1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 // Strip all the TBAA attachment for the module. 162 static void stripTBAA(Module *M) { 163 for (auto &F : *M) { 164 if (F.isMaterializable()) 165 continue; 166 for (auto &I : instructions(F)) 167 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 168 } 169 } 170 171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 172 /// "epoch" encoded in the bitcode, and return the producer name if any. 173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 174 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 175 return std::move(Err); 176 177 // Read all the records. 178 SmallVector<uint64_t, 64> Record; 179 180 std::string ProducerIdentification; 181 182 while (true) { 183 BitstreamEntry Entry; 184 if (Expected<BitstreamEntry> Res = Stream.advance()) 185 Entry = Res.get(); 186 else 187 return Res.takeError(); 188 189 switch (Entry.Kind) { 190 default: 191 case BitstreamEntry::Error: 192 return error("Malformed block"); 193 case BitstreamEntry::EndBlock: 194 return ProducerIdentification; 195 case BitstreamEntry::Record: 196 // The interesting case. 197 break; 198 } 199 200 // Read a record. 201 Record.clear(); 202 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 203 if (!MaybeBitCode) 204 return MaybeBitCode.takeError(); 205 switch (MaybeBitCode.get()) { 206 default: // Default behavior: reject 207 return error("Invalid value"); 208 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 209 convertToString(Record, 0, ProducerIdentification); 210 break; 211 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 212 unsigned epoch = (unsigned)Record[0]; 213 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 214 return error( 215 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 216 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 217 } 218 } 219 } 220 } 221 } 222 223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 224 // We expect a number of well-defined blocks, though we don't necessarily 225 // need to understand them all. 226 while (true) { 227 if (Stream.AtEndOfStream()) 228 return ""; 229 230 BitstreamEntry Entry; 231 if (Expected<BitstreamEntry> Res = Stream.advance()) 232 Entry = std::move(Res.get()); 233 else 234 return Res.takeError(); 235 236 switch (Entry.Kind) { 237 case BitstreamEntry::EndBlock: 238 case BitstreamEntry::Error: 239 return error("Malformed block"); 240 241 case BitstreamEntry::SubBlock: 242 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 243 return readIdentificationBlock(Stream); 244 245 // Ignore other sub-blocks. 246 if (Error Err = Stream.SkipBlock()) 247 return std::move(Err); 248 continue; 249 case BitstreamEntry::Record: 250 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 251 continue; 252 else 253 return Skipped.takeError(); 254 } 255 } 256 } 257 258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 259 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 260 return std::move(Err); 261 262 SmallVector<uint64_t, 64> Record; 263 // Read all the records for this module. 264 265 while (true) { 266 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 267 if (!MaybeEntry) 268 return MaybeEntry.takeError(); 269 BitstreamEntry Entry = MaybeEntry.get(); 270 271 switch (Entry.Kind) { 272 case BitstreamEntry::SubBlock: // Handled for us already. 273 case BitstreamEntry::Error: 274 return error("Malformed block"); 275 case BitstreamEntry::EndBlock: 276 return false; 277 case BitstreamEntry::Record: 278 // The interesting case. 279 break; 280 } 281 282 // Read a record. 283 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 284 if (!MaybeRecord) 285 return MaybeRecord.takeError(); 286 switch (MaybeRecord.get()) { 287 default: 288 break; // Default behavior, ignore unknown content. 289 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 290 std::string S; 291 if (convertToString(Record, 0, S)) 292 return error("Invalid record"); 293 // Check for the i386 and other (x86_64, ARM) conventions 294 if (S.find("__DATA,__objc_catlist") != std::string::npos || 295 S.find("__OBJC,__category") != std::string::npos) 296 return true; 297 break; 298 } 299 } 300 Record.clear(); 301 } 302 llvm_unreachable("Exit infinite loop"); 303 } 304 305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 306 // We expect a number of well-defined blocks, though we don't necessarily 307 // need to understand them all. 308 while (true) { 309 BitstreamEntry Entry; 310 if (Expected<BitstreamEntry> Res = Stream.advance()) 311 Entry = std::move(Res.get()); 312 else 313 return Res.takeError(); 314 315 switch (Entry.Kind) { 316 case BitstreamEntry::Error: 317 return error("Malformed block"); 318 case BitstreamEntry::EndBlock: 319 return false; 320 321 case BitstreamEntry::SubBlock: 322 if (Entry.ID == bitc::MODULE_BLOCK_ID) 323 return hasObjCCategoryInModule(Stream); 324 325 // Ignore other sub-blocks. 326 if (Error Err = Stream.SkipBlock()) 327 return std::move(Err); 328 continue; 329 330 case BitstreamEntry::Record: 331 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 332 continue; 333 else 334 return Skipped.takeError(); 335 } 336 } 337 } 338 339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 340 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 341 return std::move(Err); 342 343 SmallVector<uint64_t, 64> Record; 344 345 std::string Triple; 346 347 // Read all the records for this module. 348 while (true) { 349 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 350 if (!MaybeEntry) 351 return MaybeEntry.takeError(); 352 BitstreamEntry Entry = MaybeEntry.get(); 353 354 switch (Entry.Kind) { 355 case BitstreamEntry::SubBlock: // Handled for us already. 356 case BitstreamEntry::Error: 357 return error("Malformed block"); 358 case BitstreamEntry::EndBlock: 359 return Triple; 360 case BitstreamEntry::Record: 361 // The interesting case. 362 break; 363 } 364 365 // Read a record. 366 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 367 if (!MaybeRecord) 368 return MaybeRecord.takeError(); 369 switch (MaybeRecord.get()) { 370 default: break; // Default behavior, ignore unknown content. 371 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 372 std::string S; 373 if (convertToString(Record, 0, S)) 374 return error("Invalid record"); 375 Triple = S; 376 break; 377 } 378 } 379 Record.clear(); 380 } 381 llvm_unreachable("Exit infinite loop"); 382 } 383 384 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 385 // We expect a number of well-defined blocks, though we don't necessarily 386 // need to understand them all. 387 while (true) { 388 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 389 if (!MaybeEntry) 390 return MaybeEntry.takeError(); 391 BitstreamEntry Entry = MaybeEntry.get(); 392 393 switch (Entry.Kind) { 394 case BitstreamEntry::Error: 395 return error("Malformed block"); 396 case BitstreamEntry::EndBlock: 397 return ""; 398 399 case BitstreamEntry::SubBlock: 400 if (Entry.ID == bitc::MODULE_BLOCK_ID) 401 return readModuleTriple(Stream); 402 403 // Ignore other sub-blocks. 404 if (Error Err = Stream.SkipBlock()) 405 return std::move(Err); 406 continue; 407 408 case BitstreamEntry::Record: 409 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 410 continue; 411 else 412 return Skipped.takeError(); 413 } 414 } 415 } 416 417 namespace { 418 419 class BitcodeReaderBase { 420 protected: 421 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 422 : Stream(std::move(Stream)), Strtab(Strtab) { 423 this->Stream.setBlockInfo(&BlockInfo); 424 } 425 426 BitstreamBlockInfo BlockInfo; 427 BitstreamCursor Stream; 428 StringRef Strtab; 429 430 /// In version 2 of the bitcode we store names of global values and comdats in 431 /// a string table rather than in the VST. 432 bool UseStrtab = false; 433 434 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 435 436 /// If this module uses a string table, pop the reference to the string table 437 /// and return the referenced string and the rest of the record. Otherwise 438 /// just return the record itself. 439 std::pair<StringRef, ArrayRef<uint64_t>> 440 readNameFromStrtab(ArrayRef<uint64_t> Record); 441 442 bool readBlockInfo(); 443 444 // Contains an arbitrary and optional string identifying the bitcode producer 445 std::string ProducerIdentification; 446 447 Error error(const Twine &Message); 448 }; 449 450 } // end anonymous namespace 451 452 Error BitcodeReaderBase::error(const Twine &Message) { 453 std::string FullMsg = Message.str(); 454 if (!ProducerIdentification.empty()) 455 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 456 LLVM_VERSION_STRING "')"; 457 return ::error(FullMsg); 458 } 459 460 Expected<unsigned> 461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 462 if (Record.empty()) 463 return error("Invalid record"); 464 unsigned ModuleVersion = Record[0]; 465 if (ModuleVersion > 2) 466 return error("Invalid value"); 467 UseStrtab = ModuleVersion >= 2; 468 return ModuleVersion; 469 } 470 471 std::pair<StringRef, ArrayRef<uint64_t>> 472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 473 if (!UseStrtab) 474 return {"", Record}; 475 // Invalid reference. Let the caller complain about the record being empty. 476 if (Record[0] + Record[1] > Strtab.size()) 477 return {"", {}}; 478 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 479 } 480 481 namespace { 482 483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 484 LLVMContext &Context; 485 Module *TheModule = nullptr; 486 // Next offset to start scanning for lazy parsing of function bodies. 487 uint64_t NextUnreadBit = 0; 488 // Last function offset found in the VST. 489 uint64_t LastFunctionBlockBit = 0; 490 bool SeenValueSymbolTable = false; 491 uint64_t VSTOffset = 0; 492 493 std::vector<std::string> SectionTable; 494 std::vector<std::string> GCTable; 495 496 std::vector<Type*> TypeList; 497 DenseMap<Function *, FunctionType *> FunctionTypes; 498 BitcodeReaderValueList ValueList; 499 Optional<MetadataLoader> MDLoader; 500 std::vector<Comdat *> ComdatList; 501 SmallVector<Instruction *, 64> InstructionList; 502 503 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 504 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 506 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 507 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 508 509 /// The set of attributes by index. Index zero in the file is for null, and 510 /// is thus not represented here. As such all indices are off by one. 511 std::vector<AttributeList> MAttributes; 512 513 /// The set of attribute groups. 514 std::map<unsigned, AttributeList> MAttributeGroups; 515 516 /// While parsing a function body, this is a list of the basic blocks for the 517 /// function. 518 std::vector<BasicBlock*> FunctionBBs; 519 520 // When reading the module header, this list is populated with functions that 521 // have bodies later in the file. 522 std::vector<Function*> FunctionsWithBodies; 523 524 // When intrinsic functions are encountered which require upgrading they are 525 // stored here with their replacement function. 526 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 527 UpdatedIntrinsicMap UpgradedIntrinsics; 528 // Intrinsics which were remangled because of types rename 529 UpdatedIntrinsicMap RemangledIntrinsics; 530 531 // Several operations happen after the module header has been read, but 532 // before function bodies are processed. This keeps track of whether 533 // we've done this yet. 534 bool SeenFirstFunctionBody = false; 535 536 /// When function bodies are initially scanned, this map contains info about 537 /// where to find deferred function body in the stream. 538 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 539 540 /// When Metadata block is initially scanned when parsing the module, we may 541 /// choose to defer parsing of the metadata. This vector contains info about 542 /// which Metadata blocks are deferred. 543 std::vector<uint64_t> DeferredMetadataInfo; 544 545 /// These are basic blocks forward-referenced by block addresses. They are 546 /// inserted lazily into functions when they're loaded. The basic block ID is 547 /// its index into the vector. 548 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 549 std::deque<Function *> BasicBlockFwdRefQueue; 550 551 /// Indicates that we are using a new encoding for instruction operands where 552 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 553 /// instruction number, for a more compact encoding. Some instruction 554 /// operands are not relative to the instruction ID: basic block numbers, and 555 /// types. Once the old style function blocks have been phased out, we would 556 /// not need this flag. 557 bool UseRelativeIDs = false; 558 559 /// True if all functions will be materialized, negating the need to process 560 /// (e.g.) blockaddress forward references. 561 bool WillMaterializeAllForwardRefs = false; 562 563 bool StripDebugInfo = false; 564 TBAAVerifier TBAAVerifyHelper; 565 566 std::vector<std::string> BundleTags; 567 SmallVector<SyncScope::ID, 8> SSIDs; 568 569 public: 570 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 571 StringRef ProducerIdentification, LLVMContext &Context); 572 573 Error materializeForwardReferencedFunctions(); 574 575 Error materialize(GlobalValue *GV) override; 576 Error materializeModule() override; 577 std::vector<StructType *> getIdentifiedStructTypes() const override; 578 579 /// Main interface to parsing a bitcode buffer. 580 /// \returns true if an error occurred. 581 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 582 bool IsImporting = false); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 /// Map all pointer types within \param Ty to the opaque pointer 597 /// type in the same address space if opaque pointers are being 598 /// used, otherwise nop. This converts a bitcode-reader internal 599 /// type into one suitable for use in a Value. 600 Type *flattenPointerTypes(Type *Ty) { 601 return Ty; 602 } 603 604 /// Given a fully structured pointer type (i.e. not opaque), return 605 /// the flattened form of its element, suitable for use in a Value. 606 Type *getPointerElementFlatType(Type *Ty) { 607 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 608 } 609 610 /// Given a fully structured pointer type, get its element type in 611 /// both fully structured form, and flattened form suitable for use 612 /// in a Value. 613 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 614 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 615 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 616 } 617 618 /// Return the flattened type (suitable for use in a Value) 619 /// specified by the given \param ID . 620 Type *getTypeByID(unsigned ID) { 621 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 622 } 623 624 /// Return the fully structured (bitcode-reader internal) type 625 /// corresponding to the given \param ID . 626 Type *getFullyStructuredTypeByID(unsigned ID); 627 628 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 629 if (Ty && Ty->isMetadataTy()) 630 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 631 return ValueList.getValueFwdRef(ID, Ty, FullTy); 632 } 633 634 Metadata *getFnMetadataByID(unsigned ID) { 635 return MDLoader->getMetadataFwdRefOrLoad(ID); 636 } 637 638 BasicBlock *getBasicBlock(unsigned ID) const { 639 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 640 return FunctionBBs[ID]; 641 } 642 643 AttributeList getAttributes(unsigned i) const { 644 if (i-1 < MAttributes.size()) 645 return MAttributes[i-1]; 646 return AttributeList(); 647 } 648 649 /// Read a value/type pair out of the specified record from slot 'Slot'. 650 /// Increment Slot past the number of slots used in the record. Return true on 651 /// failure. 652 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 653 unsigned InstNum, Value *&ResVal, 654 Type **FullTy = nullptr) { 655 if (Slot == Record.size()) return true; 656 unsigned ValNo = (unsigned)Record[Slot++]; 657 // Adjust the ValNo, if it was encoded relative to the InstNum. 658 if (UseRelativeIDs) 659 ValNo = InstNum - ValNo; 660 if (ValNo < InstNum) { 661 // If this is not a forward reference, just return the value we already 662 // have. 663 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 664 return ResVal == nullptr; 665 } 666 if (Slot == Record.size()) 667 return true; 668 669 unsigned TypeNo = (unsigned)Record[Slot++]; 670 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 671 if (FullTy) 672 *FullTy = getFullyStructuredTypeByID(TypeNo); 673 return ResVal == nullptr; 674 } 675 676 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 677 /// past the number of slots used by the value in the record. Return true if 678 /// there is an error. 679 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 680 unsigned InstNum, Type *Ty, Value *&ResVal) { 681 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 682 return true; 683 // All values currently take a single record slot. 684 ++Slot; 685 return false; 686 } 687 688 /// Like popValue, but does not increment the Slot number. 689 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 690 unsigned InstNum, Type *Ty, Value *&ResVal) { 691 ResVal = getValue(Record, Slot, InstNum, Ty); 692 return ResVal == nullptr; 693 } 694 695 /// Version of getValue that returns ResVal directly, or 0 if there is an 696 /// error. 697 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 698 unsigned InstNum, Type *Ty) { 699 if (Slot == Record.size()) return nullptr; 700 unsigned ValNo = (unsigned)Record[Slot]; 701 // Adjust the ValNo, if it was encoded relative to the InstNum. 702 if (UseRelativeIDs) 703 ValNo = InstNum - ValNo; 704 return getFnValueByID(ValNo, Ty); 705 } 706 707 /// Like getValue, but decodes signed VBRs. 708 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 709 unsigned InstNum, Type *Ty) { 710 if (Slot == Record.size()) return nullptr; 711 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 712 // Adjust the ValNo, if it was encoded relative to the InstNum. 713 if (UseRelativeIDs) 714 ValNo = InstNum - ValNo; 715 return getFnValueByID(ValNo, Ty); 716 } 717 718 /// Upgrades old-style typeless byval attributes by adding the corresponding 719 /// argument's pointee type. 720 void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 721 722 /// Converts alignment exponent (i.e. power of two (or zero)) to the 723 /// corresponding alignment to use. If alignment is too large, returns 724 /// a corresponding error code. 725 Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 726 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 727 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 728 729 Error parseComdatRecord(ArrayRef<uint64_t> Record); 730 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 731 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 732 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 733 ArrayRef<uint64_t> Record); 734 735 Error parseAttributeBlock(); 736 Error parseAttributeGroupBlock(); 737 Error parseTypeTable(); 738 Error parseTypeTableBody(); 739 Error parseOperandBundleTags(); 740 Error parseSyncScopeNames(); 741 742 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 743 unsigned NameIndex, Triple &TT); 744 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 745 ArrayRef<uint64_t> Record); 746 Error parseValueSymbolTable(uint64_t Offset = 0); 747 Error parseGlobalValueSymbolTable(); 748 Error parseConstants(); 749 Error rememberAndSkipFunctionBodies(); 750 Error rememberAndSkipFunctionBody(); 751 /// Save the positions of the Metadata blocks and skip parsing the blocks. 752 Error rememberAndSkipMetadata(); 753 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 754 Error parseFunctionBody(Function *F); 755 Error globalCleanup(); 756 Error resolveGlobalAndIndirectSymbolInits(); 757 Error parseUseLists(); 758 Error findFunctionInStream( 759 Function *F, 760 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 761 762 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 763 }; 764 765 /// Class to manage reading and parsing function summary index bitcode 766 /// files/sections. 767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 768 /// The module index built during parsing. 769 ModuleSummaryIndex &TheIndex; 770 771 /// Indicates whether we have encountered a global value summary section 772 /// yet during parsing. 773 bool SeenGlobalValSummary = false; 774 775 /// Indicates whether we have already parsed the VST, used for error checking. 776 bool SeenValueSymbolTable = false; 777 778 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 779 /// Used to enable on-demand parsing of the VST. 780 uint64_t VSTOffset = 0; 781 782 // Map to save ValueId to ValueInfo association that was recorded in the 783 // ValueSymbolTable. It is used after the VST is parsed to convert 784 // call graph edges read from the function summary from referencing 785 // callees by their ValueId to using the ValueInfo instead, which is how 786 // they are recorded in the summary index being built. 787 // We save a GUID which refers to the same global as the ValueInfo, but 788 // ignoring the linkage, i.e. for values other than local linkage they are 789 // identical. 790 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 791 ValueIdToValueInfoMap; 792 793 /// Map populated during module path string table parsing, from the 794 /// module ID to a string reference owned by the index's module 795 /// path string table, used to correlate with combined index 796 /// summary records. 797 DenseMap<uint64_t, StringRef> ModuleIdMap; 798 799 /// Original source file name recorded in a bitcode record. 800 std::string SourceFileName; 801 802 /// The string identifier given to this module by the client, normally the 803 /// path to the bitcode file. 804 StringRef ModulePath; 805 806 /// For per-module summary indexes, the unique numerical identifier given to 807 /// this module by the client. 808 unsigned ModuleId; 809 810 public: 811 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 812 ModuleSummaryIndex &TheIndex, 813 StringRef ModulePath, unsigned ModuleId); 814 815 Error parseModule(); 816 817 private: 818 void setValueGUID(uint64_t ValueID, StringRef ValueName, 819 GlobalValue::LinkageTypes Linkage, 820 StringRef SourceFileName); 821 Error parseValueSymbolTable( 822 uint64_t Offset, 823 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 824 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 825 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 826 bool IsOldProfileFormat, 827 bool HasProfile, 828 bool HasRelBF); 829 Error parseEntireSummary(unsigned ID); 830 Error parseModuleStringTable(); 831 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 832 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 833 TypeIdCompatibleVtableInfo &TypeId); 834 835 std::pair<ValueInfo, GlobalValue::GUID> 836 getValueInfoFromValueId(unsigned ValueId); 837 838 void addThisModule(); 839 ModuleSummaryIndex::ModuleInfo *getThisModule(); 840 }; 841 842 } // end anonymous namespace 843 844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 845 Error Err) { 846 if (Err) { 847 std::error_code EC; 848 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 849 EC = EIB.convertToErrorCode(); 850 Ctx.emitError(EIB.message()); 851 }); 852 return EC; 853 } 854 return std::error_code(); 855 } 856 857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 858 StringRef ProducerIdentification, 859 LLVMContext &Context) 860 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 861 ValueList(Context, Stream.SizeInBytes()) { 862 this->ProducerIdentification = ProducerIdentification; 863 } 864 865 Error BitcodeReader::materializeForwardReferencedFunctions() { 866 if (WillMaterializeAllForwardRefs) 867 return Error::success(); 868 869 // Prevent recursion. 870 WillMaterializeAllForwardRefs = true; 871 872 while (!BasicBlockFwdRefQueue.empty()) { 873 Function *F = BasicBlockFwdRefQueue.front(); 874 BasicBlockFwdRefQueue.pop_front(); 875 assert(F && "Expected valid function"); 876 if (!BasicBlockFwdRefs.count(F)) 877 // Already materialized. 878 continue; 879 880 // Check for a function that isn't materializable to prevent an infinite 881 // loop. When parsing a blockaddress stored in a global variable, there 882 // isn't a trivial way to check if a function will have a body without a 883 // linear search through FunctionsWithBodies, so just check it here. 884 if (!F->isMaterializable()) 885 return error("Never resolved function from blockaddress"); 886 887 // Try to materialize F. 888 if (Error Err = materialize(F)) 889 return Err; 890 } 891 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 892 893 // Reset state. 894 WillMaterializeAllForwardRefs = false; 895 return Error::success(); 896 } 897 898 //===----------------------------------------------------------------------===// 899 // Helper functions to implement forward reference resolution, etc. 900 //===----------------------------------------------------------------------===// 901 902 static bool hasImplicitComdat(size_t Val) { 903 switch (Val) { 904 default: 905 return false; 906 case 1: // Old WeakAnyLinkage 907 case 4: // Old LinkOnceAnyLinkage 908 case 10: // Old WeakODRLinkage 909 case 11: // Old LinkOnceODRLinkage 910 return true; 911 } 912 } 913 914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 915 switch (Val) { 916 default: // Map unknown/new linkages to external 917 case 0: 918 return GlobalValue::ExternalLinkage; 919 case 2: 920 return GlobalValue::AppendingLinkage; 921 case 3: 922 return GlobalValue::InternalLinkage; 923 case 5: 924 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 925 case 6: 926 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 927 case 7: 928 return GlobalValue::ExternalWeakLinkage; 929 case 8: 930 return GlobalValue::CommonLinkage; 931 case 9: 932 return GlobalValue::PrivateLinkage; 933 case 12: 934 return GlobalValue::AvailableExternallyLinkage; 935 case 13: 936 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 937 case 14: 938 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 939 case 15: 940 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 941 case 1: // Old value with implicit comdat. 942 case 16: 943 return GlobalValue::WeakAnyLinkage; 944 case 10: // Old value with implicit comdat. 945 case 17: 946 return GlobalValue::WeakODRLinkage; 947 case 4: // Old value with implicit comdat. 948 case 18: 949 return GlobalValue::LinkOnceAnyLinkage; 950 case 11: // Old value with implicit comdat. 951 case 19: 952 return GlobalValue::LinkOnceODRLinkage; 953 } 954 } 955 956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 957 FunctionSummary::FFlags Flags; 958 Flags.ReadNone = RawFlags & 0x1; 959 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 960 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 961 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 962 Flags.NoInline = (RawFlags >> 4) & 0x1; 963 return Flags; 964 } 965 966 /// Decode the flags for GlobalValue in the summary. 967 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 968 uint64_t Version) { 969 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 970 // like getDecodedLinkage() above. Any future change to the linkage enum and 971 // to getDecodedLinkage() will need to be taken into account here as above. 972 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 973 RawFlags = RawFlags >> 4; 974 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 975 // The Live flag wasn't introduced until version 3. For dead stripping 976 // to work correctly on earlier versions, we must conservatively treat all 977 // values as live. 978 bool Live = (RawFlags & 0x2) || Version < 3; 979 bool Local = (RawFlags & 0x4); 980 bool AutoHide = (RawFlags & 0x8); 981 982 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 983 } 984 985 // Decode the flags for GlobalVariable in the summary 986 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 987 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false, 988 (RawFlags & 0x2) ? true : false); 989 } 990 991 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 992 switch (Val) { 993 default: // Map unknown visibilities to default. 994 case 0: return GlobalValue::DefaultVisibility; 995 case 1: return GlobalValue::HiddenVisibility; 996 case 2: return GlobalValue::ProtectedVisibility; 997 } 998 } 999 1000 static GlobalValue::DLLStorageClassTypes 1001 getDecodedDLLStorageClass(unsigned Val) { 1002 switch (Val) { 1003 default: // Map unknown values to default. 1004 case 0: return GlobalValue::DefaultStorageClass; 1005 case 1: return GlobalValue::DLLImportStorageClass; 1006 case 2: return GlobalValue::DLLExportStorageClass; 1007 } 1008 } 1009 1010 static bool getDecodedDSOLocal(unsigned Val) { 1011 switch(Val) { 1012 default: // Map unknown values to preemptable. 1013 case 0: return false; 1014 case 1: return true; 1015 } 1016 } 1017 1018 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1019 switch (Val) { 1020 case 0: return GlobalVariable::NotThreadLocal; 1021 default: // Map unknown non-zero value to general dynamic. 1022 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1023 case 2: return GlobalVariable::LocalDynamicTLSModel; 1024 case 3: return GlobalVariable::InitialExecTLSModel; 1025 case 4: return GlobalVariable::LocalExecTLSModel; 1026 } 1027 } 1028 1029 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1030 switch (Val) { 1031 default: // Map unknown to UnnamedAddr::None. 1032 case 0: return GlobalVariable::UnnamedAddr::None; 1033 case 1: return GlobalVariable::UnnamedAddr::Global; 1034 case 2: return GlobalVariable::UnnamedAddr::Local; 1035 } 1036 } 1037 1038 static int getDecodedCastOpcode(unsigned Val) { 1039 switch (Val) { 1040 default: return -1; 1041 case bitc::CAST_TRUNC : return Instruction::Trunc; 1042 case bitc::CAST_ZEXT : return Instruction::ZExt; 1043 case bitc::CAST_SEXT : return Instruction::SExt; 1044 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1045 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1046 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1047 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1048 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1049 case bitc::CAST_FPEXT : return Instruction::FPExt; 1050 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1051 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1052 case bitc::CAST_BITCAST : return Instruction::BitCast; 1053 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1054 } 1055 } 1056 1057 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1058 bool IsFP = Ty->isFPOrFPVectorTy(); 1059 // UnOps are only valid for int/fp or vector of int/fp types 1060 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1061 return -1; 1062 1063 switch (Val) { 1064 default: 1065 return -1; 1066 case bitc::UNOP_NEG: 1067 return IsFP ? Instruction::FNeg : -1; 1068 } 1069 } 1070 1071 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1072 bool IsFP = Ty->isFPOrFPVectorTy(); 1073 // BinOps are only valid for int/fp or vector of int/fp types 1074 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1075 return -1; 1076 1077 switch (Val) { 1078 default: 1079 return -1; 1080 case bitc::BINOP_ADD: 1081 return IsFP ? Instruction::FAdd : Instruction::Add; 1082 case bitc::BINOP_SUB: 1083 return IsFP ? Instruction::FSub : Instruction::Sub; 1084 case bitc::BINOP_MUL: 1085 return IsFP ? Instruction::FMul : Instruction::Mul; 1086 case bitc::BINOP_UDIV: 1087 return IsFP ? -1 : Instruction::UDiv; 1088 case bitc::BINOP_SDIV: 1089 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1090 case bitc::BINOP_UREM: 1091 return IsFP ? -1 : Instruction::URem; 1092 case bitc::BINOP_SREM: 1093 return IsFP ? Instruction::FRem : Instruction::SRem; 1094 case bitc::BINOP_SHL: 1095 return IsFP ? -1 : Instruction::Shl; 1096 case bitc::BINOP_LSHR: 1097 return IsFP ? -1 : Instruction::LShr; 1098 case bitc::BINOP_ASHR: 1099 return IsFP ? -1 : Instruction::AShr; 1100 case bitc::BINOP_AND: 1101 return IsFP ? -1 : Instruction::And; 1102 case bitc::BINOP_OR: 1103 return IsFP ? -1 : Instruction::Or; 1104 case bitc::BINOP_XOR: 1105 return IsFP ? -1 : Instruction::Xor; 1106 } 1107 } 1108 1109 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1110 switch (Val) { 1111 default: return AtomicRMWInst::BAD_BINOP; 1112 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1113 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1114 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1115 case bitc::RMW_AND: return AtomicRMWInst::And; 1116 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1117 case bitc::RMW_OR: return AtomicRMWInst::Or; 1118 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1119 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1120 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1121 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1122 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1123 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1124 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1125 } 1126 } 1127 1128 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1129 switch (Val) { 1130 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1131 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1132 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1133 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1134 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1135 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1136 default: // Map unknown orderings to sequentially-consistent. 1137 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1138 } 1139 } 1140 1141 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1142 switch (Val) { 1143 default: // Map unknown selection kinds to any. 1144 case bitc::COMDAT_SELECTION_KIND_ANY: 1145 return Comdat::Any; 1146 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1147 return Comdat::ExactMatch; 1148 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1149 return Comdat::Largest; 1150 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1151 return Comdat::NoDuplicates; 1152 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1153 return Comdat::SameSize; 1154 } 1155 } 1156 1157 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1158 FastMathFlags FMF; 1159 if (0 != (Val & bitc::UnsafeAlgebra)) 1160 FMF.setFast(); 1161 if (0 != (Val & bitc::AllowReassoc)) 1162 FMF.setAllowReassoc(); 1163 if (0 != (Val & bitc::NoNaNs)) 1164 FMF.setNoNaNs(); 1165 if (0 != (Val & bitc::NoInfs)) 1166 FMF.setNoInfs(); 1167 if (0 != (Val & bitc::NoSignedZeros)) 1168 FMF.setNoSignedZeros(); 1169 if (0 != (Val & bitc::AllowReciprocal)) 1170 FMF.setAllowReciprocal(); 1171 if (0 != (Val & bitc::AllowContract)) 1172 FMF.setAllowContract(true); 1173 if (0 != (Val & bitc::ApproxFunc)) 1174 FMF.setApproxFunc(); 1175 return FMF; 1176 } 1177 1178 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1179 switch (Val) { 1180 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1181 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1182 } 1183 } 1184 1185 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1186 // The type table size is always specified correctly. 1187 if (ID >= TypeList.size()) 1188 return nullptr; 1189 1190 if (Type *Ty = TypeList[ID]) 1191 return Ty; 1192 1193 // If we have a forward reference, the only possible case is when it is to a 1194 // named struct. Just create a placeholder for now. 1195 return TypeList[ID] = createIdentifiedStructType(Context); 1196 } 1197 1198 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1199 StringRef Name) { 1200 auto *Ret = StructType::create(Context, Name); 1201 IdentifiedStructTypes.push_back(Ret); 1202 return Ret; 1203 } 1204 1205 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1206 auto *Ret = StructType::create(Context); 1207 IdentifiedStructTypes.push_back(Ret); 1208 return Ret; 1209 } 1210 1211 //===----------------------------------------------------------------------===// 1212 // Functions for parsing blocks from the bitcode file 1213 //===----------------------------------------------------------------------===// 1214 1215 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1216 switch (Val) { 1217 case Attribute::EndAttrKinds: 1218 llvm_unreachable("Synthetic enumerators which should never get here"); 1219 1220 case Attribute::None: return 0; 1221 case Attribute::ZExt: return 1 << 0; 1222 case Attribute::SExt: return 1 << 1; 1223 case Attribute::NoReturn: return 1 << 2; 1224 case Attribute::InReg: return 1 << 3; 1225 case Attribute::StructRet: return 1 << 4; 1226 case Attribute::NoUnwind: return 1 << 5; 1227 case Attribute::NoAlias: return 1 << 6; 1228 case Attribute::ByVal: return 1 << 7; 1229 case Attribute::Nest: return 1 << 8; 1230 case Attribute::ReadNone: return 1 << 9; 1231 case Attribute::ReadOnly: return 1 << 10; 1232 case Attribute::NoInline: return 1 << 11; 1233 case Attribute::AlwaysInline: return 1 << 12; 1234 case Attribute::OptimizeForSize: return 1 << 13; 1235 case Attribute::StackProtect: return 1 << 14; 1236 case Attribute::StackProtectReq: return 1 << 15; 1237 case Attribute::Alignment: return 31 << 16; 1238 case Attribute::NoCapture: return 1 << 21; 1239 case Attribute::NoRedZone: return 1 << 22; 1240 case Attribute::NoImplicitFloat: return 1 << 23; 1241 case Attribute::Naked: return 1 << 24; 1242 case Attribute::InlineHint: return 1 << 25; 1243 case Attribute::StackAlignment: return 7 << 26; 1244 case Attribute::ReturnsTwice: return 1 << 29; 1245 case Attribute::UWTable: return 1 << 30; 1246 case Attribute::NonLazyBind: return 1U << 31; 1247 case Attribute::SanitizeAddress: return 1ULL << 32; 1248 case Attribute::MinSize: return 1ULL << 33; 1249 case Attribute::NoDuplicate: return 1ULL << 34; 1250 case Attribute::StackProtectStrong: return 1ULL << 35; 1251 case Attribute::SanitizeThread: return 1ULL << 36; 1252 case Attribute::SanitizeMemory: return 1ULL << 37; 1253 case Attribute::NoBuiltin: return 1ULL << 38; 1254 case Attribute::Returned: return 1ULL << 39; 1255 case Attribute::Cold: return 1ULL << 40; 1256 case Attribute::Builtin: return 1ULL << 41; 1257 case Attribute::OptimizeNone: return 1ULL << 42; 1258 case Attribute::InAlloca: return 1ULL << 43; 1259 case Attribute::NonNull: return 1ULL << 44; 1260 case Attribute::JumpTable: return 1ULL << 45; 1261 case Attribute::Convergent: return 1ULL << 46; 1262 case Attribute::SafeStack: return 1ULL << 47; 1263 case Attribute::NoRecurse: return 1ULL << 48; 1264 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1265 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1266 case Attribute::SwiftSelf: return 1ULL << 51; 1267 case Attribute::SwiftError: return 1ULL << 52; 1268 case Attribute::WriteOnly: return 1ULL << 53; 1269 case Attribute::Speculatable: return 1ULL << 54; 1270 case Attribute::StrictFP: return 1ULL << 55; 1271 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1272 case Attribute::NoCfCheck: return 1ULL << 57; 1273 case Attribute::OptForFuzzing: return 1ULL << 58; 1274 case Attribute::ShadowCallStack: return 1ULL << 59; 1275 case Attribute::SpeculativeLoadHardening: 1276 return 1ULL << 60; 1277 case Attribute::ImmArg: 1278 return 1ULL << 61; 1279 case Attribute::WillReturn: 1280 return 1ULL << 62; 1281 case Attribute::NoFree: 1282 return 1ULL << 63; 1283 case Attribute::NoSync: 1284 llvm_unreachable("nosync attribute not supported in raw format"); 1285 break; 1286 case Attribute::Dereferenceable: 1287 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1288 break; 1289 case Attribute::DereferenceableOrNull: 1290 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1291 "format"); 1292 break; 1293 case Attribute::ArgMemOnly: 1294 llvm_unreachable("argmemonly attribute not supported in raw format"); 1295 break; 1296 case Attribute::AllocSize: 1297 llvm_unreachable("allocsize not supported in raw format"); 1298 break; 1299 } 1300 llvm_unreachable("Unsupported attribute type"); 1301 } 1302 1303 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1304 if (!Val) return; 1305 1306 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1307 I = Attribute::AttrKind(I + 1)) { 1308 if (I == Attribute::Dereferenceable || 1309 I == Attribute::DereferenceableOrNull || 1310 I == Attribute::ArgMemOnly || 1311 I == Attribute::AllocSize || 1312 I == Attribute::NoSync) 1313 continue; 1314 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1315 if (I == Attribute::Alignment) 1316 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1317 else if (I == Attribute::StackAlignment) 1318 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1319 else 1320 B.addAttribute(I); 1321 } 1322 } 1323 } 1324 1325 /// This fills an AttrBuilder object with the LLVM attributes that have 1326 /// been decoded from the given integer. This function must stay in sync with 1327 /// 'encodeLLVMAttributesForBitcode'. 1328 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1329 uint64_t EncodedAttrs) { 1330 // FIXME: Remove in 4.0. 1331 1332 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1333 // the bits above 31 down by 11 bits. 1334 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1335 assert((!Alignment || isPowerOf2_32(Alignment)) && 1336 "Alignment must be a power of two."); 1337 1338 if (Alignment) 1339 B.addAlignmentAttr(Alignment); 1340 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1341 (EncodedAttrs & 0xffff)); 1342 } 1343 1344 Error BitcodeReader::parseAttributeBlock() { 1345 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1346 return Err; 1347 1348 if (!MAttributes.empty()) 1349 return error("Invalid multiple blocks"); 1350 1351 SmallVector<uint64_t, 64> Record; 1352 1353 SmallVector<AttributeList, 8> Attrs; 1354 1355 // Read all the records. 1356 while (true) { 1357 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1358 if (!MaybeEntry) 1359 return MaybeEntry.takeError(); 1360 BitstreamEntry Entry = MaybeEntry.get(); 1361 1362 switch (Entry.Kind) { 1363 case BitstreamEntry::SubBlock: // Handled for us already. 1364 case BitstreamEntry::Error: 1365 return error("Malformed block"); 1366 case BitstreamEntry::EndBlock: 1367 return Error::success(); 1368 case BitstreamEntry::Record: 1369 // The interesting case. 1370 break; 1371 } 1372 1373 // Read a record. 1374 Record.clear(); 1375 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1376 if (!MaybeRecord) 1377 return MaybeRecord.takeError(); 1378 switch (MaybeRecord.get()) { 1379 default: // Default behavior: ignore. 1380 break; 1381 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1382 // FIXME: Remove in 4.0. 1383 if (Record.size() & 1) 1384 return error("Invalid record"); 1385 1386 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1387 AttrBuilder B; 1388 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1389 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1390 } 1391 1392 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1393 Attrs.clear(); 1394 break; 1395 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1396 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1397 Attrs.push_back(MAttributeGroups[Record[i]]); 1398 1399 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1400 Attrs.clear(); 1401 break; 1402 } 1403 } 1404 } 1405 1406 // Returns Attribute::None on unrecognized codes. 1407 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1408 switch (Code) { 1409 default: 1410 return Attribute::None; 1411 case bitc::ATTR_KIND_ALIGNMENT: 1412 return Attribute::Alignment; 1413 case bitc::ATTR_KIND_ALWAYS_INLINE: 1414 return Attribute::AlwaysInline; 1415 case bitc::ATTR_KIND_ARGMEMONLY: 1416 return Attribute::ArgMemOnly; 1417 case bitc::ATTR_KIND_BUILTIN: 1418 return Attribute::Builtin; 1419 case bitc::ATTR_KIND_BY_VAL: 1420 return Attribute::ByVal; 1421 case bitc::ATTR_KIND_IN_ALLOCA: 1422 return Attribute::InAlloca; 1423 case bitc::ATTR_KIND_COLD: 1424 return Attribute::Cold; 1425 case bitc::ATTR_KIND_CONVERGENT: 1426 return Attribute::Convergent; 1427 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1428 return Attribute::InaccessibleMemOnly; 1429 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1430 return Attribute::InaccessibleMemOrArgMemOnly; 1431 case bitc::ATTR_KIND_INLINE_HINT: 1432 return Attribute::InlineHint; 1433 case bitc::ATTR_KIND_IN_REG: 1434 return Attribute::InReg; 1435 case bitc::ATTR_KIND_JUMP_TABLE: 1436 return Attribute::JumpTable; 1437 case bitc::ATTR_KIND_MIN_SIZE: 1438 return Attribute::MinSize; 1439 case bitc::ATTR_KIND_NAKED: 1440 return Attribute::Naked; 1441 case bitc::ATTR_KIND_NEST: 1442 return Attribute::Nest; 1443 case bitc::ATTR_KIND_NO_ALIAS: 1444 return Attribute::NoAlias; 1445 case bitc::ATTR_KIND_NO_BUILTIN: 1446 return Attribute::NoBuiltin; 1447 case bitc::ATTR_KIND_NO_CAPTURE: 1448 return Attribute::NoCapture; 1449 case bitc::ATTR_KIND_NO_DUPLICATE: 1450 return Attribute::NoDuplicate; 1451 case bitc::ATTR_KIND_NOFREE: 1452 return Attribute::NoFree; 1453 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1454 return Attribute::NoImplicitFloat; 1455 case bitc::ATTR_KIND_NO_INLINE: 1456 return Attribute::NoInline; 1457 case bitc::ATTR_KIND_NO_RECURSE: 1458 return Attribute::NoRecurse; 1459 case bitc::ATTR_KIND_NON_LAZY_BIND: 1460 return Attribute::NonLazyBind; 1461 case bitc::ATTR_KIND_NON_NULL: 1462 return Attribute::NonNull; 1463 case bitc::ATTR_KIND_DEREFERENCEABLE: 1464 return Attribute::Dereferenceable; 1465 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1466 return Attribute::DereferenceableOrNull; 1467 case bitc::ATTR_KIND_ALLOC_SIZE: 1468 return Attribute::AllocSize; 1469 case bitc::ATTR_KIND_NO_RED_ZONE: 1470 return Attribute::NoRedZone; 1471 case bitc::ATTR_KIND_NO_RETURN: 1472 return Attribute::NoReturn; 1473 case bitc::ATTR_KIND_NOSYNC: 1474 return Attribute::NoSync; 1475 case bitc::ATTR_KIND_NOCF_CHECK: 1476 return Attribute::NoCfCheck; 1477 case bitc::ATTR_KIND_NO_UNWIND: 1478 return Attribute::NoUnwind; 1479 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1480 return Attribute::OptForFuzzing; 1481 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1482 return Attribute::OptimizeForSize; 1483 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1484 return Attribute::OptimizeNone; 1485 case bitc::ATTR_KIND_READ_NONE: 1486 return Attribute::ReadNone; 1487 case bitc::ATTR_KIND_READ_ONLY: 1488 return Attribute::ReadOnly; 1489 case bitc::ATTR_KIND_RETURNED: 1490 return Attribute::Returned; 1491 case bitc::ATTR_KIND_RETURNS_TWICE: 1492 return Attribute::ReturnsTwice; 1493 case bitc::ATTR_KIND_S_EXT: 1494 return Attribute::SExt; 1495 case bitc::ATTR_KIND_SPECULATABLE: 1496 return Attribute::Speculatable; 1497 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1498 return Attribute::StackAlignment; 1499 case bitc::ATTR_KIND_STACK_PROTECT: 1500 return Attribute::StackProtect; 1501 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1502 return Attribute::StackProtectReq; 1503 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1504 return Attribute::StackProtectStrong; 1505 case bitc::ATTR_KIND_SAFESTACK: 1506 return Attribute::SafeStack; 1507 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1508 return Attribute::ShadowCallStack; 1509 case bitc::ATTR_KIND_STRICT_FP: 1510 return Attribute::StrictFP; 1511 case bitc::ATTR_KIND_STRUCT_RET: 1512 return Attribute::StructRet; 1513 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1514 return Attribute::SanitizeAddress; 1515 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1516 return Attribute::SanitizeHWAddress; 1517 case bitc::ATTR_KIND_SANITIZE_THREAD: 1518 return Attribute::SanitizeThread; 1519 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1520 return Attribute::SanitizeMemory; 1521 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1522 return Attribute::SpeculativeLoadHardening; 1523 case bitc::ATTR_KIND_SWIFT_ERROR: 1524 return Attribute::SwiftError; 1525 case bitc::ATTR_KIND_SWIFT_SELF: 1526 return Attribute::SwiftSelf; 1527 case bitc::ATTR_KIND_UW_TABLE: 1528 return Attribute::UWTable; 1529 case bitc::ATTR_KIND_WILLRETURN: 1530 return Attribute::WillReturn; 1531 case bitc::ATTR_KIND_WRITEONLY: 1532 return Attribute::WriteOnly; 1533 case bitc::ATTR_KIND_Z_EXT: 1534 return Attribute::ZExt; 1535 case bitc::ATTR_KIND_IMMARG: 1536 return Attribute::ImmArg; 1537 } 1538 } 1539 1540 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1541 unsigned &Alignment) { 1542 // Note: Alignment in bitcode files is incremented by 1, so that zero 1543 // can be used for default alignment. 1544 if (Exponent > Value::MaxAlignmentExponent + 1) 1545 return error("Invalid alignment value"); 1546 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1547 return Error::success(); 1548 } 1549 1550 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1551 *Kind = getAttrFromCode(Code); 1552 if (*Kind == Attribute::None) 1553 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1554 return Error::success(); 1555 } 1556 1557 Error BitcodeReader::parseAttributeGroupBlock() { 1558 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1559 return Err; 1560 1561 if (!MAttributeGroups.empty()) 1562 return error("Invalid multiple blocks"); 1563 1564 SmallVector<uint64_t, 64> Record; 1565 1566 // Read all the records. 1567 while (true) { 1568 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1569 if (!MaybeEntry) 1570 return MaybeEntry.takeError(); 1571 BitstreamEntry Entry = MaybeEntry.get(); 1572 1573 switch (Entry.Kind) { 1574 case BitstreamEntry::SubBlock: // Handled for us already. 1575 case BitstreamEntry::Error: 1576 return error("Malformed block"); 1577 case BitstreamEntry::EndBlock: 1578 return Error::success(); 1579 case BitstreamEntry::Record: 1580 // The interesting case. 1581 break; 1582 } 1583 1584 // Read a record. 1585 Record.clear(); 1586 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1587 if (!MaybeRecord) 1588 return MaybeRecord.takeError(); 1589 switch (MaybeRecord.get()) { 1590 default: // Default behavior: ignore. 1591 break; 1592 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1593 if (Record.size() < 3) 1594 return error("Invalid record"); 1595 1596 uint64_t GrpID = Record[0]; 1597 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1598 1599 AttrBuilder B; 1600 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1601 if (Record[i] == 0) { // Enum attribute 1602 Attribute::AttrKind Kind; 1603 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1604 return Err; 1605 1606 // Upgrade old-style byval attribute to one with a type, even if it's 1607 // nullptr. We will have to insert the real type when we associate 1608 // this AttributeList with a function. 1609 if (Kind == Attribute::ByVal) 1610 B.addByValAttr(nullptr); 1611 1612 B.addAttribute(Kind); 1613 } else if (Record[i] == 1) { // Integer attribute 1614 Attribute::AttrKind Kind; 1615 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1616 return Err; 1617 if (Kind == Attribute::Alignment) 1618 B.addAlignmentAttr(Record[++i]); 1619 else if (Kind == Attribute::StackAlignment) 1620 B.addStackAlignmentAttr(Record[++i]); 1621 else if (Kind == Attribute::Dereferenceable) 1622 B.addDereferenceableAttr(Record[++i]); 1623 else if (Kind == Attribute::DereferenceableOrNull) 1624 B.addDereferenceableOrNullAttr(Record[++i]); 1625 else if (Kind == Attribute::AllocSize) 1626 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1627 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1628 bool HasValue = (Record[i++] == 4); 1629 SmallString<64> KindStr; 1630 SmallString<64> ValStr; 1631 1632 while (Record[i] != 0 && i != e) 1633 KindStr += Record[i++]; 1634 assert(Record[i] == 0 && "Kind string not null terminated"); 1635 1636 if (HasValue) { 1637 // Has a value associated with it. 1638 ++i; // Skip the '0' that terminates the "kind" string. 1639 while (Record[i] != 0 && i != e) 1640 ValStr += Record[i++]; 1641 assert(Record[i] == 0 && "Value string not null terminated"); 1642 } 1643 1644 B.addAttribute(KindStr.str(), ValStr.str()); 1645 } else { 1646 assert((Record[i] == 5 || Record[i] == 6) && 1647 "Invalid attribute group entry"); 1648 bool HasType = Record[i] == 6; 1649 Attribute::AttrKind Kind; 1650 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1651 return Err; 1652 if (Kind == Attribute::ByVal) 1653 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1654 } 1655 } 1656 1657 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1658 break; 1659 } 1660 } 1661 } 1662 } 1663 1664 Error BitcodeReader::parseTypeTable() { 1665 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1666 return Err; 1667 1668 return parseTypeTableBody(); 1669 } 1670 1671 Error BitcodeReader::parseTypeTableBody() { 1672 if (!TypeList.empty()) 1673 return error("Invalid multiple blocks"); 1674 1675 SmallVector<uint64_t, 64> Record; 1676 unsigned NumRecords = 0; 1677 1678 SmallString<64> TypeName; 1679 1680 // Read all the records for this type table. 1681 while (true) { 1682 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1683 if (!MaybeEntry) 1684 return MaybeEntry.takeError(); 1685 BitstreamEntry Entry = MaybeEntry.get(); 1686 1687 switch (Entry.Kind) { 1688 case BitstreamEntry::SubBlock: // Handled for us already. 1689 case BitstreamEntry::Error: 1690 return error("Malformed block"); 1691 case BitstreamEntry::EndBlock: 1692 if (NumRecords != TypeList.size()) 1693 return error("Malformed block"); 1694 return Error::success(); 1695 case BitstreamEntry::Record: 1696 // The interesting case. 1697 break; 1698 } 1699 1700 // Read a record. 1701 Record.clear(); 1702 Type *ResultTy = nullptr; 1703 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1704 if (!MaybeRecord) 1705 return MaybeRecord.takeError(); 1706 switch (MaybeRecord.get()) { 1707 default: 1708 return error("Invalid value"); 1709 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1710 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1711 // type list. This allows us to reserve space. 1712 if (Record.size() < 1) 1713 return error("Invalid record"); 1714 TypeList.resize(Record[0]); 1715 continue; 1716 case bitc::TYPE_CODE_VOID: // VOID 1717 ResultTy = Type::getVoidTy(Context); 1718 break; 1719 case bitc::TYPE_CODE_HALF: // HALF 1720 ResultTy = Type::getHalfTy(Context); 1721 break; 1722 case bitc::TYPE_CODE_FLOAT: // FLOAT 1723 ResultTy = Type::getFloatTy(Context); 1724 break; 1725 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1726 ResultTy = Type::getDoubleTy(Context); 1727 break; 1728 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1729 ResultTy = Type::getX86_FP80Ty(Context); 1730 break; 1731 case bitc::TYPE_CODE_FP128: // FP128 1732 ResultTy = Type::getFP128Ty(Context); 1733 break; 1734 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1735 ResultTy = Type::getPPC_FP128Ty(Context); 1736 break; 1737 case bitc::TYPE_CODE_LABEL: // LABEL 1738 ResultTy = Type::getLabelTy(Context); 1739 break; 1740 case bitc::TYPE_CODE_METADATA: // METADATA 1741 ResultTy = Type::getMetadataTy(Context); 1742 break; 1743 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1744 ResultTy = Type::getX86_MMXTy(Context); 1745 break; 1746 case bitc::TYPE_CODE_TOKEN: // TOKEN 1747 ResultTy = Type::getTokenTy(Context); 1748 break; 1749 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1750 if (Record.size() < 1) 1751 return error("Invalid record"); 1752 1753 uint64_t NumBits = Record[0]; 1754 if (NumBits < IntegerType::MIN_INT_BITS || 1755 NumBits > IntegerType::MAX_INT_BITS) 1756 return error("Bitwidth for integer type out of range"); 1757 ResultTy = IntegerType::get(Context, NumBits); 1758 break; 1759 } 1760 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1761 // [pointee type, address space] 1762 if (Record.size() < 1) 1763 return error("Invalid record"); 1764 unsigned AddressSpace = 0; 1765 if (Record.size() == 2) 1766 AddressSpace = Record[1]; 1767 ResultTy = getTypeByID(Record[0]); 1768 if (!ResultTy || 1769 !PointerType::isValidElementType(ResultTy)) 1770 return error("Invalid type"); 1771 ResultTy = PointerType::get(ResultTy, AddressSpace); 1772 break; 1773 } 1774 case bitc::TYPE_CODE_FUNCTION_OLD: { 1775 // FIXME: attrid is dead, remove it in LLVM 4.0 1776 // FUNCTION: [vararg, attrid, retty, paramty x N] 1777 if (Record.size() < 3) 1778 return error("Invalid record"); 1779 SmallVector<Type*, 8> ArgTys; 1780 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1781 if (Type *T = getTypeByID(Record[i])) 1782 ArgTys.push_back(T); 1783 else 1784 break; 1785 } 1786 1787 ResultTy = getTypeByID(Record[2]); 1788 if (!ResultTy || ArgTys.size() < Record.size()-3) 1789 return error("Invalid type"); 1790 1791 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1792 break; 1793 } 1794 case bitc::TYPE_CODE_FUNCTION: { 1795 // FUNCTION: [vararg, retty, paramty x N] 1796 if (Record.size() < 2) 1797 return error("Invalid record"); 1798 SmallVector<Type*, 8> ArgTys; 1799 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1800 if (Type *T = getTypeByID(Record[i])) { 1801 if (!FunctionType::isValidArgumentType(T)) 1802 return error("Invalid function argument type"); 1803 ArgTys.push_back(T); 1804 } 1805 else 1806 break; 1807 } 1808 1809 ResultTy = getTypeByID(Record[1]); 1810 if (!ResultTy || ArgTys.size() < Record.size()-2) 1811 return error("Invalid type"); 1812 1813 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1814 break; 1815 } 1816 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1817 if (Record.size() < 1) 1818 return error("Invalid record"); 1819 SmallVector<Type*, 8> EltTys; 1820 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1821 if (Type *T = getTypeByID(Record[i])) 1822 EltTys.push_back(T); 1823 else 1824 break; 1825 } 1826 if (EltTys.size() != Record.size()-1) 1827 return error("Invalid type"); 1828 ResultTy = StructType::get(Context, EltTys, Record[0]); 1829 break; 1830 } 1831 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1832 if (convertToString(Record, 0, TypeName)) 1833 return error("Invalid record"); 1834 continue; 1835 1836 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1837 if (Record.size() < 1) 1838 return error("Invalid record"); 1839 1840 if (NumRecords >= TypeList.size()) 1841 return error("Invalid TYPE table"); 1842 1843 // Check to see if this was forward referenced, if so fill in the temp. 1844 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1845 if (Res) { 1846 Res->setName(TypeName); 1847 TypeList[NumRecords] = nullptr; 1848 } else // Otherwise, create a new struct. 1849 Res = createIdentifiedStructType(Context, TypeName); 1850 TypeName.clear(); 1851 1852 SmallVector<Type*, 8> EltTys; 1853 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1854 if (Type *T = getTypeByID(Record[i])) 1855 EltTys.push_back(T); 1856 else 1857 break; 1858 } 1859 if (EltTys.size() != Record.size()-1) 1860 return error("Invalid record"); 1861 Res->setBody(EltTys, Record[0]); 1862 ResultTy = Res; 1863 break; 1864 } 1865 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1866 if (Record.size() != 1) 1867 return error("Invalid record"); 1868 1869 if (NumRecords >= TypeList.size()) 1870 return error("Invalid TYPE table"); 1871 1872 // Check to see if this was forward referenced, if so fill in the temp. 1873 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1874 if (Res) { 1875 Res->setName(TypeName); 1876 TypeList[NumRecords] = nullptr; 1877 } else // Otherwise, create a new struct with no body. 1878 Res = createIdentifiedStructType(Context, TypeName); 1879 TypeName.clear(); 1880 ResultTy = Res; 1881 break; 1882 } 1883 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1884 if (Record.size() < 2) 1885 return error("Invalid record"); 1886 ResultTy = getTypeByID(Record[1]); 1887 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1888 return error("Invalid type"); 1889 ResultTy = ArrayType::get(ResultTy, Record[0]); 1890 break; 1891 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1892 // [numelts, eltty, scalable] 1893 if (Record.size() < 2) 1894 return error("Invalid record"); 1895 if (Record[0] == 0) 1896 return error("Invalid vector length"); 1897 ResultTy = getTypeByID(Record[1]); 1898 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1899 return error("Invalid type"); 1900 bool Scalable = Record.size() > 2 ? Record[2] : false; 1901 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1902 break; 1903 } 1904 1905 if (NumRecords >= TypeList.size()) 1906 return error("Invalid TYPE table"); 1907 if (TypeList[NumRecords]) 1908 return error( 1909 "Invalid TYPE table: Only named structs can be forward referenced"); 1910 assert(ResultTy && "Didn't read a type?"); 1911 TypeList[NumRecords++] = ResultTy; 1912 } 1913 } 1914 1915 Error BitcodeReader::parseOperandBundleTags() { 1916 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1917 return Err; 1918 1919 if (!BundleTags.empty()) 1920 return error("Invalid multiple blocks"); 1921 1922 SmallVector<uint64_t, 64> Record; 1923 1924 while (true) { 1925 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1926 if (!MaybeEntry) 1927 return MaybeEntry.takeError(); 1928 BitstreamEntry Entry = MaybeEntry.get(); 1929 1930 switch (Entry.Kind) { 1931 case BitstreamEntry::SubBlock: // Handled for us already. 1932 case BitstreamEntry::Error: 1933 return error("Malformed block"); 1934 case BitstreamEntry::EndBlock: 1935 return Error::success(); 1936 case BitstreamEntry::Record: 1937 // The interesting case. 1938 break; 1939 } 1940 1941 // Tags are implicitly mapped to integers by their order. 1942 1943 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1944 if (!MaybeRecord) 1945 return MaybeRecord.takeError(); 1946 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1947 return error("Invalid record"); 1948 1949 // OPERAND_BUNDLE_TAG: [strchr x N] 1950 BundleTags.emplace_back(); 1951 if (convertToString(Record, 0, BundleTags.back())) 1952 return error("Invalid record"); 1953 Record.clear(); 1954 } 1955 } 1956 1957 Error BitcodeReader::parseSyncScopeNames() { 1958 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1959 return Err; 1960 1961 if (!SSIDs.empty()) 1962 return error("Invalid multiple synchronization scope names blocks"); 1963 1964 SmallVector<uint64_t, 64> Record; 1965 while (true) { 1966 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1967 if (!MaybeEntry) 1968 return MaybeEntry.takeError(); 1969 BitstreamEntry Entry = MaybeEntry.get(); 1970 1971 switch (Entry.Kind) { 1972 case BitstreamEntry::SubBlock: // Handled for us already. 1973 case BitstreamEntry::Error: 1974 return error("Malformed block"); 1975 case BitstreamEntry::EndBlock: 1976 if (SSIDs.empty()) 1977 return error("Invalid empty synchronization scope names block"); 1978 return Error::success(); 1979 case BitstreamEntry::Record: 1980 // The interesting case. 1981 break; 1982 } 1983 1984 // Synchronization scope names are implicitly mapped to synchronization 1985 // scope IDs by their order. 1986 1987 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1988 if (!MaybeRecord) 1989 return MaybeRecord.takeError(); 1990 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 1991 return error("Invalid record"); 1992 1993 SmallString<16> SSN; 1994 if (convertToString(Record, 0, SSN)) 1995 return error("Invalid record"); 1996 1997 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 1998 Record.clear(); 1999 } 2000 } 2001 2002 /// Associate a value with its name from the given index in the provided record. 2003 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2004 unsigned NameIndex, Triple &TT) { 2005 SmallString<128> ValueName; 2006 if (convertToString(Record, NameIndex, ValueName)) 2007 return error("Invalid record"); 2008 unsigned ValueID = Record[0]; 2009 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2010 return error("Invalid record"); 2011 Value *V = ValueList[ValueID]; 2012 2013 StringRef NameStr(ValueName.data(), ValueName.size()); 2014 if (NameStr.find_first_of(0) != StringRef::npos) 2015 return error("Invalid value name"); 2016 V->setName(NameStr); 2017 auto *GO = dyn_cast<GlobalObject>(V); 2018 if (GO) { 2019 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2020 if (TT.supportsCOMDAT()) 2021 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2022 else 2023 GO->setComdat(nullptr); 2024 } 2025 } 2026 return V; 2027 } 2028 2029 /// Helper to note and return the current location, and jump to the given 2030 /// offset. 2031 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2032 BitstreamCursor &Stream) { 2033 // Save the current parsing location so we can jump back at the end 2034 // of the VST read. 2035 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2036 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2037 return std::move(JumpFailed); 2038 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2039 if (!MaybeEntry) 2040 return MaybeEntry.takeError(); 2041 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2042 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2043 return CurrentBit; 2044 } 2045 2046 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2047 Function *F, 2048 ArrayRef<uint64_t> Record) { 2049 // Note that we subtract 1 here because the offset is relative to one word 2050 // before the start of the identification or module block, which was 2051 // historically always the start of the regular bitcode header. 2052 uint64_t FuncWordOffset = Record[1] - 1; 2053 uint64_t FuncBitOffset = FuncWordOffset * 32; 2054 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2055 // Set the LastFunctionBlockBit to point to the last function block. 2056 // Later when parsing is resumed after function materialization, 2057 // we can simply skip that last function block. 2058 if (FuncBitOffset > LastFunctionBlockBit) 2059 LastFunctionBlockBit = FuncBitOffset; 2060 } 2061 2062 /// Read a new-style GlobalValue symbol table. 2063 Error BitcodeReader::parseGlobalValueSymbolTable() { 2064 unsigned FuncBitcodeOffsetDelta = 2065 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2066 2067 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2068 return Err; 2069 2070 SmallVector<uint64_t, 64> Record; 2071 while (true) { 2072 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2073 if (!MaybeEntry) 2074 return MaybeEntry.takeError(); 2075 BitstreamEntry Entry = MaybeEntry.get(); 2076 2077 switch (Entry.Kind) { 2078 case BitstreamEntry::SubBlock: 2079 case BitstreamEntry::Error: 2080 return error("Malformed block"); 2081 case BitstreamEntry::EndBlock: 2082 return Error::success(); 2083 case BitstreamEntry::Record: 2084 break; 2085 } 2086 2087 Record.clear(); 2088 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2089 if (!MaybeRecord) 2090 return MaybeRecord.takeError(); 2091 switch (MaybeRecord.get()) { 2092 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2093 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2094 cast<Function>(ValueList[Record[0]]), Record); 2095 break; 2096 } 2097 } 2098 } 2099 2100 /// Parse the value symbol table at either the current parsing location or 2101 /// at the given bit offset if provided. 2102 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2103 uint64_t CurrentBit; 2104 // Pass in the Offset to distinguish between calling for the module-level 2105 // VST (where we want to jump to the VST offset) and the function-level 2106 // VST (where we don't). 2107 if (Offset > 0) { 2108 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2109 if (!MaybeCurrentBit) 2110 return MaybeCurrentBit.takeError(); 2111 CurrentBit = MaybeCurrentBit.get(); 2112 // If this module uses a string table, read this as a module-level VST. 2113 if (UseStrtab) { 2114 if (Error Err = parseGlobalValueSymbolTable()) 2115 return Err; 2116 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2117 return JumpFailed; 2118 return Error::success(); 2119 } 2120 // Otherwise, the VST will be in a similar format to a function-level VST, 2121 // and will contain symbol names. 2122 } 2123 2124 // Compute the delta between the bitcode indices in the VST (the word offset 2125 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2126 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2127 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2128 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2129 // just before entering the VST subblock because: 1) the EnterSubBlock 2130 // changes the AbbrevID width; 2) the VST block is nested within the same 2131 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2132 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2133 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2134 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2135 unsigned FuncBitcodeOffsetDelta = 2136 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2137 2138 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2139 return Err; 2140 2141 SmallVector<uint64_t, 64> Record; 2142 2143 Triple TT(TheModule->getTargetTriple()); 2144 2145 // Read all the records for this value table. 2146 SmallString<128> ValueName; 2147 2148 while (true) { 2149 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2150 if (!MaybeEntry) 2151 return MaybeEntry.takeError(); 2152 BitstreamEntry Entry = MaybeEntry.get(); 2153 2154 switch (Entry.Kind) { 2155 case BitstreamEntry::SubBlock: // Handled for us already. 2156 case BitstreamEntry::Error: 2157 return error("Malformed block"); 2158 case BitstreamEntry::EndBlock: 2159 if (Offset > 0) 2160 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2161 return JumpFailed; 2162 return Error::success(); 2163 case BitstreamEntry::Record: 2164 // The interesting case. 2165 break; 2166 } 2167 2168 // Read a record. 2169 Record.clear(); 2170 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2171 if (!MaybeRecord) 2172 return MaybeRecord.takeError(); 2173 switch (MaybeRecord.get()) { 2174 default: // Default behavior: unknown type. 2175 break; 2176 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2177 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2178 if (Error Err = ValOrErr.takeError()) 2179 return Err; 2180 ValOrErr.get(); 2181 break; 2182 } 2183 case bitc::VST_CODE_FNENTRY: { 2184 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2185 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2186 if (Error Err = ValOrErr.takeError()) 2187 return Err; 2188 Value *V = ValOrErr.get(); 2189 2190 // Ignore function offsets emitted for aliases of functions in older 2191 // versions of LLVM. 2192 if (auto *F = dyn_cast<Function>(V)) 2193 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2194 break; 2195 } 2196 case bitc::VST_CODE_BBENTRY: { 2197 if (convertToString(Record, 1, ValueName)) 2198 return error("Invalid record"); 2199 BasicBlock *BB = getBasicBlock(Record[0]); 2200 if (!BB) 2201 return error("Invalid record"); 2202 2203 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2204 ValueName.clear(); 2205 break; 2206 } 2207 } 2208 } 2209 } 2210 2211 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2212 /// encoding. 2213 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2214 if ((V & 1) == 0) 2215 return V >> 1; 2216 if (V != 1) 2217 return -(V >> 1); 2218 // There is no such thing as -0 with integers. "-0" really means MININT. 2219 return 1ULL << 63; 2220 } 2221 2222 /// Resolve all of the initializers for global values and aliases that we can. 2223 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2224 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2225 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2226 IndirectSymbolInitWorklist; 2227 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2228 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2229 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2230 2231 GlobalInitWorklist.swap(GlobalInits); 2232 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2233 FunctionPrefixWorklist.swap(FunctionPrefixes); 2234 FunctionPrologueWorklist.swap(FunctionPrologues); 2235 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2236 2237 while (!GlobalInitWorklist.empty()) { 2238 unsigned ValID = GlobalInitWorklist.back().second; 2239 if (ValID >= ValueList.size()) { 2240 // Not ready to resolve this yet, it requires something later in the file. 2241 GlobalInits.push_back(GlobalInitWorklist.back()); 2242 } else { 2243 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2244 GlobalInitWorklist.back().first->setInitializer(C); 2245 else 2246 return error("Expected a constant"); 2247 } 2248 GlobalInitWorklist.pop_back(); 2249 } 2250 2251 while (!IndirectSymbolInitWorklist.empty()) { 2252 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2253 if (ValID >= ValueList.size()) { 2254 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2255 } else { 2256 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2257 if (!C) 2258 return error("Expected a constant"); 2259 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2260 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2261 return error("Alias and aliasee types don't match"); 2262 GIS->setIndirectSymbol(C); 2263 } 2264 IndirectSymbolInitWorklist.pop_back(); 2265 } 2266 2267 while (!FunctionPrefixWorklist.empty()) { 2268 unsigned ValID = FunctionPrefixWorklist.back().second; 2269 if (ValID >= ValueList.size()) { 2270 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2271 } else { 2272 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2273 FunctionPrefixWorklist.back().first->setPrefixData(C); 2274 else 2275 return error("Expected a constant"); 2276 } 2277 FunctionPrefixWorklist.pop_back(); 2278 } 2279 2280 while (!FunctionPrologueWorklist.empty()) { 2281 unsigned ValID = FunctionPrologueWorklist.back().second; 2282 if (ValID >= ValueList.size()) { 2283 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2284 } else { 2285 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2286 FunctionPrologueWorklist.back().first->setPrologueData(C); 2287 else 2288 return error("Expected a constant"); 2289 } 2290 FunctionPrologueWorklist.pop_back(); 2291 } 2292 2293 while (!FunctionPersonalityFnWorklist.empty()) { 2294 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2295 if (ValID >= ValueList.size()) { 2296 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2297 } else { 2298 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2299 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2300 else 2301 return error("Expected a constant"); 2302 } 2303 FunctionPersonalityFnWorklist.pop_back(); 2304 } 2305 2306 return Error::success(); 2307 } 2308 2309 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2310 SmallVector<uint64_t, 8> Words(Vals.size()); 2311 transform(Vals, Words.begin(), 2312 BitcodeReader::decodeSignRotatedValue); 2313 2314 return APInt(TypeBits, Words); 2315 } 2316 2317 Error BitcodeReader::parseConstants() { 2318 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2319 return Err; 2320 2321 SmallVector<uint64_t, 64> Record; 2322 2323 // Read all the records for this value table. 2324 Type *CurTy = Type::getInt32Ty(Context); 2325 Type *CurFullTy = Type::getInt32Ty(Context); 2326 unsigned NextCstNo = ValueList.size(); 2327 2328 while (true) { 2329 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2330 if (!MaybeEntry) 2331 return MaybeEntry.takeError(); 2332 BitstreamEntry Entry = MaybeEntry.get(); 2333 2334 switch (Entry.Kind) { 2335 case BitstreamEntry::SubBlock: // Handled for us already. 2336 case BitstreamEntry::Error: 2337 return error("Malformed block"); 2338 case BitstreamEntry::EndBlock: 2339 if (NextCstNo != ValueList.size()) 2340 return error("Invalid constant reference"); 2341 2342 // Once all the constants have been read, go through and resolve forward 2343 // references. 2344 ValueList.resolveConstantForwardRefs(); 2345 return Error::success(); 2346 case BitstreamEntry::Record: 2347 // The interesting case. 2348 break; 2349 } 2350 2351 // Read a record. 2352 Record.clear(); 2353 Type *VoidType = Type::getVoidTy(Context); 2354 Value *V = nullptr; 2355 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2356 if (!MaybeBitCode) 2357 return MaybeBitCode.takeError(); 2358 switch (unsigned BitCode = MaybeBitCode.get()) { 2359 default: // Default behavior: unknown constant 2360 case bitc::CST_CODE_UNDEF: // UNDEF 2361 V = UndefValue::get(CurTy); 2362 break; 2363 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2364 if (Record.empty()) 2365 return error("Invalid record"); 2366 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2367 return error("Invalid record"); 2368 if (TypeList[Record[0]] == VoidType) 2369 return error("Invalid constant type"); 2370 CurFullTy = TypeList[Record[0]]; 2371 CurTy = flattenPointerTypes(CurFullTy); 2372 continue; // Skip the ValueList manipulation. 2373 case bitc::CST_CODE_NULL: // NULL 2374 V = Constant::getNullValue(CurTy); 2375 break; 2376 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2377 if (!CurTy->isIntegerTy() || Record.empty()) 2378 return error("Invalid record"); 2379 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2380 break; 2381 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2382 if (!CurTy->isIntegerTy() || Record.empty()) 2383 return error("Invalid record"); 2384 2385 APInt VInt = 2386 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2387 V = ConstantInt::get(Context, VInt); 2388 2389 break; 2390 } 2391 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2392 if (Record.empty()) 2393 return error("Invalid record"); 2394 if (CurTy->isHalfTy()) 2395 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2396 APInt(16, (uint16_t)Record[0]))); 2397 else if (CurTy->isFloatTy()) 2398 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2399 APInt(32, (uint32_t)Record[0]))); 2400 else if (CurTy->isDoubleTy()) 2401 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2402 APInt(64, Record[0]))); 2403 else if (CurTy->isX86_FP80Ty()) { 2404 // Bits are not stored the same way as a normal i80 APInt, compensate. 2405 uint64_t Rearrange[2]; 2406 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2407 Rearrange[1] = Record[0] >> 48; 2408 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2409 APInt(80, Rearrange))); 2410 } else if (CurTy->isFP128Ty()) 2411 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2412 APInt(128, Record))); 2413 else if (CurTy->isPPC_FP128Ty()) 2414 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2415 APInt(128, Record))); 2416 else 2417 V = UndefValue::get(CurTy); 2418 break; 2419 } 2420 2421 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2422 if (Record.empty()) 2423 return error("Invalid record"); 2424 2425 unsigned Size = Record.size(); 2426 SmallVector<Constant*, 16> Elts; 2427 2428 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2429 for (unsigned i = 0; i != Size; ++i) 2430 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2431 STy->getElementType(i))); 2432 V = ConstantStruct::get(STy, Elts); 2433 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2434 Type *EltTy = ATy->getElementType(); 2435 for (unsigned i = 0; i != Size; ++i) 2436 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2437 V = ConstantArray::get(ATy, Elts); 2438 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2439 Type *EltTy = VTy->getElementType(); 2440 for (unsigned i = 0; i != Size; ++i) 2441 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2442 V = ConstantVector::get(Elts); 2443 } else { 2444 V = UndefValue::get(CurTy); 2445 } 2446 break; 2447 } 2448 case bitc::CST_CODE_STRING: // STRING: [values] 2449 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2450 if (Record.empty()) 2451 return error("Invalid record"); 2452 2453 SmallString<16> Elts(Record.begin(), Record.end()); 2454 V = ConstantDataArray::getString(Context, Elts, 2455 BitCode == bitc::CST_CODE_CSTRING); 2456 break; 2457 } 2458 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2459 if (Record.empty()) 2460 return error("Invalid record"); 2461 2462 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2463 if (EltTy->isIntegerTy(8)) { 2464 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2465 if (isa<VectorType>(CurTy)) 2466 V = ConstantDataVector::get(Context, Elts); 2467 else 2468 V = ConstantDataArray::get(Context, Elts); 2469 } else if (EltTy->isIntegerTy(16)) { 2470 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2471 if (isa<VectorType>(CurTy)) 2472 V = ConstantDataVector::get(Context, Elts); 2473 else 2474 V = ConstantDataArray::get(Context, Elts); 2475 } else if (EltTy->isIntegerTy(32)) { 2476 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2477 if (isa<VectorType>(CurTy)) 2478 V = ConstantDataVector::get(Context, Elts); 2479 else 2480 V = ConstantDataArray::get(Context, Elts); 2481 } else if (EltTy->isIntegerTy(64)) { 2482 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2483 if (isa<VectorType>(CurTy)) 2484 V = ConstantDataVector::get(Context, Elts); 2485 else 2486 V = ConstantDataArray::get(Context, Elts); 2487 } else if (EltTy->isHalfTy()) { 2488 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2489 if (isa<VectorType>(CurTy)) 2490 V = ConstantDataVector::getFP(Context, Elts); 2491 else 2492 V = ConstantDataArray::getFP(Context, Elts); 2493 } else if (EltTy->isFloatTy()) { 2494 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2495 if (isa<VectorType>(CurTy)) 2496 V = ConstantDataVector::getFP(Context, Elts); 2497 else 2498 V = ConstantDataArray::getFP(Context, Elts); 2499 } else if (EltTy->isDoubleTy()) { 2500 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2501 if (isa<VectorType>(CurTy)) 2502 V = ConstantDataVector::getFP(Context, Elts); 2503 else 2504 V = ConstantDataArray::getFP(Context, Elts); 2505 } else { 2506 return error("Invalid type for value"); 2507 } 2508 break; 2509 } 2510 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2511 if (Record.size() < 2) 2512 return error("Invalid record"); 2513 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2514 if (Opc < 0) { 2515 V = UndefValue::get(CurTy); // Unknown unop. 2516 } else { 2517 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2518 unsigned Flags = 0; 2519 V = ConstantExpr::get(Opc, LHS, Flags); 2520 } 2521 break; 2522 } 2523 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2524 if (Record.size() < 3) 2525 return error("Invalid record"); 2526 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2527 if (Opc < 0) { 2528 V = UndefValue::get(CurTy); // Unknown binop. 2529 } else { 2530 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2531 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2532 unsigned Flags = 0; 2533 if (Record.size() >= 4) { 2534 if (Opc == Instruction::Add || 2535 Opc == Instruction::Sub || 2536 Opc == Instruction::Mul || 2537 Opc == Instruction::Shl) { 2538 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2539 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2540 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2541 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2542 } else if (Opc == Instruction::SDiv || 2543 Opc == Instruction::UDiv || 2544 Opc == Instruction::LShr || 2545 Opc == Instruction::AShr) { 2546 if (Record[3] & (1 << bitc::PEO_EXACT)) 2547 Flags |= SDivOperator::IsExact; 2548 } 2549 } 2550 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2551 } 2552 break; 2553 } 2554 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2555 if (Record.size() < 3) 2556 return error("Invalid record"); 2557 int Opc = getDecodedCastOpcode(Record[0]); 2558 if (Opc < 0) { 2559 V = UndefValue::get(CurTy); // Unknown cast. 2560 } else { 2561 Type *OpTy = getTypeByID(Record[1]); 2562 if (!OpTy) 2563 return error("Invalid record"); 2564 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2565 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2566 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2567 } 2568 break; 2569 } 2570 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2571 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2572 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2573 // operands] 2574 unsigned OpNum = 0; 2575 Type *PointeeType = nullptr; 2576 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2577 Record.size() % 2) 2578 PointeeType = getTypeByID(Record[OpNum++]); 2579 2580 bool InBounds = false; 2581 Optional<unsigned> InRangeIndex; 2582 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2583 uint64_t Op = Record[OpNum++]; 2584 InBounds = Op & 1; 2585 InRangeIndex = Op >> 1; 2586 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2587 InBounds = true; 2588 2589 SmallVector<Constant*, 16> Elts; 2590 Type *Elt0FullTy = nullptr; 2591 while (OpNum != Record.size()) { 2592 if (!Elt0FullTy) 2593 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2594 Type *ElTy = getTypeByID(Record[OpNum++]); 2595 if (!ElTy) 2596 return error("Invalid record"); 2597 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2598 } 2599 2600 if (Elts.size() < 1) 2601 return error("Invalid gep with no operands"); 2602 2603 Type *ImplicitPointeeType = 2604 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2605 if (!PointeeType) 2606 PointeeType = ImplicitPointeeType; 2607 else if (PointeeType != ImplicitPointeeType) 2608 return error("Explicit gep operator type does not match pointee type " 2609 "of pointer operand"); 2610 2611 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2612 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2613 InBounds, InRangeIndex); 2614 break; 2615 } 2616 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2617 if (Record.size() < 3) 2618 return error("Invalid record"); 2619 2620 Type *SelectorTy = Type::getInt1Ty(Context); 2621 2622 // The selector might be an i1 or an <n x i1> 2623 // Get the type from the ValueList before getting a forward ref. 2624 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2625 if (Value *V = ValueList[Record[0]]) 2626 if (SelectorTy != V->getType()) 2627 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2628 2629 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2630 SelectorTy), 2631 ValueList.getConstantFwdRef(Record[1],CurTy), 2632 ValueList.getConstantFwdRef(Record[2],CurTy)); 2633 break; 2634 } 2635 case bitc::CST_CODE_CE_EXTRACTELT 2636 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2637 if (Record.size() < 3) 2638 return error("Invalid record"); 2639 VectorType *OpTy = 2640 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2641 if (!OpTy) 2642 return error("Invalid record"); 2643 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2644 Constant *Op1 = nullptr; 2645 if (Record.size() == 4) { 2646 Type *IdxTy = getTypeByID(Record[2]); 2647 if (!IdxTy) 2648 return error("Invalid record"); 2649 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2650 } else // TODO: Remove with llvm 4.0 2651 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2652 if (!Op1) 2653 return error("Invalid record"); 2654 V = ConstantExpr::getExtractElement(Op0, Op1); 2655 break; 2656 } 2657 case bitc::CST_CODE_CE_INSERTELT 2658 : { // CE_INSERTELT: [opval, opval, opty, opval] 2659 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2660 if (Record.size() < 3 || !OpTy) 2661 return error("Invalid record"); 2662 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2663 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2664 OpTy->getElementType()); 2665 Constant *Op2 = nullptr; 2666 if (Record.size() == 4) { 2667 Type *IdxTy = getTypeByID(Record[2]); 2668 if (!IdxTy) 2669 return error("Invalid record"); 2670 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2671 } else // TODO: Remove with llvm 4.0 2672 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2673 if (!Op2) 2674 return error("Invalid record"); 2675 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2676 break; 2677 } 2678 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2679 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2680 if (Record.size() < 3 || !OpTy) 2681 return error("Invalid record"); 2682 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2683 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2684 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2685 OpTy->getNumElements()); 2686 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2687 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2688 break; 2689 } 2690 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2691 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2692 VectorType *OpTy = 2693 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2694 if (Record.size() < 4 || !RTy || !OpTy) 2695 return error("Invalid record"); 2696 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2697 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2698 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2699 RTy->getNumElements()); 2700 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2701 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2702 break; 2703 } 2704 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2705 if (Record.size() < 4) 2706 return error("Invalid record"); 2707 Type *OpTy = getTypeByID(Record[0]); 2708 if (!OpTy) 2709 return error("Invalid record"); 2710 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2711 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2712 2713 if (OpTy->isFPOrFPVectorTy()) 2714 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2715 else 2716 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2717 break; 2718 } 2719 // This maintains backward compatibility, pre-asm dialect keywords. 2720 // FIXME: Remove with the 4.0 release. 2721 case bitc::CST_CODE_INLINEASM_OLD: { 2722 if (Record.size() < 2) 2723 return error("Invalid record"); 2724 std::string AsmStr, ConstrStr; 2725 bool HasSideEffects = Record[0] & 1; 2726 bool IsAlignStack = Record[0] >> 1; 2727 unsigned AsmStrSize = Record[1]; 2728 if (2+AsmStrSize >= Record.size()) 2729 return error("Invalid record"); 2730 unsigned ConstStrSize = Record[2+AsmStrSize]; 2731 if (3+AsmStrSize+ConstStrSize > Record.size()) 2732 return error("Invalid record"); 2733 2734 for (unsigned i = 0; i != AsmStrSize; ++i) 2735 AsmStr += (char)Record[2+i]; 2736 for (unsigned i = 0; i != ConstStrSize; ++i) 2737 ConstrStr += (char)Record[3+AsmStrSize+i]; 2738 UpgradeInlineAsmString(&AsmStr); 2739 V = InlineAsm::get( 2740 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2741 ConstrStr, HasSideEffects, IsAlignStack); 2742 break; 2743 } 2744 // This version adds support for the asm dialect keywords (e.g., 2745 // inteldialect). 2746 case bitc::CST_CODE_INLINEASM: { 2747 if (Record.size() < 2) 2748 return error("Invalid record"); 2749 std::string AsmStr, ConstrStr; 2750 bool HasSideEffects = Record[0] & 1; 2751 bool IsAlignStack = (Record[0] >> 1) & 1; 2752 unsigned AsmDialect = Record[0] >> 2; 2753 unsigned AsmStrSize = Record[1]; 2754 if (2+AsmStrSize >= Record.size()) 2755 return error("Invalid record"); 2756 unsigned ConstStrSize = Record[2+AsmStrSize]; 2757 if (3+AsmStrSize+ConstStrSize > Record.size()) 2758 return error("Invalid record"); 2759 2760 for (unsigned i = 0; i != AsmStrSize; ++i) 2761 AsmStr += (char)Record[2+i]; 2762 for (unsigned i = 0; i != ConstStrSize; ++i) 2763 ConstrStr += (char)Record[3+AsmStrSize+i]; 2764 UpgradeInlineAsmString(&AsmStr); 2765 V = InlineAsm::get( 2766 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2767 ConstrStr, HasSideEffects, IsAlignStack, 2768 InlineAsm::AsmDialect(AsmDialect)); 2769 break; 2770 } 2771 case bitc::CST_CODE_BLOCKADDRESS:{ 2772 if (Record.size() < 3) 2773 return error("Invalid record"); 2774 Type *FnTy = getTypeByID(Record[0]); 2775 if (!FnTy) 2776 return error("Invalid record"); 2777 Function *Fn = 2778 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2779 if (!Fn) 2780 return error("Invalid record"); 2781 2782 // If the function is already parsed we can insert the block address right 2783 // away. 2784 BasicBlock *BB; 2785 unsigned BBID = Record[2]; 2786 if (!BBID) 2787 // Invalid reference to entry block. 2788 return error("Invalid ID"); 2789 if (!Fn->empty()) { 2790 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2791 for (size_t I = 0, E = BBID; I != E; ++I) { 2792 if (BBI == BBE) 2793 return error("Invalid ID"); 2794 ++BBI; 2795 } 2796 BB = &*BBI; 2797 } else { 2798 // Otherwise insert a placeholder and remember it so it can be inserted 2799 // when the function is parsed. 2800 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2801 if (FwdBBs.empty()) 2802 BasicBlockFwdRefQueue.push_back(Fn); 2803 if (FwdBBs.size() < BBID + 1) 2804 FwdBBs.resize(BBID + 1); 2805 if (!FwdBBs[BBID]) 2806 FwdBBs[BBID] = BasicBlock::Create(Context); 2807 BB = FwdBBs[BBID]; 2808 } 2809 V = BlockAddress::get(Fn, BB); 2810 break; 2811 } 2812 } 2813 2814 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2815 "Incorrect fully structured type provided for Constant"); 2816 ValueList.assignValue(V, NextCstNo, CurFullTy); 2817 ++NextCstNo; 2818 } 2819 } 2820 2821 Error BitcodeReader::parseUseLists() { 2822 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2823 return Err; 2824 2825 // Read all the records. 2826 SmallVector<uint64_t, 64> Record; 2827 2828 while (true) { 2829 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2830 if (!MaybeEntry) 2831 return MaybeEntry.takeError(); 2832 BitstreamEntry Entry = MaybeEntry.get(); 2833 2834 switch (Entry.Kind) { 2835 case BitstreamEntry::SubBlock: // Handled for us already. 2836 case BitstreamEntry::Error: 2837 return error("Malformed block"); 2838 case BitstreamEntry::EndBlock: 2839 return Error::success(); 2840 case BitstreamEntry::Record: 2841 // The interesting case. 2842 break; 2843 } 2844 2845 // Read a use list record. 2846 Record.clear(); 2847 bool IsBB = false; 2848 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2849 if (!MaybeRecord) 2850 return MaybeRecord.takeError(); 2851 switch (MaybeRecord.get()) { 2852 default: // Default behavior: unknown type. 2853 break; 2854 case bitc::USELIST_CODE_BB: 2855 IsBB = true; 2856 LLVM_FALLTHROUGH; 2857 case bitc::USELIST_CODE_DEFAULT: { 2858 unsigned RecordLength = Record.size(); 2859 if (RecordLength < 3) 2860 // Records should have at least an ID and two indexes. 2861 return error("Invalid record"); 2862 unsigned ID = Record.back(); 2863 Record.pop_back(); 2864 2865 Value *V; 2866 if (IsBB) { 2867 assert(ID < FunctionBBs.size() && "Basic block not found"); 2868 V = FunctionBBs[ID]; 2869 } else 2870 V = ValueList[ID]; 2871 unsigned NumUses = 0; 2872 SmallDenseMap<const Use *, unsigned, 16> Order; 2873 for (const Use &U : V->materialized_uses()) { 2874 if (++NumUses > Record.size()) 2875 break; 2876 Order[&U] = Record[NumUses - 1]; 2877 } 2878 if (Order.size() != Record.size() || NumUses > Record.size()) 2879 // Mismatches can happen if the functions are being materialized lazily 2880 // (out-of-order), or a value has been upgraded. 2881 break; 2882 2883 V->sortUseList([&](const Use &L, const Use &R) { 2884 return Order.lookup(&L) < Order.lookup(&R); 2885 }); 2886 break; 2887 } 2888 } 2889 } 2890 } 2891 2892 /// When we see the block for metadata, remember where it is and then skip it. 2893 /// This lets us lazily deserialize the metadata. 2894 Error BitcodeReader::rememberAndSkipMetadata() { 2895 // Save the current stream state. 2896 uint64_t CurBit = Stream.GetCurrentBitNo(); 2897 DeferredMetadataInfo.push_back(CurBit); 2898 2899 // Skip over the block for now. 2900 if (Error Err = Stream.SkipBlock()) 2901 return Err; 2902 return Error::success(); 2903 } 2904 2905 Error BitcodeReader::materializeMetadata() { 2906 for (uint64_t BitPos : DeferredMetadataInfo) { 2907 // Move the bit stream to the saved position. 2908 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2909 return JumpFailed; 2910 if (Error Err = MDLoader->parseModuleMetadata()) 2911 return Err; 2912 } 2913 2914 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2915 // metadata. 2916 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2917 NamedMDNode *LinkerOpts = 2918 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2919 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2920 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2921 } 2922 2923 DeferredMetadataInfo.clear(); 2924 return Error::success(); 2925 } 2926 2927 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2928 2929 /// When we see the block for a function body, remember where it is and then 2930 /// skip it. This lets us lazily deserialize the functions. 2931 Error BitcodeReader::rememberAndSkipFunctionBody() { 2932 // Get the function we are talking about. 2933 if (FunctionsWithBodies.empty()) 2934 return error("Insufficient function protos"); 2935 2936 Function *Fn = FunctionsWithBodies.back(); 2937 FunctionsWithBodies.pop_back(); 2938 2939 // Save the current stream state. 2940 uint64_t CurBit = Stream.GetCurrentBitNo(); 2941 assert( 2942 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2943 "Mismatch between VST and scanned function offsets"); 2944 DeferredFunctionInfo[Fn] = CurBit; 2945 2946 // Skip over the function block for now. 2947 if (Error Err = Stream.SkipBlock()) 2948 return Err; 2949 return Error::success(); 2950 } 2951 2952 Error BitcodeReader::globalCleanup() { 2953 // Patch the initializers for globals and aliases up. 2954 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2955 return Err; 2956 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2957 return error("Malformed global initializer set"); 2958 2959 // Look for intrinsic functions which need to be upgraded at some point 2960 for (Function &F : *TheModule) { 2961 MDLoader->upgradeDebugIntrinsics(F); 2962 Function *NewFn; 2963 if (UpgradeIntrinsicFunction(&F, NewFn)) 2964 UpgradedIntrinsics[&F] = NewFn; 2965 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2966 // Some types could be renamed during loading if several modules are 2967 // loaded in the same LLVMContext (LTO scenario). In this case we should 2968 // remangle intrinsics names as well. 2969 RemangledIntrinsics[&F] = Remangled.getValue(); 2970 } 2971 2972 // Look for global variables which need to be renamed. 2973 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 2974 for (GlobalVariable &GV : TheModule->globals()) 2975 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 2976 UpgradedVariables.emplace_back(&GV, Upgraded); 2977 for (auto &Pair : UpgradedVariables) { 2978 Pair.first->eraseFromParent(); 2979 TheModule->getGlobalList().push_back(Pair.second); 2980 } 2981 2982 // Force deallocation of memory for these vectors to favor the client that 2983 // want lazy deserialization. 2984 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2985 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2986 IndirectSymbolInits); 2987 return Error::success(); 2988 } 2989 2990 /// Support for lazy parsing of function bodies. This is required if we 2991 /// either have an old bitcode file without a VST forward declaration record, 2992 /// or if we have an anonymous function being materialized, since anonymous 2993 /// functions do not have a name and are therefore not in the VST. 2994 Error BitcodeReader::rememberAndSkipFunctionBodies() { 2995 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 2996 return JumpFailed; 2997 2998 if (Stream.AtEndOfStream()) 2999 return error("Could not find function in stream"); 3000 3001 if (!SeenFirstFunctionBody) 3002 return error("Trying to materialize functions before seeing function blocks"); 3003 3004 // An old bitcode file with the symbol table at the end would have 3005 // finished the parse greedily. 3006 assert(SeenValueSymbolTable); 3007 3008 SmallVector<uint64_t, 64> Record; 3009 3010 while (true) { 3011 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3012 if (!MaybeEntry) 3013 return MaybeEntry.takeError(); 3014 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3015 3016 switch (Entry.Kind) { 3017 default: 3018 return error("Expect SubBlock"); 3019 case BitstreamEntry::SubBlock: 3020 switch (Entry.ID) { 3021 default: 3022 return error("Expect function block"); 3023 case bitc::FUNCTION_BLOCK_ID: 3024 if (Error Err = rememberAndSkipFunctionBody()) 3025 return Err; 3026 NextUnreadBit = Stream.GetCurrentBitNo(); 3027 return Error::success(); 3028 } 3029 } 3030 } 3031 } 3032 3033 bool BitcodeReaderBase::readBlockInfo() { 3034 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3035 Stream.ReadBlockInfoBlock(); 3036 if (!MaybeNewBlockInfo) 3037 return true; // FIXME Handle the error. 3038 Optional<BitstreamBlockInfo> NewBlockInfo = 3039 std::move(MaybeNewBlockInfo.get()); 3040 if (!NewBlockInfo) 3041 return true; 3042 BlockInfo = std::move(*NewBlockInfo); 3043 return false; 3044 } 3045 3046 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3047 // v1: [selection_kind, name] 3048 // v2: [strtab_offset, strtab_size, selection_kind] 3049 StringRef Name; 3050 std::tie(Name, Record) = readNameFromStrtab(Record); 3051 3052 if (Record.empty()) 3053 return error("Invalid record"); 3054 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3055 std::string OldFormatName; 3056 if (!UseStrtab) { 3057 if (Record.size() < 2) 3058 return error("Invalid record"); 3059 unsigned ComdatNameSize = Record[1]; 3060 OldFormatName.reserve(ComdatNameSize); 3061 for (unsigned i = 0; i != ComdatNameSize; ++i) 3062 OldFormatName += (char)Record[2 + i]; 3063 Name = OldFormatName; 3064 } 3065 Comdat *C = TheModule->getOrInsertComdat(Name); 3066 C->setSelectionKind(SK); 3067 ComdatList.push_back(C); 3068 return Error::success(); 3069 } 3070 3071 static void inferDSOLocal(GlobalValue *GV) { 3072 // infer dso_local from linkage and visibility if it is not encoded. 3073 if (GV->hasLocalLinkage() || 3074 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3075 GV->setDSOLocal(true); 3076 } 3077 3078 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3079 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3080 // visibility, threadlocal, unnamed_addr, externally_initialized, 3081 // dllstorageclass, comdat, attributes, preemption specifier, 3082 // partition strtab offset, partition strtab size] (name in VST) 3083 // v2: [strtab_offset, strtab_size, v1] 3084 StringRef Name; 3085 std::tie(Name, Record) = readNameFromStrtab(Record); 3086 3087 if (Record.size() < 6) 3088 return error("Invalid record"); 3089 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3090 Type *Ty = flattenPointerTypes(FullTy); 3091 if (!Ty) 3092 return error("Invalid record"); 3093 bool isConstant = Record[1] & 1; 3094 bool explicitType = Record[1] & 2; 3095 unsigned AddressSpace; 3096 if (explicitType) { 3097 AddressSpace = Record[1] >> 2; 3098 } else { 3099 if (!Ty->isPointerTy()) 3100 return error("Invalid type for value"); 3101 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3102 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3103 } 3104 3105 uint64_t RawLinkage = Record[3]; 3106 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3107 unsigned Alignment; 3108 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3109 return Err; 3110 std::string Section; 3111 if (Record[5]) { 3112 if (Record[5] - 1 >= SectionTable.size()) 3113 return error("Invalid ID"); 3114 Section = SectionTable[Record[5] - 1]; 3115 } 3116 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3117 // Local linkage must have default visibility. 3118 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3119 // FIXME: Change to an error if non-default in 4.0. 3120 Visibility = getDecodedVisibility(Record[6]); 3121 3122 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3123 if (Record.size() > 7) 3124 TLM = getDecodedThreadLocalMode(Record[7]); 3125 3126 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3127 if (Record.size() > 8) 3128 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3129 3130 bool ExternallyInitialized = false; 3131 if (Record.size() > 9) 3132 ExternallyInitialized = Record[9]; 3133 3134 GlobalVariable *NewGV = 3135 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3136 nullptr, TLM, AddressSpace, ExternallyInitialized); 3137 NewGV->setAlignment(Alignment); 3138 if (!Section.empty()) 3139 NewGV->setSection(Section); 3140 NewGV->setVisibility(Visibility); 3141 NewGV->setUnnamedAddr(UnnamedAddr); 3142 3143 if (Record.size() > 10) 3144 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3145 else 3146 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3147 3148 FullTy = PointerType::get(FullTy, AddressSpace); 3149 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3150 "Incorrect fully specified type for GlobalVariable"); 3151 ValueList.push_back(NewGV, FullTy); 3152 3153 // Remember which value to use for the global initializer. 3154 if (unsigned InitID = Record[2]) 3155 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3156 3157 if (Record.size() > 11) { 3158 if (unsigned ComdatID = Record[11]) { 3159 if (ComdatID > ComdatList.size()) 3160 return error("Invalid global variable comdat ID"); 3161 NewGV->setComdat(ComdatList[ComdatID - 1]); 3162 } 3163 } else if (hasImplicitComdat(RawLinkage)) { 3164 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3165 } 3166 3167 if (Record.size() > 12) { 3168 auto AS = getAttributes(Record[12]).getFnAttributes(); 3169 NewGV->setAttributes(AS); 3170 } 3171 3172 if (Record.size() > 13) { 3173 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3174 } 3175 inferDSOLocal(NewGV); 3176 3177 // Check whether we have enough values to read a partition name. 3178 if (Record.size() > 15) 3179 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3180 3181 return Error::success(); 3182 } 3183 3184 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3185 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3186 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3187 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3188 // v2: [strtab_offset, strtab_size, v1] 3189 StringRef Name; 3190 std::tie(Name, Record) = readNameFromStrtab(Record); 3191 3192 if (Record.size() < 8) 3193 return error("Invalid record"); 3194 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3195 Type *FTy = flattenPointerTypes(FullFTy); 3196 if (!FTy) 3197 return error("Invalid record"); 3198 if (isa<PointerType>(FTy)) 3199 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3200 3201 if (!isa<FunctionType>(FTy)) 3202 return error("Invalid type for value"); 3203 auto CC = static_cast<CallingConv::ID>(Record[1]); 3204 if (CC & ~CallingConv::MaxID) 3205 return error("Invalid calling convention ID"); 3206 3207 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3208 if (Record.size() > 16) 3209 AddrSpace = Record[16]; 3210 3211 Function *Func = 3212 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3213 AddrSpace, Name, TheModule); 3214 3215 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3216 "Incorrect fully specified type provided for function"); 3217 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3218 3219 Func->setCallingConv(CC); 3220 bool isProto = Record[2]; 3221 uint64_t RawLinkage = Record[3]; 3222 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3223 Func->setAttributes(getAttributes(Record[4])); 3224 3225 // Upgrade any old-style byval without a type by propagating the argument's 3226 // pointee type. There should be no opaque pointers where the byval type is 3227 // implicit. 3228 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3229 if (!Func->hasParamAttribute(i, Attribute::ByVal)) 3230 continue; 3231 3232 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3233 Func->removeParamAttr(i, Attribute::ByVal); 3234 Func->addParamAttr(i, Attribute::getWithByValType( 3235 Context, getPointerElementFlatType(PTy))); 3236 } 3237 3238 unsigned Alignment; 3239 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3240 return Err; 3241 Func->setAlignment(Alignment); 3242 if (Record[6]) { 3243 if (Record[6] - 1 >= SectionTable.size()) 3244 return error("Invalid ID"); 3245 Func->setSection(SectionTable[Record[6] - 1]); 3246 } 3247 // Local linkage must have default visibility. 3248 if (!Func->hasLocalLinkage()) 3249 // FIXME: Change to an error if non-default in 4.0. 3250 Func->setVisibility(getDecodedVisibility(Record[7])); 3251 if (Record.size() > 8 && Record[8]) { 3252 if (Record[8] - 1 >= GCTable.size()) 3253 return error("Invalid ID"); 3254 Func->setGC(GCTable[Record[8] - 1]); 3255 } 3256 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3257 if (Record.size() > 9) 3258 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3259 Func->setUnnamedAddr(UnnamedAddr); 3260 if (Record.size() > 10 && Record[10] != 0) 3261 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3262 3263 if (Record.size() > 11) 3264 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3265 else 3266 upgradeDLLImportExportLinkage(Func, RawLinkage); 3267 3268 if (Record.size() > 12) { 3269 if (unsigned ComdatID = Record[12]) { 3270 if (ComdatID > ComdatList.size()) 3271 return error("Invalid function comdat ID"); 3272 Func->setComdat(ComdatList[ComdatID - 1]); 3273 } 3274 } else if (hasImplicitComdat(RawLinkage)) { 3275 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3276 } 3277 3278 if (Record.size() > 13 && Record[13] != 0) 3279 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3280 3281 if (Record.size() > 14 && Record[14] != 0) 3282 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3283 3284 if (Record.size() > 15) { 3285 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3286 } 3287 inferDSOLocal(Func); 3288 3289 // Record[16] is the address space number. 3290 3291 // Check whether we have enough values to read a partition name. 3292 if (Record.size() > 18) 3293 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3294 3295 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3296 assert(Func->getType() == flattenPointerTypes(FullTy) && 3297 "Incorrect fully specified type provided for Function"); 3298 ValueList.push_back(Func, FullTy); 3299 3300 // If this is a function with a body, remember the prototype we are 3301 // creating now, so that we can match up the body with them later. 3302 if (!isProto) { 3303 Func->setIsMaterializable(true); 3304 FunctionsWithBodies.push_back(Func); 3305 DeferredFunctionInfo[Func] = 0; 3306 } 3307 return Error::success(); 3308 } 3309 3310 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3311 unsigned BitCode, ArrayRef<uint64_t> Record) { 3312 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3313 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3314 // dllstorageclass, threadlocal, unnamed_addr, 3315 // preemption specifier] (name in VST) 3316 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3317 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3318 // preemption specifier] (name in VST) 3319 // v2: [strtab_offset, strtab_size, v1] 3320 StringRef Name; 3321 std::tie(Name, Record) = readNameFromStrtab(Record); 3322 3323 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3324 if (Record.size() < (3 + (unsigned)NewRecord)) 3325 return error("Invalid record"); 3326 unsigned OpNum = 0; 3327 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3328 Type *Ty = flattenPointerTypes(FullTy); 3329 if (!Ty) 3330 return error("Invalid record"); 3331 3332 unsigned AddrSpace; 3333 if (!NewRecord) { 3334 auto *PTy = dyn_cast<PointerType>(Ty); 3335 if (!PTy) 3336 return error("Invalid type for value"); 3337 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3338 AddrSpace = PTy->getAddressSpace(); 3339 } else { 3340 AddrSpace = Record[OpNum++]; 3341 } 3342 3343 auto Val = Record[OpNum++]; 3344 auto Linkage = Record[OpNum++]; 3345 GlobalIndirectSymbol *NewGA; 3346 if (BitCode == bitc::MODULE_CODE_ALIAS || 3347 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3348 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3349 TheModule); 3350 else 3351 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3352 nullptr, TheModule); 3353 3354 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3355 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3356 // Old bitcode files didn't have visibility field. 3357 // Local linkage must have default visibility. 3358 if (OpNum != Record.size()) { 3359 auto VisInd = OpNum++; 3360 if (!NewGA->hasLocalLinkage()) 3361 // FIXME: Change to an error if non-default in 4.0. 3362 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3363 } 3364 if (BitCode == bitc::MODULE_CODE_ALIAS || 3365 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3366 if (OpNum != Record.size()) 3367 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3368 else 3369 upgradeDLLImportExportLinkage(NewGA, Linkage); 3370 if (OpNum != Record.size()) 3371 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3372 if (OpNum != Record.size()) 3373 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3374 } 3375 if (OpNum != Record.size()) 3376 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3377 inferDSOLocal(NewGA); 3378 3379 // Check whether we have enough values to read a partition name. 3380 if (OpNum + 1 < Record.size()) { 3381 NewGA->setPartition( 3382 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3383 OpNum += 2; 3384 } 3385 3386 FullTy = PointerType::get(FullTy, AddrSpace); 3387 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3388 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3389 ValueList.push_back(NewGA, FullTy); 3390 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3391 return Error::success(); 3392 } 3393 3394 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3395 bool ShouldLazyLoadMetadata) { 3396 if (ResumeBit) { 3397 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3398 return JumpFailed; 3399 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3400 return Err; 3401 3402 SmallVector<uint64_t, 64> Record; 3403 3404 // Read all the records for this module. 3405 while (true) { 3406 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3407 if (!MaybeEntry) 3408 return MaybeEntry.takeError(); 3409 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3410 3411 switch (Entry.Kind) { 3412 case BitstreamEntry::Error: 3413 return error("Malformed block"); 3414 case BitstreamEntry::EndBlock: 3415 return globalCleanup(); 3416 3417 case BitstreamEntry::SubBlock: 3418 switch (Entry.ID) { 3419 default: // Skip unknown content. 3420 if (Error Err = Stream.SkipBlock()) 3421 return Err; 3422 break; 3423 case bitc::BLOCKINFO_BLOCK_ID: 3424 if (readBlockInfo()) 3425 return error("Malformed block"); 3426 break; 3427 case bitc::PARAMATTR_BLOCK_ID: 3428 if (Error Err = parseAttributeBlock()) 3429 return Err; 3430 break; 3431 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3432 if (Error Err = parseAttributeGroupBlock()) 3433 return Err; 3434 break; 3435 case bitc::TYPE_BLOCK_ID_NEW: 3436 if (Error Err = parseTypeTable()) 3437 return Err; 3438 break; 3439 case bitc::VALUE_SYMTAB_BLOCK_ID: 3440 if (!SeenValueSymbolTable) { 3441 // Either this is an old form VST without function index and an 3442 // associated VST forward declaration record (which would have caused 3443 // the VST to be jumped to and parsed before it was encountered 3444 // normally in the stream), or there were no function blocks to 3445 // trigger an earlier parsing of the VST. 3446 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3447 if (Error Err = parseValueSymbolTable()) 3448 return Err; 3449 SeenValueSymbolTable = true; 3450 } else { 3451 // We must have had a VST forward declaration record, which caused 3452 // the parser to jump to and parse the VST earlier. 3453 assert(VSTOffset > 0); 3454 if (Error Err = Stream.SkipBlock()) 3455 return Err; 3456 } 3457 break; 3458 case bitc::CONSTANTS_BLOCK_ID: 3459 if (Error Err = parseConstants()) 3460 return Err; 3461 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3462 return Err; 3463 break; 3464 case bitc::METADATA_BLOCK_ID: 3465 if (ShouldLazyLoadMetadata) { 3466 if (Error Err = rememberAndSkipMetadata()) 3467 return Err; 3468 break; 3469 } 3470 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3471 if (Error Err = MDLoader->parseModuleMetadata()) 3472 return Err; 3473 break; 3474 case bitc::METADATA_KIND_BLOCK_ID: 3475 if (Error Err = MDLoader->parseMetadataKinds()) 3476 return Err; 3477 break; 3478 case bitc::FUNCTION_BLOCK_ID: 3479 // If this is the first function body we've seen, reverse the 3480 // FunctionsWithBodies list. 3481 if (!SeenFirstFunctionBody) { 3482 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3483 if (Error Err = globalCleanup()) 3484 return Err; 3485 SeenFirstFunctionBody = true; 3486 } 3487 3488 if (VSTOffset > 0) { 3489 // If we have a VST forward declaration record, make sure we 3490 // parse the VST now if we haven't already. It is needed to 3491 // set up the DeferredFunctionInfo vector for lazy reading. 3492 if (!SeenValueSymbolTable) { 3493 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3494 return Err; 3495 SeenValueSymbolTable = true; 3496 // Fall through so that we record the NextUnreadBit below. 3497 // This is necessary in case we have an anonymous function that 3498 // is later materialized. Since it will not have a VST entry we 3499 // need to fall back to the lazy parse to find its offset. 3500 } else { 3501 // If we have a VST forward declaration record, but have already 3502 // parsed the VST (just above, when the first function body was 3503 // encountered here), then we are resuming the parse after 3504 // materializing functions. The ResumeBit points to the 3505 // start of the last function block recorded in the 3506 // DeferredFunctionInfo map. Skip it. 3507 if (Error Err = Stream.SkipBlock()) 3508 return Err; 3509 continue; 3510 } 3511 } 3512 3513 // Support older bitcode files that did not have the function 3514 // index in the VST, nor a VST forward declaration record, as 3515 // well as anonymous functions that do not have VST entries. 3516 // Build the DeferredFunctionInfo vector on the fly. 3517 if (Error Err = rememberAndSkipFunctionBody()) 3518 return Err; 3519 3520 // Suspend parsing when we reach the function bodies. Subsequent 3521 // materialization calls will resume it when necessary. If the bitcode 3522 // file is old, the symbol table will be at the end instead and will not 3523 // have been seen yet. In this case, just finish the parse now. 3524 if (SeenValueSymbolTable) { 3525 NextUnreadBit = Stream.GetCurrentBitNo(); 3526 // After the VST has been parsed, we need to make sure intrinsic name 3527 // are auto-upgraded. 3528 return globalCleanup(); 3529 } 3530 break; 3531 case bitc::USELIST_BLOCK_ID: 3532 if (Error Err = parseUseLists()) 3533 return Err; 3534 break; 3535 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3536 if (Error Err = parseOperandBundleTags()) 3537 return Err; 3538 break; 3539 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3540 if (Error Err = parseSyncScopeNames()) 3541 return Err; 3542 break; 3543 } 3544 continue; 3545 3546 case BitstreamEntry::Record: 3547 // The interesting case. 3548 break; 3549 } 3550 3551 // Read a record. 3552 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3553 if (!MaybeBitCode) 3554 return MaybeBitCode.takeError(); 3555 switch (unsigned BitCode = MaybeBitCode.get()) { 3556 default: break; // Default behavior, ignore unknown content. 3557 case bitc::MODULE_CODE_VERSION: { 3558 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3559 if (!VersionOrErr) 3560 return VersionOrErr.takeError(); 3561 UseRelativeIDs = *VersionOrErr >= 1; 3562 break; 3563 } 3564 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3565 std::string S; 3566 if (convertToString(Record, 0, S)) 3567 return error("Invalid record"); 3568 TheModule->setTargetTriple(S); 3569 break; 3570 } 3571 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3572 std::string S; 3573 if (convertToString(Record, 0, S)) 3574 return error("Invalid record"); 3575 TheModule->setDataLayout(S); 3576 break; 3577 } 3578 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3579 std::string S; 3580 if (convertToString(Record, 0, S)) 3581 return error("Invalid record"); 3582 TheModule->setModuleInlineAsm(S); 3583 break; 3584 } 3585 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3586 // FIXME: Remove in 4.0. 3587 std::string S; 3588 if (convertToString(Record, 0, S)) 3589 return error("Invalid record"); 3590 // Ignore value. 3591 break; 3592 } 3593 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3594 std::string S; 3595 if (convertToString(Record, 0, S)) 3596 return error("Invalid record"); 3597 SectionTable.push_back(S); 3598 break; 3599 } 3600 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3601 std::string S; 3602 if (convertToString(Record, 0, S)) 3603 return error("Invalid record"); 3604 GCTable.push_back(S); 3605 break; 3606 } 3607 case bitc::MODULE_CODE_COMDAT: 3608 if (Error Err = parseComdatRecord(Record)) 3609 return Err; 3610 break; 3611 case bitc::MODULE_CODE_GLOBALVAR: 3612 if (Error Err = parseGlobalVarRecord(Record)) 3613 return Err; 3614 break; 3615 case bitc::MODULE_CODE_FUNCTION: 3616 if (Error Err = parseFunctionRecord(Record)) 3617 return Err; 3618 break; 3619 case bitc::MODULE_CODE_IFUNC: 3620 case bitc::MODULE_CODE_ALIAS: 3621 case bitc::MODULE_CODE_ALIAS_OLD: 3622 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3623 return Err; 3624 break; 3625 /// MODULE_CODE_VSTOFFSET: [offset] 3626 case bitc::MODULE_CODE_VSTOFFSET: 3627 if (Record.size() < 1) 3628 return error("Invalid record"); 3629 // Note that we subtract 1 here because the offset is relative to one word 3630 // before the start of the identification or module block, which was 3631 // historically always the start of the regular bitcode header. 3632 VSTOffset = Record[0] - 1; 3633 break; 3634 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3635 case bitc::MODULE_CODE_SOURCE_FILENAME: 3636 SmallString<128> ValueName; 3637 if (convertToString(Record, 0, ValueName)) 3638 return error("Invalid record"); 3639 TheModule->setSourceFileName(ValueName); 3640 break; 3641 } 3642 Record.clear(); 3643 } 3644 } 3645 3646 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3647 bool IsImporting) { 3648 TheModule = M; 3649 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3650 [&](unsigned ID) { return getTypeByID(ID); }); 3651 return parseModule(0, ShouldLazyLoadMetadata); 3652 } 3653 3654 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3655 if (!isa<PointerType>(PtrType)) 3656 return error("Load/Store operand is not a pointer type"); 3657 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3658 3659 if (ValType && ValType != ElemType) 3660 return error("Explicit load/store type does not match pointee " 3661 "type of pointer operand"); 3662 if (!PointerType::isLoadableOrStorableType(ElemType)) 3663 return error("Cannot load/store from pointer"); 3664 return Error::success(); 3665 } 3666 3667 void BitcodeReader::propagateByValTypes(CallBase *CB, 3668 ArrayRef<Type *> ArgsFullTys) { 3669 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3670 if (!CB->paramHasAttr(i, Attribute::ByVal)) 3671 continue; 3672 3673 CB->removeParamAttr(i, Attribute::ByVal); 3674 CB->addParamAttr( 3675 i, Attribute::getWithByValType( 3676 Context, getPointerElementFlatType(ArgsFullTys[i]))); 3677 } 3678 } 3679 3680 /// Lazily parse the specified function body block. 3681 Error BitcodeReader::parseFunctionBody(Function *F) { 3682 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3683 return Err; 3684 3685 // Unexpected unresolved metadata when parsing function. 3686 if (MDLoader->hasFwdRefs()) 3687 return error("Invalid function metadata: incoming forward references"); 3688 3689 InstructionList.clear(); 3690 unsigned ModuleValueListSize = ValueList.size(); 3691 unsigned ModuleMDLoaderSize = MDLoader->size(); 3692 3693 // Add all the function arguments to the value table. 3694 unsigned ArgNo = 0; 3695 FunctionType *FullFTy = FunctionTypes[F]; 3696 for (Argument &I : F->args()) { 3697 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3698 "Incorrect fully specified type for Function Argument"); 3699 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3700 } 3701 unsigned NextValueNo = ValueList.size(); 3702 BasicBlock *CurBB = nullptr; 3703 unsigned CurBBNo = 0; 3704 3705 DebugLoc LastLoc; 3706 auto getLastInstruction = [&]() -> Instruction * { 3707 if (CurBB && !CurBB->empty()) 3708 return &CurBB->back(); 3709 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3710 !FunctionBBs[CurBBNo - 1]->empty()) 3711 return &FunctionBBs[CurBBNo - 1]->back(); 3712 return nullptr; 3713 }; 3714 3715 std::vector<OperandBundleDef> OperandBundles; 3716 3717 // Read all the records. 3718 SmallVector<uint64_t, 64> Record; 3719 3720 while (true) { 3721 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3722 if (!MaybeEntry) 3723 return MaybeEntry.takeError(); 3724 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3725 3726 switch (Entry.Kind) { 3727 case BitstreamEntry::Error: 3728 return error("Malformed block"); 3729 case BitstreamEntry::EndBlock: 3730 goto OutOfRecordLoop; 3731 3732 case BitstreamEntry::SubBlock: 3733 switch (Entry.ID) { 3734 default: // Skip unknown content. 3735 if (Error Err = Stream.SkipBlock()) 3736 return Err; 3737 break; 3738 case bitc::CONSTANTS_BLOCK_ID: 3739 if (Error Err = parseConstants()) 3740 return Err; 3741 NextValueNo = ValueList.size(); 3742 break; 3743 case bitc::VALUE_SYMTAB_BLOCK_ID: 3744 if (Error Err = parseValueSymbolTable()) 3745 return Err; 3746 break; 3747 case bitc::METADATA_ATTACHMENT_ID: 3748 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3749 return Err; 3750 break; 3751 case bitc::METADATA_BLOCK_ID: 3752 assert(DeferredMetadataInfo.empty() && 3753 "Must read all module-level metadata before function-level"); 3754 if (Error Err = MDLoader->parseFunctionMetadata()) 3755 return Err; 3756 break; 3757 case bitc::USELIST_BLOCK_ID: 3758 if (Error Err = parseUseLists()) 3759 return Err; 3760 break; 3761 } 3762 continue; 3763 3764 case BitstreamEntry::Record: 3765 // The interesting case. 3766 break; 3767 } 3768 3769 // Read a record. 3770 Record.clear(); 3771 Instruction *I = nullptr; 3772 Type *FullTy = nullptr; 3773 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3774 if (!MaybeBitCode) 3775 return MaybeBitCode.takeError(); 3776 switch (unsigned BitCode = MaybeBitCode.get()) { 3777 default: // Default behavior: reject 3778 return error("Invalid value"); 3779 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3780 if (Record.size() < 1 || Record[0] == 0) 3781 return error("Invalid record"); 3782 // Create all the basic blocks for the function. 3783 FunctionBBs.resize(Record[0]); 3784 3785 // See if anything took the address of blocks in this function. 3786 auto BBFRI = BasicBlockFwdRefs.find(F); 3787 if (BBFRI == BasicBlockFwdRefs.end()) { 3788 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3789 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3790 } else { 3791 auto &BBRefs = BBFRI->second; 3792 // Check for invalid basic block references. 3793 if (BBRefs.size() > FunctionBBs.size()) 3794 return error("Invalid ID"); 3795 assert(!BBRefs.empty() && "Unexpected empty array"); 3796 assert(!BBRefs.front() && "Invalid reference to entry block"); 3797 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3798 ++I) 3799 if (I < RE && BBRefs[I]) { 3800 BBRefs[I]->insertInto(F); 3801 FunctionBBs[I] = BBRefs[I]; 3802 } else { 3803 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3804 } 3805 3806 // Erase from the table. 3807 BasicBlockFwdRefs.erase(BBFRI); 3808 } 3809 3810 CurBB = FunctionBBs[0]; 3811 continue; 3812 } 3813 3814 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3815 // This record indicates that the last instruction is at the same 3816 // location as the previous instruction with a location. 3817 I = getLastInstruction(); 3818 3819 if (!I) 3820 return error("Invalid record"); 3821 I->setDebugLoc(LastLoc); 3822 I = nullptr; 3823 continue; 3824 3825 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3826 I = getLastInstruction(); 3827 if (!I || Record.size() < 4) 3828 return error("Invalid record"); 3829 3830 unsigned Line = Record[0], Col = Record[1]; 3831 unsigned ScopeID = Record[2], IAID = Record[3]; 3832 bool isImplicitCode = Record.size() == 5 && Record[4]; 3833 3834 MDNode *Scope = nullptr, *IA = nullptr; 3835 if (ScopeID) { 3836 Scope = dyn_cast_or_null<MDNode>( 3837 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3838 if (!Scope) 3839 return error("Invalid record"); 3840 } 3841 if (IAID) { 3842 IA = dyn_cast_or_null<MDNode>( 3843 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3844 if (!IA) 3845 return error("Invalid record"); 3846 } 3847 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3848 I->setDebugLoc(LastLoc); 3849 I = nullptr; 3850 continue; 3851 } 3852 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3853 unsigned OpNum = 0; 3854 Value *LHS; 3855 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3856 OpNum+1 > Record.size()) 3857 return error("Invalid record"); 3858 3859 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3860 if (Opc == -1) 3861 return error("Invalid record"); 3862 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3863 InstructionList.push_back(I); 3864 if (OpNum < Record.size()) { 3865 if (isa<FPMathOperator>(I)) { 3866 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3867 if (FMF.any()) 3868 I->setFastMathFlags(FMF); 3869 } 3870 } 3871 break; 3872 } 3873 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3874 unsigned OpNum = 0; 3875 Value *LHS, *RHS; 3876 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3877 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3878 OpNum+1 > Record.size()) 3879 return error("Invalid record"); 3880 3881 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3882 if (Opc == -1) 3883 return error("Invalid record"); 3884 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3885 InstructionList.push_back(I); 3886 if (OpNum < Record.size()) { 3887 if (Opc == Instruction::Add || 3888 Opc == Instruction::Sub || 3889 Opc == Instruction::Mul || 3890 Opc == Instruction::Shl) { 3891 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3892 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3893 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3894 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3895 } else if (Opc == Instruction::SDiv || 3896 Opc == Instruction::UDiv || 3897 Opc == Instruction::LShr || 3898 Opc == Instruction::AShr) { 3899 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3900 cast<BinaryOperator>(I)->setIsExact(true); 3901 } else if (isa<FPMathOperator>(I)) { 3902 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3903 if (FMF.any()) 3904 I->setFastMathFlags(FMF); 3905 } 3906 3907 } 3908 break; 3909 } 3910 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3911 unsigned OpNum = 0; 3912 Value *Op; 3913 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3914 OpNum+2 != Record.size()) 3915 return error("Invalid record"); 3916 3917 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 3918 Type *ResTy = flattenPointerTypes(FullTy); 3919 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3920 if (Opc == -1 || !ResTy) 3921 return error("Invalid record"); 3922 Instruction *Temp = nullptr; 3923 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3924 if (Temp) { 3925 InstructionList.push_back(Temp); 3926 CurBB->getInstList().push_back(Temp); 3927 } 3928 } else { 3929 auto CastOp = (Instruction::CastOps)Opc; 3930 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3931 return error("Invalid cast"); 3932 I = CastInst::Create(CastOp, Op, ResTy); 3933 } 3934 InstructionList.push_back(I); 3935 break; 3936 } 3937 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3938 case bitc::FUNC_CODE_INST_GEP_OLD: 3939 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3940 unsigned OpNum = 0; 3941 3942 Type *Ty; 3943 bool InBounds; 3944 3945 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3946 InBounds = Record[OpNum++]; 3947 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3948 Ty = flattenPointerTypes(FullTy); 3949 } else { 3950 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3951 Ty = nullptr; 3952 } 3953 3954 Value *BasePtr; 3955 Type *FullBaseTy = nullptr; 3956 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 3957 return error("Invalid record"); 3958 3959 if (!Ty) { 3960 std::tie(FullTy, Ty) = 3961 getPointerElementTypes(FullBaseTy->getScalarType()); 3962 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 3963 return error( 3964 "Explicit gep type does not match pointee type of pointer operand"); 3965 3966 SmallVector<Value*, 16> GEPIdx; 3967 while (OpNum != Record.size()) { 3968 Value *Op; 3969 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3970 return error("Invalid record"); 3971 GEPIdx.push_back(Op); 3972 } 3973 3974 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3975 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 3976 3977 InstructionList.push_back(I); 3978 if (InBounds) 3979 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3980 break; 3981 } 3982 3983 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3984 // EXTRACTVAL: [opty, opval, n x indices] 3985 unsigned OpNum = 0; 3986 Value *Agg; 3987 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 3988 return error("Invalid record"); 3989 3990 unsigned RecSize = Record.size(); 3991 if (OpNum == RecSize) 3992 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 3993 3994 SmallVector<unsigned, 4> EXTRACTVALIdx; 3995 for (; OpNum != RecSize; ++OpNum) { 3996 bool IsArray = FullTy->isArrayTy(); 3997 bool IsStruct = FullTy->isStructTy(); 3998 uint64_t Index = Record[OpNum]; 3999 4000 if (!IsStruct && !IsArray) 4001 return error("EXTRACTVAL: Invalid type"); 4002 if ((unsigned)Index != Index) 4003 return error("Invalid value"); 4004 if (IsStruct && Index >= FullTy->getStructNumElements()) 4005 return error("EXTRACTVAL: Invalid struct index"); 4006 if (IsArray && Index >= FullTy->getArrayNumElements()) 4007 return error("EXTRACTVAL: Invalid array index"); 4008 EXTRACTVALIdx.push_back((unsigned)Index); 4009 4010 if (IsStruct) 4011 FullTy = FullTy->getStructElementType(Index); 4012 else 4013 FullTy = FullTy->getArrayElementType(); 4014 } 4015 4016 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4017 InstructionList.push_back(I); 4018 break; 4019 } 4020 4021 case bitc::FUNC_CODE_INST_INSERTVAL: { 4022 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4023 unsigned OpNum = 0; 4024 Value *Agg; 4025 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4026 return error("Invalid record"); 4027 Value *Val; 4028 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4029 return error("Invalid record"); 4030 4031 unsigned RecSize = Record.size(); 4032 if (OpNum == RecSize) 4033 return error("INSERTVAL: Invalid instruction with 0 indices"); 4034 4035 SmallVector<unsigned, 4> INSERTVALIdx; 4036 Type *CurTy = Agg->getType(); 4037 for (; OpNum != RecSize; ++OpNum) { 4038 bool IsArray = CurTy->isArrayTy(); 4039 bool IsStruct = CurTy->isStructTy(); 4040 uint64_t Index = Record[OpNum]; 4041 4042 if (!IsStruct && !IsArray) 4043 return error("INSERTVAL: Invalid type"); 4044 if ((unsigned)Index != Index) 4045 return error("Invalid value"); 4046 if (IsStruct && Index >= CurTy->getStructNumElements()) 4047 return error("INSERTVAL: Invalid struct index"); 4048 if (IsArray && Index >= CurTy->getArrayNumElements()) 4049 return error("INSERTVAL: Invalid array index"); 4050 4051 INSERTVALIdx.push_back((unsigned)Index); 4052 if (IsStruct) 4053 CurTy = CurTy->getStructElementType(Index); 4054 else 4055 CurTy = CurTy->getArrayElementType(); 4056 } 4057 4058 if (CurTy != Val->getType()) 4059 return error("Inserted value type doesn't match aggregate type"); 4060 4061 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4062 InstructionList.push_back(I); 4063 break; 4064 } 4065 4066 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4067 // obsolete form of select 4068 // handles select i1 ... in old bitcode 4069 unsigned OpNum = 0; 4070 Value *TrueVal, *FalseVal, *Cond; 4071 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4072 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4073 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4074 return error("Invalid record"); 4075 4076 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4077 InstructionList.push_back(I); 4078 break; 4079 } 4080 4081 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4082 // new form of select 4083 // handles select i1 or select [N x i1] 4084 unsigned OpNum = 0; 4085 Value *TrueVal, *FalseVal, *Cond; 4086 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4087 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4088 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4089 return error("Invalid record"); 4090 4091 // select condition can be either i1 or [N x i1] 4092 if (VectorType* vector_type = 4093 dyn_cast<VectorType>(Cond->getType())) { 4094 // expect <n x i1> 4095 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4096 return error("Invalid type for value"); 4097 } else { 4098 // expect i1 4099 if (Cond->getType() != Type::getInt1Ty(Context)) 4100 return error("Invalid type for value"); 4101 } 4102 4103 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4104 InstructionList.push_back(I); 4105 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4106 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4107 if (FMF.any()) 4108 I->setFastMathFlags(FMF); 4109 } 4110 break; 4111 } 4112 4113 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4114 unsigned OpNum = 0; 4115 Value *Vec, *Idx; 4116 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4117 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4118 return error("Invalid record"); 4119 if (!Vec->getType()->isVectorTy()) 4120 return error("Invalid type for value"); 4121 I = ExtractElementInst::Create(Vec, Idx); 4122 FullTy = FullTy->getVectorElementType(); 4123 InstructionList.push_back(I); 4124 break; 4125 } 4126 4127 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4128 unsigned OpNum = 0; 4129 Value *Vec, *Elt, *Idx; 4130 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4131 return error("Invalid record"); 4132 if (!Vec->getType()->isVectorTy()) 4133 return error("Invalid type for value"); 4134 if (popValue(Record, OpNum, NextValueNo, 4135 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4136 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4137 return error("Invalid record"); 4138 I = InsertElementInst::Create(Vec, Elt, Idx); 4139 InstructionList.push_back(I); 4140 break; 4141 } 4142 4143 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4144 unsigned OpNum = 0; 4145 Value *Vec1, *Vec2, *Mask; 4146 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4147 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4148 return error("Invalid record"); 4149 4150 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4151 return error("Invalid record"); 4152 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4153 return error("Invalid type for value"); 4154 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4155 FullTy = VectorType::get(FullTy->getVectorElementType(), 4156 Mask->getType()->getVectorNumElements()); 4157 InstructionList.push_back(I); 4158 break; 4159 } 4160 4161 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4162 // Old form of ICmp/FCmp returning bool 4163 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4164 // both legal on vectors but had different behaviour. 4165 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4166 // FCmp/ICmp returning bool or vector of bool 4167 4168 unsigned OpNum = 0; 4169 Value *LHS, *RHS; 4170 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4171 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4172 return error("Invalid record"); 4173 4174 if (OpNum >= Record.size()) 4175 return error( 4176 "Invalid record: operand number exceeded available operands"); 4177 4178 unsigned PredVal = Record[OpNum]; 4179 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4180 FastMathFlags FMF; 4181 if (IsFP && Record.size() > OpNum+1) 4182 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4183 4184 if (OpNum+1 != Record.size()) 4185 return error("Invalid record"); 4186 4187 if (LHS->getType()->isFPOrFPVectorTy()) 4188 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4189 else 4190 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4191 4192 if (FMF.any()) 4193 I->setFastMathFlags(FMF); 4194 InstructionList.push_back(I); 4195 break; 4196 } 4197 4198 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4199 { 4200 unsigned Size = Record.size(); 4201 if (Size == 0) { 4202 I = ReturnInst::Create(Context); 4203 InstructionList.push_back(I); 4204 break; 4205 } 4206 4207 unsigned OpNum = 0; 4208 Value *Op = nullptr; 4209 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4210 return error("Invalid record"); 4211 if (OpNum != Record.size()) 4212 return error("Invalid record"); 4213 4214 I = ReturnInst::Create(Context, Op); 4215 InstructionList.push_back(I); 4216 break; 4217 } 4218 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4219 if (Record.size() != 1 && Record.size() != 3) 4220 return error("Invalid record"); 4221 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4222 if (!TrueDest) 4223 return error("Invalid record"); 4224 4225 if (Record.size() == 1) { 4226 I = BranchInst::Create(TrueDest); 4227 InstructionList.push_back(I); 4228 } 4229 else { 4230 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4231 Value *Cond = getValue(Record, 2, NextValueNo, 4232 Type::getInt1Ty(Context)); 4233 if (!FalseDest || !Cond) 4234 return error("Invalid record"); 4235 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4236 InstructionList.push_back(I); 4237 } 4238 break; 4239 } 4240 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4241 if (Record.size() != 1 && Record.size() != 2) 4242 return error("Invalid record"); 4243 unsigned Idx = 0; 4244 Value *CleanupPad = 4245 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4246 if (!CleanupPad) 4247 return error("Invalid record"); 4248 BasicBlock *UnwindDest = nullptr; 4249 if (Record.size() == 2) { 4250 UnwindDest = getBasicBlock(Record[Idx++]); 4251 if (!UnwindDest) 4252 return error("Invalid record"); 4253 } 4254 4255 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4256 InstructionList.push_back(I); 4257 break; 4258 } 4259 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4260 if (Record.size() != 2) 4261 return error("Invalid record"); 4262 unsigned Idx = 0; 4263 Value *CatchPad = 4264 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4265 if (!CatchPad) 4266 return error("Invalid record"); 4267 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4268 if (!BB) 4269 return error("Invalid record"); 4270 4271 I = CatchReturnInst::Create(CatchPad, BB); 4272 InstructionList.push_back(I); 4273 break; 4274 } 4275 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4276 // We must have, at minimum, the outer scope and the number of arguments. 4277 if (Record.size() < 2) 4278 return error("Invalid record"); 4279 4280 unsigned Idx = 0; 4281 4282 Value *ParentPad = 4283 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4284 4285 unsigned NumHandlers = Record[Idx++]; 4286 4287 SmallVector<BasicBlock *, 2> Handlers; 4288 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4289 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4290 if (!BB) 4291 return error("Invalid record"); 4292 Handlers.push_back(BB); 4293 } 4294 4295 BasicBlock *UnwindDest = nullptr; 4296 if (Idx + 1 == Record.size()) { 4297 UnwindDest = getBasicBlock(Record[Idx++]); 4298 if (!UnwindDest) 4299 return error("Invalid record"); 4300 } 4301 4302 if (Record.size() != Idx) 4303 return error("Invalid record"); 4304 4305 auto *CatchSwitch = 4306 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4307 for (BasicBlock *Handler : Handlers) 4308 CatchSwitch->addHandler(Handler); 4309 I = CatchSwitch; 4310 InstructionList.push_back(I); 4311 break; 4312 } 4313 case bitc::FUNC_CODE_INST_CATCHPAD: 4314 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4315 // We must have, at minimum, the outer scope and the number of arguments. 4316 if (Record.size() < 2) 4317 return error("Invalid record"); 4318 4319 unsigned Idx = 0; 4320 4321 Value *ParentPad = 4322 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4323 4324 unsigned NumArgOperands = Record[Idx++]; 4325 4326 SmallVector<Value *, 2> Args; 4327 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4328 Value *Val; 4329 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4330 return error("Invalid record"); 4331 Args.push_back(Val); 4332 } 4333 4334 if (Record.size() != Idx) 4335 return error("Invalid record"); 4336 4337 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4338 I = CleanupPadInst::Create(ParentPad, Args); 4339 else 4340 I = CatchPadInst::Create(ParentPad, Args); 4341 InstructionList.push_back(I); 4342 break; 4343 } 4344 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4345 // Check magic 4346 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4347 // "New" SwitchInst format with case ranges. The changes to write this 4348 // format were reverted but we still recognize bitcode that uses it. 4349 // Hopefully someday we will have support for case ranges and can use 4350 // this format again. 4351 4352 Type *OpTy = getTypeByID(Record[1]); 4353 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4354 4355 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4356 BasicBlock *Default = getBasicBlock(Record[3]); 4357 if (!OpTy || !Cond || !Default) 4358 return error("Invalid record"); 4359 4360 unsigned NumCases = Record[4]; 4361 4362 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4363 InstructionList.push_back(SI); 4364 4365 unsigned CurIdx = 5; 4366 for (unsigned i = 0; i != NumCases; ++i) { 4367 SmallVector<ConstantInt*, 1> CaseVals; 4368 unsigned NumItems = Record[CurIdx++]; 4369 for (unsigned ci = 0; ci != NumItems; ++ci) { 4370 bool isSingleNumber = Record[CurIdx++]; 4371 4372 APInt Low; 4373 unsigned ActiveWords = 1; 4374 if (ValueBitWidth > 64) 4375 ActiveWords = Record[CurIdx++]; 4376 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4377 ValueBitWidth); 4378 CurIdx += ActiveWords; 4379 4380 if (!isSingleNumber) { 4381 ActiveWords = 1; 4382 if (ValueBitWidth > 64) 4383 ActiveWords = Record[CurIdx++]; 4384 APInt High = readWideAPInt( 4385 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4386 CurIdx += ActiveWords; 4387 4388 // FIXME: It is not clear whether values in the range should be 4389 // compared as signed or unsigned values. The partially 4390 // implemented changes that used this format in the past used 4391 // unsigned comparisons. 4392 for ( ; Low.ule(High); ++Low) 4393 CaseVals.push_back(ConstantInt::get(Context, Low)); 4394 } else 4395 CaseVals.push_back(ConstantInt::get(Context, Low)); 4396 } 4397 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4398 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4399 cve = CaseVals.end(); cvi != cve; ++cvi) 4400 SI->addCase(*cvi, DestBB); 4401 } 4402 I = SI; 4403 break; 4404 } 4405 4406 // Old SwitchInst format without case ranges. 4407 4408 if (Record.size() < 3 || (Record.size() & 1) == 0) 4409 return error("Invalid record"); 4410 Type *OpTy = getTypeByID(Record[0]); 4411 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4412 BasicBlock *Default = getBasicBlock(Record[2]); 4413 if (!OpTy || !Cond || !Default) 4414 return error("Invalid record"); 4415 unsigned NumCases = (Record.size()-3)/2; 4416 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4417 InstructionList.push_back(SI); 4418 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4419 ConstantInt *CaseVal = 4420 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4421 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4422 if (!CaseVal || !DestBB) { 4423 delete SI; 4424 return error("Invalid record"); 4425 } 4426 SI->addCase(CaseVal, DestBB); 4427 } 4428 I = SI; 4429 break; 4430 } 4431 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4432 if (Record.size() < 2) 4433 return error("Invalid record"); 4434 Type *OpTy = getTypeByID(Record[0]); 4435 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4436 if (!OpTy || !Address) 4437 return error("Invalid record"); 4438 unsigned NumDests = Record.size()-2; 4439 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4440 InstructionList.push_back(IBI); 4441 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4442 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4443 IBI->addDestination(DestBB); 4444 } else { 4445 delete IBI; 4446 return error("Invalid record"); 4447 } 4448 } 4449 I = IBI; 4450 break; 4451 } 4452 4453 case bitc::FUNC_CODE_INST_INVOKE: { 4454 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4455 if (Record.size() < 4) 4456 return error("Invalid record"); 4457 unsigned OpNum = 0; 4458 AttributeList PAL = getAttributes(Record[OpNum++]); 4459 unsigned CCInfo = Record[OpNum++]; 4460 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4461 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4462 4463 FunctionType *FTy = nullptr; 4464 FunctionType *FullFTy = nullptr; 4465 if ((CCInfo >> 13) & 1) { 4466 FullFTy = 4467 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4468 if (!FullFTy) 4469 return error("Explicit invoke type is not a function type"); 4470 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4471 } 4472 4473 Value *Callee; 4474 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4475 return error("Invalid record"); 4476 4477 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4478 if (!CalleeTy) 4479 return error("Callee is not a pointer"); 4480 if (!FTy) { 4481 FullFTy = 4482 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4483 if (!FullFTy) 4484 return error("Callee is not of pointer to function type"); 4485 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4486 } else if (getPointerElementFlatType(FullTy) != FTy) 4487 return error("Explicit invoke type does not match pointee type of " 4488 "callee operand"); 4489 if (Record.size() < FTy->getNumParams() + OpNum) 4490 return error("Insufficient operands to call"); 4491 4492 SmallVector<Value*, 16> Ops; 4493 SmallVector<Type *, 16> ArgsFullTys; 4494 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4495 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4496 FTy->getParamType(i))); 4497 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4498 if (!Ops.back()) 4499 return error("Invalid record"); 4500 } 4501 4502 if (!FTy->isVarArg()) { 4503 if (Record.size() != OpNum) 4504 return error("Invalid record"); 4505 } else { 4506 // Read type/value pairs for varargs params. 4507 while (OpNum != Record.size()) { 4508 Value *Op; 4509 Type *FullTy; 4510 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4511 return error("Invalid record"); 4512 Ops.push_back(Op); 4513 ArgsFullTys.push_back(FullTy); 4514 } 4515 } 4516 4517 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4518 OperandBundles); 4519 FullTy = FullFTy->getReturnType(); 4520 OperandBundles.clear(); 4521 InstructionList.push_back(I); 4522 cast<InvokeInst>(I)->setCallingConv( 4523 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4524 cast<InvokeInst>(I)->setAttributes(PAL); 4525 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 4526 4527 break; 4528 } 4529 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4530 unsigned Idx = 0; 4531 Value *Val = nullptr; 4532 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4533 return error("Invalid record"); 4534 I = ResumeInst::Create(Val); 4535 InstructionList.push_back(I); 4536 break; 4537 } 4538 case bitc::FUNC_CODE_INST_CALLBR: { 4539 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4540 unsigned OpNum = 0; 4541 AttributeList PAL = getAttributes(Record[OpNum++]); 4542 unsigned CCInfo = Record[OpNum++]; 4543 4544 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4545 unsigned NumIndirectDests = Record[OpNum++]; 4546 SmallVector<BasicBlock *, 16> IndirectDests; 4547 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4548 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4549 4550 FunctionType *FTy = nullptr; 4551 FunctionType *FullFTy = nullptr; 4552 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4553 FullFTy = 4554 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4555 if (!FullFTy) 4556 return error("Explicit call type is not a function type"); 4557 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4558 } 4559 4560 Value *Callee; 4561 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4562 return error("Invalid record"); 4563 4564 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4565 if (!OpTy) 4566 return error("Callee is not a pointer type"); 4567 if (!FTy) { 4568 FullFTy = 4569 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4570 if (!FullFTy) 4571 return error("Callee is not of pointer to function type"); 4572 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4573 } else if (getPointerElementFlatType(FullTy) != FTy) 4574 return error("Explicit call type does not match pointee type of " 4575 "callee operand"); 4576 if (Record.size() < FTy->getNumParams() + OpNum) 4577 return error("Insufficient operands to call"); 4578 4579 SmallVector<Value*, 16> Args; 4580 // Read the fixed params. 4581 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4582 if (FTy->getParamType(i)->isLabelTy()) 4583 Args.push_back(getBasicBlock(Record[OpNum])); 4584 else 4585 Args.push_back(getValue(Record, OpNum, NextValueNo, 4586 FTy->getParamType(i))); 4587 if (!Args.back()) 4588 return error("Invalid record"); 4589 } 4590 4591 // Read type/value pairs for varargs params. 4592 if (!FTy->isVarArg()) { 4593 if (OpNum != Record.size()) 4594 return error("Invalid record"); 4595 } else { 4596 while (OpNum != Record.size()) { 4597 Value *Op; 4598 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4599 return error("Invalid record"); 4600 Args.push_back(Op); 4601 } 4602 } 4603 4604 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4605 OperandBundles); 4606 FullTy = FullFTy->getReturnType(); 4607 OperandBundles.clear(); 4608 InstructionList.push_back(I); 4609 cast<CallBrInst>(I)->setCallingConv( 4610 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4611 cast<CallBrInst>(I)->setAttributes(PAL); 4612 break; 4613 } 4614 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4615 I = new UnreachableInst(Context); 4616 InstructionList.push_back(I); 4617 break; 4618 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4619 if (Record.size() < 1 || ((Record.size()-1)&1)) 4620 return error("Invalid record"); 4621 FullTy = getFullyStructuredTypeByID(Record[0]); 4622 Type *Ty = flattenPointerTypes(FullTy); 4623 if (!Ty) 4624 return error("Invalid record"); 4625 4626 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4627 InstructionList.push_back(PN); 4628 4629 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4630 Value *V; 4631 // With the new function encoding, it is possible that operands have 4632 // negative IDs (for forward references). Use a signed VBR 4633 // representation to keep the encoding small. 4634 if (UseRelativeIDs) 4635 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4636 else 4637 V = getValue(Record, 1+i, NextValueNo, Ty); 4638 BasicBlock *BB = getBasicBlock(Record[2+i]); 4639 if (!V || !BB) 4640 return error("Invalid record"); 4641 PN->addIncoming(V, BB); 4642 } 4643 I = PN; 4644 break; 4645 } 4646 4647 case bitc::FUNC_CODE_INST_LANDINGPAD: 4648 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4649 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4650 unsigned Idx = 0; 4651 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4652 if (Record.size() < 3) 4653 return error("Invalid record"); 4654 } else { 4655 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4656 if (Record.size() < 4) 4657 return error("Invalid record"); 4658 } 4659 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4660 Type *Ty = flattenPointerTypes(FullTy); 4661 if (!Ty) 4662 return error("Invalid record"); 4663 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4664 Value *PersFn = nullptr; 4665 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4666 return error("Invalid record"); 4667 4668 if (!F->hasPersonalityFn()) 4669 F->setPersonalityFn(cast<Constant>(PersFn)); 4670 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4671 return error("Personality function mismatch"); 4672 } 4673 4674 bool IsCleanup = !!Record[Idx++]; 4675 unsigned NumClauses = Record[Idx++]; 4676 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4677 LP->setCleanup(IsCleanup); 4678 for (unsigned J = 0; J != NumClauses; ++J) { 4679 LandingPadInst::ClauseType CT = 4680 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4681 Value *Val; 4682 4683 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4684 delete LP; 4685 return error("Invalid record"); 4686 } 4687 4688 assert((CT != LandingPadInst::Catch || 4689 !isa<ArrayType>(Val->getType())) && 4690 "Catch clause has a invalid type!"); 4691 assert((CT != LandingPadInst::Filter || 4692 isa<ArrayType>(Val->getType())) && 4693 "Filter clause has invalid type!"); 4694 LP->addClause(cast<Constant>(Val)); 4695 } 4696 4697 I = LP; 4698 InstructionList.push_back(I); 4699 break; 4700 } 4701 4702 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4703 if (Record.size() != 4) 4704 return error("Invalid record"); 4705 uint64_t AlignRecord = Record[3]; 4706 const uint64_t InAllocaMask = uint64_t(1) << 5; 4707 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4708 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4709 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4710 SwiftErrorMask; 4711 bool InAlloca = AlignRecord & InAllocaMask; 4712 bool SwiftError = AlignRecord & SwiftErrorMask; 4713 FullTy = getFullyStructuredTypeByID(Record[0]); 4714 Type *Ty = flattenPointerTypes(FullTy); 4715 if ((AlignRecord & ExplicitTypeMask) == 0) { 4716 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4717 if (!PTy) 4718 return error("Old-style alloca with a non-pointer type"); 4719 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4720 } 4721 Type *OpTy = getTypeByID(Record[1]); 4722 Value *Size = getFnValueByID(Record[2], OpTy); 4723 unsigned Align; 4724 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4725 return Err; 4726 } 4727 if (!Ty || !Size) 4728 return error("Invalid record"); 4729 4730 // FIXME: Make this an optional field. 4731 const DataLayout &DL = TheModule->getDataLayout(); 4732 unsigned AS = DL.getAllocaAddrSpace(); 4733 4734 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align); 4735 AI->setUsedWithInAlloca(InAlloca); 4736 AI->setSwiftError(SwiftError); 4737 I = AI; 4738 FullTy = PointerType::get(FullTy, AS); 4739 InstructionList.push_back(I); 4740 break; 4741 } 4742 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4743 unsigned OpNum = 0; 4744 Value *Op; 4745 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4746 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4747 return error("Invalid record"); 4748 4749 if (!isa<PointerType>(Op->getType())) 4750 return error("Load operand is not a pointer type"); 4751 4752 Type *Ty = nullptr; 4753 if (OpNum + 3 == Record.size()) { 4754 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4755 Ty = flattenPointerTypes(FullTy); 4756 } else 4757 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4758 4759 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4760 return Err; 4761 4762 unsigned Align; 4763 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4764 return Err; 4765 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4766 InstructionList.push_back(I); 4767 break; 4768 } 4769 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4770 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4771 unsigned OpNum = 0; 4772 Value *Op; 4773 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4774 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4775 return error("Invalid record"); 4776 4777 if (!isa<PointerType>(Op->getType())) 4778 return error("Load operand is not a pointer type"); 4779 4780 Type *Ty = nullptr; 4781 if (OpNum + 5 == Record.size()) { 4782 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4783 Ty = flattenPointerTypes(FullTy); 4784 } else 4785 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4786 4787 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4788 return Err; 4789 4790 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4791 if (Ordering == AtomicOrdering::NotAtomic || 4792 Ordering == AtomicOrdering::Release || 4793 Ordering == AtomicOrdering::AcquireRelease) 4794 return error("Invalid record"); 4795 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4796 return error("Invalid record"); 4797 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4798 4799 unsigned Align; 4800 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4801 return Err; 4802 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID); 4803 InstructionList.push_back(I); 4804 break; 4805 } 4806 case bitc::FUNC_CODE_INST_STORE: 4807 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4808 unsigned OpNum = 0; 4809 Value *Val, *Ptr; 4810 Type *FullTy; 4811 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4812 (BitCode == bitc::FUNC_CODE_INST_STORE 4813 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4814 : popValue(Record, OpNum, NextValueNo, 4815 getPointerElementFlatType(FullTy), Val)) || 4816 OpNum + 2 != Record.size()) 4817 return error("Invalid record"); 4818 4819 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4820 return Err; 4821 unsigned Align; 4822 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4823 return Err; 4824 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4825 InstructionList.push_back(I); 4826 break; 4827 } 4828 case bitc::FUNC_CODE_INST_STOREATOMIC: 4829 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4830 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4831 unsigned OpNum = 0; 4832 Value *Val, *Ptr; 4833 Type *FullTy; 4834 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4835 !isa<PointerType>(Ptr->getType()) || 4836 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4837 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4838 : popValue(Record, OpNum, NextValueNo, 4839 getPointerElementFlatType(FullTy), Val)) || 4840 OpNum + 4 != Record.size()) 4841 return error("Invalid record"); 4842 4843 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4844 return Err; 4845 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4846 if (Ordering == AtomicOrdering::NotAtomic || 4847 Ordering == AtomicOrdering::Acquire || 4848 Ordering == AtomicOrdering::AcquireRelease) 4849 return error("Invalid record"); 4850 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4851 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4852 return error("Invalid record"); 4853 4854 unsigned Align; 4855 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4856 return Err; 4857 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID); 4858 InstructionList.push_back(I); 4859 break; 4860 } 4861 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4862 case bitc::FUNC_CODE_INST_CMPXCHG: { 4863 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4864 // failureordering?, isweak?] 4865 unsigned OpNum = 0; 4866 Value *Ptr, *Cmp, *New; 4867 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 4868 return error("Invalid record"); 4869 4870 if (!isa<PointerType>(Ptr->getType())) 4871 return error("Cmpxchg operand is not a pointer type"); 4872 4873 if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) { 4874 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 4875 return error("Invalid record"); 4876 } else if (popValue(Record, OpNum, NextValueNo, 4877 getPointerElementFlatType(FullTy), Cmp)) 4878 return error("Invalid record"); 4879 else 4880 FullTy = cast<PointerType>(FullTy)->getElementType(); 4881 4882 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4883 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4884 return error("Invalid record"); 4885 4886 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4887 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4888 SuccessOrdering == AtomicOrdering::Unordered) 4889 return error("Invalid record"); 4890 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4891 4892 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4893 return Err; 4894 AtomicOrdering FailureOrdering; 4895 if (Record.size() < 7) 4896 FailureOrdering = 4897 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4898 else 4899 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4900 4901 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4902 SSID); 4903 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 4904 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4905 4906 if (Record.size() < 8) { 4907 // Before weak cmpxchgs existed, the instruction simply returned the 4908 // value loaded from memory, so bitcode files from that era will be 4909 // expecting the first component of a modern cmpxchg. 4910 CurBB->getInstList().push_back(I); 4911 I = ExtractValueInst::Create(I, 0); 4912 FullTy = cast<StructType>(FullTy)->getElementType(0); 4913 } else { 4914 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4915 } 4916 4917 InstructionList.push_back(I); 4918 break; 4919 } 4920 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4921 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4922 unsigned OpNum = 0; 4923 Value *Ptr, *Val; 4924 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4925 !isa<PointerType>(Ptr->getType()) || 4926 popValue(Record, OpNum, NextValueNo, 4927 getPointerElementFlatType(FullTy), Val) || 4928 OpNum + 4 != Record.size()) 4929 return error("Invalid record"); 4930 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4931 if (Operation < AtomicRMWInst::FIRST_BINOP || 4932 Operation > AtomicRMWInst::LAST_BINOP) 4933 return error("Invalid record"); 4934 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4935 if (Ordering == AtomicOrdering::NotAtomic || 4936 Ordering == AtomicOrdering::Unordered) 4937 return error("Invalid record"); 4938 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4939 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4940 FullTy = getPointerElementFlatType(FullTy); 4941 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4942 InstructionList.push_back(I); 4943 break; 4944 } 4945 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4946 if (2 != Record.size()) 4947 return error("Invalid record"); 4948 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4949 if (Ordering == AtomicOrdering::NotAtomic || 4950 Ordering == AtomicOrdering::Unordered || 4951 Ordering == AtomicOrdering::Monotonic) 4952 return error("Invalid record"); 4953 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4954 I = new FenceInst(Context, Ordering, SSID); 4955 InstructionList.push_back(I); 4956 break; 4957 } 4958 case bitc::FUNC_CODE_INST_CALL: { 4959 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4960 if (Record.size() < 3) 4961 return error("Invalid record"); 4962 4963 unsigned OpNum = 0; 4964 AttributeList PAL = getAttributes(Record[OpNum++]); 4965 unsigned CCInfo = Record[OpNum++]; 4966 4967 FastMathFlags FMF; 4968 if ((CCInfo >> bitc::CALL_FMF) & 1) { 4969 FMF = getDecodedFastMathFlags(Record[OpNum++]); 4970 if (!FMF.any()) 4971 return error("Fast math flags indicator set for call with no FMF"); 4972 } 4973 4974 FunctionType *FTy = nullptr; 4975 FunctionType *FullFTy = nullptr; 4976 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4977 FullFTy = 4978 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4979 if (!FullFTy) 4980 return error("Explicit call type is not a function type"); 4981 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4982 } 4983 4984 Value *Callee; 4985 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4986 return error("Invalid record"); 4987 4988 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4989 if (!OpTy) 4990 return error("Callee is not a pointer type"); 4991 if (!FTy) { 4992 FullFTy = 4993 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4994 if (!FullFTy) 4995 return error("Callee is not of pointer to function type"); 4996 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4997 } else if (getPointerElementFlatType(FullTy) != FTy) 4998 return error("Explicit call type does not match pointee type of " 4999 "callee operand"); 5000 if (Record.size() < FTy->getNumParams() + OpNum) 5001 return error("Insufficient operands to call"); 5002 5003 SmallVector<Value*, 16> Args; 5004 SmallVector<Type*, 16> ArgsFullTys; 5005 // Read the fixed params. 5006 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5007 if (FTy->getParamType(i)->isLabelTy()) 5008 Args.push_back(getBasicBlock(Record[OpNum])); 5009 else 5010 Args.push_back(getValue(Record, OpNum, NextValueNo, 5011 FTy->getParamType(i))); 5012 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5013 if (!Args.back()) 5014 return error("Invalid record"); 5015 } 5016 5017 // Read type/value pairs for varargs params. 5018 if (!FTy->isVarArg()) { 5019 if (OpNum != Record.size()) 5020 return error("Invalid record"); 5021 } else { 5022 while (OpNum != Record.size()) { 5023 Value *Op; 5024 Type *FullTy; 5025 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5026 return error("Invalid record"); 5027 Args.push_back(Op); 5028 ArgsFullTys.push_back(FullTy); 5029 } 5030 } 5031 5032 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5033 FullTy = FullFTy->getReturnType(); 5034 OperandBundles.clear(); 5035 InstructionList.push_back(I); 5036 cast<CallInst>(I)->setCallingConv( 5037 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5038 CallInst::TailCallKind TCK = CallInst::TCK_None; 5039 if (CCInfo & 1 << bitc::CALL_TAIL) 5040 TCK = CallInst::TCK_Tail; 5041 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5042 TCK = CallInst::TCK_MustTail; 5043 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5044 TCK = CallInst::TCK_NoTail; 5045 cast<CallInst>(I)->setTailCallKind(TCK); 5046 cast<CallInst>(I)->setAttributes(PAL); 5047 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 5048 if (FMF.any()) { 5049 if (!isa<FPMathOperator>(I)) 5050 return error("Fast-math-flags specified for call without " 5051 "floating-point scalar or vector return type"); 5052 I->setFastMathFlags(FMF); 5053 } 5054 break; 5055 } 5056 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5057 if (Record.size() < 3) 5058 return error("Invalid record"); 5059 Type *OpTy = getTypeByID(Record[0]); 5060 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5061 FullTy = getFullyStructuredTypeByID(Record[2]); 5062 Type *ResTy = flattenPointerTypes(FullTy); 5063 if (!OpTy || !Op || !ResTy) 5064 return error("Invalid record"); 5065 I = new VAArgInst(Op, ResTy); 5066 InstructionList.push_back(I); 5067 break; 5068 } 5069 5070 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5071 // A call or an invoke can be optionally prefixed with some variable 5072 // number of operand bundle blocks. These blocks are read into 5073 // OperandBundles and consumed at the next call or invoke instruction. 5074 5075 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5076 return error("Invalid record"); 5077 5078 std::vector<Value *> Inputs; 5079 5080 unsigned OpNum = 1; 5081 while (OpNum != Record.size()) { 5082 Value *Op; 5083 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5084 return error("Invalid record"); 5085 Inputs.push_back(Op); 5086 } 5087 5088 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5089 continue; 5090 } 5091 } 5092 5093 // Add instruction to end of current BB. If there is no current BB, reject 5094 // this file. 5095 if (!CurBB) { 5096 I->deleteValue(); 5097 return error("Invalid instruction with no BB"); 5098 } 5099 if (!OperandBundles.empty()) { 5100 I->deleteValue(); 5101 return error("Operand bundles found with no consumer"); 5102 } 5103 CurBB->getInstList().push_back(I); 5104 5105 // If this was a terminator instruction, move to the next block. 5106 if (I->isTerminator()) { 5107 ++CurBBNo; 5108 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5109 } 5110 5111 // Non-void values get registered in the value table for future use. 5112 if (I && !I->getType()->isVoidTy()) { 5113 if (!FullTy) { 5114 FullTy = I->getType(); 5115 assert( 5116 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5117 !isa<ArrayType>(FullTy) && 5118 (!isa<VectorType>(FullTy) || 5119 FullTy->getVectorElementType()->isFloatingPointTy() || 5120 FullTy->getVectorElementType()->isIntegerTy()) && 5121 "Structured types must be assigned with corresponding non-opaque " 5122 "pointer type"); 5123 } 5124 5125 assert(I->getType() == flattenPointerTypes(FullTy) && 5126 "Incorrect fully structured type provided for Instruction"); 5127 ValueList.assignValue(I, NextValueNo++, FullTy); 5128 } 5129 } 5130 5131 OutOfRecordLoop: 5132 5133 if (!OperandBundles.empty()) 5134 return error("Operand bundles found with no consumer"); 5135 5136 // Check the function list for unresolved values. 5137 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5138 if (!A->getParent()) { 5139 // We found at least one unresolved value. Nuke them all to avoid leaks. 5140 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5141 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5142 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5143 delete A; 5144 } 5145 } 5146 return error("Never resolved value found in function"); 5147 } 5148 } 5149 5150 // Unexpected unresolved metadata about to be dropped. 5151 if (MDLoader->hasFwdRefs()) 5152 return error("Invalid function metadata: outgoing forward refs"); 5153 5154 // Trim the value list down to the size it was before we parsed this function. 5155 ValueList.shrinkTo(ModuleValueListSize); 5156 MDLoader->shrinkTo(ModuleMDLoaderSize); 5157 std::vector<BasicBlock*>().swap(FunctionBBs); 5158 return Error::success(); 5159 } 5160 5161 /// Find the function body in the bitcode stream 5162 Error BitcodeReader::findFunctionInStream( 5163 Function *F, 5164 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5165 while (DeferredFunctionInfoIterator->second == 0) { 5166 // This is the fallback handling for the old format bitcode that 5167 // didn't contain the function index in the VST, or when we have 5168 // an anonymous function which would not have a VST entry. 5169 // Assert that we have one of those two cases. 5170 assert(VSTOffset == 0 || !F->hasName()); 5171 // Parse the next body in the stream and set its position in the 5172 // DeferredFunctionInfo map. 5173 if (Error Err = rememberAndSkipFunctionBodies()) 5174 return Err; 5175 } 5176 return Error::success(); 5177 } 5178 5179 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5180 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5181 return SyncScope::ID(Val); 5182 if (Val >= SSIDs.size()) 5183 return SyncScope::System; // Map unknown synchronization scopes to system. 5184 return SSIDs[Val]; 5185 } 5186 5187 //===----------------------------------------------------------------------===// 5188 // GVMaterializer implementation 5189 //===----------------------------------------------------------------------===// 5190 5191 Error BitcodeReader::materialize(GlobalValue *GV) { 5192 Function *F = dyn_cast<Function>(GV); 5193 // If it's not a function or is already material, ignore the request. 5194 if (!F || !F->isMaterializable()) 5195 return Error::success(); 5196 5197 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5198 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5199 // If its position is recorded as 0, its body is somewhere in the stream 5200 // but we haven't seen it yet. 5201 if (DFII->second == 0) 5202 if (Error Err = findFunctionInStream(F, DFII)) 5203 return Err; 5204 5205 // Materialize metadata before parsing any function bodies. 5206 if (Error Err = materializeMetadata()) 5207 return Err; 5208 5209 // Move the bit stream to the saved position of the deferred function body. 5210 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5211 return JumpFailed; 5212 if (Error Err = parseFunctionBody(F)) 5213 return Err; 5214 F->setIsMaterializable(false); 5215 5216 if (StripDebugInfo) 5217 stripDebugInfo(*F); 5218 5219 // Upgrade any old intrinsic calls in the function. 5220 for (auto &I : UpgradedIntrinsics) { 5221 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5222 UI != UE;) { 5223 User *U = *UI; 5224 ++UI; 5225 if (CallInst *CI = dyn_cast<CallInst>(U)) 5226 UpgradeIntrinsicCall(CI, I.second); 5227 } 5228 } 5229 5230 // Update calls to the remangled intrinsics 5231 for (auto &I : RemangledIntrinsics) 5232 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5233 UI != UE;) 5234 // Don't expect any other users than call sites 5235 CallSite(*UI++).setCalledFunction(I.second); 5236 5237 // Finish fn->subprogram upgrade for materialized functions. 5238 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5239 F->setSubprogram(SP); 5240 5241 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5242 if (!MDLoader->isStrippingTBAA()) { 5243 for (auto &I : instructions(F)) { 5244 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5245 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5246 continue; 5247 MDLoader->setStripTBAA(true); 5248 stripTBAA(F->getParent()); 5249 } 5250 } 5251 5252 // Bring in any functions that this function forward-referenced via 5253 // blockaddresses. 5254 return materializeForwardReferencedFunctions(); 5255 } 5256 5257 Error BitcodeReader::materializeModule() { 5258 if (Error Err = materializeMetadata()) 5259 return Err; 5260 5261 // Promise to materialize all forward references. 5262 WillMaterializeAllForwardRefs = true; 5263 5264 // Iterate over the module, deserializing any functions that are still on 5265 // disk. 5266 for (Function &F : *TheModule) { 5267 if (Error Err = materialize(&F)) 5268 return Err; 5269 } 5270 // At this point, if there are any function bodies, parse the rest of 5271 // the bits in the module past the last function block we have recorded 5272 // through either lazy scanning or the VST. 5273 if (LastFunctionBlockBit || NextUnreadBit) 5274 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5275 ? LastFunctionBlockBit 5276 : NextUnreadBit)) 5277 return Err; 5278 5279 // Check that all block address forward references got resolved (as we 5280 // promised above). 5281 if (!BasicBlockFwdRefs.empty()) 5282 return error("Never resolved function from blockaddress"); 5283 5284 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5285 // delete the old functions to clean up. We can't do this unless the entire 5286 // module is materialized because there could always be another function body 5287 // with calls to the old function. 5288 for (auto &I : UpgradedIntrinsics) { 5289 for (auto *U : I.first->users()) { 5290 if (CallInst *CI = dyn_cast<CallInst>(U)) 5291 UpgradeIntrinsicCall(CI, I.second); 5292 } 5293 if (!I.first->use_empty()) 5294 I.first->replaceAllUsesWith(I.second); 5295 I.first->eraseFromParent(); 5296 } 5297 UpgradedIntrinsics.clear(); 5298 // Do the same for remangled intrinsics 5299 for (auto &I : RemangledIntrinsics) { 5300 I.first->replaceAllUsesWith(I.second); 5301 I.first->eraseFromParent(); 5302 } 5303 RemangledIntrinsics.clear(); 5304 5305 UpgradeDebugInfo(*TheModule); 5306 5307 UpgradeModuleFlags(*TheModule); 5308 5309 UpgradeRetainReleaseMarker(*TheModule); 5310 5311 return Error::success(); 5312 } 5313 5314 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5315 return IdentifiedStructTypes; 5316 } 5317 5318 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5319 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5320 StringRef ModulePath, unsigned ModuleId) 5321 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5322 ModulePath(ModulePath), ModuleId(ModuleId) {} 5323 5324 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5325 TheIndex.addModule(ModulePath, ModuleId); 5326 } 5327 5328 ModuleSummaryIndex::ModuleInfo * 5329 ModuleSummaryIndexBitcodeReader::getThisModule() { 5330 return TheIndex.getModule(ModulePath); 5331 } 5332 5333 std::pair<ValueInfo, GlobalValue::GUID> 5334 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5335 auto VGI = ValueIdToValueInfoMap[ValueId]; 5336 assert(VGI.first); 5337 return VGI; 5338 } 5339 5340 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5341 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5342 StringRef SourceFileName) { 5343 std::string GlobalId = 5344 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5345 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5346 auto OriginalNameID = ValueGUID; 5347 if (GlobalValue::isLocalLinkage(Linkage)) 5348 OriginalNameID = GlobalValue::getGUID(ValueName); 5349 if (PrintSummaryGUIDs) 5350 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5351 << ValueName << "\n"; 5352 5353 // UseStrtab is false for legacy summary formats and value names are 5354 // created on stack. In that case we save the name in a string saver in 5355 // the index so that the value name can be recorded. 5356 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5357 TheIndex.getOrInsertValueInfo( 5358 ValueGUID, 5359 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5360 OriginalNameID); 5361 } 5362 5363 // Specialized value symbol table parser used when reading module index 5364 // blocks where we don't actually create global values. The parsed information 5365 // is saved in the bitcode reader for use when later parsing summaries. 5366 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5367 uint64_t Offset, 5368 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5369 // With a strtab the VST is not required to parse the summary. 5370 if (UseStrtab) 5371 return Error::success(); 5372 5373 assert(Offset > 0 && "Expected non-zero VST offset"); 5374 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5375 if (!MaybeCurrentBit) 5376 return MaybeCurrentBit.takeError(); 5377 uint64_t CurrentBit = MaybeCurrentBit.get(); 5378 5379 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5380 return Err; 5381 5382 SmallVector<uint64_t, 64> Record; 5383 5384 // Read all the records for this value table. 5385 SmallString<128> ValueName; 5386 5387 while (true) { 5388 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5389 if (!MaybeEntry) 5390 return MaybeEntry.takeError(); 5391 BitstreamEntry Entry = MaybeEntry.get(); 5392 5393 switch (Entry.Kind) { 5394 case BitstreamEntry::SubBlock: // Handled for us already. 5395 case BitstreamEntry::Error: 5396 return error("Malformed block"); 5397 case BitstreamEntry::EndBlock: 5398 // Done parsing VST, jump back to wherever we came from. 5399 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5400 return JumpFailed; 5401 return Error::success(); 5402 case BitstreamEntry::Record: 5403 // The interesting case. 5404 break; 5405 } 5406 5407 // Read a record. 5408 Record.clear(); 5409 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5410 if (!MaybeRecord) 5411 return MaybeRecord.takeError(); 5412 switch (MaybeRecord.get()) { 5413 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5414 break; 5415 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5416 if (convertToString(Record, 1, ValueName)) 5417 return error("Invalid record"); 5418 unsigned ValueID = Record[0]; 5419 assert(!SourceFileName.empty()); 5420 auto VLI = ValueIdToLinkageMap.find(ValueID); 5421 assert(VLI != ValueIdToLinkageMap.end() && 5422 "No linkage found for VST entry?"); 5423 auto Linkage = VLI->second; 5424 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5425 ValueName.clear(); 5426 break; 5427 } 5428 case bitc::VST_CODE_FNENTRY: { 5429 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5430 if (convertToString(Record, 2, ValueName)) 5431 return error("Invalid record"); 5432 unsigned ValueID = Record[0]; 5433 assert(!SourceFileName.empty()); 5434 auto VLI = ValueIdToLinkageMap.find(ValueID); 5435 assert(VLI != ValueIdToLinkageMap.end() && 5436 "No linkage found for VST entry?"); 5437 auto Linkage = VLI->second; 5438 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5439 ValueName.clear(); 5440 break; 5441 } 5442 case bitc::VST_CODE_COMBINED_ENTRY: { 5443 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5444 unsigned ValueID = Record[0]; 5445 GlobalValue::GUID RefGUID = Record[1]; 5446 // The "original name", which is the second value of the pair will be 5447 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5448 ValueIdToValueInfoMap[ValueID] = 5449 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5450 break; 5451 } 5452 } 5453 } 5454 } 5455 5456 // Parse just the blocks needed for building the index out of the module. 5457 // At the end of this routine the module Index is populated with a map 5458 // from global value id to GlobalValueSummary objects. 5459 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5460 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5461 return Err; 5462 5463 SmallVector<uint64_t, 64> Record; 5464 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5465 unsigned ValueId = 0; 5466 5467 // Read the index for this module. 5468 while (true) { 5469 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5470 if (!MaybeEntry) 5471 return MaybeEntry.takeError(); 5472 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5473 5474 switch (Entry.Kind) { 5475 case BitstreamEntry::Error: 5476 return error("Malformed block"); 5477 case BitstreamEntry::EndBlock: 5478 return Error::success(); 5479 5480 case BitstreamEntry::SubBlock: 5481 switch (Entry.ID) { 5482 default: // Skip unknown content. 5483 if (Error Err = Stream.SkipBlock()) 5484 return Err; 5485 break; 5486 case bitc::BLOCKINFO_BLOCK_ID: 5487 // Need to parse these to get abbrev ids (e.g. for VST) 5488 if (readBlockInfo()) 5489 return error("Malformed block"); 5490 break; 5491 case bitc::VALUE_SYMTAB_BLOCK_ID: 5492 // Should have been parsed earlier via VSTOffset, unless there 5493 // is no summary section. 5494 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5495 !SeenGlobalValSummary) && 5496 "Expected early VST parse via VSTOffset record"); 5497 if (Error Err = Stream.SkipBlock()) 5498 return Err; 5499 break; 5500 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5501 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5502 // Add the module if it is a per-module index (has a source file name). 5503 if (!SourceFileName.empty()) 5504 addThisModule(); 5505 assert(!SeenValueSymbolTable && 5506 "Already read VST when parsing summary block?"); 5507 // We might not have a VST if there were no values in the 5508 // summary. An empty summary block generated when we are 5509 // performing ThinLTO compiles so we don't later invoke 5510 // the regular LTO process on them. 5511 if (VSTOffset > 0) { 5512 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5513 return Err; 5514 SeenValueSymbolTable = true; 5515 } 5516 SeenGlobalValSummary = true; 5517 if (Error Err = parseEntireSummary(Entry.ID)) 5518 return Err; 5519 break; 5520 case bitc::MODULE_STRTAB_BLOCK_ID: 5521 if (Error Err = parseModuleStringTable()) 5522 return Err; 5523 break; 5524 } 5525 continue; 5526 5527 case BitstreamEntry::Record: { 5528 Record.clear(); 5529 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5530 if (!MaybeBitCode) 5531 return MaybeBitCode.takeError(); 5532 switch (MaybeBitCode.get()) { 5533 default: 5534 break; // Default behavior, ignore unknown content. 5535 case bitc::MODULE_CODE_VERSION: { 5536 if (Error Err = parseVersionRecord(Record).takeError()) 5537 return Err; 5538 break; 5539 } 5540 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5541 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5542 SmallString<128> ValueName; 5543 if (convertToString(Record, 0, ValueName)) 5544 return error("Invalid record"); 5545 SourceFileName = ValueName.c_str(); 5546 break; 5547 } 5548 /// MODULE_CODE_HASH: [5*i32] 5549 case bitc::MODULE_CODE_HASH: { 5550 if (Record.size() != 5) 5551 return error("Invalid hash length " + Twine(Record.size()).str()); 5552 auto &Hash = getThisModule()->second.second; 5553 int Pos = 0; 5554 for (auto &Val : Record) { 5555 assert(!(Val >> 32) && "Unexpected high bits set"); 5556 Hash[Pos++] = Val; 5557 } 5558 break; 5559 } 5560 /// MODULE_CODE_VSTOFFSET: [offset] 5561 case bitc::MODULE_CODE_VSTOFFSET: 5562 if (Record.size() < 1) 5563 return error("Invalid record"); 5564 // Note that we subtract 1 here because the offset is relative to one 5565 // word before the start of the identification or module block, which 5566 // was historically always the start of the regular bitcode header. 5567 VSTOffset = Record[0] - 1; 5568 break; 5569 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5570 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5571 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5572 // v2: [strtab offset, strtab size, v1] 5573 case bitc::MODULE_CODE_GLOBALVAR: 5574 case bitc::MODULE_CODE_FUNCTION: 5575 case bitc::MODULE_CODE_ALIAS: { 5576 StringRef Name; 5577 ArrayRef<uint64_t> GVRecord; 5578 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5579 if (GVRecord.size() <= 3) 5580 return error("Invalid record"); 5581 uint64_t RawLinkage = GVRecord[3]; 5582 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5583 if (!UseStrtab) { 5584 ValueIdToLinkageMap[ValueId++] = Linkage; 5585 break; 5586 } 5587 5588 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5589 break; 5590 } 5591 } 5592 } 5593 continue; 5594 } 5595 } 5596 } 5597 5598 std::vector<ValueInfo> 5599 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5600 std::vector<ValueInfo> Ret; 5601 Ret.reserve(Record.size()); 5602 for (uint64_t RefValueId : Record) 5603 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5604 return Ret; 5605 } 5606 5607 std::vector<FunctionSummary::EdgeTy> 5608 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5609 bool IsOldProfileFormat, 5610 bool HasProfile, bool HasRelBF) { 5611 std::vector<FunctionSummary::EdgeTy> Ret; 5612 Ret.reserve(Record.size()); 5613 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5614 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5615 uint64_t RelBF = 0; 5616 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5617 if (IsOldProfileFormat) { 5618 I += 1; // Skip old callsitecount field 5619 if (HasProfile) 5620 I += 1; // Skip old profilecount field 5621 } else if (HasProfile) 5622 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5623 else if (HasRelBF) 5624 RelBF = Record[++I]; 5625 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5626 } 5627 return Ret; 5628 } 5629 5630 static void 5631 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5632 WholeProgramDevirtResolution &Wpd) { 5633 uint64_t ArgNum = Record[Slot++]; 5634 WholeProgramDevirtResolution::ByArg &B = 5635 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5636 Slot += ArgNum; 5637 5638 B.TheKind = 5639 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5640 B.Info = Record[Slot++]; 5641 B.Byte = Record[Slot++]; 5642 B.Bit = Record[Slot++]; 5643 } 5644 5645 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5646 StringRef Strtab, size_t &Slot, 5647 TypeIdSummary &TypeId) { 5648 uint64_t Id = Record[Slot++]; 5649 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5650 5651 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5652 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5653 static_cast<size_t>(Record[Slot + 1])}; 5654 Slot += 2; 5655 5656 uint64_t ResByArgNum = Record[Slot++]; 5657 for (uint64_t I = 0; I != ResByArgNum; ++I) 5658 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5659 } 5660 5661 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5662 StringRef Strtab, 5663 ModuleSummaryIndex &TheIndex) { 5664 size_t Slot = 0; 5665 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5666 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5667 Slot += 2; 5668 5669 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5670 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5671 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5672 TypeId.TTRes.SizeM1 = Record[Slot++]; 5673 TypeId.TTRes.BitMask = Record[Slot++]; 5674 TypeId.TTRes.InlineBits = Record[Slot++]; 5675 5676 while (Slot < Record.size()) 5677 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5678 } 5679 5680 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5681 ArrayRef<uint64_t> Record, size_t &Slot, 5682 TypeIdCompatibleVtableInfo &TypeId) { 5683 uint64_t Offset = Record[Slot++]; 5684 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5685 TypeId.push_back({Offset, Callee}); 5686 } 5687 5688 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5689 ArrayRef<uint64_t> Record) { 5690 size_t Slot = 0; 5691 TypeIdCompatibleVtableInfo &TypeId = 5692 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5693 {Strtab.data() + Record[Slot], 5694 static_cast<size_t>(Record[Slot + 1])}); 5695 Slot += 2; 5696 5697 while (Slot < Record.size()) 5698 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5699 } 5700 5701 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 5702 unsigned WOCnt) { 5703 // Readonly and writeonly refs are in the end of the refs list. 5704 assert(ROCnt + WOCnt <= Refs.size()); 5705 unsigned FirstWORef = Refs.size() - WOCnt; 5706 unsigned RefNo = FirstWORef - ROCnt; 5707 for (; RefNo < FirstWORef; ++RefNo) 5708 Refs[RefNo].setReadOnly(); 5709 for (; RefNo < Refs.size(); ++RefNo) 5710 Refs[RefNo].setWriteOnly(); 5711 } 5712 5713 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5714 // objects in the index. 5715 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5716 if (Error Err = Stream.EnterSubBlock(ID)) 5717 return Err; 5718 SmallVector<uint64_t, 64> Record; 5719 5720 // Parse version 5721 { 5722 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5723 if (!MaybeEntry) 5724 return MaybeEntry.takeError(); 5725 BitstreamEntry Entry = MaybeEntry.get(); 5726 5727 if (Entry.Kind != BitstreamEntry::Record) 5728 return error("Invalid Summary Block: record for version expected"); 5729 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5730 if (!MaybeRecord) 5731 return MaybeRecord.takeError(); 5732 if (MaybeRecord.get() != bitc::FS_VERSION) 5733 return error("Invalid Summary Block: version expected"); 5734 } 5735 const uint64_t Version = Record[0]; 5736 const bool IsOldProfileFormat = Version == 1; 5737 if (Version < 1 || Version > 7) 5738 return error("Invalid summary version " + Twine(Version) + 5739 ". Version should be in the range [1-7]."); 5740 Record.clear(); 5741 5742 // Keep around the last seen summary to be used when we see an optional 5743 // "OriginalName" attachement. 5744 GlobalValueSummary *LastSeenSummary = nullptr; 5745 GlobalValue::GUID LastSeenGUID = 0; 5746 5747 // We can expect to see any number of type ID information records before 5748 // each function summary records; these variables store the information 5749 // collected so far so that it can be used to create the summary object. 5750 std::vector<GlobalValue::GUID> PendingTypeTests; 5751 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5752 PendingTypeCheckedLoadVCalls; 5753 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5754 PendingTypeCheckedLoadConstVCalls; 5755 5756 while (true) { 5757 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5758 if (!MaybeEntry) 5759 return MaybeEntry.takeError(); 5760 BitstreamEntry Entry = MaybeEntry.get(); 5761 5762 switch (Entry.Kind) { 5763 case BitstreamEntry::SubBlock: // Handled for us already. 5764 case BitstreamEntry::Error: 5765 return error("Malformed block"); 5766 case BitstreamEntry::EndBlock: 5767 return Error::success(); 5768 case BitstreamEntry::Record: 5769 // The interesting case. 5770 break; 5771 } 5772 5773 // Read a record. The record format depends on whether this 5774 // is a per-module index or a combined index file. In the per-module 5775 // case the records contain the associated value's ID for correlation 5776 // with VST entries. In the combined index the correlation is done 5777 // via the bitcode offset of the summary records (which were saved 5778 // in the combined index VST entries). The records also contain 5779 // information used for ThinLTO renaming and importing. 5780 Record.clear(); 5781 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5782 if (!MaybeBitCode) 5783 return MaybeBitCode.takeError(); 5784 switch (unsigned BitCode = MaybeBitCode.get()) { 5785 default: // Default behavior: ignore. 5786 break; 5787 case bitc::FS_FLAGS: { // [flags] 5788 uint64_t Flags = Record[0]; 5789 // Scan flags. 5790 assert(Flags <= 0x1f && "Unexpected bits in flag"); 5791 5792 // 1 bit: WithGlobalValueDeadStripping flag. 5793 // Set on combined index only. 5794 if (Flags & 0x1) 5795 TheIndex.setWithGlobalValueDeadStripping(); 5796 // 1 bit: SkipModuleByDistributedBackend flag. 5797 // Set on combined index only. 5798 if (Flags & 0x2) 5799 TheIndex.setSkipModuleByDistributedBackend(); 5800 // 1 bit: HasSyntheticEntryCounts flag. 5801 // Set on combined index only. 5802 if (Flags & 0x4) 5803 TheIndex.setHasSyntheticEntryCounts(); 5804 // 1 bit: DisableSplitLTOUnit flag. 5805 // Set on per module indexes. It is up to the client to validate 5806 // the consistency of this flag across modules being linked. 5807 if (Flags & 0x8) 5808 TheIndex.setEnableSplitLTOUnit(); 5809 // 1 bit: PartiallySplitLTOUnits flag. 5810 // Set on combined index only. 5811 if (Flags & 0x10) 5812 TheIndex.setPartiallySplitLTOUnits(); 5813 break; 5814 } 5815 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5816 uint64_t ValueID = Record[0]; 5817 GlobalValue::GUID RefGUID = Record[1]; 5818 ValueIdToValueInfoMap[ValueID] = 5819 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5820 break; 5821 } 5822 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5823 // numrefs x valueid, n x (valueid)] 5824 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5825 // numrefs x valueid, 5826 // n x (valueid, hotness)] 5827 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5828 // numrefs x valueid, 5829 // n x (valueid, relblockfreq)] 5830 case bitc::FS_PERMODULE: 5831 case bitc::FS_PERMODULE_RELBF: 5832 case bitc::FS_PERMODULE_PROFILE: { 5833 unsigned ValueID = Record[0]; 5834 uint64_t RawFlags = Record[1]; 5835 unsigned InstCount = Record[2]; 5836 uint64_t RawFunFlags = 0; 5837 unsigned NumRefs = Record[3]; 5838 unsigned NumRORefs = 0, NumWORefs = 0; 5839 int RefListStartIndex = 4; 5840 if (Version >= 4) { 5841 RawFunFlags = Record[3]; 5842 NumRefs = Record[4]; 5843 RefListStartIndex = 5; 5844 if (Version >= 5) { 5845 NumRORefs = Record[5]; 5846 RefListStartIndex = 6; 5847 if (Version >= 7) { 5848 NumWORefs = Record[6]; 5849 RefListStartIndex = 7; 5850 } 5851 } 5852 } 5853 5854 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5855 // The module path string ref set in the summary must be owned by the 5856 // index's module string table. Since we don't have a module path 5857 // string table section in the per-module index, we create a single 5858 // module path string table entry with an empty (0) ID to take 5859 // ownership. 5860 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5861 assert(Record.size() >= RefListStartIndex + NumRefs && 5862 "Record size inconsistent with number of references"); 5863 std::vector<ValueInfo> Refs = makeRefList( 5864 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5865 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5866 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5867 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5868 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5869 IsOldProfileFormat, HasProfile, HasRelBF); 5870 setSpecialRefs(Refs, NumRORefs, NumWORefs); 5871 auto FS = llvm::make_unique<FunctionSummary>( 5872 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5873 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5874 std::move(PendingTypeTestAssumeVCalls), 5875 std::move(PendingTypeCheckedLoadVCalls), 5876 std::move(PendingTypeTestAssumeConstVCalls), 5877 std::move(PendingTypeCheckedLoadConstVCalls)); 5878 PendingTypeTests.clear(); 5879 PendingTypeTestAssumeVCalls.clear(); 5880 PendingTypeCheckedLoadVCalls.clear(); 5881 PendingTypeTestAssumeConstVCalls.clear(); 5882 PendingTypeCheckedLoadConstVCalls.clear(); 5883 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5884 FS->setModulePath(getThisModule()->first()); 5885 FS->setOriginalName(VIAndOriginalGUID.second); 5886 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5887 break; 5888 } 5889 // FS_ALIAS: [valueid, flags, valueid] 5890 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5891 // they expect all aliasee summaries to be available. 5892 case bitc::FS_ALIAS: { 5893 unsigned ValueID = Record[0]; 5894 uint64_t RawFlags = Record[1]; 5895 unsigned AliaseeID = Record[2]; 5896 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5897 auto AS = llvm::make_unique<AliasSummary>(Flags); 5898 // The module path string ref set in the summary must be owned by the 5899 // index's module string table. Since we don't have a module path 5900 // string table section in the per-module index, we create a single 5901 // module path string table entry with an empty (0) ID to take 5902 // ownership. 5903 AS->setModulePath(getThisModule()->first()); 5904 5905 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5906 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5907 if (!AliaseeInModule) 5908 return error("Alias expects aliasee summary to be parsed"); 5909 AS->setAliasee(AliaseeVI, AliaseeInModule); 5910 5911 auto GUID = getValueInfoFromValueId(ValueID); 5912 AS->setOriginalName(GUID.second); 5913 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5914 break; 5915 } 5916 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5917 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5918 unsigned ValueID = Record[0]; 5919 uint64_t RawFlags = Record[1]; 5920 unsigned RefArrayStart = 2; 5921 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 5922 /* WriteOnly */ false); 5923 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5924 if (Version >= 5) { 5925 GVF = getDecodedGVarFlags(Record[2]); 5926 RefArrayStart = 3; 5927 } 5928 std::vector<ValueInfo> Refs = 5929 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5930 auto FS = 5931 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5932 FS->setModulePath(getThisModule()->first()); 5933 auto GUID = getValueInfoFromValueId(ValueID); 5934 FS->setOriginalName(GUID.second); 5935 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5936 break; 5937 } 5938 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 5939 // numrefs, numrefs x valueid, 5940 // n x (valueid, offset)] 5941 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 5942 unsigned ValueID = Record[0]; 5943 uint64_t RawFlags = Record[1]; 5944 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 5945 unsigned NumRefs = Record[3]; 5946 unsigned RefListStartIndex = 4; 5947 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 5948 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5949 std::vector<ValueInfo> Refs = makeRefList( 5950 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5951 VTableFuncList VTableFuncs; 5952 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 5953 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5954 uint64_t Offset = Record[++I]; 5955 VTableFuncs.push_back({Callee, Offset}); 5956 } 5957 auto VS = 5958 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5959 VS->setModulePath(getThisModule()->first()); 5960 VS->setVTableFuncs(VTableFuncs); 5961 auto GUID = getValueInfoFromValueId(ValueID); 5962 VS->setOriginalName(GUID.second); 5963 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 5964 break; 5965 } 5966 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 5967 // numrefs x valueid, n x (valueid)] 5968 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 5969 // numrefs x valueid, n x (valueid, hotness)] 5970 case bitc::FS_COMBINED: 5971 case bitc::FS_COMBINED_PROFILE: { 5972 unsigned ValueID = Record[0]; 5973 uint64_t ModuleId = Record[1]; 5974 uint64_t RawFlags = Record[2]; 5975 unsigned InstCount = Record[3]; 5976 uint64_t RawFunFlags = 0; 5977 uint64_t EntryCount = 0; 5978 unsigned NumRefs = Record[4]; 5979 unsigned NumRORefs = 0, NumWORefs = 0; 5980 int RefListStartIndex = 5; 5981 5982 if (Version >= 4) { 5983 RawFunFlags = Record[4]; 5984 RefListStartIndex = 6; 5985 size_t NumRefsIndex = 5; 5986 if (Version >= 5) { 5987 unsigned NumRORefsOffset = 1; 5988 RefListStartIndex = 7; 5989 if (Version >= 6) { 5990 NumRefsIndex = 6; 5991 EntryCount = Record[5]; 5992 RefListStartIndex = 8; 5993 if (Version >= 7) { 5994 RefListStartIndex = 9; 5995 NumWORefs = Record[8]; 5996 NumRORefsOffset = 2; 5997 } 5998 } 5999 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6000 } 6001 NumRefs = Record[NumRefsIndex]; 6002 } 6003 6004 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6005 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6006 assert(Record.size() >= RefListStartIndex + NumRefs && 6007 "Record size inconsistent with number of references"); 6008 std::vector<ValueInfo> Refs = makeRefList( 6009 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6010 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6011 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6012 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6013 IsOldProfileFormat, HasProfile, false); 6014 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6015 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6016 auto FS = llvm::make_unique<FunctionSummary>( 6017 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6018 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6019 std::move(PendingTypeTestAssumeVCalls), 6020 std::move(PendingTypeCheckedLoadVCalls), 6021 std::move(PendingTypeTestAssumeConstVCalls), 6022 std::move(PendingTypeCheckedLoadConstVCalls)); 6023 PendingTypeTests.clear(); 6024 PendingTypeTestAssumeVCalls.clear(); 6025 PendingTypeCheckedLoadVCalls.clear(); 6026 PendingTypeTestAssumeConstVCalls.clear(); 6027 PendingTypeCheckedLoadConstVCalls.clear(); 6028 LastSeenSummary = FS.get(); 6029 LastSeenGUID = VI.getGUID(); 6030 FS->setModulePath(ModuleIdMap[ModuleId]); 6031 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6032 break; 6033 } 6034 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6035 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6036 // they expect all aliasee summaries to be available. 6037 case bitc::FS_COMBINED_ALIAS: { 6038 unsigned ValueID = Record[0]; 6039 uint64_t ModuleId = Record[1]; 6040 uint64_t RawFlags = Record[2]; 6041 unsigned AliaseeValueId = Record[3]; 6042 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6043 auto AS = llvm::make_unique<AliasSummary>(Flags); 6044 LastSeenSummary = AS.get(); 6045 AS->setModulePath(ModuleIdMap[ModuleId]); 6046 6047 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6048 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6049 AS->setAliasee(AliaseeVI, AliaseeInModule); 6050 6051 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6052 LastSeenGUID = VI.getGUID(); 6053 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6054 break; 6055 } 6056 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6057 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6058 unsigned ValueID = Record[0]; 6059 uint64_t ModuleId = Record[1]; 6060 uint64_t RawFlags = Record[2]; 6061 unsigned RefArrayStart = 3; 6062 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6063 /* WriteOnly */ false); 6064 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6065 if (Version >= 5) { 6066 GVF = getDecodedGVarFlags(Record[3]); 6067 RefArrayStart = 4; 6068 } 6069 std::vector<ValueInfo> Refs = 6070 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6071 auto FS = 6072 llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6073 LastSeenSummary = FS.get(); 6074 FS->setModulePath(ModuleIdMap[ModuleId]); 6075 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6076 LastSeenGUID = VI.getGUID(); 6077 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6078 break; 6079 } 6080 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6081 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6082 uint64_t OriginalName = Record[0]; 6083 if (!LastSeenSummary) 6084 return error("Name attachment that does not follow a combined record"); 6085 LastSeenSummary->setOriginalName(OriginalName); 6086 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6087 // Reset the LastSeenSummary 6088 LastSeenSummary = nullptr; 6089 LastSeenGUID = 0; 6090 break; 6091 } 6092 case bitc::FS_TYPE_TESTS: 6093 assert(PendingTypeTests.empty()); 6094 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6095 Record.end()); 6096 break; 6097 6098 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6099 assert(PendingTypeTestAssumeVCalls.empty()); 6100 for (unsigned I = 0; I != Record.size(); I += 2) 6101 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6102 break; 6103 6104 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6105 assert(PendingTypeCheckedLoadVCalls.empty()); 6106 for (unsigned I = 0; I != Record.size(); I += 2) 6107 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6108 break; 6109 6110 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6111 PendingTypeTestAssumeConstVCalls.push_back( 6112 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6113 break; 6114 6115 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6116 PendingTypeCheckedLoadConstVCalls.push_back( 6117 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6118 break; 6119 6120 case bitc::FS_CFI_FUNCTION_DEFS: { 6121 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6122 for (unsigned I = 0; I != Record.size(); I += 2) 6123 CfiFunctionDefs.insert( 6124 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6125 break; 6126 } 6127 6128 case bitc::FS_CFI_FUNCTION_DECLS: { 6129 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6130 for (unsigned I = 0; I != Record.size(); I += 2) 6131 CfiFunctionDecls.insert( 6132 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6133 break; 6134 } 6135 6136 case bitc::FS_TYPE_ID: 6137 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6138 break; 6139 6140 case bitc::FS_TYPE_ID_METADATA: 6141 parseTypeIdCompatibleVtableSummaryRecord(Record); 6142 break; 6143 } 6144 } 6145 llvm_unreachable("Exit infinite loop"); 6146 } 6147 6148 // Parse the module string table block into the Index. 6149 // This populates the ModulePathStringTable map in the index. 6150 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6151 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6152 return Err; 6153 6154 SmallVector<uint64_t, 64> Record; 6155 6156 SmallString<128> ModulePath; 6157 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6158 6159 while (true) { 6160 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6161 if (!MaybeEntry) 6162 return MaybeEntry.takeError(); 6163 BitstreamEntry Entry = MaybeEntry.get(); 6164 6165 switch (Entry.Kind) { 6166 case BitstreamEntry::SubBlock: // Handled for us already. 6167 case BitstreamEntry::Error: 6168 return error("Malformed block"); 6169 case BitstreamEntry::EndBlock: 6170 return Error::success(); 6171 case BitstreamEntry::Record: 6172 // The interesting case. 6173 break; 6174 } 6175 6176 Record.clear(); 6177 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6178 if (!MaybeRecord) 6179 return MaybeRecord.takeError(); 6180 switch (MaybeRecord.get()) { 6181 default: // Default behavior: ignore. 6182 break; 6183 case bitc::MST_CODE_ENTRY: { 6184 // MST_ENTRY: [modid, namechar x N] 6185 uint64_t ModuleId = Record[0]; 6186 6187 if (convertToString(Record, 1, ModulePath)) 6188 return error("Invalid record"); 6189 6190 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6191 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6192 6193 ModulePath.clear(); 6194 break; 6195 } 6196 /// MST_CODE_HASH: [5*i32] 6197 case bitc::MST_CODE_HASH: { 6198 if (Record.size() != 5) 6199 return error("Invalid hash length " + Twine(Record.size()).str()); 6200 if (!LastSeenModule) 6201 return error("Invalid hash that does not follow a module path"); 6202 int Pos = 0; 6203 for (auto &Val : Record) { 6204 assert(!(Val >> 32) && "Unexpected high bits set"); 6205 LastSeenModule->second.second[Pos++] = Val; 6206 } 6207 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6208 LastSeenModule = nullptr; 6209 break; 6210 } 6211 } 6212 } 6213 llvm_unreachable("Exit infinite loop"); 6214 } 6215 6216 namespace { 6217 6218 // FIXME: This class is only here to support the transition to llvm::Error. It 6219 // will be removed once this transition is complete. Clients should prefer to 6220 // deal with the Error value directly, rather than converting to error_code. 6221 class BitcodeErrorCategoryType : public std::error_category { 6222 const char *name() const noexcept override { 6223 return "llvm.bitcode"; 6224 } 6225 6226 std::string message(int IE) const override { 6227 BitcodeError E = static_cast<BitcodeError>(IE); 6228 switch (E) { 6229 case BitcodeError::CorruptedBitcode: 6230 return "Corrupted bitcode"; 6231 } 6232 llvm_unreachable("Unknown error type!"); 6233 } 6234 }; 6235 6236 } // end anonymous namespace 6237 6238 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6239 6240 const std::error_category &llvm::BitcodeErrorCategory() { 6241 return *ErrorCategory; 6242 } 6243 6244 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6245 unsigned Block, unsigned RecordID) { 6246 if (Error Err = Stream.EnterSubBlock(Block)) 6247 return std::move(Err); 6248 6249 StringRef Strtab; 6250 while (true) { 6251 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6252 if (!MaybeEntry) 6253 return MaybeEntry.takeError(); 6254 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6255 6256 switch (Entry.Kind) { 6257 case BitstreamEntry::EndBlock: 6258 return Strtab; 6259 6260 case BitstreamEntry::Error: 6261 return error("Malformed block"); 6262 6263 case BitstreamEntry::SubBlock: 6264 if (Error Err = Stream.SkipBlock()) 6265 return std::move(Err); 6266 break; 6267 6268 case BitstreamEntry::Record: 6269 StringRef Blob; 6270 SmallVector<uint64_t, 1> Record; 6271 Expected<unsigned> MaybeRecord = 6272 Stream.readRecord(Entry.ID, Record, &Blob); 6273 if (!MaybeRecord) 6274 return MaybeRecord.takeError(); 6275 if (MaybeRecord.get() == RecordID) 6276 Strtab = Blob; 6277 break; 6278 } 6279 } 6280 } 6281 6282 //===----------------------------------------------------------------------===// 6283 // External interface 6284 //===----------------------------------------------------------------------===// 6285 6286 Expected<std::vector<BitcodeModule>> 6287 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6288 auto FOrErr = getBitcodeFileContents(Buffer); 6289 if (!FOrErr) 6290 return FOrErr.takeError(); 6291 return std::move(FOrErr->Mods); 6292 } 6293 6294 Expected<BitcodeFileContents> 6295 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6296 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6297 if (!StreamOrErr) 6298 return StreamOrErr.takeError(); 6299 BitstreamCursor &Stream = *StreamOrErr; 6300 6301 BitcodeFileContents F; 6302 while (true) { 6303 uint64_t BCBegin = Stream.getCurrentByteNo(); 6304 6305 // We may be consuming bitcode from a client that leaves garbage at the end 6306 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6307 // the end that there cannot possibly be another module, stop looking. 6308 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6309 return F; 6310 6311 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6312 if (!MaybeEntry) 6313 return MaybeEntry.takeError(); 6314 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6315 6316 switch (Entry.Kind) { 6317 case BitstreamEntry::EndBlock: 6318 case BitstreamEntry::Error: 6319 return error("Malformed block"); 6320 6321 case BitstreamEntry::SubBlock: { 6322 uint64_t IdentificationBit = -1ull; 6323 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6324 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6325 if (Error Err = Stream.SkipBlock()) 6326 return std::move(Err); 6327 6328 { 6329 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6330 if (!MaybeEntry) 6331 return MaybeEntry.takeError(); 6332 Entry = MaybeEntry.get(); 6333 } 6334 6335 if (Entry.Kind != BitstreamEntry::SubBlock || 6336 Entry.ID != bitc::MODULE_BLOCK_ID) 6337 return error("Malformed block"); 6338 } 6339 6340 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6341 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6342 if (Error Err = Stream.SkipBlock()) 6343 return std::move(Err); 6344 6345 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6346 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6347 Buffer.getBufferIdentifier(), IdentificationBit, 6348 ModuleBit}); 6349 continue; 6350 } 6351 6352 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6353 Expected<StringRef> Strtab = 6354 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6355 if (!Strtab) 6356 return Strtab.takeError(); 6357 // This string table is used by every preceding bitcode module that does 6358 // not have its own string table. A bitcode file may have multiple 6359 // string tables if it was created by binary concatenation, for example 6360 // with "llvm-cat -b". 6361 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6362 if (!I->Strtab.empty()) 6363 break; 6364 I->Strtab = *Strtab; 6365 } 6366 // Similarly, the string table is used by every preceding symbol table; 6367 // normally there will be just one unless the bitcode file was created 6368 // by binary concatenation. 6369 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6370 F.StrtabForSymtab = *Strtab; 6371 continue; 6372 } 6373 6374 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6375 Expected<StringRef> SymtabOrErr = 6376 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6377 if (!SymtabOrErr) 6378 return SymtabOrErr.takeError(); 6379 6380 // We can expect the bitcode file to have multiple symbol tables if it 6381 // was created by binary concatenation. In that case we silently 6382 // ignore any subsequent symbol tables, which is fine because this is a 6383 // low level function. The client is expected to notice that the number 6384 // of modules in the symbol table does not match the number of modules 6385 // in the input file and regenerate the symbol table. 6386 if (F.Symtab.empty()) 6387 F.Symtab = *SymtabOrErr; 6388 continue; 6389 } 6390 6391 if (Error Err = Stream.SkipBlock()) 6392 return std::move(Err); 6393 continue; 6394 } 6395 case BitstreamEntry::Record: 6396 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6397 continue; 6398 else 6399 return StreamFailed.takeError(); 6400 } 6401 } 6402 } 6403 6404 /// Get a lazy one-at-time loading module from bitcode. 6405 /// 6406 /// This isn't always used in a lazy context. In particular, it's also used by 6407 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6408 /// in forward-referenced functions from block address references. 6409 /// 6410 /// \param[in] MaterializeAll Set to \c true if we should materialize 6411 /// everything. 6412 Expected<std::unique_ptr<Module>> 6413 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6414 bool ShouldLazyLoadMetadata, bool IsImporting) { 6415 BitstreamCursor Stream(Buffer); 6416 6417 std::string ProducerIdentification; 6418 if (IdentificationBit != -1ull) { 6419 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6420 return std::move(JumpFailed); 6421 Expected<std::string> ProducerIdentificationOrErr = 6422 readIdentificationBlock(Stream); 6423 if (!ProducerIdentificationOrErr) 6424 return ProducerIdentificationOrErr.takeError(); 6425 6426 ProducerIdentification = *ProducerIdentificationOrErr; 6427 } 6428 6429 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6430 return std::move(JumpFailed); 6431 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6432 Context); 6433 6434 std::unique_ptr<Module> M = 6435 llvm::make_unique<Module>(ModuleIdentifier, Context); 6436 M->setMaterializer(R); 6437 6438 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6439 if (Error Err = 6440 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 6441 return std::move(Err); 6442 6443 if (MaterializeAll) { 6444 // Read in the entire module, and destroy the BitcodeReader. 6445 if (Error Err = M->materializeAll()) 6446 return std::move(Err); 6447 } else { 6448 // Resolve forward references from blockaddresses. 6449 if (Error Err = R->materializeForwardReferencedFunctions()) 6450 return std::move(Err); 6451 } 6452 return std::move(M); 6453 } 6454 6455 Expected<std::unique_ptr<Module>> 6456 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6457 bool IsImporting) { 6458 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 6459 } 6460 6461 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6462 // We don't use ModuleIdentifier here because the client may need to control the 6463 // module path used in the combined summary (e.g. when reading summaries for 6464 // regular LTO modules). 6465 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6466 StringRef ModulePath, uint64_t ModuleId) { 6467 BitstreamCursor Stream(Buffer); 6468 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6469 return JumpFailed; 6470 6471 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6472 ModulePath, ModuleId); 6473 return R.parseModule(); 6474 } 6475 6476 // Parse the specified bitcode buffer, returning the function info index. 6477 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6478 BitstreamCursor Stream(Buffer); 6479 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6480 return std::move(JumpFailed); 6481 6482 auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6483 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6484 ModuleIdentifier, 0); 6485 6486 if (Error Err = R.parseModule()) 6487 return std::move(Err); 6488 6489 return std::move(Index); 6490 } 6491 6492 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6493 unsigned ID) { 6494 if (Error Err = Stream.EnterSubBlock(ID)) 6495 return std::move(Err); 6496 SmallVector<uint64_t, 64> Record; 6497 6498 while (true) { 6499 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6500 if (!MaybeEntry) 6501 return MaybeEntry.takeError(); 6502 BitstreamEntry Entry = MaybeEntry.get(); 6503 6504 switch (Entry.Kind) { 6505 case BitstreamEntry::SubBlock: // Handled for us already. 6506 case BitstreamEntry::Error: 6507 return error("Malformed block"); 6508 case BitstreamEntry::EndBlock: 6509 // If no flags record found, conservatively return true to mimic 6510 // behavior before this flag was added. 6511 return true; 6512 case BitstreamEntry::Record: 6513 // The interesting case. 6514 break; 6515 } 6516 6517 // Look for the FS_FLAGS record. 6518 Record.clear(); 6519 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6520 if (!MaybeBitCode) 6521 return MaybeBitCode.takeError(); 6522 switch (MaybeBitCode.get()) { 6523 default: // Default behavior: ignore. 6524 break; 6525 case bitc::FS_FLAGS: { // [flags] 6526 uint64_t Flags = Record[0]; 6527 // Scan flags. 6528 assert(Flags <= 0x1f && "Unexpected bits in flag"); 6529 6530 return Flags & 0x8; 6531 } 6532 } 6533 } 6534 llvm_unreachable("Exit infinite loop"); 6535 } 6536 6537 // Check if the given bitcode buffer contains a global value summary block. 6538 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6539 BitstreamCursor Stream(Buffer); 6540 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6541 return std::move(JumpFailed); 6542 6543 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6544 return std::move(Err); 6545 6546 while (true) { 6547 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6548 if (!MaybeEntry) 6549 return MaybeEntry.takeError(); 6550 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6551 6552 switch (Entry.Kind) { 6553 case BitstreamEntry::Error: 6554 return error("Malformed block"); 6555 case BitstreamEntry::EndBlock: 6556 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6557 /*EnableSplitLTOUnit=*/false}; 6558 6559 case BitstreamEntry::SubBlock: 6560 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6561 Expected<bool> EnableSplitLTOUnit = 6562 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6563 if (!EnableSplitLTOUnit) 6564 return EnableSplitLTOUnit.takeError(); 6565 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6566 *EnableSplitLTOUnit}; 6567 } 6568 6569 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6570 Expected<bool> EnableSplitLTOUnit = 6571 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6572 if (!EnableSplitLTOUnit) 6573 return EnableSplitLTOUnit.takeError(); 6574 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6575 *EnableSplitLTOUnit}; 6576 } 6577 6578 // Ignore other sub-blocks. 6579 if (Error Err = Stream.SkipBlock()) 6580 return std::move(Err); 6581 continue; 6582 6583 case BitstreamEntry::Record: 6584 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6585 continue; 6586 else 6587 return StreamFailed.takeError(); 6588 } 6589 } 6590 } 6591 6592 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6593 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6594 if (!MsOrErr) 6595 return MsOrErr.takeError(); 6596 6597 if (MsOrErr->size() != 1) 6598 return error("Expected a single module"); 6599 6600 return (*MsOrErr)[0]; 6601 } 6602 6603 Expected<std::unique_ptr<Module>> 6604 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6605 bool ShouldLazyLoadMetadata, bool IsImporting) { 6606 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6607 if (!BM) 6608 return BM.takeError(); 6609 6610 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6611 } 6612 6613 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6614 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6615 bool ShouldLazyLoadMetadata, bool IsImporting) { 6616 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6617 IsImporting); 6618 if (MOrErr) 6619 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6620 return MOrErr; 6621 } 6622 6623 Expected<std::unique_ptr<Module>> 6624 BitcodeModule::parseModule(LLVMContext &Context) { 6625 return getModuleImpl(Context, true, false, false); 6626 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6627 // written. We must defer until the Module has been fully materialized. 6628 } 6629 6630 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6631 LLVMContext &Context) { 6632 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6633 if (!BM) 6634 return BM.takeError(); 6635 6636 return BM->parseModule(Context); 6637 } 6638 6639 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6640 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6641 if (!StreamOrErr) 6642 return StreamOrErr.takeError(); 6643 6644 return readTriple(*StreamOrErr); 6645 } 6646 6647 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6648 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6649 if (!StreamOrErr) 6650 return StreamOrErr.takeError(); 6651 6652 return hasObjCCategory(*StreamOrErr); 6653 } 6654 6655 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6656 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6657 if (!StreamOrErr) 6658 return StreamOrErr.takeError(); 6659 6660 return readIdentificationCode(*StreamOrErr); 6661 } 6662 6663 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6664 ModuleSummaryIndex &CombinedIndex, 6665 uint64_t ModuleId) { 6666 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6667 if (!BM) 6668 return BM.takeError(); 6669 6670 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6671 } 6672 6673 Expected<std::unique_ptr<ModuleSummaryIndex>> 6674 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6675 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6676 if (!BM) 6677 return BM.takeError(); 6678 6679 return BM->getSummary(); 6680 } 6681 6682 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6683 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6684 if (!BM) 6685 return BM.takeError(); 6686 6687 return BM->getLTOInfo(); 6688 } 6689 6690 Expected<std::unique_ptr<ModuleSummaryIndex>> 6691 llvm::getModuleSummaryIndexForFile(StringRef Path, 6692 bool IgnoreEmptyThinLTOIndexFile) { 6693 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6694 MemoryBuffer::getFileOrSTDIN(Path); 6695 if (!FileOrErr) 6696 return errorCodeToError(FileOrErr.getError()); 6697 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6698 return nullptr; 6699 return getModuleSummaryIndex(**FileOrErr); 6700 } 6701