1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Bitcode/BitstreamReader.h" 25 #include "llvm/Bitcode/LLVMBitCodes.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 /// Helper to read the header common to all bitcode files. 109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 110 // Sniff for the signature. 111 if (!Stream.canSkipToPos(4) || 112 Stream.Read(8) != 'B' || 113 Stream.Read(8) != 'C' || 114 Stream.Read(4) != 0x0 || 115 Stream.Read(4) != 0xC || 116 Stream.Read(4) != 0xE || 117 Stream.Read(4) != 0xD) 118 return false; 119 return true; 120 } 121 122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 123 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 124 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 125 126 if (Buffer.getBufferSize() & 3) 127 return error("Invalid bitcode signature"); 128 129 // If we have a wrapper header, parse it and ignore the non-bc file contents. 130 // The magic number is 0x0B17C0DE stored in little endian. 131 if (isBitcodeWrapper(BufPtr, BufEnd)) 132 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 133 return error("Invalid bitcode wrapper header"); 134 135 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 136 if (!hasValidBitcodeHeader(Stream)) 137 return error("Invalid bitcode signature"); 138 139 return std::move(Stream); 140 } 141 142 /// Convert a string from a record into an std::string, return true on failure. 143 template <typename StrTy> 144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 145 StrTy &Result) { 146 if (Idx > Record.size()) 147 return true; 148 149 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 150 Result += (char)Record[i]; 151 return false; 152 } 153 154 // Strip all the TBAA attachment for the module. 155 static void stripTBAA(Module *M) { 156 for (auto &F : *M) { 157 if (F.isMaterializable()) 158 continue; 159 for (auto &I : instructions(F)) 160 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 161 } 162 } 163 164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 165 /// "epoch" encoded in the bitcode, and return the producer name if any. 166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 167 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 168 return error("Invalid record"); 169 170 // Read all the records. 171 SmallVector<uint64_t, 64> Record; 172 173 std::string ProducerIdentification; 174 175 while (true) { 176 BitstreamEntry Entry = Stream.advance(); 177 178 switch (Entry.Kind) { 179 default: 180 case BitstreamEntry::Error: 181 return error("Malformed block"); 182 case BitstreamEntry::EndBlock: 183 return ProducerIdentification; 184 case BitstreamEntry::Record: 185 // The interesting case. 186 break; 187 } 188 189 // Read a record. 190 Record.clear(); 191 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 192 switch (BitCode) { 193 default: // Default behavior: reject 194 return error("Invalid value"); 195 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 196 convertToString(Record, 0, ProducerIdentification); 197 break; 198 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 199 unsigned epoch = (unsigned)Record[0]; 200 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 201 return error( 202 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 203 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 204 } 205 } 206 } 207 } 208 } 209 210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 211 // We expect a number of well-defined blocks, though we don't necessarily 212 // need to understand them all. 213 while (true) { 214 if (Stream.AtEndOfStream()) 215 return ""; 216 217 BitstreamEntry Entry = Stream.advance(); 218 switch (Entry.Kind) { 219 case BitstreamEntry::EndBlock: 220 case BitstreamEntry::Error: 221 return error("Malformed block"); 222 223 case BitstreamEntry::SubBlock: 224 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 225 return readIdentificationBlock(Stream); 226 227 // Ignore other sub-blocks. 228 if (Stream.SkipBlock()) 229 return error("Malformed block"); 230 continue; 231 case BitstreamEntry::Record: 232 Stream.skipRecord(Entry.ID); 233 continue; 234 } 235 } 236 } 237 238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 239 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 240 return error("Invalid record"); 241 242 SmallVector<uint64_t, 64> Record; 243 // Read all the records for this module. 244 245 while (true) { 246 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 247 248 switch (Entry.Kind) { 249 case BitstreamEntry::SubBlock: // Handled for us already. 250 case BitstreamEntry::Error: 251 return error("Malformed block"); 252 case BitstreamEntry::EndBlock: 253 return false; 254 case BitstreamEntry::Record: 255 // The interesting case. 256 break; 257 } 258 259 // Read a record. 260 switch (Stream.readRecord(Entry.ID, Record)) { 261 default: 262 break; // Default behavior, ignore unknown content. 263 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 264 std::string S; 265 if (convertToString(Record, 0, S)) 266 return error("Invalid record"); 267 // Check for the i386 and other (x86_64, ARM) conventions 268 if (S.find("__DATA,__objc_catlist") != std::string::npos || 269 S.find("__OBJC,__category") != std::string::npos) 270 return true; 271 break; 272 } 273 } 274 Record.clear(); 275 } 276 llvm_unreachable("Exit infinite loop"); 277 } 278 279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 280 // We expect a number of well-defined blocks, though we don't necessarily 281 // need to understand them all. 282 while (true) { 283 BitstreamEntry Entry = Stream.advance(); 284 285 switch (Entry.Kind) { 286 case BitstreamEntry::Error: 287 return error("Malformed block"); 288 case BitstreamEntry::EndBlock: 289 return false; 290 291 case BitstreamEntry::SubBlock: 292 if (Entry.ID == bitc::MODULE_BLOCK_ID) 293 return hasObjCCategoryInModule(Stream); 294 295 // Ignore other sub-blocks. 296 if (Stream.SkipBlock()) 297 return error("Malformed block"); 298 continue; 299 300 case BitstreamEntry::Record: 301 Stream.skipRecord(Entry.ID); 302 continue; 303 } 304 } 305 } 306 307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 308 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 309 return error("Invalid record"); 310 311 SmallVector<uint64_t, 64> Record; 312 313 std::string Triple; 314 315 // Read all the records for this module. 316 while (true) { 317 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 318 319 switch (Entry.Kind) { 320 case BitstreamEntry::SubBlock: // Handled for us already. 321 case BitstreamEntry::Error: 322 return error("Malformed block"); 323 case BitstreamEntry::EndBlock: 324 return Triple; 325 case BitstreamEntry::Record: 326 // The interesting case. 327 break; 328 } 329 330 // Read a record. 331 switch (Stream.readRecord(Entry.ID, Record)) { 332 default: break; // Default behavior, ignore unknown content. 333 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 334 std::string S; 335 if (convertToString(Record, 0, S)) 336 return error("Invalid record"); 337 Triple = S; 338 break; 339 } 340 } 341 Record.clear(); 342 } 343 llvm_unreachable("Exit infinite loop"); 344 } 345 346 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 347 // We expect a number of well-defined blocks, though we don't necessarily 348 // need to understand them all. 349 while (true) { 350 BitstreamEntry Entry = Stream.advance(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::Error: 354 return error("Malformed block"); 355 case BitstreamEntry::EndBlock: 356 return ""; 357 358 case BitstreamEntry::SubBlock: 359 if (Entry.ID == bitc::MODULE_BLOCK_ID) 360 return readModuleTriple(Stream); 361 362 // Ignore other sub-blocks. 363 if (Stream.SkipBlock()) 364 return error("Malformed block"); 365 continue; 366 367 case BitstreamEntry::Record: 368 Stream.skipRecord(Entry.ID); 369 continue; 370 } 371 } 372 } 373 374 namespace { 375 376 class BitcodeReaderBase { 377 protected: 378 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 379 : Stream(std::move(Stream)), Strtab(Strtab) { 380 this->Stream.setBlockInfo(&BlockInfo); 381 } 382 383 BitstreamBlockInfo BlockInfo; 384 BitstreamCursor Stream; 385 StringRef Strtab; 386 387 /// In version 2 of the bitcode we store names of global values and comdats in 388 /// a string table rather than in the VST. 389 bool UseStrtab = false; 390 391 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 392 393 /// If this module uses a string table, pop the reference to the string table 394 /// and return the referenced string and the rest of the record. Otherwise 395 /// just return the record itself. 396 std::pair<StringRef, ArrayRef<uint64_t>> 397 readNameFromStrtab(ArrayRef<uint64_t> Record); 398 399 bool readBlockInfo(); 400 401 // Contains an arbitrary and optional string identifying the bitcode producer 402 std::string ProducerIdentification; 403 404 Error error(const Twine &Message); 405 }; 406 407 } // end anonymous namespace 408 409 Error BitcodeReaderBase::error(const Twine &Message) { 410 std::string FullMsg = Message.str(); 411 if (!ProducerIdentification.empty()) 412 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 413 LLVM_VERSION_STRING "')"; 414 return ::error(FullMsg); 415 } 416 417 Expected<unsigned> 418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 419 if (Record.empty()) 420 return error("Invalid record"); 421 unsigned ModuleVersion = Record[0]; 422 if (ModuleVersion > 2) 423 return error("Invalid value"); 424 UseStrtab = ModuleVersion >= 2; 425 return ModuleVersion; 426 } 427 428 std::pair<StringRef, ArrayRef<uint64_t>> 429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 430 if (!UseStrtab) 431 return {"", Record}; 432 // Invalid reference. Let the caller complain about the record being empty. 433 if (Record[0] + Record[1] > Strtab.size()) 434 return {"", {}}; 435 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 436 } 437 438 namespace { 439 440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 441 LLVMContext &Context; 442 Module *TheModule = nullptr; 443 // Next offset to start scanning for lazy parsing of function bodies. 444 uint64_t NextUnreadBit = 0; 445 // Last function offset found in the VST. 446 uint64_t LastFunctionBlockBit = 0; 447 bool SeenValueSymbolTable = false; 448 uint64_t VSTOffset = 0; 449 450 std::vector<std::string> SectionTable; 451 std::vector<std::string> GCTable; 452 453 std::vector<Type*> TypeList; 454 BitcodeReaderValueList ValueList; 455 Optional<MetadataLoader> MDLoader; 456 std::vector<Comdat *> ComdatList; 457 SmallVector<Instruction *, 64> InstructionList; 458 459 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 460 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 461 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 463 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 464 465 /// The set of attributes by index. Index zero in the file is for null, and 466 /// is thus not represented here. As such all indices are off by one. 467 std::vector<AttributeList> MAttributes; 468 469 /// The set of attribute groups. 470 std::map<unsigned, AttributeList> MAttributeGroups; 471 472 /// While parsing a function body, this is a list of the basic blocks for the 473 /// function. 474 std::vector<BasicBlock*> FunctionBBs; 475 476 // When reading the module header, this list is populated with functions that 477 // have bodies later in the file. 478 std::vector<Function*> FunctionsWithBodies; 479 480 // When intrinsic functions are encountered which require upgrading they are 481 // stored here with their replacement function. 482 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 483 UpdatedIntrinsicMap UpgradedIntrinsics; 484 // Intrinsics which were remangled because of types rename 485 UpdatedIntrinsicMap RemangledIntrinsics; 486 487 // Several operations happen after the module header has been read, but 488 // before function bodies are processed. This keeps track of whether 489 // we've done this yet. 490 bool SeenFirstFunctionBody = false; 491 492 /// When function bodies are initially scanned, this map contains info about 493 /// where to find deferred function body in the stream. 494 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 495 496 /// When Metadata block is initially scanned when parsing the module, we may 497 /// choose to defer parsing of the metadata. This vector contains info about 498 /// which Metadata blocks are deferred. 499 std::vector<uint64_t> DeferredMetadataInfo; 500 501 /// These are basic blocks forward-referenced by block addresses. They are 502 /// inserted lazily into functions when they're loaded. The basic block ID is 503 /// its index into the vector. 504 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 505 std::deque<Function *> BasicBlockFwdRefQueue; 506 507 /// Indicates that we are using a new encoding for instruction operands where 508 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 509 /// instruction number, for a more compact encoding. Some instruction 510 /// operands are not relative to the instruction ID: basic block numbers, and 511 /// types. Once the old style function blocks have been phased out, we would 512 /// not need this flag. 513 bool UseRelativeIDs = false; 514 515 /// True if all functions will be materialized, negating the need to process 516 /// (e.g.) blockaddress forward references. 517 bool WillMaterializeAllForwardRefs = false; 518 519 bool StripDebugInfo = false; 520 TBAAVerifier TBAAVerifyHelper; 521 522 std::vector<std::string> BundleTags; 523 SmallVector<SyncScope::ID, 8> SSIDs; 524 525 public: 526 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 527 StringRef ProducerIdentification, LLVMContext &Context); 528 529 Error materializeForwardReferencedFunctions(); 530 531 Error materialize(GlobalValue *GV) override; 532 Error materializeModule() override; 533 std::vector<StructType *> getIdentifiedStructTypes() const override; 534 535 /// \brief Main interface to parsing a bitcode buffer. 536 /// \returns true if an error occurred. 537 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 538 bool IsImporting = false); 539 540 static uint64_t decodeSignRotatedValue(uint64_t V); 541 542 /// Materialize any deferred Metadata block. 543 Error materializeMetadata() override; 544 545 void setStripDebugInfo() override; 546 547 private: 548 std::vector<StructType *> IdentifiedStructTypes; 549 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 550 StructType *createIdentifiedStructType(LLVMContext &Context); 551 552 Type *getTypeByID(unsigned ID); 553 554 Value *getFnValueByID(unsigned ID, Type *Ty) { 555 if (Ty && Ty->isMetadataTy()) 556 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 557 return ValueList.getValueFwdRef(ID, Ty); 558 } 559 560 Metadata *getFnMetadataByID(unsigned ID) { 561 return MDLoader->getMetadataFwdRefOrLoad(ID); 562 } 563 564 BasicBlock *getBasicBlock(unsigned ID) const { 565 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 566 return FunctionBBs[ID]; 567 } 568 569 AttributeList getAttributes(unsigned i) const { 570 if (i-1 < MAttributes.size()) 571 return MAttributes[i-1]; 572 return AttributeList(); 573 } 574 575 /// Read a value/type pair out of the specified record from slot 'Slot'. 576 /// Increment Slot past the number of slots used in the record. Return true on 577 /// failure. 578 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 579 unsigned InstNum, Value *&ResVal) { 580 if (Slot == Record.size()) return true; 581 unsigned ValNo = (unsigned)Record[Slot++]; 582 // Adjust the ValNo, if it was encoded relative to the InstNum. 583 if (UseRelativeIDs) 584 ValNo = InstNum - ValNo; 585 if (ValNo < InstNum) { 586 // If this is not a forward reference, just return the value we already 587 // have. 588 ResVal = getFnValueByID(ValNo, nullptr); 589 return ResVal == nullptr; 590 } 591 if (Slot == Record.size()) 592 return true; 593 594 unsigned TypeNo = (unsigned)Record[Slot++]; 595 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 596 return ResVal == nullptr; 597 } 598 599 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 600 /// past the number of slots used by the value in the record. Return true if 601 /// there is an error. 602 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 603 unsigned InstNum, Type *Ty, Value *&ResVal) { 604 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 605 return true; 606 // All values currently take a single record slot. 607 ++Slot; 608 return false; 609 } 610 611 /// Like popValue, but does not increment the Slot number. 612 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 613 unsigned InstNum, Type *Ty, Value *&ResVal) { 614 ResVal = getValue(Record, Slot, InstNum, Ty); 615 return ResVal == nullptr; 616 } 617 618 /// Version of getValue that returns ResVal directly, or 0 if there is an 619 /// error. 620 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 621 unsigned InstNum, Type *Ty) { 622 if (Slot == Record.size()) return nullptr; 623 unsigned ValNo = (unsigned)Record[Slot]; 624 // Adjust the ValNo, if it was encoded relative to the InstNum. 625 if (UseRelativeIDs) 626 ValNo = InstNum - ValNo; 627 return getFnValueByID(ValNo, Ty); 628 } 629 630 /// Like getValue, but decodes signed VBRs. 631 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 632 unsigned InstNum, Type *Ty) { 633 if (Slot == Record.size()) return nullptr; 634 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 635 // Adjust the ValNo, if it was encoded relative to the InstNum. 636 if (UseRelativeIDs) 637 ValNo = InstNum - ValNo; 638 return getFnValueByID(ValNo, Ty); 639 } 640 641 /// Converts alignment exponent (i.e. power of two (or zero)) to the 642 /// corresponding alignment to use. If alignment is too large, returns 643 /// a corresponding error code. 644 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 645 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 646 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 647 648 Error parseComdatRecord(ArrayRef<uint64_t> Record); 649 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 650 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 651 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 652 ArrayRef<uint64_t> Record); 653 654 Error parseAttributeBlock(); 655 Error parseAttributeGroupBlock(); 656 Error parseTypeTable(); 657 Error parseTypeTableBody(); 658 Error parseOperandBundleTags(); 659 Error parseSyncScopeNames(); 660 661 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 662 unsigned NameIndex, Triple &TT); 663 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 664 ArrayRef<uint64_t> Record); 665 Error parseValueSymbolTable(uint64_t Offset = 0); 666 Error parseGlobalValueSymbolTable(); 667 Error parseConstants(); 668 Error rememberAndSkipFunctionBodies(); 669 Error rememberAndSkipFunctionBody(); 670 /// Save the positions of the Metadata blocks and skip parsing the blocks. 671 Error rememberAndSkipMetadata(); 672 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 673 Error parseFunctionBody(Function *F); 674 Error globalCleanup(); 675 Error resolveGlobalAndIndirectSymbolInits(); 676 Error parseUseLists(); 677 Error findFunctionInStream( 678 Function *F, 679 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 680 681 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 682 }; 683 684 /// Class to manage reading and parsing function summary index bitcode 685 /// files/sections. 686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 687 /// The module index built during parsing. 688 ModuleSummaryIndex &TheIndex; 689 690 /// Indicates whether we have encountered a global value summary section 691 /// yet during parsing. 692 bool SeenGlobalValSummary = false; 693 694 /// Indicates whether we have already parsed the VST, used for error checking. 695 bool SeenValueSymbolTable = false; 696 697 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 698 /// Used to enable on-demand parsing of the VST. 699 uint64_t VSTOffset = 0; 700 701 // Map to save ValueId to ValueInfo association that was recorded in the 702 // ValueSymbolTable. It is used after the VST is parsed to convert 703 // call graph edges read from the function summary from referencing 704 // callees by their ValueId to using the ValueInfo instead, which is how 705 // they are recorded in the summary index being built. 706 // We save a GUID which refers to the same global as the ValueInfo, but 707 // ignoring the linkage, i.e. for values other than local linkage they are 708 // identical. 709 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 710 ValueIdToValueInfoMap; 711 712 /// Map populated during module path string table parsing, from the 713 /// module ID to a string reference owned by the index's module 714 /// path string table, used to correlate with combined index 715 /// summary records. 716 DenseMap<uint64_t, StringRef> ModuleIdMap; 717 718 /// Original source file name recorded in a bitcode record. 719 std::string SourceFileName; 720 721 /// The string identifier given to this module by the client, normally the 722 /// path to the bitcode file. 723 StringRef ModulePath; 724 725 /// For per-module summary indexes, the unique numerical identifier given to 726 /// this module by the client. 727 unsigned ModuleId; 728 729 public: 730 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 731 ModuleSummaryIndex &TheIndex, 732 StringRef ModulePath, unsigned ModuleId); 733 734 Error parseModule(); 735 736 private: 737 void setValueGUID(uint64_t ValueID, StringRef ValueName, 738 GlobalValue::LinkageTypes Linkage, 739 StringRef SourceFileName); 740 Error parseValueSymbolTable( 741 uint64_t Offset, 742 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 743 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 744 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 745 bool IsOldProfileFormat, 746 bool HasProfile, 747 bool HasRelBF); 748 Error parseEntireSummary(unsigned ID); 749 Error parseModuleStringTable(); 750 751 std::pair<ValueInfo, GlobalValue::GUID> 752 getValueInfoFromValueId(unsigned ValueId); 753 754 ModuleSummaryIndex::ModuleInfo *addThisModule(); 755 }; 756 757 } // end anonymous namespace 758 759 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 760 Error Err) { 761 if (Err) { 762 std::error_code EC; 763 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 764 EC = EIB.convertToErrorCode(); 765 Ctx.emitError(EIB.message()); 766 }); 767 return EC; 768 } 769 return std::error_code(); 770 } 771 772 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 773 StringRef ProducerIdentification, 774 LLVMContext &Context) 775 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 776 ValueList(Context) { 777 this->ProducerIdentification = ProducerIdentification; 778 } 779 780 Error BitcodeReader::materializeForwardReferencedFunctions() { 781 if (WillMaterializeAllForwardRefs) 782 return Error::success(); 783 784 // Prevent recursion. 785 WillMaterializeAllForwardRefs = true; 786 787 while (!BasicBlockFwdRefQueue.empty()) { 788 Function *F = BasicBlockFwdRefQueue.front(); 789 BasicBlockFwdRefQueue.pop_front(); 790 assert(F && "Expected valid function"); 791 if (!BasicBlockFwdRefs.count(F)) 792 // Already materialized. 793 continue; 794 795 // Check for a function that isn't materializable to prevent an infinite 796 // loop. When parsing a blockaddress stored in a global variable, there 797 // isn't a trivial way to check if a function will have a body without a 798 // linear search through FunctionsWithBodies, so just check it here. 799 if (!F->isMaterializable()) 800 return error("Never resolved function from blockaddress"); 801 802 // Try to materialize F. 803 if (Error Err = materialize(F)) 804 return Err; 805 } 806 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 807 808 // Reset state. 809 WillMaterializeAllForwardRefs = false; 810 return Error::success(); 811 } 812 813 //===----------------------------------------------------------------------===// 814 // Helper functions to implement forward reference resolution, etc. 815 //===----------------------------------------------------------------------===// 816 817 static bool hasImplicitComdat(size_t Val) { 818 switch (Val) { 819 default: 820 return false; 821 case 1: // Old WeakAnyLinkage 822 case 4: // Old LinkOnceAnyLinkage 823 case 10: // Old WeakODRLinkage 824 case 11: // Old LinkOnceODRLinkage 825 return true; 826 } 827 } 828 829 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 830 switch (Val) { 831 default: // Map unknown/new linkages to external 832 case 0: 833 return GlobalValue::ExternalLinkage; 834 case 2: 835 return GlobalValue::AppendingLinkage; 836 case 3: 837 return GlobalValue::InternalLinkage; 838 case 5: 839 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 840 case 6: 841 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 842 case 7: 843 return GlobalValue::ExternalWeakLinkage; 844 case 8: 845 return GlobalValue::CommonLinkage; 846 case 9: 847 return GlobalValue::PrivateLinkage; 848 case 12: 849 return GlobalValue::AvailableExternallyLinkage; 850 case 13: 851 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 852 case 14: 853 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 854 case 15: 855 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 856 case 1: // Old value with implicit comdat. 857 case 16: 858 return GlobalValue::WeakAnyLinkage; 859 case 10: // Old value with implicit comdat. 860 case 17: 861 return GlobalValue::WeakODRLinkage; 862 case 4: // Old value with implicit comdat. 863 case 18: 864 return GlobalValue::LinkOnceAnyLinkage; 865 case 11: // Old value with implicit comdat. 866 case 19: 867 return GlobalValue::LinkOnceODRLinkage; 868 } 869 } 870 871 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 872 FunctionSummary::FFlags Flags; 873 Flags.ReadNone = RawFlags & 0x1; 874 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 875 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 876 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 877 return Flags; 878 } 879 880 /// Decode the flags for GlobalValue in the summary. 881 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 882 uint64_t Version) { 883 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 884 // like getDecodedLinkage() above. Any future change to the linkage enum and 885 // to getDecodedLinkage() will need to be taken into account here as above. 886 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 887 RawFlags = RawFlags >> 4; 888 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 889 // The Live flag wasn't introduced until version 3. For dead stripping 890 // to work correctly on earlier versions, we must conservatively treat all 891 // values as live. 892 bool Live = (RawFlags & 0x2) || Version < 3; 893 bool Local = (RawFlags & 0x4); 894 895 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local); 896 } 897 898 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 899 switch (Val) { 900 default: // Map unknown visibilities to default. 901 case 0: return GlobalValue::DefaultVisibility; 902 case 1: return GlobalValue::HiddenVisibility; 903 case 2: return GlobalValue::ProtectedVisibility; 904 } 905 } 906 907 static GlobalValue::DLLStorageClassTypes 908 getDecodedDLLStorageClass(unsigned Val) { 909 switch (Val) { 910 default: // Map unknown values to default. 911 case 0: return GlobalValue::DefaultStorageClass; 912 case 1: return GlobalValue::DLLImportStorageClass; 913 case 2: return GlobalValue::DLLExportStorageClass; 914 } 915 } 916 917 static bool getDecodedDSOLocal(unsigned Val) { 918 switch(Val) { 919 default: // Map unknown values to preemptable. 920 case 0: return false; 921 case 1: return true; 922 } 923 } 924 925 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 926 switch (Val) { 927 case 0: return GlobalVariable::NotThreadLocal; 928 default: // Map unknown non-zero value to general dynamic. 929 case 1: return GlobalVariable::GeneralDynamicTLSModel; 930 case 2: return GlobalVariable::LocalDynamicTLSModel; 931 case 3: return GlobalVariable::InitialExecTLSModel; 932 case 4: return GlobalVariable::LocalExecTLSModel; 933 } 934 } 935 936 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 937 switch (Val) { 938 default: // Map unknown to UnnamedAddr::None. 939 case 0: return GlobalVariable::UnnamedAddr::None; 940 case 1: return GlobalVariable::UnnamedAddr::Global; 941 case 2: return GlobalVariable::UnnamedAddr::Local; 942 } 943 } 944 945 static int getDecodedCastOpcode(unsigned Val) { 946 switch (Val) { 947 default: return -1; 948 case bitc::CAST_TRUNC : return Instruction::Trunc; 949 case bitc::CAST_ZEXT : return Instruction::ZExt; 950 case bitc::CAST_SEXT : return Instruction::SExt; 951 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 952 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 953 case bitc::CAST_UITOFP : return Instruction::UIToFP; 954 case bitc::CAST_SITOFP : return Instruction::SIToFP; 955 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 956 case bitc::CAST_FPEXT : return Instruction::FPExt; 957 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 958 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 959 case bitc::CAST_BITCAST : return Instruction::BitCast; 960 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 961 } 962 } 963 964 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 965 bool IsFP = Ty->isFPOrFPVectorTy(); 966 // BinOps are only valid for int/fp or vector of int/fp types 967 if (!IsFP && !Ty->isIntOrIntVectorTy()) 968 return -1; 969 970 switch (Val) { 971 default: 972 return -1; 973 case bitc::BINOP_ADD: 974 return IsFP ? Instruction::FAdd : Instruction::Add; 975 case bitc::BINOP_SUB: 976 return IsFP ? Instruction::FSub : Instruction::Sub; 977 case bitc::BINOP_MUL: 978 return IsFP ? Instruction::FMul : Instruction::Mul; 979 case bitc::BINOP_UDIV: 980 return IsFP ? -1 : Instruction::UDiv; 981 case bitc::BINOP_SDIV: 982 return IsFP ? Instruction::FDiv : Instruction::SDiv; 983 case bitc::BINOP_UREM: 984 return IsFP ? -1 : Instruction::URem; 985 case bitc::BINOP_SREM: 986 return IsFP ? Instruction::FRem : Instruction::SRem; 987 case bitc::BINOP_SHL: 988 return IsFP ? -1 : Instruction::Shl; 989 case bitc::BINOP_LSHR: 990 return IsFP ? -1 : Instruction::LShr; 991 case bitc::BINOP_ASHR: 992 return IsFP ? -1 : Instruction::AShr; 993 case bitc::BINOP_AND: 994 return IsFP ? -1 : Instruction::And; 995 case bitc::BINOP_OR: 996 return IsFP ? -1 : Instruction::Or; 997 case bitc::BINOP_XOR: 998 return IsFP ? -1 : Instruction::Xor; 999 } 1000 } 1001 1002 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1003 switch (Val) { 1004 default: return AtomicRMWInst::BAD_BINOP; 1005 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1006 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1007 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1008 case bitc::RMW_AND: return AtomicRMWInst::And; 1009 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1010 case bitc::RMW_OR: return AtomicRMWInst::Or; 1011 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1012 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1013 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1014 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1015 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1016 } 1017 } 1018 1019 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1020 switch (Val) { 1021 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1022 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1023 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1024 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1025 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1026 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1027 default: // Map unknown orderings to sequentially-consistent. 1028 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1029 } 1030 } 1031 1032 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1033 switch (Val) { 1034 default: // Map unknown selection kinds to any. 1035 case bitc::COMDAT_SELECTION_KIND_ANY: 1036 return Comdat::Any; 1037 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1038 return Comdat::ExactMatch; 1039 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1040 return Comdat::Largest; 1041 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1042 return Comdat::NoDuplicates; 1043 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1044 return Comdat::SameSize; 1045 } 1046 } 1047 1048 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1049 FastMathFlags FMF; 1050 if (0 != (Val & bitc::UnsafeAlgebra)) 1051 FMF.setFast(); 1052 if (0 != (Val & bitc::AllowReassoc)) 1053 FMF.setAllowReassoc(); 1054 if (0 != (Val & bitc::NoNaNs)) 1055 FMF.setNoNaNs(); 1056 if (0 != (Val & bitc::NoInfs)) 1057 FMF.setNoInfs(); 1058 if (0 != (Val & bitc::NoSignedZeros)) 1059 FMF.setNoSignedZeros(); 1060 if (0 != (Val & bitc::AllowReciprocal)) 1061 FMF.setAllowReciprocal(); 1062 if (0 != (Val & bitc::AllowContract)) 1063 FMF.setAllowContract(true); 1064 if (0 != (Val & bitc::ApproxFunc)) 1065 FMF.setApproxFunc(); 1066 return FMF; 1067 } 1068 1069 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1070 switch (Val) { 1071 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1072 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1073 } 1074 } 1075 1076 Type *BitcodeReader::getTypeByID(unsigned ID) { 1077 // The type table size is always specified correctly. 1078 if (ID >= TypeList.size()) 1079 return nullptr; 1080 1081 if (Type *Ty = TypeList[ID]) 1082 return Ty; 1083 1084 // If we have a forward reference, the only possible case is when it is to a 1085 // named struct. Just create a placeholder for now. 1086 return TypeList[ID] = createIdentifiedStructType(Context); 1087 } 1088 1089 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1090 StringRef Name) { 1091 auto *Ret = StructType::create(Context, Name); 1092 IdentifiedStructTypes.push_back(Ret); 1093 return Ret; 1094 } 1095 1096 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1097 auto *Ret = StructType::create(Context); 1098 IdentifiedStructTypes.push_back(Ret); 1099 return Ret; 1100 } 1101 1102 //===----------------------------------------------------------------------===// 1103 // Functions for parsing blocks from the bitcode file 1104 //===----------------------------------------------------------------------===// 1105 1106 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1107 switch (Val) { 1108 case Attribute::EndAttrKinds: 1109 llvm_unreachable("Synthetic enumerators which should never get here"); 1110 1111 case Attribute::None: return 0; 1112 case Attribute::ZExt: return 1 << 0; 1113 case Attribute::SExt: return 1 << 1; 1114 case Attribute::NoReturn: return 1 << 2; 1115 case Attribute::InReg: return 1 << 3; 1116 case Attribute::StructRet: return 1 << 4; 1117 case Attribute::NoUnwind: return 1 << 5; 1118 case Attribute::NoAlias: return 1 << 6; 1119 case Attribute::ByVal: return 1 << 7; 1120 case Attribute::Nest: return 1 << 8; 1121 case Attribute::ReadNone: return 1 << 9; 1122 case Attribute::ReadOnly: return 1 << 10; 1123 case Attribute::NoInline: return 1 << 11; 1124 case Attribute::AlwaysInline: return 1 << 12; 1125 case Attribute::OptimizeForSize: return 1 << 13; 1126 case Attribute::StackProtect: return 1 << 14; 1127 case Attribute::StackProtectReq: return 1 << 15; 1128 case Attribute::Alignment: return 31 << 16; 1129 case Attribute::NoCapture: return 1 << 21; 1130 case Attribute::NoRedZone: return 1 << 22; 1131 case Attribute::NoImplicitFloat: return 1 << 23; 1132 case Attribute::Naked: return 1 << 24; 1133 case Attribute::InlineHint: return 1 << 25; 1134 case Attribute::StackAlignment: return 7 << 26; 1135 case Attribute::ReturnsTwice: return 1 << 29; 1136 case Attribute::UWTable: return 1 << 30; 1137 case Attribute::NonLazyBind: return 1U << 31; 1138 case Attribute::SanitizeAddress: return 1ULL << 32; 1139 case Attribute::MinSize: return 1ULL << 33; 1140 case Attribute::NoDuplicate: return 1ULL << 34; 1141 case Attribute::StackProtectStrong: return 1ULL << 35; 1142 case Attribute::SanitizeThread: return 1ULL << 36; 1143 case Attribute::SanitizeMemory: return 1ULL << 37; 1144 case Attribute::NoBuiltin: return 1ULL << 38; 1145 case Attribute::Returned: return 1ULL << 39; 1146 case Attribute::Cold: return 1ULL << 40; 1147 case Attribute::Builtin: return 1ULL << 41; 1148 case Attribute::OptimizeNone: return 1ULL << 42; 1149 case Attribute::InAlloca: return 1ULL << 43; 1150 case Attribute::NonNull: return 1ULL << 44; 1151 case Attribute::JumpTable: return 1ULL << 45; 1152 case Attribute::Convergent: return 1ULL << 46; 1153 case Attribute::SafeStack: return 1ULL << 47; 1154 case Attribute::NoRecurse: return 1ULL << 48; 1155 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1156 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1157 case Attribute::SwiftSelf: return 1ULL << 51; 1158 case Attribute::SwiftError: return 1ULL << 52; 1159 case Attribute::WriteOnly: return 1ULL << 53; 1160 case Attribute::Speculatable: return 1ULL << 54; 1161 case Attribute::StrictFP: return 1ULL << 55; 1162 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1163 case Attribute::NoCfCheck: return 1ULL << 57; 1164 case Attribute::OptForFuzzing: return 1ULL << 58; 1165 case Attribute::Dereferenceable: 1166 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1167 break; 1168 case Attribute::DereferenceableOrNull: 1169 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1170 "format"); 1171 break; 1172 case Attribute::ArgMemOnly: 1173 llvm_unreachable("argmemonly attribute not supported in raw format"); 1174 break; 1175 case Attribute::AllocSize: 1176 llvm_unreachable("allocsize not supported in raw format"); 1177 break; 1178 } 1179 llvm_unreachable("Unsupported attribute type"); 1180 } 1181 1182 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1183 if (!Val) return; 1184 1185 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1186 I = Attribute::AttrKind(I + 1)) { 1187 if (I == Attribute::Dereferenceable || 1188 I == Attribute::DereferenceableOrNull || 1189 I == Attribute::ArgMemOnly || 1190 I == Attribute::AllocSize) 1191 continue; 1192 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1193 if (I == Attribute::Alignment) 1194 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1195 else if (I == Attribute::StackAlignment) 1196 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1197 else 1198 B.addAttribute(I); 1199 } 1200 } 1201 } 1202 1203 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1204 /// been decoded from the given integer. This function must stay in sync with 1205 /// 'encodeLLVMAttributesForBitcode'. 1206 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1207 uint64_t EncodedAttrs) { 1208 // FIXME: Remove in 4.0. 1209 1210 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1211 // the bits above 31 down by 11 bits. 1212 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1213 assert((!Alignment || isPowerOf2_32(Alignment)) && 1214 "Alignment must be a power of two."); 1215 1216 if (Alignment) 1217 B.addAlignmentAttr(Alignment); 1218 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1219 (EncodedAttrs & 0xffff)); 1220 } 1221 1222 Error BitcodeReader::parseAttributeBlock() { 1223 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1224 return error("Invalid record"); 1225 1226 if (!MAttributes.empty()) 1227 return error("Invalid multiple blocks"); 1228 1229 SmallVector<uint64_t, 64> Record; 1230 1231 SmallVector<AttributeList, 8> Attrs; 1232 1233 // Read all the records. 1234 while (true) { 1235 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1236 1237 switch (Entry.Kind) { 1238 case BitstreamEntry::SubBlock: // Handled for us already. 1239 case BitstreamEntry::Error: 1240 return error("Malformed block"); 1241 case BitstreamEntry::EndBlock: 1242 return Error::success(); 1243 case BitstreamEntry::Record: 1244 // The interesting case. 1245 break; 1246 } 1247 1248 // Read a record. 1249 Record.clear(); 1250 switch (Stream.readRecord(Entry.ID, Record)) { 1251 default: // Default behavior: ignore. 1252 break; 1253 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1254 // FIXME: Remove in 4.0. 1255 if (Record.size() & 1) 1256 return error("Invalid record"); 1257 1258 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1259 AttrBuilder B; 1260 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1261 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1262 } 1263 1264 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1265 Attrs.clear(); 1266 break; 1267 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1268 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1269 Attrs.push_back(MAttributeGroups[Record[i]]); 1270 1271 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1272 Attrs.clear(); 1273 break; 1274 } 1275 } 1276 } 1277 1278 // Returns Attribute::None on unrecognized codes. 1279 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1280 switch (Code) { 1281 default: 1282 return Attribute::None; 1283 case bitc::ATTR_KIND_ALIGNMENT: 1284 return Attribute::Alignment; 1285 case bitc::ATTR_KIND_ALWAYS_INLINE: 1286 return Attribute::AlwaysInline; 1287 case bitc::ATTR_KIND_ARGMEMONLY: 1288 return Attribute::ArgMemOnly; 1289 case bitc::ATTR_KIND_BUILTIN: 1290 return Attribute::Builtin; 1291 case bitc::ATTR_KIND_BY_VAL: 1292 return Attribute::ByVal; 1293 case bitc::ATTR_KIND_IN_ALLOCA: 1294 return Attribute::InAlloca; 1295 case bitc::ATTR_KIND_COLD: 1296 return Attribute::Cold; 1297 case bitc::ATTR_KIND_CONVERGENT: 1298 return Attribute::Convergent; 1299 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1300 return Attribute::InaccessibleMemOnly; 1301 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1302 return Attribute::InaccessibleMemOrArgMemOnly; 1303 case bitc::ATTR_KIND_INLINE_HINT: 1304 return Attribute::InlineHint; 1305 case bitc::ATTR_KIND_IN_REG: 1306 return Attribute::InReg; 1307 case bitc::ATTR_KIND_JUMP_TABLE: 1308 return Attribute::JumpTable; 1309 case bitc::ATTR_KIND_MIN_SIZE: 1310 return Attribute::MinSize; 1311 case bitc::ATTR_KIND_NAKED: 1312 return Attribute::Naked; 1313 case bitc::ATTR_KIND_NEST: 1314 return Attribute::Nest; 1315 case bitc::ATTR_KIND_NO_ALIAS: 1316 return Attribute::NoAlias; 1317 case bitc::ATTR_KIND_NO_BUILTIN: 1318 return Attribute::NoBuiltin; 1319 case bitc::ATTR_KIND_NO_CAPTURE: 1320 return Attribute::NoCapture; 1321 case bitc::ATTR_KIND_NO_DUPLICATE: 1322 return Attribute::NoDuplicate; 1323 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1324 return Attribute::NoImplicitFloat; 1325 case bitc::ATTR_KIND_NO_INLINE: 1326 return Attribute::NoInline; 1327 case bitc::ATTR_KIND_NO_RECURSE: 1328 return Attribute::NoRecurse; 1329 case bitc::ATTR_KIND_NON_LAZY_BIND: 1330 return Attribute::NonLazyBind; 1331 case bitc::ATTR_KIND_NON_NULL: 1332 return Attribute::NonNull; 1333 case bitc::ATTR_KIND_DEREFERENCEABLE: 1334 return Attribute::Dereferenceable; 1335 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1336 return Attribute::DereferenceableOrNull; 1337 case bitc::ATTR_KIND_ALLOC_SIZE: 1338 return Attribute::AllocSize; 1339 case bitc::ATTR_KIND_NO_RED_ZONE: 1340 return Attribute::NoRedZone; 1341 case bitc::ATTR_KIND_NO_RETURN: 1342 return Attribute::NoReturn; 1343 case bitc::ATTR_KIND_NOCF_CHECK: 1344 return Attribute::NoCfCheck; 1345 case bitc::ATTR_KIND_NO_UNWIND: 1346 return Attribute::NoUnwind; 1347 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1348 return Attribute::OptForFuzzing; 1349 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1350 return Attribute::OptimizeForSize; 1351 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1352 return Attribute::OptimizeNone; 1353 case bitc::ATTR_KIND_READ_NONE: 1354 return Attribute::ReadNone; 1355 case bitc::ATTR_KIND_READ_ONLY: 1356 return Attribute::ReadOnly; 1357 case bitc::ATTR_KIND_RETURNED: 1358 return Attribute::Returned; 1359 case bitc::ATTR_KIND_RETURNS_TWICE: 1360 return Attribute::ReturnsTwice; 1361 case bitc::ATTR_KIND_S_EXT: 1362 return Attribute::SExt; 1363 case bitc::ATTR_KIND_SPECULATABLE: 1364 return Attribute::Speculatable; 1365 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1366 return Attribute::StackAlignment; 1367 case bitc::ATTR_KIND_STACK_PROTECT: 1368 return Attribute::StackProtect; 1369 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1370 return Attribute::StackProtectReq; 1371 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1372 return Attribute::StackProtectStrong; 1373 case bitc::ATTR_KIND_SAFESTACK: 1374 return Attribute::SafeStack; 1375 case bitc::ATTR_KIND_STRICT_FP: 1376 return Attribute::StrictFP; 1377 case bitc::ATTR_KIND_STRUCT_RET: 1378 return Attribute::StructRet; 1379 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1380 return Attribute::SanitizeAddress; 1381 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1382 return Attribute::SanitizeHWAddress; 1383 case bitc::ATTR_KIND_SANITIZE_THREAD: 1384 return Attribute::SanitizeThread; 1385 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1386 return Attribute::SanitizeMemory; 1387 case bitc::ATTR_KIND_SWIFT_ERROR: 1388 return Attribute::SwiftError; 1389 case bitc::ATTR_KIND_SWIFT_SELF: 1390 return Attribute::SwiftSelf; 1391 case bitc::ATTR_KIND_UW_TABLE: 1392 return Attribute::UWTable; 1393 case bitc::ATTR_KIND_WRITEONLY: 1394 return Attribute::WriteOnly; 1395 case bitc::ATTR_KIND_Z_EXT: 1396 return Attribute::ZExt; 1397 } 1398 } 1399 1400 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1401 unsigned &Alignment) { 1402 // Note: Alignment in bitcode files is incremented by 1, so that zero 1403 // can be used for default alignment. 1404 if (Exponent > Value::MaxAlignmentExponent + 1) 1405 return error("Invalid alignment value"); 1406 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1407 return Error::success(); 1408 } 1409 1410 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1411 *Kind = getAttrFromCode(Code); 1412 if (*Kind == Attribute::None) 1413 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1414 return Error::success(); 1415 } 1416 1417 Error BitcodeReader::parseAttributeGroupBlock() { 1418 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1419 return error("Invalid record"); 1420 1421 if (!MAttributeGroups.empty()) 1422 return error("Invalid multiple blocks"); 1423 1424 SmallVector<uint64_t, 64> Record; 1425 1426 // Read all the records. 1427 while (true) { 1428 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1429 1430 switch (Entry.Kind) { 1431 case BitstreamEntry::SubBlock: // Handled for us already. 1432 case BitstreamEntry::Error: 1433 return error("Malformed block"); 1434 case BitstreamEntry::EndBlock: 1435 return Error::success(); 1436 case BitstreamEntry::Record: 1437 // The interesting case. 1438 break; 1439 } 1440 1441 // Read a record. 1442 Record.clear(); 1443 switch (Stream.readRecord(Entry.ID, Record)) { 1444 default: // Default behavior: ignore. 1445 break; 1446 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1447 if (Record.size() < 3) 1448 return error("Invalid record"); 1449 1450 uint64_t GrpID = Record[0]; 1451 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1452 1453 AttrBuilder B; 1454 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1455 if (Record[i] == 0) { // Enum attribute 1456 Attribute::AttrKind Kind; 1457 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1458 return Err; 1459 1460 B.addAttribute(Kind); 1461 } else if (Record[i] == 1) { // Integer attribute 1462 Attribute::AttrKind Kind; 1463 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1464 return Err; 1465 if (Kind == Attribute::Alignment) 1466 B.addAlignmentAttr(Record[++i]); 1467 else if (Kind == Attribute::StackAlignment) 1468 B.addStackAlignmentAttr(Record[++i]); 1469 else if (Kind == Attribute::Dereferenceable) 1470 B.addDereferenceableAttr(Record[++i]); 1471 else if (Kind == Attribute::DereferenceableOrNull) 1472 B.addDereferenceableOrNullAttr(Record[++i]); 1473 else if (Kind == Attribute::AllocSize) 1474 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1475 } else { // String attribute 1476 assert((Record[i] == 3 || Record[i] == 4) && 1477 "Invalid attribute group entry"); 1478 bool HasValue = (Record[i++] == 4); 1479 SmallString<64> KindStr; 1480 SmallString<64> ValStr; 1481 1482 while (Record[i] != 0 && i != e) 1483 KindStr += Record[i++]; 1484 assert(Record[i] == 0 && "Kind string not null terminated"); 1485 1486 if (HasValue) { 1487 // Has a value associated with it. 1488 ++i; // Skip the '0' that terminates the "kind" string. 1489 while (Record[i] != 0 && i != e) 1490 ValStr += Record[i++]; 1491 assert(Record[i] == 0 && "Value string not null terminated"); 1492 } 1493 1494 B.addAttribute(KindStr.str(), ValStr.str()); 1495 } 1496 } 1497 1498 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1499 break; 1500 } 1501 } 1502 } 1503 } 1504 1505 Error BitcodeReader::parseTypeTable() { 1506 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1507 return error("Invalid record"); 1508 1509 return parseTypeTableBody(); 1510 } 1511 1512 Error BitcodeReader::parseTypeTableBody() { 1513 if (!TypeList.empty()) 1514 return error("Invalid multiple blocks"); 1515 1516 SmallVector<uint64_t, 64> Record; 1517 unsigned NumRecords = 0; 1518 1519 SmallString<64> TypeName; 1520 1521 // Read all the records for this type table. 1522 while (true) { 1523 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1524 1525 switch (Entry.Kind) { 1526 case BitstreamEntry::SubBlock: // Handled for us already. 1527 case BitstreamEntry::Error: 1528 return error("Malformed block"); 1529 case BitstreamEntry::EndBlock: 1530 if (NumRecords != TypeList.size()) 1531 return error("Malformed block"); 1532 return Error::success(); 1533 case BitstreamEntry::Record: 1534 // The interesting case. 1535 break; 1536 } 1537 1538 // Read a record. 1539 Record.clear(); 1540 Type *ResultTy = nullptr; 1541 switch (Stream.readRecord(Entry.ID, Record)) { 1542 default: 1543 return error("Invalid value"); 1544 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1545 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1546 // type list. This allows us to reserve space. 1547 if (Record.size() < 1) 1548 return error("Invalid record"); 1549 TypeList.resize(Record[0]); 1550 continue; 1551 case bitc::TYPE_CODE_VOID: // VOID 1552 ResultTy = Type::getVoidTy(Context); 1553 break; 1554 case bitc::TYPE_CODE_HALF: // HALF 1555 ResultTy = Type::getHalfTy(Context); 1556 break; 1557 case bitc::TYPE_CODE_FLOAT: // FLOAT 1558 ResultTy = Type::getFloatTy(Context); 1559 break; 1560 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1561 ResultTy = Type::getDoubleTy(Context); 1562 break; 1563 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1564 ResultTy = Type::getX86_FP80Ty(Context); 1565 break; 1566 case bitc::TYPE_CODE_FP128: // FP128 1567 ResultTy = Type::getFP128Ty(Context); 1568 break; 1569 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1570 ResultTy = Type::getPPC_FP128Ty(Context); 1571 break; 1572 case bitc::TYPE_CODE_LABEL: // LABEL 1573 ResultTy = Type::getLabelTy(Context); 1574 break; 1575 case bitc::TYPE_CODE_METADATA: // METADATA 1576 ResultTy = Type::getMetadataTy(Context); 1577 break; 1578 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1579 ResultTy = Type::getX86_MMXTy(Context); 1580 break; 1581 case bitc::TYPE_CODE_TOKEN: // TOKEN 1582 ResultTy = Type::getTokenTy(Context); 1583 break; 1584 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1585 if (Record.size() < 1) 1586 return error("Invalid record"); 1587 1588 uint64_t NumBits = Record[0]; 1589 if (NumBits < IntegerType::MIN_INT_BITS || 1590 NumBits > IntegerType::MAX_INT_BITS) 1591 return error("Bitwidth for integer type out of range"); 1592 ResultTy = IntegerType::get(Context, NumBits); 1593 break; 1594 } 1595 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1596 // [pointee type, address space] 1597 if (Record.size() < 1) 1598 return error("Invalid record"); 1599 unsigned AddressSpace = 0; 1600 if (Record.size() == 2) 1601 AddressSpace = Record[1]; 1602 ResultTy = getTypeByID(Record[0]); 1603 if (!ResultTy || 1604 !PointerType::isValidElementType(ResultTy)) 1605 return error("Invalid type"); 1606 ResultTy = PointerType::get(ResultTy, AddressSpace); 1607 break; 1608 } 1609 case bitc::TYPE_CODE_FUNCTION_OLD: { 1610 // FIXME: attrid is dead, remove it in LLVM 4.0 1611 // FUNCTION: [vararg, attrid, retty, paramty x N] 1612 if (Record.size() < 3) 1613 return error("Invalid record"); 1614 SmallVector<Type*, 8> ArgTys; 1615 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1616 if (Type *T = getTypeByID(Record[i])) 1617 ArgTys.push_back(T); 1618 else 1619 break; 1620 } 1621 1622 ResultTy = getTypeByID(Record[2]); 1623 if (!ResultTy || ArgTys.size() < Record.size()-3) 1624 return error("Invalid type"); 1625 1626 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1627 break; 1628 } 1629 case bitc::TYPE_CODE_FUNCTION: { 1630 // FUNCTION: [vararg, retty, paramty x N] 1631 if (Record.size() < 2) 1632 return error("Invalid record"); 1633 SmallVector<Type*, 8> ArgTys; 1634 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1635 if (Type *T = getTypeByID(Record[i])) { 1636 if (!FunctionType::isValidArgumentType(T)) 1637 return error("Invalid function argument type"); 1638 ArgTys.push_back(T); 1639 } 1640 else 1641 break; 1642 } 1643 1644 ResultTy = getTypeByID(Record[1]); 1645 if (!ResultTy || ArgTys.size() < Record.size()-2) 1646 return error("Invalid type"); 1647 1648 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1649 break; 1650 } 1651 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1652 if (Record.size() < 1) 1653 return error("Invalid record"); 1654 SmallVector<Type*, 8> EltTys; 1655 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1656 if (Type *T = getTypeByID(Record[i])) 1657 EltTys.push_back(T); 1658 else 1659 break; 1660 } 1661 if (EltTys.size() != Record.size()-1) 1662 return error("Invalid type"); 1663 ResultTy = StructType::get(Context, EltTys, Record[0]); 1664 break; 1665 } 1666 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1667 if (convertToString(Record, 0, TypeName)) 1668 return error("Invalid record"); 1669 continue; 1670 1671 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1672 if (Record.size() < 1) 1673 return error("Invalid record"); 1674 1675 if (NumRecords >= TypeList.size()) 1676 return error("Invalid TYPE table"); 1677 1678 // Check to see if this was forward referenced, if so fill in the temp. 1679 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1680 if (Res) { 1681 Res->setName(TypeName); 1682 TypeList[NumRecords] = nullptr; 1683 } else // Otherwise, create a new struct. 1684 Res = createIdentifiedStructType(Context, TypeName); 1685 TypeName.clear(); 1686 1687 SmallVector<Type*, 8> EltTys; 1688 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1689 if (Type *T = getTypeByID(Record[i])) 1690 EltTys.push_back(T); 1691 else 1692 break; 1693 } 1694 if (EltTys.size() != Record.size()-1) 1695 return error("Invalid record"); 1696 Res->setBody(EltTys, Record[0]); 1697 ResultTy = Res; 1698 break; 1699 } 1700 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1701 if (Record.size() != 1) 1702 return error("Invalid record"); 1703 1704 if (NumRecords >= TypeList.size()) 1705 return error("Invalid TYPE table"); 1706 1707 // Check to see if this was forward referenced, if so fill in the temp. 1708 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1709 if (Res) { 1710 Res->setName(TypeName); 1711 TypeList[NumRecords] = nullptr; 1712 } else // Otherwise, create a new struct with no body. 1713 Res = createIdentifiedStructType(Context, TypeName); 1714 TypeName.clear(); 1715 ResultTy = Res; 1716 break; 1717 } 1718 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1719 if (Record.size() < 2) 1720 return error("Invalid record"); 1721 ResultTy = getTypeByID(Record[1]); 1722 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1723 return error("Invalid type"); 1724 ResultTy = ArrayType::get(ResultTy, Record[0]); 1725 break; 1726 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1727 if (Record.size() < 2) 1728 return error("Invalid record"); 1729 if (Record[0] == 0) 1730 return error("Invalid vector length"); 1731 ResultTy = getTypeByID(Record[1]); 1732 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1733 return error("Invalid type"); 1734 ResultTy = VectorType::get(ResultTy, Record[0]); 1735 break; 1736 } 1737 1738 if (NumRecords >= TypeList.size()) 1739 return error("Invalid TYPE table"); 1740 if (TypeList[NumRecords]) 1741 return error( 1742 "Invalid TYPE table: Only named structs can be forward referenced"); 1743 assert(ResultTy && "Didn't read a type?"); 1744 TypeList[NumRecords++] = ResultTy; 1745 } 1746 } 1747 1748 Error BitcodeReader::parseOperandBundleTags() { 1749 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1750 return error("Invalid record"); 1751 1752 if (!BundleTags.empty()) 1753 return error("Invalid multiple blocks"); 1754 1755 SmallVector<uint64_t, 64> Record; 1756 1757 while (true) { 1758 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1759 1760 switch (Entry.Kind) { 1761 case BitstreamEntry::SubBlock: // Handled for us already. 1762 case BitstreamEntry::Error: 1763 return error("Malformed block"); 1764 case BitstreamEntry::EndBlock: 1765 return Error::success(); 1766 case BitstreamEntry::Record: 1767 // The interesting case. 1768 break; 1769 } 1770 1771 // Tags are implicitly mapped to integers by their order. 1772 1773 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1774 return error("Invalid record"); 1775 1776 // OPERAND_BUNDLE_TAG: [strchr x N] 1777 BundleTags.emplace_back(); 1778 if (convertToString(Record, 0, BundleTags.back())) 1779 return error("Invalid record"); 1780 Record.clear(); 1781 } 1782 } 1783 1784 Error BitcodeReader::parseSyncScopeNames() { 1785 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1786 return error("Invalid record"); 1787 1788 if (!SSIDs.empty()) 1789 return error("Invalid multiple synchronization scope names blocks"); 1790 1791 SmallVector<uint64_t, 64> Record; 1792 while (true) { 1793 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1794 switch (Entry.Kind) { 1795 case BitstreamEntry::SubBlock: // Handled for us already. 1796 case BitstreamEntry::Error: 1797 return error("Malformed block"); 1798 case BitstreamEntry::EndBlock: 1799 if (SSIDs.empty()) 1800 return error("Invalid empty synchronization scope names block"); 1801 return Error::success(); 1802 case BitstreamEntry::Record: 1803 // The interesting case. 1804 break; 1805 } 1806 1807 // Synchronization scope names are implicitly mapped to synchronization 1808 // scope IDs by their order. 1809 1810 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1811 return error("Invalid record"); 1812 1813 SmallString<16> SSN; 1814 if (convertToString(Record, 0, SSN)) 1815 return error("Invalid record"); 1816 1817 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1818 Record.clear(); 1819 } 1820 } 1821 1822 /// Associate a value with its name from the given index in the provided record. 1823 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1824 unsigned NameIndex, Triple &TT) { 1825 SmallString<128> ValueName; 1826 if (convertToString(Record, NameIndex, ValueName)) 1827 return error("Invalid record"); 1828 unsigned ValueID = Record[0]; 1829 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1830 return error("Invalid record"); 1831 Value *V = ValueList[ValueID]; 1832 1833 StringRef NameStr(ValueName.data(), ValueName.size()); 1834 if (NameStr.find_first_of(0) != StringRef::npos) 1835 return error("Invalid value name"); 1836 V->setName(NameStr); 1837 auto *GO = dyn_cast<GlobalObject>(V); 1838 if (GO) { 1839 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1840 if (TT.supportsCOMDAT()) 1841 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1842 else 1843 GO->setComdat(nullptr); 1844 } 1845 } 1846 return V; 1847 } 1848 1849 /// Helper to note and return the current location, and jump to the given 1850 /// offset. 1851 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1852 BitstreamCursor &Stream) { 1853 // Save the current parsing location so we can jump back at the end 1854 // of the VST read. 1855 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1856 Stream.JumpToBit(Offset * 32); 1857 #ifndef NDEBUG 1858 // Do some checking if we are in debug mode. 1859 BitstreamEntry Entry = Stream.advance(); 1860 assert(Entry.Kind == BitstreamEntry::SubBlock); 1861 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1862 #else 1863 // In NDEBUG mode ignore the output so we don't get an unused variable 1864 // warning. 1865 Stream.advance(); 1866 #endif 1867 return CurrentBit; 1868 } 1869 1870 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1871 Function *F, 1872 ArrayRef<uint64_t> Record) { 1873 // Note that we subtract 1 here because the offset is relative to one word 1874 // before the start of the identification or module block, which was 1875 // historically always the start of the regular bitcode header. 1876 uint64_t FuncWordOffset = Record[1] - 1; 1877 uint64_t FuncBitOffset = FuncWordOffset * 32; 1878 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1879 // Set the LastFunctionBlockBit to point to the last function block. 1880 // Later when parsing is resumed after function materialization, 1881 // we can simply skip that last function block. 1882 if (FuncBitOffset > LastFunctionBlockBit) 1883 LastFunctionBlockBit = FuncBitOffset; 1884 } 1885 1886 /// Read a new-style GlobalValue symbol table. 1887 Error BitcodeReader::parseGlobalValueSymbolTable() { 1888 unsigned FuncBitcodeOffsetDelta = 1889 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1890 1891 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1892 return error("Invalid record"); 1893 1894 SmallVector<uint64_t, 64> Record; 1895 while (true) { 1896 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1897 1898 switch (Entry.Kind) { 1899 case BitstreamEntry::SubBlock: 1900 case BitstreamEntry::Error: 1901 return error("Malformed block"); 1902 case BitstreamEntry::EndBlock: 1903 return Error::success(); 1904 case BitstreamEntry::Record: 1905 break; 1906 } 1907 1908 Record.clear(); 1909 switch (Stream.readRecord(Entry.ID, Record)) { 1910 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1911 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1912 cast<Function>(ValueList[Record[0]]), Record); 1913 break; 1914 } 1915 } 1916 } 1917 1918 /// Parse the value symbol table at either the current parsing location or 1919 /// at the given bit offset if provided. 1920 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1921 uint64_t CurrentBit; 1922 // Pass in the Offset to distinguish between calling for the module-level 1923 // VST (where we want to jump to the VST offset) and the function-level 1924 // VST (where we don't). 1925 if (Offset > 0) { 1926 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1927 // If this module uses a string table, read this as a module-level VST. 1928 if (UseStrtab) { 1929 if (Error Err = parseGlobalValueSymbolTable()) 1930 return Err; 1931 Stream.JumpToBit(CurrentBit); 1932 return Error::success(); 1933 } 1934 // Otherwise, the VST will be in a similar format to a function-level VST, 1935 // and will contain symbol names. 1936 } 1937 1938 // Compute the delta between the bitcode indices in the VST (the word offset 1939 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1940 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1941 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1942 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1943 // just before entering the VST subblock because: 1) the EnterSubBlock 1944 // changes the AbbrevID width; 2) the VST block is nested within the same 1945 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1946 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1947 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1948 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1949 unsigned FuncBitcodeOffsetDelta = 1950 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1951 1952 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1953 return error("Invalid record"); 1954 1955 SmallVector<uint64_t, 64> Record; 1956 1957 Triple TT(TheModule->getTargetTriple()); 1958 1959 // Read all the records for this value table. 1960 SmallString<128> ValueName; 1961 1962 while (true) { 1963 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1964 1965 switch (Entry.Kind) { 1966 case BitstreamEntry::SubBlock: // Handled for us already. 1967 case BitstreamEntry::Error: 1968 return error("Malformed block"); 1969 case BitstreamEntry::EndBlock: 1970 if (Offset > 0) 1971 Stream.JumpToBit(CurrentBit); 1972 return Error::success(); 1973 case BitstreamEntry::Record: 1974 // The interesting case. 1975 break; 1976 } 1977 1978 // Read a record. 1979 Record.clear(); 1980 switch (Stream.readRecord(Entry.ID, Record)) { 1981 default: // Default behavior: unknown type. 1982 break; 1983 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1984 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1985 if (Error Err = ValOrErr.takeError()) 1986 return Err; 1987 ValOrErr.get(); 1988 break; 1989 } 1990 case bitc::VST_CODE_FNENTRY: { 1991 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1992 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1993 if (Error Err = ValOrErr.takeError()) 1994 return Err; 1995 Value *V = ValOrErr.get(); 1996 1997 // Ignore function offsets emitted for aliases of functions in older 1998 // versions of LLVM. 1999 if (auto *F = dyn_cast<Function>(V)) 2000 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2001 break; 2002 } 2003 case bitc::VST_CODE_BBENTRY: { 2004 if (convertToString(Record, 1, ValueName)) 2005 return error("Invalid record"); 2006 BasicBlock *BB = getBasicBlock(Record[0]); 2007 if (!BB) 2008 return error("Invalid record"); 2009 2010 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2011 ValueName.clear(); 2012 break; 2013 } 2014 } 2015 } 2016 } 2017 2018 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2019 /// encoding. 2020 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2021 if ((V & 1) == 0) 2022 return V >> 1; 2023 if (V != 1) 2024 return -(V >> 1); 2025 // There is no such thing as -0 with integers. "-0" really means MININT. 2026 return 1ULL << 63; 2027 } 2028 2029 /// Resolve all of the initializers for global values and aliases that we can. 2030 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2031 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2032 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2033 IndirectSymbolInitWorklist; 2034 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2035 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2036 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2037 2038 GlobalInitWorklist.swap(GlobalInits); 2039 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2040 FunctionPrefixWorklist.swap(FunctionPrefixes); 2041 FunctionPrologueWorklist.swap(FunctionPrologues); 2042 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2043 2044 while (!GlobalInitWorklist.empty()) { 2045 unsigned ValID = GlobalInitWorklist.back().second; 2046 if (ValID >= ValueList.size()) { 2047 // Not ready to resolve this yet, it requires something later in the file. 2048 GlobalInits.push_back(GlobalInitWorklist.back()); 2049 } else { 2050 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2051 GlobalInitWorklist.back().first->setInitializer(C); 2052 else 2053 return error("Expected a constant"); 2054 } 2055 GlobalInitWorklist.pop_back(); 2056 } 2057 2058 while (!IndirectSymbolInitWorklist.empty()) { 2059 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2060 if (ValID >= ValueList.size()) { 2061 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2062 } else { 2063 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2064 if (!C) 2065 return error("Expected a constant"); 2066 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2067 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2068 return error("Alias and aliasee types don't match"); 2069 GIS->setIndirectSymbol(C); 2070 } 2071 IndirectSymbolInitWorklist.pop_back(); 2072 } 2073 2074 while (!FunctionPrefixWorklist.empty()) { 2075 unsigned ValID = FunctionPrefixWorklist.back().second; 2076 if (ValID >= ValueList.size()) { 2077 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2078 } else { 2079 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2080 FunctionPrefixWorklist.back().first->setPrefixData(C); 2081 else 2082 return error("Expected a constant"); 2083 } 2084 FunctionPrefixWorklist.pop_back(); 2085 } 2086 2087 while (!FunctionPrologueWorklist.empty()) { 2088 unsigned ValID = FunctionPrologueWorklist.back().second; 2089 if (ValID >= ValueList.size()) { 2090 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2091 } else { 2092 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2093 FunctionPrologueWorklist.back().first->setPrologueData(C); 2094 else 2095 return error("Expected a constant"); 2096 } 2097 FunctionPrologueWorklist.pop_back(); 2098 } 2099 2100 while (!FunctionPersonalityFnWorklist.empty()) { 2101 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2102 if (ValID >= ValueList.size()) { 2103 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2104 } else { 2105 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2106 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2107 else 2108 return error("Expected a constant"); 2109 } 2110 FunctionPersonalityFnWorklist.pop_back(); 2111 } 2112 2113 return Error::success(); 2114 } 2115 2116 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2117 SmallVector<uint64_t, 8> Words(Vals.size()); 2118 transform(Vals, Words.begin(), 2119 BitcodeReader::decodeSignRotatedValue); 2120 2121 return APInt(TypeBits, Words); 2122 } 2123 2124 Error BitcodeReader::parseConstants() { 2125 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2126 return error("Invalid record"); 2127 2128 SmallVector<uint64_t, 64> Record; 2129 2130 // Read all the records for this value table. 2131 Type *CurTy = Type::getInt32Ty(Context); 2132 unsigned NextCstNo = ValueList.size(); 2133 2134 while (true) { 2135 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2136 2137 switch (Entry.Kind) { 2138 case BitstreamEntry::SubBlock: // Handled for us already. 2139 case BitstreamEntry::Error: 2140 return error("Malformed block"); 2141 case BitstreamEntry::EndBlock: 2142 if (NextCstNo != ValueList.size()) 2143 return error("Invalid constant reference"); 2144 2145 // Once all the constants have been read, go through and resolve forward 2146 // references. 2147 ValueList.resolveConstantForwardRefs(); 2148 return Error::success(); 2149 case BitstreamEntry::Record: 2150 // The interesting case. 2151 break; 2152 } 2153 2154 // Read a record. 2155 Record.clear(); 2156 Type *VoidType = Type::getVoidTy(Context); 2157 Value *V = nullptr; 2158 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2159 switch (BitCode) { 2160 default: // Default behavior: unknown constant 2161 case bitc::CST_CODE_UNDEF: // UNDEF 2162 V = UndefValue::get(CurTy); 2163 break; 2164 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2165 if (Record.empty()) 2166 return error("Invalid record"); 2167 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2168 return error("Invalid record"); 2169 if (TypeList[Record[0]] == VoidType) 2170 return error("Invalid constant type"); 2171 CurTy = TypeList[Record[0]]; 2172 continue; // Skip the ValueList manipulation. 2173 case bitc::CST_CODE_NULL: // NULL 2174 V = Constant::getNullValue(CurTy); 2175 break; 2176 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2177 if (!CurTy->isIntegerTy() || Record.empty()) 2178 return error("Invalid record"); 2179 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2180 break; 2181 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2182 if (!CurTy->isIntegerTy() || Record.empty()) 2183 return error("Invalid record"); 2184 2185 APInt VInt = 2186 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2187 V = ConstantInt::get(Context, VInt); 2188 2189 break; 2190 } 2191 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2192 if (Record.empty()) 2193 return error("Invalid record"); 2194 if (CurTy->isHalfTy()) 2195 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2196 APInt(16, (uint16_t)Record[0]))); 2197 else if (CurTy->isFloatTy()) 2198 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2199 APInt(32, (uint32_t)Record[0]))); 2200 else if (CurTy->isDoubleTy()) 2201 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2202 APInt(64, Record[0]))); 2203 else if (CurTy->isX86_FP80Ty()) { 2204 // Bits are not stored the same way as a normal i80 APInt, compensate. 2205 uint64_t Rearrange[2]; 2206 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2207 Rearrange[1] = Record[0] >> 48; 2208 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2209 APInt(80, Rearrange))); 2210 } else if (CurTy->isFP128Ty()) 2211 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2212 APInt(128, Record))); 2213 else if (CurTy->isPPC_FP128Ty()) 2214 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2215 APInt(128, Record))); 2216 else 2217 V = UndefValue::get(CurTy); 2218 break; 2219 } 2220 2221 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2222 if (Record.empty()) 2223 return error("Invalid record"); 2224 2225 unsigned Size = Record.size(); 2226 SmallVector<Constant*, 16> Elts; 2227 2228 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2229 for (unsigned i = 0; i != Size; ++i) 2230 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2231 STy->getElementType(i))); 2232 V = ConstantStruct::get(STy, Elts); 2233 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2234 Type *EltTy = ATy->getElementType(); 2235 for (unsigned i = 0; i != Size; ++i) 2236 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2237 V = ConstantArray::get(ATy, Elts); 2238 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2239 Type *EltTy = VTy->getElementType(); 2240 for (unsigned i = 0; i != Size; ++i) 2241 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2242 V = ConstantVector::get(Elts); 2243 } else { 2244 V = UndefValue::get(CurTy); 2245 } 2246 break; 2247 } 2248 case bitc::CST_CODE_STRING: // STRING: [values] 2249 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2250 if (Record.empty()) 2251 return error("Invalid record"); 2252 2253 SmallString<16> Elts(Record.begin(), Record.end()); 2254 V = ConstantDataArray::getString(Context, Elts, 2255 BitCode == bitc::CST_CODE_CSTRING); 2256 break; 2257 } 2258 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2259 if (Record.empty()) 2260 return error("Invalid record"); 2261 2262 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2263 if (EltTy->isIntegerTy(8)) { 2264 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2265 if (isa<VectorType>(CurTy)) 2266 V = ConstantDataVector::get(Context, Elts); 2267 else 2268 V = ConstantDataArray::get(Context, Elts); 2269 } else if (EltTy->isIntegerTy(16)) { 2270 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2271 if (isa<VectorType>(CurTy)) 2272 V = ConstantDataVector::get(Context, Elts); 2273 else 2274 V = ConstantDataArray::get(Context, Elts); 2275 } else if (EltTy->isIntegerTy(32)) { 2276 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2277 if (isa<VectorType>(CurTy)) 2278 V = ConstantDataVector::get(Context, Elts); 2279 else 2280 V = ConstantDataArray::get(Context, Elts); 2281 } else if (EltTy->isIntegerTy(64)) { 2282 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2283 if (isa<VectorType>(CurTy)) 2284 V = ConstantDataVector::get(Context, Elts); 2285 else 2286 V = ConstantDataArray::get(Context, Elts); 2287 } else if (EltTy->isHalfTy()) { 2288 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2289 if (isa<VectorType>(CurTy)) 2290 V = ConstantDataVector::getFP(Context, Elts); 2291 else 2292 V = ConstantDataArray::getFP(Context, Elts); 2293 } else if (EltTy->isFloatTy()) { 2294 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2295 if (isa<VectorType>(CurTy)) 2296 V = ConstantDataVector::getFP(Context, Elts); 2297 else 2298 V = ConstantDataArray::getFP(Context, Elts); 2299 } else if (EltTy->isDoubleTy()) { 2300 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2301 if (isa<VectorType>(CurTy)) 2302 V = ConstantDataVector::getFP(Context, Elts); 2303 else 2304 V = ConstantDataArray::getFP(Context, Elts); 2305 } else { 2306 return error("Invalid type for value"); 2307 } 2308 break; 2309 } 2310 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2311 if (Record.size() < 3) 2312 return error("Invalid record"); 2313 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2314 if (Opc < 0) { 2315 V = UndefValue::get(CurTy); // Unknown binop. 2316 } else { 2317 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2318 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2319 unsigned Flags = 0; 2320 if (Record.size() >= 4) { 2321 if (Opc == Instruction::Add || 2322 Opc == Instruction::Sub || 2323 Opc == Instruction::Mul || 2324 Opc == Instruction::Shl) { 2325 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2326 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2327 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2328 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2329 } else if (Opc == Instruction::SDiv || 2330 Opc == Instruction::UDiv || 2331 Opc == Instruction::LShr || 2332 Opc == Instruction::AShr) { 2333 if (Record[3] & (1 << bitc::PEO_EXACT)) 2334 Flags |= SDivOperator::IsExact; 2335 } 2336 } 2337 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2338 } 2339 break; 2340 } 2341 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2342 if (Record.size() < 3) 2343 return error("Invalid record"); 2344 int Opc = getDecodedCastOpcode(Record[0]); 2345 if (Opc < 0) { 2346 V = UndefValue::get(CurTy); // Unknown cast. 2347 } else { 2348 Type *OpTy = getTypeByID(Record[1]); 2349 if (!OpTy) 2350 return error("Invalid record"); 2351 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2352 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2353 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2354 } 2355 break; 2356 } 2357 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2358 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2359 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2360 // operands] 2361 unsigned OpNum = 0; 2362 Type *PointeeType = nullptr; 2363 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2364 Record.size() % 2) 2365 PointeeType = getTypeByID(Record[OpNum++]); 2366 2367 bool InBounds = false; 2368 Optional<unsigned> InRangeIndex; 2369 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2370 uint64_t Op = Record[OpNum++]; 2371 InBounds = Op & 1; 2372 InRangeIndex = Op >> 1; 2373 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2374 InBounds = true; 2375 2376 SmallVector<Constant*, 16> Elts; 2377 while (OpNum != Record.size()) { 2378 Type *ElTy = getTypeByID(Record[OpNum++]); 2379 if (!ElTy) 2380 return error("Invalid record"); 2381 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2382 } 2383 2384 if (PointeeType && 2385 PointeeType != 2386 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2387 ->getElementType()) 2388 return error("Explicit gep operator type does not match pointee type " 2389 "of pointer operand"); 2390 2391 if (Elts.size() < 1) 2392 return error("Invalid gep with no operands"); 2393 2394 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2395 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2396 InBounds, InRangeIndex); 2397 break; 2398 } 2399 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2400 if (Record.size() < 3) 2401 return error("Invalid record"); 2402 2403 Type *SelectorTy = Type::getInt1Ty(Context); 2404 2405 // The selector might be an i1 or an <n x i1> 2406 // Get the type from the ValueList before getting a forward ref. 2407 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2408 if (Value *V = ValueList[Record[0]]) 2409 if (SelectorTy != V->getType()) 2410 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2411 2412 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2413 SelectorTy), 2414 ValueList.getConstantFwdRef(Record[1],CurTy), 2415 ValueList.getConstantFwdRef(Record[2],CurTy)); 2416 break; 2417 } 2418 case bitc::CST_CODE_CE_EXTRACTELT 2419 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2420 if (Record.size() < 3) 2421 return error("Invalid record"); 2422 VectorType *OpTy = 2423 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2424 if (!OpTy) 2425 return error("Invalid record"); 2426 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2427 Constant *Op1 = nullptr; 2428 if (Record.size() == 4) { 2429 Type *IdxTy = getTypeByID(Record[2]); 2430 if (!IdxTy) 2431 return error("Invalid record"); 2432 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2433 } else // TODO: Remove with llvm 4.0 2434 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2435 if (!Op1) 2436 return error("Invalid record"); 2437 V = ConstantExpr::getExtractElement(Op0, Op1); 2438 break; 2439 } 2440 case bitc::CST_CODE_CE_INSERTELT 2441 : { // CE_INSERTELT: [opval, opval, opty, opval] 2442 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2443 if (Record.size() < 3 || !OpTy) 2444 return error("Invalid record"); 2445 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2446 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2447 OpTy->getElementType()); 2448 Constant *Op2 = nullptr; 2449 if (Record.size() == 4) { 2450 Type *IdxTy = getTypeByID(Record[2]); 2451 if (!IdxTy) 2452 return error("Invalid record"); 2453 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2454 } else // TODO: Remove with llvm 4.0 2455 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2456 if (!Op2) 2457 return error("Invalid record"); 2458 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2459 break; 2460 } 2461 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2462 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2463 if (Record.size() < 3 || !OpTy) 2464 return error("Invalid record"); 2465 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2466 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2467 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2468 OpTy->getNumElements()); 2469 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2470 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2471 break; 2472 } 2473 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2474 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2475 VectorType *OpTy = 2476 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2477 if (Record.size() < 4 || !RTy || !OpTy) 2478 return error("Invalid record"); 2479 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2480 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2481 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2482 RTy->getNumElements()); 2483 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2484 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2485 break; 2486 } 2487 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2488 if (Record.size() < 4) 2489 return error("Invalid record"); 2490 Type *OpTy = getTypeByID(Record[0]); 2491 if (!OpTy) 2492 return error("Invalid record"); 2493 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2494 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2495 2496 if (OpTy->isFPOrFPVectorTy()) 2497 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2498 else 2499 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2500 break; 2501 } 2502 // This maintains backward compatibility, pre-asm dialect keywords. 2503 // FIXME: Remove with the 4.0 release. 2504 case bitc::CST_CODE_INLINEASM_OLD: { 2505 if (Record.size() < 2) 2506 return error("Invalid record"); 2507 std::string AsmStr, ConstrStr; 2508 bool HasSideEffects = Record[0] & 1; 2509 bool IsAlignStack = Record[0] >> 1; 2510 unsigned AsmStrSize = Record[1]; 2511 if (2+AsmStrSize >= Record.size()) 2512 return error("Invalid record"); 2513 unsigned ConstStrSize = Record[2+AsmStrSize]; 2514 if (3+AsmStrSize+ConstStrSize > Record.size()) 2515 return error("Invalid record"); 2516 2517 for (unsigned i = 0; i != AsmStrSize; ++i) 2518 AsmStr += (char)Record[2+i]; 2519 for (unsigned i = 0; i != ConstStrSize; ++i) 2520 ConstrStr += (char)Record[3+AsmStrSize+i]; 2521 PointerType *PTy = cast<PointerType>(CurTy); 2522 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2523 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2524 break; 2525 } 2526 // This version adds support for the asm dialect keywords (e.g., 2527 // inteldialect). 2528 case bitc::CST_CODE_INLINEASM: { 2529 if (Record.size() < 2) 2530 return error("Invalid record"); 2531 std::string AsmStr, ConstrStr; 2532 bool HasSideEffects = Record[0] & 1; 2533 bool IsAlignStack = (Record[0] >> 1) & 1; 2534 unsigned AsmDialect = Record[0] >> 2; 2535 unsigned AsmStrSize = Record[1]; 2536 if (2+AsmStrSize >= Record.size()) 2537 return error("Invalid record"); 2538 unsigned ConstStrSize = Record[2+AsmStrSize]; 2539 if (3+AsmStrSize+ConstStrSize > Record.size()) 2540 return error("Invalid record"); 2541 2542 for (unsigned i = 0; i != AsmStrSize; ++i) 2543 AsmStr += (char)Record[2+i]; 2544 for (unsigned i = 0; i != ConstStrSize; ++i) 2545 ConstrStr += (char)Record[3+AsmStrSize+i]; 2546 PointerType *PTy = cast<PointerType>(CurTy); 2547 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2548 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2549 InlineAsm::AsmDialect(AsmDialect)); 2550 break; 2551 } 2552 case bitc::CST_CODE_BLOCKADDRESS:{ 2553 if (Record.size() < 3) 2554 return error("Invalid record"); 2555 Type *FnTy = getTypeByID(Record[0]); 2556 if (!FnTy) 2557 return error("Invalid record"); 2558 Function *Fn = 2559 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2560 if (!Fn) 2561 return error("Invalid record"); 2562 2563 // If the function is already parsed we can insert the block address right 2564 // away. 2565 BasicBlock *BB; 2566 unsigned BBID = Record[2]; 2567 if (!BBID) 2568 // Invalid reference to entry block. 2569 return error("Invalid ID"); 2570 if (!Fn->empty()) { 2571 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2572 for (size_t I = 0, E = BBID; I != E; ++I) { 2573 if (BBI == BBE) 2574 return error("Invalid ID"); 2575 ++BBI; 2576 } 2577 BB = &*BBI; 2578 } else { 2579 // Otherwise insert a placeholder and remember it so it can be inserted 2580 // when the function is parsed. 2581 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2582 if (FwdBBs.empty()) 2583 BasicBlockFwdRefQueue.push_back(Fn); 2584 if (FwdBBs.size() < BBID + 1) 2585 FwdBBs.resize(BBID + 1); 2586 if (!FwdBBs[BBID]) 2587 FwdBBs[BBID] = BasicBlock::Create(Context); 2588 BB = FwdBBs[BBID]; 2589 } 2590 V = BlockAddress::get(Fn, BB); 2591 break; 2592 } 2593 } 2594 2595 ValueList.assignValue(V, NextCstNo); 2596 ++NextCstNo; 2597 } 2598 } 2599 2600 Error BitcodeReader::parseUseLists() { 2601 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2602 return error("Invalid record"); 2603 2604 // Read all the records. 2605 SmallVector<uint64_t, 64> Record; 2606 2607 while (true) { 2608 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2609 2610 switch (Entry.Kind) { 2611 case BitstreamEntry::SubBlock: // Handled for us already. 2612 case BitstreamEntry::Error: 2613 return error("Malformed block"); 2614 case BitstreamEntry::EndBlock: 2615 return Error::success(); 2616 case BitstreamEntry::Record: 2617 // The interesting case. 2618 break; 2619 } 2620 2621 // Read a use list record. 2622 Record.clear(); 2623 bool IsBB = false; 2624 switch (Stream.readRecord(Entry.ID, Record)) { 2625 default: // Default behavior: unknown type. 2626 break; 2627 case bitc::USELIST_CODE_BB: 2628 IsBB = true; 2629 LLVM_FALLTHROUGH; 2630 case bitc::USELIST_CODE_DEFAULT: { 2631 unsigned RecordLength = Record.size(); 2632 if (RecordLength < 3) 2633 // Records should have at least an ID and two indexes. 2634 return error("Invalid record"); 2635 unsigned ID = Record.back(); 2636 Record.pop_back(); 2637 2638 Value *V; 2639 if (IsBB) { 2640 assert(ID < FunctionBBs.size() && "Basic block not found"); 2641 V = FunctionBBs[ID]; 2642 } else 2643 V = ValueList[ID]; 2644 unsigned NumUses = 0; 2645 SmallDenseMap<const Use *, unsigned, 16> Order; 2646 for (const Use &U : V->materialized_uses()) { 2647 if (++NumUses > Record.size()) 2648 break; 2649 Order[&U] = Record[NumUses - 1]; 2650 } 2651 if (Order.size() != Record.size() || NumUses > Record.size()) 2652 // Mismatches can happen if the functions are being materialized lazily 2653 // (out-of-order), or a value has been upgraded. 2654 break; 2655 2656 V->sortUseList([&](const Use &L, const Use &R) { 2657 return Order.lookup(&L) < Order.lookup(&R); 2658 }); 2659 break; 2660 } 2661 } 2662 } 2663 } 2664 2665 /// When we see the block for metadata, remember where it is and then skip it. 2666 /// This lets us lazily deserialize the metadata. 2667 Error BitcodeReader::rememberAndSkipMetadata() { 2668 // Save the current stream state. 2669 uint64_t CurBit = Stream.GetCurrentBitNo(); 2670 DeferredMetadataInfo.push_back(CurBit); 2671 2672 // Skip over the block for now. 2673 if (Stream.SkipBlock()) 2674 return error("Invalid record"); 2675 return Error::success(); 2676 } 2677 2678 Error BitcodeReader::materializeMetadata() { 2679 for (uint64_t BitPos : DeferredMetadataInfo) { 2680 // Move the bit stream to the saved position. 2681 Stream.JumpToBit(BitPos); 2682 if (Error Err = MDLoader->parseModuleMetadata()) 2683 return Err; 2684 } 2685 2686 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2687 // metadata. 2688 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2689 NamedMDNode *LinkerOpts = 2690 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2691 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2692 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2693 } 2694 2695 DeferredMetadataInfo.clear(); 2696 return Error::success(); 2697 } 2698 2699 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2700 2701 /// When we see the block for a function body, remember where it is and then 2702 /// skip it. This lets us lazily deserialize the functions. 2703 Error BitcodeReader::rememberAndSkipFunctionBody() { 2704 // Get the function we are talking about. 2705 if (FunctionsWithBodies.empty()) 2706 return error("Insufficient function protos"); 2707 2708 Function *Fn = FunctionsWithBodies.back(); 2709 FunctionsWithBodies.pop_back(); 2710 2711 // Save the current stream state. 2712 uint64_t CurBit = Stream.GetCurrentBitNo(); 2713 assert( 2714 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2715 "Mismatch between VST and scanned function offsets"); 2716 DeferredFunctionInfo[Fn] = CurBit; 2717 2718 // Skip over the function block for now. 2719 if (Stream.SkipBlock()) 2720 return error("Invalid record"); 2721 return Error::success(); 2722 } 2723 2724 Error BitcodeReader::globalCleanup() { 2725 // Patch the initializers for globals and aliases up. 2726 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2727 return Err; 2728 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2729 return error("Malformed global initializer set"); 2730 2731 // Look for intrinsic functions which need to be upgraded at some point 2732 for (Function &F : *TheModule) { 2733 MDLoader->upgradeDebugIntrinsics(F); 2734 Function *NewFn; 2735 if (UpgradeIntrinsicFunction(&F, NewFn)) 2736 UpgradedIntrinsics[&F] = NewFn; 2737 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2738 // Some types could be renamed during loading if several modules are 2739 // loaded in the same LLVMContext (LTO scenario). In this case we should 2740 // remangle intrinsics names as well. 2741 RemangledIntrinsics[&F] = Remangled.getValue(); 2742 } 2743 2744 // Look for global variables which need to be renamed. 2745 for (GlobalVariable &GV : TheModule->globals()) 2746 UpgradeGlobalVariable(&GV); 2747 2748 // Force deallocation of memory for these vectors to favor the client that 2749 // want lazy deserialization. 2750 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2751 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2752 IndirectSymbolInits); 2753 return Error::success(); 2754 } 2755 2756 /// Support for lazy parsing of function bodies. This is required if we 2757 /// either have an old bitcode file without a VST forward declaration record, 2758 /// or if we have an anonymous function being materialized, since anonymous 2759 /// functions do not have a name and are therefore not in the VST. 2760 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2761 Stream.JumpToBit(NextUnreadBit); 2762 2763 if (Stream.AtEndOfStream()) 2764 return error("Could not find function in stream"); 2765 2766 if (!SeenFirstFunctionBody) 2767 return error("Trying to materialize functions before seeing function blocks"); 2768 2769 // An old bitcode file with the symbol table at the end would have 2770 // finished the parse greedily. 2771 assert(SeenValueSymbolTable); 2772 2773 SmallVector<uint64_t, 64> Record; 2774 2775 while (true) { 2776 BitstreamEntry Entry = Stream.advance(); 2777 switch (Entry.Kind) { 2778 default: 2779 return error("Expect SubBlock"); 2780 case BitstreamEntry::SubBlock: 2781 switch (Entry.ID) { 2782 default: 2783 return error("Expect function block"); 2784 case bitc::FUNCTION_BLOCK_ID: 2785 if (Error Err = rememberAndSkipFunctionBody()) 2786 return Err; 2787 NextUnreadBit = Stream.GetCurrentBitNo(); 2788 return Error::success(); 2789 } 2790 } 2791 } 2792 } 2793 2794 bool BitcodeReaderBase::readBlockInfo() { 2795 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2796 if (!NewBlockInfo) 2797 return true; 2798 BlockInfo = std::move(*NewBlockInfo); 2799 return false; 2800 } 2801 2802 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2803 // v1: [selection_kind, name] 2804 // v2: [strtab_offset, strtab_size, selection_kind] 2805 StringRef Name; 2806 std::tie(Name, Record) = readNameFromStrtab(Record); 2807 2808 if (Record.empty()) 2809 return error("Invalid record"); 2810 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2811 std::string OldFormatName; 2812 if (!UseStrtab) { 2813 if (Record.size() < 2) 2814 return error("Invalid record"); 2815 unsigned ComdatNameSize = Record[1]; 2816 OldFormatName.reserve(ComdatNameSize); 2817 for (unsigned i = 0; i != ComdatNameSize; ++i) 2818 OldFormatName += (char)Record[2 + i]; 2819 Name = OldFormatName; 2820 } 2821 Comdat *C = TheModule->getOrInsertComdat(Name); 2822 C->setSelectionKind(SK); 2823 ComdatList.push_back(C); 2824 return Error::success(); 2825 } 2826 2827 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2828 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2829 // visibility, threadlocal, unnamed_addr, externally_initialized, 2830 // dllstorageclass, comdat, attributes, preemption specifier] (name in VST) 2831 // v2: [strtab_offset, strtab_size, v1] 2832 StringRef Name; 2833 std::tie(Name, Record) = readNameFromStrtab(Record); 2834 2835 if (Record.size() < 6) 2836 return error("Invalid record"); 2837 Type *Ty = getTypeByID(Record[0]); 2838 if (!Ty) 2839 return error("Invalid record"); 2840 bool isConstant = Record[1] & 1; 2841 bool explicitType = Record[1] & 2; 2842 unsigned AddressSpace; 2843 if (explicitType) { 2844 AddressSpace = Record[1] >> 2; 2845 } else { 2846 if (!Ty->isPointerTy()) 2847 return error("Invalid type for value"); 2848 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2849 Ty = cast<PointerType>(Ty)->getElementType(); 2850 } 2851 2852 uint64_t RawLinkage = Record[3]; 2853 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2854 unsigned Alignment; 2855 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2856 return Err; 2857 std::string Section; 2858 if (Record[5]) { 2859 if (Record[5] - 1 >= SectionTable.size()) 2860 return error("Invalid ID"); 2861 Section = SectionTable[Record[5] - 1]; 2862 } 2863 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2864 // Local linkage must have default visibility. 2865 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2866 // FIXME: Change to an error if non-default in 4.0. 2867 Visibility = getDecodedVisibility(Record[6]); 2868 2869 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2870 if (Record.size() > 7) 2871 TLM = getDecodedThreadLocalMode(Record[7]); 2872 2873 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2874 if (Record.size() > 8) 2875 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2876 2877 bool ExternallyInitialized = false; 2878 if (Record.size() > 9) 2879 ExternallyInitialized = Record[9]; 2880 2881 GlobalVariable *NewGV = 2882 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2883 nullptr, TLM, AddressSpace, ExternallyInitialized); 2884 NewGV->setAlignment(Alignment); 2885 if (!Section.empty()) 2886 NewGV->setSection(Section); 2887 NewGV->setVisibility(Visibility); 2888 NewGV->setUnnamedAddr(UnnamedAddr); 2889 2890 if (Record.size() > 10) 2891 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2892 else 2893 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2894 2895 ValueList.push_back(NewGV); 2896 2897 // Remember which value to use for the global initializer. 2898 if (unsigned InitID = Record[2]) 2899 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2900 2901 if (Record.size() > 11) { 2902 if (unsigned ComdatID = Record[11]) { 2903 if (ComdatID > ComdatList.size()) 2904 return error("Invalid global variable comdat ID"); 2905 NewGV->setComdat(ComdatList[ComdatID - 1]); 2906 } 2907 } else if (hasImplicitComdat(RawLinkage)) { 2908 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2909 } 2910 2911 if (Record.size() > 12) { 2912 auto AS = getAttributes(Record[12]).getFnAttributes(); 2913 NewGV->setAttributes(AS); 2914 } 2915 2916 if (Record.size() > 13) { 2917 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 2918 } 2919 2920 return Error::success(); 2921 } 2922 2923 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2924 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2925 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2926 // prefixdata, personalityfn, preemption specifier] (name in VST) 2927 // v2: [strtab_offset, strtab_size, v1] 2928 StringRef Name; 2929 std::tie(Name, Record) = readNameFromStrtab(Record); 2930 2931 if (Record.size() < 8) 2932 return error("Invalid record"); 2933 Type *Ty = getTypeByID(Record[0]); 2934 if (!Ty) 2935 return error("Invalid record"); 2936 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2937 Ty = PTy->getElementType(); 2938 auto *FTy = dyn_cast<FunctionType>(Ty); 2939 if (!FTy) 2940 return error("Invalid type for value"); 2941 auto CC = static_cast<CallingConv::ID>(Record[1]); 2942 if (CC & ~CallingConv::MaxID) 2943 return error("Invalid calling convention ID"); 2944 2945 Function *Func = 2946 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule); 2947 2948 Func->setCallingConv(CC); 2949 bool isProto = Record[2]; 2950 uint64_t RawLinkage = Record[3]; 2951 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2952 Func->setAttributes(getAttributes(Record[4])); 2953 2954 unsigned Alignment; 2955 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2956 return Err; 2957 Func->setAlignment(Alignment); 2958 if (Record[6]) { 2959 if (Record[6] - 1 >= SectionTable.size()) 2960 return error("Invalid ID"); 2961 Func->setSection(SectionTable[Record[6] - 1]); 2962 } 2963 // Local linkage must have default visibility. 2964 if (!Func->hasLocalLinkage()) 2965 // FIXME: Change to an error if non-default in 4.0. 2966 Func->setVisibility(getDecodedVisibility(Record[7])); 2967 if (Record.size() > 8 && Record[8]) { 2968 if (Record[8] - 1 >= GCTable.size()) 2969 return error("Invalid ID"); 2970 Func->setGC(GCTable[Record[8] - 1]); 2971 } 2972 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2973 if (Record.size() > 9) 2974 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2975 Func->setUnnamedAddr(UnnamedAddr); 2976 if (Record.size() > 10 && Record[10] != 0) 2977 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 2978 2979 if (Record.size() > 11) 2980 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2981 else 2982 upgradeDLLImportExportLinkage(Func, RawLinkage); 2983 2984 if (Record.size() > 12) { 2985 if (unsigned ComdatID = Record[12]) { 2986 if (ComdatID > ComdatList.size()) 2987 return error("Invalid function comdat ID"); 2988 Func->setComdat(ComdatList[ComdatID - 1]); 2989 } 2990 } else if (hasImplicitComdat(RawLinkage)) { 2991 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2992 } 2993 2994 if (Record.size() > 13 && Record[13] != 0) 2995 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 2996 2997 if (Record.size() > 14 && Record[14] != 0) 2998 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 2999 3000 if (Record.size() > 15) { 3001 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3002 } 3003 3004 ValueList.push_back(Func); 3005 3006 // If this is a function with a body, remember the prototype we are 3007 // creating now, so that we can match up the body with them later. 3008 if (!isProto) { 3009 Func->setIsMaterializable(true); 3010 FunctionsWithBodies.push_back(Func); 3011 DeferredFunctionInfo[Func] = 0; 3012 } 3013 return Error::success(); 3014 } 3015 3016 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3017 unsigned BitCode, ArrayRef<uint64_t> Record) { 3018 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3019 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3020 // dllstorageclass, threadlocal, unnamed_addr, 3021 // preemption specifier] (name in VST) 3022 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3023 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3024 // preemption specifier] (name in VST) 3025 // v2: [strtab_offset, strtab_size, v1] 3026 StringRef Name; 3027 std::tie(Name, Record) = readNameFromStrtab(Record); 3028 3029 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3030 if (Record.size() < (3 + (unsigned)NewRecord)) 3031 return error("Invalid record"); 3032 unsigned OpNum = 0; 3033 Type *Ty = getTypeByID(Record[OpNum++]); 3034 if (!Ty) 3035 return error("Invalid record"); 3036 3037 unsigned AddrSpace; 3038 if (!NewRecord) { 3039 auto *PTy = dyn_cast<PointerType>(Ty); 3040 if (!PTy) 3041 return error("Invalid type for value"); 3042 Ty = PTy->getElementType(); 3043 AddrSpace = PTy->getAddressSpace(); 3044 } else { 3045 AddrSpace = Record[OpNum++]; 3046 } 3047 3048 auto Val = Record[OpNum++]; 3049 auto Linkage = Record[OpNum++]; 3050 GlobalIndirectSymbol *NewGA; 3051 if (BitCode == bitc::MODULE_CODE_ALIAS || 3052 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3053 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3054 TheModule); 3055 else 3056 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3057 nullptr, TheModule); 3058 // Old bitcode files didn't have visibility field. 3059 // Local linkage must have default visibility. 3060 if (OpNum != Record.size()) { 3061 auto VisInd = OpNum++; 3062 if (!NewGA->hasLocalLinkage()) 3063 // FIXME: Change to an error if non-default in 4.0. 3064 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3065 } 3066 if (BitCode == bitc::MODULE_CODE_ALIAS || 3067 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3068 if (OpNum != Record.size()) 3069 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3070 else 3071 upgradeDLLImportExportLinkage(NewGA, Linkage); 3072 if (OpNum != Record.size()) 3073 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3074 if (OpNum != Record.size()) 3075 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3076 } 3077 if (OpNum != Record.size()) 3078 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3079 ValueList.push_back(NewGA); 3080 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3081 return Error::success(); 3082 } 3083 3084 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3085 bool ShouldLazyLoadMetadata) { 3086 if (ResumeBit) 3087 Stream.JumpToBit(ResumeBit); 3088 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3089 return error("Invalid record"); 3090 3091 SmallVector<uint64_t, 64> Record; 3092 3093 // Read all the records for this module. 3094 while (true) { 3095 BitstreamEntry Entry = Stream.advance(); 3096 3097 switch (Entry.Kind) { 3098 case BitstreamEntry::Error: 3099 return error("Malformed block"); 3100 case BitstreamEntry::EndBlock: 3101 return globalCleanup(); 3102 3103 case BitstreamEntry::SubBlock: 3104 switch (Entry.ID) { 3105 default: // Skip unknown content. 3106 if (Stream.SkipBlock()) 3107 return error("Invalid record"); 3108 break; 3109 case bitc::BLOCKINFO_BLOCK_ID: 3110 if (readBlockInfo()) 3111 return error("Malformed block"); 3112 break; 3113 case bitc::PARAMATTR_BLOCK_ID: 3114 if (Error Err = parseAttributeBlock()) 3115 return Err; 3116 break; 3117 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3118 if (Error Err = parseAttributeGroupBlock()) 3119 return Err; 3120 break; 3121 case bitc::TYPE_BLOCK_ID_NEW: 3122 if (Error Err = parseTypeTable()) 3123 return Err; 3124 break; 3125 case bitc::VALUE_SYMTAB_BLOCK_ID: 3126 if (!SeenValueSymbolTable) { 3127 // Either this is an old form VST without function index and an 3128 // associated VST forward declaration record (which would have caused 3129 // the VST to be jumped to and parsed before it was encountered 3130 // normally in the stream), or there were no function blocks to 3131 // trigger an earlier parsing of the VST. 3132 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3133 if (Error Err = parseValueSymbolTable()) 3134 return Err; 3135 SeenValueSymbolTable = true; 3136 } else { 3137 // We must have had a VST forward declaration record, which caused 3138 // the parser to jump to and parse the VST earlier. 3139 assert(VSTOffset > 0); 3140 if (Stream.SkipBlock()) 3141 return error("Invalid record"); 3142 } 3143 break; 3144 case bitc::CONSTANTS_BLOCK_ID: 3145 if (Error Err = parseConstants()) 3146 return Err; 3147 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3148 return Err; 3149 break; 3150 case bitc::METADATA_BLOCK_ID: 3151 if (ShouldLazyLoadMetadata) { 3152 if (Error Err = rememberAndSkipMetadata()) 3153 return Err; 3154 break; 3155 } 3156 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3157 if (Error Err = MDLoader->parseModuleMetadata()) 3158 return Err; 3159 break; 3160 case bitc::METADATA_KIND_BLOCK_ID: 3161 if (Error Err = MDLoader->parseMetadataKinds()) 3162 return Err; 3163 break; 3164 case bitc::FUNCTION_BLOCK_ID: 3165 // If this is the first function body we've seen, reverse the 3166 // FunctionsWithBodies list. 3167 if (!SeenFirstFunctionBody) { 3168 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3169 if (Error Err = globalCleanup()) 3170 return Err; 3171 SeenFirstFunctionBody = true; 3172 } 3173 3174 if (VSTOffset > 0) { 3175 // If we have a VST forward declaration record, make sure we 3176 // parse the VST now if we haven't already. It is needed to 3177 // set up the DeferredFunctionInfo vector for lazy reading. 3178 if (!SeenValueSymbolTable) { 3179 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3180 return Err; 3181 SeenValueSymbolTable = true; 3182 // Fall through so that we record the NextUnreadBit below. 3183 // This is necessary in case we have an anonymous function that 3184 // is later materialized. Since it will not have a VST entry we 3185 // need to fall back to the lazy parse to find its offset. 3186 } else { 3187 // If we have a VST forward declaration record, but have already 3188 // parsed the VST (just above, when the first function body was 3189 // encountered here), then we are resuming the parse after 3190 // materializing functions. The ResumeBit points to the 3191 // start of the last function block recorded in the 3192 // DeferredFunctionInfo map. Skip it. 3193 if (Stream.SkipBlock()) 3194 return error("Invalid record"); 3195 continue; 3196 } 3197 } 3198 3199 // Support older bitcode files that did not have the function 3200 // index in the VST, nor a VST forward declaration record, as 3201 // well as anonymous functions that do not have VST entries. 3202 // Build the DeferredFunctionInfo vector on the fly. 3203 if (Error Err = rememberAndSkipFunctionBody()) 3204 return Err; 3205 3206 // Suspend parsing when we reach the function bodies. Subsequent 3207 // materialization calls will resume it when necessary. If the bitcode 3208 // file is old, the symbol table will be at the end instead and will not 3209 // have been seen yet. In this case, just finish the parse now. 3210 if (SeenValueSymbolTable) { 3211 NextUnreadBit = Stream.GetCurrentBitNo(); 3212 // After the VST has been parsed, we need to make sure intrinsic name 3213 // are auto-upgraded. 3214 return globalCleanup(); 3215 } 3216 break; 3217 case bitc::USELIST_BLOCK_ID: 3218 if (Error Err = parseUseLists()) 3219 return Err; 3220 break; 3221 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3222 if (Error Err = parseOperandBundleTags()) 3223 return Err; 3224 break; 3225 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3226 if (Error Err = parseSyncScopeNames()) 3227 return Err; 3228 break; 3229 } 3230 continue; 3231 3232 case BitstreamEntry::Record: 3233 // The interesting case. 3234 break; 3235 } 3236 3237 // Read a record. 3238 auto BitCode = Stream.readRecord(Entry.ID, Record); 3239 switch (BitCode) { 3240 default: break; // Default behavior, ignore unknown content. 3241 case bitc::MODULE_CODE_VERSION: { 3242 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3243 if (!VersionOrErr) 3244 return VersionOrErr.takeError(); 3245 UseRelativeIDs = *VersionOrErr >= 1; 3246 break; 3247 } 3248 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3249 std::string S; 3250 if (convertToString(Record, 0, S)) 3251 return error("Invalid record"); 3252 TheModule->setTargetTriple(S); 3253 break; 3254 } 3255 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3256 std::string S; 3257 if (convertToString(Record, 0, S)) 3258 return error("Invalid record"); 3259 TheModule->setDataLayout(S); 3260 break; 3261 } 3262 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3263 std::string S; 3264 if (convertToString(Record, 0, S)) 3265 return error("Invalid record"); 3266 TheModule->setModuleInlineAsm(S); 3267 break; 3268 } 3269 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3270 // FIXME: Remove in 4.0. 3271 std::string S; 3272 if (convertToString(Record, 0, S)) 3273 return error("Invalid record"); 3274 // Ignore value. 3275 break; 3276 } 3277 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3278 std::string S; 3279 if (convertToString(Record, 0, S)) 3280 return error("Invalid record"); 3281 SectionTable.push_back(S); 3282 break; 3283 } 3284 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3285 std::string S; 3286 if (convertToString(Record, 0, S)) 3287 return error("Invalid record"); 3288 GCTable.push_back(S); 3289 break; 3290 } 3291 case bitc::MODULE_CODE_COMDAT: 3292 if (Error Err = parseComdatRecord(Record)) 3293 return Err; 3294 break; 3295 case bitc::MODULE_CODE_GLOBALVAR: 3296 if (Error Err = parseGlobalVarRecord(Record)) 3297 return Err; 3298 break; 3299 case bitc::MODULE_CODE_FUNCTION: 3300 if (Error Err = parseFunctionRecord(Record)) 3301 return Err; 3302 break; 3303 case bitc::MODULE_CODE_IFUNC: 3304 case bitc::MODULE_CODE_ALIAS: 3305 case bitc::MODULE_CODE_ALIAS_OLD: 3306 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3307 return Err; 3308 break; 3309 /// MODULE_CODE_VSTOFFSET: [offset] 3310 case bitc::MODULE_CODE_VSTOFFSET: 3311 if (Record.size() < 1) 3312 return error("Invalid record"); 3313 // Note that we subtract 1 here because the offset is relative to one word 3314 // before the start of the identification or module block, which was 3315 // historically always the start of the regular bitcode header. 3316 VSTOffset = Record[0] - 1; 3317 break; 3318 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3319 case bitc::MODULE_CODE_SOURCE_FILENAME: 3320 SmallString<128> ValueName; 3321 if (convertToString(Record, 0, ValueName)) 3322 return error("Invalid record"); 3323 TheModule->setSourceFileName(ValueName); 3324 break; 3325 } 3326 Record.clear(); 3327 } 3328 } 3329 3330 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3331 bool IsImporting) { 3332 TheModule = M; 3333 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3334 [&](unsigned ID) { return getTypeByID(ID); }); 3335 return parseModule(0, ShouldLazyLoadMetadata); 3336 } 3337 3338 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3339 if (!isa<PointerType>(PtrType)) 3340 return error("Load/Store operand is not a pointer type"); 3341 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3342 3343 if (ValType && ValType != ElemType) 3344 return error("Explicit load/store type does not match pointee " 3345 "type of pointer operand"); 3346 if (!PointerType::isLoadableOrStorableType(ElemType)) 3347 return error("Cannot load/store from pointer"); 3348 return Error::success(); 3349 } 3350 3351 /// Lazily parse the specified function body block. 3352 Error BitcodeReader::parseFunctionBody(Function *F) { 3353 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3354 return error("Invalid record"); 3355 3356 // Unexpected unresolved metadata when parsing function. 3357 if (MDLoader->hasFwdRefs()) 3358 return error("Invalid function metadata: incoming forward references"); 3359 3360 InstructionList.clear(); 3361 unsigned ModuleValueListSize = ValueList.size(); 3362 unsigned ModuleMDLoaderSize = MDLoader->size(); 3363 3364 // Add all the function arguments to the value table. 3365 for (Argument &I : F->args()) 3366 ValueList.push_back(&I); 3367 3368 unsigned NextValueNo = ValueList.size(); 3369 BasicBlock *CurBB = nullptr; 3370 unsigned CurBBNo = 0; 3371 3372 DebugLoc LastLoc; 3373 auto getLastInstruction = [&]() -> Instruction * { 3374 if (CurBB && !CurBB->empty()) 3375 return &CurBB->back(); 3376 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3377 !FunctionBBs[CurBBNo - 1]->empty()) 3378 return &FunctionBBs[CurBBNo - 1]->back(); 3379 return nullptr; 3380 }; 3381 3382 std::vector<OperandBundleDef> OperandBundles; 3383 3384 // Read all the records. 3385 SmallVector<uint64_t, 64> Record; 3386 3387 while (true) { 3388 BitstreamEntry Entry = Stream.advance(); 3389 3390 switch (Entry.Kind) { 3391 case BitstreamEntry::Error: 3392 return error("Malformed block"); 3393 case BitstreamEntry::EndBlock: 3394 goto OutOfRecordLoop; 3395 3396 case BitstreamEntry::SubBlock: 3397 switch (Entry.ID) { 3398 default: // Skip unknown content. 3399 if (Stream.SkipBlock()) 3400 return error("Invalid record"); 3401 break; 3402 case bitc::CONSTANTS_BLOCK_ID: 3403 if (Error Err = parseConstants()) 3404 return Err; 3405 NextValueNo = ValueList.size(); 3406 break; 3407 case bitc::VALUE_SYMTAB_BLOCK_ID: 3408 if (Error Err = parseValueSymbolTable()) 3409 return Err; 3410 break; 3411 case bitc::METADATA_ATTACHMENT_ID: 3412 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3413 return Err; 3414 break; 3415 case bitc::METADATA_BLOCK_ID: 3416 assert(DeferredMetadataInfo.empty() && 3417 "Must read all module-level metadata before function-level"); 3418 if (Error Err = MDLoader->parseFunctionMetadata()) 3419 return Err; 3420 break; 3421 case bitc::USELIST_BLOCK_ID: 3422 if (Error Err = parseUseLists()) 3423 return Err; 3424 break; 3425 } 3426 continue; 3427 3428 case BitstreamEntry::Record: 3429 // The interesting case. 3430 break; 3431 } 3432 3433 // Read a record. 3434 Record.clear(); 3435 Instruction *I = nullptr; 3436 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3437 switch (BitCode) { 3438 default: // Default behavior: reject 3439 return error("Invalid value"); 3440 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3441 if (Record.size() < 1 || Record[0] == 0) 3442 return error("Invalid record"); 3443 // Create all the basic blocks for the function. 3444 FunctionBBs.resize(Record[0]); 3445 3446 // See if anything took the address of blocks in this function. 3447 auto BBFRI = BasicBlockFwdRefs.find(F); 3448 if (BBFRI == BasicBlockFwdRefs.end()) { 3449 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3450 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3451 } else { 3452 auto &BBRefs = BBFRI->second; 3453 // Check for invalid basic block references. 3454 if (BBRefs.size() > FunctionBBs.size()) 3455 return error("Invalid ID"); 3456 assert(!BBRefs.empty() && "Unexpected empty array"); 3457 assert(!BBRefs.front() && "Invalid reference to entry block"); 3458 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3459 ++I) 3460 if (I < RE && BBRefs[I]) { 3461 BBRefs[I]->insertInto(F); 3462 FunctionBBs[I] = BBRefs[I]; 3463 } else { 3464 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3465 } 3466 3467 // Erase from the table. 3468 BasicBlockFwdRefs.erase(BBFRI); 3469 } 3470 3471 CurBB = FunctionBBs[0]; 3472 continue; 3473 } 3474 3475 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3476 // This record indicates that the last instruction is at the same 3477 // location as the previous instruction with a location. 3478 I = getLastInstruction(); 3479 3480 if (!I) 3481 return error("Invalid record"); 3482 I->setDebugLoc(LastLoc); 3483 I = nullptr; 3484 continue; 3485 3486 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3487 I = getLastInstruction(); 3488 if (!I || Record.size() < 4) 3489 return error("Invalid record"); 3490 3491 unsigned Line = Record[0], Col = Record[1]; 3492 unsigned ScopeID = Record[2], IAID = Record[3]; 3493 3494 MDNode *Scope = nullptr, *IA = nullptr; 3495 if (ScopeID) { 3496 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3497 if (!Scope) 3498 return error("Invalid record"); 3499 } 3500 if (IAID) { 3501 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3502 if (!IA) 3503 return error("Invalid record"); 3504 } 3505 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3506 I->setDebugLoc(LastLoc); 3507 I = nullptr; 3508 continue; 3509 } 3510 3511 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3512 unsigned OpNum = 0; 3513 Value *LHS, *RHS; 3514 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3515 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3516 OpNum+1 > Record.size()) 3517 return error("Invalid record"); 3518 3519 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3520 if (Opc == -1) 3521 return error("Invalid record"); 3522 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3523 InstructionList.push_back(I); 3524 if (OpNum < Record.size()) { 3525 if (Opc == Instruction::Add || 3526 Opc == Instruction::Sub || 3527 Opc == Instruction::Mul || 3528 Opc == Instruction::Shl) { 3529 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3530 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3531 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3532 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3533 } else if (Opc == Instruction::SDiv || 3534 Opc == Instruction::UDiv || 3535 Opc == Instruction::LShr || 3536 Opc == Instruction::AShr) { 3537 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3538 cast<BinaryOperator>(I)->setIsExact(true); 3539 } else if (isa<FPMathOperator>(I)) { 3540 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3541 if (FMF.any()) 3542 I->setFastMathFlags(FMF); 3543 } 3544 3545 } 3546 break; 3547 } 3548 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3549 unsigned OpNum = 0; 3550 Value *Op; 3551 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3552 OpNum+2 != Record.size()) 3553 return error("Invalid record"); 3554 3555 Type *ResTy = getTypeByID(Record[OpNum]); 3556 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3557 if (Opc == -1 || !ResTy) 3558 return error("Invalid record"); 3559 Instruction *Temp = nullptr; 3560 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3561 if (Temp) { 3562 InstructionList.push_back(Temp); 3563 CurBB->getInstList().push_back(Temp); 3564 } 3565 } else { 3566 auto CastOp = (Instruction::CastOps)Opc; 3567 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3568 return error("Invalid cast"); 3569 I = CastInst::Create(CastOp, Op, ResTy); 3570 } 3571 InstructionList.push_back(I); 3572 break; 3573 } 3574 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3575 case bitc::FUNC_CODE_INST_GEP_OLD: 3576 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3577 unsigned OpNum = 0; 3578 3579 Type *Ty; 3580 bool InBounds; 3581 3582 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3583 InBounds = Record[OpNum++]; 3584 Ty = getTypeByID(Record[OpNum++]); 3585 } else { 3586 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3587 Ty = nullptr; 3588 } 3589 3590 Value *BasePtr; 3591 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3592 return error("Invalid record"); 3593 3594 if (!Ty) 3595 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3596 ->getElementType(); 3597 else if (Ty != 3598 cast<PointerType>(BasePtr->getType()->getScalarType()) 3599 ->getElementType()) 3600 return error( 3601 "Explicit gep type does not match pointee type of pointer operand"); 3602 3603 SmallVector<Value*, 16> GEPIdx; 3604 while (OpNum != Record.size()) { 3605 Value *Op; 3606 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3607 return error("Invalid record"); 3608 GEPIdx.push_back(Op); 3609 } 3610 3611 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3612 3613 InstructionList.push_back(I); 3614 if (InBounds) 3615 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3616 break; 3617 } 3618 3619 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3620 // EXTRACTVAL: [opty, opval, n x indices] 3621 unsigned OpNum = 0; 3622 Value *Agg; 3623 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3624 return error("Invalid record"); 3625 3626 unsigned RecSize = Record.size(); 3627 if (OpNum == RecSize) 3628 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3629 3630 SmallVector<unsigned, 4> EXTRACTVALIdx; 3631 Type *CurTy = Agg->getType(); 3632 for (; OpNum != RecSize; ++OpNum) { 3633 bool IsArray = CurTy->isArrayTy(); 3634 bool IsStruct = CurTy->isStructTy(); 3635 uint64_t Index = Record[OpNum]; 3636 3637 if (!IsStruct && !IsArray) 3638 return error("EXTRACTVAL: Invalid type"); 3639 if ((unsigned)Index != Index) 3640 return error("Invalid value"); 3641 if (IsStruct && Index >= CurTy->subtypes().size()) 3642 return error("EXTRACTVAL: Invalid struct index"); 3643 if (IsArray && Index >= CurTy->getArrayNumElements()) 3644 return error("EXTRACTVAL: Invalid array index"); 3645 EXTRACTVALIdx.push_back((unsigned)Index); 3646 3647 if (IsStruct) 3648 CurTy = CurTy->subtypes()[Index]; 3649 else 3650 CurTy = CurTy->subtypes()[0]; 3651 } 3652 3653 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3654 InstructionList.push_back(I); 3655 break; 3656 } 3657 3658 case bitc::FUNC_CODE_INST_INSERTVAL: { 3659 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3660 unsigned OpNum = 0; 3661 Value *Agg; 3662 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3663 return error("Invalid record"); 3664 Value *Val; 3665 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3666 return error("Invalid record"); 3667 3668 unsigned RecSize = Record.size(); 3669 if (OpNum == RecSize) 3670 return error("INSERTVAL: Invalid instruction with 0 indices"); 3671 3672 SmallVector<unsigned, 4> INSERTVALIdx; 3673 Type *CurTy = Agg->getType(); 3674 for (; OpNum != RecSize; ++OpNum) { 3675 bool IsArray = CurTy->isArrayTy(); 3676 bool IsStruct = CurTy->isStructTy(); 3677 uint64_t Index = Record[OpNum]; 3678 3679 if (!IsStruct && !IsArray) 3680 return error("INSERTVAL: Invalid type"); 3681 if ((unsigned)Index != Index) 3682 return error("Invalid value"); 3683 if (IsStruct && Index >= CurTy->subtypes().size()) 3684 return error("INSERTVAL: Invalid struct index"); 3685 if (IsArray && Index >= CurTy->getArrayNumElements()) 3686 return error("INSERTVAL: Invalid array index"); 3687 3688 INSERTVALIdx.push_back((unsigned)Index); 3689 if (IsStruct) 3690 CurTy = CurTy->subtypes()[Index]; 3691 else 3692 CurTy = CurTy->subtypes()[0]; 3693 } 3694 3695 if (CurTy != Val->getType()) 3696 return error("Inserted value type doesn't match aggregate type"); 3697 3698 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3699 InstructionList.push_back(I); 3700 break; 3701 } 3702 3703 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3704 // obsolete form of select 3705 // handles select i1 ... in old bitcode 3706 unsigned OpNum = 0; 3707 Value *TrueVal, *FalseVal, *Cond; 3708 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3709 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3710 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3711 return error("Invalid record"); 3712 3713 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3714 InstructionList.push_back(I); 3715 break; 3716 } 3717 3718 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3719 // new form of select 3720 // handles select i1 or select [N x i1] 3721 unsigned OpNum = 0; 3722 Value *TrueVal, *FalseVal, *Cond; 3723 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3724 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3725 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3726 return error("Invalid record"); 3727 3728 // select condition can be either i1 or [N x i1] 3729 if (VectorType* vector_type = 3730 dyn_cast<VectorType>(Cond->getType())) { 3731 // expect <n x i1> 3732 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3733 return error("Invalid type for value"); 3734 } else { 3735 // expect i1 3736 if (Cond->getType() != Type::getInt1Ty(Context)) 3737 return error("Invalid type for value"); 3738 } 3739 3740 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3741 InstructionList.push_back(I); 3742 break; 3743 } 3744 3745 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3746 unsigned OpNum = 0; 3747 Value *Vec, *Idx; 3748 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3749 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3750 return error("Invalid record"); 3751 if (!Vec->getType()->isVectorTy()) 3752 return error("Invalid type for value"); 3753 I = ExtractElementInst::Create(Vec, Idx); 3754 InstructionList.push_back(I); 3755 break; 3756 } 3757 3758 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3759 unsigned OpNum = 0; 3760 Value *Vec, *Elt, *Idx; 3761 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3762 return error("Invalid record"); 3763 if (!Vec->getType()->isVectorTy()) 3764 return error("Invalid type for value"); 3765 if (popValue(Record, OpNum, NextValueNo, 3766 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3767 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3768 return error("Invalid record"); 3769 I = InsertElementInst::Create(Vec, Elt, Idx); 3770 InstructionList.push_back(I); 3771 break; 3772 } 3773 3774 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3775 unsigned OpNum = 0; 3776 Value *Vec1, *Vec2, *Mask; 3777 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3778 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3779 return error("Invalid record"); 3780 3781 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3782 return error("Invalid record"); 3783 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3784 return error("Invalid type for value"); 3785 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3786 InstructionList.push_back(I); 3787 break; 3788 } 3789 3790 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3791 // Old form of ICmp/FCmp returning bool 3792 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3793 // both legal on vectors but had different behaviour. 3794 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3795 // FCmp/ICmp returning bool or vector of bool 3796 3797 unsigned OpNum = 0; 3798 Value *LHS, *RHS; 3799 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3800 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3801 return error("Invalid record"); 3802 3803 unsigned PredVal = Record[OpNum]; 3804 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3805 FastMathFlags FMF; 3806 if (IsFP && Record.size() > OpNum+1) 3807 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3808 3809 if (OpNum+1 != Record.size()) 3810 return error("Invalid record"); 3811 3812 if (LHS->getType()->isFPOrFPVectorTy()) 3813 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3814 else 3815 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3816 3817 if (FMF.any()) 3818 I->setFastMathFlags(FMF); 3819 InstructionList.push_back(I); 3820 break; 3821 } 3822 3823 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3824 { 3825 unsigned Size = Record.size(); 3826 if (Size == 0) { 3827 I = ReturnInst::Create(Context); 3828 InstructionList.push_back(I); 3829 break; 3830 } 3831 3832 unsigned OpNum = 0; 3833 Value *Op = nullptr; 3834 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3835 return error("Invalid record"); 3836 if (OpNum != Record.size()) 3837 return error("Invalid record"); 3838 3839 I = ReturnInst::Create(Context, Op); 3840 InstructionList.push_back(I); 3841 break; 3842 } 3843 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3844 if (Record.size() != 1 && Record.size() != 3) 3845 return error("Invalid record"); 3846 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3847 if (!TrueDest) 3848 return error("Invalid record"); 3849 3850 if (Record.size() == 1) { 3851 I = BranchInst::Create(TrueDest); 3852 InstructionList.push_back(I); 3853 } 3854 else { 3855 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3856 Value *Cond = getValue(Record, 2, NextValueNo, 3857 Type::getInt1Ty(Context)); 3858 if (!FalseDest || !Cond) 3859 return error("Invalid record"); 3860 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3861 InstructionList.push_back(I); 3862 } 3863 break; 3864 } 3865 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3866 if (Record.size() != 1 && Record.size() != 2) 3867 return error("Invalid record"); 3868 unsigned Idx = 0; 3869 Value *CleanupPad = 3870 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3871 if (!CleanupPad) 3872 return error("Invalid record"); 3873 BasicBlock *UnwindDest = nullptr; 3874 if (Record.size() == 2) { 3875 UnwindDest = getBasicBlock(Record[Idx++]); 3876 if (!UnwindDest) 3877 return error("Invalid record"); 3878 } 3879 3880 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3881 InstructionList.push_back(I); 3882 break; 3883 } 3884 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3885 if (Record.size() != 2) 3886 return error("Invalid record"); 3887 unsigned Idx = 0; 3888 Value *CatchPad = 3889 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3890 if (!CatchPad) 3891 return error("Invalid record"); 3892 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3893 if (!BB) 3894 return error("Invalid record"); 3895 3896 I = CatchReturnInst::Create(CatchPad, BB); 3897 InstructionList.push_back(I); 3898 break; 3899 } 3900 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3901 // We must have, at minimum, the outer scope and the number of arguments. 3902 if (Record.size() < 2) 3903 return error("Invalid record"); 3904 3905 unsigned Idx = 0; 3906 3907 Value *ParentPad = 3908 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3909 3910 unsigned NumHandlers = Record[Idx++]; 3911 3912 SmallVector<BasicBlock *, 2> Handlers; 3913 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3914 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3915 if (!BB) 3916 return error("Invalid record"); 3917 Handlers.push_back(BB); 3918 } 3919 3920 BasicBlock *UnwindDest = nullptr; 3921 if (Idx + 1 == Record.size()) { 3922 UnwindDest = getBasicBlock(Record[Idx++]); 3923 if (!UnwindDest) 3924 return error("Invalid record"); 3925 } 3926 3927 if (Record.size() != Idx) 3928 return error("Invalid record"); 3929 3930 auto *CatchSwitch = 3931 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3932 for (BasicBlock *Handler : Handlers) 3933 CatchSwitch->addHandler(Handler); 3934 I = CatchSwitch; 3935 InstructionList.push_back(I); 3936 break; 3937 } 3938 case bitc::FUNC_CODE_INST_CATCHPAD: 3939 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3940 // We must have, at minimum, the outer scope and the number of arguments. 3941 if (Record.size() < 2) 3942 return error("Invalid record"); 3943 3944 unsigned Idx = 0; 3945 3946 Value *ParentPad = 3947 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3948 3949 unsigned NumArgOperands = Record[Idx++]; 3950 3951 SmallVector<Value *, 2> Args; 3952 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3953 Value *Val; 3954 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3955 return error("Invalid record"); 3956 Args.push_back(Val); 3957 } 3958 3959 if (Record.size() != Idx) 3960 return error("Invalid record"); 3961 3962 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3963 I = CleanupPadInst::Create(ParentPad, Args); 3964 else 3965 I = CatchPadInst::Create(ParentPad, Args); 3966 InstructionList.push_back(I); 3967 break; 3968 } 3969 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3970 // Check magic 3971 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3972 // "New" SwitchInst format with case ranges. The changes to write this 3973 // format were reverted but we still recognize bitcode that uses it. 3974 // Hopefully someday we will have support for case ranges and can use 3975 // this format again. 3976 3977 Type *OpTy = getTypeByID(Record[1]); 3978 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3979 3980 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3981 BasicBlock *Default = getBasicBlock(Record[3]); 3982 if (!OpTy || !Cond || !Default) 3983 return error("Invalid record"); 3984 3985 unsigned NumCases = Record[4]; 3986 3987 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3988 InstructionList.push_back(SI); 3989 3990 unsigned CurIdx = 5; 3991 for (unsigned i = 0; i != NumCases; ++i) { 3992 SmallVector<ConstantInt*, 1> CaseVals; 3993 unsigned NumItems = Record[CurIdx++]; 3994 for (unsigned ci = 0; ci != NumItems; ++ci) { 3995 bool isSingleNumber = Record[CurIdx++]; 3996 3997 APInt Low; 3998 unsigned ActiveWords = 1; 3999 if (ValueBitWidth > 64) 4000 ActiveWords = Record[CurIdx++]; 4001 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4002 ValueBitWidth); 4003 CurIdx += ActiveWords; 4004 4005 if (!isSingleNumber) { 4006 ActiveWords = 1; 4007 if (ValueBitWidth > 64) 4008 ActiveWords = Record[CurIdx++]; 4009 APInt High = readWideAPInt( 4010 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4011 CurIdx += ActiveWords; 4012 4013 // FIXME: It is not clear whether values in the range should be 4014 // compared as signed or unsigned values. The partially 4015 // implemented changes that used this format in the past used 4016 // unsigned comparisons. 4017 for ( ; Low.ule(High); ++Low) 4018 CaseVals.push_back(ConstantInt::get(Context, Low)); 4019 } else 4020 CaseVals.push_back(ConstantInt::get(Context, Low)); 4021 } 4022 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4023 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4024 cve = CaseVals.end(); cvi != cve; ++cvi) 4025 SI->addCase(*cvi, DestBB); 4026 } 4027 I = SI; 4028 break; 4029 } 4030 4031 // Old SwitchInst format without case ranges. 4032 4033 if (Record.size() < 3 || (Record.size() & 1) == 0) 4034 return error("Invalid record"); 4035 Type *OpTy = getTypeByID(Record[0]); 4036 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4037 BasicBlock *Default = getBasicBlock(Record[2]); 4038 if (!OpTy || !Cond || !Default) 4039 return error("Invalid record"); 4040 unsigned NumCases = (Record.size()-3)/2; 4041 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4042 InstructionList.push_back(SI); 4043 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4044 ConstantInt *CaseVal = 4045 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4046 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4047 if (!CaseVal || !DestBB) { 4048 delete SI; 4049 return error("Invalid record"); 4050 } 4051 SI->addCase(CaseVal, DestBB); 4052 } 4053 I = SI; 4054 break; 4055 } 4056 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4057 if (Record.size() < 2) 4058 return error("Invalid record"); 4059 Type *OpTy = getTypeByID(Record[0]); 4060 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4061 if (!OpTy || !Address) 4062 return error("Invalid record"); 4063 unsigned NumDests = Record.size()-2; 4064 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4065 InstructionList.push_back(IBI); 4066 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4067 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4068 IBI->addDestination(DestBB); 4069 } else { 4070 delete IBI; 4071 return error("Invalid record"); 4072 } 4073 } 4074 I = IBI; 4075 break; 4076 } 4077 4078 case bitc::FUNC_CODE_INST_INVOKE: { 4079 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4080 if (Record.size() < 4) 4081 return error("Invalid record"); 4082 unsigned OpNum = 0; 4083 AttributeList PAL = getAttributes(Record[OpNum++]); 4084 unsigned CCInfo = Record[OpNum++]; 4085 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4086 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4087 4088 FunctionType *FTy = nullptr; 4089 if (CCInfo >> 13 & 1 && 4090 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4091 return error("Explicit invoke type is not a function type"); 4092 4093 Value *Callee; 4094 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4095 return error("Invalid record"); 4096 4097 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4098 if (!CalleeTy) 4099 return error("Callee is not a pointer"); 4100 if (!FTy) { 4101 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4102 if (!FTy) 4103 return error("Callee is not of pointer to function type"); 4104 } else if (CalleeTy->getElementType() != FTy) 4105 return error("Explicit invoke type does not match pointee type of " 4106 "callee operand"); 4107 if (Record.size() < FTy->getNumParams() + OpNum) 4108 return error("Insufficient operands to call"); 4109 4110 SmallVector<Value*, 16> Ops; 4111 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4112 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4113 FTy->getParamType(i))); 4114 if (!Ops.back()) 4115 return error("Invalid record"); 4116 } 4117 4118 if (!FTy->isVarArg()) { 4119 if (Record.size() != OpNum) 4120 return error("Invalid record"); 4121 } else { 4122 // Read type/value pairs for varargs params. 4123 while (OpNum != Record.size()) { 4124 Value *Op; 4125 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4126 return error("Invalid record"); 4127 Ops.push_back(Op); 4128 } 4129 } 4130 4131 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4132 OperandBundles.clear(); 4133 InstructionList.push_back(I); 4134 cast<InvokeInst>(I)->setCallingConv( 4135 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4136 cast<InvokeInst>(I)->setAttributes(PAL); 4137 break; 4138 } 4139 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4140 unsigned Idx = 0; 4141 Value *Val = nullptr; 4142 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4143 return error("Invalid record"); 4144 I = ResumeInst::Create(Val); 4145 InstructionList.push_back(I); 4146 break; 4147 } 4148 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4149 I = new UnreachableInst(Context); 4150 InstructionList.push_back(I); 4151 break; 4152 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4153 if (Record.size() < 1 || ((Record.size()-1)&1)) 4154 return error("Invalid record"); 4155 Type *Ty = getTypeByID(Record[0]); 4156 if (!Ty) 4157 return error("Invalid record"); 4158 4159 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4160 InstructionList.push_back(PN); 4161 4162 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4163 Value *V; 4164 // With the new function encoding, it is possible that operands have 4165 // negative IDs (for forward references). Use a signed VBR 4166 // representation to keep the encoding small. 4167 if (UseRelativeIDs) 4168 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4169 else 4170 V = getValue(Record, 1+i, NextValueNo, Ty); 4171 BasicBlock *BB = getBasicBlock(Record[2+i]); 4172 if (!V || !BB) 4173 return error("Invalid record"); 4174 PN->addIncoming(V, BB); 4175 } 4176 I = PN; 4177 break; 4178 } 4179 4180 case bitc::FUNC_CODE_INST_LANDINGPAD: 4181 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4182 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4183 unsigned Idx = 0; 4184 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4185 if (Record.size() < 3) 4186 return error("Invalid record"); 4187 } else { 4188 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4189 if (Record.size() < 4) 4190 return error("Invalid record"); 4191 } 4192 Type *Ty = getTypeByID(Record[Idx++]); 4193 if (!Ty) 4194 return error("Invalid record"); 4195 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4196 Value *PersFn = nullptr; 4197 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4198 return error("Invalid record"); 4199 4200 if (!F->hasPersonalityFn()) 4201 F->setPersonalityFn(cast<Constant>(PersFn)); 4202 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4203 return error("Personality function mismatch"); 4204 } 4205 4206 bool IsCleanup = !!Record[Idx++]; 4207 unsigned NumClauses = Record[Idx++]; 4208 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4209 LP->setCleanup(IsCleanup); 4210 for (unsigned J = 0; J != NumClauses; ++J) { 4211 LandingPadInst::ClauseType CT = 4212 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4213 Value *Val; 4214 4215 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4216 delete LP; 4217 return error("Invalid record"); 4218 } 4219 4220 assert((CT != LandingPadInst::Catch || 4221 !isa<ArrayType>(Val->getType())) && 4222 "Catch clause has a invalid type!"); 4223 assert((CT != LandingPadInst::Filter || 4224 isa<ArrayType>(Val->getType())) && 4225 "Filter clause has invalid type!"); 4226 LP->addClause(cast<Constant>(Val)); 4227 } 4228 4229 I = LP; 4230 InstructionList.push_back(I); 4231 break; 4232 } 4233 4234 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4235 if (Record.size() != 4) 4236 return error("Invalid record"); 4237 uint64_t AlignRecord = Record[3]; 4238 const uint64_t InAllocaMask = uint64_t(1) << 5; 4239 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4240 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4241 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4242 SwiftErrorMask; 4243 bool InAlloca = AlignRecord & InAllocaMask; 4244 bool SwiftError = AlignRecord & SwiftErrorMask; 4245 Type *Ty = getTypeByID(Record[0]); 4246 if ((AlignRecord & ExplicitTypeMask) == 0) { 4247 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4248 if (!PTy) 4249 return error("Old-style alloca with a non-pointer type"); 4250 Ty = PTy->getElementType(); 4251 } 4252 Type *OpTy = getTypeByID(Record[1]); 4253 Value *Size = getFnValueByID(Record[2], OpTy); 4254 unsigned Align; 4255 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4256 return Err; 4257 } 4258 if (!Ty || !Size) 4259 return error("Invalid record"); 4260 4261 // FIXME: Make this an optional field. 4262 const DataLayout &DL = TheModule->getDataLayout(); 4263 unsigned AS = DL.getAllocaAddrSpace(); 4264 4265 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4266 AI->setUsedWithInAlloca(InAlloca); 4267 AI->setSwiftError(SwiftError); 4268 I = AI; 4269 InstructionList.push_back(I); 4270 break; 4271 } 4272 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4273 unsigned OpNum = 0; 4274 Value *Op; 4275 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4276 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4277 return error("Invalid record"); 4278 4279 Type *Ty = nullptr; 4280 if (OpNum + 3 == Record.size()) 4281 Ty = getTypeByID(Record[OpNum++]); 4282 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4283 return Err; 4284 if (!Ty) 4285 Ty = cast<PointerType>(Op->getType())->getElementType(); 4286 4287 unsigned Align; 4288 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4289 return Err; 4290 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4291 4292 InstructionList.push_back(I); 4293 break; 4294 } 4295 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4296 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4297 unsigned OpNum = 0; 4298 Value *Op; 4299 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4300 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4301 return error("Invalid record"); 4302 4303 Type *Ty = nullptr; 4304 if (OpNum + 5 == Record.size()) 4305 Ty = getTypeByID(Record[OpNum++]); 4306 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4307 return Err; 4308 if (!Ty) 4309 Ty = cast<PointerType>(Op->getType())->getElementType(); 4310 4311 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4312 if (Ordering == AtomicOrdering::NotAtomic || 4313 Ordering == AtomicOrdering::Release || 4314 Ordering == AtomicOrdering::AcquireRelease) 4315 return error("Invalid record"); 4316 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4317 return error("Invalid record"); 4318 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4319 4320 unsigned Align; 4321 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4322 return Err; 4323 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID); 4324 4325 InstructionList.push_back(I); 4326 break; 4327 } 4328 case bitc::FUNC_CODE_INST_STORE: 4329 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4330 unsigned OpNum = 0; 4331 Value *Val, *Ptr; 4332 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4333 (BitCode == bitc::FUNC_CODE_INST_STORE 4334 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4335 : popValue(Record, OpNum, NextValueNo, 4336 cast<PointerType>(Ptr->getType())->getElementType(), 4337 Val)) || 4338 OpNum + 2 != Record.size()) 4339 return error("Invalid record"); 4340 4341 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4342 return Err; 4343 unsigned Align; 4344 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4345 return Err; 4346 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4347 InstructionList.push_back(I); 4348 break; 4349 } 4350 case bitc::FUNC_CODE_INST_STOREATOMIC: 4351 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4352 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4353 unsigned OpNum = 0; 4354 Value *Val, *Ptr; 4355 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4356 !isa<PointerType>(Ptr->getType()) || 4357 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4358 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4359 : popValue(Record, OpNum, NextValueNo, 4360 cast<PointerType>(Ptr->getType())->getElementType(), 4361 Val)) || 4362 OpNum + 4 != Record.size()) 4363 return error("Invalid record"); 4364 4365 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4366 return Err; 4367 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4368 if (Ordering == AtomicOrdering::NotAtomic || 4369 Ordering == AtomicOrdering::Acquire || 4370 Ordering == AtomicOrdering::AcquireRelease) 4371 return error("Invalid record"); 4372 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4373 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4374 return error("Invalid record"); 4375 4376 unsigned Align; 4377 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4378 return Err; 4379 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4380 InstructionList.push_back(I); 4381 break; 4382 } 4383 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4384 case bitc::FUNC_CODE_INST_CMPXCHG: { 4385 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4386 // failureordering?, isweak?] 4387 unsigned OpNum = 0; 4388 Value *Ptr, *Cmp, *New; 4389 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4390 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4391 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4392 : popValue(Record, OpNum, NextValueNo, 4393 cast<PointerType>(Ptr->getType())->getElementType(), 4394 Cmp)) || 4395 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4396 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4397 return error("Invalid record"); 4398 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4399 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4400 SuccessOrdering == AtomicOrdering::Unordered) 4401 return error("Invalid record"); 4402 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4403 4404 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4405 return Err; 4406 AtomicOrdering FailureOrdering; 4407 if (Record.size() < 7) 4408 FailureOrdering = 4409 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4410 else 4411 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4412 4413 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4414 SSID); 4415 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4416 4417 if (Record.size() < 8) { 4418 // Before weak cmpxchgs existed, the instruction simply returned the 4419 // value loaded from memory, so bitcode files from that era will be 4420 // expecting the first component of a modern cmpxchg. 4421 CurBB->getInstList().push_back(I); 4422 I = ExtractValueInst::Create(I, 0); 4423 } else { 4424 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4425 } 4426 4427 InstructionList.push_back(I); 4428 break; 4429 } 4430 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4431 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4432 unsigned OpNum = 0; 4433 Value *Ptr, *Val; 4434 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4435 !isa<PointerType>(Ptr->getType()) || 4436 popValue(Record, OpNum, NextValueNo, 4437 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4438 OpNum+4 != Record.size()) 4439 return error("Invalid record"); 4440 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4441 if (Operation < AtomicRMWInst::FIRST_BINOP || 4442 Operation > AtomicRMWInst::LAST_BINOP) 4443 return error("Invalid record"); 4444 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4445 if (Ordering == AtomicOrdering::NotAtomic || 4446 Ordering == AtomicOrdering::Unordered) 4447 return error("Invalid record"); 4448 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4449 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4450 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4451 InstructionList.push_back(I); 4452 break; 4453 } 4454 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4455 if (2 != Record.size()) 4456 return error("Invalid record"); 4457 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4458 if (Ordering == AtomicOrdering::NotAtomic || 4459 Ordering == AtomicOrdering::Unordered || 4460 Ordering == AtomicOrdering::Monotonic) 4461 return error("Invalid record"); 4462 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4463 I = new FenceInst(Context, Ordering, SSID); 4464 InstructionList.push_back(I); 4465 break; 4466 } 4467 case bitc::FUNC_CODE_INST_CALL: { 4468 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4469 if (Record.size() < 3) 4470 return error("Invalid record"); 4471 4472 unsigned OpNum = 0; 4473 AttributeList PAL = getAttributes(Record[OpNum++]); 4474 unsigned CCInfo = Record[OpNum++]; 4475 4476 FastMathFlags FMF; 4477 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4478 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4479 if (!FMF.any()) 4480 return error("Fast math flags indicator set for call with no FMF"); 4481 } 4482 4483 FunctionType *FTy = nullptr; 4484 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4485 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4486 return error("Explicit call type is not a function type"); 4487 4488 Value *Callee; 4489 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4490 return error("Invalid record"); 4491 4492 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4493 if (!OpTy) 4494 return error("Callee is not a pointer type"); 4495 if (!FTy) { 4496 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4497 if (!FTy) 4498 return error("Callee is not of pointer to function type"); 4499 } else if (OpTy->getElementType() != FTy) 4500 return error("Explicit call type does not match pointee type of " 4501 "callee operand"); 4502 if (Record.size() < FTy->getNumParams() + OpNum) 4503 return error("Insufficient operands to call"); 4504 4505 SmallVector<Value*, 16> Args; 4506 // Read the fixed params. 4507 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4508 if (FTy->getParamType(i)->isLabelTy()) 4509 Args.push_back(getBasicBlock(Record[OpNum])); 4510 else 4511 Args.push_back(getValue(Record, OpNum, NextValueNo, 4512 FTy->getParamType(i))); 4513 if (!Args.back()) 4514 return error("Invalid record"); 4515 } 4516 4517 // Read type/value pairs for varargs params. 4518 if (!FTy->isVarArg()) { 4519 if (OpNum != Record.size()) 4520 return error("Invalid record"); 4521 } else { 4522 while (OpNum != Record.size()) { 4523 Value *Op; 4524 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4525 return error("Invalid record"); 4526 Args.push_back(Op); 4527 } 4528 } 4529 4530 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4531 OperandBundles.clear(); 4532 InstructionList.push_back(I); 4533 cast<CallInst>(I)->setCallingConv( 4534 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4535 CallInst::TailCallKind TCK = CallInst::TCK_None; 4536 if (CCInfo & 1 << bitc::CALL_TAIL) 4537 TCK = CallInst::TCK_Tail; 4538 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4539 TCK = CallInst::TCK_MustTail; 4540 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4541 TCK = CallInst::TCK_NoTail; 4542 cast<CallInst>(I)->setTailCallKind(TCK); 4543 cast<CallInst>(I)->setAttributes(PAL); 4544 if (FMF.any()) { 4545 if (!isa<FPMathOperator>(I)) 4546 return error("Fast-math-flags specified for call without " 4547 "floating-point scalar or vector return type"); 4548 I->setFastMathFlags(FMF); 4549 } 4550 break; 4551 } 4552 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4553 if (Record.size() < 3) 4554 return error("Invalid record"); 4555 Type *OpTy = getTypeByID(Record[0]); 4556 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4557 Type *ResTy = getTypeByID(Record[2]); 4558 if (!OpTy || !Op || !ResTy) 4559 return error("Invalid record"); 4560 I = new VAArgInst(Op, ResTy); 4561 InstructionList.push_back(I); 4562 break; 4563 } 4564 4565 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4566 // A call or an invoke can be optionally prefixed with some variable 4567 // number of operand bundle blocks. These blocks are read into 4568 // OperandBundles and consumed at the next call or invoke instruction. 4569 4570 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4571 return error("Invalid record"); 4572 4573 std::vector<Value *> Inputs; 4574 4575 unsigned OpNum = 1; 4576 while (OpNum != Record.size()) { 4577 Value *Op; 4578 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4579 return error("Invalid record"); 4580 Inputs.push_back(Op); 4581 } 4582 4583 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4584 continue; 4585 } 4586 } 4587 4588 // Add instruction to end of current BB. If there is no current BB, reject 4589 // this file. 4590 if (!CurBB) { 4591 I->deleteValue(); 4592 return error("Invalid instruction with no BB"); 4593 } 4594 if (!OperandBundles.empty()) { 4595 I->deleteValue(); 4596 return error("Operand bundles found with no consumer"); 4597 } 4598 CurBB->getInstList().push_back(I); 4599 4600 // If this was a terminator instruction, move to the next block. 4601 if (isa<TerminatorInst>(I)) { 4602 ++CurBBNo; 4603 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4604 } 4605 4606 // Non-void values get registered in the value table for future use. 4607 if (I && !I->getType()->isVoidTy()) 4608 ValueList.assignValue(I, NextValueNo++); 4609 } 4610 4611 OutOfRecordLoop: 4612 4613 if (!OperandBundles.empty()) 4614 return error("Operand bundles found with no consumer"); 4615 4616 // Check the function list for unresolved values. 4617 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4618 if (!A->getParent()) { 4619 // We found at least one unresolved value. Nuke them all to avoid leaks. 4620 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4621 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4622 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4623 delete A; 4624 } 4625 } 4626 return error("Never resolved value found in function"); 4627 } 4628 } 4629 4630 // Unexpected unresolved metadata about to be dropped. 4631 if (MDLoader->hasFwdRefs()) 4632 return error("Invalid function metadata: outgoing forward refs"); 4633 4634 // Trim the value list down to the size it was before we parsed this function. 4635 ValueList.shrinkTo(ModuleValueListSize); 4636 MDLoader->shrinkTo(ModuleMDLoaderSize); 4637 std::vector<BasicBlock*>().swap(FunctionBBs); 4638 return Error::success(); 4639 } 4640 4641 /// Find the function body in the bitcode stream 4642 Error BitcodeReader::findFunctionInStream( 4643 Function *F, 4644 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4645 while (DeferredFunctionInfoIterator->second == 0) { 4646 // This is the fallback handling for the old format bitcode that 4647 // didn't contain the function index in the VST, or when we have 4648 // an anonymous function which would not have a VST entry. 4649 // Assert that we have one of those two cases. 4650 assert(VSTOffset == 0 || !F->hasName()); 4651 // Parse the next body in the stream and set its position in the 4652 // DeferredFunctionInfo map. 4653 if (Error Err = rememberAndSkipFunctionBodies()) 4654 return Err; 4655 } 4656 return Error::success(); 4657 } 4658 4659 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4660 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4661 return SyncScope::ID(Val); 4662 if (Val >= SSIDs.size()) 4663 return SyncScope::System; // Map unknown synchronization scopes to system. 4664 return SSIDs[Val]; 4665 } 4666 4667 //===----------------------------------------------------------------------===// 4668 // GVMaterializer implementation 4669 //===----------------------------------------------------------------------===// 4670 4671 Error BitcodeReader::materialize(GlobalValue *GV) { 4672 Function *F = dyn_cast<Function>(GV); 4673 // If it's not a function or is already material, ignore the request. 4674 if (!F || !F->isMaterializable()) 4675 return Error::success(); 4676 4677 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4678 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4679 // If its position is recorded as 0, its body is somewhere in the stream 4680 // but we haven't seen it yet. 4681 if (DFII->second == 0) 4682 if (Error Err = findFunctionInStream(F, DFII)) 4683 return Err; 4684 4685 // Materialize metadata before parsing any function bodies. 4686 if (Error Err = materializeMetadata()) 4687 return Err; 4688 4689 // Move the bit stream to the saved position of the deferred function body. 4690 Stream.JumpToBit(DFII->second); 4691 4692 if (Error Err = parseFunctionBody(F)) 4693 return Err; 4694 F->setIsMaterializable(false); 4695 4696 if (StripDebugInfo) 4697 stripDebugInfo(*F); 4698 4699 // Upgrade any old intrinsic calls in the function. 4700 for (auto &I : UpgradedIntrinsics) { 4701 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4702 UI != UE;) { 4703 User *U = *UI; 4704 ++UI; 4705 if (CallInst *CI = dyn_cast<CallInst>(U)) 4706 UpgradeIntrinsicCall(CI, I.second); 4707 } 4708 } 4709 4710 // Update calls to the remangled intrinsics 4711 for (auto &I : RemangledIntrinsics) 4712 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4713 UI != UE;) 4714 // Don't expect any other users than call sites 4715 CallSite(*UI++).setCalledFunction(I.second); 4716 4717 // Finish fn->subprogram upgrade for materialized functions. 4718 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4719 F->setSubprogram(SP); 4720 4721 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4722 if (!MDLoader->isStrippingTBAA()) { 4723 for (auto &I : instructions(F)) { 4724 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4725 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4726 continue; 4727 MDLoader->setStripTBAA(true); 4728 stripTBAA(F->getParent()); 4729 } 4730 } 4731 4732 // Bring in any functions that this function forward-referenced via 4733 // blockaddresses. 4734 return materializeForwardReferencedFunctions(); 4735 } 4736 4737 Error BitcodeReader::materializeModule() { 4738 if (Error Err = materializeMetadata()) 4739 return Err; 4740 4741 // Promise to materialize all forward references. 4742 WillMaterializeAllForwardRefs = true; 4743 4744 // Iterate over the module, deserializing any functions that are still on 4745 // disk. 4746 for (Function &F : *TheModule) { 4747 if (Error Err = materialize(&F)) 4748 return Err; 4749 } 4750 // At this point, if there are any function bodies, parse the rest of 4751 // the bits in the module past the last function block we have recorded 4752 // through either lazy scanning or the VST. 4753 if (LastFunctionBlockBit || NextUnreadBit) 4754 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4755 ? LastFunctionBlockBit 4756 : NextUnreadBit)) 4757 return Err; 4758 4759 // Check that all block address forward references got resolved (as we 4760 // promised above). 4761 if (!BasicBlockFwdRefs.empty()) 4762 return error("Never resolved function from blockaddress"); 4763 4764 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4765 // delete the old functions to clean up. We can't do this unless the entire 4766 // module is materialized because there could always be another function body 4767 // with calls to the old function. 4768 for (auto &I : UpgradedIntrinsics) { 4769 for (auto *U : I.first->users()) { 4770 if (CallInst *CI = dyn_cast<CallInst>(U)) 4771 UpgradeIntrinsicCall(CI, I.second); 4772 } 4773 if (!I.first->use_empty()) 4774 I.first->replaceAllUsesWith(I.second); 4775 I.first->eraseFromParent(); 4776 } 4777 UpgradedIntrinsics.clear(); 4778 // Do the same for remangled intrinsics 4779 for (auto &I : RemangledIntrinsics) { 4780 I.first->replaceAllUsesWith(I.second); 4781 I.first->eraseFromParent(); 4782 } 4783 RemangledIntrinsics.clear(); 4784 4785 UpgradeDebugInfo(*TheModule); 4786 4787 UpgradeModuleFlags(*TheModule); 4788 return Error::success(); 4789 } 4790 4791 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4792 return IdentifiedStructTypes; 4793 } 4794 4795 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4796 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4797 StringRef ModulePath, unsigned ModuleId) 4798 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4799 ModulePath(ModulePath), ModuleId(ModuleId) {} 4800 4801 ModuleSummaryIndex::ModuleInfo * 4802 ModuleSummaryIndexBitcodeReader::addThisModule() { 4803 return TheIndex.addModule(ModulePath, ModuleId); 4804 } 4805 4806 std::pair<ValueInfo, GlobalValue::GUID> 4807 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4808 auto VGI = ValueIdToValueInfoMap[ValueId]; 4809 assert(VGI.first); 4810 return VGI; 4811 } 4812 4813 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4814 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4815 StringRef SourceFileName) { 4816 std::string GlobalId = 4817 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4818 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4819 auto OriginalNameID = ValueGUID; 4820 if (GlobalValue::isLocalLinkage(Linkage)) 4821 OriginalNameID = GlobalValue::getGUID(ValueName); 4822 if (PrintSummaryGUIDs) 4823 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4824 << ValueName << "\n"; 4825 4826 // UseStrtab is false for legacy summary formats and value names are 4827 // created on stack. We can't use them outside of parseValueSymbolTable. 4828 ValueIdToValueInfoMap[ValueID] = std::make_pair( 4829 TheIndex.getOrInsertValueInfo(ValueGUID, UseStrtab ? ValueName : ""), 4830 OriginalNameID); 4831 } 4832 4833 // Specialized value symbol table parser used when reading module index 4834 // blocks where we don't actually create global values. The parsed information 4835 // is saved in the bitcode reader for use when later parsing summaries. 4836 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4837 uint64_t Offset, 4838 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4839 // With a strtab the VST is not required to parse the summary. 4840 if (UseStrtab) 4841 return Error::success(); 4842 4843 assert(Offset > 0 && "Expected non-zero VST offset"); 4844 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4845 4846 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4847 return error("Invalid record"); 4848 4849 SmallVector<uint64_t, 64> Record; 4850 4851 // Read all the records for this value table. 4852 SmallString<128> ValueName; 4853 4854 while (true) { 4855 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4856 4857 switch (Entry.Kind) { 4858 case BitstreamEntry::SubBlock: // Handled for us already. 4859 case BitstreamEntry::Error: 4860 return error("Malformed block"); 4861 case BitstreamEntry::EndBlock: 4862 // Done parsing VST, jump back to wherever we came from. 4863 Stream.JumpToBit(CurrentBit); 4864 return Error::success(); 4865 case BitstreamEntry::Record: 4866 // The interesting case. 4867 break; 4868 } 4869 4870 // Read a record. 4871 Record.clear(); 4872 switch (Stream.readRecord(Entry.ID, Record)) { 4873 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4874 break; 4875 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4876 if (convertToString(Record, 1, ValueName)) 4877 return error("Invalid record"); 4878 unsigned ValueID = Record[0]; 4879 assert(!SourceFileName.empty()); 4880 auto VLI = ValueIdToLinkageMap.find(ValueID); 4881 assert(VLI != ValueIdToLinkageMap.end() && 4882 "No linkage found for VST entry?"); 4883 auto Linkage = VLI->second; 4884 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4885 ValueName.clear(); 4886 break; 4887 } 4888 case bitc::VST_CODE_FNENTRY: { 4889 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4890 if (convertToString(Record, 2, ValueName)) 4891 return error("Invalid record"); 4892 unsigned ValueID = Record[0]; 4893 assert(!SourceFileName.empty()); 4894 auto VLI = ValueIdToLinkageMap.find(ValueID); 4895 assert(VLI != ValueIdToLinkageMap.end() && 4896 "No linkage found for VST entry?"); 4897 auto Linkage = VLI->second; 4898 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4899 ValueName.clear(); 4900 break; 4901 } 4902 case bitc::VST_CODE_COMBINED_ENTRY: { 4903 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4904 unsigned ValueID = Record[0]; 4905 GlobalValue::GUID RefGUID = Record[1]; 4906 // The "original name", which is the second value of the pair will be 4907 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4908 ValueIdToValueInfoMap[ValueID] = 4909 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 4910 break; 4911 } 4912 } 4913 } 4914 } 4915 4916 // Parse just the blocks needed for building the index out of the module. 4917 // At the end of this routine the module Index is populated with a map 4918 // from global value id to GlobalValueSummary objects. 4919 Error ModuleSummaryIndexBitcodeReader::parseModule() { 4920 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4921 return error("Invalid record"); 4922 4923 SmallVector<uint64_t, 64> Record; 4924 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4925 unsigned ValueId = 0; 4926 4927 // Read the index for this module. 4928 while (true) { 4929 BitstreamEntry Entry = Stream.advance(); 4930 4931 switch (Entry.Kind) { 4932 case BitstreamEntry::Error: 4933 return error("Malformed block"); 4934 case BitstreamEntry::EndBlock: 4935 return Error::success(); 4936 4937 case BitstreamEntry::SubBlock: 4938 switch (Entry.ID) { 4939 default: // Skip unknown content. 4940 if (Stream.SkipBlock()) 4941 return error("Invalid record"); 4942 break; 4943 case bitc::BLOCKINFO_BLOCK_ID: 4944 // Need to parse these to get abbrev ids (e.g. for VST) 4945 if (readBlockInfo()) 4946 return error("Malformed block"); 4947 break; 4948 case bitc::VALUE_SYMTAB_BLOCK_ID: 4949 // Should have been parsed earlier via VSTOffset, unless there 4950 // is no summary section. 4951 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4952 !SeenGlobalValSummary) && 4953 "Expected early VST parse via VSTOffset record"); 4954 if (Stream.SkipBlock()) 4955 return error("Invalid record"); 4956 break; 4957 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4958 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 4959 assert(!SeenValueSymbolTable && 4960 "Already read VST when parsing summary block?"); 4961 // We might not have a VST if there were no values in the 4962 // summary. An empty summary block generated when we are 4963 // performing ThinLTO compiles so we don't later invoke 4964 // the regular LTO process on them. 4965 if (VSTOffset > 0) { 4966 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4967 return Err; 4968 SeenValueSymbolTable = true; 4969 } 4970 SeenGlobalValSummary = true; 4971 if (Error Err = parseEntireSummary(Entry.ID)) 4972 return Err; 4973 break; 4974 case bitc::MODULE_STRTAB_BLOCK_ID: 4975 if (Error Err = parseModuleStringTable()) 4976 return Err; 4977 break; 4978 } 4979 continue; 4980 4981 case BitstreamEntry::Record: { 4982 Record.clear(); 4983 auto BitCode = Stream.readRecord(Entry.ID, Record); 4984 switch (BitCode) { 4985 default: 4986 break; // Default behavior, ignore unknown content. 4987 case bitc::MODULE_CODE_VERSION: { 4988 if (Error Err = parseVersionRecord(Record).takeError()) 4989 return Err; 4990 break; 4991 } 4992 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 4993 case bitc::MODULE_CODE_SOURCE_FILENAME: { 4994 SmallString<128> ValueName; 4995 if (convertToString(Record, 0, ValueName)) 4996 return error("Invalid record"); 4997 SourceFileName = ValueName.c_str(); 4998 break; 4999 } 5000 /// MODULE_CODE_HASH: [5*i32] 5001 case bitc::MODULE_CODE_HASH: { 5002 if (Record.size() != 5) 5003 return error("Invalid hash length " + Twine(Record.size()).str()); 5004 auto &Hash = addThisModule()->second.second; 5005 int Pos = 0; 5006 for (auto &Val : Record) { 5007 assert(!(Val >> 32) && "Unexpected high bits set"); 5008 Hash[Pos++] = Val; 5009 } 5010 break; 5011 } 5012 /// MODULE_CODE_VSTOFFSET: [offset] 5013 case bitc::MODULE_CODE_VSTOFFSET: 5014 if (Record.size() < 1) 5015 return error("Invalid record"); 5016 // Note that we subtract 1 here because the offset is relative to one 5017 // word before the start of the identification or module block, which 5018 // was historically always the start of the regular bitcode header. 5019 VSTOffset = Record[0] - 1; 5020 break; 5021 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5022 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5023 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5024 // v2: [strtab offset, strtab size, v1] 5025 case bitc::MODULE_CODE_GLOBALVAR: 5026 case bitc::MODULE_CODE_FUNCTION: 5027 case bitc::MODULE_CODE_ALIAS: { 5028 StringRef Name; 5029 ArrayRef<uint64_t> GVRecord; 5030 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5031 if (GVRecord.size() <= 3) 5032 return error("Invalid record"); 5033 uint64_t RawLinkage = GVRecord[3]; 5034 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5035 if (!UseStrtab) { 5036 ValueIdToLinkageMap[ValueId++] = Linkage; 5037 break; 5038 } 5039 5040 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5041 break; 5042 } 5043 } 5044 } 5045 continue; 5046 } 5047 } 5048 } 5049 5050 std::vector<ValueInfo> 5051 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5052 std::vector<ValueInfo> Ret; 5053 Ret.reserve(Record.size()); 5054 for (uint64_t RefValueId : Record) 5055 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5056 return Ret; 5057 } 5058 5059 std::vector<FunctionSummary::EdgeTy> 5060 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5061 bool IsOldProfileFormat, 5062 bool HasProfile, bool HasRelBF) { 5063 std::vector<FunctionSummary::EdgeTy> Ret; 5064 Ret.reserve(Record.size()); 5065 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5066 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5067 uint64_t RelBF = 0; 5068 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5069 if (IsOldProfileFormat) { 5070 I += 1; // Skip old callsitecount field 5071 if (HasProfile) 5072 I += 1; // Skip old profilecount field 5073 } else if (HasProfile) 5074 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5075 else if (HasRelBF) 5076 RelBF = Record[++I]; 5077 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5078 } 5079 return Ret; 5080 } 5081 5082 static void 5083 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5084 WholeProgramDevirtResolution &Wpd) { 5085 uint64_t ArgNum = Record[Slot++]; 5086 WholeProgramDevirtResolution::ByArg &B = 5087 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5088 Slot += ArgNum; 5089 5090 B.TheKind = 5091 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5092 B.Info = Record[Slot++]; 5093 B.Byte = Record[Slot++]; 5094 B.Bit = Record[Slot++]; 5095 } 5096 5097 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5098 StringRef Strtab, size_t &Slot, 5099 TypeIdSummary &TypeId) { 5100 uint64_t Id = Record[Slot++]; 5101 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5102 5103 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5104 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5105 static_cast<size_t>(Record[Slot + 1])}; 5106 Slot += 2; 5107 5108 uint64_t ResByArgNum = Record[Slot++]; 5109 for (uint64_t I = 0; I != ResByArgNum; ++I) 5110 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5111 } 5112 5113 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5114 StringRef Strtab, 5115 ModuleSummaryIndex &TheIndex) { 5116 size_t Slot = 0; 5117 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5118 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5119 Slot += 2; 5120 5121 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5122 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5123 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5124 TypeId.TTRes.SizeM1 = Record[Slot++]; 5125 TypeId.TTRes.BitMask = Record[Slot++]; 5126 TypeId.TTRes.InlineBits = Record[Slot++]; 5127 5128 while (Slot < Record.size()) 5129 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5130 } 5131 5132 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5133 // objects in the index. 5134 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5135 if (Stream.EnterSubBlock(ID)) 5136 return error("Invalid record"); 5137 SmallVector<uint64_t, 64> Record; 5138 5139 // Parse version 5140 { 5141 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5142 if (Entry.Kind != BitstreamEntry::Record) 5143 return error("Invalid Summary Block: record for version expected"); 5144 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5145 return error("Invalid Summary Block: version expected"); 5146 } 5147 const uint64_t Version = Record[0]; 5148 const bool IsOldProfileFormat = Version == 1; 5149 if (Version < 1 || Version > 4) 5150 return error("Invalid summary version " + Twine(Version) + 5151 ", 1, 2, 3 or 4 expected"); 5152 Record.clear(); 5153 5154 // Keep around the last seen summary to be used when we see an optional 5155 // "OriginalName" attachement. 5156 GlobalValueSummary *LastSeenSummary = nullptr; 5157 GlobalValue::GUID LastSeenGUID = 0; 5158 5159 // We can expect to see any number of type ID information records before 5160 // each function summary records; these variables store the information 5161 // collected so far so that it can be used to create the summary object. 5162 std::vector<GlobalValue::GUID> PendingTypeTests; 5163 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5164 PendingTypeCheckedLoadVCalls; 5165 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5166 PendingTypeCheckedLoadConstVCalls; 5167 5168 while (true) { 5169 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5170 5171 switch (Entry.Kind) { 5172 case BitstreamEntry::SubBlock: // Handled for us already. 5173 case BitstreamEntry::Error: 5174 return error("Malformed block"); 5175 case BitstreamEntry::EndBlock: 5176 return Error::success(); 5177 case BitstreamEntry::Record: 5178 // The interesting case. 5179 break; 5180 } 5181 5182 // Read a record. The record format depends on whether this 5183 // is a per-module index or a combined index file. In the per-module 5184 // case the records contain the associated value's ID for correlation 5185 // with VST entries. In the combined index the correlation is done 5186 // via the bitcode offset of the summary records (which were saved 5187 // in the combined index VST entries). The records also contain 5188 // information used for ThinLTO renaming and importing. 5189 Record.clear(); 5190 auto BitCode = Stream.readRecord(Entry.ID, Record); 5191 switch (BitCode) { 5192 default: // Default behavior: ignore. 5193 break; 5194 case bitc::FS_FLAGS: { // [flags] 5195 uint64_t Flags = Record[0]; 5196 // Scan flags (set only on the combined index). 5197 assert(Flags <= 0x3 && "Unexpected bits in flag"); 5198 5199 // 1 bit: WithGlobalValueDeadStripping flag. 5200 if (Flags & 0x1) 5201 TheIndex.setWithGlobalValueDeadStripping(); 5202 // 1 bit: SkipModuleByDistributedBackend flag. 5203 if (Flags & 0x2) 5204 TheIndex.setSkipModuleByDistributedBackend(); 5205 break; 5206 } 5207 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5208 uint64_t ValueID = Record[0]; 5209 GlobalValue::GUID RefGUID = Record[1]; 5210 ValueIdToValueInfoMap[ValueID] = 5211 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5212 break; 5213 } 5214 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5215 // numrefs x valueid, n x (valueid)] 5216 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5217 // numrefs x valueid, 5218 // n x (valueid, hotness)] 5219 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5220 // numrefs x valueid, 5221 // n x (valueid, relblockfreq)] 5222 case bitc::FS_PERMODULE: 5223 case bitc::FS_PERMODULE_RELBF: 5224 case bitc::FS_PERMODULE_PROFILE: { 5225 unsigned ValueID = Record[0]; 5226 uint64_t RawFlags = Record[1]; 5227 unsigned InstCount = Record[2]; 5228 uint64_t RawFunFlags = 0; 5229 unsigned NumRefs = Record[3]; 5230 int RefListStartIndex = 4; 5231 if (Version >= 4) { 5232 RawFunFlags = Record[3]; 5233 NumRefs = Record[4]; 5234 RefListStartIndex = 5; 5235 } 5236 5237 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5238 // The module path string ref set in the summary must be owned by the 5239 // index's module string table. Since we don't have a module path 5240 // string table section in the per-module index, we create a single 5241 // module path string table entry with an empty (0) ID to take 5242 // ownership. 5243 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5244 assert(Record.size() >= RefListStartIndex + NumRefs && 5245 "Record size inconsistent with number of references"); 5246 std::vector<ValueInfo> Refs = makeRefList( 5247 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5248 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5249 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5250 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5251 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5252 IsOldProfileFormat, HasProfile, HasRelBF); 5253 auto FS = llvm::make_unique<FunctionSummary>( 5254 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5255 std::move(Calls), std::move(PendingTypeTests), 5256 std::move(PendingTypeTestAssumeVCalls), 5257 std::move(PendingTypeCheckedLoadVCalls), 5258 std::move(PendingTypeTestAssumeConstVCalls), 5259 std::move(PendingTypeCheckedLoadConstVCalls)); 5260 PendingTypeTests.clear(); 5261 PendingTypeTestAssumeVCalls.clear(); 5262 PendingTypeCheckedLoadVCalls.clear(); 5263 PendingTypeTestAssumeConstVCalls.clear(); 5264 PendingTypeCheckedLoadConstVCalls.clear(); 5265 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5266 FS->setModulePath(addThisModule()->first()); 5267 FS->setOriginalName(VIAndOriginalGUID.second); 5268 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5269 break; 5270 } 5271 // FS_ALIAS: [valueid, flags, valueid] 5272 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5273 // they expect all aliasee summaries to be available. 5274 case bitc::FS_ALIAS: { 5275 unsigned ValueID = Record[0]; 5276 uint64_t RawFlags = Record[1]; 5277 unsigned AliaseeID = Record[2]; 5278 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5279 auto AS = llvm::make_unique<AliasSummary>(Flags); 5280 // The module path string ref set in the summary must be owned by the 5281 // index's module string table. Since we don't have a module path 5282 // string table section in the per-module index, we create a single 5283 // module path string table entry with an empty (0) ID to take 5284 // ownership. 5285 AS->setModulePath(addThisModule()->first()); 5286 5287 GlobalValue::GUID AliaseeGUID = 5288 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5289 auto AliaseeInModule = 5290 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5291 if (!AliaseeInModule) 5292 return error("Alias expects aliasee summary to be parsed"); 5293 AS->setAliasee(AliaseeInModule); 5294 AS->setAliaseeGUID(AliaseeGUID); 5295 5296 auto GUID = getValueInfoFromValueId(ValueID); 5297 AS->setOriginalName(GUID.second); 5298 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5299 break; 5300 } 5301 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 5302 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5303 unsigned ValueID = Record[0]; 5304 uint64_t RawFlags = Record[1]; 5305 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5306 std::vector<ValueInfo> Refs = 5307 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 5308 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5309 FS->setModulePath(addThisModule()->first()); 5310 auto GUID = getValueInfoFromValueId(ValueID); 5311 FS->setOriginalName(GUID.second); 5312 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5313 break; 5314 } 5315 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5316 // numrefs x valueid, n x (valueid)] 5317 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5318 // numrefs x valueid, n x (valueid, hotness)] 5319 case bitc::FS_COMBINED: 5320 case bitc::FS_COMBINED_PROFILE: { 5321 unsigned ValueID = Record[0]; 5322 uint64_t ModuleId = Record[1]; 5323 uint64_t RawFlags = Record[2]; 5324 unsigned InstCount = Record[3]; 5325 uint64_t RawFunFlags = 0; 5326 unsigned NumRefs = Record[4]; 5327 int RefListStartIndex = 5; 5328 5329 if (Version >= 4) { 5330 RawFunFlags = Record[4]; 5331 NumRefs = Record[5]; 5332 RefListStartIndex = 6; 5333 } 5334 5335 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5336 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5337 assert(Record.size() >= RefListStartIndex + NumRefs && 5338 "Record size inconsistent with number of references"); 5339 std::vector<ValueInfo> Refs = makeRefList( 5340 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5341 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5342 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5343 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5344 IsOldProfileFormat, HasProfile, false); 5345 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5346 auto FS = llvm::make_unique<FunctionSummary>( 5347 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5348 std::move(Edges), std::move(PendingTypeTests), 5349 std::move(PendingTypeTestAssumeVCalls), 5350 std::move(PendingTypeCheckedLoadVCalls), 5351 std::move(PendingTypeTestAssumeConstVCalls), 5352 std::move(PendingTypeCheckedLoadConstVCalls)); 5353 PendingTypeTests.clear(); 5354 PendingTypeTestAssumeVCalls.clear(); 5355 PendingTypeCheckedLoadVCalls.clear(); 5356 PendingTypeTestAssumeConstVCalls.clear(); 5357 PendingTypeCheckedLoadConstVCalls.clear(); 5358 LastSeenSummary = FS.get(); 5359 LastSeenGUID = VI.getGUID(); 5360 FS->setModulePath(ModuleIdMap[ModuleId]); 5361 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5362 break; 5363 } 5364 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5365 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5366 // they expect all aliasee summaries to be available. 5367 case bitc::FS_COMBINED_ALIAS: { 5368 unsigned ValueID = Record[0]; 5369 uint64_t ModuleId = Record[1]; 5370 uint64_t RawFlags = Record[2]; 5371 unsigned AliaseeValueId = Record[3]; 5372 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5373 auto AS = llvm::make_unique<AliasSummary>(Flags); 5374 LastSeenSummary = AS.get(); 5375 AS->setModulePath(ModuleIdMap[ModuleId]); 5376 5377 auto AliaseeGUID = 5378 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5379 auto AliaseeInModule = 5380 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5381 AS->setAliasee(AliaseeInModule); 5382 AS->setAliaseeGUID(AliaseeGUID); 5383 5384 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5385 LastSeenGUID = VI.getGUID(); 5386 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5387 break; 5388 } 5389 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5390 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5391 unsigned ValueID = Record[0]; 5392 uint64_t ModuleId = Record[1]; 5393 uint64_t RawFlags = Record[2]; 5394 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5395 std::vector<ValueInfo> Refs = 5396 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5397 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5398 LastSeenSummary = FS.get(); 5399 FS->setModulePath(ModuleIdMap[ModuleId]); 5400 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5401 LastSeenGUID = VI.getGUID(); 5402 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5403 break; 5404 } 5405 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5406 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5407 uint64_t OriginalName = Record[0]; 5408 if (!LastSeenSummary) 5409 return error("Name attachment that does not follow a combined record"); 5410 LastSeenSummary->setOriginalName(OriginalName); 5411 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5412 // Reset the LastSeenSummary 5413 LastSeenSummary = nullptr; 5414 LastSeenGUID = 0; 5415 break; 5416 } 5417 case bitc::FS_TYPE_TESTS: 5418 assert(PendingTypeTests.empty()); 5419 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5420 Record.end()); 5421 break; 5422 5423 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5424 assert(PendingTypeTestAssumeVCalls.empty()); 5425 for (unsigned I = 0; I != Record.size(); I += 2) 5426 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5427 break; 5428 5429 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5430 assert(PendingTypeCheckedLoadVCalls.empty()); 5431 for (unsigned I = 0; I != Record.size(); I += 2) 5432 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5433 break; 5434 5435 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5436 PendingTypeTestAssumeConstVCalls.push_back( 5437 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5438 break; 5439 5440 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5441 PendingTypeCheckedLoadConstVCalls.push_back( 5442 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5443 break; 5444 5445 case bitc::FS_CFI_FUNCTION_DEFS: { 5446 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5447 for (unsigned I = 0; I != Record.size(); I += 2) 5448 CfiFunctionDefs.insert( 5449 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5450 break; 5451 } 5452 5453 case bitc::FS_CFI_FUNCTION_DECLS: { 5454 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5455 for (unsigned I = 0; I != Record.size(); I += 2) 5456 CfiFunctionDecls.insert( 5457 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5458 break; 5459 } 5460 5461 case bitc::FS_TYPE_ID: 5462 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 5463 break; 5464 } 5465 } 5466 llvm_unreachable("Exit infinite loop"); 5467 } 5468 5469 // Parse the module string table block into the Index. 5470 // This populates the ModulePathStringTable map in the index. 5471 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5472 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5473 return error("Invalid record"); 5474 5475 SmallVector<uint64_t, 64> Record; 5476 5477 SmallString<128> ModulePath; 5478 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5479 5480 while (true) { 5481 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5482 5483 switch (Entry.Kind) { 5484 case BitstreamEntry::SubBlock: // Handled for us already. 5485 case BitstreamEntry::Error: 5486 return error("Malformed block"); 5487 case BitstreamEntry::EndBlock: 5488 return Error::success(); 5489 case BitstreamEntry::Record: 5490 // The interesting case. 5491 break; 5492 } 5493 5494 Record.clear(); 5495 switch (Stream.readRecord(Entry.ID, Record)) { 5496 default: // Default behavior: ignore. 5497 break; 5498 case bitc::MST_CODE_ENTRY: { 5499 // MST_ENTRY: [modid, namechar x N] 5500 uint64_t ModuleId = Record[0]; 5501 5502 if (convertToString(Record, 1, ModulePath)) 5503 return error("Invalid record"); 5504 5505 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5506 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5507 5508 ModulePath.clear(); 5509 break; 5510 } 5511 /// MST_CODE_HASH: [5*i32] 5512 case bitc::MST_CODE_HASH: { 5513 if (Record.size() != 5) 5514 return error("Invalid hash length " + Twine(Record.size()).str()); 5515 if (!LastSeenModule) 5516 return error("Invalid hash that does not follow a module path"); 5517 int Pos = 0; 5518 for (auto &Val : Record) { 5519 assert(!(Val >> 32) && "Unexpected high bits set"); 5520 LastSeenModule->second.second[Pos++] = Val; 5521 } 5522 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5523 LastSeenModule = nullptr; 5524 break; 5525 } 5526 } 5527 } 5528 llvm_unreachable("Exit infinite loop"); 5529 } 5530 5531 namespace { 5532 5533 // FIXME: This class is only here to support the transition to llvm::Error. It 5534 // will be removed once this transition is complete. Clients should prefer to 5535 // deal with the Error value directly, rather than converting to error_code. 5536 class BitcodeErrorCategoryType : public std::error_category { 5537 const char *name() const noexcept override { 5538 return "llvm.bitcode"; 5539 } 5540 5541 std::string message(int IE) const override { 5542 BitcodeError E = static_cast<BitcodeError>(IE); 5543 switch (E) { 5544 case BitcodeError::CorruptedBitcode: 5545 return "Corrupted bitcode"; 5546 } 5547 llvm_unreachable("Unknown error type!"); 5548 } 5549 }; 5550 5551 } // end anonymous namespace 5552 5553 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5554 5555 const std::error_category &llvm::BitcodeErrorCategory() { 5556 return *ErrorCategory; 5557 } 5558 5559 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5560 unsigned Block, unsigned RecordID) { 5561 if (Stream.EnterSubBlock(Block)) 5562 return error("Invalid record"); 5563 5564 StringRef Strtab; 5565 while (true) { 5566 BitstreamEntry Entry = Stream.advance(); 5567 switch (Entry.Kind) { 5568 case BitstreamEntry::EndBlock: 5569 return Strtab; 5570 5571 case BitstreamEntry::Error: 5572 return error("Malformed block"); 5573 5574 case BitstreamEntry::SubBlock: 5575 if (Stream.SkipBlock()) 5576 return error("Malformed block"); 5577 break; 5578 5579 case BitstreamEntry::Record: 5580 StringRef Blob; 5581 SmallVector<uint64_t, 1> Record; 5582 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5583 Strtab = Blob; 5584 break; 5585 } 5586 } 5587 } 5588 5589 //===----------------------------------------------------------------------===// 5590 // External interface 5591 //===----------------------------------------------------------------------===// 5592 5593 Expected<std::vector<BitcodeModule>> 5594 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5595 auto FOrErr = getBitcodeFileContents(Buffer); 5596 if (!FOrErr) 5597 return FOrErr.takeError(); 5598 return std::move(FOrErr->Mods); 5599 } 5600 5601 Expected<BitcodeFileContents> 5602 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5603 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5604 if (!StreamOrErr) 5605 return StreamOrErr.takeError(); 5606 BitstreamCursor &Stream = *StreamOrErr; 5607 5608 BitcodeFileContents F; 5609 while (true) { 5610 uint64_t BCBegin = Stream.getCurrentByteNo(); 5611 5612 // We may be consuming bitcode from a client that leaves garbage at the end 5613 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5614 // the end that there cannot possibly be another module, stop looking. 5615 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5616 return F; 5617 5618 BitstreamEntry Entry = Stream.advance(); 5619 switch (Entry.Kind) { 5620 case BitstreamEntry::EndBlock: 5621 case BitstreamEntry::Error: 5622 return error("Malformed block"); 5623 5624 case BitstreamEntry::SubBlock: { 5625 uint64_t IdentificationBit = -1ull; 5626 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5627 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5628 if (Stream.SkipBlock()) 5629 return error("Malformed block"); 5630 5631 Entry = Stream.advance(); 5632 if (Entry.Kind != BitstreamEntry::SubBlock || 5633 Entry.ID != bitc::MODULE_BLOCK_ID) 5634 return error("Malformed block"); 5635 } 5636 5637 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5638 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5639 if (Stream.SkipBlock()) 5640 return error("Malformed block"); 5641 5642 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5643 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5644 Buffer.getBufferIdentifier(), IdentificationBit, 5645 ModuleBit}); 5646 continue; 5647 } 5648 5649 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5650 Expected<StringRef> Strtab = 5651 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5652 if (!Strtab) 5653 return Strtab.takeError(); 5654 // This string table is used by every preceding bitcode module that does 5655 // not have its own string table. A bitcode file may have multiple 5656 // string tables if it was created by binary concatenation, for example 5657 // with "llvm-cat -b". 5658 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5659 if (!I->Strtab.empty()) 5660 break; 5661 I->Strtab = *Strtab; 5662 } 5663 // Similarly, the string table is used by every preceding symbol table; 5664 // normally there will be just one unless the bitcode file was created 5665 // by binary concatenation. 5666 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5667 F.StrtabForSymtab = *Strtab; 5668 continue; 5669 } 5670 5671 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5672 Expected<StringRef> SymtabOrErr = 5673 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5674 if (!SymtabOrErr) 5675 return SymtabOrErr.takeError(); 5676 5677 // We can expect the bitcode file to have multiple symbol tables if it 5678 // was created by binary concatenation. In that case we silently 5679 // ignore any subsequent symbol tables, which is fine because this is a 5680 // low level function. The client is expected to notice that the number 5681 // of modules in the symbol table does not match the number of modules 5682 // in the input file and regenerate the symbol table. 5683 if (F.Symtab.empty()) 5684 F.Symtab = *SymtabOrErr; 5685 continue; 5686 } 5687 5688 if (Stream.SkipBlock()) 5689 return error("Malformed block"); 5690 continue; 5691 } 5692 case BitstreamEntry::Record: 5693 Stream.skipRecord(Entry.ID); 5694 continue; 5695 } 5696 } 5697 } 5698 5699 /// \brief Get a lazy one-at-time loading module from bitcode. 5700 /// 5701 /// This isn't always used in a lazy context. In particular, it's also used by 5702 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5703 /// in forward-referenced functions from block address references. 5704 /// 5705 /// \param[in] MaterializeAll Set to \c true if we should materialize 5706 /// everything. 5707 Expected<std::unique_ptr<Module>> 5708 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5709 bool ShouldLazyLoadMetadata, bool IsImporting) { 5710 BitstreamCursor Stream(Buffer); 5711 5712 std::string ProducerIdentification; 5713 if (IdentificationBit != -1ull) { 5714 Stream.JumpToBit(IdentificationBit); 5715 Expected<std::string> ProducerIdentificationOrErr = 5716 readIdentificationBlock(Stream); 5717 if (!ProducerIdentificationOrErr) 5718 return ProducerIdentificationOrErr.takeError(); 5719 5720 ProducerIdentification = *ProducerIdentificationOrErr; 5721 } 5722 5723 Stream.JumpToBit(ModuleBit); 5724 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5725 Context); 5726 5727 std::unique_ptr<Module> M = 5728 llvm::make_unique<Module>(ModuleIdentifier, Context); 5729 M->setMaterializer(R); 5730 5731 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5732 if (Error Err = 5733 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5734 return std::move(Err); 5735 5736 if (MaterializeAll) { 5737 // Read in the entire module, and destroy the BitcodeReader. 5738 if (Error Err = M->materializeAll()) 5739 return std::move(Err); 5740 } else { 5741 // Resolve forward references from blockaddresses. 5742 if (Error Err = R->materializeForwardReferencedFunctions()) 5743 return std::move(Err); 5744 } 5745 return std::move(M); 5746 } 5747 5748 Expected<std::unique_ptr<Module>> 5749 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5750 bool IsImporting) { 5751 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5752 } 5753 5754 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5755 // We don't use ModuleIdentifier here because the client may need to control the 5756 // module path used in the combined summary (e.g. when reading summaries for 5757 // regular LTO modules). 5758 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5759 StringRef ModulePath, uint64_t ModuleId) { 5760 BitstreamCursor Stream(Buffer); 5761 Stream.JumpToBit(ModuleBit); 5762 5763 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5764 ModulePath, ModuleId); 5765 return R.parseModule(); 5766 } 5767 5768 // Parse the specified bitcode buffer, returning the function info index. 5769 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5770 BitstreamCursor Stream(Buffer); 5771 Stream.JumpToBit(ModuleBit); 5772 5773 auto Index = 5774 llvm::make_unique<ModuleSummaryIndex>(/*IsPerformingAnalysis=*/false); 5775 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5776 ModuleIdentifier, 0); 5777 5778 if (Error Err = R.parseModule()) 5779 return std::move(Err); 5780 5781 return std::move(Index); 5782 } 5783 5784 // Check if the given bitcode buffer contains a global value summary block. 5785 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 5786 BitstreamCursor Stream(Buffer); 5787 Stream.JumpToBit(ModuleBit); 5788 5789 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5790 return error("Invalid record"); 5791 5792 while (true) { 5793 BitstreamEntry Entry = Stream.advance(); 5794 5795 switch (Entry.Kind) { 5796 case BitstreamEntry::Error: 5797 return error("Malformed block"); 5798 case BitstreamEntry::EndBlock: 5799 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false}; 5800 5801 case BitstreamEntry::SubBlock: 5802 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5803 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true}; 5804 5805 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) 5806 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true}; 5807 5808 // Ignore other sub-blocks. 5809 if (Stream.SkipBlock()) 5810 return error("Malformed block"); 5811 continue; 5812 5813 case BitstreamEntry::Record: 5814 Stream.skipRecord(Entry.ID); 5815 continue; 5816 } 5817 } 5818 } 5819 5820 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5821 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5822 if (!MsOrErr) 5823 return MsOrErr.takeError(); 5824 5825 if (MsOrErr->size() != 1) 5826 return error("Expected a single module"); 5827 5828 return (*MsOrErr)[0]; 5829 } 5830 5831 Expected<std::unique_ptr<Module>> 5832 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5833 bool ShouldLazyLoadMetadata, bool IsImporting) { 5834 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5835 if (!BM) 5836 return BM.takeError(); 5837 5838 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5839 } 5840 5841 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5842 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5843 bool ShouldLazyLoadMetadata, bool IsImporting) { 5844 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5845 IsImporting); 5846 if (MOrErr) 5847 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5848 return MOrErr; 5849 } 5850 5851 Expected<std::unique_ptr<Module>> 5852 BitcodeModule::parseModule(LLVMContext &Context) { 5853 return getModuleImpl(Context, true, false, false); 5854 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5855 // written. We must defer until the Module has been fully materialized. 5856 } 5857 5858 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5859 LLVMContext &Context) { 5860 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5861 if (!BM) 5862 return BM.takeError(); 5863 5864 return BM->parseModule(Context); 5865 } 5866 5867 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5868 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5869 if (!StreamOrErr) 5870 return StreamOrErr.takeError(); 5871 5872 return readTriple(*StreamOrErr); 5873 } 5874 5875 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5876 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5877 if (!StreamOrErr) 5878 return StreamOrErr.takeError(); 5879 5880 return hasObjCCategory(*StreamOrErr); 5881 } 5882 5883 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5884 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5885 if (!StreamOrErr) 5886 return StreamOrErr.takeError(); 5887 5888 return readIdentificationCode(*StreamOrErr); 5889 } 5890 5891 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 5892 ModuleSummaryIndex &CombinedIndex, 5893 uint64_t ModuleId) { 5894 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5895 if (!BM) 5896 return BM.takeError(); 5897 5898 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 5899 } 5900 5901 Expected<std::unique_ptr<ModuleSummaryIndex>> 5902 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5903 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5904 if (!BM) 5905 return BM.takeError(); 5906 5907 return BM->getSummary(); 5908 } 5909 5910 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 5911 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5912 if (!BM) 5913 return BM.takeError(); 5914 5915 return BM->getLTOInfo(); 5916 } 5917 5918 Expected<std::unique_ptr<ModuleSummaryIndex>> 5919 llvm::getModuleSummaryIndexForFile(StringRef Path, 5920 bool IgnoreEmptyThinLTOIndexFile) { 5921 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 5922 MemoryBuffer::getFileOrSTDIN(Path); 5923 if (!FileOrErr) 5924 return errorCodeToError(FileOrErr.getError()); 5925 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 5926 return nullptr; 5927 return getModuleSummaryIndex(**FileOrErr); 5928 } 5929