1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/ADT/STLExtras.h" 11 #include "llvm/ADT/SmallString.h" 12 #include "llvm/ADT/SmallVector.h" 13 #include "llvm/ADT/Triple.h" 14 #include "llvm/Bitcode/BitstreamReader.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/Bitcode/ReaderWriter.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/ModuleSummaryIndex.h" 29 #include "llvm/IR/OperandTraits.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/ValueHandle.h" 32 #include "llvm/Support/CommandLine.h" 33 #include "llvm/Support/DataStream.h" 34 #include "llvm/Support/Debug.h" 35 #include "llvm/Support/ManagedStatic.h" 36 #include "llvm/Support/MathExtras.h" 37 #include "llvm/Support/MemoryBuffer.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <deque> 40 41 using namespace llvm; 42 43 static cl::opt<bool> PrintSummaryGUIDs( 44 "print-summary-global-ids", cl::init(false), cl::Hidden, 45 cl::desc( 46 "Print the global id for each value when reading the module summary")); 47 48 namespace { 49 enum { 50 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 51 }; 52 53 class BitcodeReaderValueList { 54 std::vector<WeakVH> ValuePtrs; 55 56 /// As we resolve forward-referenced constants, we add information about them 57 /// to this vector. This allows us to resolve them in bulk instead of 58 /// resolving each reference at a time. See the code in 59 /// ResolveConstantForwardRefs for more information about this. 60 /// 61 /// The key of this vector is the placeholder constant, the value is the slot 62 /// number that holds the resolved value. 63 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 64 ResolveConstantsTy ResolveConstants; 65 LLVMContext &Context; 66 public: 67 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 68 ~BitcodeReaderValueList() { 69 assert(ResolveConstants.empty() && "Constants not resolved?"); 70 } 71 72 // vector compatibility methods 73 unsigned size() const { return ValuePtrs.size(); } 74 void resize(unsigned N) { ValuePtrs.resize(N); } 75 void push_back(Value *V) { ValuePtrs.emplace_back(V); } 76 77 void clear() { 78 assert(ResolveConstants.empty() && "Constants not resolved?"); 79 ValuePtrs.clear(); 80 } 81 82 Value *operator[](unsigned i) const { 83 assert(i < ValuePtrs.size()); 84 return ValuePtrs[i]; 85 } 86 87 Value *back() const { return ValuePtrs.back(); } 88 void pop_back() { ValuePtrs.pop_back(); } 89 bool empty() const { return ValuePtrs.empty(); } 90 void shrinkTo(unsigned N) { 91 assert(N <= size() && "Invalid shrinkTo request!"); 92 ValuePtrs.resize(N); 93 } 94 95 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 96 Value *getValueFwdRef(unsigned Idx, Type *Ty); 97 98 void assignValue(Value *V, unsigned Idx); 99 100 /// Once all constants are read, this method bulk resolves any forward 101 /// references. 102 void resolveConstantForwardRefs(); 103 }; 104 105 class BitcodeReaderMetadataList { 106 unsigned NumFwdRefs; 107 bool AnyFwdRefs; 108 unsigned MinFwdRef; 109 unsigned MaxFwdRef; 110 111 /// Array of metadata references. 112 /// 113 /// Don't use std::vector here. Some versions of libc++ copy (instead of 114 /// move) on resize, and TrackingMDRef is very expensive to copy. 115 SmallVector<TrackingMDRef, 1> MetadataPtrs; 116 117 /// Structures for resolving old type refs. 118 struct { 119 SmallDenseMap<MDString *, TempMDTuple, 1> Unknown; 120 SmallDenseMap<MDString *, DICompositeType *, 1> Final; 121 SmallDenseMap<MDString *, DICompositeType *, 1> FwdDecls; 122 SmallVector<std::pair<TrackingMDRef, TempMDTuple>, 1> Arrays; 123 } OldTypeRefs; 124 125 LLVMContext &Context; 126 public: 127 BitcodeReaderMetadataList(LLVMContext &C) 128 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 129 130 // vector compatibility methods 131 unsigned size() const { return MetadataPtrs.size(); } 132 void resize(unsigned N) { MetadataPtrs.resize(N); } 133 void push_back(Metadata *MD) { MetadataPtrs.emplace_back(MD); } 134 void clear() { MetadataPtrs.clear(); } 135 Metadata *back() const { return MetadataPtrs.back(); } 136 void pop_back() { MetadataPtrs.pop_back(); } 137 bool empty() const { return MetadataPtrs.empty(); } 138 139 Metadata *operator[](unsigned i) const { 140 assert(i < MetadataPtrs.size()); 141 return MetadataPtrs[i]; 142 } 143 144 Metadata *lookup(unsigned I) const { 145 if (I < MetadataPtrs.size()) 146 return MetadataPtrs[I]; 147 return nullptr; 148 } 149 150 void shrinkTo(unsigned N) { 151 assert(N <= size() && "Invalid shrinkTo request!"); 152 assert(!AnyFwdRefs && "Unexpected forward refs"); 153 MetadataPtrs.resize(N); 154 } 155 156 /// Return the given metadata, creating a replaceable forward reference if 157 /// necessary. 158 Metadata *getMetadataFwdRef(unsigned Idx); 159 160 /// Return the the given metadata only if it is fully resolved. 161 /// 162 /// Gives the same result as \a lookup(), unless \a MDNode::isResolved() 163 /// would give \c false. 164 Metadata *getMetadataIfResolved(unsigned Idx); 165 166 MDNode *getMDNodeFwdRefOrNull(unsigned Idx); 167 void assignValue(Metadata *MD, unsigned Idx); 168 void tryToResolveCycles(); 169 bool hasFwdRefs() const { return AnyFwdRefs; } 170 171 /// Upgrade a type that had an MDString reference. 172 void addTypeRef(MDString &UUID, DICompositeType &CT); 173 174 /// Upgrade a type that had an MDString reference. 175 Metadata *upgradeTypeRef(Metadata *MaybeUUID); 176 177 /// Upgrade a type ref array that may have MDString references. 178 Metadata *upgradeTypeRefArray(Metadata *MaybeTuple); 179 180 private: 181 Metadata *resolveTypeRefArray(Metadata *MaybeTuple); 182 }; 183 184 class BitcodeReader : public GVMaterializer { 185 LLVMContext &Context; 186 Module *TheModule = nullptr; 187 std::unique_ptr<MemoryBuffer> Buffer; 188 std::unique_ptr<BitstreamReader> StreamFile; 189 BitstreamCursor Stream; 190 // Next offset to start scanning for lazy parsing of function bodies. 191 uint64_t NextUnreadBit = 0; 192 // Last function offset found in the VST. 193 uint64_t LastFunctionBlockBit = 0; 194 bool SeenValueSymbolTable = false; 195 uint64_t VSTOffset = 0; 196 // Contains an arbitrary and optional string identifying the bitcode producer 197 std::string ProducerIdentification; 198 199 std::vector<Type*> TypeList; 200 BitcodeReaderValueList ValueList; 201 BitcodeReaderMetadataList MetadataList; 202 std::vector<Comdat *> ComdatList; 203 SmallVector<Instruction *, 64> InstructionList; 204 205 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 206 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > IndirectSymbolInits; 207 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 208 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 209 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFns; 210 211 SmallVector<Instruction*, 64> InstsWithTBAATag; 212 213 bool HasSeenOldLoopTags = false; 214 215 /// The set of attributes by index. Index zero in the file is for null, and 216 /// is thus not represented here. As such all indices are off by one. 217 std::vector<AttributeSet> MAttributes; 218 219 /// The set of attribute groups. 220 std::map<unsigned, AttributeSet> MAttributeGroups; 221 222 /// While parsing a function body, this is a list of the basic blocks for the 223 /// function. 224 std::vector<BasicBlock*> FunctionBBs; 225 226 // When reading the module header, this list is populated with functions that 227 // have bodies later in the file. 228 std::vector<Function*> FunctionsWithBodies; 229 230 // When intrinsic functions are encountered which require upgrading they are 231 // stored here with their replacement function. 232 typedef DenseMap<Function*, Function*> UpgradedIntrinsicMap; 233 UpgradedIntrinsicMap UpgradedIntrinsics; 234 235 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 236 DenseMap<unsigned, unsigned> MDKindMap; 237 238 // Several operations happen after the module header has been read, but 239 // before function bodies are processed. This keeps track of whether 240 // we've done this yet. 241 bool SeenFirstFunctionBody = false; 242 243 /// When function bodies are initially scanned, this map contains info about 244 /// where to find deferred function body in the stream. 245 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 246 247 /// When Metadata block is initially scanned when parsing the module, we may 248 /// choose to defer parsing of the metadata. This vector contains info about 249 /// which Metadata blocks are deferred. 250 std::vector<uint64_t> DeferredMetadataInfo; 251 252 /// These are basic blocks forward-referenced by block addresses. They are 253 /// inserted lazily into functions when they're loaded. The basic block ID is 254 /// its index into the vector. 255 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 256 std::deque<Function *> BasicBlockFwdRefQueue; 257 258 /// Indicates that we are using a new encoding for instruction operands where 259 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 260 /// instruction number, for a more compact encoding. Some instruction 261 /// operands are not relative to the instruction ID: basic block numbers, and 262 /// types. Once the old style function blocks have been phased out, we would 263 /// not need this flag. 264 bool UseRelativeIDs = false; 265 266 /// True if all functions will be materialized, negating the need to process 267 /// (e.g.) blockaddress forward references. 268 bool WillMaterializeAllForwardRefs = false; 269 270 /// True if any Metadata block has been materialized. 271 bool IsMetadataMaterialized = false; 272 273 bool StripDebugInfo = false; 274 275 /// Functions that need to be matched with subprograms when upgrading old 276 /// metadata. 277 SmallDenseMap<Function *, DISubprogram *, 16> FunctionsWithSPs; 278 279 std::vector<std::string> BundleTags; 280 281 public: 282 std::error_code error(BitcodeError E, const Twine &Message); 283 std::error_code error(BitcodeError E); 284 std::error_code error(const Twine &Message); 285 286 BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context); 287 BitcodeReader(LLVMContext &Context); 288 ~BitcodeReader() override { freeState(); } 289 290 std::error_code materializeForwardReferencedFunctions(); 291 292 void freeState(); 293 294 void releaseBuffer(); 295 296 std::error_code materialize(GlobalValue *GV) override; 297 std::error_code materializeModule() override; 298 std::vector<StructType *> getIdentifiedStructTypes() const override; 299 300 /// \brief Main interface to parsing a bitcode buffer. 301 /// \returns true if an error occurred. 302 std::error_code parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 303 Module *M, 304 bool ShouldLazyLoadMetadata = false); 305 306 /// \brief Cheap mechanism to just extract module triple 307 /// \returns true if an error occurred. 308 ErrorOr<std::string> parseTriple(); 309 310 /// Cheap mechanism to just extract the identification block out of bitcode. 311 ErrorOr<std::string> parseIdentificationBlock(); 312 313 static uint64_t decodeSignRotatedValue(uint64_t V); 314 315 /// Materialize any deferred Metadata block. 316 std::error_code materializeMetadata() override; 317 318 void setStripDebugInfo() override; 319 320 private: 321 /// Parse the "IDENTIFICATION_BLOCK_ID" block, populate the 322 // ProducerIdentification data member, and do some basic enforcement on the 323 // "epoch" encoded in the bitcode. 324 std::error_code parseBitcodeVersion(); 325 326 std::vector<StructType *> IdentifiedStructTypes; 327 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 328 StructType *createIdentifiedStructType(LLVMContext &Context); 329 330 Type *getTypeByID(unsigned ID); 331 Value *getFnValueByID(unsigned ID, Type *Ty) { 332 if (Ty && Ty->isMetadataTy()) 333 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 334 return ValueList.getValueFwdRef(ID, Ty); 335 } 336 Metadata *getFnMetadataByID(unsigned ID) { 337 return MetadataList.getMetadataFwdRef(ID); 338 } 339 BasicBlock *getBasicBlock(unsigned ID) const { 340 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 341 return FunctionBBs[ID]; 342 } 343 AttributeSet getAttributes(unsigned i) const { 344 if (i-1 < MAttributes.size()) 345 return MAttributes[i-1]; 346 return AttributeSet(); 347 } 348 349 /// Read a value/type pair out of the specified record from slot 'Slot'. 350 /// Increment Slot past the number of slots used in the record. Return true on 351 /// failure. 352 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 353 unsigned InstNum, Value *&ResVal) { 354 if (Slot == Record.size()) return true; 355 unsigned ValNo = (unsigned)Record[Slot++]; 356 // Adjust the ValNo, if it was encoded relative to the InstNum. 357 if (UseRelativeIDs) 358 ValNo = InstNum - ValNo; 359 if (ValNo < InstNum) { 360 // If this is not a forward reference, just return the value we already 361 // have. 362 ResVal = getFnValueByID(ValNo, nullptr); 363 return ResVal == nullptr; 364 } 365 if (Slot == Record.size()) 366 return true; 367 368 unsigned TypeNo = (unsigned)Record[Slot++]; 369 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 370 return ResVal == nullptr; 371 } 372 373 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 374 /// past the number of slots used by the value in the record. Return true if 375 /// there is an error. 376 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 377 unsigned InstNum, Type *Ty, Value *&ResVal) { 378 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 379 return true; 380 // All values currently take a single record slot. 381 ++Slot; 382 return false; 383 } 384 385 /// Like popValue, but does not increment the Slot number. 386 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 387 unsigned InstNum, Type *Ty, Value *&ResVal) { 388 ResVal = getValue(Record, Slot, InstNum, Ty); 389 return ResVal == nullptr; 390 } 391 392 /// Version of getValue that returns ResVal directly, or 0 if there is an 393 /// error. 394 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 395 unsigned InstNum, Type *Ty) { 396 if (Slot == Record.size()) return nullptr; 397 unsigned ValNo = (unsigned)Record[Slot]; 398 // Adjust the ValNo, if it was encoded relative to the InstNum. 399 if (UseRelativeIDs) 400 ValNo = InstNum - ValNo; 401 return getFnValueByID(ValNo, Ty); 402 } 403 404 /// Like getValue, but decodes signed VBRs. 405 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 406 unsigned InstNum, Type *Ty) { 407 if (Slot == Record.size()) return nullptr; 408 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 409 // Adjust the ValNo, if it was encoded relative to the InstNum. 410 if (UseRelativeIDs) 411 ValNo = InstNum - ValNo; 412 return getFnValueByID(ValNo, Ty); 413 } 414 415 /// Converts alignment exponent (i.e. power of two (or zero)) to the 416 /// corresponding alignment to use. If alignment is too large, returns 417 /// a corresponding error code. 418 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 419 std::error_code parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 420 std::error_code parseModule(uint64_t ResumeBit, 421 bool ShouldLazyLoadMetadata = false); 422 std::error_code parseAttributeBlock(); 423 std::error_code parseAttributeGroupBlock(); 424 std::error_code parseTypeTable(); 425 std::error_code parseTypeTableBody(); 426 std::error_code parseOperandBundleTags(); 427 428 ErrorOr<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 429 unsigned NameIndex, Triple &TT); 430 std::error_code parseValueSymbolTable(uint64_t Offset = 0); 431 std::error_code parseConstants(); 432 std::error_code rememberAndSkipFunctionBodies(); 433 std::error_code rememberAndSkipFunctionBody(); 434 /// Save the positions of the Metadata blocks and skip parsing the blocks. 435 std::error_code rememberAndSkipMetadata(); 436 std::error_code parseFunctionBody(Function *F); 437 std::error_code globalCleanup(); 438 std::error_code resolveGlobalAndIndirectSymbolInits(); 439 std::error_code parseMetadata(bool ModuleLevel = false); 440 std::error_code parseMetadataStrings(ArrayRef<uint64_t> Record, 441 StringRef Blob, 442 unsigned &NextMetadataNo); 443 std::error_code parseMetadataKinds(); 444 std::error_code parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record); 445 std::error_code parseMetadataAttachment(Function &F); 446 ErrorOr<std::string> parseModuleTriple(); 447 std::error_code parseUseLists(); 448 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 449 std::error_code initStreamFromBuffer(); 450 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 451 std::error_code findFunctionInStream( 452 Function *F, 453 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 454 }; 455 456 /// Class to manage reading and parsing function summary index bitcode 457 /// files/sections. 458 class ModuleSummaryIndexBitcodeReader { 459 DiagnosticHandlerFunction DiagnosticHandler; 460 461 /// Eventually points to the module index built during parsing. 462 ModuleSummaryIndex *TheIndex = nullptr; 463 464 std::unique_ptr<MemoryBuffer> Buffer; 465 std::unique_ptr<BitstreamReader> StreamFile; 466 BitstreamCursor Stream; 467 468 /// Used to indicate whether caller only wants to check for the presence 469 /// of the global value summary bitcode section. All blocks are skipped, 470 /// but the SeenGlobalValSummary boolean is set. 471 bool CheckGlobalValSummaryPresenceOnly = false; 472 473 /// Indicates whether we have encountered a global value summary section 474 /// yet during parsing, used when checking if file contains global value 475 /// summary section. 476 bool SeenGlobalValSummary = false; 477 478 /// Indicates whether we have already parsed the VST, used for error checking. 479 bool SeenValueSymbolTable = false; 480 481 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 482 /// Used to enable on-demand parsing of the VST. 483 uint64_t VSTOffset = 0; 484 485 // Map to save ValueId to GUID association that was recorded in the 486 // ValueSymbolTable. It is used after the VST is parsed to convert 487 // call graph edges read from the function summary from referencing 488 // callees by their ValueId to using the GUID instead, which is how 489 // they are recorded in the summary index being built. 490 // We save a second GUID which is the same as the first one, but ignoring the 491 // linkage, i.e. for value other than local linkage they are identical. 492 DenseMap<unsigned, std::pair<GlobalValue::GUID, GlobalValue::GUID>> 493 ValueIdToCallGraphGUIDMap; 494 495 /// Map populated during module path string table parsing, from the 496 /// module ID to a string reference owned by the index's module 497 /// path string table, used to correlate with combined index 498 /// summary records. 499 DenseMap<uint64_t, StringRef> ModuleIdMap; 500 501 /// Original source file name recorded in a bitcode record. 502 std::string SourceFileName; 503 504 public: 505 std::error_code error(BitcodeError E, const Twine &Message); 506 std::error_code error(BitcodeError E); 507 std::error_code error(const Twine &Message); 508 509 ModuleSummaryIndexBitcodeReader( 510 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 511 bool CheckGlobalValSummaryPresenceOnly = false); 512 ModuleSummaryIndexBitcodeReader( 513 DiagnosticHandlerFunction DiagnosticHandler, 514 bool CheckGlobalValSummaryPresenceOnly = false); 515 ~ModuleSummaryIndexBitcodeReader() { freeState(); } 516 517 void freeState(); 518 519 void releaseBuffer(); 520 521 /// Check if the parser has encountered a summary section. 522 bool foundGlobalValSummary() { return SeenGlobalValSummary; } 523 524 /// \brief Main interface to parsing a bitcode buffer. 525 /// \returns true if an error occurred. 526 std::error_code parseSummaryIndexInto(std::unique_ptr<DataStreamer> Streamer, 527 ModuleSummaryIndex *I); 528 529 /// \brief Interface for parsing a summary lazily. 530 std::error_code 531 parseGlobalValueSummary(std::unique_ptr<DataStreamer> Streamer, 532 ModuleSummaryIndex *I, size_t SummaryOffset); 533 534 private: 535 std::error_code parseModule(); 536 std::error_code parseValueSymbolTable( 537 uint64_t Offset, 538 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 539 std::error_code parseEntireSummary(); 540 std::error_code parseModuleStringTable(); 541 std::error_code initStream(std::unique_ptr<DataStreamer> Streamer); 542 std::error_code initStreamFromBuffer(); 543 std::error_code initLazyStream(std::unique_ptr<DataStreamer> Streamer); 544 std::pair<GlobalValue::GUID, GlobalValue::GUID> 545 getGUIDFromValueId(unsigned ValueId); 546 }; 547 } // end anonymous namespace 548 549 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 550 DiagnosticSeverity Severity, 551 const Twine &Msg) 552 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 553 554 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 555 556 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 557 std::error_code EC, const Twine &Message) { 558 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 559 DiagnosticHandler(DI); 560 return EC; 561 } 562 563 static std::error_code error(DiagnosticHandlerFunction DiagnosticHandler, 564 std::error_code EC) { 565 return error(DiagnosticHandler, EC, EC.message()); 566 } 567 568 static std::error_code error(LLVMContext &Context, std::error_code EC, 569 const Twine &Message) { 570 return error([&](const DiagnosticInfo &DI) { Context.diagnose(DI); }, EC, 571 Message); 572 } 573 574 static std::error_code error(LLVMContext &Context, std::error_code EC) { 575 return error(Context, EC, EC.message()); 576 } 577 578 static std::error_code error(LLVMContext &Context, const Twine &Message) { 579 return error(Context, make_error_code(BitcodeError::CorruptedBitcode), 580 Message); 581 } 582 583 std::error_code BitcodeReader::error(BitcodeError E, const Twine &Message) { 584 if (!ProducerIdentification.empty()) { 585 return ::error(Context, make_error_code(E), 586 Message + " (Producer: '" + ProducerIdentification + 587 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 588 } 589 return ::error(Context, make_error_code(E), Message); 590 } 591 592 std::error_code BitcodeReader::error(const Twine &Message) { 593 if (!ProducerIdentification.empty()) { 594 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 595 Message + " (Producer: '" + ProducerIdentification + 596 "' Reader: 'LLVM " + LLVM_VERSION_STRING "')"); 597 } 598 return ::error(Context, make_error_code(BitcodeError::CorruptedBitcode), 599 Message); 600 } 601 602 std::error_code BitcodeReader::error(BitcodeError E) { 603 return ::error(Context, make_error_code(E)); 604 } 605 606 BitcodeReader::BitcodeReader(MemoryBuffer *Buffer, LLVMContext &Context) 607 : Context(Context), Buffer(Buffer), ValueList(Context), 608 MetadataList(Context) {} 609 610 BitcodeReader::BitcodeReader(LLVMContext &Context) 611 : Context(Context), Buffer(nullptr), ValueList(Context), 612 MetadataList(Context) {} 613 614 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 615 if (WillMaterializeAllForwardRefs) 616 return std::error_code(); 617 618 // Prevent recursion. 619 WillMaterializeAllForwardRefs = true; 620 621 while (!BasicBlockFwdRefQueue.empty()) { 622 Function *F = BasicBlockFwdRefQueue.front(); 623 BasicBlockFwdRefQueue.pop_front(); 624 assert(F && "Expected valid function"); 625 if (!BasicBlockFwdRefs.count(F)) 626 // Already materialized. 627 continue; 628 629 // Check for a function that isn't materializable to prevent an infinite 630 // loop. When parsing a blockaddress stored in a global variable, there 631 // isn't a trivial way to check if a function will have a body without a 632 // linear search through FunctionsWithBodies, so just check it here. 633 if (!F->isMaterializable()) 634 return error("Never resolved function from blockaddress"); 635 636 // Try to materialize F. 637 if (std::error_code EC = materialize(F)) 638 return EC; 639 } 640 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 641 642 // Reset state. 643 WillMaterializeAllForwardRefs = false; 644 return std::error_code(); 645 } 646 647 void BitcodeReader::freeState() { 648 Buffer = nullptr; 649 std::vector<Type*>().swap(TypeList); 650 ValueList.clear(); 651 MetadataList.clear(); 652 std::vector<Comdat *>().swap(ComdatList); 653 654 std::vector<AttributeSet>().swap(MAttributes); 655 std::vector<BasicBlock*>().swap(FunctionBBs); 656 std::vector<Function*>().swap(FunctionsWithBodies); 657 DeferredFunctionInfo.clear(); 658 DeferredMetadataInfo.clear(); 659 MDKindMap.clear(); 660 661 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 662 BasicBlockFwdRefQueue.clear(); 663 } 664 665 //===----------------------------------------------------------------------===// 666 // Helper functions to implement forward reference resolution, etc. 667 //===----------------------------------------------------------------------===// 668 669 /// Convert a string from a record into an std::string, return true on failure. 670 template <typename StrTy> 671 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 672 StrTy &Result) { 673 if (Idx > Record.size()) 674 return true; 675 676 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 677 Result += (char)Record[i]; 678 return false; 679 } 680 681 static bool hasImplicitComdat(size_t Val) { 682 switch (Val) { 683 default: 684 return false; 685 case 1: // Old WeakAnyLinkage 686 case 4: // Old LinkOnceAnyLinkage 687 case 10: // Old WeakODRLinkage 688 case 11: // Old LinkOnceODRLinkage 689 return true; 690 } 691 } 692 693 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 694 switch (Val) { 695 default: // Map unknown/new linkages to external 696 case 0: 697 return GlobalValue::ExternalLinkage; 698 case 2: 699 return GlobalValue::AppendingLinkage; 700 case 3: 701 return GlobalValue::InternalLinkage; 702 case 5: 703 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 704 case 6: 705 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 706 case 7: 707 return GlobalValue::ExternalWeakLinkage; 708 case 8: 709 return GlobalValue::CommonLinkage; 710 case 9: 711 return GlobalValue::PrivateLinkage; 712 case 12: 713 return GlobalValue::AvailableExternallyLinkage; 714 case 13: 715 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 716 case 14: 717 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 718 case 15: 719 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 720 case 1: // Old value with implicit comdat. 721 case 16: 722 return GlobalValue::WeakAnyLinkage; 723 case 10: // Old value with implicit comdat. 724 case 17: 725 return GlobalValue::WeakODRLinkage; 726 case 4: // Old value with implicit comdat. 727 case 18: 728 return GlobalValue::LinkOnceAnyLinkage; 729 case 11: // Old value with implicit comdat. 730 case 19: 731 return GlobalValue::LinkOnceODRLinkage; 732 } 733 } 734 735 // Decode the flags for GlobalValue in the summary 736 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 737 uint64_t Version) { 738 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 739 // like getDecodedLinkage() above. Any future change to the linkage enum and 740 // to getDecodedLinkage() will need to be taken into account here as above. 741 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 742 RawFlags = RawFlags >> 4; 743 auto HasSection = RawFlags & 0x1; // bool 744 return GlobalValueSummary::GVFlags(Linkage, HasSection); 745 } 746 747 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 748 switch (Val) { 749 default: // Map unknown visibilities to default. 750 case 0: return GlobalValue::DefaultVisibility; 751 case 1: return GlobalValue::HiddenVisibility; 752 case 2: return GlobalValue::ProtectedVisibility; 753 } 754 } 755 756 static GlobalValue::DLLStorageClassTypes 757 getDecodedDLLStorageClass(unsigned Val) { 758 switch (Val) { 759 default: // Map unknown values to default. 760 case 0: return GlobalValue::DefaultStorageClass; 761 case 1: return GlobalValue::DLLImportStorageClass; 762 case 2: return GlobalValue::DLLExportStorageClass; 763 } 764 } 765 766 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 767 switch (Val) { 768 case 0: return GlobalVariable::NotThreadLocal; 769 default: // Map unknown non-zero value to general dynamic. 770 case 1: return GlobalVariable::GeneralDynamicTLSModel; 771 case 2: return GlobalVariable::LocalDynamicTLSModel; 772 case 3: return GlobalVariable::InitialExecTLSModel; 773 case 4: return GlobalVariable::LocalExecTLSModel; 774 } 775 } 776 777 static int getDecodedCastOpcode(unsigned Val) { 778 switch (Val) { 779 default: return -1; 780 case bitc::CAST_TRUNC : return Instruction::Trunc; 781 case bitc::CAST_ZEXT : return Instruction::ZExt; 782 case bitc::CAST_SEXT : return Instruction::SExt; 783 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 784 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 785 case bitc::CAST_UITOFP : return Instruction::UIToFP; 786 case bitc::CAST_SITOFP : return Instruction::SIToFP; 787 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 788 case bitc::CAST_FPEXT : return Instruction::FPExt; 789 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 790 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 791 case bitc::CAST_BITCAST : return Instruction::BitCast; 792 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 793 } 794 } 795 796 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 797 bool IsFP = Ty->isFPOrFPVectorTy(); 798 // BinOps are only valid for int/fp or vector of int/fp types 799 if (!IsFP && !Ty->isIntOrIntVectorTy()) 800 return -1; 801 802 switch (Val) { 803 default: 804 return -1; 805 case bitc::BINOP_ADD: 806 return IsFP ? Instruction::FAdd : Instruction::Add; 807 case bitc::BINOP_SUB: 808 return IsFP ? Instruction::FSub : Instruction::Sub; 809 case bitc::BINOP_MUL: 810 return IsFP ? Instruction::FMul : Instruction::Mul; 811 case bitc::BINOP_UDIV: 812 return IsFP ? -1 : Instruction::UDiv; 813 case bitc::BINOP_SDIV: 814 return IsFP ? Instruction::FDiv : Instruction::SDiv; 815 case bitc::BINOP_UREM: 816 return IsFP ? -1 : Instruction::URem; 817 case bitc::BINOP_SREM: 818 return IsFP ? Instruction::FRem : Instruction::SRem; 819 case bitc::BINOP_SHL: 820 return IsFP ? -1 : Instruction::Shl; 821 case bitc::BINOP_LSHR: 822 return IsFP ? -1 : Instruction::LShr; 823 case bitc::BINOP_ASHR: 824 return IsFP ? -1 : Instruction::AShr; 825 case bitc::BINOP_AND: 826 return IsFP ? -1 : Instruction::And; 827 case bitc::BINOP_OR: 828 return IsFP ? -1 : Instruction::Or; 829 case bitc::BINOP_XOR: 830 return IsFP ? -1 : Instruction::Xor; 831 } 832 } 833 834 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 835 switch (Val) { 836 default: return AtomicRMWInst::BAD_BINOP; 837 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 838 case bitc::RMW_ADD: return AtomicRMWInst::Add; 839 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 840 case bitc::RMW_AND: return AtomicRMWInst::And; 841 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 842 case bitc::RMW_OR: return AtomicRMWInst::Or; 843 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 844 case bitc::RMW_MAX: return AtomicRMWInst::Max; 845 case bitc::RMW_MIN: return AtomicRMWInst::Min; 846 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 847 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 848 } 849 } 850 851 static AtomicOrdering getDecodedOrdering(unsigned Val) { 852 switch (Val) { 853 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 854 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 855 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 856 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 857 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 858 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 859 default: // Map unknown orderings to sequentially-consistent. 860 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 861 } 862 } 863 864 static SynchronizationScope getDecodedSynchScope(unsigned Val) { 865 switch (Val) { 866 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 867 default: // Map unknown scopes to cross-thread. 868 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 869 } 870 } 871 872 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 873 switch (Val) { 874 default: // Map unknown selection kinds to any. 875 case bitc::COMDAT_SELECTION_KIND_ANY: 876 return Comdat::Any; 877 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 878 return Comdat::ExactMatch; 879 case bitc::COMDAT_SELECTION_KIND_LARGEST: 880 return Comdat::Largest; 881 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 882 return Comdat::NoDuplicates; 883 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 884 return Comdat::SameSize; 885 } 886 } 887 888 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 889 FastMathFlags FMF; 890 if (0 != (Val & FastMathFlags::UnsafeAlgebra)) 891 FMF.setUnsafeAlgebra(); 892 if (0 != (Val & FastMathFlags::NoNaNs)) 893 FMF.setNoNaNs(); 894 if (0 != (Val & FastMathFlags::NoInfs)) 895 FMF.setNoInfs(); 896 if (0 != (Val & FastMathFlags::NoSignedZeros)) 897 FMF.setNoSignedZeros(); 898 if (0 != (Val & FastMathFlags::AllowReciprocal)) 899 FMF.setAllowReciprocal(); 900 return FMF; 901 } 902 903 static void upgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 904 switch (Val) { 905 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 906 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 907 } 908 } 909 910 namespace llvm { 911 namespace { 912 /// \brief A class for maintaining the slot number definition 913 /// as a placeholder for the actual definition for forward constants defs. 914 class ConstantPlaceHolder : public ConstantExpr { 915 void operator=(const ConstantPlaceHolder &) = delete; 916 917 public: 918 // allocate space for exactly one operand 919 void *operator new(size_t s) { return User::operator new(s, 1); } 920 explicit ConstantPlaceHolder(Type *Ty, LLVMContext &Context) 921 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 922 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 923 } 924 925 /// \brief Methods to support type inquiry through isa, cast, and dyn_cast. 926 static bool classof(const Value *V) { 927 return isa<ConstantExpr>(V) && 928 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 929 } 930 931 /// Provide fast operand accessors 932 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 933 }; 934 } // end anonymous namespace 935 936 // FIXME: can we inherit this from ConstantExpr? 937 template <> 938 struct OperandTraits<ConstantPlaceHolder> : 939 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 940 }; 941 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 942 } // end namespace llvm 943 944 void BitcodeReaderValueList::assignValue(Value *V, unsigned Idx) { 945 if (Idx == size()) { 946 push_back(V); 947 return; 948 } 949 950 if (Idx >= size()) 951 resize(Idx+1); 952 953 WeakVH &OldV = ValuePtrs[Idx]; 954 if (!OldV) { 955 OldV = V; 956 return; 957 } 958 959 // Handle constants and non-constants (e.g. instrs) differently for 960 // efficiency. 961 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 962 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 963 OldV = V; 964 } else { 965 // If there was a forward reference to this value, replace it. 966 Value *PrevVal = OldV; 967 OldV->replaceAllUsesWith(V); 968 delete PrevVal; 969 } 970 } 971 972 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 973 Type *Ty) { 974 if (Idx >= size()) 975 resize(Idx + 1); 976 977 if (Value *V = ValuePtrs[Idx]) { 978 if (Ty != V->getType()) 979 report_fatal_error("Type mismatch in constant table!"); 980 return cast<Constant>(V); 981 } 982 983 // Create and return a placeholder, which will later be RAUW'd. 984 Constant *C = new ConstantPlaceHolder(Ty, Context); 985 ValuePtrs[Idx] = C; 986 return C; 987 } 988 989 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 990 // Bail out for a clearly invalid value. This would make us call resize(0) 991 if (Idx == UINT_MAX) 992 return nullptr; 993 994 if (Idx >= size()) 995 resize(Idx + 1); 996 997 if (Value *V = ValuePtrs[Idx]) { 998 // If the types don't match, it's invalid. 999 if (Ty && Ty != V->getType()) 1000 return nullptr; 1001 return V; 1002 } 1003 1004 // No type specified, must be invalid reference. 1005 if (!Ty) return nullptr; 1006 1007 // Create and return a placeholder, which will later be RAUW'd. 1008 Value *V = new Argument(Ty); 1009 ValuePtrs[Idx] = V; 1010 return V; 1011 } 1012 1013 /// Once all constants are read, this method bulk resolves any forward 1014 /// references. The idea behind this is that we sometimes get constants (such 1015 /// as large arrays) which reference *many* forward ref constants. Replacing 1016 /// each of these causes a lot of thrashing when building/reuniquing the 1017 /// constant. Instead of doing this, we look at all the uses and rewrite all 1018 /// the place holders at once for any constant that uses a placeholder. 1019 void BitcodeReaderValueList::resolveConstantForwardRefs() { 1020 // Sort the values by-pointer so that they are efficient to look up with a 1021 // binary search. 1022 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 1023 1024 SmallVector<Constant*, 64> NewOps; 1025 1026 while (!ResolveConstants.empty()) { 1027 Value *RealVal = operator[](ResolveConstants.back().second); 1028 Constant *Placeholder = ResolveConstants.back().first; 1029 ResolveConstants.pop_back(); 1030 1031 // Loop over all users of the placeholder, updating them to reference the 1032 // new value. If they reference more than one placeholder, update them all 1033 // at once. 1034 while (!Placeholder->use_empty()) { 1035 auto UI = Placeholder->user_begin(); 1036 User *U = *UI; 1037 1038 // If the using object isn't uniqued, just update the operands. This 1039 // handles instructions and initializers for global variables. 1040 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 1041 UI.getUse().set(RealVal); 1042 continue; 1043 } 1044 1045 // Otherwise, we have a constant that uses the placeholder. Replace that 1046 // constant with a new constant that has *all* placeholder uses updated. 1047 Constant *UserC = cast<Constant>(U); 1048 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 1049 I != E; ++I) { 1050 Value *NewOp; 1051 if (!isa<ConstantPlaceHolder>(*I)) { 1052 // Not a placeholder reference. 1053 NewOp = *I; 1054 } else if (*I == Placeholder) { 1055 // Common case is that it just references this one placeholder. 1056 NewOp = RealVal; 1057 } else { 1058 // Otherwise, look up the placeholder in ResolveConstants. 1059 ResolveConstantsTy::iterator It = 1060 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 1061 std::pair<Constant*, unsigned>(cast<Constant>(*I), 1062 0)); 1063 assert(It != ResolveConstants.end() && It->first == *I); 1064 NewOp = operator[](It->second); 1065 } 1066 1067 NewOps.push_back(cast<Constant>(NewOp)); 1068 } 1069 1070 // Make the new constant. 1071 Constant *NewC; 1072 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 1073 NewC = ConstantArray::get(UserCA->getType(), NewOps); 1074 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 1075 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 1076 } else if (isa<ConstantVector>(UserC)) { 1077 NewC = ConstantVector::get(NewOps); 1078 } else { 1079 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 1080 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 1081 } 1082 1083 UserC->replaceAllUsesWith(NewC); 1084 UserC->destroyConstant(); 1085 NewOps.clear(); 1086 } 1087 1088 // Update all ValueHandles, they should be the only users at this point. 1089 Placeholder->replaceAllUsesWith(RealVal); 1090 delete Placeholder; 1091 } 1092 } 1093 1094 void BitcodeReaderMetadataList::assignValue(Metadata *MD, unsigned Idx) { 1095 if (Idx == size()) { 1096 push_back(MD); 1097 return; 1098 } 1099 1100 if (Idx >= size()) 1101 resize(Idx+1); 1102 1103 TrackingMDRef &OldMD = MetadataPtrs[Idx]; 1104 if (!OldMD) { 1105 OldMD.reset(MD); 1106 return; 1107 } 1108 1109 // If there was a forward reference to this value, replace it. 1110 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 1111 PrevMD->replaceAllUsesWith(MD); 1112 --NumFwdRefs; 1113 } 1114 1115 Metadata *BitcodeReaderMetadataList::getMetadataFwdRef(unsigned Idx) { 1116 if (Idx >= size()) 1117 resize(Idx + 1); 1118 1119 if (Metadata *MD = MetadataPtrs[Idx]) 1120 return MD; 1121 1122 // Track forward refs to be resolved later. 1123 if (AnyFwdRefs) { 1124 MinFwdRef = std::min(MinFwdRef, Idx); 1125 MaxFwdRef = std::max(MaxFwdRef, Idx); 1126 } else { 1127 AnyFwdRefs = true; 1128 MinFwdRef = MaxFwdRef = Idx; 1129 } 1130 ++NumFwdRefs; 1131 1132 // Create and return a placeholder, which will later be RAUW'd. 1133 Metadata *MD = MDNode::getTemporary(Context, None).release(); 1134 MetadataPtrs[Idx].reset(MD); 1135 return MD; 1136 } 1137 1138 Metadata *BitcodeReaderMetadataList::getMetadataIfResolved(unsigned Idx) { 1139 Metadata *MD = lookup(Idx); 1140 if (auto *N = dyn_cast_or_null<MDNode>(MD)) 1141 if (!N->isResolved()) 1142 return nullptr; 1143 return MD; 1144 } 1145 1146 MDNode *BitcodeReaderMetadataList::getMDNodeFwdRefOrNull(unsigned Idx) { 1147 return dyn_cast_or_null<MDNode>(getMetadataFwdRef(Idx)); 1148 } 1149 1150 void BitcodeReaderMetadataList::tryToResolveCycles() { 1151 if (NumFwdRefs) 1152 // Still forward references... can't resolve cycles. 1153 return; 1154 1155 bool DidReplaceTypeRefs = false; 1156 1157 // Give up on finding a full definition for any forward decls that remain. 1158 for (const auto &Ref : OldTypeRefs.FwdDecls) 1159 OldTypeRefs.Final.insert(Ref); 1160 OldTypeRefs.FwdDecls.clear(); 1161 1162 // Upgrade from old type ref arrays. In strange cases, this could add to 1163 // OldTypeRefs.Unknown. 1164 for (const auto &Array : OldTypeRefs.Arrays) { 1165 DidReplaceTypeRefs = true; 1166 Array.second->replaceAllUsesWith(resolveTypeRefArray(Array.first.get())); 1167 } 1168 OldTypeRefs.Arrays.clear(); 1169 1170 // Replace old string-based type refs with the resolved node, if possible. 1171 // If we haven't seen the node, leave it to the verifier to complain about 1172 // the invalid string reference. 1173 for (const auto &Ref : OldTypeRefs.Unknown) { 1174 DidReplaceTypeRefs = true; 1175 if (DICompositeType *CT = OldTypeRefs.Final.lookup(Ref.first)) 1176 Ref.second->replaceAllUsesWith(CT); 1177 else 1178 Ref.second->replaceAllUsesWith(Ref.first); 1179 } 1180 OldTypeRefs.Unknown.clear(); 1181 1182 // Make sure all the upgraded types are resolved. 1183 if (DidReplaceTypeRefs) { 1184 AnyFwdRefs = true; 1185 MinFwdRef = 0; 1186 MaxFwdRef = MetadataPtrs.size() - 1; 1187 } 1188 1189 if (!AnyFwdRefs) 1190 // Nothing to do. 1191 return; 1192 1193 // Resolve any cycles. 1194 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 1195 auto &MD = MetadataPtrs[I]; 1196 auto *N = dyn_cast_or_null<MDNode>(MD); 1197 if (!N) 1198 continue; 1199 1200 assert(!N->isTemporary() && "Unexpected forward reference"); 1201 N->resolveCycles(); 1202 } 1203 1204 // Make sure we return early again until there's another forward ref. 1205 AnyFwdRefs = false; 1206 } 1207 1208 void BitcodeReaderMetadataList::addTypeRef(MDString &UUID, 1209 DICompositeType &CT) { 1210 assert(CT.getRawIdentifier() == &UUID && "Mismatched UUID"); 1211 if (CT.isForwardDecl()) 1212 OldTypeRefs.FwdDecls.insert(std::make_pair(&UUID, &CT)); 1213 else 1214 OldTypeRefs.Final.insert(std::make_pair(&UUID, &CT)); 1215 } 1216 1217 Metadata *BitcodeReaderMetadataList::upgradeTypeRef(Metadata *MaybeUUID) { 1218 auto *UUID = dyn_cast_or_null<MDString>(MaybeUUID); 1219 if (LLVM_LIKELY(!UUID)) 1220 return MaybeUUID; 1221 1222 if (auto *CT = OldTypeRefs.Final.lookup(UUID)) 1223 return CT; 1224 1225 auto &Ref = OldTypeRefs.Unknown[UUID]; 1226 if (!Ref) 1227 Ref = MDNode::getTemporary(Context, None); 1228 return Ref.get(); 1229 } 1230 1231 Metadata *BitcodeReaderMetadataList::upgradeTypeRefArray(Metadata *MaybeTuple) { 1232 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1233 if (!Tuple || Tuple->isDistinct()) 1234 return MaybeTuple; 1235 1236 // Look through the array immediately if possible. 1237 if (!Tuple->isTemporary()) 1238 return resolveTypeRefArray(Tuple); 1239 1240 // Create and return a placeholder to use for now. Eventually 1241 // resolveTypeRefArrays() will be resolve this forward reference. 1242 OldTypeRefs.Arrays.emplace_back(); 1243 OldTypeRefs.Arrays.back().first.reset(Tuple); 1244 OldTypeRefs.Arrays.back().second = MDTuple::getTemporary(Context, None); 1245 return OldTypeRefs.Arrays.back().second.get(); 1246 } 1247 1248 Metadata *BitcodeReaderMetadataList::resolveTypeRefArray(Metadata *MaybeTuple) { 1249 auto *Tuple = dyn_cast_or_null<MDTuple>(MaybeTuple); 1250 if (!Tuple || Tuple->isDistinct()) 1251 return MaybeTuple; 1252 1253 // Look through the DITypeRefArray, upgrading each DITypeRef. 1254 SmallVector<Metadata *, 32> Ops; 1255 Ops.reserve(Tuple->getNumOperands()); 1256 for (Metadata *MD : Tuple->operands()) 1257 Ops.push_back(upgradeTypeRef(MD)); 1258 1259 return MDTuple::get(Context, Ops); 1260 } 1261 1262 Type *BitcodeReader::getTypeByID(unsigned ID) { 1263 // The type table size is always specified correctly. 1264 if (ID >= TypeList.size()) 1265 return nullptr; 1266 1267 if (Type *Ty = TypeList[ID]) 1268 return Ty; 1269 1270 // If we have a forward reference, the only possible case is when it is to a 1271 // named struct. Just create a placeholder for now. 1272 return TypeList[ID] = createIdentifiedStructType(Context); 1273 } 1274 1275 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1276 StringRef Name) { 1277 auto *Ret = StructType::create(Context, Name); 1278 IdentifiedStructTypes.push_back(Ret); 1279 return Ret; 1280 } 1281 1282 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1283 auto *Ret = StructType::create(Context); 1284 IdentifiedStructTypes.push_back(Ret); 1285 return Ret; 1286 } 1287 1288 //===----------------------------------------------------------------------===// 1289 // Functions for parsing blocks from the bitcode file 1290 //===----------------------------------------------------------------------===// 1291 1292 1293 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1294 /// been decoded from the given integer. This function must stay in sync with 1295 /// 'encodeLLVMAttributesForBitcode'. 1296 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1297 uint64_t EncodedAttrs) { 1298 // FIXME: Remove in 4.0. 1299 1300 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1301 // the bits above 31 down by 11 bits. 1302 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1303 assert((!Alignment || isPowerOf2_32(Alignment)) && 1304 "Alignment must be a power of two."); 1305 1306 if (Alignment) 1307 B.addAlignmentAttr(Alignment); 1308 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1309 (EncodedAttrs & 0xffff)); 1310 } 1311 1312 std::error_code BitcodeReader::parseAttributeBlock() { 1313 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1314 return error("Invalid record"); 1315 1316 if (!MAttributes.empty()) 1317 return error("Invalid multiple blocks"); 1318 1319 SmallVector<uint64_t, 64> Record; 1320 1321 SmallVector<AttributeSet, 8> Attrs; 1322 1323 // Read all the records. 1324 while (1) { 1325 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1326 1327 switch (Entry.Kind) { 1328 case BitstreamEntry::SubBlock: // Handled for us already. 1329 case BitstreamEntry::Error: 1330 return error("Malformed block"); 1331 case BitstreamEntry::EndBlock: 1332 return std::error_code(); 1333 case BitstreamEntry::Record: 1334 // The interesting case. 1335 break; 1336 } 1337 1338 // Read a record. 1339 Record.clear(); 1340 switch (Stream.readRecord(Entry.ID, Record)) { 1341 default: // Default behavior: ignore. 1342 break; 1343 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1344 // FIXME: Remove in 4.0. 1345 if (Record.size() & 1) 1346 return error("Invalid record"); 1347 1348 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1349 AttrBuilder B; 1350 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1351 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1352 } 1353 1354 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1355 Attrs.clear(); 1356 break; 1357 } 1358 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1359 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1360 Attrs.push_back(MAttributeGroups[Record[i]]); 1361 1362 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1363 Attrs.clear(); 1364 break; 1365 } 1366 } 1367 } 1368 } 1369 1370 // Returns Attribute::None on unrecognized codes. 1371 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1372 switch (Code) { 1373 default: 1374 return Attribute::None; 1375 case bitc::ATTR_KIND_ALIGNMENT: 1376 return Attribute::Alignment; 1377 case bitc::ATTR_KIND_ALWAYS_INLINE: 1378 return Attribute::AlwaysInline; 1379 case bitc::ATTR_KIND_ARGMEMONLY: 1380 return Attribute::ArgMemOnly; 1381 case bitc::ATTR_KIND_BUILTIN: 1382 return Attribute::Builtin; 1383 case bitc::ATTR_KIND_BY_VAL: 1384 return Attribute::ByVal; 1385 case bitc::ATTR_KIND_IN_ALLOCA: 1386 return Attribute::InAlloca; 1387 case bitc::ATTR_KIND_COLD: 1388 return Attribute::Cold; 1389 case bitc::ATTR_KIND_CONVERGENT: 1390 return Attribute::Convergent; 1391 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1392 return Attribute::InaccessibleMemOnly; 1393 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1394 return Attribute::InaccessibleMemOrArgMemOnly; 1395 case bitc::ATTR_KIND_INLINE_HINT: 1396 return Attribute::InlineHint; 1397 case bitc::ATTR_KIND_IN_REG: 1398 return Attribute::InReg; 1399 case bitc::ATTR_KIND_JUMP_TABLE: 1400 return Attribute::JumpTable; 1401 case bitc::ATTR_KIND_MIN_SIZE: 1402 return Attribute::MinSize; 1403 case bitc::ATTR_KIND_NAKED: 1404 return Attribute::Naked; 1405 case bitc::ATTR_KIND_NEST: 1406 return Attribute::Nest; 1407 case bitc::ATTR_KIND_NO_ALIAS: 1408 return Attribute::NoAlias; 1409 case bitc::ATTR_KIND_NO_BUILTIN: 1410 return Attribute::NoBuiltin; 1411 case bitc::ATTR_KIND_NO_CAPTURE: 1412 return Attribute::NoCapture; 1413 case bitc::ATTR_KIND_NO_DUPLICATE: 1414 return Attribute::NoDuplicate; 1415 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1416 return Attribute::NoImplicitFloat; 1417 case bitc::ATTR_KIND_NO_INLINE: 1418 return Attribute::NoInline; 1419 case bitc::ATTR_KIND_NO_RECURSE: 1420 return Attribute::NoRecurse; 1421 case bitc::ATTR_KIND_NON_LAZY_BIND: 1422 return Attribute::NonLazyBind; 1423 case bitc::ATTR_KIND_NON_NULL: 1424 return Attribute::NonNull; 1425 case bitc::ATTR_KIND_DEREFERENCEABLE: 1426 return Attribute::Dereferenceable; 1427 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1428 return Attribute::DereferenceableOrNull; 1429 case bitc::ATTR_KIND_ALLOC_SIZE: 1430 return Attribute::AllocSize; 1431 case bitc::ATTR_KIND_NO_RED_ZONE: 1432 return Attribute::NoRedZone; 1433 case bitc::ATTR_KIND_NO_RETURN: 1434 return Attribute::NoReturn; 1435 case bitc::ATTR_KIND_NO_UNWIND: 1436 return Attribute::NoUnwind; 1437 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1438 return Attribute::OptimizeForSize; 1439 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1440 return Attribute::OptimizeNone; 1441 case bitc::ATTR_KIND_READ_NONE: 1442 return Attribute::ReadNone; 1443 case bitc::ATTR_KIND_READ_ONLY: 1444 return Attribute::ReadOnly; 1445 case bitc::ATTR_KIND_RETURNED: 1446 return Attribute::Returned; 1447 case bitc::ATTR_KIND_RETURNS_TWICE: 1448 return Attribute::ReturnsTwice; 1449 case bitc::ATTR_KIND_S_EXT: 1450 return Attribute::SExt; 1451 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1452 return Attribute::StackAlignment; 1453 case bitc::ATTR_KIND_STACK_PROTECT: 1454 return Attribute::StackProtect; 1455 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1456 return Attribute::StackProtectReq; 1457 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1458 return Attribute::StackProtectStrong; 1459 case bitc::ATTR_KIND_SAFESTACK: 1460 return Attribute::SafeStack; 1461 case bitc::ATTR_KIND_STRUCT_RET: 1462 return Attribute::StructRet; 1463 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1464 return Attribute::SanitizeAddress; 1465 case bitc::ATTR_KIND_SANITIZE_THREAD: 1466 return Attribute::SanitizeThread; 1467 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1468 return Attribute::SanitizeMemory; 1469 case bitc::ATTR_KIND_SWIFT_ERROR: 1470 return Attribute::SwiftError; 1471 case bitc::ATTR_KIND_SWIFT_SELF: 1472 return Attribute::SwiftSelf; 1473 case bitc::ATTR_KIND_UW_TABLE: 1474 return Attribute::UWTable; 1475 case bitc::ATTR_KIND_Z_EXT: 1476 return Attribute::ZExt; 1477 } 1478 } 1479 1480 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1481 unsigned &Alignment) { 1482 // Note: Alignment in bitcode files is incremented by 1, so that zero 1483 // can be used for default alignment. 1484 if (Exponent > Value::MaxAlignmentExponent + 1) 1485 return error("Invalid alignment value"); 1486 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1487 return std::error_code(); 1488 } 1489 1490 std::error_code BitcodeReader::parseAttrKind(uint64_t Code, 1491 Attribute::AttrKind *Kind) { 1492 *Kind = getAttrFromCode(Code); 1493 if (*Kind == Attribute::None) 1494 return error(BitcodeError::CorruptedBitcode, 1495 "Unknown attribute kind (" + Twine(Code) + ")"); 1496 return std::error_code(); 1497 } 1498 1499 std::error_code BitcodeReader::parseAttributeGroupBlock() { 1500 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1501 return error("Invalid record"); 1502 1503 if (!MAttributeGroups.empty()) 1504 return error("Invalid multiple blocks"); 1505 1506 SmallVector<uint64_t, 64> Record; 1507 1508 // Read all the records. 1509 while (1) { 1510 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1511 1512 switch (Entry.Kind) { 1513 case BitstreamEntry::SubBlock: // Handled for us already. 1514 case BitstreamEntry::Error: 1515 return error("Malformed block"); 1516 case BitstreamEntry::EndBlock: 1517 return std::error_code(); 1518 case BitstreamEntry::Record: 1519 // The interesting case. 1520 break; 1521 } 1522 1523 // Read a record. 1524 Record.clear(); 1525 switch (Stream.readRecord(Entry.ID, Record)) { 1526 default: // Default behavior: ignore. 1527 break; 1528 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1529 if (Record.size() < 3) 1530 return error("Invalid record"); 1531 1532 uint64_t GrpID = Record[0]; 1533 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1534 1535 AttrBuilder B; 1536 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1537 if (Record[i] == 0) { // Enum attribute 1538 Attribute::AttrKind Kind; 1539 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1540 return EC; 1541 1542 B.addAttribute(Kind); 1543 } else if (Record[i] == 1) { // Integer attribute 1544 Attribute::AttrKind Kind; 1545 if (std::error_code EC = parseAttrKind(Record[++i], &Kind)) 1546 return EC; 1547 if (Kind == Attribute::Alignment) 1548 B.addAlignmentAttr(Record[++i]); 1549 else if (Kind == Attribute::StackAlignment) 1550 B.addStackAlignmentAttr(Record[++i]); 1551 else if (Kind == Attribute::Dereferenceable) 1552 B.addDereferenceableAttr(Record[++i]); 1553 else if (Kind == Attribute::DereferenceableOrNull) 1554 B.addDereferenceableOrNullAttr(Record[++i]); 1555 else if (Kind == Attribute::AllocSize) 1556 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1557 } else { // String attribute 1558 assert((Record[i] == 3 || Record[i] == 4) && 1559 "Invalid attribute group entry"); 1560 bool HasValue = (Record[i++] == 4); 1561 SmallString<64> KindStr; 1562 SmallString<64> ValStr; 1563 1564 while (Record[i] != 0 && i != e) 1565 KindStr += Record[i++]; 1566 assert(Record[i] == 0 && "Kind string not null terminated"); 1567 1568 if (HasValue) { 1569 // Has a value associated with it. 1570 ++i; // Skip the '0' that terminates the "kind" string. 1571 while (Record[i] != 0 && i != e) 1572 ValStr += Record[i++]; 1573 assert(Record[i] == 0 && "Value string not null terminated"); 1574 } 1575 1576 B.addAttribute(KindStr.str(), ValStr.str()); 1577 } 1578 } 1579 1580 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1581 break; 1582 } 1583 } 1584 } 1585 } 1586 1587 std::error_code BitcodeReader::parseTypeTable() { 1588 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1589 return error("Invalid record"); 1590 1591 return parseTypeTableBody(); 1592 } 1593 1594 std::error_code BitcodeReader::parseTypeTableBody() { 1595 if (!TypeList.empty()) 1596 return error("Invalid multiple blocks"); 1597 1598 SmallVector<uint64_t, 64> Record; 1599 unsigned NumRecords = 0; 1600 1601 SmallString<64> TypeName; 1602 1603 // Read all the records for this type table. 1604 while (1) { 1605 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1606 1607 switch (Entry.Kind) { 1608 case BitstreamEntry::SubBlock: // Handled for us already. 1609 case BitstreamEntry::Error: 1610 return error("Malformed block"); 1611 case BitstreamEntry::EndBlock: 1612 if (NumRecords != TypeList.size()) 1613 return error("Malformed block"); 1614 return std::error_code(); 1615 case BitstreamEntry::Record: 1616 // The interesting case. 1617 break; 1618 } 1619 1620 // Read a record. 1621 Record.clear(); 1622 Type *ResultTy = nullptr; 1623 switch (Stream.readRecord(Entry.ID, Record)) { 1624 default: 1625 return error("Invalid value"); 1626 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1627 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1628 // type list. This allows us to reserve space. 1629 if (Record.size() < 1) 1630 return error("Invalid record"); 1631 TypeList.resize(Record[0]); 1632 continue; 1633 case bitc::TYPE_CODE_VOID: // VOID 1634 ResultTy = Type::getVoidTy(Context); 1635 break; 1636 case bitc::TYPE_CODE_HALF: // HALF 1637 ResultTy = Type::getHalfTy(Context); 1638 break; 1639 case bitc::TYPE_CODE_FLOAT: // FLOAT 1640 ResultTy = Type::getFloatTy(Context); 1641 break; 1642 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1643 ResultTy = Type::getDoubleTy(Context); 1644 break; 1645 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1646 ResultTy = Type::getX86_FP80Ty(Context); 1647 break; 1648 case bitc::TYPE_CODE_FP128: // FP128 1649 ResultTy = Type::getFP128Ty(Context); 1650 break; 1651 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1652 ResultTy = Type::getPPC_FP128Ty(Context); 1653 break; 1654 case bitc::TYPE_CODE_LABEL: // LABEL 1655 ResultTy = Type::getLabelTy(Context); 1656 break; 1657 case bitc::TYPE_CODE_METADATA: // METADATA 1658 ResultTy = Type::getMetadataTy(Context); 1659 break; 1660 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1661 ResultTy = Type::getX86_MMXTy(Context); 1662 break; 1663 case bitc::TYPE_CODE_TOKEN: // TOKEN 1664 ResultTy = Type::getTokenTy(Context); 1665 break; 1666 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1667 if (Record.size() < 1) 1668 return error("Invalid record"); 1669 1670 uint64_t NumBits = Record[0]; 1671 if (NumBits < IntegerType::MIN_INT_BITS || 1672 NumBits > IntegerType::MAX_INT_BITS) 1673 return error("Bitwidth for integer type out of range"); 1674 ResultTy = IntegerType::get(Context, NumBits); 1675 break; 1676 } 1677 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1678 // [pointee type, address space] 1679 if (Record.size() < 1) 1680 return error("Invalid record"); 1681 unsigned AddressSpace = 0; 1682 if (Record.size() == 2) 1683 AddressSpace = Record[1]; 1684 ResultTy = getTypeByID(Record[0]); 1685 if (!ResultTy || 1686 !PointerType::isValidElementType(ResultTy)) 1687 return error("Invalid type"); 1688 ResultTy = PointerType::get(ResultTy, AddressSpace); 1689 break; 1690 } 1691 case bitc::TYPE_CODE_FUNCTION_OLD: { 1692 // FIXME: attrid is dead, remove it in LLVM 4.0 1693 // FUNCTION: [vararg, attrid, retty, paramty x N] 1694 if (Record.size() < 3) 1695 return error("Invalid record"); 1696 SmallVector<Type*, 8> ArgTys; 1697 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1698 if (Type *T = getTypeByID(Record[i])) 1699 ArgTys.push_back(T); 1700 else 1701 break; 1702 } 1703 1704 ResultTy = getTypeByID(Record[2]); 1705 if (!ResultTy || ArgTys.size() < Record.size()-3) 1706 return error("Invalid type"); 1707 1708 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1709 break; 1710 } 1711 case bitc::TYPE_CODE_FUNCTION: { 1712 // FUNCTION: [vararg, retty, paramty x N] 1713 if (Record.size() < 2) 1714 return error("Invalid record"); 1715 SmallVector<Type*, 8> ArgTys; 1716 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1717 if (Type *T = getTypeByID(Record[i])) { 1718 if (!FunctionType::isValidArgumentType(T)) 1719 return error("Invalid function argument type"); 1720 ArgTys.push_back(T); 1721 } 1722 else 1723 break; 1724 } 1725 1726 ResultTy = getTypeByID(Record[1]); 1727 if (!ResultTy || ArgTys.size() < Record.size()-2) 1728 return error("Invalid type"); 1729 1730 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1731 break; 1732 } 1733 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1734 if (Record.size() < 1) 1735 return error("Invalid record"); 1736 SmallVector<Type*, 8> EltTys; 1737 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1738 if (Type *T = getTypeByID(Record[i])) 1739 EltTys.push_back(T); 1740 else 1741 break; 1742 } 1743 if (EltTys.size() != Record.size()-1) 1744 return error("Invalid type"); 1745 ResultTy = StructType::get(Context, EltTys, Record[0]); 1746 break; 1747 } 1748 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1749 if (convertToString(Record, 0, TypeName)) 1750 return error("Invalid record"); 1751 continue; 1752 1753 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1754 if (Record.size() < 1) 1755 return error("Invalid record"); 1756 1757 if (NumRecords >= TypeList.size()) 1758 return error("Invalid TYPE table"); 1759 1760 // Check to see if this was forward referenced, if so fill in the temp. 1761 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1762 if (Res) { 1763 Res->setName(TypeName); 1764 TypeList[NumRecords] = nullptr; 1765 } else // Otherwise, create a new struct. 1766 Res = createIdentifiedStructType(Context, TypeName); 1767 TypeName.clear(); 1768 1769 SmallVector<Type*, 8> EltTys; 1770 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1771 if (Type *T = getTypeByID(Record[i])) 1772 EltTys.push_back(T); 1773 else 1774 break; 1775 } 1776 if (EltTys.size() != Record.size()-1) 1777 return error("Invalid record"); 1778 Res->setBody(EltTys, Record[0]); 1779 ResultTy = Res; 1780 break; 1781 } 1782 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1783 if (Record.size() != 1) 1784 return error("Invalid record"); 1785 1786 if (NumRecords >= TypeList.size()) 1787 return error("Invalid TYPE table"); 1788 1789 // Check to see if this was forward referenced, if so fill in the temp. 1790 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1791 if (Res) { 1792 Res->setName(TypeName); 1793 TypeList[NumRecords] = nullptr; 1794 } else // Otherwise, create a new struct with no body. 1795 Res = createIdentifiedStructType(Context, TypeName); 1796 TypeName.clear(); 1797 ResultTy = Res; 1798 break; 1799 } 1800 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1801 if (Record.size() < 2) 1802 return error("Invalid record"); 1803 ResultTy = getTypeByID(Record[1]); 1804 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1805 return error("Invalid type"); 1806 ResultTy = ArrayType::get(ResultTy, Record[0]); 1807 break; 1808 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1809 if (Record.size() < 2) 1810 return error("Invalid record"); 1811 if (Record[0] == 0) 1812 return error("Invalid vector length"); 1813 ResultTy = getTypeByID(Record[1]); 1814 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1815 return error("Invalid type"); 1816 ResultTy = VectorType::get(ResultTy, Record[0]); 1817 break; 1818 } 1819 1820 if (NumRecords >= TypeList.size()) 1821 return error("Invalid TYPE table"); 1822 if (TypeList[NumRecords]) 1823 return error( 1824 "Invalid TYPE table: Only named structs can be forward referenced"); 1825 assert(ResultTy && "Didn't read a type?"); 1826 TypeList[NumRecords++] = ResultTy; 1827 } 1828 } 1829 1830 std::error_code BitcodeReader::parseOperandBundleTags() { 1831 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1832 return error("Invalid record"); 1833 1834 if (!BundleTags.empty()) 1835 return error("Invalid multiple blocks"); 1836 1837 SmallVector<uint64_t, 64> Record; 1838 1839 while (1) { 1840 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1841 1842 switch (Entry.Kind) { 1843 case BitstreamEntry::SubBlock: // Handled for us already. 1844 case BitstreamEntry::Error: 1845 return error("Malformed block"); 1846 case BitstreamEntry::EndBlock: 1847 return std::error_code(); 1848 case BitstreamEntry::Record: 1849 // The interesting case. 1850 break; 1851 } 1852 1853 // Tags are implicitly mapped to integers by their order. 1854 1855 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1856 return error("Invalid record"); 1857 1858 // OPERAND_BUNDLE_TAG: [strchr x N] 1859 BundleTags.emplace_back(); 1860 if (convertToString(Record, 0, BundleTags.back())) 1861 return error("Invalid record"); 1862 Record.clear(); 1863 } 1864 } 1865 1866 /// Associate a value with its name from the given index in the provided record. 1867 ErrorOr<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1868 unsigned NameIndex, Triple &TT) { 1869 SmallString<128> ValueName; 1870 if (convertToString(Record, NameIndex, ValueName)) 1871 return error("Invalid record"); 1872 unsigned ValueID = Record[0]; 1873 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1874 return error("Invalid record"); 1875 Value *V = ValueList[ValueID]; 1876 1877 StringRef NameStr(ValueName.data(), ValueName.size()); 1878 if (NameStr.find_first_of(0) != StringRef::npos) 1879 return error("Invalid value name"); 1880 V->setName(NameStr); 1881 auto *GO = dyn_cast<GlobalObject>(V); 1882 if (GO) { 1883 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1884 if (TT.isOSBinFormatMachO()) 1885 GO->setComdat(nullptr); 1886 else 1887 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1888 } 1889 } 1890 return V; 1891 } 1892 1893 /// Helper to note and return the current location, and jump to the given 1894 /// offset. 1895 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1896 BitstreamCursor &Stream) { 1897 // Save the current parsing location so we can jump back at the end 1898 // of the VST read. 1899 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1900 Stream.JumpToBit(Offset * 32); 1901 #ifndef NDEBUG 1902 // Do some checking if we are in debug mode. 1903 BitstreamEntry Entry = Stream.advance(); 1904 assert(Entry.Kind == BitstreamEntry::SubBlock); 1905 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1906 #else 1907 // In NDEBUG mode ignore the output so we don't get an unused variable 1908 // warning. 1909 Stream.advance(); 1910 #endif 1911 return CurrentBit; 1912 } 1913 1914 /// Parse the value symbol table at either the current parsing location or 1915 /// at the given bit offset if provided. 1916 std::error_code BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1917 uint64_t CurrentBit; 1918 // Pass in the Offset to distinguish between calling for the module-level 1919 // VST (where we want to jump to the VST offset) and the function-level 1920 // VST (where we don't). 1921 if (Offset > 0) 1922 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1923 1924 // Compute the delta between the bitcode indices in the VST (the word offset 1925 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1926 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1927 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1928 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1929 // just before entering the VST subblock because: 1) the EnterSubBlock 1930 // changes the AbbrevID width; 2) the VST block is nested within the same 1931 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1932 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1933 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1934 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1935 unsigned FuncBitcodeOffsetDelta = 1936 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1937 1938 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1939 return error("Invalid record"); 1940 1941 SmallVector<uint64_t, 64> Record; 1942 1943 Triple TT(TheModule->getTargetTriple()); 1944 1945 // Read all the records for this value table. 1946 SmallString<128> ValueName; 1947 while (1) { 1948 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1949 1950 switch (Entry.Kind) { 1951 case BitstreamEntry::SubBlock: // Handled for us already. 1952 case BitstreamEntry::Error: 1953 return error("Malformed block"); 1954 case BitstreamEntry::EndBlock: 1955 if (Offset > 0) 1956 Stream.JumpToBit(CurrentBit); 1957 return std::error_code(); 1958 case BitstreamEntry::Record: 1959 // The interesting case. 1960 break; 1961 } 1962 1963 // Read a record. 1964 Record.clear(); 1965 switch (Stream.readRecord(Entry.ID, Record)) { 1966 default: // Default behavior: unknown type. 1967 break; 1968 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1969 ErrorOr<Value *> ValOrErr = recordValue(Record, 1, TT); 1970 if (std::error_code EC = ValOrErr.getError()) 1971 return EC; 1972 ValOrErr.get(); 1973 break; 1974 } 1975 case bitc::VST_CODE_FNENTRY: { 1976 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1977 ErrorOr<Value *> ValOrErr = recordValue(Record, 2, TT); 1978 if (std::error_code EC = ValOrErr.getError()) 1979 return EC; 1980 Value *V = ValOrErr.get(); 1981 1982 auto *GO = dyn_cast<GlobalObject>(V); 1983 if (!GO) { 1984 // If this is an alias, need to get the actual Function object 1985 // it aliases, in order to set up the DeferredFunctionInfo entry below. 1986 auto *GA = dyn_cast<GlobalAlias>(V); 1987 if (GA) 1988 GO = GA->getBaseObject(); 1989 assert(GO); 1990 } 1991 1992 uint64_t FuncWordOffset = Record[1]; 1993 Function *F = dyn_cast<Function>(GO); 1994 assert(F); 1995 uint64_t FuncBitOffset = FuncWordOffset * 32; 1996 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1997 // Set the LastFunctionBlockBit to point to the last function block. 1998 // Later when parsing is resumed after function materialization, 1999 // we can simply skip that last function block. 2000 if (FuncBitOffset > LastFunctionBlockBit) 2001 LastFunctionBlockBit = FuncBitOffset; 2002 break; 2003 } 2004 case bitc::VST_CODE_BBENTRY: { 2005 if (convertToString(Record, 1, ValueName)) 2006 return error("Invalid record"); 2007 BasicBlock *BB = getBasicBlock(Record[0]); 2008 if (!BB) 2009 return error("Invalid record"); 2010 2011 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2012 ValueName.clear(); 2013 break; 2014 } 2015 } 2016 } 2017 } 2018 2019 /// Parse a single METADATA_KIND record, inserting result in MDKindMap. 2020 std::error_code 2021 BitcodeReader::parseMetadataKindRecord(SmallVectorImpl<uint64_t> &Record) { 2022 if (Record.size() < 2) 2023 return error("Invalid record"); 2024 2025 unsigned Kind = Record[0]; 2026 SmallString<8> Name(Record.begin() + 1, Record.end()); 2027 2028 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2029 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2030 return error("Conflicting METADATA_KIND records"); 2031 return std::error_code(); 2032 } 2033 2034 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 2035 2036 std::error_code BitcodeReader::parseMetadataStrings(ArrayRef<uint64_t> Record, 2037 StringRef Blob, 2038 unsigned &NextMetadataNo) { 2039 // All the MDStrings in the block are emitted together in a single 2040 // record. The strings are concatenated and stored in a blob along with 2041 // their sizes. 2042 if (Record.size() != 2) 2043 return error("Invalid record: metadata strings layout"); 2044 2045 unsigned NumStrings = Record[0]; 2046 unsigned StringsOffset = Record[1]; 2047 if (!NumStrings) 2048 return error("Invalid record: metadata strings with no strings"); 2049 if (StringsOffset > Blob.size()) 2050 return error("Invalid record: metadata strings corrupt offset"); 2051 2052 StringRef Lengths = Blob.slice(0, StringsOffset); 2053 SimpleBitstreamCursor R(*StreamFile); 2054 R.jumpToPointer(Lengths.begin()); 2055 2056 // Ensure that Blob doesn't get invalidated, even if this is reading from 2057 // a StreamingMemoryObject with corrupt data. 2058 R.setArtificialByteLimit(R.getCurrentByteNo() + StringsOffset); 2059 2060 StringRef Strings = Blob.drop_front(StringsOffset); 2061 do { 2062 if (R.AtEndOfStream()) 2063 return error("Invalid record: metadata strings bad length"); 2064 2065 unsigned Size = R.ReadVBR(6); 2066 if (Strings.size() < Size) 2067 return error("Invalid record: metadata strings truncated chars"); 2068 2069 MetadataList.assignValue(MDString::get(Context, Strings.slice(0, Size)), 2070 NextMetadataNo++); 2071 Strings = Strings.drop_front(Size); 2072 } while (--NumStrings); 2073 2074 return std::error_code(); 2075 } 2076 2077 namespace { 2078 class PlaceholderQueue { 2079 // Placeholders would thrash around when moved, so store in a std::deque 2080 // instead of some sort of vector. 2081 std::deque<DistinctMDOperandPlaceholder> PHs; 2082 2083 public: 2084 DistinctMDOperandPlaceholder &getPlaceholderOp(unsigned ID); 2085 void flush(BitcodeReaderMetadataList &MetadataList); 2086 }; 2087 } // end namespace 2088 2089 DistinctMDOperandPlaceholder &PlaceholderQueue::getPlaceholderOp(unsigned ID) { 2090 PHs.emplace_back(ID); 2091 return PHs.back(); 2092 } 2093 2094 void PlaceholderQueue::flush(BitcodeReaderMetadataList &MetadataList) { 2095 while (!PHs.empty()) { 2096 PHs.front().replaceUseWith( 2097 MetadataList.getMetadataFwdRef(PHs.front().getID())); 2098 PHs.pop_front(); 2099 } 2100 } 2101 2102 /// Parse a METADATA_BLOCK. If ModuleLevel is true then we are parsing 2103 /// module level metadata. 2104 std::error_code BitcodeReader::parseMetadata(bool ModuleLevel) { 2105 assert((ModuleLevel || DeferredMetadataInfo.empty()) && 2106 "Must read all module-level metadata before function-level"); 2107 2108 IsMetadataMaterialized = true; 2109 unsigned NextMetadataNo = MetadataList.size(); 2110 2111 if (!ModuleLevel && MetadataList.hasFwdRefs()) 2112 return error("Invalid metadata: fwd refs into function blocks"); 2113 2114 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 2115 return error("Invalid record"); 2116 2117 std::vector<std::pair<DICompileUnit *, Metadata *>> CUSubprograms; 2118 SmallVector<uint64_t, 64> Record; 2119 2120 PlaceholderQueue Placeholders; 2121 bool IsDistinct; 2122 auto getMD = [&](unsigned ID) -> Metadata * { 2123 if (!IsDistinct) 2124 return MetadataList.getMetadataFwdRef(ID); 2125 if (auto *MD = MetadataList.getMetadataIfResolved(ID)) 2126 return MD; 2127 return &Placeholders.getPlaceholderOp(ID); 2128 }; 2129 auto getMDOrNull = [&](unsigned ID) -> Metadata * { 2130 if (ID) 2131 return getMD(ID - 1); 2132 return nullptr; 2133 }; 2134 auto getMDOrNullWithoutPlaceholders = [&](unsigned ID) -> Metadata * { 2135 if (ID) 2136 return MetadataList.getMetadataFwdRef(ID - 1); 2137 return nullptr; 2138 }; 2139 auto getMDString = [&](unsigned ID) -> MDString *{ 2140 // This requires that the ID is not really a forward reference. In 2141 // particular, the MDString must already have been resolved. 2142 return cast_or_null<MDString>(getMDOrNull(ID)); 2143 }; 2144 2145 // Support for old type refs. 2146 auto getDITypeRefOrNull = [&](unsigned ID) { 2147 return MetadataList.upgradeTypeRef(getMDOrNull(ID)); 2148 }; 2149 2150 #define GET_OR_DISTINCT(CLASS, ARGS) \ 2151 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 2152 2153 // Read all the records. 2154 while (1) { 2155 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2156 2157 switch (Entry.Kind) { 2158 case BitstreamEntry::SubBlock: // Handled for us already. 2159 case BitstreamEntry::Error: 2160 return error("Malformed block"); 2161 case BitstreamEntry::EndBlock: 2162 // Upgrade old-style CU <-> SP pointers to point from SP to CU. 2163 for (auto CU_SP : CUSubprograms) 2164 if (auto *SPs = dyn_cast_or_null<MDTuple>(CU_SP.second)) 2165 for (auto &Op : SPs->operands()) 2166 if (auto *SP = dyn_cast_or_null<MDNode>(Op)) 2167 SP->replaceOperandWith(7, CU_SP.first); 2168 2169 MetadataList.tryToResolveCycles(); 2170 Placeholders.flush(MetadataList); 2171 return std::error_code(); 2172 case BitstreamEntry::Record: 2173 // The interesting case. 2174 break; 2175 } 2176 2177 // Read a record. 2178 Record.clear(); 2179 StringRef Blob; 2180 unsigned Code = Stream.readRecord(Entry.ID, Record, &Blob); 2181 IsDistinct = false; 2182 switch (Code) { 2183 default: // Default behavior: ignore. 2184 break; 2185 case bitc::METADATA_NAME: { 2186 // Read name of the named metadata. 2187 SmallString<8> Name(Record.begin(), Record.end()); 2188 Record.clear(); 2189 Code = Stream.ReadCode(); 2190 2191 unsigned NextBitCode = Stream.readRecord(Code, Record); 2192 if (NextBitCode != bitc::METADATA_NAMED_NODE) 2193 return error("METADATA_NAME not followed by METADATA_NAMED_NODE"); 2194 2195 // Read named metadata elements. 2196 unsigned Size = Record.size(); 2197 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 2198 for (unsigned i = 0; i != Size; ++i) { 2199 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[i]); 2200 if (!MD) 2201 return error("Invalid record"); 2202 NMD->addOperand(MD); 2203 } 2204 break; 2205 } 2206 case bitc::METADATA_OLD_FN_NODE: { 2207 // FIXME: Remove in 4.0. 2208 // This is a LocalAsMetadata record, the only type of function-local 2209 // metadata. 2210 if (Record.size() % 2 == 1) 2211 return error("Invalid record"); 2212 2213 // If this isn't a LocalAsMetadata record, we're dropping it. This used 2214 // to be legal, but there's no upgrade path. 2215 auto dropRecord = [&] { 2216 MetadataList.assignValue(MDNode::get(Context, None), NextMetadataNo++); 2217 }; 2218 if (Record.size() != 2) { 2219 dropRecord(); 2220 break; 2221 } 2222 2223 Type *Ty = getTypeByID(Record[0]); 2224 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 2225 dropRecord(); 2226 break; 2227 } 2228 2229 MetadataList.assignValue( 2230 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2231 NextMetadataNo++); 2232 break; 2233 } 2234 case bitc::METADATA_OLD_NODE: { 2235 // FIXME: Remove in 4.0. 2236 if (Record.size() % 2 == 1) 2237 return error("Invalid record"); 2238 2239 unsigned Size = Record.size(); 2240 SmallVector<Metadata *, 8> Elts; 2241 for (unsigned i = 0; i != Size; i += 2) { 2242 Type *Ty = getTypeByID(Record[i]); 2243 if (!Ty) 2244 return error("Invalid record"); 2245 if (Ty->isMetadataTy()) 2246 Elts.push_back(getMD(Record[i + 1])); 2247 else if (!Ty->isVoidTy()) { 2248 auto *MD = 2249 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 2250 assert(isa<ConstantAsMetadata>(MD) && 2251 "Expected non-function-local metadata"); 2252 Elts.push_back(MD); 2253 } else 2254 Elts.push_back(nullptr); 2255 } 2256 MetadataList.assignValue(MDNode::get(Context, Elts), NextMetadataNo++); 2257 break; 2258 } 2259 case bitc::METADATA_VALUE: { 2260 if (Record.size() != 2) 2261 return error("Invalid record"); 2262 2263 Type *Ty = getTypeByID(Record[0]); 2264 if (Ty->isMetadataTy() || Ty->isVoidTy()) 2265 return error("Invalid record"); 2266 2267 MetadataList.assignValue( 2268 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 2269 NextMetadataNo++); 2270 break; 2271 } 2272 case bitc::METADATA_DISTINCT_NODE: 2273 IsDistinct = true; 2274 // fallthrough... 2275 case bitc::METADATA_NODE: { 2276 SmallVector<Metadata *, 8> Elts; 2277 Elts.reserve(Record.size()); 2278 for (unsigned ID : Record) 2279 Elts.push_back(getMDOrNull(ID)); 2280 MetadataList.assignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 2281 : MDNode::get(Context, Elts), 2282 NextMetadataNo++); 2283 break; 2284 } 2285 case bitc::METADATA_LOCATION: { 2286 if (Record.size() != 5) 2287 return error("Invalid record"); 2288 2289 IsDistinct = Record[0]; 2290 unsigned Line = Record[1]; 2291 unsigned Column = Record[2]; 2292 Metadata *Scope = getMD(Record[3]); 2293 Metadata *InlinedAt = getMDOrNull(Record[4]); 2294 MetadataList.assignValue( 2295 GET_OR_DISTINCT(DILocation, 2296 (Context, Line, Column, Scope, InlinedAt)), 2297 NextMetadataNo++); 2298 break; 2299 } 2300 case bitc::METADATA_GENERIC_DEBUG: { 2301 if (Record.size() < 4) 2302 return error("Invalid record"); 2303 2304 IsDistinct = Record[0]; 2305 unsigned Tag = Record[1]; 2306 unsigned Version = Record[2]; 2307 2308 if (Tag >= 1u << 16 || Version != 0) 2309 return error("Invalid record"); 2310 2311 auto *Header = getMDString(Record[3]); 2312 SmallVector<Metadata *, 8> DwarfOps; 2313 for (unsigned I = 4, E = Record.size(); I != E; ++I) 2314 DwarfOps.push_back(getMDOrNull(Record[I])); 2315 MetadataList.assignValue( 2316 GET_OR_DISTINCT(GenericDINode, (Context, Tag, Header, DwarfOps)), 2317 NextMetadataNo++); 2318 break; 2319 } 2320 case bitc::METADATA_SUBRANGE: { 2321 if (Record.size() != 3) 2322 return error("Invalid record"); 2323 2324 IsDistinct = Record[0]; 2325 MetadataList.assignValue( 2326 GET_OR_DISTINCT(DISubrange, 2327 (Context, Record[1], unrotateSign(Record[2]))), 2328 NextMetadataNo++); 2329 break; 2330 } 2331 case bitc::METADATA_ENUMERATOR: { 2332 if (Record.size() != 3) 2333 return error("Invalid record"); 2334 2335 IsDistinct = Record[0]; 2336 MetadataList.assignValue( 2337 GET_OR_DISTINCT(DIEnumerator, (Context, unrotateSign(Record[1]), 2338 getMDString(Record[2]))), 2339 NextMetadataNo++); 2340 break; 2341 } 2342 case bitc::METADATA_BASIC_TYPE: { 2343 if (Record.size() != 6) 2344 return error("Invalid record"); 2345 2346 IsDistinct = Record[0]; 2347 MetadataList.assignValue( 2348 GET_OR_DISTINCT(DIBasicType, 2349 (Context, Record[1], getMDString(Record[2]), 2350 Record[3], Record[4], Record[5])), 2351 NextMetadataNo++); 2352 break; 2353 } 2354 case bitc::METADATA_DERIVED_TYPE: { 2355 if (Record.size() != 12) 2356 return error("Invalid record"); 2357 2358 IsDistinct = Record[0]; 2359 MetadataList.assignValue( 2360 GET_OR_DISTINCT( 2361 DIDerivedType, 2362 (Context, Record[1], getMDString(Record[2]), 2363 getMDOrNull(Record[3]), Record[4], getDITypeRefOrNull(Record[5]), 2364 getDITypeRefOrNull(Record[6]), Record[7], Record[8], Record[9], 2365 Record[10], getDITypeRefOrNull(Record[11]))), 2366 NextMetadataNo++); 2367 break; 2368 } 2369 case bitc::METADATA_COMPOSITE_TYPE: { 2370 if (Record.size() != 16) 2371 return error("Invalid record"); 2372 2373 // If we have a UUID and this is not a forward declaration, lookup the 2374 // mapping. 2375 IsDistinct = Record[0] & 0x1; 2376 bool IsNotUsedInTypeRef = Record[0] >= 2; 2377 unsigned Tag = Record[1]; 2378 MDString *Name = getMDString(Record[2]); 2379 Metadata *File = getMDOrNull(Record[3]); 2380 unsigned Line = Record[4]; 2381 Metadata *Scope = getDITypeRefOrNull(Record[5]); 2382 Metadata *BaseType = getDITypeRefOrNull(Record[6]); 2383 uint64_t SizeInBits = Record[7]; 2384 uint64_t AlignInBits = Record[8]; 2385 uint64_t OffsetInBits = Record[9]; 2386 unsigned Flags = Record[10]; 2387 Metadata *Elements = getMDOrNull(Record[11]); 2388 unsigned RuntimeLang = Record[12]; 2389 Metadata *VTableHolder = getDITypeRefOrNull(Record[13]); 2390 Metadata *TemplateParams = getMDOrNull(Record[14]); 2391 auto *Identifier = getMDString(Record[15]); 2392 DICompositeType *CT = nullptr; 2393 if (Identifier) 2394 CT = DICompositeType::buildODRType( 2395 Context, *Identifier, Tag, Name, File, Line, Scope, BaseType, 2396 SizeInBits, AlignInBits, OffsetInBits, Flags, Elements, RuntimeLang, 2397 VTableHolder, TemplateParams); 2398 2399 // Create a node if we didn't get a lazy ODR type. 2400 if (!CT) 2401 CT = GET_OR_DISTINCT(DICompositeType, 2402 (Context, Tag, Name, File, Line, Scope, BaseType, 2403 SizeInBits, AlignInBits, OffsetInBits, Flags, 2404 Elements, RuntimeLang, VTableHolder, 2405 TemplateParams, Identifier)); 2406 if (!IsNotUsedInTypeRef && Identifier) 2407 MetadataList.addTypeRef(*Identifier, *cast<DICompositeType>(CT)); 2408 2409 MetadataList.assignValue(CT, NextMetadataNo++); 2410 break; 2411 } 2412 case bitc::METADATA_SUBROUTINE_TYPE: { 2413 if (Record.size() != 3) 2414 return error("Invalid record"); 2415 2416 IsDistinct = Record[0] & 0x1; 2417 bool IsOldTypeRefArray = Record[0] < 2; 2418 Metadata *Types = getMDOrNull(Record[2]); 2419 if (LLVM_UNLIKELY(IsOldTypeRefArray)) 2420 Types = MetadataList.upgradeTypeRefArray(Types); 2421 2422 MetadataList.assignValue( 2423 GET_OR_DISTINCT(DISubroutineType, (Context, Record[1], Types)), 2424 NextMetadataNo++); 2425 break; 2426 } 2427 2428 case bitc::METADATA_MODULE: { 2429 if (Record.size() != 6) 2430 return error("Invalid record"); 2431 2432 IsDistinct = Record[0]; 2433 MetadataList.assignValue( 2434 GET_OR_DISTINCT(DIModule, 2435 (Context, getMDOrNull(Record[1]), 2436 getMDString(Record[2]), getMDString(Record[3]), 2437 getMDString(Record[4]), getMDString(Record[5]))), 2438 NextMetadataNo++); 2439 break; 2440 } 2441 2442 case bitc::METADATA_FILE: { 2443 if (Record.size() != 3) 2444 return error("Invalid record"); 2445 2446 IsDistinct = Record[0]; 2447 MetadataList.assignValue( 2448 GET_OR_DISTINCT(DIFile, (Context, getMDString(Record[1]), 2449 getMDString(Record[2]))), 2450 NextMetadataNo++); 2451 break; 2452 } 2453 case bitc::METADATA_COMPILE_UNIT: { 2454 if (Record.size() < 14 || Record.size() > 16) 2455 return error("Invalid record"); 2456 2457 // Ignore Record[0], which indicates whether this compile unit is 2458 // distinct. It's always distinct. 2459 IsDistinct = true; 2460 auto *CU = DICompileUnit::getDistinct( 2461 Context, Record[1], getMDOrNull(Record[2]), getMDString(Record[3]), 2462 Record[4], getMDString(Record[5]), Record[6], getMDString(Record[7]), 2463 Record[8], getMDOrNull(Record[9]), getMDOrNull(Record[10]), 2464 getMDOrNull(Record[12]), getMDOrNull(Record[13]), 2465 Record.size() <= 15 ? nullptr : getMDOrNull(Record[15]), 2466 Record.size() <= 14 ? 0 : Record[14]); 2467 2468 MetadataList.assignValue(CU, NextMetadataNo++); 2469 2470 // Move the Upgrade the list of subprograms. 2471 if (Metadata *SPs = getMDOrNullWithoutPlaceholders(Record[11])) 2472 CUSubprograms.push_back({CU, SPs}); 2473 break; 2474 } 2475 case bitc::METADATA_SUBPROGRAM: { 2476 if (Record.size() != 18 && Record.size() != 19) 2477 return error("Invalid record"); 2478 2479 IsDistinct = 2480 Record[0] || Record[8]; // All definitions should be distinct. 2481 // Version 1 has a Function as Record[15]. 2482 // Version 2 has removed Record[15]. 2483 // Version 3 has the Unit as Record[15]. 2484 Metadata *CUorFn = getMDOrNull(Record[15]); 2485 unsigned Offset = Record.size() == 19 ? 1 : 0; 2486 bool HasFn = Offset && dyn_cast_or_null<ConstantAsMetadata>(CUorFn); 2487 bool HasCU = Offset && !HasFn; 2488 DISubprogram *SP = GET_OR_DISTINCT( 2489 DISubprogram, 2490 (Context, getDITypeRefOrNull(Record[1]), getMDString(Record[2]), 2491 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 2492 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 2493 getDITypeRefOrNull(Record[10]), Record[11], Record[12], Record[13], 2494 Record[14], HasCU ? CUorFn : nullptr, 2495 getMDOrNull(Record[15 + Offset]), getMDOrNull(Record[16 + Offset]), 2496 getMDOrNull(Record[17 + Offset]))); 2497 MetadataList.assignValue(SP, NextMetadataNo++); 2498 2499 // Upgrade sp->function mapping to function->sp mapping. 2500 if (HasFn) { 2501 if (auto *CMD = dyn_cast<ConstantAsMetadata>(CUorFn)) 2502 if (auto *F = dyn_cast<Function>(CMD->getValue())) { 2503 if (F->isMaterializable()) 2504 // Defer until materialized; unmaterialized functions may not have 2505 // metadata. 2506 FunctionsWithSPs[F] = SP; 2507 else if (!F->empty()) 2508 F->setSubprogram(SP); 2509 } 2510 } 2511 break; 2512 } 2513 case bitc::METADATA_LEXICAL_BLOCK: { 2514 if (Record.size() != 5) 2515 return error("Invalid record"); 2516 2517 IsDistinct = Record[0]; 2518 MetadataList.assignValue( 2519 GET_OR_DISTINCT(DILexicalBlock, 2520 (Context, getMDOrNull(Record[1]), 2521 getMDOrNull(Record[2]), Record[3], Record[4])), 2522 NextMetadataNo++); 2523 break; 2524 } 2525 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 2526 if (Record.size() != 4) 2527 return error("Invalid record"); 2528 2529 IsDistinct = Record[0]; 2530 MetadataList.assignValue( 2531 GET_OR_DISTINCT(DILexicalBlockFile, 2532 (Context, getMDOrNull(Record[1]), 2533 getMDOrNull(Record[2]), Record[3])), 2534 NextMetadataNo++); 2535 break; 2536 } 2537 case bitc::METADATA_NAMESPACE: { 2538 if (Record.size() != 5) 2539 return error("Invalid record"); 2540 2541 IsDistinct = Record[0]; 2542 MetadataList.assignValue( 2543 GET_OR_DISTINCT(DINamespace, (Context, getMDOrNull(Record[1]), 2544 getMDOrNull(Record[2]), 2545 getMDString(Record[3]), Record[4])), 2546 NextMetadataNo++); 2547 break; 2548 } 2549 case bitc::METADATA_MACRO: { 2550 if (Record.size() != 5) 2551 return error("Invalid record"); 2552 2553 IsDistinct = Record[0]; 2554 MetadataList.assignValue( 2555 GET_OR_DISTINCT(DIMacro, 2556 (Context, Record[1], Record[2], 2557 getMDString(Record[3]), getMDString(Record[4]))), 2558 NextMetadataNo++); 2559 break; 2560 } 2561 case bitc::METADATA_MACRO_FILE: { 2562 if (Record.size() != 5) 2563 return error("Invalid record"); 2564 2565 IsDistinct = Record[0]; 2566 MetadataList.assignValue( 2567 GET_OR_DISTINCT(DIMacroFile, 2568 (Context, Record[1], Record[2], 2569 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 2570 NextMetadataNo++); 2571 break; 2572 } 2573 case bitc::METADATA_TEMPLATE_TYPE: { 2574 if (Record.size() != 3) 2575 return error("Invalid record"); 2576 2577 IsDistinct = Record[0]; 2578 MetadataList.assignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 2579 (Context, getMDString(Record[1]), 2580 getDITypeRefOrNull(Record[2]))), 2581 NextMetadataNo++); 2582 break; 2583 } 2584 case bitc::METADATA_TEMPLATE_VALUE: { 2585 if (Record.size() != 5) 2586 return error("Invalid record"); 2587 2588 IsDistinct = Record[0]; 2589 MetadataList.assignValue( 2590 GET_OR_DISTINCT(DITemplateValueParameter, 2591 (Context, Record[1], getMDString(Record[2]), 2592 getDITypeRefOrNull(Record[3]), 2593 getMDOrNull(Record[4]))), 2594 NextMetadataNo++); 2595 break; 2596 } 2597 case bitc::METADATA_GLOBAL_VAR: { 2598 if (Record.size() != 11) 2599 return error("Invalid record"); 2600 2601 IsDistinct = Record[0]; 2602 MetadataList.assignValue( 2603 GET_OR_DISTINCT(DIGlobalVariable, 2604 (Context, getMDOrNull(Record[1]), 2605 getMDString(Record[2]), getMDString(Record[3]), 2606 getMDOrNull(Record[4]), Record[5], 2607 getDITypeRefOrNull(Record[6]), Record[7], Record[8], 2608 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 2609 NextMetadataNo++); 2610 break; 2611 } 2612 case bitc::METADATA_LOCAL_VAR: { 2613 // 10th field is for the obseleted 'inlinedAt:' field. 2614 if (Record.size() < 8 || Record.size() > 10) 2615 return error("Invalid record"); 2616 2617 // 2nd field used to be an artificial tag, either DW_TAG_auto_variable or 2618 // DW_TAG_arg_variable. 2619 IsDistinct = Record[0]; 2620 bool HasTag = Record.size() > 8; 2621 MetadataList.assignValue( 2622 GET_OR_DISTINCT(DILocalVariable, 2623 (Context, getMDOrNull(Record[1 + HasTag]), 2624 getMDString(Record[2 + HasTag]), 2625 getMDOrNull(Record[3 + HasTag]), Record[4 + HasTag], 2626 getDITypeRefOrNull(Record[5 + HasTag]), 2627 Record[6 + HasTag], Record[7 + HasTag])), 2628 NextMetadataNo++); 2629 break; 2630 } 2631 case bitc::METADATA_EXPRESSION: { 2632 if (Record.size() < 1) 2633 return error("Invalid record"); 2634 2635 IsDistinct = Record[0]; 2636 MetadataList.assignValue( 2637 GET_OR_DISTINCT(DIExpression, 2638 (Context, makeArrayRef(Record).slice(1))), 2639 NextMetadataNo++); 2640 break; 2641 } 2642 case bitc::METADATA_OBJC_PROPERTY: { 2643 if (Record.size() != 8) 2644 return error("Invalid record"); 2645 2646 IsDistinct = Record[0]; 2647 MetadataList.assignValue( 2648 GET_OR_DISTINCT(DIObjCProperty, 2649 (Context, getMDString(Record[1]), 2650 getMDOrNull(Record[2]), Record[3], 2651 getMDString(Record[4]), getMDString(Record[5]), 2652 Record[6], getDITypeRefOrNull(Record[7]))), 2653 NextMetadataNo++); 2654 break; 2655 } 2656 case bitc::METADATA_IMPORTED_ENTITY: { 2657 if (Record.size() != 6) 2658 return error("Invalid record"); 2659 2660 IsDistinct = Record[0]; 2661 MetadataList.assignValue( 2662 GET_OR_DISTINCT(DIImportedEntity, 2663 (Context, Record[1], getMDOrNull(Record[2]), 2664 getDITypeRefOrNull(Record[3]), Record[4], 2665 getMDString(Record[5]))), 2666 NextMetadataNo++); 2667 break; 2668 } 2669 case bitc::METADATA_STRING_OLD: { 2670 std::string String(Record.begin(), Record.end()); 2671 2672 // Test for upgrading !llvm.loop. 2673 HasSeenOldLoopTags |= mayBeOldLoopAttachmentTag(String); 2674 2675 Metadata *MD = MDString::get(Context, String); 2676 MetadataList.assignValue(MD, NextMetadataNo++); 2677 break; 2678 } 2679 case bitc::METADATA_STRINGS: 2680 if (std::error_code EC = 2681 parseMetadataStrings(Record, Blob, NextMetadataNo)) 2682 return EC; 2683 break; 2684 case bitc::METADATA_KIND: { 2685 // Support older bitcode files that had METADATA_KIND records in a 2686 // block with METADATA_BLOCK_ID. 2687 if (std::error_code EC = parseMetadataKindRecord(Record)) 2688 return EC; 2689 break; 2690 } 2691 } 2692 } 2693 #undef GET_OR_DISTINCT 2694 } 2695 2696 /// Parse the metadata kinds out of the METADATA_KIND_BLOCK. 2697 std::error_code BitcodeReader::parseMetadataKinds() { 2698 if (Stream.EnterSubBlock(bitc::METADATA_KIND_BLOCK_ID)) 2699 return error("Invalid record"); 2700 2701 SmallVector<uint64_t, 64> Record; 2702 2703 // Read all the records. 2704 while (1) { 2705 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2706 2707 switch (Entry.Kind) { 2708 case BitstreamEntry::SubBlock: // Handled for us already. 2709 case BitstreamEntry::Error: 2710 return error("Malformed block"); 2711 case BitstreamEntry::EndBlock: 2712 return std::error_code(); 2713 case BitstreamEntry::Record: 2714 // The interesting case. 2715 break; 2716 } 2717 2718 // Read a record. 2719 Record.clear(); 2720 unsigned Code = Stream.readRecord(Entry.ID, Record); 2721 switch (Code) { 2722 default: // Default behavior: ignore. 2723 break; 2724 case bitc::METADATA_KIND: { 2725 if (std::error_code EC = parseMetadataKindRecord(Record)) 2726 return EC; 2727 break; 2728 } 2729 } 2730 } 2731 } 2732 2733 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2734 /// encoding. 2735 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2736 if ((V & 1) == 0) 2737 return V >> 1; 2738 if (V != 1) 2739 return -(V >> 1); 2740 // There is no such thing as -0 with integers. "-0" really means MININT. 2741 return 1ULL << 63; 2742 } 2743 2744 /// Resolve all of the initializers for global values and aliases that we can. 2745 std::error_code BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2746 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2747 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> > 2748 IndirectSymbolInitWorklist; 2749 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2750 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2751 std::vector<std::pair<Function*, unsigned> > FunctionPersonalityFnWorklist; 2752 2753 GlobalInitWorklist.swap(GlobalInits); 2754 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2755 FunctionPrefixWorklist.swap(FunctionPrefixes); 2756 FunctionPrologueWorklist.swap(FunctionPrologues); 2757 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2758 2759 while (!GlobalInitWorklist.empty()) { 2760 unsigned ValID = GlobalInitWorklist.back().second; 2761 if (ValID >= ValueList.size()) { 2762 // Not ready to resolve this yet, it requires something later in the file. 2763 GlobalInits.push_back(GlobalInitWorklist.back()); 2764 } else { 2765 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2766 GlobalInitWorklist.back().first->setInitializer(C); 2767 else 2768 return error("Expected a constant"); 2769 } 2770 GlobalInitWorklist.pop_back(); 2771 } 2772 2773 while (!IndirectSymbolInitWorklist.empty()) { 2774 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2775 if (ValID >= ValueList.size()) { 2776 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2777 } else { 2778 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2779 if (!C) 2780 return error("Expected a constant"); 2781 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2782 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2783 return error("Alias and aliasee types don't match"); 2784 GIS->setIndirectSymbol(C); 2785 } 2786 IndirectSymbolInitWorklist.pop_back(); 2787 } 2788 2789 while (!FunctionPrefixWorklist.empty()) { 2790 unsigned ValID = FunctionPrefixWorklist.back().second; 2791 if (ValID >= ValueList.size()) { 2792 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2793 } else { 2794 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2795 FunctionPrefixWorklist.back().first->setPrefixData(C); 2796 else 2797 return error("Expected a constant"); 2798 } 2799 FunctionPrefixWorklist.pop_back(); 2800 } 2801 2802 while (!FunctionPrologueWorklist.empty()) { 2803 unsigned ValID = FunctionPrologueWorklist.back().second; 2804 if (ValID >= ValueList.size()) { 2805 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2806 } else { 2807 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2808 FunctionPrologueWorklist.back().first->setPrologueData(C); 2809 else 2810 return error("Expected a constant"); 2811 } 2812 FunctionPrologueWorklist.pop_back(); 2813 } 2814 2815 while (!FunctionPersonalityFnWorklist.empty()) { 2816 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2817 if (ValID >= ValueList.size()) { 2818 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2819 } else { 2820 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2821 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2822 else 2823 return error("Expected a constant"); 2824 } 2825 FunctionPersonalityFnWorklist.pop_back(); 2826 } 2827 2828 return std::error_code(); 2829 } 2830 2831 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2832 SmallVector<uint64_t, 8> Words(Vals.size()); 2833 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2834 BitcodeReader::decodeSignRotatedValue); 2835 2836 return APInt(TypeBits, Words); 2837 } 2838 2839 std::error_code BitcodeReader::parseConstants() { 2840 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2841 return error("Invalid record"); 2842 2843 SmallVector<uint64_t, 64> Record; 2844 2845 // Read all the records for this value table. 2846 Type *CurTy = Type::getInt32Ty(Context); 2847 unsigned NextCstNo = ValueList.size(); 2848 while (1) { 2849 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2850 2851 switch (Entry.Kind) { 2852 case BitstreamEntry::SubBlock: // Handled for us already. 2853 case BitstreamEntry::Error: 2854 return error("Malformed block"); 2855 case BitstreamEntry::EndBlock: 2856 if (NextCstNo != ValueList.size()) 2857 return error("Invalid constant reference"); 2858 2859 // Once all the constants have been read, go through and resolve forward 2860 // references. 2861 ValueList.resolveConstantForwardRefs(); 2862 return std::error_code(); 2863 case BitstreamEntry::Record: 2864 // The interesting case. 2865 break; 2866 } 2867 2868 // Read a record. 2869 Record.clear(); 2870 Value *V = nullptr; 2871 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2872 switch (BitCode) { 2873 default: // Default behavior: unknown constant 2874 case bitc::CST_CODE_UNDEF: // UNDEF 2875 V = UndefValue::get(CurTy); 2876 break; 2877 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2878 if (Record.empty()) 2879 return error("Invalid record"); 2880 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2881 return error("Invalid record"); 2882 CurTy = TypeList[Record[0]]; 2883 continue; // Skip the ValueList manipulation. 2884 case bitc::CST_CODE_NULL: // NULL 2885 V = Constant::getNullValue(CurTy); 2886 break; 2887 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2888 if (!CurTy->isIntegerTy() || Record.empty()) 2889 return error("Invalid record"); 2890 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2891 break; 2892 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2893 if (!CurTy->isIntegerTy() || Record.empty()) 2894 return error("Invalid record"); 2895 2896 APInt VInt = 2897 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2898 V = ConstantInt::get(Context, VInt); 2899 2900 break; 2901 } 2902 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2903 if (Record.empty()) 2904 return error("Invalid record"); 2905 if (CurTy->isHalfTy()) 2906 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2907 APInt(16, (uint16_t)Record[0]))); 2908 else if (CurTy->isFloatTy()) 2909 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2910 APInt(32, (uint32_t)Record[0]))); 2911 else if (CurTy->isDoubleTy()) 2912 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2913 APInt(64, Record[0]))); 2914 else if (CurTy->isX86_FP80Ty()) { 2915 // Bits are not stored the same way as a normal i80 APInt, compensate. 2916 uint64_t Rearrange[2]; 2917 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2918 Rearrange[1] = Record[0] >> 48; 2919 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2920 APInt(80, Rearrange))); 2921 } else if (CurTy->isFP128Ty()) 2922 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2923 APInt(128, Record))); 2924 else if (CurTy->isPPC_FP128Ty()) 2925 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2926 APInt(128, Record))); 2927 else 2928 V = UndefValue::get(CurTy); 2929 break; 2930 } 2931 2932 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2933 if (Record.empty()) 2934 return error("Invalid record"); 2935 2936 unsigned Size = Record.size(); 2937 SmallVector<Constant*, 16> Elts; 2938 2939 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2940 for (unsigned i = 0; i != Size; ++i) 2941 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2942 STy->getElementType(i))); 2943 V = ConstantStruct::get(STy, Elts); 2944 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2945 Type *EltTy = ATy->getElementType(); 2946 for (unsigned i = 0; i != Size; ++i) 2947 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2948 V = ConstantArray::get(ATy, Elts); 2949 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2950 Type *EltTy = VTy->getElementType(); 2951 for (unsigned i = 0; i != Size; ++i) 2952 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2953 V = ConstantVector::get(Elts); 2954 } else { 2955 V = UndefValue::get(CurTy); 2956 } 2957 break; 2958 } 2959 case bitc::CST_CODE_STRING: // STRING: [values] 2960 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2961 if (Record.empty()) 2962 return error("Invalid record"); 2963 2964 SmallString<16> Elts(Record.begin(), Record.end()); 2965 V = ConstantDataArray::getString(Context, Elts, 2966 BitCode == bitc::CST_CODE_CSTRING); 2967 break; 2968 } 2969 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2970 if (Record.empty()) 2971 return error("Invalid record"); 2972 2973 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2974 if (EltTy->isIntegerTy(8)) { 2975 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2976 if (isa<VectorType>(CurTy)) 2977 V = ConstantDataVector::get(Context, Elts); 2978 else 2979 V = ConstantDataArray::get(Context, Elts); 2980 } else if (EltTy->isIntegerTy(16)) { 2981 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2982 if (isa<VectorType>(CurTy)) 2983 V = ConstantDataVector::get(Context, Elts); 2984 else 2985 V = ConstantDataArray::get(Context, Elts); 2986 } else if (EltTy->isIntegerTy(32)) { 2987 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2988 if (isa<VectorType>(CurTy)) 2989 V = ConstantDataVector::get(Context, Elts); 2990 else 2991 V = ConstantDataArray::get(Context, Elts); 2992 } else if (EltTy->isIntegerTy(64)) { 2993 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2994 if (isa<VectorType>(CurTy)) 2995 V = ConstantDataVector::get(Context, Elts); 2996 else 2997 V = ConstantDataArray::get(Context, Elts); 2998 } else if (EltTy->isHalfTy()) { 2999 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 3000 if (isa<VectorType>(CurTy)) 3001 V = ConstantDataVector::getFP(Context, Elts); 3002 else 3003 V = ConstantDataArray::getFP(Context, Elts); 3004 } else if (EltTy->isFloatTy()) { 3005 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 3006 if (isa<VectorType>(CurTy)) 3007 V = ConstantDataVector::getFP(Context, Elts); 3008 else 3009 V = ConstantDataArray::getFP(Context, Elts); 3010 } else if (EltTy->isDoubleTy()) { 3011 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 3012 if (isa<VectorType>(CurTy)) 3013 V = ConstantDataVector::getFP(Context, Elts); 3014 else 3015 V = ConstantDataArray::getFP(Context, Elts); 3016 } else { 3017 return error("Invalid type for value"); 3018 } 3019 break; 3020 } 3021 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 3022 if (Record.size() < 3) 3023 return error("Invalid record"); 3024 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 3025 if (Opc < 0) { 3026 V = UndefValue::get(CurTy); // Unknown binop. 3027 } else { 3028 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 3029 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 3030 unsigned Flags = 0; 3031 if (Record.size() >= 4) { 3032 if (Opc == Instruction::Add || 3033 Opc == Instruction::Sub || 3034 Opc == Instruction::Mul || 3035 Opc == Instruction::Shl) { 3036 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3037 Flags |= OverflowingBinaryOperator::NoSignedWrap; 3038 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3039 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3040 } else if (Opc == Instruction::SDiv || 3041 Opc == Instruction::UDiv || 3042 Opc == Instruction::LShr || 3043 Opc == Instruction::AShr) { 3044 if (Record[3] & (1 << bitc::PEO_EXACT)) 3045 Flags |= SDivOperator::IsExact; 3046 } 3047 } 3048 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 3049 } 3050 break; 3051 } 3052 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 3053 if (Record.size() < 3) 3054 return error("Invalid record"); 3055 int Opc = getDecodedCastOpcode(Record[0]); 3056 if (Opc < 0) { 3057 V = UndefValue::get(CurTy); // Unknown cast. 3058 } else { 3059 Type *OpTy = getTypeByID(Record[1]); 3060 if (!OpTy) 3061 return error("Invalid record"); 3062 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 3063 V = UpgradeBitCastExpr(Opc, Op, CurTy); 3064 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 3065 } 3066 break; 3067 } 3068 case bitc::CST_CODE_CE_INBOUNDS_GEP: 3069 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 3070 unsigned OpNum = 0; 3071 Type *PointeeType = nullptr; 3072 if (Record.size() % 2) 3073 PointeeType = getTypeByID(Record[OpNum++]); 3074 SmallVector<Constant*, 16> Elts; 3075 while (OpNum != Record.size()) { 3076 Type *ElTy = getTypeByID(Record[OpNum++]); 3077 if (!ElTy) 3078 return error("Invalid record"); 3079 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 3080 } 3081 3082 if (PointeeType && 3083 PointeeType != 3084 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 3085 ->getElementType()) 3086 return error("Explicit gep operator type does not match pointee type " 3087 "of pointer operand"); 3088 3089 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3090 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 3091 BitCode == 3092 bitc::CST_CODE_CE_INBOUNDS_GEP); 3093 break; 3094 } 3095 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 3096 if (Record.size() < 3) 3097 return error("Invalid record"); 3098 3099 Type *SelectorTy = Type::getInt1Ty(Context); 3100 3101 // The selector might be an i1 or an <n x i1> 3102 // Get the type from the ValueList before getting a forward ref. 3103 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 3104 if (Value *V = ValueList[Record[0]]) 3105 if (SelectorTy != V->getType()) 3106 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 3107 3108 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 3109 SelectorTy), 3110 ValueList.getConstantFwdRef(Record[1],CurTy), 3111 ValueList.getConstantFwdRef(Record[2],CurTy)); 3112 break; 3113 } 3114 case bitc::CST_CODE_CE_EXTRACTELT 3115 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 3116 if (Record.size() < 3) 3117 return error("Invalid record"); 3118 VectorType *OpTy = 3119 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3120 if (!OpTy) 3121 return error("Invalid record"); 3122 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3123 Constant *Op1 = nullptr; 3124 if (Record.size() == 4) { 3125 Type *IdxTy = getTypeByID(Record[2]); 3126 if (!IdxTy) 3127 return error("Invalid record"); 3128 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3129 } else // TODO: Remove with llvm 4.0 3130 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3131 if (!Op1) 3132 return error("Invalid record"); 3133 V = ConstantExpr::getExtractElement(Op0, Op1); 3134 break; 3135 } 3136 case bitc::CST_CODE_CE_INSERTELT 3137 : { // CE_INSERTELT: [opval, opval, opty, opval] 3138 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3139 if (Record.size() < 3 || !OpTy) 3140 return error("Invalid record"); 3141 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3142 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 3143 OpTy->getElementType()); 3144 Constant *Op2 = nullptr; 3145 if (Record.size() == 4) { 3146 Type *IdxTy = getTypeByID(Record[2]); 3147 if (!IdxTy) 3148 return error("Invalid record"); 3149 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 3150 } else // TODO: Remove with llvm 4.0 3151 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 3152 if (!Op2) 3153 return error("Invalid record"); 3154 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 3155 break; 3156 } 3157 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 3158 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 3159 if (Record.size() < 3 || !OpTy) 3160 return error("Invalid record"); 3161 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 3162 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 3163 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3164 OpTy->getNumElements()); 3165 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 3166 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3167 break; 3168 } 3169 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 3170 VectorType *RTy = dyn_cast<VectorType>(CurTy); 3171 VectorType *OpTy = 3172 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 3173 if (Record.size() < 4 || !RTy || !OpTy) 3174 return error("Invalid record"); 3175 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3176 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3177 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 3178 RTy->getNumElements()); 3179 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 3180 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 3181 break; 3182 } 3183 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 3184 if (Record.size() < 4) 3185 return error("Invalid record"); 3186 Type *OpTy = getTypeByID(Record[0]); 3187 if (!OpTy) 3188 return error("Invalid record"); 3189 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 3190 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 3191 3192 if (OpTy->isFPOrFPVectorTy()) 3193 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 3194 else 3195 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 3196 break; 3197 } 3198 // This maintains backward compatibility, pre-asm dialect keywords. 3199 // FIXME: Remove with the 4.0 release. 3200 case bitc::CST_CODE_INLINEASM_OLD: { 3201 if (Record.size() < 2) 3202 return error("Invalid record"); 3203 std::string AsmStr, ConstrStr; 3204 bool HasSideEffects = Record[0] & 1; 3205 bool IsAlignStack = Record[0] >> 1; 3206 unsigned AsmStrSize = Record[1]; 3207 if (2+AsmStrSize >= Record.size()) 3208 return error("Invalid record"); 3209 unsigned ConstStrSize = Record[2+AsmStrSize]; 3210 if (3+AsmStrSize+ConstStrSize > Record.size()) 3211 return error("Invalid record"); 3212 3213 for (unsigned i = 0; i != AsmStrSize; ++i) 3214 AsmStr += (char)Record[2+i]; 3215 for (unsigned i = 0; i != ConstStrSize; ++i) 3216 ConstrStr += (char)Record[3+AsmStrSize+i]; 3217 PointerType *PTy = cast<PointerType>(CurTy); 3218 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3219 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 3220 break; 3221 } 3222 // This version adds support for the asm dialect keywords (e.g., 3223 // inteldialect). 3224 case bitc::CST_CODE_INLINEASM: { 3225 if (Record.size() < 2) 3226 return error("Invalid record"); 3227 std::string AsmStr, ConstrStr; 3228 bool HasSideEffects = Record[0] & 1; 3229 bool IsAlignStack = (Record[0] >> 1) & 1; 3230 unsigned AsmDialect = Record[0] >> 2; 3231 unsigned AsmStrSize = Record[1]; 3232 if (2+AsmStrSize >= Record.size()) 3233 return error("Invalid record"); 3234 unsigned ConstStrSize = Record[2+AsmStrSize]; 3235 if (3+AsmStrSize+ConstStrSize > Record.size()) 3236 return error("Invalid record"); 3237 3238 for (unsigned i = 0; i != AsmStrSize; ++i) 3239 AsmStr += (char)Record[2+i]; 3240 for (unsigned i = 0; i != ConstStrSize; ++i) 3241 ConstrStr += (char)Record[3+AsmStrSize+i]; 3242 PointerType *PTy = cast<PointerType>(CurTy); 3243 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 3244 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 3245 InlineAsm::AsmDialect(AsmDialect)); 3246 break; 3247 } 3248 case bitc::CST_CODE_BLOCKADDRESS:{ 3249 if (Record.size() < 3) 3250 return error("Invalid record"); 3251 Type *FnTy = getTypeByID(Record[0]); 3252 if (!FnTy) 3253 return error("Invalid record"); 3254 Function *Fn = 3255 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 3256 if (!Fn) 3257 return error("Invalid record"); 3258 3259 // If the function is already parsed we can insert the block address right 3260 // away. 3261 BasicBlock *BB; 3262 unsigned BBID = Record[2]; 3263 if (!BBID) 3264 // Invalid reference to entry block. 3265 return error("Invalid ID"); 3266 if (!Fn->empty()) { 3267 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 3268 for (size_t I = 0, E = BBID; I != E; ++I) { 3269 if (BBI == BBE) 3270 return error("Invalid ID"); 3271 ++BBI; 3272 } 3273 BB = &*BBI; 3274 } else { 3275 // Otherwise insert a placeholder and remember it so it can be inserted 3276 // when the function is parsed. 3277 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 3278 if (FwdBBs.empty()) 3279 BasicBlockFwdRefQueue.push_back(Fn); 3280 if (FwdBBs.size() < BBID + 1) 3281 FwdBBs.resize(BBID + 1); 3282 if (!FwdBBs[BBID]) 3283 FwdBBs[BBID] = BasicBlock::Create(Context); 3284 BB = FwdBBs[BBID]; 3285 } 3286 V = BlockAddress::get(Fn, BB); 3287 break; 3288 } 3289 } 3290 3291 ValueList.assignValue(V, NextCstNo); 3292 ++NextCstNo; 3293 } 3294 } 3295 3296 std::error_code BitcodeReader::parseUseLists() { 3297 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 3298 return error("Invalid record"); 3299 3300 // Read all the records. 3301 SmallVector<uint64_t, 64> Record; 3302 while (1) { 3303 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3304 3305 switch (Entry.Kind) { 3306 case BitstreamEntry::SubBlock: // Handled for us already. 3307 case BitstreamEntry::Error: 3308 return error("Malformed block"); 3309 case BitstreamEntry::EndBlock: 3310 return std::error_code(); 3311 case BitstreamEntry::Record: 3312 // The interesting case. 3313 break; 3314 } 3315 3316 // Read a use list record. 3317 Record.clear(); 3318 bool IsBB = false; 3319 switch (Stream.readRecord(Entry.ID, Record)) { 3320 default: // Default behavior: unknown type. 3321 break; 3322 case bitc::USELIST_CODE_BB: 3323 IsBB = true; 3324 // fallthrough 3325 case bitc::USELIST_CODE_DEFAULT: { 3326 unsigned RecordLength = Record.size(); 3327 if (RecordLength < 3) 3328 // Records should have at least an ID and two indexes. 3329 return error("Invalid record"); 3330 unsigned ID = Record.back(); 3331 Record.pop_back(); 3332 3333 Value *V; 3334 if (IsBB) { 3335 assert(ID < FunctionBBs.size() && "Basic block not found"); 3336 V = FunctionBBs[ID]; 3337 } else 3338 V = ValueList[ID]; 3339 unsigned NumUses = 0; 3340 SmallDenseMap<const Use *, unsigned, 16> Order; 3341 for (const Use &U : V->materialized_uses()) { 3342 if (++NumUses > Record.size()) 3343 break; 3344 Order[&U] = Record[NumUses - 1]; 3345 } 3346 if (Order.size() != Record.size() || NumUses > Record.size()) 3347 // Mismatches can happen if the functions are being materialized lazily 3348 // (out-of-order), or a value has been upgraded. 3349 break; 3350 3351 V->sortUseList([&](const Use &L, const Use &R) { 3352 return Order.lookup(&L) < Order.lookup(&R); 3353 }); 3354 break; 3355 } 3356 } 3357 } 3358 } 3359 3360 /// When we see the block for metadata, remember where it is and then skip it. 3361 /// This lets us lazily deserialize the metadata. 3362 std::error_code BitcodeReader::rememberAndSkipMetadata() { 3363 // Save the current stream state. 3364 uint64_t CurBit = Stream.GetCurrentBitNo(); 3365 DeferredMetadataInfo.push_back(CurBit); 3366 3367 // Skip over the block for now. 3368 if (Stream.SkipBlock()) 3369 return error("Invalid record"); 3370 return std::error_code(); 3371 } 3372 3373 std::error_code BitcodeReader::materializeMetadata() { 3374 for (uint64_t BitPos : DeferredMetadataInfo) { 3375 // Move the bit stream to the saved position. 3376 Stream.JumpToBit(BitPos); 3377 if (std::error_code EC = parseMetadata(true)) 3378 return EC; 3379 } 3380 DeferredMetadataInfo.clear(); 3381 return std::error_code(); 3382 } 3383 3384 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3385 3386 /// When we see the block for a function body, remember where it is and then 3387 /// skip it. This lets us lazily deserialize the functions. 3388 std::error_code BitcodeReader::rememberAndSkipFunctionBody() { 3389 // Get the function we are talking about. 3390 if (FunctionsWithBodies.empty()) 3391 return error("Insufficient function protos"); 3392 3393 Function *Fn = FunctionsWithBodies.back(); 3394 FunctionsWithBodies.pop_back(); 3395 3396 // Save the current stream state. 3397 uint64_t CurBit = Stream.GetCurrentBitNo(); 3398 assert( 3399 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3400 "Mismatch between VST and scanned function offsets"); 3401 DeferredFunctionInfo[Fn] = CurBit; 3402 3403 // Skip over the function block for now. 3404 if (Stream.SkipBlock()) 3405 return error("Invalid record"); 3406 return std::error_code(); 3407 } 3408 3409 std::error_code BitcodeReader::globalCleanup() { 3410 // Patch the initializers for globals and aliases up. 3411 resolveGlobalAndIndirectSymbolInits(); 3412 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3413 return error("Malformed global initializer set"); 3414 3415 // Look for intrinsic functions which need to be upgraded at some point 3416 for (Function &F : *TheModule) { 3417 Function *NewFn; 3418 if (UpgradeIntrinsicFunction(&F, NewFn)) 3419 UpgradedIntrinsics[&F] = NewFn; 3420 } 3421 3422 // Look for global variables which need to be renamed. 3423 for (GlobalVariable &GV : TheModule->globals()) 3424 UpgradeGlobalVariable(&GV); 3425 3426 // Force deallocation of memory for these vectors to favor the client that 3427 // want lazy deserialization. 3428 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 3429 std::vector<std::pair<GlobalIndirectSymbol*, unsigned> >().swap( 3430 IndirectSymbolInits); 3431 return std::error_code(); 3432 } 3433 3434 /// Support for lazy parsing of function bodies. This is required if we 3435 /// either have an old bitcode file without a VST forward declaration record, 3436 /// or if we have an anonymous function being materialized, since anonymous 3437 /// functions do not have a name and are therefore not in the VST. 3438 std::error_code BitcodeReader::rememberAndSkipFunctionBodies() { 3439 Stream.JumpToBit(NextUnreadBit); 3440 3441 if (Stream.AtEndOfStream()) 3442 return error("Could not find function in stream"); 3443 3444 if (!SeenFirstFunctionBody) 3445 return error("Trying to materialize functions before seeing function blocks"); 3446 3447 // An old bitcode file with the symbol table at the end would have 3448 // finished the parse greedily. 3449 assert(SeenValueSymbolTable); 3450 3451 SmallVector<uint64_t, 64> Record; 3452 3453 while (1) { 3454 BitstreamEntry Entry = Stream.advance(); 3455 switch (Entry.Kind) { 3456 default: 3457 return error("Expect SubBlock"); 3458 case BitstreamEntry::SubBlock: 3459 switch (Entry.ID) { 3460 default: 3461 return error("Expect function block"); 3462 case bitc::FUNCTION_BLOCK_ID: 3463 if (std::error_code EC = rememberAndSkipFunctionBody()) 3464 return EC; 3465 NextUnreadBit = Stream.GetCurrentBitNo(); 3466 return std::error_code(); 3467 } 3468 } 3469 } 3470 } 3471 3472 std::error_code BitcodeReader::parseBitcodeVersion() { 3473 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 3474 return error("Invalid record"); 3475 3476 // Read all the records. 3477 SmallVector<uint64_t, 64> Record; 3478 while (1) { 3479 BitstreamEntry Entry = Stream.advance(); 3480 3481 switch (Entry.Kind) { 3482 default: 3483 case BitstreamEntry::Error: 3484 return error("Malformed block"); 3485 case BitstreamEntry::EndBlock: 3486 return std::error_code(); 3487 case BitstreamEntry::Record: 3488 // The interesting case. 3489 break; 3490 } 3491 3492 // Read a record. 3493 Record.clear(); 3494 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3495 switch (BitCode) { 3496 default: // Default behavior: reject 3497 return error("Invalid value"); 3498 case bitc::IDENTIFICATION_CODE_STRING: { // IDENTIFICATION: [strchr x 3499 // N] 3500 convertToString(Record, 0, ProducerIdentification); 3501 break; 3502 } 3503 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 3504 unsigned epoch = (unsigned)Record[0]; 3505 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 3506 return error( 3507 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 3508 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 3509 } 3510 } 3511 } 3512 } 3513 } 3514 3515 std::error_code BitcodeReader::parseModule(uint64_t ResumeBit, 3516 bool ShouldLazyLoadMetadata) { 3517 if (ResumeBit) 3518 Stream.JumpToBit(ResumeBit); 3519 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3520 return error("Invalid record"); 3521 3522 SmallVector<uint64_t, 64> Record; 3523 std::vector<std::string> SectionTable; 3524 std::vector<std::string> GCTable; 3525 3526 // Read all the records for this module. 3527 while (1) { 3528 BitstreamEntry Entry = Stream.advance(); 3529 3530 switch (Entry.Kind) { 3531 case BitstreamEntry::Error: 3532 return error("Malformed block"); 3533 case BitstreamEntry::EndBlock: 3534 return globalCleanup(); 3535 3536 case BitstreamEntry::SubBlock: 3537 switch (Entry.ID) { 3538 default: // Skip unknown content. 3539 if (Stream.SkipBlock()) 3540 return error("Invalid record"); 3541 break; 3542 case bitc::BLOCKINFO_BLOCK_ID: 3543 if (Stream.ReadBlockInfoBlock()) 3544 return error("Malformed block"); 3545 break; 3546 case bitc::PARAMATTR_BLOCK_ID: 3547 if (std::error_code EC = parseAttributeBlock()) 3548 return EC; 3549 break; 3550 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3551 if (std::error_code EC = parseAttributeGroupBlock()) 3552 return EC; 3553 break; 3554 case bitc::TYPE_BLOCK_ID_NEW: 3555 if (std::error_code EC = parseTypeTable()) 3556 return EC; 3557 break; 3558 case bitc::VALUE_SYMTAB_BLOCK_ID: 3559 if (!SeenValueSymbolTable) { 3560 // Either this is an old form VST without function index and an 3561 // associated VST forward declaration record (which would have caused 3562 // the VST to be jumped to and parsed before it was encountered 3563 // normally in the stream), or there were no function blocks to 3564 // trigger an earlier parsing of the VST. 3565 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3566 if (std::error_code EC = parseValueSymbolTable()) 3567 return EC; 3568 SeenValueSymbolTable = true; 3569 } else { 3570 // We must have had a VST forward declaration record, which caused 3571 // the parser to jump to and parse the VST earlier. 3572 assert(VSTOffset > 0); 3573 if (Stream.SkipBlock()) 3574 return error("Invalid record"); 3575 } 3576 break; 3577 case bitc::CONSTANTS_BLOCK_ID: 3578 if (std::error_code EC = parseConstants()) 3579 return EC; 3580 if (std::error_code EC = resolveGlobalAndIndirectSymbolInits()) 3581 return EC; 3582 break; 3583 case bitc::METADATA_BLOCK_ID: 3584 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 3585 if (std::error_code EC = rememberAndSkipMetadata()) 3586 return EC; 3587 break; 3588 } 3589 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3590 if (std::error_code EC = parseMetadata(true)) 3591 return EC; 3592 break; 3593 case bitc::METADATA_KIND_BLOCK_ID: 3594 if (std::error_code EC = parseMetadataKinds()) 3595 return EC; 3596 break; 3597 case bitc::FUNCTION_BLOCK_ID: 3598 // If this is the first function body we've seen, reverse the 3599 // FunctionsWithBodies list. 3600 if (!SeenFirstFunctionBody) { 3601 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3602 if (std::error_code EC = globalCleanup()) 3603 return EC; 3604 SeenFirstFunctionBody = true; 3605 } 3606 3607 if (VSTOffset > 0) { 3608 // If we have a VST forward declaration record, make sure we 3609 // parse the VST now if we haven't already. It is needed to 3610 // set up the DeferredFunctionInfo vector for lazy reading. 3611 if (!SeenValueSymbolTable) { 3612 if (std::error_code EC = 3613 BitcodeReader::parseValueSymbolTable(VSTOffset)) 3614 return EC; 3615 SeenValueSymbolTable = true; 3616 // Fall through so that we record the NextUnreadBit below. 3617 // This is necessary in case we have an anonymous function that 3618 // is later materialized. Since it will not have a VST entry we 3619 // need to fall back to the lazy parse to find its offset. 3620 } else { 3621 // If we have a VST forward declaration record, but have already 3622 // parsed the VST (just above, when the first function body was 3623 // encountered here), then we are resuming the parse after 3624 // materializing functions. The ResumeBit points to the 3625 // start of the last function block recorded in the 3626 // DeferredFunctionInfo map. Skip it. 3627 if (Stream.SkipBlock()) 3628 return error("Invalid record"); 3629 continue; 3630 } 3631 } 3632 3633 // Support older bitcode files that did not have the function 3634 // index in the VST, nor a VST forward declaration record, as 3635 // well as anonymous functions that do not have VST entries. 3636 // Build the DeferredFunctionInfo vector on the fly. 3637 if (std::error_code EC = rememberAndSkipFunctionBody()) 3638 return EC; 3639 3640 // Suspend parsing when we reach the function bodies. Subsequent 3641 // materialization calls will resume it when necessary. If the bitcode 3642 // file is old, the symbol table will be at the end instead and will not 3643 // have been seen yet. In this case, just finish the parse now. 3644 if (SeenValueSymbolTable) { 3645 NextUnreadBit = Stream.GetCurrentBitNo(); 3646 return std::error_code(); 3647 } 3648 break; 3649 case bitc::USELIST_BLOCK_ID: 3650 if (std::error_code EC = parseUseLists()) 3651 return EC; 3652 break; 3653 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3654 if (std::error_code EC = parseOperandBundleTags()) 3655 return EC; 3656 break; 3657 } 3658 continue; 3659 3660 case BitstreamEntry::Record: 3661 // The interesting case. 3662 break; 3663 } 3664 3665 // Read a record. 3666 auto BitCode = Stream.readRecord(Entry.ID, Record); 3667 switch (BitCode) { 3668 default: break; // Default behavior, ignore unknown content. 3669 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 3670 if (Record.size() < 1) 3671 return error("Invalid record"); 3672 // Only version #0 and #1 are supported so far. 3673 unsigned module_version = Record[0]; 3674 switch (module_version) { 3675 default: 3676 return error("Invalid value"); 3677 case 0: 3678 UseRelativeIDs = false; 3679 break; 3680 case 1: 3681 UseRelativeIDs = true; 3682 break; 3683 } 3684 break; 3685 } 3686 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3687 std::string S; 3688 if (convertToString(Record, 0, S)) 3689 return error("Invalid record"); 3690 TheModule->setTargetTriple(S); 3691 break; 3692 } 3693 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3694 std::string S; 3695 if (convertToString(Record, 0, S)) 3696 return error("Invalid record"); 3697 TheModule->setDataLayout(S); 3698 break; 3699 } 3700 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3701 std::string S; 3702 if (convertToString(Record, 0, S)) 3703 return error("Invalid record"); 3704 TheModule->setModuleInlineAsm(S); 3705 break; 3706 } 3707 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3708 // FIXME: Remove in 4.0. 3709 std::string S; 3710 if (convertToString(Record, 0, S)) 3711 return error("Invalid record"); 3712 // Ignore value. 3713 break; 3714 } 3715 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3716 std::string S; 3717 if (convertToString(Record, 0, S)) 3718 return error("Invalid record"); 3719 SectionTable.push_back(S); 3720 break; 3721 } 3722 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3723 std::string S; 3724 if (convertToString(Record, 0, S)) 3725 return error("Invalid record"); 3726 GCTable.push_back(S); 3727 break; 3728 } 3729 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 3730 if (Record.size() < 2) 3731 return error("Invalid record"); 3732 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3733 unsigned ComdatNameSize = Record[1]; 3734 std::string ComdatName; 3735 ComdatName.reserve(ComdatNameSize); 3736 for (unsigned i = 0; i != ComdatNameSize; ++i) 3737 ComdatName += (char)Record[2 + i]; 3738 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 3739 C->setSelectionKind(SK); 3740 ComdatList.push_back(C); 3741 break; 3742 } 3743 // GLOBALVAR: [pointer type, isconst, initid, 3744 // linkage, alignment, section, visibility, threadlocal, 3745 // unnamed_addr, externally_initialized, dllstorageclass, 3746 // comdat] 3747 case bitc::MODULE_CODE_GLOBALVAR: { 3748 if (Record.size() < 6) 3749 return error("Invalid record"); 3750 Type *Ty = getTypeByID(Record[0]); 3751 if (!Ty) 3752 return error("Invalid record"); 3753 bool isConstant = Record[1] & 1; 3754 bool explicitType = Record[1] & 2; 3755 unsigned AddressSpace; 3756 if (explicitType) { 3757 AddressSpace = Record[1] >> 2; 3758 } else { 3759 if (!Ty->isPointerTy()) 3760 return error("Invalid type for value"); 3761 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3762 Ty = cast<PointerType>(Ty)->getElementType(); 3763 } 3764 3765 uint64_t RawLinkage = Record[3]; 3766 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3767 unsigned Alignment; 3768 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 3769 return EC; 3770 std::string Section; 3771 if (Record[5]) { 3772 if (Record[5]-1 >= SectionTable.size()) 3773 return error("Invalid ID"); 3774 Section = SectionTable[Record[5]-1]; 3775 } 3776 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3777 // Local linkage must have default visibility. 3778 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3779 // FIXME: Change to an error if non-default in 4.0. 3780 Visibility = getDecodedVisibility(Record[6]); 3781 3782 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3783 if (Record.size() > 7) 3784 TLM = getDecodedThreadLocalMode(Record[7]); 3785 3786 bool UnnamedAddr = false; 3787 if (Record.size() > 8) 3788 UnnamedAddr = Record[8]; 3789 3790 bool ExternallyInitialized = false; 3791 if (Record.size() > 9) 3792 ExternallyInitialized = Record[9]; 3793 3794 GlobalVariable *NewGV = 3795 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 3796 TLM, AddressSpace, ExternallyInitialized); 3797 NewGV->setAlignment(Alignment); 3798 if (!Section.empty()) 3799 NewGV->setSection(Section); 3800 NewGV->setVisibility(Visibility); 3801 NewGV->setUnnamedAddr(UnnamedAddr); 3802 3803 if (Record.size() > 10) 3804 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3805 else 3806 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3807 3808 ValueList.push_back(NewGV); 3809 3810 // Remember which value to use for the global initializer. 3811 if (unsigned InitID = Record[2]) 3812 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 3813 3814 if (Record.size() > 11) { 3815 if (unsigned ComdatID = Record[11]) { 3816 if (ComdatID > ComdatList.size()) 3817 return error("Invalid global variable comdat ID"); 3818 NewGV->setComdat(ComdatList[ComdatID - 1]); 3819 } 3820 } else if (hasImplicitComdat(RawLinkage)) { 3821 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3822 } 3823 break; 3824 } 3825 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 3826 // alignment, section, visibility, gc, unnamed_addr, 3827 // prologuedata, dllstorageclass, comdat, prefixdata] 3828 case bitc::MODULE_CODE_FUNCTION: { 3829 if (Record.size() < 8) 3830 return error("Invalid record"); 3831 Type *Ty = getTypeByID(Record[0]); 3832 if (!Ty) 3833 return error("Invalid record"); 3834 if (auto *PTy = dyn_cast<PointerType>(Ty)) 3835 Ty = PTy->getElementType(); 3836 auto *FTy = dyn_cast<FunctionType>(Ty); 3837 if (!FTy) 3838 return error("Invalid type for value"); 3839 auto CC = static_cast<CallingConv::ID>(Record[1]); 3840 if (CC & ~CallingConv::MaxID) 3841 return error("Invalid calling convention ID"); 3842 3843 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 3844 "", TheModule); 3845 3846 Func->setCallingConv(CC); 3847 bool isProto = Record[2]; 3848 uint64_t RawLinkage = Record[3]; 3849 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3850 Func->setAttributes(getAttributes(Record[4])); 3851 3852 unsigned Alignment; 3853 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 3854 return EC; 3855 Func->setAlignment(Alignment); 3856 if (Record[6]) { 3857 if (Record[6]-1 >= SectionTable.size()) 3858 return error("Invalid ID"); 3859 Func->setSection(SectionTable[Record[6]-1]); 3860 } 3861 // Local linkage must have default visibility. 3862 if (!Func->hasLocalLinkage()) 3863 // FIXME: Change to an error if non-default in 4.0. 3864 Func->setVisibility(getDecodedVisibility(Record[7])); 3865 if (Record.size() > 8 && Record[8]) { 3866 if (Record[8]-1 >= GCTable.size()) 3867 return error("Invalid ID"); 3868 Func->setGC(GCTable[Record[8]-1].c_str()); 3869 } 3870 bool UnnamedAddr = false; 3871 if (Record.size() > 9) 3872 UnnamedAddr = Record[9]; 3873 Func->setUnnamedAddr(UnnamedAddr); 3874 if (Record.size() > 10 && Record[10] != 0) 3875 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3876 3877 if (Record.size() > 11) 3878 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3879 else 3880 upgradeDLLImportExportLinkage(Func, RawLinkage); 3881 3882 if (Record.size() > 12) { 3883 if (unsigned ComdatID = Record[12]) { 3884 if (ComdatID > ComdatList.size()) 3885 return error("Invalid function comdat ID"); 3886 Func->setComdat(ComdatList[ComdatID - 1]); 3887 } 3888 } else if (hasImplicitComdat(RawLinkage)) { 3889 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3890 } 3891 3892 if (Record.size() > 13 && Record[13] != 0) 3893 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3894 3895 if (Record.size() > 14 && Record[14] != 0) 3896 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3897 3898 ValueList.push_back(Func); 3899 3900 // If this is a function with a body, remember the prototype we are 3901 // creating now, so that we can match up the body with them later. 3902 if (!isProto) { 3903 Func->setIsMaterializable(true); 3904 FunctionsWithBodies.push_back(Func); 3905 DeferredFunctionInfo[Func] = 0; 3906 } 3907 break; 3908 } 3909 // ALIAS: [alias type, addrspace, aliasee val#, linkage] 3910 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3911 // IFUNC: [alias type, addrspace, aliasee val#, linkage, visibility, dllstorageclass] 3912 case bitc::MODULE_CODE_IFUNC: 3913 case bitc::MODULE_CODE_ALIAS: 3914 case bitc::MODULE_CODE_ALIAS_OLD: { 3915 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3916 if (Record.size() < (3 + (unsigned)NewRecord)) 3917 return error("Invalid record"); 3918 unsigned OpNum = 0; 3919 Type *Ty = getTypeByID(Record[OpNum++]); 3920 if (!Ty) 3921 return error("Invalid record"); 3922 3923 unsigned AddrSpace; 3924 if (!NewRecord) { 3925 auto *PTy = dyn_cast<PointerType>(Ty); 3926 if (!PTy) 3927 return error("Invalid type for value"); 3928 Ty = PTy->getElementType(); 3929 AddrSpace = PTy->getAddressSpace(); 3930 } else { 3931 AddrSpace = Record[OpNum++]; 3932 } 3933 3934 auto Val = Record[OpNum++]; 3935 auto Linkage = Record[OpNum++]; 3936 GlobalIndirectSymbol *NewGA; 3937 if (BitCode == bitc::MODULE_CODE_ALIAS || 3938 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3939 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3940 "", TheModule); 3941 else 3942 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), 3943 "", nullptr, TheModule); 3944 // Old bitcode files didn't have visibility field. 3945 // Local linkage must have default visibility. 3946 if (OpNum != Record.size()) { 3947 auto VisInd = OpNum++; 3948 if (!NewGA->hasLocalLinkage()) 3949 // FIXME: Change to an error if non-default in 4.0. 3950 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3951 } 3952 if (OpNum != Record.size()) 3953 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3954 else 3955 upgradeDLLImportExportLinkage(NewGA, Linkage); 3956 if (OpNum != Record.size()) 3957 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3958 if (OpNum != Record.size()) 3959 NewGA->setUnnamedAddr(Record[OpNum++]); 3960 ValueList.push_back(NewGA); 3961 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3962 break; 3963 } 3964 /// MODULE_CODE_PURGEVALS: [numvals] 3965 case bitc::MODULE_CODE_PURGEVALS: 3966 // Trim down the value list to the specified size. 3967 if (Record.size() < 1 || Record[0] > ValueList.size()) 3968 return error("Invalid record"); 3969 ValueList.shrinkTo(Record[0]); 3970 break; 3971 /// MODULE_CODE_VSTOFFSET: [offset] 3972 case bitc::MODULE_CODE_VSTOFFSET: 3973 if (Record.size() < 1) 3974 return error("Invalid record"); 3975 VSTOffset = Record[0]; 3976 break; 3977 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3978 case bitc::MODULE_CODE_SOURCE_FILENAME: 3979 SmallString<128> ValueName; 3980 if (convertToString(Record, 0, ValueName)) 3981 return error("Invalid record"); 3982 TheModule->setSourceFileName(ValueName); 3983 break; 3984 } 3985 Record.clear(); 3986 } 3987 } 3988 3989 /// Helper to read the header common to all bitcode files. 3990 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 3991 // Sniff for the signature. 3992 if (Stream.Read(8) != 'B' || 3993 Stream.Read(8) != 'C' || 3994 Stream.Read(4) != 0x0 || 3995 Stream.Read(4) != 0xC || 3996 Stream.Read(4) != 0xE || 3997 Stream.Read(4) != 0xD) 3998 return false; 3999 return true; 4000 } 4001 4002 std::error_code 4003 BitcodeReader::parseBitcodeInto(std::unique_ptr<DataStreamer> Streamer, 4004 Module *M, bool ShouldLazyLoadMetadata) { 4005 TheModule = M; 4006 4007 if (std::error_code EC = initStream(std::move(Streamer))) 4008 return EC; 4009 4010 // Sniff for the signature. 4011 if (!hasValidBitcodeHeader(Stream)) 4012 return error("Invalid bitcode signature"); 4013 4014 // We expect a number of well-defined blocks, though we don't necessarily 4015 // need to understand them all. 4016 while (1) { 4017 if (Stream.AtEndOfStream()) { 4018 // We didn't really read a proper Module. 4019 return error("Malformed IR file"); 4020 } 4021 4022 BitstreamEntry Entry = 4023 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 4024 4025 if (Entry.Kind != BitstreamEntry::SubBlock) 4026 return error("Malformed block"); 4027 4028 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4029 parseBitcodeVersion(); 4030 continue; 4031 } 4032 4033 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4034 return parseModule(0, ShouldLazyLoadMetadata); 4035 4036 if (Stream.SkipBlock()) 4037 return error("Invalid record"); 4038 } 4039 } 4040 4041 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 4042 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4043 return error("Invalid record"); 4044 4045 SmallVector<uint64_t, 64> Record; 4046 4047 std::string Triple; 4048 // Read all the records for this module. 4049 while (1) { 4050 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4051 4052 switch (Entry.Kind) { 4053 case BitstreamEntry::SubBlock: // Handled for us already. 4054 case BitstreamEntry::Error: 4055 return error("Malformed block"); 4056 case BitstreamEntry::EndBlock: 4057 return Triple; 4058 case BitstreamEntry::Record: 4059 // The interesting case. 4060 break; 4061 } 4062 4063 // Read a record. 4064 switch (Stream.readRecord(Entry.ID, Record)) { 4065 default: break; // Default behavior, ignore unknown content. 4066 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 4067 std::string S; 4068 if (convertToString(Record, 0, S)) 4069 return error("Invalid record"); 4070 Triple = S; 4071 break; 4072 } 4073 } 4074 Record.clear(); 4075 } 4076 llvm_unreachable("Exit infinite loop"); 4077 } 4078 4079 ErrorOr<std::string> BitcodeReader::parseTriple() { 4080 if (std::error_code EC = initStream(nullptr)) 4081 return EC; 4082 4083 // Sniff for the signature. 4084 if (!hasValidBitcodeHeader(Stream)) 4085 return error("Invalid bitcode signature"); 4086 4087 // We expect a number of well-defined blocks, though we don't necessarily 4088 // need to understand them all. 4089 while (1) { 4090 BitstreamEntry Entry = Stream.advance(); 4091 4092 switch (Entry.Kind) { 4093 case BitstreamEntry::Error: 4094 return error("Malformed block"); 4095 case BitstreamEntry::EndBlock: 4096 return std::error_code(); 4097 4098 case BitstreamEntry::SubBlock: 4099 if (Entry.ID == bitc::MODULE_BLOCK_ID) 4100 return parseModuleTriple(); 4101 4102 // Ignore other sub-blocks. 4103 if (Stream.SkipBlock()) 4104 return error("Malformed block"); 4105 continue; 4106 4107 case BitstreamEntry::Record: 4108 Stream.skipRecord(Entry.ID); 4109 continue; 4110 } 4111 } 4112 } 4113 4114 ErrorOr<std::string> BitcodeReader::parseIdentificationBlock() { 4115 if (std::error_code EC = initStream(nullptr)) 4116 return EC; 4117 4118 // Sniff for the signature. 4119 if (!hasValidBitcodeHeader(Stream)) 4120 return error("Invalid bitcode signature"); 4121 4122 // We expect a number of well-defined blocks, though we don't necessarily 4123 // need to understand them all. 4124 while (1) { 4125 BitstreamEntry Entry = Stream.advance(); 4126 switch (Entry.Kind) { 4127 case BitstreamEntry::Error: 4128 return error("Malformed block"); 4129 case BitstreamEntry::EndBlock: 4130 return std::error_code(); 4131 4132 case BitstreamEntry::SubBlock: 4133 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 4134 if (std::error_code EC = parseBitcodeVersion()) 4135 return EC; 4136 return ProducerIdentification; 4137 } 4138 // Ignore other sub-blocks. 4139 if (Stream.SkipBlock()) 4140 return error("Malformed block"); 4141 continue; 4142 case BitstreamEntry::Record: 4143 Stream.skipRecord(Entry.ID); 4144 continue; 4145 } 4146 } 4147 } 4148 4149 /// Parse metadata attachments. 4150 std::error_code BitcodeReader::parseMetadataAttachment(Function &F) { 4151 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 4152 return error("Invalid record"); 4153 4154 SmallVector<uint64_t, 64> Record; 4155 while (1) { 4156 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4157 4158 switch (Entry.Kind) { 4159 case BitstreamEntry::SubBlock: // Handled for us already. 4160 case BitstreamEntry::Error: 4161 return error("Malformed block"); 4162 case BitstreamEntry::EndBlock: 4163 return std::error_code(); 4164 case BitstreamEntry::Record: 4165 // The interesting case. 4166 break; 4167 } 4168 4169 // Read a metadata attachment record. 4170 Record.clear(); 4171 switch (Stream.readRecord(Entry.ID, Record)) { 4172 default: // Default behavior: ignore. 4173 break; 4174 case bitc::METADATA_ATTACHMENT: { 4175 unsigned RecordLength = Record.size(); 4176 if (Record.empty()) 4177 return error("Invalid record"); 4178 if (RecordLength % 2 == 0) { 4179 // A function attachment. 4180 for (unsigned I = 0; I != RecordLength; I += 2) { 4181 auto K = MDKindMap.find(Record[I]); 4182 if (K == MDKindMap.end()) 4183 return error("Invalid ID"); 4184 MDNode *MD = MetadataList.getMDNodeFwdRefOrNull(Record[I + 1]); 4185 if (!MD) 4186 return error("Invalid metadata attachment"); 4187 F.setMetadata(K->second, MD); 4188 } 4189 continue; 4190 } 4191 4192 // An instruction attachment. 4193 Instruction *Inst = InstructionList[Record[0]]; 4194 for (unsigned i = 1; i != RecordLength; i = i+2) { 4195 unsigned Kind = Record[i]; 4196 DenseMap<unsigned, unsigned>::iterator I = 4197 MDKindMap.find(Kind); 4198 if (I == MDKindMap.end()) 4199 return error("Invalid ID"); 4200 Metadata *Node = MetadataList.getMetadataFwdRef(Record[i + 1]); 4201 if (isa<LocalAsMetadata>(Node)) 4202 // Drop the attachment. This used to be legal, but there's no 4203 // upgrade path. 4204 break; 4205 MDNode *MD = dyn_cast_or_null<MDNode>(Node); 4206 if (!MD) 4207 return error("Invalid metadata attachment"); 4208 4209 if (HasSeenOldLoopTags && I->second == LLVMContext::MD_loop) 4210 MD = upgradeInstructionLoopAttachment(*MD); 4211 4212 Inst->setMetadata(I->second, MD); 4213 if (I->second == LLVMContext::MD_tbaa) { 4214 InstsWithTBAATag.push_back(Inst); 4215 continue; 4216 } 4217 } 4218 break; 4219 } 4220 } 4221 } 4222 } 4223 4224 static std::error_code typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 4225 LLVMContext &Context = PtrType->getContext(); 4226 if (!isa<PointerType>(PtrType)) 4227 return error(Context, "Load/Store operand is not a pointer type"); 4228 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 4229 4230 if (ValType && ValType != ElemType) 4231 return error(Context, "Explicit load/store type does not match pointee " 4232 "type of pointer operand"); 4233 if (!PointerType::isLoadableOrStorableType(ElemType)) 4234 return error(Context, "Cannot load/store from pointer"); 4235 return std::error_code(); 4236 } 4237 4238 /// Lazily parse the specified function body block. 4239 std::error_code BitcodeReader::parseFunctionBody(Function *F) { 4240 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 4241 return error("Invalid record"); 4242 4243 // Unexpected unresolved metadata when parsing function. 4244 if (MetadataList.hasFwdRefs()) 4245 return error("Invalid function metadata: incoming forward references"); 4246 4247 InstructionList.clear(); 4248 unsigned ModuleValueListSize = ValueList.size(); 4249 unsigned ModuleMetadataListSize = MetadataList.size(); 4250 4251 // Add all the function arguments to the value table. 4252 for (Argument &I : F->args()) 4253 ValueList.push_back(&I); 4254 4255 unsigned NextValueNo = ValueList.size(); 4256 BasicBlock *CurBB = nullptr; 4257 unsigned CurBBNo = 0; 4258 4259 DebugLoc LastLoc; 4260 auto getLastInstruction = [&]() -> Instruction * { 4261 if (CurBB && !CurBB->empty()) 4262 return &CurBB->back(); 4263 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 4264 !FunctionBBs[CurBBNo - 1]->empty()) 4265 return &FunctionBBs[CurBBNo - 1]->back(); 4266 return nullptr; 4267 }; 4268 4269 std::vector<OperandBundleDef> OperandBundles; 4270 4271 // Read all the records. 4272 SmallVector<uint64_t, 64> Record; 4273 while (1) { 4274 BitstreamEntry Entry = Stream.advance(); 4275 4276 switch (Entry.Kind) { 4277 case BitstreamEntry::Error: 4278 return error("Malformed block"); 4279 case BitstreamEntry::EndBlock: 4280 goto OutOfRecordLoop; 4281 4282 case BitstreamEntry::SubBlock: 4283 switch (Entry.ID) { 4284 default: // Skip unknown content. 4285 if (Stream.SkipBlock()) 4286 return error("Invalid record"); 4287 break; 4288 case bitc::CONSTANTS_BLOCK_ID: 4289 if (std::error_code EC = parseConstants()) 4290 return EC; 4291 NextValueNo = ValueList.size(); 4292 break; 4293 case bitc::VALUE_SYMTAB_BLOCK_ID: 4294 if (std::error_code EC = parseValueSymbolTable()) 4295 return EC; 4296 break; 4297 case bitc::METADATA_ATTACHMENT_ID: 4298 if (std::error_code EC = parseMetadataAttachment(*F)) 4299 return EC; 4300 break; 4301 case bitc::METADATA_BLOCK_ID: 4302 if (std::error_code EC = parseMetadata()) 4303 return EC; 4304 break; 4305 case bitc::USELIST_BLOCK_ID: 4306 if (std::error_code EC = parseUseLists()) 4307 return EC; 4308 break; 4309 } 4310 continue; 4311 4312 case BitstreamEntry::Record: 4313 // The interesting case. 4314 break; 4315 } 4316 4317 // Read a record. 4318 Record.clear(); 4319 Instruction *I = nullptr; 4320 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 4321 switch (BitCode) { 4322 default: // Default behavior: reject 4323 return error("Invalid value"); 4324 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 4325 if (Record.size() < 1 || Record[0] == 0) 4326 return error("Invalid record"); 4327 // Create all the basic blocks for the function. 4328 FunctionBBs.resize(Record[0]); 4329 4330 // See if anything took the address of blocks in this function. 4331 auto BBFRI = BasicBlockFwdRefs.find(F); 4332 if (BBFRI == BasicBlockFwdRefs.end()) { 4333 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 4334 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 4335 } else { 4336 auto &BBRefs = BBFRI->second; 4337 // Check for invalid basic block references. 4338 if (BBRefs.size() > FunctionBBs.size()) 4339 return error("Invalid ID"); 4340 assert(!BBRefs.empty() && "Unexpected empty array"); 4341 assert(!BBRefs.front() && "Invalid reference to entry block"); 4342 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4343 ++I) 4344 if (I < RE && BBRefs[I]) { 4345 BBRefs[I]->insertInto(F); 4346 FunctionBBs[I] = BBRefs[I]; 4347 } else { 4348 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4349 } 4350 4351 // Erase from the table. 4352 BasicBlockFwdRefs.erase(BBFRI); 4353 } 4354 4355 CurBB = FunctionBBs[0]; 4356 continue; 4357 } 4358 4359 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4360 // This record indicates that the last instruction is at the same 4361 // location as the previous instruction with a location. 4362 I = getLastInstruction(); 4363 4364 if (!I) 4365 return error("Invalid record"); 4366 I->setDebugLoc(LastLoc); 4367 I = nullptr; 4368 continue; 4369 4370 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4371 I = getLastInstruction(); 4372 if (!I || Record.size() < 4) 4373 return error("Invalid record"); 4374 4375 unsigned Line = Record[0], Col = Record[1]; 4376 unsigned ScopeID = Record[2], IAID = Record[3]; 4377 4378 MDNode *Scope = nullptr, *IA = nullptr; 4379 if (ScopeID) { 4380 Scope = MetadataList.getMDNodeFwdRefOrNull(ScopeID - 1); 4381 if (!Scope) 4382 return error("Invalid record"); 4383 } 4384 if (IAID) { 4385 IA = MetadataList.getMDNodeFwdRefOrNull(IAID - 1); 4386 if (!IA) 4387 return error("Invalid record"); 4388 } 4389 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 4390 I->setDebugLoc(LastLoc); 4391 I = nullptr; 4392 continue; 4393 } 4394 4395 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4396 unsigned OpNum = 0; 4397 Value *LHS, *RHS; 4398 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4399 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4400 OpNum+1 > Record.size()) 4401 return error("Invalid record"); 4402 4403 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4404 if (Opc == -1) 4405 return error("Invalid record"); 4406 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4407 InstructionList.push_back(I); 4408 if (OpNum < Record.size()) { 4409 if (Opc == Instruction::Add || 4410 Opc == Instruction::Sub || 4411 Opc == Instruction::Mul || 4412 Opc == Instruction::Shl) { 4413 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4414 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4415 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4416 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4417 } else if (Opc == Instruction::SDiv || 4418 Opc == Instruction::UDiv || 4419 Opc == Instruction::LShr || 4420 Opc == Instruction::AShr) { 4421 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4422 cast<BinaryOperator>(I)->setIsExact(true); 4423 } else if (isa<FPMathOperator>(I)) { 4424 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4425 if (FMF.any()) 4426 I->setFastMathFlags(FMF); 4427 } 4428 4429 } 4430 break; 4431 } 4432 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4433 unsigned OpNum = 0; 4434 Value *Op; 4435 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4436 OpNum+2 != Record.size()) 4437 return error("Invalid record"); 4438 4439 Type *ResTy = getTypeByID(Record[OpNum]); 4440 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4441 if (Opc == -1 || !ResTy) 4442 return error("Invalid record"); 4443 Instruction *Temp = nullptr; 4444 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4445 if (Temp) { 4446 InstructionList.push_back(Temp); 4447 CurBB->getInstList().push_back(Temp); 4448 } 4449 } else { 4450 auto CastOp = (Instruction::CastOps)Opc; 4451 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4452 return error("Invalid cast"); 4453 I = CastInst::Create(CastOp, Op, ResTy); 4454 } 4455 InstructionList.push_back(I); 4456 break; 4457 } 4458 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4459 case bitc::FUNC_CODE_INST_GEP_OLD: 4460 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4461 unsigned OpNum = 0; 4462 4463 Type *Ty; 4464 bool InBounds; 4465 4466 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4467 InBounds = Record[OpNum++]; 4468 Ty = getTypeByID(Record[OpNum++]); 4469 } else { 4470 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4471 Ty = nullptr; 4472 } 4473 4474 Value *BasePtr; 4475 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4476 return error("Invalid record"); 4477 4478 if (!Ty) 4479 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 4480 ->getElementType(); 4481 else if (Ty != 4482 cast<SequentialType>(BasePtr->getType()->getScalarType()) 4483 ->getElementType()) 4484 return error( 4485 "Explicit gep type does not match pointee type of pointer operand"); 4486 4487 SmallVector<Value*, 16> GEPIdx; 4488 while (OpNum != Record.size()) { 4489 Value *Op; 4490 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4491 return error("Invalid record"); 4492 GEPIdx.push_back(Op); 4493 } 4494 4495 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4496 4497 InstructionList.push_back(I); 4498 if (InBounds) 4499 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4500 break; 4501 } 4502 4503 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4504 // EXTRACTVAL: [opty, opval, n x indices] 4505 unsigned OpNum = 0; 4506 Value *Agg; 4507 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4508 return error("Invalid record"); 4509 4510 unsigned RecSize = Record.size(); 4511 if (OpNum == RecSize) 4512 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4513 4514 SmallVector<unsigned, 4> EXTRACTVALIdx; 4515 Type *CurTy = Agg->getType(); 4516 for (; OpNum != RecSize; ++OpNum) { 4517 bool IsArray = CurTy->isArrayTy(); 4518 bool IsStruct = CurTy->isStructTy(); 4519 uint64_t Index = Record[OpNum]; 4520 4521 if (!IsStruct && !IsArray) 4522 return error("EXTRACTVAL: Invalid type"); 4523 if ((unsigned)Index != Index) 4524 return error("Invalid value"); 4525 if (IsStruct && Index >= CurTy->subtypes().size()) 4526 return error("EXTRACTVAL: Invalid struct index"); 4527 if (IsArray && Index >= CurTy->getArrayNumElements()) 4528 return error("EXTRACTVAL: Invalid array index"); 4529 EXTRACTVALIdx.push_back((unsigned)Index); 4530 4531 if (IsStruct) 4532 CurTy = CurTy->subtypes()[Index]; 4533 else 4534 CurTy = CurTy->subtypes()[0]; 4535 } 4536 4537 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4538 InstructionList.push_back(I); 4539 break; 4540 } 4541 4542 case bitc::FUNC_CODE_INST_INSERTVAL: { 4543 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4544 unsigned OpNum = 0; 4545 Value *Agg; 4546 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4547 return error("Invalid record"); 4548 Value *Val; 4549 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4550 return error("Invalid record"); 4551 4552 unsigned RecSize = Record.size(); 4553 if (OpNum == RecSize) 4554 return error("INSERTVAL: Invalid instruction with 0 indices"); 4555 4556 SmallVector<unsigned, 4> INSERTVALIdx; 4557 Type *CurTy = Agg->getType(); 4558 for (; OpNum != RecSize; ++OpNum) { 4559 bool IsArray = CurTy->isArrayTy(); 4560 bool IsStruct = CurTy->isStructTy(); 4561 uint64_t Index = Record[OpNum]; 4562 4563 if (!IsStruct && !IsArray) 4564 return error("INSERTVAL: Invalid type"); 4565 if ((unsigned)Index != Index) 4566 return error("Invalid value"); 4567 if (IsStruct && Index >= CurTy->subtypes().size()) 4568 return error("INSERTVAL: Invalid struct index"); 4569 if (IsArray && Index >= CurTy->getArrayNumElements()) 4570 return error("INSERTVAL: Invalid array index"); 4571 4572 INSERTVALIdx.push_back((unsigned)Index); 4573 if (IsStruct) 4574 CurTy = CurTy->subtypes()[Index]; 4575 else 4576 CurTy = CurTy->subtypes()[0]; 4577 } 4578 4579 if (CurTy != Val->getType()) 4580 return error("Inserted value type doesn't match aggregate type"); 4581 4582 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4583 InstructionList.push_back(I); 4584 break; 4585 } 4586 4587 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4588 // obsolete form of select 4589 // handles select i1 ... in old bitcode 4590 unsigned OpNum = 0; 4591 Value *TrueVal, *FalseVal, *Cond; 4592 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4593 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4594 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4595 return error("Invalid record"); 4596 4597 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4598 InstructionList.push_back(I); 4599 break; 4600 } 4601 4602 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4603 // new form of select 4604 // handles select i1 or select [N x i1] 4605 unsigned OpNum = 0; 4606 Value *TrueVal, *FalseVal, *Cond; 4607 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4608 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4609 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4610 return error("Invalid record"); 4611 4612 // select condition can be either i1 or [N x i1] 4613 if (VectorType* vector_type = 4614 dyn_cast<VectorType>(Cond->getType())) { 4615 // expect <n x i1> 4616 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4617 return error("Invalid type for value"); 4618 } else { 4619 // expect i1 4620 if (Cond->getType() != Type::getInt1Ty(Context)) 4621 return error("Invalid type for value"); 4622 } 4623 4624 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4625 InstructionList.push_back(I); 4626 break; 4627 } 4628 4629 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4630 unsigned OpNum = 0; 4631 Value *Vec, *Idx; 4632 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4633 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4634 return error("Invalid record"); 4635 if (!Vec->getType()->isVectorTy()) 4636 return error("Invalid type for value"); 4637 I = ExtractElementInst::Create(Vec, Idx); 4638 InstructionList.push_back(I); 4639 break; 4640 } 4641 4642 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4643 unsigned OpNum = 0; 4644 Value *Vec, *Elt, *Idx; 4645 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4646 return error("Invalid record"); 4647 if (!Vec->getType()->isVectorTy()) 4648 return error("Invalid type for value"); 4649 if (popValue(Record, OpNum, NextValueNo, 4650 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4651 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4652 return error("Invalid record"); 4653 I = InsertElementInst::Create(Vec, Elt, Idx); 4654 InstructionList.push_back(I); 4655 break; 4656 } 4657 4658 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4659 unsigned OpNum = 0; 4660 Value *Vec1, *Vec2, *Mask; 4661 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4662 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4663 return error("Invalid record"); 4664 4665 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4666 return error("Invalid record"); 4667 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4668 return error("Invalid type for value"); 4669 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4670 InstructionList.push_back(I); 4671 break; 4672 } 4673 4674 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4675 // Old form of ICmp/FCmp returning bool 4676 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4677 // both legal on vectors but had different behaviour. 4678 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4679 // FCmp/ICmp returning bool or vector of bool 4680 4681 unsigned OpNum = 0; 4682 Value *LHS, *RHS; 4683 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4684 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4685 return error("Invalid record"); 4686 4687 unsigned PredVal = Record[OpNum]; 4688 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4689 FastMathFlags FMF; 4690 if (IsFP && Record.size() > OpNum+1) 4691 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4692 4693 if (OpNum+1 != Record.size()) 4694 return error("Invalid record"); 4695 4696 if (LHS->getType()->isFPOrFPVectorTy()) 4697 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4698 else 4699 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4700 4701 if (FMF.any()) 4702 I->setFastMathFlags(FMF); 4703 InstructionList.push_back(I); 4704 break; 4705 } 4706 4707 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4708 { 4709 unsigned Size = Record.size(); 4710 if (Size == 0) { 4711 I = ReturnInst::Create(Context); 4712 InstructionList.push_back(I); 4713 break; 4714 } 4715 4716 unsigned OpNum = 0; 4717 Value *Op = nullptr; 4718 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4719 return error("Invalid record"); 4720 if (OpNum != Record.size()) 4721 return error("Invalid record"); 4722 4723 I = ReturnInst::Create(Context, Op); 4724 InstructionList.push_back(I); 4725 break; 4726 } 4727 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4728 if (Record.size() != 1 && Record.size() != 3) 4729 return error("Invalid record"); 4730 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4731 if (!TrueDest) 4732 return error("Invalid record"); 4733 4734 if (Record.size() == 1) { 4735 I = BranchInst::Create(TrueDest); 4736 InstructionList.push_back(I); 4737 } 4738 else { 4739 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4740 Value *Cond = getValue(Record, 2, NextValueNo, 4741 Type::getInt1Ty(Context)); 4742 if (!FalseDest || !Cond) 4743 return error("Invalid record"); 4744 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4745 InstructionList.push_back(I); 4746 } 4747 break; 4748 } 4749 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4750 if (Record.size() != 1 && Record.size() != 2) 4751 return error("Invalid record"); 4752 unsigned Idx = 0; 4753 Value *CleanupPad = 4754 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4755 if (!CleanupPad) 4756 return error("Invalid record"); 4757 BasicBlock *UnwindDest = nullptr; 4758 if (Record.size() == 2) { 4759 UnwindDest = getBasicBlock(Record[Idx++]); 4760 if (!UnwindDest) 4761 return error("Invalid record"); 4762 } 4763 4764 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4765 InstructionList.push_back(I); 4766 break; 4767 } 4768 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4769 if (Record.size() != 2) 4770 return error("Invalid record"); 4771 unsigned Idx = 0; 4772 Value *CatchPad = 4773 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4774 if (!CatchPad) 4775 return error("Invalid record"); 4776 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4777 if (!BB) 4778 return error("Invalid record"); 4779 4780 I = CatchReturnInst::Create(CatchPad, BB); 4781 InstructionList.push_back(I); 4782 break; 4783 } 4784 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4785 // We must have, at minimum, the outer scope and the number of arguments. 4786 if (Record.size() < 2) 4787 return error("Invalid record"); 4788 4789 unsigned Idx = 0; 4790 4791 Value *ParentPad = 4792 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4793 4794 unsigned NumHandlers = Record[Idx++]; 4795 4796 SmallVector<BasicBlock *, 2> Handlers; 4797 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4798 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4799 if (!BB) 4800 return error("Invalid record"); 4801 Handlers.push_back(BB); 4802 } 4803 4804 BasicBlock *UnwindDest = nullptr; 4805 if (Idx + 1 == Record.size()) { 4806 UnwindDest = getBasicBlock(Record[Idx++]); 4807 if (!UnwindDest) 4808 return error("Invalid record"); 4809 } 4810 4811 if (Record.size() != Idx) 4812 return error("Invalid record"); 4813 4814 auto *CatchSwitch = 4815 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4816 for (BasicBlock *Handler : Handlers) 4817 CatchSwitch->addHandler(Handler); 4818 I = CatchSwitch; 4819 InstructionList.push_back(I); 4820 break; 4821 } 4822 case bitc::FUNC_CODE_INST_CATCHPAD: 4823 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4824 // We must have, at minimum, the outer scope and the number of arguments. 4825 if (Record.size() < 2) 4826 return error("Invalid record"); 4827 4828 unsigned Idx = 0; 4829 4830 Value *ParentPad = 4831 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4832 4833 unsigned NumArgOperands = Record[Idx++]; 4834 4835 SmallVector<Value *, 2> Args; 4836 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4837 Value *Val; 4838 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4839 return error("Invalid record"); 4840 Args.push_back(Val); 4841 } 4842 4843 if (Record.size() != Idx) 4844 return error("Invalid record"); 4845 4846 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4847 I = CleanupPadInst::Create(ParentPad, Args); 4848 else 4849 I = CatchPadInst::Create(ParentPad, Args); 4850 InstructionList.push_back(I); 4851 break; 4852 } 4853 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4854 // Check magic 4855 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4856 // "New" SwitchInst format with case ranges. The changes to write this 4857 // format were reverted but we still recognize bitcode that uses it. 4858 // Hopefully someday we will have support for case ranges and can use 4859 // this format again. 4860 4861 Type *OpTy = getTypeByID(Record[1]); 4862 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4863 4864 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4865 BasicBlock *Default = getBasicBlock(Record[3]); 4866 if (!OpTy || !Cond || !Default) 4867 return error("Invalid record"); 4868 4869 unsigned NumCases = Record[4]; 4870 4871 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4872 InstructionList.push_back(SI); 4873 4874 unsigned CurIdx = 5; 4875 for (unsigned i = 0; i != NumCases; ++i) { 4876 SmallVector<ConstantInt*, 1> CaseVals; 4877 unsigned NumItems = Record[CurIdx++]; 4878 for (unsigned ci = 0; ci != NumItems; ++ci) { 4879 bool isSingleNumber = Record[CurIdx++]; 4880 4881 APInt Low; 4882 unsigned ActiveWords = 1; 4883 if (ValueBitWidth > 64) 4884 ActiveWords = Record[CurIdx++]; 4885 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4886 ValueBitWidth); 4887 CurIdx += ActiveWords; 4888 4889 if (!isSingleNumber) { 4890 ActiveWords = 1; 4891 if (ValueBitWidth > 64) 4892 ActiveWords = Record[CurIdx++]; 4893 APInt High = readWideAPInt( 4894 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4895 CurIdx += ActiveWords; 4896 4897 // FIXME: It is not clear whether values in the range should be 4898 // compared as signed or unsigned values. The partially 4899 // implemented changes that used this format in the past used 4900 // unsigned comparisons. 4901 for ( ; Low.ule(High); ++Low) 4902 CaseVals.push_back(ConstantInt::get(Context, Low)); 4903 } else 4904 CaseVals.push_back(ConstantInt::get(Context, Low)); 4905 } 4906 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4907 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4908 cve = CaseVals.end(); cvi != cve; ++cvi) 4909 SI->addCase(*cvi, DestBB); 4910 } 4911 I = SI; 4912 break; 4913 } 4914 4915 // Old SwitchInst format without case ranges. 4916 4917 if (Record.size() < 3 || (Record.size() & 1) == 0) 4918 return error("Invalid record"); 4919 Type *OpTy = getTypeByID(Record[0]); 4920 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4921 BasicBlock *Default = getBasicBlock(Record[2]); 4922 if (!OpTy || !Cond || !Default) 4923 return error("Invalid record"); 4924 unsigned NumCases = (Record.size()-3)/2; 4925 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4926 InstructionList.push_back(SI); 4927 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4928 ConstantInt *CaseVal = 4929 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4930 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4931 if (!CaseVal || !DestBB) { 4932 delete SI; 4933 return error("Invalid record"); 4934 } 4935 SI->addCase(CaseVal, DestBB); 4936 } 4937 I = SI; 4938 break; 4939 } 4940 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4941 if (Record.size() < 2) 4942 return error("Invalid record"); 4943 Type *OpTy = getTypeByID(Record[0]); 4944 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4945 if (!OpTy || !Address) 4946 return error("Invalid record"); 4947 unsigned NumDests = Record.size()-2; 4948 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4949 InstructionList.push_back(IBI); 4950 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4951 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4952 IBI->addDestination(DestBB); 4953 } else { 4954 delete IBI; 4955 return error("Invalid record"); 4956 } 4957 } 4958 I = IBI; 4959 break; 4960 } 4961 4962 case bitc::FUNC_CODE_INST_INVOKE: { 4963 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4964 if (Record.size() < 4) 4965 return error("Invalid record"); 4966 unsigned OpNum = 0; 4967 AttributeSet PAL = getAttributes(Record[OpNum++]); 4968 unsigned CCInfo = Record[OpNum++]; 4969 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4970 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4971 4972 FunctionType *FTy = nullptr; 4973 if (CCInfo >> 13 & 1 && 4974 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4975 return error("Explicit invoke type is not a function type"); 4976 4977 Value *Callee; 4978 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4979 return error("Invalid record"); 4980 4981 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4982 if (!CalleeTy) 4983 return error("Callee is not a pointer"); 4984 if (!FTy) { 4985 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4986 if (!FTy) 4987 return error("Callee is not of pointer to function type"); 4988 } else if (CalleeTy->getElementType() != FTy) 4989 return error("Explicit invoke type does not match pointee type of " 4990 "callee operand"); 4991 if (Record.size() < FTy->getNumParams() + OpNum) 4992 return error("Insufficient operands to call"); 4993 4994 SmallVector<Value*, 16> Ops; 4995 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4996 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4997 FTy->getParamType(i))); 4998 if (!Ops.back()) 4999 return error("Invalid record"); 5000 } 5001 5002 if (!FTy->isVarArg()) { 5003 if (Record.size() != OpNum) 5004 return error("Invalid record"); 5005 } else { 5006 // Read type/value pairs for varargs params. 5007 while (OpNum != Record.size()) { 5008 Value *Op; 5009 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5010 return error("Invalid record"); 5011 Ops.push_back(Op); 5012 } 5013 } 5014 5015 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 5016 OperandBundles.clear(); 5017 InstructionList.push_back(I); 5018 cast<InvokeInst>(I)->setCallingConv( 5019 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 5020 cast<InvokeInst>(I)->setAttributes(PAL); 5021 break; 5022 } 5023 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 5024 unsigned Idx = 0; 5025 Value *Val = nullptr; 5026 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 5027 return error("Invalid record"); 5028 I = ResumeInst::Create(Val); 5029 InstructionList.push_back(I); 5030 break; 5031 } 5032 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 5033 I = new UnreachableInst(Context); 5034 InstructionList.push_back(I); 5035 break; 5036 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 5037 if (Record.size() < 1 || ((Record.size()-1)&1)) 5038 return error("Invalid record"); 5039 Type *Ty = getTypeByID(Record[0]); 5040 if (!Ty) 5041 return error("Invalid record"); 5042 5043 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 5044 InstructionList.push_back(PN); 5045 5046 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 5047 Value *V; 5048 // With the new function encoding, it is possible that operands have 5049 // negative IDs (for forward references). Use a signed VBR 5050 // representation to keep the encoding small. 5051 if (UseRelativeIDs) 5052 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 5053 else 5054 V = getValue(Record, 1+i, NextValueNo, Ty); 5055 BasicBlock *BB = getBasicBlock(Record[2+i]); 5056 if (!V || !BB) 5057 return error("Invalid record"); 5058 PN->addIncoming(V, BB); 5059 } 5060 I = PN; 5061 break; 5062 } 5063 5064 case bitc::FUNC_CODE_INST_LANDINGPAD: 5065 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 5066 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 5067 unsigned Idx = 0; 5068 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 5069 if (Record.size() < 3) 5070 return error("Invalid record"); 5071 } else { 5072 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 5073 if (Record.size() < 4) 5074 return error("Invalid record"); 5075 } 5076 Type *Ty = getTypeByID(Record[Idx++]); 5077 if (!Ty) 5078 return error("Invalid record"); 5079 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 5080 Value *PersFn = nullptr; 5081 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 5082 return error("Invalid record"); 5083 5084 if (!F->hasPersonalityFn()) 5085 F->setPersonalityFn(cast<Constant>(PersFn)); 5086 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 5087 return error("Personality function mismatch"); 5088 } 5089 5090 bool IsCleanup = !!Record[Idx++]; 5091 unsigned NumClauses = Record[Idx++]; 5092 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 5093 LP->setCleanup(IsCleanup); 5094 for (unsigned J = 0; J != NumClauses; ++J) { 5095 LandingPadInst::ClauseType CT = 5096 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 5097 Value *Val; 5098 5099 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 5100 delete LP; 5101 return error("Invalid record"); 5102 } 5103 5104 assert((CT != LandingPadInst::Catch || 5105 !isa<ArrayType>(Val->getType())) && 5106 "Catch clause has a invalid type!"); 5107 assert((CT != LandingPadInst::Filter || 5108 isa<ArrayType>(Val->getType())) && 5109 "Filter clause has invalid type!"); 5110 LP->addClause(cast<Constant>(Val)); 5111 } 5112 5113 I = LP; 5114 InstructionList.push_back(I); 5115 break; 5116 } 5117 5118 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 5119 if (Record.size() != 4) 5120 return error("Invalid record"); 5121 uint64_t AlignRecord = Record[3]; 5122 const uint64_t InAllocaMask = uint64_t(1) << 5; 5123 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 5124 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 5125 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 5126 SwiftErrorMask; 5127 bool InAlloca = AlignRecord & InAllocaMask; 5128 bool SwiftError = AlignRecord & SwiftErrorMask; 5129 Type *Ty = getTypeByID(Record[0]); 5130 if ((AlignRecord & ExplicitTypeMask) == 0) { 5131 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 5132 if (!PTy) 5133 return error("Old-style alloca with a non-pointer type"); 5134 Ty = PTy->getElementType(); 5135 } 5136 Type *OpTy = getTypeByID(Record[1]); 5137 Value *Size = getFnValueByID(Record[2], OpTy); 5138 unsigned Align; 5139 if (std::error_code EC = 5140 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 5141 return EC; 5142 } 5143 if (!Ty || !Size) 5144 return error("Invalid record"); 5145 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 5146 AI->setUsedWithInAlloca(InAlloca); 5147 AI->setSwiftError(SwiftError); 5148 I = AI; 5149 InstructionList.push_back(I); 5150 break; 5151 } 5152 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 5153 unsigned OpNum = 0; 5154 Value *Op; 5155 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5156 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 5157 return error("Invalid record"); 5158 5159 Type *Ty = nullptr; 5160 if (OpNum + 3 == Record.size()) 5161 Ty = getTypeByID(Record[OpNum++]); 5162 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5163 return EC; 5164 if (!Ty) 5165 Ty = cast<PointerType>(Op->getType())->getElementType(); 5166 5167 unsigned Align; 5168 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5169 return EC; 5170 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 5171 5172 InstructionList.push_back(I); 5173 break; 5174 } 5175 case bitc::FUNC_CODE_INST_LOADATOMIC: { 5176 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 5177 unsigned OpNum = 0; 5178 Value *Op; 5179 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 5180 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 5181 return error("Invalid record"); 5182 5183 Type *Ty = nullptr; 5184 if (OpNum + 5 == Record.size()) 5185 Ty = getTypeByID(Record[OpNum++]); 5186 if (std::error_code EC = typeCheckLoadStoreInst(Ty, Op->getType())) 5187 return EC; 5188 if (!Ty) 5189 Ty = cast<PointerType>(Op->getType())->getElementType(); 5190 5191 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5192 if (Ordering == AtomicOrdering::NotAtomic || 5193 Ordering == AtomicOrdering::Release || 5194 Ordering == AtomicOrdering::AcquireRelease) 5195 return error("Invalid record"); 5196 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5197 return error("Invalid record"); 5198 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5199 5200 unsigned Align; 5201 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5202 return EC; 5203 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 5204 5205 InstructionList.push_back(I); 5206 break; 5207 } 5208 case bitc::FUNC_CODE_INST_STORE: 5209 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5210 unsigned OpNum = 0; 5211 Value *Val, *Ptr; 5212 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5213 (BitCode == bitc::FUNC_CODE_INST_STORE 5214 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5215 : popValue(Record, OpNum, NextValueNo, 5216 cast<PointerType>(Ptr->getType())->getElementType(), 5217 Val)) || 5218 OpNum + 2 != Record.size()) 5219 return error("Invalid record"); 5220 5221 if (std::error_code EC = 5222 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5223 return EC; 5224 unsigned Align; 5225 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5226 return EC; 5227 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 5228 InstructionList.push_back(I); 5229 break; 5230 } 5231 case bitc::FUNC_CODE_INST_STOREATOMIC: 5232 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5233 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 5234 unsigned OpNum = 0; 5235 Value *Val, *Ptr; 5236 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5237 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5238 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5239 : popValue(Record, OpNum, NextValueNo, 5240 cast<PointerType>(Ptr->getType())->getElementType(), 5241 Val)) || 5242 OpNum + 4 != Record.size()) 5243 return error("Invalid record"); 5244 5245 if (std::error_code EC = 5246 typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5247 return EC; 5248 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5249 if (Ordering == AtomicOrdering::NotAtomic || 5250 Ordering == AtomicOrdering::Acquire || 5251 Ordering == AtomicOrdering::AcquireRelease) 5252 return error("Invalid record"); 5253 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5254 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5255 return error("Invalid record"); 5256 5257 unsigned Align; 5258 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 5259 return EC; 5260 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 5261 InstructionList.push_back(I); 5262 break; 5263 } 5264 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 5265 case bitc::FUNC_CODE_INST_CMPXCHG: { 5266 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 5267 // failureordering?, isweak?] 5268 unsigned OpNum = 0; 5269 Value *Ptr, *Cmp, *New; 5270 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5271 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 5272 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 5273 : popValue(Record, OpNum, NextValueNo, 5274 cast<PointerType>(Ptr->getType())->getElementType(), 5275 Cmp)) || 5276 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5277 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5278 return error("Invalid record"); 5279 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5280 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5281 SuccessOrdering == AtomicOrdering::Unordered) 5282 return error("Invalid record"); 5283 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 2]); 5284 5285 if (std::error_code EC = 5286 typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5287 return EC; 5288 AtomicOrdering FailureOrdering; 5289 if (Record.size() < 7) 5290 FailureOrdering = 5291 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5292 else 5293 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5294 5295 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5296 SynchScope); 5297 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5298 5299 if (Record.size() < 8) { 5300 // Before weak cmpxchgs existed, the instruction simply returned the 5301 // value loaded from memory, so bitcode files from that era will be 5302 // expecting the first component of a modern cmpxchg. 5303 CurBB->getInstList().push_back(I); 5304 I = ExtractValueInst::Create(I, 0); 5305 } else { 5306 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5307 } 5308 5309 InstructionList.push_back(I); 5310 break; 5311 } 5312 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5313 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 5314 unsigned OpNum = 0; 5315 Value *Ptr, *Val; 5316 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5317 popValue(Record, OpNum, NextValueNo, 5318 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 5319 OpNum+4 != Record.size()) 5320 return error("Invalid record"); 5321 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5322 if (Operation < AtomicRMWInst::FIRST_BINOP || 5323 Operation > AtomicRMWInst::LAST_BINOP) 5324 return error("Invalid record"); 5325 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5326 if (Ordering == AtomicOrdering::NotAtomic || 5327 Ordering == AtomicOrdering::Unordered) 5328 return error("Invalid record"); 5329 SynchronizationScope SynchScope = getDecodedSynchScope(Record[OpNum + 3]); 5330 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 5331 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5332 InstructionList.push_back(I); 5333 break; 5334 } 5335 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 5336 if (2 != Record.size()) 5337 return error("Invalid record"); 5338 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5339 if (Ordering == AtomicOrdering::NotAtomic || 5340 Ordering == AtomicOrdering::Unordered || 5341 Ordering == AtomicOrdering::Monotonic) 5342 return error("Invalid record"); 5343 SynchronizationScope SynchScope = getDecodedSynchScope(Record[1]); 5344 I = new FenceInst(Context, Ordering, SynchScope); 5345 InstructionList.push_back(I); 5346 break; 5347 } 5348 case bitc::FUNC_CODE_INST_CALL: { 5349 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5350 if (Record.size() < 3) 5351 return error("Invalid record"); 5352 5353 unsigned OpNum = 0; 5354 AttributeSet PAL = getAttributes(Record[OpNum++]); 5355 unsigned CCInfo = Record[OpNum++]; 5356 5357 FastMathFlags FMF; 5358 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5359 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5360 if (!FMF.any()) 5361 return error("Fast math flags indicator set for call with no FMF"); 5362 } 5363 5364 FunctionType *FTy = nullptr; 5365 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 5366 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 5367 return error("Explicit call type is not a function type"); 5368 5369 Value *Callee; 5370 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5371 return error("Invalid record"); 5372 5373 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5374 if (!OpTy) 5375 return error("Callee is not a pointer type"); 5376 if (!FTy) { 5377 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 5378 if (!FTy) 5379 return error("Callee is not of pointer to function type"); 5380 } else if (OpTy->getElementType() != FTy) 5381 return error("Explicit call type does not match pointee type of " 5382 "callee operand"); 5383 if (Record.size() < FTy->getNumParams() + OpNum) 5384 return error("Insufficient operands to call"); 5385 5386 SmallVector<Value*, 16> Args; 5387 // Read the fixed params. 5388 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5389 if (FTy->getParamType(i)->isLabelTy()) 5390 Args.push_back(getBasicBlock(Record[OpNum])); 5391 else 5392 Args.push_back(getValue(Record, OpNum, NextValueNo, 5393 FTy->getParamType(i))); 5394 if (!Args.back()) 5395 return error("Invalid record"); 5396 } 5397 5398 // Read type/value pairs for varargs params. 5399 if (!FTy->isVarArg()) { 5400 if (OpNum != Record.size()) 5401 return error("Invalid record"); 5402 } else { 5403 while (OpNum != Record.size()) { 5404 Value *Op; 5405 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5406 return error("Invalid record"); 5407 Args.push_back(Op); 5408 } 5409 } 5410 5411 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5412 OperandBundles.clear(); 5413 InstructionList.push_back(I); 5414 cast<CallInst>(I)->setCallingConv( 5415 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5416 CallInst::TailCallKind TCK = CallInst::TCK_None; 5417 if (CCInfo & 1 << bitc::CALL_TAIL) 5418 TCK = CallInst::TCK_Tail; 5419 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5420 TCK = CallInst::TCK_MustTail; 5421 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5422 TCK = CallInst::TCK_NoTail; 5423 cast<CallInst>(I)->setTailCallKind(TCK); 5424 cast<CallInst>(I)->setAttributes(PAL); 5425 if (FMF.any()) { 5426 if (!isa<FPMathOperator>(I)) 5427 return error("Fast-math-flags specified for call without " 5428 "floating-point scalar or vector return type"); 5429 I->setFastMathFlags(FMF); 5430 } 5431 break; 5432 } 5433 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5434 if (Record.size() < 3) 5435 return error("Invalid record"); 5436 Type *OpTy = getTypeByID(Record[0]); 5437 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5438 Type *ResTy = getTypeByID(Record[2]); 5439 if (!OpTy || !Op || !ResTy) 5440 return error("Invalid record"); 5441 I = new VAArgInst(Op, ResTy); 5442 InstructionList.push_back(I); 5443 break; 5444 } 5445 5446 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5447 // A call or an invoke can be optionally prefixed with some variable 5448 // number of operand bundle blocks. These blocks are read into 5449 // OperandBundles and consumed at the next call or invoke instruction. 5450 5451 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5452 return error("Invalid record"); 5453 5454 std::vector<Value *> Inputs; 5455 5456 unsigned OpNum = 1; 5457 while (OpNum != Record.size()) { 5458 Value *Op; 5459 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5460 return error("Invalid record"); 5461 Inputs.push_back(Op); 5462 } 5463 5464 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5465 continue; 5466 } 5467 } 5468 5469 // Add instruction to end of current BB. If there is no current BB, reject 5470 // this file. 5471 if (!CurBB) { 5472 delete I; 5473 return error("Invalid instruction with no BB"); 5474 } 5475 if (!OperandBundles.empty()) { 5476 delete I; 5477 return error("Operand bundles found with no consumer"); 5478 } 5479 CurBB->getInstList().push_back(I); 5480 5481 // If this was a terminator instruction, move to the next block. 5482 if (isa<TerminatorInst>(I)) { 5483 ++CurBBNo; 5484 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5485 } 5486 5487 // Non-void values get registered in the value table for future use. 5488 if (I && !I->getType()->isVoidTy()) 5489 ValueList.assignValue(I, NextValueNo++); 5490 } 5491 5492 OutOfRecordLoop: 5493 5494 if (!OperandBundles.empty()) 5495 return error("Operand bundles found with no consumer"); 5496 5497 // Check the function list for unresolved values. 5498 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5499 if (!A->getParent()) { 5500 // We found at least one unresolved value. Nuke them all to avoid leaks. 5501 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5502 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5503 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5504 delete A; 5505 } 5506 } 5507 return error("Never resolved value found in function"); 5508 } 5509 } 5510 5511 // Unexpected unresolved metadata about to be dropped. 5512 if (MetadataList.hasFwdRefs()) 5513 return error("Invalid function metadata: outgoing forward refs"); 5514 5515 // Trim the value list down to the size it was before we parsed this function. 5516 ValueList.shrinkTo(ModuleValueListSize); 5517 MetadataList.shrinkTo(ModuleMetadataListSize); 5518 std::vector<BasicBlock*>().swap(FunctionBBs); 5519 return std::error_code(); 5520 } 5521 5522 /// Find the function body in the bitcode stream 5523 std::error_code BitcodeReader::findFunctionInStream( 5524 Function *F, 5525 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5526 while (DeferredFunctionInfoIterator->second == 0) { 5527 // This is the fallback handling for the old format bitcode that 5528 // didn't contain the function index in the VST, or when we have 5529 // an anonymous function which would not have a VST entry. 5530 // Assert that we have one of those two cases. 5531 assert(VSTOffset == 0 || !F->hasName()); 5532 // Parse the next body in the stream and set its position in the 5533 // DeferredFunctionInfo map. 5534 if (std::error_code EC = rememberAndSkipFunctionBodies()) 5535 return EC; 5536 } 5537 return std::error_code(); 5538 } 5539 5540 //===----------------------------------------------------------------------===// 5541 // GVMaterializer implementation 5542 //===----------------------------------------------------------------------===// 5543 5544 void BitcodeReader::releaseBuffer() { Buffer.release(); } 5545 5546 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 5547 Function *F = dyn_cast<Function>(GV); 5548 // If it's not a function or is already material, ignore the request. 5549 if (!F || !F->isMaterializable()) 5550 return std::error_code(); 5551 5552 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5553 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5554 // If its position is recorded as 0, its body is somewhere in the stream 5555 // but we haven't seen it yet. 5556 if (DFII->second == 0) 5557 if (std::error_code EC = findFunctionInStream(F, DFII)) 5558 return EC; 5559 5560 // Materialize metadata before parsing any function bodies. 5561 if (std::error_code EC = materializeMetadata()) 5562 return EC; 5563 5564 // Move the bit stream to the saved position of the deferred function body. 5565 Stream.JumpToBit(DFII->second); 5566 5567 if (std::error_code EC = parseFunctionBody(F)) 5568 return EC; 5569 F->setIsMaterializable(false); 5570 5571 if (StripDebugInfo) 5572 stripDebugInfo(*F); 5573 5574 // Upgrade any old intrinsic calls in the function. 5575 for (auto &I : UpgradedIntrinsics) { 5576 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5577 UI != UE;) { 5578 User *U = *UI; 5579 ++UI; 5580 if (CallInst *CI = dyn_cast<CallInst>(U)) 5581 UpgradeIntrinsicCall(CI, I.second); 5582 } 5583 } 5584 5585 // Finish fn->subprogram upgrade for materialized functions. 5586 if (DISubprogram *SP = FunctionsWithSPs.lookup(F)) 5587 F->setSubprogram(SP); 5588 5589 // Bring in any functions that this function forward-referenced via 5590 // blockaddresses. 5591 return materializeForwardReferencedFunctions(); 5592 } 5593 5594 std::error_code BitcodeReader::materializeModule() { 5595 if (std::error_code EC = materializeMetadata()) 5596 return EC; 5597 5598 // Promise to materialize all forward references. 5599 WillMaterializeAllForwardRefs = true; 5600 5601 // Iterate over the module, deserializing any functions that are still on 5602 // disk. 5603 for (Function &F : *TheModule) { 5604 if (std::error_code EC = materialize(&F)) 5605 return EC; 5606 } 5607 // At this point, if there are any function bodies, parse the rest of 5608 // the bits in the module past the last function block we have recorded 5609 // through either lazy scanning or the VST. 5610 if (LastFunctionBlockBit || NextUnreadBit) 5611 parseModule(LastFunctionBlockBit > NextUnreadBit ? LastFunctionBlockBit 5612 : NextUnreadBit); 5613 5614 // Check that all block address forward references got resolved (as we 5615 // promised above). 5616 if (!BasicBlockFwdRefs.empty()) 5617 return error("Never resolved function from blockaddress"); 5618 5619 // Upgrading intrinsic calls before TBAA can cause TBAA metadata to be lost, 5620 // to prevent this instructions with TBAA tags should be upgraded first. 5621 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 5622 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 5623 5624 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5625 // delete the old functions to clean up. We can't do this unless the entire 5626 // module is materialized because there could always be another function body 5627 // with calls to the old function. 5628 for (auto &I : UpgradedIntrinsics) { 5629 for (auto *U : I.first->users()) { 5630 if (CallInst *CI = dyn_cast<CallInst>(U)) 5631 UpgradeIntrinsicCall(CI, I.second); 5632 } 5633 if (!I.first->use_empty()) 5634 I.first->replaceAllUsesWith(I.second); 5635 I.first->eraseFromParent(); 5636 } 5637 UpgradedIntrinsics.clear(); 5638 5639 UpgradeDebugInfo(*TheModule); 5640 return std::error_code(); 5641 } 5642 5643 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5644 return IdentifiedStructTypes; 5645 } 5646 5647 std::error_code 5648 BitcodeReader::initStream(std::unique_ptr<DataStreamer> Streamer) { 5649 if (Streamer) 5650 return initLazyStream(std::move(Streamer)); 5651 return initStreamFromBuffer(); 5652 } 5653 5654 std::error_code BitcodeReader::initStreamFromBuffer() { 5655 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 5656 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 5657 5658 if (Buffer->getBufferSize() & 3) 5659 return error("Invalid bitcode signature"); 5660 5661 // If we have a wrapper header, parse it and ignore the non-bc file contents. 5662 // The magic number is 0x0B17C0DE stored in little endian. 5663 if (isBitcodeWrapper(BufPtr, BufEnd)) 5664 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 5665 return error("Invalid bitcode wrapper header"); 5666 5667 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 5668 Stream.init(&*StreamFile); 5669 5670 return std::error_code(); 5671 } 5672 5673 std::error_code 5674 BitcodeReader::initLazyStream(std::unique_ptr<DataStreamer> Streamer) { 5675 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 5676 // see it. 5677 auto OwnedBytes = 5678 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 5679 StreamingMemoryObject &Bytes = *OwnedBytes; 5680 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 5681 Stream.init(&*StreamFile); 5682 5683 unsigned char buf[16]; 5684 if (Bytes.readBytes(buf, 16, 0) != 16) 5685 return error("Invalid bitcode signature"); 5686 5687 if (!isBitcode(buf, buf + 16)) 5688 return error("Invalid bitcode signature"); 5689 5690 if (isBitcodeWrapper(buf, buf + 4)) { 5691 const unsigned char *bitcodeStart = buf; 5692 const unsigned char *bitcodeEnd = buf + 16; 5693 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 5694 Bytes.dropLeadingBytes(bitcodeStart - buf); 5695 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 5696 } 5697 return std::error_code(); 5698 } 5699 5700 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E, 5701 const Twine &Message) { 5702 return ::error(DiagnosticHandler, make_error_code(E), Message); 5703 } 5704 5705 std::error_code ModuleSummaryIndexBitcodeReader::error(const Twine &Message) { 5706 return ::error(DiagnosticHandler, 5707 make_error_code(BitcodeError::CorruptedBitcode), Message); 5708 } 5709 5710 std::error_code ModuleSummaryIndexBitcodeReader::error(BitcodeError E) { 5711 return ::error(DiagnosticHandler, make_error_code(E)); 5712 } 5713 5714 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5715 MemoryBuffer *Buffer, DiagnosticHandlerFunction DiagnosticHandler, 5716 bool CheckGlobalValSummaryPresenceOnly) 5717 : DiagnosticHandler(DiagnosticHandler), Buffer(Buffer), 5718 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5719 5720 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5721 DiagnosticHandlerFunction DiagnosticHandler, 5722 bool CheckGlobalValSummaryPresenceOnly) 5723 : DiagnosticHandler(DiagnosticHandler), Buffer(nullptr), 5724 CheckGlobalValSummaryPresenceOnly(CheckGlobalValSummaryPresenceOnly) {} 5725 5726 void ModuleSummaryIndexBitcodeReader::freeState() { Buffer = nullptr; } 5727 5728 void ModuleSummaryIndexBitcodeReader::releaseBuffer() { Buffer.release(); } 5729 5730 std::pair<GlobalValue::GUID, GlobalValue::GUID> 5731 ModuleSummaryIndexBitcodeReader::getGUIDFromValueId(unsigned ValueId) { 5732 auto VGI = ValueIdToCallGraphGUIDMap.find(ValueId); 5733 assert(VGI != ValueIdToCallGraphGUIDMap.end()); 5734 return VGI->second; 5735 } 5736 5737 // Specialized value symbol table parser used when reading module index 5738 // blocks where we don't actually create global values. The parsed information 5739 // is saved in the bitcode reader for use when later parsing summaries. 5740 std::error_code ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5741 uint64_t Offset, 5742 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5743 assert(Offset > 0 && "Expected non-zero VST offset"); 5744 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 5745 5746 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5747 return error("Invalid record"); 5748 5749 SmallVector<uint64_t, 64> Record; 5750 5751 // Read all the records for this value table. 5752 SmallString<128> ValueName; 5753 while (1) { 5754 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5755 5756 switch (Entry.Kind) { 5757 case BitstreamEntry::SubBlock: // Handled for us already. 5758 case BitstreamEntry::Error: 5759 return error("Malformed block"); 5760 case BitstreamEntry::EndBlock: 5761 // Done parsing VST, jump back to wherever we came from. 5762 Stream.JumpToBit(CurrentBit); 5763 return std::error_code(); 5764 case BitstreamEntry::Record: 5765 // The interesting case. 5766 break; 5767 } 5768 5769 // Read a record. 5770 Record.clear(); 5771 switch (Stream.readRecord(Entry.ID, Record)) { 5772 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5773 break; 5774 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5775 if (convertToString(Record, 1, ValueName)) 5776 return error("Invalid record"); 5777 unsigned ValueID = Record[0]; 5778 assert(!SourceFileName.empty()); 5779 auto VLI = ValueIdToLinkageMap.find(ValueID); 5780 assert(VLI != ValueIdToLinkageMap.end() && 5781 "No linkage found for VST entry?"); 5782 auto Linkage = VLI->second; 5783 std::string GlobalId = 5784 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5785 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5786 auto OriginalNameID = ValueGUID; 5787 if (GlobalValue::isLocalLinkage(Linkage)) 5788 OriginalNameID = GlobalValue::getGUID(ValueName); 5789 if (PrintSummaryGUIDs) 5790 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5791 << ValueName << "\n"; 5792 ValueIdToCallGraphGUIDMap[ValueID] = 5793 std::make_pair(ValueGUID, OriginalNameID); 5794 ValueName.clear(); 5795 break; 5796 } 5797 case bitc::VST_CODE_FNENTRY: { 5798 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5799 if (convertToString(Record, 2, ValueName)) 5800 return error("Invalid record"); 5801 unsigned ValueID = Record[0]; 5802 assert(!SourceFileName.empty()); 5803 auto VLI = ValueIdToLinkageMap.find(ValueID); 5804 assert(VLI != ValueIdToLinkageMap.end() && 5805 "No linkage found for VST entry?"); 5806 auto Linkage = VLI->second; 5807 std::string FunctionGlobalId = GlobalValue::getGlobalIdentifier( 5808 ValueName, VLI->second, SourceFileName); 5809 auto FunctionGUID = GlobalValue::getGUID(FunctionGlobalId); 5810 auto OriginalNameID = FunctionGUID; 5811 if (GlobalValue::isLocalLinkage(Linkage)) 5812 OriginalNameID = GlobalValue::getGUID(ValueName); 5813 if (PrintSummaryGUIDs) 5814 dbgs() << "GUID " << FunctionGUID << "(" << OriginalNameID << ") is " 5815 << ValueName << "\n"; 5816 ValueIdToCallGraphGUIDMap[ValueID] = 5817 std::make_pair(FunctionGUID, OriginalNameID); 5818 5819 ValueName.clear(); 5820 break; 5821 } 5822 case bitc::VST_CODE_COMBINED_ENTRY: { 5823 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5824 unsigned ValueID = Record[0]; 5825 GlobalValue::GUID RefGUID = Record[1]; 5826 // The "original name", which is the second value of the pair will be 5827 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5828 ValueIdToCallGraphGUIDMap[ValueID] = std::make_pair(RefGUID, RefGUID); 5829 break; 5830 } 5831 } 5832 } 5833 } 5834 5835 // Parse just the blocks needed for building the index out of the module. 5836 // At the end of this routine the module Index is populated with a map 5837 // from global value id to GlobalValueSummary objects. 5838 std::error_code ModuleSummaryIndexBitcodeReader::parseModule() { 5839 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5840 return error("Invalid record"); 5841 5842 SmallVector<uint64_t, 64> Record; 5843 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5844 unsigned ValueId = 0; 5845 5846 // Read the index for this module. 5847 while (1) { 5848 BitstreamEntry Entry = Stream.advance(); 5849 5850 switch (Entry.Kind) { 5851 case BitstreamEntry::Error: 5852 return error("Malformed block"); 5853 case BitstreamEntry::EndBlock: 5854 return std::error_code(); 5855 5856 case BitstreamEntry::SubBlock: 5857 if (CheckGlobalValSummaryPresenceOnly) { 5858 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 5859 SeenGlobalValSummary = true; 5860 // No need to parse the rest since we found the summary. 5861 return std::error_code(); 5862 } 5863 if (Stream.SkipBlock()) 5864 return error("Invalid record"); 5865 continue; 5866 } 5867 switch (Entry.ID) { 5868 default: // Skip unknown content. 5869 if (Stream.SkipBlock()) 5870 return error("Invalid record"); 5871 break; 5872 case bitc::BLOCKINFO_BLOCK_ID: 5873 // Need to parse these to get abbrev ids (e.g. for VST) 5874 if (Stream.ReadBlockInfoBlock()) 5875 return error("Malformed block"); 5876 break; 5877 case bitc::VALUE_SYMTAB_BLOCK_ID: 5878 // Should have been parsed earlier via VSTOffset, unless there 5879 // is no summary section. 5880 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5881 !SeenGlobalValSummary) && 5882 "Expected early VST parse via VSTOffset record"); 5883 if (Stream.SkipBlock()) 5884 return error("Invalid record"); 5885 break; 5886 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5887 assert(VSTOffset > 0 && "Expected non-zero VST offset"); 5888 assert(!SeenValueSymbolTable && 5889 "Already read VST when parsing summary block?"); 5890 if (std::error_code EC = 5891 parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5892 return EC; 5893 SeenValueSymbolTable = true; 5894 SeenGlobalValSummary = true; 5895 if (std::error_code EC = parseEntireSummary()) 5896 return EC; 5897 break; 5898 case bitc::MODULE_STRTAB_BLOCK_ID: 5899 if (std::error_code EC = parseModuleStringTable()) 5900 return EC; 5901 break; 5902 } 5903 continue; 5904 5905 case BitstreamEntry::Record: { 5906 Record.clear(); 5907 auto BitCode = Stream.readRecord(Entry.ID, Record); 5908 switch (BitCode) { 5909 default: 5910 break; // Default behavior, ignore unknown content. 5911 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5912 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5913 SmallString<128> ValueName; 5914 if (convertToString(Record, 0, ValueName)) 5915 return error("Invalid record"); 5916 SourceFileName = ValueName.c_str(); 5917 break; 5918 } 5919 /// MODULE_CODE_HASH: [5*i32] 5920 case bitc::MODULE_CODE_HASH: { 5921 if (Record.size() != 5) 5922 return error("Invalid hash length " + Twine(Record.size()).str()); 5923 if (!TheIndex) 5924 break; 5925 if (TheIndex->modulePaths().empty()) 5926 // Does not have any summary emitted. 5927 break; 5928 if (TheIndex->modulePaths().size() != 1) 5929 return error("Don't expect multiple modules defined?"); 5930 auto &Hash = TheIndex->modulePaths().begin()->second.second; 5931 int Pos = 0; 5932 for (auto &Val : Record) { 5933 assert(!(Val >> 32) && "Unexpected high bits set"); 5934 Hash[Pos++] = Val; 5935 } 5936 break; 5937 } 5938 /// MODULE_CODE_VSTOFFSET: [offset] 5939 case bitc::MODULE_CODE_VSTOFFSET: 5940 if (Record.size() < 1) 5941 return error("Invalid record"); 5942 VSTOffset = Record[0]; 5943 break; 5944 // GLOBALVAR: [pointer type, isconst, initid, 5945 // linkage, alignment, section, visibility, threadlocal, 5946 // unnamed_addr, externally_initialized, dllstorageclass, 5947 // comdat] 5948 case bitc::MODULE_CODE_GLOBALVAR: { 5949 if (Record.size() < 6) 5950 return error("Invalid record"); 5951 uint64_t RawLinkage = Record[3]; 5952 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5953 ValueIdToLinkageMap[ValueId++] = Linkage; 5954 break; 5955 } 5956 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 5957 // alignment, section, visibility, gc, unnamed_addr, 5958 // prologuedata, dllstorageclass, comdat, prefixdata] 5959 case bitc::MODULE_CODE_FUNCTION: { 5960 if (Record.size() < 8) 5961 return error("Invalid record"); 5962 uint64_t RawLinkage = Record[3]; 5963 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5964 ValueIdToLinkageMap[ValueId++] = Linkage; 5965 break; 5966 } 5967 // ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 5968 // dllstorageclass] 5969 case bitc::MODULE_CODE_ALIAS: { 5970 if (Record.size() < 6) 5971 return error("Invalid record"); 5972 uint64_t RawLinkage = Record[3]; 5973 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5974 ValueIdToLinkageMap[ValueId++] = Linkage; 5975 break; 5976 } 5977 } 5978 } 5979 continue; 5980 } 5981 } 5982 } 5983 5984 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5985 // objects in the index. 5986 std::error_code ModuleSummaryIndexBitcodeReader::parseEntireSummary() { 5987 if (Stream.EnterSubBlock(bitc::GLOBALVAL_SUMMARY_BLOCK_ID)) 5988 return error("Invalid record"); 5989 SmallVector<uint64_t, 64> Record; 5990 5991 // Parse version 5992 { 5993 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5994 if (Entry.Kind != BitstreamEntry::Record) 5995 return error("Invalid Summary Block: record for version expected"); 5996 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5997 return error("Invalid Summary Block: version expected"); 5998 } 5999 const uint64_t Version = Record[0]; 6000 if (Version != 1) 6001 return error("Invalid summary version " + Twine(Version) + ", 1 expected"); 6002 Record.clear(); 6003 6004 // Keep around the last seen summary to be used when we see an optional 6005 // "OriginalName" attachement. 6006 GlobalValueSummary *LastSeenSummary = nullptr; 6007 bool Combined = false; 6008 while (1) { 6009 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6010 6011 switch (Entry.Kind) { 6012 case BitstreamEntry::SubBlock: // Handled for us already. 6013 case BitstreamEntry::Error: 6014 return error("Malformed block"); 6015 case BitstreamEntry::EndBlock: 6016 // For a per-module index, remove any entries that still have empty 6017 // summaries. The VST parsing creates entries eagerly for all symbols, 6018 // but not all have associated summaries (e.g. it doesn't know how to 6019 // distinguish between VST_CODE_ENTRY for function declarations vs global 6020 // variables with initializers that end up with a summary). Remove those 6021 // entries now so that we don't need to rely on the combined index merger 6022 // to clean them up (especially since that may not run for the first 6023 // module's index if we merge into that). 6024 if (!Combined) 6025 TheIndex->removeEmptySummaryEntries(); 6026 return std::error_code(); 6027 case BitstreamEntry::Record: 6028 // The interesting case. 6029 break; 6030 } 6031 6032 // Read a record. The record format depends on whether this 6033 // is a per-module index or a combined index file. In the per-module 6034 // case the records contain the associated value's ID for correlation 6035 // with VST entries. In the combined index the correlation is done 6036 // via the bitcode offset of the summary records (which were saved 6037 // in the combined index VST entries). The records also contain 6038 // information used for ThinLTO renaming and importing. 6039 Record.clear(); 6040 auto BitCode = Stream.readRecord(Entry.ID, Record); 6041 switch (BitCode) { 6042 default: // Default behavior: ignore. 6043 break; 6044 // FS_PERMODULE: [valueid, flags, instcount, numrefs, numrefs x valueid, 6045 // n x (valueid, callsitecount)] 6046 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, numrefs, 6047 // numrefs x valueid, 6048 // n x (valueid, callsitecount, profilecount)] 6049 case bitc::FS_PERMODULE: 6050 case bitc::FS_PERMODULE_PROFILE: { 6051 unsigned ValueID = Record[0]; 6052 uint64_t RawFlags = Record[1]; 6053 unsigned InstCount = Record[2]; 6054 unsigned NumRefs = Record[3]; 6055 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6056 std::unique_ptr<FunctionSummary> FS = 6057 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6058 // The module path string ref set in the summary must be owned by the 6059 // index's module string table. Since we don't have a module path 6060 // string table section in the per-module index, we create a single 6061 // module path string table entry with an empty (0) ID to take 6062 // ownership. 6063 FS->setModulePath( 6064 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6065 static int RefListStartIndex = 4; 6066 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6067 assert(Record.size() >= RefListStartIndex + NumRefs && 6068 "Record size inconsistent with number of references"); 6069 for (unsigned I = 4, E = CallGraphEdgeStartIndex; I != E; ++I) { 6070 unsigned RefValueId = Record[I]; 6071 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6072 FS->addRefEdge(RefGUID); 6073 } 6074 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6075 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6076 ++I) { 6077 unsigned CalleeValueId = Record[I]; 6078 unsigned CallsiteCount = Record[++I]; 6079 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6080 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6081 FS->addCallGraphEdge(CalleeGUID, 6082 CalleeInfo(CallsiteCount, ProfileCount)); 6083 } 6084 auto GUID = getGUIDFromValueId(ValueID); 6085 FS->setOriginalName(GUID.second); 6086 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6087 break; 6088 } 6089 // FS_ALIAS: [valueid, flags, valueid] 6090 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6091 // they expect all aliasee summaries to be available. 6092 case bitc::FS_ALIAS: { 6093 unsigned ValueID = Record[0]; 6094 uint64_t RawFlags = Record[1]; 6095 unsigned AliaseeID = Record[2]; 6096 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6097 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6098 // The module path string ref set in the summary must be owned by the 6099 // index's module string table. Since we don't have a module path 6100 // string table section in the per-module index, we create a single 6101 // module path string table entry with an empty (0) ID to take 6102 // ownership. 6103 AS->setModulePath( 6104 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6105 6106 GlobalValue::GUID AliaseeGUID = getGUIDFromValueId(AliaseeID).first; 6107 auto *AliaseeSummary = TheIndex->getGlobalValueSummary(AliaseeGUID); 6108 if (!AliaseeSummary) 6109 return error("Alias expects aliasee summary to be parsed"); 6110 AS->setAliasee(AliaseeSummary); 6111 6112 auto GUID = getGUIDFromValueId(ValueID); 6113 AS->setOriginalName(GUID.second); 6114 TheIndex->addGlobalValueSummary(GUID.first, std::move(AS)); 6115 break; 6116 } 6117 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 6118 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6119 unsigned ValueID = Record[0]; 6120 uint64_t RawFlags = Record[1]; 6121 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6122 std::unique_ptr<GlobalVarSummary> FS = 6123 llvm::make_unique<GlobalVarSummary>(Flags); 6124 FS->setModulePath( 6125 TheIndex->addModulePath(Buffer->getBufferIdentifier(), 0)->first()); 6126 for (unsigned I = 2, E = Record.size(); I != E; ++I) { 6127 unsigned RefValueId = Record[I]; 6128 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6129 FS->addRefEdge(RefGUID); 6130 } 6131 auto GUID = getGUIDFromValueId(ValueID); 6132 FS->setOriginalName(GUID.second); 6133 TheIndex->addGlobalValueSummary(GUID.first, std::move(FS)); 6134 break; 6135 } 6136 // FS_COMBINED: [valueid, modid, flags, instcount, numrefs, 6137 // numrefs x valueid, n x (valueid, callsitecount)] 6138 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, numrefs, 6139 // numrefs x valueid, 6140 // n x (valueid, callsitecount, profilecount)] 6141 case bitc::FS_COMBINED: 6142 case bitc::FS_COMBINED_PROFILE: { 6143 unsigned ValueID = Record[0]; 6144 uint64_t ModuleId = Record[1]; 6145 uint64_t RawFlags = Record[2]; 6146 unsigned InstCount = Record[3]; 6147 unsigned NumRefs = Record[4]; 6148 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6149 std::unique_ptr<FunctionSummary> FS = 6150 llvm::make_unique<FunctionSummary>(Flags, InstCount); 6151 LastSeenSummary = FS.get(); 6152 FS->setModulePath(ModuleIdMap[ModuleId]); 6153 static int RefListStartIndex = 5; 6154 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6155 assert(Record.size() >= RefListStartIndex + NumRefs && 6156 "Record size inconsistent with number of references"); 6157 for (unsigned I = RefListStartIndex, E = CallGraphEdgeStartIndex; I != E; 6158 ++I) { 6159 unsigned RefValueId = Record[I]; 6160 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6161 FS->addRefEdge(RefGUID); 6162 } 6163 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6164 for (unsigned I = CallGraphEdgeStartIndex, E = Record.size(); I != E; 6165 ++I) { 6166 unsigned CalleeValueId = Record[I]; 6167 unsigned CallsiteCount = Record[++I]; 6168 uint64_t ProfileCount = HasProfile ? Record[++I] : 0; 6169 GlobalValue::GUID CalleeGUID = getGUIDFromValueId(CalleeValueId).first; 6170 FS->addCallGraphEdge(CalleeGUID, 6171 CalleeInfo(CallsiteCount, ProfileCount)); 6172 } 6173 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6174 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6175 Combined = true; 6176 break; 6177 } 6178 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6179 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6180 // they expect all aliasee summaries to be available. 6181 case bitc::FS_COMBINED_ALIAS: { 6182 unsigned ValueID = Record[0]; 6183 uint64_t ModuleId = Record[1]; 6184 uint64_t RawFlags = Record[2]; 6185 unsigned AliaseeValueId = Record[3]; 6186 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6187 std::unique_ptr<AliasSummary> AS = llvm::make_unique<AliasSummary>(Flags); 6188 LastSeenSummary = AS.get(); 6189 AS->setModulePath(ModuleIdMap[ModuleId]); 6190 6191 auto AliaseeGUID = getGUIDFromValueId(AliaseeValueId).first; 6192 auto AliaseeInModule = 6193 TheIndex->findSummaryInModule(AliaseeGUID, AS->modulePath()); 6194 if (!AliaseeInModule) 6195 return error("Alias expects aliasee summary to be parsed"); 6196 AS->setAliasee(AliaseeInModule); 6197 6198 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6199 TheIndex->addGlobalValueSummary(GUID, std::move(AS)); 6200 Combined = true; 6201 break; 6202 } 6203 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6204 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6205 unsigned ValueID = Record[0]; 6206 uint64_t ModuleId = Record[1]; 6207 uint64_t RawFlags = Record[2]; 6208 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6209 std::unique_ptr<GlobalVarSummary> FS = 6210 llvm::make_unique<GlobalVarSummary>(Flags); 6211 LastSeenSummary = FS.get(); 6212 FS->setModulePath(ModuleIdMap[ModuleId]); 6213 for (unsigned I = 3, E = Record.size(); I != E; ++I) { 6214 unsigned RefValueId = Record[I]; 6215 GlobalValue::GUID RefGUID = getGUIDFromValueId(RefValueId).first; 6216 FS->addRefEdge(RefGUID); 6217 } 6218 GlobalValue::GUID GUID = getGUIDFromValueId(ValueID).first; 6219 TheIndex->addGlobalValueSummary(GUID, std::move(FS)); 6220 Combined = true; 6221 break; 6222 } 6223 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6224 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6225 uint64_t OriginalName = Record[0]; 6226 if (!LastSeenSummary) 6227 return error("Name attachment that does not follow a combined record"); 6228 LastSeenSummary->setOriginalName(OriginalName); 6229 // Reset the LastSeenSummary 6230 LastSeenSummary = nullptr; 6231 } 6232 } 6233 } 6234 llvm_unreachable("Exit infinite loop"); 6235 } 6236 6237 // Parse the module string table block into the Index. 6238 // This populates the ModulePathStringTable map in the index. 6239 std::error_code ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6240 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6241 return error("Invalid record"); 6242 6243 SmallVector<uint64_t, 64> Record; 6244 6245 SmallString<128> ModulePath; 6246 ModulePathStringTableTy::iterator LastSeenModulePath; 6247 while (1) { 6248 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6249 6250 switch (Entry.Kind) { 6251 case BitstreamEntry::SubBlock: // Handled for us already. 6252 case BitstreamEntry::Error: 6253 return error("Malformed block"); 6254 case BitstreamEntry::EndBlock: 6255 return std::error_code(); 6256 case BitstreamEntry::Record: 6257 // The interesting case. 6258 break; 6259 } 6260 6261 Record.clear(); 6262 switch (Stream.readRecord(Entry.ID, Record)) { 6263 default: // Default behavior: ignore. 6264 break; 6265 case bitc::MST_CODE_ENTRY: { 6266 // MST_ENTRY: [modid, namechar x N] 6267 uint64_t ModuleId = Record[0]; 6268 6269 if (convertToString(Record, 1, ModulePath)) 6270 return error("Invalid record"); 6271 6272 LastSeenModulePath = TheIndex->addModulePath(ModulePath, ModuleId); 6273 ModuleIdMap[ModuleId] = LastSeenModulePath->first(); 6274 6275 ModulePath.clear(); 6276 break; 6277 } 6278 /// MST_CODE_HASH: [5*i32] 6279 case bitc::MST_CODE_HASH: { 6280 if (Record.size() != 5) 6281 return error("Invalid hash length " + Twine(Record.size()).str()); 6282 if (LastSeenModulePath == TheIndex->modulePaths().end()) 6283 return error("Invalid hash that does not follow a module path"); 6284 int Pos = 0; 6285 for (auto &Val : Record) { 6286 assert(!(Val >> 32) && "Unexpected high bits set"); 6287 LastSeenModulePath->second.second[Pos++] = Val; 6288 } 6289 // Reset LastSeenModulePath to avoid overriding the hash unexpectedly. 6290 LastSeenModulePath = TheIndex->modulePaths().end(); 6291 break; 6292 } 6293 } 6294 } 6295 llvm_unreachable("Exit infinite loop"); 6296 } 6297 6298 // Parse the function info index from the bitcode streamer into the given index. 6299 std::error_code ModuleSummaryIndexBitcodeReader::parseSummaryIndexInto( 6300 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I) { 6301 TheIndex = I; 6302 6303 if (std::error_code EC = initStream(std::move(Streamer))) 6304 return EC; 6305 6306 // Sniff for the signature. 6307 if (!hasValidBitcodeHeader(Stream)) 6308 return error("Invalid bitcode signature"); 6309 6310 // We expect a number of well-defined blocks, though we don't necessarily 6311 // need to understand them all. 6312 while (1) { 6313 if (Stream.AtEndOfStream()) { 6314 // We didn't really read a proper Module block. 6315 return error("Malformed block"); 6316 } 6317 6318 BitstreamEntry Entry = 6319 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 6320 6321 if (Entry.Kind != BitstreamEntry::SubBlock) 6322 return error("Malformed block"); 6323 6324 // If we see a MODULE_BLOCK, parse it to find the blocks needed for 6325 // building the function summary index. 6326 if (Entry.ID == bitc::MODULE_BLOCK_ID) 6327 return parseModule(); 6328 6329 if (Stream.SkipBlock()) 6330 return error("Invalid record"); 6331 } 6332 } 6333 6334 // Parse the summary information at the given offset in the buffer into 6335 // the index. Used to support lazy parsing of summaries from the 6336 // combined index during importing. 6337 // TODO: This function is not yet complete as it won't have a consumer 6338 // until ThinLTO function importing is added. 6339 std::error_code ModuleSummaryIndexBitcodeReader::parseGlobalValueSummary( 6340 std::unique_ptr<DataStreamer> Streamer, ModuleSummaryIndex *I, 6341 size_t SummaryOffset) { 6342 TheIndex = I; 6343 6344 if (std::error_code EC = initStream(std::move(Streamer))) 6345 return EC; 6346 6347 // Sniff for the signature. 6348 if (!hasValidBitcodeHeader(Stream)) 6349 return error("Invalid bitcode signature"); 6350 6351 Stream.JumpToBit(SummaryOffset); 6352 6353 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 6354 6355 switch (Entry.Kind) { 6356 default: 6357 return error("Malformed block"); 6358 case BitstreamEntry::Record: 6359 // The expected case. 6360 break; 6361 } 6362 6363 // TODO: Read a record. This interface will be completed when ThinLTO 6364 // importing is added so that it can be tested. 6365 SmallVector<uint64_t, 64> Record; 6366 switch (Stream.readRecord(Entry.ID, Record)) { 6367 case bitc::FS_COMBINED: 6368 case bitc::FS_COMBINED_PROFILE: 6369 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: 6370 default: 6371 return error("Invalid record"); 6372 } 6373 6374 return std::error_code(); 6375 } 6376 6377 std::error_code ModuleSummaryIndexBitcodeReader::initStream( 6378 std::unique_ptr<DataStreamer> Streamer) { 6379 if (Streamer) 6380 return initLazyStream(std::move(Streamer)); 6381 return initStreamFromBuffer(); 6382 } 6383 6384 std::error_code ModuleSummaryIndexBitcodeReader::initStreamFromBuffer() { 6385 const unsigned char *BufPtr = (const unsigned char *)Buffer->getBufferStart(); 6386 const unsigned char *BufEnd = BufPtr + Buffer->getBufferSize(); 6387 6388 if (Buffer->getBufferSize() & 3) 6389 return error("Invalid bitcode signature"); 6390 6391 // If we have a wrapper header, parse it and ignore the non-bc file contents. 6392 // The magic number is 0x0B17C0DE stored in little endian. 6393 if (isBitcodeWrapper(BufPtr, BufEnd)) 6394 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 6395 return error("Invalid bitcode wrapper header"); 6396 6397 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 6398 Stream.init(&*StreamFile); 6399 6400 return std::error_code(); 6401 } 6402 6403 std::error_code ModuleSummaryIndexBitcodeReader::initLazyStream( 6404 std::unique_ptr<DataStreamer> Streamer) { 6405 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 6406 // see it. 6407 auto OwnedBytes = 6408 llvm::make_unique<StreamingMemoryObject>(std::move(Streamer)); 6409 StreamingMemoryObject &Bytes = *OwnedBytes; 6410 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 6411 Stream.init(&*StreamFile); 6412 6413 unsigned char buf[16]; 6414 if (Bytes.readBytes(buf, 16, 0) != 16) 6415 return error("Invalid bitcode signature"); 6416 6417 if (!isBitcode(buf, buf + 16)) 6418 return error("Invalid bitcode signature"); 6419 6420 if (isBitcodeWrapper(buf, buf + 4)) { 6421 const unsigned char *bitcodeStart = buf; 6422 const unsigned char *bitcodeEnd = buf + 16; 6423 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 6424 Bytes.dropLeadingBytes(bitcodeStart - buf); 6425 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 6426 } 6427 return std::error_code(); 6428 } 6429 6430 namespace { 6431 class BitcodeErrorCategoryType : public std::error_category { 6432 const char *name() const LLVM_NOEXCEPT override { 6433 return "llvm.bitcode"; 6434 } 6435 std::string message(int IE) const override { 6436 BitcodeError E = static_cast<BitcodeError>(IE); 6437 switch (E) { 6438 case BitcodeError::InvalidBitcodeSignature: 6439 return "Invalid bitcode signature"; 6440 case BitcodeError::CorruptedBitcode: 6441 return "Corrupted bitcode"; 6442 } 6443 llvm_unreachable("Unknown error type!"); 6444 } 6445 }; 6446 } // end anonymous namespace 6447 6448 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6449 6450 const std::error_category &llvm::BitcodeErrorCategory() { 6451 return *ErrorCategory; 6452 } 6453 6454 //===----------------------------------------------------------------------===// 6455 // External interface 6456 //===----------------------------------------------------------------------===// 6457 6458 static ErrorOr<std::unique_ptr<Module>> 6459 getBitcodeModuleImpl(std::unique_ptr<DataStreamer> Streamer, StringRef Name, 6460 BitcodeReader *R, LLVMContext &Context, 6461 bool MaterializeAll, bool ShouldLazyLoadMetadata) { 6462 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6463 M->setMaterializer(R); 6464 6465 auto cleanupOnError = [&](std::error_code EC) { 6466 R->releaseBuffer(); // Never take ownership on error. 6467 return EC; 6468 }; 6469 6470 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6471 if (std::error_code EC = R->parseBitcodeInto(std::move(Streamer), M.get(), 6472 ShouldLazyLoadMetadata)) 6473 return cleanupOnError(EC); 6474 6475 if (MaterializeAll) { 6476 // Read in the entire module, and destroy the BitcodeReader. 6477 if (std::error_code EC = M->materializeAll()) 6478 return cleanupOnError(EC); 6479 } else { 6480 // Resolve forward references from blockaddresses. 6481 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 6482 return cleanupOnError(EC); 6483 } 6484 return std::move(M); 6485 } 6486 6487 /// \brief Get a lazy one-at-time loading module from bitcode. 6488 /// 6489 /// This isn't always used in a lazy context. In particular, it's also used by 6490 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 6491 /// in forward-referenced functions from block address references. 6492 /// 6493 /// \param[in] MaterializeAll Set to \c true if we should materialize 6494 /// everything. 6495 static ErrorOr<std::unique_ptr<Module>> 6496 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 6497 LLVMContext &Context, bool MaterializeAll, 6498 bool ShouldLazyLoadMetadata = false) { 6499 BitcodeReader *R = new BitcodeReader(Buffer.get(), Context); 6500 6501 ErrorOr<std::unique_ptr<Module>> Ret = 6502 getBitcodeModuleImpl(nullptr, Buffer->getBufferIdentifier(), R, Context, 6503 MaterializeAll, ShouldLazyLoadMetadata); 6504 if (!Ret) 6505 return Ret; 6506 6507 Buffer.release(); // The BitcodeReader owns it now. 6508 return Ret; 6509 } 6510 6511 ErrorOr<std::unique_ptr<Module>> 6512 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 6513 LLVMContext &Context, bool ShouldLazyLoadMetadata) { 6514 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 6515 ShouldLazyLoadMetadata); 6516 } 6517 6518 ErrorOr<std::unique_ptr<Module>> 6519 llvm::getStreamedBitcodeModule(StringRef Name, 6520 std::unique_ptr<DataStreamer> Streamer, 6521 LLVMContext &Context) { 6522 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 6523 BitcodeReader *R = new BitcodeReader(Context); 6524 6525 return getBitcodeModuleImpl(std::move(Streamer), Name, R, Context, false, 6526 false); 6527 } 6528 6529 ErrorOr<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6530 LLVMContext &Context) { 6531 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6532 return getLazyBitcodeModuleImpl(std::move(Buf), Context, true); 6533 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6534 // written. We must defer until the Module has been fully materialized. 6535 } 6536 6537 std::string llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, 6538 LLVMContext &Context) { 6539 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6540 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context); 6541 ErrorOr<std::string> Triple = R->parseTriple(); 6542 if (Triple.getError()) 6543 return ""; 6544 return Triple.get(); 6545 } 6546 6547 std::string llvm::getBitcodeProducerString(MemoryBufferRef Buffer, 6548 LLVMContext &Context) { 6549 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6550 BitcodeReader R(Buf.release(), Context); 6551 ErrorOr<std::string> ProducerString = R.parseIdentificationBlock(); 6552 if (ProducerString.getError()) 6553 return ""; 6554 return ProducerString.get(); 6555 } 6556 6557 // Parse the specified bitcode buffer, returning the function info index. 6558 ErrorOr<std::unique_ptr<ModuleSummaryIndex>> 6559 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer, 6560 DiagnosticHandlerFunction DiagnosticHandler) { 6561 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6562 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler); 6563 6564 auto Index = llvm::make_unique<ModuleSummaryIndex>(); 6565 6566 auto cleanupOnError = [&](std::error_code EC) { 6567 R.releaseBuffer(); // Never take ownership on error. 6568 return EC; 6569 }; 6570 6571 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, Index.get())) 6572 return cleanupOnError(EC); 6573 6574 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6575 return std::move(Index); 6576 } 6577 6578 // Check if the given bitcode buffer contains a global value summary block. 6579 bool llvm::hasGlobalValueSummary(MemoryBufferRef Buffer, 6580 DiagnosticHandlerFunction DiagnosticHandler) { 6581 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 6582 ModuleSummaryIndexBitcodeReader R(Buf.get(), DiagnosticHandler, true); 6583 6584 auto cleanupOnError = [&](std::error_code EC) { 6585 R.releaseBuffer(); // Never take ownership on error. 6586 return false; 6587 }; 6588 6589 if (std::error_code EC = R.parseSummaryIndexInto(nullptr, nullptr)) 6590 return cleanupOnError(EC); 6591 6592 Buf.release(); // The ModuleSummaryIndexBitcodeReader owns it now. 6593 return R.foundGlobalValSummary(); 6594 } 6595