1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 Result.append(Record.begin() + Idx, Record.end()); 157 return false; 158 } 159 160 // Strip all the TBAA attachment for the module. 161 static void stripTBAA(Module *M) { 162 for (auto &F : *M) { 163 if (F.isMaterializable()) 164 continue; 165 for (auto &I : instructions(F)) 166 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 167 } 168 } 169 170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 171 /// "epoch" encoded in the bitcode, and return the producer name if any. 172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 173 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 174 return std::move(Err); 175 176 // Read all the records. 177 SmallVector<uint64_t, 64> Record; 178 179 std::string ProducerIdentification; 180 181 while (true) { 182 BitstreamEntry Entry; 183 if (Expected<BitstreamEntry> Res = Stream.advance()) 184 Entry = Res.get(); 185 else 186 return Res.takeError(); 187 188 switch (Entry.Kind) { 189 default: 190 case BitstreamEntry::Error: 191 return error("Malformed block"); 192 case BitstreamEntry::EndBlock: 193 return ProducerIdentification; 194 case BitstreamEntry::Record: 195 // The interesting case. 196 break; 197 } 198 199 // Read a record. 200 Record.clear(); 201 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 202 if (!MaybeBitCode) 203 return MaybeBitCode.takeError(); 204 switch (MaybeBitCode.get()) { 205 default: // Default behavior: reject 206 return error("Invalid value"); 207 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 208 convertToString(Record, 0, ProducerIdentification); 209 break; 210 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 211 unsigned epoch = (unsigned)Record[0]; 212 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 213 return error( 214 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 215 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 216 } 217 } 218 } 219 } 220 } 221 222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 223 // We expect a number of well-defined blocks, though we don't necessarily 224 // need to understand them all. 225 while (true) { 226 if (Stream.AtEndOfStream()) 227 return ""; 228 229 BitstreamEntry Entry; 230 if (Expected<BitstreamEntry> Res = Stream.advance()) 231 Entry = std::move(Res.get()); 232 else 233 return Res.takeError(); 234 235 switch (Entry.Kind) { 236 case BitstreamEntry::EndBlock: 237 case BitstreamEntry::Error: 238 return error("Malformed block"); 239 240 case BitstreamEntry::SubBlock: 241 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 242 return readIdentificationBlock(Stream); 243 244 // Ignore other sub-blocks. 245 if (Error Err = Stream.SkipBlock()) 246 return std::move(Err); 247 continue; 248 case BitstreamEntry::Record: 249 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 250 continue; 251 else 252 return Skipped.takeError(); 253 } 254 } 255 } 256 257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 258 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 259 return std::move(Err); 260 261 SmallVector<uint64_t, 64> Record; 262 // Read all the records for this module. 263 264 while (true) { 265 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 266 if (!MaybeEntry) 267 return MaybeEntry.takeError(); 268 BitstreamEntry Entry = MaybeEntry.get(); 269 270 switch (Entry.Kind) { 271 case BitstreamEntry::SubBlock: // Handled for us already. 272 case BitstreamEntry::Error: 273 return error("Malformed block"); 274 case BitstreamEntry::EndBlock: 275 return false; 276 case BitstreamEntry::Record: 277 // The interesting case. 278 break; 279 } 280 281 // Read a record. 282 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 283 if (!MaybeRecord) 284 return MaybeRecord.takeError(); 285 switch (MaybeRecord.get()) { 286 default: 287 break; // Default behavior, ignore unknown content. 288 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 289 std::string S; 290 if (convertToString(Record, 0, S)) 291 return error("Invalid record"); 292 // Check for the i386 and other (x86_64, ARM) conventions 293 if (S.find("__DATA,__objc_catlist") != std::string::npos || 294 S.find("__OBJC,__category") != std::string::npos) 295 return true; 296 break; 297 } 298 } 299 Record.clear(); 300 } 301 llvm_unreachable("Exit infinite loop"); 302 } 303 304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 305 // We expect a number of well-defined blocks, though we don't necessarily 306 // need to understand them all. 307 while (true) { 308 BitstreamEntry Entry; 309 if (Expected<BitstreamEntry> Res = Stream.advance()) 310 Entry = std::move(Res.get()); 311 else 312 return Res.takeError(); 313 314 switch (Entry.Kind) { 315 case BitstreamEntry::Error: 316 return error("Malformed block"); 317 case BitstreamEntry::EndBlock: 318 return false; 319 320 case BitstreamEntry::SubBlock: 321 if (Entry.ID == bitc::MODULE_BLOCK_ID) 322 return hasObjCCategoryInModule(Stream); 323 324 // Ignore other sub-blocks. 325 if (Error Err = Stream.SkipBlock()) 326 return std::move(Err); 327 continue; 328 329 case BitstreamEntry::Record: 330 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 331 continue; 332 else 333 return Skipped.takeError(); 334 } 335 } 336 } 337 338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 339 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 340 return std::move(Err); 341 342 SmallVector<uint64_t, 64> Record; 343 344 std::string Triple; 345 346 // Read all the records for this module. 347 while (true) { 348 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 349 if (!MaybeEntry) 350 return MaybeEntry.takeError(); 351 BitstreamEntry Entry = MaybeEntry.get(); 352 353 switch (Entry.Kind) { 354 case BitstreamEntry::SubBlock: // Handled for us already. 355 case BitstreamEntry::Error: 356 return error("Malformed block"); 357 case BitstreamEntry::EndBlock: 358 return Triple; 359 case BitstreamEntry::Record: 360 // The interesting case. 361 break; 362 } 363 364 // Read a record. 365 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 366 if (!MaybeRecord) 367 return MaybeRecord.takeError(); 368 switch (MaybeRecord.get()) { 369 default: break; // Default behavior, ignore unknown content. 370 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 371 std::string S; 372 if (convertToString(Record, 0, S)) 373 return error("Invalid record"); 374 Triple = S; 375 break; 376 } 377 } 378 Record.clear(); 379 } 380 llvm_unreachable("Exit infinite loop"); 381 } 382 383 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 384 // We expect a number of well-defined blocks, though we don't necessarily 385 // need to understand them all. 386 while (true) { 387 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 388 if (!MaybeEntry) 389 return MaybeEntry.takeError(); 390 BitstreamEntry Entry = MaybeEntry.get(); 391 392 switch (Entry.Kind) { 393 case BitstreamEntry::Error: 394 return error("Malformed block"); 395 case BitstreamEntry::EndBlock: 396 return ""; 397 398 case BitstreamEntry::SubBlock: 399 if (Entry.ID == bitc::MODULE_BLOCK_ID) 400 return readModuleTriple(Stream); 401 402 // Ignore other sub-blocks. 403 if (Error Err = Stream.SkipBlock()) 404 return std::move(Err); 405 continue; 406 407 case BitstreamEntry::Record: 408 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 409 continue; 410 else 411 return Skipped.takeError(); 412 } 413 } 414 } 415 416 namespace { 417 418 class BitcodeReaderBase { 419 protected: 420 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 421 : Stream(std::move(Stream)), Strtab(Strtab) { 422 this->Stream.setBlockInfo(&BlockInfo); 423 } 424 425 BitstreamBlockInfo BlockInfo; 426 BitstreamCursor Stream; 427 StringRef Strtab; 428 429 /// In version 2 of the bitcode we store names of global values and comdats in 430 /// a string table rather than in the VST. 431 bool UseStrtab = false; 432 433 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 434 435 /// If this module uses a string table, pop the reference to the string table 436 /// and return the referenced string and the rest of the record. Otherwise 437 /// just return the record itself. 438 std::pair<StringRef, ArrayRef<uint64_t>> 439 readNameFromStrtab(ArrayRef<uint64_t> Record); 440 441 bool readBlockInfo(); 442 443 // Contains an arbitrary and optional string identifying the bitcode producer 444 std::string ProducerIdentification; 445 446 Error error(const Twine &Message); 447 }; 448 449 } // end anonymous namespace 450 451 Error BitcodeReaderBase::error(const Twine &Message) { 452 std::string FullMsg = Message.str(); 453 if (!ProducerIdentification.empty()) 454 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 455 LLVM_VERSION_STRING "')"; 456 return ::error(FullMsg); 457 } 458 459 Expected<unsigned> 460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 461 if (Record.empty()) 462 return error("Invalid record"); 463 unsigned ModuleVersion = Record[0]; 464 if (ModuleVersion > 2) 465 return error("Invalid value"); 466 UseStrtab = ModuleVersion >= 2; 467 return ModuleVersion; 468 } 469 470 std::pair<StringRef, ArrayRef<uint64_t>> 471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 472 if (!UseStrtab) 473 return {"", Record}; 474 // Invalid reference. Let the caller complain about the record being empty. 475 if (Record[0] + Record[1] > Strtab.size()) 476 return {"", {}}; 477 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 478 } 479 480 namespace { 481 482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 483 LLVMContext &Context; 484 Module *TheModule = nullptr; 485 // Next offset to start scanning for lazy parsing of function bodies. 486 uint64_t NextUnreadBit = 0; 487 // Last function offset found in the VST. 488 uint64_t LastFunctionBlockBit = 0; 489 bool SeenValueSymbolTable = false; 490 uint64_t VSTOffset = 0; 491 492 std::vector<std::string> SectionTable; 493 std::vector<std::string> GCTable; 494 495 std::vector<Type*> TypeList; 496 DenseMap<Function *, FunctionType *> FunctionTypes; 497 BitcodeReaderValueList ValueList; 498 Optional<MetadataLoader> MDLoader; 499 std::vector<Comdat *> ComdatList; 500 SmallVector<Instruction *, 64> InstructionList; 501 502 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 503 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 504 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 506 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 507 508 /// The set of attributes by index. Index zero in the file is for null, and 509 /// is thus not represented here. As such all indices are off by one. 510 std::vector<AttributeList> MAttributes; 511 512 /// The set of attribute groups. 513 std::map<unsigned, AttributeList> MAttributeGroups; 514 515 /// While parsing a function body, this is a list of the basic blocks for the 516 /// function. 517 std::vector<BasicBlock*> FunctionBBs; 518 519 // When reading the module header, this list is populated with functions that 520 // have bodies later in the file. 521 std::vector<Function*> FunctionsWithBodies; 522 523 // When intrinsic functions are encountered which require upgrading they are 524 // stored here with their replacement function. 525 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 526 UpdatedIntrinsicMap UpgradedIntrinsics; 527 // Intrinsics which were remangled because of types rename 528 UpdatedIntrinsicMap RemangledIntrinsics; 529 530 // Several operations happen after the module header has been read, but 531 // before function bodies are processed. This keeps track of whether 532 // we've done this yet. 533 bool SeenFirstFunctionBody = false; 534 535 /// When function bodies are initially scanned, this map contains info about 536 /// where to find deferred function body in the stream. 537 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 538 539 /// When Metadata block is initially scanned when parsing the module, we may 540 /// choose to defer parsing of the metadata. This vector contains info about 541 /// which Metadata blocks are deferred. 542 std::vector<uint64_t> DeferredMetadataInfo; 543 544 /// These are basic blocks forward-referenced by block addresses. They are 545 /// inserted lazily into functions when they're loaded. The basic block ID is 546 /// its index into the vector. 547 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 548 std::deque<Function *> BasicBlockFwdRefQueue; 549 550 /// Indicates that we are using a new encoding for instruction operands where 551 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 552 /// instruction number, for a more compact encoding. Some instruction 553 /// operands are not relative to the instruction ID: basic block numbers, and 554 /// types. Once the old style function blocks have been phased out, we would 555 /// not need this flag. 556 bool UseRelativeIDs = false; 557 558 /// True if all functions will be materialized, negating the need to process 559 /// (e.g.) blockaddress forward references. 560 bool WillMaterializeAllForwardRefs = false; 561 562 bool StripDebugInfo = false; 563 TBAAVerifier TBAAVerifyHelper; 564 565 std::vector<std::string> BundleTags; 566 SmallVector<SyncScope::ID, 8> SSIDs; 567 568 public: 569 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 570 StringRef ProducerIdentification, LLVMContext &Context); 571 572 Error materializeForwardReferencedFunctions(); 573 574 Error materialize(GlobalValue *GV) override; 575 Error materializeModule() override; 576 std::vector<StructType *> getIdentifiedStructTypes() const override; 577 578 /// Main interface to parsing a bitcode buffer. 579 /// \returns true if an error occurred. 580 Error parseBitcodeInto( 581 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 582 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 /// Map all pointer types within \param Ty to the opaque pointer 597 /// type in the same address space if opaque pointers are being 598 /// used, otherwise nop. This converts a bitcode-reader internal 599 /// type into one suitable for use in a Value. 600 Type *flattenPointerTypes(Type *Ty) { 601 return Ty; 602 } 603 604 /// Given a fully structured pointer type (i.e. not opaque), return 605 /// the flattened form of its element, suitable for use in a Value. 606 Type *getPointerElementFlatType(Type *Ty) { 607 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 608 } 609 610 /// Given a fully structured pointer type, get its element type in 611 /// both fully structured form, and flattened form suitable for use 612 /// in a Value. 613 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 614 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 615 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 616 } 617 618 /// Return the flattened type (suitable for use in a Value) 619 /// specified by the given \param ID . 620 Type *getTypeByID(unsigned ID) { 621 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 622 } 623 624 /// Return the fully structured (bitcode-reader internal) type 625 /// corresponding to the given \param ID . 626 Type *getFullyStructuredTypeByID(unsigned ID); 627 628 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 629 if (Ty && Ty->isMetadataTy()) 630 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 631 return ValueList.getValueFwdRef(ID, Ty, FullTy); 632 } 633 634 Metadata *getFnMetadataByID(unsigned ID) { 635 return MDLoader->getMetadataFwdRefOrLoad(ID); 636 } 637 638 BasicBlock *getBasicBlock(unsigned ID) const { 639 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 640 return FunctionBBs[ID]; 641 } 642 643 AttributeList getAttributes(unsigned i) const { 644 if (i-1 < MAttributes.size()) 645 return MAttributes[i-1]; 646 return AttributeList(); 647 } 648 649 /// Read a value/type pair out of the specified record from slot 'Slot'. 650 /// Increment Slot past the number of slots used in the record. Return true on 651 /// failure. 652 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 653 unsigned InstNum, Value *&ResVal, 654 Type **FullTy = nullptr) { 655 if (Slot == Record.size()) return true; 656 unsigned ValNo = (unsigned)Record[Slot++]; 657 // Adjust the ValNo, if it was encoded relative to the InstNum. 658 if (UseRelativeIDs) 659 ValNo = InstNum - ValNo; 660 if (ValNo < InstNum) { 661 // If this is not a forward reference, just return the value we already 662 // have. 663 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 664 return ResVal == nullptr; 665 } 666 if (Slot == Record.size()) 667 return true; 668 669 unsigned TypeNo = (unsigned)Record[Slot++]; 670 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 671 if (FullTy) 672 *FullTy = getFullyStructuredTypeByID(TypeNo); 673 return ResVal == nullptr; 674 } 675 676 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 677 /// past the number of slots used by the value in the record. Return true if 678 /// there is an error. 679 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 680 unsigned InstNum, Type *Ty, Value *&ResVal) { 681 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 682 return true; 683 // All values currently take a single record slot. 684 ++Slot; 685 return false; 686 } 687 688 /// Like popValue, but does not increment the Slot number. 689 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 690 unsigned InstNum, Type *Ty, Value *&ResVal) { 691 ResVal = getValue(Record, Slot, InstNum, Ty); 692 return ResVal == nullptr; 693 } 694 695 /// Version of getValue that returns ResVal directly, or 0 if there is an 696 /// error. 697 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 698 unsigned InstNum, Type *Ty) { 699 if (Slot == Record.size()) return nullptr; 700 unsigned ValNo = (unsigned)Record[Slot]; 701 // Adjust the ValNo, if it was encoded relative to the InstNum. 702 if (UseRelativeIDs) 703 ValNo = InstNum - ValNo; 704 return getFnValueByID(ValNo, Ty); 705 } 706 707 /// Like getValue, but decodes signed VBRs. 708 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 709 unsigned InstNum, Type *Ty) { 710 if (Slot == Record.size()) return nullptr; 711 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 712 // Adjust the ValNo, if it was encoded relative to the InstNum. 713 if (UseRelativeIDs) 714 ValNo = InstNum - ValNo; 715 return getFnValueByID(ValNo, Ty); 716 } 717 718 /// Upgrades old-style typeless byval or sret attributes by adding the 719 /// corresponding argument's pointee type. 720 void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 721 722 /// Converts alignment exponent (i.e. power of two (or zero)) to the 723 /// corresponding alignment to use. If alignment is too large, returns 724 /// a corresponding error code. 725 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 726 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 727 Error parseModule( 728 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 729 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 730 731 Error parseComdatRecord(ArrayRef<uint64_t> Record); 732 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 733 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 734 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 735 ArrayRef<uint64_t> Record); 736 737 Error parseAttributeBlock(); 738 Error parseAttributeGroupBlock(); 739 Error parseTypeTable(); 740 Error parseTypeTableBody(); 741 Error parseOperandBundleTags(); 742 Error parseSyncScopeNames(); 743 744 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 745 unsigned NameIndex, Triple &TT); 746 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 747 ArrayRef<uint64_t> Record); 748 Error parseValueSymbolTable(uint64_t Offset = 0); 749 Error parseGlobalValueSymbolTable(); 750 Error parseConstants(); 751 Error rememberAndSkipFunctionBodies(); 752 Error rememberAndSkipFunctionBody(); 753 /// Save the positions of the Metadata blocks and skip parsing the blocks. 754 Error rememberAndSkipMetadata(); 755 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 756 Error parseFunctionBody(Function *F); 757 Error globalCleanup(); 758 Error resolveGlobalAndIndirectSymbolInits(); 759 Error parseUseLists(); 760 Error findFunctionInStream( 761 Function *F, 762 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 763 764 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 765 }; 766 767 /// Class to manage reading and parsing function summary index bitcode 768 /// files/sections. 769 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 770 /// The module index built during parsing. 771 ModuleSummaryIndex &TheIndex; 772 773 /// Indicates whether we have encountered a global value summary section 774 /// yet during parsing. 775 bool SeenGlobalValSummary = false; 776 777 /// Indicates whether we have already parsed the VST, used for error checking. 778 bool SeenValueSymbolTable = false; 779 780 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 781 /// Used to enable on-demand parsing of the VST. 782 uint64_t VSTOffset = 0; 783 784 // Map to save ValueId to ValueInfo association that was recorded in the 785 // ValueSymbolTable. It is used after the VST is parsed to convert 786 // call graph edges read from the function summary from referencing 787 // callees by their ValueId to using the ValueInfo instead, which is how 788 // they are recorded in the summary index being built. 789 // We save a GUID which refers to the same global as the ValueInfo, but 790 // ignoring the linkage, i.e. for values other than local linkage they are 791 // identical. 792 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 793 ValueIdToValueInfoMap; 794 795 /// Map populated during module path string table parsing, from the 796 /// module ID to a string reference owned by the index's module 797 /// path string table, used to correlate with combined index 798 /// summary records. 799 DenseMap<uint64_t, StringRef> ModuleIdMap; 800 801 /// Original source file name recorded in a bitcode record. 802 std::string SourceFileName; 803 804 /// The string identifier given to this module by the client, normally the 805 /// path to the bitcode file. 806 StringRef ModulePath; 807 808 /// For per-module summary indexes, the unique numerical identifier given to 809 /// this module by the client. 810 unsigned ModuleId; 811 812 public: 813 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 814 ModuleSummaryIndex &TheIndex, 815 StringRef ModulePath, unsigned ModuleId); 816 817 Error parseModule(); 818 819 private: 820 void setValueGUID(uint64_t ValueID, StringRef ValueName, 821 GlobalValue::LinkageTypes Linkage, 822 StringRef SourceFileName); 823 Error parseValueSymbolTable( 824 uint64_t Offset, 825 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 826 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 827 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 828 bool IsOldProfileFormat, 829 bool HasProfile, 830 bool HasRelBF); 831 Error parseEntireSummary(unsigned ID); 832 Error parseModuleStringTable(); 833 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 834 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 835 TypeIdCompatibleVtableInfo &TypeId); 836 std::vector<FunctionSummary::ParamAccess> 837 parseParamAccesses(ArrayRef<uint64_t> Record); 838 839 std::pair<ValueInfo, GlobalValue::GUID> 840 getValueInfoFromValueId(unsigned ValueId); 841 842 void addThisModule(); 843 ModuleSummaryIndex::ModuleInfo *getThisModule(); 844 }; 845 846 } // end anonymous namespace 847 848 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 849 Error Err) { 850 if (Err) { 851 std::error_code EC; 852 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 853 EC = EIB.convertToErrorCode(); 854 Ctx.emitError(EIB.message()); 855 }); 856 return EC; 857 } 858 return std::error_code(); 859 } 860 861 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 862 StringRef ProducerIdentification, 863 LLVMContext &Context) 864 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 865 ValueList(Context, Stream.SizeInBytes()) { 866 this->ProducerIdentification = std::string(ProducerIdentification); 867 } 868 869 Error BitcodeReader::materializeForwardReferencedFunctions() { 870 if (WillMaterializeAllForwardRefs) 871 return Error::success(); 872 873 // Prevent recursion. 874 WillMaterializeAllForwardRefs = true; 875 876 while (!BasicBlockFwdRefQueue.empty()) { 877 Function *F = BasicBlockFwdRefQueue.front(); 878 BasicBlockFwdRefQueue.pop_front(); 879 assert(F && "Expected valid function"); 880 if (!BasicBlockFwdRefs.count(F)) 881 // Already materialized. 882 continue; 883 884 // Check for a function that isn't materializable to prevent an infinite 885 // loop. When parsing a blockaddress stored in a global variable, there 886 // isn't a trivial way to check if a function will have a body without a 887 // linear search through FunctionsWithBodies, so just check it here. 888 if (!F->isMaterializable()) 889 return error("Never resolved function from blockaddress"); 890 891 // Try to materialize F. 892 if (Error Err = materialize(F)) 893 return Err; 894 } 895 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 896 897 // Reset state. 898 WillMaterializeAllForwardRefs = false; 899 return Error::success(); 900 } 901 902 //===----------------------------------------------------------------------===// 903 // Helper functions to implement forward reference resolution, etc. 904 //===----------------------------------------------------------------------===// 905 906 static bool hasImplicitComdat(size_t Val) { 907 switch (Val) { 908 default: 909 return false; 910 case 1: // Old WeakAnyLinkage 911 case 4: // Old LinkOnceAnyLinkage 912 case 10: // Old WeakODRLinkage 913 case 11: // Old LinkOnceODRLinkage 914 return true; 915 } 916 } 917 918 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 919 switch (Val) { 920 default: // Map unknown/new linkages to external 921 case 0: 922 return GlobalValue::ExternalLinkage; 923 case 2: 924 return GlobalValue::AppendingLinkage; 925 case 3: 926 return GlobalValue::InternalLinkage; 927 case 5: 928 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 929 case 6: 930 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 931 case 7: 932 return GlobalValue::ExternalWeakLinkage; 933 case 8: 934 return GlobalValue::CommonLinkage; 935 case 9: 936 return GlobalValue::PrivateLinkage; 937 case 12: 938 return GlobalValue::AvailableExternallyLinkage; 939 case 13: 940 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 941 case 14: 942 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 943 case 15: 944 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 945 case 1: // Old value with implicit comdat. 946 case 16: 947 return GlobalValue::WeakAnyLinkage; 948 case 10: // Old value with implicit comdat. 949 case 17: 950 return GlobalValue::WeakODRLinkage; 951 case 4: // Old value with implicit comdat. 952 case 18: 953 return GlobalValue::LinkOnceAnyLinkage; 954 case 11: // Old value with implicit comdat. 955 case 19: 956 return GlobalValue::LinkOnceODRLinkage; 957 } 958 } 959 960 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 961 FunctionSummary::FFlags Flags; 962 Flags.ReadNone = RawFlags & 0x1; 963 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 964 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 965 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 966 Flags.NoInline = (RawFlags >> 4) & 0x1; 967 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 968 return Flags; 969 } 970 971 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 972 // 973 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 974 // visibility: [8, 10). 975 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 976 uint64_t Version) { 977 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 978 // like getDecodedLinkage() above. Any future change to the linkage enum and 979 // to getDecodedLinkage() will need to be taken into account here as above. 980 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 981 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 982 RawFlags = RawFlags >> 4; 983 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 984 // The Live flag wasn't introduced until version 3. For dead stripping 985 // to work correctly on earlier versions, we must conservatively treat all 986 // values as live. 987 bool Live = (RawFlags & 0x2) || Version < 3; 988 bool Local = (RawFlags & 0x4); 989 bool AutoHide = (RawFlags & 0x8); 990 991 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 992 Live, Local, AutoHide); 993 } 994 995 // Decode the flags for GlobalVariable in the summary 996 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 997 return GlobalVarSummary::GVarFlags( 998 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 999 (RawFlags & 0x4) ? true : false, 1000 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 1001 } 1002 1003 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 1004 switch (Val) { 1005 default: // Map unknown visibilities to default. 1006 case 0: return GlobalValue::DefaultVisibility; 1007 case 1: return GlobalValue::HiddenVisibility; 1008 case 2: return GlobalValue::ProtectedVisibility; 1009 } 1010 } 1011 1012 static GlobalValue::DLLStorageClassTypes 1013 getDecodedDLLStorageClass(unsigned Val) { 1014 switch (Val) { 1015 default: // Map unknown values to default. 1016 case 0: return GlobalValue::DefaultStorageClass; 1017 case 1: return GlobalValue::DLLImportStorageClass; 1018 case 2: return GlobalValue::DLLExportStorageClass; 1019 } 1020 } 1021 1022 static bool getDecodedDSOLocal(unsigned Val) { 1023 switch(Val) { 1024 default: // Map unknown values to preemptable. 1025 case 0: return false; 1026 case 1: return true; 1027 } 1028 } 1029 1030 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1031 switch (Val) { 1032 case 0: return GlobalVariable::NotThreadLocal; 1033 default: // Map unknown non-zero value to general dynamic. 1034 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1035 case 2: return GlobalVariable::LocalDynamicTLSModel; 1036 case 3: return GlobalVariable::InitialExecTLSModel; 1037 case 4: return GlobalVariable::LocalExecTLSModel; 1038 } 1039 } 1040 1041 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1042 switch (Val) { 1043 default: // Map unknown to UnnamedAddr::None. 1044 case 0: return GlobalVariable::UnnamedAddr::None; 1045 case 1: return GlobalVariable::UnnamedAddr::Global; 1046 case 2: return GlobalVariable::UnnamedAddr::Local; 1047 } 1048 } 1049 1050 static int getDecodedCastOpcode(unsigned Val) { 1051 switch (Val) { 1052 default: return -1; 1053 case bitc::CAST_TRUNC : return Instruction::Trunc; 1054 case bitc::CAST_ZEXT : return Instruction::ZExt; 1055 case bitc::CAST_SEXT : return Instruction::SExt; 1056 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1057 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1058 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1059 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1060 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1061 case bitc::CAST_FPEXT : return Instruction::FPExt; 1062 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1063 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1064 case bitc::CAST_BITCAST : return Instruction::BitCast; 1065 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1066 } 1067 } 1068 1069 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1070 bool IsFP = Ty->isFPOrFPVectorTy(); 1071 // UnOps are only valid for int/fp or vector of int/fp types 1072 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1073 return -1; 1074 1075 switch (Val) { 1076 default: 1077 return -1; 1078 case bitc::UNOP_FNEG: 1079 return IsFP ? Instruction::FNeg : -1; 1080 } 1081 } 1082 1083 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1084 bool IsFP = Ty->isFPOrFPVectorTy(); 1085 // BinOps are only valid for int/fp or vector of int/fp types 1086 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1087 return -1; 1088 1089 switch (Val) { 1090 default: 1091 return -1; 1092 case bitc::BINOP_ADD: 1093 return IsFP ? Instruction::FAdd : Instruction::Add; 1094 case bitc::BINOP_SUB: 1095 return IsFP ? Instruction::FSub : Instruction::Sub; 1096 case bitc::BINOP_MUL: 1097 return IsFP ? Instruction::FMul : Instruction::Mul; 1098 case bitc::BINOP_UDIV: 1099 return IsFP ? -1 : Instruction::UDiv; 1100 case bitc::BINOP_SDIV: 1101 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1102 case bitc::BINOP_UREM: 1103 return IsFP ? -1 : Instruction::URem; 1104 case bitc::BINOP_SREM: 1105 return IsFP ? Instruction::FRem : Instruction::SRem; 1106 case bitc::BINOP_SHL: 1107 return IsFP ? -1 : Instruction::Shl; 1108 case bitc::BINOP_LSHR: 1109 return IsFP ? -1 : Instruction::LShr; 1110 case bitc::BINOP_ASHR: 1111 return IsFP ? -1 : Instruction::AShr; 1112 case bitc::BINOP_AND: 1113 return IsFP ? -1 : Instruction::And; 1114 case bitc::BINOP_OR: 1115 return IsFP ? -1 : Instruction::Or; 1116 case bitc::BINOP_XOR: 1117 return IsFP ? -1 : Instruction::Xor; 1118 } 1119 } 1120 1121 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1122 switch (Val) { 1123 default: return AtomicRMWInst::BAD_BINOP; 1124 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1125 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1126 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1127 case bitc::RMW_AND: return AtomicRMWInst::And; 1128 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1129 case bitc::RMW_OR: return AtomicRMWInst::Or; 1130 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1131 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1132 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1133 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1134 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1135 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1136 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1137 } 1138 } 1139 1140 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1141 switch (Val) { 1142 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1143 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1144 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1145 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1146 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1147 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1148 default: // Map unknown orderings to sequentially-consistent. 1149 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1150 } 1151 } 1152 1153 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1154 switch (Val) { 1155 default: // Map unknown selection kinds to any. 1156 case bitc::COMDAT_SELECTION_KIND_ANY: 1157 return Comdat::Any; 1158 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1159 return Comdat::ExactMatch; 1160 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1161 return Comdat::Largest; 1162 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1163 return Comdat::NoDuplicates; 1164 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1165 return Comdat::SameSize; 1166 } 1167 } 1168 1169 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1170 FastMathFlags FMF; 1171 if (0 != (Val & bitc::UnsafeAlgebra)) 1172 FMF.setFast(); 1173 if (0 != (Val & bitc::AllowReassoc)) 1174 FMF.setAllowReassoc(); 1175 if (0 != (Val & bitc::NoNaNs)) 1176 FMF.setNoNaNs(); 1177 if (0 != (Val & bitc::NoInfs)) 1178 FMF.setNoInfs(); 1179 if (0 != (Val & bitc::NoSignedZeros)) 1180 FMF.setNoSignedZeros(); 1181 if (0 != (Val & bitc::AllowReciprocal)) 1182 FMF.setAllowReciprocal(); 1183 if (0 != (Val & bitc::AllowContract)) 1184 FMF.setAllowContract(true); 1185 if (0 != (Val & bitc::ApproxFunc)) 1186 FMF.setApproxFunc(); 1187 return FMF; 1188 } 1189 1190 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1191 switch (Val) { 1192 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1193 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1194 } 1195 } 1196 1197 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1198 // The type table size is always specified correctly. 1199 if (ID >= TypeList.size()) 1200 return nullptr; 1201 1202 if (Type *Ty = TypeList[ID]) 1203 return Ty; 1204 1205 // If we have a forward reference, the only possible case is when it is to a 1206 // named struct. Just create a placeholder for now. 1207 return TypeList[ID] = createIdentifiedStructType(Context); 1208 } 1209 1210 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1211 StringRef Name) { 1212 auto *Ret = StructType::create(Context, Name); 1213 IdentifiedStructTypes.push_back(Ret); 1214 return Ret; 1215 } 1216 1217 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1218 auto *Ret = StructType::create(Context); 1219 IdentifiedStructTypes.push_back(Ret); 1220 return Ret; 1221 } 1222 1223 //===----------------------------------------------------------------------===// 1224 // Functions for parsing blocks from the bitcode file 1225 //===----------------------------------------------------------------------===// 1226 1227 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1228 switch (Val) { 1229 case Attribute::EndAttrKinds: 1230 case Attribute::EmptyKey: 1231 case Attribute::TombstoneKey: 1232 llvm_unreachable("Synthetic enumerators which should never get here"); 1233 1234 case Attribute::None: return 0; 1235 case Attribute::ZExt: return 1 << 0; 1236 case Attribute::SExt: return 1 << 1; 1237 case Attribute::NoReturn: return 1 << 2; 1238 case Attribute::InReg: return 1 << 3; 1239 case Attribute::StructRet: return 1 << 4; 1240 case Attribute::NoUnwind: return 1 << 5; 1241 case Attribute::NoAlias: return 1 << 6; 1242 case Attribute::ByVal: return 1 << 7; 1243 case Attribute::Nest: return 1 << 8; 1244 case Attribute::ReadNone: return 1 << 9; 1245 case Attribute::ReadOnly: return 1 << 10; 1246 case Attribute::NoInline: return 1 << 11; 1247 case Attribute::AlwaysInline: return 1 << 12; 1248 case Attribute::OptimizeForSize: return 1 << 13; 1249 case Attribute::StackProtect: return 1 << 14; 1250 case Attribute::StackProtectReq: return 1 << 15; 1251 case Attribute::Alignment: return 31 << 16; 1252 case Attribute::NoCapture: return 1 << 21; 1253 case Attribute::NoRedZone: return 1 << 22; 1254 case Attribute::NoImplicitFloat: return 1 << 23; 1255 case Attribute::Naked: return 1 << 24; 1256 case Attribute::InlineHint: return 1 << 25; 1257 case Attribute::StackAlignment: return 7 << 26; 1258 case Attribute::ReturnsTwice: return 1 << 29; 1259 case Attribute::UWTable: return 1 << 30; 1260 case Attribute::NonLazyBind: return 1U << 31; 1261 case Attribute::SanitizeAddress: return 1ULL << 32; 1262 case Attribute::MinSize: return 1ULL << 33; 1263 case Attribute::NoDuplicate: return 1ULL << 34; 1264 case Attribute::StackProtectStrong: return 1ULL << 35; 1265 case Attribute::SanitizeThread: return 1ULL << 36; 1266 case Attribute::SanitizeMemory: return 1ULL << 37; 1267 case Attribute::NoBuiltin: return 1ULL << 38; 1268 case Attribute::Returned: return 1ULL << 39; 1269 case Attribute::Cold: return 1ULL << 40; 1270 case Attribute::Builtin: return 1ULL << 41; 1271 case Attribute::OptimizeNone: return 1ULL << 42; 1272 case Attribute::InAlloca: return 1ULL << 43; 1273 case Attribute::NonNull: return 1ULL << 44; 1274 case Attribute::JumpTable: return 1ULL << 45; 1275 case Attribute::Convergent: return 1ULL << 46; 1276 case Attribute::SafeStack: return 1ULL << 47; 1277 case Attribute::NoRecurse: return 1ULL << 48; 1278 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1279 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1280 case Attribute::SwiftSelf: return 1ULL << 51; 1281 case Attribute::SwiftError: return 1ULL << 52; 1282 case Attribute::WriteOnly: return 1ULL << 53; 1283 case Attribute::Speculatable: return 1ULL << 54; 1284 case Attribute::StrictFP: return 1ULL << 55; 1285 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1286 case Attribute::NoCfCheck: return 1ULL << 57; 1287 case Attribute::OptForFuzzing: return 1ULL << 58; 1288 case Attribute::ShadowCallStack: return 1ULL << 59; 1289 case Attribute::SpeculativeLoadHardening: 1290 return 1ULL << 60; 1291 case Attribute::ImmArg: 1292 return 1ULL << 61; 1293 case Attribute::WillReturn: 1294 return 1ULL << 62; 1295 case Attribute::NoFree: 1296 return 1ULL << 63; 1297 default: 1298 // Other attributes are not supported in the raw format, 1299 // as we ran out of space. 1300 return 0; 1301 } 1302 llvm_unreachable("Unsupported attribute type"); 1303 } 1304 1305 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1306 if (!Val) return; 1307 1308 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1309 I = Attribute::AttrKind(I + 1)) { 1310 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1311 if (I == Attribute::Alignment) 1312 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1313 else if (I == Attribute::StackAlignment) 1314 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1315 else 1316 B.addAttribute(I); 1317 } 1318 } 1319 } 1320 1321 /// This fills an AttrBuilder object with the LLVM attributes that have 1322 /// been decoded from the given integer. This function must stay in sync with 1323 /// 'encodeLLVMAttributesForBitcode'. 1324 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1325 uint64_t EncodedAttrs) { 1326 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1327 // the bits above 31 down by 11 bits. 1328 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1329 assert((!Alignment || isPowerOf2_32(Alignment)) && 1330 "Alignment must be a power of two."); 1331 1332 if (Alignment) 1333 B.addAlignmentAttr(Alignment); 1334 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1335 (EncodedAttrs & 0xffff)); 1336 } 1337 1338 Error BitcodeReader::parseAttributeBlock() { 1339 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1340 return Err; 1341 1342 if (!MAttributes.empty()) 1343 return error("Invalid multiple blocks"); 1344 1345 SmallVector<uint64_t, 64> Record; 1346 1347 SmallVector<AttributeList, 8> Attrs; 1348 1349 // Read all the records. 1350 while (true) { 1351 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1352 if (!MaybeEntry) 1353 return MaybeEntry.takeError(); 1354 BitstreamEntry Entry = MaybeEntry.get(); 1355 1356 switch (Entry.Kind) { 1357 case BitstreamEntry::SubBlock: // Handled for us already. 1358 case BitstreamEntry::Error: 1359 return error("Malformed block"); 1360 case BitstreamEntry::EndBlock: 1361 return Error::success(); 1362 case BitstreamEntry::Record: 1363 // The interesting case. 1364 break; 1365 } 1366 1367 // Read a record. 1368 Record.clear(); 1369 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1370 if (!MaybeRecord) 1371 return MaybeRecord.takeError(); 1372 switch (MaybeRecord.get()) { 1373 default: // Default behavior: ignore. 1374 break; 1375 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1376 // Deprecated, but still needed to read old bitcode files. 1377 if (Record.size() & 1) 1378 return error("Invalid record"); 1379 1380 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1381 AttrBuilder B; 1382 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1383 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1384 } 1385 1386 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1387 Attrs.clear(); 1388 break; 1389 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1390 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1391 Attrs.push_back(MAttributeGroups[Record[i]]); 1392 1393 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1394 Attrs.clear(); 1395 break; 1396 } 1397 } 1398 } 1399 1400 // Returns Attribute::None on unrecognized codes. 1401 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1402 switch (Code) { 1403 default: 1404 return Attribute::None; 1405 case bitc::ATTR_KIND_ALIGNMENT: 1406 return Attribute::Alignment; 1407 case bitc::ATTR_KIND_ALWAYS_INLINE: 1408 return Attribute::AlwaysInline; 1409 case bitc::ATTR_KIND_ARGMEMONLY: 1410 return Attribute::ArgMemOnly; 1411 case bitc::ATTR_KIND_BUILTIN: 1412 return Attribute::Builtin; 1413 case bitc::ATTR_KIND_BY_VAL: 1414 return Attribute::ByVal; 1415 case bitc::ATTR_KIND_IN_ALLOCA: 1416 return Attribute::InAlloca; 1417 case bitc::ATTR_KIND_COLD: 1418 return Attribute::Cold; 1419 case bitc::ATTR_KIND_CONVERGENT: 1420 return Attribute::Convergent; 1421 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1422 return Attribute::InaccessibleMemOnly; 1423 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1424 return Attribute::InaccessibleMemOrArgMemOnly; 1425 case bitc::ATTR_KIND_INLINE_HINT: 1426 return Attribute::InlineHint; 1427 case bitc::ATTR_KIND_IN_REG: 1428 return Attribute::InReg; 1429 case bitc::ATTR_KIND_JUMP_TABLE: 1430 return Attribute::JumpTable; 1431 case bitc::ATTR_KIND_MIN_SIZE: 1432 return Attribute::MinSize; 1433 case bitc::ATTR_KIND_NAKED: 1434 return Attribute::Naked; 1435 case bitc::ATTR_KIND_NEST: 1436 return Attribute::Nest; 1437 case bitc::ATTR_KIND_NO_ALIAS: 1438 return Attribute::NoAlias; 1439 case bitc::ATTR_KIND_NO_BUILTIN: 1440 return Attribute::NoBuiltin; 1441 case bitc::ATTR_KIND_NO_CALLBACK: 1442 return Attribute::NoCallback; 1443 case bitc::ATTR_KIND_NO_CAPTURE: 1444 return Attribute::NoCapture; 1445 case bitc::ATTR_KIND_NO_DUPLICATE: 1446 return Attribute::NoDuplicate; 1447 case bitc::ATTR_KIND_NOFREE: 1448 return Attribute::NoFree; 1449 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1450 return Attribute::NoImplicitFloat; 1451 case bitc::ATTR_KIND_NO_INLINE: 1452 return Attribute::NoInline; 1453 case bitc::ATTR_KIND_NO_RECURSE: 1454 return Attribute::NoRecurse; 1455 case bitc::ATTR_KIND_NO_MERGE: 1456 return Attribute::NoMerge; 1457 case bitc::ATTR_KIND_NON_LAZY_BIND: 1458 return Attribute::NonLazyBind; 1459 case bitc::ATTR_KIND_NON_NULL: 1460 return Attribute::NonNull; 1461 case bitc::ATTR_KIND_DEREFERENCEABLE: 1462 return Attribute::Dereferenceable; 1463 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1464 return Attribute::DereferenceableOrNull; 1465 case bitc::ATTR_KIND_ALLOC_SIZE: 1466 return Attribute::AllocSize; 1467 case bitc::ATTR_KIND_NO_RED_ZONE: 1468 return Attribute::NoRedZone; 1469 case bitc::ATTR_KIND_NO_RETURN: 1470 return Attribute::NoReturn; 1471 case bitc::ATTR_KIND_NOSYNC: 1472 return Attribute::NoSync; 1473 case bitc::ATTR_KIND_NOCF_CHECK: 1474 return Attribute::NoCfCheck; 1475 case bitc::ATTR_KIND_NO_UNWIND: 1476 return Attribute::NoUnwind; 1477 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1478 return Attribute::NullPointerIsValid; 1479 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1480 return Attribute::OptForFuzzing; 1481 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1482 return Attribute::OptimizeForSize; 1483 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1484 return Attribute::OptimizeNone; 1485 case bitc::ATTR_KIND_READ_NONE: 1486 return Attribute::ReadNone; 1487 case bitc::ATTR_KIND_READ_ONLY: 1488 return Attribute::ReadOnly; 1489 case bitc::ATTR_KIND_RETURNED: 1490 return Attribute::Returned; 1491 case bitc::ATTR_KIND_RETURNS_TWICE: 1492 return Attribute::ReturnsTwice; 1493 case bitc::ATTR_KIND_S_EXT: 1494 return Attribute::SExt; 1495 case bitc::ATTR_KIND_SPECULATABLE: 1496 return Attribute::Speculatable; 1497 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1498 return Attribute::StackAlignment; 1499 case bitc::ATTR_KIND_STACK_PROTECT: 1500 return Attribute::StackProtect; 1501 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1502 return Attribute::StackProtectReq; 1503 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1504 return Attribute::StackProtectStrong; 1505 case bitc::ATTR_KIND_SAFESTACK: 1506 return Attribute::SafeStack; 1507 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1508 return Attribute::ShadowCallStack; 1509 case bitc::ATTR_KIND_STRICT_FP: 1510 return Attribute::StrictFP; 1511 case bitc::ATTR_KIND_STRUCT_RET: 1512 return Attribute::StructRet; 1513 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1514 return Attribute::SanitizeAddress; 1515 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1516 return Attribute::SanitizeHWAddress; 1517 case bitc::ATTR_KIND_SANITIZE_THREAD: 1518 return Attribute::SanitizeThread; 1519 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1520 return Attribute::SanitizeMemory; 1521 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1522 return Attribute::SpeculativeLoadHardening; 1523 case bitc::ATTR_KIND_SWIFT_ERROR: 1524 return Attribute::SwiftError; 1525 case bitc::ATTR_KIND_SWIFT_SELF: 1526 return Attribute::SwiftSelf; 1527 case bitc::ATTR_KIND_UW_TABLE: 1528 return Attribute::UWTable; 1529 case bitc::ATTR_KIND_VSCALE_RANGE: 1530 return Attribute::VScaleRange; 1531 case bitc::ATTR_KIND_WILLRETURN: 1532 return Attribute::WillReturn; 1533 case bitc::ATTR_KIND_WRITEONLY: 1534 return Attribute::WriteOnly; 1535 case bitc::ATTR_KIND_Z_EXT: 1536 return Attribute::ZExt; 1537 case bitc::ATTR_KIND_IMMARG: 1538 return Attribute::ImmArg; 1539 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1540 return Attribute::SanitizeMemTag; 1541 case bitc::ATTR_KIND_PREALLOCATED: 1542 return Attribute::Preallocated; 1543 case bitc::ATTR_KIND_NOUNDEF: 1544 return Attribute::NoUndef; 1545 case bitc::ATTR_KIND_BYREF: 1546 return Attribute::ByRef; 1547 case bitc::ATTR_KIND_MUSTPROGRESS: 1548 return Attribute::MustProgress; 1549 case bitc::ATTR_KIND_HOT: 1550 return Attribute::Hot; 1551 } 1552 } 1553 1554 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1555 MaybeAlign &Alignment) { 1556 // Note: Alignment in bitcode files is incremented by 1, so that zero 1557 // can be used for default alignment. 1558 if (Exponent > Value::MaxAlignmentExponent + 1) 1559 return error("Invalid alignment value"); 1560 Alignment = decodeMaybeAlign(Exponent); 1561 return Error::success(); 1562 } 1563 1564 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1565 *Kind = getAttrFromCode(Code); 1566 if (*Kind == Attribute::None) 1567 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1568 return Error::success(); 1569 } 1570 1571 Error BitcodeReader::parseAttributeGroupBlock() { 1572 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1573 return Err; 1574 1575 if (!MAttributeGroups.empty()) 1576 return error("Invalid multiple blocks"); 1577 1578 SmallVector<uint64_t, 64> Record; 1579 1580 // Read all the records. 1581 while (true) { 1582 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1583 if (!MaybeEntry) 1584 return MaybeEntry.takeError(); 1585 BitstreamEntry Entry = MaybeEntry.get(); 1586 1587 switch (Entry.Kind) { 1588 case BitstreamEntry::SubBlock: // Handled for us already. 1589 case BitstreamEntry::Error: 1590 return error("Malformed block"); 1591 case BitstreamEntry::EndBlock: 1592 return Error::success(); 1593 case BitstreamEntry::Record: 1594 // The interesting case. 1595 break; 1596 } 1597 1598 // Read a record. 1599 Record.clear(); 1600 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1601 if (!MaybeRecord) 1602 return MaybeRecord.takeError(); 1603 switch (MaybeRecord.get()) { 1604 default: // Default behavior: ignore. 1605 break; 1606 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1607 if (Record.size() < 3) 1608 return error("Invalid record"); 1609 1610 uint64_t GrpID = Record[0]; 1611 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1612 1613 AttrBuilder B; 1614 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1615 if (Record[i] == 0) { // Enum attribute 1616 Attribute::AttrKind Kind; 1617 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1618 return Err; 1619 1620 // Upgrade old-style byval attribute to one with a type, even if it's 1621 // nullptr. We will have to insert the real type when we associate 1622 // this AttributeList with a function. 1623 if (Kind == Attribute::ByVal) 1624 B.addByValAttr(nullptr); 1625 else if (Kind == Attribute::StructRet) 1626 B.addStructRetAttr(nullptr); 1627 else if (Kind == Attribute::InAlloca) 1628 B.addInAllocaAttr(nullptr); 1629 1630 B.addAttribute(Kind); 1631 } else if (Record[i] == 1) { // Integer attribute 1632 Attribute::AttrKind Kind; 1633 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1634 return Err; 1635 if (Kind == Attribute::Alignment) 1636 B.addAlignmentAttr(Record[++i]); 1637 else if (Kind == Attribute::StackAlignment) 1638 B.addStackAlignmentAttr(Record[++i]); 1639 else if (Kind == Attribute::Dereferenceable) 1640 B.addDereferenceableAttr(Record[++i]); 1641 else if (Kind == Attribute::DereferenceableOrNull) 1642 B.addDereferenceableOrNullAttr(Record[++i]); 1643 else if (Kind == Attribute::AllocSize) 1644 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1645 else if (Kind == Attribute::VScaleRange) 1646 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1647 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1648 bool HasValue = (Record[i++] == 4); 1649 SmallString<64> KindStr; 1650 SmallString<64> ValStr; 1651 1652 while (Record[i] != 0 && i != e) 1653 KindStr += Record[i++]; 1654 assert(Record[i] == 0 && "Kind string not null terminated"); 1655 1656 if (HasValue) { 1657 // Has a value associated with it. 1658 ++i; // Skip the '0' that terminates the "kind" string. 1659 while (Record[i] != 0 && i != e) 1660 ValStr += Record[i++]; 1661 assert(Record[i] == 0 && "Value string not null terminated"); 1662 } 1663 1664 B.addAttribute(KindStr.str(), ValStr.str()); 1665 } else { 1666 assert((Record[i] == 5 || Record[i] == 6) && 1667 "Invalid attribute group entry"); 1668 bool HasType = Record[i] == 6; 1669 Attribute::AttrKind Kind; 1670 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1671 return Err; 1672 if (Kind == Attribute::ByVal) { 1673 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1674 } else if (Kind == Attribute::StructRet) { 1675 B.addStructRetAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1676 } else if (Kind == Attribute::ByRef) { 1677 B.addByRefAttr(getTypeByID(Record[++i])); 1678 } else if (Kind == Attribute::Preallocated) { 1679 B.addPreallocatedAttr(getTypeByID(Record[++i])); 1680 } else if (Kind == Attribute::InAlloca) { 1681 B.addInAllocaAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1682 } 1683 } 1684 } 1685 1686 UpgradeAttributes(B); 1687 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1688 break; 1689 } 1690 } 1691 } 1692 } 1693 1694 Error BitcodeReader::parseTypeTable() { 1695 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1696 return Err; 1697 1698 return parseTypeTableBody(); 1699 } 1700 1701 Error BitcodeReader::parseTypeTableBody() { 1702 if (!TypeList.empty()) 1703 return error("Invalid multiple blocks"); 1704 1705 SmallVector<uint64_t, 64> Record; 1706 unsigned NumRecords = 0; 1707 1708 SmallString<64> TypeName; 1709 1710 // Read all the records for this type table. 1711 while (true) { 1712 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1713 if (!MaybeEntry) 1714 return MaybeEntry.takeError(); 1715 BitstreamEntry Entry = MaybeEntry.get(); 1716 1717 switch (Entry.Kind) { 1718 case BitstreamEntry::SubBlock: // Handled for us already. 1719 case BitstreamEntry::Error: 1720 return error("Malformed block"); 1721 case BitstreamEntry::EndBlock: 1722 if (NumRecords != TypeList.size()) 1723 return error("Malformed block"); 1724 return Error::success(); 1725 case BitstreamEntry::Record: 1726 // The interesting case. 1727 break; 1728 } 1729 1730 // Read a record. 1731 Record.clear(); 1732 Type *ResultTy = nullptr; 1733 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1734 if (!MaybeRecord) 1735 return MaybeRecord.takeError(); 1736 switch (MaybeRecord.get()) { 1737 default: 1738 return error("Invalid value"); 1739 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1740 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1741 // type list. This allows us to reserve space. 1742 if (Record.empty()) 1743 return error("Invalid record"); 1744 TypeList.resize(Record[0]); 1745 continue; 1746 case bitc::TYPE_CODE_VOID: // VOID 1747 ResultTy = Type::getVoidTy(Context); 1748 break; 1749 case bitc::TYPE_CODE_HALF: // HALF 1750 ResultTy = Type::getHalfTy(Context); 1751 break; 1752 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1753 ResultTy = Type::getBFloatTy(Context); 1754 break; 1755 case bitc::TYPE_CODE_FLOAT: // FLOAT 1756 ResultTy = Type::getFloatTy(Context); 1757 break; 1758 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1759 ResultTy = Type::getDoubleTy(Context); 1760 break; 1761 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1762 ResultTy = Type::getX86_FP80Ty(Context); 1763 break; 1764 case bitc::TYPE_CODE_FP128: // FP128 1765 ResultTy = Type::getFP128Ty(Context); 1766 break; 1767 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1768 ResultTy = Type::getPPC_FP128Ty(Context); 1769 break; 1770 case bitc::TYPE_CODE_LABEL: // LABEL 1771 ResultTy = Type::getLabelTy(Context); 1772 break; 1773 case bitc::TYPE_CODE_METADATA: // METADATA 1774 ResultTy = Type::getMetadataTy(Context); 1775 break; 1776 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1777 ResultTy = Type::getX86_MMXTy(Context); 1778 break; 1779 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1780 ResultTy = Type::getX86_AMXTy(Context); 1781 break; 1782 case bitc::TYPE_CODE_TOKEN: // TOKEN 1783 ResultTy = Type::getTokenTy(Context); 1784 break; 1785 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1786 if (Record.empty()) 1787 return error("Invalid record"); 1788 1789 uint64_t NumBits = Record[0]; 1790 if (NumBits < IntegerType::MIN_INT_BITS || 1791 NumBits > IntegerType::MAX_INT_BITS) 1792 return error("Bitwidth for integer type out of range"); 1793 ResultTy = IntegerType::get(Context, NumBits); 1794 break; 1795 } 1796 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1797 // [pointee type, address space] 1798 if (Record.empty()) 1799 return error("Invalid record"); 1800 unsigned AddressSpace = 0; 1801 if (Record.size() == 2) 1802 AddressSpace = Record[1]; 1803 ResultTy = getTypeByID(Record[0]); 1804 if (!ResultTy || 1805 !PointerType::isValidElementType(ResultTy)) 1806 return error("Invalid type"); 1807 ResultTy = PointerType::get(ResultTy, AddressSpace); 1808 break; 1809 } 1810 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1811 if (Record.size() != 1) 1812 return error("Invalid record"); 1813 unsigned AddressSpace = Record[0]; 1814 ResultTy = PointerType::get(Context, AddressSpace); 1815 break; 1816 } 1817 case bitc::TYPE_CODE_FUNCTION_OLD: { 1818 // Deprecated, but still needed to read old bitcode files. 1819 // FUNCTION: [vararg, attrid, retty, paramty x N] 1820 if (Record.size() < 3) 1821 return error("Invalid record"); 1822 SmallVector<Type*, 8> ArgTys; 1823 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1824 if (Type *T = getTypeByID(Record[i])) 1825 ArgTys.push_back(T); 1826 else 1827 break; 1828 } 1829 1830 ResultTy = getTypeByID(Record[2]); 1831 if (!ResultTy || ArgTys.size() < Record.size()-3) 1832 return error("Invalid type"); 1833 1834 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1835 break; 1836 } 1837 case bitc::TYPE_CODE_FUNCTION: { 1838 // FUNCTION: [vararg, retty, paramty x N] 1839 if (Record.size() < 2) 1840 return error("Invalid record"); 1841 SmallVector<Type*, 8> ArgTys; 1842 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1843 if (Type *T = getTypeByID(Record[i])) { 1844 if (!FunctionType::isValidArgumentType(T)) 1845 return error("Invalid function argument type"); 1846 ArgTys.push_back(T); 1847 } 1848 else 1849 break; 1850 } 1851 1852 ResultTy = getTypeByID(Record[1]); 1853 if (!ResultTy || ArgTys.size() < Record.size()-2) 1854 return error("Invalid type"); 1855 1856 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1857 break; 1858 } 1859 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1860 if (Record.empty()) 1861 return error("Invalid record"); 1862 SmallVector<Type*, 8> EltTys; 1863 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1864 if (Type *T = getTypeByID(Record[i])) 1865 EltTys.push_back(T); 1866 else 1867 break; 1868 } 1869 if (EltTys.size() != Record.size()-1) 1870 return error("Invalid type"); 1871 ResultTy = StructType::get(Context, EltTys, Record[0]); 1872 break; 1873 } 1874 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1875 if (convertToString(Record, 0, TypeName)) 1876 return error("Invalid record"); 1877 continue; 1878 1879 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1880 if (Record.empty()) 1881 return error("Invalid record"); 1882 1883 if (NumRecords >= TypeList.size()) 1884 return error("Invalid TYPE table"); 1885 1886 // Check to see if this was forward referenced, if so fill in the temp. 1887 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1888 if (Res) { 1889 Res->setName(TypeName); 1890 TypeList[NumRecords] = nullptr; 1891 } else // Otherwise, create a new struct. 1892 Res = createIdentifiedStructType(Context, TypeName); 1893 TypeName.clear(); 1894 1895 SmallVector<Type*, 8> EltTys; 1896 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1897 if (Type *T = getTypeByID(Record[i])) 1898 EltTys.push_back(T); 1899 else 1900 break; 1901 } 1902 if (EltTys.size() != Record.size()-1) 1903 return error("Invalid record"); 1904 Res->setBody(EltTys, Record[0]); 1905 ResultTy = Res; 1906 break; 1907 } 1908 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1909 if (Record.size() != 1) 1910 return error("Invalid record"); 1911 1912 if (NumRecords >= TypeList.size()) 1913 return error("Invalid TYPE table"); 1914 1915 // Check to see if this was forward referenced, if so fill in the temp. 1916 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1917 if (Res) { 1918 Res->setName(TypeName); 1919 TypeList[NumRecords] = nullptr; 1920 } else // Otherwise, create a new struct with no body. 1921 Res = createIdentifiedStructType(Context, TypeName); 1922 TypeName.clear(); 1923 ResultTy = Res; 1924 break; 1925 } 1926 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1927 if (Record.size() < 2) 1928 return error("Invalid record"); 1929 ResultTy = getTypeByID(Record[1]); 1930 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1931 return error("Invalid type"); 1932 ResultTy = ArrayType::get(ResultTy, Record[0]); 1933 break; 1934 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1935 // [numelts, eltty, scalable] 1936 if (Record.size() < 2) 1937 return error("Invalid record"); 1938 if (Record[0] == 0) 1939 return error("Invalid vector length"); 1940 ResultTy = getTypeByID(Record[1]); 1941 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1942 return error("Invalid type"); 1943 bool Scalable = Record.size() > 2 ? Record[2] : false; 1944 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1945 break; 1946 } 1947 1948 if (NumRecords >= TypeList.size()) 1949 return error("Invalid TYPE table"); 1950 if (TypeList[NumRecords]) 1951 return error( 1952 "Invalid TYPE table: Only named structs can be forward referenced"); 1953 assert(ResultTy && "Didn't read a type?"); 1954 TypeList[NumRecords++] = ResultTy; 1955 } 1956 } 1957 1958 Error BitcodeReader::parseOperandBundleTags() { 1959 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1960 return Err; 1961 1962 if (!BundleTags.empty()) 1963 return error("Invalid multiple blocks"); 1964 1965 SmallVector<uint64_t, 64> Record; 1966 1967 while (true) { 1968 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1969 if (!MaybeEntry) 1970 return MaybeEntry.takeError(); 1971 BitstreamEntry Entry = MaybeEntry.get(); 1972 1973 switch (Entry.Kind) { 1974 case BitstreamEntry::SubBlock: // Handled for us already. 1975 case BitstreamEntry::Error: 1976 return error("Malformed block"); 1977 case BitstreamEntry::EndBlock: 1978 return Error::success(); 1979 case BitstreamEntry::Record: 1980 // The interesting case. 1981 break; 1982 } 1983 1984 // Tags are implicitly mapped to integers by their order. 1985 1986 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1987 if (!MaybeRecord) 1988 return MaybeRecord.takeError(); 1989 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1990 return error("Invalid record"); 1991 1992 // OPERAND_BUNDLE_TAG: [strchr x N] 1993 BundleTags.emplace_back(); 1994 if (convertToString(Record, 0, BundleTags.back())) 1995 return error("Invalid record"); 1996 Record.clear(); 1997 } 1998 } 1999 2000 Error BitcodeReader::parseSyncScopeNames() { 2001 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 2002 return Err; 2003 2004 if (!SSIDs.empty()) 2005 return error("Invalid multiple synchronization scope names blocks"); 2006 2007 SmallVector<uint64_t, 64> Record; 2008 while (true) { 2009 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2010 if (!MaybeEntry) 2011 return MaybeEntry.takeError(); 2012 BitstreamEntry Entry = MaybeEntry.get(); 2013 2014 switch (Entry.Kind) { 2015 case BitstreamEntry::SubBlock: // Handled for us already. 2016 case BitstreamEntry::Error: 2017 return error("Malformed block"); 2018 case BitstreamEntry::EndBlock: 2019 if (SSIDs.empty()) 2020 return error("Invalid empty synchronization scope names block"); 2021 return Error::success(); 2022 case BitstreamEntry::Record: 2023 // The interesting case. 2024 break; 2025 } 2026 2027 // Synchronization scope names are implicitly mapped to synchronization 2028 // scope IDs by their order. 2029 2030 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2031 if (!MaybeRecord) 2032 return MaybeRecord.takeError(); 2033 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2034 return error("Invalid record"); 2035 2036 SmallString<16> SSN; 2037 if (convertToString(Record, 0, SSN)) 2038 return error("Invalid record"); 2039 2040 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2041 Record.clear(); 2042 } 2043 } 2044 2045 /// Associate a value with its name from the given index in the provided record. 2046 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2047 unsigned NameIndex, Triple &TT) { 2048 SmallString<128> ValueName; 2049 if (convertToString(Record, NameIndex, ValueName)) 2050 return error("Invalid record"); 2051 unsigned ValueID = Record[0]; 2052 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2053 return error("Invalid record"); 2054 Value *V = ValueList[ValueID]; 2055 2056 StringRef NameStr(ValueName.data(), ValueName.size()); 2057 if (NameStr.find_first_of(0) != StringRef::npos) 2058 return error("Invalid value name"); 2059 V->setName(NameStr); 2060 auto *GO = dyn_cast<GlobalObject>(V); 2061 if (GO) { 2062 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2063 if (TT.supportsCOMDAT()) 2064 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2065 else 2066 GO->setComdat(nullptr); 2067 } 2068 } 2069 return V; 2070 } 2071 2072 /// Helper to note and return the current location, and jump to the given 2073 /// offset. 2074 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2075 BitstreamCursor &Stream) { 2076 // Save the current parsing location so we can jump back at the end 2077 // of the VST read. 2078 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2079 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2080 return std::move(JumpFailed); 2081 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2082 if (!MaybeEntry) 2083 return MaybeEntry.takeError(); 2084 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2085 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2086 return CurrentBit; 2087 } 2088 2089 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2090 Function *F, 2091 ArrayRef<uint64_t> Record) { 2092 // Note that we subtract 1 here because the offset is relative to one word 2093 // before the start of the identification or module block, which was 2094 // historically always the start of the regular bitcode header. 2095 uint64_t FuncWordOffset = Record[1] - 1; 2096 uint64_t FuncBitOffset = FuncWordOffset * 32; 2097 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2098 // Set the LastFunctionBlockBit to point to the last function block. 2099 // Later when parsing is resumed after function materialization, 2100 // we can simply skip that last function block. 2101 if (FuncBitOffset > LastFunctionBlockBit) 2102 LastFunctionBlockBit = FuncBitOffset; 2103 } 2104 2105 /// Read a new-style GlobalValue symbol table. 2106 Error BitcodeReader::parseGlobalValueSymbolTable() { 2107 unsigned FuncBitcodeOffsetDelta = 2108 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2109 2110 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2111 return Err; 2112 2113 SmallVector<uint64_t, 64> Record; 2114 while (true) { 2115 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2116 if (!MaybeEntry) 2117 return MaybeEntry.takeError(); 2118 BitstreamEntry Entry = MaybeEntry.get(); 2119 2120 switch (Entry.Kind) { 2121 case BitstreamEntry::SubBlock: 2122 case BitstreamEntry::Error: 2123 return error("Malformed block"); 2124 case BitstreamEntry::EndBlock: 2125 return Error::success(); 2126 case BitstreamEntry::Record: 2127 break; 2128 } 2129 2130 Record.clear(); 2131 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2132 if (!MaybeRecord) 2133 return MaybeRecord.takeError(); 2134 switch (MaybeRecord.get()) { 2135 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2136 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2137 cast<Function>(ValueList[Record[0]]), Record); 2138 break; 2139 } 2140 } 2141 } 2142 2143 /// Parse the value symbol table at either the current parsing location or 2144 /// at the given bit offset if provided. 2145 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2146 uint64_t CurrentBit; 2147 // Pass in the Offset to distinguish between calling for the module-level 2148 // VST (where we want to jump to the VST offset) and the function-level 2149 // VST (where we don't). 2150 if (Offset > 0) { 2151 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2152 if (!MaybeCurrentBit) 2153 return MaybeCurrentBit.takeError(); 2154 CurrentBit = MaybeCurrentBit.get(); 2155 // If this module uses a string table, read this as a module-level VST. 2156 if (UseStrtab) { 2157 if (Error Err = parseGlobalValueSymbolTable()) 2158 return Err; 2159 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2160 return JumpFailed; 2161 return Error::success(); 2162 } 2163 // Otherwise, the VST will be in a similar format to a function-level VST, 2164 // and will contain symbol names. 2165 } 2166 2167 // Compute the delta between the bitcode indices in the VST (the word offset 2168 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2169 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2170 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2171 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2172 // just before entering the VST subblock because: 1) the EnterSubBlock 2173 // changes the AbbrevID width; 2) the VST block is nested within the same 2174 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2175 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2176 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2177 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2178 unsigned FuncBitcodeOffsetDelta = 2179 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2180 2181 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2182 return Err; 2183 2184 SmallVector<uint64_t, 64> Record; 2185 2186 Triple TT(TheModule->getTargetTriple()); 2187 2188 // Read all the records for this value table. 2189 SmallString<128> ValueName; 2190 2191 while (true) { 2192 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2193 if (!MaybeEntry) 2194 return MaybeEntry.takeError(); 2195 BitstreamEntry Entry = MaybeEntry.get(); 2196 2197 switch (Entry.Kind) { 2198 case BitstreamEntry::SubBlock: // Handled for us already. 2199 case BitstreamEntry::Error: 2200 return error("Malformed block"); 2201 case BitstreamEntry::EndBlock: 2202 if (Offset > 0) 2203 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2204 return JumpFailed; 2205 return Error::success(); 2206 case BitstreamEntry::Record: 2207 // The interesting case. 2208 break; 2209 } 2210 2211 // Read a record. 2212 Record.clear(); 2213 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2214 if (!MaybeRecord) 2215 return MaybeRecord.takeError(); 2216 switch (MaybeRecord.get()) { 2217 default: // Default behavior: unknown type. 2218 break; 2219 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2220 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2221 if (Error Err = ValOrErr.takeError()) 2222 return Err; 2223 ValOrErr.get(); 2224 break; 2225 } 2226 case bitc::VST_CODE_FNENTRY: { 2227 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2228 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2229 if (Error Err = ValOrErr.takeError()) 2230 return Err; 2231 Value *V = ValOrErr.get(); 2232 2233 // Ignore function offsets emitted for aliases of functions in older 2234 // versions of LLVM. 2235 if (auto *F = dyn_cast<Function>(V)) 2236 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2237 break; 2238 } 2239 case bitc::VST_CODE_BBENTRY: { 2240 if (convertToString(Record, 1, ValueName)) 2241 return error("Invalid record"); 2242 BasicBlock *BB = getBasicBlock(Record[0]); 2243 if (!BB) 2244 return error("Invalid record"); 2245 2246 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2247 ValueName.clear(); 2248 break; 2249 } 2250 } 2251 } 2252 } 2253 2254 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2255 /// encoding. 2256 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2257 if ((V & 1) == 0) 2258 return V >> 1; 2259 if (V != 1) 2260 return -(V >> 1); 2261 // There is no such thing as -0 with integers. "-0" really means MININT. 2262 return 1ULL << 63; 2263 } 2264 2265 /// Resolve all of the initializers for global values and aliases that we can. 2266 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2267 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2268 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2269 IndirectSymbolInitWorklist; 2270 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2271 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2272 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2273 2274 GlobalInitWorklist.swap(GlobalInits); 2275 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2276 FunctionPrefixWorklist.swap(FunctionPrefixes); 2277 FunctionPrologueWorklist.swap(FunctionPrologues); 2278 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2279 2280 while (!GlobalInitWorklist.empty()) { 2281 unsigned ValID = GlobalInitWorklist.back().second; 2282 if (ValID >= ValueList.size()) { 2283 // Not ready to resolve this yet, it requires something later in the file. 2284 GlobalInits.push_back(GlobalInitWorklist.back()); 2285 } else { 2286 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2287 GlobalInitWorklist.back().first->setInitializer(C); 2288 else 2289 return error("Expected a constant"); 2290 } 2291 GlobalInitWorklist.pop_back(); 2292 } 2293 2294 while (!IndirectSymbolInitWorklist.empty()) { 2295 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2296 if (ValID >= ValueList.size()) { 2297 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2298 } else { 2299 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2300 if (!C) 2301 return error("Expected a constant"); 2302 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2303 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2304 return error("Alias and aliasee types don't match"); 2305 GIS->setIndirectSymbol(C); 2306 } 2307 IndirectSymbolInitWorklist.pop_back(); 2308 } 2309 2310 while (!FunctionPrefixWorklist.empty()) { 2311 unsigned ValID = FunctionPrefixWorklist.back().second; 2312 if (ValID >= ValueList.size()) { 2313 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2314 } else { 2315 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2316 FunctionPrefixWorklist.back().first->setPrefixData(C); 2317 else 2318 return error("Expected a constant"); 2319 } 2320 FunctionPrefixWorklist.pop_back(); 2321 } 2322 2323 while (!FunctionPrologueWorklist.empty()) { 2324 unsigned ValID = FunctionPrologueWorklist.back().second; 2325 if (ValID >= ValueList.size()) { 2326 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2327 } else { 2328 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2329 FunctionPrologueWorklist.back().first->setPrologueData(C); 2330 else 2331 return error("Expected a constant"); 2332 } 2333 FunctionPrologueWorklist.pop_back(); 2334 } 2335 2336 while (!FunctionPersonalityFnWorklist.empty()) { 2337 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2338 if (ValID >= ValueList.size()) { 2339 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2340 } else { 2341 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2342 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2343 else 2344 return error("Expected a constant"); 2345 } 2346 FunctionPersonalityFnWorklist.pop_back(); 2347 } 2348 2349 return Error::success(); 2350 } 2351 2352 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2353 SmallVector<uint64_t, 8> Words(Vals.size()); 2354 transform(Vals, Words.begin(), 2355 BitcodeReader::decodeSignRotatedValue); 2356 2357 return APInt(TypeBits, Words); 2358 } 2359 2360 Error BitcodeReader::parseConstants() { 2361 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2362 return Err; 2363 2364 SmallVector<uint64_t, 64> Record; 2365 2366 // Read all the records for this value table. 2367 Type *CurTy = Type::getInt32Ty(Context); 2368 Type *CurFullTy = Type::getInt32Ty(Context); 2369 unsigned NextCstNo = ValueList.size(); 2370 2371 struct DelayedShufTy { 2372 VectorType *OpTy; 2373 VectorType *RTy; 2374 Type *CurFullTy; 2375 uint64_t Op0Idx; 2376 uint64_t Op1Idx; 2377 uint64_t Op2Idx; 2378 unsigned CstNo; 2379 }; 2380 std::vector<DelayedShufTy> DelayedShuffles; 2381 while (true) { 2382 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2383 if (!MaybeEntry) 2384 return MaybeEntry.takeError(); 2385 BitstreamEntry Entry = MaybeEntry.get(); 2386 2387 switch (Entry.Kind) { 2388 case BitstreamEntry::SubBlock: // Handled for us already. 2389 case BitstreamEntry::Error: 2390 return error("Malformed block"); 2391 case BitstreamEntry::EndBlock: 2392 // Once all the constants have been read, go through and resolve forward 2393 // references. 2394 // 2395 // We have to treat shuffles specially because they don't have three 2396 // operands anymore. We need to convert the shuffle mask into an array, 2397 // and we can't convert a forward reference. 2398 for (auto &DelayedShuffle : DelayedShuffles) { 2399 VectorType *OpTy = DelayedShuffle.OpTy; 2400 VectorType *RTy = DelayedShuffle.RTy; 2401 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2402 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2403 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2404 uint64_t CstNo = DelayedShuffle.CstNo; 2405 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2406 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2407 Type *ShufTy = 2408 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2409 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2410 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2411 return error("Invalid shufflevector operands"); 2412 SmallVector<int, 16> Mask; 2413 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2414 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2415 ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy); 2416 } 2417 2418 if (NextCstNo != ValueList.size()) 2419 return error("Invalid constant reference"); 2420 2421 ValueList.resolveConstantForwardRefs(); 2422 return Error::success(); 2423 case BitstreamEntry::Record: 2424 // The interesting case. 2425 break; 2426 } 2427 2428 // Read a record. 2429 Record.clear(); 2430 Type *VoidType = Type::getVoidTy(Context); 2431 Value *V = nullptr; 2432 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2433 if (!MaybeBitCode) 2434 return MaybeBitCode.takeError(); 2435 switch (unsigned BitCode = MaybeBitCode.get()) { 2436 default: // Default behavior: unknown constant 2437 case bitc::CST_CODE_UNDEF: // UNDEF 2438 V = UndefValue::get(CurTy); 2439 break; 2440 case bitc::CST_CODE_POISON: // POISON 2441 V = PoisonValue::get(CurTy); 2442 break; 2443 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2444 if (Record.empty()) 2445 return error("Invalid record"); 2446 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2447 return error("Invalid record"); 2448 if (TypeList[Record[0]] == VoidType) 2449 return error("Invalid constant type"); 2450 CurFullTy = TypeList[Record[0]]; 2451 CurTy = flattenPointerTypes(CurFullTy); 2452 continue; // Skip the ValueList manipulation. 2453 case bitc::CST_CODE_NULL: // NULL 2454 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2455 return error("Invalid type for a constant null value"); 2456 V = Constant::getNullValue(CurTy); 2457 break; 2458 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2459 if (!CurTy->isIntegerTy() || Record.empty()) 2460 return error("Invalid record"); 2461 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2462 break; 2463 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2464 if (!CurTy->isIntegerTy() || Record.empty()) 2465 return error("Invalid record"); 2466 2467 APInt VInt = 2468 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2469 V = ConstantInt::get(Context, VInt); 2470 2471 break; 2472 } 2473 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2474 if (Record.empty()) 2475 return error("Invalid record"); 2476 if (CurTy->isHalfTy()) 2477 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2478 APInt(16, (uint16_t)Record[0]))); 2479 else if (CurTy->isBFloatTy()) 2480 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2481 APInt(16, (uint32_t)Record[0]))); 2482 else if (CurTy->isFloatTy()) 2483 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2484 APInt(32, (uint32_t)Record[0]))); 2485 else if (CurTy->isDoubleTy()) 2486 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2487 APInt(64, Record[0]))); 2488 else if (CurTy->isX86_FP80Ty()) { 2489 // Bits are not stored the same way as a normal i80 APInt, compensate. 2490 uint64_t Rearrange[2]; 2491 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2492 Rearrange[1] = Record[0] >> 48; 2493 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2494 APInt(80, Rearrange))); 2495 } else if (CurTy->isFP128Ty()) 2496 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2497 APInt(128, Record))); 2498 else if (CurTy->isPPC_FP128Ty()) 2499 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2500 APInt(128, Record))); 2501 else 2502 V = UndefValue::get(CurTy); 2503 break; 2504 } 2505 2506 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2507 if (Record.empty()) 2508 return error("Invalid record"); 2509 2510 unsigned Size = Record.size(); 2511 SmallVector<Constant*, 16> Elts; 2512 2513 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2514 for (unsigned i = 0; i != Size; ++i) 2515 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2516 STy->getElementType(i))); 2517 V = ConstantStruct::get(STy, Elts); 2518 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2519 Type *EltTy = ATy->getElementType(); 2520 for (unsigned i = 0; i != Size; ++i) 2521 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2522 V = ConstantArray::get(ATy, Elts); 2523 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2524 Type *EltTy = VTy->getElementType(); 2525 for (unsigned i = 0; i != Size; ++i) 2526 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2527 V = ConstantVector::get(Elts); 2528 } else { 2529 V = UndefValue::get(CurTy); 2530 } 2531 break; 2532 } 2533 case bitc::CST_CODE_STRING: // STRING: [values] 2534 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2535 if (Record.empty()) 2536 return error("Invalid record"); 2537 2538 SmallString<16> Elts(Record.begin(), Record.end()); 2539 V = ConstantDataArray::getString(Context, Elts, 2540 BitCode == bitc::CST_CODE_CSTRING); 2541 break; 2542 } 2543 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2544 if (Record.empty()) 2545 return error("Invalid record"); 2546 2547 Type *EltTy; 2548 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2549 EltTy = Array->getElementType(); 2550 else 2551 EltTy = cast<VectorType>(CurTy)->getElementType(); 2552 if (EltTy->isIntegerTy(8)) { 2553 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2554 if (isa<VectorType>(CurTy)) 2555 V = ConstantDataVector::get(Context, Elts); 2556 else 2557 V = ConstantDataArray::get(Context, Elts); 2558 } else if (EltTy->isIntegerTy(16)) { 2559 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2560 if (isa<VectorType>(CurTy)) 2561 V = ConstantDataVector::get(Context, Elts); 2562 else 2563 V = ConstantDataArray::get(Context, Elts); 2564 } else if (EltTy->isIntegerTy(32)) { 2565 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2566 if (isa<VectorType>(CurTy)) 2567 V = ConstantDataVector::get(Context, Elts); 2568 else 2569 V = ConstantDataArray::get(Context, Elts); 2570 } else if (EltTy->isIntegerTy(64)) { 2571 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2572 if (isa<VectorType>(CurTy)) 2573 V = ConstantDataVector::get(Context, Elts); 2574 else 2575 V = ConstantDataArray::get(Context, Elts); 2576 } else if (EltTy->isHalfTy()) { 2577 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2578 if (isa<VectorType>(CurTy)) 2579 V = ConstantDataVector::getFP(EltTy, Elts); 2580 else 2581 V = ConstantDataArray::getFP(EltTy, Elts); 2582 } else if (EltTy->isBFloatTy()) { 2583 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2584 if (isa<VectorType>(CurTy)) 2585 V = ConstantDataVector::getFP(EltTy, Elts); 2586 else 2587 V = ConstantDataArray::getFP(EltTy, Elts); 2588 } else if (EltTy->isFloatTy()) { 2589 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2590 if (isa<VectorType>(CurTy)) 2591 V = ConstantDataVector::getFP(EltTy, Elts); 2592 else 2593 V = ConstantDataArray::getFP(EltTy, Elts); 2594 } else if (EltTy->isDoubleTy()) { 2595 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2596 if (isa<VectorType>(CurTy)) 2597 V = ConstantDataVector::getFP(EltTy, Elts); 2598 else 2599 V = ConstantDataArray::getFP(EltTy, Elts); 2600 } else { 2601 return error("Invalid type for value"); 2602 } 2603 break; 2604 } 2605 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2606 if (Record.size() < 2) 2607 return error("Invalid record"); 2608 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2609 if (Opc < 0) { 2610 V = UndefValue::get(CurTy); // Unknown unop. 2611 } else { 2612 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2613 unsigned Flags = 0; 2614 V = ConstantExpr::get(Opc, LHS, Flags); 2615 } 2616 break; 2617 } 2618 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2619 if (Record.size() < 3) 2620 return error("Invalid record"); 2621 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2622 if (Opc < 0) { 2623 V = UndefValue::get(CurTy); // Unknown binop. 2624 } else { 2625 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2626 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2627 unsigned Flags = 0; 2628 if (Record.size() >= 4) { 2629 if (Opc == Instruction::Add || 2630 Opc == Instruction::Sub || 2631 Opc == Instruction::Mul || 2632 Opc == Instruction::Shl) { 2633 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2634 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2635 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2636 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2637 } else if (Opc == Instruction::SDiv || 2638 Opc == Instruction::UDiv || 2639 Opc == Instruction::LShr || 2640 Opc == Instruction::AShr) { 2641 if (Record[3] & (1 << bitc::PEO_EXACT)) 2642 Flags |= SDivOperator::IsExact; 2643 } 2644 } 2645 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2646 } 2647 break; 2648 } 2649 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2650 if (Record.size() < 3) 2651 return error("Invalid record"); 2652 int Opc = getDecodedCastOpcode(Record[0]); 2653 if (Opc < 0) { 2654 V = UndefValue::get(CurTy); // Unknown cast. 2655 } else { 2656 Type *OpTy = getTypeByID(Record[1]); 2657 if (!OpTy) 2658 return error("Invalid record"); 2659 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2660 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2661 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2662 } 2663 break; 2664 } 2665 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2666 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2667 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2668 // operands] 2669 unsigned OpNum = 0; 2670 Type *PointeeType = nullptr; 2671 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2672 Record.size() % 2) 2673 PointeeType = getTypeByID(Record[OpNum++]); 2674 2675 bool InBounds = false; 2676 Optional<unsigned> InRangeIndex; 2677 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2678 uint64_t Op = Record[OpNum++]; 2679 InBounds = Op & 1; 2680 InRangeIndex = Op >> 1; 2681 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2682 InBounds = true; 2683 2684 SmallVector<Constant*, 16> Elts; 2685 Type *Elt0FullTy = nullptr; 2686 while (OpNum != Record.size()) { 2687 if (!Elt0FullTy) 2688 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2689 Type *ElTy = getTypeByID(Record[OpNum++]); 2690 if (!ElTy) 2691 return error("Invalid record"); 2692 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2693 } 2694 2695 if (Elts.size() < 1) 2696 return error("Invalid gep with no operands"); 2697 2698 Type *ImplicitPointeeType = 2699 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2700 if (!PointeeType) 2701 PointeeType = ImplicitPointeeType; 2702 else if (PointeeType != ImplicitPointeeType) 2703 return error("Explicit gep operator type does not match pointee type " 2704 "of pointer operand"); 2705 2706 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2707 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2708 InBounds, InRangeIndex); 2709 break; 2710 } 2711 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2712 if (Record.size() < 3) 2713 return error("Invalid record"); 2714 2715 Type *SelectorTy = Type::getInt1Ty(Context); 2716 2717 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2718 // Get the type from the ValueList before getting a forward ref. 2719 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2720 if (Value *V = ValueList[Record[0]]) 2721 if (SelectorTy != V->getType()) 2722 SelectorTy = VectorType::get(SelectorTy, 2723 VTy->getElementCount()); 2724 2725 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2726 SelectorTy), 2727 ValueList.getConstantFwdRef(Record[1],CurTy), 2728 ValueList.getConstantFwdRef(Record[2],CurTy)); 2729 break; 2730 } 2731 case bitc::CST_CODE_CE_EXTRACTELT 2732 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2733 if (Record.size() < 3) 2734 return error("Invalid record"); 2735 VectorType *OpTy = 2736 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2737 if (!OpTy) 2738 return error("Invalid record"); 2739 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2740 Constant *Op1 = nullptr; 2741 if (Record.size() == 4) { 2742 Type *IdxTy = getTypeByID(Record[2]); 2743 if (!IdxTy) 2744 return error("Invalid record"); 2745 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2746 } else { 2747 // Deprecated, but still needed to read old bitcode files. 2748 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2749 } 2750 if (!Op1) 2751 return error("Invalid record"); 2752 V = ConstantExpr::getExtractElement(Op0, Op1); 2753 break; 2754 } 2755 case bitc::CST_CODE_CE_INSERTELT 2756 : { // CE_INSERTELT: [opval, opval, opty, opval] 2757 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2758 if (Record.size() < 3 || !OpTy) 2759 return error("Invalid record"); 2760 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2761 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2762 OpTy->getElementType()); 2763 Constant *Op2 = nullptr; 2764 if (Record.size() == 4) { 2765 Type *IdxTy = getTypeByID(Record[2]); 2766 if (!IdxTy) 2767 return error("Invalid record"); 2768 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2769 } else { 2770 // Deprecated, but still needed to read old bitcode files. 2771 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2772 } 2773 if (!Op2) 2774 return error("Invalid record"); 2775 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2776 break; 2777 } 2778 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2779 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2780 if (Record.size() < 3 || !OpTy) 2781 return error("Invalid record"); 2782 DelayedShuffles.push_back( 2783 {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo}); 2784 ++NextCstNo; 2785 continue; 2786 } 2787 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2788 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2789 VectorType *OpTy = 2790 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2791 if (Record.size() < 4 || !RTy || !OpTy) 2792 return error("Invalid record"); 2793 DelayedShuffles.push_back( 2794 {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo}); 2795 ++NextCstNo; 2796 continue; 2797 } 2798 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2799 if (Record.size() < 4) 2800 return error("Invalid record"); 2801 Type *OpTy = getTypeByID(Record[0]); 2802 if (!OpTy) 2803 return error("Invalid record"); 2804 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2805 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2806 2807 if (OpTy->isFPOrFPVectorTy()) 2808 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2809 else 2810 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2811 break; 2812 } 2813 // This maintains backward compatibility, pre-asm dialect keywords. 2814 // Deprecated, but still needed to read old bitcode files. 2815 case bitc::CST_CODE_INLINEASM_OLD: { 2816 if (Record.size() < 2) 2817 return error("Invalid record"); 2818 std::string AsmStr, ConstrStr; 2819 bool HasSideEffects = Record[0] & 1; 2820 bool IsAlignStack = Record[0] >> 1; 2821 unsigned AsmStrSize = Record[1]; 2822 if (2+AsmStrSize >= Record.size()) 2823 return error("Invalid record"); 2824 unsigned ConstStrSize = Record[2+AsmStrSize]; 2825 if (3+AsmStrSize+ConstStrSize > Record.size()) 2826 return error("Invalid record"); 2827 2828 for (unsigned i = 0; i != AsmStrSize; ++i) 2829 AsmStr += (char)Record[2+i]; 2830 for (unsigned i = 0; i != ConstStrSize; ++i) 2831 ConstrStr += (char)Record[3+AsmStrSize+i]; 2832 UpgradeInlineAsmString(&AsmStr); 2833 V = InlineAsm::get( 2834 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2835 ConstrStr, HasSideEffects, IsAlignStack); 2836 break; 2837 } 2838 // This version adds support for the asm dialect keywords (e.g., 2839 // inteldialect). 2840 case bitc::CST_CODE_INLINEASM_OLD2: { 2841 if (Record.size() < 2) 2842 return error("Invalid record"); 2843 std::string AsmStr, ConstrStr; 2844 bool HasSideEffects = Record[0] & 1; 2845 bool IsAlignStack = (Record[0] >> 1) & 1; 2846 unsigned AsmDialect = Record[0] >> 2; 2847 unsigned AsmStrSize = Record[1]; 2848 if (2+AsmStrSize >= Record.size()) 2849 return error("Invalid record"); 2850 unsigned ConstStrSize = Record[2+AsmStrSize]; 2851 if (3+AsmStrSize+ConstStrSize > Record.size()) 2852 return error("Invalid record"); 2853 2854 for (unsigned i = 0; i != AsmStrSize; ++i) 2855 AsmStr += (char)Record[2+i]; 2856 for (unsigned i = 0; i != ConstStrSize; ++i) 2857 ConstrStr += (char)Record[3+AsmStrSize+i]; 2858 UpgradeInlineAsmString(&AsmStr); 2859 V = InlineAsm::get( 2860 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2861 ConstrStr, HasSideEffects, IsAlignStack, 2862 InlineAsm::AsmDialect(AsmDialect)); 2863 break; 2864 } 2865 // This version adds support for the unwind keyword. 2866 case bitc::CST_CODE_INLINEASM: { 2867 if (Record.size() < 2) 2868 return error("Invalid record"); 2869 std::string AsmStr, ConstrStr; 2870 bool HasSideEffects = Record[0] & 1; 2871 bool IsAlignStack = (Record[0] >> 1) & 1; 2872 unsigned AsmDialect = (Record[0] >> 2) & 1; 2873 bool CanThrow = (Record[0] >> 3) & 1; 2874 unsigned AsmStrSize = Record[1]; 2875 if (2 + AsmStrSize >= Record.size()) 2876 return error("Invalid record"); 2877 unsigned ConstStrSize = Record[2 + AsmStrSize]; 2878 if (3 + AsmStrSize + ConstStrSize > Record.size()) 2879 return error("Invalid record"); 2880 2881 for (unsigned i = 0; i != AsmStrSize; ++i) 2882 AsmStr += (char)Record[2 + i]; 2883 for (unsigned i = 0; i != ConstStrSize; ++i) 2884 ConstrStr += (char)Record[3 + AsmStrSize + i]; 2885 UpgradeInlineAsmString(&AsmStr); 2886 V = InlineAsm::get( 2887 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2888 ConstrStr, HasSideEffects, IsAlignStack, 2889 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2890 break; 2891 } 2892 case bitc::CST_CODE_BLOCKADDRESS:{ 2893 if (Record.size() < 3) 2894 return error("Invalid record"); 2895 Type *FnTy = getTypeByID(Record[0]); 2896 if (!FnTy) 2897 return error("Invalid record"); 2898 Function *Fn = 2899 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2900 if (!Fn) 2901 return error("Invalid record"); 2902 2903 // If the function is already parsed we can insert the block address right 2904 // away. 2905 BasicBlock *BB; 2906 unsigned BBID = Record[2]; 2907 if (!BBID) 2908 // Invalid reference to entry block. 2909 return error("Invalid ID"); 2910 if (!Fn->empty()) { 2911 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2912 for (size_t I = 0, E = BBID; I != E; ++I) { 2913 if (BBI == BBE) 2914 return error("Invalid ID"); 2915 ++BBI; 2916 } 2917 BB = &*BBI; 2918 } else { 2919 // Otherwise insert a placeholder and remember it so it can be inserted 2920 // when the function is parsed. 2921 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2922 if (FwdBBs.empty()) 2923 BasicBlockFwdRefQueue.push_back(Fn); 2924 if (FwdBBs.size() < BBID + 1) 2925 FwdBBs.resize(BBID + 1); 2926 if (!FwdBBs[BBID]) 2927 FwdBBs[BBID] = BasicBlock::Create(Context); 2928 BB = FwdBBs[BBID]; 2929 } 2930 V = BlockAddress::get(Fn, BB); 2931 break; 2932 } 2933 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 2934 if (Record.size() < 2) 2935 return error("Invalid record"); 2936 Type *GVTy = getTypeByID(Record[0]); 2937 if (!GVTy) 2938 return error("Invalid record"); 2939 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2940 ValueList.getConstantFwdRef(Record[1], GVTy)); 2941 if (!GV) 2942 return error("Invalid record"); 2943 2944 V = DSOLocalEquivalent::get(GV); 2945 break; 2946 } 2947 } 2948 2949 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2950 "Incorrect fully structured type provided for Constant"); 2951 ValueList.assignValue(V, NextCstNo, CurFullTy); 2952 ++NextCstNo; 2953 } 2954 } 2955 2956 Error BitcodeReader::parseUseLists() { 2957 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2958 return Err; 2959 2960 // Read all the records. 2961 SmallVector<uint64_t, 64> Record; 2962 2963 while (true) { 2964 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2965 if (!MaybeEntry) 2966 return MaybeEntry.takeError(); 2967 BitstreamEntry Entry = MaybeEntry.get(); 2968 2969 switch (Entry.Kind) { 2970 case BitstreamEntry::SubBlock: // Handled for us already. 2971 case BitstreamEntry::Error: 2972 return error("Malformed block"); 2973 case BitstreamEntry::EndBlock: 2974 return Error::success(); 2975 case BitstreamEntry::Record: 2976 // The interesting case. 2977 break; 2978 } 2979 2980 // Read a use list record. 2981 Record.clear(); 2982 bool IsBB = false; 2983 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2984 if (!MaybeRecord) 2985 return MaybeRecord.takeError(); 2986 switch (MaybeRecord.get()) { 2987 default: // Default behavior: unknown type. 2988 break; 2989 case bitc::USELIST_CODE_BB: 2990 IsBB = true; 2991 LLVM_FALLTHROUGH; 2992 case bitc::USELIST_CODE_DEFAULT: { 2993 unsigned RecordLength = Record.size(); 2994 if (RecordLength < 3) 2995 // Records should have at least an ID and two indexes. 2996 return error("Invalid record"); 2997 unsigned ID = Record.pop_back_val(); 2998 2999 Value *V; 3000 if (IsBB) { 3001 assert(ID < FunctionBBs.size() && "Basic block not found"); 3002 V = FunctionBBs[ID]; 3003 } else 3004 V = ValueList[ID]; 3005 unsigned NumUses = 0; 3006 SmallDenseMap<const Use *, unsigned, 16> Order; 3007 for (const Use &U : V->materialized_uses()) { 3008 if (++NumUses > Record.size()) 3009 break; 3010 Order[&U] = Record[NumUses - 1]; 3011 } 3012 if (Order.size() != Record.size() || NumUses > Record.size()) 3013 // Mismatches can happen if the functions are being materialized lazily 3014 // (out-of-order), or a value has been upgraded. 3015 break; 3016 3017 V->sortUseList([&](const Use &L, const Use &R) { 3018 return Order.lookup(&L) < Order.lookup(&R); 3019 }); 3020 break; 3021 } 3022 } 3023 } 3024 } 3025 3026 /// When we see the block for metadata, remember where it is and then skip it. 3027 /// This lets us lazily deserialize the metadata. 3028 Error BitcodeReader::rememberAndSkipMetadata() { 3029 // Save the current stream state. 3030 uint64_t CurBit = Stream.GetCurrentBitNo(); 3031 DeferredMetadataInfo.push_back(CurBit); 3032 3033 // Skip over the block for now. 3034 if (Error Err = Stream.SkipBlock()) 3035 return Err; 3036 return Error::success(); 3037 } 3038 3039 Error BitcodeReader::materializeMetadata() { 3040 for (uint64_t BitPos : DeferredMetadataInfo) { 3041 // Move the bit stream to the saved position. 3042 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3043 return JumpFailed; 3044 if (Error Err = MDLoader->parseModuleMetadata()) 3045 return Err; 3046 } 3047 3048 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3049 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3050 // multiple times. 3051 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3052 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3053 NamedMDNode *LinkerOpts = 3054 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3055 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3056 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3057 } 3058 } 3059 3060 DeferredMetadataInfo.clear(); 3061 return Error::success(); 3062 } 3063 3064 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3065 3066 /// When we see the block for a function body, remember where it is and then 3067 /// skip it. This lets us lazily deserialize the functions. 3068 Error BitcodeReader::rememberAndSkipFunctionBody() { 3069 // Get the function we are talking about. 3070 if (FunctionsWithBodies.empty()) 3071 return error("Insufficient function protos"); 3072 3073 Function *Fn = FunctionsWithBodies.back(); 3074 FunctionsWithBodies.pop_back(); 3075 3076 // Save the current stream state. 3077 uint64_t CurBit = Stream.GetCurrentBitNo(); 3078 assert( 3079 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3080 "Mismatch between VST and scanned function offsets"); 3081 DeferredFunctionInfo[Fn] = CurBit; 3082 3083 // Skip over the function block for now. 3084 if (Error Err = Stream.SkipBlock()) 3085 return Err; 3086 return Error::success(); 3087 } 3088 3089 Error BitcodeReader::globalCleanup() { 3090 // Patch the initializers for globals and aliases up. 3091 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3092 return Err; 3093 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3094 return error("Malformed global initializer set"); 3095 3096 // Look for intrinsic functions which need to be upgraded at some point 3097 // and functions that need to have their function attributes upgraded. 3098 for (Function &F : *TheModule) { 3099 MDLoader->upgradeDebugIntrinsics(F); 3100 Function *NewFn; 3101 if (UpgradeIntrinsicFunction(&F, NewFn)) 3102 UpgradedIntrinsics[&F] = NewFn; 3103 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3104 // Some types could be renamed during loading if several modules are 3105 // loaded in the same LLVMContext (LTO scenario). In this case we should 3106 // remangle intrinsics names as well. 3107 RemangledIntrinsics[&F] = Remangled.getValue(); 3108 // Look for functions that rely on old function attribute behavior. 3109 UpgradeFunctionAttributes(F); 3110 } 3111 3112 // Look for global variables which need to be renamed. 3113 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3114 for (GlobalVariable &GV : TheModule->globals()) 3115 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3116 UpgradedVariables.emplace_back(&GV, Upgraded); 3117 for (auto &Pair : UpgradedVariables) { 3118 Pair.first->eraseFromParent(); 3119 TheModule->getGlobalList().push_back(Pair.second); 3120 } 3121 3122 // Force deallocation of memory for these vectors to favor the client that 3123 // want lazy deserialization. 3124 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3125 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3126 IndirectSymbolInits); 3127 return Error::success(); 3128 } 3129 3130 /// Support for lazy parsing of function bodies. This is required if we 3131 /// either have an old bitcode file without a VST forward declaration record, 3132 /// or if we have an anonymous function being materialized, since anonymous 3133 /// functions do not have a name and are therefore not in the VST. 3134 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3135 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3136 return JumpFailed; 3137 3138 if (Stream.AtEndOfStream()) 3139 return error("Could not find function in stream"); 3140 3141 if (!SeenFirstFunctionBody) 3142 return error("Trying to materialize functions before seeing function blocks"); 3143 3144 // An old bitcode file with the symbol table at the end would have 3145 // finished the parse greedily. 3146 assert(SeenValueSymbolTable); 3147 3148 SmallVector<uint64_t, 64> Record; 3149 3150 while (true) { 3151 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3152 if (!MaybeEntry) 3153 return MaybeEntry.takeError(); 3154 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3155 3156 switch (Entry.Kind) { 3157 default: 3158 return error("Expect SubBlock"); 3159 case BitstreamEntry::SubBlock: 3160 switch (Entry.ID) { 3161 default: 3162 return error("Expect function block"); 3163 case bitc::FUNCTION_BLOCK_ID: 3164 if (Error Err = rememberAndSkipFunctionBody()) 3165 return Err; 3166 NextUnreadBit = Stream.GetCurrentBitNo(); 3167 return Error::success(); 3168 } 3169 } 3170 } 3171 } 3172 3173 bool BitcodeReaderBase::readBlockInfo() { 3174 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3175 Stream.ReadBlockInfoBlock(); 3176 if (!MaybeNewBlockInfo) 3177 return true; // FIXME Handle the error. 3178 Optional<BitstreamBlockInfo> NewBlockInfo = 3179 std::move(MaybeNewBlockInfo.get()); 3180 if (!NewBlockInfo) 3181 return true; 3182 BlockInfo = std::move(*NewBlockInfo); 3183 return false; 3184 } 3185 3186 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3187 // v1: [selection_kind, name] 3188 // v2: [strtab_offset, strtab_size, selection_kind] 3189 StringRef Name; 3190 std::tie(Name, Record) = readNameFromStrtab(Record); 3191 3192 if (Record.empty()) 3193 return error("Invalid record"); 3194 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3195 std::string OldFormatName; 3196 if (!UseStrtab) { 3197 if (Record.size() < 2) 3198 return error("Invalid record"); 3199 unsigned ComdatNameSize = Record[1]; 3200 OldFormatName.reserve(ComdatNameSize); 3201 for (unsigned i = 0; i != ComdatNameSize; ++i) 3202 OldFormatName += (char)Record[2 + i]; 3203 Name = OldFormatName; 3204 } 3205 Comdat *C = TheModule->getOrInsertComdat(Name); 3206 C->setSelectionKind(SK); 3207 ComdatList.push_back(C); 3208 return Error::success(); 3209 } 3210 3211 static void inferDSOLocal(GlobalValue *GV) { 3212 // infer dso_local from linkage and visibility if it is not encoded. 3213 if (GV->hasLocalLinkage() || 3214 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3215 GV->setDSOLocal(true); 3216 } 3217 3218 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3219 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3220 // visibility, threadlocal, unnamed_addr, externally_initialized, 3221 // dllstorageclass, comdat, attributes, preemption specifier, 3222 // partition strtab offset, partition strtab size] (name in VST) 3223 // v2: [strtab_offset, strtab_size, v1] 3224 StringRef Name; 3225 std::tie(Name, Record) = readNameFromStrtab(Record); 3226 3227 if (Record.size() < 6) 3228 return error("Invalid record"); 3229 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3230 Type *Ty = flattenPointerTypes(FullTy); 3231 if (!Ty) 3232 return error("Invalid record"); 3233 bool isConstant = Record[1] & 1; 3234 bool explicitType = Record[1] & 2; 3235 unsigned AddressSpace; 3236 if (explicitType) { 3237 AddressSpace = Record[1] >> 2; 3238 } else { 3239 if (!Ty->isPointerTy()) 3240 return error("Invalid type for value"); 3241 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3242 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3243 } 3244 3245 uint64_t RawLinkage = Record[3]; 3246 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3247 MaybeAlign Alignment; 3248 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3249 return Err; 3250 std::string Section; 3251 if (Record[5]) { 3252 if (Record[5] - 1 >= SectionTable.size()) 3253 return error("Invalid ID"); 3254 Section = SectionTable[Record[5] - 1]; 3255 } 3256 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3257 // Local linkage must have default visibility. 3258 // auto-upgrade `hidden` and `protected` for old bitcode. 3259 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3260 Visibility = getDecodedVisibility(Record[6]); 3261 3262 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3263 if (Record.size() > 7) 3264 TLM = getDecodedThreadLocalMode(Record[7]); 3265 3266 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3267 if (Record.size() > 8) 3268 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3269 3270 bool ExternallyInitialized = false; 3271 if (Record.size() > 9) 3272 ExternallyInitialized = Record[9]; 3273 3274 GlobalVariable *NewGV = 3275 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3276 nullptr, TLM, AddressSpace, ExternallyInitialized); 3277 NewGV->setAlignment(Alignment); 3278 if (!Section.empty()) 3279 NewGV->setSection(Section); 3280 NewGV->setVisibility(Visibility); 3281 NewGV->setUnnamedAddr(UnnamedAddr); 3282 3283 if (Record.size() > 10) 3284 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3285 else 3286 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3287 3288 FullTy = PointerType::get(FullTy, AddressSpace); 3289 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3290 "Incorrect fully specified type for GlobalVariable"); 3291 ValueList.push_back(NewGV, FullTy); 3292 3293 // Remember which value to use for the global initializer. 3294 if (unsigned InitID = Record[2]) 3295 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3296 3297 if (Record.size() > 11) { 3298 if (unsigned ComdatID = Record[11]) { 3299 if (ComdatID > ComdatList.size()) 3300 return error("Invalid global variable comdat ID"); 3301 NewGV->setComdat(ComdatList[ComdatID - 1]); 3302 } 3303 } else if (hasImplicitComdat(RawLinkage)) { 3304 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3305 } 3306 3307 if (Record.size() > 12) { 3308 auto AS = getAttributes(Record[12]).getFnAttributes(); 3309 NewGV->setAttributes(AS); 3310 } 3311 3312 if (Record.size() > 13) { 3313 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3314 } 3315 inferDSOLocal(NewGV); 3316 3317 // Check whether we have enough values to read a partition name. 3318 if (Record.size() > 15) 3319 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3320 3321 return Error::success(); 3322 } 3323 3324 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3325 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3326 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3327 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3328 // v2: [strtab_offset, strtab_size, v1] 3329 StringRef Name; 3330 std::tie(Name, Record) = readNameFromStrtab(Record); 3331 3332 if (Record.size() < 8) 3333 return error("Invalid record"); 3334 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3335 Type *FTy = flattenPointerTypes(FullFTy); 3336 if (!FTy) 3337 return error("Invalid record"); 3338 if (isa<PointerType>(FTy)) 3339 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3340 3341 if (!isa<FunctionType>(FTy)) 3342 return error("Invalid type for value"); 3343 auto CC = static_cast<CallingConv::ID>(Record[1]); 3344 if (CC & ~CallingConv::MaxID) 3345 return error("Invalid calling convention ID"); 3346 3347 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3348 if (Record.size() > 16) 3349 AddrSpace = Record[16]; 3350 3351 Function *Func = 3352 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3353 AddrSpace, Name, TheModule); 3354 3355 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3356 "Incorrect fully specified type provided for function"); 3357 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3358 3359 Func->setCallingConv(CC); 3360 bool isProto = Record[2]; 3361 uint64_t RawLinkage = Record[3]; 3362 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3363 Func->setAttributes(getAttributes(Record[4])); 3364 3365 // Upgrade any old-style byval or sret without a type by propagating the 3366 // argument's pointee type. There should be no opaque pointers where the byval 3367 // type is implicit. 3368 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3369 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3370 Attribute::InAlloca}) { 3371 if (!Func->hasParamAttribute(i, Kind)) 3372 continue; 3373 3374 Func->removeParamAttr(i, Kind); 3375 3376 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3377 Type *PtrEltTy = getPointerElementFlatType(PTy); 3378 Attribute NewAttr; 3379 switch (Kind) { 3380 case Attribute::ByVal: 3381 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3382 break; 3383 case Attribute::StructRet: 3384 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3385 break; 3386 case Attribute::InAlloca: 3387 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3388 break; 3389 default: 3390 llvm_unreachable("not an upgraded type attribute"); 3391 } 3392 3393 Func->addParamAttr(i, NewAttr); 3394 } 3395 } 3396 3397 MaybeAlign Alignment; 3398 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3399 return Err; 3400 Func->setAlignment(Alignment); 3401 if (Record[6]) { 3402 if (Record[6] - 1 >= SectionTable.size()) 3403 return error("Invalid ID"); 3404 Func->setSection(SectionTable[Record[6] - 1]); 3405 } 3406 // Local linkage must have default visibility. 3407 // auto-upgrade `hidden` and `protected` for old bitcode. 3408 if (!Func->hasLocalLinkage()) 3409 Func->setVisibility(getDecodedVisibility(Record[7])); 3410 if (Record.size() > 8 && Record[8]) { 3411 if (Record[8] - 1 >= GCTable.size()) 3412 return error("Invalid ID"); 3413 Func->setGC(GCTable[Record[8] - 1]); 3414 } 3415 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3416 if (Record.size() > 9) 3417 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3418 Func->setUnnamedAddr(UnnamedAddr); 3419 if (Record.size() > 10 && Record[10] != 0) 3420 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3421 3422 if (Record.size() > 11) 3423 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3424 else 3425 upgradeDLLImportExportLinkage(Func, RawLinkage); 3426 3427 if (Record.size() > 12) { 3428 if (unsigned ComdatID = Record[12]) { 3429 if (ComdatID > ComdatList.size()) 3430 return error("Invalid function comdat ID"); 3431 Func->setComdat(ComdatList[ComdatID - 1]); 3432 } 3433 } else if (hasImplicitComdat(RawLinkage)) { 3434 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3435 } 3436 3437 if (Record.size() > 13 && Record[13] != 0) 3438 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3439 3440 if (Record.size() > 14 && Record[14] != 0) 3441 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3442 3443 if (Record.size() > 15) { 3444 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3445 } 3446 inferDSOLocal(Func); 3447 3448 // Record[16] is the address space number. 3449 3450 // Check whether we have enough values to read a partition name. 3451 if (Record.size() > 18) 3452 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3453 3454 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3455 assert(Func->getType() == flattenPointerTypes(FullTy) && 3456 "Incorrect fully specified type provided for Function"); 3457 ValueList.push_back(Func, FullTy); 3458 3459 // If this is a function with a body, remember the prototype we are 3460 // creating now, so that we can match up the body with them later. 3461 if (!isProto) { 3462 Func->setIsMaterializable(true); 3463 FunctionsWithBodies.push_back(Func); 3464 DeferredFunctionInfo[Func] = 0; 3465 } 3466 return Error::success(); 3467 } 3468 3469 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3470 unsigned BitCode, ArrayRef<uint64_t> Record) { 3471 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3472 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3473 // dllstorageclass, threadlocal, unnamed_addr, 3474 // preemption specifier] (name in VST) 3475 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3476 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3477 // preemption specifier] (name in VST) 3478 // v2: [strtab_offset, strtab_size, v1] 3479 StringRef Name; 3480 std::tie(Name, Record) = readNameFromStrtab(Record); 3481 3482 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3483 if (Record.size() < (3 + (unsigned)NewRecord)) 3484 return error("Invalid record"); 3485 unsigned OpNum = 0; 3486 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3487 Type *Ty = flattenPointerTypes(FullTy); 3488 if (!Ty) 3489 return error("Invalid record"); 3490 3491 unsigned AddrSpace; 3492 if (!NewRecord) { 3493 auto *PTy = dyn_cast<PointerType>(Ty); 3494 if (!PTy) 3495 return error("Invalid type for value"); 3496 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3497 AddrSpace = PTy->getAddressSpace(); 3498 } else { 3499 AddrSpace = Record[OpNum++]; 3500 } 3501 3502 auto Val = Record[OpNum++]; 3503 auto Linkage = Record[OpNum++]; 3504 GlobalIndirectSymbol *NewGA; 3505 if (BitCode == bitc::MODULE_CODE_ALIAS || 3506 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3507 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3508 TheModule); 3509 else 3510 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3511 nullptr, TheModule); 3512 3513 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3514 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3515 // Local linkage must have default visibility. 3516 // auto-upgrade `hidden` and `protected` for old bitcode. 3517 if (OpNum != Record.size()) { 3518 auto VisInd = OpNum++; 3519 if (!NewGA->hasLocalLinkage()) 3520 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3521 } 3522 if (BitCode == bitc::MODULE_CODE_ALIAS || 3523 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3524 if (OpNum != Record.size()) 3525 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3526 else 3527 upgradeDLLImportExportLinkage(NewGA, Linkage); 3528 if (OpNum != Record.size()) 3529 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3530 if (OpNum != Record.size()) 3531 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3532 } 3533 if (OpNum != Record.size()) 3534 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3535 inferDSOLocal(NewGA); 3536 3537 // Check whether we have enough values to read a partition name. 3538 if (OpNum + 1 < Record.size()) { 3539 NewGA->setPartition( 3540 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3541 OpNum += 2; 3542 } 3543 3544 FullTy = PointerType::get(FullTy, AddrSpace); 3545 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3546 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3547 ValueList.push_back(NewGA, FullTy); 3548 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3549 return Error::success(); 3550 } 3551 3552 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3553 bool ShouldLazyLoadMetadata, 3554 DataLayoutCallbackTy DataLayoutCallback) { 3555 if (ResumeBit) { 3556 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3557 return JumpFailed; 3558 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3559 return Err; 3560 3561 SmallVector<uint64_t, 64> Record; 3562 3563 // Parts of bitcode parsing depend on the datalayout. Make sure we 3564 // finalize the datalayout before we run any of that code. 3565 bool ResolvedDataLayout = false; 3566 auto ResolveDataLayout = [&] { 3567 if (ResolvedDataLayout) 3568 return; 3569 3570 // datalayout and triple can't be parsed after this point. 3571 ResolvedDataLayout = true; 3572 3573 // Upgrade data layout string. 3574 std::string DL = llvm::UpgradeDataLayoutString( 3575 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3576 TheModule->setDataLayout(DL); 3577 3578 if (auto LayoutOverride = 3579 DataLayoutCallback(TheModule->getTargetTriple())) 3580 TheModule->setDataLayout(*LayoutOverride); 3581 }; 3582 3583 // Read all the records for this module. 3584 while (true) { 3585 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3586 if (!MaybeEntry) 3587 return MaybeEntry.takeError(); 3588 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3589 3590 switch (Entry.Kind) { 3591 case BitstreamEntry::Error: 3592 return error("Malformed block"); 3593 case BitstreamEntry::EndBlock: 3594 ResolveDataLayout(); 3595 return globalCleanup(); 3596 3597 case BitstreamEntry::SubBlock: 3598 switch (Entry.ID) { 3599 default: // Skip unknown content. 3600 if (Error Err = Stream.SkipBlock()) 3601 return Err; 3602 break; 3603 case bitc::BLOCKINFO_BLOCK_ID: 3604 if (readBlockInfo()) 3605 return error("Malformed block"); 3606 break; 3607 case bitc::PARAMATTR_BLOCK_ID: 3608 if (Error Err = parseAttributeBlock()) 3609 return Err; 3610 break; 3611 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3612 if (Error Err = parseAttributeGroupBlock()) 3613 return Err; 3614 break; 3615 case bitc::TYPE_BLOCK_ID_NEW: 3616 if (Error Err = parseTypeTable()) 3617 return Err; 3618 break; 3619 case bitc::VALUE_SYMTAB_BLOCK_ID: 3620 if (!SeenValueSymbolTable) { 3621 // Either this is an old form VST without function index and an 3622 // associated VST forward declaration record (which would have caused 3623 // the VST to be jumped to and parsed before it was encountered 3624 // normally in the stream), or there were no function blocks to 3625 // trigger an earlier parsing of the VST. 3626 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3627 if (Error Err = parseValueSymbolTable()) 3628 return Err; 3629 SeenValueSymbolTable = true; 3630 } else { 3631 // We must have had a VST forward declaration record, which caused 3632 // the parser to jump to and parse the VST earlier. 3633 assert(VSTOffset > 0); 3634 if (Error Err = Stream.SkipBlock()) 3635 return Err; 3636 } 3637 break; 3638 case bitc::CONSTANTS_BLOCK_ID: 3639 if (Error Err = parseConstants()) 3640 return Err; 3641 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3642 return Err; 3643 break; 3644 case bitc::METADATA_BLOCK_ID: 3645 if (ShouldLazyLoadMetadata) { 3646 if (Error Err = rememberAndSkipMetadata()) 3647 return Err; 3648 break; 3649 } 3650 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3651 if (Error Err = MDLoader->parseModuleMetadata()) 3652 return Err; 3653 break; 3654 case bitc::METADATA_KIND_BLOCK_ID: 3655 if (Error Err = MDLoader->parseMetadataKinds()) 3656 return Err; 3657 break; 3658 case bitc::FUNCTION_BLOCK_ID: 3659 ResolveDataLayout(); 3660 3661 // If this is the first function body we've seen, reverse the 3662 // FunctionsWithBodies list. 3663 if (!SeenFirstFunctionBody) { 3664 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3665 if (Error Err = globalCleanup()) 3666 return Err; 3667 SeenFirstFunctionBody = true; 3668 } 3669 3670 if (VSTOffset > 0) { 3671 // If we have a VST forward declaration record, make sure we 3672 // parse the VST now if we haven't already. It is needed to 3673 // set up the DeferredFunctionInfo vector for lazy reading. 3674 if (!SeenValueSymbolTable) { 3675 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3676 return Err; 3677 SeenValueSymbolTable = true; 3678 // Fall through so that we record the NextUnreadBit below. 3679 // This is necessary in case we have an anonymous function that 3680 // is later materialized. Since it will not have a VST entry we 3681 // need to fall back to the lazy parse to find its offset. 3682 } else { 3683 // If we have a VST forward declaration record, but have already 3684 // parsed the VST (just above, when the first function body was 3685 // encountered here), then we are resuming the parse after 3686 // materializing functions. The ResumeBit points to the 3687 // start of the last function block recorded in the 3688 // DeferredFunctionInfo map. Skip it. 3689 if (Error Err = Stream.SkipBlock()) 3690 return Err; 3691 continue; 3692 } 3693 } 3694 3695 // Support older bitcode files that did not have the function 3696 // index in the VST, nor a VST forward declaration record, as 3697 // well as anonymous functions that do not have VST entries. 3698 // Build the DeferredFunctionInfo vector on the fly. 3699 if (Error Err = rememberAndSkipFunctionBody()) 3700 return Err; 3701 3702 // Suspend parsing when we reach the function bodies. Subsequent 3703 // materialization calls will resume it when necessary. If the bitcode 3704 // file is old, the symbol table will be at the end instead and will not 3705 // have been seen yet. In this case, just finish the parse now. 3706 if (SeenValueSymbolTable) { 3707 NextUnreadBit = Stream.GetCurrentBitNo(); 3708 // After the VST has been parsed, we need to make sure intrinsic name 3709 // are auto-upgraded. 3710 return globalCleanup(); 3711 } 3712 break; 3713 case bitc::USELIST_BLOCK_ID: 3714 if (Error Err = parseUseLists()) 3715 return Err; 3716 break; 3717 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3718 if (Error Err = parseOperandBundleTags()) 3719 return Err; 3720 break; 3721 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3722 if (Error Err = parseSyncScopeNames()) 3723 return Err; 3724 break; 3725 } 3726 continue; 3727 3728 case BitstreamEntry::Record: 3729 // The interesting case. 3730 break; 3731 } 3732 3733 // Read a record. 3734 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3735 if (!MaybeBitCode) 3736 return MaybeBitCode.takeError(); 3737 switch (unsigned BitCode = MaybeBitCode.get()) { 3738 default: break; // Default behavior, ignore unknown content. 3739 case bitc::MODULE_CODE_VERSION: { 3740 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3741 if (!VersionOrErr) 3742 return VersionOrErr.takeError(); 3743 UseRelativeIDs = *VersionOrErr >= 1; 3744 break; 3745 } 3746 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3747 if (ResolvedDataLayout) 3748 return error("target triple too late in module"); 3749 std::string S; 3750 if (convertToString(Record, 0, S)) 3751 return error("Invalid record"); 3752 TheModule->setTargetTriple(S); 3753 break; 3754 } 3755 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3756 if (ResolvedDataLayout) 3757 return error("datalayout too late in module"); 3758 std::string S; 3759 if (convertToString(Record, 0, S)) 3760 return error("Invalid record"); 3761 TheModule->setDataLayout(S); 3762 break; 3763 } 3764 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3765 std::string S; 3766 if (convertToString(Record, 0, S)) 3767 return error("Invalid record"); 3768 TheModule->setModuleInlineAsm(S); 3769 break; 3770 } 3771 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3772 // Deprecated, but still needed to read old bitcode files. 3773 std::string S; 3774 if (convertToString(Record, 0, S)) 3775 return error("Invalid record"); 3776 // Ignore value. 3777 break; 3778 } 3779 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3780 std::string S; 3781 if (convertToString(Record, 0, S)) 3782 return error("Invalid record"); 3783 SectionTable.push_back(S); 3784 break; 3785 } 3786 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3787 std::string S; 3788 if (convertToString(Record, 0, S)) 3789 return error("Invalid record"); 3790 GCTable.push_back(S); 3791 break; 3792 } 3793 case bitc::MODULE_CODE_COMDAT: 3794 if (Error Err = parseComdatRecord(Record)) 3795 return Err; 3796 break; 3797 case bitc::MODULE_CODE_GLOBALVAR: 3798 if (Error Err = parseGlobalVarRecord(Record)) 3799 return Err; 3800 break; 3801 case bitc::MODULE_CODE_FUNCTION: 3802 ResolveDataLayout(); 3803 if (Error Err = parseFunctionRecord(Record)) 3804 return Err; 3805 break; 3806 case bitc::MODULE_CODE_IFUNC: 3807 case bitc::MODULE_CODE_ALIAS: 3808 case bitc::MODULE_CODE_ALIAS_OLD: 3809 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3810 return Err; 3811 break; 3812 /// MODULE_CODE_VSTOFFSET: [offset] 3813 case bitc::MODULE_CODE_VSTOFFSET: 3814 if (Record.empty()) 3815 return error("Invalid record"); 3816 // Note that we subtract 1 here because the offset is relative to one word 3817 // before the start of the identification or module block, which was 3818 // historically always the start of the regular bitcode header. 3819 VSTOffset = Record[0] - 1; 3820 break; 3821 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3822 case bitc::MODULE_CODE_SOURCE_FILENAME: 3823 SmallString<128> ValueName; 3824 if (convertToString(Record, 0, ValueName)) 3825 return error("Invalid record"); 3826 TheModule->setSourceFileName(ValueName); 3827 break; 3828 } 3829 Record.clear(); 3830 } 3831 } 3832 3833 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3834 bool IsImporting, 3835 DataLayoutCallbackTy DataLayoutCallback) { 3836 TheModule = M; 3837 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3838 [&](unsigned ID) { return getTypeByID(ID); }); 3839 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3840 } 3841 3842 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3843 if (!isa<PointerType>(PtrType)) 3844 return error("Load/Store operand is not a pointer type"); 3845 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3846 3847 if (ValType && ValType != ElemType) 3848 return error("Explicit load/store type does not match pointee " 3849 "type of pointer operand"); 3850 if (!PointerType::isLoadableOrStorableType(ElemType)) 3851 return error("Cannot load/store from pointer"); 3852 return Error::success(); 3853 } 3854 3855 void BitcodeReader::propagateByValSRetTypes(CallBase *CB, 3856 ArrayRef<Type *> ArgsFullTys) { 3857 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3858 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3859 Attribute::InAlloca}) { 3860 if (!CB->paramHasAttr(i, Kind)) 3861 continue; 3862 3863 CB->removeParamAttr(i, Kind); 3864 3865 Type *PtrEltTy = getPointerElementFlatType(ArgsFullTys[i]); 3866 Attribute NewAttr; 3867 switch (Kind) { 3868 case Attribute::ByVal: 3869 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3870 break; 3871 case Attribute::StructRet: 3872 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3873 break; 3874 case Attribute::InAlloca: 3875 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3876 break; 3877 default: 3878 llvm_unreachable("not an upgraded type attribute"); 3879 } 3880 3881 CB->addParamAttr(i, NewAttr); 3882 } 3883 } 3884 } 3885 3886 /// Lazily parse the specified function body block. 3887 Error BitcodeReader::parseFunctionBody(Function *F) { 3888 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3889 return Err; 3890 3891 // Unexpected unresolved metadata when parsing function. 3892 if (MDLoader->hasFwdRefs()) 3893 return error("Invalid function metadata: incoming forward references"); 3894 3895 InstructionList.clear(); 3896 unsigned ModuleValueListSize = ValueList.size(); 3897 unsigned ModuleMDLoaderSize = MDLoader->size(); 3898 3899 // Add all the function arguments to the value table. 3900 unsigned ArgNo = 0; 3901 FunctionType *FullFTy = FunctionTypes[F]; 3902 for (Argument &I : F->args()) { 3903 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3904 "Incorrect fully specified type for Function Argument"); 3905 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3906 } 3907 unsigned NextValueNo = ValueList.size(); 3908 BasicBlock *CurBB = nullptr; 3909 unsigned CurBBNo = 0; 3910 3911 DebugLoc LastLoc; 3912 auto getLastInstruction = [&]() -> Instruction * { 3913 if (CurBB && !CurBB->empty()) 3914 return &CurBB->back(); 3915 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3916 !FunctionBBs[CurBBNo - 1]->empty()) 3917 return &FunctionBBs[CurBBNo - 1]->back(); 3918 return nullptr; 3919 }; 3920 3921 std::vector<OperandBundleDef> OperandBundles; 3922 3923 // Read all the records. 3924 SmallVector<uint64_t, 64> Record; 3925 3926 while (true) { 3927 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3928 if (!MaybeEntry) 3929 return MaybeEntry.takeError(); 3930 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3931 3932 switch (Entry.Kind) { 3933 case BitstreamEntry::Error: 3934 return error("Malformed block"); 3935 case BitstreamEntry::EndBlock: 3936 goto OutOfRecordLoop; 3937 3938 case BitstreamEntry::SubBlock: 3939 switch (Entry.ID) { 3940 default: // Skip unknown content. 3941 if (Error Err = Stream.SkipBlock()) 3942 return Err; 3943 break; 3944 case bitc::CONSTANTS_BLOCK_ID: 3945 if (Error Err = parseConstants()) 3946 return Err; 3947 NextValueNo = ValueList.size(); 3948 break; 3949 case bitc::VALUE_SYMTAB_BLOCK_ID: 3950 if (Error Err = parseValueSymbolTable()) 3951 return Err; 3952 break; 3953 case bitc::METADATA_ATTACHMENT_ID: 3954 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3955 return Err; 3956 break; 3957 case bitc::METADATA_BLOCK_ID: 3958 assert(DeferredMetadataInfo.empty() && 3959 "Must read all module-level metadata before function-level"); 3960 if (Error Err = MDLoader->parseFunctionMetadata()) 3961 return Err; 3962 break; 3963 case bitc::USELIST_BLOCK_ID: 3964 if (Error Err = parseUseLists()) 3965 return Err; 3966 break; 3967 } 3968 continue; 3969 3970 case BitstreamEntry::Record: 3971 // The interesting case. 3972 break; 3973 } 3974 3975 // Read a record. 3976 Record.clear(); 3977 Instruction *I = nullptr; 3978 Type *FullTy = nullptr; 3979 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3980 if (!MaybeBitCode) 3981 return MaybeBitCode.takeError(); 3982 switch (unsigned BitCode = MaybeBitCode.get()) { 3983 default: // Default behavior: reject 3984 return error("Invalid value"); 3985 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3986 if (Record.empty() || Record[0] == 0) 3987 return error("Invalid record"); 3988 // Create all the basic blocks for the function. 3989 FunctionBBs.resize(Record[0]); 3990 3991 // See if anything took the address of blocks in this function. 3992 auto BBFRI = BasicBlockFwdRefs.find(F); 3993 if (BBFRI == BasicBlockFwdRefs.end()) { 3994 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3995 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3996 } else { 3997 auto &BBRefs = BBFRI->second; 3998 // Check for invalid basic block references. 3999 if (BBRefs.size() > FunctionBBs.size()) 4000 return error("Invalid ID"); 4001 assert(!BBRefs.empty() && "Unexpected empty array"); 4002 assert(!BBRefs.front() && "Invalid reference to entry block"); 4003 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4004 ++I) 4005 if (I < RE && BBRefs[I]) { 4006 BBRefs[I]->insertInto(F); 4007 FunctionBBs[I] = BBRefs[I]; 4008 } else { 4009 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4010 } 4011 4012 // Erase from the table. 4013 BasicBlockFwdRefs.erase(BBFRI); 4014 } 4015 4016 CurBB = FunctionBBs[0]; 4017 continue; 4018 } 4019 4020 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4021 // This record indicates that the last instruction is at the same 4022 // location as the previous instruction with a location. 4023 I = getLastInstruction(); 4024 4025 if (!I) 4026 return error("Invalid record"); 4027 I->setDebugLoc(LastLoc); 4028 I = nullptr; 4029 continue; 4030 4031 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4032 I = getLastInstruction(); 4033 if (!I || Record.size() < 4) 4034 return error("Invalid record"); 4035 4036 unsigned Line = Record[0], Col = Record[1]; 4037 unsigned ScopeID = Record[2], IAID = Record[3]; 4038 bool isImplicitCode = Record.size() == 5 && Record[4]; 4039 4040 MDNode *Scope = nullptr, *IA = nullptr; 4041 if (ScopeID) { 4042 Scope = dyn_cast_or_null<MDNode>( 4043 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4044 if (!Scope) 4045 return error("Invalid record"); 4046 } 4047 if (IAID) { 4048 IA = dyn_cast_or_null<MDNode>( 4049 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4050 if (!IA) 4051 return error("Invalid record"); 4052 } 4053 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4054 isImplicitCode); 4055 I->setDebugLoc(LastLoc); 4056 I = nullptr; 4057 continue; 4058 } 4059 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4060 unsigned OpNum = 0; 4061 Value *LHS; 4062 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4063 OpNum+1 > Record.size()) 4064 return error("Invalid record"); 4065 4066 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4067 if (Opc == -1) 4068 return error("Invalid record"); 4069 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4070 InstructionList.push_back(I); 4071 if (OpNum < Record.size()) { 4072 if (isa<FPMathOperator>(I)) { 4073 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4074 if (FMF.any()) 4075 I->setFastMathFlags(FMF); 4076 } 4077 } 4078 break; 4079 } 4080 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4081 unsigned OpNum = 0; 4082 Value *LHS, *RHS; 4083 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4084 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4085 OpNum+1 > Record.size()) 4086 return error("Invalid record"); 4087 4088 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4089 if (Opc == -1) 4090 return error("Invalid record"); 4091 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4092 InstructionList.push_back(I); 4093 if (OpNum < Record.size()) { 4094 if (Opc == Instruction::Add || 4095 Opc == Instruction::Sub || 4096 Opc == Instruction::Mul || 4097 Opc == Instruction::Shl) { 4098 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4099 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4100 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4101 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4102 } else if (Opc == Instruction::SDiv || 4103 Opc == Instruction::UDiv || 4104 Opc == Instruction::LShr || 4105 Opc == Instruction::AShr) { 4106 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4107 cast<BinaryOperator>(I)->setIsExact(true); 4108 } else if (isa<FPMathOperator>(I)) { 4109 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4110 if (FMF.any()) 4111 I->setFastMathFlags(FMF); 4112 } 4113 4114 } 4115 break; 4116 } 4117 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4118 unsigned OpNum = 0; 4119 Value *Op; 4120 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4121 OpNum+2 != Record.size()) 4122 return error("Invalid record"); 4123 4124 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 4125 Type *ResTy = flattenPointerTypes(FullTy); 4126 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4127 if (Opc == -1 || !ResTy) 4128 return error("Invalid record"); 4129 Instruction *Temp = nullptr; 4130 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4131 if (Temp) { 4132 InstructionList.push_back(Temp); 4133 assert(CurBB && "No current BB?"); 4134 CurBB->getInstList().push_back(Temp); 4135 } 4136 } else { 4137 auto CastOp = (Instruction::CastOps)Opc; 4138 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4139 return error("Invalid cast"); 4140 I = CastInst::Create(CastOp, Op, ResTy); 4141 } 4142 InstructionList.push_back(I); 4143 break; 4144 } 4145 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4146 case bitc::FUNC_CODE_INST_GEP_OLD: 4147 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4148 unsigned OpNum = 0; 4149 4150 Type *Ty; 4151 bool InBounds; 4152 4153 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4154 InBounds = Record[OpNum++]; 4155 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4156 Ty = flattenPointerTypes(FullTy); 4157 } else { 4158 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4159 Ty = nullptr; 4160 } 4161 4162 Value *BasePtr; 4163 Type *FullBaseTy = nullptr; 4164 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 4165 return error("Invalid record"); 4166 4167 if (!Ty) { 4168 std::tie(FullTy, Ty) = 4169 getPointerElementTypes(FullBaseTy->getScalarType()); 4170 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 4171 return error( 4172 "Explicit gep type does not match pointee type of pointer operand"); 4173 4174 SmallVector<Value*, 16> GEPIdx; 4175 while (OpNum != Record.size()) { 4176 Value *Op; 4177 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4178 return error("Invalid record"); 4179 GEPIdx.push_back(Op); 4180 } 4181 4182 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4183 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 4184 4185 InstructionList.push_back(I); 4186 if (InBounds) 4187 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4188 break; 4189 } 4190 4191 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4192 // EXTRACTVAL: [opty, opval, n x indices] 4193 unsigned OpNum = 0; 4194 Value *Agg; 4195 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4196 return error("Invalid record"); 4197 4198 unsigned RecSize = Record.size(); 4199 if (OpNum == RecSize) 4200 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4201 4202 SmallVector<unsigned, 4> EXTRACTVALIdx; 4203 for (; OpNum != RecSize; ++OpNum) { 4204 bool IsArray = FullTy->isArrayTy(); 4205 bool IsStruct = FullTy->isStructTy(); 4206 uint64_t Index = Record[OpNum]; 4207 4208 if (!IsStruct && !IsArray) 4209 return error("EXTRACTVAL: Invalid type"); 4210 if ((unsigned)Index != Index) 4211 return error("Invalid value"); 4212 if (IsStruct && Index >= FullTy->getStructNumElements()) 4213 return error("EXTRACTVAL: Invalid struct index"); 4214 if (IsArray && Index >= FullTy->getArrayNumElements()) 4215 return error("EXTRACTVAL: Invalid array index"); 4216 EXTRACTVALIdx.push_back((unsigned)Index); 4217 4218 if (IsStruct) 4219 FullTy = FullTy->getStructElementType(Index); 4220 else 4221 FullTy = FullTy->getArrayElementType(); 4222 } 4223 4224 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4225 InstructionList.push_back(I); 4226 break; 4227 } 4228 4229 case bitc::FUNC_CODE_INST_INSERTVAL: { 4230 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4231 unsigned OpNum = 0; 4232 Value *Agg; 4233 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4234 return error("Invalid record"); 4235 Value *Val; 4236 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4237 return error("Invalid record"); 4238 4239 unsigned RecSize = Record.size(); 4240 if (OpNum == RecSize) 4241 return error("INSERTVAL: Invalid instruction with 0 indices"); 4242 4243 SmallVector<unsigned, 4> INSERTVALIdx; 4244 Type *CurTy = Agg->getType(); 4245 for (; OpNum != RecSize; ++OpNum) { 4246 bool IsArray = CurTy->isArrayTy(); 4247 bool IsStruct = CurTy->isStructTy(); 4248 uint64_t Index = Record[OpNum]; 4249 4250 if (!IsStruct && !IsArray) 4251 return error("INSERTVAL: Invalid type"); 4252 if ((unsigned)Index != Index) 4253 return error("Invalid value"); 4254 if (IsStruct && Index >= CurTy->getStructNumElements()) 4255 return error("INSERTVAL: Invalid struct index"); 4256 if (IsArray && Index >= CurTy->getArrayNumElements()) 4257 return error("INSERTVAL: Invalid array index"); 4258 4259 INSERTVALIdx.push_back((unsigned)Index); 4260 if (IsStruct) 4261 CurTy = CurTy->getStructElementType(Index); 4262 else 4263 CurTy = CurTy->getArrayElementType(); 4264 } 4265 4266 if (CurTy != Val->getType()) 4267 return error("Inserted value type doesn't match aggregate type"); 4268 4269 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4270 InstructionList.push_back(I); 4271 break; 4272 } 4273 4274 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4275 // obsolete form of select 4276 // handles select i1 ... in old bitcode 4277 unsigned OpNum = 0; 4278 Value *TrueVal, *FalseVal, *Cond; 4279 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4280 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4281 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4282 return error("Invalid record"); 4283 4284 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4285 InstructionList.push_back(I); 4286 break; 4287 } 4288 4289 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4290 // new form of select 4291 // handles select i1 or select [N x i1] 4292 unsigned OpNum = 0; 4293 Value *TrueVal, *FalseVal, *Cond; 4294 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4295 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4296 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4297 return error("Invalid record"); 4298 4299 // select condition can be either i1 or [N x i1] 4300 if (VectorType* vector_type = 4301 dyn_cast<VectorType>(Cond->getType())) { 4302 // expect <n x i1> 4303 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4304 return error("Invalid type for value"); 4305 } else { 4306 // expect i1 4307 if (Cond->getType() != Type::getInt1Ty(Context)) 4308 return error("Invalid type for value"); 4309 } 4310 4311 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4312 InstructionList.push_back(I); 4313 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4314 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4315 if (FMF.any()) 4316 I->setFastMathFlags(FMF); 4317 } 4318 break; 4319 } 4320 4321 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4322 unsigned OpNum = 0; 4323 Value *Vec, *Idx; 4324 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4325 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4326 return error("Invalid record"); 4327 if (!Vec->getType()->isVectorTy()) 4328 return error("Invalid type for value"); 4329 I = ExtractElementInst::Create(Vec, Idx); 4330 FullTy = cast<VectorType>(FullTy)->getElementType(); 4331 InstructionList.push_back(I); 4332 break; 4333 } 4334 4335 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4336 unsigned OpNum = 0; 4337 Value *Vec, *Elt, *Idx; 4338 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4339 return error("Invalid record"); 4340 if (!Vec->getType()->isVectorTy()) 4341 return error("Invalid type for value"); 4342 if (popValue(Record, OpNum, NextValueNo, 4343 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4344 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4345 return error("Invalid record"); 4346 I = InsertElementInst::Create(Vec, Elt, Idx); 4347 InstructionList.push_back(I); 4348 break; 4349 } 4350 4351 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4352 unsigned OpNum = 0; 4353 Value *Vec1, *Vec2, *Mask; 4354 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4355 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4356 return error("Invalid record"); 4357 4358 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4359 return error("Invalid record"); 4360 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4361 return error("Invalid type for value"); 4362 4363 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4364 FullTy = 4365 VectorType::get(cast<VectorType>(FullTy)->getElementType(), 4366 cast<VectorType>(Mask->getType())->getElementCount()); 4367 InstructionList.push_back(I); 4368 break; 4369 } 4370 4371 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4372 // Old form of ICmp/FCmp returning bool 4373 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4374 // both legal on vectors but had different behaviour. 4375 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4376 // FCmp/ICmp returning bool or vector of bool 4377 4378 unsigned OpNum = 0; 4379 Value *LHS, *RHS; 4380 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4381 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4382 return error("Invalid record"); 4383 4384 if (OpNum >= Record.size()) 4385 return error( 4386 "Invalid record: operand number exceeded available operands"); 4387 4388 unsigned PredVal = Record[OpNum]; 4389 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4390 FastMathFlags FMF; 4391 if (IsFP && Record.size() > OpNum+1) 4392 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4393 4394 if (OpNum+1 != Record.size()) 4395 return error("Invalid record"); 4396 4397 if (LHS->getType()->isFPOrFPVectorTy()) 4398 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4399 else 4400 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4401 4402 if (FMF.any()) 4403 I->setFastMathFlags(FMF); 4404 InstructionList.push_back(I); 4405 break; 4406 } 4407 4408 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4409 { 4410 unsigned Size = Record.size(); 4411 if (Size == 0) { 4412 I = ReturnInst::Create(Context); 4413 InstructionList.push_back(I); 4414 break; 4415 } 4416 4417 unsigned OpNum = 0; 4418 Value *Op = nullptr; 4419 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4420 return error("Invalid record"); 4421 if (OpNum != Record.size()) 4422 return error("Invalid record"); 4423 4424 I = ReturnInst::Create(Context, Op); 4425 InstructionList.push_back(I); 4426 break; 4427 } 4428 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4429 if (Record.size() != 1 && Record.size() != 3) 4430 return error("Invalid record"); 4431 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4432 if (!TrueDest) 4433 return error("Invalid record"); 4434 4435 if (Record.size() == 1) { 4436 I = BranchInst::Create(TrueDest); 4437 InstructionList.push_back(I); 4438 } 4439 else { 4440 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4441 Value *Cond = getValue(Record, 2, NextValueNo, 4442 Type::getInt1Ty(Context)); 4443 if (!FalseDest || !Cond) 4444 return error("Invalid record"); 4445 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4446 InstructionList.push_back(I); 4447 } 4448 break; 4449 } 4450 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4451 if (Record.size() != 1 && Record.size() != 2) 4452 return error("Invalid record"); 4453 unsigned Idx = 0; 4454 Value *CleanupPad = 4455 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4456 if (!CleanupPad) 4457 return error("Invalid record"); 4458 BasicBlock *UnwindDest = nullptr; 4459 if (Record.size() == 2) { 4460 UnwindDest = getBasicBlock(Record[Idx++]); 4461 if (!UnwindDest) 4462 return error("Invalid record"); 4463 } 4464 4465 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4466 InstructionList.push_back(I); 4467 break; 4468 } 4469 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4470 if (Record.size() != 2) 4471 return error("Invalid record"); 4472 unsigned Idx = 0; 4473 Value *CatchPad = 4474 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4475 if (!CatchPad) 4476 return error("Invalid record"); 4477 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4478 if (!BB) 4479 return error("Invalid record"); 4480 4481 I = CatchReturnInst::Create(CatchPad, BB); 4482 InstructionList.push_back(I); 4483 break; 4484 } 4485 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4486 // We must have, at minimum, the outer scope and the number of arguments. 4487 if (Record.size() < 2) 4488 return error("Invalid record"); 4489 4490 unsigned Idx = 0; 4491 4492 Value *ParentPad = 4493 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4494 4495 unsigned NumHandlers = Record[Idx++]; 4496 4497 SmallVector<BasicBlock *, 2> Handlers; 4498 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4499 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4500 if (!BB) 4501 return error("Invalid record"); 4502 Handlers.push_back(BB); 4503 } 4504 4505 BasicBlock *UnwindDest = nullptr; 4506 if (Idx + 1 == Record.size()) { 4507 UnwindDest = getBasicBlock(Record[Idx++]); 4508 if (!UnwindDest) 4509 return error("Invalid record"); 4510 } 4511 4512 if (Record.size() != Idx) 4513 return error("Invalid record"); 4514 4515 auto *CatchSwitch = 4516 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4517 for (BasicBlock *Handler : Handlers) 4518 CatchSwitch->addHandler(Handler); 4519 I = CatchSwitch; 4520 InstructionList.push_back(I); 4521 break; 4522 } 4523 case bitc::FUNC_CODE_INST_CATCHPAD: 4524 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4525 // We must have, at minimum, the outer scope and the number of arguments. 4526 if (Record.size() < 2) 4527 return error("Invalid record"); 4528 4529 unsigned Idx = 0; 4530 4531 Value *ParentPad = 4532 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4533 4534 unsigned NumArgOperands = Record[Idx++]; 4535 4536 SmallVector<Value *, 2> Args; 4537 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4538 Value *Val; 4539 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4540 return error("Invalid record"); 4541 Args.push_back(Val); 4542 } 4543 4544 if (Record.size() != Idx) 4545 return error("Invalid record"); 4546 4547 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4548 I = CleanupPadInst::Create(ParentPad, Args); 4549 else 4550 I = CatchPadInst::Create(ParentPad, Args); 4551 InstructionList.push_back(I); 4552 break; 4553 } 4554 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4555 // Check magic 4556 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4557 // "New" SwitchInst format with case ranges. The changes to write this 4558 // format were reverted but we still recognize bitcode that uses it. 4559 // Hopefully someday we will have support for case ranges and can use 4560 // this format again. 4561 4562 Type *OpTy = getTypeByID(Record[1]); 4563 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4564 4565 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4566 BasicBlock *Default = getBasicBlock(Record[3]); 4567 if (!OpTy || !Cond || !Default) 4568 return error("Invalid record"); 4569 4570 unsigned NumCases = Record[4]; 4571 4572 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4573 InstructionList.push_back(SI); 4574 4575 unsigned CurIdx = 5; 4576 for (unsigned i = 0; i != NumCases; ++i) { 4577 SmallVector<ConstantInt*, 1> CaseVals; 4578 unsigned NumItems = Record[CurIdx++]; 4579 for (unsigned ci = 0; ci != NumItems; ++ci) { 4580 bool isSingleNumber = Record[CurIdx++]; 4581 4582 APInt Low; 4583 unsigned ActiveWords = 1; 4584 if (ValueBitWidth > 64) 4585 ActiveWords = Record[CurIdx++]; 4586 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4587 ValueBitWidth); 4588 CurIdx += ActiveWords; 4589 4590 if (!isSingleNumber) { 4591 ActiveWords = 1; 4592 if (ValueBitWidth > 64) 4593 ActiveWords = Record[CurIdx++]; 4594 APInt High = readWideAPInt( 4595 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4596 CurIdx += ActiveWords; 4597 4598 // FIXME: It is not clear whether values in the range should be 4599 // compared as signed or unsigned values. The partially 4600 // implemented changes that used this format in the past used 4601 // unsigned comparisons. 4602 for ( ; Low.ule(High); ++Low) 4603 CaseVals.push_back(ConstantInt::get(Context, Low)); 4604 } else 4605 CaseVals.push_back(ConstantInt::get(Context, Low)); 4606 } 4607 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4608 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4609 cve = CaseVals.end(); cvi != cve; ++cvi) 4610 SI->addCase(*cvi, DestBB); 4611 } 4612 I = SI; 4613 break; 4614 } 4615 4616 // Old SwitchInst format without case ranges. 4617 4618 if (Record.size() < 3 || (Record.size() & 1) == 0) 4619 return error("Invalid record"); 4620 Type *OpTy = getTypeByID(Record[0]); 4621 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4622 BasicBlock *Default = getBasicBlock(Record[2]); 4623 if (!OpTy || !Cond || !Default) 4624 return error("Invalid record"); 4625 unsigned NumCases = (Record.size()-3)/2; 4626 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4627 InstructionList.push_back(SI); 4628 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4629 ConstantInt *CaseVal = 4630 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4631 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4632 if (!CaseVal || !DestBB) { 4633 delete SI; 4634 return error("Invalid record"); 4635 } 4636 SI->addCase(CaseVal, DestBB); 4637 } 4638 I = SI; 4639 break; 4640 } 4641 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4642 if (Record.size() < 2) 4643 return error("Invalid record"); 4644 Type *OpTy = getTypeByID(Record[0]); 4645 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4646 if (!OpTy || !Address) 4647 return error("Invalid record"); 4648 unsigned NumDests = Record.size()-2; 4649 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4650 InstructionList.push_back(IBI); 4651 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4652 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4653 IBI->addDestination(DestBB); 4654 } else { 4655 delete IBI; 4656 return error("Invalid record"); 4657 } 4658 } 4659 I = IBI; 4660 break; 4661 } 4662 4663 case bitc::FUNC_CODE_INST_INVOKE: { 4664 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4665 if (Record.size() < 4) 4666 return error("Invalid record"); 4667 unsigned OpNum = 0; 4668 AttributeList PAL = getAttributes(Record[OpNum++]); 4669 unsigned CCInfo = Record[OpNum++]; 4670 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4671 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4672 4673 FunctionType *FTy = nullptr; 4674 FunctionType *FullFTy = nullptr; 4675 if ((CCInfo >> 13) & 1) { 4676 FullFTy = 4677 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4678 if (!FullFTy) 4679 return error("Explicit invoke type is not a function type"); 4680 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4681 } 4682 4683 Value *Callee; 4684 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4685 return error("Invalid record"); 4686 4687 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4688 if (!CalleeTy) 4689 return error("Callee is not a pointer"); 4690 if (!FTy) { 4691 FullFTy = 4692 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4693 if (!FullFTy) 4694 return error("Callee is not of pointer to function type"); 4695 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4696 } else if (getPointerElementFlatType(FullTy) != FTy) 4697 return error("Explicit invoke type does not match pointee type of " 4698 "callee operand"); 4699 if (Record.size() < FTy->getNumParams() + OpNum) 4700 return error("Insufficient operands to call"); 4701 4702 SmallVector<Value*, 16> Ops; 4703 SmallVector<Type *, 16> ArgsFullTys; 4704 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4705 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4706 FTy->getParamType(i))); 4707 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4708 if (!Ops.back()) 4709 return error("Invalid record"); 4710 } 4711 4712 if (!FTy->isVarArg()) { 4713 if (Record.size() != OpNum) 4714 return error("Invalid record"); 4715 } else { 4716 // Read type/value pairs for varargs params. 4717 while (OpNum != Record.size()) { 4718 Value *Op; 4719 Type *FullTy; 4720 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4721 return error("Invalid record"); 4722 Ops.push_back(Op); 4723 ArgsFullTys.push_back(FullTy); 4724 } 4725 } 4726 4727 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4728 OperandBundles); 4729 FullTy = FullFTy->getReturnType(); 4730 OperandBundles.clear(); 4731 InstructionList.push_back(I); 4732 cast<InvokeInst>(I)->setCallingConv( 4733 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4734 cast<InvokeInst>(I)->setAttributes(PAL); 4735 propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys); 4736 4737 break; 4738 } 4739 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4740 unsigned Idx = 0; 4741 Value *Val = nullptr; 4742 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4743 return error("Invalid record"); 4744 I = ResumeInst::Create(Val); 4745 InstructionList.push_back(I); 4746 break; 4747 } 4748 case bitc::FUNC_CODE_INST_CALLBR: { 4749 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4750 unsigned OpNum = 0; 4751 AttributeList PAL = getAttributes(Record[OpNum++]); 4752 unsigned CCInfo = Record[OpNum++]; 4753 4754 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4755 unsigned NumIndirectDests = Record[OpNum++]; 4756 SmallVector<BasicBlock *, 16> IndirectDests; 4757 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4758 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4759 4760 FunctionType *FTy = nullptr; 4761 FunctionType *FullFTy = nullptr; 4762 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4763 FullFTy = 4764 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4765 if (!FullFTy) 4766 return error("Explicit call type is not a function type"); 4767 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4768 } 4769 4770 Value *Callee; 4771 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4772 return error("Invalid record"); 4773 4774 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4775 if (!OpTy) 4776 return error("Callee is not a pointer type"); 4777 if (!FTy) { 4778 FullFTy = 4779 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4780 if (!FullFTy) 4781 return error("Callee is not of pointer to function type"); 4782 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4783 } else if (getPointerElementFlatType(FullTy) != FTy) 4784 return error("Explicit call type does not match pointee type of " 4785 "callee operand"); 4786 if (Record.size() < FTy->getNumParams() + OpNum) 4787 return error("Insufficient operands to call"); 4788 4789 SmallVector<Value*, 16> Args; 4790 // Read the fixed params. 4791 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4792 if (FTy->getParamType(i)->isLabelTy()) 4793 Args.push_back(getBasicBlock(Record[OpNum])); 4794 else 4795 Args.push_back(getValue(Record, OpNum, NextValueNo, 4796 FTy->getParamType(i))); 4797 if (!Args.back()) 4798 return error("Invalid record"); 4799 } 4800 4801 // Read type/value pairs for varargs params. 4802 if (!FTy->isVarArg()) { 4803 if (OpNum != Record.size()) 4804 return error("Invalid record"); 4805 } else { 4806 while (OpNum != Record.size()) { 4807 Value *Op; 4808 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4809 return error("Invalid record"); 4810 Args.push_back(Op); 4811 } 4812 } 4813 4814 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4815 OperandBundles); 4816 FullTy = FullFTy->getReturnType(); 4817 OperandBundles.clear(); 4818 InstructionList.push_back(I); 4819 cast<CallBrInst>(I)->setCallingConv( 4820 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4821 cast<CallBrInst>(I)->setAttributes(PAL); 4822 break; 4823 } 4824 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4825 I = new UnreachableInst(Context); 4826 InstructionList.push_back(I); 4827 break; 4828 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4829 if (Record.empty()) 4830 return error("Invalid record"); 4831 // The first record specifies the type. 4832 FullTy = getFullyStructuredTypeByID(Record[0]); 4833 Type *Ty = flattenPointerTypes(FullTy); 4834 if (!Ty) 4835 return error("Invalid record"); 4836 4837 // Phi arguments are pairs of records of [value, basic block]. 4838 // There is an optional final record for fast-math-flags if this phi has a 4839 // floating-point type. 4840 size_t NumArgs = (Record.size() - 1) / 2; 4841 PHINode *PN = PHINode::Create(Ty, NumArgs); 4842 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4843 return error("Invalid record"); 4844 InstructionList.push_back(PN); 4845 4846 for (unsigned i = 0; i != NumArgs; i++) { 4847 Value *V; 4848 // With the new function encoding, it is possible that operands have 4849 // negative IDs (for forward references). Use a signed VBR 4850 // representation to keep the encoding small. 4851 if (UseRelativeIDs) 4852 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4853 else 4854 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4855 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4856 if (!V || !BB) 4857 return error("Invalid record"); 4858 PN->addIncoming(V, BB); 4859 } 4860 I = PN; 4861 4862 // If there are an even number of records, the final record must be FMF. 4863 if (Record.size() % 2 == 0) { 4864 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4865 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4866 if (FMF.any()) 4867 I->setFastMathFlags(FMF); 4868 } 4869 4870 break; 4871 } 4872 4873 case bitc::FUNC_CODE_INST_LANDINGPAD: 4874 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4875 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4876 unsigned Idx = 0; 4877 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4878 if (Record.size() < 3) 4879 return error("Invalid record"); 4880 } else { 4881 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4882 if (Record.size() < 4) 4883 return error("Invalid record"); 4884 } 4885 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4886 Type *Ty = flattenPointerTypes(FullTy); 4887 if (!Ty) 4888 return error("Invalid record"); 4889 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4890 Value *PersFn = nullptr; 4891 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4892 return error("Invalid record"); 4893 4894 if (!F->hasPersonalityFn()) 4895 F->setPersonalityFn(cast<Constant>(PersFn)); 4896 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4897 return error("Personality function mismatch"); 4898 } 4899 4900 bool IsCleanup = !!Record[Idx++]; 4901 unsigned NumClauses = Record[Idx++]; 4902 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4903 LP->setCleanup(IsCleanup); 4904 for (unsigned J = 0; J != NumClauses; ++J) { 4905 LandingPadInst::ClauseType CT = 4906 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4907 Value *Val; 4908 4909 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4910 delete LP; 4911 return error("Invalid record"); 4912 } 4913 4914 assert((CT != LandingPadInst::Catch || 4915 !isa<ArrayType>(Val->getType())) && 4916 "Catch clause has a invalid type!"); 4917 assert((CT != LandingPadInst::Filter || 4918 isa<ArrayType>(Val->getType())) && 4919 "Filter clause has invalid type!"); 4920 LP->addClause(cast<Constant>(Val)); 4921 } 4922 4923 I = LP; 4924 InstructionList.push_back(I); 4925 break; 4926 } 4927 4928 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4929 if (Record.size() != 4) 4930 return error("Invalid record"); 4931 using APV = AllocaPackedValues; 4932 const uint64_t Rec = Record[3]; 4933 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 4934 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 4935 FullTy = getFullyStructuredTypeByID(Record[0]); 4936 Type *Ty = flattenPointerTypes(FullTy); 4937 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 4938 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4939 if (!PTy) 4940 return error("Old-style alloca with a non-pointer type"); 4941 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4942 } 4943 Type *OpTy = getTypeByID(Record[1]); 4944 Value *Size = getFnValueByID(Record[2], OpTy); 4945 MaybeAlign Align; 4946 if (Error Err = 4947 parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) { 4948 return Err; 4949 } 4950 if (!Ty || !Size) 4951 return error("Invalid record"); 4952 4953 // FIXME: Make this an optional field. 4954 const DataLayout &DL = TheModule->getDataLayout(); 4955 unsigned AS = DL.getAllocaAddrSpace(); 4956 4957 SmallPtrSet<Type *, 4> Visited; 4958 if (!Align && !Ty->isSized(&Visited)) 4959 return error("alloca of unsized type"); 4960 if (!Align) 4961 Align = DL.getPrefTypeAlign(Ty); 4962 4963 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4964 AI->setUsedWithInAlloca(InAlloca); 4965 AI->setSwiftError(SwiftError); 4966 I = AI; 4967 FullTy = PointerType::get(FullTy, AS); 4968 InstructionList.push_back(I); 4969 break; 4970 } 4971 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4972 unsigned OpNum = 0; 4973 Value *Op; 4974 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4975 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4976 return error("Invalid record"); 4977 4978 if (!isa<PointerType>(Op->getType())) 4979 return error("Load operand is not a pointer type"); 4980 4981 Type *Ty = nullptr; 4982 if (OpNum + 3 == Record.size()) { 4983 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4984 Ty = flattenPointerTypes(FullTy); 4985 } else 4986 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4987 4988 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4989 return Err; 4990 4991 MaybeAlign Align; 4992 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4993 return Err; 4994 SmallPtrSet<Type *, 4> Visited; 4995 if (!Align && !Ty->isSized(&Visited)) 4996 return error("load of unsized type"); 4997 if (!Align) 4998 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4999 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 5000 InstructionList.push_back(I); 5001 break; 5002 } 5003 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5004 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 5005 unsigned OpNum = 0; 5006 Value *Op; 5007 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 5008 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5009 return error("Invalid record"); 5010 5011 if (!isa<PointerType>(Op->getType())) 5012 return error("Load operand is not a pointer type"); 5013 5014 Type *Ty = nullptr; 5015 if (OpNum + 5 == Record.size()) { 5016 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 5017 Ty = flattenPointerTypes(FullTy); 5018 } else 5019 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 5020 5021 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5022 return Err; 5023 5024 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5025 if (Ordering == AtomicOrdering::NotAtomic || 5026 Ordering == AtomicOrdering::Release || 5027 Ordering == AtomicOrdering::AcquireRelease) 5028 return error("Invalid record"); 5029 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5030 return error("Invalid record"); 5031 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5032 5033 MaybeAlign Align; 5034 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5035 return Err; 5036 if (!Align) 5037 return error("Alignment missing from atomic load"); 5038 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5039 InstructionList.push_back(I); 5040 break; 5041 } 5042 case bitc::FUNC_CODE_INST_STORE: 5043 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5044 unsigned OpNum = 0; 5045 Value *Val, *Ptr; 5046 Type *FullTy; 5047 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 5048 (BitCode == bitc::FUNC_CODE_INST_STORE 5049 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5050 : popValue(Record, OpNum, NextValueNo, 5051 getPointerElementFlatType(FullTy), Val)) || 5052 OpNum + 2 != Record.size()) 5053 return error("Invalid record"); 5054 5055 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5056 return Err; 5057 MaybeAlign Align; 5058 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5059 return Err; 5060 SmallPtrSet<Type *, 4> Visited; 5061 if (!Align && !Val->getType()->isSized(&Visited)) 5062 return error("store of unsized type"); 5063 if (!Align) 5064 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5065 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5066 InstructionList.push_back(I); 5067 break; 5068 } 5069 case bitc::FUNC_CODE_INST_STOREATOMIC: 5070 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5071 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5072 unsigned OpNum = 0; 5073 Value *Val, *Ptr; 5074 Type *FullTy; 5075 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 5076 !isa<PointerType>(Ptr->getType()) || 5077 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5078 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5079 : popValue(Record, OpNum, NextValueNo, 5080 getPointerElementFlatType(FullTy), Val)) || 5081 OpNum + 4 != Record.size()) 5082 return error("Invalid record"); 5083 5084 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5085 return Err; 5086 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5087 if (Ordering == AtomicOrdering::NotAtomic || 5088 Ordering == AtomicOrdering::Acquire || 5089 Ordering == AtomicOrdering::AcquireRelease) 5090 return error("Invalid record"); 5091 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5092 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5093 return error("Invalid record"); 5094 5095 MaybeAlign Align; 5096 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5097 return Err; 5098 if (!Align) 5099 return error("Alignment missing from atomic store"); 5100 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5101 InstructionList.push_back(I); 5102 break; 5103 } 5104 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5105 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5106 // failure_ordering?, weak?] 5107 const size_t NumRecords = Record.size(); 5108 unsigned OpNum = 0; 5109 Value *Ptr = nullptr; 5110 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 5111 return error("Invalid record"); 5112 5113 if (!isa<PointerType>(Ptr->getType())) 5114 return error("Cmpxchg operand is not a pointer type"); 5115 5116 Value *Cmp = nullptr; 5117 if (popValue(Record, OpNum, NextValueNo, 5118 getPointerElementFlatType(FullTy), Cmp)) 5119 return error("Invalid record"); 5120 5121 FullTy = cast<PointerType>(FullTy)->getElementType(); 5122 5123 Value *New = nullptr; 5124 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5125 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5126 return error("Invalid record"); 5127 5128 const AtomicOrdering SuccessOrdering = 5129 getDecodedOrdering(Record[OpNum + 1]); 5130 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5131 SuccessOrdering == AtomicOrdering::Unordered) 5132 return error("Invalid record"); 5133 5134 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5135 5136 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5137 return Err; 5138 5139 const AtomicOrdering FailureOrdering = 5140 NumRecords < 7 5141 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5142 : getDecodedOrdering(Record[OpNum + 3]); 5143 5144 const Align Alignment( 5145 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5146 5147 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5148 FailureOrdering, SSID); 5149 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5150 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 5151 5152 if (NumRecords < 8) { 5153 // Before weak cmpxchgs existed, the instruction simply returned the 5154 // value loaded from memory, so bitcode files from that era will be 5155 // expecting the first component of a modern cmpxchg. 5156 CurBB->getInstList().push_back(I); 5157 I = ExtractValueInst::Create(I, 0); 5158 FullTy = cast<StructType>(FullTy)->getElementType(0); 5159 } else { 5160 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5161 } 5162 5163 InstructionList.push_back(I); 5164 break; 5165 } 5166 case bitc::FUNC_CODE_INST_CMPXCHG: { 5167 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5168 // failure_ordering, weak, align?] 5169 const size_t NumRecords = Record.size(); 5170 unsigned OpNum = 0; 5171 Value *Ptr = nullptr; 5172 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 5173 return error("Invalid record"); 5174 5175 if (!isa<PointerType>(Ptr->getType())) 5176 return error("Cmpxchg operand is not a pointer type"); 5177 5178 Value *Cmp = nullptr; 5179 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 5180 return error("Invalid record"); 5181 5182 Value *Val = nullptr; 5183 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val)) 5184 return error("Invalid record"); 5185 5186 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5187 return error("Invalid record"); 5188 5189 const bool IsVol = Record[OpNum]; 5190 5191 const AtomicOrdering SuccessOrdering = 5192 getDecodedOrdering(Record[OpNum + 1]); 5193 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5194 SuccessOrdering == AtomicOrdering::Unordered) 5195 return error("Invalid record"); 5196 5197 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5198 5199 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5200 return Err; 5201 5202 const AtomicOrdering FailureOrdering = 5203 getDecodedOrdering(Record[OpNum + 3]); 5204 5205 const bool IsWeak = Record[OpNum + 4]; 5206 5207 MaybeAlign Alignment; 5208 5209 if (NumRecords == (OpNum + 6)) { 5210 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5211 return Err; 5212 } 5213 if (!Alignment) 5214 Alignment = 5215 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5216 5217 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5218 FailureOrdering, SSID); 5219 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 5220 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5221 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5222 5223 InstructionList.push_back(I); 5224 break; 5225 } 5226 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5227 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid, align?] 5228 const size_t NumRecords = Record.size(); 5229 unsigned OpNum = 0; 5230 5231 Value *Ptr = nullptr; 5232 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 5233 return error("Invalid record"); 5234 5235 if (!isa<PointerType>(Ptr->getType())) 5236 return error("Invalid record"); 5237 5238 Value *Val = nullptr; 5239 if (popValue(Record, OpNum, NextValueNo, 5240 getPointerElementFlatType(FullTy), Val)) 5241 return error("Invalid record"); 5242 5243 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5244 return error("Invalid record"); 5245 5246 const AtomicRMWInst::BinOp Operation = 5247 getDecodedRMWOperation(Record[OpNum]); 5248 if (Operation < AtomicRMWInst::FIRST_BINOP || 5249 Operation > AtomicRMWInst::LAST_BINOP) 5250 return error("Invalid record"); 5251 5252 const bool IsVol = Record[OpNum + 1]; 5253 5254 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5255 if (Ordering == AtomicOrdering::NotAtomic || 5256 Ordering == AtomicOrdering::Unordered) 5257 return error("Invalid record"); 5258 5259 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5260 5261 MaybeAlign Alignment; 5262 5263 if (NumRecords == (OpNum + 5)) { 5264 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5265 return Err; 5266 } 5267 5268 if (!Alignment) 5269 Alignment = 5270 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5271 5272 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5273 FullTy = getPointerElementFlatType(FullTy); 5274 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5275 5276 InstructionList.push_back(I); 5277 break; 5278 } 5279 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5280 if (2 != Record.size()) 5281 return error("Invalid record"); 5282 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5283 if (Ordering == AtomicOrdering::NotAtomic || 5284 Ordering == AtomicOrdering::Unordered || 5285 Ordering == AtomicOrdering::Monotonic) 5286 return error("Invalid record"); 5287 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5288 I = new FenceInst(Context, Ordering, SSID); 5289 InstructionList.push_back(I); 5290 break; 5291 } 5292 case bitc::FUNC_CODE_INST_CALL: { 5293 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5294 if (Record.size() < 3) 5295 return error("Invalid record"); 5296 5297 unsigned OpNum = 0; 5298 AttributeList PAL = getAttributes(Record[OpNum++]); 5299 unsigned CCInfo = Record[OpNum++]; 5300 5301 FastMathFlags FMF; 5302 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5303 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5304 if (!FMF.any()) 5305 return error("Fast math flags indicator set for call with no FMF"); 5306 } 5307 5308 FunctionType *FTy = nullptr; 5309 FunctionType *FullFTy = nullptr; 5310 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5311 FullFTy = 5312 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5313 if (!FullFTy) 5314 return error("Explicit call type is not a function type"); 5315 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5316 } 5317 5318 Value *Callee; 5319 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5320 return error("Invalid record"); 5321 5322 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5323 if (!OpTy) 5324 return error("Callee is not a pointer type"); 5325 if (!FTy) { 5326 FullFTy = 5327 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5328 if (!FullFTy) 5329 return error("Callee is not of pointer to function type"); 5330 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5331 } else if (getPointerElementFlatType(FullTy) != FTy) 5332 return error("Explicit call type does not match pointee type of " 5333 "callee operand"); 5334 if (Record.size() < FTy->getNumParams() + OpNum) 5335 return error("Insufficient operands to call"); 5336 5337 SmallVector<Value*, 16> Args; 5338 SmallVector<Type*, 16> ArgsFullTys; 5339 // Read the fixed params. 5340 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5341 if (FTy->getParamType(i)->isLabelTy()) 5342 Args.push_back(getBasicBlock(Record[OpNum])); 5343 else 5344 Args.push_back(getValue(Record, OpNum, NextValueNo, 5345 FTy->getParamType(i))); 5346 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5347 if (!Args.back()) 5348 return error("Invalid record"); 5349 } 5350 5351 // Read type/value pairs for varargs params. 5352 if (!FTy->isVarArg()) { 5353 if (OpNum != Record.size()) 5354 return error("Invalid record"); 5355 } else { 5356 while (OpNum != Record.size()) { 5357 Value *Op; 5358 Type *FullTy; 5359 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5360 return error("Invalid record"); 5361 Args.push_back(Op); 5362 ArgsFullTys.push_back(FullTy); 5363 } 5364 } 5365 5366 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5367 FullTy = FullFTy->getReturnType(); 5368 OperandBundles.clear(); 5369 InstructionList.push_back(I); 5370 cast<CallInst>(I)->setCallingConv( 5371 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5372 CallInst::TailCallKind TCK = CallInst::TCK_None; 5373 if (CCInfo & 1 << bitc::CALL_TAIL) 5374 TCK = CallInst::TCK_Tail; 5375 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5376 TCK = CallInst::TCK_MustTail; 5377 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5378 TCK = CallInst::TCK_NoTail; 5379 cast<CallInst>(I)->setTailCallKind(TCK); 5380 cast<CallInst>(I)->setAttributes(PAL); 5381 propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys); 5382 if (FMF.any()) { 5383 if (!isa<FPMathOperator>(I)) 5384 return error("Fast-math-flags specified for call without " 5385 "floating-point scalar or vector return type"); 5386 I->setFastMathFlags(FMF); 5387 } 5388 break; 5389 } 5390 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5391 if (Record.size() < 3) 5392 return error("Invalid record"); 5393 Type *OpTy = getTypeByID(Record[0]); 5394 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5395 FullTy = getFullyStructuredTypeByID(Record[2]); 5396 Type *ResTy = flattenPointerTypes(FullTy); 5397 if (!OpTy || !Op || !ResTy) 5398 return error("Invalid record"); 5399 I = new VAArgInst(Op, ResTy); 5400 InstructionList.push_back(I); 5401 break; 5402 } 5403 5404 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5405 // A call or an invoke can be optionally prefixed with some variable 5406 // number of operand bundle blocks. These blocks are read into 5407 // OperandBundles and consumed at the next call or invoke instruction. 5408 5409 if (Record.empty() || Record[0] >= BundleTags.size()) 5410 return error("Invalid record"); 5411 5412 std::vector<Value *> Inputs; 5413 5414 unsigned OpNum = 1; 5415 while (OpNum != Record.size()) { 5416 Value *Op; 5417 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5418 return error("Invalid record"); 5419 Inputs.push_back(Op); 5420 } 5421 5422 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5423 continue; 5424 } 5425 5426 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5427 unsigned OpNum = 0; 5428 Value *Op = nullptr; 5429 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5430 return error("Invalid record"); 5431 if (OpNum != Record.size()) 5432 return error("Invalid record"); 5433 5434 I = new FreezeInst(Op); 5435 InstructionList.push_back(I); 5436 break; 5437 } 5438 } 5439 5440 // Add instruction to end of current BB. If there is no current BB, reject 5441 // this file. 5442 if (!CurBB) { 5443 I->deleteValue(); 5444 return error("Invalid instruction with no BB"); 5445 } 5446 if (!OperandBundles.empty()) { 5447 I->deleteValue(); 5448 return error("Operand bundles found with no consumer"); 5449 } 5450 CurBB->getInstList().push_back(I); 5451 5452 // If this was a terminator instruction, move to the next block. 5453 if (I->isTerminator()) { 5454 ++CurBBNo; 5455 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5456 } 5457 5458 // Non-void values get registered in the value table for future use. 5459 if (!I->getType()->isVoidTy()) { 5460 if (!FullTy) { 5461 FullTy = I->getType(); 5462 assert( 5463 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5464 !isa<ArrayType>(FullTy) && 5465 (!isa<VectorType>(FullTy) || 5466 cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() || 5467 cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) && 5468 "Structured types must be assigned with corresponding non-opaque " 5469 "pointer type"); 5470 } 5471 5472 assert(I->getType() == flattenPointerTypes(FullTy) && 5473 "Incorrect fully structured type provided for Instruction"); 5474 ValueList.assignValue(I, NextValueNo++, FullTy); 5475 } 5476 } 5477 5478 OutOfRecordLoop: 5479 5480 if (!OperandBundles.empty()) 5481 return error("Operand bundles found with no consumer"); 5482 5483 // Check the function list for unresolved values. 5484 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5485 if (!A->getParent()) { 5486 // We found at least one unresolved value. Nuke them all to avoid leaks. 5487 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5488 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5489 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5490 delete A; 5491 } 5492 } 5493 return error("Never resolved value found in function"); 5494 } 5495 } 5496 5497 // Unexpected unresolved metadata about to be dropped. 5498 if (MDLoader->hasFwdRefs()) 5499 return error("Invalid function metadata: outgoing forward refs"); 5500 5501 // Trim the value list down to the size it was before we parsed this function. 5502 ValueList.shrinkTo(ModuleValueListSize); 5503 MDLoader->shrinkTo(ModuleMDLoaderSize); 5504 std::vector<BasicBlock*>().swap(FunctionBBs); 5505 return Error::success(); 5506 } 5507 5508 /// Find the function body in the bitcode stream 5509 Error BitcodeReader::findFunctionInStream( 5510 Function *F, 5511 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5512 while (DeferredFunctionInfoIterator->second == 0) { 5513 // This is the fallback handling for the old format bitcode that 5514 // didn't contain the function index in the VST, or when we have 5515 // an anonymous function which would not have a VST entry. 5516 // Assert that we have one of those two cases. 5517 assert(VSTOffset == 0 || !F->hasName()); 5518 // Parse the next body in the stream and set its position in the 5519 // DeferredFunctionInfo map. 5520 if (Error Err = rememberAndSkipFunctionBodies()) 5521 return Err; 5522 } 5523 return Error::success(); 5524 } 5525 5526 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5527 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5528 return SyncScope::ID(Val); 5529 if (Val >= SSIDs.size()) 5530 return SyncScope::System; // Map unknown synchronization scopes to system. 5531 return SSIDs[Val]; 5532 } 5533 5534 //===----------------------------------------------------------------------===// 5535 // GVMaterializer implementation 5536 //===----------------------------------------------------------------------===// 5537 5538 Error BitcodeReader::materialize(GlobalValue *GV) { 5539 Function *F = dyn_cast<Function>(GV); 5540 // If it's not a function or is already material, ignore the request. 5541 if (!F || !F->isMaterializable()) 5542 return Error::success(); 5543 5544 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5545 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5546 // If its position is recorded as 0, its body is somewhere in the stream 5547 // but we haven't seen it yet. 5548 if (DFII->second == 0) 5549 if (Error Err = findFunctionInStream(F, DFII)) 5550 return Err; 5551 5552 // Materialize metadata before parsing any function bodies. 5553 if (Error Err = materializeMetadata()) 5554 return Err; 5555 5556 // Move the bit stream to the saved position of the deferred function body. 5557 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5558 return JumpFailed; 5559 if (Error Err = parseFunctionBody(F)) 5560 return Err; 5561 F->setIsMaterializable(false); 5562 5563 if (StripDebugInfo) 5564 stripDebugInfo(*F); 5565 5566 // Upgrade any old intrinsic calls in the function. 5567 for (auto &I : UpgradedIntrinsics) { 5568 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5569 UI != UE;) { 5570 User *U = *UI; 5571 ++UI; 5572 if (CallInst *CI = dyn_cast<CallInst>(U)) 5573 UpgradeIntrinsicCall(CI, I.second); 5574 } 5575 } 5576 5577 // Update calls to the remangled intrinsics 5578 for (auto &I : RemangledIntrinsics) 5579 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5580 UI != UE;) 5581 // Don't expect any other users than call sites 5582 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5583 5584 // Finish fn->subprogram upgrade for materialized functions. 5585 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5586 F->setSubprogram(SP); 5587 5588 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5589 if (!MDLoader->isStrippingTBAA()) { 5590 for (auto &I : instructions(F)) { 5591 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5592 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5593 continue; 5594 MDLoader->setStripTBAA(true); 5595 stripTBAA(F->getParent()); 5596 } 5597 } 5598 5599 for (auto &I : instructions(F)) { 5600 // "Upgrade" older incorrect branch weights by dropping them. 5601 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5602 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5603 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5604 StringRef ProfName = MDS->getString(); 5605 // Check consistency of !prof branch_weights metadata. 5606 if (!ProfName.equals("branch_weights")) 5607 continue; 5608 unsigned ExpectedNumOperands = 0; 5609 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5610 ExpectedNumOperands = BI->getNumSuccessors(); 5611 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5612 ExpectedNumOperands = SI->getNumSuccessors(); 5613 else if (isa<CallInst>(&I)) 5614 ExpectedNumOperands = 1; 5615 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5616 ExpectedNumOperands = IBI->getNumDestinations(); 5617 else if (isa<SelectInst>(&I)) 5618 ExpectedNumOperands = 2; 5619 else 5620 continue; // ignore and continue. 5621 5622 // If branch weight doesn't match, just strip branch weight. 5623 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5624 I.setMetadata(LLVMContext::MD_prof, nullptr); 5625 } 5626 } 5627 5628 // Remove align from return attribute on CallInst. 5629 if (auto *CI = dyn_cast<CallInst>(&I)) { 5630 if (CI->getFunctionType()->getReturnType()->isVoidTy()) 5631 CI->removeAttribute(0, Attribute::Alignment); 5632 } 5633 } 5634 5635 // Look for functions that rely on old function attribute behavior. 5636 UpgradeFunctionAttributes(*F); 5637 5638 // Bring in any functions that this function forward-referenced via 5639 // blockaddresses. 5640 return materializeForwardReferencedFunctions(); 5641 } 5642 5643 Error BitcodeReader::materializeModule() { 5644 if (Error Err = materializeMetadata()) 5645 return Err; 5646 5647 // Promise to materialize all forward references. 5648 WillMaterializeAllForwardRefs = true; 5649 5650 // Iterate over the module, deserializing any functions that are still on 5651 // disk. 5652 for (Function &F : *TheModule) { 5653 if (Error Err = materialize(&F)) 5654 return Err; 5655 } 5656 // At this point, if there are any function bodies, parse the rest of 5657 // the bits in the module past the last function block we have recorded 5658 // through either lazy scanning or the VST. 5659 if (LastFunctionBlockBit || NextUnreadBit) 5660 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5661 ? LastFunctionBlockBit 5662 : NextUnreadBit)) 5663 return Err; 5664 5665 // Check that all block address forward references got resolved (as we 5666 // promised above). 5667 if (!BasicBlockFwdRefs.empty()) 5668 return error("Never resolved function from blockaddress"); 5669 5670 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5671 // delete the old functions to clean up. We can't do this unless the entire 5672 // module is materialized because there could always be another function body 5673 // with calls to the old function. 5674 for (auto &I : UpgradedIntrinsics) { 5675 for (auto *U : I.first->users()) { 5676 if (CallInst *CI = dyn_cast<CallInst>(U)) 5677 UpgradeIntrinsicCall(CI, I.second); 5678 } 5679 if (!I.first->use_empty()) 5680 I.first->replaceAllUsesWith(I.second); 5681 I.first->eraseFromParent(); 5682 } 5683 UpgradedIntrinsics.clear(); 5684 // Do the same for remangled intrinsics 5685 for (auto &I : RemangledIntrinsics) { 5686 I.first->replaceAllUsesWith(I.second); 5687 I.first->eraseFromParent(); 5688 } 5689 RemangledIntrinsics.clear(); 5690 5691 UpgradeDebugInfo(*TheModule); 5692 5693 UpgradeModuleFlags(*TheModule); 5694 5695 UpgradeARCRuntime(*TheModule); 5696 5697 return Error::success(); 5698 } 5699 5700 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5701 return IdentifiedStructTypes; 5702 } 5703 5704 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5705 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5706 StringRef ModulePath, unsigned ModuleId) 5707 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5708 ModulePath(ModulePath), ModuleId(ModuleId) {} 5709 5710 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5711 TheIndex.addModule(ModulePath, ModuleId); 5712 } 5713 5714 ModuleSummaryIndex::ModuleInfo * 5715 ModuleSummaryIndexBitcodeReader::getThisModule() { 5716 return TheIndex.getModule(ModulePath); 5717 } 5718 5719 std::pair<ValueInfo, GlobalValue::GUID> 5720 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5721 auto VGI = ValueIdToValueInfoMap[ValueId]; 5722 assert(VGI.first); 5723 return VGI; 5724 } 5725 5726 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5727 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5728 StringRef SourceFileName) { 5729 std::string GlobalId = 5730 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5731 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5732 auto OriginalNameID = ValueGUID; 5733 if (GlobalValue::isLocalLinkage(Linkage)) 5734 OriginalNameID = GlobalValue::getGUID(ValueName); 5735 if (PrintSummaryGUIDs) 5736 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5737 << ValueName << "\n"; 5738 5739 // UseStrtab is false for legacy summary formats and value names are 5740 // created on stack. In that case we save the name in a string saver in 5741 // the index so that the value name can be recorded. 5742 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5743 TheIndex.getOrInsertValueInfo( 5744 ValueGUID, 5745 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5746 OriginalNameID); 5747 } 5748 5749 // Specialized value symbol table parser used when reading module index 5750 // blocks where we don't actually create global values. The parsed information 5751 // is saved in the bitcode reader for use when later parsing summaries. 5752 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5753 uint64_t Offset, 5754 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5755 // With a strtab the VST is not required to parse the summary. 5756 if (UseStrtab) 5757 return Error::success(); 5758 5759 assert(Offset > 0 && "Expected non-zero VST offset"); 5760 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5761 if (!MaybeCurrentBit) 5762 return MaybeCurrentBit.takeError(); 5763 uint64_t CurrentBit = MaybeCurrentBit.get(); 5764 5765 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5766 return Err; 5767 5768 SmallVector<uint64_t, 64> Record; 5769 5770 // Read all the records for this value table. 5771 SmallString<128> ValueName; 5772 5773 while (true) { 5774 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5775 if (!MaybeEntry) 5776 return MaybeEntry.takeError(); 5777 BitstreamEntry Entry = MaybeEntry.get(); 5778 5779 switch (Entry.Kind) { 5780 case BitstreamEntry::SubBlock: // Handled for us already. 5781 case BitstreamEntry::Error: 5782 return error("Malformed block"); 5783 case BitstreamEntry::EndBlock: 5784 // Done parsing VST, jump back to wherever we came from. 5785 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5786 return JumpFailed; 5787 return Error::success(); 5788 case BitstreamEntry::Record: 5789 // The interesting case. 5790 break; 5791 } 5792 5793 // Read a record. 5794 Record.clear(); 5795 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5796 if (!MaybeRecord) 5797 return MaybeRecord.takeError(); 5798 switch (MaybeRecord.get()) { 5799 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5800 break; 5801 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5802 if (convertToString(Record, 1, ValueName)) 5803 return error("Invalid record"); 5804 unsigned ValueID = Record[0]; 5805 assert(!SourceFileName.empty()); 5806 auto VLI = ValueIdToLinkageMap.find(ValueID); 5807 assert(VLI != ValueIdToLinkageMap.end() && 5808 "No linkage found for VST entry?"); 5809 auto Linkage = VLI->second; 5810 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5811 ValueName.clear(); 5812 break; 5813 } 5814 case bitc::VST_CODE_FNENTRY: { 5815 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5816 if (convertToString(Record, 2, ValueName)) 5817 return error("Invalid record"); 5818 unsigned ValueID = Record[0]; 5819 assert(!SourceFileName.empty()); 5820 auto VLI = ValueIdToLinkageMap.find(ValueID); 5821 assert(VLI != ValueIdToLinkageMap.end() && 5822 "No linkage found for VST entry?"); 5823 auto Linkage = VLI->second; 5824 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5825 ValueName.clear(); 5826 break; 5827 } 5828 case bitc::VST_CODE_COMBINED_ENTRY: { 5829 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5830 unsigned ValueID = Record[0]; 5831 GlobalValue::GUID RefGUID = Record[1]; 5832 // The "original name", which is the second value of the pair will be 5833 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5834 ValueIdToValueInfoMap[ValueID] = 5835 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5836 break; 5837 } 5838 } 5839 } 5840 } 5841 5842 // Parse just the blocks needed for building the index out of the module. 5843 // At the end of this routine the module Index is populated with a map 5844 // from global value id to GlobalValueSummary objects. 5845 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5846 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5847 return Err; 5848 5849 SmallVector<uint64_t, 64> Record; 5850 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5851 unsigned ValueId = 0; 5852 5853 // Read the index for this module. 5854 while (true) { 5855 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5856 if (!MaybeEntry) 5857 return MaybeEntry.takeError(); 5858 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5859 5860 switch (Entry.Kind) { 5861 case BitstreamEntry::Error: 5862 return error("Malformed block"); 5863 case BitstreamEntry::EndBlock: 5864 return Error::success(); 5865 5866 case BitstreamEntry::SubBlock: 5867 switch (Entry.ID) { 5868 default: // Skip unknown content. 5869 if (Error Err = Stream.SkipBlock()) 5870 return Err; 5871 break; 5872 case bitc::BLOCKINFO_BLOCK_ID: 5873 // Need to parse these to get abbrev ids (e.g. for VST) 5874 if (readBlockInfo()) 5875 return error("Malformed block"); 5876 break; 5877 case bitc::VALUE_SYMTAB_BLOCK_ID: 5878 // Should have been parsed earlier via VSTOffset, unless there 5879 // is no summary section. 5880 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5881 !SeenGlobalValSummary) && 5882 "Expected early VST parse via VSTOffset record"); 5883 if (Error Err = Stream.SkipBlock()) 5884 return Err; 5885 break; 5886 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5887 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5888 // Add the module if it is a per-module index (has a source file name). 5889 if (!SourceFileName.empty()) 5890 addThisModule(); 5891 assert(!SeenValueSymbolTable && 5892 "Already read VST when parsing summary block?"); 5893 // We might not have a VST if there were no values in the 5894 // summary. An empty summary block generated when we are 5895 // performing ThinLTO compiles so we don't later invoke 5896 // the regular LTO process on them. 5897 if (VSTOffset > 0) { 5898 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5899 return Err; 5900 SeenValueSymbolTable = true; 5901 } 5902 SeenGlobalValSummary = true; 5903 if (Error Err = parseEntireSummary(Entry.ID)) 5904 return Err; 5905 break; 5906 case bitc::MODULE_STRTAB_BLOCK_ID: 5907 if (Error Err = parseModuleStringTable()) 5908 return Err; 5909 break; 5910 } 5911 continue; 5912 5913 case BitstreamEntry::Record: { 5914 Record.clear(); 5915 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5916 if (!MaybeBitCode) 5917 return MaybeBitCode.takeError(); 5918 switch (MaybeBitCode.get()) { 5919 default: 5920 break; // Default behavior, ignore unknown content. 5921 case bitc::MODULE_CODE_VERSION: { 5922 if (Error Err = parseVersionRecord(Record).takeError()) 5923 return Err; 5924 break; 5925 } 5926 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5927 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5928 SmallString<128> ValueName; 5929 if (convertToString(Record, 0, ValueName)) 5930 return error("Invalid record"); 5931 SourceFileName = ValueName.c_str(); 5932 break; 5933 } 5934 /// MODULE_CODE_HASH: [5*i32] 5935 case bitc::MODULE_CODE_HASH: { 5936 if (Record.size() != 5) 5937 return error("Invalid hash length " + Twine(Record.size()).str()); 5938 auto &Hash = getThisModule()->second.second; 5939 int Pos = 0; 5940 for (auto &Val : Record) { 5941 assert(!(Val >> 32) && "Unexpected high bits set"); 5942 Hash[Pos++] = Val; 5943 } 5944 break; 5945 } 5946 /// MODULE_CODE_VSTOFFSET: [offset] 5947 case bitc::MODULE_CODE_VSTOFFSET: 5948 if (Record.empty()) 5949 return error("Invalid record"); 5950 // Note that we subtract 1 here because the offset is relative to one 5951 // word before the start of the identification or module block, which 5952 // was historically always the start of the regular bitcode header. 5953 VSTOffset = Record[0] - 1; 5954 break; 5955 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5956 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5957 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5958 // v2: [strtab offset, strtab size, v1] 5959 case bitc::MODULE_CODE_GLOBALVAR: 5960 case bitc::MODULE_CODE_FUNCTION: 5961 case bitc::MODULE_CODE_ALIAS: { 5962 StringRef Name; 5963 ArrayRef<uint64_t> GVRecord; 5964 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5965 if (GVRecord.size() <= 3) 5966 return error("Invalid record"); 5967 uint64_t RawLinkage = GVRecord[3]; 5968 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5969 if (!UseStrtab) { 5970 ValueIdToLinkageMap[ValueId++] = Linkage; 5971 break; 5972 } 5973 5974 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5975 break; 5976 } 5977 } 5978 } 5979 continue; 5980 } 5981 } 5982 } 5983 5984 std::vector<ValueInfo> 5985 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5986 std::vector<ValueInfo> Ret; 5987 Ret.reserve(Record.size()); 5988 for (uint64_t RefValueId : Record) 5989 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5990 return Ret; 5991 } 5992 5993 std::vector<FunctionSummary::EdgeTy> 5994 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5995 bool IsOldProfileFormat, 5996 bool HasProfile, bool HasRelBF) { 5997 std::vector<FunctionSummary::EdgeTy> Ret; 5998 Ret.reserve(Record.size()); 5999 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 6000 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 6001 uint64_t RelBF = 0; 6002 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6003 if (IsOldProfileFormat) { 6004 I += 1; // Skip old callsitecount field 6005 if (HasProfile) 6006 I += 1; // Skip old profilecount field 6007 } else if (HasProfile) 6008 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 6009 else if (HasRelBF) 6010 RelBF = Record[++I]; 6011 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 6012 } 6013 return Ret; 6014 } 6015 6016 static void 6017 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 6018 WholeProgramDevirtResolution &Wpd) { 6019 uint64_t ArgNum = Record[Slot++]; 6020 WholeProgramDevirtResolution::ByArg &B = 6021 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 6022 Slot += ArgNum; 6023 6024 B.TheKind = 6025 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 6026 B.Info = Record[Slot++]; 6027 B.Byte = Record[Slot++]; 6028 B.Bit = Record[Slot++]; 6029 } 6030 6031 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 6032 StringRef Strtab, size_t &Slot, 6033 TypeIdSummary &TypeId) { 6034 uint64_t Id = Record[Slot++]; 6035 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 6036 6037 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 6038 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 6039 static_cast<size_t>(Record[Slot + 1])}; 6040 Slot += 2; 6041 6042 uint64_t ResByArgNum = Record[Slot++]; 6043 for (uint64_t I = 0; I != ResByArgNum; ++I) 6044 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 6045 } 6046 6047 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6048 StringRef Strtab, 6049 ModuleSummaryIndex &TheIndex) { 6050 size_t Slot = 0; 6051 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6052 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6053 Slot += 2; 6054 6055 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6056 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6057 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6058 TypeId.TTRes.SizeM1 = Record[Slot++]; 6059 TypeId.TTRes.BitMask = Record[Slot++]; 6060 TypeId.TTRes.InlineBits = Record[Slot++]; 6061 6062 while (Slot < Record.size()) 6063 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6064 } 6065 6066 std::vector<FunctionSummary::ParamAccess> 6067 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6068 auto ReadRange = [&]() { 6069 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6070 BitcodeReader::decodeSignRotatedValue(Record.front())); 6071 Record = Record.drop_front(); 6072 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6073 BitcodeReader::decodeSignRotatedValue(Record.front())); 6074 Record = Record.drop_front(); 6075 ConstantRange Range{Lower, Upper}; 6076 assert(!Range.isFullSet()); 6077 assert(!Range.isUpperSignWrapped()); 6078 return Range; 6079 }; 6080 6081 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6082 while (!Record.empty()) { 6083 PendingParamAccesses.emplace_back(); 6084 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6085 ParamAccess.ParamNo = Record.front(); 6086 Record = Record.drop_front(); 6087 ParamAccess.Use = ReadRange(); 6088 ParamAccess.Calls.resize(Record.front()); 6089 Record = Record.drop_front(); 6090 for (auto &Call : ParamAccess.Calls) { 6091 Call.ParamNo = Record.front(); 6092 Record = Record.drop_front(); 6093 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6094 Record = Record.drop_front(); 6095 Call.Offsets = ReadRange(); 6096 } 6097 } 6098 return PendingParamAccesses; 6099 } 6100 6101 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6102 ArrayRef<uint64_t> Record, size_t &Slot, 6103 TypeIdCompatibleVtableInfo &TypeId) { 6104 uint64_t Offset = Record[Slot++]; 6105 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6106 TypeId.push_back({Offset, Callee}); 6107 } 6108 6109 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6110 ArrayRef<uint64_t> Record) { 6111 size_t Slot = 0; 6112 TypeIdCompatibleVtableInfo &TypeId = 6113 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6114 {Strtab.data() + Record[Slot], 6115 static_cast<size_t>(Record[Slot + 1])}); 6116 Slot += 2; 6117 6118 while (Slot < Record.size()) 6119 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6120 } 6121 6122 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6123 unsigned WOCnt) { 6124 // Readonly and writeonly refs are in the end of the refs list. 6125 assert(ROCnt + WOCnt <= Refs.size()); 6126 unsigned FirstWORef = Refs.size() - WOCnt; 6127 unsigned RefNo = FirstWORef - ROCnt; 6128 for (; RefNo < FirstWORef; ++RefNo) 6129 Refs[RefNo].setReadOnly(); 6130 for (; RefNo < Refs.size(); ++RefNo) 6131 Refs[RefNo].setWriteOnly(); 6132 } 6133 6134 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6135 // objects in the index. 6136 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6137 if (Error Err = Stream.EnterSubBlock(ID)) 6138 return Err; 6139 SmallVector<uint64_t, 64> Record; 6140 6141 // Parse version 6142 { 6143 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6144 if (!MaybeEntry) 6145 return MaybeEntry.takeError(); 6146 BitstreamEntry Entry = MaybeEntry.get(); 6147 6148 if (Entry.Kind != BitstreamEntry::Record) 6149 return error("Invalid Summary Block: record for version expected"); 6150 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6151 if (!MaybeRecord) 6152 return MaybeRecord.takeError(); 6153 if (MaybeRecord.get() != bitc::FS_VERSION) 6154 return error("Invalid Summary Block: version expected"); 6155 } 6156 const uint64_t Version = Record[0]; 6157 const bool IsOldProfileFormat = Version == 1; 6158 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6159 return error("Invalid summary version " + Twine(Version) + 6160 ". Version should be in the range [1-" + 6161 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6162 "]."); 6163 Record.clear(); 6164 6165 // Keep around the last seen summary to be used when we see an optional 6166 // "OriginalName" attachement. 6167 GlobalValueSummary *LastSeenSummary = nullptr; 6168 GlobalValue::GUID LastSeenGUID = 0; 6169 6170 // We can expect to see any number of type ID information records before 6171 // each function summary records; these variables store the information 6172 // collected so far so that it can be used to create the summary object. 6173 std::vector<GlobalValue::GUID> PendingTypeTests; 6174 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6175 PendingTypeCheckedLoadVCalls; 6176 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6177 PendingTypeCheckedLoadConstVCalls; 6178 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6179 6180 while (true) { 6181 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6182 if (!MaybeEntry) 6183 return MaybeEntry.takeError(); 6184 BitstreamEntry Entry = MaybeEntry.get(); 6185 6186 switch (Entry.Kind) { 6187 case BitstreamEntry::SubBlock: // Handled for us already. 6188 case BitstreamEntry::Error: 6189 return error("Malformed block"); 6190 case BitstreamEntry::EndBlock: 6191 return Error::success(); 6192 case BitstreamEntry::Record: 6193 // The interesting case. 6194 break; 6195 } 6196 6197 // Read a record. The record format depends on whether this 6198 // is a per-module index or a combined index file. In the per-module 6199 // case the records contain the associated value's ID for correlation 6200 // with VST entries. In the combined index the correlation is done 6201 // via the bitcode offset of the summary records (which were saved 6202 // in the combined index VST entries). The records also contain 6203 // information used for ThinLTO renaming and importing. 6204 Record.clear(); 6205 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6206 if (!MaybeBitCode) 6207 return MaybeBitCode.takeError(); 6208 switch (unsigned BitCode = MaybeBitCode.get()) { 6209 default: // Default behavior: ignore. 6210 break; 6211 case bitc::FS_FLAGS: { // [flags] 6212 TheIndex.setFlags(Record[0]); 6213 break; 6214 } 6215 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6216 uint64_t ValueID = Record[0]; 6217 GlobalValue::GUID RefGUID = Record[1]; 6218 ValueIdToValueInfoMap[ValueID] = 6219 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6220 break; 6221 } 6222 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6223 // numrefs x valueid, n x (valueid)] 6224 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6225 // numrefs x valueid, 6226 // n x (valueid, hotness)] 6227 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6228 // numrefs x valueid, 6229 // n x (valueid, relblockfreq)] 6230 case bitc::FS_PERMODULE: 6231 case bitc::FS_PERMODULE_RELBF: 6232 case bitc::FS_PERMODULE_PROFILE: { 6233 unsigned ValueID = Record[0]; 6234 uint64_t RawFlags = Record[1]; 6235 unsigned InstCount = Record[2]; 6236 uint64_t RawFunFlags = 0; 6237 unsigned NumRefs = Record[3]; 6238 unsigned NumRORefs = 0, NumWORefs = 0; 6239 int RefListStartIndex = 4; 6240 if (Version >= 4) { 6241 RawFunFlags = Record[3]; 6242 NumRefs = Record[4]; 6243 RefListStartIndex = 5; 6244 if (Version >= 5) { 6245 NumRORefs = Record[5]; 6246 RefListStartIndex = 6; 6247 if (Version >= 7) { 6248 NumWORefs = Record[6]; 6249 RefListStartIndex = 7; 6250 } 6251 } 6252 } 6253 6254 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6255 // The module path string ref set in the summary must be owned by the 6256 // index's module string table. Since we don't have a module path 6257 // string table section in the per-module index, we create a single 6258 // module path string table entry with an empty (0) ID to take 6259 // ownership. 6260 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6261 assert(Record.size() >= RefListStartIndex + NumRefs && 6262 "Record size inconsistent with number of references"); 6263 std::vector<ValueInfo> Refs = makeRefList( 6264 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6265 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6266 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6267 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6268 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6269 IsOldProfileFormat, HasProfile, HasRelBF); 6270 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6271 auto FS = std::make_unique<FunctionSummary>( 6272 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6273 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6274 std::move(PendingTypeTestAssumeVCalls), 6275 std::move(PendingTypeCheckedLoadVCalls), 6276 std::move(PendingTypeTestAssumeConstVCalls), 6277 std::move(PendingTypeCheckedLoadConstVCalls), 6278 std::move(PendingParamAccesses)); 6279 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6280 FS->setModulePath(getThisModule()->first()); 6281 FS->setOriginalName(VIAndOriginalGUID.second); 6282 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6283 break; 6284 } 6285 // FS_ALIAS: [valueid, flags, valueid] 6286 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6287 // they expect all aliasee summaries to be available. 6288 case bitc::FS_ALIAS: { 6289 unsigned ValueID = Record[0]; 6290 uint64_t RawFlags = Record[1]; 6291 unsigned AliaseeID = Record[2]; 6292 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6293 auto AS = std::make_unique<AliasSummary>(Flags); 6294 // The module path string ref set in the summary must be owned by the 6295 // index's module string table. Since we don't have a module path 6296 // string table section in the per-module index, we create a single 6297 // module path string table entry with an empty (0) ID to take 6298 // ownership. 6299 AS->setModulePath(getThisModule()->first()); 6300 6301 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6302 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6303 if (!AliaseeInModule) 6304 return error("Alias expects aliasee summary to be parsed"); 6305 AS->setAliasee(AliaseeVI, AliaseeInModule); 6306 6307 auto GUID = getValueInfoFromValueId(ValueID); 6308 AS->setOriginalName(GUID.second); 6309 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6310 break; 6311 } 6312 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6313 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6314 unsigned ValueID = Record[0]; 6315 uint64_t RawFlags = Record[1]; 6316 unsigned RefArrayStart = 2; 6317 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6318 /* WriteOnly */ false, 6319 /* Constant */ false, 6320 GlobalObject::VCallVisibilityPublic); 6321 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6322 if (Version >= 5) { 6323 GVF = getDecodedGVarFlags(Record[2]); 6324 RefArrayStart = 3; 6325 } 6326 std::vector<ValueInfo> Refs = 6327 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6328 auto FS = 6329 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6330 FS->setModulePath(getThisModule()->first()); 6331 auto GUID = getValueInfoFromValueId(ValueID); 6332 FS->setOriginalName(GUID.second); 6333 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6334 break; 6335 } 6336 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6337 // numrefs, numrefs x valueid, 6338 // n x (valueid, offset)] 6339 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6340 unsigned ValueID = Record[0]; 6341 uint64_t RawFlags = Record[1]; 6342 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6343 unsigned NumRefs = Record[3]; 6344 unsigned RefListStartIndex = 4; 6345 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6346 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6347 std::vector<ValueInfo> Refs = makeRefList( 6348 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6349 VTableFuncList VTableFuncs; 6350 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6351 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6352 uint64_t Offset = Record[++I]; 6353 VTableFuncs.push_back({Callee, Offset}); 6354 } 6355 auto VS = 6356 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6357 VS->setModulePath(getThisModule()->first()); 6358 VS->setVTableFuncs(VTableFuncs); 6359 auto GUID = getValueInfoFromValueId(ValueID); 6360 VS->setOriginalName(GUID.second); 6361 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6362 break; 6363 } 6364 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6365 // numrefs x valueid, n x (valueid)] 6366 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6367 // numrefs x valueid, n x (valueid, hotness)] 6368 case bitc::FS_COMBINED: 6369 case bitc::FS_COMBINED_PROFILE: { 6370 unsigned ValueID = Record[0]; 6371 uint64_t ModuleId = Record[1]; 6372 uint64_t RawFlags = Record[2]; 6373 unsigned InstCount = Record[3]; 6374 uint64_t RawFunFlags = 0; 6375 uint64_t EntryCount = 0; 6376 unsigned NumRefs = Record[4]; 6377 unsigned NumRORefs = 0, NumWORefs = 0; 6378 int RefListStartIndex = 5; 6379 6380 if (Version >= 4) { 6381 RawFunFlags = Record[4]; 6382 RefListStartIndex = 6; 6383 size_t NumRefsIndex = 5; 6384 if (Version >= 5) { 6385 unsigned NumRORefsOffset = 1; 6386 RefListStartIndex = 7; 6387 if (Version >= 6) { 6388 NumRefsIndex = 6; 6389 EntryCount = Record[5]; 6390 RefListStartIndex = 8; 6391 if (Version >= 7) { 6392 RefListStartIndex = 9; 6393 NumWORefs = Record[8]; 6394 NumRORefsOffset = 2; 6395 } 6396 } 6397 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6398 } 6399 NumRefs = Record[NumRefsIndex]; 6400 } 6401 6402 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6403 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6404 assert(Record.size() >= RefListStartIndex + NumRefs && 6405 "Record size inconsistent with number of references"); 6406 std::vector<ValueInfo> Refs = makeRefList( 6407 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6408 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6409 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6410 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6411 IsOldProfileFormat, HasProfile, false); 6412 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6413 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6414 auto FS = std::make_unique<FunctionSummary>( 6415 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6416 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6417 std::move(PendingTypeTestAssumeVCalls), 6418 std::move(PendingTypeCheckedLoadVCalls), 6419 std::move(PendingTypeTestAssumeConstVCalls), 6420 std::move(PendingTypeCheckedLoadConstVCalls), 6421 std::move(PendingParamAccesses)); 6422 LastSeenSummary = FS.get(); 6423 LastSeenGUID = VI.getGUID(); 6424 FS->setModulePath(ModuleIdMap[ModuleId]); 6425 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6426 break; 6427 } 6428 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6429 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6430 // they expect all aliasee summaries to be available. 6431 case bitc::FS_COMBINED_ALIAS: { 6432 unsigned ValueID = Record[0]; 6433 uint64_t ModuleId = Record[1]; 6434 uint64_t RawFlags = Record[2]; 6435 unsigned AliaseeValueId = Record[3]; 6436 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6437 auto AS = std::make_unique<AliasSummary>(Flags); 6438 LastSeenSummary = AS.get(); 6439 AS->setModulePath(ModuleIdMap[ModuleId]); 6440 6441 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6442 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6443 AS->setAliasee(AliaseeVI, AliaseeInModule); 6444 6445 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6446 LastSeenGUID = VI.getGUID(); 6447 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6448 break; 6449 } 6450 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6451 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6452 unsigned ValueID = Record[0]; 6453 uint64_t ModuleId = Record[1]; 6454 uint64_t RawFlags = Record[2]; 6455 unsigned RefArrayStart = 3; 6456 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6457 /* WriteOnly */ false, 6458 /* Constant */ false, 6459 GlobalObject::VCallVisibilityPublic); 6460 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6461 if (Version >= 5) { 6462 GVF = getDecodedGVarFlags(Record[3]); 6463 RefArrayStart = 4; 6464 } 6465 std::vector<ValueInfo> Refs = 6466 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6467 auto FS = 6468 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6469 LastSeenSummary = FS.get(); 6470 FS->setModulePath(ModuleIdMap[ModuleId]); 6471 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6472 LastSeenGUID = VI.getGUID(); 6473 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6474 break; 6475 } 6476 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6477 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6478 uint64_t OriginalName = Record[0]; 6479 if (!LastSeenSummary) 6480 return error("Name attachment that does not follow a combined record"); 6481 LastSeenSummary->setOriginalName(OriginalName); 6482 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6483 // Reset the LastSeenSummary 6484 LastSeenSummary = nullptr; 6485 LastSeenGUID = 0; 6486 break; 6487 } 6488 case bitc::FS_TYPE_TESTS: 6489 assert(PendingTypeTests.empty()); 6490 llvm::append_range(PendingTypeTests, Record); 6491 break; 6492 6493 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6494 assert(PendingTypeTestAssumeVCalls.empty()); 6495 for (unsigned I = 0; I != Record.size(); I += 2) 6496 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6497 break; 6498 6499 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6500 assert(PendingTypeCheckedLoadVCalls.empty()); 6501 for (unsigned I = 0; I != Record.size(); I += 2) 6502 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6503 break; 6504 6505 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6506 PendingTypeTestAssumeConstVCalls.push_back( 6507 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6508 break; 6509 6510 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6511 PendingTypeCheckedLoadConstVCalls.push_back( 6512 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6513 break; 6514 6515 case bitc::FS_CFI_FUNCTION_DEFS: { 6516 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6517 for (unsigned I = 0; I != Record.size(); I += 2) 6518 CfiFunctionDefs.insert( 6519 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6520 break; 6521 } 6522 6523 case bitc::FS_CFI_FUNCTION_DECLS: { 6524 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6525 for (unsigned I = 0; I != Record.size(); I += 2) 6526 CfiFunctionDecls.insert( 6527 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6528 break; 6529 } 6530 6531 case bitc::FS_TYPE_ID: 6532 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6533 break; 6534 6535 case bitc::FS_TYPE_ID_METADATA: 6536 parseTypeIdCompatibleVtableSummaryRecord(Record); 6537 break; 6538 6539 case bitc::FS_BLOCK_COUNT: 6540 TheIndex.addBlockCount(Record[0]); 6541 break; 6542 6543 case bitc::FS_PARAM_ACCESS: { 6544 PendingParamAccesses = parseParamAccesses(Record); 6545 break; 6546 } 6547 } 6548 } 6549 llvm_unreachable("Exit infinite loop"); 6550 } 6551 6552 // Parse the module string table block into the Index. 6553 // This populates the ModulePathStringTable map in the index. 6554 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6555 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6556 return Err; 6557 6558 SmallVector<uint64_t, 64> Record; 6559 6560 SmallString<128> ModulePath; 6561 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6562 6563 while (true) { 6564 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6565 if (!MaybeEntry) 6566 return MaybeEntry.takeError(); 6567 BitstreamEntry Entry = MaybeEntry.get(); 6568 6569 switch (Entry.Kind) { 6570 case BitstreamEntry::SubBlock: // Handled for us already. 6571 case BitstreamEntry::Error: 6572 return error("Malformed block"); 6573 case BitstreamEntry::EndBlock: 6574 return Error::success(); 6575 case BitstreamEntry::Record: 6576 // The interesting case. 6577 break; 6578 } 6579 6580 Record.clear(); 6581 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6582 if (!MaybeRecord) 6583 return MaybeRecord.takeError(); 6584 switch (MaybeRecord.get()) { 6585 default: // Default behavior: ignore. 6586 break; 6587 case bitc::MST_CODE_ENTRY: { 6588 // MST_ENTRY: [modid, namechar x N] 6589 uint64_t ModuleId = Record[0]; 6590 6591 if (convertToString(Record, 1, ModulePath)) 6592 return error("Invalid record"); 6593 6594 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6595 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6596 6597 ModulePath.clear(); 6598 break; 6599 } 6600 /// MST_CODE_HASH: [5*i32] 6601 case bitc::MST_CODE_HASH: { 6602 if (Record.size() != 5) 6603 return error("Invalid hash length " + Twine(Record.size()).str()); 6604 if (!LastSeenModule) 6605 return error("Invalid hash that does not follow a module path"); 6606 int Pos = 0; 6607 for (auto &Val : Record) { 6608 assert(!(Val >> 32) && "Unexpected high bits set"); 6609 LastSeenModule->second.second[Pos++] = Val; 6610 } 6611 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6612 LastSeenModule = nullptr; 6613 break; 6614 } 6615 } 6616 } 6617 llvm_unreachable("Exit infinite loop"); 6618 } 6619 6620 namespace { 6621 6622 // FIXME: This class is only here to support the transition to llvm::Error. It 6623 // will be removed once this transition is complete. Clients should prefer to 6624 // deal with the Error value directly, rather than converting to error_code. 6625 class BitcodeErrorCategoryType : public std::error_category { 6626 const char *name() const noexcept override { 6627 return "llvm.bitcode"; 6628 } 6629 6630 std::string message(int IE) const override { 6631 BitcodeError E = static_cast<BitcodeError>(IE); 6632 switch (E) { 6633 case BitcodeError::CorruptedBitcode: 6634 return "Corrupted bitcode"; 6635 } 6636 llvm_unreachable("Unknown error type!"); 6637 } 6638 }; 6639 6640 } // end anonymous namespace 6641 6642 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6643 6644 const std::error_category &llvm::BitcodeErrorCategory() { 6645 return *ErrorCategory; 6646 } 6647 6648 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6649 unsigned Block, unsigned RecordID) { 6650 if (Error Err = Stream.EnterSubBlock(Block)) 6651 return std::move(Err); 6652 6653 StringRef Strtab; 6654 while (true) { 6655 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6656 if (!MaybeEntry) 6657 return MaybeEntry.takeError(); 6658 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6659 6660 switch (Entry.Kind) { 6661 case BitstreamEntry::EndBlock: 6662 return Strtab; 6663 6664 case BitstreamEntry::Error: 6665 return error("Malformed block"); 6666 6667 case BitstreamEntry::SubBlock: 6668 if (Error Err = Stream.SkipBlock()) 6669 return std::move(Err); 6670 break; 6671 6672 case BitstreamEntry::Record: 6673 StringRef Blob; 6674 SmallVector<uint64_t, 1> Record; 6675 Expected<unsigned> MaybeRecord = 6676 Stream.readRecord(Entry.ID, Record, &Blob); 6677 if (!MaybeRecord) 6678 return MaybeRecord.takeError(); 6679 if (MaybeRecord.get() == RecordID) 6680 Strtab = Blob; 6681 break; 6682 } 6683 } 6684 } 6685 6686 //===----------------------------------------------------------------------===// 6687 // External interface 6688 //===----------------------------------------------------------------------===// 6689 6690 Expected<std::vector<BitcodeModule>> 6691 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6692 auto FOrErr = getBitcodeFileContents(Buffer); 6693 if (!FOrErr) 6694 return FOrErr.takeError(); 6695 return std::move(FOrErr->Mods); 6696 } 6697 6698 Expected<BitcodeFileContents> 6699 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6700 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6701 if (!StreamOrErr) 6702 return StreamOrErr.takeError(); 6703 BitstreamCursor &Stream = *StreamOrErr; 6704 6705 BitcodeFileContents F; 6706 while (true) { 6707 uint64_t BCBegin = Stream.getCurrentByteNo(); 6708 6709 // We may be consuming bitcode from a client that leaves garbage at the end 6710 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6711 // the end that there cannot possibly be another module, stop looking. 6712 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6713 return F; 6714 6715 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6716 if (!MaybeEntry) 6717 return MaybeEntry.takeError(); 6718 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6719 6720 switch (Entry.Kind) { 6721 case BitstreamEntry::EndBlock: 6722 case BitstreamEntry::Error: 6723 return error("Malformed block"); 6724 6725 case BitstreamEntry::SubBlock: { 6726 uint64_t IdentificationBit = -1ull; 6727 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6728 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6729 if (Error Err = Stream.SkipBlock()) 6730 return std::move(Err); 6731 6732 { 6733 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6734 if (!MaybeEntry) 6735 return MaybeEntry.takeError(); 6736 Entry = MaybeEntry.get(); 6737 } 6738 6739 if (Entry.Kind != BitstreamEntry::SubBlock || 6740 Entry.ID != bitc::MODULE_BLOCK_ID) 6741 return error("Malformed block"); 6742 } 6743 6744 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6745 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6746 if (Error Err = Stream.SkipBlock()) 6747 return std::move(Err); 6748 6749 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6750 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6751 Buffer.getBufferIdentifier(), IdentificationBit, 6752 ModuleBit}); 6753 continue; 6754 } 6755 6756 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6757 Expected<StringRef> Strtab = 6758 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6759 if (!Strtab) 6760 return Strtab.takeError(); 6761 // This string table is used by every preceding bitcode module that does 6762 // not have its own string table. A bitcode file may have multiple 6763 // string tables if it was created by binary concatenation, for example 6764 // with "llvm-cat -b". 6765 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6766 if (!I->Strtab.empty()) 6767 break; 6768 I->Strtab = *Strtab; 6769 } 6770 // Similarly, the string table is used by every preceding symbol table; 6771 // normally there will be just one unless the bitcode file was created 6772 // by binary concatenation. 6773 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6774 F.StrtabForSymtab = *Strtab; 6775 continue; 6776 } 6777 6778 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6779 Expected<StringRef> SymtabOrErr = 6780 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6781 if (!SymtabOrErr) 6782 return SymtabOrErr.takeError(); 6783 6784 // We can expect the bitcode file to have multiple symbol tables if it 6785 // was created by binary concatenation. In that case we silently 6786 // ignore any subsequent symbol tables, which is fine because this is a 6787 // low level function. The client is expected to notice that the number 6788 // of modules in the symbol table does not match the number of modules 6789 // in the input file and regenerate the symbol table. 6790 if (F.Symtab.empty()) 6791 F.Symtab = *SymtabOrErr; 6792 continue; 6793 } 6794 6795 if (Error Err = Stream.SkipBlock()) 6796 return std::move(Err); 6797 continue; 6798 } 6799 case BitstreamEntry::Record: 6800 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6801 continue; 6802 else 6803 return StreamFailed.takeError(); 6804 } 6805 } 6806 } 6807 6808 /// Get a lazy one-at-time loading module from bitcode. 6809 /// 6810 /// This isn't always used in a lazy context. In particular, it's also used by 6811 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6812 /// in forward-referenced functions from block address references. 6813 /// 6814 /// \param[in] MaterializeAll Set to \c true if we should materialize 6815 /// everything. 6816 Expected<std::unique_ptr<Module>> 6817 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6818 bool ShouldLazyLoadMetadata, bool IsImporting, 6819 DataLayoutCallbackTy DataLayoutCallback) { 6820 BitstreamCursor Stream(Buffer); 6821 6822 std::string ProducerIdentification; 6823 if (IdentificationBit != -1ull) { 6824 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6825 return std::move(JumpFailed); 6826 Expected<std::string> ProducerIdentificationOrErr = 6827 readIdentificationBlock(Stream); 6828 if (!ProducerIdentificationOrErr) 6829 return ProducerIdentificationOrErr.takeError(); 6830 6831 ProducerIdentification = *ProducerIdentificationOrErr; 6832 } 6833 6834 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6835 return std::move(JumpFailed); 6836 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6837 Context); 6838 6839 std::unique_ptr<Module> M = 6840 std::make_unique<Module>(ModuleIdentifier, Context); 6841 M->setMaterializer(R); 6842 6843 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6844 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6845 IsImporting, DataLayoutCallback)) 6846 return std::move(Err); 6847 6848 if (MaterializeAll) { 6849 // Read in the entire module, and destroy the BitcodeReader. 6850 if (Error Err = M->materializeAll()) 6851 return std::move(Err); 6852 } else { 6853 // Resolve forward references from blockaddresses. 6854 if (Error Err = R->materializeForwardReferencedFunctions()) 6855 return std::move(Err); 6856 } 6857 return std::move(M); 6858 } 6859 6860 Expected<std::unique_ptr<Module>> 6861 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6862 bool IsImporting) { 6863 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6864 [](StringRef) { return None; }); 6865 } 6866 6867 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6868 // We don't use ModuleIdentifier here because the client may need to control the 6869 // module path used in the combined summary (e.g. when reading summaries for 6870 // regular LTO modules). 6871 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6872 StringRef ModulePath, uint64_t ModuleId) { 6873 BitstreamCursor Stream(Buffer); 6874 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6875 return JumpFailed; 6876 6877 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6878 ModulePath, ModuleId); 6879 return R.parseModule(); 6880 } 6881 6882 // Parse the specified bitcode buffer, returning the function info index. 6883 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6884 BitstreamCursor Stream(Buffer); 6885 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6886 return std::move(JumpFailed); 6887 6888 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6889 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6890 ModuleIdentifier, 0); 6891 6892 if (Error Err = R.parseModule()) 6893 return std::move(Err); 6894 6895 return std::move(Index); 6896 } 6897 6898 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6899 unsigned ID) { 6900 if (Error Err = Stream.EnterSubBlock(ID)) 6901 return std::move(Err); 6902 SmallVector<uint64_t, 64> Record; 6903 6904 while (true) { 6905 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6906 if (!MaybeEntry) 6907 return MaybeEntry.takeError(); 6908 BitstreamEntry Entry = MaybeEntry.get(); 6909 6910 switch (Entry.Kind) { 6911 case BitstreamEntry::SubBlock: // Handled for us already. 6912 case BitstreamEntry::Error: 6913 return error("Malformed block"); 6914 case BitstreamEntry::EndBlock: 6915 // If no flags record found, conservatively return true to mimic 6916 // behavior before this flag was added. 6917 return true; 6918 case BitstreamEntry::Record: 6919 // The interesting case. 6920 break; 6921 } 6922 6923 // Look for the FS_FLAGS record. 6924 Record.clear(); 6925 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6926 if (!MaybeBitCode) 6927 return MaybeBitCode.takeError(); 6928 switch (MaybeBitCode.get()) { 6929 default: // Default behavior: ignore. 6930 break; 6931 case bitc::FS_FLAGS: { // [flags] 6932 uint64_t Flags = Record[0]; 6933 // Scan flags. 6934 assert(Flags <= 0x7f && "Unexpected bits in flag"); 6935 6936 return Flags & 0x8; 6937 } 6938 } 6939 } 6940 llvm_unreachable("Exit infinite loop"); 6941 } 6942 6943 // Check if the given bitcode buffer contains a global value summary block. 6944 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6945 BitstreamCursor Stream(Buffer); 6946 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6947 return std::move(JumpFailed); 6948 6949 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6950 return std::move(Err); 6951 6952 while (true) { 6953 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6954 if (!MaybeEntry) 6955 return MaybeEntry.takeError(); 6956 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6957 6958 switch (Entry.Kind) { 6959 case BitstreamEntry::Error: 6960 return error("Malformed block"); 6961 case BitstreamEntry::EndBlock: 6962 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6963 /*EnableSplitLTOUnit=*/false}; 6964 6965 case BitstreamEntry::SubBlock: 6966 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6967 Expected<bool> EnableSplitLTOUnit = 6968 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6969 if (!EnableSplitLTOUnit) 6970 return EnableSplitLTOUnit.takeError(); 6971 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6972 *EnableSplitLTOUnit}; 6973 } 6974 6975 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6976 Expected<bool> EnableSplitLTOUnit = 6977 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6978 if (!EnableSplitLTOUnit) 6979 return EnableSplitLTOUnit.takeError(); 6980 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6981 *EnableSplitLTOUnit}; 6982 } 6983 6984 // Ignore other sub-blocks. 6985 if (Error Err = Stream.SkipBlock()) 6986 return std::move(Err); 6987 continue; 6988 6989 case BitstreamEntry::Record: 6990 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6991 continue; 6992 else 6993 return StreamFailed.takeError(); 6994 } 6995 } 6996 } 6997 6998 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6999 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 7000 if (!MsOrErr) 7001 return MsOrErr.takeError(); 7002 7003 if (MsOrErr->size() != 1) 7004 return error("Expected a single module"); 7005 7006 return (*MsOrErr)[0]; 7007 } 7008 7009 Expected<std::unique_ptr<Module>> 7010 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 7011 bool ShouldLazyLoadMetadata, bool IsImporting) { 7012 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7013 if (!BM) 7014 return BM.takeError(); 7015 7016 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 7017 } 7018 7019 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 7020 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 7021 bool ShouldLazyLoadMetadata, bool IsImporting) { 7022 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 7023 IsImporting); 7024 if (MOrErr) 7025 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 7026 return MOrErr; 7027 } 7028 7029 Expected<std::unique_ptr<Module>> 7030 BitcodeModule::parseModule(LLVMContext &Context, 7031 DataLayoutCallbackTy DataLayoutCallback) { 7032 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 7033 // TODO: Restore the use-lists to the in-memory state when the bitcode was 7034 // written. We must defer until the Module has been fully materialized. 7035 } 7036 7037 Expected<std::unique_ptr<Module>> 7038 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 7039 DataLayoutCallbackTy DataLayoutCallback) { 7040 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7041 if (!BM) 7042 return BM.takeError(); 7043 7044 return BM->parseModule(Context, DataLayoutCallback); 7045 } 7046 7047 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7048 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7049 if (!StreamOrErr) 7050 return StreamOrErr.takeError(); 7051 7052 return readTriple(*StreamOrErr); 7053 } 7054 7055 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7056 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7057 if (!StreamOrErr) 7058 return StreamOrErr.takeError(); 7059 7060 return hasObjCCategory(*StreamOrErr); 7061 } 7062 7063 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7064 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7065 if (!StreamOrErr) 7066 return StreamOrErr.takeError(); 7067 7068 return readIdentificationCode(*StreamOrErr); 7069 } 7070 7071 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7072 ModuleSummaryIndex &CombinedIndex, 7073 uint64_t ModuleId) { 7074 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7075 if (!BM) 7076 return BM.takeError(); 7077 7078 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7079 } 7080 7081 Expected<std::unique_ptr<ModuleSummaryIndex>> 7082 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7083 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7084 if (!BM) 7085 return BM.takeError(); 7086 7087 return BM->getSummary(); 7088 } 7089 7090 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7091 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7092 if (!BM) 7093 return BM.takeError(); 7094 7095 return BM->getLTOInfo(); 7096 } 7097 7098 Expected<std::unique_ptr<ModuleSummaryIndex>> 7099 llvm::getModuleSummaryIndexForFile(StringRef Path, 7100 bool IgnoreEmptyThinLTOIndexFile) { 7101 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7102 MemoryBuffer::getFileOrSTDIN(Path); 7103 if (!FileOrErr) 7104 return errorCodeToError(FileOrErr.getError()); 7105 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7106 return nullptr; 7107 return getModuleSummaryIndex(**FileOrErr); 7108 } 7109