already.
1569     case BitstreamEntry::Error:
1570       return error("Malformed block");
1571     case BitstreamEntry::EndBlock:
1572       return Error::success();
1573     case BitstreamEntry::Record:
1574       // The interesting case.
1575       break;
1576     }
1577 
1578     // Read a record.
1579     Record.clear();
1580     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1581     if (!MaybeRecord)
1582       return MaybeRecord.takeError();
1583     switch (MaybeRecord.get()) {
1584     default:  // Default behavior: ignore.
1585       break;
1586     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1587       if (Record.size() < 3)
1588         return error("Invalid record");
1589 
1590       uint64_t GrpID = Record[0];
1591       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1592 
1593       AttrBuilder B;
1594       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1595         if (Record[i] == 0) {        // Enum attribute
1596           Attribute::AttrKind Kind;
1597           if (Error Err = parseAttrKind(Record[++i], &Kind))
1598             return Err;
1599 
1600           // Upgrade old-style byval attribute to one with a type, even if it's
1601           // nullptr. We will have to insert the real type when we associate
1602           // this AttributeList with a function.
1603           if (Kind == Attribute::ByVal)
1604             B.addByValAttr(nullptr);
1605           else if (Kind == Attribute::StructRet)
1606             B.addStructRetAttr(nullptr);
1607           else if (Kind == Attribute::InAlloca)
1608             B.addInAllocaAttr(nullptr);
1609           else if (Attribute::isEnumAttrKind(Kind))
1610             B.addAttribute(Kind);
1611           else
1612             return error("Not an enum attribute");
1613         } else if (Record[i] == 1) { // Integer attribute
1614           Attribute::AttrKind Kind;
1615           if (Error Err = parseAttrKind(Record[++i], &Kind))
1616             return Err;
1617           if (!Attribute::isIntAttrKind(Kind))
1618             return error("Not an int attribute");
1619           if (Kind == Attribute::Alignment)
1620             B.addAlignmentAttr(Record[++i]);
1621           else if (Kind == Attribute::StackAlignment)
1622             B.addStackAlignmentAttr(Record[++i]);
1623           else if (Kind == Attribute::Dereferenceable)
1624             B.addDereferenceableAttr(Record[++i]);
1625           else if (Kind == Attribute::DereferenceableOrNull)
1626             B.addDereferenceableOrNullAttr(Record[++i]);
1627           else if (Kind == Attribute::AllocSize)
1628             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1629           else if (Kind == Attribute::VScaleRange)
1630             B.addVScaleRangeAttrFromRawRepr(Record[++i]);
1631         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1632           bool HasValue = (Record[i++] == 4);
1633           SmallString<64> KindStr;
1634           SmallString<64> ValStr;
1635 
1636           while (Record[i] != 0 && i != e)
1637             KindStr += Record[i++];
1638           assert(Record[i] == 0 && "Kind string not null terminated");
1639 
1640           if (HasValue) {
1641             // Has a value associated with it.
1642             ++i; // Skip the '0' that terminates the "kind" string.
1643             while (Record[i] != 0 && i != e)
1644               ValStr += Record[i++];
1645             assert(Record[i] == 0 && "Value string not null terminated");
1646           }
1647 
1648           B.addAttribute(KindStr.str(), ValStr.str());
1649         } else {
1650           assert((Record[i] == 5 || Record[i] == 6) &&
1651                  "Invalid attribute group entry");
1652           bool HasType = Record[i] == 6;
1653           Attribute::AttrKind Kind;
1654           if (Error Err = parseAttrKind(Record[++i], &Kind))
1655             return Err;
1656           if (!Attribute::isTypeAttrKind(Kind))
1657             return error("Not a type attribute");
1658 
1659           B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr);
1660         }
1661       }
1662 
1663       UpgradeAttributes(B);
1664       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1665       break;
1666     }
1667     }
1668   }
1669 }
1670 
1671 Error BitcodeReader::parseTypeTable() {
1672   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1673     return Err;
1674 
1675   return parseTypeTableBody();
1676 }
1677 
1678 Error BitcodeReader::parseTypeTableBody() {
1679   if (!TypeList.empty())
1680     return error("Invalid multiple blocks");
1681 
1682   SmallVector<uint64_t, 64> Record;
1683   unsigned NumRecords = 0;
1684 
1685   SmallString<64> TypeName;
1686 
1687   // Read all the records for this type table.
1688   while (true) {
1689     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1690     if (!MaybeEntry)
1691       return MaybeEntry.takeError();
1692     BitstreamEntry Entry = MaybeEntry.get();
1693 
1694     switch (Entry.Kind) {
1695     case BitstreamEntry::SubBlock: // Handled for us already.
1696     case BitstreamEntry::Error:
1697       return error("Malformed block");
1698     case BitstreamEntry::EndBlock:
1699       if (NumRecords != TypeList.size())
1700         return error("Malformed block");
1701       return Error::success();
1702     case BitstreamEntry::Record:
1703       // The interesting case.
1704       break;
1705     }
1706 
1707     // Read a record.
1708     Record.clear();
1709     Type *ResultTy = nullptr;
1710     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1711     if (!MaybeRecord)
1712       return MaybeRecord.takeError();
1713     switch (MaybeRecord.get()) {
1714     default:
1715       return error("Invalid value");
1716     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1717       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1718       // type list.  This allows us to reserve space.
1719       if (Record.empty())
1720         return error("Invalid record");
1721       TypeList.resize(Record[0]);
1722       continue;
1723     case bitc::TYPE_CODE_VOID:      // VOID
1724       ResultTy = Type::getVoidTy(Context);
1725       break;
1726     case bitc::TYPE_CODE_HALF:     // HALF
1727       ResultTy = Type::getHalfTy(Context);
1728       break;
1729     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1730       ResultTy = Type::getBFloatTy(Context);
1731       break;
1732     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1733       ResultTy = Type::getFloatTy(Context);
1734       break;
1735     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1736       ResultTy = Type::getDoubleTy(Context);
1737       break;
1738     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1739       ResultTy = Type::getX86_FP80Ty(Context);
1740       break;
1741     case bitc::TYPE_CODE_FP128:     // FP128
1742       ResultTy = Type::getFP128Ty(Context);
1743       break;
1744     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1745       ResultTy = Type::getPPC_FP128Ty(Context);
1746       break;
1747     case bitc::TYPE_CODE_LABEL:     // LABEL
1748       ResultTy = Type::getLabelTy(Context);
1749       break;
1750     case bitc::TYPE_CODE_METADATA:  // METADATA
1751       ResultTy = Type::getMetadataTy(Context);
1752       break;
1753     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1754       ResultTy = Type::getX86_MMXTy(Context);
1755       break;
1756     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1757       ResultTy = Type::getX86_AMXTy(Context);
1758       break;
1759     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1760       ResultTy = Type::getTokenTy(Context);
1761       break;
1762     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1763       if (Record.empty())
1764         return error("Invalid record");
1765 
1766       uint64_t NumBits = Record[0];
1767       if (NumBits < IntegerType::MIN_INT_BITS ||
1768           NumBits > IntegerType::MAX_INT_BITS)
1769         return error("Bitwidth for integer type out of range");
1770       ResultTy = IntegerType::get(Context, NumBits);
1771       break;
1772     }
1773     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1774                                     //          [pointee type, address space]
1775       if (Record.empty())
1776         return error("Invalid record");
1777       unsigned AddressSpace = 0;
1778       if (Record.size() == 2)
1779         AddressSpace = Record[1];
1780       ResultTy = getTypeByID(Record[0]);
1781       if (!ResultTy ||
1782           !PointerType::isValidElementType(ResultTy))
1783         return error("Invalid type");
1784       ResultTy = PointerType::get(ResultTy, AddressSpace);
1785       break;
1786     }
1787     case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace]
1788       if (Record.size() != 1)
1789         return error("Invalid record");
1790       unsigned AddressSpace = Record[0];
1791       ResultTy = PointerType::get(Context, AddressSpace);
1792       break;
1793     }
1794     case bitc::TYPE_CODE_FUNCTION_OLD: {
1795       // Deprecated, but still needed to read old bitcode files.
1796       // FUNCTION: [vararg, attrid, retty, paramty x N]
1797       if (Record.size() < 3)
1798         return error("Invalid record");
1799       SmallVector<Type*, 8> ArgTys;
1800       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1801         if (Type *T = getTypeByID(Record[i]))
1802           ArgTys.push_back(T);
1803         else
1804           break;
1805       }
1806 
1807       ResultTy = getTypeByID(Record[2]);
1808       if (!ResultTy || ArgTys.size() < Record.size()-3)
1809         return error("Invalid type");
1810 
1811       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1812       break;
1813     }
1814     case bitc::TYPE_CODE_FUNCTION: {
1815       // FUNCTION: [vararg, retty, paramty x N]
1816       if (Record.size() < 2)
1817         return error("Invalid record");
1818       SmallVector<Type*, 8> ArgTys;
1819       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1820         if (Type *T = getTypeByID(Record[i])) {
1821           if (!FunctionType::isValidArgumentType(T))
1822             return error("Invalid function argument type");
1823           ArgTys.push_back(T);
1824         }
1825         else
1826           break;
1827       }
1828 
1829       ResultTy = getTypeByID(Record[1]);
1830       if (!ResultTy || ArgTys.size() < Record.size()-2)
1831         return error("Invalid type");
1832 
1833       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1834       break;
1835     }
1836     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1837       if (Record.empty())
1838         return error("Invalid record");
1839       SmallVector<Type*, 8> EltTys;
1840       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1841         if (Type *T = getTypeByID(Record[i]))
1842           EltTys.push_back(T);
1843         else
1844           break;
1845       }
1846       if (EltTys.size() != Record.size()-1)
1847         return error("Invalid type");
1848       ResultTy = StructType::get(Context, EltTys, Record[0]);
1849       break;
1850     }
1851     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1852       if (convertToString(Record, 0, TypeName))
1853         return error("Invalid record");
1854       continue;
1855 
1856     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1857       if (Record.empty())
1858         return error("Invalid record");
1859 
1860       if (NumRecords >= TypeList.size())
1861         return error("Invalid TYPE table");
1862 
1863       // Check to see if this was forward referenced, if so fill in the temp.
1864       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1865       if (Res) {
1866         Res->setName(TypeName);
1867         TypeList[NumRecords] = nullptr;
1868       } else  // Otherwise, create a new struct.
1869         Res = createIdentifiedStructType(Context, TypeName);
1870       TypeName.clear();
1871 
1872       SmallVector<Type*, 8> EltTys;
1873       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1874         if (Type *T = getTypeByID(Record[i]))
1875           EltTys.push_back(T);
1876         else
1877           break;
1878       }
1879       if (EltTys.size() != Record.size()-1)
1880         return error("Invalid record");
1881       Res->setBody(EltTys, Record[0]);
1882       ResultTy = Res;
1883       break;
1884     }
1885     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1886       if (Record.size() != 1)
1887         return error("Invalid record");
1888 
1889       if (NumRecords >= TypeList.size())
1890         return error("Invalid TYPE table");
1891 
1892       // Check to see if this was forward referenced, if so fill in the temp.
1893       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1894       if (Res) {
1895         Res->setName(TypeName);
1896         TypeList[NumRecords] = nullptr;
1897       } else  // Otherwise, create a new struct with no body.
1898         Res = createIdentifiedStructType(Context, TypeName);
1899       TypeName.clear();
1900       ResultTy = Res;
1901       break;
1902     }
1903     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1904       if (Record.size() < 2)
1905         return error("Invalid record");
1906       ResultTy = getTypeByID(Record[1]);
1907       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1908         return error("Invalid type");
1909       ResultTy = ArrayType::get(ResultTy, Record[0]);
1910       break;
1911     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1912                                     //         [numelts, eltty, scalable]
1913       if (Record.size() < 2)
1914         return error("Invalid record");
1915       if (Record[0] == 0)
1916         return error("Invalid vector length");
1917       ResultTy = getTypeByID(Record[1]);
1918       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1919         return error("Invalid type");
1920       bool Scalable = Record.size() > 2 ? Record[2] : false;
1921       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1922       break;
1923     }
1924 
1925     if (NumRecords >= TypeList.size())
1926       return error("Invalid TYPE table");
1927     if (TypeList[NumRecords])
1928       return error(
1929           "Invalid TYPE table: Only named structs can be forward referenced");
1930     assert(ResultTy && "Didn't read a type?");
1931     TypeList[NumRecords++] = ResultTy;
1932   }
1933 }
1934 
1935 Error BitcodeReader::parseOperandBundleTags() {
1936   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1937     return Err;
1938 
1939   if (!BundleTags.empty())
1940     return error("Invalid multiple blocks");
1941 
1942   SmallVector<uint64_t, 64> Record;
1943 
1944   while (true) {
1945     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1946     if (!MaybeEntry)
1947       return MaybeEntry.takeError();
1948     BitstreamEntry Entry = MaybeEntry.get();
1949 
1950     switch (Entry.Kind) {
1951     case BitstreamEntry::SubBlock: // Handled for us already.
1952     case BitstreamEntry::Error:
1953       return error("Malformed block");
1954     case BitstreamEntry::EndBlock:
1955       return Error::success();
1956     case BitstreamEntry::Record:
1957       // The interesting case.
1958       break;
1959     }
1960 
1961     // Tags are implicitly mapped to integers by their order.
1962 
1963     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1964     if (!MaybeRecord)
1965       return MaybeRecord.takeError();
1966     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1967       return error("Invalid record");
1968 
1969     // OPERAND_BUNDLE_TAG: [strchr x N]
1970     BundleTags.emplace_back();
1971     if (convertToString(Record, 0, BundleTags.back()))
1972       return error("Invalid record");
1973     Record.clear();
1974   }
1975 }
1976 
1977 Error BitcodeReader::parseSyncScopeNames() {
1978   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1979     return Err;
1980 
1981   if (!SSIDs.empty())
1982     return error("Invalid multiple synchronization scope names blocks");
1983 
1984   SmallVector<uint64_t, 64> Record;
1985   while (true) {
1986     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1987     if (!MaybeEntry)
1988       return MaybeEntry.takeError();
1989     BitstreamEntry Entry = MaybeEntry.get();
1990 
1991     switch (Entry.Kind) {
1992     case BitstreamEntry::SubBlock: // Handled for us already.
1993     case BitstreamEntry::Error:
1994       return error("Malformed block");
1995     case BitstreamEntry::EndBlock:
1996       if (SSIDs.empty())
1997         return error("Invalid empty synchronization scope names block");
1998       return Error::success();
1999     case BitstreamEntry::Record:
2000       // The interesting case.
2001       break;
2002     }
2003 
2004     // Synchronization scope names are implicitly mapped to synchronization
2005     // scope IDs by their order.
2006 
2007     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2008     if (!MaybeRecord)
2009       return MaybeRecord.takeError();
2010     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2011       return error("Invalid record");
2012 
2013     SmallString<16> SSN;
2014     if (convertToString(Record, 0, SSN))
2015       return error("Invalid record");
2016 
2017     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2018     Record.clear();
2019   }
2020 }
2021 
2022 /// Associate a value with its name from the given index in the provided record.
2023 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2024                                              unsigned NameIndex, Triple &TT) {
2025   SmallString<128> ValueName;
2026   if (convertToString(Record, NameIndex, ValueName))
2027     return error("Invalid record");
2028   unsigned ValueID = Record[0];
2029   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2030     return error("Invalid record");
2031   Value *V = ValueList[ValueID];
2032 
2033   StringRef NameStr(ValueName.data(), ValueName.size());
2034   if (NameStr.find_first_of(0) != StringRef::npos)
2035     return error("Invalid value name");
2036   V->setName(NameStr);
2037   auto *GO = dyn_cast<GlobalObject>(V);
2038   if (GO) {
2039     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2040       if (TT.supportsCOMDAT())
2041         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2042       else
2043         GO->setComdat(nullptr);
2044     }
2045   }
2046   return V;
2047 }
2048 
2049 /// Helper to note and return the current location, and jump to the given
2050 /// offset.
2051 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2052                                                  BitstreamCursor &Stream) {
2053   // Save the current parsing location so we can jump back at the end
2054   // of the VST read.
2055   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2056   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2057     return std::move(JumpFailed);
2058   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2059   if (!MaybeEntry)
2060     return MaybeEntry.takeError();
2061   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2062   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2063   return CurrentBit;
2064 }
2065 
2066 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2067                                             Function *F,
2068                                             ArrayRef<uint64_t> Record) {
2069   // Note that we subtract 1 here because the offset is relative to one word
2070   // before the start of the identification or module block, which was
2071   // historically always the start of the regular bitcode header.
2072   uint64_t FuncWordOffset = Record[1] - 1;
2073   uint64_t FuncBitOffset = FuncWordOffset * 32;
2074   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2075   // Set the LastFunctionBlockBit to point to the last function block.
2076   // Later when parsing is resumed after function materialization,
2077   // we can simply skip that last function block.
2078   if (FuncBitOffset > LastFunctionBlockBit)
2079     LastFunctionBlockBit = FuncBitOffset;
2080 }
2081 
2082 /// Read a new-style GlobalValue symbol table.
2083 Error BitcodeReader::parseGlobalValueSymbolTable() {
2084   unsigned FuncBitcodeOffsetDelta =
2085       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2086 
2087   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2088     return Err;
2089 
2090   SmallVector<uint64_t, 64> Record;
2091   while (true) {
2092     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2093     if (!MaybeEntry)
2094       return MaybeEntry.takeError();
2095     BitstreamEntry Entry = MaybeEntry.get();
2096 
2097     switch (Entry.Kind) {
2098     case BitstreamEntry::SubBlock:
2099     case BitstreamEntry::Error:
2100       return error("Malformed block");
2101     case BitstreamEntry::EndBlock:
2102       return Error::success();
2103     case BitstreamEntry::Record:
2104       break;
2105     }
2106 
2107     Record.clear();
2108     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2109     if (!MaybeRecord)
2110       return MaybeRecord.takeError();
2111     switch (MaybeRecord.get()) {
2112     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2113       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2114                               cast<Function>(ValueList[Record[0]]), Record);
2115       break;
2116     }
2117   }
2118 }
2119 
2120 /// Parse the value symbol table at either the current parsing location or
2121 /// at the given bit offset if provided.
2122 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2123   uint64_t CurrentBit;
2124   // Pass in the Offset to distinguish between calling for the module-level
2125   // VST (where we want to jump to the VST offset) and the function-level
2126   // VST (where we don't).
2127   if (Offset > 0) {
2128     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2129     if (!MaybeCurrentBit)
2130       return MaybeCurrentBit.takeError();
2131     CurrentBit = MaybeCurrentBit.get();
2132     // If this module uses a string table, read this as a module-level VST.
2133     if (UseStrtab) {
2134       if (Error Err = parseGlobalValueSymbolTable())
2135         return Err;
2136       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2137         return JumpFailed;
2138       return Error::success();
2139     }
2140     // Otherwise, the VST will be in a similar format to a function-level VST,
2141     // and will contain symbol names.
2142   }
2143 
2144   // Compute the delta between the bitcode indices in the VST (the word offset
2145   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2146   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2147   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2148   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2149   // just before entering the VST subblock because: 1) the EnterSubBlock
2150   // changes the AbbrevID width; 2) the VST block is nested within the same
2151   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2152   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2153   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2154   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2155   unsigned FuncBitcodeOffsetDelta =
2156       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2157 
2158   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2159     return Err;
2160 
2161   SmallVector<uint64_t, 64> Record;
2162 
2163   Triple TT(TheModule->getTargetTriple());
2164 
2165   // Read all the records for this value table.
2166   SmallString<128> ValueName;
2167 
2168   while (true) {
2169     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2170     if (!MaybeEntry)
2171       return MaybeEntry.takeError();
2172     BitstreamEntry Entry = MaybeEntry.get();
2173 
2174     switch (Entry.Kind) {
2175     case BitstreamEntry::SubBlock: // Handled for us already.
2176     case BitstreamEntry::Error:
2177       return error("Malformed block");
2178     case BitstreamEntry::EndBlock:
2179       if (Offset > 0)
2180         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2181           return JumpFailed;
2182       return Error::success();
2183     case BitstreamEntry::Record:
2184       // The interesting case.
2185       break;
2186     }
2187 
2188     // Read a record.
2189     Record.clear();
2190     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2191     if (!MaybeRecord)
2192       return MaybeRecord.takeError();
2193     switch (MaybeRecord.get()) {
2194     default:  // Default behavior: unknown type.
2195       break;
2196     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2197       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2198       if (Error Err = ValOrErr.takeError())
2199         return Err;
2200       ValOrErr.get();
2201       break;
2202     }
2203     case bitc::VST_CODE_FNENTRY: {
2204       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2205       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2206       if (Error Err = ValOrErr.takeError())
2207         return Err;
2208       Value *V = ValOrErr.get();
2209 
2210       // Ignore function offsets emitted for aliases of functions in older
2211       // versions of LLVM.
2212       if (auto *F = dyn_cast<Function>(V))
2213         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2214       break;
2215     }
2216     case bitc::VST_CODE_BBENTRY: {
2217       if (convertToString(Record, 1, ValueName))
2218         return error("Invalid record");
2219       BasicBlock *BB = getBasicBlock(Record[0]);
2220       if (!BB)
2221         return error("Invalid record");
2222 
2223       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2224       ValueName.clear();
2225       break;
2226     }
2227     }
2228   }
2229 }
2230 
2231 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2232 /// encoding.
2233 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2234   if ((V & 1) == 0)
2235     return V >> 1;
2236   if (V != 1)
2237     return -(V >> 1);
2238   // There is no such thing as -0 with integers.  "-0" really means MININT.
2239   return 1ULL << 63;
2240 }
2241 
2242 /// Resolve all of the initializers for global values and aliases that we can.
2243 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2244   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2245   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2246       IndirectSymbolInitWorklist;
2247   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2248   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2249   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2250 
2251   GlobalInitWorklist.swap(GlobalInits);
2252   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2253   FunctionPrefixWorklist.swap(FunctionPrefixes);
2254   FunctionPrologueWorklist.swap(FunctionPrologues);
2255   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2256 
2257   while (!GlobalInitWorklist.empty()) {
2258     unsigned ValID = GlobalInitWorklist.back().second;
2259     if (ValID >= ValueList.size()) {
2260       // Not ready to resolve this yet, it requires something later in the file.
2261       GlobalInits.push_back(GlobalInitWorklist.back());
2262     } else {
2263       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2264         GlobalInitWorklist.back().first->setInitializer(C);
2265       else
2266         return error("Expected a constant");
2267     }
2268     GlobalInitWorklist.pop_back();
2269   }
2270 
2271   while (!IndirectSymbolInitWorklist.empty()) {
2272     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2273     if (ValID >= ValueList.size()) {
2274       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2275     } else {
2276       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2277       if (!C)
2278         return error("Expected a constant");
2279       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2280       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2281         return error("Alias and aliasee types don't match");
2282       GIS->setIndirectSymbol(C);
2283     }
2284     IndirectSymbolInitWorklist.pop_back();
2285   }
2286 
2287   while (!FunctionPrefixWorklist.empty()) {
2288     unsigned ValID = FunctionPrefixWorklist.back().second;
2289     if (ValID >= ValueList.size()) {
2290       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2291     } else {
2292       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2293         FunctionPrefixWorklist.back().first->setPrefixData(C);
2294       else
2295         return error("Expected a constant");
2296     }
2297     FunctionPrefixWorklist.pop_back();
2298   }
2299 
2300   while (!FunctionPrologueWorklist.empty()) {
2301     unsigned ValID = FunctionPrologueWorklist.back().second;
2302     if (ValID >= ValueList.size()) {
2303       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2304     } else {
2305       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2306         FunctionPrologueWorklist.back().first->setPrologueData(C);
2307       else
2308         return error("Expected a constant");
2309     }
2310     FunctionPrologueWorklist.pop_back();
2311   }
2312 
2313   while (!FunctionPersonalityFnWorklist.empty()) {
2314     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2315     if (ValID >= ValueList.size()) {
2316       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2317     } else {
2318       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2319         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2320       else
2321         return error("Expected a constant");
2322     }
2323     FunctionPersonalityFnWorklist.pop_back();
2324   }
2325 
2326   return Error::success();
2327 }
2328 
2329 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2330   SmallVector<uint64_t, 8> Words(Vals.size());
2331   transform(Vals, Words.begin(),
2332                  BitcodeReader::decodeSignRotatedValue);
2333 
2334   return APInt(TypeBits, Words);
2335 }
2336 
2337 Error BitcodeReader::parseConstants() {
2338   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2339     return Err;
2340 
2341   SmallVector<uint64_t, 64> Record;
2342 
2343   // Read all the records for this value table.
2344   Type *CurTy = Type::getInt32Ty(Context);
2345   unsigned NextCstNo = ValueList.size();
2346 
2347   struct DelayedShufTy {
2348     VectorType *OpTy;
2349     VectorType *RTy;
2350     uint64_t Op0Idx;
2351     uint64_t Op1Idx;
2352     uint64_t Op2Idx;
2353     unsigned CstNo;
2354   };
2355   std::vector<DelayedShufTy> DelayedShuffles;
2356   while (true) {
2357     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2358     if (!MaybeEntry)
2359       return MaybeEntry.takeError();
2360     BitstreamEntry Entry = MaybeEntry.get();
2361 
2362     switch (Entry.Kind) {
2363     case BitstreamEntry::SubBlock: // Handled for us already.
2364     case BitstreamEntry::Error:
2365       return error("Malformed block");
2366     case BitstreamEntry::EndBlock:
2367       // Once all the constants have been read, go through and resolve forward
2368       // references.
2369       //
2370       // We have to treat shuffles specially because they don't have three
2371       // operands anymore.  We need to convert the shuffle mask into an array,
2372       // and we can't convert a forward reference.
2373       for (auto &DelayedShuffle : DelayedShuffles) {
2374         VectorType *OpTy = DelayedShuffle.OpTy;
2375         VectorType *RTy = DelayedShuffle.RTy;
2376         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2377         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2378         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2379         uint64_t CstNo = DelayedShuffle.CstNo;
2380         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2381         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2382         Type *ShufTy =
2383             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2384         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2385         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2386           return error("Invalid shufflevector operands");
2387         SmallVector<int, 16> Mask;
2388         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2389         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2390         ValueList.assignValue(V, CstNo);
2391       }
2392 
2393       if (NextCstNo != ValueList.size())
2394         return error("Invalid constant reference");
2395 
2396       ValueList.resolveConstantForwardRefs();
2397       return Error::success();
2398     case BitstreamEntry::Record:
2399       // The interesting case.
2400       break;
2401     }
2402 
2403     // Read a record.
2404     Record.clear();
2405     Type *VoidType = Type::getVoidTy(Context);
2406     Value *V = nullptr;
2407     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2408     if (!MaybeBitCode)
2409       return MaybeBitCode.takeError();
2410     switch (unsigned BitCode = MaybeBitCode.get()) {
2411     default:  // Default behavior: unknown constant
2412     case bitc::CST_CODE_UNDEF:     // UNDEF
2413       V = UndefValue::get(CurTy);
2414       break;
2415     case bitc::CST_CODE_POISON:    // POISON
2416       V = PoisonValue::get(CurTy);
2417       break;
2418     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2419       if (Record.empty())
2420         return error("Invalid record");
2421       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2422         return error("Invalid record");
2423       if (TypeList[Record[0]] == VoidType)
2424         return error("Invalid constant type");
2425       CurTy = TypeList[Record[0]];
2426       continue;  // Skip the ValueList manipulation.
2427     case bitc::CST_CODE_NULL:      // NULL
2428       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2429         return error("Invalid type for a constant null value");
2430       V = Constant::getNullValue(CurTy);
2431       break;
2432     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2433       if (!CurTy->isIntegerTy() || Record.empty())
2434         return error("Invalid record");
2435       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2436       break;
2437     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2438       if (!CurTy->isIntegerTy() || Record.empty())
2439         return error("Invalid record");
2440 
2441       APInt VInt =
2442           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2443       V = ConstantInt::get(Context, VInt);
2444 
2445       break;
2446     }
2447     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2448       if (Record.empty())
2449         return error("Invalid record");
2450       if (CurTy->isHalfTy())
2451         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2452                                              APInt(16, (uint16_t)Record[0])));
2453       else if (CurTy->isBFloatTy())
2454         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2455                                              APInt(16, (uint32_t)Record[0])));
2456       else if (CurTy->isFloatTy())
2457         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2458                                              APInt(32, (uint32_t)Record[0])));
2459       else if (CurTy->isDoubleTy())
2460         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2461                                              APInt(64, Record[0])));
2462       else if (CurTy->isX86_FP80Ty()) {
2463         // Bits are not stored the same way as a normal i80 APInt, compensate.
2464         uint64_t Rearrange[2];
2465         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2466         Rearrange[1] = Record[0] >> 48;
2467         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2468                                              APInt(80, Rearrange)));
2469       } else if (CurTy->isFP128Ty())
2470         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2471                                              APInt(128, Record)));
2472       else if (CurTy->isPPC_FP128Ty())
2473         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2474                                              APInt(128, Record)));
2475       else
2476         V = UndefValue::get(CurTy);
2477       break;
2478     }
2479 
2480     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2481       if (Record.empty())
2482         return error("Invalid record");
2483 
2484       unsigned Size = Record.size();
2485       SmallVector<Constant*, 16> Elts;
2486 
2487       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2488         for (unsigned i = 0; i != Size; ++i)
2489           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2490                                                      STy->getElementType(i)));
2491         V = ConstantStruct::get(STy, Elts);
2492       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2493         Type *EltTy = ATy->getElementType();
2494         for (unsigned i = 0; i != Size; ++i)
2495           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2496         V = ConstantArray::get(ATy, Elts);
2497       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2498         Type *EltTy = VTy->getElementType();
2499         for (unsigned i = 0; i != Size; ++i)
2500           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2501         V = ConstantVector::get(Elts);
2502       } else {
2503         V = UndefValue::get(CurTy);
2504       }
2505       break;
2506     }
2507     case bitc::CST_CODE_STRING:    // STRING: [values]
2508     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2509       if (Record.empty())
2510         return error("Invalid record");
2511 
2512       SmallString<16> Elts(Record.begin(), Record.end());
2513       V = ConstantDataArray::getString(Context, Elts,
2514                                        BitCode == bitc::CST_CODE_CSTRING);
2515       break;
2516     }
2517     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2518       if (Record.empty())
2519         return error("Invalid record");
2520 
2521       Type *EltTy;
2522       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2523         EltTy = Array->getElementType();
2524       else
2525         EltTy = cast<VectorType>(CurTy)->getElementType();
2526       if (EltTy->isIntegerTy(8)) {
2527         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2528         if (isa<VectorType>(CurTy))
2529           V = ConstantDataVector::get(Context, Elts);
2530         else
2531           V = ConstantDataArray::get(Context, Elts);
2532       } else if (EltTy->isIntegerTy(16)) {
2533         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2534         if (isa<VectorType>(CurTy))
2535           V = ConstantDataVector::get(Context, Elts);
2536         else
2537           V = ConstantDataArray::get(Context, Elts);
2538       } else if (EltTy->isIntegerTy(32)) {
2539         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2540         if (isa<VectorType>(CurTy))
2541           V = ConstantDataVector::get(Context, Elts);
2542         else
2543           V = ConstantDataArray::get(Context, Elts);
2544       } else if (EltTy->isIntegerTy(64)) {
2545         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2546         if (isa<VectorType>(CurTy))
2547           V = ConstantDataVector::get(Context, Elts);
2548         else
2549           V = ConstantDataArray::get(Context, Elts);
2550       } else if (EltTy->isHalfTy()) {
2551         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2552         if (isa<VectorType>(CurTy))
2553           V = ConstantDataVector::getFP(EltTy, Elts);
2554         else
2555           V = ConstantDataArray::getFP(EltTy, Elts);
2556       } else if (EltTy->isBFloatTy()) {
2557         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2558         if (isa<VectorType>(CurTy))
2559           V = ConstantDataVector::getFP(EltTy, Elts);
2560         else
2561           V = ConstantDataArray::getFP(EltTy, Elts);
2562       } else if (EltTy->isFloatTy()) {
2563         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2564         if (isa<VectorType>(CurTy))
2565           V = ConstantDataVector::getFP(EltTy, Elts);
2566         else
2567           V = ConstantDataArray::getFP(EltTy, Elts);
2568       } else if (EltTy->isDoubleTy()) {
2569         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2570         if (isa<VectorType>(CurTy))
2571           V = ConstantDataVector::getFP(EltTy, Elts);
2572         else
2573           V = ConstantDataArray::getFP(EltTy, Elts);
2574       } else {
2575         return error("Invalid type for value");
2576       }
2577       break;
2578     }
2579     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2580       if (Record.size() < 2)
2581         return error("Invalid record");
2582       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2583       if (Opc < 0) {
2584         V = UndefValue::get(CurTy);  // Unknown unop.
2585       } else {
2586         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2587         unsigned Flags = 0;
2588         V = ConstantExpr::get(Opc, LHS, Flags);
2589       }
2590       break;
2591     }
2592     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2593       if (Record.size() < 3)
2594         return error("Invalid record");
2595       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2596       if (Opc < 0) {
2597         V = UndefValue::get(CurTy);  // Unknown binop.
2598       } else {
2599         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2600         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2601         unsigned Flags = 0;
2602         if (Record.size() >= 4) {
2603           if (Opc == Instruction::Add ||
2604               Opc == Instruction::Sub ||
2605               Opc == Instruction::Mul ||
2606               Opc == Instruction::Shl) {
2607             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2608               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2609             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2610               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2611           } else if (Opc == Instruction::SDiv ||
2612                      Opc == Instruction::UDiv ||
2613                      Opc == Instruction::LShr ||
2614                      Opc == Instruction::AShr) {
2615             if (Record[3] & (1 << bitc::PEO_EXACT))
2616               Flags |= SDivOperator::IsExact;
2617           }
2618         }
2619         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2620       }
2621       break;
2622     }
2623     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2624       if (Record.size() < 3)
2625         return error("Invalid record");
2626       int Opc = getDecodedCastOpcode(Record[0]);
2627       if (Opc < 0) {
2628         V = UndefValue::get(CurTy);  // Unknown cast.
2629       } else {
2630         Type *OpTy = getTypeByID(Record[1]);
2631         if (!OpTy)
2632           return error("Invalid record");
2633         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2634         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2635         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2636       }
2637       break;
2638     }
2639     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2640     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2641     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2642                                                      // operands]
2643       unsigned OpNum = 0;
2644       Type *PointeeType = nullptr;
2645       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2646           Record.size() % 2)
2647         PointeeType = getTypeByID(Record[OpNum++]);
2648 
2649       bool InBounds = false;
2650       Optional<unsigned> InRangeIndex;
2651       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2652         uint64_t Op = Record[OpNum++];
2653         InBounds = Op & 1;
2654         InRangeIndex = Op >> 1;
2655       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2656         InBounds = true;
2657 
2658       SmallVector<Constant*, 16> Elts;
2659       Type *Elt0FullTy = nullptr;
2660       while (OpNum != Record.size()) {
2661         if (!Elt0FullTy)
2662           Elt0FullTy = getTypeByID(Record[OpNum]);
2663         Type *ElTy = getTypeByID(Record[OpNum++]);
2664         if (!ElTy)
2665           return error("Invalid record");
2666         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2667       }
2668 
2669       if (Elts.size() < 1)
2670         return error("Invalid gep with no operands");
2671 
2672       PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType());
2673       if (!PointeeType)
2674         PointeeType = OrigPtrTy->getElementType();
2675       else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType))
2676         return error("Explicit gep operator type does not match pointee type "
2677                      "of pointer operand");
2678 
2679       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2680       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2681                                          InBounds, InRangeIndex);
2682       break;
2683     }
2684     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2685       if (Record.size() < 3)
2686         return error("Invalid record");
2687 
2688       Type *SelectorTy = Type::getInt1Ty(Context);
2689 
2690       // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2691       // Get the type from the ValueList before getting a forward ref.
2692       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2693         if (Value *V = ValueList[Record[0]])
2694           if (SelectorTy != V->getType())
2695             SelectorTy = VectorType::get(SelectorTy,
2696                                          VTy->getElementCount());
2697 
2698       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2699                                                               SelectorTy),
2700                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2701                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2702       break;
2703     }
2704     case bitc::CST_CODE_CE_EXTRACTELT
2705         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2706       if (Record.size() < 3)
2707         return error("Invalid record");
2708       VectorType *OpTy =
2709         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2710       if (!OpTy)
2711         return error("Invalid record");
2712       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2713       Constant *Op1 = nullptr;
2714       if (Record.size() == 4) {
2715         Type *IdxTy = getTypeByID(Record[2]);
2716         if (!IdxTy)
2717           return error("Invalid record");
2718         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2719       } else {
2720         // Deprecated, but still needed to read old bitcode files.
2721         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2722       }
2723       if (!Op1)
2724         return error("Invalid record");
2725       V = ConstantExpr::getExtractElement(Op0, Op1);
2726       break;
2727     }
2728     case bitc::CST_CODE_CE_INSERTELT
2729         : { // CE_INSERTELT: [opval, opval, opty, opval]
2730       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2731       if (Record.size() < 3 || !OpTy)
2732         return error("Invalid record");
2733       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2734       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2735                                                   OpTy->getElementType());
2736       Constant *Op2 = nullptr;
2737       if (Record.size() == 4) {
2738         Type *IdxTy = getTypeByID(Record[2]);
2739         if (!IdxTy)
2740           return error("Invalid record");
2741         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2742       } else {
2743         // Deprecated, but still needed to read old bitcode files.
2744         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2745       }
2746       if (!Op2)
2747         return error("Invalid record");
2748       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2749       break;
2750     }
2751     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2752       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2753       if (Record.size() < 3 || !OpTy)
2754         return error("Invalid record");
2755       DelayedShuffles.push_back(
2756           {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo});
2757       ++NextCstNo;
2758       continue;
2759     }
2760     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2761       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2762       VectorType *OpTy =
2763         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2764       if (Record.size() < 4 || !RTy || !OpTy)
2765         return error("Invalid record");
2766       DelayedShuffles.push_back(
2767           {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo});
2768       ++NextCstNo;
2769       continue;
2770     }
2771     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2772       if (Record.size() < 4)
2773         return error("Invalid record");
2774       Type *OpTy = getTypeByID(Record[0]);
2775       if (!OpTy)
2776         return error("Invalid record");
2777       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2778       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2779 
2780       if (OpTy->isFPOrFPVectorTy())
2781         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2782       else
2783         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2784       break;
2785     }
2786     // This maintains backward compatibility, pre-asm dialect keywords.
2787     // Deprecated, but still needed to read old bitcode files.
2788     case bitc::CST_CODE_INLINEASM_OLD: {
2789       if (Record.size() < 2)
2790         return error("Invalid record");
2791       std::string AsmStr, ConstrStr;
2792       bool HasSideEffects = Record[0] & 1;
2793       bool IsAlignStack = Record[0] >> 1;
2794       unsigned AsmStrSize = Record[1];
2795       if (2+AsmStrSize >= Record.size())
2796         return error("Invalid record");
2797       unsigned ConstStrSize = Record[2+AsmStrSize];
2798       if (3+AsmStrSize+ConstStrSize > Record.size())
2799         return error("Invalid record");
2800 
2801       for (unsigned i = 0; i != AsmStrSize; ++i)
2802         AsmStr += (char)Record[2+i];
2803       for (unsigned i = 0; i != ConstStrSize; ++i)
2804         ConstrStr += (char)Record[3+AsmStrSize+i];
2805       UpgradeInlineAsmString(&AsmStr);
2806       V = InlineAsm::get(
2807           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2808           AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2809       break;
2810     }
2811     // This version adds support for the asm dialect keywords (e.g.,
2812     // inteldialect).
2813     case bitc::CST_CODE_INLINEASM_OLD2: {
2814       if (Record.size() < 2)
2815         return error("Invalid record");
2816       std::string AsmStr, ConstrStr;
2817       bool HasSideEffects = Record[0] & 1;
2818       bool IsAlignStack = (Record[0] >> 1) & 1;
2819       unsigned AsmDialect = Record[0] >> 2;
2820       unsigned AsmStrSize = Record[1];
2821       if (2+AsmStrSize >= Record.size())
2822         return error("Invalid record");
2823       unsigned ConstStrSize = Record[2+AsmStrSize];
2824       if (3+AsmStrSize+ConstStrSize > Record.size())
2825         return error("Invalid record");
2826 
2827       for (unsigned i = 0; i != AsmStrSize; ++i)
2828         AsmStr += (char)Record[2+i];
2829       for (unsigned i = 0; i != ConstStrSize; ++i)
2830         ConstrStr += (char)Record[3+AsmStrSize+i];
2831       UpgradeInlineAsmString(&AsmStr);
2832       V = InlineAsm::get(
2833           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2834           AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2835           InlineAsm::AsmDialect(AsmDialect));
2836       break;
2837     }
2838     // This version adds support for the unwind keyword.
2839     case bitc::CST_CODE_INLINEASM: {
2840       if (Record.size() < 2)
2841         return error("Invalid record");
2842       std::string AsmStr, ConstrStr;
2843       bool HasSideEffects = Record[0] & 1;
2844       bool IsAlignStack = (Record[0] >> 1) & 1;
2845       unsigned AsmDialect = (Record[0] >> 2) & 1;
2846       bool CanThrow = (Record[0] >> 3) & 1;
2847       unsigned AsmStrSize = Record[1];
2848       if (2 + AsmStrSize >= Record.size())
2849         return error("Invalid record");
2850       unsigned ConstStrSize = Record[2 + AsmStrSize];
2851       if (3 + AsmStrSize + ConstStrSize > Record.size())
2852         return error("Invalid record");
2853 
2854       for (unsigned i = 0; i != AsmStrSize; ++i)
2855         AsmStr += (char)Record[2 + i];
2856       for (unsigned i = 0; i != ConstStrSize; ++i)
2857         ConstrStr += (char)Record[3 + AsmStrSize + i];
2858       UpgradeInlineAsmString(&AsmStr);
2859       V = InlineAsm::get(
2860           cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()),
2861           AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2862           InlineAsm::AsmDialect(AsmDialect), CanThrow);
2863       break;
2864     }
2865     case bitc::CST_CODE_BLOCKADDRESS:{
2866       if (Record.size() < 3)
2867         return error("Invalid record");
2868       Type *FnTy = getTypeByID(Record[0]);
2869       if (!FnTy)
2870         return error("Invalid record");
2871       Function *Fn =
2872         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2873       if (!Fn)
2874         return error("Invalid record");
2875 
2876       // If the function is already parsed we can insert the block address right
2877       // away.
2878       BasicBlock *BB;
2879       unsigned BBID = Record[2];
2880       if (!BBID)
2881         // Invalid reference to entry block.
2882         return error("Invalid ID");
2883       if (!Fn->empty()) {
2884         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2885         for (size_t I = 0, E = BBID; I != E; ++I) {
2886           if (BBI == BBE)
2887             return error("Invalid ID");
2888           ++BBI;
2889         }
2890         BB = &*BBI;
2891       } else {
2892         // Otherwise insert a placeholder and remember it so it can be inserted
2893         // when the function is parsed.
2894         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2895         if (FwdBBs.empty())
2896           BasicBlockFwdRefQueue.push_back(Fn);
2897         if (FwdBBs.size() < BBID + 1)
2898           FwdBBs.resize(BBID + 1);
2899         if (!FwdBBs[BBID])
2900           FwdBBs[BBID] = BasicBlock::Create(Context);
2901         BB = FwdBBs[BBID];
2902       }
2903       V = BlockAddress::get(Fn, BB);
2904       break;
2905     }
2906     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
2907       if (Record.size() < 2)
2908         return error("Invalid record");
2909       Type *GVTy = getTypeByID(Record[0]);
2910       if (!GVTy)
2911         return error("Invalid record");
2912       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2913           ValueList.getConstantFwdRef(Record[1], GVTy));
2914       if (!GV)
2915         return error("Invalid record");
2916 
2917       V = DSOLocalEquivalent::get(GV);
2918       break;
2919     }
2920     }
2921 
2922     ValueList.assignValue(V, NextCstNo);
2923     ++NextCstNo;
2924   }
2925 }
2926 
2927 Error BitcodeReader::parseUseLists() {
2928   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2929     return Err;
2930 
2931   // Read all the records.
2932   SmallVector<uint64_t, 64> Record;
2933 
2934   while (true) {
2935     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2936     if (!MaybeEntry)
2937       return MaybeEntry.takeError();
2938     BitstreamEntry Entry = MaybeEntry.get();
2939 
2940     switch (Entry.Kind) {
2941     case BitstreamEntry::SubBlock: // Handled for us already.
2942     case BitstreamEntry::Error:
2943       return error("Malformed block");
2944     case BitstreamEntry::EndBlock:
2945       return Error::success();
2946     case BitstreamEntry::Record:
2947       // The interesting case.
2948       break;
2949     }
2950 
2951     // Read a use list record.
2952     Record.clear();
2953     bool IsBB = false;
2954     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2955     if (!MaybeRecord)
2956       return MaybeRecord.takeError();
2957     switch (MaybeRecord.get()) {
2958     default:  // Default behavior: unknown type.
2959       break;
2960     case bitc::USELIST_CODE_BB:
2961       IsBB = true;
2962       LLVM_FALLTHROUGH;
2963     case bitc::USELIST_CODE_DEFAULT: {
2964       unsigned RecordLength = Record.size();
2965       if (RecordLength < 3)
2966         // Records should have at least an ID and two indexes.
2967         return error("Invalid record");
2968       unsigned ID = Record.pop_back_val();
2969 
2970       Value *V;
2971       if (IsBB) {
2972         assert(ID < FunctionBBs.size() && "Basic block not found");
2973         V = FunctionBBs[ID];
2974       } else
2975         V = ValueList[ID];
2976       unsigned NumUses = 0;
2977       SmallDenseMap<const Use *, unsigned, 16> Order;
2978       for (const Use &U : V->materialized_uses()) {
2979         if (++NumUses > Record.size())
2980           break;
2981         Order[&U] = Record[NumUses - 1];
2982       }
2983       if (Order.size() != Record.size() || NumUses > Record.size())
2984         // Mismatches can happen if the functions are being materialized lazily
2985         // (out-of-order), or a value has been upgraded.
2986         break;
2987 
2988       V->sortUseList([&](const Use &L, const Use &R) {
2989         return Order.lookup(&L) < Order.lookup(&R);
2990       });
2991       break;
2992     }
2993     }
2994   }
2995 }
2996 
2997 /// When we see the block for metadata, remember where it is and then skip it.
2998 /// This lets us lazily deserialize the metadata.
2999 Error BitcodeReader::rememberAndSkipMetadata() {
3000   // Save the current stream state.
3001   uint64_t CurBit = Stream.GetCurrentBitNo();
3002   DeferredMetadataInfo.push_back(CurBit);
3003 
3004   // Skip over the block for now.
3005   if (Error Err = Stream.SkipBlock())
3006     return Err;
3007   return Error::success();
3008 }
3009 
3010 Error BitcodeReader::materializeMetadata() {
3011   for (uint64_t BitPos : DeferredMetadataInfo) {
3012     // Move the bit stream to the saved position.
3013     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3014       return JumpFailed;
3015     if (Error Err = MDLoader->parseModuleMetadata())
3016       return Err;
3017   }
3018 
3019   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3020   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3021   // multiple times.
3022   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3023     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3024       NamedMDNode *LinkerOpts =
3025           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3026       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3027         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3028     }
3029   }
3030 
3031   DeferredMetadataInfo.clear();
3032   return Error::success();
3033 }
3034 
3035 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3036 
3037 /// When we see the block for a function body, remember where it is and then
3038 /// skip it.  This lets us lazily deserialize the functions.
3039 Error BitcodeReader::rememberAndSkipFunctionBody() {
3040   // Get the function we are talking about.
3041   if (FunctionsWithBodies.empty())
3042     return error("Insufficient function protos");
3043 
3044   Function *Fn = FunctionsWithBodies.back();
3045   FunctionsWithBodies.pop_back();
3046 
3047   // Save the current stream state.
3048   uint64_t CurBit = Stream.GetCurrentBitNo();
3049   assert(
3050       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3051       "Mismatch between VST and scanned function offsets");
3052   DeferredFunctionInfo[Fn] = CurBit;
3053 
3054   // Skip over the function block for now.
3055   if (Error Err = Stream.SkipBlock())
3056     return Err;
3057   return Error::success();
3058 }
3059 
3060 Error BitcodeReader::globalCleanup() {
3061   // Patch the initializers for globals and aliases up.
3062   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3063     return Err;
3064   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3065     return error("Malformed global initializer set");
3066 
3067   // Look for intrinsic functions which need to be upgraded at some point
3068   // and functions that need to have their function attributes upgraded.
3069   for (Function &F : *TheModule) {
3070     MDLoader->upgradeDebugIntrinsics(F);
3071     Function *NewFn;
3072     if (UpgradeIntrinsicFunction(&F, NewFn))
3073       UpgradedIntrinsics[&F] = NewFn;
3074     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3075       // Some types could be renamed during loading if several modules are
3076       // loaded in the same LLVMContext (LTO scenario). In this case we should
3077       // remangle intrinsics names as well.
3078       RemangledIntrinsics[&F] = Remangled.getValue();
3079     // Look for functions that rely on old function attribute behavior.
3080     UpgradeFunctionAttributes(F);
3081   }
3082 
3083   // Look for global variables which need to be renamed.
3084   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3085   for (GlobalVariable &GV : TheModule->globals())
3086     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3087       UpgradedVariables.emplace_back(&GV, Upgraded);
3088   for (auto &Pair : UpgradedVariables) {
3089     Pair.first->eraseFromParent();
3090     TheModule->getGlobalList().push_back(Pair.second);
3091   }
3092 
3093   // Force deallocation of memory for these vectors to favor the client that
3094   // want lazy deserialization.
3095   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3096   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3097       IndirectSymbolInits);
3098   return Error::success();
3099 }
3100 
3101 /// Support for lazy parsing of function bodies. This is required if we
3102 /// either have an old bitcode file without a VST forward declaration record,
3103 /// or if we have an anonymous function being materialized, since anonymous
3104 /// functions do not have a name and are therefore not in the VST.
3105 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3106   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3107     return JumpFailed;
3108 
3109   if (Stream.AtEndOfStream())
3110     return error("Could not find function in stream");
3111 
3112   if (!SeenFirstFunctionBody)
3113     return error("Trying to materialize functions before seeing function blocks");
3114 
3115   // An old bitcode file with the symbol table at the end would have
3116   // finished the parse greedily.
3117   assert(SeenValueSymbolTable);
3118 
3119   SmallVector<uint64_t, 64> Record;
3120 
3121   while (true) {
3122     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3123     if (!MaybeEntry)
3124       return MaybeEntry.takeError();
3125     llvm::BitstreamEntry Entry = MaybeEntry.get();
3126 
3127     switch (Entry.Kind) {
3128     default:
3129       return error("Expect SubBlock");
3130     case BitstreamEntry::SubBlock:
3131       switch (Entry.ID) {
3132       default:
3133         return error("Expect function block");
3134       case bitc::FUNCTION_BLOCK_ID:
3135         if (Error Err = rememberAndSkipFunctionBody())
3136           return Err;
3137         NextUnreadBit = Stream.GetCurrentBitNo();
3138         return Error::success();
3139       }
3140     }
3141   }
3142 }
3143 
3144 bool BitcodeReaderBase::readBlockInfo() {
3145   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3146       Stream.ReadBlockInfoBlock();
3147   if (!MaybeNewBlockInfo)
3148     return true; // FIXME Handle the error.
3149   Optional<BitstreamBlockInfo> NewBlockInfo =
3150       std::move(MaybeNewBlockInfo.get());
3151   if (!NewBlockInfo)
3152     return true;
3153   BlockInfo = std::move(*NewBlockInfo);
3154   return false;
3155 }
3156 
3157 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3158   // v1: [selection_kind, name]
3159   // v2: [strtab_offset, strtab_size, selection_kind]
3160   StringRef Name;
3161   std::tie(Name, Record) = readNameFromStrtab(Record);
3162 
3163   if (Record.empty())
3164     return error("Invalid record");
3165   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3166   std::string OldFormatName;
3167   if (!UseStrtab) {
3168     if (Record.size() < 2)
3169       return error("Invalid record");
3170     unsigned ComdatNameSize = Record[1];
3171     OldFormatName.reserve(ComdatNameSize);
3172     for (unsigned i = 0; i != ComdatNameSize; ++i)
3173       OldFormatName += (char)Record[2 + i];
3174     Name = OldFormatName;
3175   }
3176   Comdat *C = TheModule->getOrInsertComdat(Name);
3177   C->setSelectionKind(SK);
3178   ComdatList.push_back(C);
3179   return Error::success();
3180 }
3181 
3182 static void inferDSOLocal(GlobalValue *GV) {
3183   // infer dso_local from linkage and visibility if it is not encoded.
3184   if (GV->hasLocalLinkage() ||
3185       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3186     GV->setDSOLocal(true);
3187 }
3188 
3189 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3190   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3191   // visibility, threadlocal, unnamed_addr, externally_initialized,
3192   // dllstorageclass, comdat, attributes, preemption specifier,
3193   // partition strtab offset, partition strtab size] (name in VST)
3194   // v2: [strtab_offset, strtab_size, v1]
3195   StringRef Name;
3196   std::tie(Name, Record) = readNameFromStrtab(Record);
3197 
3198   if (Record.size() < 6)
3199     return error("Invalid record");
3200   Type *Ty = getTypeByID(Record[0]);
3201   if (!Ty)
3202     return error("Invalid record");
3203   bool isConstant = Record[1] & 1;
3204   bool explicitType = Record[1] & 2;
3205   unsigned AddressSpace;
3206   if (explicitType) {
3207     AddressSpace = Record[1] >> 2;
3208   } else {
3209     if (!Ty->isPointerTy())
3210       return error("Invalid type for value");
3211     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3212     Ty = cast<PointerType>(Ty)->getElementType();
3213   }
3214 
3215   uint64_t RawLinkage = Record[3];
3216   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3217   MaybeAlign Alignment;
3218   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3219     return Err;
3220   std::string Section;
3221   if (Record[5]) {
3222     if (Record[5] - 1 >= SectionTable.size())
3223       return error("Invalid ID");
3224     Section = SectionTable[Record[5] - 1];
3225   }
3226   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3227   // Local linkage must have default visibility.
3228   // auto-upgrade `hidden` and `protected` for old bitcode.
3229   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3230     Visibility = getDecodedVisibility(Record[6]);
3231 
3232   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3233   if (Record.size() > 7)
3234     TLM = getDecodedThreadLocalMode(Record[7]);
3235 
3236   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3237   if (Record.size() > 8)
3238     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3239 
3240   bool ExternallyInitialized = false;
3241   if (Record.size() > 9)
3242     ExternallyInitialized = Record[9];
3243 
3244   GlobalVariable *NewGV =
3245       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3246                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3247   NewGV->setAlignment(Alignment);
3248   if (!Section.empty())
3249     NewGV->setSection(Section);
3250   NewGV->setVisibility(Visibility);
3251   NewGV->setUnnamedAddr(UnnamedAddr);
3252 
3253   if (Record.size() > 10)
3254     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3255   else
3256     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3257 
3258   ValueList.push_back(NewGV);
3259 
3260   // Remember which value to use for the global initializer.
3261   if (unsigned InitID = Record[2])
3262     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3263 
3264   if (Record.size() > 11) {
3265     if (unsigned ComdatID = Record[11]) {
3266       if (ComdatID > ComdatList.size())
3267         return error("Invalid global variable comdat ID");
3268       NewGV->setComdat(ComdatList[ComdatID - 1]);
3269     }
3270   } else if (hasImplicitComdat(RawLinkage)) {
3271     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3272   }
3273 
3274   if (Record.size() > 12) {
3275     auto AS = getAttributes(Record[12]).getFnAttrs();
3276     NewGV->setAttributes(AS);
3277   }
3278 
3279   if (Record.size() > 13) {
3280     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3281   }
3282   inferDSOLocal(NewGV);
3283 
3284   // Check whether we have enough values to read a partition name.
3285   if (Record.size() > 15)
3286     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3287 
3288   return Error::success();
3289 }
3290 
3291 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3292   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3293   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3294   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3295   // v2: [strtab_offset, strtab_size, v1]
3296   StringRef Name;
3297   std::tie(Name, Record) = readNameFromStrtab(Record);
3298 
3299   if (Record.size() < 8)
3300     return error("Invalid record");
3301   Type *FTy = getTypeByID(Record[0]);
3302   if (!FTy)
3303     return error("Invalid record");
3304   if (auto *PTy = dyn_cast<PointerType>(FTy))
3305     FTy = PTy->getElementType();
3306 
3307   if (!isa<FunctionType>(FTy))
3308     return error("Invalid type for value");
3309   auto CC = static_cast<CallingConv::ID>(Record[1]);
3310   if (CC & ~CallingConv::MaxID)
3311     return error("Invalid calling convention ID");
3312 
3313   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3314   if (Record.size() > 16)
3315     AddrSpace = Record[16];
3316 
3317   Function *Func =
3318       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3319                        AddrSpace, Name, TheModule);
3320 
3321   assert(Func->getFunctionType() == FTy &&
3322          "Incorrect fully specified type provided for function");
3323   FunctionTypes[Func] = cast<FunctionType>(FTy);
3324 
3325   Func->setCallingConv(CC);
3326   bool isProto = Record[2];
3327   uint64_t RawLinkage = Record[3];
3328   Func->setLinkage(getDecodedLinkage(RawLinkage));
3329   Func->setAttributes(getAttributes(Record[4]));
3330 
3331   // Upgrade any old-style byval or sret without a type by propagating the
3332   // argument's pointee type. There should be no opaque pointers where the byval
3333   // type is implicit.
3334   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3335     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3336                                      Attribute::InAlloca}) {
3337       if (!Func->hasParamAttribute(i, Kind))
3338         continue;
3339 
3340       if (Func->getParamAttribute(i, Kind).getValueAsType())
3341         continue;
3342 
3343       Func->removeParamAttr(i, Kind);
3344 
3345       Type *PTy = cast<FunctionType>(FTy)->getParamType(i);
3346       Type *PtrEltTy = cast<PointerType>(PTy)->getElementType();
3347       Attribute NewAttr;
3348       switch (Kind) {
3349       case Attribute::ByVal:
3350         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3351         break;
3352       case Attribute::StructRet:
3353         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3354         break;
3355       case Attribute::InAlloca:
3356         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3357         break;
3358       default:
3359         llvm_unreachable("not an upgraded type attribute");
3360       }
3361 
3362       Func->addParamAttr(i, NewAttr);
3363     }
3364   }
3365 
3366   MaybeAlign Alignment;
3367   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3368     return Err;
3369   Func->setAlignment(Alignment);
3370   if (Record[6]) {
3371     if (Record[6] - 1 >= SectionTable.size())
3372       return error("Invalid ID");
3373     Func->setSection(SectionTable[Record[6] - 1]);
3374   }
3375   // Local linkage must have default visibility.
3376   // auto-upgrade `hidden` and `protected` for old bitcode.
3377   if (!Func->hasLocalLinkage())
3378     Func->setVisibility(getDecodedVisibility(Record[7]));
3379   if (Record.size() > 8 && Record[8]) {
3380     if (Record[8] - 1 >= GCTable.size())
3381       return error("Invalid ID");
3382     Func->setGC(GCTable[Record[8] - 1]);
3383   }
3384   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3385   if (Record.size() > 9)
3386     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3387   Func->setUnnamedAddr(UnnamedAddr);
3388   if (Record.size() > 10 && Record[10] != 0)
3389     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3390 
3391   if (Record.size() > 11)
3392     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3393   else
3394     upgradeDLLImportExportLinkage(Func, RawLinkage);
3395 
3396   if (Record.size() > 12) {
3397     if (unsigned ComdatID = Record[12]) {
3398       if (ComdatID > ComdatList.size())
3399         return error("Invalid function comdat ID");
3400       Func->setComdat(ComdatList[ComdatID - 1]);
3401     }
3402   } else if (hasImplicitComdat(RawLinkage)) {
3403     Func->setComdat(reinterpret_cast<Comdat *>(1));
3404   }
3405 
3406   if (Record.size() > 13 && Record[13] != 0)
3407     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3408 
3409   if (Record.size() > 14 && Record[14] != 0)
3410     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3411 
3412   if (Record.size() > 15) {
3413     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3414   }
3415   inferDSOLocal(Func);
3416 
3417   // Record[16] is the address space number.
3418 
3419   // Check whether we have enough values to read a partition name. Also make
3420   // sure Strtab has enough values.
3421   if (Record.size() > 18 && Strtab.data() &&
3422       Record[17] + Record[18] <= Strtab.size()) {
3423     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3424   }
3425 
3426   ValueList.push_back(Func);
3427 
3428   // If this is a function with a body, remember the prototype we are
3429   // creating now, so that we can match up the body with them later.
3430   if (!isProto) {
3431     Func->setIsMaterializable(true);
3432     FunctionsWithBodies.push_back(Func);
3433     DeferredFunctionInfo[Func] = 0;
3434   }
3435   return Error::success();
3436 }
3437 
3438 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3439     unsigned BitCode, ArrayRef<uint64_t> Record) {
3440   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3441   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3442   // dllstorageclass, threadlocal, unnamed_addr,
3443   // preemption specifier] (name in VST)
3444   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3445   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3446   // preemption specifier] (name in VST)
3447   // v2: [strtab_offset, strtab_size, v1]
3448   StringRef Name;
3449   std::tie(Name, Record) = readNameFromStrtab(Record);
3450 
3451   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3452   if (Record.size() < (3 + (unsigned)NewRecord))
3453     return error("Invalid record");
3454   unsigned OpNum = 0;
3455   Type *Ty = getTypeByID(Record[OpNum++]);
3456   if (!Ty)
3457     return error("Invalid record");
3458 
3459   unsigned AddrSpace;
3460   if (!NewRecord) {
3461     auto *PTy = dyn_cast<PointerType>(Ty);
3462     if (!PTy)
3463       return error("Invalid type for value");
3464     Ty = PTy->getElementType();
3465     AddrSpace = PTy->getAddressSpace();
3466   } else {
3467     AddrSpace = Record[OpNum++];
3468   }
3469 
3470   auto Val = Record[OpNum++];
3471   auto Linkage = Record[OpNum++];
3472   GlobalIndirectSymbol *NewGA;
3473   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3474       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3475     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3476                                 TheModule);
3477   else
3478     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3479                                 nullptr, TheModule);
3480 
3481   // Local linkage must have default visibility.
3482   // auto-upgrade `hidden` and `protected` for old bitcode.
3483   if (OpNum != Record.size()) {
3484     auto VisInd = OpNum++;
3485     if (!NewGA->hasLocalLinkage())
3486       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3487   }
3488   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3489       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3490     if (OpNum != Record.size())
3491       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3492     else
3493       upgradeDLLImportExportLinkage(NewGA, Linkage);
3494     if (OpNum != Record.size())
3495       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3496     if (OpNum != Record.size())
3497       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3498   }
3499   if (OpNum != Record.size())
3500     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3501   inferDSOLocal(NewGA);
3502 
3503   // Check whether we have enough values to read a partition name.
3504   if (OpNum + 1 < Record.size()) {
3505     NewGA->setPartition(
3506         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3507     OpNum += 2;
3508   }
3509 
3510   ValueList.push_back(NewGA);
3511   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3512   return Error::success();
3513 }
3514 
3515 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3516                                  bool ShouldLazyLoadMetadata,
3517                                  DataLayoutCallbackTy DataLayoutCallback) {
3518   if (ResumeBit) {
3519     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3520       return JumpFailed;
3521   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3522     return Err;
3523 
3524   SmallVector<uint64_t, 64> Record;
3525 
3526   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3527   // finalize the datalayout before we run any of that code.
3528   bool ResolvedDataLayout = false;
3529   auto ResolveDataLayout = [&] {
3530     if (ResolvedDataLayout)
3531       return;
3532 
3533     // datalayout and triple can't be parsed after this point.
3534     ResolvedDataLayout = true;
3535 
3536     // Upgrade data layout string.
3537     std::string DL = llvm::UpgradeDataLayoutString(
3538         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3539     TheModule->setDataLayout(DL);
3540 
3541     if (auto LayoutOverride =
3542             DataLayoutCallback(TheModule->getTargetTriple()))
3543       TheModule->setDataLayout(*LayoutOverride);
3544   };
3545 
3546   // Read all the records for this module.
3547   while (true) {
3548     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3549     if (!MaybeEntry)
3550       return MaybeEntry.takeError();
3551     llvm::BitstreamEntry Entry = MaybeEntry.get();
3552 
3553     switch (Entry.Kind) {
3554     case BitstreamEntry::Error:
3555       return error("Malformed block");
3556     case BitstreamEntry::EndBlock:
3557       ResolveDataLayout();
3558       return globalCleanup();
3559 
3560     case BitstreamEntry::SubBlock:
3561       switch (Entry.ID) {
3562       default:  // Skip unknown content.
3563         if (Error Err = Stream.SkipBlock())
3564           return Err;
3565         break;
3566       case bitc::BLOCKINFO_BLOCK_ID:
3567         if (readBlockInfo())
3568           return error("Malformed block");
3569         break;
3570       case bitc::PARAMATTR_BLOCK_ID:
3571         if (Error Err = parseAttributeBlock())
3572           return Err;
3573         break;
3574       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3575         if (Error Err = parseAttributeGroupBlock())
3576           return Err;
3577         break;
3578       case bitc::TYPE_BLOCK_ID_NEW:
3579         if (Error Err = parseTypeTable())
3580           return Err;
3581         break;
3582       case bitc::VALUE_SYMTAB_BLOCK_ID:
3583         if (!SeenValueSymbolTable) {
3584           // Either this is an old form VST without function index and an
3585           // associated VST forward declaration record (which would have caused
3586           // the VST to be jumped to and parsed before it was encountered
3587           // normally in the stream), or there were no function blocks to
3588           // trigger an earlier parsing of the VST.
3589           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3590           if (Error Err = parseValueSymbolTable())
3591             return Err;
3592           SeenValueSymbolTable = true;
3593         } else {
3594           // We must have had a VST forward declaration record, which caused
3595           // the parser to jump to and parse the VST earlier.
3596           assert(VSTOffset > 0);
3597           if (Error Err = Stream.SkipBlock())
3598             return Err;
3599         }
3600         break;
3601       case bitc::CONSTANTS_BLOCK_ID:
3602         if (Error Err = parseConstants())
3603           return Err;
3604         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3605           return Err;
3606         break;
3607       case bitc::METADATA_BLOCK_ID:
3608         if (ShouldLazyLoadMetadata) {
3609           if (Error Err = rememberAndSkipMetadata())
3610             return Err;
3611           break;
3612         }
3613         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3614         if (Error Err = MDLoader->parseModuleMetadata())
3615           return Err;
3616         break;
3617       case bitc::METADATA_KIND_BLOCK_ID:
3618         if (Error Err = MDLoader->parseMetadataKinds())
3619           return Err;
3620         break;
3621       case bitc::FUNCTION_BLOCK_ID:
3622         ResolveDataLayout();
3623 
3624         // If this is the first function body we've seen, reverse the
3625         // FunctionsWithBodies list.
3626         if (!SeenFirstFunctionBody) {
3627           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3628           if (Error Err = globalCleanup())
3629             return Err;
3630           SeenFirstFunctionBody = true;
3631         }
3632 
3633         if (VSTOffset > 0) {
3634           // If we have a VST forward declaration record, make sure we
3635           // parse the VST now if we haven't already. It is needed to
3636           // set up the DeferredFunctionInfo vector for lazy reading.
3637           if (!SeenValueSymbolTable) {
3638             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3639               return Err;
3640             SeenValueSymbolTable = true;
3641             // Fall through so that we record the NextUnreadBit below.
3642             // This is necessary in case we have an anonymous function that
3643             // is later materialized. Since it will not have a VST entry we
3644             // need to fall back to the lazy parse to find its offset.
3645           } else {
3646             // If we have a VST forward declaration record, but have already
3647             // parsed the VST (just above, when the first function body was
3648             // encountered here), then we are resuming the parse after
3649             // materializing functions. The ResumeBit points to the
3650             // start of the last function block recorded in the
3651             // DeferredFunctionInfo map. Skip it.
3652             if (Error Err = Stream.SkipBlock())
3653               return Err;
3654             continue;
3655           }
3656         }
3657 
3658         // Support older bitcode files that did not have the function
3659         // index in the VST, nor a VST forward declaration record, as
3660         // well as anonymous functions that do not have VST entries.
3661         // Build the DeferredFunctionInfo vector on the fly.
3662         if (Error Err = rememberAndSkipFunctionBody())
3663           return Err;
3664 
3665         // Suspend parsing when we reach the function bodies. Subsequent
3666         // materialization calls will resume it when necessary. If the bitcode
3667         // file is old, the symbol table will be at the end instead and will not
3668         // have been seen yet. In this case, just finish the parse now.
3669         if (SeenValueSymbolTable) {
3670           NextUnreadBit = Stream.GetCurrentBitNo();
3671           // After the VST has been parsed, we need to make sure intrinsic name
3672           // are auto-upgraded.
3673           return globalCleanup();
3674         }
3675         break;
3676       case bitc::USELIST_BLOCK_ID:
3677         if (Error Err = parseUseLists())
3678           return Err;
3679         break;
3680       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3681         if (Error Err = parseOperandBundleTags())
3682           return Err;
3683         break;
3684       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3685         if (Error Err = parseSyncScopeNames())
3686           return Err;
3687         break;
3688       }
3689       continue;
3690 
3691     case BitstreamEntry::Record:
3692       // The interesting case.
3693       break;
3694     }
3695 
3696     // Read a record.
3697     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3698     if (!MaybeBitCode)
3699       return MaybeBitCode.takeError();
3700     switch (unsigned BitCode = MaybeBitCode.get()) {
3701     default: break;  // Default behavior, ignore unknown content.
3702     case bitc::MODULE_CODE_VERSION: {
3703       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3704       if (!VersionOrErr)
3705         return VersionOrErr.takeError();
3706       UseRelativeIDs = *VersionOrErr >= 1;
3707       break;
3708     }
3709     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3710       if (ResolvedDataLayout)
3711         return error("target triple too late in module");
3712       std::string S;
3713       if (convertToString(Record, 0, S))
3714         return error("Invalid record");
3715       TheModule->setTargetTriple(S);
3716       break;
3717     }
3718     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3719       if (ResolvedDataLayout)
3720         return error("datalayout too late in module");
3721       std::string S;
3722       if (convertToString(Record, 0, S))
3723         return error("Invalid record");
3724       TheModule->setDataLayout(S);
3725       break;
3726     }
3727     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3728       std::string S;
3729       if (convertToString(Record, 0, S))
3730         return error("Invalid record");
3731       TheModule->setModuleInlineAsm(S);
3732       break;
3733     }
3734     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3735       // Deprecated, but still needed to read old bitcode files.
3736       std::string S;
3737       if (convertToString(Record, 0, S))
3738         return error("Invalid record");
3739       // Ignore value.
3740       break;
3741     }
3742     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3743       std::string S;
3744       if (convertToString(Record, 0, S))
3745         return error("Invalid record");
3746       SectionTable.push_back(S);
3747       break;
3748     }
3749     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3750       std::string S;
3751       if (convertToString(Record, 0, S))
3752         return error("Invalid record");
3753       GCTable.push_back(S);
3754       break;
3755     }
3756     case bitc::MODULE_CODE_COMDAT:
3757       if (Error Err = parseComdatRecord(Record))
3758         return Err;
3759       break;
3760     case bitc::MODULE_CODE_GLOBALVAR:
3761       if (Error Err = parseGlobalVarRecord(Record))
3762         return Err;
3763       break;
3764     case bitc::MODULE_CODE_FUNCTION:
3765       ResolveDataLayout();
3766       if (Error Err = parseFunctionRecord(Record))
3767         return Err;
3768       break;
3769     case bitc::MODULE_CODE_IFUNC:
3770     case bitc::MODULE_CODE_ALIAS:
3771     case bitc::MODULE_CODE_ALIAS_OLD:
3772       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3773         return Err;
3774       break;
3775     /// MODULE_CODE_VSTOFFSET: [offset]
3776     case bitc::MODULE_CODE_VSTOFFSET:
3777       if (Record.empty())
3778         return error("Invalid record");
3779       // Note that we subtract 1 here because the offset is relative to one word
3780       // before the start of the identification or module block, which was
3781       // historically always the start of the regular bitcode header.
3782       VSTOffset = Record[0] - 1;
3783       break;
3784     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3785     case bitc::MODULE_CODE_SOURCE_FILENAME:
3786       SmallString<128> ValueName;
3787       if (convertToString(Record, 0, ValueName))
3788         return error("Invalid record");
3789       TheModule->setSourceFileName(ValueName);
3790       break;
3791     }
3792     Record.clear();
3793   }
3794 }
3795 
3796 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3797                                       bool IsImporting,
3798                                       DataLayoutCallbackTy DataLayoutCallback) {
3799   TheModule = M;
3800   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3801                             [&](unsigned ID) { return getTypeByID(ID); });
3802   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3803 }
3804 
3805 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3806   if (!isa<PointerType>(PtrType))
3807     return error("Load/Store operand is not a pointer type");
3808 
3809   if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType))
3810     return error("Explicit load/store type does not match pointee "
3811                  "type of pointer operand");
3812   if (!PointerType::isLoadableOrStorableType(ValType))
3813     return error("Cannot load/store from pointer");
3814   return Error::success();
3815 }
3816 
3817 void BitcodeReader::propagateAttributeTypes(CallBase *CB,
3818                                             ArrayRef<Type *> ArgsTys) {
3819   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3820     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet,
3821                                      Attribute::InAlloca}) {
3822       if (!CB->paramHasAttr(i, Kind))
3823         continue;
3824 
3825       CB->removeParamAttr(i, Kind);
3826 
3827       Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType();
3828       Attribute NewAttr;
3829       switch (Kind) {
3830       case Attribute::ByVal:
3831         NewAttr = Attribute::getWithByValType(Context, PtrEltTy);
3832         break;
3833       case Attribute::StructRet:
3834         NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy);
3835         break;
3836       case Attribute::InAlloca:
3837         NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy);
3838         break;
3839       default:
3840         llvm_unreachable("not an upgraded type attribute");
3841       }
3842 
3843       CB->addParamAttr(i, NewAttr);
3844     }
3845   }
3846 
3847   switch (CB->getIntrinsicID()) {
3848   case Intrinsic::preserve_array_access_index:
3849   case Intrinsic::preserve_struct_access_index:
3850     if (!CB->getAttributes().getParamElementType(0)) {
3851       Type *ElTy = cast<PointerType>(ArgsTys[0])->getElementType();
3852       Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy);
3853       CB->addParamAttr(0, NewAttr);
3854     }
3855     break;
3856   default:
3857     break;
3858   }
3859 }
3860 
3861 /// Lazily parse the specified function body block.
3862 Error BitcodeReader::parseFunctionBody(Function *F) {
3863   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3864     return Err;
3865 
3866   // Unexpected unresolved metadata when parsing function.
3867   if (MDLoader->hasFwdRefs())
3868     return error("Invalid function metadata: incoming forward references");
3869 
3870   InstructionList.clear();
3871   unsigned ModuleValueListSize = ValueList.size();
3872   unsigned ModuleMDLoaderSize = MDLoader->size();
3873 
3874   // Add all the function arguments to the value table.
3875 #ifndef NDEBUG
3876   unsigned ArgNo = 0;
3877   FunctionType *FTy = FunctionTypes[F];
3878 #endif
3879   for (Argument &I : F->args()) {
3880     assert(I.getType() == FTy->getParamType(ArgNo++) &&
3881            "Incorrect fully specified type for Function Argument");
3882     ValueList.push_back(&I);
3883   }
3884   unsigned NextValueNo = ValueList.size();
3885   BasicBlock *CurBB = nullptr;
3886   unsigned CurBBNo = 0;
3887 
3888   DebugLoc LastLoc;
3889   auto getLastInstruction = [&]() -> Instruction * {
3890     if (CurBB && !CurBB->empty())
3891       return &CurBB->back();
3892     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3893              !FunctionBBs[CurBBNo - 1]->empty())
3894       return &FunctionBBs[CurBBNo - 1]->back();
3895     return nullptr;
3896   };
3897 
3898   std::vector<OperandBundleDef> OperandBundles;
3899 
3900   // Read all the records.
3901   SmallVector<uint64_t, 64> Record;
3902 
3903   while (true) {
3904     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3905     if (!MaybeEntry)
3906       return MaybeEntry.takeError();
3907     llvm::BitstreamEntry Entry = MaybeEntry.get();
3908 
3909     switch (Entry.Kind) {
3910     case BitstreamEntry::Error:
3911       return error("Malformed block");
3912     case BitstreamEntry::EndBlock:
3913       goto OutOfRecordLoop;
3914 
3915     case BitstreamEntry::SubBlock:
3916       switch (Entry.ID) {
3917       default:  // Skip unknown content.
3918         if (Error Err = Stream.SkipBlock())
3919           return Err;
3920         break;
3921       case bitc::CONSTANTS_BLOCK_ID:
3922         if (Error Err = parseConstants())
3923           return Err;
3924         NextValueNo = ValueList.size();
3925         break;
3926       case bitc::VALUE_SYMTAB_BLOCK_ID:
3927         if (Error Err = parseValueSymbolTable())
3928           return Err;
3929         break;
3930       case bitc::METADATA_ATTACHMENT_ID:
3931         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3932           return Err;
3933         break;
3934       case bitc::METADATA_BLOCK_ID:
3935         assert(DeferredMetadataInfo.empty() &&
3936                "Must read all module-level metadata before function-level");
3937         if (Error Err = MDLoader->parseFunctionMetadata())
3938           return Err;
3939         break;
3940       case bitc::USELIST_BLOCK_ID:
3941         if (Error Err = parseUseLists())
3942           return Err;
3943         break;
3944       }
3945       continue;
3946 
3947     case BitstreamEntry::Record:
3948       // The interesting case.
3949       break;
3950     }
3951 
3952     // Read a record.
3953     Record.clear();
3954     Instruction *I = nullptr;
3955     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3956     if (!MaybeBitCode)
3957       return MaybeBitCode.takeError();
3958     switch (unsigned BitCode = MaybeBitCode.get()) {
3959     default: // Default behavior: reject
3960       return error("Invalid value");
3961     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3962       if (Record.empty() || Record[0] == 0)
3963         return error("Invalid record");
3964       // Create all the basic blocks for the function.
3965       FunctionBBs.resize(Record[0]);
3966 
3967       // See if anything took the address of blocks in this function.
3968       auto BBFRI = BasicBlockFwdRefs.find(F);
3969       if (BBFRI == BasicBlockFwdRefs.end()) {
3970         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3971           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3972       } else {
3973         auto &BBRefs = BBFRI->second;
3974         // Check for invalid basic block references.
3975         if (BBRefs.size() > FunctionBBs.size())
3976           return error("Invalid ID");
3977         assert(!BBRefs.empty() && "Unexpected empty array");
3978         assert(!BBRefs.front() && "Invalid reference to entry block");
3979         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3980              ++I)
3981           if (I < RE && BBRefs[I]) {
3982             BBRefs[I]->insertInto(F);
3983             FunctionBBs[I] = BBRefs[I];
3984           } else {
3985             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3986           }
3987 
3988         // Erase from the table.
3989         BasicBlockFwdRefs.erase(BBFRI);
3990       }
3991 
3992       CurBB = FunctionBBs[0];
3993       continue;
3994     }
3995 
3996     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3997       // This record indicates that the last instruction is at the same
3998       // location as the previous instruction with a location.
3999       I = getLastInstruction();
4000 
4001       if (!I)
4002         return error("Invalid record");
4003       I->setDebugLoc(LastLoc);
4004       I = nullptr;
4005       continue;
4006 
4007     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
4008       I = getLastInstruction();
4009       if (!I || Record.size() < 4)
4010         return error("Invalid record");
4011 
4012       unsigned Line = Record[0], Col = Record[1];
4013       unsigned ScopeID = Record[2], IAID = Record[3];
4014       bool isImplicitCode = Record.size() == 5 && Record[4];
4015 
4016       MDNode *Scope = nullptr, *IA = nullptr;
4017       if (ScopeID) {
4018         Scope = dyn_cast_or_null<MDNode>(
4019             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
4020         if (!Scope)
4021           return error("Invalid record");
4022       }
4023       if (IAID) {
4024         IA = dyn_cast_or_null<MDNode>(
4025             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
4026         if (!IA)
4027           return error("Invalid record");
4028       }
4029       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
4030                                 isImplicitCode);
4031       I->setDebugLoc(LastLoc);
4032       I = nullptr;
4033       continue;
4034     }
4035     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
4036       unsigned OpNum = 0;
4037       Value *LHS;
4038       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4039           OpNum+1 > Record.size())
4040         return error("Invalid record");
4041 
4042       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4043       if (Opc == -1)
4044         return error("Invalid record");
4045       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4046       InstructionList.push_back(I);
4047       if (OpNum < Record.size()) {
4048         if (isa<FPMathOperator>(I)) {
4049           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4050           if (FMF.any())
4051             I->setFastMathFlags(FMF);
4052         }
4053       }
4054       break;
4055     }
4056     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4057       unsigned OpNum = 0;
4058       Value *LHS, *RHS;
4059       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4060           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4061           OpNum+1 > Record.size())
4062         return error("Invalid record");
4063 
4064       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4065       if (Opc == -1)
4066         return error("Invalid record");
4067       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4068       InstructionList.push_back(I);
4069       if (OpNum < Record.size()) {
4070         if (Opc == Instruction::Add ||
4071             Opc == Instruction::Sub ||
4072             Opc == Instruction::Mul ||
4073             Opc == Instruction::Shl) {
4074           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4075             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4076           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4077             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4078         } else if (Opc == Instruction::SDiv ||
4079                    Opc == Instruction::UDiv ||
4080                    Opc == Instruction::LShr ||
4081                    Opc == Instruction::AShr) {
4082           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4083             cast<BinaryOperator>(I)->setIsExact(true);
4084         } else if (isa<FPMathOperator>(I)) {
4085           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4086           if (FMF.any())
4087             I->setFastMathFlags(FMF);
4088         }
4089 
4090       }
4091       break;
4092     }
4093     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4094       unsigned OpNum = 0;
4095       Value *Op;
4096       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4097           OpNum+2 != Record.size())
4098         return error("Invalid record");
4099 
4100       Type *ResTy = getTypeByID(Record[OpNum]);
4101       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4102       if (Opc == -1 || !ResTy)
4103         return error("Invalid record");
4104       Instruction *Temp = nullptr;
4105       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4106         if (Temp) {
4107           InstructionList.push_back(Temp);
4108           assert(CurBB && "No current BB?");
4109           CurBB->getInstList().push_back(Temp);
4110         }
4111       } else {
4112         auto CastOp = (Instruction::CastOps)Opc;
4113         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4114           return error("Invalid cast");
4115         I = CastInst::Create(CastOp, Op, ResTy);
4116       }
4117       InstructionList.push_back(I);
4118       break;
4119     }
4120     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4121     case bitc::FUNC_CODE_INST_GEP_OLD:
4122     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4123       unsigned OpNum = 0;
4124 
4125       Type *Ty;
4126       bool InBounds;
4127 
4128       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4129         InBounds = Record[OpNum++];
4130         Ty = getTypeByID(Record[OpNum++]);
4131       } else {
4132         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4133         Ty = nullptr;
4134       }
4135 
4136       Value *BasePtr;
4137       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
4138         return error("Invalid record");
4139 
4140       if (!Ty) {
4141         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
4142                  ->getElementType();
4143       } else if (!cast<PointerType>(BasePtr->getType()->getScalarType())
4144                       ->isOpaqueOrPointeeTypeMatches(Ty)) {
4145         return error(
4146             "Explicit gep type does not match pointee type of pointer operand");
4147       }
4148 
4149       SmallVector<Value*, 16> GEPIdx;
4150       while (OpNum != Record.size()) {
4151         Value *Op;
4152         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4153           return error("Invalid record");
4154         GEPIdx.push_back(Op);
4155       }
4156 
4157       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4158 
4159       InstructionList.push_back(I);
4160       if (InBounds)
4161         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4162       break;
4163     }
4164 
4165     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4166                                        // EXTRACTVAL: [opty, opval, n x indices]
4167       unsigned OpNum = 0;
4168       Value *Agg;
4169       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4170         return error("Invalid record");
4171       Type *Ty = Agg->getType();
4172 
4173       unsigned RecSize = Record.size();
4174       if (OpNum == RecSize)
4175         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4176 
4177       SmallVector<unsigned, 4> EXTRACTVALIdx;
4178       for (; OpNum != RecSize; ++OpNum) {
4179         bool IsArray = Ty->isArrayTy();
4180         bool IsStruct = Ty->isStructTy();
4181         uint64_t Index = Record[OpNum];
4182 
4183         if (!IsStruct && !IsArray)
4184           return error("EXTRACTVAL: Invalid type");
4185         if ((unsigned)Index != Index)
4186           return error("Invalid value");
4187         if (IsStruct && Index >= Ty->getStructNumElements())
4188           return error("EXTRACTVAL: Invalid struct index");
4189         if (IsArray && Index >= Ty->getArrayNumElements())
4190           return error("EXTRACTVAL: Invalid array index");
4191         EXTRACTVALIdx.push_back((unsigned)Index);
4192 
4193         if (IsStruct)
4194           Ty = Ty->getStructElementType(Index);
4195         else
4196           Ty = Ty->getArrayElementType();
4197       }
4198 
4199       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4200       InstructionList.push_back(I);
4201       break;
4202     }
4203 
4204     case bitc::FUNC_CODE_INST_INSERTVAL: {
4205                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4206       unsigned OpNum = 0;
4207       Value *Agg;
4208       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
4209         return error("Invalid record");
4210       Value *Val;
4211       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4212         return error("Invalid record");
4213 
4214       unsigned RecSize = Record.size();
4215       if (OpNum == RecSize)
4216         return error("INSERTVAL: Invalid instruction with 0 indices");
4217 
4218       SmallVector<unsigned, 4> INSERTVALIdx;
4219       Type *CurTy = Agg->getType();
4220       for (; OpNum != RecSize; ++OpNum) {
4221         bool IsArray = CurTy->isArrayTy();
4222         bool IsStruct = CurTy->isStructTy();
4223         uint64_t Index = Record[OpNum];
4224 
4225         if (!IsStruct && !IsArray)
4226           return error("INSERTVAL: Invalid type");
4227         if ((unsigned)Index != Index)
4228           return error("Invalid value");
4229         if (IsStruct && Index >= CurTy->getStructNumElements())
4230           return error("INSERTVAL: Invalid struct index");
4231         if (IsArray && Index >= CurTy->getArrayNumElements())
4232           return error("INSERTVAL: Invalid array index");
4233 
4234         INSERTVALIdx.push_back((unsigned)Index);
4235         if (IsStruct)
4236           CurTy = CurTy->getStructElementType(Index);
4237         else
4238           CurTy = CurTy->getArrayElementType();
4239       }
4240 
4241       if (CurTy != Val->getType())
4242         return error("Inserted value type doesn't match aggregate type");
4243 
4244       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4245       InstructionList.push_back(I);
4246       break;
4247     }
4248 
4249     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4250       // obsolete form of select
4251       // handles select i1 ... in old bitcode
4252       unsigned OpNum = 0;
4253       Value *TrueVal, *FalseVal, *Cond;
4254       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4255           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4256           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4257         return error("Invalid record");
4258 
4259       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4260       InstructionList.push_back(I);
4261       break;
4262     }
4263 
4264     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4265       // new form of select
4266       // handles select i1 or select [N x i1]
4267       unsigned OpNum = 0;
4268       Value *TrueVal, *FalseVal, *Cond;
4269       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4270           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4271           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4272         return error("Invalid record");
4273 
4274       // select condition can be either i1 or [N x i1]
4275       if (VectorType* vector_type =
4276           dyn_cast<VectorType>(Cond->getType())) {
4277         // expect <n x i1>
4278         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4279           return error("Invalid type for value");
4280       } else {
4281         // expect i1
4282         if (Cond->getType() != Type::getInt1Ty(Context))
4283           return error("Invalid type for value");
4284       }
4285 
4286       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4287       InstructionList.push_back(I);
4288       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4289         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4290         if (FMF.any())
4291           I->setFastMathFlags(FMF);
4292       }
4293       break;
4294     }
4295 
4296     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4297       unsigned OpNum = 0;
4298       Value *Vec, *Idx;
4299       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4300           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4301         return error("Invalid record");
4302       if (!Vec->getType()->isVectorTy())
4303         return error("Invalid type for value");
4304       I = ExtractElementInst::Create(Vec, Idx);
4305       InstructionList.push_back(I);
4306       break;
4307     }
4308 
4309     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4310       unsigned OpNum = 0;
4311       Value *Vec, *Elt, *Idx;
4312       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4313         return error("Invalid record");
4314       if (!Vec->getType()->isVectorTy())
4315         return error("Invalid type for value");
4316       if (popValue(Record, OpNum, NextValueNo,
4317                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4318           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4319         return error("Invalid record");
4320       I = InsertElementInst::Create(Vec, Elt, Idx);
4321       InstructionList.push_back(I);
4322       break;
4323     }
4324 
4325     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4326       unsigned OpNum = 0;
4327       Value *Vec1, *Vec2, *Mask;
4328       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4329           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4330         return error("Invalid record");
4331 
4332       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4333         return error("Invalid record");
4334       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4335         return error("Invalid type for value");
4336 
4337       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4338       InstructionList.push_back(I);
4339       break;
4340     }
4341 
4342     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4343       // Old form of ICmp/FCmp returning bool
4344       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4345       // both legal on vectors but had different behaviour.
4346     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4347       // FCmp/ICmp returning bool or vector of bool
4348 
4349       unsigned OpNum = 0;
4350       Value *LHS, *RHS;
4351       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4352           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4353         return error("Invalid record");
4354 
4355       if (OpNum >= Record.size())
4356         return error(
4357             "Invalid record: operand number exceeded available operands");
4358 
4359       unsigned PredVal = Record[OpNum];
4360       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4361       FastMathFlags FMF;
4362       if (IsFP && Record.size() > OpNum+1)
4363         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4364 
4365       if (OpNum+1 != Record.size())
4366         return error("Invalid record");
4367 
4368       if (LHS->getType()->isFPOrFPVectorTy())
4369         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4370       else
4371         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4372 
4373       if (FMF.any())
4374         I->setFastMathFlags(FMF);
4375       InstructionList.push_back(I);
4376       break;
4377     }
4378 
4379     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4380       {
4381         unsigned Size = Record.size();
4382         if (Size == 0) {
4383           I = ReturnInst::Create(Context);
4384           InstructionList.push_back(I);
4385           break;
4386         }
4387 
4388         unsigned OpNum = 0;
4389         Value *Op = nullptr;
4390         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4391           return error("Invalid record");
4392         if (OpNum != Record.size())
4393           return error("Invalid record");
4394 
4395         I = ReturnInst::Create(Context, Op);
4396         InstructionList.push_back(I);
4397         break;
4398       }
4399     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4400       if (Record.size() != 1 && Record.size() != 3)
4401         return error("Invalid record");
4402       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4403       if (!TrueDest)
4404         return error("Invalid record");
4405 
4406       if (Record.size() == 1) {
4407         I = BranchInst::Create(TrueDest);
4408         InstructionList.push_back(I);
4409       }
4410       else {
4411         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4412         Value *Cond = getValue(Record, 2, NextValueNo,
4413                                Type::getInt1Ty(Context));
4414         if (!FalseDest || !Cond)
4415           return error("Invalid record");
4416         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4417         InstructionList.push_back(I);
4418       }
4419       break;
4420     }
4421     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4422       if (Record.size() != 1 && Record.size() != 2)
4423         return error("Invalid record");
4424       unsigned Idx = 0;
4425       Value *CleanupPad =
4426           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4427       if (!CleanupPad)
4428         return error("Invalid record");
4429       BasicBlock *UnwindDest = nullptr;
4430       if (Record.size() == 2) {
4431         UnwindDest = getBasicBlock(Record[Idx++]);
4432         if (!UnwindDest)
4433           return error("Invalid record");
4434       }
4435 
4436       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4437       InstructionList.push_back(I);
4438       break;
4439     }
4440     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4441       if (Record.size() != 2)
4442         return error("Invalid record");
4443       unsigned Idx = 0;
4444       Value *CatchPad =
4445           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4446       if (!CatchPad)
4447         return error("Invalid record");
4448       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4449       if (!BB)
4450         return error("Invalid record");
4451 
4452       I = CatchReturnInst::Create(CatchPad, BB);
4453       InstructionList.push_back(I);
4454       break;
4455     }
4456     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4457       // We must have, at minimum, the outer scope and the number of arguments.
4458       if (Record.size() < 2)
4459         return error("Invalid record");
4460 
4461       unsigned Idx = 0;
4462 
4463       Value *ParentPad =
4464           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4465 
4466       unsigned NumHandlers = Record[Idx++];
4467 
4468       SmallVector<BasicBlock *, 2> Handlers;
4469       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4470         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4471         if (!BB)
4472           return error("Invalid record");
4473         Handlers.push_back(BB);
4474       }
4475 
4476       BasicBlock *UnwindDest = nullptr;
4477       if (Idx + 1 == Record.size()) {
4478         UnwindDest = getBasicBlock(Record[Idx++]);
4479         if (!UnwindDest)
4480           return error("Invalid record");
4481       }
4482 
4483       if (Record.size() != Idx)
4484         return error("Invalid record");
4485 
4486       auto *CatchSwitch =
4487           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4488       for (BasicBlock *Handler : Handlers)
4489         CatchSwitch->addHandler(Handler);
4490       I = CatchSwitch;
4491       InstructionList.push_back(I);
4492       break;
4493     }
4494     case bitc::FUNC_CODE_INST_CATCHPAD:
4495     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4496       // We must have, at minimum, the outer scope and the number of arguments.
4497       if (Record.size() < 2)
4498         return error("Invalid record");
4499 
4500       unsigned Idx = 0;
4501 
4502       Value *ParentPad =
4503           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4504 
4505       unsigned NumArgOperands = Record[Idx++];
4506 
4507       SmallVector<Value *, 2> Args;
4508       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4509         Value *Val;
4510         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4511           return error("Invalid record");
4512         Args.push_back(Val);
4513       }
4514 
4515       if (Record.size() != Idx)
4516         return error("Invalid record");
4517 
4518       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4519         I = CleanupPadInst::Create(ParentPad, Args);
4520       else
4521         I = CatchPadInst::Create(ParentPad, Args);
4522       InstructionList.push_back(I);
4523       break;
4524     }
4525     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4526       // Check magic
4527       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4528         // "New" SwitchInst format with case ranges. The changes to write this
4529         // format were reverted but we still recognize bitcode that uses it.
4530         // Hopefully someday we will have support for case ranges and can use
4531         // this format again.
4532 
4533         Type *OpTy = getTypeByID(Record[1]);
4534         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4535 
4536         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4537         BasicBlock *Default = getBasicBlock(Record[3]);
4538         if (!OpTy || !Cond || !Default)
4539           return error("Invalid record");
4540 
4541         unsigned NumCases = Record[4];
4542 
4543         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4544         InstructionList.push_back(SI);
4545 
4546         unsigned CurIdx = 5;
4547         for (unsigned i = 0; i != NumCases; ++i) {
4548           SmallVector<ConstantInt*, 1> CaseVals;
4549           unsigned NumItems = Record[CurIdx++];
4550           for (unsigned ci = 0; ci != NumItems; ++ci) {
4551             bool isSingleNumber = Record[CurIdx++];
4552 
4553             APInt Low;
4554             unsigned ActiveWords = 1;
4555             if (ValueBitWidth > 64)
4556               ActiveWords = Record[CurIdx++];
4557             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4558                                 ValueBitWidth);
4559             CurIdx += ActiveWords;
4560 
4561             if (!isSingleNumber) {
4562               ActiveWords = 1;
4563               if (ValueBitWidth > 64)
4564                 ActiveWords = Record[CurIdx++];
4565               APInt High = readWideAPInt(
4566                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4567               CurIdx += ActiveWords;
4568 
4569               // FIXME: It is not clear whether values in the range should be
4570               // compared as signed or unsigned values. The partially
4571               // implemented changes that used this format in the past used
4572               // unsigned comparisons.
4573               for ( ; Low.ule(High); ++Low)
4574                 CaseVals.push_back(ConstantInt::get(Context, Low));
4575             } else
4576               CaseVals.push_back(ConstantInt::get(Context, Low));
4577           }
4578           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4579           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4580                  cve = CaseVals.end(); cvi != cve; ++cvi)
4581             SI->addCase(*cvi, DestBB);
4582         }
4583         I = SI;
4584         break;
4585       }
4586 
4587       // Old SwitchInst format without case ranges.
4588 
4589       if (Record.size() < 3 || (Record.size() & 1) == 0)
4590         return error("Invalid record");
4591       Type *OpTy = getTypeByID(Record[0]);
4592       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4593       BasicBlock *Default = getBasicBlock(Record[2]);
4594       if (!OpTy || !Cond || !Default)
4595         return error("Invalid record");
4596       unsigned NumCases = (Record.size()-3)/2;
4597       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4598       InstructionList.push_back(SI);
4599       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4600         ConstantInt *CaseVal =
4601           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4602         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4603         if (!CaseVal || !DestBB) {
4604           delete SI;
4605           return error("Invalid record");
4606         }
4607         SI->addCase(CaseVal, DestBB);
4608       }
4609       I = SI;
4610       break;
4611     }
4612     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4613       if (Record.size() < 2)
4614         return error("Invalid record");
4615       Type *OpTy = getTypeByID(Record[0]);
4616       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4617       if (!OpTy || !Address)
4618         return error("Invalid record");
4619       unsigned NumDests = Record.size()-2;
4620       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4621       InstructionList.push_back(IBI);
4622       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4623         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4624           IBI->addDestination(DestBB);
4625         } else {
4626           delete IBI;
4627           return error("Invalid record");
4628         }
4629       }
4630       I = IBI;
4631       break;
4632     }
4633 
4634     case bitc::FUNC_CODE_INST_INVOKE: {
4635       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4636       if (Record.size() < 4)
4637         return error("Invalid record");
4638       unsigned OpNum = 0;
4639       AttributeList PAL = getAttributes(Record[OpNum++]);
4640       unsigned CCInfo = Record[OpNum++];
4641       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4642       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4643 
4644       FunctionType *FTy = nullptr;
4645       if ((CCInfo >> 13) & 1) {
4646         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4647         if (!FTy)
4648           return error("Explicit invoke type is not a function type");
4649       }
4650 
4651       Value *Callee;
4652       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4653         return error("Invalid record");
4654 
4655       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4656       if (!CalleeTy)
4657         return error("Callee is not a pointer");
4658       if (!FTy) {
4659         FTy = dyn_cast<FunctionType>(
4660             cast<PointerType>(Callee->getType())->getElementType());
4661         if (!FTy)
4662           return error("Callee is not of pointer to function type");
4663       } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy))
4664         return error("Explicit invoke type does not match pointee type of "
4665                      "callee operand");
4666       if (Record.size() < FTy->getNumParams() + OpNum)
4667         return error("Insufficient operands to call");
4668 
4669       SmallVector<Value*, 16> Ops;
4670       SmallVector<Type *, 16> ArgsTys;
4671       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4672         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4673                                FTy->getParamType(i)));
4674         ArgsTys.push_back(FTy->getParamType(i));
4675         if (!Ops.back())
4676           return error("Invalid record");
4677       }
4678 
4679       if (!FTy->isVarArg()) {
4680         if (Record.size() != OpNum)
4681           return error("Invalid record");
4682       } else {
4683         // Read type/value pairs for varargs params.
4684         while (OpNum != Record.size()) {
4685           Value *Op;
4686           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4687             return error("Invalid record");
4688           Ops.push_back(Op);
4689           ArgsTys.push_back(Op->getType());
4690         }
4691       }
4692 
4693       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4694                              OperandBundles);
4695       OperandBundles.clear();
4696       InstructionList.push_back(I);
4697       cast<InvokeInst>(I)->setCallingConv(
4698           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4699       cast<InvokeInst>(I)->setAttributes(PAL);
4700       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
4701 
4702       break;
4703     }
4704     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4705       unsigned Idx = 0;
4706       Value *Val = nullptr;
4707       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4708         return error("Invalid record");
4709       I = ResumeInst::Create(Val);
4710       InstructionList.push_back(I);
4711       break;
4712     }
4713     case bitc::FUNC_CODE_INST_CALLBR: {
4714       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4715       unsigned OpNum = 0;
4716       AttributeList PAL = getAttributes(Record[OpNum++]);
4717       unsigned CCInfo = Record[OpNum++];
4718 
4719       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4720       unsigned NumIndirectDests = Record[OpNum++];
4721       SmallVector<BasicBlock *, 16> IndirectDests;
4722       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4723         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4724 
4725       FunctionType *FTy = nullptr;
4726       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4727         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
4728         if (!FTy)
4729           return error("Explicit call type is not a function type");
4730       }
4731 
4732       Value *Callee;
4733       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4734         return error("Invalid record");
4735 
4736       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4737       if (!OpTy)
4738         return error("Callee is not a pointer type");
4739       if (!FTy) {
4740         FTy = dyn_cast<FunctionType>(
4741             cast<PointerType>(Callee->getType())->getElementType());
4742         if (!FTy)
4743           return error("Callee is not of pointer to function type");
4744       } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy)
4745         return error("Explicit call type does not match pointee type of "
4746                      "callee operand");
4747       if (Record.size() < FTy->getNumParams() + OpNum)
4748         return error("Insufficient operands to call");
4749 
4750       SmallVector<Value*, 16> Args;
4751       // Read the fixed params.
4752       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4753         if (FTy->getParamType(i)->isLabelTy())
4754           Args.push_back(getBasicBlock(Record[OpNum]));
4755         else
4756           Args.push_back(getValue(Record, OpNum, NextValueNo,
4757                                   FTy->getParamType(i)));
4758         if (!Args.back())
4759           return error("Invalid record");
4760       }
4761 
4762       // Read type/value pairs for varargs params.
4763       if (!FTy->isVarArg()) {
4764         if (OpNum != Record.size())
4765           return error("Invalid record");
4766       } else {
4767         while (OpNum != Record.size()) {
4768           Value *Op;
4769           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4770             return error("Invalid record");
4771           Args.push_back(Op);
4772         }
4773       }
4774 
4775       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4776                              OperandBundles);
4777       OperandBundles.clear();
4778       InstructionList.push_back(I);
4779       cast<CallBrInst>(I)->setCallingConv(
4780           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4781       cast<CallBrInst>(I)->setAttributes(PAL);
4782       break;
4783     }
4784     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4785       I = new UnreachableInst(Context);
4786       InstructionList.push_back(I);
4787       break;
4788     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4789       if (Record.empty())
4790         return error("Invalid record");
4791       // The first record specifies the type.
4792       Type *Ty = getTypeByID(Record[0]);
4793       if (!Ty)
4794         return error("Invalid record");
4795 
4796       // Phi arguments are pairs of records of [value, basic block].
4797       // There is an optional final record for fast-math-flags if this phi has a
4798       // floating-point type.
4799       size_t NumArgs = (Record.size() - 1) / 2;
4800       PHINode *PN = PHINode::Create(Ty, NumArgs);
4801       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4802         return error("Invalid record");
4803       InstructionList.push_back(PN);
4804 
4805       for (unsigned i = 0; i != NumArgs; i++) {
4806         Value *V;
4807         // With the new function encoding, it is possible that operands have
4808         // negative IDs (for forward references).  Use a signed VBR
4809         // representation to keep the encoding small.
4810         if (UseRelativeIDs)
4811           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4812         else
4813           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4814         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4815         if (!V || !BB)
4816           return error("Invalid record");
4817         PN->addIncoming(V, BB);
4818       }
4819       I = PN;
4820 
4821       // If there are an even number of records, the final record must be FMF.
4822       if (Record.size() % 2 == 0) {
4823         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4824         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4825         if (FMF.any())
4826           I->setFastMathFlags(FMF);
4827       }
4828 
4829       break;
4830     }
4831 
4832     case bitc::FUNC_CODE_INST_LANDINGPAD:
4833     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4834       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4835       unsigned Idx = 0;
4836       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4837         if (Record.size() < 3)
4838           return error("Invalid record");
4839       } else {
4840         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4841         if (Record.size() < 4)
4842           return error("Invalid record");
4843       }
4844       Type *Ty = getTypeByID(Record[Idx++]);
4845       if (!Ty)
4846         return error("Invalid record");
4847       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4848         Value *PersFn = nullptr;
4849         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4850           return error("Invalid record");
4851 
4852         if (!F->hasPersonalityFn())
4853           F->setPersonalityFn(cast<Constant>(PersFn));
4854         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4855           return error("Personality function mismatch");
4856       }
4857 
4858       bool IsCleanup = !!Record[Idx++];
4859       unsigned NumClauses = Record[Idx++];
4860       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4861       LP->setCleanup(IsCleanup);
4862       for (unsigned J = 0; J != NumClauses; ++J) {
4863         LandingPadInst::ClauseType CT =
4864           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4865         Value *Val;
4866 
4867         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4868           delete LP;
4869           return error("Invalid record");
4870         }
4871 
4872         assert((CT != LandingPadInst::Catch ||
4873                 !isa<ArrayType>(Val->getType())) &&
4874                "Catch clause has a invalid type!");
4875         assert((CT != LandingPadInst::Filter ||
4876                 isa<ArrayType>(Val->getType())) &&
4877                "Filter clause has invalid type!");
4878         LP->addClause(cast<Constant>(Val));
4879       }
4880 
4881       I = LP;
4882       InstructionList.push_back(I);
4883       break;
4884     }
4885 
4886     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4887       if (Record.size() != 4)
4888         return error("Invalid record");
4889       using APV = AllocaPackedValues;
4890       const uint64_t Rec = Record[3];
4891       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4892       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4893       Type *Ty = getTypeByID(Record[0]);
4894       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4895         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4896         if (!PTy)
4897           return error("Old-style alloca with a non-pointer type");
4898         Ty = PTy->getElementType();
4899       }
4900       Type *OpTy = getTypeByID(Record[1]);
4901       Value *Size = getFnValueByID(Record[2], OpTy);
4902       MaybeAlign Align;
4903       if (Error Err =
4904               parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) {
4905         return Err;
4906       }
4907       if (!Ty || !Size)
4908         return error("Invalid record");
4909 
4910       // FIXME: Make this an optional field.
4911       const DataLayout &DL = TheModule->getDataLayout();
4912       unsigned AS = DL.getAllocaAddrSpace();
4913 
4914       SmallPtrSet<Type *, 4> Visited;
4915       if (!Align && !Ty->isSized(&Visited))
4916         return error("alloca of unsized type");
4917       if (!Align)
4918         Align = DL.getPrefTypeAlign(Ty);
4919 
4920       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4921       AI->setUsedWithInAlloca(InAlloca);
4922       AI->setSwiftError(SwiftError);
4923       I = AI;
4924       InstructionList.push_back(I);
4925       break;
4926     }
4927     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4928       unsigned OpNum = 0;
4929       Value *Op;
4930       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4931           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4932         return error("Invalid record");
4933 
4934       if (!isa<PointerType>(Op->getType()))
4935         return error("Load operand is not a pointer type");
4936 
4937       Type *Ty = nullptr;
4938       if (OpNum + 3 == Record.size()) {
4939         Ty = getTypeByID(Record[OpNum++]);
4940       } else {
4941         Ty = cast<PointerType>(Op->getType())->getElementType();
4942       }
4943 
4944       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4945         return Err;
4946 
4947       MaybeAlign Align;
4948       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4949         return Err;
4950       SmallPtrSet<Type *, 4> Visited;
4951       if (!Align && !Ty->isSized(&Visited))
4952         return error("load of unsized type");
4953       if (!Align)
4954         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
4955       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
4956       InstructionList.push_back(I);
4957       break;
4958     }
4959     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4960        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4961       unsigned OpNum = 0;
4962       Value *Op;
4963       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4964           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4965         return error("Invalid record");
4966 
4967       if (!isa<PointerType>(Op->getType()))
4968         return error("Load operand is not a pointer type");
4969 
4970       Type *Ty = nullptr;
4971       if (OpNum + 5 == Record.size()) {
4972         Ty = getTypeByID(Record[OpNum++]);
4973       } else {
4974         Ty = cast<PointerType>(Op->getType())->getElementType();
4975       }
4976 
4977       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4978         return Err;
4979 
4980       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4981       if (Ordering == AtomicOrdering::NotAtomic ||
4982           Ordering == AtomicOrdering::Release ||
4983           Ordering == AtomicOrdering::AcquireRelease)
4984         return error("Invalid record");
4985       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4986         return error("Invalid record");
4987       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4988 
4989       MaybeAlign Align;
4990       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4991         return Err;
4992       if (!Align)
4993         return error("Alignment missing from atomic load");
4994       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
4995       InstructionList.push_back(I);
4996       break;
4997     }
4998     case bitc::FUNC_CODE_INST_STORE:
4999     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
5000       unsigned OpNum = 0;
5001       Value *Val, *Ptr;
5002       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5003           (BitCode == bitc::FUNC_CODE_INST_STORE
5004                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5005                : popValue(Record, OpNum, NextValueNo,
5006                           cast<PointerType>(Ptr->getType())->getElementType(),
5007                           Val)) ||
5008           OpNum + 2 != Record.size())
5009         return error("Invalid record");
5010 
5011       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5012         return Err;
5013       MaybeAlign Align;
5014       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5015         return Err;
5016       SmallPtrSet<Type *, 4> Visited;
5017       if (!Align && !Val->getType()->isSized(&Visited))
5018         return error("store of unsized type");
5019       if (!Align)
5020         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
5021       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5022       InstructionList.push_back(I);
5023       break;
5024     }
5025     case bitc::FUNC_CODE_INST_STOREATOMIC:
5026     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5027       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5028       unsigned OpNum = 0;
5029       Value *Val, *Ptr;
5030       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
5031           !isa<PointerType>(Ptr->getType()) ||
5032           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5033                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5034                : popValue(Record, OpNum, NextValueNo,
5035                           cast<PointerType>(Ptr->getType())->getElementType(),
5036                           Val)) ||
5037           OpNum + 4 != Record.size())
5038         return error("Invalid record");
5039 
5040       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5041         return Err;
5042       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5043       if (Ordering == AtomicOrdering::NotAtomic ||
5044           Ordering == AtomicOrdering::Acquire ||
5045           Ordering == AtomicOrdering::AcquireRelease)
5046         return error("Invalid record");
5047       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5048       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5049         return error("Invalid record");
5050 
5051       MaybeAlign Align;
5052       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5053         return Err;
5054       if (!Align)
5055         return error("Alignment missing from atomic store");
5056       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5057       InstructionList.push_back(I);
5058       break;
5059     }
5060     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5061       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5062       // failure_ordering?, weak?]
5063       const size_t NumRecords = Record.size();
5064       unsigned OpNum = 0;
5065       Value *Ptr = nullptr;
5066       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5067         return error("Invalid record");
5068 
5069       if (!isa<PointerType>(Ptr->getType()))
5070         return error("Cmpxchg operand is not a pointer type");
5071 
5072       Value *Cmp = nullptr;
5073       if (popValue(Record, OpNum, NextValueNo,
5074                    cast<PointerType>(Ptr->getType())->getPointerElementType(),
5075                    Cmp))
5076         return error("Invalid record");
5077 
5078       Value *New = nullptr;
5079       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5080           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5081         return error("Invalid record");
5082 
5083       const AtomicOrdering SuccessOrdering =
5084           getDecodedOrdering(Record[OpNum + 1]);
5085       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5086           SuccessOrdering == AtomicOrdering::Unordered)
5087         return error("Invalid record");
5088 
5089       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5090 
5091       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5092         return Err;
5093 
5094       const AtomicOrdering FailureOrdering =
5095           NumRecords < 7
5096               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5097               : getDecodedOrdering(Record[OpNum + 3]);
5098 
5099       if (FailureOrdering == AtomicOrdering::NotAtomic ||
5100           FailureOrdering == AtomicOrdering::Unordered)
5101         return error("Invalid record");
5102 
5103       const Align Alignment(
5104           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5105 
5106       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5107                                 FailureOrdering, SSID);
5108       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5109 
5110       if (NumRecords < 8) {
5111         // Before weak cmpxchgs existed, the instruction simply returned the
5112         // value loaded from memory, so bitcode files from that era will be
5113         // expecting the first component of a modern cmpxchg.
5114         CurBB->getInstList().push_back(I);
5115         I = ExtractValueInst::Create(I, 0);
5116       } else {
5117         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5118       }
5119 
5120       InstructionList.push_back(I);
5121       break;
5122     }
5123     case bitc::FUNC_CODE_INST_CMPXCHG: {
5124       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5125       // failure_ordering, weak, align?]
5126       const size_t NumRecords = Record.size();
5127       unsigned OpNum = 0;
5128       Value *Ptr = nullptr;
5129       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5130         return error("Invalid record");
5131 
5132       if (!isa<PointerType>(Ptr->getType()))
5133         return error("Cmpxchg operand is not a pointer type");
5134 
5135       Value *Cmp = nullptr;
5136       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp))
5137         return error("Invalid record");
5138 
5139       Value *Val = nullptr;
5140       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val))
5141         return error("Invalid record");
5142 
5143       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5144         return error("Invalid record");
5145 
5146       const bool IsVol = Record[OpNum];
5147 
5148       const AtomicOrdering SuccessOrdering =
5149           getDecodedOrdering(Record[OpNum + 1]);
5150       if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
5151         return error("Invalid cmpxchg success ordering");
5152 
5153       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5154 
5155       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5156         return Err;
5157 
5158       const AtomicOrdering FailureOrdering =
5159           getDecodedOrdering(Record[OpNum + 3]);
5160       if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
5161         return error("Invalid cmpxchg failure ordering");
5162 
5163       const bool IsWeak = Record[OpNum + 4];
5164 
5165       MaybeAlign Alignment;
5166 
5167       if (NumRecords == (OpNum + 6)) {
5168         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5169           return Err;
5170       }
5171       if (!Alignment)
5172         Alignment =
5173             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5174 
5175       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5176                                 FailureOrdering, SSID);
5177       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5178       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5179 
5180       InstructionList.push_back(I);
5181       break;
5182     }
5183     case bitc::FUNC_CODE_INST_ATOMICRMW_OLD:
5184     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5185       // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?]
5186       // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?]
5187       const size_t NumRecords = Record.size();
5188       unsigned OpNum = 0;
5189 
5190       Value *Ptr = nullptr;
5191       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr))
5192         return error("Invalid record");
5193 
5194       if (!isa<PointerType>(Ptr->getType()))
5195         return error("Invalid record");
5196 
5197       Value *Val = nullptr;
5198       if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) {
5199         if (popValue(Record, OpNum, NextValueNo,
5200                      cast<PointerType>(Ptr->getType())->getPointerElementType(),
5201                      Val))
5202           return error("Invalid record");
5203       } else {
5204         if (getValueTypePair(Record, OpNum, NextValueNo, Val))
5205           return error("Invalid record");
5206       }
5207 
5208       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5209         return error("Invalid record");
5210 
5211       const AtomicRMWInst::BinOp Operation =
5212           getDecodedRMWOperation(Record[OpNum]);
5213       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5214           Operation > AtomicRMWInst::LAST_BINOP)
5215         return error("Invalid record");
5216 
5217       const bool IsVol = Record[OpNum + 1];
5218 
5219       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5220       if (Ordering == AtomicOrdering::NotAtomic ||
5221           Ordering == AtomicOrdering::Unordered)
5222         return error("Invalid record");
5223 
5224       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5225 
5226       MaybeAlign Alignment;
5227 
5228       if (NumRecords == (OpNum + 5)) {
5229         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5230           return Err;
5231       }
5232 
5233       if (!Alignment)
5234         Alignment =
5235             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5236 
5237       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5238       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5239 
5240       InstructionList.push_back(I);
5241       break;
5242     }
5243     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5244       if (2 != Record.size())
5245         return error("Invalid record");
5246       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5247       if (Ordering == AtomicOrdering::NotAtomic ||
5248           Ordering == AtomicOrdering::Unordered ||
5249           Ordering == AtomicOrdering::Monotonic)
5250         return error("Invalid record");
5251       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5252       I = new FenceInst(Context, Ordering, SSID);
5253       InstructionList.push_back(I);
5254       break;
5255     }
5256     case bitc::FUNC_CODE_INST_CALL: {
5257       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5258       if (Record.size() < 3)
5259         return error("Invalid record");
5260 
5261       unsigned OpNum = 0;
5262       AttributeList PAL = getAttributes(Record[OpNum++]);
5263       unsigned CCInfo = Record[OpNum++];
5264 
5265       FastMathFlags FMF;
5266       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5267         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5268         if (!FMF.any())
5269           return error("Fast math flags indicator set for call with no FMF");
5270       }
5271 
5272       FunctionType *FTy = nullptr;
5273       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5274         FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]));
5275         if (!FTy)
5276           return error("Explicit call type is not a function type");
5277       }
5278 
5279       Value *Callee;
5280       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
5281         return error("Invalid record");
5282 
5283       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5284       if (!OpTy)
5285         return error("Callee is not a pointer type");
5286       if (!FTy) {
5287         FTy = dyn_cast<FunctionType>(
5288             cast<PointerType>(Callee->getType())->getElementType());
5289         if (!FTy)
5290           return error("Callee is not of pointer to function type");
5291       } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy))
5292         return error("Explicit call type does not match pointee type of "
5293                      "callee operand");
5294       if (Record.size() < FTy->getNumParams() + OpNum)
5295         return error("Insufficient operands to call");
5296 
5297       SmallVector<Value*, 16> Args;
5298       SmallVector<Type *, 16> ArgsTys;
5299       // Read the fixed params.
5300       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5301         if (FTy->getParamType(i)->isLabelTy())
5302           Args.push_back(getBasicBlock(Record[OpNum]));
5303         else
5304           Args.push_back(getValue(Record, OpNum, NextValueNo,
5305                                   FTy->getParamType(i)));
5306         ArgsTys.push_back(FTy->getParamType(i));
5307         if (!Args.back())
5308           return error("Invalid record");
5309       }
5310 
5311       // Read type/value pairs for varargs params.
5312       if (!FTy->isVarArg()) {
5313         if (OpNum != Record.size())
5314           return error("Invalid record");
5315       } else {
5316         while (OpNum != Record.size()) {
5317           Value *Op;
5318           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5319             return error("Invalid record");
5320           Args.push_back(Op);
5321           ArgsTys.push_back(Op->getType());
5322         }
5323       }
5324 
5325       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5326       OperandBundles.clear();
5327       InstructionList.push_back(I);
5328       cast<CallInst>(I)->setCallingConv(
5329           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5330       CallInst::TailCallKind TCK = CallInst::TCK_None;
5331       if (CCInfo & 1 << bitc::CALL_TAIL)
5332         TCK = CallInst::TCK_Tail;
5333       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5334         TCK = CallInst::TCK_MustTail;
5335       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5336         TCK = CallInst::TCK_NoTail;
5337       cast<CallInst>(I)->setTailCallKind(TCK);
5338       cast<CallInst>(I)->setAttributes(PAL);
5339       propagateAttributeTypes(cast<CallBase>(I), ArgsTys);
5340       if (FMF.any()) {
5341         if (!isa<FPMathOperator>(I))
5342           return error("Fast-math-flags specified for call without "
5343                        "floating-point scalar or vector return type");
5344         I->setFastMathFlags(FMF);
5345       }
5346       break;
5347     }
5348     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5349       if (Record.size() < 3)
5350         return error("Invalid record");
5351       Type *OpTy = getTypeByID(Record[0]);
5352       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5353       Type *ResTy = getTypeByID(Record[2]);
5354       if (!OpTy || !Op || !ResTy)
5355         return error("Invalid record");
5356       I = new VAArgInst(Op, ResTy);
5357       InstructionList.push_back(I);
5358       break;
5359     }
5360 
5361     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5362       // A call or an invoke can be optionally prefixed with some variable
5363       // number of operand bundle blocks.  These blocks are read into
5364       // OperandBundles and consumed at the next call or invoke instruction.
5365 
5366       if (Record.empty() || Record[0] >= BundleTags.size())
5367         return error("Invalid record");
5368 
5369       std::vector<Value *> Inputs;
5370 
5371       unsigned OpNum = 1;
5372       while (OpNum != Record.size()) {
5373         Value *Op;
5374         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5375           return error("Invalid record");
5376         Inputs.push_back(Op);
5377       }
5378 
5379       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5380       continue;
5381     }
5382 
5383     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5384       unsigned OpNum = 0;
5385       Value *Op = nullptr;
5386       if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5387         return error("Invalid record");
5388       if (OpNum != Record.size())
5389         return error("Invalid record");
5390 
5391       I = new FreezeInst(Op);
5392       InstructionList.push_back(I);
5393       break;
5394     }
5395     }
5396 
5397     // Add instruction to end of current BB.  If there is no current BB, reject
5398     // this file.
5399     if (!CurBB) {
5400       I->deleteValue();
5401       return error("Invalid instruction with no BB");
5402     }
5403     if (!OperandBundles.empty()) {
5404       I->deleteValue();
5405       return error("Operand bundles found with no consumer");
5406     }
5407     CurBB->getInstList().push_back(I);
5408 
5409     // If this was a terminator instruction, move to the next block.
5410     if (I->isTerminator()) {
5411       ++CurBBNo;
5412       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5413     }
5414 
5415     // Non-void values get registered in the value table for future use.
5416     if (!I->getType()->isVoidTy())
5417       ValueList.assignValue(I, NextValueNo++);
5418   }
5419 
5420 OutOfRecordLoop:
5421 
5422   if (!OperandBundles.empty())
5423     return error("Operand bundles found with no consumer");
5424 
5425   // Check the function list for unresolved values.
5426   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5427     if (!A->getParent()) {
5428       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5429       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5430         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5431           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5432           delete A;
5433         }
5434       }
5435       return error("Never resolved value found in function");
5436     }
5437   }
5438 
5439   // Unexpected unresolved metadata about to be dropped.
5440   if (MDLoader->hasFwdRefs())
5441     return error("Invalid function metadata: outgoing forward refs");
5442 
5443   // Trim the value list down to the size it was before we parsed this function.
5444   ValueList.shrinkTo(ModuleValueListSize);
5445   MDLoader->shrinkTo(ModuleMDLoaderSize);
5446   std::vector<BasicBlock*>().swap(FunctionBBs);
5447   return Error::success();
5448 }
5449 
5450 /// Find the function body in the bitcode stream
5451 Error BitcodeReader::findFunctionInStream(
5452     Function *F,
5453     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5454   while (DeferredFunctionInfoIterator->second == 0) {
5455     // This is the fallback handling for the old format bitcode that
5456     // didn't contain the function index in the VST, or when we have
5457     // an anonymous function which would not have a VST entry.
5458     // Assert that we have one of those two cases.
5459     assert(VSTOffset == 0 || !F->hasName());
5460     // Parse the next body in the stream and set its position in the
5461     // DeferredFunctionInfo map.
5462     if (Error Err = rememberAndSkipFunctionBodies())
5463       return Err;
5464   }
5465   return Error::success();
5466 }
5467 
5468 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5469   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5470     return SyncScope::ID(Val);
5471   if (Val >= SSIDs.size())
5472     return SyncScope::System; // Map unknown synchronization scopes to system.
5473   return SSIDs[Val];
5474 }
5475 
5476 //===----------------------------------------------------------------------===//
5477 // GVMaterializer implementation
5478 //===----------------------------------------------------------------------===//
5479 
5480 Error BitcodeReader::materialize(GlobalValue *GV) {
5481   Function *F = dyn_cast<Function>(GV);
5482   // If it's not a function or is already material, ignore the request.
5483   if (!F || !F->isMaterializable())
5484     return Error::success();
5485 
5486   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5487   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5488   // If its position is recorded as 0, its body is somewhere in the stream
5489   // but we haven't seen it yet.
5490   if (DFII->second == 0)
5491     if (Error Err = findFunctionInStream(F, DFII))
5492       return Err;
5493 
5494   // Materialize metadata before parsing any function bodies.
5495   if (Error Err = materializeMetadata())
5496     return Err;
5497 
5498   // Move the bit stream to the saved position of the deferred function body.
5499   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5500     return JumpFailed;
5501   if (Error Err = parseFunctionBody(F))
5502     return Err;
5503   F->setIsMaterializable(false);
5504 
5505   if (StripDebugInfo)
5506     stripDebugInfo(*F);
5507 
5508   // Upgrade any old intrinsic calls in the function.
5509   for (auto &I : UpgradedIntrinsics) {
5510     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5511          UI != UE;) {
5512       User *U = *UI;
5513       ++UI;
5514       if (CallInst *CI = dyn_cast<CallInst>(U))
5515         UpgradeIntrinsicCall(CI, I.second);
5516     }
5517   }
5518 
5519   // Update calls to the remangled intrinsics
5520   for (auto &I : RemangledIntrinsics)
5521     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5522          UI != UE;)
5523       // Don't expect any other users than call sites
5524       cast<CallBase>(*UI++)->setCalledFunction(I.second);
5525 
5526   // Finish fn->subprogram upgrade for materialized functions.
5527   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5528     F->setSubprogram(SP);
5529 
5530   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5531   if (!MDLoader->isStrippingTBAA()) {
5532     for (auto &I : instructions(F)) {
5533       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5534       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5535         continue;
5536       MDLoader->setStripTBAA(true);
5537       stripTBAA(F->getParent());
5538     }
5539   }
5540 
5541   for (auto &I : instructions(F)) {
5542     // "Upgrade" older incorrect branch weights by dropping them.
5543     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5544       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5545         MDString *MDS = cast<MDString>(MD->getOperand(0));
5546         StringRef ProfName = MDS->getString();
5547         // Check consistency of !prof branch_weights metadata.
5548         if (!ProfName.equals("branch_weights"))
5549           continue;
5550         unsigned ExpectedNumOperands = 0;
5551         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5552           ExpectedNumOperands = BI->getNumSuccessors();
5553         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5554           ExpectedNumOperands = SI->getNumSuccessors();
5555         else if (isa<CallInst>(&I))
5556           ExpectedNumOperands = 1;
5557         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5558           ExpectedNumOperands = IBI->getNumDestinations();
5559         else if (isa<SelectInst>(&I))
5560           ExpectedNumOperands = 2;
5561         else
5562           continue; // ignore and continue.
5563 
5564         // If branch weight doesn't match, just strip branch weight.
5565         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5566           I.setMetadata(LLVMContext::MD_prof, nullptr);
5567       }
5568     }
5569 
5570     // Remove incompatible attributes on function calls.
5571     if (auto *CI = dyn_cast<CallBase>(&I)) {
5572       CI->removeRetAttrs(AttributeFuncs::typeIncompatible(
5573           CI->getFunctionType()->getReturnType()));
5574 
5575       for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo)
5576         CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible(
5577                                         CI->getArgOperand(ArgNo)->getType()));
5578     }
5579   }
5580 
5581   // Look for functions that rely on old function attribute behavior.
5582   UpgradeFunctionAttributes(*F);
5583 
5584   // Bring in any functions that this function forward-referenced via
5585   // blockaddresses.
5586   return materializeForwardReferencedFunctions();
5587 }
5588 
5589 Error BitcodeReader::materializeModule() {
5590   if (Error Err = materializeMetadata())
5591     return Err;
5592 
5593   // Promise to materialize all forward references.
5594   WillMaterializeAllForwardRefs = true;
5595 
5596   // Iterate over the module, deserializing any functions that are still on
5597   // disk.
5598   for (Function &F : *TheModule) {
5599     if (Error Err = materialize(&F))
5600       return Err;
5601   }
5602   // At this point, if there are any function bodies, parse the rest of
5603   // the bits in the module past the last function block we have recorded
5604   // through either lazy scanning or the VST.
5605   if (LastFunctionBlockBit || NextUnreadBit)
5606     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5607                                     ? LastFunctionBlockBit
5608                                     : NextUnreadBit))
5609       return Err;
5610 
5611   // Check that all block address forward references got resolved (as we
5612   // promised above).
5613   if (!BasicBlockFwdRefs.empty())
5614     return error("Never resolved function from blockaddress");
5615 
5616   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5617   // delete the old functions to clean up. We can't do this unless the entire
5618   // module is materialized because there could always be another function body
5619   // with calls to the old function.
5620   for (auto &I : UpgradedIntrinsics) {
5621     for (auto *U : I.first->users()) {
5622       if (CallInst *CI = dyn_cast<CallInst>(U))
5623         UpgradeIntrinsicCall(CI, I.second);
5624     }
5625     if (!I.first->use_empty())
5626       I.first->replaceAllUsesWith(I.second);
5627     I.first->eraseFromParent();
5628   }
5629   UpgradedIntrinsics.clear();
5630   // Do the same for remangled intrinsics
5631   for (auto &I : RemangledIntrinsics) {
5632     I.first->replaceAllUsesWith(I.second);
5633     I.first->eraseFromParent();
5634   }
5635   RemangledIntrinsics.clear();
5636 
5637   UpgradeDebugInfo(*TheModule);
5638 
5639   UpgradeModuleFlags(*TheModule);
5640 
5641   UpgradeARCRuntime(*TheModule);
5642 
5643   return Error::success();
5644 }
5645 
5646 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5647   return IdentifiedStructTypes;
5648 }
5649 
5650 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5651     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5652     StringRef ModulePath, unsigned ModuleId)
5653     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5654       ModulePath(ModulePath), ModuleId(ModuleId) {}
5655 
5656 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5657   TheIndex.addModule(ModulePath, ModuleId);
5658 }
5659 
5660 ModuleSummaryIndex::ModuleInfo *
5661 ModuleSummaryIndexBitcodeReader::getThisModule() {
5662   return TheIndex.getModule(ModulePath);
5663 }
5664 
5665 std::pair<ValueInfo, GlobalValue::GUID>
5666 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5667   auto VGI = ValueIdToValueInfoMap[ValueId];
5668   assert(VGI.first);
5669   return VGI;
5670 }
5671 
5672 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5673     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5674     StringRef SourceFileName) {
5675   std::string GlobalId =
5676       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5677   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5678   auto OriginalNameID = ValueGUID;
5679   if (GlobalValue::isLocalLinkage(Linkage))
5680     OriginalNameID = GlobalValue::getGUID(ValueName);
5681   if (PrintSummaryGUIDs)
5682     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5683            << ValueName << "\n";
5684 
5685   // UseStrtab is false for legacy summary formats and value names are
5686   // created on stack. In that case we save the name in a string saver in
5687   // the index so that the value name can be recorded.
5688   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5689       TheIndex.getOrInsertValueInfo(
5690           ValueGUID,
5691           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5692       OriginalNameID);
5693 }
5694 
5695 // Specialized value symbol table parser used when reading module index
5696 // blocks where we don't actually create global values. The parsed information
5697 // is saved in the bitcode reader for use when later parsing summaries.
5698 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5699     uint64_t Offset,
5700     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5701   // With a strtab the VST is not required to parse the summary.
5702   if (UseStrtab)
5703     return Error::success();
5704 
5705   assert(Offset > 0 && "Expected non-zero VST offset");
5706   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5707   if (!MaybeCurrentBit)
5708     return MaybeCurrentBit.takeError();
5709   uint64_t CurrentBit = MaybeCurrentBit.get();
5710 
5711   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5712     return Err;
5713 
5714   SmallVector<uint64_t, 64> Record;
5715 
5716   // Read all the records for this value table.
5717   SmallString<128> ValueName;
5718 
5719   while (true) {
5720     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5721     if (!MaybeEntry)
5722       return MaybeEntry.takeError();
5723     BitstreamEntry Entry = MaybeEntry.get();
5724 
5725     switch (Entry.Kind) {
5726     case BitstreamEntry::SubBlock: // Handled for us already.
5727     case BitstreamEntry::Error:
5728       return error("Malformed block");
5729     case BitstreamEntry::EndBlock:
5730       // Done parsing VST, jump back to wherever we came from.
5731       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5732         return JumpFailed;
5733       return Error::success();
5734     case BitstreamEntry::Record:
5735       // The interesting case.
5736       break;
5737     }
5738 
5739     // Read a record.
5740     Record.clear();
5741     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5742     if (!MaybeRecord)
5743       return MaybeRecord.takeError();
5744     switch (MaybeRecord.get()) {
5745     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5746       break;
5747     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5748       if (convertToString(Record, 1, ValueName))
5749         return error("Invalid record");
5750       unsigned ValueID = Record[0];
5751       assert(!SourceFileName.empty());
5752       auto VLI = ValueIdToLinkageMap.find(ValueID);
5753       assert(VLI != ValueIdToLinkageMap.end() &&
5754              "No linkage found for VST entry?");
5755       auto Linkage = VLI->second;
5756       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5757       ValueName.clear();
5758       break;
5759     }
5760     case bitc::VST_CODE_FNENTRY: {
5761       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5762       if (convertToString(Record, 2, ValueName))
5763         return error("Invalid record");
5764       unsigned ValueID = Record[0];
5765       assert(!SourceFileName.empty());
5766       auto VLI = ValueIdToLinkageMap.find(ValueID);
5767       assert(VLI != ValueIdToLinkageMap.end() &&
5768              "No linkage found for VST entry?");
5769       auto Linkage = VLI->second;
5770       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5771       ValueName.clear();
5772       break;
5773     }
5774     case bitc::VST_CODE_COMBINED_ENTRY: {
5775       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5776       unsigned ValueID = Record[0];
5777       GlobalValue::GUID RefGUID = Record[1];
5778       // The "original name", which is the second value of the pair will be
5779       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5780       ValueIdToValueInfoMap[ValueID] =
5781           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5782       break;
5783     }
5784     }
5785   }
5786 }
5787 
5788 // Parse just the blocks needed for building the index out of the module.
5789 // At the end of this routine the module Index is populated with a map
5790 // from global value id to GlobalValueSummary objects.
5791 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5792   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5793     return Err;
5794 
5795   SmallVector<uint64_t, 64> Record;
5796   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5797   unsigned ValueId = 0;
5798 
5799   // Read the index for this module.
5800   while (true) {
5801     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5802     if (!MaybeEntry)
5803       return MaybeEntry.takeError();
5804     llvm::BitstreamEntry Entry = MaybeEntry.get();
5805 
5806     switch (Entry.Kind) {
5807     case BitstreamEntry::Error:
5808       return error("Malformed block");
5809     case BitstreamEntry::EndBlock:
5810       return Error::success();
5811 
5812     case BitstreamEntry::SubBlock:
5813       switch (Entry.ID) {
5814       default: // Skip unknown content.
5815         if (Error Err = Stream.SkipBlock())
5816           return Err;
5817         break;
5818       case bitc::BLOCKINFO_BLOCK_ID:
5819         // Need to parse these to get abbrev ids (e.g. for VST)
5820         if (readBlockInfo())
5821           return error("Malformed block");
5822         break;
5823       case bitc::VALUE_SYMTAB_BLOCK_ID:
5824         // Should have been parsed earlier via VSTOffset, unless there
5825         // is no summary section.
5826         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5827                 !SeenGlobalValSummary) &&
5828                "Expected early VST parse via VSTOffset record");
5829         if (Error Err = Stream.SkipBlock())
5830           return Err;
5831         break;
5832       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5833       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5834         // Add the module if it is a per-module index (has a source file name).
5835         if (!SourceFileName.empty())
5836           addThisModule();
5837         assert(!SeenValueSymbolTable &&
5838                "Already read VST when parsing summary block?");
5839         // We might not have a VST if there were no values in the
5840         // summary. An empty summary block generated when we are
5841         // performing ThinLTO compiles so we don't later invoke
5842         // the regular LTO process on them.
5843         if (VSTOffset > 0) {
5844           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5845             return Err;
5846           SeenValueSymbolTable = true;
5847         }
5848         SeenGlobalValSummary = true;
5849         if (Error Err = parseEntireSummary(Entry.ID))
5850           return Err;
5851         break;
5852       case bitc::MODULE_STRTAB_BLOCK_ID:
5853         if (Error Err = parseModuleStringTable())
5854           return Err;
5855         break;
5856       }
5857       continue;
5858 
5859     case BitstreamEntry::Record: {
5860         Record.clear();
5861         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5862         if (!MaybeBitCode)
5863           return MaybeBitCode.takeError();
5864         switch (MaybeBitCode.get()) {
5865         default:
5866           break; // Default behavior, ignore unknown content.
5867         case bitc::MODULE_CODE_VERSION: {
5868           if (Error Err = parseVersionRecord(Record).takeError())
5869             return Err;
5870           break;
5871         }
5872         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5873         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5874           SmallString<128> ValueName;
5875           if (convertToString(Record, 0, ValueName))
5876             return error("Invalid record");
5877           SourceFileName = ValueName.c_str();
5878           break;
5879         }
5880         /// MODULE_CODE_HASH: [5*i32]
5881         case bitc::MODULE_CODE_HASH: {
5882           if (Record.size() != 5)
5883             return error("Invalid hash length " + Twine(Record.size()).str());
5884           auto &Hash = getThisModule()->second.second;
5885           int Pos = 0;
5886           for (auto &Val : Record) {
5887             assert(!(Val >> 32) && "Unexpected high bits set");
5888             Hash[Pos++] = Val;
5889           }
5890           break;
5891         }
5892         /// MODULE_CODE_VSTOFFSET: [offset]
5893         case bitc::MODULE_CODE_VSTOFFSET:
5894           if (Record.empty())
5895             return error("Invalid record");
5896           // Note that we subtract 1 here because the offset is relative to one
5897           // word before the start of the identification or module block, which
5898           // was historically always the start of the regular bitcode header.
5899           VSTOffset = Record[0] - 1;
5900           break;
5901         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5902         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5903         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5904         // v2: [strtab offset, strtab size, v1]
5905         case bitc::MODULE_CODE_GLOBALVAR:
5906         case bitc::MODULE_CODE_FUNCTION:
5907         case bitc::MODULE_CODE_ALIAS: {
5908           StringRef Name;
5909           ArrayRef<uint64_t> GVRecord;
5910           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5911           if (GVRecord.size() <= 3)
5912             return error("Invalid record");
5913           uint64_t RawLinkage = GVRecord[3];
5914           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5915           if (!UseStrtab) {
5916             ValueIdToLinkageMap[ValueId++] = Linkage;
5917             break;
5918           }
5919 
5920           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5921           break;
5922         }
5923         }
5924       }
5925       continue;
5926     }
5927   }
5928 }
5929 
5930 std::vector<ValueInfo>
5931 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5932   std::vector<ValueInfo> Ret;
5933   Ret.reserve(Record.size());
5934   for (uint64_t RefValueId : Record)
5935     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5936   return Ret;
5937 }
5938 
5939 std::vector<FunctionSummary::EdgeTy>
5940 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5941                                               bool IsOldProfileFormat,
5942                                               bool HasProfile, bool HasRelBF) {
5943   std::vector<FunctionSummary::EdgeTy> Ret;
5944   Ret.reserve(Record.size());
5945   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5946     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5947     uint64_t RelBF = 0;
5948     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5949     if (IsOldProfileFormat) {
5950       I += 1; // Skip old callsitecount field
5951       if (HasProfile)
5952         I += 1; // Skip old profilecount field
5953     } else if (HasProfile)
5954       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5955     else if (HasRelBF)
5956       RelBF = Record[++I];
5957     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5958   }
5959   return Ret;
5960 }
5961 
5962 static void
5963 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5964                                        WholeProgramDevirtResolution &Wpd) {
5965   uint64_t ArgNum = Record[Slot++];
5966   WholeProgramDevirtResolution::ByArg &B =
5967       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5968   Slot += ArgNum;
5969 
5970   B.TheKind =
5971       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5972   B.Info = Record[Slot++];
5973   B.Byte = Record[Slot++];
5974   B.Bit = Record[Slot++];
5975 }
5976 
5977 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5978                                               StringRef Strtab, size_t &Slot,
5979                                               TypeIdSummary &TypeId) {
5980   uint64_t Id = Record[Slot++];
5981   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5982 
5983   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5984   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5985                         static_cast<size_t>(Record[Slot + 1])};
5986   Slot += 2;
5987 
5988   uint64_t ResByArgNum = Record[Slot++];
5989   for (uint64_t I = 0; I != ResByArgNum; ++I)
5990     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5991 }
5992 
5993 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5994                                      StringRef Strtab,
5995                                      ModuleSummaryIndex &TheIndex) {
5996   size_t Slot = 0;
5997   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5998       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5999   Slot += 2;
6000 
6001   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
6002   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
6003   TypeId.TTRes.AlignLog2 = Record[Slot++];
6004   TypeId.TTRes.SizeM1 = Record[Slot++];
6005   TypeId.TTRes.BitMask = Record[Slot++];
6006   TypeId.TTRes.InlineBits = Record[Slot++];
6007 
6008   while (Slot < Record.size())
6009     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
6010 }
6011 
6012 std::vector<FunctionSummary::ParamAccess>
6013 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
6014   auto ReadRange = [&]() {
6015     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
6016                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6017     Record = Record.drop_front();
6018     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6019                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6020     Record = Record.drop_front();
6021     ConstantRange Range{Lower, Upper};
6022     assert(!Range.isFullSet());
6023     assert(!Range.isUpperSignWrapped());
6024     return Range;
6025   };
6026 
6027   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6028   while (!Record.empty()) {
6029     PendingParamAccesses.emplace_back();
6030     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6031     ParamAccess.ParamNo = Record.front();
6032     Record = Record.drop_front();
6033     ParamAccess.Use = ReadRange();
6034     ParamAccess.Calls.resize(Record.front());
6035     Record = Record.drop_front();
6036     for (auto &Call : ParamAccess.Calls) {
6037       Call.ParamNo = Record.front();
6038       Record = Record.drop_front();
6039       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6040       Record = Record.drop_front();
6041       Call.Offsets = ReadRange();
6042     }
6043   }
6044   return PendingParamAccesses;
6045 }
6046 
6047 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6048     ArrayRef<uint64_t> Record, size_t &Slot,
6049     TypeIdCompatibleVtableInfo &TypeId) {
6050   uint64_t Offset = Record[Slot++];
6051   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6052   TypeId.push_back({Offset, Callee});
6053 }
6054 
6055 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6056     ArrayRef<uint64_t> Record) {
6057   size_t Slot = 0;
6058   TypeIdCompatibleVtableInfo &TypeId =
6059       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6060           {Strtab.data() + Record[Slot],
6061            static_cast<size_t>(Record[Slot + 1])});
6062   Slot += 2;
6063 
6064   while (Slot < Record.size())
6065     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6066 }
6067 
6068 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6069                            unsigned WOCnt) {
6070   // Readonly and writeonly refs are in the end of the refs list.
6071   assert(ROCnt + WOCnt <= Refs.size());
6072   unsigned FirstWORef = Refs.size() - WOCnt;
6073   unsigned RefNo = FirstWORef - ROCnt;
6074   for (; RefNo < FirstWORef; ++RefNo)
6075     Refs[RefNo].setReadOnly();
6076   for (; RefNo < Refs.size(); ++RefNo)
6077     Refs[RefNo].setWriteOnly();
6078 }
6079 
6080 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6081 // objects in the index.
6082 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6083   if (Error Err = Stream.EnterSubBlock(ID))
6084     return Err;
6085   SmallVector<uint64_t, 64> Record;
6086 
6087   // Parse version
6088   {
6089     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6090     if (!MaybeEntry)
6091       return MaybeEntry.takeError();
6092     BitstreamEntry Entry = MaybeEntry.get();
6093 
6094     if (Entry.Kind != BitstreamEntry::Record)
6095       return error("Invalid Summary Block: record for version expected");
6096     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6097     if (!MaybeRecord)
6098       return MaybeRecord.takeError();
6099     if (MaybeRecord.get() != bitc::FS_VERSION)
6100       return error("Invalid Summary Block: version expected");
6101   }
6102   const uint64_t Version = Record[0];
6103   const bool IsOldProfileFormat = Version == 1;
6104   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6105     return error("Invalid summary version " + Twine(Version) +
6106                  ". Version should be in the range [1-" +
6107                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6108                  "].");
6109   Record.clear();
6110 
6111   // Keep around the last seen summary to be used when we see an optional
6112   // "OriginalName" attachement.
6113   GlobalValueSummary *LastSeenSummary = nullptr;
6114   GlobalValue::GUID LastSeenGUID = 0;
6115 
6116   // We can expect to see any number of type ID information records before
6117   // each function summary records; these variables store the information
6118   // collected so far so that it can be used to create the summary object.
6119   std::vector<GlobalValue::GUID> PendingTypeTests;
6120   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6121       PendingTypeCheckedLoadVCalls;
6122   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6123       PendingTypeCheckedLoadConstVCalls;
6124   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6125 
6126   while (true) {
6127     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6128     if (!MaybeEntry)
6129       return MaybeEntry.takeError();
6130     BitstreamEntry Entry = MaybeEntry.get();
6131 
6132     switch (Entry.Kind) {
6133     case BitstreamEntry::SubBlock: // Handled for us already.
6134     case BitstreamEntry::Error:
6135       return error("Malformed block");
6136     case BitstreamEntry::EndBlock:
6137       return Error::success();
6138     case BitstreamEntry::Record:
6139       // The interesting case.
6140       break;
6141     }
6142 
6143     // Read a record. The record format depends on whether this
6144     // is a per-module index or a combined index file. In the per-module
6145     // case the records contain the associated value's ID for correlation
6146     // with VST entries. In the combined index the correlation is done
6147     // via the bitcode offset of the summary records (which were saved
6148     // in the combined index VST entries). The records also contain
6149     // information used for ThinLTO renaming and importing.
6150     Record.clear();
6151     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6152     if (!MaybeBitCode)
6153       return MaybeBitCode.takeError();
6154     switch (unsigned BitCode = MaybeBitCode.get()) {
6155     default: // Default behavior: ignore.
6156       break;
6157     case bitc::FS_FLAGS: {  // [flags]
6158       TheIndex.setFlags(Record[0]);
6159       break;
6160     }
6161     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6162       uint64_t ValueID = Record[0];
6163       GlobalValue::GUID RefGUID = Record[1];
6164       ValueIdToValueInfoMap[ValueID] =
6165           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6166       break;
6167     }
6168     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6169     //                numrefs x valueid, n x (valueid)]
6170     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6171     //                        numrefs x valueid,
6172     //                        n x (valueid, hotness)]
6173     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6174     //                      numrefs x valueid,
6175     //                      n x (valueid, relblockfreq)]
6176     case bitc::FS_PERMODULE:
6177     case bitc::FS_PERMODULE_RELBF:
6178     case bitc::FS_PERMODULE_PROFILE: {
6179       unsigned ValueID = Record[0];
6180       uint64_t RawFlags = Record[1];
6181       unsigned InstCount = Record[2];
6182       uint64_t RawFunFlags = 0;
6183       unsigned NumRefs = Record[3];
6184       unsigned NumRORefs = 0, NumWORefs = 0;
6185       int RefListStartIndex = 4;
6186       if (Version >= 4) {
6187         RawFunFlags = Record[3];
6188         NumRefs = Record[4];
6189         RefListStartIndex = 5;
6190         if (Version >= 5) {
6191           NumRORefs = Record[5];
6192           RefListStartIndex = 6;
6193           if (Version >= 7) {
6194             NumWORefs = Record[6];
6195             RefListStartIndex = 7;
6196           }
6197         }
6198       }
6199 
6200       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6201       // The module path string ref set in the summary must be owned by the
6202       // index's module string table. Since we don't have a module path
6203       // string table section in the per-module index, we create a single
6204       // module path string table entry with an empty (0) ID to take
6205       // ownership.
6206       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6207       assert(Record.size() >= RefListStartIndex + NumRefs &&
6208              "Record size inconsistent with number of references");
6209       std::vector<ValueInfo> Refs = makeRefList(
6210           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6211       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6212       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6213       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6214           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6215           IsOldProfileFormat, HasProfile, HasRelBF);
6216       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6217       auto FS = std::make_unique<FunctionSummary>(
6218           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6219           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6220           std::move(PendingTypeTestAssumeVCalls),
6221           std::move(PendingTypeCheckedLoadVCalls),
6222           std::move(PendingTypeTestAssumeConstVCalls),
6223           std::move(PendingTypeCheckedLoadConstVCalls),
6224           std::move(PendingParamAccesses));
6225       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6226       FS->setModulePath(getThisModule()->first());
6227       FS->setOriginalName(VIAndOriginalGUID.second);
6228       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6229       break;
6230     }
6231     // FS_ALIAS: [valueid, flags, valueid]
6232     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6233     // they expect all aliasee summaries to be available.
6234     case bitc::FS_ALIAS: {
6235       unsigned ValueID = Record[0];
6236       uint64_t RawFlags = Record[1];
6237       unsigned AliaseeID = Record[2];
6238       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6239       auto AS = std::make_unique<AliasSummary>(Flags);
6240       // The module path string ref set in the summary must be owned by the
6241       // index's module string table. Since we don't have a module path
6242       // string table section in the per-module index, we create a single
6243       // module path string table entry with an empty (0) ID to take
6244       // ownership.
6245       AS->setModulePath(getThisModule()->first());
6246 
6247       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6248       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6249       if (!AliaseeInModule)
6250         return error("Alias expects aliasee summary to be parsed");
6251       AS->setAliasee(AliaseeVI, AliaseeInModule);
6252 
6253       auto GUID = getValueInfoFromValueId(ValueID);
6254       AS->setOriginalName(GUID.second);
6255       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6256       break;
6257     }
6258     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6259     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6260       unsigned ValueID = Record[0];
6261       uint64_t RawFlags = Record[1];
6262       unsigned RefArrayStart = 2;
6263       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6264                                       /* WriteOnly */ false,
6265                                       /* Constant */ false,
6266                                       GlobalObject::VCallVisibilityPublic);
6267       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6268       if (Version >= 5) {
6269         GVF = getDecodedGVarFlags(Record[2]);
6270         RefArrayStart = 3;
6271       }
6272       std::vector<ValueInfo> Refs =
6273           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6274       auto FS =
6275           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6276       FS->setModulePath(getThisModule()->first());
6277       auto GUID = getValueInfoFromValueId(ValueID);
6278       FS->setOriginalName(GUID.second);
6279       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6280       break;
6281     }
6282     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6283     //                        numrefs, numrefs x valueid,
6284     //                        n x (valueid, offset)]
6285     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6286       unsigned ValueID = Record[0];
6287       uint64_t RawFlags = Record[1];
6288       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6289       unsigned NumRefs = Record[3];
6290       unsigned RefListStartIndex = 4;
6291       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6292       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6293       std::vector<ValueInfo> Refs = makeRefList(
6294           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6295       VTableFuncList VTableFuncs;
6296       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6297         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6298         uint64_t Offset = Record[++I];
6299         VTableFuncs.push_back({Callee, Offset});
6300       }
6301       auto VS =
6302           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6303       VS->setModulePath(getThisModule()->first());
6304       VS->setVTableFuncs(VTableFuncs);
6305       auto GUID = getValueInfoFromValueId(ValueID);
6306       VS->setOriginalName(GUID.second);
6307       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6308       break;
6309     }
6310     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6311     //               numrefs x valueid, n x (valueid)]
6312     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6313     //                       numrefs x valueid, n x (valueid, hotness)]
6314     case bitc::FS_COMBINED:
6315     case bitc::FS_COMBINED_PROFILE: {
6316       unsigned ValueID = Record[0];
6317       uint64_t ModuleId = Record[1];
6318       uint64_t RawFlags = Record[2];
6319       unsigned InstCount = Record[3];
6320       uint64_t RawFunFlags = 0;
6321       uint64_t EntryCount = 0;
6322       unsigned NumRefs = Record[4];
6323       unsigned NumRORefs = 0, NumWORefs = 0;
6324       int RefListStartIndex = 5;
6325 
6326       if (Version >= 4) {
6327         RawFunFlags = Record[4];
6328         RefListStartIndex = 6;
6329         size_t NumRefsIndex = 5;
6330         if (Version >= 5) {
6331           unsigned NumRORefsOffset = 1;
6332           RefListStartIndex = 7;
6333           if (Version >= 6) {
6334             NumRefsIndex = 6;
6335             EntryCount = Record[5];
6336             RefListStartIndex = 8;
6337             if (Version >= 7) {
6338               RefListStartIndex = 9;
6339               NumWORefs = Record[8];
6340               NumRORefsOffset = 2;
6341             }
6342           }
6343           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6344         }
6345         NumRefs = Record[NumRefsIndex];
6346       }
6347 
6348       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6349       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6350       assert(Record.size() >= RefListStartIndex + NumRefs &&
6351              "Record size inconsistent with number of references");
6352       std::vector<ValueInfo> Refs = makeRefList(
6353           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6354       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6355       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6356           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6357           IsOldProfileFormat, HasProfile, false);
6358       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6359       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6360       auto FS = std::make_unique<FunctionSummary>(
6361           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6362           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6363           std::move(PendingTypeTestAssumeVCalls),
6364           std::move(PendingTypeCheckedLoadVCalls),
6365           std::move(PendingTypeTestAssumeConstVCalls),
6366           std::move(PendingTypeCheckedLoadConstVCalls),
6367           std::move(PendingParamAccesses));
6368       LastSeenSummary = FS.get();
6369       LastSeenGUID = VI.getGUID();
6370       FS->setModulePath(ModuleIdMap[ModuleId]);
6371       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6372       break;
6373     }
6374     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6375     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6376     // they expect all aliasee summaries to be available.
6377     case bitc::FS_COMBINED_ALIAS: {
6378       unsigned ValueID = Record[0];
6379       uint64_t ModuleId = Record[1];
6380       uint64_t RawFlags = Record[2];
6381       unsigned AliaseeValueId = Record[3];
6382       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6383       auto AS = std::make_unique<AliasSummary>(Flags);
6384       LastSeenSummary = AS.get();
6385       AS->setModulePath(ModuleIdMap[ModuleId]);
6386 
6387       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6388       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6389       AS->setAliasee(AliaseeVI, AliaseeInModule);
6390 
6391       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6392       LastSeenGUID = VI.getGUID();
6393       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6394       break;
6395     }
6396     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6397     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6398       unsigned ValueID = Record[0];
6399       uint64_t ModuleId = Record[1];
6400       uint64_t RawFlags = Record[2];
6401       unsigned RefArrayStart = 3;
6402       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6403                                       /* WriteOnly */ false,
6404                                       /* Constant */ false,
6405                                       GlobalObject::VCallVisibilityPublic);
6406       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6407       if (Version >= 5) {
6408         GVF = getDecodedGVarFlags(Record[3]);
6409         RefArrayStart = 4;
6410       }
6411       std::vector<ValueInfo> Refs =
6412           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6413       auto FS =
6414           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6415       LastSeenSummary = FS.get();
6416       FS->setModulePath(ModuleIdMap[ModuleId]);
6417       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6418       LastSeenGUID = VI.getGUID();
6419       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6420       break;
6421     }
6422     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6423     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6424       uint64_t OriginalName = Record[0];
6425       if (!LastSeenSummary)
6426         return error("Name attachment that does not follow a combined record");
6427       LastSeenSummary->setOriginalName(OriginalName);
6428       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6429       // Reset the LastSeenSummary
6430       LastSeenSummary = nullptr;
6431       LastSeenGUID = 0;
6432       break;
6433     }
6434     case bitc::FS_TYPE_TESTS:
6435       assert(PendingTypeTests.empty());
6436       llvm::append_range(PendingTypeTests, Record);
6437       break;
6438 
6439     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6440       assert(PendingTypeTestAssumeVCalls.empty());
6441       for (unsigned I = 0; I != Record.size(); I += 2)
6442         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6443       break;
6444 
6445     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6446       assert(PendingTypeCheckedLoadVCalls.empty());
6447       for (unsigned I = 0; I != Record.size(); I += 2)
6448         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6449       break;
6450 
6451     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6452       PendingTypeTestAssumeConstVCalls.push_back(
6453           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6454       break;
6455 
6456     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6457       PendingTypeCheckedLoadConstVCalls.push_back(
6458           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6459       break;
6460 
6461     case bitc::FS_CFI_FUNCTION_DEFS: {
6462       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6463       for (unsigned I = 0; I != Record.size(); I += 2)
6464         CfiFunctionDefs.insert(
6465             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6466       break;
6467     }
6468 
6469     case bitc::FS_CFI_FUNCTION_DECLS: {
6470       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6471       for (unsigned I = 0; I != Record.size(); I += 2)
6472         CfiFunctionDecls.insert(
6473             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6474       break;
6475     }
6476 
6477     case bitc::FS_TYPE_ID:
6478       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6479       break;
6480 
6481     case bitc::FS_TYPE_ID_METADATA:
6482       parseTypeIdCompatibleVtableSummaryRecord(Record);
6483       break;
6484 
6485     case bitc::FS_BLOCK_COUNT:
6486       TheIndex.addBlockCount(Record[0]);
6487       break;
6488 
6489     case bitc::FS_PARAM_ACCESS: {
6490       PendingParamAccesses = parseParamAccesses(Record);
6491       break;
6492     }
6493     }
6494   }
6495   llvm_unreachable("Exit infinite loop");
6496 }
6497 
6498 // Parse the  module string table block into the Index.
6499 // This populates the ModulePathStringTable map in the index.
6500 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6501   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6502     return Err;
6503 
6504   SmallVector<uint64_t, 64> Record;
6505 
6506   SmallString<128> ModulePath;
6507   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6508 
6509   while (true) {
6510     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6511     if (!MaybeEntry)
6512       return MaybeEntry.takeError();
6513     BitstreamEntry Entry = MaybeEntry.get();
6514 
6515     switch (Entry.Kind) {
6516     case BitstreamEntry::SubBlock: // Handled for us already.
6517     case BitstreamEntry::Error:
6518       return error("Malformed block");
6519     case BitstreamEntry::EndBlock:
6520       return Error::success();
6521     case BitstreamEntry::Record:
6522       // The interesting case.
6523       break;
6524     }
6525 
6526     Record.clear();
6527     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6528     if (!MaybeRecord)
6529       return MaybeRecord.takeError();
6530     switch (MaybeRecord.get()) {
6531     default: // Default behavior: ignore.
6532       break;
6533     case bitc::MST_CODE_ENTRY: {
6534       // MST_ENTRY: [modid, namechar x N]
6535       uint64_t ModuleId = Record[0];
6536 
6537       if (convertToString(Record, 1, ModulePath))
6538         return error("Invalid record");
6539 
6540       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6541       ModuleIdMap[ModuleId] = LastSeenModule->first();
6542 
6543       ModulePath.clear();
6544       break;
6545     }
6546     /// MST_CODE_HASH: [5*i32]
6547     case bitc::MST_CODE_HASH: {
6548       if (Record.size() != 5)
6549         return error("Invalid hash length " + Twine(Record.size()).str());
6550       if (!LastSeenModule)
6551         return error("Invalid hash that does not follow a module path");
6552       int Pos = 0;
6553       for (auto &Val : Record) {
6554         assert(!(Val >> 32) && "Unexpected high bits set");
6555         LastSeenModule->second.second[Pos++] = Val;
6556       }
6557       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6558       LastSeenModule = nullptr;
6559       break;
6560     }
6561     }
6562   }
6563   llvm_unreachable("Exit infinite loop");
6564 }
6565 
6566 namespace {
6567 
6568 // FIXME: This class is only here to support the transition to llvm::Error. It
6569 // will be removed once this transition is complete. Clients should prefer to
6570 // deal with the Error value directly, rather than converting to error_code.
6571 class BitcodeErrorCategoryType : public std::error_category {
6572   const char *name() const noexcept override {
6573     return "llvm.bitcode";
6574   }
6575 
6576   std::string message(int IE) const override {
6577     BitcodeError E = static_cast<BitcodeError>(IE);
6578     switch (E) {
6579     case BitcodeError::CorruptedBitcode:
6580       return "Corrupted bitcode";
6581     }
6582     llvm_unreachable("Unknown error type!");
6583   }
6584 };
6585 
6586 } // end anonymous namespace
6587 
6588 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6589 
6590 const std::error_category &llvm::BitcodeErrorCategory() {
6591   return *ErrorCategory;
6592 }
6593 
6594 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6595                                             unsigned Block, unsigned RecordID) {
6596   if (Error Err = Stream.EnterSubBlock(Block))
6597     return std::move(Err);
6598 
6599   StringRef Strtab;
6600   while (true) {
6601     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6602     if (!MaybeEntry)
6603       return MaybeEntry.takeError();
6604     llvm::BitstreamEntry Entry = MaybeEntry.get();
6605 
6606     switch (Entry.Kind) {
6607     case BitstreamEntry::EndBlock:
6608       return Strtab;
6609 
6610     case BitstreamEntry::Error:
6611       return error("Malformed block");
6612 
6613     case BitstreamEntry::SubBlock:
6614       if (Error Err = Stream.SkipBlock())
6615         return std::move(Err);
6616       break;
6617 
6618     case BitstreamEntry::Record:
6619       StringRef Blob;
6620       SmallVector<uint64_t, 1> Record;
6621       Expected<unsigned> MaybeRecord =
6622           Stream.readRecord(Entry.ID, Record, &Blob);
6623       if (!MaybeRecord)
6624         return MaybeRecord.takeError();
6625       if (MaybeRecord.get() == RecordID)
6626         Strtab = Blob;
6627       break;
6628     }
6629   }
6630 }
6631 
6632 //===----------------------------------------------------------------------===//
6633 // External interface
6634 //===----------------------------------------------------------------------===//
6635 
6636 Expected<std::vector<BitcodeModule>>
6637 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6638   auto FOrErr = getBitcodeFileContents(Buffer);
6639   if (!FOrErr)
6640     return FOrErr.takeError();
6641   return std::move(FOrErr->Mods);
6642 }
6643 
6644 Expected<BitcodeFileContents>
6645 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6646   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6647   if (!StreamOrErr)
6648     return StreamOrErr.takeError();
6649   BitstreamCursor &Stream = *StreamOrErr;
6650 
6651   BitcodeFileContents F;
6652   while (true) {
6653     uint64_t BCBegin = Stream.getCurrentByteNo();
6654 
6655     // We may be consuming bitcode from a client that leaves garbage at the end
6656     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6657     // the end that there cannot possibly be another module, stop looking.
6658     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6659       return F;
6660 
6661     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6662     if (!MaybeEntry)
6663       return MaybeEntry.takeError();
6664     llvm::BitstreamEntry Entry = MaybeEntry.get();
6665 
6666     switch (Entry.Kind) {
6667     case BitstreamEntry::EndBlock:
6668     case BitstreamEntry::Error:
6669       return error("Malformed block");
6670 
6671     case BitstreamEntry::SubBlock: {
6672       uint64_t IdentificationBit = -1ull;
6673       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6674         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6675         if (Error Err = Stream.SkipBlock())
6676           return std::move(Err);
6677 
6678         {
6679           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6680           if (!MaybeEntry)
6681             return MaybeEntry.takeError();
6682           Entry = MaybeEntry.get();
6683         }
6684 
6685         if (Entry.Kind != BitstreamEntry::SubBlock ||
6686             Entry.ID != bitc::MODULE_BLOCK_ID)
6687           return error("Malformed block");
6688       }
6689 
6690       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6691         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6692         if (Error Err = Stream.SkipBlock())
6693           return std::move(Err);
6694 
6695         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6696                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6697                           Buffer.getBufferIdentifier(), IdentificationBit,
6698                           ModuleBit});
6699         continue;
6700       }
6701 
6702       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6703         Expected<StringRef> Strtab =
6704             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6705         if (!Strtab)
6706           return Strtab.takeError();
6707         // This string table is used by every preceding bitcode module that does
6708         // not have its own string table. A bitcode file may have multiple
6709         // string tables if it was created by binary concatenation, for example
6710         // with "llvm-cat -b".
6711         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6712           if (!I->Strtab.empty())
6713             break;
6714           I->Strtab = *Strtab;
6715         }
6716         // Similarly, the string table is used by every preceding symbol table;
6717         // normally there will be just one unless the bitcode file was created
6718         // by binary concatenation.
6719         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6720           F.StrtabForSymtab = *Strtab;
6721         continue;
6722       }
6723 
6724       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6725         Expected<StringRef> SymtabOrErr =
6726             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6727         if (!SymtabOrErr)
6728           return SymtabOrErr.takeError();
6729 
6730         // We can expect the bitcode file to have multiple symbol tables if it
6731         // was created by binary concatenation. In that case we silently
6732         // ignore any subsequent symbol tables, which is fine because this is a
6733         // low level function. The client is expected to notice that the number
6734         // of modules in the symbol table does not match the number of modules
6735         // in the input file and regenerate the symbol table.
6736         if (F.Symtab.empty())
6737           F.Symtab = *SymtabOrErr;
6738         continue;
6739       }
6740 
6741       if (Error Err = Stream.SkipBlock())
6742         return std::move(Err);
6743       continue;
6744     }
6745     case BitstreamEntry::Record:
6746       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6747         continue;
6748       else
6749         return StreamFailed.takeError();
6750     }
6751   }
6752 }
6753 
6754 /// Get a lazy one-at-time loading module from bitcode.
6755 ///
6756 /// This isn't always used in a lazy context.  In particular, it's also used by
6757 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6758 /// in forward-referenced functions from block address references.
6759 ///
6760 /// \param[in] MaterializeAll Set to \c true if we should materialize
6761 /// everything.
6762 Expected<std::unique_ptr<Module>>
6763 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6764                              bool ShouldLazyLoadMetadata, bool IsImporting,
6765                              DataLayoutCallbackTy DataLayoutCallback) {
6766   BitstreamCursor Stream(Buffer);
6767 
6768   std::string ProducerIdentification;
6769   if (IdentificationBit != -1ull) {
6770     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6771       return std::move(JumpFailed);
6772     Expected<std::string> ProducerIdentificationOrErr =
6773         readIdentificationBlock(Stream);
6774     if (!ProducerIdentificationOrErr)
6775       return ProducerIdentificationOrErr.takeError();
6776 
6777     ProducerIdentification = *ProducerIdentificationOrErr;
6778   }
6779 
6780   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6781     return std::move(JumpFailed);
6782   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6783                               Context);
6784 
6785   std::unique_ptr<Module> M =
6786       std::make_unique<Module>(ModuleIdentifier, Context);
6787   M->setMaterializer(R);
6788 
6789   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6790   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6791                                       IsImporting, DataLayoutCallback))
6792     return std::move(Err);
6793 
6794   if (MaterializeAll) {
6795     // Read in the entire module, and destroy the BitcodeReader.
6796     if (Error Err = M->materializeAll())
6797       return std::move(Err);
6798   } else {
6799     // Resolve forward references from blockaddresses.
6800     if (Error Err = R->materializeForwardReferencedFunctions())
6801       return std::move(Err);
6802   }
6803   return std::move(M);
6804 }
6805 
6806 Expected<std::unique_ptr<Module>>
6807 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6808                              bool IsImporting) {
6809   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6810                        [](StringRef) { return None; });
6811 }
6812 
6813 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6814 // We don't use ModuleIdentifier here because the client may need to control the
6815 // module path used in the combined summary (e.g. when reading summaries for
6816 // regular LTO modules).
6817 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6818                                  StringRef ModulePath, uint64_t ModuleId) {
6819   BitstreamCursor Stream(Buffer);
6820   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6821     return JumpFailed;
6822 
6823   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6824                                     ModulePath, ModuleId);
6825   return R.parseModule();
6826 }
6827 
6828 // Parse the specified bitcode buffer, returning the function info index.
6829 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6830   BitstreamCursor Stream(Buffer);
6831   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6832     return std::move(JumpFailed);
6833 
6834   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6835   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6836                                     ModuleIdentifier, 0);
6837 
6838   if (Error Err = R.parseModule())
6839     return std::move(Err);
6840 
6841   return std::move(Index);
6842 }
6843 
6844 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6845                                                 unsigned ID) {
6846   if (Error Err = Stream.EnterSubBlock(ID))
6847     return std::move(Err);
6848   SmallVector<uint64_t, 64> Record;
6849 
6850   while (true) {
6851     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6852     if (!MaybeEntry)
6853       return MaybeEntry.takeError();
6854     BitstreamEntry Entry = MaybeEntry.get();
6855 
6856     switch (Entry.Kind) {
6857     case BitstreamEntry::SubBlock: // Handled for us already.
6858     case BitstreamEntry::Error:
6859       return error("Malformed block");
6860     case BitstreamEntry::EndBlock:
6861       // If no flags record found, conservatively return true to mimic
6862       // behavior before this flag was added.
6863       return true;
6864     case BitstreamEntry::Record:
6865       // The interesting case.
6866       break;
6867     }
6868 
6869     // Look for the FS_FLAGS record.
6870     Record.clear();
6871     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6872     if (!MaybeBitCode)
6873       return MaybeBitCode.takeError();
6874     switch (MaybeBitCode.get()) {
6875     default: // Default behavior: ignore.
6876       break;
6877     case bitc::FS_FLAGS: { // [flags]
6878       uint64_t Flags = Record[0];
6879       // Scan flags.
6880       assert(Flags <= 0x7f && "Unexpected bits in flag");
6881 
6882       return Flags & 0x8;
6883     }
6884     }
6885   }
6886   llvm_unreachable("Exit infinite loop");
6887 }
6888 
6889 // Check if the given bitcode buffer contains a global value summary block.
6890 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6891   BitstreamCursor Stream(Buffer);
6892   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6893     return std::move(JumpFailed);
6894 
6895   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6896     return std::move(Err);
6897 
6898   while (true) {
6899     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6900     if (!MaybeEntry)
6901       return MaybeEntry.takeError();
6902     llvm::BitstreamEntry Entry = MaybeEntry.get();
6903 
6904     switch (Entry.Kind) {
6905     case BitstreamEntry::Error:
6906       return error("Malformed block");
6907     case BitstreamEntry::EndBlock:
6908       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6909                             /*EnableSplitLTOUnit=*/false};
6910 
6911     case BitstreamEntry::SubBlock:
6912       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6913         Expected<bool> EnableSplitLTOUnit =
6914             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6915         if (!EnableSplitLTOUnit)
6916           return EnableSplitLTOUnit.takeError();
6917         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6918                               *EnableSplitLTOUnit};
6919       }
6920 
6921       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6922         Expected<bool> EnableSplitLTOUnit =
6923             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6924         if (!EnableSplitLTOUnit)
6925           return EnableSplitLTOUnit.takeError();
6926         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6927                               *EnableSplitLTOUnit};
6928       }
6929 
6930       // Ignore other sub-blocks.
6931       if (Error Err = Stream.SkipBlock())
6932         return std::move(Err);
6933       continue;
6934 
6935     case BitstreamEntry::Record:
6936       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6937         continue;
6938       else
6939         return StreamFailed.takeError();
6940     }
6941   }
6942 }
6943 
6944 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6945   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6946   if (!MsOrErr)
6947     return MsOrErr.takeError();
6948 
6949   if (MsOrErr->size() != 1)
6950     return error("Expected a single module");
6951 
6952   return (*MsOrErr)[0];
6953 }
6954 
6955 Expected<std::unique_ptr<Module>>
6956 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6957                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6958   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6959   if (!BM)
6960     return BM.takeError();
6961 
6962   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6963 }
6964 
6965 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6966     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6967     bool ShouldLazyLoadMetadata, bool IsImporting) {
6968   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6969                                      IsImporting);
6970   if (MOrErr)
6971     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6972   return MOrErr;
6973 }
6974 
6975 Expected<std::unique_ptr<Module>>
6976 BitcodeModule::parseModule(LLVMContext &Context,
6977                            DataLayoutCallbackTy DataLayoutCallback) {
6978   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
6979   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6980   // written.  We must defer until the Module has been fully materialized.
6981 }
6982 
6983 Expected<std::unique_ptr<Module>>
6984 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
6985                        DataLayoutCallbackTy DataLayoutCallback) {
6986   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6987   if (!BM)
6988     return BM.takeError();
6989 
6990   return BM->parseModule(Context, DataLayoutCallback);
6991 }
6992 
6993 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6994   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6995   if (!StreamOrErr)
6996     return StreamOrErr.takeError();
6997 
6998   return readTriple(*StreamOrErr);
6999 }
7000 
7001 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
7002   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7003   if (!StreamOrErr)
7004     return StreamOrErr.takeError();
7005 
7006   return hasObjCCategory(*StreamOrErr);
7007 }
7008 
7009 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
7010   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
7011   if (!StreamOrErr)
7012     return StreamOrErr.takeError();
7013 
7014   return readIdentificationCode(*StreamOrErr);
7015 }
7016 
7017 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7018                                    ModuleSummaryIndex &CombinedIndex,
7019                                    uint64_t ModuleId) {
7020   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7021   if (!BM)
7022     return BM.takeError();
7023 
7024   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7025 }
7026 
7027 Expected<std::unique_ptr<ModuleSummaryIndex>>
7028 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7029   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7030   if (!BM)
7031     return BM.takeError();
7032 
7033   return BM->getSummary();
7034 }
7035 
7036 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7037   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7038   if (!BM)
7039     return BM.takeError();
7040 
7041   return BM->getLTOInfo();
7042 }
7043 
7044 Expected<std::unique_ptr<ModuleSummaryIndex>>
7045 llvm::getModuleSummaryIndexForFile(StringRef Path,
7046                                    bool IgnoreEmptyThinLTOIndexFile) {
7047   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7048       MemoryBuffer::getFileOrSTDIN(Path);
7049   if (!FileOrErr)
7050     return errorCodeToError(FileOrErr.getError());
7051   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7052     return nullptr;
7053   return getModuleSummaryIndex(**FileOrErr);
7054 }
7055