1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "llvm/Bitcode/BitcodeReader.h"
11 #include "MetadataLoader.h"
12 #include "ValueList.h"
13 #include "llvm/ADT/APFloat.h"
14 #include "llvm/ADT/APInt.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/Triple.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Bitcode/BitstreamReader.h"
25 #include "llvm/Bitcode/LLVMBitCodes.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 /// Helper to read the header common to all bitcode files.
109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) {
110   // Sniff for the signature.
111   if (!Stream.canSkipToPos(4) ||
112       Stream.Read(8) != 'B' ||
113       Stream.Read(8) != 'C' ||
114       Stream.Read(4) != 0x0 ||
115       Stream.Read(4) != 0xC ||
116       Stream.Read(4) != 0xE ||
117       Stream.Read(4) != 0xD)
118     return false;
119   return true;
120 }
121 
122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
123   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
124   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
125 
126   if (Buffer.getBufferSize() & 3)
127     return error("Invalid bitcode signature");
128 
129   // If we have a wrapper header, parse it and ignore the non-bc file contents.
130   // The magic number is 0x0B17C0DE stored in little endian.
131   if (isBitcodeWrapper(BufPtr, BufEnd))
132     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
133       return error("Invalid bitcode wrapper header");
134 
135   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
136   if (!hasValidBitcodeHeader(Stream))
137     return error("Invalid bitcode signature");
138 
139   return std::move(Stream);
140 }
141 
142 /// Convert a string from a record into an std::string, return true on failure.
143 template <typename StrTy>
144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
145                             StrTy &Result) {
146   if (Idx > Record.size())
147     return true;
148 
149   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
150     Result += (char)Record[i];
151   return false;
152 }
153 
154 // Strip all the TBAA attachment for the module.
155 static void stripTBAA(Module *M) {
156   for (auto &F : *M) {
157     if (F.isMaterializable())
158       continue;
159     for (auto &I : instructions(F))
160       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
161   }
162 }
163 
164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
165 /// "epoch" encoded in the bitcode, and return the producer name if any.
166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
167   if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
168     return error("Invalid record");
169 
170   // Read all the records.
171   SmallVector<uint64_t, 64> Record;
172 
173   std::string ProducerIdentification;
174 
175   while (true) {
176     BitstreamEntry Entry = Stream.advance();
177 
178     switch (Entry.Kind) {
179     default:
180     case BitstreamEntry::Error:
181       return error("Malformed block");
182     case BitstreamEntry::EndBlock:
183       return ProducerIdentification;
184     case BitstreamEntry::Record:
185       // The interesting case.
186       break;
187     }
188 
189     // Read a record.
190     Record.clear();
191     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
192     switch (BitCode) {
193     default: // Default behavior: reject
194       return error("Invalid value");
195     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
196       convertToString(Record, 0, ProducerIdentification);
197       break;
198     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
199       unsigned epoch = (unsigned)Record[0];
200       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
201         return error(
202           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
203           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
204       }
205     }
206     }
207   }
208 }
209 
210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
211   // We expect a number of well-defined blocks, though we don't necessarily
212   // need to understand them all.
213   while (true) {
214     if (Stream.AtEndOfStream())
215       return "";
216 
217     BitstreamEntry Entry = Stream.advance();
218     switch (Entry.Kind) {
219     case BitstreamEntry::EndBlock:
220     case BitstreamEntry::Error:
221       return error("Malformed block");
222 
223     case BitstreamEntry::SubBlock:
224       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
225         return readIdentificationBlock(Stream);
226 
227       // Ignore other sub-blocks.
228       if (Stream.SkipBlock())
229         return error("Malformed block");
230       continue;
231     case BitstreamEntry::Record:
232       Stream.skipRecord(Entry.ID);
233       continue;
234     }
235   }
236 }
237 
238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
239   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
240     return error("Invalid record");
241 
242   SmallVector<uint64_t, 64> Record;
243   // Read all the records for this module.
244 
245   while (true) {
246     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
247 
248     switch (Entry.Kind) {
249     case BitstreamEntry::SubBlock: // Handled for us already.
250     case BitstreamEntry::Error:
251       return error("Malformed block");
252     case BitstreamEntry::EndBlock:
253       return false;
254     case BitstreamEntry::Record:
255       // The interesting case.
256       break;
257     }
258 
259     // Read a record.
260     switch (Stream.readRecord(Entry.ID, Record)) {
261     default:
262       break; // Default behavior, ignore unknown content.
263     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
264       std::string S;
265       if (convertToString(Record, 0, S))
266         return error("Invalid record");
267       // Check for the i386 and other (x86_64, ARM) conventions
268       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
269           S.find("__OBJC,__category") != std::string::npos)
270         return true;
271       break;
272     }
273     }
274     Record.clear();
275   }
276   llvm_unreachable("Exit infinite loop");
277 }
278 
279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
280   // We expect a number of well-defined blocks, though we don't necessarily
281   // need to understand them all.
282   while (true) {
283     BitstreamEntry Entry = Stream.advance();
284 
285     switch (Entry.Kind) {
286     case BitstreamEntry::Error:
287       return error("Malformed block");
288     case BitstreamEntry::EndBlock:
289       return false;
290 
291     case BitstreamEntry::SubBlock:
292       if (Entry.ID == bitc::MODULE_BLOCK_ID)
293         return hasObjCCategoryInModule(Stream);
294 
295       // Ignore other sub-blocks.
296       if (Stream.SkipBlock())
297         return error("Malformed block");
298       continue;
299 
300     case BitstreamEntry::Record:
301       Stream.skipRecord(Entry.ID);
302       continue;
303     }
304   }
305 }
306 
307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
308   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
309     return error("Invalid record");
310 
311   SmallVector<uint64_t, 64> Record;
312 
313   std::string Triple;
314 
315   // Read all the records for this module.
316   while (true) {
317     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
318 
319     switch (Entry.Kind) {
320     case BitstreamEntry::SubBlock: // Handled for us already.
321     case BitstreamEntry::Error:
322       return error("Malformed block");
323     case BitstreamEntry::EndBlock:
324       return Triple;
325     case BitstreamEntry::Record:
326       // The interesting case.
327       break;
328     }
329 
330     // Read a record.
331     switch (Stream.readRecord(Entry.ID, Record)) {
332     default: break;  // Default behavior, ignore unknown content.
333     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
334       std::string S;
335       if (convertToString(Record, 0, S))
336         return error("Invalid record");
337       Triple = S;
338       break;
339     }
340     }
341     Record.clear();
342   }
343   llvm_unreachable("Exit infinite loop");
344 }
345 
346 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
347   // We expect a number of well-defined blocks, though we don't necessarily
348   // need to understand them all.
349   while (true) {
350     BitstreamEntry Entry = Stream.advance();
351 
352     switch (Entry.Kind) {
353     case BitstreamEntry::Error:
354       return error("Malformed block");
355     case BitstreamEntry::EndBlock:
356       return "";
357 
358     case BitstreamEntry::SubBlock:
359       if (Entry.ID == bitc::MODULE_BLOCK_ID)
360         return readModuleTriple(Stream);
361 
362       // Ignore other sub-blocks.
363       if (Stream.SkipBlock())
364         return error("Malformed block");
365       continue;
366 
367     case BitstreamEntry::Record:
368       Stream.skipRecord(Entry.ID);
369       continue;
370     }
371   }
372 }
373 
374 namespace {
375 
376 class BitcodeReaderBase {
377 protected:
378   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
379       : Stream(std::move(Stream)), Strtab(Strtab) {
380     this->Stream.setBlockInfo(&BlockInfo);
381   }
382 
383   BitstreamBlockInfo BlockInfo;
384   BitstreamCursor Stream;
385   StringRef Strtab;
386 
387   /// In version 2 of the bitcode we store names of global values and comdats in
388   /// a string table rather than in the VST.
389   bool UseStrtab = false;
390 
391   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
392 
393   /// If this module uses a string table, pop the reference to the string table
394   /// and return the referenced string and the rest of the record. Otherwise
395   /// just return the record itself.
396   std::pair<StringRef, ArrayRef<uint64_t>>
397   readNameFromStrtab(ArrayRef<uint64_t> Record);
398 
399   bool readBlockInfo();
400 
401   // Contains an arbitrary and optional string identifying the bitcode producer
402   std::string ProducerIdentification;
403 
404   Error error(const Twine &Message);
405 };
406 
407 } // end anonymous namespace
408 
409 Error BitcodeReaderBase::error(const Twine &Message) {
410   std::string FullMsg = Message.str();
411   if (!ProducerIdentification.empty())
412     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
413                LLVM_VERSION_STRING "')";
414   return ::error(FullMsg);
415 }
416 
417 Expected<unsigned>
418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
419   if (Record.empty())
420     return error("Invalid record");
421   unsigned ModuleVersion = Record[0];
422   if (ModuleVersion > 2)
423     return error("Invalid value");
424   UseStrtab = ModuleVersion >= 2;
425   return ModuleVersion;
426 }
427 
428 std::pair<StringRef, ArrayRef<uint64_t>>
429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
430   if (!UseStrtab)
431     return {"", Record};
432   // Invalid reference. Let the caller complain about the record being empty.
433   if (Record[0] + Record[1] > Strtab.size())
434     return {"", {}};
435   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
436 }
437 
438 namespace {
439 
440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
441   LLVMContext &Context;
442   Module *TheModule = nullptr;
443   // Next offset to start scanning for lazy parsing of function bodies.
444   uint64_t NextUnreadBit = 0;
445   // Last function offset found in the VST.
446   uint64_t LastFunctionBlockBit = 0;
447   bool SeenValueSymbolTable = false;
448   uint64_t VSTOffset = 0;
449 
450   std::vector<std::string> SectionTable;
451   std::vector<std::string> GCTable;
452 
453   std::vector<Type*> TypeList;
454   BitcodeReaderValueList ValueList;
455   Optional<MetadataLoader> MDLoader;
456   std::vector<Comdat *> ComdatList;
457   SmallVector<Instruction *, 64> InstructionList;
458 
459   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
460   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
461   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
462   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
463   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
464 
465   /// The set of attributes by index.  Index zero in the file is for null, and
466   /// is thus not represented here.  As such all indices are off by one.
467   std::vector<AttributeList> MAttributes;
468 
469   /// The set of attribute groups.
470   std::map<unsigned, AttributeList> MAttributeGroups;
471 
472   /// While parsing a function body, this is a list of the basic blocks for the
473   /// function.
474   std::vector<BasicBlock*> FunctionBBs;
475 
476   // When reading the module header, this list is populated with functions that
477   // have bodies later in the file.
478   std::vector<Function*> FunctionsWithBodies;
479 
480   // When intrinsic functions are encountered which require upgrading they are
481   // stored here with their replacement function.
482   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
483   UpdatedIntrinsicMap UpgradedIntrinsics;
484   // Intrinsics which were remangled because of types rename
485   UpdatedIntrinsicMap RemangledIntrinsics;
486 
487   // Several operations happen after the module header has been read, but
488   // before function bodies are processed. This keeps track of whether
489   // we've done this yet.
490   bool SeenFirstFunctionBody = false;
491 
492   /// When function bodies are initially scanned, this map contains info about
493   /// where to find deferred function body in the stream.
494   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
495 
496   /// When Metadata block is initially scanned when parsing the module, we may
497   /// choose to defer parsing of the metadata. This vector contains info about
498   /// which Metadata blocks are deferred.
499   std::vector<uint64_t> DeferredMetadataInfo;
500 
501   /// These are basic blocks forward-referenced by block addresses.  They are
502   /// inserted lazily into functions when they're loaded.  The basic block ID is
503   /// its index into the vector.
504   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
505   std::deque<Function *> BasicBlockFwdRefQueue;
506 
507   /// Indicates that we are using a new encoding for instruction operands where
508   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
509   /// instruction number, for a more compact encoding.  Some instruction
510   /// operands are not relative to the instruction ID: basic block numbers, and
511   /// types. Once the old style function blocks have been phased out, we would
512   /// not need this flag.
513   bool UseRelativeIDs = false;
514 
515   /// True if all functions will be materialized, negating the need to process
516   /// (e.g.) blockaddress forward references.
517   bool WillMaterializeAllForwardRefs = false;
518 
519   bool StripDebugInfo = false;
520   TBAAVerifier TBAAVerifyHelper;
521 
522   std::vector<std::string> BundleTags;
523   SmallVector<SyncScope::ID, 8> SSIDs;
524 
525 public:
526   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
527                 StringRef ProducerIdentification, LLVMContext &Context);
528 
529   Error materializeForwardReferencedFunctions();
530 
531   Error materialize(GlobalValue *GV) override;
532   Error materializeModule() override;
533   std::vector<StructType *> getIdentifiedStructTypes() const override;
534 
535   /// \brief Main interface to parsing a bitcode buffer.
536   /// \returns true if an error occurred.
537   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
538                          bool IsImporting = false);
539 
540   static uint64_t decodeSignRotatedValue(uint64_t V);
541 
542   /// Materialize any deferred Metadata block.
543   Error materializeMetadata() override;
544 
545   void setStripDebugInfo() override;
546 
547 private:
548   std::vector<StructType *> IdentifiedStructTypes;
549   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
550   StructType *createIdentifiedStructType(LLVMContext &Context);
551 
552   Type *getTypeByID(unsigned ID);
553 
554   Value *getFnValueByID(unsigned ID, Type *Ty) {
555     if (Ty && Ty->isMetadataTy())
556       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
557     return ValueList.getValueFwdRef(ID, Ty);
558   }
559 
560   Metadata *getFnMetadataByID(unsigned ID) {
561     return MDLoader->getMetadataFwdRefOrLoad(ID);
562   }
563 
564   BasicBlock *getBasicBlock(unsigned ID) const {
565     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
566     return FunctionBBs[ID];
567   }
568 
569   AttributeList getAttributes(unsigned i) const {
570     if (i-1 < MAttributes.size())
571       return MAttributes[i-1];
572     return AttributeList();
573   }
574 
575   /// Read a value/type pair out of the specified record from slot 'Slot'.
576   /// Increment Slot past the number of slots used in the record. Return true on
577   /// failure.
578   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
579                         unsigned InstNum, Value *&ResVal) {
580     if (Slot == Record.size()) return true;
581     unsigned ValNo = (unsigned)Record[Slot++];
582     // Adjust the ValNo, if it was encoded relative to the InstNum.
583     if (UseRelativeIDs)
584       ValNo = InstNum - ValNo;
585     if (ValNo < InstNum) {
586       // If this is not a forward reference, just return the value we already
587       // have.
588       ResVal = getFnValueByID(ValNo, nullptr);
589       return ResVal == nullptr;
590     }
591     if (Slot == Record.size())
592       return true;
593 
594     unsigned TypeNo = (unsigned)Record[Slot++];
595     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
596     return ResVal == nullptr;
597   }
598 
599   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
600   /// past the number of slots used by the value in the record. Return true if
601   /// there is an error.
602   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
603                 unsigned InstNum, Type *Ty, Value *&ResVal) {
604     if (getValue(Record, Slot, InstNum, Ty, ResVal))
605       return true;
606     // All values currently take a single record slot.
607     ++Slot;
608     return false;
609   }
610 
611   /// Like popValue, but does not increment the Slot number.
612   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
613                 unsigned InstNum, Type *Ty, Value *&ResVal) {
614     ResVal = getValue(Record, Slot, InstNum, Ty);
615     return ResVal == nullptr;
616   }
617 
618   /// Version of getValue that returns ResVal directly, or 0 if there is an
619   /// error.
620   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
621                   unsigned InstNum, Type *Ty) {
622     if (Slot == Record.size()) return nullptr;
623     unsigned ValNo = (unsigned)Record[Slot];
624     // Adjust the ValNo, if it was encoded relative to the InstNum.
625     if (UseRelativeIDs)
626       ValNo = InstNum - ValNo;
627     return getFnValueByID(ValNo, Ty);
628   }
629 
630   /// Like getValue, but decodes signed VBRs.
631   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
632                         unsigned InstNum, Type *Ty) {
633     if (Slot == Record.size()) return nullptr;
634     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
635     // Adjust the ValNo, if it was encoded relative to the InstNum.
636     if (UseRelativeIDs)
637       ValNo = InstNum - ValNo;
638     return getFnValueByID(ValNo, Ty);
639   }
640 
641   /// Converts alignment exponent (i.e. power of two (or zero)) to the
642   /// corresponding alignment to use. If alignment is too large, returns
643   /// a corresponding error code.
644   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
645   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
646   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
647 
648   Error parseComdatRecord(ArrayRef<uint64_t> Record);
649   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
650   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
651   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
652                                         ArrayRef<uint64_t> Record);
653 
654   Error parseAttributeBlock();
655   Error parseAttributeGroupBlock();
656   Error parseTypeTable();
657   Error parseTypeTableBody();
658   Error parseOperandBundleTags();
659   Error parseSyncScopeNames();
660 
661   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
662                                 unsigned NameIndex, Triple &TT);
663   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
664                                ArrayRef<uint64_t> Record);
665   Error parseValueSymbolTable(uint64_t Offset = 0);
666   Error parseGlobalValueSymbolTable();
667   Error parseConstants();
668   Error rememberAndSkipFunctionBodies();
669   Error rememberAndSkipFunctionBody();
670   /// Save the positions of the Metadata blocks and skip parsing the blocks.
671   Error rememberAndSkipMetadata();
672   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
673   Error parseFunctionBody(Function *F);
674   Error globalCleanup();
675   Error resolveGlobalAndIndirectSymbolInits();
676   Error parseUseLists();
677   Error findFunctionInStream(
678       Function *F,
679       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
680 
681   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
682 };
683 
684 /// Class to manage reading and parsing function summary index bitcode
685 /// files/sections.
686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
687   /// The module index built during parsing.
688   ModuleSummaryIndex &TheIndex;
689 
690   /// Indicates whether we have encountered a global value summary section
691   /// yet during parsing.
692   bool SeenGlobalValSummary = false;
693 
694   /// Indicates whether we have already parsed the VST, used for error checking.
695   bool SeenValueSymbolTable = false;
696 
697   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
698   /// Used to enable on-demand parsing of the VST.
699   uint64_t VSTOffset = 0;
700 
701   // Map to save ValueId to ValueInfo association that was recorded in the
702   // ValueSymbolTable. It is used after the VST is parsed to convert
703   // call graph edges read from the function summary from referencing
704   // callees by their ValueId to using the ValueInfo instead, which is how
705   // they are recorded in the summary index being built.
706   // We save a GUID which refers to the same global as the ValueInfo, but
707   // ignoring the linkage, i.e. for values other than local linkage they are
708   // identical.
709   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
710       ValueIdToValueInfoMap;
711 
712   /// Map populated during module path string table parsing, from the
713   /// module ID to a string reference owned by the index's module
714   /// path string table, used to correlate with combined index
715   /// summary records.
716   DenseMap<uint64_t, StringRef> ModuleIdMap;
717 
718   /// Original source file name recorded in a bitcode record.
719   std::string SourceFileName;
720 
721   /// The string identifier given to this module by the client, normally the
722   /// path to the bitcode file.
723   StringRef ModulePath;
724 
725   /// For per-module summary indexes, the unique numerical identifier given to
726   /// this module by the client.
727   unsigned ModuleId;
728 
729 public:
730   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
731                                   ModuleSummaryIndex &TheIndex,
732                                   StringRef ModulePath, unsigned ModuleId);
733 
734   Error parseModule();
735 
736 private:
737   void setValueGUID(uint64_t ValueID, StringRef ValueName,
738                     GlobalValue::LinkageTypes Linkage,
739                     StringRef SourceFileName);
740   Error parseValueSymbolTable(
741       uint64_t Offset,
742       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
743   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
744   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
745                                                     bool IsOldProfileFormat,
746                                                     bool HasProfile);
747   Error parseEntireSummary(unsigned ID);
748   Error parseModuleStringTable();
749 
750   std::pair<ValueInfo, GlobalValue::GUID>
751   getValueInfoFromValueId(unsigned ValueId);
752 
753   ModuleSummaryIndex::ModuleInfo *addThisModule();
754 };
755 
756 } // end anonymous namespace
757 
758 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
759                                                     Error Err) {
760   if (Err) {
761     std::error_code EC;
762     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
763       EC = EIB.convertToErrorCode();
764       Ctx.emitError(EIB.message());
765     });
766     return EC;
767   }
768   return std::error_code();
769 }
770 
771 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
772                              StringRef ProducerIdentification,
773                              LLVMContext &Context)
774     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
775       ValueList(Context) {
776   this->ProducerIdentification = ProducerIdentification;
777 }
778 
779 Error BitcodeReader::materializeForwardReferencedFunctions() {
780   if (WillMaterializeAllForwardRefs)
781     return Error::success();
782 
783   // Prevent recursion.
784   WillMaterializeAllForwardRefs = true;
785 
786   while (!BasicBlockFwdRefQueue.empty()) {
787     Function *F = BasicBlockFwdRefQueue.front();
788     BasicBlockFwdRefQueue.pop_front();
789     assert(F && "Expected valid function");
790     if (!BasicBlockFwdRefs.count(F))
791       // Already materialized.
792       continue;
793 
794     // Check for a function that isn't materializable to prevent an infinite
795     // loop.  When parsing a blockaddress stored in a global variable, there
796     // isn't a trivial way to check if a function will have a body without a
797     // linear search through FunctionsWithBodies, so just check it here.
798     if (!F->isMaterializable())
799       return error("Never resolved function from blockaddress");
800 
801     // Try to materialize F.
802     if (Error Err = materialize(F))
803       return Err;
804   }
805   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
806 
807   // Reset state.
808   WillMaterializeAllForwardRefs = false;
809   return Error::success();
810 }
811 
812 //===----------------------------------------------------------------------===//
813 //  Helper functions to implement forward reference resolution, etc.
814 //===----------------------------------------------------------------------===//
815 
816 static bool hasImplicitComdat(size_t Val) {
817   switch (Val) {
818   default:
819     return false;
820   case 1:  // Old WeakAnyLinkage
821   case 4:  // Old LinkOnceAnyLinkage
822   case 10: // Old WeakODRLinkage
823   case 11: // Old LinkOnceODRLinkage
824     return true;
825   }
826 }
827 
828 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
829   switch (Val) {
830   default: // Map unknown/new linkages to external
831   case 0:
832     return GlobalValue::ExternalLinkage;
833   case 2:
834     return GlobalValue::AppendingLinkage;
835   case 3:
836     return GlobalValue::InternalLinkage;
837   case 5:
838     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
839   case 6:
840     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
841   case 7:
842     return GlobalValue::ExternalWeakLinkage;
843   case 8:
844     return GlobalValue::CommonLinkage;
845   case 9:
846     return GlobalValue::PrivateLinkage;
847   case 12:
848     return GlobalValue::AvailableExternallyLinkage;
849   case 13:
850     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
851   case 14:
852     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
853   case 15:
854     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
855   case 1: // Old value with implicit comdat.
856   case 16:
857     return GlobalValue::WeakAnyLinkage;
858   case 10: // Old value with implicit comdat.
859   case 17:
860     return GlobalValue::WeakODRLinkage;
861   case 4: // Old value with implicit comdat.
862   case 18:
863     return GlobalValue::LinkOnceAnyLinkage;
864   case 11: // Old value with implicit comdat.
865   case 19:
866     return GlobalValue::LinkOnceODRLinkage;
867   }
868 }
869 
870 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
871   FunctionSummary::FFlags Flags;
872   Flags.ReadNone = RawFlags & 0x1;
873   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
874   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
875   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
876   return Flags;
877 }
878 
879 /// Decode the flags for GlobalValue in the summary.
880 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
881                                                             uint64_t Version) {
882   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
883   // like getDecodedLinkage() above. Any future change to the linkage enum and
884   // to getDecodedLinkage() will need to be taken into account here as above.
885   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
886   RawFlags = RawFlags >> 4;
887   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
888   // The Live flag wasn't introduced until version 3. For dead stripping
889   // to work correctly on earlier versions, we must conservatively treat all
890   // values as live.
891   bool Live = (RawFlags & 0x2) || Version < 3;
892   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live);
893 }
894 
895 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
896   switch (Val) {
897   default: // Map unknown visibilities to default.
898   case 0: return GlobalValue::DefaultVisibility;
899   case 1: return GlobalValue::HiddenVisibility;
900   case 2: return GlobalValue::ProtectedVisibility;
901   }
902 }
903 
904 static GlobalValue::DLLStorageClassTypes
905 getDecodedDLLStorageClass(unsigned Val) {
906   switch (Val) {
907   default: // Map unknown values to default.
908   case 0: return GlobalValue::DefaultStorageClass;
909   case 1: return GlobalValue::DLLImportStorageClass;
910   case 2: return GlobalValue::DLLExportStorageClass;
911   }
912 }
913 
914 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
915   switch (Val) {
916     case 0: return GlobalVariable::NotThreadLocal;
917     default: // Map unknown non-zero value to general dynamic.
918     case 1: return GlobalVariable::GeneralDynamicTLSModel;
919     case 2: return GlobalVariable::LocalDynamicTLSModel;
920     case 3: return GlobalVariable::InitialExecTLSModel;
921     case 4: return GlobalVariable::LocalExecTLSModel;
922   }
923 }
924 
925 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
926   switch (Val) {
927     default: // Map unknown to UnnamedAddr::None.
928     case 0: return GlobalVariable::UnnamedAddr::None;
929     case 1: return GlobalVariable::UnnamedAddr::Global;
930     case 2: return GlobalVariable::UnnamedAddr::Local;
931   }
932 }
933 
934 static int getDecodedCastOpcode(unsigned Val) {
935   switch (Val) {
936   default: return -1;
937   case bitc::CAST_TRUNC   : return Instruction::Trunc;
938   case bitc::CAST_ZEXT    : return Instruction::ZExt;
939   case bitc::CAST_SEXT    : return Instruction::SExt;
940   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
941   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
942   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
943   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
944   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
945   case bitc::CAST_FPEXT   : return Instruction::FPExt;
946   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
947   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
948   case bitc::CAST_BITCAST : return Instruction::BitCast;
949   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
950   }
951 }
952 
953 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
954   bool IsFP = Ty->isFPOrFPVectorTy();
955   // BinOps are only valid for int/fp or vector of int/fp types
956   if (!IsFP && !Ty->isIntOrIntVectorTy())
957     return -1;
958 
959   switch (Val) {
960   default:
961     return -1;
962   case bitc::BINOP_ADD:
963     return IsFP ? Instruction::FAdd : Instruction::Add;
964   case bitc::BINOP_SUB:
965     return IsFP ? Instruction::FSub : Instruction::Sub;
966   case bitc::BINOP_MUL:
967     return IsFP ? Instruction::FMul : Instruction::Mul;
968   case bitc::BINOP_UDIV:
969     return IsFP ? -1 : Instruction::UDiv;
970   case bitc::BINOP_SDIV:
971     return IsFP ? Instruction::FDiv : Instruction::SDiv;
972   case bitc::BINOP_UREM:
973     return IsFP ? -1 : Instruction::URem;
974   case bitc::BINOP_SREM:
975     return IsFP ? Instruction::FRem : Instruction::SRem;
976   case bitc::BINOP_SHL:
977     return IsFP ? -1 : Instruction::Shl;
978   case bitc::BINOP_LSHR:
979     return IsFP ? -1 : Instruction::LShr;
980   case bitc::BINOP_ASHR:
981     return IsFP ? -1 : Instruction::AShr;
982   case bitc::BINOP_AND:
983     return IsFP ? -1 : Instruction::And;
984   case bitc::BINOP_OR:
985     return IsFP ? -1 : Instruction::Or;
986   case bitc::BINOP_XOR:
987     return IsFP ? -1 : Instruction::Xor;
988   }
989 }
990 
991 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
992   switch (Val) {
993   default: return AtomicRMWInst::BAD_BINOP;
994   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
995   case bitc::RMW_ADD: return AtomicRMWInst::Add;
996   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
997   case bitc::RMW_AND: return AtomicRMWInst::And;
998   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
999   case bitc::RMW_OR: return AtomicRMWInst::Or;
1000   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1001   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1002   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1003   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1004   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1005   }
1006 }
1007 
1008 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1009   switch (Val) {
1010   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1011   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1012   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1013   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1014   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1015   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1016   default: // Map unknown orderings to sequentially-consistent.
1017   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1018   }
1019 }
1020 
1021 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1022   switch (Val) {
1023   default: // Map unknown selection kinds to any.
1024   case bitc::COMDAT_SELECTION_KIND_ANY:
1025     return Comdat::Any;
1026   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1027     return Comdat::ExactMatch;
1028   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1029     return Comdat::Largest;
1030   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1031     return Comdat::NoDuplicates;
1032   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1033     return Comdat::SameSize;
1034   }
1035 }
1036 
1037 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1038   FastMathFlags FMF;
1039   if (0 != (Val & FastMathFlags::UnsafeAlgebra))
1040     FMF.setUnsafeAlgebra();
1041   if (0 != (Val & FastMathFlags::NoNaNs))
1042     FMF.setNoNaNs();
1043   if (0 != (Val & FastMathFlags::NoInfs))
1044     FMF.setNoInfs();
1045   if (0 != (Val & FastMathFlags::NoSignedZeros))
1046     FMF.setNoSignedZeros();
1047   if (0 != (Val & FastMathFlags::AllowReciprocal))
1048     FMF.setAllowReciprocal();
1049   if (0 != (Val & FastMathFlags::AllowContract))
1050     FMF.setAllowContract(true);
1051   return FMF;
1052 }
1053 
1054 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1055   switch (Val) {
1056   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1057   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1058   }
1059 }
1060 
1061 Type *BitcodeReader::getTypeByID(unsigned ID) {
1062   // The type table size is always specified correctly.
1063   if (ID >= TypeList.size())
1064     return nullptr;
1065 
1066   if (Type *Ty = TypeList[ID])
1067     return Ty;
1068 
1069   // If we have a forward reference, the only possible case is when it is to a
1070   // named struct.  Just create a placeholder for now.
1071   return TypeList[ID] = createIdentifiedStructType(Context);
1072 }
1073 
1074 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1075                                                       StringRef Name) {
1076   auto *Ret = StructType::create(Context, Name);
1077   IdentifiedStructTypes.push_back(Ret);
1078   return Ret;
1079 }
1080 
1081 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1082   auto *Ret = StructType::create(Context);
1083   IdentifiedStructTypes.push_back(Ret);
1084   return Ret;
1085 }
1086 
1087 //===----------------------------------------------------------------------===//
1088 //  Functions for parsing blocks from the bitcode file
1089 //===----------------------------------------------------------------------===//
1090 
1091 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1092   switch (Val) {
1093   case Attribute::EndAttrKinds:
1094     llvm_unreachable("Synthetic enumerators which should never get here");
1095 
1096   case Attribute::None:            return 0;
1097   case Attribute::ZExt:            return 1 << 0;
1098   case Attribute::SExt:            return 1 << 1;
1099   case Attribute::NoReturn:        return 1 << 2;
1100   case Attribute::InReg:           return 1 << 3;
1101   case Attribute::StructRet:       return 1 << 4;
1102   case Attribute::NoUnwind:        return 1 << 5;
1103   case Attribute::NoAlias:         return 1 << 6;
1104   case Attribute::ByVal:           return 1 << 7;
1105   case Attribute::Nest:            return 1 << 8;
1106   case Attribute::ReadNone:        return 1 << 9;
1107   case Attribute::ReadOnly:        return 1 << 10;
1108   case Attribute::NoInline:        return 1 << 11;
1109   case Attribute::AlwaysInline:    return 1 << 12;
1110   case Attribute::OptimizeForSize: return 1 << 13;
1111   case Attribute::StackProtect:    return 1 << 14;
1112   case Attribute::StackProtectReq: return 1 << 15;
1113   case Attribute::Alignment:       return 31 << 16;
1114   case Attribute::NoCapture:       return 1 << 21;
1115   case Attribute::NoRedZone:       return 1 << 22;
1116   case Attribute::NoImplicitFloat: return 1 << 23;
1117   case Attribute::Naked:           return 1 << 24;
1118   case Attribute::InlineHint:      return 1 << 25;
1119   case Attribute::StackAlignment:  return 7 << 26;
1120   case Attribute::ReturnsTwice:    return 1 << 29;
1121   case Attribute::UWTable:         return 1 << 30;
1122   case Attribute::NonLazyBind:     return 1U << 31;
1123   case Attribute::SanitizeAddress: return 1ULL << 32;
1124   case Attribute::MinSize:         return 1ULL << 33;
1125   case Attribute::NoDuplicate:     return 1ULL << 34;
1126   case Attribute::StackProtectStrong: return 1ULL << 35;
1127   case Attribute::SanitizeThread:  return 1ULL << 36;
1128   case Attribute::SanitizeMemory:  return 1ULL << 37;
1129   case Attribute::NoBuiltin:       return 1ULL << 38;
1130   case Attribute::Returned:        return 1ULL << 39;
1131   case Attribute::Cold:            return 1ULL << 40;
1132   case Attribute::Builtin:         return 1ULL << 41;
1133   case Attribute::OptimizeNone:    return 1ULL << 42;
1134   case Attribute::InAlloca:        return 1ULL << 43;
1135   case Attribute::NonNull:         return 1ULL << 44;
1136   case Attribute::JumpTable:       return 1ULL << 45;
1137   case Attribute::Convergent:      return 1ULL << 46;
1138   case Attribute::SafeStack:       return 1ULL << 47;
1139   case Attribute::NoRecurse:       return 1ULL << 48;
1140   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1141   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1142   case Attribute::SwiftSelf:       return 1ULL << 51;
1143   case Attribute::SwiftError:      return 1ULL << 52;
1144   case Attribute::WriteOnly:       return 1ULL << 53;
1145   case Attribute::Speculatable:    return 1ULL << 54;
1146   case Attribute::StrictFP:        return 1ULL << 55;
1147   case Attribute::Dereferenceable:
1148     llvm_unreachable("dereferenceable attribute not supported in raw format");
1149     break;
1150   case Attribute::DereferenceableOrNull:
1151     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1152                      "format");
1153     break;
1154   case Attribute::ArgMemOnly:
1155     llvm_unreachable("argmemonly attribute not supported in raw format");
1156     break;
1157   case Attribute::AllocSize:
1158     llvm_unreachable("allocsize not supported in raw format");
1159     break;
1160   }
1161   llvm_unreachable("Unsupported attribute type");
1162 }
1163 
1164 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1165   if (!Val) return;
1166 
1167   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1168        I = Attribute::AttrKind(I + 1)) {
1169     if (I == Attribute::Dereferenceable ||
1170         I == Attribute::DereferenceableOrNull ||
1171         I == Attribute::ArgMemOnly ||
1172         I == Attribute::AllocSize)
1173       continue;
1174     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1175       if (I == Attribute::Alignment)
1176         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1177       else if (I == Attribute::StackAlignment)
1178         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1179       else
1180         B.addAttribute(I);
1181     }
1182   }
1183 }
1184 
1185 /// \brief This fills an AttrBuilder object with the LLVM attributes that have
1186 /// been decoded from the given integer. This function must stay in sync with
1187 /// 'encodeLLVMAttributesForBitcode'.
1188 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1189                                            uint64_t EncodedAttrs) {
1190   // FIXME: Remove in 4.0.
1191 
1192   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1193   // the bits above 31 down by 11 bits.
1194   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1195   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1196          "Alignment must be a power of two.");
1197 
1198   if (Alignment)
1199     B.addAlignmentAttr(Alignment);
1200   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1201                           (EncodedAttrs & 0xffff));
1202 }
1203 
1204 Error BitcodeReader::parseAttributeBlock() {
1205   if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1206     return error("Invalid record");
1207 
1208   if (!MAttributes.empty())
1209     return error("Invalid multiple blocks");
1210 
1211   SmallVector<uint64_t, 64> Record;
1212 
1213   SmallVector<AttributeList, 8> Attrs;
1214 
1215   // Read all the records.
1216   while (true) {
1217     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1218 
1219     switch (Entry.Kind) {
1220     case BitstreamEntry::SubBlock: // Handled for us already.
1221     case BitstreamEntry::Error:
1222       return error("Malformed block");
1223     case BitstreamEntry::EndBlock:
1224       return Error::success();
1225     case BitstreamEntry::Record:
1226       // The interesting case.
1227       break;
1228     }
1229 
1230     // Read a record.
1231     Record.clear();
1232     switch (Stream.readRecord(Entry.ID, Record)) {
1233     default:  // Default behavior: ignore.
1234       break;
1235     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1236       // FIXME: Remove in 4.0.
1237       if (Record.size() & 1)
1238         return error("Invalid record");
1239 
1240       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1241         AttrBuilder B;
1242         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1243         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1244       }
1245 
1246       MAttributes.push_back(AttributeList::get(Context, Attrs));
1247       Attrs.clear();
1248       break;
1249     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1250       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1251         Attrs.push_back(MAttributeGroups[Record[i]]);
1252 
1253       MAttributes.push_back(AttributeList::get(Context, Attrs));
1254       Attrs.clear();
1255       break;
1256     }
1257   }
1258 }
1259 
1260 // Returns Attribute::None on unrecognized codes.
1261 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1262   switch (Code) {
1263   default:
1264     return Attribute::None;
1265   case bitc::ATTR_KIND_ALIGNMENT:
1266     return Attribute::Alignment;
1267   case bitc::ATTR_KIND_ALWAYS_INLINE:
1268     return Attribute::AlwaysInline;
1269   case bitc::ATTR_KIND_ARGMEMONLY:
1270     return Attribute::ArgMemOnly;
1271   case bitc::ATTR_KIND_BUILTIN:
1272     return Attribute::Builtin;
1273   case bitc::ATTR_KIND_BY_VAL:
1274     return Attribute::ByVal;
1275   case bitc::ATTR_KIND_IN_ALLOCA:
1276     return Attribute::InAlloca;
1277   case bitc::ATTR_KIND_COLD:
1278     return Attribute::Cold;
1279   case bitc::ATTR_KIND_CONVERGENT:
1280     return Attribute::Convergent;
1281   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1282     return Attribute::InaccessibleMemOnly;
1283   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1284     return Attribute::InaccessibleMemOrArgMemOnly;
1285   case bitc::ATTR_KIND_INLINE_HINT:
1286     return Attribute::InlineHint;
1287   case bitc::ATTR_KIND_IN_REG:
1288     return Attribute::InReg;
1289   case bitc::ATTR_KIND_JUMP_TABLE:
1290     return Attribute::JumpTable;
1291   case bitc::ATTR_KIND_MIN_SIZE:
1292     return Attribute::MinSize;
1293   case bitc::ATTR_KIND_NAKED:
1294     return Attribute::Naked;
1295   case bitc::ATTR_KIND_NEST:
1296     return Attribute::Nest;
1297   case bitc::ATTR_KIND_NO_ALIAS:
1298     return Attribute::NoAlias;
1299   case bitc::ATTR_KIND_NO_BUILTIN:
1300     return Attribute::NoBuiltin;
1301   case bitc::ATTR_KIND_NO_CAPTURE:
1302     return Attribute::NoCapture;
1303   case bitc::ATTR_KIND_NO_DUPLICATE:
1304     return Attribute::NoDuplicate;
1305   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1306     return Attribute::NoImplicitFloat;
1307   case bitc::ATTR_KIND_NO_INLINE:
1308     return Attribute::NoInline;
1309   case bitc::ATTR_KIND_NO_RECURSE:
1310     return Attribute::NoRecurse;
1311   case bitc::ATTR_KIND_NON_LAZY_BIND:
1312     return Attribute::NonLazyBind;
1313   case bitc::ATTR_KIND_NON_NULL:
1314     return Attribute::NonNull;
1315   case bitc::ATTR_KIND_DEREFERENCEABLE:
1316     return Attribute::Dereferenceable;
1317   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1318     return Attribute::DereferenceableOrNull;
1319   case bitc::ATTR_KIND_ALLOC_SIZE:
1320     return Attribute::AllocSize;
1321   case bitc::ATTR_KIND_NO_RED_ZONE:
1322     return Attribute::NoRedZone;
1323   case bitc::ATTR_KIND_NO_RETURN:
1324     return Attribute::NoReturn;
1325   case bitc::ATTR_KIND_NO_UNWIND:
1326     return Attribute::NoUnwind;
1327   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1328     return Attribute::OptimizeForSize;
1329   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1330     return Attribute::OptimizeNone;
1331   case bitc::ATTR_KIND_READ_NONE:
1332     return Attribute::ReadNone;
1333   case bitc::ATTR_KIND_READ_ONLY:
1334     return Attribute::ReadOnly;
1335   case bitc::ATTR_KIND_RETURNED:
1336     return Attribute::Returned;
1337   case bitc::ATTR_KIND_RETURNS_TWICE:
1338     return Attribute::ReturnsTwice;
1339   case bitc::ATTR_KIND_S_EXT:
1340     return Attribute::SExt;
1341   case bitc::ATTR_KIND_SPECULATABLE:
1342     return Attribute::Speculatable;
1343   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1344     return Attribute::StackAlignment;
1345   case bitc::ATTR_KIND_STACK_PROTECT:
1346     return Attribute::StackProtect;
1347   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1348     return Attribute::StackProtectReq;
1349   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1350     return Attribute::StackProtectStrong;
1351   case bitc::ATTR_KIND_SAFESTACK:
1352     return Attribute::SafeStack;
1353   case bitc::ATTR_KIND_STRICT_FP:
1354     return Attribute::StrictFP;
1355   case bitc::ATTR_KIND_STRUCT_RET:
1356     return Attribute::StructRet;
1357   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1358     return Attribute::SanitizeAddress;
1359   case bitc::ATTR_KIND_SANITIZE_THREAD:
1360     return Attribute::SanitizeThread;
1361   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1362     return Attribute::SanitizeMemory;
1363   case bitc::ATTR_KIND_SWIFT_ERROR:
1364     return Attribute::SwiftError;
1365   case bitc::ATTR_KIND_SWIFT_SELF:
1366     return Attribute::SwiftSelf;
1367   case bitc::ATTR_KIND_UW_TABLE:
1368     return Attribute::UWTable;
1369   case bitc::ATTR_KIND_WRITEONLY:
1370     return Attribute::WriteOnly;
1371   case bitc::ATTR_KIND_Z_EXT:
1372     return Attribute::ZExt;
1373   }
1374 }
1375 
1376 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1377                                          unsigned &Alignment) {
1378   // Note: Alignment in bitcode files is incremented by 1, so that zero
1379   // can be used for default alignment.
1380   if (Exponent > Value::MaxAlignmentExponent + 1)
1381     return error("Invalid alignment value");
1382   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1383   return Error::success();
1384 }
1385 
1386 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1387   *Kind = getAttrFromCode(Code);
1388   if (*Kind == Attribute::None)
1389     return error("Unknown attribute kind (" + Twine(Code) + ")");
1390   return Error::success();
1391 }
1392 
1393 Error BitcodeReader::parseAttributeGroupBlock() {
1394   if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1395     return error("Invalid record");
1396 
1397   if (!MAttributeGroups.empty())
1398     return error("Invalid multiple blocks");
1399 
1400   SmallVector<uint64_t, 64> Record;
1401 
1402   // Read all the records.
1403   while (true) {
1404     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1405 
1406     switch (Entry.Kind) {
1407     case BitstreamEntry::SubBlock: // Handled for us already.
1408     case BitstreamEntry::Error:
1409       return error("Malformed block");
1410     case BitstreamEntry::EndBlock:
1411       return Error::success();
1412     case BitstreamEntry::Record:
1413       // The interesting case.
1414       break;
1415     }
1416 
1417     // Read a record.
1418     Record.clear();
1419     switch (Stream.readRecord(Entry.ID, Record)) {
1420     default:  // Default behavior: ignore.
1421       break;
1422     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1423       if (Record.size() < 3)
1424         return error("Invalid record");
1425 
1426       uint64_t GrpID = Record[0];
1427       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1428 
1429       AttrBuilder B;
1430       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1431         if (Record[i] == 0) {        // Enum attribute
1432           Attribute::AttrKind Kind;
1433           if (Error Err = parseAttrKind(Record[++i], &Kind))
1434             return Err;
1435 
1436           B.addAttribute(Kind);
1437         } else if (Record[i] == 1) { // Integer attribute
1438           Attribute::AttrKind Kind;
1439           if (Error Err = parseAttrKind(Record[++i], &Kind))
1440             return Err;
1441           if (Kind == Attribute::Alignment)
1442             B.addAlignmentAttr(Record[++i]);
1443           else if (Kind == Attribute::StackAlignment)
1444             B.addStackAlignmentAttr(Record[++i]);
1445           else if (Kind == Attribute::Dereferenceable)
1446             B.addDereferenceableAttr(Record[++i]);
1447           else if (Kind == Attribute::DereferenceableOrNull)
1448             B.addDereferenceableOrNullAttr(Record[++i]);
1449           else if (Kind == Attribute::AllocSize)
1450             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1451         } else {                     // String attribute
1452           assert((Record[i] == 3 || Record[i] == 4) &&
1453                  "Invalid attribute group entry");
1454           bool HasValue = (Record[i++] == 4);
1455           SmallString<64> KindStr;
1456           SmallString<64> ValStr;
1457 
1458           while (Record[i] != 0 && i != e)
1459             KindStr += Record[i++];
1460           assert(Record[i] == 0 && "Kind string not null terminated");
1461 
1462           if (HasValue) {
1463             // Has a value associated with it.
1464             ++i; // Skip the '0' that terminates the "kind" string.
1465             while (Record[i] != 0 && i != e)
1466               ValStr += Record[i++];
1467             assert(Record[i] == 0 && "Value string not null terminated");
1468           }
1469 
1470           B.addAttribute(KindStr.str(), ValStr.str());
1471         }
1472       }
1473 
1474       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1475       break;
1476     }
1477     }
1478   }
1479 }
1480 
1481 Error BitcodeReader::parseTypeTable() {
1482   if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1483     return error("Invalid record");
1484 
1485   return parseTypeTableBody();
1486 }
1487 
1488 Error BitcodeReader::parseTypeTableBody() {
1489   if (!TypeList.empty())
1490     return error("Invalid multiple blocks");
1491 
1492   SmallVector<uint64_t, 64> Record;
1493   unsigned NumRecords = 0;
1494 
1495   SmallString<64> TypeName;
1496 
1497   // Read all the records for this type table.
1498   while (true) {
1499     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1500 
1501     switch (Entry.Kind) {
1502     case BitstreamEntry::SubBlock: // Handled for us already.
1503     case BitstreamEntry::Error:
1504       return error("Malformed block");
1505     case BitstreamEntry::EndBlock:
1506       if (NumRecords != TypeList.size())
1507         return error("Malformed block");
1508       return Error::success();
1509     case BitstreamEntry::Record:
1510       // The interesting case.
1511       break;
1512     }
1513 
1514     // Read a record.
1515     Record.clear();
1516     Type *ResultTy = nullptr;
1517     switch (Stream.readRecord(Entry.ID, Record)) {
1518     default:
1519       return error("Invalid value");
1520     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1521       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1522       // type list.  This allows us to reserve space.
1523       if (Record.size() < 1)
1524         return error("Invalid record");
1525       TypeList.resize(Record[0]);
1526       continue;
1527     case bitc::TYPE_CODE_VOID:      // VOID
1528       ResultTy = Type::getVoidTy(Context);
1529       break;
1530     case bitc::TYPE_CODE_HALF:     // HALF
1531       ResultTy = Type::getHalfTy(Context);
1532       break;
1533     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1534       ResultTy = Type::getFloatTy(Context);
1535       break;
1536     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1537       ResultTy = Type::getDoubleTy(Context);
1538       break;
1539     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1540       ResultTy = Type::getX86_FP80Ty(Context);
1541       break;
1542     case bitc::TYPE_CODE_FP128:     // FP128
1543       ResultTy = Type::getFP128Ty(Context);
1544       break;
1545     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1546       ResultTy = Type::getPPC_FP128Ty(Context);
1547       break;
1548     case bitc::TYPE_CODE_LABEL:     // LABEL
1549       ResultTy = Type::getLabelTy(Context);
1550       break;
1551     case bitc::TYPE_CODE_METADATA:  // METADATA
1552       ResultTy = Type::getMetadataTy(Context);
1553       break;
1554     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1555       ResultTy = Type::getX86_MMXTy(Context);
1556       break;
1557     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1558       ResultTy = Type::getTokenTy(Context);
1559       break;
1560     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1561       if (Record.size() < 1)
1562         return error("Invalid record");
1563 
1564       uint64_t NumBits = Record[0];
1565       if (NumBits < IntegerType::MIN_INT_BITS ||
1566           NumBits > IntegerType::MAX_INT_BITS)
1567         return error("Bitwidth for integer type out of range");
1568       ResultTy = IntegerType::get(Context, NumBits);
1569       break;
1570     }
1571     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1572                                     //          [pointee type, address space]
1573       if (Record.size() < 1)
1574         return error("Invalid record");
1575       unsigned AddressSpace = 0;
1576       if (Record.size() == 2)
1577         AddressSpace = Record[1];
1578       ResultTy = getTypeByID(Record[0]);
1579       if (!ResultTy ||
1580           !PointerType::isValidElementType(ResultTy))
1581         return error("Invalid type");
1582       ResultTy = PointerType::get(ResultTy, AddressSpace);
1583       break;
1584     }
1585     case bitc::TYPE_CODE_FUNCTION_OLD: {
1586       // FIXME: attrid is dead, remove it in LLVM 4.0
1587       // FUNCTION: [vararg, attrid, retty, paramty x N]
1588       if (Record.size() < 3)
1589         return error("Invalid record");
1590       SmallVector<Type*, 8> ArgTys;
1591       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1592         if (Type *T = getTypeByID(Record[i]))
1593           ArgTys.push_back(T);
1594         else
1595           break;
1596       }
1597 
1598       ResultTy = getTypeByID(Record[2]);
1599       if (!ResultTy || ArgTys.size() < Record.size()-3)
1600         return error("Invalid type");
1601 
1602       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1603       break;
1604     }
1605     case bitc::TYPE_CODE_FUNCTION: {
1606       // FUNCTION: [vararg, retty, paramty x N]
1607       if (Record.size() < 2)
1608         return error("Invalid record");
1609       SmallVector<Type*, 8> ArgTys;
1610       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1611         if (Type *T = getTypeByID(Record[i])) {
1612           if (!FunctionType::isValidArgumentType(T))
1613             return error("Invalid function argument type");
1614           ArgTys.push_back(T);
1615         }
1616         else
1617           break;
1618       }
1619 
1620       ResultTy = getTypeByID(Record[1]);
1621       if (!ResultTy || ArgTys.size() < Record.size()-2)
1622         return error("Invalid type");
1623 
1624       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1625       break;
1626     }
1627     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1628       if (Record.size() < 1)
1629         return error("Invalid record");
1630       SmallVector<Type*, 8> EltTys;
1631       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1632         if (Type *T = getTypeByID(Record[i]))
1633           EltTys.push_back(T);
1634         else
1635           break;
1636       }
1637       if (EltTys.size() != Record.size()-1)
1638         return error("Invalid type");
1639       ResultTy = StructType::get(Context, EltTys, Record[0]);
1640       break;
1641     }
1642     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1643       if (convertToString(Record, 0, TypeName))
1644         return error("Invalid record");
1645       continue;
1646 
1647     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1648       if (Record.size() < 1)
1649         return error("Invalid record");
1650 
1651       if (NumRecords >= TypeList.size())
1652         return error("Invalid TYPE table");
1653 
1654       // Check to see if this was forward referenced, if so fill in the temp.
1655       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1656       if (Res) {
1657         Res->setName(TypeName);
1658         TypeList[NumRecords] = nullptr;
1659       } else  // Otherwise, create a new struct.
1660         Res = createIdentifiedStructType(Context, TypeName);
1661       TypeName.clear();
1662 
1663       SmallVector<Type*, 8> EltTys;
1664       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1665         if (Type *T = getTypeByID(Record[i]))
1666           EltTys.push_back(T);
1667         else
1668           break;
1669       }
1670       if (EltTys.size() != Record.size()-1)
1671         return error("Invalid record");
1672       Res->setBody(EltTys, Record[0]);
1673       ResultTy = Res;
1674       break;
1675     }
1676     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1677       if (Record.size() != 1)
1678         return error("Invalid record");
1679 
1680       if (NumRecords >= TypeList.size())
1681         return error("Invalid TYPE table");
1682 
1683       // Check to see if this was forward referenced, if so fill in the temp.
1684       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1685       if (Res) {
1686         Res->setName(TypeName);
1687         TypeList[NumRecords] = nullptr;
1688       } else  // Otherwise, create a new struct with no body.
1689         Res = createIdentifiedStructType(Context, TypeName);
1690       TypeName.clear();
1691       ResultTy = Res;
1692       break;
1693     }
1694     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1695       if (Record.size() < 2)
1696         return error("Invalid record");
1697       ResultTy = getTypeByID(Record[1]);
1698       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1699         return error("Invalid type");
1700       ResultTy = ArrayType::get(ResultTy, Record[0]);
1701       break;
1702     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty]
1703       if (Record.size() < 2)
1704         return error("Invalid record");
1705       if (Record[0] == 0)
1706         return error("Invalid vector length");
1707       ResultTy = getTypeByID(Record[1]);
1708       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1709         return error("Invalid type");
1710       ResultTy = VectorType::get(ResultTy, Record[0]);
1711       break;
1712     }
1713 
1714     if (NumRecords >= TypeList.size())
1715       return error("Invalid TYPE table");
1716     if (TypeList[NumRecords])
1717       return error(
1718           "Invalid TYPE table: Only named structs can be forward referenced");
1719     assert(ResultTy && "Didn't read a type?");
1720     TypeList[NumRecords++] = ResultTy;
1721   }
1722 }
1723 
1724 Error BitcodeReader::parseOperandBundleTags() {
1725   if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1726     return error("Invalid record");
1727 
1728   if (!BundleTags.empty())
1729     return error("Invalid multiple blocks");
1730 
1731   SmallVector<uint64_t, 64> Record;
1732 
1733   while (true) {
1734     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1735 
1736     switch (Entry.Kind) {
1737     case BitstreamEntry::SubBlock: // Handled for us already.
1738     case BitstreamEntry::Error:
1739       return error("Malformed block");
1740     case BitstreamEntry::EndBlock:
1741       return Error::success();
1742     case BitstreamEntry::Record:
1743       // The interesting case.
1744       break;
1745     }
1746 
1747     // Tags are implicitly mapped to integers by their order.
1748 
1749     if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG)
1750       return error("Invalid record");
1751 
1752     // OPERAND_BUNDLE_TAG: [strchr x N]
1753     BundleTags.emplace_back();
1754     if (convertToString(Record, 0, BundleTags.back()))
1755       return error("Invalid record");
1756     Record.clear();
1757   }
1758 }
1759 
1760 Error BitcodeReader::parseSyncScopeNames() {
1761   if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1762     return error("Invalid record");
1763 
1764   if (!SSIDs.empty())
1765     return error("Invalid multiple synchronization scope names blocks");
1766 
1767   SmallVector<uint64_t, 64> Record;
1768   while (true) {
1769     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1770     switch (Entry.Kind) {
1771     case BitstreamEntry::SubBlock: // Handled for us already.
1772     case BitstreamEntry::Error:
1773       return error("Malformed block");
1774     case BitstreamEntry::EndBlock:
1775       if (SSIDs.empty())
1776         return error("Invalid empty synchronization scope names block");
1777       return Error::success();
1778     case BitstreamEntry::Record:
1779       // The interesting case.
1780       break;
1781     }
1782 
1783     // Synchronization scope names are implicitly mapped to synchronization
1784     // scope IDs by their order.
1785 
1786     if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME)
1787       return error("Invalid record");
1788 
1789     SmallString<16> SSN;
1790     if (convertToString(Record, 0, SSN))
1791       return error("Invalid record");
1792 
1793     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1794     Record.clear();
1795   }
1796 }
1797 
1798 /// Associate a value with its name from the given index in the provided record.
1799 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1800                                              unsigned NameIndex, Triple &TT) {
1801   SmallString<128> ValueName;
1802   if (convertToString(Record, NameIndex, ValueName))
1803     return error("Invalid record");
1804   unsigned ValueID = Record[0];
1805   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1806     return error("Invalid record");
1807   Value *V = ValueList[ValueID];
1808 
1809   StringRef NameStr(ValueName.data(), ValueName.size());
1810   if (NameStr.find_first_of(0) != StringRef::npos)
1811     return error("Invalid value name");
1812   V->setName(NameStr);
1813   auto *GO = dyn_cast<GlobalObject>(V);
1814   if (GO) {
1815     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1816       if (TT.isOSBinFormatMachO())
1817         GO->setComdat(nullptr);
1818       else
1819         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1820     }
1821   }
1822   return V;
1823 }
1824 
1825 /// Helper to note and return the current location, and jump to the given
1826 /// offset.
1827 static uint64_t jumpToValueSymbolTable(uint64_t Offset,
1828                                        BitstreamCursor &Stream) {
1829   // Save the current parsing location so we can jump back at the end
1830   // of the VST read.
1831   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1832   Stream.JumpToBit(Offset * 32);
1833 #ifndef NDEBUG
1834   // Do some checking if we are in debug mode.
1835   BitstreamEntry Entry = Stream.advance();
1836   assert(Entry.Kind == BitstreamEntry::SubBlock);
1837   assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1838 #else
1839   // In NDEBUG mode ignore the output so we don't get an unused variable
1840   // warning.
1841   Stream.advance();
1842 #endif
1843   return CurrentBit;
1844 }
1845 
1846 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
1847                                             Function *F,
1848                                             ArrayRef<uint64_t> Record) {
1849   // Note that we subtract 1 here because the offset is relative to one word
1850   // before the start of the identification or module block, which was
1851   // historically always the start of the regular bitcode header.
1852   uint64_t FuncWordOffset = Record[1] - 1;
1853   uint64_t FuncBitOffset = FuncWordOffset * 32;
1854   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
1855   // Set the LastFunctionBlockBit to point to the last function block.
1856   // Later when parsing is resumed after function materialization,
1857   // we can simply skip that last function block.
1858   if (FuncBitOffset > LastFunctionBlockBit)
1859     LastFunctionBlockBit = FuncBitOffset;
1860 }
1861 
1862 /// Read a new-style GlobalValue symbol table.
1863 Error BitcodeReader::parseGlobalValueSymbolTable() {
1864   unsigned FuncBitcodeOffsetDelta =
1865       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1866 
1867   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1868     return error("Invalid record");
1869 
1870   SmallVector<uint64_t, 64> Record;
1871   while (true) {
1872     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1873 
1874     switch (Entry.Kind) {
1875     case BitstreamEntry::SubBlock:
1876     case BitstreamEntry::Error:
1877       return error("Malformed block");
1878     case BitstreamEntry::EndBlock:
1879       return Error::success();
1880     case BitstreamEntry::Record:
1881       break;
1882     }
1883 
1884     Record.clear();
1885     switch (Stream.readRecord(Entry.ID, Record)) {
1886     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
1887       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
1888                               cast<Function>(ValueList[Record[0]]), Record);
1889       break;
1890     }
1891   }
1892 }
1893 
1894 /// Parse the value symbol table at either the current parsing location or
1895 /// at the given bit offset if provided.
1896 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
1897   uint64_t CurrentBit;
1898   // Pass in the Offset to distinguish between calling for the module-level
1899   // VST (where we want to jump to the VST offset) and the function-level
1900   // VST (where we don't).
1901   if (Offset > 0) {
1902     CurrentBit = jumpToValueSymbolTable(Offset, Stream);
1903     // If this module uses a string table, read this as a module-level VST.
1904     if (UseStrtab) {
1905       if (Error Err = parseGlobalValueSymbolTable())
1906         return Err;
1907       Stream.JumpToBit(CurrentBit);
1908       return Error::success();
1909     }
1910     // Otherwise, the VST will be in a similar format to a function-level VST,
1911     // and will contain symbol names.
1912   }
1913 
1914   // Compute the delta between the bitcode indices in the VST (the word offset
1915   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
1916   // expected by the lazy reader. The reader's EnterSubBlock expects to have
1917   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
1918   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
1919   // just before entering the VST subblock because: 1) the EnterSubBlock
1920   // changes the AbbrevID width; 2) the VST block is nested within the same
1921   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
1922   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
1923   // jump to the FUNCTION_BLOCK using this offset later, we don't want
1924   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
1925   unsigned FuncBitcodeOffsetDelta =
1926       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
1927 
1928   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
1929     return error("Invalid record");
1930 
1931   SmallVector<uint64_t, 64> Record;
1932 
1933   Triple TT(TheModule->getTargetTriple());
1934 
1935   // Read all the records for this value table.
1936   SmallString<128> ValueName;
1937 
1938   while (true) {
1939     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
1940 
1941     switch (Entry.Kind) {
1942     case BitstreamEntry::SubBlock: // Handled for us already.
1943     case BitstreamEntry::Error:
1944       return error("Malformed block");
1945     case BitstreamEntry::EndBlock:
1946       if (Offset > 0)
1947         Stream.JumpToBit(CurrentBit);
1948       return Error::success();
1949     case BitstreamEntry::Record:
1950       // The interesting case.
1951       break;
1952     }
1953 
1954     // Read a record.
1955     Record.clear();
1956     switch (Stream.readRecord(Entry.ID, Record)) {
1957     default:  // Default behavior: unknown type.
1958       break;
1959     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
1960       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
1961       if (Error Err = ValOrErr.takeError())
1962         return Err;
1963       ValOrErr.get();
1964       break;
1965     }
1966     case bitc::VST_CODE_FNENTRY: {
1967       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
1968       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
1969       if (Error Err = ValOrErr.takeError())
1970         return Err;
1971       Value *V = ValOrErr.get();
1972 
1973       // Ignore function offsets emitted for aliases of functions in older
1974       // versions of LLVM.
1975       if (auto *F = dyn_cast<Function>(V))
1976         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
1977       break;
1978     }
1979     case bitc::VST_CODE_BBENTRY: {
1980       if (convertToString(Record, 1, ValueName))
1981         return error("Invalid record");
1982       BasicBlock *BB = getBasicBlock(Record[0]);
1983       if (!BB)
1984         return error("Invalid record");
1985 
1986       BB->setName(StringRef(ValueName.data(), ValueName.size()));
1987       ValueName.clear();
1988       break;
1989     }
1990     }
1991   }
1992 }
1993 
1994 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
1995 /// encoding.
1996 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
1997   if ((V & 1) == 0)
1998     return V >> 1;
1999   if (V != 1)
2000     return -(V >> 1);
2001   // There is no such thing as -0 with integers.  "-0" really means MININT.
2002   return 1ULL << 63;
2003 }
2004 
2005 /// Resolve all of the initializers for global values and aliases that we can.
2006 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2007   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2008   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2009       IndirectSymbolInitWorklist;
2010   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2011   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2012   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2013 
2014   GlobalInitWorklist.swap(GlobalInits);
2015   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2016   FunctionPrefixWorklist.swap(FunctionPrefixes);
2017   FunctionPrologueWorklist.swap(FunctionPrologues);
2018   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2019 
2020   while (!GlobalInitWorklist.empty()) {
2021     unsigned ValID = GlobalInitWorklist.back().second;
2022     if (ValID >= ValueList.size()) {
2023       // Not ready to resolve this yet, it requires something later in the file.
2024       GlobalInits.push_back(GlobalInitWorklist.back());
2025     } else {
2026       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2027         GlobalInitWorklist.back().first->setInitializer(C);
2028       else
2029         return error("Expected a constant");
2030     }
2031     GlobalInitWorklist.pop_back();
2032   }
2033 
2034   while (!IndirectSymbolInitWorklist.empty()) {
2035     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2036     if (ValID >= ValueList.size()) {
2037       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2038     } else {
2039       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2040       if (!C)
2041         return error("Expected a constant");
2042       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2043       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2044         return error("Alias and aliasee types don't match");
2045       GIS->setIndirectSymbol(C);
2046     }
2047     IndirectSymbolInitWorklist.pop_back();
2048   }
2049 
2050   while (!FunctionPrefixWorklist.empty()) {
2051     unsigned ValID = FunctionPrefixWorklist.back().second;
2052     if (ValID >= ValueList.size()) {
2053       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2054     } else {
2055       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2056         FunctionPrefixWorklist.back().first->setPrefixData(C);
2057       else
2058         return error("Expected a constant");
2059     }
2060     FunctionPrefixWorklist.pop_back();
2061   }
2062 
2063   while (!FunctionPrologueWorklist.empty()) {
2064     unsigned ValID = FunctionPrologueWorklist.back().second;
2065     if (ValID >= ValueList.size()) {
2066       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2067     } else {
2068       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2069         FunctionPrologueWorklist.back().first->setPrologueData(C);
2070       else
2071         return error("Expected a constant");
2072     }
2073     FunctionPrologueWorklist.pop_back();
2074   }
2075 
2076   while (!FunctionPersonalityFnWorklist.empty()) {
2077     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2078     if (ValID >= ValueList.size()) {
2079       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2080     } else {
2081       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2082         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2083       else
2084         return error("Expected a constant");
2085     }
2086     FunctionPersonalityFnWorklist.pop_back();
2087   }
2088 
2089   return Error::success();
2090 }
2091 
2092 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2093   SmallVector<uint64_t, 8> Words(Vals.size());
2094   transform(Vals, Words.begin(),
2095                  BitcodeReader::decodeSignRotatedValue);
2096 
2097   return APInt(TypeBits, Words);
2098 }
2099 
2100 Error BitcodeReader::parseConstants() {
2101   if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2102     return error("Invalid record");
2103 
2104   SmallVector<uint64_t, 64> Record;
2105 
2106   // Read all the records for this value table.
2107   Type *CurTy = Type::getInt32Ty(Context);
2108   unsigned NextCstNo = ValueList.size();
2109 
2110   while (true) {
2111     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2112 
2113     switch (Entry.Kind) {
2114     case BitstreamEntry::SubBlock: // Handled for us already.
2115     case BitstreamEntry::Error:
2116       return error("Malformed block");
2117     case BitstreamEntry::EndBlock:
2118       if (NextCstNo != ValueList.size())
2119         return error("Invalid constant reference");
2120 
2121       // Once all the constants have been read, go through and resolve forward
2122       // references.
2123       ValueList.resolveConstantForwardRefs();
2124       return Error::success();
2125     case BitstreamEntry::Record:
2126       // The interesting case.
2127       break;
2128     }
2129 
2130     // Read a record.
2131     Record.clear();
2132     Type *VoidType = Type::getVoidTy(Context);
2133     Value *V = nullptr;
2134     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
2135     switch (BitCode) {
2136     default:  // Default behavior: unknown constant
2137     case bitc::CST_CODE_UNDEF:     // UNDEF
2138       V = UndefValue::get(CurTy);
2139       break;
2140     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2141       if (Record.empty())
2142         return error("Invalid record");
2143       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2144         return error("Invalid record");
2145       if (TypeList[Record[0]] == VoidType)
2146         return error("Invalid constant type");
2147       CurTy = TypeList[Record[0]];
2148       continue;  // Skip the ValueList manipulation.
2149     case bitc::CST_CODE_NULL:      // NULL
2150       V = Constant::getNullValue(CurTy);
2151       break;
2152     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2153       if (!CurTy->isIntegerTy() || Record.empty())
2154         return error("Invalid record");
2155       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2156       break;
2157     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2158       if (!CurTy->isIntegerTy() || Record.empty())
2159         return error("Invalid record");
2160 
2161       APInt VInt =
2162           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2163       V = ConstantInt::get(Context, VInt);
2164 
2165       break;
2166     }
2167     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2168       if (Record.empty())
2169         return error("Invalid record");
2170       if (CurTy->isHalfTy())
2171         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2172                                              APInt(16, (uint16_t)Record[0])));
2173       else if (CurTy->isFloatTy())
2174         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2175                                              APInt(32, (uint32_t)Record[0])));
2176       else if (CurTy->isDoubleTy())
2177         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2178                                              APInt(64, Record[0])));
2179       else if (CurTy->isX86_FP80Ty()) {
2180         // Bits are not stored the same way as a normal i80 APInt, compensate.
2181         uint64_t Rearrange[2];
2182         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2183         Rearrange[1] = Record[0] >> 48;
2184         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2185                                              APInt(80, Rearrange)));
2186       } else if (CurTy->isFP128Ty())
2187         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2188                                              APInt(128, Record)));
2189       else if (CurTy->isPPC_FP128Ty())
2190         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2191                                              APInt(128, Record)));
2192       else
2193         V = UndefValue::get(CurTy);
2194       break;
2195     }
2196 
2197     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2198       if (Record.empty())
2199         return error("Invalid record");
2200 
2201       unsigned Size = Record.size();
2202       SmallVector<Constant*, 16> Elts;
2203 
2204       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2205         for (unsigned i = 0; i != Size; ++i)
2206           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2207                                                      STy->getElementType(i)));
2208         V = ConstantStruct::get(STy, Elts);
2209       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2210         Type *EltTy = ATy->getElementType();
2211         for (unsigned i = 0; i != Size; ++i)
2212           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2213         V = ConstantArray::get(ATy, Elts);
2214       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2215         Type *EltTy = VTy->getElementType();
2216         for (unsigned i = 0; i != Size; ++i)
2217           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2218         V = ConstantVector::get(Elts);
2219       } else {
2220         V = UndefValue::get(CurTy);
2221       }
2222       break;
2223     }
2224     case bitc::CST_CODE_STRING:    // STRING: [values]
2225     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2226       if (Record.empty())
2227         return error("Invalid record");
2228 
2229       SmallString<16> Elts(Record.begin(), Record.end());
2230       V = ConstantDataArray::getString(Context, Elts,
2231                                        BitCode == bitc::CST_CODE_CSTRING);
2232       break;
2233     }
2234     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2235       if (Record.empty())
2236         return error("Invalid record");
2237 
2238       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2239       if (EltTy->isIntegerTy(8)) {
2240         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2241         if (isa<VectorType>(CurTy))
2242           V = ConstantDataVector::get(Context, Elts);
2243         else
2244           V = ConstantDataArray::get(Context, Elts);
2245       } else if (EltTy->isIntegerTy(16)) {
2246         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2247         if (isa<VectorType>(CurTy))
2248           V = ConstantDataVector::get(Context, Elts);
2249         else
2250           V = ConstantDataArray::get(Context, Elts);
2251       } else if (EltTy->isIntegerTy(32)) {
2252         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2253         if (isa<VectorType>(CurTy))
2254           V = ConstantDataVector::get(Context, Elts);
2255         else
2256           V = ConstantDataArray::get(Context, Elts);
2257       } else if (EltTy->isIntegerTy(64)) {
2258         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2259         if (isa<VectorType>(CurTy))
2260           V = ConstantDataVector::get(Context, Elts);
2261         else
2262           V = ConstantDataArray::get(Context, Elts);
2263       } else if (EltTy->isHalfTy()) {
2264         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2265         if (isa<VectorType>(CurTy))
2266           V = ConstantDataVector::getFP(Context, Elts);
2267         else
2268           V = ConstantDataArray::getFP(Context, Elts);
2269       } else if (EltTy->isFloatTy()) {
2270         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2271         if (isa<VectorType>(CurTy))
2272           V = ConstantDataVector::getFP(Context, Elts);
2273         else
2274           V = ConstantDataArray::getFP(Context, Elts);
2275       } else if (EltTy->isDoubleTy()) {
2276         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2277         if (isa<VectorType>(CurTy))
2278           V = ConstantDataVector::getFP(Context, Elts);
2279         else
2280           V = ConstantDataArray::getFP(Context, Elts);
2281       } else {
2282         return error("Invalid type for value");
2283       }
2284       break;
2285     }
2286     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2287       if (Record.size() < 3)
2288         return error("Invalid record");
2289       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2290       if (Opc < 0) {
2291         V = UndefValue::get(CurTy);  // Unknown binop.
2292       } else {
2293         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2294         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2295         unsigned Flags = 0;
2296         if (Record.size() >= 4) {
2297           if (Opc == Instruction::Add ||
2298               Opc == Instruction::Sub ||
2299               Opc == Instruction::Mul ||
2300               Opc == Instruction::Shl) {
2301             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2302               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2303             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2304               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2305           } else if (Opc == Instruction::SDiv ||
2306                      Opc == Instruction::UDiv ||
2307                      Opc == Instruction::LShr ||
2308                      Opc == Instruction::AShr) {
2309             if (Record[3] & (1 << bitc::PEO_EXACT))
2310               Flags |= SDivOperator::IsExact;
2311           }
2312         }
2313         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2314       }
2315       break;
2316     }
2317     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2318       if (Record.size() < 3)
2319         return error("Invalid record");
2320       int Opc = getDecodedCastOpcode(Record[0]);
2321       if (Opc < 0) {
2322         V = UndefValue::get(CurTy);  // Unknown cast.
2323       } else {
2324         Type *OpTy = getTypeByID(Record[1]);
2325         if (!OpTy)
2326           return error("Invalid record");
2327         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2328         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2329         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2330       }
2331       break;
2332     }
2333     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2334     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2335     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2336                                                      // operands]
2337       unsigned OpNum = 0;
2338       Type *PointeeType = nullptr;
2339       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2340           Record.size() % 2)
2341         PointeeType = getTypeByID(Record[OpNum++]);
2342 
2343       bool InBounds = false;
2344       Optional<unsigned> InRangeIndex;
2345       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2346         uint64_t Op = Record[OpNum++];
2347         InBounds = Op & 1;
2348         InRangeIndex = Op >> 1;
2349       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2350         InBounds = true;
2351 
2352       SmallVector<Constant*, 16> Elts;
2353       while (OpNum != Record.size()) {
2354         Type *ElTy = getTypeByID(Record[OpNum++]);
2355         if (!ElTy)
2356           return error("Invalid record");
2357         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2358       }
2359 
2360       if (PointeeType &&
2361           PointeeType !=
2362               cast<PointerType>(Elts[0]->getType()->getScalarType())
2363                   ->getElementType())
2364         return error("Explicit gep operator type does not match pointee type "
2365                      "of pointer operand");
2366 
2367       if (Elts.size() < 1)
2368         return error("Invalid gep with no operands");
2369 
2370       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2371       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2372                                          InBounds, InRangeIndex);
2373       break;
2374     }
2375     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2376       if (Record.size() < 3)
2377         return error("Invalid record");
2378 
2379       Type *SelectorTy = Type::getInt1Ty(Context);
2380 
2381       // The selector might be an i1 or an <n x i1>
2382       // Get the type from the ValueList before getting a forward ref.
2383       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2384         if (Value *V = ValueList[Record[0]])
2385           if (SelectorTy != V->getType())
2386             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2387 
2388       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2389                                                               SelectorTy),
2390                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2391                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2392       break;
2393     }
2394     case bitc::CST_CODE_CE_EXTRACTELT
2395         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2396       if (Record.size() < 3)
2397         return error("Invalid record");
2398       VectorType *OpTy =
2399         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2400       if (!OpTy)
2401         return error("Invalid record");
2402       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2403       Constant *Op1 = nullptr;
2404       if (Record.size() == 4) {
2405         Type *IdxTy = getTypeByID(Record[2]);
2406         if (!IdxTy)
2407           return error("Invalid record");
2408         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2409       } else // TODO: Remove with llvm 4.0
2410         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2411       if (!Op1)
2412         return error("Invalid record");
2413       V = ConstantExpr::getExtractElement(Op0, Op1);
2414       break;
2415     }
2416     case bitc::CST_CODE_CE_INSERTELT
2417         : { // CE_INSERTELT: [opval, opval, opty, opval]
2418       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2419       if (Record.size() < 3 || !OpTy)
2420         return error("Invalid record");
2421       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2422       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2423                                                   OpTy->getElementType());
2424       Constant *Op2 = nullptr;
2425       if (Record.size() == 4) {
2426         Type *IdxTy = getTypeByID(Record[2]);
2427         if (!IdxTy)
2428           return error("Invalid record");
2429         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2430       } else // TODO: Remove with llvm 4.0
2431         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2432       if (!Op2)
2433         return error("Invalid record");
2434       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2435       break;
2436     }
2437     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2438       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2439       if (Record.size() < 3 || !OpTy)
2440         return error("Invalid record");
2441       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2442       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2443       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2444                                                  OpTy->getNumElements());
2445       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2446       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2447       break;
2448     }
2449     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2450       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2451       VectorType *OpTy =
2452         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2453       if (Record.size() < 4 || !RTy || !OpTy)
2454         return error("Invalid record");
2455       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2456       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2457       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2458                                                  RTy->getNumElements());
2459       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2460       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2461       break;
2462     }
2463     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2464       if (Record.size() < 4)
2465         return error("Invalid record");
2466       Type *OpTy = getTypeByID(Record[0]);
2467       if (!OpTy)
2468         return error("Invalid record");
2469       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2470       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2471 
2472       if (OpTy->isFPOrFPVectorTy())
2473         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2474       else
2475         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2476       break;
2477     }
2478     // This maintains backward compatibility, pre-asm dialect keywords.
2479     // FIXME: Remove with the 4.0 release.
2480     case bitc::CST_CODE_INLINEASM_OLD: {
2481       if (Record.size() < 2)
2482         return error("Invalid record");
2483       std::string AsmStr, ConstrStr;
2484       bool HasSideEffects = Record[0] & 1;
2485       bool IsAlignStack = Record[0] >> 1;
2486       unsigned AsmStrSize = Record[1];
2487       if (2+AsmStrSize >= Record.size())
2488         return error("Invalid record");
2489       unsigned ConstStrSize = Record[2+AsmStrSize];
2490       if (3+AsmStrSize+ConstStrSize > Record.size())
2491         return error("Invalid record");
2492 
2493       for (unsigned i = 0; i != AsmStrSize; ++i)
2494         AsmStr += (char)Record[2+i];
2495       for (unsigned i = 0; i != ConstStrSize; ++i)
2496         ConstrStr += (char)Record[3+AsmStrSize+i];
2497       PointerType *PTy = cast<PointerType>(CurTy);
2498       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2499                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2500       break;
2501     }
2502     // This version adds support for the asm dialect keywords (e.g.,
2503     // inteldialect).
2504     case bitc::CST_CODE_INLINEASM: {
2505       if (Record.size() < 2)
2506         return error("Invalid record");
2507       std::string AsmStr, ConstrStr;
2508       bool HasSideEffects = Record[0] & 1;
2509       bool IsAlignStack = (Record[0] >> 1) & 1;
2510       unsigned AsmDialect = Record[0] >> 2;
2511       unsigned AsmStrSize = Record[1];
2512       if (2+AsmStrSize >= Record.size())
2513         return error("Invalid record");
2514       unsigned ConstStrSize = Record[2+AsmStrSize];
2515       if (3+AsmStrSize+ConstStrSize > Record.size())
2516         return error("Invalid record");
2517 
2518       for (unsigned i = 0; i != AsmStrSize; ++i)
2519         AsmStr += (char)Record[2+i];
2520       for (unsigned i = 0; i != ConstStrSize; ++i)
2521         ConstrStr += (char)Record[3+AsmStrSize+i];
2522       PointerType *PTy = cast<PointerType>(CurTy);
2523       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2524                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2525                          InlineAsm::AsmDialect(AsmDialect));
2526       break;
2527     }
2528     case bitc::CST_CODE_BLOCKADDRESS:{
2529       if (Record.size() < 3)
2530         return error("Invalid record");
2531       Type *FnTy = getTypeByID(Record[0]);
2532       if (!FnTy)
2533         return error("Invalid record");
2534       Function *Fn =
2535         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2536       if (!Fn)
2537         return error("Invalid record");
2538 
2539       // If the function is already parsed we can insert the block address right
2540       // away.
2541       BasicBlock *BB;
2542       unsigned BBID = Record[2];
2543       if (!BBID)
2544         // Invalid reference to entry block.
2545         return error("Invalid ID");
2546       if (!Fn->empty()) {
2547         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2548         for (size_t I = 0, E = BBID; I != E; ++I) {
2549           if (BBI == BBE)
2550             return error("Invalid ID");
2551           ++BBI;
2552         }
2553         BB = &*BBI;
2554       } else {
2555         // Otherwise insert a placeholder and remember it so it can be inserted
2556         // when the function is parsed.
2557         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2558         if (FwdBBs.empty())
2559           BasicBlockFwdRefQueue.push_back(Fn);
2560         if (FwdBBs.size() < BBID + 1)
2561           FwdBBs.resize(BBID + 1);
2562         if (!FwdBBs[BBID])
2563           FwdBBs[BBID] = BasicBlock::Create(Context);
2564         BB = FwdBBs[BBID];
2565       }
2566       V = BlockAddress::get(Fn, BB);
2567       break;
2568     }
2569     }
2570 
2571     ValueList.assignValue(V, NextCstNo);
2572     ++NextCstNo;
2573   }
2574 }
2575 
2576 Error BitcodeReader::parseUseLists() {
2577   if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2578     return error("Invalid record");
2579 
2580   // Read all the records.
2581   SmallVector<uint64_t, 64> Record;
2582 
2583   while (true) {
2584     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
2585 
2586     switch (Entry.Kind) {
2587     case BitstreamEntry::SubBlock: // Handled for us already.
2588     case BitstreamEntry::Error:
2589       return error("Malformed block");
2590     case BitstreamEntry::EndBlock:
2591       return Error::success();
2592     case BitstreamEntry::Record:
2593       // The interesting case.
2594       break;
2595     }
2596 
2597     // Read a use list record.
2598     Record.clear();
2599     bool IsBB = false;
2600     switch (Stream.readRecord(Entry.ID, Record)) {
2601     default:  // Default behavior: unknown type.
2602       break;
2603     case bitc::USELIST_CODE_BB:
2604       IsBB = true;
2605       LLVM_FALLTHROUGH;
2606     case bitc::USELIST_CODE_DEFAULT: {
2607       unsigned RecordLength = Record.size();
2608       if (RecordLength < 3)
2609         // Records should have at least an ID and two indexes.
2610         return error("Invalid record");
2611       unsigned ID = Record.back();
2612       Record.pop_back();
2613 
2614       Value *V;
2615       if (IsBB) {
2616         assert(ID < FunctionBBs.size() && "Basic block not found");
2617         V = FunctionBBs[ID];
2618       } else
2619         V = ValueList[ID];
2620       unsigned NumUses = 0;
2621       SmallDenseMap<const Use *, unsigned, 16> Order;
2622       for (const Use &U : V->materialized_uses()) {
2623         if (++NumUses > Record.size())
2624           break;
2625         Order[&U] = Record[NumUses - 1];
2626       }
2627       if (Order.size() != Record.size() || NumUses > Record.size())
2628         // Mismatches can happen if the functions are being materialized lazily
2629         // (out-of-order), or a value has been upgraded.
2630         break;
2631 
2632       V->sortUseList([&](const Use &L, const Use &R) {
2633         return Order.lookup(&L) < Order.lookup(&R);
2634       });
2635       break;
2636     }
2637     }
2638   }
2639 }
2640 
2641 /// When we see the block for metadata, remember where it is and then skip it.
2642 /// This lets us lazily deserialize the metadata.
2643 Error BitcodeReader::rememberAndSkipMetadata() {
2644   // Save the current stream state.
2645   uint64_t CurBit = Stream.GetCurrentBitNo();
2646   DeferredMetadataInfo.push_back(CurBit);
2647 
2648   // Skip over the block for now.
2649   if (Stream.SkipBlock())
2650     return error("Invalid record");
2651   return Error::success();
2652 }
2653 
2654 Error BitcodeReader::materializeMetadata() {
2655   for (uint64_t BitPos : DeferredMetadataInfo) {
2656     // Move the bit stream to the saved position.
2657     Stream.JumpToBit(BitPos);
2658     if (Error Err = MDLoader->parseModuleMetadata())
2659       return Err;
2660   }
2661 
2662   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2663   // metadata.
2664   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2665     NamedMDNode *LinkerOpts =
2666         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2667     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2668       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2669   }
2670 
2671   DeferredMetadataInfo.clear();
2672   return Error::success();
2673 }
2674 
2675 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2676 
2677 /// When we see the block for a function body, remember where it is and then
2678 /// skip it.  This lets us lazily deserialize the functions.
2679 Error BitcodeReader::rememberAndSkipFunctionBody() {
2680   // Get the function we are talking about.
2681   if (FunctionsWithBodies.empty())
2682     return error("Insufficient function protos");
2683 
2684   Function *Fn = FunctionsWithBodies.back();
2685   FunctionsWithBodies.pop_back();
2686 
2687   // Save the current stream state.
2688   uint64_t CurBit = Stream.GetCurrentBitNo();
2689   assert(
2690       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2691       "Mismatch between VST and scanned function offsets");
2692   DeferredFunctionInfo[Fn] = CurBit;
2693 
2694   // Skip over the function block for now.
2695   if (Stream.SkipBlock())
2696     return error("Invalid record");
2697   return Error::success();
2698 }
2699 
2700 Error BitcodeReader::globalCleanup() {
2701   // Patch the initializers for globals and aliases up.
2702   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2703     return Err;
2704   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2705     return error("Malformed global initializer set");
2706 
2707   // Look for intrinsic functions which need to be upgraded at some point
2708   for (Function &F : *TheModule) {
2709     MDLoader->upgradeDebugIntrinsics(F);
2710     Function *NewFn;
2711     if (UpgradeIntrinsicFunction(&F, NewFn))
2712       UpgradedIntrinsics[&F] = NewFn;
2713     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2714       // Some types could be renamed during loading if several modules are
2715       // loaded in the same LLVMContext (LTO scenario). In this case we should
2716       // remangle intrinsics names as well.
2717       RemangledIntrinsics[&F] = Remangled.getValue();
2718   }
2719 
2720   // Look for global variables which need to be renamed.
2721   for (GlobalVariable &GV : TheModule->globals())
2722     UpgradeGlobalVariable(&GV);
2723 
2724   // Force deallocation of memory for these vectors to favor the client that
2725   // want lazy deserialization.
2726   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2727   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2728       IndirectSymbolInits);
2729   return Error::success();
2730 }
2731 
2732 /// Support for lazy parsing of function bodies. This is required if we
2733 /// either have an old bitcode file without a VST forward declaration record,
2734 /// or if we have an anonymous function being materialized, since anonymous
2735 /// functions do not have a name and are therefore not in the VST.
2736 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2737   Stream.JumpToBit(NextUnreadBit);
2738 
2739   if (Stream.AtEndOfStream())
2740     return error("Could not find function in stream");
2741 
2742   if (!SeenFirstFunctionBody)
2743     return error("Trying to materialize functions before seeing function blocks");
2744 
2745   // An old bitcode file with the symbol table at the end would have
2746   // finished the parse greedily.
2747   assert(SeenValueSymbolTable);
2748 
2749   SmallVector<uint64_t, 64> Record;
2750 
2751   while (true) {
2752     BitstreamEntry Entry = Stream.advance();
2753     switch (Entry.Kind) {
2754     default:
2755       return error("Expect SubBlock");
2756     case BitstreamEntry::SubBlock:
2757       switch (Entry.ID) {
2758       default:
2759         return error("Expect function block");
2760       case bitc::FUNCTION_BLOCK_ID:
2761         if (Error Err = rememberAndSkipFunctionBody())
2762           return Err;
2763         NextUnreadBit = Stream.GetCurrentBitNo();
2764         return Error::success();
2765       }
2766     }
2767   }
2768 }
2769 
2770 bool BitcodeReaderBase::readBlockInfo() {
2771   Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock();
2772   if (!NewBlockInfo)
2773     return true;
2774   BlockInfo = std::move(*NewBlockInfo);
2775   return false;
2776 }
2777 
2778 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
2779   // v1: [selection_kind, name]
2780   // v2: [strtab_offset, strtab_size, selection_kind]
2781   StringRef Name;
2782   std::tie(Name, Record) = readNameFromStrtab(Record);
2783 
2784   if (Record.empty())
2785     return error("Invalid record");
2786   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
2787   std::string OldFormatName;
2788   if (!UseStrtab) {
2789     if (Record.size() < 2)
2790       return error("Invalid record");
2791     unsigned ComdatNameSize = Record[1];
2792     OldFormatName.reserve(ComdatNameSize);
2793     for (unsigned i = 0; i != ComdatNameSize; ++i)
2794       OldFormatName += (char)Record[2 + i];
2795     Name = OldFormatName;
2796   }
2797   Comdat *C = TheModule->getOrInsertComdat(Name);
2798   C->setSelectionKind(SK);
2799   ComdatList.push_back(C);
2800   return Error::success();
2801 }
2802 
2803 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
2804   // v1: [pointer type, isconst, initid, linkage, alignment, section,
2805   // visibility, threadlocal, unnamed_addr, externally_initialized,
2806   // dllstorageclass, comdat, attributes] (name in VST)
2807   // v2: [strtab_offset, strtab_size, v1]
2808   StringRef Name;
2809   std::tie(Name, Record) = readNameFromStrtab(Record);
2810 
2811   if (Record.size() < 6)
2812     return error("Invalid record");
2813   Type *Ty = getTypeByID(Record[0]);
2814   if (!Ty)
2815     return error("Invalid record");
2816   bool isConstant = Record[1] & 1;
2817   bool explicitType = Record[1] & 2;
2818   unsigned AddressSpace;
2819   if (explicitType) {
2820     AddressSpace = Record[1] >> 2;
2821   } else {
2822     if (!Ty->isPointerTy())
2823       return error("Invalid type for value");
2824     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
2825     Ty = cast<PointerType>(Ty)->getElementType();
2826   }
2827 
2828   uint64_t RawLinkage = Record[3];
2829   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
2830   unsigned Alignment;
2831   if (Error Err = parseAlignmentValue(Record[4], Alignment))
2832     return Err;
2833   std::string Section;
2834   if (Record[5]) {
2835     if (Record[5] - 1 >= SectionTable.size())
2836       return error("Invalid ID");
2837     Section = SectionTable[Record[5] - 1];
2838   }
2839   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
2840   // Local linkage must have default visibility.
2841   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
2842     // FIXME: Change to an error if non-default in 4.0.
2843     Visibility = getDecodedVisibility(Record[6]);
2844 
2845   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
2846   if (Record.size() > 7)
2847     TLM = getDecodedThreadLocalMode(Record[7]);
2848 
2849   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2850   if (Record.size() > 8)
2851     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
2852 
2853   bool ExternallyInitialized = false;
2854   if (Record.size() > 9)
2855     ExternallyInitialized = Record[9];
2856 
2857   GlobalVariable *NewGV =
2858       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
2859                          nullptr, TLM, AddressSpace, ExternallyInitialized);
2860   NewGV->setAlignment(Alignment);
2861   if (!Section.empty())
2862     NewGV->setSection(Section);
2863   NewGV->setVisibility(Visibility);
2864   NewGV->setUnnamedAddr(UnnamedAddr);
2865 
2866   if (Record.size() > 10)
2867     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
2868   else
2869     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
2870 
2871   ValueList.push_back(NewGV);
2872 
2873   // Remember which value to use for the global initializer.
2874   if (unsigned InitID = Record[2])
2875     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
2876 
2877   if (Record.size() > 11) {
2878     if (unsigned ComdatID = Record[11]) {
2879       if (ComdatID > ComdatList.size())
2880         return error("Invalid global variable comdat ID");
2881       NewGV->setComdat(ComdatList[ComdatID - 1]);
2882     }
2883   } else if (hasImplicitComdat(RawLinkage)) {
2884     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
2885   }
2886 
2887   if (Record.size() > 12) {
2888     auto AS = getAttributes(Record[12]).getFnAttributes();
2889     NewGV->setAttributes(AS);
2890   }
2891   return Error::success();
2892 }
2893 
2894 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
2895   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
2896   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
2897   // prefixdata] (name in VST)
2898   // v2: [strtab_offset, strtab_size, v1]
2899   StringRef Name;
2900   std::tie(Name, Record) = readNameFromStrtab(Record);
2901 
2902   if (Record.size() < 8)
2903     return error("Invalid record");
2904   Type *Ty = getTypeByID(Record[0]);
2905   if (!Ty)
2906     return error("Invalid record");
2907   if (auto *PTy = dyn_cast<PointerType>(Ty))
2908     Ty = PTy->getElementType();
2909   auto *FTy = dyn_cast<FunctionType>(Ty);
2910   if (!FTy)
2911     return error("Invalid type for value");
2912   auto CC = static_cast<CallingConv::ID>(Record[1]);
2913   if (CC & ~CallingConv::MaxID)
2914     return error("Invalid calling convention ID");
2915 
2916   Function *Func =
2917       Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule);
2918 
2919   Func->setCallingConv(CC);
2920   bool isProto = Record[2];
2921   uint64_t RawLinkage = Record[3];
2922   Func->setLinkage(getDecodedLinkage(RawLinkage));
2923   Func->setAttributes(getAttributes(Record[4]));
2924 
2925   unsigned Alignment;
2926   if (Error Err = parseAlignmentValue(Record[5], Alignment))
2927     return Err;
2928   Func->setAlignment(Alignment);
2929   if (Record[6]) {
2930     if (Record[6] - 1 >= SectionTable.size())
2931       return error("Invalid ID");
2932     Func->setSection(SectionTable[Record[6] - 1]);
2933   }
2934   // Local linkage must have default visibility.
2935   if (!Func->hasLocalLinkage())
2936     // FIXME: Change to an error if non-default in 4.0.
2937     Func->setVisibility(getDecodedVisibility(Record[7]));
2938   if (Record.size() > 8 && Record[8]) {
2939     if (Record[8] - 1 >= GCTable.size())
2940       return error("Invalid ID");
2941     Func->setGC(GCTable[Record[8] - 1]);
2942   }
2943   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
2944   if (Record.size() > 9)
2945     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
2946   Func->setUnnamedAddr(UnnamedAddr);
2947   if (Record.size() > 10 && Record[10] != 0)
2948     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
2949 
2950   if (Record.size() > 11)
2951     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
2952   else
2953     upgradeDLLImportExportLinkage(Func, RawLinkage);
2954 
2955   if (Record.size() > 12) {
2956     if (unsigned ComdatID = Record[12]) {
2957       if (ComdatID > ComdatList.size())
2958         return error("Invalid function comdat ID");
2959       Func->setComdat(ComdatList[ComdatID - 1]);
2960     }
2961   } else if (hasImplicitComdat(RawLinkage)) {
2962     Func->setComdat(reinterpret_cast<Comdat *>(1));
2963   }
2964 
2965   if (Record.size() > 13 && Record[13] != 0)
2966     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
2967 
2968   if (Record.size() > 14 && Record[14] != 0)
2969     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
2970 
2971   ValueList.push_back(Func);
2972 
2973   // If this is a function with a body, remember the prototype we are
2974   // creating now, so that we can match up the body with them later.
2975   if (!isProto) {
2976     Func->setIsMaterializable(true);
2977     FunctionsWithBodies.push_back(Func);
2978     DeferredFunctionInfo[Func] = 0;
2979   }
2980   return Error::success();
2981 }
2982 
2983 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
2984     unsigned BitCode, ArrayRef<uint64_t> Record) {
2985   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
2986   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
2987   // dllstorageclass] (name in VST)
2988   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
2989   // visibility, dllstorageclass] (name in VST)
2990   // v2: [strtab_offset, strtab_size, v1]
2991   StringRef Name;
2992   std::tie(Name, Record) = readNameFromStrtab(Record);
2993 
2994   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
2995   if (Record.size() < (3 + (unsigned)NewRecord))
2996     return error("Invalid record");
2997   unsigned OpNum = 0;
2998   Type *Ty = getTypeByID(Record[OpNum++]);
2999   if (!Ty)
3000     return error("Invalid record");
3001 
3002   unsigned AddrSpace;
3003   if (!NewRecord) {
3004     auto *PTy = dyn_cast<PointerType>(Ty);
3005     if (!PTy)
3006       return error("Invalid type for value");
3007     Ty = PTy->getElementType();
3008     AddrSpace = PTy->getAddressSpace();
3009   } else {
3010     AddrSpace = Record[OpNum++];
3011   }
3012 
3013   auto Val = Record[OpNum++];
3014   auto Linkage = Record[OpNum++];
3015   GlobalIndirectSymbol *NewGA;
3016   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3017       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3018     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3019                                 TheModule);
3020   else
3021     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3022                                 nullptr, TheModule);
3023   // Old bitcode files didn't have visibility field.
3024   // Local linkage must have default visibility.
3025   if (OpNum != Record.size()) {
3026     auto VisInd = OpNum++;
3027     if (!NewGA->hasLocalLinkage())
3028       // FIXME: Change to an error if non-default in 4.0.
3029       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3030   }
3031   if (OpNum != Record.size())
3032     NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3033   else
3034     upgradeDLLImportExportLinkage(NewGA, Linkage);
3035   if (OpNum != Record.size())
3036     NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3037   if (OpNum != Record.size())
3038     NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3039   ValueList.push_back(NewGA);
3040   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3041   return Error::success();
3042 }
3043 
3044 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3045                                  bool ShouldLazyLoadMetadata) {
3046   if (ResumeBit)
3047     Stream.JumpToBit(ResumeBit);
3048   else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3049     return error("Invalid record");
3050 
3051   SmallVector<uint64_t, 64> Record;
3052 
3053   // Read all the records for this module.
3054   while (true) {
3055     BitstreamEntry Entry = Stream.advance();
3056 
3057     switch (Entry.Kind) {
3058     case BitstreamEntry::Error:
3059       return error("Malformed block");
3060     case BitstreamEntry::EndBlock:
3061       return globalCleanup();
3062 
3063     case BitstreamEntry::SubBlock:
3064       switch (Entry.ID) {
3065       default:  // Skip unknown content.
3066         if (Stream.SkipBlock())
3067           return error("Invalid record");
3068         break;
3069       case bitc::BLOCKINFO_BLOCK_ID:
3070         if (readBlockInfo())
3071           return error("Malformed block");
3072         break;
3073       case bitc::PARAMATTR_BLOCK_ID:
3074         if (Error Err = parseAttributeBlock())
3075           return Err;
3076         break;
3077       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3078         if (Error Err = parseAttributeGroupBlock())
3079           return Err;
3080         break;
3081       case bitc::TYPE_BLOCK_ID_NEW:
3082         if (Error Err = parseTypeTable())
3083           return Err;
3084         break;
3085       case bitc::VALUE_SYMTAB_BLOCK_ID:
3086         if (!SeenValueSymbolTable) {
3087           // Either this is an old form VST without function index and an
3088           // associated VST forward declaration record (which would have caused
3089           // the VST to be jumped to and parsed before it was encountered
3090           // normally in the stream), or there were no function blocks to
3091           // trigger an earlier parsing of the VST.
3092           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3093           if (Error Err = parseValueSymbolTable())
3094             return Err;
3095           SeenValueSymbolTable = true;
3096         } else {
3097           // We must have had a VST forward declaration record, which caused
3098           // the parser to jump to and parse the VST earlier.
3099           assert(VSTOffset > 0);
3100           if (Stream.SkipBlock())
3101             return error("Invalid record");
3102         }
3103         break;
3104       case bitc::CONSTANTS_BLOCK_ID:
3105         if (Error Err = parseConstants())
3106           return Err;
3107         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3108           return Err;
3109         break;
3110       case bitc::METADATA_BLOCK_ID:
3111         if (ShouldLazyLoadMetadata) {
3112           if (Error Err = rememberAndSkipMetadata())
3113             return Err;
3114           break;
3115         }
3116         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3117         if (Error Err = MDLoader->parseModuleMetadata())
3118           return Err;
3119         break;
3120       case bitc::METADATA_KIND_BLOCK_ID:
3121         if (Error Err = MDLoader->parseMetadataKinds())
3122           return Err;
3123         break;
3124       case bitc::FUNCTION_BLOCK_ID:
3125         // If this is the first function body we've seen, reverse the
3126         // FunctionsWithBodies list.
3127         if (!SeenFirstFunctionBody) {
3128           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3129           if (Error Err = globalCleanup())
3130             return Err;
3131           SeenFirstFunctionBody = true;
3132         }
3133 
3134         if (VSTOffset > 0) {
3135           // If we have a VST forward declaration record, make sure we
3136           // parse the VST now if we haven't already. It is needed to
3137           // set up the DeferredFunctionInfo vector for lazy reading.
3138           if (!SeenValueSymbolTable) {
3139             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3140               return Err;
3141             SeenValueSymbolTable = true;
3142             // Fall through so that we record the NextUnreadBit below.
3143             // This is necessary in case we have an anonymous function that
3144             // is later materialized. Since it will not have a VST entry we
3145             // need to fall back to the lazy parse to find its offset.
3146           } else {
3147             // If we have a VST forward declaration record, but have already
3148             // parsed the VST (just above, when the first function body was
3149             // encountered here), then we are resuming the parse after
3150             // materializing functions. The ResumeBit points to the
3151             // start of the last function block recorded in the
3152             // DeferredFunctionInfo map. Skip it.
3153             if (Stream.SkipBlock())
3154               return error("Invalid record");
3155             continue;
3156           }
3157         }
3158 
3159         // Support older bitcode files that did not have the function
3160         // index in the VST, nor a VST forward declaration record, as
3161         // well as anonymous functions that do not have VST entries.
3162         // Build the DeferredFunctionInfo vector on the fly.
3163         if (Error Err = rememberAndSkipFunctionBody())
3164           return Err;
3165 
3166         // Suspend parsing when we reach the function bodies. Subsequent
3167         // materialization calls will resume it when necessary. If the bitcode
3168         // file is old, the symbol table will be at the end instead and will not
3169         // have been seen yet. In this case, just finish the parse now.
3170         if (SeenValueSymbolTable) {
3171           NextUnreadBit = Stream.GetCurrentBitNo();
3172           // After the VST has been parsed, we need to make sure intrinsic name
3173           // are auto-upgraded.
3174           return globalCleanup();
3175         }
3176         break;
3177       case bitc::USELIST_BLOCK_ID:
3178         if (Error Err = parseUseLists())
3179           return Err;
3180         break;
3181       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3182         if (Error Err = parseOperandBundleTags())
3183           return Err;
3184         break;
3185       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3186         if (Error Err = parseSyncScopeNames())
3187           return Err;
3188         break;
3189       }
3190       continue;
3191 
3192     case BitstreamEntry::Record:
3193       // The interesting case.
3194       break;
3195     }
3196 
3197     // Read a record.
3198     auto BitCode = Stream.readRecord(Entry.ID, Record);
3199     switch (BitCode) {
3200     default: break;  // Default behavior, ignore unknown content.
3201     case bitc::MODULE_CODE_VERSION: {
3202       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3203       if (!VersionOrErr)
3204         return VersionOrErr.takeError();
3205       UseRelativeIDs = *VersionOrErr >= 1;
3206       break;
3207     }
3208     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3209       std::string S;
3210       if (convertToString(Record, 0, S))
3211         return error("Invalid record");
3212       TheModule->setTargetTriple(S);
3213       break;
3214     }
3215     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3216       std::string S;
3217       if (convertToString(Record, 0, S))
3218         return error("Invalid record");
3219       TheModule->setDataLayout(S);
3220       break;
3221     }
3222     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3223       std::string S;
3224       if (convertToString(Record, 0, S))
3225         return error("Invalid record");
3226       TheModule->setModuleInlineAsm(S);
3227       break;
3228     }
3229     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3230       // FIXME: Remove in 4.0.
3231       std::string S;
3232       if (convertToString(Record, 0, S))
3233         return error("Invalid record");
3234       // Ignore value.
3235       break;
3236     }
3237     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3238       std::string S;
3239       if (convertToString(Record, 0, S))
3240         return error("Invalid record");
3241       SectionTable.push_back(S);
3242       break;
3243     }
3244     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3245       std::string S;
3246       if (convertToString(Record, 0, S))
3247         return error("Invalid record");
3248       GCTable.push_back(S);
3249       break;
3250     }
3251     case bitc::MODULE_CODE_COMDAT:
3252       if (Error Err = parseComdatRecord(Record))
3253         return Err;
3254       break;
3255     case bitc::MODULE_CODE_GLOBALVAR:
3256       if (Error Err = parseGlobalVarRecord(Record))
3257         return Err;
3258       break;
3259     case bitc::MODULE_CODE_FUNCTION:
3260       if (Error Err = parseFunctionRecord(Record))
3261         return Err;
3262       break;
3263     case bitc::MODULE_CODE_IFUNC:
3264     case bitc::MODULE_CODE_ALIAS:
3265     case bitc::MODULE_CODE_ALIAS_OLD:
3266       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3267         return Err;
3268       break;
3269     /// MODULE_CODE_VSTOFFSET: [offset]
3270     case bitc::MODULE_CODE_VSTOFFSET:
3271       if (Record.size() < 1)
3272         return error("Invalid record");
3273       // Note that we subtract 1 here because the offset is relative to one word
3274       // before the start of the identification or module block, which was
3275       // historically always the start of the regular bitcode header.
3276       VSTOffset = Record[0] - 1;
3277       break;
3278     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3279     case bitc::MODULE_CODE_SOURCE_FILENAME:
3280       SmallString<128> ValueName;
3281       if (convertToString(Record, 0, ValueName))
3282         return error("Invalid record");
3283       TheModule->setSourceFileName(ValueName);
3284       break;
3285     }
3286     Record.clear();
3287   }
3288 }
3289 
3290 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3291                                       bool IsImporting) {
3292   TheModule = M;
3293   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3294                             [&](unsigned ID) { return getTypeByID(ID); });
3295   return parseModule(0, ShouldLazyLoadMetadata);
3296 }
3297 
3298 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3299   if (!isa<PointerType>(PtrType))
3300     return error("Load/Store operand is not a pointer type");
3301   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3302 
3303   if (ValType && ValType != ElemType)
3304     return error("Explicit load/store type does not match pointee "
3305                  "type of pointer operand");
3306   if (!PointerType::isLoadableOrStorableType(ElemType))
3307     return error("Cannot load/store from pointer");
3308   return Error::success();
3309 }
3310 
3311 /// Lazily parse the specified function body block.
3312 Error BitcodeReader::parseFunctionBody(Function *F) {
3313   if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3314     return error("Invalid record");
3315 
3316   // Unexpected unresolved metadata when parsing function.
3317   if (MDLoader->hasFwdRefs())
3318     return error("Invalid function metadata: incoming forward references");
3319 
3320   InstructionList.clear();
3321   unsigned ModuleValueListSize = ValueList.size();
3322   unsigned ModuleMDLoaderSize = MDLoader->size();
3323 
3324   // Add all the function arguments to the value table.
3325   for (Argument &I : F->args())
3326     ValueList.push_back(&I);
3327 
3328   unsigned NextValueNo = ValueList.size();
3329   BasicBlock *CurBB = nullptr;
3330   unsigned CurBBNo = 0;
3331 
3332   DebugLoc LastLoc;
3333   auto getLastInstruction = [&]() -> Instruction * {
3334     if (CurBB && !CurBB->empty())
3335       return &CurBB->back();
3336     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3337              !FunctionBBs[CurBBNo - 1]->empty())
3338       return &FunctionBBs[CurBBNo - 1]->back();
3339     return nullptr;
3340   };
3341 
3342   std::vector<OperandBundleDef> OperandBundles;
3343 
3344   // Read all the records.
3345   SmallVector<uint64_t, 64> Record;
3346 
3347   while (true) {
3348     BitstreamEntry Entry = Stream.advance();
3349 
3350     switch (Entry.Kind) {
3351     case BitstreamEntry::Error:
3352       return error("Malformed block");
3353     case BitstreamEntry::EndBlock:
3354       goto OutOfRecordLoop;
3355 
3356     case BitstreamEntry::SubBlock:
3357       switch (Entry.ID) {
3358       default:  // Skip unknown content.
3359         if (Stream.SkipBlock())
3360           return error("Invalid record");
3361         break;
3362       case bitc::CONSTANTS_BLOCK_ID:
3363         if (Error Err = parseConstants())
3364           return Err;
3365         NextValueNo = ValueList.size();
3366         break;
3367       case bitc::VALUE_SYMTAB_BLOCK_ID:
3368         if (Error Err = parseValueSymbolTable())
3369           return Err;
3370         break;
3371       case bitc::METADATA_ATTACHMENT_ID:
3372         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3373           return Err;
3374         break;
3375       case bitc::METADATA_BLOCK_ID:
3376         assert(DeferredMetadataInfo.empty() &&
3377                "Must read all module-level metadata before function-level");
3378         if (Error Err = MDLoader->parseFunctionMetadata())
3379           return Err;
3380         break;
3381       case bitc::USELIST_BLOCK_ID:
3382         if (Error Err = parseUseLists())
3383           return Err;
3384         break;
3385       }
3386       continue;
3387 
3388     case BitstreamEntry::Record:
3389       // The interesting case.
3390       break;
3391     }
3392 
3393     // Read a record.
3394     Record.clear();
3395     Instruction *I = nullptr;
3396     unsigned BitCode = Stream.readRecord(Entry.ID, Record);
3397     switch (BitCode) {
3398     default: // Default behavior: reject
3399       return error("Invalid value");
3400     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3401       if (Record.size() < 1 || Record[0] == 0)
3402         return error("Invalid record");
3403       // Create all the basic blocks for the function.
3404       FunctionBBs.resize(Record[0]);
3405 
3406       // See if anything took the address of blocks in this function.
3407       auto BBFRI = BasicBlockFwdRefs.find(F);
3408       if (BBFRI == BasicBlockFwdRefs.end()) {
3409         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3410           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3411       } else {
3412         auto &BBRefs = BBFRI->second;
3413         // Check for invalid basic block references.
3414         if (BBRefs.size() > FunctionBBs.size())
3415           return error("Invalid ID");
3416         assert(!BBRefs.empty() && "Unexpected empty array");
3417         assert(!BBRefs.front() && "Invalid reference to entry block");
3418         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3419              ++I)
3420           if (I < RE && BBRefs[I]) {
3421             BBRefs[I]->insertInto(F);
3422             FunctionBBs[I] = BBRefs[I];
3423           } else {
3424             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3425           }
3426 
3427         // Erase from the table.
3428         BasicBlockFwdRefs.erase(BBFRI);
3429       }
3430 
3431       CurBB = FunctionBBs[0];
3432       continue;
3433     }
3434 
3435     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3436       // This record indicates that the last instruction is at the same
3437       // location as the previous instruction with a location.
3438       I = getLastInstruction();
3439 
3440       if (!I)
3441         return error("Invalid record");
3442       I->setDebugLoc(LastLoc);
3443       I = nullptr;
3444       continue;
3445 
3446     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3447       I = getLastInstruction();
3448       if (!I || Record.size() < 4)
3449         return error("Invalid record");
3450 
3451       unsigned Line = Record[0], Col = Record[1];
3452       unsigned ScopeID = Record[2], IAID = Record[3];
3453 
3454       MDNode *Scope = nullptr, *IA = nullptr;
3455       if (ScopeID) {
3456         Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1);
3457         if (!Scope)
3458           return error("Invalid record");
3459       }
3460       if (IAID) {
3461         IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1);
3462         if (!IA)
3463           return error("Invalid record");
3464       }
3465       LastLoc = DebugLoc::get(Line, Col, Scope, IA);
3466       I->setDebugLoc(LastLoc);
3467       I = nullptr;
3468       continue;
3469     }
3470 
3471     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3472       unsigned OpNum = 0;
3473       Value *LHS, *RHS;
3474       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3475           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3476           OpNum+1 > Record.size())
3477         return error("Invalid record");
3478 
3479       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3480       if (Opc == -1)
3481         return error("Invalid record");
3482       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3483       InstructionList.push_back(I);
3484       if (OpNum < Record.size()) {
3485         if (Opc == Instruction::Add ||
3486             Opc == Instruction::Sub ||
3487             Opc == Instruction::Mul ||
3488             Opc == Instruction::Shl) {
3489           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3490             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3491           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3492             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3493         } else if (Opc == Instruction::SDiv ||
3494                    Opc == Instruction::UDiv ||
3495                    Opc == Instruction::LShr ||
3496                    Opc == Instruction::AShr) {
3497           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3498             cast<BinaryOperator>(I)->setIsExact(true);
3499         } else if (isa<FPMathOperator>(I)) {
3500           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3501           if (FMF.any())
3502             I->setFastMathFlags(FMF);
3503         }
3504 
3505       }
3506       break;
3507     }
3508     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3509       unsigned OpNum = 0;
3510       Value *Op;
3511       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3512           OpNum+2 != Record.size())
3513         return error("Invalid record");
3514 
3515       Type *ResTy = getTypeByID(Record[OpNum]);
3516       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3517       if (Opc == -1 || !ResTy)
3518         return error("Invalid record");
3519       Instruction *Temp = nullptr;
3520       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3521         if (Temp) {
3522           InstructionList.push_back(Temp);
3523           CurBB->getInstList().push_back(Temp);
3524         }
3525       } else {
3526         auto CastOp = (Instruction::CastOps)Opc;
3527         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3528           return error("Invalid cast");
3529         I = CastInst::Create(CastOp, Op, ResTy);
3530       }
3531       InstructionList.push_back(I);
3532       break;
3533     }
3534     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3535     case bitc::FUNC_CODE_INST_GEP_OLD:
3536     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3537       unsigned OpNum = 0;
3538 
3539       Type *Ty;
3540       bool InBounds;
3541 
3542       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3543         InBounds = Record[OpNum++];
3544         Ty = getTypeByID(Record[OpNum++]);
3545       } else {
3546         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3547         Ty = nullptr;
3548       }
3549 
3550       Value *BasePtr;
3551       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3552         return error("Invalid record");
3553 
3554       if (!Ty)
3555         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
3556                  ->getElementType();
3557       else if (Ty !=
3558                cast<PointerType>(BasePtr->getType()->getScalarType())
3559                    ->getElementType())
3560         return error(
3561             "Explicit gep type does not match pointee type of pointer operand");
3562 
3563       SmallVector<Value*, 16> GEPIdx;
3564       while (OpNum != Record.size()) {
3565         Value *Op;
3566         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3567           return error("Invalid record");
3568         GEPIdx.push_back(Op);
3569       }
3570 
3571       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3572 
3573       InstructionList.push_back(I);
3574       if (InBounds)
3575         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3576       break;
3577     }
3578 
3579     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3580                                        // EXTRACTVAL: [opty, opval, n x indices]
3581       unsigned OpNum = 0;
3582       Value *Agg;
3583       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3584         return error("Invalid record");
3585 
3586       unsigned RecSize = Record.size();
3587       if (OpNum == RecSize)
3588         return error("EXTRACTVAL: Invalid instruction with 0 indices");
3589 
3590       SmallVector<unsigned, 4> EXTRACTVALIdx;
3591       Type *CurTy = Agg->getType();
3592       for (; OpNum != RecSize; ++OpNum) {
3593         bool IsArray = CurTy->isArrayTy();
3594         bool IsStruct = CurTy->isStructTy();
3595         uint64_t Index = Record[OpNum];
3596 
3597         if (!IsStruct && !IsArray)
3598           return error("EXTRACTVAL: Invalid type");
3599         if ((unsigned)Index != Index)
3600           return error("Invalid value");
3601         if (IsStruct && Index >= CurTy->subtypes().size())
3602           return error("EXTRACTVAL: Invalid struct index");
3603         if (IsArray && Index >= CurTy->getArrayNumElements())
3604           return error("EXTRACTVAL: Invalid array index");
3605         EXTRACTVALIdx.push_back((unsigned)Index);
3606 
3607         if (IsStruct)
3608           CurTy = CurTy->subtypes()[Index];
3609         else
3610           CurTy = CurTy->subtypes()[0];
3611       }
3612 
3613       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3614       InstructionList.push_back(I);
3615       break;
3616     }
3617 
3618     case bitc::FUNC_CODE_INST_INSERTVAL: {
3619                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
3620       unsigned OpNum = 0;
3621       Value *Agg;
3622       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3623         return error("Invalid record");
3624       Value *Val;
3625       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3626         return error("Invalid record");
3627 
3628       unsigned RecSize = Record.size();
3629       if (OpNum == RecSize)
3630         return error("INSERTVAL: Invalid instruction with 0 indices");
3631 
3632       SmallVector<unsigned, 4> INSERTVALIdx;
3633       Type *CurTy = Agg->getType();
3634       for (; OpNum != RecSize; ++OpNum) {
3635         bool IsArray = CurTy->isArrayTy();
3636         bool IsStruct = CurTy->isStructTy();
3637         uint64_t Index = Record[OpNum];
3638 
3639         if (!IsStruct && !IsArray)
3640           return error("INSERTVAL: Invalid type");
3641         if ((unsigned)Index != Index)
3642           return error("Invalid value");
3643         if (IsStruct && Index >= CurTy->subtypes().size())
3644           return error("INSERTVAL: Invalid struct index");
3645         if (IsArray && Index >= CurTy->getArrayNumElements())
3646           return error("INSERTVAL: Invalid array index");
3647 
3648         INSERTVALIdx.push_back((unsigned)Index);
3649         if (IsStruct)
3650           CurTy = CurTy->subtypes()[Index];
3651         else
3652           CurTy = CurTy->subtypes()[0];
3653       }
3654 
3655       if (CurTy != Val->getType())
3656         return error("Inserted value type doesn't match aggregate type");
3657 
3658       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3659       InstructionList.push_back(I);
3660       break;
3661     }
3662 
3663     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3664       // obsolete form of select
3665       // handles select i1 ... in old bitcode
3666       unsigned OpNum = 0;
3667       Value *TrueVal, *FalseVal, *Cond;
3668       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3669           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3670           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3671         return error("Invalid record");
3672 
3673       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3674       InstructionList.push_back(I);
3675       break;
3676     }
3677 
3678     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3679       // new form of select
3680       // handles select i1 or select [N x i1]
3681       unsigned OpNum = 0;
3682       Value *TrueVal, *FalseVal, *Cond;
3683       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3684           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3685           getValueTypePair(Record, OpNum, NextValueNo, Cond))
3686         return error("Invalid record");
3687 
3688       // select condition can be either i1 or [N x i1]
3689       if (VectorType* vector_type =
3690           dyn_cast<VectorType>(Cond->getType())) {
3691         // expect <n x i1>
3692         if (vector_type->getElementType() != Type::getInt1Ty(Context))
3693           return error("Invalid type for value");
3694       } else {
3695         // expect i1
3696         if (Cond->getType() != Type::getInt1Ty(Context))
3697           return error("Invalid type for value");
3698       }
3699 
3700       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3701       InstructionList.push_back(I);
3702       break;
3703     }
3704 
3705     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
3706       unsigned OpNum = 0;
3707       Value *Vec, *Idx;
3708       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
3709           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3710         return error("Invalid record");
3711       if (!Vec->getType()->isVectorTy())
3712         return error("Invalid type for value");
3713       I = ExtractElementInst::Create(Vec, Idx);
3714       InstructionList.push_back(I);
3715       break;
3716     }
3717 
3718     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
3719       unsigned OpNum = 0;
3720       Value *Vec, *Elt, *Idx;
3721       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
3722         return error("Invalid record");
3723       if (!Vec->getType()->isVectorTy())
3724         return error("Invalid type for value");
3725       if (popValue(Record, OpNum, NextValueNo,
3726                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
3727           getValueTypePair(Record, OpNum, NextValueNo, Idx))
3728         return error("Invalid record");
3729       I = InsertElementInst::Create(Vec, Elt, Idx);
3730       InstructionList.push_back(I);
3731       break;
3732     }
3733 
3734     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
3735       unsigned OpNum = 0;
3736       Value *Vec1, *Vec2, *Mask;
3737       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
3738           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
3739         return error("Invalid record");
3740 
3741       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
3742         return error("Invalid record");
3743       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
3744         return error("Invalid type for value");
3745       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
3746       InstructionList.push_back(I);
3747       break;
3748     }
3749 
3750     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
3751       // Old form of ICmp/FCmp returning bool
3752       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
3753       // both legal on vectors but had different behaviour.
3754     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
3755       // FCmp/ICmp returning bool or vector of bool
3756 
3757       unsigned OpNum = 0;
3758       Value *LHS, *RHS;
3759       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3760           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
3761         return error("Invalid record");
3762 
3763       unsigned PredVal = Record[OpNum];
3764       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
3765       FastMathFlags FMF;
3766       if (IsFP && Record.size() > OpNum+1)
3767         FMF = getDecodedFastMathFlags(Record[++OpNum]);
3768 
3769       if (OpNum+1 != Record.size())
3770         return error("Invalid record");
3771 
3772       if (LHS->getType()->isFPOrFPVectorTy())
3773         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
3774       else
3775         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
3776 
3777       if (FMF.any())
3778         I->setFastMathFlags(FMF);
3779       InstructionList.push_back(I);
3780       break;
3781     }
3782 
3783     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
3784       {
3785         unsigned Size = Record.size();
3786         if (Size == 0) {
3787           I = ReturnInst::Create(Context);
3788           InstructionList.push_back(I);
3789           break;
3790         }
3791 
3792         unsigned OpNum = 0;
3793         Value *Op = nullptr;
3794         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3795           return error("Invalid record");
3796         if (OpNum != Record.size())
3797           return error("Invalid record");
3798 
3799         I = ReturnInst::Create(Context, Op);
3800         InstructionList.push_back(I);
3801         break;
3802       }
3803     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
3804       if (Record.size() != 1 && Record.size() != 3)
3805         return error("Invalid record");
3806       BasicBlock *TrueDest = getBasicBlock(Record[0]);
3807       if (!TrueDest)
3808         return error("Invalid record");
3809 
3810       if (Record.size() == 1) {
3811         I = BranchInst::Create(TrueDest);
3812         InstructionList.push_back(I);
3813       }
3814       else {
3815         BasicBlock *FalseDest = getBasicBlock(Record[1]);
3816         Value *Cond = getValue(Record, 2, NextValueNo,
3817                                Type::getInt1Ty(Context));
3818         if (!FalseDest || !Cond)
3819           return error("Invalid record");
3820         I = BranchInst::Create(TrueDest, FalseDest, Cond);
3821         InstructionList.push_back(I);
3822       }
3823       break;
3824     }
3825     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
3826       if (Record.size() != 1 && Record.size() != 2)
3827         return error("Invalid record");
3828       unsigned Idx = 0;
3829       Value *CleanupPad =
3830           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3831       if (!CleanupPad)
3832         return error("Invalid record");
3833       BasicBlock *UnwindDest = nullptr;
3834       if (Record.size() == 2) {
3835         UnwindDest = getBasicBlock(Record[Idx++]);
3836         if (!UnwindDest)
3837           return error("Invalid record");
3838       }
3839 
3840       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
3841       InstructionList.push_back(I);
3842       break;
3843     }
3844     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
3845       if (Record.size() != 2)
3846         return error("Invalid record");
3847       unsigned Idx = 0;
3848       Value *CatchPad =
3849           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3850       if (!CatchPad)
3851         return error("Invalid record");
3852       BasicBlock *BB = getBasicBlock(Record[Idx++]);
3853       if (!BB)
3854         return error("Invalid record");
3855 
3856       I = CatchReturnInst::Create(CatchPad, BB);
3857       InstructionList.push_back(I);
3858       break;
3859     }
3860     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
3861       // We must have, at minimum, the outer scope and the number of arguments.
3862       if (Record.size() < 2)
3863         return error("Invalid record");
3864 
3865       unsigned Idx = 0;
3866 
3867       Value *ParentPad =
3868           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3869 
3870       unsigned NumHandlers = Record[Idx++];
3871 
3872       SmallVector<BasicBlock *, 2> Handlers;
3873       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
3874         BasicBlock *BB = getBasicBlock(Record[Idx++]);
3875         if (!BB)
3876           return error("Invalid record");
3877         Handlers.push_back(BB);
3878       }
3879 
3880       BasicBlock *UnwindDest = nullptr;
3881       if (Idx + 1 == Record.size()) {
3882         UnwindDest = getBasicBlock(Record[Idx++]);
3883         if (!UnwindDest)
3884           return error("Invalid record");
3885       }
3886 
3887       if (Record.size() != Idx)
3888         return error("Invalid record");
3889 
3890       auto *CatchSwitch =
3891           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
3892       for (BasicBlock *Handler : Handlers)
3893         CatchSwitch->addHandler(Handler);
3894       I = CatchSwitch;
3895       InstructionList.push_back(I);
3896       break;
3897     }
3898     case bitc::FUNC_CODE_INST_CATCHPAD:
3899     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
3900       // We must have, at minimum, the outer scope and the number of arguments.
3901       if (Record.size() < 2)
3902         return error("Invalid record");
3903 
3904       unsigned Idx = 0;
3905 
3906       Value *ParentPad =
3907           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
3908 
3909       unsigned NumArgOperands = Record[Idx++];
3910 
3911       SmallVector<Value *, 2> Args;
3912       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
3913         Value *Val;
3914         if (getValueTypePair(Record, Idx, NextValueNo, Val))
3915           return error("Invalid record");
3916         Args.push_back(Val);
3917       }
3918 
3919       if (Record.size() != Idx)
3920         return error("Invalid record");
3921 
3922       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
3923         I = CleanupPadInst::Create(ParentPad, Args);
3924       else
3925         I = CatchPadInst::Create(ParentPad, Args);
3926       InstructionList.push_back(I);
3927       break;
3928     }
3929     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
3930       // Check magic
3931       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
3932         // "New" SwitchInst format with case ranges. The changes to write this
3933         // format were reverted but we still recognize bitcode that uses it.
3934         // Hopefully someday we will have support for case ranges and can use
3935         // this format again.
3936 
3937         Type *OpTy = getTypeByID(Record[1]);
3938         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
3939 
3940         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
3941         BasicBlock *Default = getBasicBlock(Record[3]);
3942         if (!OpTy || !Cond || !Default)
3943           return error("Invalid record");
3944 
3945         unsigned NumCases = Record[4];
3946 
3947         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
3948         InstructionList.push_back(SI);
3949 
3950         unsigned CurIdx = 5;
3951         for (unsigned i = 0; i != NumCases; ++i) {
3952           SmallVector<ConstantInt*, 1> CaseVals;
3953           unsigned NumItems = Record[CurIdx++];
3954           for (unsigned ci = 0; ci != NumItems; ++ci) {
3955             bool isSingleNumber = Record[CurIdx++];
3956 
3957             APInt Low;
3958             unsigned ActiveWords = 1;
3959             if (ValueBitWidth > 64)
3960               ActiveWords = Record[CurIdx++];
3961             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
3962                                 ValueBitWidth);
3963             CurIdx += ActiveWords;
3964 
3965             if (!isSingleNumber) {
3966               ActiveWords = 1;
3967               if (ValueBitWidth > 64)
3968                 ActiveWords = Record[CurIdx++];
3969               APInt High = readWideAPInt(
3970                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
3971               CurIdx += ActiveWords;
3972 
3973               // FIXME: It is not clear whether values in the range should be
3974               // compared as signed or unsigned values. The partially
3975               // implemented changes that used this format in the past used
3976               // unsigned comparisons.
3977               for ( ; Low.ule(High); ++Low)
3978                 CaseVals.push_back(ConstantInt::get(Context, Low));
3979             } else
3980               CaseVals.push_back(ConstantInt::get(Context, Low));
3981           }
3982           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
3983           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
3984                  cve = CaseVals.end(); cvi != cve; ++cvi)
3985             SI->addCase(*cvi, DestBB);
3986         }
3987         I = SI;
3988         break;
3989       }
3990 
3991       // Old SwitchInst format without case ranges.
3992 
3993       if (Record.size() < 3 || (Record.size() & 1) == 0)
3994         return error("Invalid record");
3995       Type *OpTy = getTypeByID(Record[0]);
3996       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
3997       BasicBlock *Default = getBasicBlock(Record[2]);
3998       if (!OpTy || !Cond || !Default)
3999         return error("Invalid record");
4000       unsigned NumCases = (Record.size()-3)/2;
4001       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4002       InstructionList.push_back(SI);
4003       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4004         ConstantInt *CaseVal =
4005           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4006         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4007         if (!CaseVal || !DestBB) {
4008           delete SI;
4009           return error("Invalid record");
4010         }
4011         SI->addCase(CaseVal, DestBB);
4012       }
4013       I = SI;
4014       break;
4015     }
4016     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4017       if (Record.size() < 2)
4018         return error("Invalid record");
4019       Type *OpTy = getTypeByID(Record[0]);
4020       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4021       if (!OpTy || !Address)
4022         return error("Invalid record");
4023       unsigned NumDests = Record.size()-2;
4024       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4025       InstructionList.push_back(IBI);
4026       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4027         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4028           IBI->addDestination(DestBB);
4029         } else {
4030           delete IBI;
4031           return error("Invalid record");
4032         }
4033       }
4034       I = IBI;
4035       break;
4036     }
4037 
4038     case bitc::FUNC_CODE_INST_INVOKE: {
4039       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4040       if (Record.size() < 4)
4041         return error("Invalid record");
4042       unsigned OpNum = 0;
4043       AttributeList PAL = getAttributes(Record[OpNum++]);
4044       unsigned CCInfo = Record[OpNum++];
4045       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4046       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4047 
4048       FunctionType *FTy = nullptr;
4049       if (CCInfo >> 13 & 1 &&
4050           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4051         return error("Explicit invoke type is not a function type");
4052 
4053       Value *Callee;
4054       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4055         return error("Invalid record");
4056 
4057       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4058       if (!CalleeTy)
4059         return error("Callee is not a pointer");
4060       if (!FTy) {
4061         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4062         if (!FTy)
4063           return error("Callee is not of pointer to function type");
4064       } else if (CalleeTy->getElementType() != FTy)
4065         return error("Explicit invoke type does not match pointee type of "
4066                      "callee operand");
4067       if (Record.size() < FTy->getNumParams() + OpNum)
4068         return error("Insufficient operands to call");
4069 
4070       SmallVector<Value*, 16> Ops;
4071       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4072         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4073                                FTy->getParamType(i)));
4074         if (!Ops.back())
4075           return error("Invalid record");
4076       }
4077 
4078       if (!FTy->isVarArg()) {
4079         if (Record.size() != OpNum)
4080           return error("Invalid record");
4081       } else {
4082         // Read type/value pairs for varargs params.
4083         while (OpNum != Record.size()) {
4084           Value *Op;
4085           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4086             return error("Invalid record");
4087           Ops.push_back(Op);
4088         }
4089       }
4090 
4091       I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles);
4092       OperandBundles.clear();
4093       InstructionList.push_back(I);
4094       cast<InvokeInst>(I)->setCallingConv(
4095           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4096       cast<InvokeInst>(I)->setAttributes(PAL);
4097       break;
4098     }
4099     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4100       unsigned Idx = 0;
4101       Value *Val = nullptr;
4102       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4103         return error("Invalid record");
4104       I = ResumeInst::Create(Val);
4105       InstructionList.push_back(I);
4106       break;
4107     }
4108     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4109       I = new UnreachableInst(Context);
4110       InstructionList.push_back(I);
4111       break;
4112     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4113       if (Record.size() < 1 || ((Record.size()-1)&1))
4114         return error("Invalid record");
4115       Type *Ty = getTypeByID(Record[0]);
4116       if (!Ty)
4117         return error("Invalid record");
4118 
4119       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4120       InstructionList.push_back(PN);
4121 
4122       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4123         Value *V;
4124         // With the new function encoding, it is possible that operands have
4125         // negative IDs (for forward references).  Use a signed VBR
4126         // representation to keep the encoding small.
4127         if (UseRelativeIDs)
4128           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4129         else
4130           V = getValue(Record, 1+i, NextValueNo, Ty);
4131         BasicBlock *BB = getBasicBlock(Record[2+i]);
4132         if (!V || !BB)
4133           return error("Invalid record");
4134         PN->addIncoming(V, BB);
4135       }
4136       I = PN;
4137       break;
4138     }
4139 
4140     case bitc::FUNC_CODE_INST_LANDINGPAD:
4141     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4142       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4143       unsigned Idx = 0;
4144       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4145         if (Record.size() < 3)
4146           return error("Invalid record");
4147       } else {
4148         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4149         if (Record.size() < 4)
4150           return error("Invalid record");
4151       }
4152       Type *Ty = getTypeByID(Record[Idx++]);
4153       if (!Ty)
4154         return error("Invalid record");
4155       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4156         Value *PersFn = nullptr;
4157         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4158           return error("Invalid record");
4159 
4160         if (!F->hasPersonalityFn())
4161           F->setPersonalityFn(cast<Constant>(PersFn));
4162         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4163           return error("Personality function mismatch");
4164       }
4165 
4166       bool IsCleanup = !!Record[Idx++];
4167       unsigned NumClauses = Record[Idx++];
4168       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4169       LP->setCleanup(IsCleanup);
4170       for (unsigned J = 0; J != NumClauses; ++J) {
4171         LandingPadInst::ClauseType CT =
4172           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4173         Value *Val;
4174 
4175         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4176           delete LP;
4177           return error("Invalid record");
4178         }
4179 
4180         assert((CT != LandingPadInst::Catch ||
4181                 !isa<ArrayType>(Val->getType())) &&
4182                "Catch clause has a invalid type!");
4183         assert((CT != LandingPadInst::Filter ||
4184                 isa<ArrayType>(Val->getType())) &&
4185                "Filter clause has invalid type!");
4186         LP->addClause(cast<Constant>(Val));
4187       }
4188 
4189       I = LP;
4190       InstructionList.push_back(I);
4191       break;
4192     }
4193 
4194     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4195       if (Record.size() != 4)
4196         return error("Invalid record");
4197       uint64_t AlignRecord = Record[3];
4198       const uint64_t InAllocaMask = uint64_t(1) << 5;
4199       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4200       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4201       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4202                                 SwiftErrorMask;
4203       bool InAlloca = AlignRecord & InAllocaMask;
4204       bool SwiftError = AlignRecord & SwiftErrorMask;
4205       Type *Ty = getTypeByID(Record[0]);
4206       if ((AlignRecord & ExplicitTypeMask) == 0) {
4207         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4208         if (!PTy)
4209           return error("Old-style alloca with a non-pointer type");
4210         Ty = PTy->getElementType();
4211       }
4212       Type *OpTy = getTypeByID(Record[1]);
4213       Value *Size = getFnValueByID(Record[2], OpTy);
4214       unsigned Align;
4215       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4216         return Err;
4217       }
4218       if (!Ty || !Size)
4219         return error("Invalid record");
4220 
4221       // FIXME: Make this an optional field.
4222       const DataLayout &DL = TheModule->getDataLayout();
4223       unsigned AS = DL.getAllocaAddrSpace();
4224 
4225       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4226       AI->setUsedWithInAlloca(InAlloca);
4227       AI->setSwiftError(SwiftError);
4228       I = AI;
4229       InstructionList.push_back(I);
4230       break;
4231     }
4232     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4233       unsigned OpNum = 0;
4234       Value *Op;
4235       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4236           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4237         return error("Invalid record");
4238 
4239       Type *Ty = nullptr;
4240       if (OpNum + 3 == Record.size())
4241         Ty = getTypeByID(Record[OpNum++]);
4242       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4243         return Err;
4244       if (!Ty)
4245         Ty = cast<PointerType>(Op->getType())->getElementType();
4246 
4247       unsigned Align;
4248       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4249         return Err;
4250       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4251 
4252       InstructionList.push_back(I);
4253       break;
4254     }
4255     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4256        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4257       unsigned OpNum = 0;
4258       Value *Op;
4259       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4260           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4261         return error("Invalid record");
4262 
4263       Type *Ty = nullptr;
4264       if (OpNum + 5 == Record.size())
4265         Ty = getTypeByID(Record[OpNum++]);
4266       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4267         return Err;
4268       if (!Ty)
4269         Ty = cast<PointerType>(Op->getType())->getElementType();
4270 
4271       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4272       if (Ordering == AtomicOrdering::NotAtomic ||
4273           Ordering == AtomicOrdering::Release ||
4274           Ordering == AtomicOrdering::AcquireRelease)
4275         return error("Invalid record");
4276       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4277         return error("Invalid record");
4278       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4279 
4280       unsigned Align;
4281       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4282         return Err;
4283       I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID);
4284 
4285       InstructionList.push_back(I);
4286       break;
4287     }
4288     case bitc::FUNC_CODE_INST_STORE:
4289     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4290       unsigned OpNum = 0;
4291       Value *Val, *Ptr;
4292       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4293           (BitCode == bitc::FUNC_CODE_INST_STORE
4294                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4295                : popValue(Record, OpNum, NextValueNo,
4296                           cast<PointerType>(Ptr->getType())->getElementType(),
4297                           Val)) ||
4298           OpNum + 2 != Record.size())
4299         return error("Invalid record");
4300 
4301       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4302         return Err;
4303       unsigned Align;
4304       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4305         return Err;
4306       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4307       InstructionList.push_back(I);
4308       break;
4309     }
4310     case bitc::FUNC_CODE_INST_STOREATOMIC:
4311     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4312       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4313       unsigned OpNum = 0;
4314       Value *Val, *Ptr;
4315       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4316           !isa<PointerType>(Ptr->getType()) ||
4317           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4318                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4319                : popValue(Record, OpNum, NextValueNo,
4320                           cast<PointerType>(Ptr->getType())->getElementType(),
4321                           Val)) ||
4322           OpNum + 4 != Record.size())
4323         return error("Invalid record");
4324 
4325       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4326         return Err;
4327       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4328       if (Ordering == AtomicOrdering::NotAtomic ||
4329           Ordering == AtomicOrdering::Acquire ||
4330           Ordering == AtomicOrdering::AcquireRelease)
4331         return error("Invalid record");
4332       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4333       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4334         return error("Invalid record");
4335 
4336       unsigned Align;
4337       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4338         return Err;
4339       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4340       InstructionList.push_back(I);
4341       break;
4342     }
4343     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4344     case bitc::FUNC_CODE_INST_CMPXCHG: {
4345       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4346       //          failureordering?, isweak?]
4347       unsigned OpNum = 0;
4348       Value *Ptr, *Cmp, *New;
4349       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4350           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4351                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4352                : popValue(Record, OpNum, NextValueNo,
4353                           cast<PointerType>(Ptr->getType())->getElementType(),
4354                           Cmp)) ||
4355           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4356           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4357         return error("Invalid record");
4358       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4359       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4360           SuccessOrdering == AtomicOrdering::Unordered)
4361         return error("Invalid record");
4362       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4363 
4364       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4365         return Err;
4366       AtomicOrdering FailureOrdering;
4367       if (Record.size() < 7)
4368         FailureOrdering =
4369             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4370       else
4371         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4372 
4373       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4374                                 SSID);
4375       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4376 
4377       if (Record.size() < 8) {
4378         // Before weak cmpxchgs existed, the instruction simply returned the
4379         // value loaded from memory, so bitcode files from that era will be
4380         // expecting the first component of a modern cmpxchg.
4381         CurBB->getInstList().push_back(I);
4382         I = ExtractValueInst::Create(I, 0);
4383       } else {
4384         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4385       }
4386 
4387       InstructionList.push_back(I);
4388       break;
4389     }
4390     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4391       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4392       unsigned OpNum = 0;
4393       Value *Ptr, *Val;
4394       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4395           !isa<PointerType>(Ptr->getType()) ||
4396           popValue(Record, OpNum, NextValueNo,
4397                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4398           OpNum+4 != Record.size())
4399         return error("Invalid record");
4400       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4401       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4402           Operation > AtomicRMWInst::LAST_BINOP)
4403         return error("Invalid record");
4404       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4405       if (Ordering == AtomicOrdering::NotAtomic ||
4406           Ordering == AtomicOrdering::Unordered)
4407         return error("Invalid record");
4408       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4409       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4410       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4411       InstructionList.push_back(I);
4412       break;
4413     }
4414     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4415       if (2 != Record.size())
4416         return error("Invalid record");
4417       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4418       if (Ordering == AtomicOrdering::NotAtomic ||
4419           Ordering == AtomicOrdering::Unordered ||
4420           Ordering == AtomicOrdering::Monotonic)
4421         return error("Invalid record");
4422       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4423       I = new FenceInst(Context, Ordering, SSID);
4424       InstructionList.push_back(I);
4425       break;
4426     }
4427     case bitc::FUNC_CODE_INST_CALL: {
4428       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4429       if (Record.size() < 3)
4430         return error("Invalid record");
4431 
4432       unsigned OpNum = 0;
4433       AttributeList PAL = getAttributes(Record[OpNum++]);
4434       unsigned CCInfo = Record[OpNum++];
4435 
4436       FastMathFlags FMF;
4437       if ((CCInfo >> bitc::CALL_FMF) & 1) {
4438         FMF = getDecodedFastMathFlags(Record[OpNum++]);
4439         if (!FMF.any())
4440           return error("Fast math flags indicator set for call with no FMF");
4441       }
4442 
4443       FunctionType *FTy = nullptr;
4444       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4445           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4446         return error("Explicit call type is not a function type");
4447 
4448       Value *Callee;
4449       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4450         return error("Invalid record");
4451 
4452       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4453       if (!OpTy)
4454         return error("Callee is not a pointer type");
4455       if (!FTy) {
4456         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4457         if (!FTy)
4458           return error("Callee is not of pointer to function type");
4459       } else if (OpTy->getElementType() != FTy)
4460         return error("Explicit call type does not match pointee type of "
4461                      "callee operand");
4462       if (Record.size() < FTy->getNumParams() + OpNum)
4463         return error("Insufficient operands to call");
4464 
4465       SmallVector<Value*, 16> Args;
4466       // Read the fixed params.
4467       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4468         if (FTy->getParamType(i)->isLabelTy())
4469           Args.push_back(getBasicBlock(Record[OpNum]));
4470         else
4471           Args.push_back(getValue(Record, OpNum, NextValueNo,
4472                                   FTy->getParamType(i)));
4473         if (!Args.back())
4474           return error("Invalid record");
4475       }
4476 
4477       // Read type/value pairs for varargs params.
4478       if (!FTy->isVarArg()) {
4479         if (OpNum != Record.size())
4480           return error("Invalid record");
4481       } else {
4482         while (OpNum != Record.size()) {
4483           Value *Op;
4484           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4485             return error("Invalid record");
4486           Args.push_back(Op);
4487         }
4488       }
4489 
4490       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
4491       OperandBundles.clear();
4492       InstructionList.push_back(I);
4493       cast<CallInst>(I)->setCallingConv(
4494           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4495       CallInst::TailCallKind TCK = CallInst::TCK_None;
4496       if (CCInfo & 1 << bitc::CALL_TAIL)
4497         TCK = CallInst::TCK_Tail;
4498       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
4499         TCK = CallInst::TCK_MustTail;
4500       if (CCInfo & (1 << bitc::CALL_NOTAIL))
4501         TCK = CallInst::TCK_NoTail;
4502       cast<CallInst>(I)->setTailCallKind(TCK);
4503       cast<CallInst>(I)->setAttributes(PAL);
4504       if (FMF.any()) {
4505         if (!isa<FPMathOperator>(I))
4506           return error("Fast-math-flags specified for call without "
4507                        "floating-point scalar or vector return type");
4508         I->setFastMathFlags(FMF);
4509       }
4510       break;
4511     }
4512     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4513       if (Record.size() < 3)
4514         return error("Invalid record");
4515       Type *OpTy = getTypeByID(Record[0]);
4516       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4517       Type *ResTy = getTypeByID(Record[2]);
4518       if (!OpTy || !Op || !ResTy)
4519         return error("Invalid record");
4520       I = new VAArgInst(Op, ResTy);
4521       InstructionList.push_back(I);
4522       break;
4523     }
4524 
4525     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
4526       // A call or an invoke can be optionally prefixed with some variable
4527       // number of operand bundle blocks.  These blocks are read into
4528       // OperandBundles and consumed at the next call or invoke instruction.
4529 
4530       if (Record.size() < 1 || Record[0] >= BundleTags.size())
4531         return error("Invalid record");
4532 
4533       std::vector<Value *> Inputs;
4534 
4535       unsigned OpNum = 1;
4536       while (OpNum != Record.size()) {
4537         Value *Op;
4538         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4539           return error("Invalid record");
4540         Inputs.push_back(Op);
4541       }
4542 
4543       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
4544       continue;
4545     }
4546     }
4547 
4548     // Add instruction to end of current BB.  If there is no current BB, reject
4549     // this file.
4550     if (!CurBB) {
4551       I->deleteValue();
4552       return error("Invalid instruction with no BB");
4553     }
4554     if (!OperandBundles.empty()) {
4555       I->deleteValue();
4556       return error("Operand bundles found with no consumer");
4557     }
4558     CurBB->getInstList().push_back(I);
4559 
4560     // If this was a terminator instruction, move to the next block.
4561     if (isa<TerminatorInst>(I)) {
4562       ++CurBBNo;
4563       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4564     }
4565 
4566     // Non-void values get registered in the value table for future use.
4567     if (I && !I->getType()->isVoidTy())
4568       ValueList.assignValue(I, NextValueNo++);
4569   }
4570 
4571 OutOfRecordLoop:
4572 
4573   if (!OperandBundles.empty())
4574     return error("Operand bundles found with no consumer");
4575 
4576   // Check the function list for unresolved values.
4577   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4578     if (!A->getParent()) {
4579       // We found at least one unresolved value.  Nuke them all to avoid leaks.
4580       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4581         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4582           A->replaceAllUsesWith(UndefValue::get(A->getType()));
4583           delete A;
4584         }
4585       }
4586       return error("Never resolved value found in function");
4587     }
4588   }
4589 
4590   // Unexpected unresolved metadata about to be dropped.
4591   if (MDLoader->hasFwdRefs())
4592     return error("Invalid function metadata: outgoing forward refs");
4593 
4594   // Trim the value list down to the size it was before we parsed this function.
4595   ValueList.shrinkTo(ModuleValueListSize);
4596   MDLoader->shrinkTo(ModuleMDLoaderSize);
4597   std::vector<BasicBlock*>().swap(FunctionBBs);
4598   return Error::success();
4599 }
4600 
4601 /// Find the function body in the bitcode stream
4602 Error BitcodeReader::findFunctionInStream(
4603     Function *F,
4604     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
4605   while (DeferredFunctionInfoIterator->second == 0) {
4606     // This is the fallback handling for the old format bitcode that
4607     // didn't contain the function index in the VST, or when we have
4608     // an anonymous function which would not have a VST entry.
4609     // Assert that we have one of those two cases.
4610     assert(VSTOffset == 0 || !F->hasName());
4611     // Parse the next body in the stream and set its position in the
4612     // DeferredFunctionInfo map.
4613     if (Error Err = rememberAndSkipFunctionBodies())
4614       return Err;
4615   }
4616   return Error::success();
4617 }
4618 
4619 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
4620   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
4621     return SyncScope::ID(Val);
4622   if (Val >= SSIDs.size())
4623     return SyncScope::System; // Map unknown synchronization scopes to system.
4624   return SSIDs[Val];
4625 }
4626 
4627 //===----------------------------------------------------------------------===//
4628 // GVMaterializer implementation
4629 //===----------------------------------------------------------------------===//
4630 
4631 Error BitcodeReader::materialize(GlobalValue *GV) {
4632   Function *F = dyn_cast<Function>(GV);
4633   // If it's not a function or is already material, ignore the request.
4634   if (!F || !F->isMaterializable())
4635     return Error::success();
4636 
4637   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
4638   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
4639   // If its position is recorded as 0, its body is somewhere in the stream
4640   // but we haven't seen it yet.
4641   if (DFII->second == 0)
4642     if (Error Err = findFunctionInStream(F, DFII))
4643       return Err;
4644 
4645   // Materialize metadata before parsing any function bodies.
4646   if (Error Err = materializeMetadata())
4647     return Err;
4648 
4649   // Move the bit stream to the saved position of the deferred function body.
4650   Stream.JumpToBit(DFII->second);
4651 
4652   if (Error Err = parseFunctionBody(F))
4653     return Err;
4654   F->setIsMaterializable(false);
4655 
4656   if (StripDebugInfo)
4657     stripDebugInfo(*F);
4658 
4659   // Upgrade any old intrinsic calls in the function.
4660   for (auto &I : UpgradedIntrinsics) {
4661     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4662          UI != UE;) {
4663       User *U = *UI;
4664       ++UI;
4665       if (CallInst *CI = dyn_cast<CallInst>(U))
4666         UpgradeIntrinsicCall(CI, I.second);
4667     }
4668   }
4669 
4670   // Update calls to the remangled intrinsics
4671   for (auto &I : RemangledIntrinsics)
4672     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
4673          UI != UE;)
4674       // Don't expect any other users than call sites
4675       CallSite(*UI++).setCalledFunction(I.second);
4676 
4677   // Finish fn->subprogram upgrade for materialized functions.
4678   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
4679     F->setSubprogram(SP);
4680 
4681   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
4682   if (!MDLoader->isStrippingTBAA()) {
4683     for (auto &I : instructions(F)) {
4684       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
4685       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
4686         continue;
4687       MDLoader->setStripTBAA(true);
4688       stripTBAA(F->getParent());
4689     }
4690   }
4691 
4692   // Bring in any functions that this function forward-referenced via
4693   // blockaddresses.
4694   return materializeForwardReferencedFunctions();
4695 }
4696 
4697 Error BitcodeReader::materializeModule() {
4698   if (Error Err = materializeMetadata())
4699     return Err;
4700 
4701   // Promise to materialize all forward references.
4702   WillMaterializeAllForwardRefs = true;
4703 
4704   // Iterate over the module, deserializing any functions that are still on
4705   // disk.
4706   for (Function &F : *TheModule) {
4707     if (Error Err = materialize(&F))
4708       return Err;
4709   }
4710   // At this point, if there are any function bodies, parse the rest of
4711   // the bits in the module past the last function block we have recorded
4712   // through either lazy scanning or the VST.
4713   if (LastFunctionBlockBit || NextUnreadBit)
4714     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
4715                                     ? LastFunctionBlockBit
4716                                     : NextUnreadBit))
4717       return Err;
4718 
4719   // Check that all block address forward references got resolved (as we
4720   // promised above).
4721   if (!BasicBlockFwdRefs.empty())
4722     return error("Never resolved function from blockaddress");
4723 
4724   // Upgrade any intrinsic calls that slipped through (should not happen!) and
4725   // delete the old functions to clean up. We can't do this unless the entire
4726   // module is materialized because there could always be another function body
4727   // with calls to the old function.
4728   for (auto &I : UpgradedIntrinsics) {
4729     for (auto *U : I.first->users()) {
4730       if (CallInst *CI = dyn_cast<CallInst>(U))
4731         UpgradeIntrinsicCall(CI, I.second);
4732     }
4733     if (!I.first->use_empty())
4734       I.first->replaceAllUsesWith(I.second);
4735     I.first->eraseFromParent();
4736   }
4737   UpgradedIntrinsics.clear();
4738   // Do the same for remangled intrinsics
4739   for (auto &I : RemangledIntrinsics) {
4740     I.first->replaceAllUsesWith(I.second);
4741     I.first->eraseFromParent();
4742   }
4743   RemangledIntrinsics.clear();
4744 
4745   UpgradeDebugInfo(*TheModule);
4746 
4747   UpgradeModuleFlags(*TheModule);
4748   return Error::success();
4749 }
4750 
4751 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
4752   return IdentifiedStructTypes;
4753 }
4754 
4755 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
4756     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
4757     StringRef ModulePath, unsigned ModuleId)
4758     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
4759       ModulePath(ModulePath), ModuleId(ModuleId) {}
4760 
4761 ModuleSummaryIndex::ModuleInfo *
4762 ModuleSummaryIndexBitcodeReader::addThisModule() {
4763   return TheIndex.addModule(ModulePath, ModuleId);
4764 }
4765 
4766 std::pair<ValueInfo, GlobalValue::GUID>
4767 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
4768   auto VGI = ValueIdToValueInfoMap[ValueId];
4769   assert(VGI.first);
4770   return VGI;
4771 }
4772 
4773 void ModuleSummaryIndexBitcodeReader::setValueGUID(
4774     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
4775     StringRef SourceFileName) {
4776   std::string GlobalId =
4777       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
4778   auto ValueGUID = GlobalValue::getGUID(GlobalId);
4779   auto OriginalNameID = ValueGUID;
4780   if (GlobalValue::isLocalLinkage(Linkage))
4781     OriginalNameID = GlobalValue::getGUID(ValueName);
4782   if (PrintSummaryGUIDs)
4783     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
4784            << ValueName << "\n";
4785   ValueIdToValueInfoMap[ValueID] =
4786       std::make_pair(TheIndex.getOrInsertValueInfo(ValueGUID), OriginalNameID);
4787 }
4788 
4789 // Specialized value symbol table parser used when reading module index
4790 // blocks where we don't actually create global values. The parsed information
4791 // is saved in the bitcode reader for use when later parsing summaries.
4792 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
4793     uint64_t Offset,
4794     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
4795   // With a strtab the VST is not required to parse the summary.
4796   if (UseStrtab)
4797     return Error::success();
4798 
4799   assert(Offset > 0 && "Expected non-zero VST offset");
4800   uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream);
4801 
4802   if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
4803     return error("Invalid record");
4804 
4805   SmallVector<uint64_t, 64> Record;
4806 
4807   // Read all the records for this value table.
4808   SmallString<128> ValueName;
4809 
4810   while (true) {
4811     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
4812 
4813     switch (Entry.Kind) {
4814     case BitstreamEntry::SubBlock: // Handled for us already.
4815     case BitstreamEntry::Error:
4816       return error("Malformed block");
4817     case BitstreamEntry::EndBlock:
4818       // Done parsing VST, jump back to wherever we came from.
4819       Stream.JumpToBit(CurrentBit);
4820       return Error::success();
4821     case BitstreamEntry::Record:
4822       // The interesting case.
4823       break;
4824     }
4825 
4826     // Read a record.
4827     Record.clear();
4828     switch (Stream.readRecord(Entry.ID, Record)) {
4829     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
4830       break;
4831     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
4832       if (convertToString(Record, 1, ValueName))
4833         return error("Invalid record");
4834       unsigned ValueID = Record[0];
4835       assert(!SourceFileName.empty());
4836       auto VLI = ValueIdToLinkageMap.find(ValueID);
4837       assert(VLI != ValueIdToLinkageMap.end() &&
4838              "No linkage found for VST entry?");
4839       auto Linkage = VLI->second;
4840       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4841       ValueName.clear();
4842       break;
4843     }
4844     case bitc::VST_CODE_FNENTRY: {
4845       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
4846       if (convertToString(Record, 2, ValueName))
4847         return error("Invalid record");
4848       unsigned ValueID = Record[0];
4849       assert(!SourceFileName.empty());
4850       auto VLI = ValueIdToLinkageMap.find(ValueID);
4851       assert(VLI != ValueIdToLinkageMap.end() &&
4852              "No linkage found for VST entry?");
4853       auto Linkage = VLI->second;
4854       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
4855       ValueName.clear();
4856       break;
4857     }
4858     case bitc::VST_CODE_COMBINED_ENTRY: {
4859       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
4860       unsigned ValueID = Record[0];
4861       GlobalValue::GUID RefGUID = Record[1];
4862       // The "original name", which is the second value of the pair will be
4863       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
4864       ValueIdToValueInfoMap[ValueID] =
4865           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
4866       break;
4867     }
4868     }
4869   }
4870 }
4871 
4872 // Parse just the blocks needed for building the index out of the module.
4873 // At the end of this routine the module Index is populated with a map
4874 // from global value id to GlobalValueSummary objects.
4875 Error ModuleSummaryIndexBitcodeReader::parseModule() {
4876   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
4877     return error("Invalid record");
4878 
4879   SmallVector<uint64_t, 64> Record;
4880   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
4881   unsigned ValueId = 0;
4882 
4883   // Read the index for this module.
4884   while (true) {
4885     BitstreamEntry Entry = Stream.advance();
4886 
4887     switch (Entry.Kind) {
4888     case BitstreamEntry::Error:
4889       return error("Malformed block");
4890     case BitstreamEntry::EndBlock:
4891       return Error::success();
4892 
4893     case BitstreamEntry::SubBlock:
4894       switch (Entry.ID) {
4895       default: // Skip unknown content.
4896         if (Stream.SkipBlock())
4897           return error("Invalid record");
4898         break;
4899       case bitc::BLOCKINFO_BLOCK_ID:
4900         // Need to parse these to get abbrev ids (e.g. for VST)
4901         if (readBlockInfo())
4902           return error("Malformed block");
4903         break;
4904       case bitc::VALUE_SYMTAB_BLOCK_ID:
4905         // Should have been parsed earlier via VSTOffset, unless there
4906         // is no summary section.
4907         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
4908                 !SeenGlobalValSummary) &&
4909                "Expected early VST parse via VSTOffset record");
4910         if (Stream.SkipBlock())
4911           return error("Invalid record");
4912         break;
4913       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
4914       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
4915         assert(!SeenValueSymbolTable &&
4916                "Already read VST when parsing summary block?");
4917         // We might not have a VST if there were no values in the
4918         // summary. An empty summary block generated when we are
4919         // performing ThinLTO compiles so we don't later invoke
4920         // the regular LTO process on them.
4921         if (VSTOffset > 0) {
4922           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
4923             return Err;
4924           SeenValueSymbolTable = true;
4925         }
4926         SeenGlobalValSummary = true;
4927         if (Error Err = parseEntireSummary(Entry.ID))
4928           return Err;
4929         break;
4930       case bitc::MODULE_STRTAB_BLOCK_ID:
4931         if (Error Err = parseModuleStringTable())
4932           return Err;
4933         break;
4934       }
4935       continue;
4936 
4937     case BitstreamEntry::Record: {
4938         Record.clear();
4939         auto BitCode = Stream.readRecord(Entry.ID, Record);
4940         switch (BitCode) {
4941         default:
4942           break; // Default behavior, ignore unknown content.
4943         case bitc::MODULE_CODE_VERSION: {
4944           if (Error Err = parseVersionRecord(Record).takeError())
4945             return Err;
4946           break;
4947         }
4948         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
4949         case bitc::MODULE_CODE_SOURCE_FILENAME: {
4950           SmallString<128> ValueName;
4951           if (convertToString(Record, 0, ValueName))
4952             return error("Invalid record");
4953           SourceFileName = ValueName.c_str();
4954           break;
4955         }
4956         /// MODULE_CODE_HASH: [5*i32]
4957         case bitc::MODULE_CODE_HASH: {
4958           if (Record.size() != 5)
4959             return error("Invalid hash length " + Twine(Record.size()).str());
4960           auto &Hash = addThisModule()->second.second;
4961           int Pos = 0;
4962           for (auto &Val : Record) {
4963             assert(!(Val >> 32) && "Unexpected high bits set");
4964             Hash[Pos++] = Val;
4965           }
4966           break;
4967         }
4968         /// MODULE_CODE_VSTOFFSET: [offset]
4969         case bitc::MODULE_CODE_VSTOFFSET:
4970           if (Record.size() < 1)
4971             return error("Invalid record");
4972           // Note that we subtract 1 here because the offset is relative to one
4973           // word before the start of the identification or module block, which
4974           // was historically always the start of the regular bitcode header.
4975           VSTOffset = Record[0] - 1;
4976           break;
4977         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
4978         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
4979         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
4980         // v2: [strtab offset, strtab size, v1]
4981         case bitc::MODULE_CODE_GLOBALVAR:
4982         case bitc::MODULE_CODE_FUNCTION:
4983         case bitc::MODULE_CODE_ALIAS: {
4984           StringRef Name;
4985           ArrayRef<uint64_t> GVRecord;
4986           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
4987           if (GVRecord.size() <= 3)
4988             return error("Invalid record");
4989           uint64_t RawLinkage = GVRecord[3];
4990           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
4991           if (!UseStrtab) {
4992             ValueIdToLinkageMap[ValueId++] = Linkage;
4993             break;
4994           }
4995 
4996           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
4997           break;
4998         }
4999         }
5000       }
5001       continue;
5002     }
5003   }
5004 }
5005 
5006 std::vector<ValueInfo>
5007 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5008   std::vector<ValueInfo> Ret;
5009   Ret.reserve(Record.size());
5010   for (uint64_t RefValueId : Record)
5011     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5012   return Ret;
5013 }
5014 
5015 std::vector<FunctionSummary::EdgeTy> ModuleSummaryIndexBitcodeReader::makeCallList(
5016     ArrayRef<uint64_t> Record, bool IsOldProfileFormat, bool HasProfile) {
5017   std::vector<FunctionSummary::EdgeTy> Ret;
5018   Ret.reserve(Record.size());
5019   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5020     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5021     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5022     if (IsOldProfileFormat) {
5023       I += 1; // Skip old callsitecount field
5024       if (HasProfile)
5025         I += 1; // Skip old profilecount field
5026     } else if (HasProfile)
5027       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5028     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo{Hotness}});
5029   }
5030   return Ret;
5031 }
5032 
5033 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5034 // objects in the index.
5035 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5036   if (Stream.EnterSubBlock(ID))
5037     return error("Invalid record");
5038   SmallVector<uint64_t, 64> Record;
5039 
5040   // Parse version
5041   {
5042     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5043     if (Entry.Kind != BitstreamEntry::Record)
5044       return error("Invalid Summary Block: record for version expected");
5045     if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION)
5046       return error("Invalid Summary Block: version expected");
5047   }
5048   const uint64_t Version = Record[0];
5049   const bool IsOldProfileFormat = Version == 1;
5050   if (Version < 1 || Version > 4)
5051     return error("Invalid summary version " + Twine(Version) +
5052                  ", 1, 2, 3 or 4 expected");
5053   Record.clear();
5054 
5055   // Keep around the last seen summary to be used when we see an optional
5056   // "OriginalName" attachement.
5057   GlobalValueSummary *LastSeenSummary = nullptr;
5058   GlobalValue::GUID LastSeenGUID = 0;
5059 
5060   // We can expect to see any number of type ID information records before
5061   // each function summary records; these variables store the information
5062   // collected so far so that it can be used to create the summary object.
5063   std::vector<GlobalValue::GUID> PendingTypeTests;
5064   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5065       PendingTypeCheckedLoadVCalls;
5066   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5067       PendingTypeCheckedLoadConstVCalls;
5068 
5069   while (true) {
5070     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5071 
5072     switch (Entry.Kind) {
5073     case BitstreamEntry::SubBlock: // Handled for us already.
5074     case BitstreamEntry::Error:
5075       return error("Malformed block");
5076     case BitstreamEntry::EndBlock:
5077       return Error::success();
5078     case BitstreamEntry::Record:
5079       // The interesting case.
5080       break;
5081     }
5082 
5083     // Read a record. The record format depends on whether this
5084     // is a per-module index or a combined index file. In the per-module
5085     // case the records contain the associated value's ID for correlation
5086     // with VST entries. In the combined index the correlation is done
5087     // via the bitcode offset of the summary records (which were saved
5088     // in the combined index VST entries). The records also contain
5089     // information used for ThinLTO renaming and importing.
5090     Record.clear();
5091     auto BitCode = Stream.readRecord(Entry.ID, Record);
5092     switch (BitCode) {
5093     default: // Default behavior: ignore.
5094       break;
5095     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5096       uint64_t ValueID = Record[0];
5097       GlobalValue::GUID RefGUID = Record[1];
5098       ValueIdToValueInfoMap[ValueID] =
5099           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5100       break;
5101     }
5102     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5103     //                numrefs x valueid, n x (valueid)]
5104     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5105     //                        numrefs x valueid,
5106     //                        n x (valueid, hotness)]
5107     case bitc::FS_PERMODULE:
5108     case bitc::FS_PERMODULE_PROFILE: {
5109       unsigned ValueID = Record[0];
5110       uint64_t RawFlags = Record[1];
5111       unsigned InstCount = Record[2];
5112       uint64_t RawFunFlags = 0;
5113       unsigned NumRefs = Record[3];
5114       int RefListStartIndex = 4;
5115       if (Version >= 4) {
5116         RawFunFlags = Record[3];
5117         NumRefs = Record[4];
5118         RefListStartIndex = 5;
5119       }
5120 
5121       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5122       // The module path string ref set in the summary must be owned by the
5123       // index's module string table. Since we don't have a module path
5124       // string table section in the per-module index, we create a single
5125       // module path string table entry with an empty (0) ID to take
5126       // ownership.
5127       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5128       assert(Record.size() >= RefListStartIndex + NumRefs &&
5129              "Record size inconsistent with number of references");
5130       std::vector<ValueInfo> Refs = makeRefList(
5131           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5132       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5133       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5134           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5135           IsOldProfileFormat, HasProfile);
5136       auto FS = llvm::make_unique<FunctionSummary>(
5137           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
5138           std::move(Calls), std::move(PendingTypeTests),
5139           std::move(PendingTypeTestAssumeVCalls),
5140           std::move(PendingTypeCheckedLoadVCalls),
5141           std::move(PendingTypeTestAssumeConstVCalls),
5142           std::move(PendingTypeCheckedLoadConstVCalls));
5143       PendingTypeTests.clear();
5144       PendingTypeTestAssumeVCalls.clear();
5145       PendingTypeCheckedLoadVCalls.clear();
5146       PendingTypeTestAssumeConstVCalls.clear();
5147       PendingTypeCheckedLoadConstVCalls.clear();
5148       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5149       FS->setModulePath(addThisModule()->first());
5150       FS->setOriginalName(VIAndOriginalGUID.second);
5151       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5152       break;
5153     }
5154     // FS_ALIAS: [valueid, flags, valueid]
5155     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5156     // they expect all aliasee summaries to be available.
5157     case bitc::FS_ALIAS: {
5158       unsigned ValueID = Record[0];
5159       uint64_t RawFlags = Record[1];
5160       unsigned AliaseeID = Record[2];
5161       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5162       auto AS = llvm::make_unique<AliasSummary>(Flags);
5163       // The module path string ref set in the summary must be owned by the
5164       // index's module string table. Since we don't have a module path
5165       // string table section in the per-module index, we create a single
5166       // module path string table entry with an empty (0) ID to take
5167       // ownership.
5168       AS->setModulePath(addThisModule()->first());
5169 
5170       GlobalValue::GUID AliaseeGUID =
5171           getValueInfoFromValueId(AliaseeID).first.getGUID();
5172       auto AliaseeInModule =
5173           TheIndex.findSummaryInModule(AliaseeGUID, ModulePath);
5174       if (!AliaseeInModule)
5175         return error("Alias expects aliasee summary to be parsed");
5176       AS->setAliasee(AliaseeInModule);
5177 
5178       auto GUID = getValueInfoFromValueId(ValueID);
5179       AS->setOriginalName(GUID.second);
5180       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5181       break;
5182     }
5183     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid]
5184     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5185       unsigned ValueID = Record[0];
5186       uint64_t RawFlags = Record[1];
5187       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5188       std::vector<ValueInfo> Refs =
5189           makeRefList(ArrayRef<uint64_t>(Record).slice(2));
5190       auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5191       FS->setModulePath(addThisModule()->first());
5192       auto GUID = getValueInfoFromValueId(ValueID);
5193       FS->setOriginalName(GUID.second);
5194       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5195       break;
5196     }
5197     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5198     //               numrefs x valueid, n x (valueid)]
5199     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5200     //                       numrefs x valueid, n x (valueid, hotness)]
5201     case bitc::FS_COMBINED:
5202     case bitc::FS_COMBINED_PROFILE: {
5203       unsigned ValueID = Record[0];
5204       uint64_t ModuleId = Record[1];
5205       uint64_t RawFlags = Record[2];
5206       unsigned InstCount = Record[3];
5207       uint64_t RawFunFlags = 0;
5208       unsigned NumRefs = Record[4];
5209       int RefListStartIndex = 5;
5210 
5211       if (Version >= 4) {
5212         RawFunFlags = Record[4];
5213         NumRefs = Record[5];
5214         RefListStartIndex = 6;
5215       }
5216 
5217       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5218       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5219       assert(Record.size() >= RefListStartIndex + NumRefs &&
5220              "Record size inconsistent with number of references");
5221       std::vector<ValueInfo> Refs = makeRefList(
5222           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5223       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5224       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
5225           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5226           IsOldProfileFormat, HasProfile);
5227       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5228       auto FS = llvm::make_unique<FunctionSummary>(
5229           Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs),
5230           std::move(Edges), std::move(PendingTypeTests),
5231           std::move(PendingTypeTestAssumeVCalls),
5232           std::move(PendingTypeCheckedLoadVCalls),
5233           std::move(PendingTypeTestAssumeConstVCalls),
5234           std::move(PendingTypeCheckedLoadConstVCalls));
5235       PendingTypeTests.clear();
5236       PendingTypeTestAssumeVCalls.clear();
5237       PendingTypeCheckedLoadVCalls.clear();
5238       PendingTypeTestAssumeConstVCalls.clear();
5239       PendingTypeCheckedLoadConstVCalls.clear();
5240       LastSeenSummary = FS.get();
5241       LastSeenGUID = VI.getGUID();
5242       FS->setModulePath(ModuleIdMap[ModuleId]);
5243       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5244       break;
5245     }
5246     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
5247     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
5248     // they expect all aliasee summaries to be available.
5249     case bitc::FS_COMBINED_ALIAS: {
5250       unsigned ValueID = Record[0];
5251       uint64_t ModuleId = Record[1];
5252       uint64_t RawFlags = Record[2];
5253       unsigned AliaseeValueId = Record[3];
5254       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5255       auto AS = llvm::make_unique<AliasSummary>(Flags);
5256       LastSeenSummary = AS.get();
5257       AS->setModulePath(ModuleIdMap[ModuleId]);
5258 
5259       auto AliaseeGUID =
5260           getValueInfoFromValueId(AliaseeValueId).first.getGUID();
5261       auto AliaseeInModule =
5262           TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath());
5263       if (!AliaseeInModule)
5264         return error("Alias expects aliasee summary to be parsed");
5265       AS->setAliasee(AliaseeInModule);
5266 
5267       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5268       LastSeenGUID = VI.getGUID();
5269       TheIndex.addGlobalValueSummary(VI, std::move(AS));
5270       break;
5271     }
5272     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
5273     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5274       unsigned ValueID = Record[0];
5275       uint64_t ModuleId = Record[1];
5276       uint64_t RawFlags = Record[2];
5277       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5278       std::vector<ValueInfo> Refs =
5279           makeRefList(ArrayRef<uint64_t>(Record).slice(3));
5280       auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs));
5281       LastSeenSummary = FS.get();
5282       FS->setModulePath(ModuleIdMap[ModuleId]);
5283       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5284       LastSeenGUID = VI.getGUID();
5285       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5286       break;
5287     }
5288     // FS_COMBINED_ORIGINAL_NAME: [original_name]
5289     case bitc::FS_COMBINED_ORIGINAL_NAME: {
5290       uint64_t OriginalName = Record[0];
5291       if (!LastSeenSummary)
5292         return error("Name attachment that does not follow a combined record");
5293       LastSeenSummary->setOriginalName(OriginalName);
5294       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
5295       // Reset the LastSeenSummary
5296       LastSeenSummary = nullptr;
5297       LastSeenGUID = 0;
5298       break;
5299     }
5300     case bitc::FS_TYPE_TESTS:
5301       assert(PendingTypeTests.empty());
5302       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
5303                               Record.end());
5304       break;
5305 
5306     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
5307       assert(PendingTypeTestAssumeVCalls.empty());
5308       for (unsigned I = 0; I != Record.size(); I += 2)
5309         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
5310       break;
5311 
5312     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
5313       assert(PendingTypeCheckedLoadVCalls.empty());
5314       for (unsigned I = 0; I != Record.size(); I += 2)
5315         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
5316       break;
5317 
5318     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
5319       PendingTypeTestAssumeConstVCalls.push_back(
5320           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5321       break;
5322 
5323     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
5324       PendingTypeCheckedLoadConstVCalls.push_back(
5325           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5326       break;
5327 
5328     case bitc::FS_CFI_FUNCTION_DEFS: {
5329       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
5330       for (unsigned I = 0; I != Record.size(); I += 2)
5331         CfiFunctionDefs.insert(
5332             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5333       break;
5334     }
5335     case bitc::FS_CFI_FUNCTION_DECLS: {
5336       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
5337       for (unsigned I = 0; I != Record.size(); I += 2)
5338         CfiFunctionDecls.insert(
5339             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5340       break;
5341     }
5342     }
5343   }
5344   llvm_unreachable("Exit infinite loop");
5345 }
5346 
5347 // Parse the  module string table block into the Index.
5348 // This populates the ModulePathStringTable map in the index.
5349 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5350   if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5351     return error("Invalid record");
5352 
5353   SmallVector<uint64_t, 64> Record;
5354 
5355   SmallString<128> ModulePath;
5356   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
5357 
5358   while (true) {
5359     BitstreamEntry Entry = Stream.advanceSkippingSubblocks();
5360 
5361     switch (Entry.Kind) {
5362     case BitstreamEntry::SubBlock: // Handled for us already.
5363     case BitstreamEntry::Error:
5364       return error("Malformed block");
5365     case BitstreamEntry::EndBlock:
5366       return Error::success();
5367     case BitstreamEntry::Record:
5368       // The interesting case.
5369       break;
5370     }
5371 
5372     Record.clear();
5373     switch (Stream.readRecord(Entry.ID, Record)) {
5374     default: // Default behavior: ignore.
5375       break;
5376     case bitc::MST_CODE_ENTRY: {
5377       // MST_ENTRY: [modid, namechar x N]
5378       uint64_t ModuleId = Record[0];
5379 
5380       if (convertToString(Record, 1, ModulePath))
5381         return error("Invalid record");
5382 
5383       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
5384       ModuleIdMap[ModuleId] = LastSeenModule->first();
5385 
5386       ModulePath.clear();
5387       break;
5388     }
5389     /// MST_CODE_HASH: [5*i32]
5390     case bitc::MST_CODE_HASH: {
5391       if (Record.size() != 5)
5392         return error("Invalid hash length " + Twine(Record.size()).str());
5393       if (!LastSeenModule)
5394         return error("Invalid hash that does not follow a module path");
5395       int Pos = 0;
5396       for (auto &Val : Record) {
5397         assert(!(Val >> 32) && "Unexpected high bits set");
5398         LastSeenModule->second.second[Pos++] = Val;
5399       }
5400       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
5401       LastSeenModule = nullptr;
5402       break;
5403     }
5404     }
5405   }
5406   llvm_unreachable("Exit infinite loop");
5407 }
5408 
5409 namespace {
5410 
5411 // FIXME: This class is only here to support the transition to llvm::Error. It
5412 // will be removed once this transition is complete. Clients should prefer to
5413 // deal with the Error value directly, rather than converting to error_code.
5414 class BitcodeErrorCategoryType : public std::error_category {
5415   const char *name() const noexcept override {
5416     return "llvm.bitcode";
5417   }
5418 
5419   std::string message(int IE) const override {
5420     BitcodeError E = static_cast<BitcodeError>(IE);
5421     switch (E) {
5422     case BitcodeError::CorruptedBitcode:
5423       return "Corrupted bitcode";
5424     }
5425     llvm_unreachable("Unknown error type!");
5426   }
5427 };
5428 
5429 } // end anonymous namespace
5430 
5431 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
5432 
5433 const std::error_category &llvm::BitcodeErrorCategory() {
5434   return *ErrorCategory;
5435 }
5436 
5437 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
5438                                             unsigned Block, unsigned RecordID) {
5439   if (Stream.EnterSubBlock(Block))
5440     return error("Invalid record");
5441 
5442   StringRef Strtab;
5443   while (true) {
5444     BitstreamEntry Entry = Stream.advance();
5445     switch (Entry.Kind) {
5446     case BitstreamEntry::EndBlock:
5447       return Strtab;
5448 
5449     case BitstreamEntry::Error:
5450       return error("Malformed block");
5451 
5452     case BitstreamEntry::SubBlock:
5453       if (Stream.SkipBlock())
5454         return error("Malformed block");
5455       break;
5456 
5457     case BitstreamEntry::Record:
5458       StringRef Blob;
5459       SmallVector<uint64_t, 1> Record;
5460       if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID)
5461         Strtab = Blob;
5462       break;
5463     }
5464   }
5465 }
5466 
5467 //===----------------------------------------------------------------------===//
5468 // External interface
5469 //===----------------------------------------------------------------------===//
5470 
5471 Expected<std::vector<BitcodeModule>>
5472 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
5473   auto FOrErr = getBitcodeFileContents(Buffer);
5474   if (!FOrErr)
5475     return FOrErr.takeError();
5476   return std::move(FOrErr->Mods);
5477 }
5478 
5479 Expected<BitcodeFileContents>
5480 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
5481   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5482   if (!StreamOrErr)
5483     return StreamOrErr.takeError();
5484   BitstreamCursor &Stream = *StreamOrErr;
5485 
5486   BitcodeFileContents F;
5487   while (true) {
5488     uint64_t BCBegin = Stream.getCurrentByteNo();
5489 
5490     // We may be consuming bitcode from a client that leaves garbage at the end
5491     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
5492     // the end that there cannot possibly be another module, stop looking.
5493     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
5494       return F;
5495 
5496     BitstreamEntry Entry = Stream.advance();
5497     switch (Entry.Kind) {
5498     case BitstreamEntry::EndBlock:
5499     case BitstreamEntry::Error:
5500       return error("Malformed block");
5501 
5502     case BitstreamEntry::SubBlock: {
5503       uint64_t IdentificationBit = -1ull;
5504       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
5505         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5506         if (Stream.SkipBlock())
5507           return error("Malformed block");
5508 
5509         Entry = Stream.advance();
5510         if (Entry.Kind != BitstreamEntry::SubBlock ||
5511             Entry.ID != bitc::MODULE_BLOCK_ID)
5512           return error("Malformed block");
5513       }
5514 
5515       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
5516         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
5517         if (Stream.SkipBlock())
5518           return error("Malformed block");
5519 
5520         F.Mods.push_back({Stream.getBitcodeBytes().slice(
5521                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
5522                           Buffer.getBufferIdentifier(), IdentificationBit,
5523                           ModuleBit});
5524         continue;
5525       }
5526 
5527       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
5528         Expected<StringRef> Strtab =
5529             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
5530         if (!Strtab)
5531           return Strtab.takeError();
5532         // This string table is used by every preceding bitcode module that does
5533         // not have its own string table. A bitcode file may have multiple
5534         // string tables if it was created by binary concatenation, for example
5535         // with "llvm-cat -b".
5536         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
5537           if (!I->Strtab.empty())
5538             break;
5539           I->Strtab = *Strtab;
5540         }
5541         // Similarly, the string table is used by every preceding symbol table;
5542         // normally there will be just one unless the bitcode file was created
5543         // by binary concatenation.
5544         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
5545           F.StrtabForSymtab = *Strtab;
5546         continue;
5547       }
5548 
5549       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
5550         Expected<StringRef> SymtabOrErr =
5551             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
5552         if (!SymtabOrErr)
5553           return SymtabOrErr.takeError();
5554 
5555         // We can expect the bitcode file to have multiple symbol tables if it
5556         // was created by binary concatenation. In that case we silently
5557         // ignore any subsequent symbol tables, which is fine because this is a
5558         // low level function. The client is expected to notice that the number
5559         // of modules in the symbol table does not match the number of modules
5560         // in the input file and regenerate the symbol table.
5561         if (F.Symtab.empty())
5562           F.Symtab = *SymtabOrErr;
5563         continue;
5564       }
5565 
5566       if (Stream.SkipBlock())
5567         return error("Malformed block");
5568       continue;
5569     }
5570     case BitstreamEntry::Record:
5571       Stream.skipRecord(Entry.ID);
5572       continue;
5573     }
5574   }
5575 }
5576 
5577 /// \brief Get a lazy one-at-time loading module from bitcode.
5578 ///
5579 /// This isn't always used in a lazy context.  In particular, it's also used by
5580 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
5581 /// in forward-referenced functions from block address references.
5582 ///
5583 /// \param[in] MaterializeAll Set to \c true if we should materialize
5584 /// everything.
5585 Expected<std::unique_ptr<Module>>
5586 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
5587                              bool ShouldLazyLoadMetadata, bool IsImporting) {
5588   BitstreamCursor Stream(Buffer);
5589 
5590   std::string ProducerIdentification;
5591   if (IdentificationBit != -1ull) {
5592     Stream.JumpToBit(IdentificationBit);
5593     Expected<std::string> ProducerIdentificationOrErr =
5594         readIdentificationBlock(Stream);
5595     if (!ProducerIdentificationOrErr)
5596       return ProducerIdentificationOrErr.takeError();
5597 
5598     ProducerIdentification = *ProducerIdentificationOrErr;
5599   }
5600 
5601   Stream.JumpToBit(ModuleBit);
5602   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
5603                               Context);
5604 
5605   std::unique_ptr<Module> M =
5606       llvm::make_unique<Module>(ModuleIdentifier, Context);
5607   M->setMaterializer(R);
5608 
5609   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
5610   if (Error Err =
5611           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
5612     return std::move(Err);
5613 
5614   if (MaterializeAll) {
5615     // Read in the entire module, and destroy the BitcodeReader.
5616     if (Error Err = M->materializeAll())
5617       return std::move(Err);
5618   } else {
5619     // Resolve forward references from blockaddresses.
5620     if (Error Err = R->materializeForwardReferencedFunctions())
5621       return std::move(Err);
5622   }
5623   return std::move(M);
5624 }
5625 
5626 Expected<std::unique_ptr<Module>>
5627 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
5628                              bool IsImporting) {
5629   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
5630 }
5631 
5632 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
5633 // We don't use ModuleIdentifier here because the client may need to control the
5634 // module path used in the combined summary (e.g. when reading summaries for
5635 // regular LTO modules).
5636 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
5637                                  StringRef ModulePath, uint64_t ModuleId) {
5638   BitstreamCursor Stream(Buffer);
5639   Stream.JumpToBit(ModuleBit);
5640 
5641   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
5642                                     ModulePath, ModuleId);
5643   return R.parseModule();
5644 }
5645 
5646 // Parse the specified bitcode buffer, returning the function info index.
5647 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
5648   BitstreamCursor Stream(Buffer);
5649   Stream.JumpToBit(ModuleBit);
5650 
5651   auto Index = llvm::make_unique<ModuleSummaryIndex>();
5652   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
5653                                     ModuleIdentifier, 0);
5654 
5655   if (Error Err = R.parseModule())
5656     return std::move(Err);
5657 
5658   return std::move(Index);
5659 }
5660 
5661 // Check if the given bitcode buffer contains a global value summary block.
5662 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
5663   BitstreamCursor Stream(Buffer);
5664   Stream.JumpToBit(ModuleBit);
5665 
5666   if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5667     return error("Invalid record");
5668 
5669   while (true) {
5670     BitstreamEntry Entry = Stream.advance();
5671 
5672     switch (Entry.Kind) {
5673     case BitstreamEntry::Error:
5674       return error("Malformed block");
5675     case BitstreamEntry::EndBlock:
5676       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false};
5677 
5678     case BitstreamEntry::SubBlock:
5679       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID)
5680         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true};
5681 
5682       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID)
5683         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true};
5684 
5685       // Ignore other sub-blocks.
5686       if (Stream.SkipBlock())
5687         return error("Malformed block");
5688       continue;
5689 
5690     case BitstreamEntry::Record:
5691       Stream.skipRecord(Entry.ID);
5692       continue;
5693     }
5694   }
5695 }
5696 
5697 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
5698   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
5699   if (!MsOrErr)
5700     return MsOrErr.takeError();
5701 
5702   if (MsOrErr->size() != 1)
5703     return error("Expected a single module");
5704 
5705   return (*MsOrErr)[0];
5706 }
5707 
5708 Expected<std::unique_ptr<Module>>
5709 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
5710                            bool ShouldLazyLoadMetadata, bool IsImporting) {
5711   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5712   if (!BM)
5713     return BM.takeError();
5714 
5715   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
5716 }
5717 
5718 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
5719     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
5720     bool ShouldLazyLoadMetadata, bool IsImporting) {
5721   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
5722                                      IsImporting);
5723   if (MOrErr)
5724     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
5725   return MOrErr;
5726 }
5727 
5728 Expected<std::unique_ptr<Module>>
5729 BitcodeModule::parseModule(LLVMContext &Context) {
5730   return getModuleImpl(Context, true, false, false);
5731   // TODO: Restore the use-lists to the in-memory state when the bitcode was
5732   // written.  We must defer until the Module has been fully materialized.
5733 }
5734 
5735 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
5736                                                          LLVMContext &Context) {
5737   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5738   if (!BM)
5739     return BM.takeError();
5740 
5741   return BM->parseModule(Context);
5742 }
5743 
5744 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
5745   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5746   if (!StreamOrErr)
5747     return StreamOrErr.takeError();
5748 
5749   return readTriple(*StreamOrErr);
5750 }
5751 
5752 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
5753   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5754   if (!StreamOrErr)
5755     return StreamOrErr.takeError();
5756 
5757   return hasObjCCategory(*StreamOrErr);
5758 }
5759 
5760 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
5761   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
5762   if (!StreamOrErr)
5763     return StreamOrErr.takeError();
5764 
5765   return readIdentificationCode(*StreamOrErr);
5766 }
5767 
5768 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
5769                                    ModuleSummaryIndex &CombinedIndex,
5770                                    uint64_t ModuleId) {
5771   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5772   if (!BM)
5773     return BM.takeError();
5774 
5775   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
5776 }
5777 
5778 Expected<std::unique_ptr<ModuleSummaryIndex>>
5779 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
5780   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5781   if (!BM)
5782     return BM.takeError();
5783 
5784   return BM->getSummary();
5785 }
5786 
5787 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
5788   Expected<BitcodeModule> BM = getSingleModule(Buffer);
5789   if (!BM)
5790     return BM.takeError();
5791 
5792   return BM->getLTOInfo();
5793 }
5794 
5795 Expected<std::unique_ptr<ModuleSummaryIndex>>
5796 llvm::getModuleSummaryIndexForFile(StringRef Path,
5797                                    bool IgnoreEmptyThinLTOIndexFile) {
5798   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
5799       MemoryBuffer::getFileOrSTDIN(Path);
5800   if (!FileOrErr)
5801     return errorCodeToError(FileOrErr.getError());
5802   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
5803     return nullptr;
5804   return getModuleSummaryIndex(**FileOrErr);
5805 }
5806