1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitcodeCommon.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Bitstream/BitstreamReader.h"
26 #include "llvm/Config/llvm-config.h"
27 #include "llvm/IR/Argument.h"
28 #include "llvm/IR/Attributes.h"
29 #include "llvm/IR/AutoUpgrade.h"
30 #include "llvm/IR/BasicBlock.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   Result.append(Record.begin() + Idx, Record.end());
157   return false;
158 }
159 
160 // Strip all the TBAA attachment for the module.
161 static void stripTBAA(Module *M) {
162   for (auto &F : *M) {
163     if (F.isMaterializable())
164       continue;
165     for (auto &I : instructions(F))
166       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
167   }
168 }
169 
170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
171 /// "epoch" encoded in the bitcode, and return the producer name if any.
172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
173   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
174     return std::move(Err);
175 
176   // Read all the records.
177   SmallVector<uint64_t, 64> Record;
178 
179   std::string ProducerIdentification;
180 
181   while (true) {
182     BitstreamEntry Entry;
183     if (Expected<BitstreamEntry> Res = Stream.advance())
184       Entry = Res.get();
185     else
186       return Res.takeError();
187 
188     switch (Entry.Kind) {
189     default:
190     case BitstreamEntry::Error:
191       return error("Malformed block");
192     case BitstreamEntry::EndBlock:
193       return ProducerIdentification;
194     case BitstreamEntry::Record:
195       // The interesting case.
196       break;
197     }
198 
199     // Read a record.
200     Record.clear();
201     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
202     if (!MaybeBitCode)
203       return MaybeBitCode.takeError();
204     switch (MaybeBitCode.get()) {
205     default: // Default behavior: reject
206       return error("Invalid value");
207     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
208       convertToString(Record, 0, ProducerIdentification);
209       break;
210     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
211       unsigned epoch = (unsigned)Record[0];
212       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
213         return error(
214           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
215           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
216       }
217     }
218     }
219   }
220 }
221 
222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
223   // We expect a number of well-defined blocks, though we don't necessarily
224   // need to understand them all.
225   while (true) {
226     if (Stream.AtEndOfStream())
227       return "";
228 
229     BitstreamEntry Entry;
230     if (Expected<BitstreamEntry> Res = Stream.advance())
231       Entry = std::move(Res.get());
232     else
233       return Res.takeError();
234 
235     switch (Entry.Kind) {
236     case BitstreamEntry::EndBlock:
237     case BitstreamEntry::Error:
238       return error("Malformed block");
239 
240     case BitstreamEntry::SubBlock:
241       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
242         return readIdentificationBlock(Stream);
243 
244       // Ignore other sub-blocks.
245       if (Error Err = Stream.SkipBlock())
246         return std::move(Err);
247       continue;
248     case BitstreamEntry::Record:
249       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
250         continue;
251       else
252         return Skipped.takeError();
253     }
254   }
255 }
256 
257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
258   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
259     return std::move(Err);
260 
261   SmallVector<uint64_t, 64> Record;
262   // Read all the records for this module.
263 
264   while (true) {
265     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
266     if (!MaybeEntry)
267       return MaybeEntry.takeError();
268     BitstreamEntry Entry = MaybeEntry.get();
269 
270     switch (Entry.Kind) {
271     case BitstreamEntry::SubBlock: // Handled for us already.
272     case BitstreamEntry::Error:
273       return error("Malformed block");
274     case BitstreamEntry::EndBlock:
275       return false;
276     case BitstreamEntry::Record:
277       // The interesting case.
278       break;
279     }
280 
281     // Read a record.
282     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
283     if (!MaybeRecord)
284       return MaybeRecord.takeError();
285     switch (MaybeRecord.get()) {
286     default:
287       break; // Default behavior, ignore unknown content.
288     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
289       std::string S;
290       if (convertToString(Record, 0, S))
291         return error("Invalid record");
292       // Check for the i386 and other (x86_64, ARM) conventions
293       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
294           S.find("__OBJC,__category") != std::string::npos)
295         return true;
296       break;
297     }
298     }
299     Record.clear();
300   }
301   llvm_unreachable("Exit infinite loop");
302 }
303 
304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
305   // We expect a number of well-defined blocks, though we don't necessarily
306   // need to understand them all.
307   while (true) {
308     BitstreamEntry Entry;
309     if (Expected<BitstreamEntry> Res = Stream.advance())
310       Entry = std::move(Res.get());
311     else
312       return Res.takeError();
313 
314     switch (Entry.Kind) {
315     case BitstreamEntry::Error:
316       return error("Malformed block");
317     case BitstreamEntry::EndBlock:
318       return false;
319 
320     case BitstreamEntry::SubBlock:
321       if (Entry.ID == bitc::MODULE_BLOCK_ID)
322         return hasObjCCategoryInModule(Stream);
323 
324       // Ignore other sub-blocks.
325       if (Error Err = Stream.SkipBlock())
326         return std::move(Err);
327       continue;
328 
329     case BitstreamEntry::Record:
330       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
331         continue;
332       else
333         return Skipped.takeError();
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   bool readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
483   LLVMContext &Context;
484   Module *TheModule = nullptr;
485   // Next offset to start scanning for lazy parsing of function bodies.
486   uint64_t NextUnreadBit = 0;
487   // Last function offset found in the VST.
488   uint64_t LastFunctionBlockBit = 0;
489   bool SeenValueSymbolTable = false;
490   uint64_t VSTOffset = 0;
491 
492   std::vector<std::string> SectionTable;
493   std::vector<std::string> GCTable;
494 
495   std::vector<Type*> TypeList;
496   DenseMap<Function *, FunctionType *> FunctionTypes;
497   BitcodeReaderValueList ValueList;
498   Optional<MetadataLoader> MDLoader;
499   std::vector<Comdat *> ComdatList;
500   SmallVector<Instruction *, 64> InstructionList;
501 
502   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
503   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
504   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
506   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
507 
508   /// The set of attributes by index.  Index zero in the file is for null, and
509   /// is thus not represented here.  As such all indices are off by one.
510   std::vector<AttributeList> MAttributes;
511 
512   /// The set of attribute groups.
513   std::map<unsigned, AttributeList> MAttributeGroups;
514 
515   /// While parsing a function body, this is a list of the basic blocks for the
516   /// function.
517   std::vector<BasicBlock*> FunctionBBs;
518 
519   // When reading the module header, this list is populated with functions that
520   // have bodies later in the file.
521   std::vector<Function*> FunctionsWithBodies;
522 
523   // When intrinsic functions are encountered which require upgrading they are
524   // stored here with their replacement function.
525   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
526   UpdatedIntrinsicMap UpgradedIntrinsics;
527   // Intrinsics which were remangled because of types rename
528   UpdatedIntrinsicMap RemangledIntrinsics;
529 
530   // Several operations happen after the module header has been read, but
531   // before function bodies are processed. This keeps track of whether
532   // we've done this yet.
533   bool SeenFirstFunctionBody = false;
534 
535   /// When function bodies are initially scanned, this map contains info about
536   /// where to find deferred function body in the stream.
537   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
538 
539   /// When Metadata block is initially scanned when parsing the module, we may
540   /// choose to defer parsing of the metadata. This vector contains info about
541   /// which Metadata blocks are deferred.
542   std::vector<uint64_t> DeferredMetadataInfo;
543 
544   /// These are basic blocks forward-referenced by block addresses.  They are
545   /// inserted lazily into functions when they're loaded.  The basic block ID is
546   /// its index into the vector.
547   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
548   std::deque<Function *> BasicBlockFwdRefQueue;
549 
550   /// Indicates that we are using a new encoding for instruction operands where
551   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
552   /// instruction number, for a more compact encoding.  Some instruction
553   /// operands are not relative to the instruction ID: basic block numbers, and
554   /// types. Once the old style function blocks have been phased out, we would
555   /// not need this flag.
556   bool UseRelativeIDs = false;
557 
558   /// True if all functions will be materialized, negating the need to process
559   /// (e.g.) blockaddress forward references.
560   bool WillMaterializeAllForwardRefs = false;
561 
562   bool StripDebugInfo = false;
563   TBAAVerifier TBAAVerifyHelper;
564 
565   std::vector<std::string> BundleTags;
566   SmallVector<SyncScope::ID, 8> SSIDs;
567 
568 public:
569   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
570                 StringRef ProducerIdentification, LLVMContext &Context);
571 
572   Error materializeForwardReferencedFunctions();
573 
574   Error materialize(GlobalValue *GV) override;
575   Error materializeModule() override;
576   std::vector<StructType *> getIdentifiedStructTypes() const override;
577 
578   /// Main interface to parsing a bitcode buffer.
579   /// \returns true if an error occurred.
580   Error parseBitcodeInto(
581       Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false,
582       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
583 
584   static uint64_t decodeSignRotatedValue(uint64_t V);
585 
586   /// Materialize any deferred Metadata block.
587   Error materializeMetadata() override;
588 
589   void setStripDebugInfo() override;
590 
591 private:
592   std::vector<StructType *> IdentifiedStructTypes;
593   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
594   StructType *createIdentifiedStructType(LLVMContext &Context);
595 
596   /// Map all pointer types within \param Ty to the opaque pointer
597   /// type in the same address space if opaque pointers are being
598   /// used, otherwise nop. This converts a bitcode-reader internal
599   /// type into one suitable for use in a Value.
600   Type *flattenPointerTypes(Type *Ty) {
601     return Ty;
602   }
603 
604   /// Given a fully structured pointer type (i.e. not opaque), return
605   /// the flattened form of its element, suitable for use in a Value.
606   Type *getPointerElementFlatType(Type *Ty) {
607     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
608   }
609 
610   /// Given a fully structured pointer type, get its element type in
611   /// both fully structured form, and flattened form suitable for use
612   /// in a Value.
613   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
614     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
615     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
616   }
617 
618   /// Return the flattened type (suitable for use in a Value)
619   /// specified by the given \param ID .
620   Type *getTypeByID(unsigned ID) {
621     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
622   }
623 
624   /// Return the fully structured (bitcode-reader internal) type
625   /// corresponding to the given \param ID .
626   Type *getFullyStructuredTypeByID(unsigned ID);
627 
628   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
629     if (Ty && Ty->isMetadataTy())
630       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
631     return ValueList.getValueFwdRef(ID, Ty, FullTy);
632   }
633 
634   Metadata *getFnMetadataByID(unsigned ID) {
635     return MDLoader->getMetadataFwdRefOrLoad(ID);
636   }
637 
638   BasicBlock *getBasicBlock(unsigned ID) const {
639     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
640     return FunctionBBs[ID];
641   }
642 
643   AttributeList getAttributes(unsigned i) const {
644     if (i-1 < MAttributes.size())
645       return MAttributes[i-1];
646     return AttributeList();
647   }
648 
649   /// Read a value/type pair out of the specified record from slot 'Slot'.
650   /// Increment Slot past the number of slots used in the record. Return true on
651   /// failure.
652   bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
653                         unsigned InstNum, Value *&ResVal,
654                         Type **FullTy = nullptr) {
655     if (Slot == Record.size()) return true;
656     unsigned ValNo = (unsigned)Record[Slot++];
657     // Adjust the ValNo, if it was encoded relative to the InstNum.
658     if (UseRelativeIDs)
659       ValNo = InstNum - ValNo;
660     if (ValNo < InstNum) {
661       // If this is not a forward reference, just return the value we already
662       // have.
663       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
664       return ResVal == nullptr;
665     }
666     if (Slot == Record.size())
667       return true;
668 
669     unsigned TypeNo = (unsigned)Record[Slot++];
670     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
671     if (FullTy)
672       *FullTy = getFullyStructuredTypeByID(TypeNo);
673     return ResVal == nullptr;
674   }
675 
676   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
677   /// past the number of slots used by the value in the record. Return true if
678   /// there is an error.
679   bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
680                 unsigned InstNum, Type *Ty, Value *&ResVal) {
681     if (getValue(Record, Slot, InstNum, Ty, ResVal))
682       return true;
683     // All values currently take a single record slot.
684     ++Slot;
685     return false;
686   }
687 
688   /// Like popValue, but does not increment the Slot number.
689   bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
690                 unsigned InstNum, Type *Ty, Value *&ResVal) {
691     ResVal = getValue(Record, Slot, InstNum, Ty);
692     return ResVal == nullptr;
693   }
694 
695   /// Version of getValue that returns ResVal directly, or 0 if there is an
696   /// error.
697   Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
698                   unsigned InstNum, Type *Ty) {
699     if (Slot == Record.size()) return nullptr;
700     unsigned ValNo = (unsigned)Record[Slot];
701     // Adjust the ValNo, if it was encoded relative to the InstNum.
702     if (UseRelativeIDs)
703       ValNo = InstNum - ValNo;
704     return getFnValueByID(ValNo, Ty);
705   }
706 
707   /// Like getValue, but decodes signed VBRs.
708   Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot,
709                         unsigned InstNum, Type *Ty) {
710     if (Slot == Record.size()) return nullptr;
711     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
712     // Adjust the ValNo, if it was encoded relative to the InstNum.
713     if (UseRelativeIDs)
714       ValNo = InstNum - ValNo;
715     return getFnValueByID(ValNo, Ty);
716   }
717 
718   /// Upgrades old-style typeless byval or sret attributes by adding the
719   /// corresponding argument's pointee type.
720   void propagateByValSRetTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
721 
722   /// Converts alignment exponent (i.e. power of two (or zero)) to the
723   /// corresponding alignment to use. If alignment is too large, returns
724   /// a corresponding error code.
725   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
726   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
727   Error parseModule(
728       uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false,
729       DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; });
730 
731   Error parseComdatRecord(ArrayRef<uint64_t> Record);
732   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
733   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
734   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
735                                         ArrayRef<uint64_t> Record);
736 
737   Error parseAttributeBlock();
738   Error parseAttributeGroupBlock();
739   Error parseTypeTable();
740   Error parseTypeTableBody();
741   Error parseOperandBundleTags();
742   Error parseSyncScopeNames();
743 
744   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
745                                 unsigned NameIndex, Triple &TT);
746   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
747                                ArrayRef<uint64_t> Record);
748   Error parseValueSymbolTable(uint64_t Offset = 0);
749   Error parseGlobalValueSymbolTable();
750   Error parseConstants();
751   Error rememberAndSkipFunctionBodies();
752   Error rememberAndSkipFunctionBody();
753   /// Save the positions of the Metadata blocks and skip parsing the blocks.
754   Error rememberAndSkipMetadata();
755   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
756   Error parseFunctionBody(Function *F);
757   Error globalCleanup();
758   Error resolveGlobalAndIndirectSymbolInits();
759   Error parseUseLists();
760   Error findFunctionInStream(
761       Function *F,
762       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
763 
764   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
765 };
766 
767 /// Class to manage reading and parsing function summary index bitcode
768 /// files/sections.
769 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
770   /// The module index built during parsing.
771   ModuleSummaryIndex &TheIndex;
772 
773   /// Indicates whether we have encountered a global value summary section
774   /// yet during parsing.
775   bool SeenGlobalValSummary = false;
776 
777   /// Indicates whether we have already parsed the VST, used for error checking.
778   bool SeenValueSymbolTable = false;
779 
780   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
781   /// Used to enable on-demand parsing of the VST.
782   uint64_t VSTOffset = 0;
783 
784   // Map to save ValueId to ValueInfo association that was recorded in the
785   // ValueSymbolTable. It is used after the VST is parsed to convert
786   // call graph edges read from the function summary from referencing
787   // callees by their ValueId to using the ValueInfo instead, which is how
788   // they are recorded in the summary index being built.
789   // We save a GUID which refers to the same global as the ValueInfo, but
790   // ignoring the linkage, i.e. for values other than local linkage they are
791   // identical.
792   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
793       ValueIdToValueInfoMap;
794 
795   /// Map populated during module path string table parsing, from the
796   /// module ID to a string reference owned by the index's module
797   /// path string table, used to correlate with combined index
798   /// summary records.
799   DenseMap<uint64_t, StringRef> ModuleIdMap;
800 
801   /// Original source file name recorded in a bitcode record.
802   std::string SourceFileName;
803 
804   /// The string identifier given to this module by the client, normally the
805   /// path to the bitcode file.
806   StringRef ModulePath;
807 
808   /// For per-module summary indexes, the unique numerical identifier given to
809   /// this module by the client.
810   unsigned ModuleId;
811 
812 public:
813   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
814                                   ModuleSummaryIndex &TheIndex,
815                                   StringRef ModulePath, unsigned ModuleId);
816 
817   Error parseModule();
818 
819 private:
820   void setValueGUID(uint64_t ValueID, StringRef ValueName,
821                     GlobalValue::LinkageTypes Linkage,
822                     StringRef SourceFileName);
823   Error parseValueSymbolTable(
824       uint64_t Offset,
825       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
826   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
827   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
828                                                     bool IsOldProfileFormat,
829                                                     bool HasProfile,
830                                                     bool HasRelBF);
831   Error parseEntireSummary(unsigned ID);
832   Error parseModuleStringTable();
833   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
834   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
835                                        TypeIdCompatibleVtableInfo &TypeId);
836   std::vector<FunctionSummary::ParamAccess>
837   parseParamAccesses(ArrayRef<uint64_t> Record);
838 
839   std::pair<ValueInfo, GlobalValue::GUID>
840   getValueInfoFromValueId(unsigned ValueId);
841 
842   void addThisModule();
843   ModuleSummaryIndex::ModuleInfo *getThisModule();
844 };
845 
846 } // end anonymous namespace
847 
848 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
849                                                     Error Err) {
850   if (Err) {
851     std::error_code EC;
852     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
853       EC = EIB.convertToErrorCode();
854       Ctx.emitError(EIB.message());
855     });
856     return EC;
857   }
858   return std::error_code();
859 }
860 
861 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
862                              StringRef ProducerIdentification,
863                              LLVMContext &Context)
864     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
865       ValueList(Context, Stream.SizeInBytes()) {
866   this->ProducerIdentification = std::string(ProducerIdentification);
867 }
868 
869 Error BitcodeReader::materializeForwardReferencedFunctions() {
870   if (WillMaterializeAllForwardRefs)
871     return Error::success();
872 
873   // Prevent recursion.
874   WillMaterializeAllForwardRefs = true;
875 
876   while (!BasicBlockFwdRefQueue.empty()) {
877     Function *F = BasicBlockFwdRefQueue.front();
878     BasicBlockFwdRefQueue.pop_front();
879     assert(F && "Expected valid function");
880     if (!BasicBlockFwdRefs.count(F))
881       // Already materialized.
882       continue;
883 
884     // Check for a function that isn't materializable to prevent an infinite
885     // loop.  When parsing a blockaddress stored in a global variable, there
886     // isn't a trivial way to check if a function will have a body without a
887     // linear search through FunctionsWithBodies, so just check it here.
888     if (!F->isMaterializable())
889       return error("Never resolved function from blockaddress");
890 
891     // Try to materialize F.
892     if (Error Err = materialize(F))
893       return Err;
894   }
895   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
896 
897   // Reset state.
898   WillMaterializeAllForwardRefs = false;
899   return Error::success();
900 }
901 
902 //===----------------------------------------------------------------------===//
903 //  Helper functions to implement forward reference resolution, etc.
904 //===----------------------------------------------------------------------===//
905 
906 static bool hasImplicitComdat(size_t Val) {
907   switch (Val) {
908   default:
909     return false;
910   case 1:  // Old WeakAnyLinkage
911   case 4:  // Old LinkOnceAnyLinkage
912   case 10: // Old WeakODRLinkage
913   case 11: // Old LinkOnceODRLinkage
914     return true;
915   }
916 }
917 
918 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
919   switch (Val) {
920   default: // Map unknown/new linkages to external
921   case 0:
922     return GlobalValue::ExternalLinkage;
923   case 2:
924     return GlobalValue::AppendingLinkage;
925   case 3:
926     return GlobalValue::InternalLinkage;
927   case 5:
928     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
929   case 6:
930     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
931   case 7:
932     return GlobalValue::ExternalWeakLinkage;
933   case 8:
934     return GlobalValue::CommonLinkage;
935   case 9:
936     return GlobalValue::PrivateLinkage;
937   case 12:
938     return GlobalValue::AvailableExternallyLinkage;
939   case 13:
940     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
941   case 14:
942     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
943   case 15:
944     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
945   case 1: // Old value with implicit comdat.
946   case 16:
947     return GlobalValue::WeakAnyLinkage;
948   case 10: // Old value with implicit comdat.
949   case 17:
950     return GlobalValue::WeakODRLinkage;
951   case 4: // Old value with implicit comdat.
952   case 18:
953     return GlobalValue::LinkOnceAnyLinkage;
954   case 11: // Old value with implicit comdat.
955   case 19:
956     return GlobalValue::LinkOnceODRLinkage;
957   }
958 }
959 
960 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
961   FunctionSummary::FFlags Flags;
962   Flags.ReadNone = RawFlags & 0x1;
963   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
964   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
965   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
966   Flags.NoInline = (RawFlags >> 4) & 0x1;
967   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
968   return Flags;
969 }
970 
971 // Decode the flags for GlobalValue in the summary. The bits for each attribute:
972 //
973 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7,
974 // visibility: [8, 10).
975 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
976                                                             uint64_t Version) {
977   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
978   // like getDecodedLinkage() above. Any future change to the linkage enum and
979   // to getDecodedLinkage() will need to be taken into account here as above.
980   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
981   auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits
982   RawFlags = RawFlags >> 4;
983   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
984   // The Live flag wasn't introduced until version 3. For dead stripping
985   // to work correctly on earlier versions, we must conservatively treat all
986   // values as live.
987   bool Live = (RawFlags & 0x2) || Version < 3;
988   bool Local = (RawFlags & 0x4);
989   bool AutoHide = (RawFlags & 0x8);
990 
991   return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport,
992                                      Live, Local, AutoHide);
993 }
994 
995 // Decode the flags for GlobalVariable in the summary
996 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
997   return GlobalVarSummary::GVarFlags(
998       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
999       (RawFlags & 0x4) ? true : false,
1000       (GlobalObject::VCallVisibility)(RawFlags >> 3));
1001 }
1002 
1003 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
1004   switch (Val) {
1005   default: // Map unknown visibilities to default.
1006   case 0: return GlobalValue::DefaultVisibility;
1007   case 1: return GlobalValue::HiddenVisibility;
1008   case 2: return GlobalValue::ProtectedVisibility;
1009   }
1010 }
1011 
1012 static GlobalValue::DLLStorageClassTypes
1013 getDecodedDLLStorageClass(unsigned Val) {
1014   switch (Val) {
1015   default: // Map unknown values to default.
1016   case 0: return GlobalValue::DefaultStorageClass;
1017   case 1: return GlobalValue::DLLImportStorageClass;
1018   case 2: return GlobalValue::DLLExportStorageClass;
1019   }
1020 }
1021 
1022 static bool getDecodedDSOLocal(unsigned Val) {
1023   switch(Val) {
1024   default: // Map unknown values to preemptable.
1025   case 0:  return false;
1026   case 1:  return true;
1027   }
1028 }
1029 
1030 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1031   switch (Val) {
1032     case 0: return GlobalVariable::NotThreadLocal;
1033     default: // Map unknown non-zero value to general dynamic.
1034     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1035     case 2: return GlobalVariable::LocalDynamicTLSModel;
1036     case 3: return GlobalVariable::InitialExecTLSModel;
1037     case 4: return GlobalVariable::LocalExecTLSModel;
1038   }
1039 }
1040 
1041 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1042   switch (Val) {
1043     default: // Map unknown to UnnamedAddr::None.
1044     case 0: return GlobalVariable::UnnamedAddr::None;
1045     case 1: return GlobalVariable::UnnamedAddr::Global;
1046     case 2: return GlobalVariable::UnnamedAddr::Local;
1047   }
1048 }
1049 
1050 static int getDecodedCastOpcode(unsigned Val) {
1051   switch (Val) {
1052   default: return -1;
1053   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1054   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1055   case bitc::CAST_SEXT    : return Instruction::SExt;
1056   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1057   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1058   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1059   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1060   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1061   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1062   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1063   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1064   case bitc::CAST_BITCAST : return Instruction::BitCast;
1065   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1066   }
1067 }
1068 
1069 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1070   bool IsFP = Ty->isFPOrFPVectorTy();
1071   // UnOps are only valid for int/fp or vector of int/fp types
1072   if (!IsFP && !Ty->isIntOrIntVectorTy())
1073     return -1;
1074 
1075   switch (Val) {
1076   default:
1077     return -1;
1078   case bitc::UNOP_FNEG:
1079     return IsFP ? Instruction::FNeg : -1;
1080   }
1081 }
1082 
1083 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1084   bool IsFP = Ty->isFPOrFPVectorTy();
1085   // BinOps are only valid for int/fp or vector of int/fp types
1086   if (!IsFP && !Ty->isIntOrIntVectorTy())
1087     return -1;
1088 
1089   switch (Val) {
1090   default:
1091     return -1;
1092   case bitc::BINOP_ADD:
1093     return IsFP ? Instruction::FAdd : Instruction::Add;
1094   case bitc::BINOP_SUB:
1095     return IsFP ? Instruction::FSub : Instruction::Sub;
1096   case bitc::BINOP_MUL:
1097     return IsFP ? Instruction::FMul : Instruction::Mul;
1098   case bitc::BINOP_UDIV:
1099     return IsFP ? -1 : Instruction::UDiv;
1100   case bitc::BINOP_SDIV:
1101     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1102   case bitc::BINOP_UREM:
1103     return IsFP ? -1 : Instruction::URem;
1104   case bitc::BINOP_SREM:
1105     return IsFP ? Instruction::FRem : Instruction::SRem;
1106   case bitc::BINOP_SHL:
1107     return IsFP ? -1 : Instruction::Shl;
1108   case bitc::BINOP_LSHR:
1109     return IsFP ? -1 : Instruction::LShr;
1110   case bitc::BINOP_ASHR:
1111     return IsFP ? -1 : Instruction::AShr;
1112   case bitc::BINOP_AND:
1113     return IsFP ? -1 : Instruction::And;
1114   case bitc::BINOP_OR:
1115     return IsFP ? -1 : Instruction::Or;
1116   case bitc::BINOP_XOR:
1117     return IsFP ? -1 : Instruction::Xor;
1118   }
1119 }
1120 
1121 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1122   switch (Val) {
1123   default: return AtomicRMWInst::BAD_BINOP;
1124   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1125   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1126   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1127   case bitc::RMW_AND: return AtomicRMWInst::And;
1128   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1129   case bitc::RMW_OR: return AtomicRMWInst::Or;
1130   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1131   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1132   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1133   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1134   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1135   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1136   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1137   }
1138 }
1139 
1140 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1141   switch (Val) {
1142   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1143   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1144   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1145   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1146   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1147   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1148   default: // Map unknown orderings to sequentially-consistent.
1149   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1150   }
1151 }
1152 
1153 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1154   switch (Val) {
1155   default: // Map unknown selection kinds to any.
1156   case bitc::COMDAT_SELECTION_KIND_ANY:
1157     return Comdat::Any;
1158   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1159     return Comdat::ExactMatch;
1160   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1161     return Comdat::Largest;
1162   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1163     return Comdat::NoDuplicates;
1164   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1165     return Comdat::SameSize;
1166   }
1167 }
1168 
1169 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1170   FastMathFlags FMF;
1171   if (0 != (Val & bitc::UnsafeAlgebra))
1172     FMF.setFast();
1173   if (0 != (Val & bitc::AllowReassoc))
1174     FMF.setAllowReassoc();
1175   if (0 != (Val & bitc::NoNaNs))
1176     FMF.setNoNaNs();
1177   if (0 != (Val & bitc::NoInfs))
1178     FMF.setNoInfs();
1179   if (0 != (Val & bitc::NoSignedZeros))
1180     FMF.setNoSignedZeros();
1181   if (0 != (Val & bitc::AllowReciprocal))
1182     FMF.setAllowReciprocal();
1183   if (0 != (Val & bitc::AllowContract))
1184     FMF.setAllowContract(true);
1185   if (0 != (Val & bitc::ApproxFunc))
1186     FMF.setApproxFunc();
1187   return FMF;
1188 }
1189 
1190 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1191   switch (Val) {
1192   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1193   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1194   }
1195 }
1196 
1197 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1198   // The type table size is always specified correctly.
1199   if (ID >= TypeList.size())
1200     return nullptr;
1201 
1202   if (Type *Ty = TypeList[ID])
1203     return Ty;
1204 
1205   // If we have a forward reference, the only possible case is when it is to a
1206   // named struct.  Just create a placeholder for now.
1207   return TypeList[ID] = createIdentifiedStructType(Context);
1208 }
1209 
1210 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1211                                                       StringRef Name) {
1212   auto *Ret = StructType::create(Context, Name);
1213   IdentifiedStructTypes.push_back(Ret);
1214   return Ret;
1215 }
1216 
1217 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1218   auto *Ret = StructType::create(Context);
1219   IdentifiedStructTypes.push_back(Ret);
1220   return Ret;
1221 }
1222 
1223 //===----------------------------------------------------------------------===//
1224 //  Functions for parsing blocks from the bitcode file
1225 //===----------------------------------------------------------------------===//
1226 
1227 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1228   switch (Val) {
1229   case Attribute::EndAttrKinds:
1230   case Attribute::EmptyKey:
1231   case Attribute::TombstoneKey:
1232     llvm_unreachable("Synthetic enumerators which should never get here");
1233 
1234   case Attribute::None:            return 0;
1235   case Attribute::ZExt:            return 1 << 0;
1236   case Attribute::SExt:            return 1 << 1;
1237   case Attribute::NoReturn:        return 1 << 2;
1238   case Attribute::InReg:           return 1 << 3;
1239   case Attribute::StructRet:       return 1 << 4;
1240   case Attribute::NoUnwind:        return 1 << 5;
1241   case Attribute::NoAlias:         return 1 << 6;
1242   case Attribute::ByVal:           return 1 << 7;
1243   case Attribute::Nest:            return 1 << 8;
1244   case Attribute::ReadNone:        return 1 << 9;
1245   case Attribute::ReadOnly:        return 1 << 10;
1246   case Attribute::NoInline:        return 1 << 11;
1247   case Attribute::AlwaysInline:    return 1 << 12;
1248   case Attribute::OptimizeForSize: return 1 << 13;
1249   case Attribute::StackProtect:    return 1 << 14;
1250   case Attribute::StackProtectReq: return 1 << 15;
1251   case Attribute::Alignment:       return 31 << 16;
1252   case Attribute::NoCapture:       return 1 << 21;
1253   case Attribute::NoRedZone:       return 1 << 22;
1254   case Attribute::NoImplicitFloat: return 1 << 23;
1255   case Attribute::Naked:           return 1 << 24;
1256   case Attribute::InlineHint:      return 1 << 25;
1257   case Attribute::StackAlignment:  return 7 << 26;
1258   case Attribute::ReturnsTwice:    return 1 << 29;
1259   case Attribute::UWTable:         return 1 << 30;
1260   case Attribute::NonLazyBind:     return 1U << 31;
1261   case Attribute::SanitizeAddress: return 1ULL << 32;
1262   case Attribute::MinSize:         return 1ULL << 33;
1263   case Attribute::NoDuplicate:     return 1ULL << 34;
1264   case Attribute::StackProtectStrong: return 1ULL << 35;
1265   case Attribute::SanitizeThread:  return 1ULL << 36;
1266   case Attribute::SanitizeMemory:  return 1ULL << 37;
1267   case Attribute::NoBuiltin:       return 1ULL << 38;
1268   case Attribute::Returned:        return 1ULL << 39;
1269   case Attribute::Cold:            return 1ULL << 40;
1270   case Attribute::Builtin:         return 1ULL << 41;
1271   case Attribute::OptimizeNone:    return 1ULL << 42;
1272   case Attribute::InAlloca:        return 1ULL << 43;
1273   case Attribute::NonNull:         return 1ULL << 44;
1274   case Attribute::JumpTable:       return 1ULL << 45;
1275   case Attribute::Convergent:      return 1ULL << 46;
1276   case Attribute::SafeStack:       return 1ULL << 47;
1277   case Attribute::NoRecurse:       return 1ULL << 48;
1278   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1279   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1280   case Attribute::SwiftSelf:       return 1ULL << 51;
1281   case Attribute::SwiftError:      return 1ULL << 52;
1282   case Attribute::WriteOnly:       return 1ULL << 53;
1283   case Attribute::Speculatable:    return 1ULL << 54;
1284   case Attribute::StrictFP:        return 1ULL << 55;
1285   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1286   case Attribute::NoCfCheck:       return 1ULL << 57;
1287   case Attribute::OptForFuzzing:   return 1ULL << 58;
1288   case Attribute::ShadowCallStack: return 1ULL << 59;
1289   case Attribute::SpeculativeLoadHardening:
1290     return 1ULL << 60;
1291   case Attribute::ImmArg:
1292     return 1ULL << 61;
1293   case Attribute::WillReturn:
1294     return 1ULL << 62;
1295   case Attribute::NoFree:
1296     return 1ULL << 63;
1297   default:
1298     // Other attributes are not supported in the raw format,
1299     // as we ran out of space.
1300     return 0;
1301   }
1302   llvm_unreachable("Unsupported attribute type");
1303 }
1304 
1305 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1306   if (!Val) return;
1307 
1308   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1309        I = Attribute::AttrKind(I + 1)) {
1310     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1311       if (I == Attribute::Alignment)
1312         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1313       else if (I == Attribute::StackAlignment)
1314         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1315       else
1316         B.addAttribute(I);
1317     }
1318   }
1319 }
1320 
1321 /// This fills an AttrBuilder object with the LLVM attributes that have
1322 /// been decoded from the given integer. This function must stay in sync with
1323 /// 'encodeLLVMAttributesForBitcode'.
1324 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1325                                            uint64_t EncodedAttrs) {
1326   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1327   // the bits above 31 down by 11 bits.
1328   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1329   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1330          "Alignment must be a power of two.");
1331 
1332   if (Alignment)
1333     B.addAlignmentAttr(Alignment);
1334   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1335                           (EncodedAttrs & 0xffff));
1336 }
1337 
1338 Error BitcodeReader::parseAttributeBlock() {
1339   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1340     return Err;
1341 
1342   if (!MAttributes.empty())
1343     return error("Invalid multiple blocks");
1344 
1345   SmallVector<uint64_t, 64> Record;
1346 
1347   SmallVector<AttributeList, 8> Attrs;
1348 
1349   // Read all the records.
1350   while (true) {
1351     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1352     if (!MaybeEntry)
1353       return MaybeEntry.takeError();
1354     BitstreamEntry Entry = MaybeEntry.get();
1355 
1356     switch (Entry.Kind) {
1357     case BitstreamEntry::SubBlock: // Handled for us already.
1358     case BitstreamEntry::Error:
1359       return error("Malformed block");
1360     case BitstreamEntry::EndBlock:
1361       return Error::success();
1362     case BitstreamEntry::Record:
1363       // The interesting case.
1364       break;
1365     }
1366 
1367     // Read a record.
1368     Record.clear();
1369     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1370     if (!MaybeRecord)
1371       return MaybeRecord.takeError();
1372     switch (MaybeRecord.get()) {
1373     default:  // Default behavior: ignore.
1374       break;
1375     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1376       // Deprecated, but still needed to read old bitcode files.
1377       if (Record.size() & 1)
1378         return error("Invalid record");
1379 
1380       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1381         AttrBuilder B;
1382         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1383         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1384       }
1385 
1386       MAttributes.push_back(AttributeList::get(Context, Attrs));
1387       Attrs.clear();
1388       break;
1389     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1390       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1391         Attrs.push_back(MAttributeGroups[Record[i]]);
1392 
1393       MAttributes.push_back(AttributeList::get(Context, Attrs));
1394       Attrs.clear();
1395       break;
1396     }
1397   }
1398 }
1399 
1400 // Returns Attribute::None on unrecognized codes.
1401 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1402   switch (Code) {
1403   default:
1404     return Attribute::None;
1405   case bitc::ATTR_KIND_ALIGNMENT:
1406     return Attribute::Alignment;
1407   case bitc::ATTR_KIND_ALWAYS_INLINE:
1408     return Attribute::AlwaysInline;
1409   case bitc::ATTR_KIND_ARGMEMONLY:
1410     return Attribute::ArgMemOnly;
1411   case bitc::ATTR_KIND_BUILTIN:
1412     return Attribute::Builtin;
1413   case bitc::ATTR_KIND_BY_VAL:
1414     return Attribute::ByVal;
1415   case bitc::ATTR_KIND_IN_ALLOCA:
1416     return Attribute::InAlloca;
1417   case bitc::ATTR_KIND_COLD:
1418     return Attribute::Cold;
1419   case bitc::ATTR_KIND_CONVERGENT:
1420     return Attribute::Convergent;
1421   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1422     return Attribute::InaccessibleMemOnly;
1423   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1424     return Attribute::InaccessibleMemOrArgMemOnly;
1425   case bitc::ATTR_KIND_INLINE_HINT:
1426     return Attribute::InlineHint;
1427   case bitc::ATTR_KIND_IN_REG:
1428     return Attribute::InReg;
1429   case bitc::ATTR_KIND_JUMP_TABLE:
1430     return Attribute::JumpTable;
1431   case bitc::ATTR_KIND_MIN_SIZE:
1432     return Attribute::MinSize;
1433   case bitc::ATTR_KIND_NAKED:
1434     return Attribute::Naked;
1435   case bitc::ATTR_KIND_NEST:
1436     return Attribute::Nest;
1437   case bitc::ATTR_KIND_NO_ALIAS:
1438     return Attribute::NoAlias;
1439   case bitc::ATTR_KIND_NO_BUILTIN:
1440     return Attribute::NoBuiltin;
1441   case bitc::ATTR_KIND_NO_CALLBACK:
1442     return Attribute::NoCallback;
1443   case bitc::ATTR_KIND_NO_CAPTURE:
1444     return Attribute::NoCapture;
1445   case bitc::ATTR_KIND_NO_DUPLICATE:
1446     return Attribute::NoDuplicate;
1447   case bitc::ATTR_KIND_NOFREE:
1448     return Attribute::NoFree;
1449   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1450     return Attribute::NoImplicitFloat;
1451   case bitc::ATTR_KIND_NO_INLINE:
1452     return Attribute::NoInline;
1453   case bitc::ATTR_KIND_NO_RECURSE:
1454     return Attribute::NoRecurse;
1455   case bitc::ATTR_KIND_NO_MERGE:
1456     return Attribute::NoMerge;
1457   case bitc::ATTR_KIND_NON_LAZY_BIND:
1458     return Attribute::NonLazyBind;
1459   case bitc::ATTR_KIND_NON_NULL:
1460     return Attribute::NonNull;
1461   case bitc::ATTR_KIND_DEREFERENCEABLE:
1462     return Attribute::Dereferenceable;
1463   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1464     return Attribute::DereferenceableOrNull;
1465   case bitc::ATTR_KIND_ALLOC_SIZE:
1466     return Attribute::AllocSize;
1467   case bitc::ATTR_KIND_NO_RED_ZONE:
1468     return Attribute::NoRedZone;
1469   case bitc::ATTR_KIND_NO_RETURN:
1470     return Attribute::NoReturn;
1471   case bitc::ATTR_KIND_NOSYNC:
1472     return Attribute::NoSync;
1473   case bitc::ATTR_KIND_NOCF_CHECK:
1474     return Attribute::NoCfCheck;
1475   case bitc::ATTR_KIND_NO_UNWIND:
1476     return Attribute::NoUnwind;
1477   case bitc::ATTR_KIND_NULL_POINTER_IS_VALID:
1478     return Attribute::NullPointerIsValid;
1479   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1480     return Attribute::OptForFuzzing;
1481   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1482     return Attribute::OptimizeForSize;
1483   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1484     return Attribute::OptimizeNone;
1485   case bitc::ATTR_KIND_READ_NONE:
1486     return Attribute::ReadNone;
1487   case bitc::ATTR_KIND_READ_ONLY:
1488     return Attribute::ReadOnly;
1489   case bitc::ATTR_KIND_RETURNED:
1490     return Attribute::Returned;
1491   case bitc::ATTR_KIND_RETURNS_TWICE:
1492     return Attribute::ReturnsTwice;
1493   case bitc::ATTR_KIND_S_EXT:
1494     return Attribute::SExt;
1495   case bitc::ATTR_KIND_SPECULATABLE:
1496     return Attribute::Speculatable;
1497   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1498     return Attribute::StackAlignment;
1499   case bitc::ATTR_KIND_STACK_PROTECT:
1500     return Attribute::StackProtect;
1501   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1502     return Attribute::StackProtectReq;
1503   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1504     return Attribute::StackProtectStrong;
1505   case bitc::ATTR_KIND_SAFESTACK:
1506     return Attribute::SafeStack;
1507   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1508     return Attribute::ShadowCallStack;
1509   case bitc::ATTR_KIND_STRICT_FP:
1510     return Attribute::StrictFP;
1511   case bitc::ATTR_KIND_STRUCT_RET:
1512     return Attribute::StructRet;
1513   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1514     return Attribute::SanitizeAddress;
1515   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1516     return Attribute::SanitizeHWAddress;
1517   case bitc::ATTR_KIND_SANITIZE_THREAD:
1518     return Attribute::SanitizeThread;
1519   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1520     return Attribute::SanitizeMemory;
1521   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1522     return Attribute::SpeculativeLoadHardening;
1523   case bitc::ATTR_KIND_SWIFT_ERROR:
1524     return Attribute::SwiftError;
1525   case bitc::ATTR_KIND_SWIFT_SELF:
1526     return Attribute::SwiftSelf;
1527   case bitc::ATTR_KIND_UW_TABLE:
1528     return Attribute::UWTable;
1529   case bitc::ATTR_KIND_WILLRETURN:
1530     return Attribute::WillReturn;
1531   case bitc::ATTR_KIND_WRITEONLY:
1532     return Attribute::WriteOnly;
1533   case bitc::ATTR_KIND_Z_EXT:
1534     return Attribute::ZExt;
1535   case bitc::ATTR_KIND_IMMARG:
1536     return Attribute::ImmArg;
1537   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1538     return Attribute::SanitizeMemTag;
1539   case bitc::ATTR_KIND_PREALLOCATED:
1540     return Attribute::Preallocated;
1541   case bitc::ATTR_KIND_NOUNDEF:
1542     return Attribute::NoUndef;
1543   case bitc::ATTR_KIND_BYREF:
1544     return Attribute::ByRef;
1545   case bitc::ATTR_KIND_MUSTPROGRESS:
1546     return Attribute::MustProgress;
1547   case bitc::ATTR_KIND_HOT:
1548     return Attribute::Hot;
1549   }
1550 }
1551 
1552 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1553                                          MaybeAlign &Alignment) {
1554   // Note: Alignment in bitcode files is incremented by 1, so that zero
1555   // can be used for default alignment.
1556   if (Exponent > Value::MaxAlignmentExponent + 1)
1557     return error("Invalid alignment value");
1558   Alignment = decodeMaybeAlign(Exponent);
1559   return Error::success();
1560 }
1561 
1562 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1563   *Kind = getAttrFromCode(Code);
1564   if (*Kind == Attribute::None)
1565     return error("Unknown attribute kind (" + Twine(Code) + ")");
1566   return Error::success();
1567 }
1568 
1569 Error BitcodeReader::parseAttributeGroupBlock() {
1570   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1571     return Err;
1572 
1573   if (!MAttributeGroups.empty())
1574     return error("Invalid multiple blocks");
1575 
1576   SmallVector<uint64_t, 64> Record;
1577 
1578   // Read all the records.
1579   while (true) {
1580     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1581     if (!MaybeEntry)
1582       return MaybeEntry.takeError();
1583     BitstreamEntry Entry = MaybeEntry.get();
1584 
1585     switch (Entry.Kind) {
1586     case BitstreamEntry::SubBlock: // Handled for us already.
1587     case BitstreamEntry::Error:
1588       return error("Malformed block");
1589     case BitstreamEntry::EndBlock:
1590       return Error::success();
1591     case BitstreamEntry::Record:
1592       // The interesting case.
1593       break;
1594     }
1595 
1596     // Read a record.
1597     Record.clear();
1598     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1599     if (!MaybeRecord)
1600       return MaybeRecord.takeError();
1601     switch (MaybeRecord.get()) {
1602     default:  // Default behavior: ignore.
1603       break;
1604     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1605       if (Record.size() < 3)
1606         return error("Invalid record");
1607 
1608       uint64_t GrpID = Record[0];
1609       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1610 
1611       AttrBuilder B;
1612       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1613         if (Record[i] == 0) {        // Enum attribute
1614           Attribute::AttrKind Kind;
1615           if (Error Err = parseAttrKind(Record[++i], &Kind))
1616             return Err;
1617 
1618           // Upgrade old-style byval attribute to one with a type, even if it's
1619           // nullptr. We will have to insert the real type when we associate
1620           // this AttributeList with a function.
1621           if (Kind == Attribute::ByVal)
1622             B.addByValAttr(nullptr);
1623           else if (Kind == Attribute::StructRet)
1624             B.addStructRetAttr(nullptr);
1625 
1626           B.addAttribute(Kind);
1627         } else if (Record[i] == 1) { // Integer attribute
1628           Attribute::AttrKind Kind;
1629           if (Error Err = parseAttrKind(Record[++i], &Kind))
1630             return Err;
1631           if (Kind == Attribute::Alignment)
1632             B.addAlignmentAttr(Record[++i]);
1633           else if (Kind == Attribute::StackAlignment)
1634             B.addStackAlignmentAttr(Record[++i]);
1635           else if (Kind == Attribute::Dereferenceable)
1636             B.addDereferenceableAttr(Record[++i]);
1637           else if (Kind == Attribute::DereferenceableOrNull)
1638             B.addDereferenceableOrNullAttr(Record[++i]);
1639           else if (Kind == Attribute::AllocSize)
1640             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1641         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1642           bool HasValue = (Record[i++] == 4);
1643           SmallString<64> KindStr;
1644           SmallString<64> ValStr;
1645 
1646           while (Record[i] != 0 && i != e)
1647             KindStr += Record[i++];
1648           assert(Record[i] == 0 && "Kind string not null terminated");
1649 
1650           if (HasValue) {
1651             // Has a value associated with it.
1652             ++i; // Skip the '0' that terminates the "kind" string.
1653             while (Record[i] != 0 && i != e)
1654               ValStr += Record[i++];
1655             assert(Record[i] == 0 && "Value string not null terminated");
1656           }
1657 
1658           B.addAttribute(KindStr.str(), ValStr.str());
1659         } else {
1660           assert((Record[i] == 5 || Record[i] == 6) &&
1661                  "Invalid attribute group entry");
1662           bool HasType = Record[i] == 6;
1663           Attribute::AttrKind Kind;
1664           if (Error Err = parseAttrKind(Record[++i], &Kind))
1665             return Err;
1666           if (Kind == Attribute::ByVal) {
1667             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1668           } else if (Kind == Attribute::StructRet) {
1669             B.addStructRetAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1670           } else if (Kind == Attribute::ByRef) {
1671             B.addByRefAttr(getTypeByID(Record[++i]));
1672           } else if (Kind == Attribute::Preallocated) {
1673             B.addPreallocatedAttr(getTypeByID(Record[++i]));
1674           }
1675         }
1676       }
1677 
1678       UpgradeAttributes(B);
1679       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1680       break;
1681     }
1682     }
1683   }
1684 }
1685 
1686 Error BitcodeReader::parseTypeTable() {
1687   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1688     return Err;
1689 
1690   return parseTypeTableBody();
1691 }
1692 
1693 Error BitcodeReader::parseTypeTableBody() {
1694   if (!TypeList.empty())
1695     return error("Invalid multiple blocks");
1696 
1697   SmallVector<uint64_t, 64> Record;
1698   unsigned NumRecords = 0;
1699 
1700   SmallString<64> TypeName;
1701 
1702   // Read all the records for this type table.
1703   while (true) {
1704     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1705     if (!MaybeEntry)
1706       return MaybeEntry.takeError();
1707     BitstreamEntry Entry = MaybeEntry.get();
1708 
1709     switch (Entry.Kind) {
1710     case BitstreamEntry::SubBlock: // Handled for us already.
1711     case BitstreamEntry::Error:
1712       return error("Malformed block");
1713     case BitstreamEntry::EndBlock:
1714       if (NumRecords != TypeList.size())
1715         return error("Malformed block");
1716       return Error::success();
1717     case BitstreamEntry::Record:
1718       // The interesting case.
1719       break;
1720     }
1721 
1722     // Read a record.
1723     Record.clear();
1724     Type *ResultTy = nullptr;
1725     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1726     if (!MaybeRecord)
1727       return MaybeRecord.takeError();
1728     switch (MaybeRecord.get()) {
1729     default:
1730       return error("Invalid value");
1731     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1732       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1733       // type list.  This allows us to reserve space.
1734       if (Record.empty())
1735         return error("Invalid record");
1736       TypeList.resize(Record[0]);
1737       continue;
1738     case bitc::TYPE_CODE_VOID:      // VOID
1739       ResultTy = Type::getVoidTy(Context);
1740       break;
1741     case bitc::TYPE_CODE_HALF:     // HALF
1742       ResultTy = Type::getHalfTy(Context);
1743       break;
1744     case bitc::TYPE_CODE_BFLOAT:    // BFLOAT
1745       ResultTy = Type::getBFloatTy(Context);
1746       break;
1747     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1748       ResultTy = Type::getFloatTy(Context);
1749       break;
1750     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1751       ResultTy = Type::getDoubleTy(Context);
1752       break;
1753     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1754       ResultTy = Type::getX86_FP80Ty(Context);
1755       break;
1756     case bitc::TYPE_CODE_FP128:     // FP128
1757       ResultTy = Type::getFP128Ty(Context);
1758       break;
1759     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1760       ResultTy = Type::getPPC_FP128Ty(Context);
1761       break;
1762     case bitc::TYPE_CODE_LABEL:     // LABEL
1763       ResultTy = Type::getLabelTy(Context);
1764       break;
1765     case bitc::TYPE_CODE_METADATA:  // METADATA
1766       ResultTy = Type::getMetadataTy(Context);
1767       break;
1768     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1769       ResultTy = Type::getX86_MMXTy(Context);
1770       break;
1771     case bitc::TYPE_CODE_X86_AMX:   // X86_AMX
1772       ResultTy = Type::getX86_AMXTy(Context);
1773       break;
1774     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1775       ResultTy = Type::getTokenTy(Context);
1776       break;
1777     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1778       if (Record.empty())
1779         return error("Invalid record");
1780 
1781       uint64_t NumBits = Record[0];
1782       if (NumBits < IntegerType::MIN_INT_BITS ||
1783           NumBits > IntegerType::MAX_INT_BITS)
1784         return error("Bitwidth for integer type out of range");
1785       ResultTy = IntegerType::get(Context, NumBits);
1786       break;
1787     }
1788     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1789                                     //          [pointee type, address space]
1790       if (Record.empty())
1791         return error("Invalid record");
1792       unsigned AddressSpace = 0;
1793       if (Record.size() == 2)
1794         AddressSpace = Record[1];
1795       ResultTy = getTypeByID(Record[0]);
1796       if (!ResultTy ||
1797           !PointerType::isValidElementType(ResultTy))
1798         return error("Invalid type");
1799       ResultTy = PointerType::get(ResultTy, AddressSpace);
1800       break;
1801     }
1802     case bitc::TYPE_CODE_FUNCTION_OLD: {
1803       // Deprecated, but still needed to read old bitcode files.
1804       // FUNCTION: [vararg, attrid, retty, paramty x N]
1805       if (Record.size() < 3)
1806         return error("Invalid record");
1807       SmallVector<Type*, 8> ArgTys;
1808       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1809         if (Type *T = getTypeByID(Record[i]))
1810           ArgTys.push_back(T);
1811         else
1812           break;
1813       }
1814 
1815       ResultTy = getTypeByID(Record[2]);
1816       if (!ResultTy || ArgTys.size() < Record.size()-3)
1817         return error("Invalid type");
1818 
1819       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1820       break;
1821     }
1822     case bitc::TYPE_CODE_FUNCTION: {
1823       // FUNCTION: [vararg, retty, paramty x N]
1824       if (Record.size() < 2)
1825         return error("Invalid record");
1826       SmallVector<Type*, 8> ArgTys;
1827       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1828         if (Type *T = getTypeByID(Record[i])) {
1829           if (!FunctionType::isValidArgumentType(T))
1830             return error("Invalid function argument type");
1831           ArgTys.push_back(T);
1832         }
1833         else
1834           break;
1835       }
1836 
1837       ResultTy = getTypeByID(Record[1]);
1838       if (!ResultTy || ArgTys.size() < Record.size()-2)
1839         return error("Invalid type");
1840 
1841       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1842       break;
1843     }
1844     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1845       if (Record.empty())
1846         return error("Invalid record");
1847       SmallVector<Type*, 8> EltTys;
1848       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1849         if (Type *T = getTypeByID(Record[i]))
1850           EltTys.push_back(T);
1851         else
1852           break;
1853       }
1854       if (EltTys.size() != Record.size()-1)
1855         return error("Invalid type");
1856       ResultTy = StructType::get(Context, EltTys, Record[0]);
1857       break;
1858     }
1859     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1860       if (convertToString(Record, 0, TypeName))
1861         return error("Invalid record");
1862       continue;
1863 
1864     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1865       if (Record.empty())
1866         return error("Invalid record");
1867 
1868       if (NumRecords >= TypeList.size())
1869         return error("Invalid TYPE table");
1870 
1871       // Check to see if this was forward referenced, if so fill in the temp.
1872       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1873       if (Res) {
1874         Res->setName(TypeName);
1875         TypeList[NumRecords] = nullptr;
1876       } else  // Otherwise, create a new struct.
1877         Res = createIdentifiedStructType(Context, TypeName);
1878       TypeName.clear();
1879 
1880       SmallVector<Type*, 8> EltTys;
1881       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1882         if (Type *T = getTypeByID(Record[i]))
1883           EltTys.push_back(T);
1884         else
1885           break;
1886       }
1887       if (EltTys.size() != Record.size()-1)
1888         return error("Invalid record");
1889       Res->setBody(EltTys, Record[0]);
1890       ResultTy = Res;
1891       break;
1892     }
1893     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1894       if (Record.size() != 1)
1895         return error("Invalid record");
1896 
1897       if (NumRecords >= TypeList.size())
1898         return error("Invalid TYPE table");
1899 
1900       // Check to see if this was forward referenced, if so fill in the temp.
1901       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1902       if (Res) {
1903         Res->setName(TypeName);
1904         TypeList[NumRecords] = nullptr;
1905       } else  // Otherwise, create a new struct with no body.
1906         Res = createIdentifiedStructType(Context, TypeName);
1907       TypeName.clear();
1908       ResultTy = Res;
1909       break;
1910     }
1911     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1912       if (Record.size() < 2)
1913         return error("Invalid record");
1914       ResultTy = getTypeByID(Record[1]);
1915       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1916         return error("Invalid type");
1917       ResultTy = ArrayType::get(ResultTy, Record[0]);
1918       break;
1919     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1920                                     //         [numelts, eltty, scalable]
1921       if (Record.size() < 2)
1922         return error("Invalid record");
1923       if (Record[0] == 0)
1924         return error("Invalid vector length");
1925       ResultTy = getTypeByID(Record[1]);
1926       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1927         return error("Invalid type");
1928       bool Scalable = Record.size() > 2 ? Record[2] : false;
1929       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1930       break;
1931     }
1932 
1933     if (NumRecords >= TypeList.size())
1934       return error("Invalid TYPE table");
1935     if (TypeList[NumRecords])
1936       return error(
1937           "Invalid TYPE table: Only named structs can be forward referenced");
1938     assert(ResultTy && "Didn't read a type?");
1939     TypeList[NumRecords++] = ResultTy;
1940   }
1941 }
1942 
1943 Error BitcodeReader::parseOperandBundleTags() {
1944   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1945     return Err;
1946 
1947   if (!BundleTags.empty())
1948     return error("Invalid multiple blocks");
1949 
1950   SmallVector<uint64_t, 64> Record;
1951 
1952   while (true) {
1953     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1954     if (!MaybeEntry)
1955       return MaybeEntry.takeError();
1956     BitstreamEntry Entry = MaybeEntry.get();
1957 
1958     switch (Entry.Kind) {
1959     case BitstreamEntry::SubBlock: // Handled for us already.
1960     case BitstreamEntry::Error:
1961       return error("Malformed block");
1962     case BitstreamEntry::EndBlock:
1963       return Error::success();
1964     case BitstreamEntry::Record:
1965       // The interesting case.
1966       break;
1967     }
1968 
1969     // Tags are implicitly mapped to integers by their order.
1970 
1971     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1972     if (!MaybeRecord)
1973       return MaybeRecord.takeError();
1974     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1975       return error("Invalid record");
1976 
1977     // OPERAND_BUNDLE_TAG: [strchr x N]
1978     BundleTags.emplace_back();
1979     if (convertToString(Record, 0, BundleTags.back()))
1980       return error("Invalid record");
1981     Record.clear();
1982   }
1983 }
1984 
1985 Error BitcodeReader::parseSyncScopeNames() {
1986   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1987     return Err;
1988 
1989   if (!SSIDs.empty())
1990     return error("Invalid multiple synchronization scope names blocks");
1991 
1992   SmallVector<uint64_t, 64> Record;
1993   while (true) {
1994     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1995     if (!MaybeEntry)
1996       return MaybeEntry.takeError();
1997     BitstreamEntry Entry = MaybeEntry.get();
1998 
1999     switch (Entry.Kind) {
2000     case BitstreamEntry::SubBlock: // Handled for us already.
2001     case BitstreamEntry::Error:
2002       return error("Malformed block");
2003     case BitstreamEntry::EndBlock:
2004       if (SSIDs.empty())
2005         return error("Invalid empty synchronization scope names block");
2006       return Error::success();
2007     case BitstreamEntry::Record:
2008       // The interesting case.
2009       break;
2010     }
2011 
2012     // Synchronization scope names are implicitly mapped to synchronization
2013     // scope IDs by their order.
2014 
2015     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2016     if (!MaybeRecord)
2017       return MaybeRecord.takeError();
2018     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
2019       return error("Invalid record");
2020 
2021     SmallString<16> SSN;
2022     if (convertToString(Record, 0, SSN))
2023       return error("Invalid record");
2024 
2025     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
2026     Record.clear();
2027   }
2028 }
2029 
2030 /// Associate a value with its name from the given index in the provided record.
2031 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
2032                                              unsigned NameIndex, Triple &TT) {
2033   SmallString<128> ValueName;
2034   if (convertToString(Record, NameIndex, ValueName))
2035     return error("Invalid record");
2036   unsigned ValueID = Record[0];
2037   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2038     return error("Invalid record");
2039   Value *V = ValueList[ValueID];
2040 
2041   StringRef NameStr(ValueName.data(), ValueName.size());
2042   if (NameStr.find_first_of(0) != StringRef::npos)
2043     return error("Invalid value name");
2044   V->setName(NameStr);
2045   auto *GO = dyn_cast<GlobalObject>(V);
2046   if (GO) {
2047     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2048       if (TT.supportsCOMDAT())
2049         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2050       else
2051         GO->setComdat(nullptr);
2052     }
2053   }
2054   return V;
2055 }
2056 
2057 /// Helper to note and return the current location, and jump to the given
2058 /// offset.
2059 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2060                                                  BitstreamCursor &Stream) {
2061   // Save the current parsing location so we can jump back at the end
2062   // of the VST read.
2063   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2064   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2065     return std::move(JumpFailed);
2066   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2067   if (!MaybeEntry)
2068     return MaybeEntry.takeError();
2069   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2070   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2071   return CurrentBit;
2072 }
2073 
2074 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2075                                             Function *F,
2076                                             ArrayRef<uint64_t> Record) {
2077   // Note that we subtract 1 here because the offset is relative to one word
2078   // before the start of the identification or module block, which was
2079   // historically always the start of the regular bitcode header.
2080   uint64_t FuncWordOffset = Record[1] - 1;
2081   uint64_t FuncBitOffset = FuncWordOffset * 32;
2082   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2083   // Set the LastFunctionBlockBit to point to the last function block.
2084   // Later when parsing is resumed after function materialization,
2085   // we can simply skip that last function block.
2086   if (FuncBitOffset > LastFunctionBlockBit)
2087     LastFunctionBlockBit = FuncBitOffset;
2088 }
2089 
2090 /// Read a new-style GlobalValue symbol table.
2091 Error BitcodeReader::parseGlobalValueSymbolTable() {
2092   unsigned FuncBitcodeOffsetDelta =
2093       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2094 
2095   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2096     return Err;
2097 
2098   SmallVector<uint64_t, 64> Record;
2099   while (true) {
2100     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2101     if (!MaybeEntry)
2102       return MaybeEntry.takeError();
2103     BitstreamEntry Entry = MaybeEntry.get();
2104 
2105     switch (Entry.Kind) {
2106     case BitstreamEntry::SubBlock:
2107     case BitstreamEntry::Error:
2108       return error("Malformed block");
2109     case BitstreamEntry::EndBlock:
2110       return Error::success();
2111     case BitstreamEntry::Record:
2112       break;
2113     }
2114 
2115     Record.clear();
2116     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2117     if (!MaybeRecord)
2118       return MaybeRecord.takeError();
2119     switch (MaybeRecord.get()) {
2120     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2121       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2122                               cast<Function>(ValueList[Record[0]]), Record);
2123       break;
2124     }
2125   }
2126 }
2127 
2128 /// Parse the value symbol table at either the current parsing location or
2129 /// at the given bit offset if provided.
2130 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2131   uint64_t CurrentBit;
2132   // Pass in the Offset to distinguish between calling for the module-level
2133   // VST (where we want to jump to the VST offset) and the function-level
2134   // VST (where we don't).
2135   if (Offset > 0) {
2136     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2137     if (!MaybeCurrentBit)
2138       return MaybeCurrentBit.takeError();
2139     CurrentBit = MaybeCurrentBit.get();
2140     // If this module uses a string table, read this as a module-level VST.
2141     if (UseStrtab) {
2142       if (Error Err = parseGlobalValueSymbolTable())
2143         return Err;
2144       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2145         return JumpFailed;
2146       return Error::success();
2147     }
2148     // Otherwise, the VST will be in a similar format to a function-level VST,
2149     // and will contain symbol names.
2150   }
2151 
2152   // Compute the delta between the bitcode indices in the VST (the word offset
2153   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2154   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2155   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2156   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2157   // just before entering the VST subblock because: 1) the EnterSubBlock
2158   // changes the AbbrevID width; 2) the VST block is nested within the same
2159   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2160   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2161   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2162   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2163   unsigned FuncBitcodeOffsetDelta =
2164       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2165 
2166   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2167     return Err;
2168 
2169   SmallVector<uint64_t, 64> Record;
2170 
2171   Triple TT(TheModule->getTargetTriple());
2172 
2173   // Read all the records for this value table.
2174   SmallString<128> ValueName;
2175 
2176   while (true) {
2177     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2178     if (!MaybeEntry)
2179       return MaybeEntry.takeError();
2180     BitstreamEntry Entry = MaybeEntry.get();
2181 
2182     switch (Entry.Kind) {
2183     case BitstreamEntry::SubBlock: // Handled for us already.
2184     case BitstreamEntry::Error:
2185       return error("Malformed block");
2186     case BitstreamEntry::EndBlock:
2187       if (Offset > 0)
2188         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2189           return JumpFailed;
2190       return Error::success();
2191     case BitstreamEntry::Record:
2192       // The interesting case.
2193       break;
2194     }
2195 
2196     // Read a record.
2197     Record.clear();
2198     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2199     if (!MaybeRecord)
2200       return MaybeRecord.takeError();
2201     switch (MaybeRecord.get()) {
2202     default:  // Default behavior: unknown type.
2203       break;
2204     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2205       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2206       if (Error Err = ValOrErr.takeError())
2207         return Err;
2208       ValOrErr.get();
2209       break;
2210     }
2211     case bitc::VST_CODE_FNENTRY: {
2212       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2213       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2214       if (Error Err = ValOrErr.takeError())
2215         return Err;
2216       Value *V = ValOrErr.get();
2217 
2218       // Ignore function offsets emitted for aliases of functions in older
2219       // versions of LLVM.
2220       if (auto *F = dyn_cast<Function>(V))
2221         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2222       break;
2223     }
2224     case bitc::VST_CODE_BBENTRY: {
2225       if (convertToString(Record, 1, ValueName))
2226         return error("Invalid record");
2227       BasicBlock *BB = getBasicBlock(Record[0]);
2228       if (!BB)
2229         return error("Invalid record");
2230 
2231       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2232       ValueName.clear();
2233       break;
2234     }
2235     }
2236   }
2237 }
2238 
2239 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2240 /// encoding.
2241 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2242   if ((V & 1) == 0)
2243     return V >> 1;
2244   if (V != 1)
2245     return -(V >> 1);
2246   // There is no such thing as -0 with integers.  "-0" really means MININT.
2247   return 1ULL << 63;
2248 }
2249 
2250 /// Resolve all of the initializers for global values and aliases that we can.
2251 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2252   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2253   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2254       IndirectSymbolInitWorklist;
2255   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2256   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2257   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2258 
2259   GlobalInitWorklist.swap(GlobalInits);
2260   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2261   FunctionPrefixWorklist.swap(FunctionPrefixes);
2262   FunctionPrologueWorklist.swap(FunctionPrologues);
2263   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2264 
2265   while (!GlobalInitWorklist.empty()) {
2266     unsigned ValID = GlobalInitWorklist.back().second;
2267     if (ValID >= ValueList.size()) {
2268       // Not ready to resolve this yet, it requires something later in the file.
2269       GlobalInits.push_back(GlobalInitWorklist.back());
2270     } else {
2271       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2272         GlobalInitWorklist.back().first->setInitializer(C);
2273       else
2274         return error("Expected a constant");
2275     }
2276     GlobalInitWorklist.pop_back();
2277   }
2278 
2279   while (!IndirectSymbolInitWorklist.empty()) {
2280     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2281     if (ValID >= ValueList.size()) {
2282       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2283     } else {
2284       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2285       if (!C)
2286         return error("Expected a constant");
2287       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2288       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2289         return error("Alias and aliasee types don't match");
2290       GIS->setIndirectSymbol(C);
2291     }
2292     IndirectSymbolInitWorklist.pop_back();
2293   }
2294 
2295   while (!FunctionPrefixWorklist.empty()) {
2296     unsigned ValID = FunctionPrefixWorklist.back().second;
2297     if (ValID >= ValueList.size()) {
2298       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2299     } else {
2300       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2301         FunctionPrefixWorklist.back().first->setPrefixData(C);
2302       else
2303         return error("Expected a constant");
2304     }
2305     FunctionPrefixWorklist.pop_back();
2306   }
2307 
2308   while (!FunctionPrologueWorklist.empty()) {
2309     unsigned ValID = FunctionPrologueWorklist.back().second;
2310     if (ValID >= ValueList.size()) {
2311       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2312     } else {
2313       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2314         FunctionPrologueWorklist.back().first->setPrologueData(C);
2315       else
2316         return error("Expected a constant");
2317     }
2318     FunctionPrologueWorklist.pop_back();
2319   }
2320 
2321   while (!FunctionPersonalityFnWorklist.empty()) {
2322     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2323     if (ValID >= ValueList.size()) {
2324       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2325     } else {
2326       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2327         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2328       else
2329         return error("Expected a constant");
2330     }
2331     FunctionPersonalityFnWorklist.pop_back();
2332   }
2333 
2334   return Error::success();
2335 }
2336 
2337 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2338   SmallVector<uint64_t, 8> Words(Vals.size());
2339   transform(Vals, Words.begin(),
2340                  BitcodeReader::decodeSignRotatedValue);
2341 
2342   return APInt(TypeBits, Words);
2343 }
2344 
2345 Error BitcodeReader::parseConstants() {
2346   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2347     return Err;
2348 
2349   SmallVector<uint64_t, 64> Record;
2350 
2351   // Read all the records for this value table.
2352   Type *CurTy = Type::getInt32Ty(Context);
2353   Type *CurFullTy = Type::getInt32Ty(Context);
2354   unsigned NextCstNo = ValueList.size();
2355 
2356   struct DelayedShufTy {
2357     VectorType *OpTy;
2358     VectorType *RTy;
2359     Type *CurFullTy;
2360     uint64_t Op0Idx;
2361     uint64_t Op1Idx;
2362     uint64_t Op2Idx;
2363     unsigned CstNo;
2364   };
2365   std::vector<DelayedShufTy> DelayedShuffles;
2366   while (true) {
2367     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2368     if (!MaybeEntry)
2369       return MaybeEntry.takeError();
2370     BitstreamEntry Entry = MaybeEntry.get();
2371 
2372     switch (Entry.Kind) {
2373     case BitstreamEntry::SubBlock: // Handled for us already.
2374     case BitstreamEntry::Error:
2375       return error("Malformed block");
2376     case BitstreamEntry::EndBlock:
2377       // Once all the constants have been read, go through and resolve forward
2378       // references.
2379       //
2380       // We have to treat shuffles specially because they don't have three
2381       // operands anymore.  We need to convert the shuffle mask into an array,
2382       // and we can't convert a forward reference.
2383       for (auto &DelayedShuffle : DelayedShuffles) {
2384         VectorType *OpTy = DelayedShuffle.OpTy;
2385         VectorType *RTy = DelayedShuffle.RTy;
2386         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2387         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2388         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2389         uint64_t CstNo = DelayedShuffle.CstNo;
2390         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2391         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2392         Type *ShufTy =
2393             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2394         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2395         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2396           return error("Invalid shufflevector operands");
2397         SmallVector<int, 16> Mask;
2398         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2399         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2400         ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy);
2401       }
2402 
2403       if (NextCstNo != ValueList.size())
2404         return error("Invalid constant reference");
2405 
2406       ValueList.resolveConstantForwardRefs();
2407       return Error::success();
2408     case BitstreamEntry::Record:
2409       // The interesting case.
2410       break;
2411     }
2412 
2413     // Read a record.
2414     Record.clear();
2415     Type *VoidType = Type::getVoidTy(Context);
2416     Value *V = nullptr;
2417     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2418     if (!MaybeBitCode)
2419       return MaybeBitCode.takeError();
2420     switch (unsigned BitCode = MaybeBitCode.get()) {
2421     default:  // Default behavior: unknown constant
2422     case bitc::CST_CODE_UNDEF:     // UNDEF
2423       V = UndefValue::get(CurTy);
2424       break;
2425     case bitc::CST_CODE_POISON:    // POISON
2426       V = PoisonValue::get(CurTy);
2427       break;
2428     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2429       if (Record.empty())
2430         return error("Invalid record");
2431       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2432         return error("Invalid record");
2433       if (TypeList[Record[0]] == VoidType)
2434         return error("Invalid constant type");
2435       CurFullTy = TypeList[Record[0]];
2436       CurTy = flattenPointerTypes(CurFullTy);
2437       continue;  // Skip the ValueList manipulation.
2438     case bitc::CST_CODE_NULL:      // NULL
2439       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2440         return error("Invalid type for a constant null value");
2441       V = Constant::getNullValue(CurTy);
2442       break;
2443     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2444       if (!CurTy->isIntegerTy() || Record.empty())
2445         return error("Invalid record");
2446       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2447       break;
2448     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2449       if (!CurTy->isIntegerTy() || Record.empty())
2450         return error("Invalid record");
2451 
2452       APInt VInt =
2453           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2454       V = ConstantInt::get(Context, VInt);
2455 
2456       break;
2457     }
2458     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2459       if (Record.empty())
2460         return error("Invalid record");
2461       if (CurTy->isHalfTy())
2462         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2463                                              APInt(16, (uint16_t)Record[0])));
2464       else if (CurTy->isBFloatTy())
2465         V = ConstantFP::get(Context, APFloat(APFloat::BFloat(),
2466                                              APInt(16, (uint32_t)Record[0])));
2467       else if (CurTy->isFloatTy())
2468         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2469                                              APInt(32, (uint32_t)Record[0])));
2470       else if (CurTy->isDoubleTy())
2471         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2472                                              APInt(64, Record[0])));
2473       else if (CurTy->isX86_FP80Ty()) {
2474         // Bits are not stored the same way as a normal i80 APInt, compensate.
2475         uint64_t Rearrange[2];
2476         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2477         Rearrange[1] = Record[0] >> 48;
2478         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2479                                              APInt(80, Rearrange)));
2480       } else if (CurTy->isFP128Ty())
2481         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2482                                              APInt(128, Record)));
2483       else if (CurTy->isPPC_FP128Ty())
2484         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2485                                              APInt(128, Record)));
2486       else
2487         V = UndefValue::get(CurTy);
2488       break;
2489     }
2490 
2491     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2492       if (Record.empty())
2493         return error("Invalid record");
2494 
2495       unsigned Size = Record.size();
2496       SmallVector<Constant*, 16> Elts;
2497 
2498       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2499         for (unsigned i = 0; i != Size; ++i)
2500           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2501                                                      STy->getElementType(i)));
2502         V = ConstantStruct::get(STy, Elts);
2503       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2504         Type *EltTy = ATy->getElementType();
2505         for (unsigned i = 0; i != Size; ++i)
2506           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2507         V = ConstantArray::get(ATy, Elts);
2508       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2509         Type *EltTy = VTy->getElementType();
2510         for (unsigned i = 0; i != Size; ++i)
2511           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2512         V = ConstantVector::get(Elts);
2513       } else {
2514         V = UndefValue::get(CurTy);
2515       }
2516       break;
2517     }
2518     case bitc::CST_CODE_STRING:    // STRING: [values]
2519     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2520       if (Record.empty())
2521         return error("Invalid record");
2522 
2523       SmallString<16> Elts(Record.begin(), Record.end());
2524       V = ConstantDataArray::getString(Context, Elts,
2525                                        BitCode == bitc::CST_CODE_CSTRING);
2526       break;
2527     }
2528     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2529       if (Record.empty())
2530         return error("Invalid record");
2531 
2532       Type *EltTy;
2533       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2534         EltTy = Array->getElementType();
2535       else
2536         EltTy = cast<VectorType>(CurTy)->getElementType();
2537       if (EltTy->isIntegerTy(8)) {
2538         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2539         if (isa<VectorType>(CurTy))
2540           V = ConstantDataVector::get(Context, Elts);
2541         else
2542           V = ConstantDataArray::get(Context, Elts);
2543       } else if (EltTy->isIntegerTy(16)) {
2544         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2545         if (isa<VectorType>(CurTy))
2546           V = ConstantDataVector::get(Context, Elts);
2547         else
2548           V = ConstantDataArray::get(Context, Elts);
2549       } else if (EltTy->isIntegerTy(32)) {
2550         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2551         if (isa<VectorType>(CurTy))
2552           V = ConstantDataVector::get(Context, Elts);
2553         else
2554           V = ConstantDataArray::get(Context, Elts);
2555       } else if (EltTy->isIntegerTy(64)) {
2556         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2557         if (isa<VectorType>(CurTy))
2558           V = ConstantDataVector::get(Context, Elts);
2559         else
2560           V = ConstantDataArray::get(Context, Elts);
2561       } else if (EltTy->isHalfTy()) {
2562         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2563         if (isa<VectorType>(CurTy))
2564           V = ConstantDataVector::getFP(EltTy, Elts);
2565         else
2566           V = ConstantDataArray::getFP(EltTy, Elts);
2567       } else if (EltTy->isBFloatTy()) {
2568         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2569         if (isa<VectorType>(CurTy))
2570           V = ConstantDataVector::getFP(EltTy, Elts);
2571         else
2572           V = ConstantDataArray::getFP(EltTy, Elts);
2573       } else if (EltTy->isFloatTy()) {
2574         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2575         if (isa<VectorType>(CurTy))
2576           V = ConstantDataVector::getFP(EltTy, Elts);
2577         else
2578           V = ConstantDataArray::getFP(EltTy, Elts);
2579       } else if (EltTy->isDoubleTy()) {
2580         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2581         if (isa<VectorType>(CurTy))
2582           V = ConstantDataVector::getFP(EltTy, Elts);
2583         else
2584           V = ConstantDataArray::getFP(EltTy, Elts);
2585       } else {
2586         return error("Invalid type for value");
2587       }
2588       break;
2589     }
2590     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2591       if (Record.size() < 2)
2592         return error("Invalid record");
2593       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2594       if (Opc < 0) {
2595         V = UndefValue::get(CurTy);  // Unknown unop.
2596       } else {
2597         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2598         unsigned Flags = 0;
2599         V = ConstantExpr::get(Opc, LHS, Flags);
2600       }
2601       break;
2602     }
2603     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2604       if (Record.size() < 3)
2605         return error("Invalid record");
2606       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2607       if (Opc < 0) {
2608         V = UndefValue::get(CurTy);  // Unknown binop.
2609       } else {
2610         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2611         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2612         unsigned Flags = 0;
2613         if (Record.size() >= 4) {
2614           if (Opc == Instruction::Add ||
2615               Opc == Instruction::Sub ||
2616               Opc == Instruction::Mul ||
2617               Opc == Instruction::Shl) {
2618             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2619               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2620             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2621               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2622           } else if (Opc == Instruction::SDiv ||
2623                      Opc == Instruction::UDiv ||
2624                      Opc == Instruction::LShr ||
2625                      Opc == Instruction::AShr) {
2626             if (Record[3] & (1 << bitc::PEO_EXACT))
2627               Flags |= SDivOperator::IsExact;
2628           }
2629         }
2630         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2631       }
2632       break;
2633     }
2634     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2635       if (Record.size() < 3)
2636         return error("Invalid record");
2637       int Opc = getDecodedCastOpcode(Record[0]);
2638       if (Opc < 0) {
2639         V = UndefValue::get(CurTy);  // Unknown cast.
2640       } else {
2641         Type *OpTy = getTypeByID(Record[1]);
2642         if (!OpTy)
2643           return error("Invalid record");
2644         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2645         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2646         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2647       }
2648       break;
2649     }
2650     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2651     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2652     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2653                                                      // operands]
2654       unsigned OpNum = 0;
2655       Type *PointeeType = nullptr;
2656       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2657           Record.size() % 2)
2658         PointeeType = getTypeByID(Record[OpNum++]);
2659 
2660       bool InBounds = false;
2661       Optional<unsigned> InRangeIndex;
2662       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2663         uint64_t Op = Record[OpNum++];
2664         InBounds = Op & 1;
2665         InRangeIndex = Op >> 1;
2666       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2667         InBounds = true;
2668 
2669       SmallVector<Constant*, 16> Elts;
2670       Type *Elt0FullTy = nullptr;
2671       while (OpNum != Record.size()) {
2672         if (!Elt0FullTy)
2673           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2674         Type *ElTy = getTypeByID(Record[OpNum++]);
2675         if (!ElTy)
2676           return error("Invalid record");
2677         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2678       }
2679 
2680       if (Elts.size() < 1)
2681         return error("Invalid gep with no operands");
2682 
2683       Type *ImplicitPointeeType =
2684           getPointerElementFlatType(Elt0FullTy->getScalarType());
2685       if (!PointeeType)
2686         PointeeType = ImplicitPointeeType;
2687       else if (PointeeType != ImplicitPointeeType)
2688         return error("Explicit gep operator type does not match pointee type "
2689                      "of pointer operand");
2690 
2691       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2692       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2693                                          InBounds, InRangeIndex);
2694       break;
2695     }
2696     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2697       if (Record.size() < 3)
2698         return error("Invalid record");
2699 
2700       Type *SelectorTy = Type::getInt1Ty(Context);
2701 
2702       // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2703       // Get the type from the ValueList before getting a forward ref.
2704       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2705         if (Value *V = ValueList[Record[0]])
2706           if (SelectorTy != V->getType())
2707             SelectorTy = VectorType::get(SelectorTy,
2708                                          VTy->getElementCount());
2709 
2710       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2711                                                               SelectorTy),
2712                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2713                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2714       break;
2715     }
2716     case bitc::CST_CODE_CE_EXTRACTELT
2717         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2718       if (Record.size() < 3)
2719         return error("Invalid record");
2720       VectorType *OpTy =
2721         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2722       if (!OpTy)
2723         return error("Invalid record");
2724       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2725       Constant *Op1 = nullptr;
2726       if (Record.size() == 4) {
2727         Type *IdxTy = getTypeByID(Record[2]);
2728         if (!IdxTy)
2729           return error("Invalid record");
2730         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2731       } else {
2732         // Deprecated, but still needed to read old bitcode files.
2733         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2734       }
2735       if (!Op1)
2736         return error("Invalid record");
2737       V = ConstantExpr::getExtractElement(Op0, Op1);
2738       break;
2739     }
2740     case bitc::CST_CODE_CE_INSERTELT
2741         : { // CE_INSERTELT: [opval, opval, opty, opval]
2742       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2743       if (Record.size() < 3 || !OpTy)
2744         return error("Invalid record");
2745       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2746       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2747                                                   OpTy->getElementType());
2748       Constant *Op2 = nullptr;
2749       if (Record.size() == 4) {
2750         Type *IdxTy = getTypeByID(Record[2]);
2751         if (!IdxTy)
2752           return error("Invalid record");
2753         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2754       } else {
2755         // Deprecated, but still needed to read old bitcode files.
2756         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2757       }
2758       if (!Op2)
2759         return error("Invalid record");
2760       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2761       break;
2762     }
2763     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2764       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2765       if (Record.size() < 3 || !OpTy)
2766         return error("Invalid record");
2767       DelayedShuffles.push_back(
2768           {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo});
2769       ++NextCstNo;
2770       continue;
2771     }
2772     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2773       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2774       VectorType *OpTy =
2775         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2776       if (Record.size() < 4 || !RTy || !OpTy)
2777         return error("Invalid record");
2778       DelayedShuffles.push_back(
2779           {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo});
2780       ++NextCstNo;
2781       continue;
2782     }
2783     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2784       if (Record.size() < 4)
2785         return error("Invalid record");
2786       Type *OpTy = getTypeByID(Record[0]);
2787       if (!OpTy)
2788         return error("Invalid record");
2789       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2790       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2791 
2792       if (OpTy->isFPOrFPVectorTy())
2793         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2794       else
2795         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2796       break;
2797     }
2798     // This maintains backward compatibility, pre-asm dialect keywords.
2799     // Deprecated, but still needed to read old bitcode files.
2800     case bitc::CST_CODE_INLINEASM_OLD: {
2801       if (Record.size() < 2)
2802         return error("Invalid record");
2803       std::string AsmStr, ConstrStr;
2804       bool HasSideEffects = Record[0] & 1;
2805       bool IsAlignStack = Record[0] >> 1;
2806       unsigned AsmStrSize = Record[1];
2807       if (2+AsmStrSize >= Record.size())
2808         return error("Invalid record");
2809       unsigned ConstStrSize = Record[2+AsmStrSize];
2810       if (3+AsmStrSize+ConstStrSize > Record.size())
2811         return error("Invalid record");
2812 
2813       for (unsigned i = 0; i != AsmStrSize; ++i)
2814         AsmStr += (char)Record[2+i];
2815       for (unsigned i = 0; i != ConstStrSize; ++i)
2816         ConstrStr += (char)Record[3+AsmStrSize+i];
2817       UpgradeInlineAsmString(&AsmStr);
2818       V = InlineAsm::get(
2819           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2820           ConstrStr, HasSideEffects, IsAlignStack);
2821       break;
2822     }
2823     // This version adds support for the asm dialect keywords (e.g.,
2824     // inteldialect).
2825     case bitc::CST_CODE_INLINEASM: {
2826       if (Record.size() < 2)
2827         return error("Invalid record");
2828       std::string AsmStr, ConstrStr;
2829       bool HasSideEffects = Record[0] & 1;
2830       bool IsAlignStack = (Record[0] >> 1) & 1;
2831       unsigned AsmDialect = Record[0] >> 2;
2832       unsigned AsmStrSize = Record[1];
2833       if (2+AsmStrSize >= Record.size())
2834         return error("Invalid record");
2835       unsigned ConstStrSize = Record[2+AsmStrSize];
2836       if (3+AsmStrSize+ConstStrSize > Record.size())
2837         return error("Invalid record");
2838 
2839       for (unsigned i = 0; i != AsmStrSize; ++i)
2840         AsmStr += (char)Record[2+i];
2841       for (unsigned i = 0; i != ConstStrSize; ++i)
2842         ConstrStr += (char)Record[3+AsmStrSize+i];
2843       UpgradeInlineAsmString(&AsmStr);
2844       V = InlineAsm::get(
2845           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2846           ConstrStr, HasSideEffects, IsAlignStack,
2847           InlineAsm::AsmDialect(AsmDialect));
2848       break;
2849     }
2850     case bitc::CST_CODE_BLOCKADDRESS:{
2851       if (Record.size() < 3)
2852         return error("Invalid record");
2853       Type *FnTy = getTypeByID(Record[0]);
2854       if (!FnTy)
2855         return error("Invalid record");
2856       Function *Fn =
2857         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2858       if (!Fn)
2859         return error("Invalid record");
2860 
2861       // If the function is already parsed we can insert the block address right
2862       // away.
2863       BasicBlock *BB;
2864       unsigned BBID = Record[2];
2865       if (!BBID)
2866         // Invalid reference to entry block.
2867         return error("Invalid ID");
2868       if (!Fn->empty()) {
2869         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2870         for (size_t I = 0, E = BBID; I != E; ++I) {
2871           if (BBI == BBE)
2872             return error("Invalid ID");
2873           ++BBI;
2874         }
2875         BB = &*BBI;
2876       } else {
2877         // Otherwise insert a placeholder and remember it so it can be inserted
2878         // when the function is parsed.
2879         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2880         if (FwdBBs.empty())
2881           BasicBlockFwdRefQueue.push_back(Fn);
2882         if (FwdBBs.size() < BBID + 1)
2883           FwdBBs.resize(BBID + 1);
2884         if (!FwdBBs[BBID])
2885           FwdBBs[BBID] = BasicBlock::Create(Context);
2886         BB = FwdBBs[BBID];
2887       }
2888       V = BlockAddress::get(Fn, BB);
2889       break;
2890     }
2891     case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: {
2892       if (Record.size() < 2)
2893         return error("Invalid record");
2894       Type *GVTy = getTypeByID(Record[0]);
2895       if (!GVTy)
2896         return error("Invalid record");
2897       GlobalValue *GV = dyn_cast_or_null<GlobalValue>(
2898           ValueList.getConstantFwdRef(Record[1], GVTy));
2899       if (!GV)
2900         return error("Invalid record");
2901 
2902       V = DSOLocalEquivalent::get(GV);
2903       break;
2904     }
2905     }
2906 
2907     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2908            "Incorrect fully structured type provided for Constant");
2909     ValueList.assignValue(V, NextCstNo, CurFullTy);
2910     ++NextCstNo;
2911   }
2912 }
2913 
2914 Error BitcodeReader::parseUseLists() {
2915   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2916     return Err;
2917 
2918   // Read all the records.
2919   SmallVector<uint64_t, 64> Record;
2920 
2921   while (true) {
2922     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2923     if (!MaybeEntry)
2924       return MaybeEntry.takeError();
2925     BitstreamEntry Entry = MaybeEntry.get();
2926 
2927     switch (Entry.Kind) {
2928     case BitstreamEntry::SubBlock: // Handled for us already.
2929     case BitstreamEntry::Error:
2930       return error("Malformed block");
2931     case BitstreamEntry::EndBlock:
2932       return Error::success();
2933     case BitstreamEntry::Record:
2934       // The interesting case.
2935       break;
2936     }
2937 
2938     // Read a use list record.
2939     Record.clear();
2940     bool IsBB = false;
2941     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2942     if (!MaybeRecord)
2943       return MaybeRecord.takeError();
2944     switch (MaybeRecord.get()) {
2945     default:  // Default behavior: unknown type.
2946       break;
2947     case bitc::USELIST_CODE_BB:
2948       IsBB = true;
2949       LLVM_FALLTHROUGH;
2950     case bitc::USELIST_CODE_DEFAULT: {
2951       unsigned RecordLength = Record.size();
2952       if (RecordLength < 3)
2953         // Records should have at least an ID and two indexes.
2954         return error("Invalid record");
2955       unsigned ID = Record.pop_back_val();
2956 
2957       Value *V;
2958       if (IsBB) {
2959         assert(ID < FunctionBBs.size() && "Basic block not found");
2960         V = FunctionBBs[ID];
2961       } else
2962         V = ValueList[ID];
2963       unsigned NumUses = 0;
2964       SmallDenseMap<const Use *, unsigned, 16> Order;
2965       for (const Use &U : V->materialized_uses()) {
2966         if (++NumUses > Record.size())
2967           break;
2968         Order[&U] = Record[NumUses - 1];
2969       }
2970       if (Order.size() != Record.size() || NumUses > Record.size())
2971         // Mismatches can happen if the functions are being materialized lazily
2972         // (out-of-order), or a value has been upgraded.
2973         break;
2974 
2975       V->sortUseList([&](const Use &L, const Use &R) {
2976         return Order.lookup(&L) < Order.lookup(&R);
2977       });
2978       break;
2979     }
2980     }
2981   }
2982 }
2983 
2984 /// When we see the block for metadata, remember where it is and then skip it.
2985 /// This lets us lazily deserialize the metadata.
2986 Error BitcodeReader::rememberAndSkipMetadata() {
2987   // Save the current stream state.
2988   uint64_t CurBit = Stream.GetCurrentBitNo();
2989   DeferredMetadataInfo.push_back(CurBit);
2990 
2991   // Skip over the block for now.
2992   if (Error Err = Stream.SkipBlock())
2993     return Err;
2994   return Error::success();
2995 }
2996 
2997 Error BitcodeReader::materializeMetadata() {
2998   for (uint64_t BitPos : DeferredMetadataInfo) {
2999     // Move the bit stream to the saved position.
3000     if (Error JumpFailed = Stream.JumpToBit(BitPos))
3001       return JumpFailed;
3002     if (Error Err = MDLoader->parseModuleMetadata())
3003       return Err;
3004   }
3005 
3006   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
3007   // metadata. Only upgrade if the new option doesn't exist to avoid upgrade
3008   // multiple times.
3009   if (!TheModule->getNamedMetadata("llvm.linker.options")) {
3010     if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
3011       NamedMDNode *LinkerOpts =
3012           TheModule->getOrInsertNamedMetadata("llvm.linker.options");
3013       for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
3014         LinkerOpts->addOperand(cast<MDNode>(MDOptions));
3015     }
3016   }
3017 
3018   DeferredMetadataInfo.clear();
3019   return Error::success();
3020 }
3021 
3022 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
3023 
3024 /// When we see the block for a function body, remember where it is and then
3025 /// skip it.  This lets us lazily deserialize the functions.
3026 Error BitcodeReader::rememberAndSkipFunctionBody() {
3027   // Get the function we are talking about.
3028   if (FunctionsWithBodies.empty())
3029     return error("Insufficient function protos");
3030 
3031   Function *Fn = FunctionsWithBodies.back();
3032   FunctionsWithBodies.pop_back();
3033 
3034   // Save the current stream state.
3035   uint64_t CurBit = Stream.GetCurrentBitNo();
3036   assert(
3037       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
3038       "Mismatch between VST and scanned function offsets");
3039   DeferredFunctionInfo[Fn] = CurBit;
3040 
3041   // Skip over the function block for now.
3042   if (Error Err = Stream.SkipBlock())
3043     return Err;
3044   return Error::success();
3045 }
3046 
3047 Error BitcodeReader::globalCleanup() {
3048   // Patch the initializers for globals and aliases up.
3049   if (Error Err = resolveGlobalAndIndirectSymbolInits())
3050     return Err;
3051   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
3052     return error("Malformed global initializer set");
3053 
3054   // Look for intrinsic functions which need to be upgraded at some point
3055   // and functions that need to have their function attributes upgraded.
3056   for (Function &F : *TheModule) {
3057     MDLoader->upgradeDebugIntrinsics(F);
3058     Function *NewFn;
3059     if (UpgradeIntrinsicFunction(&F, NewFn))
3060       UpgradedIntrinsics[&F] = NewFn;
3061     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
3062       // Some types could be renamed during loading if several modules are
3063       // loaded in the same LLVMContext (LTO scenario). In this case we should
3064       // remangle intrinsics names as well.
3065       RemangledIntrinsics[&F] = Remangled.getValue();
3066     // Look for functions that rely on old function attribute behavior.
3067     UpgradeFunctionAttributes(F);
3068   }
3069 
3070   // Look for global variables which need to be renamed.
3071   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
3072   for (GlobalVariable &GV : TheModule->globals())
3073     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3074       UpgradedVariables.emplace_back(&GV, Upgraded);
3075   for (auto &Pair : UpgradedVariables) {
3076     Pair.first->eraseFromParent();
3077     TheModule->getGlobalList().push_back(Pair.second);
3078   }
3079 
3080   // Force deallocation of memory for these vectors to favor the client that
3081   // want lazy deserialization.
3082   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3083   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3084       IndirectSymbolInits);
3085   return Error::success();
3086 }
3087 
3088 /// Support for lazy parsing of function bodies. This is required if we
3089 /// either have an old bitcode file without a VST forward declaration record,
3090 /// or if we have an anonymous function being materialized, since anonymous
3091 /// functions do not have a name and are therefore not in the VST.
3092 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3093   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3094     return JumpFailed;
3095 
3096   if (Stream.AtEndOfStream())
3097     return error("Could not find function in stream");
3098 
3099   if (!SeenFirstFunctionBody)
3100     return error("Trying to materialize functions before seeing function blocks");
3101 
3102   // An old bitcode file with the symbol table at the end would have
3103   // finished the parse greedily.
3104   assert(SeenValueSymbolTable);
3105 
3106   SmallVector<uint64_t, 64> Record;
3107 
3108   while (true) {
3109     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3110     if (!MaybeEntry)
3111       return MaybeEntry.takeError();
3112     llvm::BitstreamEntry Entry = MaybeEntry.get();
3113 
3114     switch (Entry.Kind) {
3115     default:
3116       return error("Expect SubBlock");
3117     case BitstreamEntry::SubBlock:
3118       switch (Entry.ID) {
3119       default:
3120         return error("Expect function block");
3121       case bitc::FUNCTION_BLOCK_ID:
3122         if (Error Err = rememberAndSkipFunctionBody())
3123           return Err;
3124         NextUnreadBit = Stream.GetCurrentBitNo();
3125         return Error::success();
3126       }
3127     }
3128   }
3129 }
3130 
3131 bool BitcodeReaderBase::readBlockInfo() {
3132   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3133       Stream.ReadBlockInfoBlock();
3134   if (!MaybeNewBlockInfo)
3135     return true; // FIXME Handle the error.
3136   Optional<BitstreamBlockInfo> NewBlockInfo =
3137       std::move(MaybeNewBlockInfo.get());
3138   if (!NewBlockInfo)
3139     return true;
3140   BlockInfo = std::move(*NewBlockInfo);
3141   return false;
3142 }
3143 
3144 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3145   // v1: [selection_kind, name]
3146   // v2: [strtab_offset, strtab_size, selection_kind]
3147   StringRef Name;
3148   std::tie(Name, Record) = readNameFromStrtab(Record);
3149 
3150   if (Record.empty())
3151     return error("Invalid record");
3152   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3153   std::string OldFormatName;
3154   if (!UseStrtab) {
3155     if (Record.size() < 2)
3156       return error("Invalid record");
3157     unsigned ComdatNameSize = Record[1];
3158     OldFormatName.reserve(ComdatNameSize);
3159     for (unsigned i = 0; i != ComdatNameSize; ++i)
3160       OldFormatName += (char)Record[2 + i];
3161     Name = OldFormatName;
3162   }
3163   Comdat *C = TheModule->getOrInsertComdat(Name);
3164   C->setSelectionKind(SK);
3165   ComdatList.push_back(C);
3166   return Error::success();
3167 }
3168 
3169 static void inferDSOLocal(GlobalValue *GV) {
3170   // infer dso_local from linkage and visibility if it is not encoded.
3171   if (GV->hasLocalLinkage() ||
3172       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3173     GV->setDSOLocal(true);
3174 }
3175 
3176 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3177   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3178   // visibility, threadlocal, unnamed_addr, externally_initialized,
3179   // dllstorageclass, comdat, attributes, preemption specifier,
3180   // partition strtab offset, partition strtab size] (name in VST)
3181   // v2: [strtab_offset, strtab_size, v1]
3182   StringRef Name;
3183   std::tie(Name, Record) = readNameFromStrtab(Record);
3184 
3185   if (Record.size() < 6)
3186     return error("Invalid record");
3187   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3188   Type *Ty = flattenPointerTypes(FullTy);
3189   if (!Ty)
3190     return error("Invalid record");
3191   bool isConstant = Record[1] & 1;
3192   bool explicitType = Record[1] & 2;
3193   unsigned AddressSpace;
3194   if (explicitType) {
3195     AddressSpace = Record[1] >> 2;
3196   } else {
3197     if (!Ty->isPointerTy())
3198       return error("Invalid type for value");
3199     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3200     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3201   }
3202 
3203   uint64_t RawLinkage = Record[3];
3204   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3205   MaybeAlign Alignment;
3206   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3207     return Err;
3208   std::string Section;
3209   if (Record[5]) {
3210     if (Record[5] - 1 >= SectionTable.size())
3211       return error("Invalid ID");
3212     Section = SectionTable[Record[5] - 1];
3213   }
3214   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3215   // Local linkage must have default visibility.
3216   // auto-upgrade `hidden` and `protected` for old bitcode.
3217   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3218     Visibility = getDecodedVisibility(Record[6]);
3219 
3220   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3221   if (Record.size() > 7)
3222     TLM = getDecodedThreadLocalMode(Record[7]);
3223 
3224   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3225   if (Record.size() > 8)
3226     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3227 
3228   bool ExternallyInitialized = false;
3229   if (Record.size() > 9)
3230     ExternallyInitialized = Record[9];
3231 
3232   GlobalVariable *NewGV =
3233       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3234                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3235   NewGV->setAlignment(Alignment);
3236   if (!Section.empty())
3237     NewGV->setSection(Section);
3238   NewGV->setVisibility(Visibility);
3239   NewGV->setUnnamedAddr(UnnamedAddr);
3240 
3241   if (Record.size() > 10)
3242     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3243   else
3244     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3245 
3246   FullTy = PointerType::get(FullTy, AddressSpace);
3247   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3248          "Incorrect fully specified type for GlobalVariable");
3249   ValueList.push_back(NewGV, FullTy);
3250 
3251   // Remember which value to use for the global initializer.
3252   if (unsigned InitID = Record[2])
3253     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3254 
3255   if (Record.size() > 11) {
3256     if (unsigned ComdatID = Record[11]) {
3257       if (ComdatID > ComdatList.size())
3258         return error("Invalid global variable comdat ID");
3259       NewGV->setComdat(ComdatList[ComdatID - 1]);
3260     }
3261   } else if (hasImplicitComdat(RawLinkage)) {
3262     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3263   }
3264 
3265   if (Record.size() > 12) {
3266     auto AS = getAttributes(Record[12]).getFnAttributes();
3267     NewGV->setAttributes(AS);
3268   }
3269 
3270   if (Record.size() > 13) {
3271     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3272   }
3273   inferDSOLocal(NewGV);
3274 
3275   // Check whether we have enough values to read a partition name.
3276   if (Record.size() > 15)
3277     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3278 
3279   return Error::success();
3280 }
3281 
3282 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3283   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3284   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3285   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3286   // v2: [strtab_offset, strtab_size, v1]
3287   StringRef Name;
3288   std::tie(Name, Record) = readNameFromStrtab(Record);
3289 
3290   if (Record.size() < 8)
3291     return error("Invalid record");
3292   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3293   Type *FTy = flattenPointerTypes(FullFTy);
3294   if (!FTy)
3295     return error("Invalid record");
3296   if (isa<PointerType>(FTy))
3297     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3298 
3299   if (!isa<FunctionType>(FTy))
3300     return error("Invalid type for value");
3301   auto CC = static_cast<CallingConv::ID>(Record[1]);
3302   if (CC & ~CallingConv::MaxID)
3303     return error("Invalid calling convention ID");
3304 
3305   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3306   if (Record.size() > 16)
3307     AddrSpace = Record[16];
3308 
3309   Function *Func =
3310       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3311                        AddrSpace, Name, TheModule);
3312 
3313   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3314          "Incorrect fully specified type provided for function");
3315   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3316 
3317   Func->setCallingConv(CC);
3318   bool isProto = Record[2];
3319   uint64_t RawLinkage = Record[3];
3320   Func->setLinkage(getDecodedLinkage(RawLinkage));
3321   Func->setAttributes(getAttributes(Record[4]));
3322 
3323   // Upgrade any old-style byval or sret without a type by propagating the
3324   // argument's pointee type. There should be no opaque pointers where the byval
3325   // type is implicit.
3326   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3327     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) {
3328       if (!Func->hasParamAttribute(i, Kind))
3329         continue;
3330 
3331       Func->removeParamAttr(i, Kind);
3332 
3333       Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3334       Type *PtrEltTy = getPointerElementFlatType(PTy);
3335       Attribute NewAttr =
3336           Kind == Attribute::ByVal
3337               ? Attribute::getWithByValType(Context, PtrEltTy)
3338               : Attribute::getWithStructRetType(Context, PtrEltTy);
3339       Func->addParamAttr(i, NewAttr);
3340     }
3341   }
3342 
3343   MaybeAlign Alignment;
3344   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3345     return Err;
3346   Func->setAlignment(Alignment);
3347   if (Record[6]) {
3348     if (Record[6] - 1 >= SectionTable.size())
3349       return error("Invalid ID");
3350     Func->setSection(SectionTable[Record[6] - 1]);
3351   }
3352   // Local linkage must have default visibility.
3353   // auto-upgrade `hidden` and `protected` for old bitcode.
3354   if (!Func->hasLocalLinkage())
3355     Func->setVisibility(getDecodedVisibility(Record[7]));
3356   if (Record.size() > 8 && Record[8]) {
3357     if (Record[8] - 1 >= GCTable.size())
3358       return error("Invalid ID");
3359     Func->setGC(GCTable[Record[8] - 1]);
3360   }
3361   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3362   if (Record.size() > 9)
3363     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3364   Func->setUnnamedAddr(UnnamedAddr);
3365   if (Record.size() > 10 && Record[10] != 0)
3366     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3367 
3368   if (Record.size() > 11)
3369     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3370   else
3371     upgradeDLLImportExportLinkage(Func, RawLinkage);
3372 
3373   if (Record.size() > 12) {
3374     if (unsigned ComdatID = Record[12]) {
3375       if (ComdatID > ComdatList.size())
3376         return error("Invalid function comdat ID");
3377       Func->setComdat(ComdatList[ComdatID - 1]);
3378     }
3379   } else if (hasImplicitComdat(RawLinkage)) {
3380     Func->setComdat(reinterpret_cast<Comdat *>(1));
3381   }
3382 
3383   if (Record.size() > 13 && Record[13] != 0)
3384     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3385 
3386   if (Record.size() > 14 && Record[14] != 0)
3387     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3388 
3389   if (Record.size() > 15) {
3390     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3391   }
3392   inferDSOLocal(Func);
3393 
3394   // Record[16] is the address space number.
3395 
3396   // Check whether we have enough values to read a partition name.
3397   if (Record.size() > 18)
3398     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3399 
3400   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3401   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3402          "Incorrect fully specified type provided for Function");
3403   ValueList.push_back(Func, FullTy);
3404 
3405   // If this is a function with a body, remember the prototype we are
3406   // creating now, so that we can match up the body with them later.
3407   if (!isProto) {
3408     Func->setIsMaterializable(true);
3409     FunctionsWithBodies.push_back(Func);
3410     DeferredFunctionInfo[Func] = 0;
3411   }
3412   return Error::success();
3413 }
3414 
3415 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3416     unsigned BitCode, ArrayRef<uint64_t> Record) {
3417   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3418   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3419   // dllstorageclass, threadlocal, unnamed_addr,
3420   // preemption specifier] (name in VST)
3421   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3422   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3423   // preemption specifier] (name in VST)
3424   // v2: [strtab_offset, strtab_size, v1]
3425   StringRef Name;
3426   std::tie(Name, Record) = readNameFromStrtab(Record);
3427 
3428   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3429   if (Record.size() < (3 + (unsigned)NewRecord))
3430     return error("Invalid record");
3431   unsigned OpNum = 0;
3432   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3433   Type *Ty = flattenPointerTypes(FullTy);
3434   if (!Ty)
3435     return error("Invalid record");
3436 
3437   unsigned AddrSpace;
3438   if (!NewRecord) {
3439     auto *PTy = dyn_cast<PointerType>(Ty);
3440     if (!PTy)
3441       return error("Invalid type for value");
3442     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3443     AddrSpace = PTy->getAddressSpace();
3444   } else {
3445     AddrSpace = Record[OpNum++];
3446   }
3447 
3448   auto Val = Record[OpNum++];
3449   auto Linkage = Record[OpNum++];
3450   GlobalIndirectSymbol *NewGA;
3451   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3452       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3453     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3454                                 TheModule);
3455   else
3456     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3457                                 nullptr, TheModule);
3458 
3459   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3460          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3461   // Local linkage must have default visibility.
3462   // auto-upgrade `hidden` and `protected` for old bitcode.
3463   if (OpNum != Record.size()) {
3464     auto VisInd = OpNum++;
3465     if (!NewGA->hasLocalLinkage())
3466       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3467   }
3468   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3469       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3470     if (OpNum != Record.size())
3471       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3472     else
3473       upgradeDLLImportExportLinkage(NewGA, Linkage);
3474     if (OpNum != Record.size())
3475       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3476     if (OpNum != Record.size())
3477       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3478   }
3479   if (OpNum != Record.size())
3480     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3481   inferDSOLocal(NewGA);
3482 
3483   // Check whether we have enough values to read a partition name.
3484   if (OpNum + 1 < Record.size()) {
3485     NewGA->setPartition(
3486         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3487     OpNum += 2;
3488   }
3489 
3490   FullTy = PointerType::get(FullTy, AddrSpace);
3491   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3492          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3493   ValueList.push_back(NewGA, FullTy);
3494   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3495   return Error::success();
3496 }
3497 
3498 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3499                                  bool ShouldLazyLoadMetadata,
3500                                  DataLayoutCallbackTy DataLayoutCallback) {
3501   if (ResumeBit) {
3502     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3503       return JumpFailed;
3504   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3505     return Err;
3506 
3507   SmallVector<uint64_t, 64> Record;
3508 
3509   // Parts of bitcode parsing depend on the datalayout.  Make sure we
3510   // finalize the datalayout before we run any of that code.
3511   bool ResolvedDataLayout = false;
3512   auto ResolveDataLayout = [&] {
3513     if (ResolvedDataLayout)
3514       return;
3515 
3516     // datalayout and triple can't be parsed after this point.
3517     ResolvedDataLayout = true;
3518 
3519     // Upgrade data layout string.
3520     std::string DL = llvm::UpgradeDataLayoutString(
3521         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3522     TheModule->setDataLayout(DL);
3523 
3524     if (auto LayoutOverride =
3525             DataLayoutCallback(TheModule->getTargetTriple()))
3526       TheModule->setDataLayout(*LayoutOverride);
3527   };
3528 
3529   // Read all the records for this module.
3530   while (true) {
3531     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3532     if (!MaybeEntry)
3533       return MaybeEntry.takeError();
3534     llvm::BitstreamEntry Entry = MaybeEntry.get();
3535 
3536     switch (Entry.Kind) {
3537     case BitstreamEntry::Error:
3538       return error("Malformed block");
3539     case BitstreamEntry::EndBlock:
3540       ResolveDataLayout();
3541       return globalCleanup();
3542 
3543     case BitstreamEntry::SubBlock:
3544       switch (Entry.ID) {
3545       default:  // Skip unknown content.
3546         if (Error Err = Stream.SkipBlock())
3547           return Err;
3548         break;
3549       case bitc::BLOCKINFO_BLOCK_ID:
3550         if (readBlockInfo())
3551           return error("Malformed block");
3552         break;
3553       case bitc::PARAMATTR_BLOCK_ID:
3554         if (Error Err = parseAttributeBlock())
3555           return Err;
3556         break;
3557       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3558         if (Error Err = parseAttributeGroupBlock())
3559           return Err;
3560         break;
3561       case bitc::TYPE_BLOCK_ID_NEW:
3562         if (Error Err = parseTypeTable())
3563           return Err;
3564         break;
3565       case bitc::VALUE_SYMTAB_BLOCK_ID:
3566         if (!SeenValueSymbolTable) {
3567           // Either this is an old form VST without function index and an
3568           // associated VST forward declaration record (which would have caused
3569           // the VST to be jumped to and parsed before it was encountered
3570           // normally in the stream), or there were no function blocks to
3571           // trigger an earlier parsing of the VST.
3572           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3573           if (Error Err = parseValueSymbolTable())
3574             return Err;
3575           SeenValueSymbolTable = true;
3576         } else {
3577           // We must have had a VST forward declaration record, which caused
3578           // the parser to jump to and parse the VST earlier.
3579           assert(VSTOffset > 0);
3580           if (Error Err = Stream.SkipBlock())
3581             return Err;
3582         }
3583         break;
3584       case bitc::CONSTANTS_BLOCK_ID:
3585         if (Error Err = parseConstants())
3586           return Err;
3587         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3588           return Err;
3589         break;
3590       case bitc::METADATA_BLOCK_ID:
3591         if (ShouldLazyLoadMetadata) {
3592           if (Error Err = rememberAndSkipMetadata())
3593             return Err;
3594           break;
3595         }
3596         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3597         if (Error Err = MDLoader->parseModuleMetadata())
3598           return Err;
3599         break;
3600       case bitc::METADATA_KIND_BLOCK_ID:
3601         if (Error Err = MDLoader->parseMetadataKinds())
3602           return Err;
3603         break;
3604       case bitc::FUNCTION_BLOCK_ID:
3605         ResolveDataLayout();
3606 
3607         // If this is the first function body we've seen, reverse the
3608         // FunctionsWithBodies list.
3609         if (!SeenFirstFunctionBody) {
3610           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3611           if (Error Err = globalCleanup())
3612             return Err;
3613           SeenFirstFunctionBody = true;
3614         }
3615 
3616         if (VSTOffset > 0) {
3617           // If we have a VST forward declaration record, make sure we
3618           // parse the VST now if we haven't already. It is needed to
3619           // set up the DeferredFunctionInfo vector for lazy reading.
3620           if (!SeenValueSymbolTable) {
3621             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3622               return Err;
3623             SeenValueSymbolTable = true;
3624             // Fall through so that we record the NextUnreadBit below.
3625             // This is necessary in case we have an anonymous function that
3626             // is later materialized. Since it will not have a VST entry we
3627             // need to fall back to the lazy parse to find its offset.
3628           } else {
3629             // If we have a VST forward declaration record, but have already
3630             // parsed the VST (just above, when the first function body was
3631             // encountered here), then we are resuming the parse after
3632             // materializing functions. The ResumeBit points to the
3633             // start of the last function block recorded in the
3634             // DeferredFunctionInfo map. Skip it.
3635             if (Error Err = Stream.SkipBlock())
3636               return Err;
3637             continue;
3638           }
3639         }
3640 
3641         // Support older bitcode files that did not have the function
3642         // index in the VST, nor a VST forward declaration record, as
3643         // well as anonymous functions that do not have VST entries.
3644         // Build the DeferredFunctionInfo vector on the fly.
3645         if (Error Err = rememberAndSkipFunctionBody())
3646           return Err;
3647 
3648         // Suspend parsing when we reach the function bodies. Subsequent
3649         // materialization calls will resume it when necessary. If the bitcode
3650         // file is old, the symbol table will be at the end instead and will not
3651         // have been seen yet. In this case, just finish the parse now.
3652         if (SeenValueSymbolTable) {
3653           NextUnreadBit = Stream.GetCurrentBitNo();
3654           // After the VST has been parsed, we need to make sure intrinsic name
3655           // are auto-upgraded.
3656           return globalCleanup();
3657         }
3658         break;
3659       case bitc::USELIST_BLOCK_ID:
3660         if (Error Err = parseUseLists())
3661           return Err;
3662         break;
3663       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3664         if (Error Err = parseOperandBundleTags())
3665           return Err;
3666         break;
3667       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3668         if (Error Err = parseSyncScopeNames())
3669           return Err;
3670         break;
3671       }
3672       continue;
3673 
3674     case BitstreamEntry::Record:
3675       // The interesting case.
3676       break;
3677     }
3678 
3679     // Read a record.
3680     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3681     if (!MaybeBitCode)
3682       return MaybeBitCode.takeError();
3683     switch (unsigned BitCode = MaybeBitCode.get()) {
3684     default: break;  // Default behavior, ignore unknown content.
3685     case bitc::MODULE_CODE_VERSION: {
3686       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3687       if (!VersionOrErr)
3688         return VersionOrErr.takeError();
3689       UseRelativeIDs = *VersionOrErr >= 1;
3690       break;
3691     }
3692     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3693       if (ResolvedDataLayout)
3694         return error("target triple too late in module");
3695       std::string S;
3696       if (convertToString(Record, 0, S))
3697         return error("Invalid record");
3698       TheModule->setTargetTriple(S);
3699       break;
3700     }
3701     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3702       if (ResolvedDataLayout)
3703         return error("datalayout too late in module");
3704       std::string S;
3705       if (convertToString(Record, 0, S))
3706         return error("Invalid record");
3707       TheModule->setDataLayout(S);
3708       break;
3709     }
3710     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3711       std::string S;
3712       if (convertToString(Record, 0, S))
3713         return error("Invalid record");
3714       TheModule->setModuleInlineAsm(S);
3715       break;
3716     }
3717     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3718       // Deprecated, but still needed to read old bitcode files.
3719       std::string S;
3720       if (convertToString(Record, 0, S))
3721         return error("Invalid record");
3722       // Ignore value.
3723       break;
3724     }
3725     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3726       std::string S;
3727       if (convertToString(Record, 0, S))
3728         return error("Invalid record");
3729       SectionTable.push_back(S);
3730       break;
3731     }
3732     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3733       std::string S;
3734       if (convertToString(Record, 0, S))
3735         return error("Invalid record");
3736       GCTable.push_back(S);
3737       break;
3738     }
3739     case bitc::MODULE_CODE_COMDAT:
3740       if (Error Err = parseComdatRecord(Record))
3741         return Err;
3742       break;
3743     case bitc::MODULE_CODE_GLOBALVAR:
3744       if (Error Err = parseGlobalVarRecord(Record))
3745         return Err;
3746       break;
3747     case bitc::MODULE_CODE_FUNCTION:
3748       ResolveDataLayout();
3749       if (Error Err = parseFunctionRecord(Record))
3750         return Err;
3751       break;
3752     case bitc::MODULE_CODE_IFUNC:
3753     case bitc::MODULE_CODE_ALIAS:
3754     case bitc::MODULE_CODE_ALIAS_OLD:
3755       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3756         return Err;
3757       break;
3758     /// MODULE_CODE_VSTOFFSET: [offset]
3759     case bitc::MODULE_CODE_VSTOFFSET:
3760       if (Record.empty())
3761         return error("Invalid record");
3762       // Note that we subtract 1 here because the offset is relative to one word
3763       // before the start of the identification or module block, which was
3764       // historically always the start of the regular bitcode header.
3765       VSTOffset = Record[0] - 1;
3766       break;
3767     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3768     case bitc::MODULE_CODE_SOURCE_FILENAME:
3769       SmallString<128> ValueName;
3770       if (convertToString(Record, 0, ValueName))
3771         return error("Invalid record");
3772       TheModule->setSourceFileName(ValueName);
3773       break;
3774     }
3775     Record.clear();
3776   }
3777 }
3778 
3779 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3780                                       bool IsImporting,
3781                                       DataLayoutCallbackTy DataLayoutCallback) {
3782   TheModule = M;
3783   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3784                             [&](unsigned ID) { return getTypeByID(ID); });
3785   return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback);
3786 }
3787 
3788 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3789   if (!isa<PointerType>(PtrType))
3790     return error("Load/Store operand is not a pointer type");
3791   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3792 
3793   if (ValType && ValType != ElemType)
3794     return error("Explicit load/store type does not match pointee "
3795                  "type of pointer operand");
3796   if (!PointerType::isLoadableOrStorableType(ElemType))
3797     return error("Cannot load/store from pointer");
3798   return Error::success();
3799 }
3800 
3801 void BitcodeReader::propagateByValSRetTypes(CallBase *CB,
3802                                             ArrayRef<Type *> ArgsFullTys) {
3803   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3804     for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet}) {
3805       if (!CB->paramHasAttr(i, Kind))
3806         continue;
3807 
3808       CB->removeParamAttr(i, Kind);
3809 
3810       Type *PtrEltTy = getPointerElementFlatType(ArgsFullTys[i]);
3811       Attribute NewAttr =
3812           Kind == Attribute::ByVal
3813               ? Attribute::getWithByValType(Context, PtrEltTy)
3814               : Attribute::getWithStructRetType(Context, PtrEltTy);
3815       CB->addParamAttr(i, NewAttr);
3816     }
3817   }
3818 }
3819 
3820 /// Lazily parse the specified function body block.
3821 Error BitcodeReader::parseFunctionBody(Function *F) {
3822   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3823     return Err;
3824 
3825   // Unexpected unresolved metadata when parsing function.
3826   if (MDLoader->hasFwdRefs())
3827     return error("Invalid function metadata: incoming forward references");
3828 
3829   InstructionList.clear();
3830   unsigned ModuleValueListSize = ValueList.size();
3831   unsigned ModuleMDLoaderSize = MDLoader->size();
3832 
3833   // Add all the function arguments to the value table.
3834   unsigned ArgNo = 0;
3835   FunctionType *FullFTy = FunctionTypes[F];
3836   for (Argument &I : F->args()) {
3837     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3838            "Incorrect fully specified type for Function Argument");
3839     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3840   }
3841   unsigned NextValueNo = ValueList.size();
3842   BasicBlock *CurBB = nullptr;
3843   unsigned CurBBNo = 0;
3844 
3845   DebugLoc LastLoc;
3846   auto getLastInstruction = [&]() -> Instruction * {
3847     if (CurBB && !CurBB->empty())
3848       return &CurBB->back();
3849     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3850              !FunctionBBs[CurBBNo - 1]->empty())
3851       return &FunctionBBs[CurBBNo - 1]->back();
3852     return nullptr;
3853   };
3854 
3855   std::vector<OperandBundleDef> OperandBundles;
3856 
3857   // Read all the records.
3858   SmallVector<uint64_t, 64> Record;
3859 
3860   while (true) {
3861     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3862     if (!MaybeEntry)
3863       return MaybeEntry.takeError();
3864     llvm::BitstreamEntry Entry = MaybeEntry.get();
3865 
3866     switch (Entry.Kind) {
3867     case BitstreamEntry::Error:
3868       return error("Malformed block");
3869     case BitstreamEntry::EndBlock:
3870       goto OutOfRecordLoop;
3871 
3872     case BitstreamEntry::SubBlock:
3873       switch (Entry.ID) {
3874       default:  // Skip unknown content.
3875         if (Error Err = Stream.SkipBlock())
3876           return Err;
3877         break;
3878       case bitc::CONSTANTS_BLOCK_ID:
3879         if (Error Err = parseConstants())
3880           return Err;
3881         NextValueNo = ValueList.size();
3882         break;
3883       case bitc::VALUE_SYMTAB_BLOCK_ID:
3884         if (Error Err = parseValueSymbolTable())
3885           return Err;
3886         break;
3887       case bitc::METADATA_ATTACHMENT_ID:
3888         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3889           return Err;
3890         break;
3891       case bitc::METADATA_BLOCK_ID:
3892         assert(DeferredMetadataInfo.empty() &&
3893                "Must read all module-level metadata before function-level");
3894         if (Error Err = MDLoader->parseFunctionMetadata())
3895           return Err;
3896         break;
3897       case bitc::USELIST_BLOCK_ID:
3898         if (Error Err = parseUseLists())
3899           return Err;
3900         break;
3901       }
3902       continue;
3903 
3904     case BitstreamEntry::Record:
3905       // The interesting case.
3906       break;
3907     }
3908 
3909     // Read a record.
3910     Record.clear();
3911     Instruction *I = nullptr;
3912     Type *FullTy = nullptr;
3913     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3914     if (!MaybeBitCode)
3915       return MaybeBitCode.takeError();
3916     switch (unsigned BitCode = MaybeBitCode.get()) {
3917     default: // Default behavior: reject
3918       return error("Invalid value");
3919     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3920       if (Record.empty() || Record[0] == 0)
3921         return error("Invalid record");
3922       // Create all the basic blocks for the function.
3923       FunctionBBs.resize(Record[0]);
3924 
3925       // See if anything took the address of blocks in this function.
3926       auto BBFRI = BasicBlockFwdRefs.find(F);
3927       if (BBFRI == BasicBlockFwdRefs.end()) {
3928         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3929           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3930       } else {
3931         auto &BBRefs = BBFRI->second;
3932         // Check for invalid basic block references.
3933         if (BBRefs.size() > FunctionBBs.size())
3934           return error("Invalid ID");
3935         assert(!BBRefs.empty() && "Unexpected empty array");
3936         assert(!BBRefs.front() && "Invalid reference to entry block");
3937         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3938              ++I)
3939           if (I < RE && BBRefs[I]) {
3940             BBRefs[I]->insertInto(F);
3941             FunctionBBs[I] = BBRefs[I];
3942           } else {
3943             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3944           }
3945 
3946         // Erase from the table.
3947         BasicBlockFwdRefs.erase(BBFRI);
3948       }
3949 
3950       CurBB = FunctionBBs[0];
3951       continue;
3952     }
3953 
3954     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3955       // This record indicates that the last instruction is at the same
3956       // location as the previous instruction with a location.
3957       I = getLastInstruction();
3958 
3959       if (!I)
3960         return error("Invalid record");
3961       I->setDebugLoc(LastLoc);
3962       I = nullptr;
3963       continue;
3964 
3965     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3966       I = getLastInstruction();
3967       if (!I || Record.size() < 4)
3968         return error("Invalid record");
3969 
3970       unsigned Line = Record[0], Col = Record[1];
3971       unsigned ScopeID = Record[2], IAID = Record[3];
3972       bool isImplicitCode = Record.size() == 5 && Record[4];
3973 
3974       MDNode *Scope = nullptr, *IA = nullptr;
3975       if (ScopeID) {
3976         Scope = dyn_cast_or_null<MDNode>(
3977             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3978         if (!Scope)
3979           return error("Invalid record");
3980       }
3981       if (IAID) {
3982         IA = dyn_cast_or_null<MDNode>(
3983             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3984         if (!IA)
3985           return error("Invalid record");
3986       }
3987       LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA,
3988                                 isImplicitCode);
3989       I->setDebugLoc(LastLoc);
3990       I = nullptr;
3991       continue;
3992     }
3993     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3994       unsigned OpNum = 0;
3995       Value *LHS;
3996       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3997           OpNum+1 > Record.size())
3998         return error("Invalid record");
3999 
4000       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
4001       if (Opc == -1)
4002         return error("Invalid record");
4003       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
4004       InstructionList.push_back(I);
4005       if (OpNum < Record.size()) {
4006         if (isa<FPMathOperator>(I)) {
4007           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4008           if (FMF.any())
4009             I->setFastMathFlags(FMF);
4010         }
4011       }
4012       break;
4013     }
4014     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
4015       unsigned OpNum = 0;
4016       Value *LHS, *RHS;
4017       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4018           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
4019           OpNum+1 > Record.size())
4020         return error("Invalid record");
4021 
4022       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
4023       if (Opc == -1)
4024         return error("Invalid record");
4025       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
4026       InstructionList.push_back(I);
4027       if (OpNum < Record.size()) {
4028         if (Opc == Instruction::Add ||
4029             Opc == Instruction::Sub ||
4030             Opc == Instruction::Mul ||
4031             Opc == Instruction::Shl) {
4032           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
4033             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
4034           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
4035             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
4036         } else if (Opc == Instruction::SDiv ||
4037                    Opc == Instruction::UDiv ||
4038                    Opc == Instruction::LShr ||
4039                    Opc == Instruction::AShr) {
4040           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
4041             cast<BinaryOperator>(I)->setIsExact(true);
4042         } else if (isa<FPMathOperator>(I)) {
4043           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4044           if (FMF.any())
4045             I->setFastMathFlags(FMF);
4046         }
4047 
4048       }
4049       break;
4050     }
4051     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
4052       unsigned OpNum = 0;
4053       Value *Op;
4054       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4055           OpNum+2 != Record.size())
4056         return error("Invalid record");
4057 
4058       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
4059       Type *ResTy = flattenPointerTypes(FullTy);
4060       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
4061       if (Opc == -1 || !ResTy)
4062         return error("Invalid record");
4063       Instruction *Temp = nullptr;
4064       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
4065         if (Temp) {
4066           InstructionList.push_back(Temp);
4067           assert(CurBB && "No current BB?");
4068           CurBB->getInstList().push_back(Temp);
4069         }
4070       } else {
4071         auto CastOp = (Instruction::CastOps)Opc;
4072         if (!CastInst::castIsValid(CastOp, Op, ResTy))
4073           return error("Invalid cast");
4074         I = CastInst::Create(CastOp, Op, ResTy);
4075       }
4076       InstructionList.push_back(I);
4077       break;
4078     }
4079     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
4080     case bitc::FUNC_CODE_INST_GEP_OLD:
4081     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
4082       unsigned OpNum = 0;
4083 
4084       Type *Ty;
4085       bool InBounds;
4086 
4087       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
4088         InBounds = Record[OpNum++];
4089         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4090         Ty = flattenPointerTypes(FullTy);
4091       } else {
4092         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
4093         Ty = nullptr;
4094       }
4095 
4096       Value *BasePtr;
4097       Type *FullBaseTy = nullptr;
4098       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
4099         return error("Invalid record");
4100 
4101       if (!Ty) {
4102         std::tie(FullTy, Ty) =
4103             getPointerElementTypes(FullBaseTy->getScalarType());
4104       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
4105         return error(
4106             "Explicit gep type does not match pointee type of pointer operand");
4107 
4108       SmallVector<Value*, 16> GEPIdx;
4109       while (OpNum != Record.size()) {
4110         Value *Op;
4111         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4112           return error("Invalid record");
4113         GEPIdx.push_back(Op);
4114       }
4115 
4116       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4117       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
4118 
4119       InstructionList.push_back(I);
4120       if (InBounds)
4121         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4122       break;
4123     }
4124 
4125     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4126                                        // EXTRACTVAL: [opty, opval, n x indices]
4127       unsigned OpNum = 0;
4128       Value *Agg;
4129       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4130         return error("Invalid record");
4131 
4132       unsigned RecSize = Record.size();
4133       if (OpNum == RecSize)
4134         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4135 
4136       SmallVector<unsigned, 4> EXTRACTVALIdx;
4137       for (; OpNum != RecSize; ++OpNum) {
4138         bool IsArray = FullTy->isArrayTy();
4139         bool IsStruct = FullTy->isStructTy();
4140         uint64_t Index = Record[OpNum];
4141 
4142         if (!IsStruct && !IsArray)
4143           return error("EXTRACTVAL: Invalid type");
4144         if ((unsigned)Index != Index)
4145           return error("Invalid value");
4146         if (IsStruct && Index >= FullTy->getStructNumElements())
4147           return error("EXTRACTVAL: Invalid struct index");
4148         if (IsArray && Index >= FullTy->getArrayNumElements())
4149           return error("EXTRACTVAL: Invalid array index");
4150         EXTRACTVALIdx.push_back((unsigned)Index);
4151 
4152         if (IsStruct)
4153           FullTy = FullTy->getStructElementType(Index);
4154         else
4155           FullTy = FullTy->getArrayElementType();
4156       }
4157 
4158       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4159       InstructionList.push_back(I);
4160       break;
4161     }
4162 
4163     case bitc::FUNC_CODE_INST_INSERTVAL: {
4164                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4165       unsigned OpNum = 0;
4166       Value *Agg;
4167       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4168         return error("Invalid record");
4169       Value *Val;
4170       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4171         return error("Invalid record");
4172 
4173       unsigned RecSize = Record.size();
4174       if (OpNum == RecSize)
4175         return error("INSERTVAL: Invalid instruction with 0 indices");
4176 
4177       SmallVector<unsigned, 4> INSERTVALIdx;
4178       Type *CurTy = Agg->getType();
4179       for (; OpNum != RecSize; ++OpNum) {
4180         bool IsArray = CurTy->isArrayTy();
4181         bool IsStruct = CurTy->isStructTy();
4182         uint64_t Index = Record[OpNum];
4183 
4184         if (!IsStruct && !IsArray)
4185           return error("INSERTVAL: Invalid type");
4186         if ((unsigned)Index != Index)
4187           return error("Invalid value");
4188         if (IsStruct && Index >= CurTy->getStructNumElements())
4189           return error("INSERTVAL: Invalid struct index");
4190         if (IsArray && Index >= CurTy->getArrayNumElements())
4191           return error("INSERTVAL: Invalid array index");
4192 
4193         INSERTVALIdx.push_back((unsigned)Index);
4194         if (IsStruct)
4195           CurTy = CurTy->getStructElementType(Index);
4196         else
4197           CurTy = CurTy->getArrayElementType();
4198       }
4199 
4200       if (CurTy != Val->getType())
4201         return error("Inserted value type doesn't match aggregate type");
4202 
4203       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4204       InstructionList.push_back(I);
4205       break;
4206     }
4207 
4208     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4209       // obsolete form of select
4210       // handles select i1 ... in old bitcode
4211       unsigned OpNum = 0;
4212       Value *TrueVal, *FalseVal, *Cond;
4213       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4214           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4215           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4216         return error("Invalid record");
4217 
4218       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4219       InstructionList.push_back(I);
4220       break;
4221     }
4222 
4223     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4224       // new form of select
4225       // handles select i1 or select [N x i1]
4226       unsigned OpNum = 0;
4227       Value *TrueVal, *FalseVal, *Cond;
4228       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4229           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4230           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4231         return error("Invalid record");
4232 
4233       // select condition can be either i1 or [N x i1]
4234       if (VectorType* vector_type =
4235           dyn_cast<VectorType>(Cond->getType())) {
4236         // expect <n x i1>
4237         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4238           return error("Invalid type for value");
4239       } else {
4240         // expect i1
4241         if (Cond->getType() != Type::getInt1Ty(Context))
4242           return error("Invalid type for value");
4243       }
4244 
4245       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4246       InstructionList.push_back(I);
4247       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4248         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4249         if (FMF.any())
4250           I->setFastMathFlags(FMF);
4251       }
4252       break;
4253     }
4254 
4255     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4256       unsigned OpNum = 0;
4257       Value *Vec, *Idx;
4258       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4259           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4260         return error("Invalid record");
4261       if (!Vec->getType()->isVectorTy())
4262         return error("Invalid type for value");
4263       I = ExtractElementInst::Create(Vec, Idx);
4264       FullTy = cast<VectorType>(FullTy)->getElementType();
4265       InstructionList.push_back(I);
4266       break;
4267     }
4268 
4269     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4270       unsigned OpNum = 0;
4271       Value *Vec, *Elt, *Idx;
4272       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4273         return error("Invalid record");
4274       if (!Vec->getType()->isVectorTy())
4275         return error("Invalid type for value");
4276       if (popValue(Record, OpNum, NextValueNo,
4277                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4278           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4279         return error("Invalid record");
4280       I = InsertElementInst::Create(Vec, Elt, Idx);
4281       InstructionList.push_back(I);
4282       break;
4283     }
4284 
4285     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4286       unsigned OpNum = 0;
4287       Value *Vec1, *Vec2, *Mask;
4288       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4289           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4290         return error("Invalid record");
4291 
4292       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4293         return error("Invalid record");
4294       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4295         return error("Invalid type for value");
4296 
4297       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4298       FullTy =
4299           VectorType::get(cast<VectorType>(FullTy)->getElementType(),
4300                           cast<VectorType>(Mask->getType())->getElementCount());
4301       InstructionList.push_back(I);
4302       break;
4303     }
4304 
4305     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4306       // Old form of ICmp/FCmp returning bool
4307       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4308       // both legal on vectors but had different behaviour.
4309     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4310       // FCmp/ICmp returning bool or vector of bool
4311 
4312       unsigned OpNum = 0;
4313       Value *LHS, *RHS;
4314       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4315           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4316         return error("Invalid record");
4317 
4318       if (OpNum >= Record.size())
4319         return error(
4320             "Invalid record: operand number exceeded available operands");
4321 
4322       unsigned PredVal = Record[OpNum];
4323       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4324       FastMathFlags FMF;
4325       if (IsFP && Record.size() > OpNum+1)
4326         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4327 
4328       if (OpNum+1 != Record.size())
4329         return error("Invalid record");
4330 
4331       if (LHS->getType()->isFPOrFPVectorTy())
4332         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4333       else
4334         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4335 
4336       if (FMF.any())
4337         I->setFastMathFlags(FMF);
4338       InstructionList.push_back(I);
4339       break;
4340     }
4341 
4342     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4343       {
4344         unsigned Size = Record.size();
4345         if (Size == 0) {
4346           I = ReturnInst::Create(Context);
4347           InstructionList.push_back(I);
4348           break;
4349         }
4350 
4351         unsigned OpNum = 0;
4352         Value *Op = nullptr;
4353         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4354           return error("Invalid record");
4355         if (OpNum != Record.size())
4356           return error("Invalid record");
4357 
4358         I = ReturnInst::Create(Context, Op);
4359         InstructionList.push_back(I);
4360         break;
4361       }
4362     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4363       if (Record.size() != 1 && Record.size() != 3)
4364         return error("Invalid record");
4365       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4366       if (!TrueDest)
4367         return error("Invalid record");
4368 
4369       if (Record.size() == 1) {
4370         I = BranchInst::Create(TrueDest);
4371         InstructionList.push_back(I);
4372       }
4373       else {
4374         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4375         Value *Cond = getValue(Record, 2, NextValueNo,
4376                                Type::getInt1Ty(Context));
4377         if (!FalseDest || !Cond)
4378           return error("Invalid record");
4379         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4380         InstructionList.push_back(I);
4381       }
4382       break;
4383     }
4384     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4385       if (Record.size() != 1 && Record.size() != 2)
4386         return error("Invalid record");
4387       unsigned Idx = 0;
4388       Value *CleanupPad =
4389           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4390       if (!CleanupPad)
4391         return error("Invalid record");
4392       BasicBlock *UnwindDest = nullptr;
4393       if (Record.size() == 2) {
4394         UnwindDest = getBasicBlock(Record[Idx++]);
4395         if (!UnwindDest)
4396           return error("Invalid record");
4397       }
4398 
4399       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4400       InstructionList.push_back(I);
4401       break;
4402     }
4403     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4404       if (Record.size() != 2)
4405         return error("Invalid record");
4406       unsigned Idx = 0;
4407       Value *CatchPad =
4408           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4409       if (!CatchPad)
4410         return error("Invalid record");
4411       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4412       if (!BB)
4413         return error("Invalid record");
4414 
4415       I = CatchReturnInst::Create(CatchPad, BB);
4416       InstructionList.push_back(I);
4417       break;
4418     }
4419     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4420       // We must have, at minimum, the outer scope and the number of arguments.
4421       if (Record.size() < 2)
4422         return error("Invalid record");
4423 
4424       unsigned Idx = 0;
4425 
4426       Value *ParentPad =
4427           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4428 
4429       unsigned NumHandlers = Record[Idx++];
4430 
4431       SmallVector<BasicBlock *, 2> Handlers;
4432       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4433         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4434         if (!BB)
4435           return error("Invalid record");
4436         Handlers.push_back(BB);
4437       }
4438 
4439       BasicBlock *UnwindDest = nullptr;
4440       if (Idx + 1 == Record.size()) {
4441         UnwindDest = getBasicBlock(Record[Idx++]);
4442         if (!UnwindDest)
4443           return error("Invalid record");
4444       }
4445 
4446       if (Record.size() != Idx)
4447         return error("Invalid record");
4448 
4449       auto *CatchSwitch =
4450           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4451       for (BasicBlock *Handler : Handlers)
4452         CatchSwitch->addHandler(Handler);
4453       I = CatchSwitch;
4454       InstructionList.push_back(I);
4455       break;
4456     }
4457     case bitc::FUNC_CODE_INST_CATCHPAD:
4458     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4459       // We must have, at minimum, the outer scope and the number of arguments.
4460       if (Record.size() < 2)
4461         return error("Invalid record");
4462 
4463       unsigned Idx = 0;
4464 
4465       Value *ParentPad =
4466           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4467 
4468       unsigned NumArgOperands = Record[Idx++];
4469 
4470       SmallVector<Value *, 2> Args;
4471       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4472         Value *Val;
4473         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4474           return error("Invalid record");
4475         Args.push_back(Val);
4476       }
4477 
4478       if (Record.size() != Idx)
4479         return error("Invalid record");
4480 
4481       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4482         I = CleanupPadInst::Create(ParentPad, Args);
4483       else
4484         I = CatchPadInst::Create(ParentPad, Args);
4485       InstructionList.push_back(I);
4486       break;
4487     }
4488     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4489       // Check magic
4490       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4491         // "New" SwitchInst format with case ranges. The changes to write this
4492         // format were reverted but we still recognize bitcode that uses it.
4493         // Hopefully someday we will have support for case ranges and can use
4494         // this format again.
4495 
4496         Type *OpTy = getTypeByID(Record[1]);
4497         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4498 
4499         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4500         BasicBlock *Default = getBasicBlock(Record[3]);
4501         if (!OpTy || !Cond || !Default)
4502           return error("Invalid record");
4503 
4504         unsigned NumCases = Record[4];
4505 
4506         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4507         InstructionList.push_back(SI);
4508 
4509         unsigned CurIdx = 5;
4510         for (unsigned i = 0; i != NumCases; ++i) {
4511           SmallVector<ConstantInt*, 1> CaseVals;
4512           unsigned NumItems = Record[CurIdx++];
4513           for (unsigned ci = 0; ci != NumItems; ++ci) {
4514             bool isSingleNumber = Record[CurIdx++];
4515 
4516             APInt Low;
4517             unsigned ActiveWords = 1;
4518             if (ValueBitWidth > 64)
4519               ActiveWords = Record[CurIdx++];
4520             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4521                                 ValueBitWidth);
4522             CurIdx += ActiveWords;
4523 
4524             if (!isSingleNumber) {
4525               ActiveWords = 1;
4526               if (ValueBitWidth > 64)
4527                 ActiveWords = Record[CurIdx++];
4528               APInt High = readWideAPInt(
4529                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4530               CurIdx += ActiveWords;
4531 
4532               // FIXME: It is not clear whether values in the range should be
4533               // compared as signed or unsigned values. The partially
4534               // implemented changes that used this format in the past used
4535               // unsigned comparisons.
4536               for ( ; Low.ule(High); ++Low)
4537                 CaseVals.push_back(ConstantInt::get(Context, Low));
4538             } else
4539               CaseVals.push_back(ConstantInt::get(Context, Low));
4540           }
4541           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4542           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4543                  cve = CaseVals.end(); cvi != cve; ++cvi)
4544             SI->addCase(*cvi, DestBB);
4545         }
4546         I = SI;
4547         break;
4548       }
4549 
4550       // Old SwitchInst format without case ranges.
4551 
4552       if (Record.size() < 3 || (Record.size() & 1) == 0)
4553         return error("Invalid record");
4554       Type *OpTy = getTypeByID(Record[0]);
4555       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4556       BasicBlock *Default = getBasicBlock(Record[2]);
4557       if (!OpTy || !Cond || !Default)
4558         return error("Invalid record");
4559       unsigned NumCases = (Record.size()-3)/2;
4560       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4561       InstructionList.push_back(SI);
4562       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4563         ConstantInt *CaseVal =
4564           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4565         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4566         if (!CaseVal || !DestBB) {
4567           delete SI;
4568           return error("Invalid record");
4569         }
4570         SI->addCase(CaseVal, DestBB);
4571       }
4572       I = SI;
4573       break;
4574     }
4575     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4576       if (Record.size() < 2)
4577         return error("Invalid record");
4578       Type *OpTy = getTypeByID(Record[0]);
4579       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4580       if (!OpTy || !Address)
4581         return error("Invalid record");
4582       unsigned NumDests = Record.size()-2;
4583       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4584       InstructionList.push_back(IBI);
4585       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4586         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4587           IBI->addDestination(DestBB);
4588         } else {
4589           delete IBI;
4590           return error("Invalid record");
4591         }
4592       }
4593       I = IBI;
4594       break;
4595     }
4596 
4597     case bitc::FUNC_CODE_INST_INVOKE: {
4598       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4599       if (Record.size() < 4)
4600         return error("Invalid record");
4601       unsigned OpNum = 0;
4602       AttributeList PAL = getAttributes(Record[OpNum++]);
4603       unsigned CCInfo = Record[OpNum++];
4604       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4605       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4606 
4607       FunctionType *FTy = nullptr;
4608       FunctionType *FullFTy = nullptr;
4609       if ((CCInfo >> 13) & 1) {
4610         FullFTy =
4611             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4612         if (!FullFTy)
4613           return error("Explicit invoke type is not a function type");
4614         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4615       }
4616 
4617       Value *Callee;
4618       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4619         return error("Invalid record");
4620 
4621       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4622       if (!CalleeTy)
4623         return error("Callee is not a pointer");
4624       if (!FTy) {
4625         FullFTy =
4626             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4627         if (!FullFTy)
4628           return error("Callee is not of pointer to function type");
4629         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4630       } else if (getPointerElementFlatType(FullTy) != FTy)
4631         return error("Explicit invoke type does not match pointee type of "
4632                      "callee operand");
4633       if (Record.size() < FTy->getNumParams() + OpNum)
4634         return error("Insufficient operands to call");
4635 
4636       SmallVector<Value*, 16> Ops;
4637       SmallVector<Type *, 16> ArgsFullTys;
4638       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4639         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4640                                FTy->getParamType(i)));
4641         ArgsFullTys.push_back(FullFTy->getParamType(i));
4642         if (!Ops.back())
4643           return error("Invalid record");
4644       }
4645 
4646       if (!FTy->isVarArg()) {
4647         if (Record.size() != OpNum)
4648           return error("Invalid record");
4649       } else {
4650         // Read type/value pairs for varargs params.
4651         while (OpNum != Record.size()) {
4652           Value *Op;
4653           Type *FullTy;
4654           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4655             return error("Invalid record");
4656           Ops.push_back(Op);
4657           ArgsFullTys.push_back(FullTy);
4658         }
4659       }
4660 
4661       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4662                              OperandBundles);
4663       FullTy = FullFTy->getReturnType();
4664       OperandBundles.clear();
4665       InstructionList.push_back(I);
4666       cast<InvokeInst>(I)->setCallingConv(
4667           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4668       cast<InvokeInst>(I)->setAttributes(PAL);
4669       propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys);
4670 
4671       break;
4672     }
4673     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4674       unsigned Idx = 0;
4675       Value *Val = nullptr;
4676       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4677         return error("Invalid record");
4678       I = ResumeInst::Create(Val);
4679       InstructionList.push_back(I);
4680       break;
4681     }
4682     case bitc::FUNC_CODE_INST_CALLBR: {
4683       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4684       unsigned OpNum = 0;
4685       AttributeList PAL = getAttributes(Record[OpNum++]);
4686       unsigned CCInfo = Record[OpNum++];
4687 
4688       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4689       unsigned NumIndirectDests = Record[OpNum++];
4690       SmallVector<BasicBlock *, 16> IndirectDests;
4691       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4692         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4693 
4694       FunctionType *FTy = nullptr;
4695       FunctionType *FullFTy = nullptr;
4696       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4697         FullFTy =
4698             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4699         if (!FullFTy)
4700           return error("Explicit call type is not a function type");
4701         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4702       }
4703 
4704       Value *Callee;
4705       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4706         return error("Invalid record");
4707 
4708       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4709       if (!OpTy)
4710         return error("Callee is not a pointer type");
4711       if (!FTy) {
4712         FullFTy =
4713             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4714         if (!FullFTy)
4715           return error("Callee is not of pointer to function type");
4716         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4717       } else if (getPointerElementFlatType(FullTy) != FTy)
4718         return error("Explicit call type does not match pointee type of "
4719                      "callee operand");
4720       if (Record.size() < FTy->getNumParams() + OpNum)
4721         return error("Insufficient operands to call");
4722 
4723       SmallVector<Value*, 16> Args;
4724       // Read the fixed params.
4725       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4726         if (FTy->getParamType(i)->isLabelTy())
4727           Args.push_back(getBasicBlock(Record[OpNum]));
4728         else
4729           Args.push_back(getValue(Record, OpNum, NextValueNo,
4730                                   FTy->getParamType(i)));
4731         if (!Args.back())
4732           return error("Invalid record");
4733       }
4734 
4735       // Read type/value pairs for varargs params.
4736       if (!FTy->isVarArg()) {
4737         if (OpNum != Record.size())
4738           return error("Invalid record");
4739       } else {
4740         while (OpNum != Record.size()) {
4741           Value *Op;
4742           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4743             return error("Invalid record");
4744           Args.push_back(Op);
4745         }
4746       }
4747 
4748       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4749                              OperandBundles);
4750       FullTy = FullFTy->getReturnType();
4751       OperandBundles.clear();
4752       InstructionList.push_back(I);
4753       cast<CallBrInst>(I)->setCallingConv(
4754           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4755       cast<CallBrInst>(I)->setAttributes(PAL);
4756       break;
4757     }
4758     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4759       I = new UnreachableInst(Context);
4760       InstructionList.push_back(I);
4761       break;
4762     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4763       if (Record.empty())
4764         return error("Invalid record");
4765       // The first record specifies the type.
4766       FullTy = getFullyStructuredTypeByID(Record[0]);
4767       Type *Ty = flattenPointerTypes(FullTy);
4768       if (!Ty)
4769         return error("Invalid record");
4770 
4771       // Phi arguments are pairs of records of [value, basic block].
4772       // There is an optional final record for fast-math-flags if this phi has a
4773       // floating-point type.
4774       size_t NumArgs = (Record.size() - 1) / 2;
4775       PHINode *PN = PHINode::Create(Ty, NumArgs);
4776       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4777         return error("Invalid record");
4778       InstructionList.push_back(PN);
4779 
4780       for (unsigned i = 0; i != NumArgs; i++) {
4781         Value *V;
4782         // With the new function encoding, it is possible that operands have
4783         // negative IDs (for forward references).  Use a signed VBR
4784         // representation to keep the encoding small.
4785         if (UseRelativeIDs)
4786           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4787         else
4788           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4789         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4790         if (!V || !BB)
4791           return error("Invalid record");
4792         PN->addIncoming(V, BB);
4793       }
4794       I = PN;
4795 
4796       // If there are an even number of records, the final record must be FMF.
4797       if (Record.size() % 2 == 0) {
4798         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4799         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4800         if (FMF.any())
4801           I->setFastMathFlags(FMF);
4802       }
4803 
4804       break;
4805     }
4806 
4807     case bitc::FUNC_CODE_INST_LANDINGPAD:
4808     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4809       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4810       unsigned Idx = 0;
4811       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4812         if (Record.size() < 3)
4813           return error("Invalid record");
4814       } else {
4815         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4816         if (Record.size() < 4)
4817           return error("Invalid record");
4818       }
4819       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4820       Type *Ty = flattenPointerTypes(FullTy);
4821       if (!Ty)
4822         return error("Invalid record");
4823       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4824         Value *PersFn = nullptr;
4825         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4826           return error("Invalid record");
4827 
4828         if (!F->hasPersonalityFn())
4829           F->setPersonalityFn(cast<Constant>(PersFn));
4830         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4831           return error("Personality function mismatch");
4832       }
4833 
4834       bool IsCleanup = !!Record[Idx++];
4835       unsigned NumClauses = Record[Idx++];
4836       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4837       LP->setCleanup(IsCleanup);
4838       for (unsigned J = 0; J != NumClauses; ++J) {
4839         LandingPadInst::ClauseType CT =
4840           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4841         Value *Val;
4842 
4843         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4844           delete LP;
4845           return error("Invalid record");
4846         }
4847 
4848         assert((CT != LandingPadInst::Catch ||
4849                 !isa<ArrayType>(Val->getType())) &&
4850                "Catch clause has a invalid type!");
4851         assert((CT != LandingPadInst::Filter ||
4852                 isa<ArrayType>(Val->getType())) &&
4853                "Filter clause has invalid type!");
4854         LP->addClause(cast<Constant>(Val));
4855       }
4856 
4857       I = LP;
4858       InstructionList.push_back(I);
4859       break;
4860     }
4861 
4862     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4863       if (Record.size() != 4)
4864         return error("Invalid record");
4865       using APV = AllocaPackedValues;
4866       const uint64_t Rec = Record[3];
4867       const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec);
4868       const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec);
4869       FullTy = getFullyStructuredTypeByID(Record[0]);
4870       Type *Ty = flattenPointerTypes(FullTy);
4871       if (!Bitfield::get<APV::ExplicitType>(Rec)) {
4872         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4873         if (!PTy)
4874           return error("Old-style alloca with a non-pointer type");
4875         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4876       }
4877       Type *OpTy = getTypeByID(Record[1]);
4878       Value *Size = getFnValueByID(Record[2], OpTy);
4879       MaybeAlign Align;
4880       if (Error Err =
4881               parseAlignmentValue(Bitfield::get<APV::Align>(Rec), Align)) {
4882         return Err;
4883       }
4884       if (!Ty || !Size)
4885         return error("Invalid record");
4886 
4887       // FIXME: Make this an optional field.
4888       const DataLayout &DL = TheModule->getDataLayout();
4889       unsigned AS = DL.getAllocaAddrSpace();
4890 
4891       SmallPtrSet<Type *, 4> Visited;
4892       if (!Align && !Ty->isSized(&Visited))
4893         return error("alloca of unsized type");
4894       if (!Align)
4895         Align = DL.getPrefTypeAlign(Ty);
4896 
4897       AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align);
4898       AI->setUsedWithInAlloca(InAlloca);
4899       AI->setSwiftError(SwiftError);
4900       I = AI;
4901       FullTy = PointerType::get(FullTy, AS);
4902       InstructionList.push_back(I);
4903       break;
4904     }
4905     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4906       unsigned OpNum = 0;
4907       Value *Op;
4908       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4909           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4910         return error("Invalid record");
4911 
4912       if (!isa<PointerType>(Op->getType()))
4913         return error("Load operand is not a pointer type");
4914 
4915       Type *Ty = nullptr;
4916       if (OpNum + 3 == Record.size()) {
4917         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4918         Ty = flattenPointerTypes(FullTy);
4919       } else
4920         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4921 
4922       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4923         return Err;
4924 
4925       MaybeAlign Align;
4926       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4927         return Err;
4928       SmallPtrSet<Type *, 4> Visited;
4929       if (!Align && !Ty->isSized(&Visited))
4930         return error("load of unsized type");
4931       if (!Align)
4932         Align = TheModule->getDataLayout().getABITypeAlign(Ty);
4933       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align);
4934       InstructionList.push_back(I);
4935       break;
4936     }
4937     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4938        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4939       unsigned OpNum = 0;
4940       Value *Op;
4941       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4942           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4943         return error("Invalid record");
4944 
4945       if (!isa<PointerType>(Op->getType()))
4946         return error("Load operand is not a pointer type");
4947 
4948       Type *Ty = nullptr;
4949       if (OpNum + 5 == Record.size()) {
4950         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4951         Ty = flattenPointerTypes(FullTy);
4952       } else
4953         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4954 
4955       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4956         return Err;
4957 
4958       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4959       if (Ordering == AtomicOrdering::NotAtomic ||
4960           Ordering == AtomicOrdering::Release ||
4961           Ordering == AtomicOrdering::AcquireRelease)
4962         return error("Invalid record");
4963       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4964         return error("Invalid record");
4965       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4966 
4967       MaybeAlign Align;
4968       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4969         return Err;
4970       if (!Align)
4971         return error("Alignment missing from atomic load");
4972       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID);
4973       InstructionList.push_back(I);
4974       break;
4975     }
4976     case bitc::FUNC_CODE_INST_STORE:
4977     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4978       unsigned OpNum = 0;
4979       Value *Val, *Ptr;
4980       Type *FullTy;
4981       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4982           (BitCode == bitc::FUNC_CODE_INST_STORE
4983                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4984                : popValue(Record, OpNum, NextValueNo,
4985                           getPointerElementFlatType(FullTy), Val)) ||
4986           OpNum + 2 != Record.size())
4987         return error("Invalid record");
4988 
4989       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4990         return Err;
4991       MaybeAlign Align;
4992       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4993         return Err;
4994       SmallPtrSet<Type *, 4> Visited;
4995       if (!Align && !Val->getType()->isSized(&Visited))
4996         return error("store of unsized type");
4997       if (!Align)
4998         Align = TheModule->getDataLayout().getABITypeAlign(Val->getType());
4999       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align);
5000       InstructionList.push_back(I);
5001       break;
5002     }
5003     case bitc::FUNC_CODE_INST_STOREATOMIC:
5004     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
5005       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
5006       unsigned OpNum = 0;
5007       Value *Val, *Ptr;
5008       Type *FullTy;
5009       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
5010           !isa<PointerType>(Ptr->getType()) ||
5011           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
5012                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
5013                : popValue(Record, OpNum, NextValueNo,
5014                           getPointerElementFlatType(FullTy), Val)) ||
5015           OpNum + 4 != Record.size())
5016         return error("Invalid record");
5017 
5018       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
5019         return Err;
5020       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5021       if (Ordering == AtomicOrdering::NotAtomic ||
5022           Ordering == AtomicOrdering::Acquire ||
5023           Ordering == AtomicOrdering::AcquireRelease)
5024         return error("Invalid record");
5025       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5026       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
5027         return error("Invalid record");
5028 
5029       MaybeAlign Align;
5030       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
5031         return Err;
5032       if (!Align)
5033         return error("Alignment missing from atomic store");
5034       I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID);
5035       InstructionList.push_back(I);
5036       break;
5037     }
5038     case bitc::FUNC_CODE_INST_CMPXCHG_OLD: {
5039       // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope,
5040       // failure_ordering?, weak?]
5041       const size_t NumRecords = Record.size();
5042       unsigned OpNum = 0;
5043       Value *Ptr = nullptr;
5044       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5045         return error("Invalid record");
5046 
5047       if (!isa<PointerType>(Ptr->getType()))
5048         return error("Cmpxchg operand is not a pointer type");
5049 
5050       Value *Cmp = nullptr;
5051       if (popValue(Record, OpNum, NextValueNo,
5052                    getPointerElementFlatType(FullTy), Cmp))
5053         return error("Invalid record");
5054 
5055       FullTy = cast<PointerType>(FullTy)->getElementType();
5056 
5057       Value *New = nullptr;
5058       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
5059           NumRecords < OpNum + 3 || NumRecords > OpNum + 5)
5060         return error("Invalid record");
5061 
5062       const AtomicOrdering SuccessOrdering =
5063           getDecodedOrdering(Record[OpNum + 1]);
5064       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5065           SuccessOrdering == AtomicOrdering::Unordered)
5066         return error("Invalid record");
5067 
5068       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5069 
5070       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5071         return Err;
5072 
5073       const AtomicOrdering FailureOrdering =
5074           NumRecords < 7
5075               ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering)
5076               : getDecodedOrdering(Record[OpNum + 3]);
5077 
5078       const Align Alignment(
5079           TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5080 
5081       I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering,
5082                                 FailureOrdering, SSID);
5083       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
5084       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5085 
5086       if (NumRecords < 8) {
5087         // Before weak cmpxchgs existed, the instruction simply returned the
5088         // value loaded from memory, so bitcode files from that era will be
5089         // expecting the first component of a modern cmpxchg.
5090         CurBB->getInstList().push_back(I);
5091         I = ExtractValueInst::Create(I, 0);
5092         FullTy = cast<StructType>(FullTy)->getElementType(0);
5093       } else {
5094         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]);
5095       }
5096 
5097       InstructionList.push_back(I);
5098       break;
5099     }
5100     case bitc::FUNC_CODE_INST_CMPXCHG: {
5101       // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope,
5102       // failure_ordering, weak, align?]
5103       const size_t NumRecords = Record.size();
5104       unsigned OpNum = 0;
5105       Value *Ptr = nullptr;
5106       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5107         return error("Invalid record");
5108 
5109       if (!isa<PointerType>(Ptr->getType()))
5110         return error("Cmpxchg operand is not a pointer type");
5111 
5112       Value *Cmp = nullptr;
5113       if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
5114         return error("Invalid record");
5115 
5116       Value *Val = nullptr;
5117       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val))
5118         return error("Invalid record");
5119 
5120       if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6)
5121         return error("Invalid record");
5122 
5123       const bool IsVol = Record[OpNum];
5124 
5125       const AtomicOrdering SuccessOrdering =
5126           getDecodedOrdering(Record[OpNum + 1]);
5127       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
5128           SuccessOrdering == AtomicOrdering::Unordered)
5129         return error("Invalid record");
5130 
5131       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
5132 
5133       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
5134         return Err;
5135 
5136       const AtomicOrdering FailureOrdering =
5137           getDecodedOrdering(Record[OpNum + 3]);
5138 
5139       const bool IsWeak = Record[OpNum + 4];
5140 
5141       MaybeAlign Alignment;
5142 
5143       if (NumRecords == (OpNum + 6)) {
5144         if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment))
5145           return Err;
5146       }
5147       if (!Alignment)
5148         Alignment =
5149             Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType()));
5150 
5151       I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering,
5152                                 FailureOrdering, SSID);
5153       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
5154       cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol);
5155       cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak);
5156 
5157       InstructionList.push_back(I);
5158       break;
5159     }
5160     case bitc::FUNC_CODE_INST_ATOMICRMW: {
5161       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid, align?]
5162       const size_t NumRecords = Record.size();
5163       unsigned OpNum = 0;
5164 
5165       Value *Ptr = nullptr;
5166       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
5167         return error("Invalid record");
5168 
5169       if (!isa<PointerType>(Ptr->getType()))
5170         return error("Invalid record");
5171 
5172       Value *Val = nullptr;
5173       if (popValue(Record, OpNum, NextValueNo,
5174                    getPointerElementFlatType(FullTy), Val))
5175         return error("Invalid record");
5176 
5177       if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5)))
5178         return error("Invalid record");
5179 
5180       const AtomicRMWInst::BinOp Operation =
5181           getDecodedRMWOperation(Record[OpNum]);
5182       if (Operation < AtomicRMWInst::FIRST_BINOP ||
5183           Operation > AtomicRMWInst::LAST_BINOP)
5184         return error("Invalid record");
5185 
5186       const bool IsVol = Record[OpNum + 1];
5187 
5188       const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
5189       if (Ordering == AtomicOrdering::NotAtomic ||
5190           Ordering == AtomicOrdering::Unordered)
5191         return error("Invalid record");
5192 
5193       const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
5194 
5195       MaybeAlign Alignment;
5196 
5197       if (NumRecords == (OpNum + 5)) {
5198         if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment))
5199           return Err;
5200       }
5201 
5202       if (!Alignment)
5203         Alignment =
5204             Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType()));
5205 
5206       I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID);
5207       FullTy = getPointerElementFlatType(FullTy);
5208       cast<AtomicRMWInst>(I)->setVolatile(IsVol);
5209 
5210       InstructionList.push_back(I);
5211       break;
5212     }
5213     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
5214       if (2 != Record.size())
5215         return error("Invalid record");
5216       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
5217       if (Ordering == AtomicOrdering::NotAtomic ||
5218           Ordering == AtomicOrdering::Unordered ||
5219           Ordering == AtomicOrdering::Monotonic)
5220         return error("Invalid record");
5221       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5222       I = new FenceInst(Context, Ordering, SSID);
5223       InstructionList.push_back(I);
5224       break;
5225     }
5226     case bitc::FUNC_CODE_INST_CALL: {
5227       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5228       if (Record.size() < 3)
5229         return error("Invalid record");
5230 
5231       unsigned OpNum = 0;
5232       AttributeList PAL = getAttributes(Record[OpNum++]);
5233       unsigned CCInfo = Record[OpNum++];
5234 
5235       FastMathFlags FMF;
5236       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5237         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5238         if (!FMF.any())
5239           return error("Fast math flags indicator set for call with no FMF");
5240       }
5241 
5242       FunctionType *FTy = nullptr;
5243       FunctionType *FullFTy = nullptr;
5244       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5245         FullFTy =
5246             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5247         if (!FullFTy)
5248           return error("Explicit call type is not a function type");
5249         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5250       }
5251 
5252       Value *Callee;
5253       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5254         return error("Invalid record");
5255 
5256       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5257       if (!OpTy)
5258         return error("Callee is not a pointer type");
5259       if (!FTy) {
5260         FullFTy =
5261             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5262         if (!FullFTy)
5263           return error("Callee is not of pointer to function type");
5264         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5265       } else if (getPointerElementFlatType(FullTy) != FTy)
5266         return error("Explicit call type does not match pointee type of "
5267                      "callee operand");
5268       if (Record.size() < FTy->getNumParams() + OpNum)
5269         return error("Insufficient operands to call");
5270 
5271       SmallVector<Value*, 16> Args;
5272       SmallVector<Type*, 16> ArgsFullTys;
5273       // Read the fixed params.
5274       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5275         if (FTy->getParamType(i)->isLabelTy())
5276           Args.push_back(getBasicBlock(Record[OpNum]));
5277         else
5278           Args.push_back(getValue(Record, OpNum, NextValueNo,
5279                                   FTy->getParamType(i)));
5280         ArgsFullTys.push_back(FullFTy->getParamType(i));
5281         if (!Args.back())
5282           return error("Invalid record");
5283       }
5284 
5285       // Read type/value pairs for varargs params.
5286       if (!FTy->isVarArg()) {
5287         if (OpNum != Record.size())
5288           return error("Invalid record");
5289       } else {
5290         while (OpNum != Record.size()) {
5291           Value *Op;
5292           Type *FullTy;
5293           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5294             return error("Invalid record");
5295           Args.push_back(Op);
5296           ArgsFullTys.push_back(FullTy);
5297         }
5298       }
5299 
5300       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5301       FullTy = FullFTy->getReturnType();
5302       OperandBundles.clear();
5303       InstructionList.push_back(I);
5304       cast<CallInst>(I)->setCallingConv(
5305           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5306       CallInst::TailCallKind TCK = CallInst::TCK_None;
5307       if (CCInfo & 1 << bitc::CALL_TAIL)
5308         TCK = CallInst::TCK_Tail;
5309       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5310         TCK = CallInst::TCK_MustTail;
5311       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5312         TCK = CallInst::TCK_NoTail;
5313       cast<CallInst>(I)->setTailCallKind(TCK);
5314       cast<CallInst>(I)->setAttributes(PAL);
5315       propagateByValSRetTypes(cast<CallBase>(I), ArgsFullTys);
5316       if (FMF.any()) {
5317         if (!isa<FPMathOperator>(I))
5318           return error("Fast-math-flags specified for call without "
5319                        "floating-point scalar or vector return type");
5320         I->setFastMathFlags(FMF);
5321       }
5322       break;
5323     }
5324     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5325       if (Record.size() < 3)
5326         return error("Invalid record");
5327       Type *OpTy = getTypeByID(Record[0]);
5328       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5329       FullTy = getFullyStructuredTypeByID(Record[2]);
5330       Type *ResTy = flattenPointerTypes(FullTy);
5331       if (!OpTy || !Op || !ResTy)
5332         return error("Invalid record");
5333       I = new VAArgInst(Op, ResTy);
5334       InstructionList.push_back(I);
5335       break;
5336     }
5337 
5338     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5339       // A call or an invoke can be optionally prefixed with some variable
5340       // number of operand bundle blocks.  These blocks are read into
5341       // OperandBundles and consumed at the next call or invoke instruction.
5342 
5343       if (Record.empty() || Record[0] >= BundleTags.size())
5344         return error("Invalid record");
5345 
5346       std::vector<Value *> Inputs;
5347 
5348       unsigned OpNum = 1;
5349       while (OpNum != Record.size()) {
5350         Value *Op;
5351         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5352           return error("Invalid record");
5353         Inputs.push_back(Op);
5354       }
5355 
5356       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5357       continue;
5358     }
5359 
5360     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5361       unsigned OpNum = 0;
5362       Value *Op = nullptr;
5363       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5364         return error("Invalid record");
5365       if (OpNum != Record.size())
5366         return error("Invalid record");
5367 
5368       I = new FreezeInst(Op);
5369       InstructionList.push_back(I);
5370       break;
5371     }
5372     }
5373 
5374     // Add instruction to end of current BB.  If there is no current BB, reject
5375     // this file.
5376     if (!CurBB) {
5377       I->deleteValue();
5378       return error("Invalid instruction with no BB");
5379     }
5380     if (!OperandBundles.empty()) {
5381       I->deleteValue();
5382       return error("Operand bundles found with no consumer");
5383     }
5384     CurBB->getInstList().push_back(I);
5385 
5386     // If this was a terminator instruction, move to the next block.
5387     if (I->isTerminator()) {
5388       ++CurBBNo;
5389       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5390     }
5391 
5392     // Non-void values get registered in the value table for future use.
5393     if (!I->getType()->isVoidTy()) {
5394       if (!FullTy) {
5395         FullTy = I->getType();
5396         assert(
5397             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5398             !isa<ArrayType>(FullTy) &&
5399             (!isa<VectorType>(FullTy) ||
5400              cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() ||
5401              cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) &&
5402             "Structured types must be assigned with corresponding non-opaque "
5403             "pointer type");
5404       }
5405 
5406       assert(I->getType() == flattenPointerTypes(FullTy) &&
5407              "Incorrect fully structured type provided for Instruction");
5408       ValueList.assignValue(I, NextValueNo++, FullTy);
5409     }
5410   }
5411 
5412 OutOfRecordLoop:
5413 
5414   if (!OperandBundles.empty())
5415     return error("Operand bundles found with no consumer");
5416 
5417   // Check the function list for unresolved values.
5418   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5419     if (!A->getParent()) {
5420       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5421       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5422         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5423           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5424           delete A;
5425         }
5426       }
5427       return error("Never resolved value found in function");
5428     }
5429   }
5430 
5431   // Unexpected unresolved metadata about to be dropped.
5432   if (MDLoader->hasFwdRefs())
5433     return error("Invalid function metadata: outgoing forward refs");
5434 
5435   // Trim the value list down to the size it was before we parsed this function.
5436   ValueList.shrinkTo(ModuleValueListSize);
5437   MDLoader->shrinkTo(ModuleMDLoaderSize);
5438   std::vector<BasicBlock*>().swap(FunctionBBs);
5439   return Error::success();
5440 }
5441 
5442 /// Find the function body in the bitcode stream
5443 Error BitcodeReader::findFunctionInStream(
5444     Function *F,
5445     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5446   while (DeferredFunctionInfoIterator->second == 0) {
5447     // This is the fallback handling for the old format bitcode that
5448     // didn't contain the function index in the VST, or when we have
5449     // an anonymous function which would not have a VST entry.
5450     // Assert that we have one of those two cases.
5451     assert(VSTOffset == 0 || !F->hasName());
5452     // Parse the next body in the stream and set its position in the
5453     // DeferredFunctionInfo map.
5454     if (Error Err = rememberAndSkipFunctionBodies())
5455       return Err;
5456   }
5457   return Error::success();
5458 }
5459 
5460 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5461   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5462     return SyncScope::ID(Val);
5463   if (Val >= SSIDs.size())
5464     return SyncScope::System; // Map unknown synchronization scopes to system.
5465   return SSIDs[Val];
5466 }
5467 
5468 //===----------------------------------------------------------------------===//
5469 // GVMaterializer implementation
5470 //===----------------------------------------------------------------------===//
5471 
5472 Error BitcodeReader::materialize(GlobalValue *GV) {
5473   Function *F = dyn_cast<Function>(GV);
5474   // If it's not a function or is already material, ignore the request.
5475   if (!F || !F->isMaterializable())
5476     return Error::success();
5477 
5478   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5479   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5480   // If its position is recorded as 0, its body is somewhere in the stream
5481   // but we haven't seen it yet.
5482   if (DFII->second == 0)
5483     if (Error Err = findFunctionInStream(F, DFII))
5484       return Err;
5485 
5486   // Materialize metadata before parsing any function bodies.
5487   if (Error Err = materializeMetadata())
5488     return Err;
5489 
5490   // Move the bit stream to the saved position of the deferred function body.
5491   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5492     return JumpFailed;
5493   if (Error Err = parseFunctionBody(F))
5494     return Err;
5495   F->setIsMaterializable(false);
5496 
5497   if (StripDebugInfo)
5498     stripDebugInfo(*F);
5499 
5500   // Upgrade any old intrinsic calls in the function.
5501   for (auto &I : UpgradedIntrinsics) {
5502     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5503          UI != UE;) {
5504       User *U = *UI;
5505       ++UI;
5506       if (CallInst *CI = dyn_cast<CallInst>(U))
5507         UpgradeIntrinsicCall(CI, I.second);
5508     }
5509   }
5510 
5511   // Update calls to the remangled intrinsics
5512   for (auto &I : RemangledIntrinsics)
5513     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5514          UI != UE;)
5515       // Don't expect any other users than call sites
5516       cast<CallBase>(*UI++)->setCalledFunction(I.second);
5517 
5518   // Finish fn->subprogram upgrade for materialized functions.
5519   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5520     F->setSubprogram(SP);
5521 
5522   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5523   if (!MDLoader->isStrippingTBAA()) {
5524     for (auto &I : instructions(F)) {
5525       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5526       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5527         continue;
5528       MDLoader->setStripTBAA(true);
5529       stripTBAA(F->getParent());
5530     }
5531   }
5532 
5533   // "Upgrade" older incorrect branch weights by dropping them.
5534   for (auto &I : instructions(F)) {
5535     if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) {
5536       if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) {
5537         MDString *MDS = cast<MDString>(MD->getOperand(0));
5538         StringRef ProfName = MDS->getString();
5539         // Check consistency of !prof branch_weights metadata.
5540         if (!ProfName.equals("branch_weights"))
5541           continue;
5542         unsigned ExpectedNumOperands = 0;
5543         if (BranchInst *BI = dyn_cast<BranchInst>(&I))
5544           ExpectedNumOperands = BI->getNumSuccessors();
5545         else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I))
5546           ExpectedNumOperands = SI->getNumSuccessors();
5547         else if (isa<CallInst>(&I))
5548           ExpectedNumOperands = 1;
5549         else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I))
5550           ExpectedNumOperands = IBI->getNumDestinations();
5551         else if (isa<SelectInst>(&I))
5552           ExpectedNumOperands = 2;
5553         else
5554           continue; // ignore and continue.
5555 
5556         // If branch weight doesn't match, just strip branch weight.
5557         if (MD->getNumOperands() != 1 + ExpectedNumOperands)
5558           I.setMetadata(LLVMContext::MD_prof, nullptr);
5559       }
5560     }
5561   }
5562 
5563   // Look for functions that rely on old function attribute behavior.
5564   UpgradeFunctionAttributes(*F);
5565 
5566   // Bring in any functions that this function forward-referenced via
5567   // blockaddresses.
5568   return materializeForwardReferencedFunctions();
5569 }
5570 
5571 Error BitcodeReader::materializeModule() {
5572   if (Error Err = materializeMetadata())
5573     return Err;
5574 
5575   // Promise to materialize all forward references.
5576   WillMaterializeAllForwardRefs = true;
5577 
5578   // Iterate over the module, deserializing any functions that are still on
5579   // disk.
5580   for (Function &F : *TheModule) {
5581     if (Error Err = materialize(&F))
5582       return Err;
5583   }
5584   // At this point, if there are any function bodies, parse the rest of
5585   // the bits in the module past the last function block we have recorded
5586   // through either lazy scanning or the VST.
5587   if (LastFunctionBlockBit || NextUnreadBit)
5588     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5589                                     ? LastFunctionBlockBit
5590                                     : NextUnreadBit))
5591       return Err;
5592 
5593   // Check that all block address forward references got resolved (as we
5594   // promised above).
5595   if (!BasicBlockFwdRefs.empty())
5596     return error("Never resolved function from blockaddress");
5597 
5598   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5599   // delete the old functions to clean up. We can't do this unless the entire
5600   // module is materialized because there could always be another function body
5601   // with calls to the old function.
5602   for (auto &I : UpgradedIntrinsics) {
5603     for (auto *U : I.first->users()) {
5604       if (CallInst *CI = dyn_cast<CallInst>(U))
5605         UpgradeIntrinsicCall(CI, I.second);
5606     }
5607     if (!I.first->use_empty())
5608       I.first->replaceAllUsesWith(I.second);
5609     I.first->eraseFromParent();
5610   }
5611   UpgradedIntrinsics.clear();
5612   // Do the same for remangled intrinsics
5613   for (auto &I : RemangledIntrinsics) {
5614     I.first->replaceAllUsesWith(I.second);
5615     I.first->eraseFromParent();
5616   }
5617   RemangledIntrinsics.clear();
5618 
5619   UpgradeDebugInfo(*TheModule);
5620 
5621   UpgradeModuleFlags(*TheModule);
5622 
5623   UpgradeARCRuntime(*TheModule);
5624 
5625   return Error::success();
5626 }
5627 
5628 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5629   return IdentifiedStructTypes;
5630 }
5631 
5632 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5633     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5634     StringRef ModulePath, unsigned ModuleId)
5635     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5636       ModulePath(ModulePath), ModuleId(ModuleId) {}
5637 
5638 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5639   TheIndex.addModule(ModulePath, ModuleId);
5640 }
5641 
5642 ModuleSummaryIndex::ModuleInfo *
5643 ModuleSummaryIndexBitcodeReader::getThisModule() {
5644   return TheIndex.getModule(ModulePath);
5645 }
5646 
5647 std::pair<ValueInfo, GlobalValue::GUID>
5648 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5649   auto VGI = ValueIdToValueInfoMap[ValueId];
5650   assert(VGI.first);
5651   return VGI;
5652 }
5653 
5654 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5655     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5656     StringRef SourceFileName) {
5657   std::string GlobalId =
5658       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5659   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5660   auto OriginalNameID = ValueGUID;
5661   if (GlobalValue::isLocalLinkage(Linkage))
5662     OriginalNameID = GlobalValue::getGUID(ValueName);
5663   if (PrintSummaryGUIDs)
5664     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5665            << ValueName << "\n";
5666 
5667   // UseStrtab is false for legacy summary formats and value names are
5668   // created on stack. In that case we save the name in a string saver in
5669   // the index so that the value name can be recorded.
5670   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5671       TheIndex.getOrInsertValueInfo(
5672           ValueGUID,
5673           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5674       OriginalNameID);
5675 }
5676 
5677 // Specialized value symbol table parser used when reading module index
5678 // blocks where we don't actually create global values. The parsed information
5679 // is saved in the bitcode reader for use when later parsing summaries.
5680 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5681     uint64_t Offset,
5682     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5683   // With a strtab the VST is not required to parse the summary.
5684   if (UseStrtab)
5685     return Error::success();
5686 
5687   assert(Offset > 0 && "Expected non-zero VST offset");
5688   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5689   if (!MaybeCurrentBit)
5690     return MaybeCurrentBit.takeError();
5691   uint64_t CurrentBit = MaybeCurrentBit.get();
5692 
5693   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5694     return Err;
5695 
5696   SmallVector<uint64_t, 64> Record;
5697 
5698   // Read all the records for this value table.
5699   SmallString<128> ValueName;
5700 
5701   while (true) {
5702     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5703     if (!MaybeEntry)
5704       return MaybeEntry.takeError();
5705     BitstreamEntry Entry = MaybeEntry.get();
5706 
5707     switch (Entry.Kind) {
5708     case BitstreamEntry::SubBlock: // Handled for us already.
5709     case BitstreamEntry::Error:
5710       return error("Malformed block");
5711     case BitstreamEntry::EndBlock:
5712       // Done parsing VST, jump back to wherever we came from.
5713       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5714         return JumpFailed;
5715       return Error::success();
5716     case BitstreamEntry::Record:
5717       // The interesting case.
5718       break;
5719     }
5720 
5721     // Read a record.
5722     Record.clear();
5723     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5724     if (!MaybeRecord)
5725       return MaybeRecord.takeError();
5726     switch (MaybeRecord.get()) {
5727     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5728       break;
5729     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5730       if (convertToString(Record, 1, ValueName))
5731         return error("Invalid record");
5732       unsigned ValueID = Record[0];
5733       assert(!SourceFileName.empty());
5734       auto VLI = ValueIdToLinkageMap.find(ValueID);
5735       assert(VLI != ValueIdToLinkageMap.end() &&
5736              "No linkage found for VST entry?");
5737       auto Linkage = VLI->second;
5738       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5739       ValueName.clear();
5740       break;
5741     }
5742     case bitc::VST_CODE_FNENTRY: {
5743       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5744       if (convertToString(Record, 2, ValueName))
5745         return error("Invalid record");
5746       unsigned ValueID = Record[0];
5747       assert(!SourceFileName.empty());
5748       auto VLI = ValueIdToLinkageMap.find(ValueID);
5749       assert(VLI != ValueIdToLinkageMap.end() &&
5750              "No linkage found for VST entry?");
5751       auto Linkage = VLI->second;
5752       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5753       ValueName.clear();
5754       break;
5755     }
5756     case bitc::VST_CODE_COMBINED_ENTRY: {
5757       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5758       unsigned ValueID = Record[0];
5759       GlobalValue::GUID RefGUID = Record[1];
5760       // The "original name", which is the second value of the pair will be
5761       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5762       ValueIdToValueInfoMap[ValueID] =
5763           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5764       break;
5765     }
5766     }
5767   }
5768 }
5769 
5770 // Parse just the blocks needed for building the index out of the module.
5771 // At the end of this routine the module Index is populated with a map
5772 // from global value id to GlobalValueSummary objects.
5773 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5774   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5775     return Err;
5776 
5777   SmallVector<uint64_t, 64> Record;
5778   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5779   unsigned ValueId = 0;
5780 
5781   // Read the index for this module.
5782   while (true) {
5783     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5784     if (!MaybeEntry)
5785       return MaybeEntry.takeError();
5786     llvm::BitstreamEntry Entry = MaybeEntry.get();
5787 
5788     switch (Entry.Kind) {
5789     case BitstreamEntry::Error:
5790       return error("Malformed block");
5791     case BitstreamEntry::EndBlock:
5792       return Error::success();
5793 
5794     case BitstreamEntry::SubBlock:
5795       switch (Entry.ID) {
5796       default: // Skip unknown content.
5797         if (Error Err = Stream.SkipBlock())
5798           return Err;
5799         break;
5800       case bitc::BLOCKINFO_BLOCK_ID:
5801         // Need to parse these to get abbrev ids (e.g. for VST)
5802         if (readBlockInfo())
5803           return error("Malformed block");
5804         break;
5805       case bitc::VALUE_SYMTAB_BLOCK_ID:
5806         // Should have been parsed earlier via VSTOffset, unless there
5807         // is no summary section.
5808         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5809                 !SeenGlobalValSummary) &&
5810                "Expected early VST parse via VSTOffset record");
5811         if (Error Err = Stream.SkipBlock())
5812           return Err;
5813         break;
5814       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5815       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5816         // Add the module if it is a per-module index (has a source file name).
5817         if (!SourceFileName.empty())
5818           addThisModule();
5819         assert(!SeenValueSymbolTable &&
5820                "Already read VST when parsing summary block?");
5821         // We might not have a VST if there were no values in the
5822         // summary. An empty summary block generated when we are
5823         // performing ThinLTO compiles so we don't later invoke
5824         // the regular LTO process on them.
5825         if (VSTOffset > 0) {
5826           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5827             return Err;
5828           SeenValueSymbolTable = true;
5829         }
5830         SeenGlobalValSummary = true;
5831         if (Error Err = parseEntireSummary(Entry.ID))
5832           return Err;
5833         break;
5834       case bitc::MODULE_STRTAB_BLOCK_ID:
5835         if (Error Err = parseModuleStringTable())
5836           return Err;
5837         break;
5838       }
5839       continue;
5840 
5841     case BitstreamEntry::Record: {
5842         Record.clear();
5843         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5844         if (!MaybeBitCode)
5845           return MaybeBitCode.takeError();
5846         switch (MaybeBitCode.get()) {
5847         default:
5848           break; // Default behavior, ignore unknown content.
5849         case bitc::MODULE_CODE_VERSION: {
5850           if (Error Err = parseVersionRecord(Record).takeError())
5851             return Err;
5852           break;
5853         }
5854         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5855         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5856           SmallString<128> ValueName;
5857           if (convertToString(Record, 0, ValueName))
5858             return error("Invalid record");
5859           SourceFileName = ValueName.c_str();
5860           break;
5861         }
5862         /// MODULE_CODE_HASH: [5*i32]
5863         case bitc::MODULE_CODE_HASH: {
5864           if (Record.size() != 5)
5865             return error("Invalid hash length " + Twine(Record.size()).str());
5866           auto &Hash = getThisModule()->second.second;
5867           int Pos = 0;
5868           for (auto &Val : Record) {
5869             assert(!(Val >> 32) && "Unexpected high bits set");
5870             Hash[Pos++] = Val;
5871           }
5872           break;
5873         }
5874         /// MODULE_CODE_VSTOFFSET: [offset]
5875         case bitc::MODULE_CODE_VSTOFFSET:
5876           if (Record.empty())
5877             return error("Invalid record");
5878           // Note that we subtract 1 here because the offset is relative to one
5879           // word before the start of the identification or module block, which
5880           // was historically always the start of the regular bitcode header.
5881           VSTOffset = Record[0] - 1;
5882           break;
5883         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5884         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5885         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5886         // v2: [strtab offset, strtab size, v1]
5887         case bitc::MODULE_CODE_GLOBALVAR:
5888         case bitc::MODULE_CODE_FUNCTION:
5889         case bitc::MODULE_CODE_ALIAS: {
5890           StringRef Name;
5891           ArrayRef<uint64_t> GVRecord;
5892           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5893           if (GVRecord.size() <= 3)
5894             return error("Invalid record");
5895           uint64_t RawLinkage = GVRecord[3];
5896           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5897           if (!UseStrtab) {
5898             ValueIdToLinkageMap[ValueId++] = Linkage;
5899             break;
5900           }
5901 
5902           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5903           break;
5904         }
5905         }
5906       }
5907       continue;
5908     }
5909   }
5910 }
5911 
5912 std::vector<ValueInfo>
5913 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5914   std::vector<ValueInfo> Ret;
5915   Ret.reserve(Record.size());
5916   for (uint64_t RefValueId : Record)
5917     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5918   return Ret;
5919 }
5920 
5921 std::vector<FunctionSummary::EdgeTy>
5922 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5923                                               bool IsOldProfileFormat,
5924                                               bool HasProfile, bool HasRelBF) {
5925   std::vector<FunctionSummary::EdgeTy> Ret;
5926   Ret.reserve(Record.size());
5927   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5928     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5929     uint64_t RelBF = 0;
5930     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5931     if (IsOldProfileFormat) {
5932       I += 1; // Skip old callsitecount field
5933       if (HasProfile)
5934         I += 1; // Skip old profilecount field
5935     } else if (HasProfile)
5936       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5937     else if (HasRelBF)
5938       RelBF = Record[++I];
5939     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5940   }
5941   return Ret;
5942 }
5943 
5944 static void
5945 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5946                                        WholeProgramDevirtResolution &Wpd) {
5947   uint64_t ArgNum = Record[Slot++];
5948   WholeProgramDevirtResolution::ByArg &B =
5949       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5950   Slot += ArgNum;
5951 
5952   B.TheKind =
5953       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5954   B.Info = Record[Slot++];
5955   B.Byte = Record[Slot++];
5956   B.Bit = Record[Slot++];
5957 }
5958 
5959 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5960                                               StringRef Strtab, size_t &Slot,
5961                                               TypeIdSummary &TypeId) {
5962   uint64_t Id = Record[Slot++];
5963   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5964 
5965   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5966   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5967                         static_cast<size_t>(Record[Slot + 1])};
5968   Slot += 2;
5969 
5970   uint64_t ResByArgNum = Record[Slot++];
5971   for (uint64_t I = 0; I != ResByArgNum; ++I)
5972     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5973 }
5974 
5975 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5976                                      StringRef Strtab,
5977                                      ModuleSummaryIndex &TheIndex) {
5978   size_t Slot = 0;
5979   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5980       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5981   Slot += 2;
5982 
5983   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5984   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5985   TypeId.TTRes.AlignLog2 = Record[Slot++];
5986   TypeId.TTRes.SizeM1 = Record[Slot++];
5987   TypeId.TTRes.BitMask = Record[Slot++];
5988   TypeId.TTRes.InlineBits = Record[Slot++];
5989 
5990   while (Slot < Record.size())
5991     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5992 }
5993 
5994 std::vector<FunctionSummary::ParamAccess>
5995 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) {
5996   auto ReadRange = [&]() {
5997     APInt Lower(FunctionSummary::ParamAccess::RangeWidth,
5998                 BitcodeReader::decodeSignRotatedValue(Record.front()));
5999     Record = Record.drop_front();
6000     APInt Upper(FunctionSummary::ParamAccess::RangeWidth,
6001                 BitcodeReader::decodeSignRotatedValue(Record.front()));
6002     Record = Record.drop_front();
6003     ConstantRange Range{Lower, Upper};
6004     assert(!Range.isFullSet());
6005     assert(!Range.isUpperSignWrapped());
6006     return Range;
6007   };
6008 
6009   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6010   while (!Record.empty()) {
6011     PendingParamAccesses.emplace_back();
6012     FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back();
6013     ParamAccess.ParamNo = Record.front();
6014     Record = Record.drop_front();
6015     ParamAccess.Use = ReadRange();
6016     ParamAccess.Calls.resize(Record.front());
6017     Record = Record.drop_front();
6018     for (auto &Call : ParamAccess.Calls) {
6019       Call.ParamNo = Record.front();
6020       Record = Record.drop_front();
6021       Call.Callee = getValueInfoFromValueId(Record.front()).first;
6022       Record = Record.drop_front();
6023       Call.Offsets = ReadRange();
6024     }
6025   }
6026   return PendingParamAccesses;
6027 }
6028 
6029 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
6030     ArrayRef<uint64_t> Record, size_t &Slot,
6031     TypeIdCompatibleVtableInfo &TypeId) {
6032   uint64_t Offset = Record[Slot++];
6033   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
6034   TypeId.push_back({Offset, Callee});
6035 }
6036 
6037 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
6038     ArrayRef<uint64_t> Record) {
6039   size_t Slot = 0;
6040   TypeIdCompatibleVtableInfo &TypeId =
6041       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
6042           {Strtab.data() + Record[Slot],
6043            static_cast<size_t>(Record[Slot + 1])});
6044   Slot += 2;
6045 
6046   while (Slot < Record.size())
6047     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
6048 }
6049 
6050 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
6051                            unsigned WOCnt) {
6052   // Readonly and writeonly refs are in the end of the refs list.
6053   assert(ROCnt + WOCnt <= Refs.size());
6054   unsigned FirstWORef = Refs.size() - WOCnt;
6055   unsigned RefNo = FirstWORef - ROCnt;
6056   for (; RefNo < FirstWORef; ++RefNo)
6057     Refs[RefNo].setReadOnly();
6058   for (; RefNo < Refs.size(); ++RefNo)
6059     Refs[RefNo].setWriteOnly();
6060 }
6061 
6062 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
6063 // objects in the index.
6064 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
6065   if (Error Err = Stream.EnterSubBlock(ID))
6066     return Err;
6067   SmallVector<uint64_t, 64> Record;
6068 
6069   // Parse version
6070   {
6071     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6072     if (!MaybeEntry)
6073       return MaybeEntry.takeError();
6074     BitstreamEntry Entry = MaybeEntry.get();
6075 
6076     if (Entry.Kind != BitstreamEntry::Record)
6077       return error("Invalid Summary Block: record for version expected");
6078     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6079     if (!MaybeRecord)
6080       return MaybeRecord.takeError();
6081     if (MaybeRecord.get() != bitc::FS_VERSION)
6082       return error("Invalid Summary Block: version expected");
6083   }
6084   const uint64_t Version = Record[0];
6085   const bool IsOldProfileFormat = Version == 1;
6086   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
6087     return error("Invalid summary version " + Twine(Version) +
6088                  ". Version should be in the range [1-" +
6089                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
6090                  "].");
6091   Record.clear();
6092 
6093   // Keep around the last seen summary to be used when we see an optional
6094   // "OriginalName" attachement.
6095   GlobalValueSummary *LastSeenSummary = nullptr;
6096   GlobalValue::GUID LastSeenGUID = 0;
6097 
6098   // We can expect to see any number of type ID information records before
6099   // each function summary records; these variables store the information
6100   // collected so far so that it can be used to create the summary object.
6101   std::vector<GlobalValue::GUID> PendingTypeTests;
6102   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
6103       PendingTypeCheckedLoadVCalls;
6104   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
6105       PendingTypeCheckedLoadConstVCalls;
6106   std::vector<FunctionSummary::ParamAccess> PendingParamAccesses;
6107 
6108   while (true) {
6109     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6110     if (!MaybeEntry)
6111       return MaybeEntry.takeError();
6112     BitstreamEntry Entry = MaybeEntry.get();
6113 
6114     switch (Entry.Kind) {
6115     case BitstreamEntry::SubBlock: // Handled for us already.
6116     case BitstreamEntry::Error:
6117       return error("Malformed block");
6118     case BitstreamEntry::EndBlock:
6119       return Error::success();
6120     case BitstreamEntry::Record:
6121       // The interesting case.
6122       break;
6123     }
6124 
6125     // Read a record. The record format depends on whether this
6126     // is a per-module index or a combined index file. In the per-module
6127     // case the records contain the associated value's ID for correlation
6128     // with VST entries. In the combined index the correlation is done
6129     // via the bitcode offset of the summary records (which were saved
6130     // in the combined index VST entries). The records also contain
6131     // information used for ThinLTO renaming and importing.
6132     Record.clear();
6133     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6134     if (!MaybeBitCode)
6135       return MaybeBitCode.takeError();
6136     switch (unsigned BitCode = MaybeBitCode.get()) {
6137     default: // Default behavior: ignore.
6138       break;
6139     case bitc::FS_FLAGS: {  // [flags]
6140       TheIndex.setFlags(Record[0]);
6141       break;
6142     }
6143     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
6144       uint64_t ValueID = Record[0];
6145       GlobalValue::GUID RefGUID = Record[1];
6146       ValueIdToValueInfoMap[ValueID] =
6147           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
6148       break;
6149     }
6150     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
6151     //                numrefs x valueid, n x (valueid)]
6152     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
6153     //                        numrefs x valueid,
6154     //                        n x (valueid, hotness)]
6155     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
6156     //                      numrefs x valueid,
6157     //                      n x (valueid, relblockfreq)]
6158     case bitc::FS_PERMODULE:
6159     case bitc::FS_PERMODULE_RELBF:
6160     case bitc::FS_PERMODULE_PROFILE: {
6161       unsigned ValueID = Record[0];
6162       uint64_t RawFlags = Record[1];
6163       unsigned InstCount = Record[2];
6164       uint64_t RawFunFlags = 0;
6165       unsigned NumRefs = Record[3];
6166       unsigned NumRORefs = 0, NumWORefs = 0;
6167       int RefListStartIndex = 4;
6168       if (Version >= 4) {
6169         RawFunFlags = Record[3];
6170         NumRefs = Record[4];
6171         RefListStartIndex = 5;
6172         if (Version >= 5) {
6173           NumRORefs = Record[5];
6174           RefListStartIndex = 6;
6175           if (Version >= 7) {
6176             NumWORefs = Record[6];
6177             RefListStartIndex = 7;
6178           }
6179         }
6180       }
6181 
6182       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6183       // The module path string ref set in the summary must be owned by the
6184       // index's module string table. Since we don't have a module path
6185       // string table section in the per-module index, we create a single
6186       // module path string table entry with an empty (0) ID to take
6187       // ownership.
6188       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6189       assert(Record.size() >= RefListStartIndex + NumRefs &&
6190              "Record size inconsistent with number of references");
6191       std::vector<ValueInfo> Refs = makeRefList(
6192           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6193       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
6194       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
6195       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
6196           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6197           IsOldProfileFormat, HasProfile, HasRelBF);
6198       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6199       auto FS = std::make_unique<FunctionSummary>(
6200           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
6201           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
6202           std::move(PendingTypeTestAssumeVCalls),
6203           std::move(PendingTypeCheckedLoadVCalls),
6204           std::move(PendingTypeTestAssumeConstVCalls),
6205           std::move(PendingTypeCheckedLoadConstVCalls),
6206           std::move(PendingParamAccesses));
6207       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
6208       FS->setModulePath(getThisModule()->first());
6209       FS->setOriginalName(VIAndOriginalGUID.second);
6210       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
6211       break;
6212     }
6213     // FS_ALIAS: [valueid, flags, valueid]
6214     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
6215     // they expect all aliasee summaries to be available.
6216     case bitc::FS_ALIAS: {
6217       unsigned ValueID = Record[0];
6218       uint64_t RawFlags = Record[1];
6219       unsigned AliaseeID = Record[2];
6220       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6221       auto AS = std::make_unique<AliasSummary>(Flags);
6222       // The module path string ref set in the summary must be owned by the
6223       // index's module string table. Since we don't have a module path
6224       // string table section in the per-module index, we create a single
6225       // module path string table entry with an empty (0) ID to take
6226       // ownership.
6227       AS->setModulePath(getThisModule()->first());
6228 
6229       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
6230       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
6231       if (!AliaseeInModule)
6232         return error("Alias expects aliasee summary to be parsed");
6233       AS->setAliasee(AliaseeVI, AliaseeInModule);
6234 
6235       auto GUID = getValueInfoFromValueId(ValueID);
6236       AS->setOriginalName(GUID.second);
6237       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
6238       break;
6239     }
6240     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
6241     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
6242       unsigned ValueID = Record[0];
6243       uint64_t RawFlags = Record[1];
6244       unsigned RefArrayStart = 2;
6245       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6246                                       /* WriteOnly */ false,
6247                                       /* Constant */ false,
6248                                       GlobalObject::VCallVisibilityPublic);
6249       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6250       if (Version >= 5) {
6251         GVF = getDecodedGVarFlags(Record[2]);
6252         RefArrayStart = 3;
6253       }
6254       std::vector<ValueInfo> Refs =
6255           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6256       auto FS =
6257           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6258       FS->setModulePath(getThisModule()->first());
6259       auto GUID = getValueInfoFromValueId(ValueID);
6260       FS->setOriginalName(GUID.second);
6261       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
6262       break;
6263     }
6264     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
6265     //                        numrefs, numrefs x valueid,
6266     //                        n x (valueid, offset)]
6267     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
6268       unsigned ValueID = Record[0];
6269       uint64_t RawFlags = Record[1];
6270       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
6271       unsigned NumRefs = Record[3];
6272       unsigned RefListStartIndex = 4;
6273       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
6274       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6275       std::vector<ValueInfo> Refs = makeRefList(
6276           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6277       VTableFuncList VTableFuncs;
6278       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
6279         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
6280         uint64_t Offset = Record[++I];
6281         VTableFuncs.push_back({Callee, Offset});
6282       }
6283       auto VS =
6284           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6285       VS->setModulePath(getThisModule()->first());
6286       VS->setVTableFuncs(VTableFuncs);
6287       auto GUID = getValueInfoFromValueId(ValueID);
6288       VS->setOriginalName(GUID.second);
6289       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6290       break;
6291     }
6292     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6293     //               numrefs x valueid, n x (valueid)]
6294     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6295     //                       numrefs x valueid, n x (valueid, hotness)]
6296     case bitc::FS_COMBINED:
6297     case bitc::FS_COMBINED_PROFILE: {
6298       unsigned ValueID = Record[0];
6299       uint64_t ModuleId = Record[1];
6300       uint64_t RawFlags = Record[2];
6301       unsigned InstCount = Record[3];
6302       uint64_t RawFunFlags = 0;
6303       uint64_t EntryCount = 0;
6304       unsigned NumRefs = Record[4];
6305       unsigned NumRORefs = 0, NumWORefs = 0;
6306       int RefListStartIndex = 5;
6307 
6308       if (Version >= 4) {
6309         RawFunFlags = Record[4];
6310         RefListStartIndex = 6;
6311         size_t NumRefsIndex = 5;
6312         if (Version >= 5) {
6313           unsigned NumRORefsOffset = 1;
6314           RefListStartIndex = 7;
6315           if (Version >= 6) {
6316             NumRefsIndex = 6;
6317             EntryCount = Record[5];
6318             RefListStartIndex = 8;
6319             if (Version >= 7) {
6320               RefListStartIndex = 9;
6321               NumWORefs = Record[8];
6322               NumRORefsOffset = 2;
6323             }
6324           }
6325           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6326         }
6327         NumRefs = Record[NumRefsIndex];
6328       }
6329 
6330       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6331       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6332       assert(Record.size() >= RefListStartIndex + NumRefs &&
6333              "Record size inconsistent with number of references");
6334       std::vector<ValueInfo> Refs = makeRefList(
6335           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6336       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6337       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6338           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6339           IsOldProfileFormat, HasProfile, false);
6340       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6341       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6342       auto FS = std::make_unique<FunctionSummary>(
6343           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6344           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6345           std::move(PendingTypeTestAssumeVCalls),
6346           std::move(PendingTypeCheckedLoadVCalls),
6347           std::move(PendingTypeTestAssumeConstVCalls),
6348           std::move(PendingTypeCheckedLoadConstVCalls),
6349           std::move(PendingParamAccesses));
6350       LastSeenSummary = FS.get();
6351       LastSeenGUID = VI.getGUID();
6352       FS->setModulePath(ModuleIdMap[ModuleId]);
6353       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6354       break;
6355     }
6356     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6357     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6358     // they expect all aliasee summaries to be available.
6359     case bitc::FS_COMBINED_ALIAS: {
6360       unsigned ValueID = Record[0];
6361       uint64_t ModuleId = Record[1];
6362       uint64_t RawFlags = Record[2];
6363       unsigned AliaseeValueId = Record[3];
6364       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6365       auto AS = std::make_unique<AliasSummary>(Flags);
6366       LastSeenSummary = AS.get();
6367       AS->setModulePath(ModuleIdMap[ModuleId]);
6368 
6369       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6370       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6371       AS->setAliasee(AliaseeVI, AliaseeInModule);
6372 
6373       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6374       LastSeenGUID = VI.getGUID();
6375       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6376       break;
6377     }
6378     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6379     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6380       unsigned ValueID = Record[0];
6381       uint64_t ModuleId = Record[1];
6382       uint64_t RawFlags = Record[2];
6383       unsigned RefArrayStart = 3;
6384       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6385                                       /* WriteOnly */ false,
6386                                       /* Constant */ false,
6387                                       GlobalObject::VCallVisibilityPublic);
6388       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6389       if (Version >= 5) {
6390         GVF = getDecodedGVarFlags(Record[3]);
6391         RefArrayStart = 4;
6392       }
6393       std::vector<ValueInfo> Refs =
6394           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6395       auto FS =
6396           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6397       LastSeenSummary = FS.get();
6398       FS->setModulePath(ModuleIdMap[ModuleId]);
6399       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6400       LastSeenGUID = VI.getGUID();
6401       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6402       break;
6403     }
6404     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6405     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6406       uint64_t OriginalName = Record[0];
6407       if (!LastSeenSummary)
6408         return error("Name attachment that does not follow a combined record");
6409       LastSeenSummary->setOriginalName(OriginalName);
6410       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6411       // Reset the LastSeenSummary
6412       LastSeenSummary = nullptr;
6413       LastSeenGUID = 0;
6414       break;
6415     }
6416     case bitc::FS_TYPE_TESTS:
6417       assert(PendingTypeTests.empty());
6418       llvm::append_range(PendingTypeTests, Record);
6419       break;
6420 
6421     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6422       assert(PendingTypeTestAssumeVCalls.empty());
6423       for (unsigned I = 0; I != Record.size(); I += 2)
6424         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6425       break;
6426 
6427     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6428       assert(PendingTypeCheckedLoadVCalls.empty());
6429       for (unsigned I = 0; I != Record.size(); I += 2)
6430         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6431       break;
6432 
6433     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6434       PendingTypeTestAssumeConstVCalls.push_back(
6435           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6436       break;
6437 
6438     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6439       PendingTypeCheckedLoadConstVCalls.push_back(
6440           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6441       break;
6442 
6443     case bitc::FS_CFI_FUNCTION_DEFS: {
6444       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6445       for (unsigned I = 0; I != Record.size(); I += 2)
6446         CfiFunctionDefs.insert(
6447             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6448       break;
6449     }
6450 
6451     case bitc::FS_CFI_FUNCTION_DECLS: {
6452       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6453       for (unsigned I = 0; I != Record.size(); I += 2)
6454         CfiFunctionDecls.insert(
6455             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6456       break;
6457     }
6458 
6459     case bitc::FS_TYPE_ID:
6460       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6461       break;
6462 
6463     case bitc::FS_TYPE_ID_METADATA:
6464       parseTypeIdCompatibleVtableSummaryRecord(Record);
6465       break;
6466 
6467     case bitc::FS_BLOCK_COUNT:
6468       TheIndex.addBlockCount(Record[0]);
6469       break;
6470 
6471     case bitc::FS_PARAM_ACCESS: {
6472       PendingParamAccesses = parseParamAccesses(Record);
6473       break;
6474     }
6475     }
6476   }
6477   llvm_unreachable("Exit infinite loop");
6478 }
6479 
6480 // Parse the  module string table block into the Index.
6481 // This populates the ModulePathStringTable map in the index.
6482 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6483   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6484     return Err;
6485 
6486   SmallVector<uint64_t, 64> Record;
6487 
6488   SmallString<128> ModulePath;
6489   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6490 
6491   while (true) {
6492     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6493     if (!MaybeEntry)
6494       return MaybeEntry.takeError();
6495     BitstreamEntry Entry = MaybeEntry.get();
6496 
6497     switch (Entry.Kind) {
6498     case BitstreamEntry::SubBlock: // Handled for us already.
6499     case BitstreamEntry::Error:
6500       return error("Malformed block");
6501     case BitstreamEntry::EndBlock:
6502       return Error::success();
6503     case BitstreamEntry::Record:
6504       // The interesting case.
6505       break;
6506     }
6507 
6508     Record.clear();
6509     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6510     if (!MaybeRecord)
6511       return MaybeRecord.takeError();
6512     switch (MaybeRecord.get()) {
6513     default: // Default behavior: ignore.
6514       break;
6515     case bitc::MST_CODE_ENTRY: {
6516       // MST_ENTRY: [modid, namechar x N]
6517       uint64_t ModuleId = Record[0];
6518 
6519       if (convertToString(Record, 1, ModulePath))
6520         return error("Invalid record");
6521 
6522       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6523       ModuleIdMap[ModuleId] = LastSeenModule->first();
6524 
6525       ModulePath.clear();
6526       break;
6527     }
6528     /// MST_CODE_HASH: [5*i32]
6529     case bitc::MST_CODE_HASH: {
6530       if (Record.size() != 5)
6531         return error("Invalid hash length " + Twine(Record.size()).str());
6532       if (!LastSeenModule)
6533         return error("Invalid hash that does not follow a module path");
6534       int Pos = 0;
6535       for (auto &Val : Record) {
6536         assert(!(Val >> 32) && "Unexpected high bits set");
6537         LastSeenModule->second.second[Pos++] = Val;
6538       }
6539       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6540       LastSeenModule = nullptr;
6541       break;
6542     }
6543     }
6544   }
6545   llvm_unreachable("Exit infinite loop");
6546 }
6547 
6548 namespace {
6549 
6550 // FIXME: This class is only here to support the transition to llvm::Error. It
6551 // will be removed once this transition is complete. Clients should prefer to
6552 // deal with the Error value directly, rather than converting to error_code.
6553 class BitcodeErrorCategoryType : public std::error_category {
6554   const char *name() const noexcept override {
6555     return "llvm.bitcode";
6556   }
6557 
6558   std::string message(int IE) const override {
6559     BitcodeError E = static_cast<BitcodeError>(IE);
6560     switch (E) {
6561     case BitcodeError::CorruptedBitcode:
6562       return "Corrupted bitcode";
6563     }
6564     llvm_unreachable("Unknown error type!");
6565   }
6566 };
6567 
6568 } // end anonymous namespace
6569 
6570 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6571 
6572 const std::error_category &llvm::BitcodeErrorCategory() {
6573   return *ErrorCategory;
6574 }
6575 
6576 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6577                                             unsigned Block, unsigned RecordID) {
6578   if (Error Err = Stream.EnterSubBlock(Block))
6579     return std::move(Err);
6580 
6581   StringRef Strtab;
6582   while (true) {
6583     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6584     if (!MaybeEntry)
6585       return MaybeEntry.takeError();
6586     llvm::BitstreamEntry Entry = MaybeEntry.get();
6587 
6588     switch (Entry.Kind) {
6589     case BitstreamEntry::EndBlock:
6590       return Strtab;
6591 
6592     case BitstreamEntry::Error:
6593       return error("Malformed block");
6594 
6595     case BitstreamEntry::SubBlock:
6596       if (Error Err = Stream.SkipBlock())
6597         return std::move(Err);
6598       break;
6599 
6600     case BitstreamEntry::Record:
6601       StringRef Blob;
6602       SmallVector<uint64_t, 1> Record;
6603       Expected<unsigned> MaybeRecord =
6604           Stream.readRecord(Entry.ID, Record, &Blob);
6605       if (!MaybeRecord)
6606         return MaybeRecord.takeError();
6607       if (MaybeRecord.get() == RecordID)
6608         Strtab = Blob;
6609       break;
6610     }
6611   }
6612 }
6613 
6614 //===----------------------------------------------------------------------===//
6615 // External interface
6616 //===----------------------------------------------------------------------===//
6617 
6618 Expected<std::vector<BitcodeModule>>
6619 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6620   auto FOrErr = getBitcodeFileContents(Buffer);
6621   if (!FOrErr)
6622     return FOrErr.takeError();
6623   return std::move(FOrErr->Mods);
6624 }
6625 
6626 Expected<BitcodeFileContents>
6627 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6628   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6629   if (!StreamOrErr)
6630     return StreamOrErr.takeError();
6631   BitstreamCursor &Stream = *StreamOrErr;
6632 
6633   BitcodeFileContents F;
6634   while (true) {
6635     uint64_t BCBegin = Stream.getCurrentByteNo();
6636 
6637     // We may be consuming bitcode from a client that leaves garbage at the end
6638     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6639     // the end that there cannot possibly be another module, stop looking.
6640     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6641       return F;
6642 
6643     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6644     if (!MaybeEntry)
6645       return MaybeEntry.takeError();
6646     llvm::BitstreamEntry Entry = MaybeEntry.get();
6647 
6648     switch (Entry.Kind) {
6649     case BitstreamEntry::EndBlock:
6650     case BitstreamEntry::Error:
6651       return error("Malformed block");
6652 
6653     case BitstreamEntry::SubBlock: {
6654       uint64_t IdentificationBit = -1ull;
6655       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6656         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6657         if (Error Err = Stream.SkipBlock())
6658           return std::move(Err);
6659 
6660         {
6661           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6662           if (!MaybeEntry)
6663             return MaybeEntry.takeError();
6664           Entry = MaybeEntry.get();
6665         }
6666 
6667         if (Entry.Kind != BitstreamEntry::SubBlock ||
6668             Entry.ID != bitc::MODULE_BLOCK_ID)
6669           return error("Malformed block");
6670       }
6671 
6672       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6673         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6674         if (Error Err = Stream.SkipBlock())
6675           return std::move(Err);
6676 
6677         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6678                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6679                           Buffer.getBufferIdentifier(), IdentificationBit,
6680                           ModuleBit});
6681         continue;
6682       }
6683 
6684       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6685         Expected<StringRef> Strtab =
6686             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6687         if (!Strtab)
6688           return Strtab.takeError();
6689         // This string table is used by every preceding bitcode module that does
6690         // not have its own string table. A bitcode file may have multiple
6691         // string tables if it was created by binary concatenation, for example
6692         // with "llvm-cat -b".
6693         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6694           if (!I->Strtab.empty())
6695             break;
6696           I->Strtab = *Strtab;
6697         }
6698         // Similarly, the string table is used by every preceding symbol table;
6699         // normally there will be just one unless the bitcode file was created
6700         // by binary concatenation.
6701         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6702           F.StrtabForSymtab = *Strtab;
6703         continue;
6704       }
6705 
6706       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6707         Expected<StringRef> SymtabOrErr =
6708             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6709         if (!SymtabOrErr)
6710           return SymtabOrErr.takeError();
6711 
6712         // We can expect the bitcode file to have multiple symbol tables if it
6713         // was created by binary concatenation. In that case we silently
6714         // ignore any subsequent symbol tables, which is fine because this is a
6715         // low level function. The client is expected to notice that the number
6716         // of modules in the symbol table does not match the number of modules
6717         // in the input file and regenerate the symbol table.
6718         if (F.Symtab.empty())
6719           F.Symtab = *SymtabOrErr;
6720         continue;
6721       }
6722 
6723       if (Error Err = Stream.SkipBlock())
6724         return std::move(Err);
6725       continue;
6726     }
6727     case BitstreamEntry::Record:
6728       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6729         continue;
6730       else
6731         return StreamFailed.takeError();
6732     }
6733   }
6734 }
6735 
6736 /// Get a lazy one-at-time loading module from bitcode.
6737 ///
6738 /// This isn't always used in a lazy context.  In particular, it's also used by
6739 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6740 /// in forward-referenced functions from block address references.
6741 ///
6742 /// \param[in] MaterializeAll Set to \c true if we should materialize
6743 /// everything.
6744 Expected<std::unique_ptr<Module>>
6745 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6746                              bool ShouldLazyLoadMetadata, bool IsImporting,
6747                              DataLayoutCallbackTy DataLayoutCallback) {
6748   BitstreamCursor Stream(Buffer);
6749 
6750   std::string ProducerIdentification;
6751   if (IdentificationBit != -1ull) {
6752     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6753       return std::move(JumpFailed);
6754     Expected<std::string> ProducerIdentificationOrErr =
6755         readIdentificationBlock(Stream);
6756     if (!ProducerIdentificationOrErr)
6757       return ProducerIdentificationOrErr.takeError();
6758 
6759     ProducerIdentification = *ProducerIdentificationOrErr;
6760   }
6761 
6762   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6763     return std::move(JumpFailed);
6764   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6765                               Context);
6766 
6767   std::unique_ptr<Module> M =
6768       std::make_unique<Module>(ModuleIdentifier, Context);
6769   M->setMaterializer(R);
6770 
6771   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6772   if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata,
6773                                       IsImporting, DataLayoutCallback))
6774     return std::move(Err);
6775 
6776   if (MaterializeAll) {
6777     // Read in the entire module, and destroy the BitcodeReader.
6778     if (Error Err = M->materializeAll())
6779       return std::move(Err);
6780   } else {
6781     // Resolve forward references from blockaddresses.
6782     if (Error Err = R->materializeForwardReferencedFunctions())
6783       return std::move(Err);
6784   }
6785   return std::move(M);
6786 }
6787 
6788 Expected<std::unique_ptr<Module>>
6789 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6790                              bool IsImporting) {
6791   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting,
6792                        [](StringRef) { return None; });
6793 }
6794 
6795 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6796 // We don't use ModuleIdentifier here because the client may need to control the
6797 // module path used in the combined summary (e.g. when reading summaries for
6798 // regular LTO modules).
6799 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6800                                  StringRef ModulePath, uint64_t ModuleId) {
6801   BitstreamCursor Stream(Buffer);
6802   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6803     return JumpFailed;
6804 
6805   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6806                                     ModulePath, ModuleId);
6807   return R.parseModule();
6808 }
6809 
6810 // Parse the specified bitcode buffer, returning the function info index.
6811 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6812   BitstreamCursor Stream(Buffer);
6813   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6814     return std::move(JumpFailed);
6815 
6816   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6817   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6818                                     ModuleIdentifier, 0);
6819 
6820   if (Error Err = R.parseModule())
6821     return std::move(Err);
6822 
6823   return std::move(Index);
6824 }
6825 
6826 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6827                                                 unsigned ID) {
6828   if (Error Err = Stream.EnterSubBlock(ID))
6829     return std::move(Err);
6830   SmallVector<uint64_t, 64> Record;
6831 
6832   while (true) {
6833     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6834     if (!MaybeEntry)
6835       return MaybeEntry.takeError();
6836     BitstreamEntry Entry = MaybeEntry.get();
6837 
6838     switch (Entry.Kind) {
6839     case BitstreamEntry::SubBlock: // Handled for us already.
6840     case BitstreamEntry::Error:
6841       return error("Malformed block");
6842     case BitstreamEntry::EndBlock:
6843       // If no flags record found, conservatively return true to mimic
6844       // behavior before this flag was added.
6845       return true;
6846     case BitstreamEntry::Record:
6847       // The interesting case.
6848       break;
6849     }
6850 
6851     // Look for the FS_FLAGS record.
6852     Record.clear();
6853     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6854     if (!MaybeBitCode)
6855       return MaybeBitCode.takeError();
6856     switch (MaybeBitCode.get()) {
6857     default: // Default behavior: ignore.
6858       break;
6859     case bitc::FS_FLAGS: { // [flags]
6860       uint64_t Flags = Record[0];
6861       // Scan flags.
6862       assert(Flags <= 0x7f && "Unexpected bits in flag");
6863 
6864       return Flags & 0x8;
6865     }
6866     }
6867   }
6868   llvm_unreachable("Exit infinite loop");
6869 }
6870 
6871 // Check if the given bitcode buffer contains a global value summary block.
6872 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6873   BitstreamCursor Stream(Buffer);
6874   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6875     return std::move(JumpFailed);
6876 
6877   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6878     return std::move(Err);
6879 
6880   while (true) {
6881     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6882     if (!MaybeEntry)
6883       return MaybeEntry.takeError();
6884     llvm::BitstreamEntry Entry = MaybeEntry.get();
6885 
6886     switch (Entry.Kind) {
6887     case BitstreamEntry::Error:
6888       return error("Malformed block");
6889     case BitstreamEntry::EndBlock:
6890       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6891                             /*EnableSplitLTOUnit=*/false};
6892 
6893     case BitstreamEntry::SubBlock:
6894       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6895         Expected<bool> EnableSplitLTOUnit =
6896             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6897         if (!EnableSplitLTOUnit)
6898           return EnableSplitLTOUnit.takeError();
6899         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6900                               *EnableSplitLTOUnit};
6901       }
6902 
6903       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6904         Expected<bool> EnableSplitLTOUnit =
6905             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6906         if (!EnableSplitLTOUnit)
6907           return EnableSplitLTOUnit.takeError();
6908         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6909                               *EnableSplitLTOUnit};
6910       }
6911 
6912       // Ignore other sub-blocks.
6913       if (Error Err = Stream.SkipBlock())
6914         return std::move(Err);
6915       continue;
6916 
6917     case BitstreamEntry::Record:
6918       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6919         continue;
6920       else
6921         return StreamFailed.takeError();
6922     }
6923   }
6924 }
6925 
6926 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6927   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6928   if (!MsOrErr)
6929     return MsOrErr.takeError();
6930 
6931   if (MsOrErr->size() != 1)
6932     return error("Expected a single module");
6933 
6934   return (*MsOrErr)[0];
6935 }
6936 
6937 Expected<std::unique_ptr<Module>>
6938 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6939                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6940   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6941   if (!BM)
6942     return BM.takeError();
6943 
6944   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6945 }
6946 
6947 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6948     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6949     bool ShouldLazyLoadMetadata, bool IsImporting) {
6950   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6951                                      IsImporting);
6952   if (MOrErr)
6953     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6954   return MOrErr;
6955 }
6956 
6957 Expected<std::unique_ptr<Module>>
6958 BitcodeModule::parseModule(LLVMContext &Context,
6959                            DataLayoutCallbackTy DataLayoutCallback) {
6960   return getModuleImpl(Context, true, false, false, DataLayoutCallback);
6961   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6962   // written.  We must defer until the Module has been fully materialized.
6963 }
6964 
6965 Expected<std::unique_ptr<Module>>
6966 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context,
6967                        DataLayoutCallbackTy DataLayoutCallback) {
6968   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6969   if (!BM)
6970     return BM.takeError();
6971 
6972   return BM->parseModule(Context, DataLayoutCallback);
6973 }
6974 
6975 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6976   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6977   if (!StreamOrErr)
6978     return StreamOrErr.takeError();
6979 
6980   return readTriple(*StreamOrErr);
6981 }
6982 
6983 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6984   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6985   if (!StreamOrErr)
6986     return StreamOrErr.takeError();
6987 
6988   return hasObjCCategory(*StreamOrErr);
6989 }
6990 
6991 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6992   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6993   if (!StreamOrErr)
6994     return StreamOrErr.takeError();
6995 
6996   return readIdentificationCode(*StreamOrErr);
6997 }
6998 
6999 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
7000                                    ModuleSummaryIndex &CombinedIndex,
7001                                    uint64_t ModuleId) {
7002   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7003   if (!BM)
7004     return BM.takeError();
7005 
7006   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
7007 }
7008 
7009 Expected<std::unique_ptr<ModuleSummaryIndex>>
7010 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
7011   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7012   if (!BM)
7013     return BM.takeError();
7014 
7015   return BM->getSummary();
7016 }
7017 
7018 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
7019   Expected<BitcodeModule> BM = getSingleModule(Buffer);
7020   if (!BM)
7021     return BM.takeError();
7022 
7023   return BM->getLTOInfo();
7024 }
7025 
7026 Expected<std::unique_ptr<ModuleSummaryIndex>>
7027 llvm::getModuleSummaryIndexForFile(StringRef Path,
7028                                    bool IgnoreEmptyThinLTOIndexFile) {
7029   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
7030       MemoryBuffer::getFileOrSTDIN(Path);
7031   if (!FileOrErr)
7032     return errorCodeToError(FileOrErr.getError());
7033   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
7034     return nullptr;
7035   return getModuleSummaryIndex(**FileOrErr);
7036 }
7037