1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/BitcodeReader.h" 11 #include "MetadataLoader.h" 12 #include "ValueList.h" 13 #include "llvm/ADT/APFloat.h" 14 #include "llvm/ADT/APInt.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/ADT/Triple.h" 23 #include "llvm/ADT/Twine.h" 24 #include "llvm/Bitcode/BitstreamReader.h" 25 #include "llvm/Bitcode/LLVMBitCodes.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 /// Helper to read the header common to all bitcode files. 109 static bool hasValidBitcodeHeader(BitstreamCursor &Stream) { 110 // Sniff for the signature. 111 if (!Stream.canSkipToPos(4) || 112 Stream.Read(8) != 'B' || 113 Stream.Read(8) != 'C' || 114 Stream.Read(4) != 0x0 || 115 Stream.Read(4) != 0xC || 116 Stream.Read(4) != 0xE || 117 Stream.Read(4) != 0xD) 118 return false; 119 return true; 120 } 121 122 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 123 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 124 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 125 126 if (Buffer.getBufferSize() & 3) 127 return error("Invalid bitcode signature"); 128 129 // If we have a wrapper header, parse it and ignore the non-bc file contents. 130 // The magic number is 0x0B17C0DE stored in little endian. 131 if (isBitcodeWrapper(BufPtr, BufEnd)) 132 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 133 return error("Invalid bitcode wrapper header"); 134 135 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 136 if (!hasValidBitcodeHeader(Stream)) 137 return error("Invalid bitcode signature"); 138 139 return std::move(Stream); 140 } 141 142 /// Convert a string from a record into an std::string, return true on failure. 143 template <typename StrTy> 144 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 145 StrTy &Result) { 146 if (Idx > Record.size()) 147 return true; 148 149 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 150 Result += (char)Record[i]; 151 return false; 152 } 153 154 // Strip all the TBAA attachment for the module. 155 static void stripTBAA(Module *M) { 156 for (auto &F : *M) { 157 if (F.isMaterializable()) 158 continue; 159 for (auto &I : instructions(F)) 160 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 161 } 162 } 163 164 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 165 /// "epoch" encoded in the bitcode, and return the producer name if any. 166 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 167 if (Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 168 return error("Invalid record"); 169 170 // Read all the records. 171 SmallVector<uint64_t, 64> Record; 172 173 std::string ProducerIdentification; 174 175 while (true) { 176 BitstreamEntry Entry = Stream.advance(); 177 178 switch (Entry.Kind) { 179 default: 180 case BitstreamEntry::Error: 181 return error("Malformed block"); 182 case BitstreamEntry::EndBlock: 183 return ProducerIdentification; 184 case BitstreamEntry::Record: 185 // The interesting case. 186 break; 187 } 188 189 // Read a record. 190 Record.clear(); 191 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 192 switch (BitCode) { 193 default: // Default behavior: reject 194 return error("Invalid value"); 195 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 196 convertToString(Record, 0, ProducerIdentification); 197 break; 198 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 199 unsigned epoch = (unsigned)Record[0]; 200 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 201 return error( 202 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 203 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 204 } 205 } 206 } 207 } 208 } 209 210 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 211 // We expect a number of well-defined blocks, though we don't necessarily 212 // need to understand them all. 213 while (true) { 214 if (Stream.AtEndOfStream()) 215 return ""; 216 217 BitstreamEntry Entry = Stream.advance(); 218 switch (Entry.Kind) { 219 case BitstreamEntry::EndBlock: 220 case BitstreamEntry::Error: 221 return error("Malformed block"); 222 223 case BitstreamEntry::SubBlock: 224 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 225 return readIdentificationBlock(Stream); 226 227 // Ignore other sub-blocks. 228 if (Stream.SkipBlock()) 229 return error("Malformed block"); 230 continue; 231 case BitstreamEntry::Record: 232 Stream.skipRecord(Entry.ID); 233 continue; 234 } 235 } 236 } 237 238 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 239 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 240 return error("Invalid record"); 241 242 SmallVector<uint64_t, 64> Record; 243 // Read all the records for this module. 244 245 while (true) { 246 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 247 248 switch (Entry.Kind) { 249 case BitstreamEntry::SubBlock: // Handled for us already. 250 case BitstreamEntry::Error: 251 return error("Malformed block"); 252 case BitstreamEntry::EndBlock: 253 return false; 254 case BitstreamEntry::Record: 255 // The interesting case. 256 break; 257 } 258 259 // Read a record. 260 switch (Stream.readRecord(Entry.ID, Record)) { 261 default: 262 break; // Default behavior, ignore unknown content. 263 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 264 std::string S; 265 if (convertToString(Record, 0, S)) 266 return error("Invalid record"); 267 // Check for the i386 and other (x86_64, ARM) conventions 268 if (S.find("__DATA,__objc_catlist") != std::string::npos || 269 S.find("__OBJC,__category") != std::string::npos) 270 return true; 271 break; 272 } 273 } 274 Record.clear(); 275 } 276 llvm_unreachable("Exit infinite loop"); 277 } 278 279 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 280 // We expect a number of well-defined blocks, though we don't necessarily 281 // need to understand them all. 282 while (true) { 283 BitstreamEntry Entry = Stream.advance(); 284 285 switch (Entry.Kind) { 286 case BitstreamEntry::Error: 287 return error("Malformed block"); 288 case BitstreamEntry::EndBlock: 289 return false; 290 291 case BitstreamEntry::SubBlock: 292 if (Entry.ID == bitc::MODULE_BLOCK_ID) 293 return hasObjCCategoryInModule(Stream); 294 295 // Ignore other sub-blocks. 296 if (Stream.SkipBlock()) 297 return error("Malformed block"); 298 continue; 299 300 case BitstreamEntry::Record: 301 Stream.skipRecord(Entry.ID); 302 continue; 303 } 304 } 305 } 306 307 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 308 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 309 return error("Invalid record"); 310 311 SmallVector<uint64_t, 64> Record; 312 313 std::string Triple; 314 315 // Read all the records for this module. 316 while (true) { 317 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 318 319 switch (Entry.Kind) { 320 case BitstreamEntry::SubBlock: // Handled for us already. 321 case BitstreamEntry::Error: 322 return error("Malformed block"); 323 case BitstreamEntry::EndBlock: 324 return Triple; 325 case BitstreamEntry::Record: 326 // The interesting case. 327 break; 328 } 329 330 // Read a record. 331 switch (Stream.readRecord(Entry.ID, Record)) { 332 default: break; // Default behavior, ignore unknown content. 333 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 334 std::string S; 335 if (convertToString(Record, 0, S)) 336 return error("Invalid record"); 337 Triple = S; 338 break; 339 } 340 } 341 Record.clear(); 342 } 343 llvm_unreachable("Exit infinite loop"); 344 } 345 346 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 347 // We expect a number of well-defined blocks, though we don't necessarily 348 // need to understand them all. 349 while (true) { 350 BitstreamEntry Entry = Stream.advance(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::Error: 354 return error("Malformed block"); 355 case BitstreamEntry::EndBlock: 356 return ""; 357 358 case BitstreamEntry::SubBlock: 359 if (Entry.ID == bitc::MODULE_BLOCK_ID) 360 return readModuleTriple(Stream); 361 362 // Ignore other sub-blocks. 363 if (Stream.SkipBlock()) 364 return error("Malformed block"); 365 continue; 366 367 case BitstreamEntry::Record: 368 Stream.skipRecord(Entry.ID); 369 continue; 370 } 371 } 372 } 373 374 namespace { 375 376 class BitcodeReaderBase { 377 protected: 378 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 379 : Stream(std::move(Stream)), Strtab(Strtab) { 380 this->Stream.setBlockInfo(&BlockInfo); 381 } 382 383 BitstreamBlockInfo BlockInfo; 384 BitstreamCursor Stream; 385 StringRef Strtab; 386 387 /// In version 2 of the bitcode we store names of global values and comdats in 388 /// a string table rather than in the VST. 389 bool UseStrtab = false; 390 391 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 392 393 /// If this module uses a string table, pop the reference to the string table 394 /// and return the referenced string and the rest of the record. Otherwise 395 /// just return the record itself. 396 std::pair<StringRef, ArrayRef<uint64_t>> 397 readNameFromStrtab(ArrayRef<uint64_t> Record); 398 399 bool readBlockInfo(); 400 401 // Contains an arbitrary and optional string identifying the bitcode producer 402 std::string ProducerIdentification; 403 404 Error error(const Twine &Message); 405 }; 406 407 } // end anonymous namespace 408 409 Error BitcodeReaderBase::error(const Twine &Message) { 410 std::string FullMsg = Message.str(); 411 if (!ProducerIdentification.empty()) 412 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 413 LLVM_VERSION_STRING "')"; 414 return ::error(FullMsg); 415 } 416 417 Expected<unsigned> 418 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 419 if (Record.empty()) 420 return error("Invalid record"); 421 unsigned ModuleVersion = Record[0]; 422 if (ModuleVersion > 2) 423 return error("Invalid value"); 424 UseStrtab = ModuleVersion >= 2; 425 return ModuleVersion; 426 } 427 428 std::pair<StringRef, ArrayRef<uint64_t>> 429 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 430 if (!UseStrtab) 431 return {"", Record}; 432 // Invalid reference. Let the caller complain about the record being empty. 433 if (Record[0] + Record[1] > Strtab.size()) 434 return {"", {}}; 435 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 436 } 437 438 namespace { 439 440 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 441 LLVMContext &Context; 442 Module *TheModule = nullptr; 443 // Next offset to start scanning for lazy parsing of function bodies. 444 uint64_t NextUnreadBit = 0; 445 // Last function offset found in the VST. 446 uint64_t LastFunctionBlockBit = 0; 447 bool SeenValueSymbolTable = false; 448 uint64_t VSTOffset = 0; 449 450 std::vector<std::string> SectionTable; 451 std::vector<std::string> GCTable; 452 453 std::vector<Type*> TypeList; 454 BitcodeReaderValueList ValueList; 455 Optional<MetadataLoader> MDLoader; 456 std::vector<Comdat *> ComdatList; 457 SmallVector<Instruction *, 64> InstructionList; 458 459 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 460 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 461 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 462 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 463 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 464 465 /// The set of attributes by index. Index zero in the file is for null, and 466 /// is thus not represented here. As such all indices are off by one. 467 std::vector<AttributeList> MAttributes; 468 469 /// The set of attribute groups. 470 std::map<unsigned, AttributeList> MAttributeGroups; 471 472 /// While parsing a function body, this is a list of the basic blocks for the 473 /// function. 474 std::vector<BasicBlock*> FunctionBBs; 475 476 // When reading the module header, this list is populated with functions that 477 // have bodies later in the file. 478 std::vector<Function*> FunctionsWithBodies; 479 480 // When intrinsic functions are encountered which require upgrading they are 481 // stored here with their replacement function. 482 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 483 UpdatedIntrinsicMap UpgradedIntrinsics; 484 // Intrinsics which were remangled because of types rename 485 UpdatedIntrinsicMap RemangledIntrinsics; 486 487 // Several operations happen after the module header has been read, but 488 // before function bodies are processed. This keeps track of whether 489 // we've done this yet. 490 bool SeenFirstFunctionBody = false; 491 492 /// When function bodies are initially scanned, this map contains info about 493 /// where to find deferred function body in the stream. 494 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 495 496 /// When Metadata block is initially scanned when parsing the module, we may 497 /// choose to defer parsing of the metadata. This vector contains info about 498 /// which Metadata blocks are deferred. 499 std::vector<uint64_t> DeferredMetadataInfo; 500 501 /// These are basic blocks forward-referenced by block addresses. They are 502 /// inserted lazily into functions when they're loaded. The basic block ID is 503 /// its index into the vector. 504 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 505 std::deque<Function *> BasicBlockFwdRefQueue; 506 507 /// Indicates that we are using a new encoding for instruction operands where 508 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 509 /// instruction number, for a more compact encoding. Some instruction 510 /// operands are not relative to the instruction ID: basic block numbers, and 511 /// types. Once the old style function blocks have been phased out, we would 512 /// not need this flag. 513 bool UseRelativeIDs = false; 514 515 /// True if all functions will be materialized, negating the need to process 516 /// (e.g.) blockaddress forward references. 517 bool WillMaterializeAllForwardRefs = false; 518 519 bool StripDebugInfo = false; 520 TBAAVerifier TBAAVerifyHelper; 521 522 std::vector<std::string> BundleTags; 523 SmallVector<SyncScope::ID, 8> SSIDs; 524 525 public: 526 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 527 StringRef ProducerIdentification, LLVMContext &Context); 528 529 Error materializeForwardReferencedFunctions(); 530 531 Error materialize(GlobalValue *GV) override; 532 Error materializeModule() override; 533 std::vector<StructType *> getIdentifiedStructTypes() const override; 534 535 /// \brief Main interface to parsing a bitcode buffer. 536 /// \returns true if an error occurred. 537 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 538 bool IsImporting = false); 539 540 static uint64_t decodeSignRotatedValue(uint64_t V); 541 542 /// Materialize any deferred Metadata block. 543 Error materializeMetadata() override; 544 545 void setStripDebugInfo() override; 546 547 private: 548 std::vector<StructType *> IdentifiedStructTypes; 549 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 550 StructType *createIdentifiedStructType(LLVMContext &Context); 551 552 Type *getTypeByID(unsigned ID); 553 554 Value *getFnValueByID(unsigned ID, Type *Ty) { 555 if (Ty && Ty->isMetadataTy()) 556 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 557 return ValueList.getValueFwdRef(ID, Ty); 558 } 559 560 Metadata *getFnMetadataByID(unsigned ID) { 561 return MDLoader->getMetadataFwdRefOrLoad(ID); 562 } 563 564 BasicBlock *getBasicBlock(unsigned ID) const { 565 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 566 return FunctionBBs[ID]; 567 } 568 569 AttributeList getAttributes(unsigned i) const { 570 if (i-1 < MAttributes.size()) 571 return MAttributes[i-1]; 572 return AttributeList(); 573 } 574 575 /// Read a value/type pair out of the specified record from slot 'Slot'. 576 /// Increment Slot past the number of slots used in the record. Return true on 577 /// failure. 578 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 579 unsigned InstNum, Value *&ResVal) { 580 if (Slot == Record.size()) return true; 581 unsigned ValNo = (unsigned)Record[Slot++]; 582 // Adjust the ValNo, if it was encoded relative to the InstNum. 583 if (UseRelativeIDs) 584 ValNo = InstNum - ValNo; 585 if (ValNo < InstNum) { 586 // If this is not a forward reference, just return the value we already 587 // have. 588 ResVal = getFnValueByID(ValNo, nullptr); 589 return ResVal == nullptr; 590 } 591 if (Slot == Record.size()) 592 return true; 593 594 unsigned TypeNo = (unsigned)Record[Slot++]; 595 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 596 return ResVal == nullptr; 597 } 598 599 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 600 /// past the number of slots used by the value in the record. Return true if 601 /// there is an error. 602 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 603 unsigned InstNum, Type *Ty, Value *&ResVal) { 604 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 605 return true; 606 // All values currently take a single record slot. 607 ++Slot; 608 return false; 609 } 610 611 /// Like popValue, but does not increment the Slot number. 612 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 613 unsigned InstNum, Type *Ty, Value *&ResVal) { 614 ResVal = getValue(Record, Slot, InstNum, Ty); 615 return ResVal == nullptr; 616 } 617 618 /// Version of getValue that returns ResVal directly, or 0 if there is an 619 /// error. 620 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 621 unsigned InstNum, Type *Ty) { 622 if (Slot == Record.size()) return nullptr; 623 unsigned ValNo = (unsigned)Record[Slot]; 624 // Adjust the ValNo, if it was encoded relative to the InstNum. 625 if (UseRelativeIDs) 626 ValNo = InstNum - ValNo; 627 return getFnValueByID(ValNo, Ty); 628 } 629 630 /// Like getValue, but decodes signed VBRs. 631 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 632 unsigned InstNum, Type *Ty) { 633 if (Slot == Record.size()) return nullptr; 634 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 635 // Adjust the ValNo, if it was encoded relative to the InstNum. 636 if (UseRelativeIDs) 637 ValNo = InstNum - ValNo; 638 return getFnValueByID(ValNo, Ty); 639 } 640 641 /// Converts alignment exponent (i.e. power of two (or zero)) to the 642 /// corresponding alignment to use. If alignment is too large, returns 643 /// a corresponding error code. 644 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 645 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 646 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 647 648 Error parseComdatRecord(ArrayRef<uint64_t> Record); 649 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 650 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 651 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 652 ArrayRef<uint64_t> Record); 653 654 Error parseAttributeBlock(); 655 Error parseAttributeGroupBlock(); 656 Error parseTypeTable(); 657 Error parseTypeTableBody(); 658 Error parseOperandBundleTags(); 659 Error parseSyncScopeNames(); 660 661 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 662 unsigned NameIndex, Triple &TT); 663 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 664 ArrayRef<uint64_t> Record); 665 Error parseValueSymbolTable(uint64_t Offset = 0); 666 Error parseGlobalValueSymbolTable(); 667 Error parseConstants(); 668 Error rememberAndSkipFunctionBodies(); 669 Error rememberAndSkipFunctionBody(); 670 /// Save the positions of the Metadata blocks and skip parsing the blocks. 671 Error rememberAndSkipMetadata(); 672 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 673 Error parseFunctionBody(Function *F); 674 Error globalCleanup(); 675 Error resolveGlobalAndIndirectSymbolInits(); 676 Error parseUseLists(); 677 Error findFunctionInStream( 678 Function *F, 679 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 680 681 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 682 }; 683 684 /// Class to manage reading and parsing function summary index bitcode 685 /// files/sections. 686 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 687 /// The module index built during parsing. 688 ModuleSummaryIndex &TheIndex; 689 690 /// Indicates whether we have encountered a global value summary section 691 /// yet during parsing. 692 bool SeenGlobalValSummary = false; 693 694 /// Indicates whether we have already parsed the VST, used for error checking. 695 bool SeenValueSymbolTable = false; 696 697 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 698 /// Used to enable on-demand parsing of the VST. 699 uint64_t VSTOffset = 0; 700 701 // Map to save ValueId to ValueInfo association that was recorded in the 702 // ValueSymbolTable. It is used after the VST is parsed to convert 703 // call graph edges read from the function summary from referencing 704 // callees by their ValueId to using the ValueInfo instead, which is how 705 // they are recorded in the summary index being built. 706 // We save a GUID which refers to the same global as the ValueInfo, but 707 // ignoring the linkage, i.e. for values other than local linkage they are 708 // identical. 709 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 710 ValueIdToValueInfoMap; 711 712 /// Map populated during module path string table parsing, from the 713 /// module ID to a string reference owned by the index's module 714 /// path string table, used to correlate with combined index 715 /// summary records. 716 DenseMap<uint64_t, StringRef> ModuleIdMap; 717 718 /// Original source file name recorded in a bitcode record. 719 std::string SourceFileName; 720 721 /// The string identifier given to this module by the client, normally the 722 /// path to the bitcode file. 723 StringRef ModulePath; 724 725 /// For per-module summary indexes, the unique numerical identifier given to 726 /// this module by the client. 727 unsigned ModuleId; 728 729 public: 730 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 731 ModuleSummaryIndex &TheIndex, 732 StringRef ModulePath, unsigned ModuleId); 733 734 Error parseModule(); 735 736 private: 737 void setValueGUID(uint64_t ValueID, StringRef ValueName, 738 GlobalValue::LinkageTypes Linkage, 739 StringRef SourceFileName); 740 Error parseValueSymbolTable( 741 uint64_t Offset, 742 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 743 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 744 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 745 bool IsOldProfileFormat, 746 bool HasProfile, 747 bool HasRelBF); 748 Error parseEntireSummary(unsigned ID); 749 Error parseModuleStringTable(); 750 751 std::pair<ValueInfo, GlobalValue::GUID> 752 getValueInfoFromValueId(unsigned ValueId); 753 754 ModuleSummaryIndex::ModuleInfo *addThisModule(); 755 }; 756 757 } // end anonymous namespace 758 759 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 760 Error Err) { 761 if (Err) { 762 std::error_code EC; 763 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 764 EC = EIB.convertToErrorCode(); 765 Ctx.emitError(EIB.message()); 766 }); 767 return EC; 768 } 769 return std::error_code(); 770 } 771 772 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 773 StringRef ProducerIdentification, 774 LLVMContext &Context) 775 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 776 ValueList(Context) { 777 this->ProducerIdentification = ProducerIdentification; 778 } 779 780 Error BitcodeReader::materializeForwardReferencedFunctions() { 781 if (WillMaterializeAllForwardRefs) 782 return Error::success(); 783 784 // Prevent recursion. 785 WillMaterializeAllForwardRefs = true; 786 787 while (!BasicBlockFwdRefQueue.empty()) { 788 Function *F = BasicBlockFwdRefQueue.front(); 789 BasicBlockFwdRefQueue.pop_front(); 790 assert(F && "Expected valid function"); 791 if (!BasicBlockFwdRefs.count(F)) 792 // Already materialized. 793 continue; 794 795 // Check for a function that isn't materializable to prevent an infinite 796 // loop. When parsing a blockaddress stored in a global variable, there 797 // isn't a trivial way to check if a function will have a body without a 798 // linear search through FunctionsWithBodies, so just check it here. 799 if (!F->isMaterializable()) 800 return error("Never resolved function from blockaddress"); 801 802 // Try to materialize F. 803 if (Error Err = materialize(F)) 804 return Err; 805 } 806 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 807 808 // Reset state. 809 WillMaterializeAllForwardRefs = false; 810 return Error::success(); 811 } 812 813 //===----------------------------------------------------------------------===// 814 // Helper functions to implement forward reference resolution, etc. 815 //===----------------------------------------------------------------------===// 816 817 static bool hasImplicitComdat(size_t Val) { 818 switch (Val) { 819 default: 820 return false; 821 case 1: // Old WeakAnyLinkage 822 case 4: // Old LinkOnceAnyLinkage 823 case 10: // Old WeakODRLinkage 824 case 11: // Old LinkOnceODRLinkage 825 return true; 826 } 827 } 828 829 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 830 switch (Val) { 831 default: // Map unknown/new linkages to external 832 case 0: 833 return GlobalValue::ExternalLinkage; 834 case 2: 835 return GlobalValue::AppendingLinkage; 836 case 3: 837 return GlobalValue::InternalLinkage; 838 case 5: 839 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 840 case 6: 841 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 842 case 7: 843 return GlobalValue::ExternalWeakLinkage; 844 case 8: 845 return GlobalValue::CommonLinkage; 846 case 9: 847 return GlobalValue::PrivateLinkage; 848 case 12: 849 return GlobalValue::AvailableExternallyLinkage; 850 case 13: 851 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 852 case 14: 853 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 854 case 15: 855 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 856 case 1: // Old value with implicit comdat. 857 case 16: 858 return GlobalValue::WeakAnyLinkage; 859 case 10: // Old value with implicit comdat. 860 case 17: 861 return GlobalValue::WeakODRLinkage; 862 case 4: // Old value with implicit comdat. 863 case 18: 864 return GlobalValue::LinkOnceAnyLinkage; 865 case 11: // Old value with implicit comdat. 866 case 19: 867 return GlobalValue::LinkOnceODRLinkage; 868 } 869 } 870 871 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 872 FunctionSummary::FFlags Flags; 873 Flags.ReadNone = RawFlags & 0x1; 874 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 875 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 876 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 877 return Flags; 878 } 879 880 /// Decode the flags for GlobalValue in the summary. 881 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 882 uint64_t Version) { 883 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 884 // like getDecodedLinkage() above. Any future change to the linkage enum and 885 // to getDecodedLinkage() will need to be taken into account here as above. 886 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 887 RawFlags = RawFlags >> 4; 888 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 889 // The Live flag wasn't introduced until version 3. For dead stripping 890 // to work correctly on earlier versions, we must conservatively treat all 891 // values as live. 892 bool Live = (RawFlags & 0x2) || Version < 3; 893 bool Local = (RawFlags & 0x4); 894 895 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local); 896 } 897 898 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 899 switch (Val) { 900 default: // Map unknown visibilities to default. 901 case 0: return GlobalValue::DefaultVisibility; 902 case 1: return GlobalValue::HiddenVisibility; 903 case 2: return GlobalValue::ProtectedVisibility; 904 } 905 } 906 907 static GlobalValue::DLLStorageClassTypes 908 getDecodedDLLStorageClass(unsigned Val) { 909 switch (Val) { 910 default: // Map unknown values to default. 911 case 0: return GlobalValue::DefaultStorageClass; 912 case 1: return GlobalValue::DLLImportStorageClass; 913 case 2: return GlobalValue::DLLExportStorageClass; 914 } 915 } 916 917 static bool getDecodedDSOLocal(unsigned Val) { 918 switch(Val) { 919 default: // Map unknown values to preemptable. 920 case 0: return false; 921 case 1: return true; 922 } 923 } 924 925 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 926 switch (Val) { 927 case 0: return GlobalVariable::NotThreadLocal; 928 default: // Map unknown non-zero value to general dynamic. 929 case 1: return GlobalVariable::GeneralDynamicTLSModel; 930 case 2: return GlobalVariable::LocalDynamicTLSModel; 931 case 3: return GlobalVariable::InitialExecTLSModel; 932 case 4: return GlobalVariable::LocalExecTLSModel; 933 } 934 } 935 936 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 937 switch (Val) { 938 default: // Map unknown to UnnamedAddr::None. 939 case 0: return GlobalVariable::UnnamedAddr::None; 940 case 1: return GlobalVariable::UnnamedAddr::Global; 941 case 2: return GlobalVariable::UnnamedAddr::Local; 942 } 943 } 944 945 static int getDecodedCastOpcode(unsigned Val) { 946 switch (Val) { 947 default: return -1; 948 case bitc::CAST_TRUNC : return Instruction::Trunc; 949 case bitc::CAST_ZEXT : return Instruction::ZExt; 950 case bitc::CAST_SEXT : return Instruction::SExt; 951 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 952 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 953 case bitc::CAST_UITOFP : return Instruction::UIToFP; 954 case bitc::CAST_SITOFP : return Instruction::SIToFP; 955 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 956 case bitc::CAST_FPEXT : return Instruction::FPExt; 957 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 958 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 959 case bitc::CAST_BITCAST : return Instruction::BitCast; 960 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 961 } 962 } 963 964 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 965 bool IsFP = Ty->isFPOrFPVectorTy(); 966 // BinOps are only valid for int/fp or vector of int/fp types 967 if (!IsFP && !Ty->isIntOrIntVectorTy()) 968 return -1; 969 970 switch (Val) { 971 default: 972 return -1; 973 case bitc::BINOP_ADD: 974 return IsFP ? Instruction::FAdd : Instruction::Add; 975 case bitc::BINOP_SUB: 976 return IsFP ? Instruction::FSub : Instruction::Sub; 977 case bitc::BINOP_MUL: 978 return IsFP ? Instruction::FMul : Instruction::Mul; 979 case bitc::BINOP_UDIV: 980 return IsFP ? -1 : Instruction::UDiv; 981 case bitc::BINOP_SDIV: 982 return IsFP ? Instruction::FDiv : Instruction::SDiv; 983 case bitc::BINOP_UREM: 984 return IsFP ? -1 : Instruction::URem; 985 case bitc::BINOP_SREM: 986 return IsFP ? Instruction::FRem : Instruction::SRem; 987 case bitc::BINOP_SHL: 988 return IsFP ? -1 : Instruction::Shl; 989 case bitc::BINOP_LSHR: 990 return IsFP ? -1 : Instruction::LShr; 991 case bitc::BINOP_ASHR: 992 return IsFP ? -1 : Instruction::AShr; 993 case bitc::BINOP_AND: 994 return IsFP ? -1 : Instruction::And; 995 case bitc::BINOP_OR: 996 return IsFP ? -1 : Instruction::Or; 997 case bitc::BINOP_XOR: 998 return IsFP ? -1 : Instruction::Xor; 999 } 1000 } 1001 1002 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1003 switch (Val) { 1004 default: return AtomicRMWInst::BAD_BINOP; 1005 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1006 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1007 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1008 case bitc::RMW_AND: return AtomicRMWInst::And; 1009 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1010 case bitc::RMW_OR: return AtomicRMWInst::Or; 1011 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1012 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1013 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1014 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1015 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1016 } 1017 } 1018 1019 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1020 switch (Val) { 1021 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1022 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1023 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1024 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1025 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1026 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1027 default: // Map unknown orderings to sequentially-consistent. 1028 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1029 } 1030 } 1031 1032 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1033 switch (Val) { 1034 default: // Map unknown selection kinds to any. 1035 case bitc::COMDAT_SELECTION_KIND_ANY: 1036 return Comdat::Any; 1037 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1038 return Comdat::ExactMatch; 1039 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1040 return Comdat::Largest; 1041 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1042 return Comdat::NoDuplicates; 1043 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1044 return Comdat::SameSize; 1045 } 1046 } 1047 1048 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1049 FastMathFlags FMF; 1050 if (0 != (Val & bitc::UnsafeAlgebra)) 1051 FMF.setFast(); 1052 if (0 != (Val & bitc::AllowReassoc)) 1053 FMF.setAllowReassoc(); 1054 if (0 != (Val & bitc::NoNaNs)) 1055 FMF.setNoNaNs(); 1056 if (0 != (Val & bitc::NoInfs)) 1057 FMF.setNoInfs(); 1058 if (0 != (Val & bitc::NoSignedZeros)) 1059 FMF.setNoSignedZeros(); 1060 if (0 != (Val & bitc::AllowReciprocal)) 1061 FMF.setAllowReciprocal(); 1062 if (0 != (Val & bitc::AllowContract)) 1063 FMF.setAllowContract(true); 1064 if (0 != (Val & bitc::ApproxFunc)) 1065 FMF.setApproxFunc(); 1066 return FMF; 1067 } 1068 1069 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1070 switch (Val) { 1071 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1072 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1073 } 1074 } 1075 1076 Type *BitcodeReader::getTypeByID(unsigned ID) { 1077 // The type table size is always specified correctly. 1078 if (ID >= TypeList.size()) 1079 return nullptr; 1080 1081 if (Type *Ty = TypeList[ID]) 1082 return Ty; 1083 1084 // If we have a forward reference, the only possible case is when it is to a 1085 // named struct. Just create a placeholder for now. 1086 return TypeList[ID] = createIdentifiedStructType(Context); 1087 } 1088 1089 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1090 StringRef Name) { 1091 auto *Ret = StructType::create(Context, Name); 1092 IdentifiedStructTypes.push_back(Ret); 1093 return Ret; 1094 } 1095 1096 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1097 auto *Ret = StructType::create(Context); 1098 IdentifiedStructTypes.push_back(Ret); 1099 return Ret; 1100 } 1101 1102 //===----------------------------------------------------------------------===// 1103 // Functions for parsing blocks from the bitcode file 1104 //===----------------------------------------------------------------------===// 1105 1106 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1107 switch (Val) { 1108 case Attribute::EndAttrKinds: 1109 llvm_unreachable("Synthetic enumerators which should never get here"); 1110 1111 case Attribute::None: return 0; 1112 case Attribute::ZExt: return 1 << 0; 1113 case Attribute::SExt: return 1 << 1; 1114 case Attribute::NoReturn: return 1 << 2; 1115 case Attribute::InReg: return 1 << 3; 1116 case Attribute::StructRet: return 1 << 4; 1117 case Attribute::NoUnwind: return 1 << 5; 1118 case Attribute::NoAlias: return 1 << 6; 1119 case Attribute::ByVal: return 1 << 7; 1120 case Attribute::Nest: return 1 << 8; 1121 case Attribute::ReadNone: return 1 << 9; 1122 case Attribute::ReadOnly: return 1 << 10; 1123 case Attribute::NoInline: return 1 << 11; 1124 case Attribute::AlwaysInline: return 1 << 12; 1125 case Attribute::OptimizeForSize: return 1 << 13; 1126 case Attribute::StackProtect: return 1 << 14; 1127 case Attribute::StackProtectReq: return 1 << 15; 1128 case Attribute::Alignment: return 31 << 16; 1129 case Attribute::NoCapture: return 1 << 21; 1130 case Attribute::NoRedZone: return 1 << 22; 1131 case Attribute::NoImplicitFloat: return 1 << 23; 1132 case Attribute::Naked: return 1 << 24; 1133 case Attribute::InlineHint: return 1 << 25; 1134 case Attribute::StackAlignment: return 7 << 26; 1135 case Attribute::ReturnsTwice: return 1 << 29; 1136 case Attribute::UWTable: return 1 << 30; 1137 case Attribute::NonLazyBind: return 1U << 31; 1138 case Attribute::SanitizeAddress: return 1ULL << 32; 1139 case Attribute::MinSize: return 1ULL << 33; 1140 case Attribute::NoDuplicate: return 1ULL << 34; 1141 case Attribute::StackProtectStrong: return 1ULL << 35; 1142 case Attribute::SanitizeThread: return 1ULL << 36; 1143 case Attribute::SanitizeMemory: return 1ULL << 37; 1144 case Attribute::NoBuiltin: return 1ULL << 38; 1145 case Attribute::Returned: return 1ULL << 39; 1146 case Attribute::Cold: return 1ULL << 40; 1147 case Attribute::Builtin: return 1ULL << 41; 1148 case Attribute::OptimizeNone: return 1ULL << 42; 1149 case Attribute::InAlloca: return 1ULL << 43; 1150 case Attribute::NonNull: return 1ULL << 44; 1151 case Attribute::JumpTable: return 1ULL << 45; 1152 case Attribute::Convergent: return 1ULL << 46; 1153 case Attribute::SafeStack: return 1ULL << 47; 1154 case Attribute::NoRecurse: return 1ULL << 48; 1155 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1156 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1157 case Attribute::SwiftSelf: return 1ULL << 51; 1158 case Attribute::SwiftError: return 1ULL << 52; 1159 case Attribute::WriteOnly: return 1ULL << 53; 1160 case Attribute::Speculatable: return 1ULL << 54; 1161 case Attribute::StrictFP: return 1ULL << 55; 1162 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1163 case Attribute::NoCfCheck: return 1ULL << 57; 1164 case Attribute::OptForFuzzing: return 1ULL << 58; 1165 case Attribute::ShadowCallStack: return 1ULL << 59; 1166 case Attribute::Dereferenceable: 1167 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1168 break; 1169 case Attribute::DereferenceableOrNull: 1170 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1171 "format"); 1172 break; 1173 case Attribute::ArgMemOnly: 1174 llvm_unreachable("argmemonly attribute not supported in raw format"); 1175 break; 1176 case Attribute::AllocSize: 1177 llvm_unreachable("allocsize not supported in raw format"); 1178 break; 1179 } 1180 llvm_unreachable("Unsupported attribute type"); 1181 } 1182 1183 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1184 if (!Val) return; 1185 1186 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1187 I = Attribute::AttrKind(I + 1)) { 1188 if (I == Attribute::Dereferenceable || 1189 I == Attribute::DereferenceableOrNull || 1190 I == Attribute::ArgMemOnly || 1191 I == Attribute::AllocSize) 1192 continue; 1193 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1194 if (I == Attribute::Alignment) 1195 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1196 else if (I == Attribute::StackAlignment) 1197 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1198 else 1199 B.addAttribute(I); 1200 } 1201 } 1202 } 1203 1204 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1205 /// been decoded from the given integer. This function must stay in sync with 1206 /// 'encodeLLVMAttributesForBitcode'. 1207 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1208 uint64_t EncodedAttrs) { 1209 // FIXME: Remove in 4.0. 1210 1211 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1212 // the bits above 31 down by 11 bits. 1213 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1214 assert((!Alignment || isPowerOf2_32(Alignment)) && 1215 "Alignment must be a power of two."); 1216 1217 if (Alignment) 1218 B.addAlignmentAttr(Alignment); 1219 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1220 (EncodedAttrs & 0xffff)); 1221 } 1222 1223 Error BitcodeReader::parseAttributeBlock() { 1224 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1225 return error("Invalid record"); 1226 1227 if (!MAttributes.empty()) 1228 return error("Invalid multiple blocks"); 1229 1230 SmallVector<uint64_t, 64> Record; 1231 1232 SmallVector<AttributeList, 8> Attrs; 1233 1234 // Read all the records. 1235 while (true) { 1236 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1237 1238 switch (Entry.Kind) { 1239 case BitstreamEntry::SubBlock: // Handled for us already. 1240 case BitstreamEntry::Error: 1241 return error("Malformed block"); 1242 case BitstreamEntry::EndBlock: 1243 return Error::success(); 1244 case BitstreamEntry::Record: 1245 // The interesting case. 1246 break; 1247 } 1248 1249 // Read a record. 1250 Record.clear(); 1251 switch (Stream.readRecord(Entry.ID, Record)) { 1252 default: // Default behavior: ignore. 1253 break; 1254 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1255 // FIXME: Remove in 4.0. 1256 if (Record.size() & 1) 1257 return error("Invalid record"); 1258 1259 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1260 AttrBuilder B; 1261 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1262 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1263 } 1264 1265 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1266 Attrs.clear(); 1267 break; 1268 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1269 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1270 Attrs.push_back(MAttributeGroups[Record[i]]); 1271 1272 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1273 Attrs.clear(); 1274 break; 1275 } 1276 } 1277 } 1278 1279 // Returns Attribute::None on unrecognized codes. 1280 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1281 switch (Code) { 1282 default: 1283 return Attribute::None; 1284 case bitc::ATTR_KIND_ALIGNMENT: 1285 return Attribute::Alignment; 1286 case bitc::ATTR_KIND_ALWAYS_INLINE: 1287 return Attribute::AlwaysInline; 1288 case bitc::ATTR_KIND_ARGMEMONLY: 1289 return Attribute::ArgMemOnly; 1290 case bitc::ATTR_KIND_BUILTIN: 1291 return Attribute::Builtin; 1292 case bitc::ATTR_KIND_BY_VAL: 1293 return Attribute::ByVal; 1294 case bitc::ATTR_KIND_IN_ALLOCA: 1295 return Attribute::InAlloca; 1296 case bitc::ATTR_KIND_COLD: 1297 return Attribute::Cold; 1298 case bitc::ATTR_KIND_CONVERGENT: 1299 return Attribute::Convergent; 1300 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1301 return Attribute::InaccessibleMemOnly; 1302 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1303 return Attribute::InaccessibleMemOrArgMemOnly; 1304 case bitc::ATTR_KIND_INLINE_HINT: 1305 return Attribute::InlineHint; 1306 case bitc::ATTR_KIND_IN_REG: 1307 return Attribute::InReg; 1308 case bitc::ATTR_KIND_JUMP_TABLE: 1309 return Attribute::JumpTable; 1310 case bitc::ATTR_KIND_MIN_SIZE: 1311 return Attribute::MinSize; 1312 case bitc::ATTR_KIND_NAKED: 1313 return Attribute::Naked; 1314 case bitc::ATTR_KIND_NEST: 1315 return Attribute::Nest; 1316 case bitc::ATTR_KIND_NO_ALIAS: 1317 return Attribute::NoAlias; 1318 case bitc::ATTR_KIND_NO_BUILTIN: 1319 return Attribute::NoBuiltin; 1320 case bitc::ATTR_KIND_NO_CAPTURE: 1321 return Attribute::NoCapture; 1322 case bitc::ATTR_KIND_NO_DUPLICATE: 1323 return Attribute::NoDuplicate; 1324 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1325 return Attribute::NoImplicitFloat; 1326 case bitc::ATTR_KIND_NO_INLINE: 1327 return Attribute::NoInline; 1328 case bitc::ATTR_KIND_NO_RECURSE: 1329 return Attribute::NoRecurse; 1330 case bitc::ATTR_KIND_NON_LAZY_BIND: 1331 return Attribute::NonLazyBind; 1332 case bitc::ATTR_KIND_NON_NULL: 1333 return Attribute::NonNull; 1334 case bitc::ATTR_KIND_DEREFERENCEABLE: 1335 return Attribute::Dereferenceable; 1336 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1337 return Attribute::DereferenceableOrNull; 1338 case bitc::ATTR_KIND_ALLOC_SIZE: 1339 return Attribute::AllocSize; 1340 case bitc::ATTR_KIND_NO_RED_ZONE: 1341 return Attribute::NoRedZone; 1342 case bitc::ATTR_KIND_NO_RETURN: 1343 return Attribute::NoReturn; 1344 case bitc::ATTR_KIND_NOCF_CHECK: 1345 return Attribute::NoCfCheck; 1346 case bitc::ATTR_KIND_NO_UNWIND: 1347 return Attribute::NoUnwind; 1348 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1349 return Attribute::OptForFuzzing; 1350 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1351 return Attribute::OptimizeForSize; 1352 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1353 return Attribute::OptimizeNone; 1354 case bitc::ATTR_KIND_READ_NONE: 1355 return Attribute::ReadNone; 1356 case bitc::ATTR_KIND_READ_ONLY: 1357 return Attribute::ReadOnly; 1358 case bitc::ATTR_KIND_RETURNED: 1359 return Attribute::Returned; 1360 case bitc::ATTR_KIND_RETURNS_TWICE: 1361 return Attribute::ReturnsTwice; 1362 case bitc::ATTR_KIND_S_EXT: 1363 return Attribute::SExt; 1364 case bitc::ATTR_KIND_SPECULATABLE: 1365 return Attribute::Speculatable; 1366 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1367 return Attribute::StackAlignment; 1368 case bitc::ATTR_KIND_STACK_PROTECT: 1369 return Attribute::StackProtect; 1370 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1371 return Attribute::StackProtectReq; 1372 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1373 return Attribute::StackProtectStrong; 1374 case bitc::ATTR_KIND_SAFESTACK: 1375 return Attribute::SafeStack; 1376 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1377 return Attribute::ShadowCallStack; 1378 case bitc::ATTR_KIND_STRICT_FP: 1379 return Attribute::StrictFP; 1380 case bitc::ATTR_KIND_STRUCT_RET: 1381 return Attribute::StructRet; 1382 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1383 return Attribute::SanitizeAddress; 1384 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1385 return Attribute::SanitizeHWAddress; 1386 case bitc::ATTR_KIND_SANITIZE_THREAD: 1387 return Attribute::SanitizeThread; 1388 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1389 return Attribute::SanitizeMemory; 1390 case bitc::ATTR_KIND_SWIFT_ERROR: 1391 return Attribute::SwiftError; 1392 case bitc::ATTR_KIND_SWIFT_SELF: 1393 return Attribute::SwiftSelf; 1394 case bitc::ATTR_KIND_UW_TABLE: 1395 return Attribute::UWTable; 1396 case bitc::ATTR_KIND_WRITEONLY: 1397 return Attribute::WriteOnly; 1398 case bitc::ATTR_KIND_Z_EXT: 1399 return Attribute::ZExt; 1400 } 1401 } 1402 1403 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1404 unsigned &Alignment) { 1405 // Note: Alignment in bitcode files is incremented by 1, so that zero 1406 // can be used for default alignment. 1407 if (Exponent > Value::MaxAlignmentExponent + 1) 1408 return error("Invalid alignment value"); 1409 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1410 return Error::success(); 1411 } 1412 1413 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1414 *Kind = getAttrFromCode(Code); 1415 if (*Kind == Attribute::None) 1416 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1417 return Error::success(); 1418 } 1419 1420 Error BitcodeReader::parseAttributeGroupBlock() { 1421 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1422 return error("Invalid record"); 1423 1424 if (!MAttributeGroups.empty()) 1425 return error("Invalid multiple blocks"); 1426 1427 SmallVector<uint64_t, 64> Record; 1428 1429 // Read all the records. 1430 while (true) { 1431 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1432 1433 switch (Entry.Kind) { 1434 case BitstreamEntry::SubBlock: // Handled for us already. 1435 case BitstreamEntry::Error: 1436 return error("Malformed block"); 1437 case BitstreamEntry::EndBlock: 1438 return Error::success(); 1439 case BitstreamEntry::Record: 1440 // The interesting case. 1441 break; 1442 } 1443 1444 // Read a record. 1445 Record.clear(); 1446 switch (Stream.readRecord(Entry.ID, Record)) { 1447 default: // Default behavior: ignore. 1448 break; 1449 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1450 if (Record.size() < 3) 1451 return error("Invalid record"); 1452 1453 uint64_t GrpID = Record[0]; 1454 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1455 1456 AttrBuilder B; 1457 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1458 if (Record[i] == 0) { // Enum attribute 1459 Attribute::AttrKind Kind; 1460 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1461 return Err; 1462 1463 B.addAttribute(Kind); 1464 } else if (Record[i] == 1) { // Integer attribute 1465 Attribute::AttrKind Kind; 1466 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1467 return Err; 1468 if (Kind == Attribute::Alignment) 1469 B.addAlignmentAttr(Record[++i]); 1470 else if (Kind == Attribute::StackAlignment) 1471 B.addStackAlignmentAttr(Record[++i]); 1472 else if (Kind == Attribute::Dereferenceable) 1473 B.addDereferenceableAttr(Record[++i]); 1474 else if (Kind == Attribute::DereferenceableOrNull) 1475 B.addDereferenceableOrNullAttr(Record[++i]); 1476 else if (Kind == Attribute::AllocSize) 1477 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1478 } else { // String attribute 1479 assert((Record[i] == 3 || Record[i] == 4) && 1480 "Invalid attribute group entry"); 1481 bool HasValue = (Record[i++] == 4); 1482 SmallString<64> KindStr; 1483 SmallString<64> ValStr; 1484 1485 while (Record[i] != 0 && i != e) 1486 KindStr += Record[i++]; 1487 assert(Record[i] == 0 && "Kind string not null terminated"); 1488 1489 if (HasValue) { 1490 // Has a value associated with it. 1491 ++i; // Skip the '0' that terminates the "kind" string. 1492 while (Record[i] != 0 && i != e) 1493 ValStr += Record[i++]; 1494 assert(Record[i] == 0 && "Value string not null terminated"); 1495 } 1496 1497 B.addAttribute(KindStr.str(), ValStr.str()); 1498 } 1499 } 1500 1501 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1502 break; 1503 } 1504 } 1505 } 1506 } 1507 1508 Error BitcodeReader::parseTypeTable() { 1509 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1510 return error("Invalid record"); 1511 1512 return parseTypeTableBody(); 1513 } 1514 1515 Error BitcodeReader::parseTypeTableBody() { 1516 if (!TypeList.empty()) 1517 return error("Invalid multiple blocks"); 1518 1519 SmallVector<uint64_t, 64> Record; 1520 unsigned NumRecords = 0; 1521 1522 SmallString<64> TypeName; 1523 1524 // Read all the records for this type table. 1525 while (true) { 1526 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1527 1528 switch (Entry.Kind) { 1529 case BitstreamEntry::SubBlock: // Handled for us already. 1530 case BitstreamEntry::Error: 1531 return error("Malformed block"); 1532 case BitstreamEntry::EndBlock: 1533 if (NumRecords != TypeList.size()) 1534 return error("Malformed block"); 1535 return Error::success(); 1536 case BitstreamEntry::Record: 1537 // The interesting case. 1538 break; 1539 } 1540 1541 // Read a record. 1542 Record.clear(); 1543 Type *ResultTy = nullptr; 1544 switch (Stream.readRecord(Entry.ID, Record)) { 1545 default: 1546 return error("Invalid value"); 1547 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1548 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1549 // type list. This allows us to reserve space. 1550 if (Record.size() < 1) 1551 return error("Invalid record"); 1552 TypeList.resize(Record[0]); 1553 continue; 1554 case bitc::TYPE_CODE_VOID: // VOID 1555 ResultTy = Type::getVoidTy(Context); 1556 break; 1557 case bitc::TYPE_CODE_HALF: // HALF 1558 ResultTy = Type::getHalfTy(Context); 1559 break; 1560 case bitc::TYPE_CODE_FLOAT: // FLOAT 1561 ResultTy = Type::getFloatTy(Context); 1562 break; 1563 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1564 ResultTy = Type::getDoubleTy(Context); 1565 break; 1566 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1567 ResultTy = Type::getX86_FP80Ty(Context); 1568 break; 1569 case bitc::TYPE_CODE_FP128: // FP128 1570 ResultTy = Type::getFP128Ty(Context); 1571 break; 1572 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1573 ResultTy = Type::getPPC_FP128Ty(Context); 1574 break; 1575 case bitc::TYPE_CODE_LABEL: // LABEL 1576 ResultTy = Type::getLabelTy(Context); 1577 break; 1578 case bitc::TYPE_CODE_METADATA: // METADATA 1579 ResultTy = Type::getMetadataTy(Context); 1580 break; 1581 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1582 ResultTy = Type::getX86_MMXTy(Context); 1583 break; 1584 case bitc::TYPE_CODE_TOKEN: // TOKEN 1585 ResultTy = Type::getTokenTy(Context); 1586 break; 1587 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1588 if (Record.size() < 1) 1589 return error("Invalid record"); 1590 1591 uint64_t NumBits = Record[0]; 1592 if (NumBits < IntegerType::MIN_INT_BITS || 1593 NumBits > IntegerType::MAX_INT_BITS) 1594 return error("Bitwidth for integer type out of range"); 1595 ResultTy = IntegerType::get(Context, NumBits); 1596 break; 1597 } 1598 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1599 // [pointee type, address space] 1600 if (Record.size() < 1) 1601 return error("Invalid record"); 1602 unsigned AddressSpace = 0; 1603 if (Record.size() == 2) 1604 AddressSpace = Record[1]; 1605 ResultTy = getTypeByID(Record[0]); 1606 if (!ResultTy || 1607 !PointerType::isValidElementType(ResultTy)) 1608 return error("Invalid type"); 1609 ResultTy = PointerType::get(ResultTy, AddressSpace); 1610 break; 1611 } 1612 case bitc::TYPE_CODE_FUNCTION_OLD: { 1613 // FIXME: attrid is dead, remove it in LLVM 4.0 1614 // FUNCTION: [vararg, attrid, retty, paramty x N] 1615 if (Record.size() < 3) 1616 return error("Invalid record"); 1617 SmallVector<Type*, 8> ArgTys; 1618 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1619 if (Type *T = getTypeByID(Record[i])) 1620 ArgTys.push_back(T); 1621 else 1622 break; 1623 } 1624 1625 ResultTy = getTypeByID(Record[2]); 1626 if (!ResultTy || ArgTys.size() < Record.size()-3) 1627 return error("Invalid type"); 1628 1629 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1630 break; 1631 } 1632 case bitc::TYPE_CODE_FUNCTION: { 1633 // FUNCTION: [vararg, retty, paramty x N] 1634 if (Record.size() < 2) 1635 return error("Invalid record"); 1636 SmallVector<Type*, 8> ArgTys; 1637 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1638 if (Type *T = getTypeByID(Record[i])) { 1639 if (!FunctionType::isValidArgumentType(T)) 1640 return error("Invalid function argument type"); 1641 ArgTys.push_back(T); 1642 } 1643 else 1644 break; 1645 } 1646 1647 ResultTy = getTypeByID(Record[1]); 1648 if (!ResultTy || ArgTys.size() < Record.size()-2) 1649 return error("Invalid type"); 1650 1651 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1652 break; 1653 } 1654 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1655 if (Record.size() < 1) 1656 return error("Invalid record"); 1657 SmallVector<Type*, 8> EltTys; 1658 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1659 if (Type *T = getTypeByID(Record[i])) 1660 EltTys.push_back(T); 1661 else 1662 break; 1663 } 1664 if (EltTys.size() != Record.size()-1) 1665 return error("Invalid type"); 1666 ResultTy = StructType::get(Context, EltTys, Record[0]); 1667 break; 1668 } 1669 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1670 if (convertToString(Record, 0, TypeName)) 1671 return error("Invalid record"); 1672 continue; 1673 1674 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1675 if (Record.size() < 1) 1676 return error("Invalid record"); 1677 1678 if (NumRecords >= TypeList.size()) 1679 return error("Invalid TYPE table"); 1680 1681 // Check to see if this was forward referenced, if so fill in the temp. 1682 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1683 if (Res) { 1684 Res->setName(TypeName); 1685 TypeList[NumRecords] = nullptr; 1686 } else // Otherwise, create a new struct. 1687 Res = createIdentifiedStructType(Context, TypeName); 1688 TypeName.clear(); 1689 1690 SmallVector<Type*, 8> EltTys; 1691 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1692 if (Type *T = getTypeByID(Record[i])) 1693 EltTys.push_back(T); 1694 else 1695 break; 1696 } 1697 if (EltTys.size() != Record.size()-1) 1698 return error("Invalid record"); 1699 Res->setBody(EltTys, Record[0]); 1700 ResultTy = Res; 1701 break; 1702 } 1703 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1704 if (Record.size() != 1) 1705 return error("Invalid record"); 1706 1707 if (NumRecords >= TypeList.size()) 1708 return error("Invalid TYPE table"); 1709 1710 // Check to see if this was forward referenced, if so fill in the temp. 1711 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1712 if (Res) { 1713 Res->setName(TypeName); 1714 TypeList[NumRecords] = nullptr; 1715 } else // Otherwise, create a new struct with no body. 1716 Res = createIdentifiedStructType(Context, TypeName); 1717 TypeName.clear(); 1718 ResultTy = Res; 1719 break; 1720 } 1721 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1722 if (Record.size() < 2) 1723 return error("Invalid record"); 1724 ResultTy = getTypeByID(Record[1]); 1725 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1726 return error("Invalid type"); 1727 ResultTy = ArrayType::get(ResultTy, Record[0]); 1728 break; 1729 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1730 if (Record.size() < 2) 1731 return error("Invalid record"); 1732 if (Record[0] == 0) 1733 return error("Invalid vector length"); 1734 ResultTy = getTypeByID(Record[1]); 1735 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1736 return error("Invalid type"); 1737 ResultTy = VectorType::get(ResultTy, Record[0]); 1738 break; 1739 } 1740 1741 if (NumRecords >= TypeList.size()) 1742 return error("Invalid TYPE table"); 1743 if (TypeList[NumRecords]) 1744 return error( 1745 "Invalid TYPE table: Only named structs can be forward referenced"); 1746 assert(ResultTy && "Didn't read a type?"); 1747 TypeList[NumRecords++] = ResultTy; 1748 } 1749 } 1750 1751 Error BitcodeReader::parseOperandBundleTags() { 1752 if (Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1753 return error("Invalid record"); 1754 1755 if (!BundleTags.empty()) 1756 return error("Invalid multiple blocks"); 1757 1758 SmallVector<uint64_t, 64> Record; 1759 1760 while (true) { 1761 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1762 1763 switch (Entry.Kind) { 1764 case BitstreamEntry::SubBlock: // Handled for us already. 1765 case BitstreamEntry::Error: 1766 return error("Malformed block"); 1767 case BitstreamEntry::EndBlock: 1768 return Error::success(); 1769 case BitstreamEntry::Record: 1770 // The interesting case. 1771 break; 1772 } 1773 1774 // Tags are implicitly mapped to integers by their order. 1775 1776 if (Stream.readRecord(Entry.ID, Record) != bitc::OPERAND_BUNDLE_TAG) 1777 return error("Invalid record"); 1778 1779 // OPERAND_BUNDLE_TAG: [strchr x N] 1780 BundleTags.emplace_back(); 1781 if (convertToString(Record, 0, BundleTags.back())) 1782 return error("Invalid record"); 1783 Record.clear(); 1784 } 1785 } 1786 1787 Error BitcodeReader::parseSyncScopeNames() { 1788 if (Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1789 return error("Invalid record"); 1790 1791 if (!SSIDs.empty()) 1792 return error("Invalid multiple synchronization scope names blocks"); 1793 1794 SmallVector<uint64_t, 64> Record; 1795 while (true) { 1796 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1797 switch (Entry.Kind) { 1798 case BitstreamEntry::SubBlock: // Handled for us already. 1799 case BitstreamEntry::Error: 1800 return error("Malformed block"); 1801 case BitstreamEntry::EndBlock: 1802 if (SSIDs.empty()) 1803 return error("Invalid empty synchronization scope names block"); 1804 return Error::success(); 1805 case BitstreamEntry::Record: 1806 // The interesting case. 1807 break; 1808 } 1809 1810 // Synchronization scope names are implicitly mapped to synchronization 1811 // scope IDs by their order. 1812 1813 if (Stream.readRecord(Entry.ID, Record) != bitc::SYNC_SCOPE_NAME) 1814 return error("Invalid record"); 1815 1816 SmallString<16> SSN; 1817 if (convertToString(Record, 0, SSN)) 1818 return error("Invalid record"); 1819 1820 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1821 Record.clear(); 1822 } 1823 } 1824 1825 /// Associate a value with its name from the given index in the provided record. 1826 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 1827 unsigned NameIndex, Triple &TT) { 1828 SmallString<128> ValueName; 1829 if (convertToString(Record, NameIndex, ValueName)) 1830 return error("Invalid record"); 1831 unsigned ValueID = Record[0]; 1832 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1833 return error("Invalid record"); 1834 Value *V = ValueList[ValueID]; 1835 1836 StringRef NameStr(ValueName.data(), ValueName.size()); 1837 if (NameStr.find_first_of(0) != StringRef::npos) 1838 return error("Invalid value name"); 1839 V->setName(NameStr); 1840 auto *GO = dyn_cast<GlobalObject>(V); 1841 if (GO) { 1842 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1843 if (TT.supportsCOMDAT()) 1844 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1845 else 1846 GO->setComdat(nullptr); 1847 } 1848 } 1849 return V; 1850 } 1851 1852 /// Helper to note and return the current location, and jump to the given 1853 /// offset. 1854 static uint64_t jumpToValueSymbolTable(uint64_t Offset, 1855 BitstreamCursor &Stream) { 1856 // Save the current parsing location so we can jump back at the end 1857 // of the VST read. 1858 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 1859 Stream.JumpToBit(Offset * 32); 1860 #ifndef NDEBUG 1861 // Do some checking if we are in debug mode. 1862 BitstreamEntry Entry = Stream.advance(); 1863 assert(Entry.Kind == BitstreamEntry::SubBlock); 1864 assert(Entry.ID == bitc::VALUE_SYMTAB_BLOCK_ID); 1865 #else 1866 // In NDEBUG mode ignore the output so we don't get an unused variable 1867 // warning. 1868 Stream.advance(); 1869 #endif 1870 return CurrentBit; 1871 } 1872 1873 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 1874 Function *F, 1875 ArrayRef<uint64_t> Record) { 1876 // Note that we subtract 1 here because the offset is relative to one word 1877 // before the start of the identification or module block, which was 1878 // historically always the start of the regular bitcode header. 1879 uint64_t FuncWordOffset = Record[1] - 1; 1880 uint64_t FuncBitOffset = FuncWordOffset * 32; 1881 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 1882 // Set the LastFunctionBlockBit to point to the last function block. 1883 // Later when parsing is resumed after function materialization, 1884 // we can simply skip that last function block. 1885 if (FuncBitOffset > LastFunctionBlockBit) 1886 LastFunctionBlockBit = FuncBitOffset; 1887 } 1888 1889 /// Read a new-style GlobalValue symbol table. 1890 Error BitcodeReader::parseGlobalValueSymbolTable() { 1891 unsigned FuncBitcodeOffsetDelta = 1892 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1893 1894 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1895 return error("Invalid record"); 1896 1897 SmallVector<uint64_t, 64> Record; 1898 while (true) { 1899 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1900 1901 switch (Entry.Kind) { 1902 case BitstreamEntry::SubBlock: 1903 case BitstreamEntry::Error: 1904 return error("Malformed block"); 1905 case BitstreamEntry::EndBlock: 1906 return Error::success(); 1907 case BitstreamEntry::Record: 1908 break; 1909 } 1910 1911 Record.clear(); 1912 switch (Stream.readRecord(Entry.ID, Record)) { 1913 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 1914 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 1915 cast<Function>(ValueList[Record[0]]), Record); 1916 break; 1917 } 1918 } 1919 } 1920 1921 /// Parse the value symbol table at either the current parsing location or 1922 /// at the given bit offset if provided. 1923 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 1924 uint64_t CurrentBit; 1925 // Pass in the Offset to distinguish between calling for the module-level 1926 // VST (where we want to jump to the VST offset) and the function-level 1927 // VST (where we don't). 1928 if (Offset > 0) { 1929 CurrentBit = jumpToValueSymbolTable(Offset, Stream); 1930 // If this module uses a string table, read this as a module-level VST. 1931 if (UseStrtab) { 1932 if (Error Err = parseGlobalValueSymbolTable()) 1933 return Err; 1934 Stream.JumpToBit(CurrentBit); 1935 return Error::success(); 1936 } 1937 // Otherwise, the VST will be in a similar format to a function-level VST, 1938 // and will contain symbol names. 1939 } 1940 1941 // Compute the delta between the bitcode indices in the VST (the word offset 1942 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 1943 // expected by the lazy reader. The reader's EnterSubBlock expects to have 1944 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 1945 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 1946 // just before entering the VST subblock because: 1) the EnterSubBlock 1947 // changes the AbbrevID width; 2) the VST block is nested within the same 1948 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 1949 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 1950 // jump to the FUNCTION_BLOCK using this offset later, we don't want 1951 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 1952 unsigned FuncBitcodeOffsetDelta = 1953 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 1954 1955 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1956 return error("Invalid record"); 1957 1958 SmallVector<uint64_t, 64> Record; 1959 1960 Triple TT(TheModule->getTargetTriple()); 1961 1962 // Read all the records for this value table. 1963 SmallString<128> ValueName; 1964 1965 while (true) { 1966 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1967 1968 switch (Entry.Kind) { 1969 case BitstreamEntry::SubBlock: // Handled for us already. 1970 case BitstreamEntry::Error: 1971 return error("Malformed block"); 1972 case BitstreamEntry::EndBlock: 1973 if (Offset > 0) 1974 Stream.JumpToBit(CurrentBit); 1975 return Error::success(); 1976 case BitstreamEntry::Record: 1977 // The interesting case. 1978 break; 1979 } 1980 1981 // Read a record. 1982 Record.clear(); 1983 switch (Stream.readRecord(Entry.ID, Record)) { 1984 default: // Default behavior: unknown type. 1985 break; 1986 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 1987 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 1988 if (Error Err = ValOrErr.takeError()) 1989 return Err; 1990 ValOrErr.get(); 1991 break; 1992 } 1993 case bitc::VST_CODE_FNENTRY: { 1994 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 1995 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 1996 if (Error Err = ValOrErr.takeError()) 1997 return Err; 1998 Value *V = ValOrErr.get(); 1999 2000 // Ignore function offsets emitted for aliases of functions in older 2001 // versions of LLVM. 2002 if (auto *F = dyn_cast<Function>(V)) 2003 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2004 break; 2005 } 2006 case bitc::VST_CODE_BBENTRY: { 2007 if (convertToString(Record, 1, ValueName)) 2008 return error("Invalid record"); 2009 BasicBlock *BB = getBasicBlock(Record[0]); 2010 if (!BB) 2011 return error("Invalid record"); 2012 2013 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2014 ValueName.clear(); 2015 break; 2016 } 2017 } 2018 } 2019 } 2020 2021 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2022 /// encoding. 2023 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2024 if ((V & 1) == 0) 2025 return V >> 1; 2026 if (V != 1) 2027 return -(V >> 1); 2028 // There is no such thing as -0 with integers. "-0" really means MININT. 2029 return 1ULL << 63; 2030 } 2031 2032 /// Resolve all of the initializers for global values and aliases that we can. 2033 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2034 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2035 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2036 IndirectSymbolInitWorklist; 2037 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2038 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2039 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2040 2041 GlobalInitWorklist.swap(GlobalInits); 2042 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2043 FunctionPrefixWorklist.swap(FunctionPrefixes); 2044 FunctionPrologueWorklist.swap(FunctionPrologues); 2045 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2046 2047 while (!GlobalInitWorklist.empty()) { 2048 unsigned ValID = GlobalInitWorklist.back().second; 2049 if (ValID >= ValueList.size()) { 2050 // Not ready to resolve this yet, it requires something later in the file. 2051 GlobalInits.push_back(GlobalInitWorklist.back()); 2052 } else { 2053 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2054 GlobalInitWorklist.back().first->setInitializer(C); 2055 else 2056 return error("Expected a constant"); 2057 } 2058 GlobalInitWorklist.pop_back(); 2059 } 2060 2061 while (!IndirectSymbolInitWorklist.empty()) { 2062 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2063 if (ValID >= ValueList.size()) { 2064 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2065 } else { 2066 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2067 if (!C) 2068 return error("Expected a constant"); 2069 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2070 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2071 return error("Alias and aliasee types don't match"); 2072 GIS->setIndirectSymbol(C); 2073 } 2074 IndirectSymbolInitWorklist.pop_back(); 2075 } 2076 2077 while (!FunctionPrefixWorklist.empty()) { 2078 unsigned ValID = FunctionPrefixWorklist.back().second; 2079 if (ValID >= ValueList.size()) { 2080 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2081 } else { 2082 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2083 FunctionPrefixWorklist.back().first->setPrefixData(C); 2084 else 2085 return error("Expected a constant"); 2086 } 2087 FunctionPrefixWorklist.pop_back(); 2088 } 2089 2090 while (!FunctionPrologueWorklist.empty()) { 2091 unsigned ValID = FunctionPrologueWorklist.back().second; 2092 if (ValID >= ValueList.size()) { 2093 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2094 } else { 2095 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2096 FunctionPrologueWorklist.back().first->setPrologueData(C); 2097 else 2098 return error("Expected a constant"); 2099 } 2100 FunctionPrologueWorklist.pop_back(); 2101 } 2102 2103 while (!FunctionPersonalityFnWorklist.empty()) { 2104 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2105 if (ValID >= ValueList.size()) { 2106 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2107 } else { 2108 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2109 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2110 else 2111 return error("Expected a constant"); 2112 } 2113 FunctionPersonalityFnWorklist.pop_back(); 2114 } 2115 2116 return Error::success(); 2117 } 2118 2119 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2120 SmallVector<uint64_t, 8> Words(Vals.size()); 2121 transform(Vals, Words.begin(), 2122 BitcodeReader::decodeSignRotatedValue); 2123 2124 return APInt(TypeBits, Words); 2125 } 2126 2127 Error BitcodeReader::parseConstants() { 2128 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2129 return error("Invalid record"); 2130 2131 SmallVector<uint64_t, 64> Record; 2132 2133 // Read all the records for this value table. 2134 Type *CurTy = Type::getInt32Ty(Context); 2135 unsigned NextCstNo = ValueList.size(); 2136 2137 while (true) { 2138 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2139 2140 switch (Entry.Kind) { 2141 case BitstreamEntry::SubBlock: // Handled for us already. 2142 case BitstreamEntry::Error: 2143 return error("Malformed block"); 2144 case BitstreamEntry::EndBlock: 2145 if (NextCstNo != ValueList.size()) 2146 return error("Invalid constant reference"); 2147 2148 // Once all the constants have been read, go through and resolve forward 2149 // references. 2150 ValueList.resolveConstantForwardRefs(); 2151 return Error::success(); 2152 case BitstreamEntry::Record: 2153 // The interesting case. 2154 break; 2155 } 2156 2157 // Read a record. 2158 Record.clear(); 2159 Type *VoidType = Type::getVoidTy(Context); 2160 Value *V = nullptr; 2161 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2162 switch (BitCode) { 2163 default: // Default behavior: unknown constant 2164 case bitc::CST_CODE_UNDEF: // UNDEF 2165 V = UndefValue::get(CurTy); 2166 break; 2167 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2168 if (Record.empty()) 2169 return error("Invalid record"); 2170 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2171 return error("Invalid record"); 2172 if (TypeList[Record[0]] == VoidType) 2173 return error("Invalid constant type"); 2174 CurTy = TypeList[Record[0]]; 2175 continue; // Skip the ValueList manipulation. 2176 case bitc::CST_CODE_NULL: // NULL 2177 V = Constant::getNullValue(CurTy); 2178 break; 2179 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2180 if (!CurTy->isIntegerTy() || Record.empty()) 2181 return error("Invalid record"); 2182 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2183 break; 2184 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2185 if (!CurTy->isIntegerTy() || Record.empty()) 2186 return error("Invalid record"); 2187 2188 APInt VInt = 2189 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2190 V = ConstantInt::get(Context, VInt); 2191 2192 break; 2193 } 2194 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2195 if (Record.empty()) 2196 return error("Invalid record"); 2197 if (CurTy->isHalfTy()) 2198 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2199 APInt(16, (uint16_t)Record[0]))); 2200 else if (CurTy->isFloatTy()) 2201 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2202 APInt(32, (uint32_t)Record[0]))); 2203 else if (CurTy->isDoubleTy()) 2204 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2205 APInt(64, Record[0]))); 2206 else if (CurTy->isX86_FP80Ty()) { 2207 // Bits are not stored the same way as a normal i80 APInt, compensate. 2208 uint64_t Rearrange[2]; 2209 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2210 Rearrange[1] = Record[0] >> 48; 2211 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2212 APInt(80, Rearrange))); 2213 } else if (CurTy->isFP128Ty()) 2214 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2215 APInt(128, Record))); 2216 else if (CurTy->isPPC_FP128Ty()) 2217 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2218 APInt(128, Record))); 2219 else 2220 V = UndefValue::get(CurTy); 2221 break; 2222 } 2223 2224 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2225 if (Record.empty()) 2226 return error("Invalid record"); 2227 2228 unsigned Size = Record.size(); 2229 SmallVector<Constant*, 16> Elts; 2230 2231 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2232 for (unsigned i = 0; i != Size; ++i) 2233 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2234 STy->getElementType(i))); 2235 V = ConstantStruct::get(STy, Elts); 2236 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2237 Type *EltTy = ATy->getElementType(); 2238 for (unsigned i = 0; i != Size; ++i) 2239 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2240 V = ConstantArray::get(ATy, Elts); 2241 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2242 Type *EltTy = VTy->getElementType(); 2243 for (unsigned i = 0; i != Size; ++i) 2244 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2245 V = ConstantVector::get(Elts); 2246 } else { 2247 V = UndefValue::get(CurTy); 2248 } 2249 break; 2250 } 2251 case bitc::CST_CODE_STRING: // STRING: [values] 2252 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2253 if (Record.empty()) 2254 return error("Invalid record"); 2255 2256 SmallString<16> Elts(Record.begin(), Record.end()); 2257 V = ConstantDataArray::getString(Context, Elts, 2258 BitCode == bitc::CST_CODE_CSTRING); 2259 break; 2260 } 2261 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2262 if (Record.empty()) 2263 return error("Invalid record"); 2264 2265 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2266 if (EltTy->isIntegerTy(8)) { 2267 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2268 if (isa<VectorType>(CurTy)) 2269 V = ConstantDataVector::get(Context, Elts); 2270 else 2271 V = ConstantDataArray::get(Context, Elts); 2272 } else if (EltTy->isIntegerTy(16)) { 2273 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2274 if (isa<VectorType>(CurTy)) 2275 V = ConstantDataVector::get(Context, Elts); 2276 else 2277 V = ConstantDataArray::get(Context, Elts); 2278 } else if (EltTy->isIntegerTy(32)) { 2279 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2280 if (isa<VectorType>(CurTy)) 2281 V = ConstantDataVector::get(Context, Elts); 2282 else 2283 V = ConstantDataArray::get(Context, Elts); 2284 } else if (EltTy->isIntegerTy(64)) { 2285 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2286 if (isa<VectorType>(CurTy)) 2287 V = ConstantDataVector::get(Context, Elts); 2288 else 2289 V = ConstantDataArray::get(Context, Elts); 2290 } else if (EltTy->isHalfTy()) { 2291 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2292 if (isa<VectorType>(CurTy)) 2293 V = ConstantDataVector::getFP(Context, Elts); 2294 else 2295 V = ConstantDataArray::getFP(Context, Elts); 2296 } else if (EltTy->isFloatTy()) { 2297 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2298 if (isa<VectorType>(CurTy)) 2299 V = ConstantDataVector::getFP(Context, Elts); 2300 else 2301 V = ConstantDataArray::getFP(Context, Elts); 2302 } else if (EltTy->isDoubleTy()) { 2303 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2304 if (isa<VectorType>(CurTy)) 2305 V = ConstantDataVector::getFP(Context, Elts); 2306 else 2307 V = ConstantDataArray::getFP(Context, Elts); 2308 } else { 2309 return error("Invalid type for value"); 2310 } 2311 break; 2312 } 2313 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2314 if (Record.size() < 3) 2315 return error("Invalid record"); 2316 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2317 if (Opc < 0) { 2318 V = UndefValue::get(CurTy); // Unknown binop. 2319 } else { 2320 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2321 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2322 unsigned Flags = 0; 2323 if (Record.size() >= 4) { 2324 if (Opc == Instruction::Add || 2325 Opc == Instruction::Sub || 2326 Opc == Instruction::Mul || 2327 Opc == Instruction::Shl) { 2328 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2329 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2330 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2331 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2332 } else if (Opc == Instruction::SDiv || 2333 Opc == Instruction::UDiv || 2334 Opc == Instruction::LShr || 2335 Opc == Instruction::AShr) { 2336 if (Record[3] & (1 << bitc::PEO_EXACT)) 2337 Flags |= SDivOperator::IsExact; 2338 } 2339 } 2340 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2341 } 2342 break; 2343 } 2344 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2345 if (Record.size() < 3) 2346 return error("Invalid record"); 2347 int Opc = getDecodedCastOpcode(Record[0]); 2348 if (Opc < 0) { 2349 V = UndefValue::get(CurTy); // Unknown cast. 2350 } else { 2351 Type *OpTy = getTypeByID(Record[1]); 2352 if (!OpTy) 2353 return error("Invalid record"); 2354 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2355 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2356 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2357 } 2358 break; 2359 } 2360 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2361 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2362 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2363 // operands] 2364 unsigned OpNum = 0; 2365 Type *PointeeType = nullptr; 2366 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2367 Record.size() % 2) 2368 PointeeType = getTypeByID(Record[OpNum++]); 2369 2370 bool InBounds = false; 2371 Optional<unsigned> InRangeIndex; 2372 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2373 uint64_t Op = Record[OpNum++]; 2374 InBounds = Op & 1; 2375 InRangeIndex = Op >> 1; 2376 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2377 InBounds = true; 2378 2379 SmallVector<Constant*, 16> Elts; 2380 while (OpNum != Record.size()) { 2381 Type *ElTy = getTypeByID(Record[OpNum++]); 2382 if (!ElTy) 2383 return error("Invalid record"); 2384 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2385 } 2386 2387 if (PointeeType && 2388 PointeeType != 2389 cast<PointerType>(Elts[0]->getType()->getScalarType()) 2390 ->getElementType()) 2391 return error("Explicit gep operator type does not match pointee type " 2392 "of pointer operand"); 2393 2394 if (Elts.size() < 1) 2395 return error("Invalid gep with no operands"); 2396 2397 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2398 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2399 InBounds, InRangeIndex); 2400 break; 2401 } 2402 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2403 if (Record.size() < 3) 2404 return error("Invalid record"); 2405 2406 Type *SelectorTy = Type::getInt1Ty(Context); 2407 2408 // The selector might be an i1 or an <n x i1> 2409 // Get the type from the ValueList before getting a forward ref. 2410 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2411 if (Value *V = ValueList[Record[0]]) 2412 if (SelectorTy != V->getType()) 2413 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2414 2415 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2416 SelectorTy), 2417 ValueList.getConstantFwdRef(Record[1],CurTy), 2418 ValueList.getConstantFwdRef(Record[2],CurTy)); 2419 break; 2420 } 2421 case bitc::CST_CODE_CE_EXTRACTELT 2422 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2423 if (Record.size() < 3) 2424 return error("Invalid record"); 2425 VectorType *OpTy = 2426 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2427 if (!OpTy) 2428 return error("Invalid record"); 2429 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2430 Constant *Op1 = nullptr; 2431 if (Record.size() == 4) { 2432 Type *IdxTy = getTypeByID(Record[2]); 2433 if (!IdxTy) 2434 return error("Invalid record"); 2435 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2436 } else // TODO: Remove with llvm 4.0 2437 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2438 if (!Op1) 2439 return error("Invalid record"); 2440 V = ConstantExpr::getExtractElement(Op0, Op1); 2441 break; 2442 } 2443 case bitc::CST_CODE_CE_INSERTELT 2444 : { // CE_INSERTELT: [opval, opval, opty, opval] 2445 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2446 if (Record.size() < 3 || !OpTy) 2447 return error("Invalid record"); 2448 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2449 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2450 OpTy->getElementType()); 2451 Constant *Op2 = nullptr; 2452 if (Record.size() == 4) { 2453 Type *IdxTy = getTypeByID(Record[2]); 2454 if (!IdxTy) 2455 return error("Invalid record"); 2456 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2457 } else // TODO: Remove with llvm 4.0 2458 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2459 if (!Op2) 2460 return error("Invalid record"); 2461 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2462 break; 2463 } 2464 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2465 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2466 if (Record.size() < 3 || !OpTy) 2467 return error("Invalid record"); 2468 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2469 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2470 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2471 OpTy->getNumElements()); 2472 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2473 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2474 break; 2475 } 2476 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2477 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2478 VectorType *OpTy = 2479 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2480 if (Record.size() < 4 || !RTy || !OpTy) 2481 return error("Invalid record"); 2482 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2483 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2484 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2485 RTy->getNumElements()); 2486 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2487 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2488 break; 2489 } 2490 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2491 if (Record.size() < 4) 2492 return error("Invalid record"); 2493 Type *OpTy = getTypeByID(Record[0]); 2494 if (!OpTy) 2495 return error("Invalid record"); 2496 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2497 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2498 2499 if (OpTy->isFPOrFPVectorTy()) 2500 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2501 else 2502 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2503 break; 2504 } 2505 // This maintains backward compatibility, pre-asm dialect keywords. 2506 // FIXME: Remove with the 4.0 release. 2507 case bitc::CST_CODE_INLINEASM_OLD: { 2508 if (Record.size() < 2) 2509 return error("Invalid record"); 2510 std::string AsmStr, ConstrStr; 2511 bool HasSideEffects = Record[0] & 1; 2512 bool IsAlignStack = Record[0] >> 1; 2513 unsigned AsmStrSize = Record[1]; 2514 if (2+AsmStrSize >= Record.size()) 2515 return error("Invalid record"); 2516 unsigned ConstStrSize = Record[2+AsmStrSize]; 2517 if (3+AsmStrSize+ConstStrSize > Record.size()) 2518 return error("Invalid record"); 2519 2520 for (unsigned i = 0; i != AsmStrSize; ++i) 2521 AsmStr += (char)Record[2+i]; 2522 for (unsigned i = 0; i != ConstStrSize; ++i) 2523 ConstrStr += (char)Record[3+AsmStrSize+i]; 2524 PointerType *PTy = cast<PointerType>(CurTy); 2525 UpgradeInlineAsmString(&AsmStr); 2526 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2527 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2528 break; 2529 } 2530 // This version adds support for the asm dialect keywords (e.g., 2531 // inteldialect). 2532 case bitc::CST_CODE_INLINEASM: { 2533 if (Record.size() < 2) 2534 return error("Invalid record"); 2535 std::string AsmStr, ConstrStr; 2536 bool HasSideEffects = Record[0] & 1; 2537 bool IsAlignStack = (Record[0] >> 1) & 1; 2538 unsigned AsmDialect = Record[0] >> 2; 2539 unsigned AsmStrSize = Record[1]; 2540 if (2+AsmStrSize >= Record.size()) 2541 return error("Invalid record"); 2542 unsigned ConstStrSize = Record[2+AsmStrSize]; 2543 if (3+AsmStrSize+ConstStrSize > Record.size()) 2544 return error("Invalid record"); 2545 2546 for (unsigned i = 0; i != AsmStrSize; ++i) 2547 AsmStr += (char)Record[2+i]; 2548 for (unsigned i = 0; i != ConstStrSize; ++i) 2549 ConstrStr += (char)Record[3+AsmStrSize+i]; 2550 PointerType *PTy = cast<PointerType>(CurTy); 2551 UpgradeInlineAsmString(&AsmStr); 2552 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2553 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2554 InlineAsm::AsmDialect(AsmDialect)); 2555 break; 2556 } 2557 case bitc::CST_CODE_BLOCKADDRESS:{ 2558 if (Record.size() < 3) 2559 return error("Invalid record"); 2560 Type *FnTy = getTypeByID(Record[0]); 2561 if (!FnTy) 2562 return error("Invalid record"); 2563 Function *Fn = 2564 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2565 if (!Fn) 2566 return error("Invalid record"); 2567 2568 // If the function is already parsed we can insert the block address right 2569 // away. 2570 BasicBlock *BB; 2571 unsigned BBID = Record[2]; 2572 if (!BBID) 2573 // Invalid reference to entry block. 2574 return error("Invalid ID"); 2575 if (!Fn->empty()) { 2576 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2577 for (size_t I = 0, E = BBID; I != E; ++I) { 2578 if (BBI == BBE) 2579 return error("Invalid ID"); 2580 ++BBI; 2581 } 2582 BB = &*BBI; 2583 } else { 2584 // Otherwise insert a placeholder and remember it so it can be inserted 2585 // when the function is parsed. 2586 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2587 if (FwdBBs.empty()) 2588 BasicBlockFwdRefQueue.push_back(Fn); 2589 if (FwdBBs.size() < BBID + 1) 2590 FwdBBs.resize(BBID + 1); 2591 if (!FwdBBs[BBID]) 2592 FwdBBs[BBID] = BasicBlock::Create(Context); 2593 BB = FwdBBs[BBID]; 2594 } 2595 V = BlockAddress::get(Fn, BB); 2596 break; 2597 } 2598 } 2599 2600 ValueList.assignValue(V, NextCstNo); 2601 ++NextCstNo; 2602 } 2603 } 2604 2605 Error BitcodeReader::parseUseLists() { 2606 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2607 return error("Invalid record"); 2608 2609 // Read all the records. 2610 SmallVector<uint64_t, 64> Record; 2611 2612 while (true) { 2613 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2614 2615 switch (Entry.Kind) { 2616 case BitstreamEntry::SubBlock: // Handled for us already. 2617 case BitstreamEntry::Error: 2618 return error("Malformed block"); 2619 case BitstreamEntry::EndBlock: 2620 return Error::success(); 2621 case BitstreamEntry::Record: 2622 // The interesting case. 2623 break; 2624 } 2625 2626 // Read a use list record. 2627 Record.clear(); 2628 bool IsBB = false; 2629 switch (Stream.readRecord(Entry.ID, Record)) { 2630 default: // Default behavior: unknown type. 2631 break; 2632 case bitc::USELIST_CODE_BB: 2633 IsBB = true; 2634 LLVM_FALLTHROUGH; 2635 case bitc::USELIST_CODE_DEFAULT: { 2636 unsigned RecordLength = Record.size(); 2637 if (RecordLength < 3) 2638 // Records should have at least an ID and two indexes. 2639 return error("Invalid record"); 2640 unsigned ID = Record.back(); 2641 Record.pop_back(); 2642 2643 Value *V; 2644 if (IsBB) { 2645 assert(ID < FunctionBBs.size() && "Basic block not found"); 2646 V = FunctionBBs[ID]; 2647 } else 2648 V = ValueList[ID]; 2649 unsigned NumUses = 0; 2650 SmallDenseMap<const Use *, unsigned, 16> Order; 2651 for (const Use &U : V->materialized_uses()) { 2652 if (++NumUses > Record.size()) 2653 break; 2654 Order[&U] = Record[NumUses - 1]; 2655 } 2656 if (Order.size() != Record.size() || NumUses > Record.size()) 2657 // Mismatches can happen if the functions are being materialized lazily 2658 // (out-of-order), or a value has been upgraded. 2659 break; 2660 2661 V->sortUseList([&](const Use &L, const Use &R) { 2662 return Order.lookup(&L) < Order.lookup(&R); 2663 }); 2664 break; 2665 } 2666 } 2667 } 2668 } 2669 2670 /// When we see the block for metadata, remember where it is and then skip it. 2671 /// This lets us lazily deserialize the metadata. 2672 Error BitcodeReader::rememberAndSkipMetadata() { 2673 // Save the current stream state. 2674 uint64_t CurBit = Stream.GetCurrentBitNo(); 2675 DeferredMetadataInfo.push_back(CurBit); 2676 2677 // Skip over the block for now. 2678 if (Stream.SkipBlock()) 2679 return error("Invalid record"); 2680 return Error::success(); 2681 } 2682 2683 Error BitcodeReader::materializeMetadata() { 2684 for (uint64_t BitPos : DeferredMetadataInfo) { 2685 // Move the bit stream to the saved position. 2686 Stream.JumpToBit(BitPos); 2687 if (Error Err = MDLoader->parseModuleMetadata()) 2688 return Err; 2689 } 2690 2691 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2692 // metadata. 2693 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2694 NamedMDNode *LinkerOpts = 2695 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2696 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2697 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2698 } 2699 2700 DeferredMetadataInfo.clear(); 2701 return Error::success(); 2702 } 2703 2704 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2705 2706 /// When we see the block for a function body, remember where it is and then 2707 /// skip it. This lets us lazily deserialize the functions. 2708 Error BitcodeReader::rememberAndSkipFunctionBody() { 2709 // Get the function we are talking about. 2710 if (FunctionsWithBodies.empty()) 2711 return error("Insufficient function protos"); 2712 2713 Function *Fn = FunctionsWithBodies.back(); 2714 FunctionsWithBodies.pop_back(); 2715 2716 // Save the current stream state. 2717 uint64_t CurBit = Stream.GetCurrentBitNo(); 2718 assert( 2719 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2720 "Mismatch between VST and scanned function offsets"); 2721 DeferredFunctionInfo[Fn] = CurBit; 2722 2723 // Skip over the function block for now. 2724 if (Stream.SkipBlock()) 2725 return error("Invalid record"); 2726 return Error::success(); 2727 } 2728 2729 Error BitcodeReader::globalCleanup() { 2730 // Patch the initializers for globals and aliases up. 2731 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2732 return Err; 2733 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2734 return error("Malformed global initializer set"); 2735 2736 // Look for intrinsic functions which need to be upgraded at some point 2737 for (Function &F : *TheModule) { 2738 MDLoader->upgradeDebugIntrinsics(F); 2739 Function *NewFn; 2740 if (UpgradeIntrinsicFunction(&F, NewFn)) 2741 UpgradedIntrinsics[&F] = NewFn; 2742 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2743 // Some types could be renamed during loading if several modules are 2744 // loaded in the same LLVMContext (LTO scenario). In this case we should 2745 // remangle intrinsics names as well. 2746 RemangledIntrinsics[&F] = Remangled.getValue(); 2747 } 2748 2749 // Look for global variables which need to be renamed. 2750 for (GlobalVariable &GV : TheModule->globals()) 2751 UpgradeGlobalVariable(&GV); 2752 2753 // Force deallocation of memory for these vectors to favor the client that 2754 // want lazy deserialization. 2755 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2756 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2757 IndirectSymbolInits); 2758 return Error::success(); 2759 } 2760 2761 /// Support for lazy parsing of function bodies. This is required if we 2762 /// either have an old bitcode file without a VST forward declaration record, 2763 /// or if we have an anonymous function being materialized, since anonymous 2764 /// functions do not have a name and are therefore not in the VST. 2765 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2766 Stream.JumpToBit(NextUnreadBit); 2767 2768 if (Stream.AtEndOfStream()) 2769 return error("Could not find function in stream"); 2770 2771 if (!SeenFirstFunctionBody) 2772 return error("Trying to materialize functions before seeing function blocks"); 2773 2774 // An old bitcode file with the symbol table at the end would have 2775 // finished the parse greedily. 2776 assert(SeenValueSymbolTable); 2777 2778 SmallVector<uint64_t, 64> Record; 2779 2780 while (true) { 2781 BitstreamEntry Entry = Stream.advance(); 2782 switch (Entry.Kind) { 2783 default: 2784 return error("Expect SubBlock"); 2785 case BitstreamEntry::SubBlock: 2786 switch (Entry.ID) { 2787 default: 2788 return error("Expect function block"); 2789 case bitc::FUNCTION_BLOCK_ID: 2790 if (Error Err = rememberAndSkipFunctionBody()) 2791 return Err; 2792 NextUnreadBit = Stream.GetCurrentBitNo(); 2793 return Error::success(); 2794 } 2795 } 2796 } 2797 } 2798 2799 bool BitcodeReaderBase::readBlockInfo() { 2800 Optional<BitstreamBlockInfo> NewBlockInfo = Stream.ReadBlockInfoBlock(); 2801 if (!NewBlockInfo) 2802 return true; 2803 BlockInfo = std::move(*NewBlockInfo); 2804 return false; 2805 } 2806 2807 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 2808 // v1: [selection_kind, name] 2809 // v2: [strtab_offset, strtab_size, selection_kind] 2810 StringRef Name; 2811 std::tie(Name, Record) = readNameFromStrtab(Record); 2812 2813 if (Record.empty()) 2814 return error("Invalid record"); 2815 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2816 std::string OldFormatName; 2817 if (!UseStrtab) { 2818 if (Record.size() < 2) 2819 return error("Invalid record"); 2820 unsigned ComdatNameSize = Record[1]; 2821 OldFormatName.reserve(ComdatNameSize); 2822 for (unsigned i = 0; i != ComdatNameSize; ++i) 2823 OldFormatName += (char)Record[2 + i]; 2824 Name = OldFormatName; 2825 } 2826 Comdat *C = TheModule->getOrInsertComdat(Name); 2827 C->setSelectionKind(SK); 2828 ComdatList.push_back(C); 2829 return Error::success(); 2830 } 2831 2832 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 2833 // v1: [pointer type, isconst, initid, linkage, alignment, section, 2834 // visibility, threadlocal, unnamed_addr, externally_initialized, 2835 // dllstorageclass, comdat, attributes, preemption specifier] (name in VST) 2836 // v2: [strtab_offset, strtab_size, v1] 2837 StringRef Name; 2838 std::tie(Name, Record) = readNameFromStrtab(Record); 2839 2840 if (Record.size() < 6) 2841 return error("Invalid record"); 2842 Type *Ty = getTypeByID(Record[0]); 2843 if (!Ty) 2844 return error("Invalid record"); 2845 bool isConstant = Record[1] & 1; 2846 bool explicitType = Record[1] & 2; 2847 unsigned AddressSpace; 2848 if (explicitType) { 2849 AddressSpace = Record[1] >> 2; 2850 } else { 2851 if (!Ty->isPointerTy()) 2852 return error("Invalid type for value"); 2853 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2854 Ty = cast<PointerType>(Ty)->getElementType(); 2855 } 2856 2857 uint64_t RawLinkage = Record[3]; 2858 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2859 unsigned Alignment; 2860 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 2861 return Err; 2862 std::string Section; 2863 if (Record[5]) { 2864 if (Record[5] - 1 >= SectionTable.size()) 2865 return error("Invalid ID"); 2866 Section = SectionTable[Record[5] - 1]; 2867 } 2868 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2869 // Local linkage must have default visibility. 2870 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2871 // FIXME: Change to an error if non-default in 4.0. 2872 Visibility = getDecodedVisibility(Record[6]); 2873 2874 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2875 if (Record.size() > 7) 2876 TLM = getDecodedThreadLocalMode(Record[7]); 2877 2878 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2879 if (Record.size() > 8) 2880 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 2881 2882 bool ExternallyInitialized = false; 2883 if (Record.size() > 9) 2884 ExternallyInitialized = Record[9]; 2885 2886 GlobalVariable *NewGV = 2887 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 2888 nullptr, TLM, AddressSpace, ExternallyInitialized); 2889 NewGV->setAlignment(Alignment); 2890 if (!Section.empty()) 2891 NewGV->setSection(Section); 2892 NewGV->setVisibility(Visibility); 2893 NewGV->setUnnamedAddr(UnnamedAddr); 2894 2895 if (Record.size() > 10) 2896 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 2897 else 2898 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 2899 2900 ValueList.push_back(NewGV); 2901 2902 // Remember which value to use for the global initializer. 2903 if (unsigned InitID = Record[2]) 2904 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 2905 2906 if (Record.size() > 11) { 2907 if (unsigned ComdatID = Record[11]) { 2908 if (ComdatID > ComdatList.size()) 2909 return error("Invalid global variable comdat ID"); 2910 NewGV->setComdat(ComdatList[ComdatID - 1]); 2911 } 2912 } else if (hasImplicitComdat(RawLinkage)) { 2913 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2914 } 2915 2916 if (Record.size() > 12) { 2917 auto AS = getAttributes(Record[12]).getFnAttributes(); 2918 NewGV->setAttributes(AS); 2919 } 2920 2921 if (Record.size() > 13) { 2922 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 2923 } 2924 2925 return Error::success(); 2926 } 2927 2928 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 2929 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 2930 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 2931 // prefixdata, personalityfn, preemption specifier] (name in VST) 2932 // v2: [strtab_offset, strtab_size, v1] 2933 StringRef Name; 2934 std::tie(Name, Record) = readNameFromStrtab(Record); 2935 2936 if (Record.size() < 8) 2937 return error("Invalid record"); 2938 Type *Ty = getTypeByID(Record[0]); 2939 if (!Ty) 2940 return error("Invalid record"); 2941 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2942 Ty = PTy->getElementType(); 2943 auto *FTy = dyn_cast<FunctionType>(Ty); 2944 if (!FTy) 2945 return error("Invalid type for value"); 2946 auto CC = static_cast<CallingConv::ID>(Record[1]); 2947 if (CC & ~CallingConv::MaxID) 2948 return error("Invalid calling convention ID"); 2949 2950 Function *Func = 2951 Function::Create(FTy, GlobalValue::ExternalLinkage, Name, TheModule); 2952 2953 Func->setCallingConv(CC); 2954 bool isProto = Record[2]; 2955 uint64_t RawLinkage = Record[3]; 2956 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2957 Func->setAttributes(getAttributes(Record[4])); 2958 2959 unsigned Alignment; 2960 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 2961 return Err; 2962 Func->setAlignment(Alignment); 2963 if (Record[6]) { 2964 if (Record[6] - 1 >= SectionTable.size()) 2965 return error("Invalid ID"); 2966 Func->setSection(SectionTable[Record[6] - 1]); 2967 } 2968 // Local linkage must have default visibility. 2969 if (!Func->hasLocalLinkage()) 2970 // FIXME: Change to an error if non-default in 4.0. 2971 Func->setVisibility(getDecodedVisibility(Record[7])); 2972 if (Record.size() > 8 && Record[8]) { 2973 if (Record[8] - 1 >= GCTable.size()) 2974 return error("Invalid ID"); 2975 Func->setGC(GCTable[Record[8] - 1]); 2976 } 2977 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 2978 if (Record.size() > 9) 2979 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 2980 Func->setUnnamedAddr(UnnamedAddr); 2981 if (Record.size() > 10 && Record[10] != 0) 2982 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 2983 2984 if (Record.size() > 11) 2985 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 2986 else 2987 upgradeDLLImportExportLinkage(Func, RawLinkage); 2988 2989 if (Record.size() > 12) { 2990 if (unsigned ComdatID = Record[12]) { 2991 if (ComdatID > ComdatList.size()) 2992 return error("Invalid function comdat ID"); 2993 Func->setComdat(ComdatList[ComdatID - 1]); 2994 } 2995 } else if (hasImplicitComdat(RawLinkage)) { 2996 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2997 } 2998 2999 if (Record.size() > 13 && Record[13] != 0) 3000 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3001 3002 if (Record.size() > 14 && Record[14] != 0) 3003 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3004 3005 if (Record.size() > 15) { 3006 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3007 } 3008 3009 ValueList.push_back(Func); 3010 3011 // If this is a function with a body, remember the prototype we are 3012 // creating now, so that we can match up the body with them later. 3013 if (!isProto) { 3014 Func->setIsMaterializable(true); 3015 FunctionsWithBodies.push_back(Func); 3016 DeferredFunctionInfo[Func] = 0; 3017 } 3018 return Error::success(); 3019 } 3020 3021 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3022 unsigned BitCode, ArrayRef<uint64_t> Record) { 3023 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3024 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3025 // dllstorageclass, threadlocal, unnamed_addr, 3026 // preemption specifier] (name in VST) 3027 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3028 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3029 // preemption specifier] (name in VST) 3030 // v2: [strtab_offset, strtab_size, v1] 3031 StringRef Name; 3032 std::tie(Name, Record) = readNameFromStrtab(Record); 3033 3034 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3035 if (Record.size() < (3 + (unsigned)NewRecord)) 3036 return error("Invalid record"); 3037 unsigned OpNum = 0; 3038 Type *Ty = getTypeByID(Record[OpNum++]); 3039 if (!Ty) 3040 return error("Invalid record"); 3041 3042 unsigned AddrSpace; 3043 if (!NewRecord) { 3044 auto *PTy = dyn_cast<PointerType>(Ty); 3045 if (!PTy) 3046 return error("Invalid type for value"); 3047 Ty = PTy->getElementType(); 3048 AddrSpace = PTy->getAddressSpace(); 3049 } else { 3050 AddrSpace = Record[OpNum++]; 3051 } 3052 3053 auto Val = Record[OpNum++]; 3054 auto Linkage = Record[OpNum++]; 3055 GlobalIndirectSymbol *NewGA; 3056 if (BitCode == bitc::MODULE_CODE_ALIAS || 3057 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3058 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3059 TheModule); 3060 else 3061 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3062 nullptr, TheModule); 3063 // Old bitcode files didn't have visibility field. 3064 // Local linkage must have default visibility. 3065 if (OpNum != Record.size()) { 3066 auto VisInd = OpNum++; 3067 if (!NewGA->hasLocalLinkage()) 3068 // FIXME: Change to an error if non-default in 4.0. 3069 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3070 } 3071 if (BitCode == bitc::MODULE_CODE_ALIAS || 3072 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3073 if (OpNum != Record.size()) 3074 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3075 else 3076 upgradeDLLImportExportLinkage(NewGA, Linkage); 3077 if (OpNum != Record.size()) 3078 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3079 if (OpNum != Record.size()) 3080 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3081 } 3082 if (OpNum != Record.size()) 3083 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3084 ValueList.push_back(NewGA); 3085 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3086 return Error::success(); 3087 } 3088 3089 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3090 bool ShouldLazyLoadMetadata) { 3091 if (ResumeBit) 3092 Stream.JumpToBit(ResumeBit); 3093 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3094 return error("Invalid record"); 3095 3096 SmallVector<uint64_t, 64> Record; 3097 3098 // Read all the records for this module. 3099 while (true) { 3100 BitstreamEntry Entry = Stream.advance(); 3101 3102 switch (Entry.Kind) { 3103 case BitstreamEntry::Error: 3104 return error("Malformed block"); 3105 case BitstreamEntry::EndBlock: 3106 return globalCleanup(); 3107 3108 case BitstreamEntry::SubBlock: 3109 switch (Entry.ID) { 3110 default: // Skip unknown content. 3111 if (Stream.SkipBlock()) 3112 return error("Invalid record"); 3113 break; 3114 case bitc::BLOCKINFO_BLOCK_ID: 3115 if (readBlockInfo()) 3116 return error("Malformed block"); 3117 break; 3118 case bitc::PARAMATTR_BLOCK_ID: 3119 if (Error Err = parseAttributeBlock()) 3120 return Err; 3121 break; 3122 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3123 if (Error Err = parseAttributeGroupBlock()) 3124 return Err; 3125 break; 3126 case bitc::TYPE_BLOCK_ID_NEW: 3127 if (Error Err = parseTypeTable()) 3128 return Err; 3129 break; 3130 case bitc::VALUE_SYMTAB_BLOCK_ID: 3131 if (!SeenValueSymbolTable) { 3132 // Either this is an old form VST without function index and an 3133 // associated VST forward declaration record (which would have caused 3134 // the VST to be jumped to and parsed before it was encountered 3135 // normally in the stream), or there were no function blocks to 3136 // trigger an earlier parsing of the VST. 3137 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3138 if (Error Err = parseValueSymbolTable()) 3139 return Err; 3140 SeenValueSymbolTable = true; 3141 } else { 3142 // We must have had a VST forward declaration record, which caused 3143 // the parser to jump to and parse the VST earlier. 3144 assert(VSTOffset > 0); 3145 if (Stream.SkipBlock()) 3146 return error("Invalid record"); 3147 } 3148 break; 3149 case bitc::CONSTANTS_BLOCK_ID: 3150 if (Error Err = parseConstants()) 3151 return Err; 3152 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3153 return Err; 3154 break; 3155 case bitc::METADATA_BLOCK_ID: 3156 if (ShouldLazyLoadMetadata) { 3157 if (Error Err = rememberAndSkipMetadata()) 3158 return Err; 3159 break; 3160 } 3161 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3162 if (Error Err = MDLoader->parseModuleMetadata()) 3163 return Err; 3164 break; 3165 case bitc::METADATA_KIND_BLOCK_ID: 3166 if (Error Err = MDLoader->parseMetadataKinds()) 3167 return Err; 3168 break; 3169 case bitc::FUNCTION_BLOCK_ID: 3170 // If this is the first function body we've seen, reverse the 3171 // FunctionsWithBodies list. 3172 if (!SeenFirstFunctionBody) { 3173 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3174 if (Error Err = globalCleanup()) 3175 return Err; 3176 SeenFirstFunctionBody = true; 3177 } 3178 3179 if (VSTOffset > 0) { 3180 // If we have a VST forward declaration record, make sure we 3181 // parse the VST now if we haven't already. It is needed to 3182 // set up the DeferredFunctionInfo vector for lazy reading. 3183 if (!SeenValueSymbolTable) { 3184 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3185 return Err; 3186 SeenValueSymbolTable = true; 3187 // Fall through so that we record the NextUnreadBit below. 3188 // This is necessary in case we have an anonymous function that 3189 // is later materialized. Since it will not have a VST entry we 3190 // need to fall back to the lazy parse to find its offset. 3191 } else { 3192 // If we have a VST forward declaration record, but have already 3193 // parsed the VST (just above, when the first function body was 3194 // encountered here), then we are resuming the parse after 3195 // materializing functions. The ResumeBit points to the 3196 // start of the last function block recorded in the 3197 // DeferredFunctionInfo map. Skip it. 3198 if (Stream.SkipBlock()) 3199 return error("Invalid record"); 3200 continue; 3201 } 3202 } 3203 3204 // Support older bitcode files that did not have the function 3205 // index in the VST, nor a VST forward declaration record, as 3206 // well as anonymous functions that do not have VST entries. 3207 // Build the DeferredFunctionInfo vector on the fly. 3208 if (Error Err = rememberAndSkipFunctionBody()) 3209 return Err; 3210 3211 // Suspend parsing when we reach the function bodies. Subsequent 3212 // materialization calls will resume it when necessary. If the bitcode 3213 // file is old, the symbol table will be at the end instead and will not 3214 // have been seen yet. In this case, just finish the parse now. 3215 if (SeenValueSymbolTable) { 3216 NextUnreadBit = Stream.GetCurrentBitNo(); 3217 // After the VST has been parsed, we need to make sure intrinsic name 3218 // are auto-upgraded. 3219 return globalCleanup(); 3220 } 3221 break; 3222 case bitc::USELIST_BLOCK_ID: 3223 if (Error Err = parseUseLists()) 3224 return Err; 3225 break; 3226 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3227 if (Error Err = parseOperandBundleTags()) 3228 return Err; 3229 break; 3230 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3231 if (Error Err = parseSyncScopeNames()) 3232 return Err; 3233 break; 3234 } 3235 continue; 3236 3237 case BitstreamEntry::Record: 3238 // The interesting case. 3239 break; 3240 } 3241 3242 // Read a record. 3243 auto BitCode = Stream.readRecord(Entry.ID, Record); 3244 switch (BitCode) { 3245 default: break; // Default behavior, ignore unknown content. 3246 case bitc::MODULE_CODE_VERSION: { 3247 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3248 if (!VersionOrErr) 3249 return VersionOrErr.takeError(); 3250 UseRelativeIDs = *VersionOrErr >= 1; 3251 break; 3252 } 3253 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3254 std::string S; 3255 if (convertToString(Record, 0, S)) 3256 return error("Invalid record"); 3257 TheModule->setTargetTriple(S); 3258 break; 3259 } 3260 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3261 std::string S; 3262 if (convertToString(Record, 0, S)) 3263 return error("Invalid record"); 3264 TheModule->setDataLayout(S); 3265 break; 3266 } 3267 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3268 std::string S; 3269 if (convertToString(Record, 0, S)) 3270 return error("Invalid record"); 3271 TheModule->setModuleInlineAsm(S); 3272 break; 3273 } 3274 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3275 // FIXME: Remove in 4.0. 3276 std::string S; 3277 if (convertToString(Record, 0, S)) 3278 return error("Invalid record"); 3279 // Ignore value. 3280 break; 3281 } 3282 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3283 std::string S; 3284 if (convertToString(Record, 0, S)) 3285 return error("Invalid record"); 3286 SectionTable.push_back(S); 3287 break; 3288 } 3289 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3290 std::string S; 3291 if (convertToString(Record, 0, S)) 3292 return error("Invalid record"); 3293 GCTable.push_back(S); 3294 break; 3295 } 3296 case bitc::MODULE_CODE_COMDAT: 3297 if (Error Err = parseComdatRecord(Record)) 3298 return Err; 3299 break; 3300 case bitc::MODULE_CODE_GLOBALVAR: 3301 if (Error Err = parseGlobalVarRecord(Record)) 3302 return Err; 3303 break; 3304 case bitc::MODULE_CODE_FUNCTION: 3305 if (Error Err = parseFunctionRecord(Record)) 3306 return Err; 3307 break; 3308 case bitc::MODULE_CODE_IFUNC: 3309 case bitc::MODULE_CODE_ALIAS: 3310 case bitc::MODULE_CODE_ALIAS_OLD: 3311 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3312 return Err; 3313 break; 3314 /// MODULE_CODE_VSTOFFSET: [offset] 3315 case bitc::MODULE_CODE_VSTOFFSET: 3316 if (Record.size() < 1) 3317 return error("Invalid record"); 3318 // Note that we subtract 1 here because the offset is relative to one word 3319 // before the start of the identification or module block, which was 3320 // historically always the start of the regular bitcode header. 3321 VSTOffset = Record[0] - 1; 3322 break; 3323 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3324 case bitc::MODULE_CODE_SOURCE_FILENAME: 3325 SmallString<128> ValueName; 3326 if (convertToString(Record, 0, ValueName)) 3327 return error("Invalid record"); 3328 TheModule->setSourceFileName(ValueName); 3329 break; 3330 } 3331 Record.clear(); 3332 } 3333 } 3334 3335 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3336 bool IsImporting) { 3337 TheModule = M; 3338 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3339 [&](unsigned ID) { return getTypeByID(ID); }); 3340 return parseModule(0, ShouldLazyLoadMetadata); 3341 } 3342 3343 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3344 if (!isa<PointerType>(PtrType)) 3345 return error("Load/Store operand is not a pointer type"); 3346 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3347 3348 if (ValType && ValType != ElemType) 3349 return error("Explicit load/store type does not match pointee " 3350 "type of pointer operand"); 3351 if (!PointerType::isLoadableOrStorableType(ElemType)) 3352 return error("Cannot load/store from pointer"); 3353 return Error::success(); 3354 } 3355 3356 /// Lazily parse the specified function body block. 3357 Error BitcodeReader::parseFunctionBody(Function *F) { 3358 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3359 return error("Invalid record"); 3360 3361 // Unexpected unresolved metadata when parsing function. 3362 if (MDLoader->hasFwdRefs()) 3363 return error("Invalid function metadata: incoming forward references"); 3364 3365 InstructionList.clear(); 3366 unsigned ModuleValueListSize = ValueList.size(); 3367 unsigned ModuleMDLoaderSize = MDLoader->size(); 3368 3369 // Add all the function arguments to the value table. 3370 for (Argument &I : F->args()) 3371 ValueList.push_back(&I); 3372 3373 unsigned NextValueNo = ValueList.size(); 3374 BasicBlock *CurBB = nullptr; 3375 unsigned CurBBNo = 0; 3376 3377 DebugLoc LastLoc; 3378 auto getLastInstruction = [&]() -> Instruction * { 3379 if (CurBB && !CurBB->empty()) 3380 return &CurBB->back(); 3381 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3382 !FunctionBBs[CurBBNo - 1]->empty()) 3383 return &FunctionBBs[CurBBNo - 1]->back(); 3384 return nullptr; 3385 }; 3386 3387 std::vector<OperandBundleDef> OperandBundles; 3388 3389 // Read all the records. 3390 SmallVector<uint64_t, 64> Record; 3391 3392 while (true) { 3393 BitstreamEntry Entry = Stream.advance(); 3394 3395 switch (Entry.Kind) { 3396 case BitstreamEntry::Error: 3397 return error("Malformed block"); 3398 case BitstreamEntry::EndBlock: 3399 goto OutOfRecordLoop; 3400 3401 case BitstreamEntry::SubBlock: 3402 switch (Entry.ID) { 3403 default: // Skip unknown content. 3404 if (Stream.SkipBlock()) 3405 return error("Invalid record"); 3406 break; 3407 case bitc::CONSTANTS_BLOCK_ID: 3408 if (Error Err = parseConstants()) 3409 return Err; 3410 NextValueNo = ValueList.size(); 3411 break; 3412 case bitc::VALUE_SYMTAB_BLOCK_ID: 3413 if (Error Err = parseValueSymbolTable()) 3414 return Err; 3415 break; 3416 case bitc::METADATA_ATTACHMENT_ID: 3417 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3418 return Err; 3419 break; 3420 case bitc::METADATA_BLOCK_ID: 3421 assert(DeferredMetadataInfo.empty() && 3422 "Must read all module-level metadata before function-level"); 3423 if (Error Err = MDLoader->parseFunctionMetadata()) 3424 return Err; 3425 break; 3426 case bitc::USELIST_BLOCK_ID: 3427 if (Error Err = parseUseLists()) 3428 return Err; 3429 break; 3430 } 3431 continue; 3432 3433 case BitstreamEntry::Record: 3434 // The interesting case. 3435 break; 3436 } 3437 3438 // Read a record. 3439 Record.clear(); 3440 Instruction *I = nullptr; 3441 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3442 switch (BitCode) { 3443 default: // Default behavior: reject 3444 return error("Invalid value"); 3445 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3446 if (Record.size() < 1 || Record[0] == 0) 3447 return error("Invalid record"); 3448 // Create all the basic blocks for the function. 3449 FunctionBBs.resize(Record[0]); 3450 3451 // See if anything took the address of blocks in this function. 3452 auto BBFRI = BasicBlockFwdRefs.find(F); 3453 if (BBFRI == BasicBlockFwdRefs.end()) { 3454 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3455 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3456 } else { 3457 auto &BBRefs = BBFRI->second; 3458 // Check for invalid basic block references. 3459 if (BBRefs.size() > FunctionBBs.size()) 3460 return error("Invalid ID"); 3461 assert(!BBRefs.empty() && "Unexpected empty array"); 3462 assert(!BBRefs.front() && "Invalid reference to entry block"); 3463 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3464 ++I) 3465 if (I < RE && BBRefs[I]) { 3466 BBRefs[I]->insertInto(F); 3467 FunctionBBs[I] = BBRefs[I]; 3468 } else { 3469 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3470 } 3471 3472 // Erase from the table. 3473 BasicBlockFwdRefs.erase(BBFRI); 3474 } 3475 3476 CurBB = FunctionBBs[0]; 3477 continue; 3478 } 3479 3480 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3481 // This record indicates that the last instruction is at the same 3482 // location as the previous instruction with a location. 3483 I = getLastInstruction(); 3484 3485 if (!I) 3486 return error("Invalid record"); 3487 I->setDebugLoc(LastLoc); 3488 I = nullptr; 3489 continue; 3490 3491 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3492 I = getLastInstruction(); 3493 if (!I || Record.size() < 4) 3494 return error("Invalid record"); 3495 3496 unsigned Line = Record[0], Col = Record[1]; 3497 unsigned ScopeID = Record[2], IAID = Record[3]; 3498 3499 MDNode *Scope = nullptr, *IA = nullptr; 3500 if (ScopeID) { 3501 Scope = MDLoader->getMDNodeFwdRefOrNull(ScopeID - 1); 3502 if (!Scope) 3503 return error("Invalid record"); 3504 } 3505 if (IAID) { 3506 IA = MDLoader->getMDNodeFwdRefOrNull(IAID - 1); 3507 if (!IA) 3508 return error("Invalid record"); 3509 } 3510 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3511 I->setDebugLoc(LastLoc); 3512 I = nullptr; 3513 continue; 3514 } 3515 3516 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3517 unsigned OpNum = 0; 3518 Value *LHS, *RHS; 3519 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3520 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3521 OpNum+1 > Record.size()) 3522 return error("Invalid record"); 3523 3524 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3525 if (Opc == -1) 3526 return error("Invalid record"); 3527 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3528 InstructionList.push_back(I); 3529 if (OpNum < Record.size()) { 3530 if (Opc == Instruction::Add || 3531 Opc == Instruction::Sub || 3532 Opc == Instruction::Mul || 3533 Opc == Instruction::Shl) { 3534 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3535 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3536 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3537 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3538 } else if (Opc == Instruction::SDiv || 3539 Opc == Instruction::UDiv || 3540 Opc == Instruction::LShr || 3541 Opc == Instruction::AShr) { 3542 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3543 cast<BinaryOperator>(I)->setIsExact(true); 3544 } else if (isa<FPMathOperator>(I)) { 3545 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3546 if (FMF.any()) 3547 I->setFastMathFlags(FMF); 3548 } 3549 3550 } 3551 break; 3552 } 3553 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3554 unsigned OpNum = 0; 3555 Value *Op; 3556 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3557 OpNum+2 != Record.size()) 3558 return error("Invalid record"); 3559 3560 Type *ResTy = getTypeByID(Record[OpNum]); 3561 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3562 if (Opc == -1 || !ResTy) 3563 return error("Invalid record"); 3564 Instruction *Temp = nullptr; 3565 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3566 if (Temp) { 3567 InstructionList.push_back(Temp); 3568 CurBB->getInstList().push_back(Temp); 3569 } 3570 } else { 3571 auto CastOp = (Instruction::CastOps)Opc; 3572 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3573 return error("Invalid cast"); 3574 I = CastInst::Create(CastOp, Op, ResTy); 3575 } 3576 InstructionList.push_back(I); 3577 break; 3578 } 3579 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3580 case bitc::FUNC_CODE_INST_GEP_OLD: 3581 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3582 unsigned OpNum = 0; 3583 3584 Type *Ty; 3585 bool InBounds; 3586 3587 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3588 InBounds = Record[OpNum++]; 3589 Ty = getTypeByID(Record[OpNum++]); 3590 } else { 3591 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3592 Ty = nullptr; 3593 } 3594 3595 Value *BasePtr; 3596 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3597 return error("Invalid record"); 3598 3599 if (!Ty) 3600 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 3601 ->getElementType(); 3602 else if (Ty != 3603 cast<PointerType>(BasePtr->getType()->getScalarType()) 3604 ->getElementType()) 3605 return error( 3606 "Explicit gep type does not match pointee type of pointer operand"); 3607 3608 SmallVector<Value*, 16> GEPIdx; 3609 while (OpNum != Record.size()) { 3610 Value *Op; 3611 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3612 return error("Invalid record"); 3613 GEPIdx.push_back(Op); 3614 } 3615 3616 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3617 3618 InstructionList.push_back(I); 3619 if (InBounds) 3620 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3621 break; 3622 } 3623 3624 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3625 // EXTRACTVAL: [opty, opval, n x indices] 3626 unsigned OpNum = 0; 3627 Value *Agg; 3628 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3629 return error("Invalid record"); 3630 3631 unsigned RecSize = Record.size(); 3632 if (OpNum == RecSize) 3633 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3634 3635 SmallVector<unsigned, 4> EXTRACTVALIdx; 3636 Type *CurTy = Agg->getType(); 3637 for (; OpNum != RecSize; ++OpNum) { 3638 bool IsArray = CurTy->isArrayTy(); 3639 bool IsStruct = CurTy->isStructTy(); 3640 uint64_t Index = Record[OpNum]; 3641 3642 if (!IsStruct && !IsArray) 3643 return error("EXTRACTVAL: Invalid type"); 3644 if ((unsigned)Index != Index) 3645 return error("Invalid value"); 3646 if (IsStruct && Index >= CurTy->subtypes().size()) 3647 return error("EXTRACTVAL: Invalid struct index"); 3648 if (IsArray && Index >= CurTy->getArrayNumElements()) 3649 return error("EXTRACTVAL: Invalid array index"); 3650 EXTRACTVALIdx.push_back((unsigned)Index); 3651 3652 if (IsStruct) 3653 CurTy = CurTy->subtypes()[Index]; 3654 else 3655 CurTy = CurTy->subtypes()[0]; 3656 } 3657 3658 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3659 InstructionList.push_back(I); 3660 break; 3661 } 3662 3663 case bitc::FUNC_CODE_INST_INSERTVAL: { 3664 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3665 unsigned OpNum = 0; 3666 Value *Agg; 3667 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3668 return error("Invalid record"); 3669 Value *Val; 3670 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3671 return error("Invalid record"); 3672 3673 unsigned RecSize = Record.size(); 3674 if (OpNum == RecSize) 3675 return error("INSERTVAL: Invalid instruction with 0 indices"); 3676 3677 SmallVector<unsigned, 4> INSERTVALIdx; 3678 Type *CurTy = Agg->getType(); 3679 for (; OpNum != RecSize; ++OpNum) { 3680 bool IsArray = CurTy->isArrayTy(); 3681 bool IsStruct = CurTy->isStructTy(); 3682 uint64_t Index = Record[OpNum]; 3683 3684 if (!IsStruct && !IsArray) 3685 return error("INSERTVAL: Invalid type"); 3686 if ((unsigned)Index != Index) 3687 return error("Invalid value"); 3688 if (IsStruct && Index >= CurTy->subtypes().size()) 3689 return error("INSERTVAL: Invalid struct index"); 3690 if (IsArray && Index >= CurTy->getArrayNumElements()) 3691 return error("INSERTVAL: Invalid array index"); 3692 3693 INSERTVALIdx.push_back((unsigned)Index); 3694 if (IsStruct) 3695 CurTy = CurTy->subtypes()[Index]; 3696 else 3697 CurTy = CurTy->subtypes()[0]; 3698 } 3699 3700 if (CurTy != Val->getType()) 3701 return error("Inserted value type doesn't match aggregate type"); 3702 3703 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3704 InstructionList.push_back(I); 3705 break; 3706 } 3707 3708 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3709 // obsolete form of select 3710 // handles select i1 ... in old bitcode 3711 unsigned OpNum = 0; 3712 Value *TrueVal, *FalseVal, *Cond; 3713 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3714 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3715 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3716 return error("Invalid record"); 3717 3718 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3719 InstructionList.push_back(I); 3720 break; 3721 } 3722 3723 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3724 // new form of select 3725 // handles select i1 or select [N x i1] 3726 unsigned OpNum = 0; 3727 Value *TrueVal, *FalseVal, *Cond; 3728 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3729 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3730 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3731 return error("Invalid record"); 3732 3733 // select condition can be either i1 or [N x i1] 3734 if (VectorType* vector_type = 3735 dyn_cast<VectorType>(Cond->getType())) { 3736 // expect <n x i1> 3737 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3738 return error("Invalid type for value"); 3739 } else { 3740 // expect i1 3741 if (Cond->getType() != Type::getInt1Ty(Context)) 3742 return error("Invalid type for value"); 3743 } 3744 3745 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3746 InstructionList.push_back(I); 3747 break; 3748 } 3749 3750 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3751 unsigned OpNum = 0; 3752 Value *Vec, *Idx; 3753 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3754 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3755 return error("Invalid record"); 3756 if (!Vec->getType()->isVectorTy()) 3757 return error("Invalid type for value"); 3758 I = ExtractElementInst::Create(Vec, Idx); 3759 InstructionList.push_back(I); 3760 break; 3761 } 3762 3763 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3764 unsigned OpNum = 0; 3765 Value *Vec, *Elt, *Idx; 3766 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3767 return error("Invalid record"); 3768 if (!Vec->getType()->isVectorTy()) 3769 return error("Invalid type for value"); 3770 if (popValue(Record, OpNum, NextValueNo, 3771 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3772 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3773 return error("Invalid record"); 3774 I = InsertElementInst::Create(Vec, Elt, Idx); 3775 InstructionList.push_back(I); 3776 break; 3777 } 3778 3779 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3780 unsigned OpNum = 0; 3781 Value *Vec1, *Vec2, *Mask; 3782 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3783 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3784 return error("Invalid record"); 3785 3786 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3787 return error("Invalid record"); 3788 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3789 return error("Invalid type for value"); 3790 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3791 InstructionList.push_back(I); 3792 break; 3793 } 3794 3795 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3796 // Old form of ICmp/FCmp returning bool 3797 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3798 // both legal on vectors but had different behaviour. 3799 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3800 // FCmp/ICmp returning bool or vector of bool 3801 3802 unsigned OpNum = 0; 3803 Value *LHS, *RHS; 3804 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3805 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 3806 return error("Invalid record"); 3807 3808 unsigned PredVal = Record[OpNum]; 3809 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 3810 FastMathFlags FMF; 3811 if (IsFP && Record.size() > OpNum+1) 3812 FMF = getDecodedFastMathFlags(Record[++OpNum]); 3813 3814 if (OpNum+1 != Record.size()) 3815 return error("Invalid record"); 3816 3817 if (LHS->getType()->isFPOrFPVectorTy()) 3818 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 3819 else 3820 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 3821 3822 if (FMF.any()) 3823 I->setFastMathFlags(FMF); 3824 InstructionList.push_back(I); 3825 break; 3826 } 3827 3828 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3829 { 3830 unsigned Size = Record.size(); 3831 if (Size == 0) { 3832 I = ReturnInst::Create(Context); 3833 InstructionList.push_back(I); 3834 break; 3835 } 3836 3837 unsigned OpNum = 0; 3838 Value *Op = nullptr; 3839 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3840 return error("Invalid record"); 3841 if (OpNum != Record.size()) 3842 return error("Invalid record"); 3843 3844 I = ReturnInst::Create(Context, Op); 3845 InstructionList.push_back(I); 3846 break; 3847 } 3848 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3849 if (Record.size() != 1 && Record.size() != 3) 3850 return error("Invalid record"); 3851 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3852 if (!TrueDest) 3853 return error("Invalid record"); 3854 3855 if (Record.size() == 1) { 3856 I = BranchInst::Create(TrueDest); 3857 InstructionList.push_back(I); 3858 } 3859 else { 3860 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3861 Value *Cond = getValue(Record, 2, NextValueNo, 3862 Type::getInt1Ty(Context)); 3863 if (!FalseDest || !Cond) 3864 return error("Invalid record"); 3865 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3866 InstructionList.push_back(I); 3867 } 3868 break; 3869 } 3870 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 3871 if (Record.size() != 1 && Record.size() != 2) 3872 return error("Invalid record"); 3873 unsigned Idx = 0; 3874 Value *CleanupPad = 3875 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3876 if (!CleanupPad) 3877 return error("Invalid record"); 3878 BasicBlock *UnwindDest = nullptr; 3879 if (Record.size() == 2) { 3880 UnwindDest = getBasicBlock(Record[Idx++]); 3881 if (!UnwindDest) 3882 return error("Invalid record"); 3883 } 3884 3885 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 3886 InstructionList.push_back(I); 3887 break; 3888 } 3889 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 3890 if (Record.size() != 2) 3891 return error("Invalid record"); 3892 unsigned Idx = 0; 3893 Value *CatchPad = 3894 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3895 if (!CatchPad) 3896 return error("Invalid record"); 3897 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3898 if (!BB) 3899 return error("Invalid record"); 3900 3901 I = CatchReturnInst::Create(CatchPad, BB); 3902 InstructionList.push_back(I); 3903 break; 3904 } 3905 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 3906 // We must have, at minimum, the outer scope and the number of arguments. 3907 if (Record.size() < 2) 3908 return error("Invalid record"); 3909 3910 unsigned Idx = 0; 3911 3912 Value *ParentPad = 3913 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3914 3915 unsigned NumHandlers = Record[Idx++]; 3916 3917 SmallVector<BasicBlock *, 2> Handlers; 3918 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 3919 BasicBlock *BB = getBasicBlock(Record[Idx++]); 3920 if (!BB) 3921 return error("Invalid record"); 3922 Handlers.push_back(BB); 3923 } 3924 3925 BasicBlock *UnwindDest = nullptr; 3926 if (Idx + 1 == Record.size()) { 3927 UnwindDest = getBasicBlock(Record[Idx++]); 3928 if (!UnwindDest) 3929 return error("Invalid record"); 3930 } 3931 3932 if (Record.size() != Idx) 3933 return error("Invalid record"); 3934 3935 auto *CatchSwitch = 3936 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 3937 for (BasicBlock *Handler : Handlers) 3938 CatchSwitch->addHandler(Handler); 3939 I = CatchSwitch; 3940 InstructionList.push_back(I); 3941 break; 3942 } 3943 case bitc::FUNC_CODE_INST_CATCHPAD: 3944 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 3945 // We must have, at minimum, the outer scope and the number of arguments. 3946 if (Record.size() < 2) 3947 return error("Invalid record"); 3948 3949 unsigned Idx = 0; 3950 3951 Value *ParentPad = 3952 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 3953 3954 unsigned NumArgOperands = Record[Idx++]; 3955 3956 SmallVector<Value *, 2> Args; 3957 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 3958 Value *Val; 3959 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3960 return error("Invalid record"); 3961 Args.push_back(Val); 3962 } 3963 3964 if (Record.size() != Idx) 3965 return error("Invalid record"); 3966 3967 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 3968 I = CleanupPadInst::Create(ParentPad, Args); 3969 else 3970 I = CatchPadInst::Create(ParentPad, Args); 3971 InstructionList.push_back(I); 3972 break; 3973 } 3974 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3975 // Check magic 3976 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3977 // "New" SwitchInst format with case ranges. The changes to write this 3978 // format were reverted but we still recognize bitcode that uses it. 3979 // Hopefully someday we will have support for case ranges and can use 3980 // this format again. 3981 3982 Type *OpTy = getTypeByID(Record[1]); 3983 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3984 3985 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3986 BasicBlock *Default = getBasicBlock(Record[3]); 3987 if (!OpTy || !Cond || !Default) 3988 return error("Invalid record"); 3989 3990 unsigned NumCases = Record[4]; 3991 3992 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3993 InstructionList.push_back(SI); 3994 3995 unsigned CurIdx = 5; 3996 for (unsigned i = 0; i != NumCases; ++i) { 3997 SmallVector<ConstantInt*, 1> CaseVals; 3998 unsigned NumItems = Record[CurIdx++]; 3999 for (unsigned ci = 0; ci != NumItems; ++ci) { 4000 bool isSingleNumber = Record[CurIdx++]; 4001 4002 APInt Low; 4003 unsigned ActiveWords = 1; 4004 if (ValueBitWidth > 64) 4005 ActiveWords = Record[CurIdx++]; 4006 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4007 ValueBitWidth); 4008 CurIdx += ActiveWords; 4009 4010 if (!isSingleNumber) { 4011 ActiveWords = 1; 4012 if (ValueBitWidth > 64) 4013 ActiveWords = Record[CurIdx++]; 4014 APInt High = readWideAPInt( 4015 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4016 CurIdx += ActiveWords; 4017 4018 // FIXME: It is not clear whether values in the range should be 4019 // compared as signed or unsigned values. The partially 4020 // implemented changes that used this format in the past used 4021 // unsigned comparisons. 4022 for ( ; Low.ule(High); ++Low) 4023 CaseVals.push_back(ConstantInt::get(Context, Low)); 4024 } else 4025 CaseVals.push_back(ConstantInt::get(Context, Low)); 4026 } 4027 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4028 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4029 cve = CaseVals.end(); cvi != cve; ++cvi) 4030 SI->addCase(*cvi, DestBB); 4031 } 4032 I = SI; 4033 break; 4034 } 4035 4036 // Old SwitchInst format without case ranges. 4037 4038 if (Record.size() < 3 || (Record.size() & 1) == 0) 4039 return error("Invalid record"); 4040 Type *OpTy = getTypeByID(Record[0]); 4041 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4042 BasicBlock *Default = getBasicBlock(Record[2]); 4043 if (!OpTy || !Cond || !Default) 4044 return error("Invalid record"); 4045 unsigned NumCases = (Record.size()-3)/2; 4046 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4047 InstructionList.push_back(SI); 4048 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4049 ConstantInt *CaseVal = 4050 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4051 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4052 if (!CaseVal || !DestBB) { 4053 delete SI; 4054 return error("Invalid record"); 4055 } 4056 SI->addCase(CaseVal, DestBB); 4057 } 4058 I = SI; 4059 break; 4060 } 4061 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4062 if (Record.size() < 2) 4063 return error("Invalid record"); 4064 Type *OpTy = getTypeByID(Record[0]); 4065 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4066 if (!OpTy || !Address) 4067 return error("Invalid record"); 4068 unsigned NumDests = Record.size()-2; 4069 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4070 InstructionList.push_back(IBI); 4071 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4072 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4073 IBI->addDestination(DestBB); 4074 } else { 4075 delete IBI; 4076 return error("Invalid record"); 4077 } 4078 } 4079 I = IBI; 4080 break; 4081 } 4082 4083 case bitc::FUNC_CODE_INST_INVOKE: { 4084 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4085 if (Record.size() < 4) 4086 return error("Invalid record"); 4087 unsigned OpNum = 0; 4088 AttributeList PAL = getAttributes(Record[OpNum++]); 4089 unsigned CCInfo = Record[OpNum++]; 4090 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4091 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4092 4093 FunctionType *FTy = nullptr; 4094 if (CCInfo >> 13 & 1 && 4095 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4096 return error("Explicit invoke type is not a function type"); 4097 4098 Value *Callee; 4099 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4100 return error("Invalid record"); 4101 4102 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4103 if (!CalleeTy) 4104 return error("Callee is not a pointer"); 4105 if (!FTy) { 4106 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 4107 if (!FTy) 4108 return error("Callee is not of pointer to function type"); 4109 } else if (CalleeTy->getElementType() != FTy) 4110 return error("Explicit invoke type does not match pointee type of " 4111 "callee operand"); 4112 if (Record.size() < FTy->getNumParams() + OpNum) 4113 return error("Insufficient operands to call"); 4114 4115 SmallVector<Value*, 16> Ops; 4116 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4117 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4118 FTy->getParamType(i))); 4119 if (!Ops.back()) 4120 return error("Invalid record"); 4121 } 4122 4123 if (!FTy->isVarArg()) { 4124 if (Record.size() != OpNum) 4125 return error("Invalid record"); 4126 } else { 4127 // Read type/value pairs for varargs params. 4128 while (OpNum != Record.size()) { 4129 Value *Op; 4130 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4131 return error("Invalid record"); 4132 Ops.push_back(Op); 4133 } 4134 } 4135 4136 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops, OperandBundles); 4137 OperandBundles.clear(); 4138 InstructionList.push_back(I); 4139 cast<InvokeInst>(I)->setCallingConv( 4140 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4141 cast<InvokeInst>(I)->setAttributes(PAL); 4142 break; 4143 } 4144 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4145 unsigned Idx = 0; 4146 Value *Val = nullptr; 4147 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4148 return error("Invalid record"); 4149 I = ResumeInst::Create(Val); 4150 InstructionList.push_back(I); 4151 break; 4152 } 4153 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4154 I = new UnreachableInst(Context); 4155 InstructionList.push_back(I); 4156 break; 4157 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4158 if (Record.size() < 1 || ((Record.size()-1)&1)) 4159 return error("Invalid record"); 4160 Type *Ty = getTypeByID(Record[0]); 4161 if (!Ty) 4162 return error("Invalid record"); 4163 4164 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4165 InstructionList.push_back(PN); 4166 4167 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4168 Value *V; 4169 // With the new function encoding, it is possible that operands have 4170 // negative IDs (for forward references). Use a signed VBR 4171 // representation to keep the encoding small. 4172 if (UseRelativeIDs) 4173 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4174 else 4175 V = getValue(Record, 1+i, NextValueNo, Ty); 4176 BasicBlock *BB = getBasicBlock(Record[2+i]); 4177 if (!V || !BB) 4178 return error("Invalid record"); 4179 PN->addIncoming(V, BB); 4180 } 4181 I = PN; 4182 break; 4183 } 4184 4185 case bitc::FUNC_CODE_INST_LANDINGPAD: 4186 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4187 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4188 unsigned Idx = 0; 4189 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4190 if (Record.size() < 3) 4191 return error("Invalid record"); 4192 } else { 4193 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4194 if (Record.size() < 4) 4195 return error("Invalid record"); 4196 } 4197 Type *Ty = getTypeByID(Record[Idx++]); 4198 if (!Ty) 4199 return error("Invalid record"); 4200 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4201 Value *PersFn = nullptr; 4202 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4203 return error("Invalid record"); 4204 4205 if (!F->hasPersonalityFn()) 4206 F->setPersonalityFn(cast<Constant>(PersFn)); 4207 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4208 return error("Personality function mismatch"); 4209 } 4210 4211 bool IsCleanup = !!Record[Idx++]; 4212 unsigned NumClauses = Record[Idx++]; 4213 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4214 LP->setCleanup(IsCleanup); 4215 for (unsigned J = 0; J != NumClauses; ++J) { 4216 LandingPadInst::ClauseType CT = 4217 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4218 Value *Val; 4219 4220 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4221 delete LP; 4222 return error("Invalid record"); 4223 } 4224 4225 assert((CT != LandingPadInst::Catch || 4226 !isa<ArrayType>(Val->getType())) && 4227 "Catch clause has a invalid type!"); 4228 assert((CT != LandingPadInst::Filter || 4229 isa<ArrayType>(Val->getType())) && 4230 "Filter clause has invalid type!"); 4231 LP->addClause(cast<Constant>(Val)); 4232 } 4233 4234 I = LP; 4235 InstructionList.push_back(I); 4236 break; 4237 } 4238 4239 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4240 if (Record.size() != 4) 4241 return error("Invalid record"); 4242 uint64_t AlignRecord = Record[3]; 4243 const uint64_t InAllocaMask = uint64_t(1) << 5; 4244 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4245 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4246 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4247 SwiftErrorMask; 4248 bool InAlloca = AlignRecord & InAllocaMask; 4249 bool SwiftError = AlignRecord & SwiftErrorMask; 4250 Type *Ty = getTypeByID(Record[0]); 4251 if ((AlignRecord & ExplicitTypeMask) == 0) { 4252 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4253 if (!PTy) 4254 return error("Old-style alloca with a non-pointer type"); 4255 Ty = PTy->getElementType(); 4256 } 4257 Type *OpTy = getTypeByID(Record[1]); 4258 Value *Size = getFnValueByID(Record[2], OpTy); 4259 unsigned Align; 4260 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4261 return Err; 4262 } 4263 if (!Ty || !Size) 4264 return error("Invalid record"); 4265 4266 // FIXME: Make this an optional field. 4267 const DataLayout &DL = TheModule->getDataLayout(); 4268 unsigned AS = DL.getAllocaAddrSpace(); 4269 4270 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4271 AI->setUsedWithInAlloca(InAlloca); 4272 AI->setSwiftError(SwiftError); 4273 I = AI; 4274 InstructionList.push_back(I); 4275 break; 4276 } 4277 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4278 unsigned OpNum = 0; 4279 Value *Op; 4280 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4281 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4282 return error("Invalid record"); 4283 4284 Type *Ty = nullptr; 4285 if (OpNum + 3 == Record.size()) 4286 Ty = getTypeByID(Record[OpNum++]); 4287 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4288 return Err; 4289 if (!Ty) 4290 Ty = cast<PointerType>(Op->getType())->getElementType(); 4291 4292 unsigned Align; 4293 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4294 return Err; 4295 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4296 4297 InstructionList.push_back(I); 4298 break; 4299 } 4300 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4301 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4302 unsigned OpNum = 0; 4303 Value *Op; 4304 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4305 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4306 return error("Invalid record"); 4307 4308 Type *Ty = nullptr; 4309 if (OpNum + 5 == Record.size()) 4310 Ty = getTypeByID(Record[OpNum++]); 4311 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4312 return Err; 4313 if (!Ty) 4314 Ty = cast<PointerType>(Op->getType())->getElementType(); 4315 4316 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4317 if (Ordering == AtomicOrdering::NotAtomic || 4318 Ordering == AtomicOrdering::Release || 4319 Ordering == AtomicOrdering::AcquireRelease) 4320 return error("Invalid record"); 4321 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4322 return error("Invalid record"); 4323 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4324 4325 unsigned Align; 4326 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4327 return Err; 4328 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SSID); 4329 4330 InstructionList.push_back(I); 4331 break; 4332 } 4333 case bitc::FUNC_CODE_INST_STORE: 4334 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4335 unsigned OpNum = 0; 4336 Value *Val, *Ptr; 4337 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4338 (BitCode == bitc::FUNC_CODE_INST_STORE 4339 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4340 : popValue(Record, OpNum, NextValueNo, 4341 cast<PointerType>(Ptr->getType())->getElementType(), 4342 Val)) || 4343 OpNum + 2 != Record.size()) 4344 return error("Invalid record"); 4345 4346 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4347 return Err; 4348 unsigned Align; 4349 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4350 return Err; 4351 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4352 InstructionList.push_back(I); 4353 break; 4354 } 4355 case bitc::FUNC_CODE_INST_STOREATOMIC: 4356 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4357 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4358 unsigned OpNum = 0; 4359 Value *Val, *Ptr; 4360 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4361 !isa<PointerType>(Ptr->getType()) || 4362 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4363 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4364 : popValue(Record, OpNum, NextValueNo, 4365 cast<PointerType>(Ptr->getType())->getElementType(), 4366 Val)) || 4367 OpNum + 4 != Record.size()) 4368 return error("Invalid record"); 4369 4370 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4371 return Err; 4372 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4373 if (Ordering == AtomicOrdering::NotAtomic || 4374 Ordering == AtomicOrdering::Acquire || 4375 Ordering == AtomicOrdering::AcquireRelease) 4376 return error("Invalid record"); 4377 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4378 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4379 return error("Invalid record"); 4380 4381 unsigned Align; 4382 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4383 return Err; 4384 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4385 InstructionList.push_back(I); 4386 break; 4387 } 4388 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4389 case bitc::FUNC_CODE_INST_CMPXCHG: { 4390 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4391 // failureordering?, isweak?] 4392 unsigned OpNum = 0; 4393 Value *Ptr, *Cmp, *New; 4394 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4395 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4396 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4397 : popValue(Record, OpNum, NextValueNo, 4398 cast<PointerType>(Ptr->getType())->getElementType(), 4399 Cmp)) || 4400 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4401 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4402 return error("Invalid record"); 4403 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4404 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4405 SuccessOrdering == AtomicOrdering::Unordered) 4406 return error("Invalid record"); 4407 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4408 4409 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4410 return Err; 4411 AtomicOrdering FailureOrdering; 4412 if (Record.size() < 7) 4413 FailureOrdering = 4414 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4415 else 4416 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4417 4418 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4419 SSID); 4420 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4421 4422 if (Record.size() < 8) { 4423 // Before weak cmpxchgs existed, the instruction simply returned the 4424 // value loaded from memory, so bitcode files from that era will be 4425 // expecting the first component of a modern cmpxchg. 4426 CurBB->getInstList().push_back(I); 4427 I = ExtractValueInst::Create(I, 0); 4428 } else { 4429 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4430 } 4431 4432 InstructionList.push_back(I); 4433 break; 4434 } 4435 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4436 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4437 unsigned OpNum = 0; 4438 Value *Ptr, *Val; 4439 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4440 !isa<PointerType>(Ptr->getType()) || 4441 popValue(Record, OpNum, NextValueNo, 4442 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4443 OpNum+4 != Record.size()) 4444 return error("Invalid record"); 4445 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4446 if (Operation < AtomicRMWInst::FIRST_BINOP || 4447 Operation > AtomicRMWInst::LAST_BINOP) 4448 return error("Invalid record"); 4449 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4450 if (Ordering == AtomicOrdering::NotAtomic || 4451 Ordering == AtomicOrdering::Unordered) 4452 return error("Invalid record"); 4453 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4454 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4455 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4456 InstructionList.push_back(I); 4457 break; 4458 } 4459 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4460 if (2 != Record.size()) 4461 return error("Invalid record"); 4462 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4463 if (Ordering == AtomicOrdering::NotAtomic || 4464 Ordering == AtomicOrdering::Unordered || 4465 Ordering == AtomicOrdering::Monotonic) 4466 return error("Invalid record"); 4467 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4468 I = new FenceInst(Context, Ordering, SSID); 4469 InstructionList.push_back(I); 4470 break; 4471 } 4472 case bitc::FUNC_CODE_INST_CALL: { 4473 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4474 if (Record.size() < 3) 4475 return error("Invalid record"); 4476 4477 unsigned OpNum = 0; 4478 AttributeList PAL = getAttributes(Record[OpNum++]); 4479 unsigned CCInfo = Record[OpNum++]; 4480 4481 FastMathFlags FMF; 4482 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4483 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4484 if (!FMF.any()) 4485 return error("Fast math flags indicator set for call with no FMF"); 4486 } 4487 4488 FunctionType *FTy = nullptr; 4489 if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 && 4490 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4491 return error("Explicit call type is not a function type"); 4492 4493 Value *Callee; 4494 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4495 return error("Invalid record"); 4496 4497 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4498 if (!OpTy) 4499 return error("Callee is not a pointer type"); 4500 if (!FTy) { 4501 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4502 if (!FTy) 4503 return error("Callee is not of pointer to function type"); 4504 } else if (OpTy->getElementType() != FTy) 4505 return error("Explicit call type does not match pointee type of " 4506 "callee operand"); 4507 if (Record.size() < FTy->getNumParams() + OpNum) 4508 return error("Insufficient operands to call"); 4509 4510 SmallVector<Value*, 16> Args; 4511 // Read the fixed params. 4512 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4513 if (FTy->getParamType(i)->isLabelTy()) 4514 Args.push_back(getBasicBlock(Record[OpNum])); 4515 else 4516 Args.push_back(getValue(Record, OpNum, NextValueNo, 4517 FTy->getParamType(i))); 4518 if (!Args.back()) 4519 return error("Invalid record"); 4520 } 4521 4522 // Read type/value pairs for varargs params. 4523 if (!FTy->isVarArg()) { 4524 if (OpNum != Record.size()) 4525 return error("Invalid record"); 4526 } else { 4527 while (OpNum != Record.size()) { 4528 Value *Op; 4529 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4530 return error("Invalid record"); 4531 Args.push_back(Op); 4532 } 4533 } 4534 4535 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 4536 OperandBundles.clear(); 4537 InstructionList.push_back(I); 4538 cast<CallInst>(I)->setCallingConv( 4539 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4540 CallInst::TailCallKind TCK = CallInst::TCK_None; 4541 if (CCInfo & 1 << bitc::CALL_TAIL) 4542 TCK = CallInst::TCK_Tail; 4543 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 4544 TCK = CallInst::TCK_MustTail; 4545 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 4546 TCK = CallInst::TCK_NoTail; 4547 cast<CallInst>(I)->setTailCallKind(TCK); 4548 cast<CallInst>(I)->setAttributes(PAL); 4549 if (FMF.any()) { 4550 if (!isa<FPMathOperator>(I)) 4551 return error("Fast-math-flags specified for call without " 4552 "floating-point scalar or vector return type"); 4553 I->setFastMathFlags(FMF); 4554 } 4555 break; 4556 } 4557 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4558 if (Record.size() < 3) 4559 return error("Invalid record"); 4560 Type *OpTy = getTypeByID(Record[0]); 4561 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4562 Type *ResTy = getTypeByID(Record[2]); 4563 if (!OpTy || !Op || !ResTy) 4564 return error("Invalid record"); 4565 I = new VAArgInst(Op, ResTy); 4566 InstructionList.push_back(I); 4567 break; 4568 } 4569 4570 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 4571 // A call or an invoke can be optionally prefixed with some variable 4572 // number of operand bundle blocks. These blocks are read into 4573 // OperandBundles and consumed at the next call or invoke instruction. 4574 4575 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 4576 return error("Invalid record"); 4577 4578 std::vector<Value *> Inputs; 4579 4580 unsigned OpNum = 1; 4581 while (OpNum != Record.size()) { 4582 Value *Op; 4583 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4584 return error("Invalid record"); 4585 Inputs.push_back(Op); 4586 } 4587 4588 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 4589 continue; 4590 } 4591 } 4592 4593 // Add instruction to end of current BB. If there is no current BB, reject 4594 // this file. 4595 if (!CurBB) { 4596 I->deleteValue(); 4597 return error("Invalid instruction with no BB"); 4598 } 4599 if (!OperandBundles.empty()) { 4600 I->deleteValue(); 4601 return error("Operand bundles found with no consumer"); 4602 } 4603 CurBB->getInstList().push_back(I); 4604 4605 // If this was a terminator instruction, move to the next block. 4606 if (isa<TerminatorInst>(I)) { 4607 ++CurBBNo; 4608 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4609 } 4610 4611 // Non-void values get registered in the value table for future use. 4612 if (I && !I->getType()->isVoidTy()) 4613 ValueList.assignValue(I, NextValueNo++); 4614 } 4615 4616 OutOfRecordLoop: 4617 4618 if (!OperandBundles.empty()) 4619 return error("Operand bundles found with no consumer"); 4620 4621 // Check the function list for unresolved values. 4622 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4623 if (!A->getParent()) { 4624 // We found at least one unresolved value. Nuke them all to avoid leaks. 4625 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4626 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4627 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4628 delete A; 4629 } 4630 } 4631 return error("Never resolved value found in function"); 4632 } 4633 } 4634 4635 // Unexpected unresolved metadata about to be dropped. 4636 if (MDLoader->hasFwdRefs()) 4637 return error("Invalid function metadata: outgoing forward refs"); 4638 4639 // Trim the value list down to the size it was before we parsed this function. 4640 ValueList.shrinkTo(ModuleValueListSize); 4641 MDLoader->shrinkTo(ModuleMDLoaderSize); 4642 std::vector<BasicBlock*>().swap(FunctionBBs); 4643 return Error::success(); 4644 } 4645 4646 /// Find the function body in the bitcode stream 4647 Error BitcodeReader::findFunctionInStream( 4648 Function *F, 4649 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4650 while (DeferredFunctionInfoIterator->second == 0) { 4651 // This is the fallback handling for the old format bitcode that 4652 // didn't contain the function index in the VST, or when we have 4653 // an anonymous function which would not have a VST entry. 4654 // Assert that we have one of those two cases. 4655 assert(VSTOffset == 0 || !F->hasName()); 4656 // Parse the next body in the stream and set its position in the 4657 // DeferredFunctionInfo map. 4658 if (Error Err = rememberAndSkipFunctionBodies()) 4659 return Err; 4660 } 4661 return Error::success(); 4662 } 4663 4664 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 4665 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 4666 return SyncScope::ID(Val); 4667 if (Val >= SSIDs.size()) 4668 return SyncScope::System; // Map unknown synchronization scopes to system. 4669 return SSIDs[Val]; 4670 } 4671 4672 //===----------------------------------------------------------------------===// 4673 // GVMaterializer implementation 4674 //===----------------------------------------------------------------------===// 4675 4676 Error BitcodeReader::materialize(GlobalValue *GV) { 4677 Function *F = dyn_cast<Function>(GV); 4678 // If it's not a function or is already material, ignore the request. 4679 if (!F || !F->isMaterializable()) 4680 return Error::success(); 4681 4682 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4683 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4684 // If its position is recorded as 0, its body is somewhere in the stream 4685 // but we haven't seen it yet. 4686 if (DFII->second == 0) 4687 if (Error Err = findFunctionInStream(F, DFII)) 4688 return Err; 4689 4690 // Materialize metadata before parsing any function bodies. 4691 if (Error Err = materializeMetadata()) 4692 return Err; 4693 4694 // Move the bit stream to the saved position of the deferred function body. 4695 Stream.JumpToBit(DFII->second); 4696 4697 if (Error Err = parseFunctionBody(F)) 4698 return Err; 4699 F->setIsMaterializable(false); 4700 4701 if (StripDebugInfo) 4702 stripDebugInfo(*F); 4703 4704 // Upgrade any old intrinsic calls in the function. 4705 for (auto &I : UpgradedIntrinsics) { 4706 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4707 UI != UE;) { 4708 User *U = *UI; 4709 ++UI; 4710 if (CallInst *CI = dyn_cast<CallInst>(U)) 4711 UpgradeIntrinsicCall(CI, I.second); 4712 } 4713 } 4714 4715 // Update calls to the remangled intrinsics 4716 for (auto &I : RemangledIntrinsics) 4717 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 4718 UI != UE;) 4719 // Don't expect any other users than call sites 4720 CallSite(*UI++).setCalledFunction(I.second); 4721 4722 // Finish fn->subprogram upgrade for materialized functions. 4723 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 4724 F->setSubprogram(SP); 4725 4726 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 4727 if (!MDLoader->isStrippingTBAA()) { 4728 for (auto &I : instructions(F)) { 4729 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 4730 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 4731 continue; 4732 MDLoader->setStripTBAA(true); 4733 stripTBAA(F->getParent()); 4734 } 4735 } 4736 4737 // Bring in any functions that this function forward-referenced via 4738 // blockaddresses. 4739 return materializeForwardReferencedFunctions(); 4740 } 4741 4742 Error BitcodeReader::materializeModule() { 4743 if (Error Err = materializeMetadata()) 4744 return Err; 4745 4746 // Promise to materialize all forward references. 4747 WillMaterializeAllForwardRefs = true; 4748 4749 // Iterate over the module, deserializing any functions that are still on 4750 // disk. 4751 for (Function &F : *TheModule) { 4752 if (Error Err = materialize(&F)) 4753 return Err; 4754 } 4755 // At this point, if there are any function bodies, parse the rest of 4756 // the bits in the module past the last function block we have recorded 4757 // through either lazy scanning or the VST. 4758 if (LastFunctionBlockBit || NextUnreadBit) 4759 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 4760 ? LastFunctionBlockBit 4761 : NextUnreadBit)) 4762 return Err; 4763 4764 // Check that all block address forward references got resolved (as we 4765 // promised above). 4766 if (!BasicBlockFwdRefs.empty()) 4767 return error("Never resolved function from blockaddress"); 4768 4769 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4770 // delete the old functions to clean up. We can't do this unless the entire 4771 // module is materialized because there could always be another function body 4772 // with calls to the old function. 4773 for (auto &I : UpgradedIntrinsics) { 4774 for (auto *U : I.first->users()) { 4775 if (CallInst *CI = dyn_cast<CallInst>(U)) 4776 UpgradeIntrinsicCall(CI, I.second); 4777 } 4778 if (!I.first->use_empty()) 4779 I.first->replaceAllUsesWith(I.second); 4780 I.first->eraseFromParent(); 4781 } 4782 UpgradedIntrinsics.clear(); 4783 // Do the same for remangled intrinsics 4784 for (auto &I : RemangledIntrinsics) { 4785 I.first->replaceAllUsesWith(I.second); 4786 I.first->eraseFromParent(); 4787 } 4788 RemangledIntrinsics.clear(); 4789 4790 UpgradeDebugInfo(*TheModule); 4791 4792 UpgradeModuleFlags(*TheModule); 4793 4794 UpgradeRetainReleaseMarker(*TheModule); 4795 4796 return Error::success(); 4797 } 4798 4799 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4800 return IdentifiedStructTypes; 4801 } 4802 4803 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 4804 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 4805 StringRef ModulePath, unsigned ModuleId) 4806 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 4807 ModulePath(ModulePath), ModuleId(ModuleId) {} 4808 4809 ModuleSummaryIndex::ModuleInfo * 4810 ModuleSummaryIndexBitcodeReader::addThisModule() { 4811 return TheIndex.addModule(ModulePath, ModuleId); 4812 } 4813 4814 std::pair<ValueInfo, GlobalValue::GUID> 4815 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 4816 auto VGI = ValueIdToValueInfoMap[ValueId]; 4817 assert(VGI.first); 4818 return VGI; 4819 } 4820 4821 void ModuleSummaryIndexBitcodeReader::setValueGUID( 4822 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 4823 StringRef SourceFileName) { 4824 std::string GlobalId = 4825 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 4826 auto ValueGUID = GlobalValue::getGUID(GlobalId); 4827 auto OriginalNameID = ValueGUID; 4828 if (GlobalValue::isLocalLinkage(Linkage)) 4829 OriginalNameID = GlobalValue::getGUID(ValueName); 4830 if (PrintSummaryGUIDs) 4831 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 4832 << ValueName << "\n"; 4833 4834 // UseStrtab is false for legacy summary formats and value names are 4835 // created on stack. We can't use them outside of parseValueSymbolTable. 4836 ValueIdToValueInfoMap[ValueID] = std::make_pair( 4837 TheIndex.getOrInsertValueInfo(ValueGUID, UseStrtab ? ValueName : ""), 4838 OriginalNameID); 4839 } 4840 4841 // Specialized value symbol table parser used when reading module index 4842 // blocks where we don't actually create global values. The parsed information 4843 // is saved in the bitcode reader for use when later parsing summaries. 4844 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 4845 uint64_t Offset, 4846 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 4847 // With a strtab the VST is not required to parse the summary. 4848 if (UseStrtab) 4849 return Error::success(); 4850 4851 assert(Offset > 0 && "Expected non-zero VST offset"); 4852 uint64_t CurrentBit = jumpToValueSymbolTable(Offset, Stream); 4853 4854 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 4855 return error("Invalid record"); 4856 4857 SmallVector<uint64_t, 64> Record; 4858 4859 // Read all the records for this value table. 4860 SmallString<128> ValueName; 4861 4862 while (true) { 4863 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 4864 4865 switch (Entry.Kind) { 4866 case BitstreamEntry::SubBlock: // Handled for us already. 4867 case BitstreamEntry::Error: 4868 return error("Malformed block"); 4869 case BitstreamEntry::EndBlock: 4870 // Done parsing VST, jump back to wherever we came from. 4871 Stream.JumpToBit(CurrentBit); 4872 return Error::success(); 4873 case BitstreamEntry::Record: 4874 // The interesting case. 4875 break; 4876 } 4877 4878 // Read a record. 4879 Record.clear(); 4880 switch (Stream.readRecord(Entry.ID, Record)) { 4881 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 4882 break; 4883 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 4884 if (convertToString(Record, 1, ValueName)) 4885 return error("Invalid record"); 4886 unsigned ValueID = Record[0]; 4887 assert(!SourceFileName.empty()); 4888 auto VLI = ValueIdToLinkageMap.find(ValueID); 4889 assert(VLI != ValueIdToLinkageMap.end() && 4890 "No linkage found for VST entry?"); 4891 auto Linkage = VLI->second; 4892 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4893 ValueName.clear(); 4894 break; 4895 } 4896 case bitc::VST_CODE_FNENTRY: { 4897 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 4898 if (convertToString(Record, 2, ValueName)) 4899 return error("Invalid record"); 4900 unsigned ValueID = Record[0]; 4901 assert(!SourceFileName.empty()); 4902 auto VLI = ValueIdToLinkageMap.find(ValueID); 4903 assert(VLI != ValueIdToLinkageMap.end() && 4904 "No linkage found for VST entry?"); 4905 auto Linkage = VLI->second; 4906 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 4907 ValueName.clear(); 4908 break; 4909 } 4910 case bitc::VST_CODE_COMBINED_ENTRY: { 4911 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 4912 unsigned ValueID = Record[0]; 4913 GlobalValue::GUID RefGUID = Record[1]; 4914 // The "original name", which is the second value of the pair will be 4915 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 4916 ValueIdToValueInfoMap[ValueID] = 4917 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 4918 break; 4919 } 4920 } 4921 } 4922 } 4923 4924 // Parse just the blocks needed for building the index out of the module. 4925 // At the end of this routine the module Index is populated with a map 4926 // from global value id to GlobalValueSummary objects. 4927 Error ModuleSummaryIndexBitcodeReader::parseModule() { 4928 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 4929 return error("Invalid record"); 4930 4931 SmallVector<uint64_t, 64> Record; 4932 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 4933 unsigned ValueId = 0; 4934 4935 // Read the index for this module. 4936 while (true) { 4937 BitstreamEntry Entry = Stream.advance(); 4938 4939 switch (Entry.Kind) { 4940 case BitstreamEntry::Error: 4941 return error("Malformed block"); 4942 case BitstreamEntry::EndBlock: 4943 return Error::success(); 4944 4945 case BitstreamEntry::SubBlock: 4946 switch (Entry.ID) { 4947 default: // Skip unknown content. 4948 if (Stream.SkipBlock()) 4949 return error("Invalid record"); 4950 break; 4951 case bitc::BLOCKINFO_BLOCK_ID: 4952 // Need to parse these to get abbrev ids (e.g. for VST) 4953 if (readBlockInfo()) 4954 return error("Malformed block"); 4955 break; 4956 case bitc::VALUE_SYMTAB_BLOCK_ID: 4957 // Should have been parsed earlier via VSTOffset, unless there 4958 // is no summary section. 4959 assert(((SeenValueSymbolTable && VSTOffset > 0) || 4960 !SeenGlobalValSummary) && 4961 "Expected early VST parse via VSTOffset record"); 4962 if (Stream.SkipBlock()) 4963 return error("Invalid record"); 4964 break; 4965 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 4966 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 4967 assert(!SeenValueSymbolTable && 4968 "Already read VST when parsing summary block?"); 4969 // We might not have a VST if there were no values in the 4970 // summary. An empty summary block generated when we are 4971 // performing ThinLTO compiles so we don't later invoke 4972 // the regular LTO process on them. 4973 if (VSTOffset > 0) { 4974 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 4975 return Err; 4976 SeenValueSymbolTable = true; 4977 } 4978 SeenGlobalValSummary = true; 4979 if (Error Err = parseEntireSummary(Entry.ID)) 4980 return Err; 4981 break; 4982 case bitc::MODULE_STRTAB_BLOCK_ID: 4983 if (Error Err = parseModuleStringTable()) 4984 return Err; 4985 break; 4986 } 4987 continue; 4988 4989 case BitstreamEntry::Record: { 4990 Record.clear(); 4991 auto BitCode = Stream.readRecord(Entry.ID, Record); 4992 switch (BitCode) { 4993 default: 4994 break; // Default behavior, ignore unknown content. 4995 case bitc::MODULE_CODE_VERSION: { 4996 if (Error Err = parseVersionRecord(Record).takeError()) 4997 return Err; 4998 break; 4999 } 5000 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5001 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5002 SmallString<128> ValueName; 5003 if (convertToString(Record, 0, ValueName)) 5004 return error("Invalid record"); 5005 SourceFileName = ValueName.c_str(); 5006 break; 5007 } 5008 /// MODULE_CODE_HASH: [5*i32] 5009 case bitc::MODULE_CODE_HASH: { 5010 if (Record.size() != 5) 5011 return error("Invalid hash length " + Twine(Record.size()).str()); 5012 auto &Hash = addThisModule()->second.second; 5013 int Pos = 0; 5014 for (auto &Val : Record) { 5015 assert(!(Val >> 32) && "Unexpected high bits set"); 5016 Hash[Pos++] = Val; 5017 } 5018 break; 5019 } 5020 /// MODULE_CODE_VSTOFFSET: [offset] 5021 case bitc::MODULE_CODE_VSTOFFSET: 5022 if (Record.size() < 1) 5023 return error("Invalid record"); 5024 // Note that we subtract 1 here because the offset is relative to one 5025 // word before the start of the identification or module block, which 5026 // was historically always the start of the regular bitcode header. 5027 VSTOffset = Record[0] - 1; 5028 break; 5029 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5030 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5031 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5032 // v2: [strtab offset, strtab size, v1] 5033 case bitc::MODULE_CODE_GLOBALVAR: 5034 case bitc::MODULE_CODE_FUNCTION: 5035 case bitc::MODULE_CODE_ALIAS: { 5036 StringRef Name; 5037 ArrayRef<uint64_t> GVRecord; 5038 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5039 if (GVRecord.size() <= 3) 5040 return error("Invalid record"); 5041 uint64_t RawLinkage = GVRecord[3]; 5042 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5043 if (!UseStrtab) { 5044 ValueIdToLinkageMap[ValueId++] = Linkage; 5045 break; 5046 } 5047 5048 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5049 break; 5050 } 5051 } 5052 } 5053 continue; 5054 } 5055 } 5056 } 5057 5058 std::vector<ValueInfo> 5059 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5060 std::vector<ValueInfo> Ret; 5061 Ret.reserve(Record.size()); 5062 for (uint64_t RefValueId : Record) 5063 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5064 return Ret; 5065 } 5066 5067 std::vector<FunctionSummary::EdgeTy> 5068 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5069 bool IsOldProfileFormat, 5070 bool HasProfile, bool HasRelBF) { 5071 std::vector<FunctionSummary::EdgeTy> Ret; 5072 Ret.reserve(Record.size()); 5073 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5074 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5075 uint64_t RelBF = 0; 5076 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5077 if (IsOldProfileFormat) { 5078 I += 1; // Skip old callsitecount field 5079 if (HasProfile) 5080 I += 1; // Skip old profilecount field 5081 } else if (HasProfile) 5082 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5083 else if (HasRelBF) 5084 RelBF = Record[++I]; 5085 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5086 } 5087 return Ret; 5088 } 5089 5090 static void 5091 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5092 WholeProgramDevirtResolution &Wpd) { 5093 uint64_t ArgNum = Record[Slot++]; 5094 WholeProgramDevirtResolution::ByArg &B = 5095 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5096 Slot += ArgNum; 5097 5098 B.TheKind = 5099 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5100 B.Info = Record[Slot++]; 5101 B.Byte = Record[Slot++]; 5102 B.Bit = Record[Slot++]; 5103 } 5104 5105 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5106 StringRef Strtab, size_t &Slot, 5107 TypeIdSummary &TypeId) { 5108 uint64_t Id = Record[Slot++]; 5109 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5110 5111 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5112 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5113 static_cast<size_t>(Record[Slot + 1])}; 5114 Slot += 2; 5115 5116 uint64_t ResByArgNum = Record[Slot++]; 5117 for (uint64_t I = 0; I != ResByArgNum; ++I) 5118 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5119 } 5120 5121 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5122 StringRef Strtab, 5123 ModuleSummaryIndex &TheIndex) { 5124 size_t Slot = 0; 5125 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5126 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5127 Slot += 2; 5128 5129 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5130 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5131 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5132 TypeId.TTRes.SizeM1 = Record[Slot++]; 5133 TypeId.TTRes.BitMask = Record[Slot++]; 5134 TypeId.TTRes.InlineBits = Record[Slot++]; 5135 5136 while (Slot < Record.size()) 5137 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5138 } 5139 5140 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5141 // objects in the index. 5142 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5143 if (Stream.EnterSubBlock(ID)) 5144 return error("Invalid record"); 5145 SmallVector<uint64_t, 64> Record; 5146 5147 // Parse version 5148 { 5149 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5150 if (Entry.Kind != BitstreamEntry::Record) 5151 return error("Invalid Summary Block: record for version expected"); 5152 if (Stream.readRecord(Entry.ID, Record) != bitc::FS_VERSION) 5153 return error("Invalid Summary Block: version expected"); 5154 } 5155 const uint64_t Version = Record[0]; 5156 const bool IsOldProfileFormat = Version == 1; 5157 if (Version < 1 || Version > 4) 5158 return error("Invalid summary version " + Twine(Version) + 5159 ", 1, 2, 3 or 4 expected"); 5160 Record.clear(); 5161 5162 // Keep around the last seen summary to be used when we see an optional 5163 // "OriginalName" attachement. 5164 GlobalValueSummary *LastSeenSummary = nullptr; 5165 GlobalValue::GUID LastSeenGUID = 0; 5166 5167 // We can expect to see any number of type ID information records before 5168 // each function summary records; these variables store the information 5169 // collected so far so that it can be used to create the summary object. 5170 std::vector<GlobalValue::GUID> PendingTypeTests; 5171 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5172 PendingTypeCheckedLoadVCalls; 5173 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5174 PendingTypeCheckedLoadConstVCalls; 5175 5176 while (true) { 5177 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5178 5179 switch (Entry.Kind) { 5180 case BitstreamEntry::SubBlock: // Handled for us already. 5181 case BitstreamEntry::Error: 5182 return error("Malformed block"); 5183 case BitstreamEntry::EndBlock: 5184 return Error::success(); 5185 case BitstreamEntry::Record: 5186 // The interesting case. 5187 break; 5188 } 5189 5190 // Read a record. The record format depends on whether this 5191 // is a per-module index or a combined index file. In the per-module 5192 // case the records contain the associated value's ID for correlation 5193 // with VST entries. In the combined index the correlation is done 5194 // via the bitcode offset of the summary records (which were saved 5195 // in the combined index VST entries). The records also contain 5196 // information used for ThinLTO renaming and importing. 5197 Record.clear(); 5198 auto BitCode = Stream.readRecord(Entry.ID, Record); 5199 switch (BitCode) { 5200 default: // Default behavior: ignore. 5201 break; 5202 case bitc::FS_FLAGS: { // [flags] 5203 uint64_t Flags = Record[0]; 5204 // Scan flags (set only on the combined index). 5205 assert(Flags <= 0x3 && "Unexpected bits in flag"); 5206 5207 // 1 bit: WithGlobalValueDeadStripping flag. 5208 if (Flags & 0x1) 5209 TheIndex.setWithGlobalValueDeadStripping(); 5210 // 1 bit: SkipModuleByDistributedBackend flag. 5211 if (Flags & 0x2) 5212 TheIndex.setSkipModuleByDistributedBackend(); 5213 break; 5214 } 5215 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5216 uint64_t ValueID = Record[0]; 5217 GlobalValue::GUID RefGUID = Record[1]; 5218 ValueIdToValueInfoMap[ValueID] = 5219 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5220 break; 5221 } 5222 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5223 // numrefs x valueid, n x (valueid)] 5224 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5225 // numrefs x valueid, 5226 // n x (valueid, hotness)] 5227 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5228 // numrefs x valueid, 5229 // n x (valueid, relblockfreq)] 5230 case bitc::FS_PERMODULE: 5231 case bitc::FS_PERMODULE_RELBF: 5232 case bitc::FS_PERMODULE_PROFILE: { 5233 unsigned ValueID = Record[0]; 5234 uint64_t RawFlags = Record[1]; 5235 unsigned InstCount = Record[2]; 5236 uint64_t RawFunFlags = 0; 5237 unsigned NumRefs = Record[3]; 5238 int RefListStartIndex = 4; 5239 if (Version >= 4) { 5240 RawFunFlags = Record[3]; 5241 NumRefs = Record[4]; 5242 RefListStartIndex = 5; 5243 } 5244 5245 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5246 // The module path string ref set in the summary must be owned by the 5247 // index's module string table. Since we don't have a module path 5248 // string table section in the per-module index, we create a single 5249 // module path string table entry with an empty (0) ID to take 5250 // ownership. 5251 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5252 assert(Record.size() >= RefListStartIndex + NumRefs && 5253 "Record size inconsistent with number of references"); 5254 std::vector<ValueInfo> Refs = makeRefList( 5255 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5256 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5257 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5258 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5259 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5260 IsOldProfileFormat, HasProfile, HasRelBF); 5261 auto FS = llvm::make_unique<FunctionSummary>( 5262 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5263 std::move(Calls), std::move(PendingTypeTests), 5264 std::move(PendingTypeTestAssumeVCalls), 5265 std::move(PendingTypeCheckedLoadVCalls), 5266 std::move(PendingTypeTestAssumeConstVCalls), 5267 std::move(PendingTypeCheckedLoadConstVCalls)); 5268 PendingTypeTests.clear(); 5269 PendingTypeTestAssumeVCalls.clear(); 5270 PendingTypeCheckedLoadVCalls.clear(); 5271 PendingTypeTestAssumeConstVCalls.clear(); 5272 PendingTypeCheckedLoadConstVCalls.clear(); 5273 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5274 FS->setModulePath(addThisModule()->first()); 5275 FS->setOriginalName(VIAndOriginalGUID.second); 5276 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5277 break; 5278 } 5279 // FS_ALIAS: [valueid, flags, valueid] 5280 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5281 // they expect all aliasee summaries to be available. 5282 case bitc::FS_ALIAS: { 5283 unsigned ValueID = Record[0]; 5284 uint64_t RawFlags = Record[1]; 5285 unsigned AliaseeID = Record[2]; 5286 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5287 auto AS = llvm::make_unique<AliasSummary>(Flags); 5288 // The module path string ref set in the summary must be owned by the 5289 // index's module string table. Since we don't have a module path 5290 // string table section in the per-module index, we create a single 5291 // module path string table entry with an empty (0) ID to take 5292 // ownership. 5293 AS->setModulePath(addThisModule()->first()); 5294 5295 GlobalValue::GUID AliaseeGUID = 5296 getValueInfoFromValueId(AliaseeID).first.getGUID(); 5297 auto AliaseeInModule = 5298 TheIndex.findSummaryInModule(AliaseeGUID, ModulePath); 5299 if (!AliaseeInModule) 5300 return error("Alias expects aliasee summary to be parsed"); 5301 AS->setAliasee(AliaseeInModule); 5302 AS->setAliaseeGUID(AliaseeGUID); 5303 5304 auto GUID = getValueInfoFromValueId(ValueID); 5305 AS->setOriginalName(GUID.second); 5306 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5307 break; 5308 } 5309 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, n x valueid] 5310 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5311 unsigned ValueID = Record[0]; 5312 uint64_t RawFlags = Record[1]; 5313 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5314 std::vector<ValueInfo> Refs = 5315 makeRefList(ArrayRef<uint64_t>(Record).slice(2)); 5316 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5317 FS->setModulePath(addThisModule()->first()); 5318 auto GUID = getValueInfoFromValueId(ValueID); 5319 FS->setOriginalName(GUID.second); 5320 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5321 break; 5322 } 5323 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5324 // numrefs x valueid, n x (valueid)] 5325 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5326 // numrefs x valueid, n x (valueid, hotness)] 5327 case bitc::FS_COMBINED: 5328 case bitc::FS_COMBINED_PROFILE: { 5329 unsigned ValueID = Record[0]; 5330 uint64_t ModuleId = Record[1]; 5331 uint64_t RawFlags = Record[2]; 5332 unsigned InstCount = Record[3]; 5333 uint64_t RawFunFlags = 0; 5334 unsigned NumRefs = Record[4]; 5335 int RefListStartIndex = 5; 5336 5337 if (Version >= 4) { 5338 RawFunFlags = Record[4]; 5339 NumRefs = Record[5]; 5340 RefListStartIndex = 6; 5341 } 5342 5343 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5344 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5345 assert(Record.size() >= RefListStartIndex + NumRefs && 5346 "Record size inconsistent with number of references"); 5347 std::vector<ValueInfo> Refs = makeRefList( 5348 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5349 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 5350 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 5351 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5352 IsOldProfileFormat, HasProfile, false); 5353 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5354 auto FS = llvm::make_unique<FunctionSummary>( 5355 Flags, InstCount, getDecodedFFlags(RawFunFlags), std::move(Refs), 5356 std::move(Edges), std::move(PendingTypeTests), 5357 std::move(PendingTypeTestAssumeVCalls), 5358 std::move(PendingTypeCheckedLoadVCalls), 5359 std::move(PendingTypeTestAssumeConstVCalls), 5360 std::move(PendingTypeCheckedLoadConstVCalls)); 5361 PendingTypeTests.clear(); 5362 PendingTypeTestAssumeVCalls.clear(); 5363 PendingTypeCheckedLoadVCalls.clear(); 5364 PendingTypeTestAssumeConstVCalls.clear(); 5365 PendingTypeCheckedLoadConstVCalls.clear(); 5366 LastSeenSummary = FS.get(); 5367 LastSeenGUID = VI.getGUID(); 5368 FS->setModulePath(ModuleIdMap[ModuleId]); 5369 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5370 break; 5371 } 5372 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 5373 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 5374 // they expect all aliasee summaries to be available. 5375 case bitc::FS_COMBINED_ALIAS: { 5376 unsigned ValueID = Record[0]; 5377 uint64_t ModuleId = Record[1]; 5378 uint64_t RawFlags = Record[2]; 5379 unsigned AliaseeValueId = Record[3]; 5380 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5381 auto AS = llvm::make_unique<AliasSummary>(Flags); 5382 LastSeenSummary = AS.get(); 5383 AS->setModulePath(ModuleIdMap[ModuleId]); 5384 5385 auto AliaseeGUID = 5386 getValueInfoFromValueId(AliaseeValueId).first.getGUID(); 5387 auto AliaseeInModule = 5388 TheIndex.findSummaryInModule(AliaseeGUID, AS->modulePath()); 5389 AS->setAliasee(AliaseeInModule); 5390 AS->setAliaseeGUID(AliaseeGUID); 5391 5392 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5393 LastSeenGUID = VI.getGUID(); 5394 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 5395 break; 5396 } 5397 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 5398 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 5399 unsigned ValueID = Record[0]; 5400 uint64_t ModuleId = Record[1]; 5401 uint64_t RawFlags = Record[2]; 5402 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5403 std::vector<ValueInfo> Refs = 5404 makeRefList(ArrayRef<uint64_t>(Record).slice(3)); 5405 auto FS = llvm::make_unique<GlobalVarSummary>(Flags, std::move(Refs)); 5406 LastSeenSummary = FS.get(); 5407 FS->setModulePath(ModuleIdMap[ModuleId]); 5408 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 5409 LastSeenGUID = VI.getGUID(); 5410 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 5411 break; 5412 } 5413 // FS_COMBINED_ORIGINAL_NAME: [original_name] 5414 case bitc::FS_COMBINED_ORIGINAL_NAME: { 5415 uint64_t OriginalName = Record[0]; 5416 if (!LastSeenSummary) 5417 return error("Name attachment that does not follow a combined record"); 5418 LastSeenSummary->setOriginalName(OriginalName); 5419 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 5420 // Reset the LastSeenSummary 5421 LastSeenSummary = nullptr; 5422 LastSeenGUID = 0; 5423 break; 5424 } 5425 case bitc::FS_TYPE_TESTS: 5426 assert(PendingTypeTests.empty()); 5427 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 5428 Record.end()); 5429 break; 5430 5431 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 5432 assert(PendingTypeTestAssumeVCalls.empty()); 5433 for (unsigned I = 0; I != Record.size(); I += 2) 5434 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 5435 break; 5436 5437 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 5438 assert(PendingTypeCheckedLoadVCalls.empty()); 5439 for (unsigned I = 0; I != Record.size(); I += 2) 5440 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 5441 break; 5442 5443 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 5444 PendingTypeTestAssumeConstVCalls.push_back( 5445 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5446 break; 5447 5448 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 5449 PendingTypeCheckedLoadConstVCalls.push_back( 5450 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 5451 break; 5452 5453 case bitc::FS_CFI_FUNCTION_DEFS: { 5454 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 5455 for (unsigned I = 0; I != Record.size(); I += 2) 5456 CfiFunctionDefs.insert( 5457 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5458 break; 5459 } 5460 5461 case bitc::FS_CFI_FUNCTION_DECLS: { 5462 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 5463 for (unsigned I = 0; I != Record.size(); I += 2) 5464 CfiFunctionDecls.insert( 5465 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 5466 break; 5467 } 5468 5469 case bitc::FS_TYPE_ID: 5470 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 5471 break; 5472 } 5473 } 5474 llvm_unreachable("Exit infinite loop"); 5475 } 5476 5477 // Parse the module string table block into the Index. 5478 // This populates the ModulePathStringTable map in the index. 5479 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 5480 if (Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 5481 return error("Invalid record"); 5482 5483 SmallVector<uint64_t, 64> Record; 5484 5485 SmallString<128> ModulePath; 5486 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 5487 5488 while (true) { 5489 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 5490 5491 switch (Entry.Kind) { 5492 case BitstreamEntry::SubBlock: // Handled for us already. 5493 case BitstreamEntry::Error: 5494 return error("Malformed block"); 5495 case BitstreamEntry::EndBlock: 5496 return Error::success(); 5497 case BitstreamEntry::Record: 5498 // The interesting case. 5499 break; 5500 } 5501 5502 Record.clear(); 5503 switch (Stream.readRecord(Entry.ID, Record)) { 5504 default: // Default behavior: ignore. 5505 break; 5506 case bitc::MST_CODE_ENTRY: { 5507 // MST_ENTRY: [modid, namechar x N] 5508 uint64_t ModuleId = Record[0]; 5509 5510 if (convertToString(Record, 1, ModulePath)) 5511 return error("Invalid record"); 5512 5513 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 5514 ModuleIdMap[ModuleId] = LastSeenModule->first(); 5515 5516 ModulePath.clear(); 5517 break; 5518 } 5519 /// MST_CODE_HASH: [5*i32] 5520 case bitc::MST_CODE_HASH: { 5521 if (Record.size() != 5) 5522 return error("Invalid hash length " + Twine(Record.size()).str()); 5523 if (!LastSeenModule) 5524 return error("Invalid hash that does not follow a module path"); 5525 int Pos = 0; 5526 for (auto &Val : Record) { 5527 assert(!(Val >> 32) && "Unexpected high bits set"); 5528 LastSeenModule->second.second[Pos++] = Val; 5529 } 5530 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 5531 LastSeenModule = nullptr; 5532 break; 5533 } 5534 } 5535 } 5536 llvm_unreachable("Exit infinite loop"); 5537 } 5538 5539 namespace { 5540 5541 // FIXME: This class is only here to support the transition to llvm::Error. It 5542 // will be removed once this transition is complete. Clients should prefer to 5543 // deal with the Error value directly, rather than converting to error_code. 5544 class BitcodeErrorCategoryType : public std::error_category { 5545 const char *name() const noexcept override { 5546 return "llvm.bitcode"; 5547 } 5548 5549 std::string message(int IE) const override { 5550 BitcodeError E = static_cast<BitcodeError>(IE); 5551 switch (E) { 5552 case BitcodeError::CorruptedBitcode: 5553 return "Corrupted bitcode"; 5554 } 5555 llvm_unreachable("Unknown error type!"); 5556 } 5557 }; 5558 5559 } // end anonymous namespace 5560 5561 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 5562 5563 const std::error_category &llvm::BitcodeErrorCategory() { 5564 return *ErrorCategory; 5565 } 5566 5567 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 5568 unsigned Block, unsigned RecordID) { 5569 if (Stream.EnterSubBlock(Block)) 5570 return error("Invalid record"); 5571 5572 StringRef Strtab; 5573 while (true) { 5574 BitstreamEntry Entry = Stream.advance(); 5575 switch (Entry.Kind) { 5576 case BitstreamEntry::EndBlock: 5577 return Strtab; 5578 5579 case BitstreamEntry::Error: 5580 return error("Malformed block"); 5581 5582 case BitstreamEntry::SubBlock: 5583 if (Stream.SkipBlock()) 5584 return error("Malformed block"); 5585 break; 5586 5587 case BitstreamEntry::Record: 5588 StringRef Blob; 5589 SmallVector<uint64_t, 1> Record; 5590 if (Stream.readRecord(Entry.ID, Record, &Blob) == RecordID) 5591 Strtab = Blob; 5592 break; 5593 } 5594 } 5595 } 5596 5597 //===----------------------------------------------------------------------===// 5598 // External interface 5599 //===----------------------------------------------------------------------===// 5600 5601 Expected<std::vector<BitcodeModule>> 5602 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 5603 auto FOrErr = getBitcodeFileContents(Buffer); 5604 if (!FOrErr) 5605 return FOrErr.takeError(); 5606 return std::move(FOrErr->Mods); 5607 } 5608 5609 Expected<BitcodeFileContents> 5610 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 5611 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5612 if (!StreamOrErr) 5613 return StreamOrErr.takeError(); 5614 BitstreamCursor &Stream = *StreamOrErr; 5615 5616 BitcodeFileContents F; 5617 while (true) { 5618 uint64_t BCBegin = Stream.getCurrentByteNo(); 5619 5620 // We may be consuming bitcode from a client that leaves garbage at the end 5621 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 5622 // the end that there cannot possibly be another module, stop looking. 5623 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 5624 return F; 5625 5626 BitstreamEntry Entry = Stream.advance(); 5627 switch (Entry.Kind) { 5628 case BitstreamEntry::EndBlock: 5629 case BitstreamEntry::Error: 5630 return error("Malformed block"); 5631 5632 case BitstreamEntry::SubBlock: { 5633 uint64_t IdentificationBit = -1ull; 5634 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 5635 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5636 if (Stream.SkipBlock()) 5637 return error("Malformed block"); 5638 5639 Entry = Stream.advance(); 5640 if (Entry.Kind != BitstreamEntry::SubBlock || 5641 Entry.ID != bitc::MODULE_BLOCK_ID) 5642 return error("Malformed block"); 5643 } 5644 5645 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 5646 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 5647 if (Stream.SkipBlock()) 5648 return error("Malformed block"); 5649 5650 F.Mods.push_back({Stream.getBitcodeBytes().slice( 5651 BCBegin, Stream.getCurrentByteNo() - BCBegin), 5652 Buffer.getBufferIdentifier(), IdentificationBit, 5653 ModuleBit}); 5654 continue; 5655 } 5656 5657 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 5658 Expected<StringRef> Strtab = 5659 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 5660 if (!Strtab) 5661 return Strtab.takeError(); 5662 // This string table is used by every preceding bitcode module that does 5663 // not have its own string table. A bitcode file may have multiple 5664 // string tables if it was created by binary concatenation, for example 5665 // with "llvm-cat -b". 5666 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 5667 if (!I->Strtab.empty()) 5668 break; 5669 I->Strtab = *Strtab; 5670 } 5671 // Similarly, the string table is used by every preceding symbol table; 5672 // normally there will be just one unless the bitcode file was created 5673 // by binary concatenation. 5674 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 5675 F.StrtabForSymtab = *Strtab; 5676 continue; 5677 } 5678 5679 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 5680 Expected<StringRef> SymtabOrErr = 5681 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 5682 if (!SymtabOrErr) 5683 return SymtabOrErr.takeError(); 5684 5685 // We can expect the bitcode file to have multiple symbol tables if it 5686 // was created by binary concatenation. In that case we silently 5687 // ignore any subsequent symbol tables, which is fine because this is a 5688 // low level function. The client is expected to notice that the number 5689 // of modules in the symbol table does not match the number of modules 5690 // in the input file and regenerate the symbol table. 5691 if (F.Symtab.empty()) 5692 F.Symtab = *SymtabOrErr; 5693 continue; 5694 } 5695 5696 if (Stream.SkipBlock()) 5697 return error("Malformed block"); 5698 continue; 5699 } 5700 case BitstreamEntry::Record: 5701 Stream.skipRecord(Entry.ID); 5702 continue; 5703 } 5704 } 5705 } 5706 5707 /// \brief Get a lazy one-at-time loading module from bitcode. 5708 /// 5709 /// This isn't always used in a lazy context. In particular, it's also used by 5710 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 5711 /// in forward-referenced functions from block address references. 5712 /// 5713 /// \param[in] MaterializeAll Set to \c true if we should materialize 5714 /// everything. 5715 Expected<std::unique_ptr<Module>> 5716 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 5717 bool ShouldLazyLoadMetadata, bool IsImporting) { 5718 BitstreamCursor Stream(Buffer); 5719 5720 std::string ProducerIdentification; 5721 if (IdentificationBit != -1ull) { 5722 Stream.JumpToBit(IdentificationBit); 5723 Expected<std::string> ProducerIdentificationOrErr = 5724 readIdentificationBlock(Stream); 5725 if (!ProducerIdentificationOrErr) 5726 return ProducerIdentificationOrErr.takeError(); 5727 5728 ProducerIdentification = *ProducerIdentificationOrErr; 5729 } 5730 5731 Stream.JumpToBit(ModuleBit); 5732 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 5733 Context); 5734 5735 std::unique_ptr<Module> M = 5736 llvm::make_unique<Module>(ModuleIdentifier, Context); 5737 M->setMaterializer(R); 5738 5739 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 5740 if (Error Err = 5741 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 5742 return std::move(Err); 5743 5744 if (MaterializeAll) { 5745 // Read in the entire module, and destroy the BitcodeReader. 5746 if (Error Err = M->materializeAll()) 5747 return std::move(Err); 5748 } else { 5749 // Resolve forward references from blockaddresses. 5750 if (Error Err = R->materializeForwardReferencedFunctions()) 5751 return std::move(Err); 5752 } 5753 return std::move(M); 5754 } 5755 5756 Expected<std::unique_ptr<Module>> 5757 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 5758 bool IsImporting) { 5759 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 5760 } 5761 5762 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 5763 // We don't use ModuleIdentifier here because the client may need to control the 5764 // module path used in the combined summary (e.g. when reading summaries for 5765 // regular LTO modules). 5766 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 5767 StringRef ModulePath, uint64_t ModuleId) { 5768 BitstreamCursor Stream(Buffer); 5769 Stream.JumpToBit(ModuleBit); 5770 5771 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 5772 ModulePath, ModuleId); 5773 return R.parseModule(); 5774 } 5775 5776 // Parse the specified bitcode buffer, returning the function info index. 5777 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 5778 BitstreamCursor Stream(Buffer); 5779 Stream.JumpToBit(ModuleBit); 5780 5781 auto Index = 5782 llvm::make_unique<ModuleSummaryIndex>(/*IsPerformingAnalysis=*/false); 5783 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 5784 ModuleIdentifier, 0); 5785 5786 if (Error Err = R.parseModule()) 5787 return std::move(Err); 5788 5789 return std::move(Index); 5790 } 5791 5792 // Check if the given bitcode buffer contains a global value summary block. 5793 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 5794 BitstreamCursor Stream(Buffer); 5795 Stream.JumpToBit(ModuleBit); 5796 5797 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5798 return error("Invalid record"); 5799 5800 while (true) { 5801 BitstreamEntry Entry = Stream.advance(); 5802 5803 switch (Entry.Kind) { 5804 case BitstreamEntry::Error: 5805 return error("Malformed block"); 5806 case BitstreamEntry::EndBlock: 5807 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false}; 5808 5809 case BitstreamEntry::SubBlock: 5810 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) 5811 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true}; 5812 5813 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) 5814 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true}; 5815 5816 // Ignore other sub-blocks. 5817 if (Stream.SkipBlock()) 5818 return error("Malformed block"); 5819 continue; 5820 5821 case BitstreamEntry::Record: 5822 Stream.skipRecord(Entry.ID); 5823 continue; 5824 } 5825 } 5826 } 5827 5828 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 5829 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 5830 if (!MsOrErr) 5831 return MsOrErr.takeError(); 5832 5833 if (MsOrErr->size() != 1) 5834 return error("Expected a single module"); 5835 5836 return (*MsOrErr)[0]; 5837 } 5838 5839 Expected<std::unique_ptr<Module>> 5840 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 5841 bool ShouldLazyLoadMetadata, bool IsImporting) { 5842 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5843 if (!BM) 5844 return BM.takeError(); 5845 5846 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 5847 } 5848 5849 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 5850 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 5851 bool ShouldLazyLoadMetadata, bool IsImporting) { 5852 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 5853 IsImporting); 5854 if (MOrErr) 5855 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 5856 return MOrErr; 5857 } 5858 5859 Expected<std::unique_ptr<Module>> 5860 BitcodeModule::parseModule(LLVMContext &Context) { 5861 return getModuleImpl(Context, true, false, false); 5862 // TODO: Restore the use-lists to the in-memory state when the bitcode was 5863 // written. We must defer until the Module has been fully materialized. 5864 } 5865 5866 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 5867 LLVMContext &Context) { 5868 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5869 if (!BM) 5870 return BM.takeError(); 5871 5872 return BM->parseModule(Context); 5873 } 5874 5875 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 5876 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5877 if (!StreamOrErr) 5878 return StreamOrErr.takeError(); 5879 5880 return readTriple(*StreamOrErr); 5881 } 5882 5883 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 5884 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5885 if (!StreamOrErr) 5886 return StreamOrErr.takeError(); 5887 5888 return hasObjCCategory(*StreamOrErr); 5889 } 5890 5891 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 5892 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 5893 if (!StreamOrErr) 5894 return StreamOrErr.takeError(); 5895 5896 return readIdentificationCode(*StreamOrErr); 5897 } 5898 5899 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 5900 ModuleSummaryIndex &CombinedIndex, 5901 uint64_t ModuleId) { 5902 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5903 if (!BM) 5904 return BM.takeError(); 5905 5906 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 5907 } 5908 5909 Expected<std::unique_ptr<ModuleSummaryIndex>> 5910 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 5911 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5912 if (!BM) 5913 return BM.takeError(); 5914 5915 return BM->getSummary(); 5916 } 5917 5918 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 5919 Expected<BitcodeModule> BM = getSingleModule(Buffer); 5920 if (!BM) 5921 return BM.takeError(); 5922 5923 return BM->getLTOInfo(); 5924 } 5925 5926 Expected<std::unique_ptr<ModuleSummaryIndex>> 5927 llvm::getModuleSummaryIndexForFile(StringRef Path, 5928 bool IgnoreEmptyThinLTOIndexFile) { 5929 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 5930 MemoryBuffer::getFileOrSTDIN(Path); 5931 if (!FileOrErr) 5932 return errorCodeToError(FileOrErr.getError()); 5933 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 5934 return nullptr; 5935 return getModuleSummaryIndex(**FileOrErr); 5936 } 5937