1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This header defines the BitcodeReader class. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/Bitcode/ReaderWriter.h" 15 #include "BitcodeReader.h" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/InlineAsm.h" 19 #include "llvm/IntrinsicInst.h" 20 #include "llvm/Module.h" 21 #include "llvm/Operator.h" 22 #include "llvm/AutoUpgrade.h" 23 #include "llvm/ADT/SmallString.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/Support/DataStream.h" 26 #include "llvm/Support/MathExtras.h" 27 #include "llvm/Support/MemoryBuffer.h" 28 #include "llvm/OperandTraits.h" 29 using namespace llvm; 30 31 enum { 32 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 33 }; 34 35 void BitcodeReader::materializeForwardReferencedFunctions() { 36 while (!BlockAddrFwdRefs.empty()) { 37 Function *F = BlockAddrFwdRefs.begin()->first; 38 F->Materialize(); 39 } 40 } 41 42 void BitcodeReader::FreeState() { 43 if (BufferOwned) 44 delete Buffer; 45 Buffer = 0; 46 std::vector<Type*>().swap(TypeList); 47 ValueList.clear(); 48 MDValueList.clear(); 49 50 std::vector<AttrListPtr>().swap(MAttributes); 51 std::vector<BasicBlock*>().swap(FunctionBBs); 52 std::vector<Function*>().swap(FunctionsWithBodies); 53 DeferredFunctionInfo.clear(); 54 MDKindMap.clear(); 55 } 56 57 //===----------------------------------------------------------------------===// 58 // Helper functions to implement forward reference resolution, etc. 59 //===----------------------------------------------------------------------===// 60 61 /// ConvertToString - Convert a string from a record into an std::string, return 62 /// true on failure. 63 template<typename StrTy> 64 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 65 StrTy &Result) { 66 if (Idx > Record.size()) 67 return true; 68 69 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 70 Result += (char)Record[i]; 71 return false; 72 } 73 74 static GlobalValue::LinkageTypes GetDecodedLinkage(unsigned Val) { 75 switch (Val) { 76 default: // Map unknown/new linkages to external 77 case 0: return GlobalValue::ExternalLinkage; 78 case 1: return GlobalValue::WeakAnyLinkage; 79 case 2: return GlobalValue::AppendingLinkage; 80 case 3: return GlobalValue::InternalLinkage; 81 case 4: return GlobalValue::LinkOnceAnyLinkage; 82 case 5: return GlobalValue::DLLImportLinkage; 83 case 6: return GlobalValue::DLLExportLinkage; 84 case 7: return GlobalValue::ExternalWeakLinkage; 85 case 8: return GlobalValue::CommonLinkage; 86 case 9: return GlobalValue::PrivateLinkage; 87 case 10: return GlobalValue::WeakODRLinkage; 88 case 11: return GlobalValue::LinkOnceODRLinkage; 89 case 12: return GlobalValue::AvailableExternallyLinkage; 90 case 13: return GlobalValue::LinkerPrivateLinkage; 91 case 14: return GlobalValue::LinkerPrivateWeakLinkage; 92 case 15: return GlobalValue::LinkOnceODRAutoHideLinkage; 93 } 94 } 95 96 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 97 switch (Val) { 98 default: // Map unknown visibilities to default. 99 case 0: return GlobalValue::DefaultVisibility; 100 case 1: return GlobalValue::HiddenVisibility; 101 case 2: return GlobalValue::ProtectedVisibility; 102 } 103 } 104 105 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 106 switch (Val) { 107 case 0: return GlobalVariable::NotThreadLocal; 108 default: // Map unknown non-zero value to general dynamic. 109 case 1: return GlobalVariable::GeneralDynamicTLSModel; 110 case 2: return GlobalVariable::LocalDynamicTLSModel; 111 case 3: return GlobalVariable::InitialExecTLSModel; 112 case 4: return GlobalVariable::LocalExecTLSModel; 113 } 114 } 115 116 static int GetDecodedCastOpcode(unsigned Val) { 117 switch (Val) { 118 default: return -1; 119 case bitc::CAST_TRUNC : return Instruction::Trunc; 120 case bitc::CAST_ZEXT : return Instruction::ZExt; 121 case bitc::CAST_SEXT : return Instruction::SExt; 122 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 123 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 124 case bitc::CAST_UITOFP : return Instruction::UIToFP; 125 case bitc::CAST_SITOFP : return Instruction::SIToFP; 126 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 127 case bitc::CAST_FPEXT : return Instruction::FPExt; 128 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 129 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 130 case bitc::CAST_BITCAST : return Instruction::BitCast; 131 } 132 } 133 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 134 switch (Val) { 135 default: return -1; 136 case bitc::BINOP_ADD: 137 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 138 case bitc::BINOP_SUB: 139 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 140 case bitc::BINOP_MUL: 141 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 142 case bitc::BINOP_UDIV: return Instruction::UDiv; 143 case bitc::BINOP_SDIV: 144 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 145 case bitc::BINOP_UREM: return Instruction::URem; 146 case bitc::BINOP_SREM: 147 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 148 case bitc::BINOP_SHL: return Instruction::Shl; 149 case bitc::BINOP_LSHR: return Instruction::LShr; 150 case bitc::BINOP_ASHR: return Instruction::AShr; 151 case bitc::BINOP_AND: return Instruction::And; 152 case bitc::BINOP_OR: return Instruction::Or; 153 case bitc::BINOP_XOR: return Instruction::Xor; 154 } 155 } 156 157 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 158 switch (Val) { 159 default: return AtomicRMWInst::BAD_BINOP; 160 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 161 case bitc::RMW_ADD: return AtomicRMWInst::Add; 162 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 163 case bitc::RMW_AND: return AtomicRMWInst::And; 164 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 165 case bitc::RMW_OR: return AtomicRMWInst::Or; 166 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 167 case bitc::RMW_MAX: return AtomicRMWInst::Max; 168 case bitc::RMW_MIN: return AtomicRMWInst::Min; 169 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 170 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 171 } 172 } 173 174 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 175 switch (Val) { 176 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 177 case bitc::ORDERING_UNORDERED: return Unordered; 178 case bitc::ORDERING_MONOTONIC: return Monotonic; 179 case bitc::ORDERING_ACQUIRE: return Acquire; 180 case bitc::ORDERING_RELEASE: return Release; 181 case bitc::ORDERING_ACQREL: return AcquireRelease; 182 default: // Map unknown orderings to sequentially-consistent. 183 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 184 } 185 } 186 187 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 188 switch (Val) { 189 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 190 default: // Map unknown scopes to cross-thread. 191 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 192 } 193 } 194 195 namespace llvm { 196 namespace { 197 /// @brief A class for maintaining the slot number definition 198 /// as a placeholder for the actual definition for forward constants defs. 199 class ConstantPlaceHolder : public ConstantExpr { 200 void operator=(const ConstantPlaceHolder &); // DO NOT IMPLEMENT 201 public: 202 // allocate space for exactly one operand 203 void *operator new(size_t s) { 204 return User::operator new(s, 1); 205 } 206 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 207 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 208 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 209 } 210 211 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 212 //static inline bool classof(const ConstantPlaceHolder *) { return true; } 213 static bool classof(const Value *V) { 214 return isa<ConstantExpr>(V) && 215 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 216 } 217 218 219 /// Provide fast operand accessors 220 //DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 221 }; 222 } 223 224 // FIXME: can we inherit this from ConstantExpr? 225 template <> 226 struct OperandTraits<ConstantPlaceHolder> : 227 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 228 }; 229 } 230 231 232 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 233 if (Idx == size()) { 234 push_back(V); 235 return; 236 } 237 238 if (Idx >= size()) 239 resize(Idx+1); 240 241 WeakVH &OldV = ValuePtrs[Idx]; 242 if (OldV == 0) { 243 OldV = V; 244 return; 245 } 246 247 // Handle constants and non-constants (e.g. instrs) differently for 248 // efficiency. 249 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 250 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 251 OldV = V; 252 } else { 253 // If there was a forward reference to this value, replace it. 254 Value *PrevVal = OldV; 255 OldV->replaceAllUsesWith(V); 256 delete PrevVal; 257 } 258 } 259 260 261 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 262 Type *Ty) { 263 if (Idx >= size()) 264 resize(Idx + 1); 265 266 if (Value *V = ValuePtrs[Idx]) { 267 assert(Ty == V->getType() && "Type mismatch in constant table!"); 268 return cast<Constant>(V); 269 } 270 271 // Create and return a placeholder, which will later be RAUW'd. 272 Constant *C = new ConstantPlaceHolder(Ty, Context); 273 ValuePtrs[Idx] = C; 274 return C; 275 } 276 277 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 278 if (Idx >= size()) 279 resize(Idx + 1); 280 281 if (Value *V = ValuePtrs[Idx]) { 282 assert((Ty == 0 || Ty == V->getType()) && "Type mismatch in value table!"); 283 return V; 284 } 285 286 // No type specified, must be invalid reference. 287 if (Ty == 0) return 0; 288 289 // Create and return a placeholder, which will later be RAUW'd. 290 Value *V = new Argument(Ty); 291 ValuePtrs[Idx] = V; 292 return V; 293 } 294 295 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 296 /// resolves any forward references. The idea behind this is that we sometimes 297 /// get constants (such as large arrays) which reference *many* forward ref 298 /// constants. Replacing each of these causes a lot of thrashing when 299 /// building/reuniquing the constant. Instead of doing this, we look at all the 300 /// uses and rewrite all the place holders at once for any constant that uses 301 /// a placeholder. 302 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 303 // Sort the values by-pointer so that they are efficient to look up with a 304 // binary search. 305 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 306 307 SmallVector<Constant*, 64> NewOps; 308 309 while (!ResolveConstants.empty()) { 310 Value *RealVal = operator[](ResolveConstants.back().second); 311 Constant *Placeholder = ResolveConstants.back().first; 312 ResolveConstants.pop_back(); 313 314 // Loop over all users of the placeholder, updating them to reference the 315 // new value. If they reference more than one placeholder, update them all 316 // at once. 317 while (!Placeholder->use_empty()) { 318 Value::use_iterator UI = Placeholder->use_begin(); 319 User *U = *UI; 320 321 // If the using object isn't uniqued, just update the operands. This 322 // handles instructions and initializers for global variables. 323 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 324 UI.getUse().set(RealVal); 325 continue; 326 } 327 328 // Otherwise, we have a constant that uses the placeholder. Replace that 329 // constant with a new constant that has *all* placeholder uses updated. 330 Constant *UserC = cast<Constant>(U); 331 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 332 I != E; ++I) { 333 Value *NewOp; 334 if (!isa<ConstantPlaceHolder>(*I)) { 335 // Not a placeholder reference. 336 NewOp = *I; 337 } else if (*I == Placeholder) { 338 // Common case is that it just references this one placeholder. 339 NewOp = RealVal; 340 } else { 341 // Otherwise, look up the placeholder in ResolveConstants. 342 ResolveConstantsTy::iterator It = 343 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 344 std::pair<Constant*, unsigned>(cast<Constant>(*I), 345 0)); 346 assert(It != ResolveConstants.end() && It->first == *I); 347 NewOp = operator[](It->second); 348 } 349 350 NewOps.push_back(cast<Constant>(NewOp)); 351 } 352 353 // Make the new constant. 354 Constant *NewC; 355 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 356 NewC = ConstantArray::get(UserCA->getType(), NewOps); 357 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 358 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 359 } else if (isa<ConstantVector>(UserC)) { 360 NewC = ConstantVector::get(NewOps); 361 } else { 362 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 363 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 364 } 365 366 UserC->replaceAllUsesWith(NewC); 367 UserC->destroyConstant(); 368 NewOps.clear(); 369 } 370 371 // Update all ValueHandles, they should be the only users at this point. 372 Placeholder->replaceAllUsesWith(RealVal); 373 delete Placeholder; 374 } 375 } 376 377 void BitcodeReaderMDValueList::AssignValue(Value *V, unsigned Idx) { 378 if (Idx == size()) { 379 push_back(V); 380 return; 381 } 382 383 if (Idx >= size()) 384 resize(Idx+1); 385 386 WeakVH &OldV = MDValuePtrs[Idx]; 387 if (OldV == 0) { 388 OldV = V; 389 return; 390 } 391 392 // If there was a forward reference to this value, replace it. 393 MDNode *PrevVal = cast<MDNode>(OldV); 394 OldV->replaceAllUsesWith(V); 395 MDNode::deleteTemporary(PrevVal); 396 // Deleting PrevVal sets Idx value in MDValuePtrs to null. Set new 397 // value for Idx. 398 MDValuePtrs[Idx] = V; 399 } 400 401 Value *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 402 if (Idx >= size()) 403 resize(Idx + 1); 404 405 if (Value *V = MDValuePtrs[Idx]) { 406 assert(V->getType()->isMetadataTy() && "Type mismatch in value table!"); 407 return V; 408 } 409 410 // Create and return a placeholder, which will later be RAUW'd. 411 Value *V = MDNode::getTemporary(Context, ArrayRef<Value*>()); 412 MDValuePtrs[Idx] = V; 413 return V; 414 } 415 416 Type *BitcodeReader::getTypeByID(unsigned ID) { 417 // The type table size is always specified correctly. 418 if (ID >= TypeList.size()) 419 return 0; 420 421 if (Type *Ty = TypeList[ID]) 422 return Ty; 423 424 // If we have a forward reference, the only possible case is when it is to a 425 // named struct. Just create a placeholder for now. 426 return TypeList[ID] = StructType::create(Context); 427 } 428 429 430 //===----------------------------------------------------------------------===// 431 // Functions for parsing blocks from the bitcode file 432 //===----------------------------------------------------------------------===// 433 434 bool BitcodeReader::ParseAttributeBlock() { 435 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 436 return Error("Malformed block record"); 437 438 if (!MAttributes.empty()) 439 return Error("Multiple PARAMATTR blocks found!"); 440 441 SmallVector<uint64_t, 64> Record; 442 443 SmallVector<AttributeWithIndex, 8> Attrs; 444 445 // Read all the records. 446 while (1) { 447 unsigned Code = Stream.ReadCode(); 448 if (Code == bitc::END_BLOCK) { 449 if (Stream.ReadBlockEnd()) 450 return Error("Error at end of PARAMATTR block"); 451 return false; 452 } 453 454 if (Code == bitc::ENTER_SUBBLOCK) { 455 // No known subblocks, always skip them. 456 Stream.ReadSubBlockID(); 457 if (Stream.SkipBlock()) 458 return Error("Malformed block record"); 459 continue; 460 } 461 462 if (Code == bitc::DEFINE_ABBREV) { 463 Stream.ReadAbbrevRecord(); 464 continue; 465 } 466 467 // Read a record. 468 Record.clear(); 469 switch (Stream.ReadRecord(Code, Record)) { 470 default: // Default behavior: ignore. 471 break; 472 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [paramidx0, attr0, ...] 473 if (Record.size() & 1) 474 return Error("Invalid ENTRY record"); 475 476 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 477 Attributes ReconstitutedAttr = 478 Attribute::decodeLLVMAttributesForBitcode(Record[i+1]); 479 Record[i+1] = ReconstitutedAttr.Raw(); 480 } 481 482 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 483 if (Attributes(Record[i+1]) != Attribute::None) 484 Attrs.push_back(AttributeWithIndex::get(Record[i], 485 Attributes(Record[i+1]))); 486 } 487 488 MAttributes.push_back(AttrListPtr::get(Attrs)); 489 Attrs.clear(); 490 break; 491 } 492 } 493 } 494 } 495 496 bool BitcodeReader::ParseTypeTable() { 497 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 498 return Error("Malformed block record"); 499 500 return ParseTypeTableBody(); 501 } 502 503 bool BitcodeReader::ParseTypeTableBody() { 504 if (!TypeList.empty()) 505 return Error("Multiple TYPE_BLOCKs found!"); 506 507 SmallVector<uint64_t, 64> Record; 508 unsigned NumRecords = 0; 509 510 SmallString<64> TypeName; 511 512 // Read all the records for this type table. 513 while (1) { 514 unsigned Code = Stream.ReadCode(); 515 if (Code == bitc::END_BLOCK) { 516 if (NumRecords != TypeList.size()) 517 return Error("Invalid type forward reference in TYPE_BLOCK"); 518 if (Stream.ReadBlockEnd()) 519 return Error("Error at end of type table block"); 520 return false; 521 } 522 523 if (Code == bitc::ENTER_SUBBLOCK) { 524 // No known subblocks, always skip them. 525 Stream.ReadSubBlockID(); 526 if (Stream.SkipBlock()) 527 return Error("Malformed block record"); 528 continue; 529 } 530 531 if (Code == bitc::DEFINE_ABBREV) { 532 Stream.ReadAbbrevRecord(); 533 continue; 534 } 535 536 // Read a record. 537 Record.clear(); 538 Type *ResultTy = 0; 539 switch (Stream.ReadRecord(Code, Record)) { 540 default: return Error("unknown type in type table"); 541 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 542 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 543 // type list. This allows us to reserve space. 544 if (Record.size() < 1) 545 return Error("Invalid TYPE_CODE_NUMENTRY record"); 546 TypeList.resize(Record[0]); 547 continue; 548 case bitc::TYPE_CODE_VOID: // VOID 549 ResultTy = Type::getVoidTy(Context); 550 break; 551 case bitc::TYPE_CODE_HALF: // HALF 552 ResultTy = Type::getHalfTy(Context); 553 break; 554 case bitc::TYPE_CODE_FLOAT: // FLOAT 555 ResultTy = Type::getFloatTy(Context); 556 break; 557 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 558 ResultTy = Type::getDoubleTy(Context); 559 break; 560 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 561 ResultTy = Type::getX86_FP80Ty(Context); 562 break; 563 case bitc::TYPE_CODE_FP128: // FP128 564 ResultTy = Type::getFP128Ty(Context); 565 break; 566 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 567 ResultTy = Type::getPPC_FP128Ty(Context); 568 break; 569 case bitc::TYPE_CODE_LABEL: // LABEL 570 ResultTy = Type::getLabelTy(Context); 571 break; 572 case bitc::TYPE_CODE_METADATA: // METADATA 573 ResultTy = Type::getMetadataTy(Context); 574 break; 575 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 576 ResultTy = Type::getX86_MMXTy(Context); 577 break; 578 case bitc::TYPE_CODE_INTEGER: // INTEGER: [width] 579 if (Record.size() < 1) 580 return Error("Invalid Integer type record"); 581 582 ResultTy = IntegerType::get(Context, Record[0]); 583 break; 584 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 585 // [pointee type, address space] 586 if (Record.size() < 1) 587 return Error("Invalid POINTER type record"); 588 unsigned AddressSpace = 0; 589 if (Record.size() == 2) 590 AddressSpace = Record[1]; 591 ResultTy = getTypeByID(Record[0]); 592 if (ResultTy == 0) return Error("invalid element type in pointer type"); 593 ResultTy = PointerType::get(ResultTy, AddressSpace); 594 break; 595 } 596 case bitc::TYPE_CODE_FUNCTION_OLD: { 597 // FIXME: attrid is dead, remove it in LLVM 4.0 598 // FUNCTION: [vararg, attrid, retty, paramty x N] 599 if (Record.size() < 3) 600 return Error("Invalid FUNCTION type record"); 601 SmallVector<Type*, 8> ArgTys; 602 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 603 if (Type *T = getTypeByID(Record[i])) 604 ArgTys.push_back(T); 605 else 606 break; 607 } 608 609 ResultTy = getTypeByID(Record[2]); 610 if (ResultTy == 0 || ArgTys.size() < Record.size()-3) 611 return Error("invalid type in function type"); 612 613 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 614 break; 615 } 616 case bitc::TYPE_CODE_FUNCTION: { 617 // FUNCTION: [vararg, retty, paramty x N] 618 if (Record.size() < 2) 619 return Error("Invalid FUNCTION type record"); 620 SmallVector<Type*, 8> ArgTys; 621 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 622 if (Type *T = getTypeByID(Record[i])) 623 ArgTys.push_back(T); 624 else 625 break; 626 } 627 628 ResultTy = getTypeByID(Record[1]); 629 if (ResultTy == 0 || ArgTys.size() < Record.size()-2) 630 return Error("invalid type in function type"); 631 632 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 633 break; 634 } 635 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 636 if (Record.size() < 1) 637 return Error("Invalid STRUCT type record"); 638 SmallVector<Type*, 8> EltTys; 639 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 640 if (Type *T = getTypeByID(Record[i])) 641 EltTys.push_back(T); 642 else 643 break; 644 } 645 if (EltTys.size() != Record.size()-1) 646 return Error("invalid type in struct type"); 647 ResultTy = StructType::get(Context, EltTys, Record[0]); 648 break; 649 } 650 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 651 if (ConvertToString(Record, 0, TypeName)) 652 return Error("Invalid STRUCT_NAME record"); 653 continue; 654 655 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 656 if (Record.size() < 1) 657 return Error("Invalid STRUCT type record"); 658 659 if (NumRecords >= TypeList.size()) 660 return Error("invalid TYPE table"); 661 662 // Check to see if this was forward referenced, if so fill in the temp. 663 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 664 if (Res) { 665 Res->setName(TypeName); 666 TypeList[NumRecords] = 0; 667 } else // Otherwise, create a new struct. 668 Res = StructType::create(Context, TypeName); 669 TypeName.clear(); 670 671 SmallVector<Type*, 8> EltTys; 672 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 673 if (Type *T = getTypeByID(Record[i])) 674 EltTys.push_back(T); 675 else 676 break; 677 } 678 if (EltTys.size() != Record.size()-1) 679 return Error("invalid STRUCT type record"); 680 Res->setBody(EltTys, Record[0]); 681 ResultTy = Res; 682 break; 683 } 684 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 685 if (Record.size() != 1) 686 return Error("Invalid OPAQUE type record"); 687 688 if (NumRecords >= TypeList.size()) 689 return Error("invalid TYPE table"); 690 691 // Check to see if this was forward referenced, if so fill in the temp. 692 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 693 if (Res) { 694 Res->setName(TypeName); 695 TypeList[NumRecords] = 0; 696 } else // Otherwise, create a new struct with no body. 697 Res = StructType::create(Context, TypeName); 698 TypeName.clear(); 699 ResultTy = Res; 700 break; 701 } 702 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 703 if (Record.size() < 2) 704 return Error("Invalid ARRAY type record"); 705 if ((ResultTy = getTypeByID(Record[1]))) 706 ResultTy = ArrayType::get(ResultTy, Record[0]); 707 else 708 return Error("Invalid ARRAY type element"); 709 break; 710 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 711 if (Record.size() < 2) 712 return Error("Invalid VECTOR type record"); 713 if ((ResultTy = getTypeByID(Record[1]))) 714 ResultTy = VectorType::get(ResultTy, Record[0]); 715 else 716 return Error("Invalid ARRAY type element"); 717 break; 718 } 719 720 if (NumRecords >= TypeList.size()) 721 return Error("invalid TYPE table"); 722 assert(ResultTy && "Didn't read a type?"); 723 assert(TypeList[NumRecords] == 0 && "Already read type?"); 724 TypeList[NumRecords++] = ResultTy; 725 } 726 } 727 728 bool BitcodeReader::ParseValueSymbolTable() { 729 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 730 return Error("Malformed block record"); 731 732 SmallVector<uint64_t, 64> Record; 733 734 // Read all the records for this value table. 735 SmallString<128> ValueName; 736 while (1) { 737 unsigned Code = Stream.ReadCode(); 738 if (Code == bitc::END_BLOCK) { 739 if (Stream.ReadBlockEnd()) 740 return Error("Error at end of value symbol table block"); 741 return false; 742 } 743 if (Code == bitc::ENTER_SUBBLOCK) { 744 // No known subblocks, always skip them. 745 Stream.ReadSubBlockID(); 746 if (Stream.SkipBlock()) 747 return Error("Malformed block record"); 748 continue; 749 } 750 751 if (Code == bitc::DEFINE_ABBREV) { 752 Stream.ReadAbbrevRecord(); 753 continue; 754 } 755 756 // Read a record. 757 Record.clear(); 758 switch (Stream.ReadRecord(Code, Record)) { 759 default: // Default behavior: unknown type. 760 break; 761 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 762 if (ConvertToString(Record, 1, ValueName)) 763 return Error("Invalid VST_ENTRY record"); 764 unsigned ValueID = Record[0]; 765 if (ValueID >= ValueList.size()) 766 return Error("Invalid Value ID in VST_ENTRY record"); 767 Value *V = ValueList[ValueID]; 768 769 V->setName(StringRef(ValueName.data(), ValueName.size())); 770 ValueName.clear(); 771 break; 772 } 773 case bitc::VST_CODE_BBENTRY: { 774 if (ConvertToString(Record, 1, ValueName)) 775 return Error("Invalid VST_BBENTRY record"); 776 BasicBlock *BB = getBasicBlock(Record[0]); 777 if (BB == 0) 778 return Error("Invalid BB ID in VST_BBENTRY record"); 779 780 BB->setName(StringRef(ValueName.data(), ValueName.size())); 781 ValueName.clear(); 782 break; 783 } 784 } 785 } 786 } 787 788 bool BitcodeReader::ParseMetadata() { 789 unsigned NextMDValueNo = MDValueList.size(); 790 791 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 792 return Error("Malformed block record"); 793 794 SmallVector<uint64_t, 64> Record; 795 796 // Read all the records. 797 while (1) { 798 unsigned Code = Stream.ReadCode(); 799 if (Code == bitc::END_BLOCK) { 800 if (Stream.ReadBlockEnd()) 801 return Error("Error at end of PARAMATTR block"); 802 return false; 803 } 804 805 if (Code == bitc::ENTER_SUBBLOCK) { 806 // No known subblocks, always skip them. 807 Stream.ReadSubBlockID(); 808 if (Stream.SkipBlock()) 809 return Error("Malformed block record"); 810 continue; 811 } 812 813 if (Code == bitc::DEFINE_ABBREV) { 814 Stream.ReadAbbrevRecord(); 815 continue; 816 } 817 818 bool IsFunctionLocal = false; 819 // Read a record. 820 Record.clear(); 821 Code = Stream.ReadRecord(Code, Record); 822 switch (Code) { 823 default: // Default behavior: ignore. 824 break; 825 case bitc::METADATA_NAME: { 826 // Read named of the named metadata. 827 SmallString<8> Name(Record.begin(), Record.end()); 828 Record.clear(); 829 Code = Stream.ReadCode(); 830 831 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 832 unsigned NextBitCode = Stream.ReadRecord(Code, Record); 833 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 834 835 // Read named metadata elements. 836 unsigned Size = Record.size(); 837 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 838 for (unsigned i = 0; i != Size; ++i) { 839 MDNode *MD = dyn_cast<MDNode>(MDValueList.getValueFwdRef(Record[i])); 840 if (MD == 0) 841 return Error("Malformed metadata record"); 842 NMD->addOperand(MD); 843 } 844 break; 845 } 846 case bitc::METADATA_FN_NODE: 847 IsFunctionLocal = true; 848 // fall-through 849 case bitc::METADATA_NODE: { 850 if (Record.size() % 2 == 1) 851 return Error("Invalid METADATA_NODE record"); 852 853 unsigned Size = Record.size(); 854 SmallVector<Value*, 8> Elts; 855 for (unsigned i = 0; i != Size; i += 2) { 856 Type *Ty = getTypeByID(Record[i]); 857 if (!Ty) return Error("Invalid METADATA_NODE record"); 858 if (Ty->isMetadataTy()) 859 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 860 else if (!Ty->isVoidTy()) 861 Elts.push_back(ValueList.getValueFwdRef(Record[i+1], Ty)); 862 else 863 Elts.push_back(NULL); 864 } 865 Value *V = MDNode::getWhenValsUnresolved(Context, Elts, IsFunctionLocal); 866 IsFunctionLocal = false; 867 MDValueList.AssignValue(V, NextMDValueNo++); 868 break; 869 } 870 case bitc::METADATA_STRING: { 871 SmallString<8> String(Record.begin(), Record.end()); 872 Value *V = MDString::get(Context, String); 873 MDValueList.AssignValue(V, NextMDValueNo++); 874 break; 875 } 876 case bitc::METADATA_KIND: { 877 if (Record.size() < 2) 878 return Error("Invalid METADATA_KIND record"); 879 880 unsigned Kind = Record[0]; 881 SmallString<8> Name(Record.begin()+1, Record.end()); 882 883 unsigned NewKind = TheModule->getMDKindID(Name.str()); 884 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 885 return Error("Conflicting METADATA_KIND records"); 886 break; 887 } 888 } 889 } 890 } 891 892 /// DecodeSignRotatedValue - Decode a signed value stored with the sign bit in 893 /// the LSB for dense VBR encoding. 894 static uint64_t DecodeSignRotatedValue(uint64_t V) { 895 if ((V & 1) == 0) 896 return V >> 1; 897 if (V != 1) 898 return -(V >> 1); 899 // There is no such thing as -0 with integers. "-0" really means MININT. 900 return 1ULL << 63; 901 } 902 903 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 904 /// values and aliases that we can. 905 bool BitcodeReader::ResolveGlobalAndAliasInits() { 906 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 907 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 908 909 GlobalInitWorklist.swap(GlobalInits); 910 AliasInitWorklist.swap(AliasInits); 911 912 while (!GlobalInitWorklist.empty()) { 913 unsigned ValID = GlobalInitWorklist.back().second; 914 if (ValID >= ValueList.size()) { 915 // Not ready to resolve this yet, it requires something later in the file. 916 GlobalInits.push_back(GlobalInitWorklist.back()); 917 } else { 918 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 919 GlobalInitWorklist.back().first->setInitializer(C); 920 else 921 return Error("Global variable initializer is not a constant!"); 922 } 923 GlobalInitWorklist.pop_back(); 924 } 925 926 while (!AliasInitWorklist.empty()) { 927 unsigned ValID = AliasInitWorklist.back().second; 928 if (ValID >= ValueList.size()) { 929 AliasInits.push_back(AliasInitWorklist.back()); 930 } else { 931 if (Constant *C = dyn_cast<Constant>(ValueList[ValID])) 932 AliasInitWorklist.back().first->setAliasee(C); 933 else 934 return Error("Alias initializer is not a constant!"); 935 } 936 AliasInitWorklist.pop_back(); 937 } 938 return false; 939 } 940 941 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 942 SmallVector<uint64_t, 8> Words(Vals.size()); 943 std::transform(Vals.begin(), Vals.end(), Words.begin(), 944 DecodeSignRotatedValue); 945 946 return APInt(TypeBits, Words); 947 } 948 949 bool BitcodeReader::ParseConstants() { 950 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 951 return Error("Malformed block record"); 952 953 SmallVector<uint64_t, 64> Record; 954 955 // Read all the records for this value table. 956 Type *CurTy = Type::getInt32Ty(Context); 957 unsigned NextCstNo = ValueList.size(); 958 while (1) { 959 unsigned Code = Stream.ReadCode(); 960 if (Code == bitc::END_BLOCK) 961 break; 962 963 if (Code == bitc::ENTER_SUBBLOCK) { 964 // No known subblocks, always skip them. 965 Stream.ReadSubBlockID(); 966 if (Stream.SkipBlock()) 967 return Error("Malformed block record"); 968 continue; 969 } 970 971 if (Code == bitc::DEFINE_ABBREV) { 972 Stream.ReadAbbrevRecord(); 973 continue; 974 } 975 976 // Read a record. 977 Record.clear(); 978 Value *V = 0; 979 unsigned BitCode = Stream.ReadRecord(Code, Record); 980 switch (BitCode) { 981 default: // Default behavior: unknown constant 982 case bitc::CST_CODE_UNDEF: // UNDEF 983 V = UndefValue::get(CurTy); 984 break; 985 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 986 if (Record.empty()) 987 return Error("Malformed CST_SETTYPE record"); 988 if (Record[0] >= TypeList.size()) 989 return Error("Invalid Type ID in CST_SETTYPE record"); 990 CurTy = TypeList[Record[0]]; 991 continue; // Skip the ValueList manipulation. 992 case bitc::CST_CODE_NULL: // NULL 993 V = Constant::getNullValue(CurTy); 994 break; 995 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 996 if (!CurTy->isIntegerTy() || Record.empty()) 997 return Error("Invalid CST_INTEGER record"); 998 V = ConstantInt::get(CurTy, DecodeSignRotatedValue(Record[0])); 999 break; 1000 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1001 if (!CurTy->isIntegerTy() || Record.empty()) 1002 return Error("Invalid WIDE_INTEGER record"); 1003 1004 APInt VInt = ReadWideAPInt(Record, 1005 cast<IntegerType>(CurTy)->getBitWidth()); 1006 V = ConstantInt::get(Context, VInt); 1007 1008 break; 1009 } 1010 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1011 if (Record.empty()) 1012 return Error("Invalid FLOAT record"); 1013 if (CurTy->isHalfTy()) 1014 V = ConstantFP::get(Context, APFloat(APInt(16, (uint16_t)Record[0]))); 1015 else if (CurTy->isFloatTy()) 1016 V = ConstantFP::get(Context, APFloat(APInt(32, (uint32_t)Record[0]))); 1017 else if (CurTy->isDoubleTy()) 1018 V = ConstantFP::get(Context, APFloat(APInt(64, Record[0]))); 1019 else if (CurTy->isX86_FP80Ty()) { 1020 // Bits are not stored the same way as a normal i80 APInt, compensate. 1021 uint64_t Rearrange[2]; 1022 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1023 Rearrange[1] = Record[0] >> 48; 1024 V = ConstantFP::get(Context, APFloat(APInt(80, Rearrange))); 1025 } else if (CurTy->isFP128Ty()) 1026 V = ConstantFP::get(Context, APFloat(APInt(128, Record), true)); 1027 else if (CurTy->isPPC_FP128Ty()) 1028 V = ConstantFP::get(Context, APFloat(APInt(128, Record))); 1029 else 1030 V = UndefValue::get(CurTy); 1031 break; 1032 } 1033 1034 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1035 if (Record.empty()) 1036 return Error("Invalid CST_AGGREGATE record"); 1037 1038 unsigned Size = Record.size(); 1039 SmallVector<Constant*, 16> Elts; 1040 1041 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1042 for (unsigned i = 0; i != Size; ++i) 1043 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1044 STy->getElementType(i))); 1045 V = ConstantStruct::get(STy, Elts); 1046 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1047 Type *EltTy = ATy->getElementType(); 1048 for (unsigned i = 0; i != Size; ++i) 1049 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1050 V = ConstantArray::get(ATy, Elts); 1051 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1052 Type *EltTy = VTy->getElementType(); 1053 for (unsigned i = 0; i != Size; ++i) 1054 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1055 V = ConstantVector::get(Elts); 1056 } else { 1057 V = UndefValue::get(CurTy); 1058 } 1059 break; 1060 } 1061 case bitc::CST_CODE_STRING: // STRING: [values] 1062 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1063 if (Record.empty()) 1064 return Error("Invalid CST_STRING record"); 1065 1066 SmallString<16> Elts(Record.begin(), Record.end()); 1067 V = ConstantDataArray::getString(Context, Elts, 1068 BitCode == bitc::CST_CODE_CSTRING); 1069 break; 1070 } 1071 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1072 if (Record.empty()) 1073 return Error("Invalid CST_DATA record"); 1074 1075 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1076 unsigned Size = Record.size(); 1077 1078 if (EltTy->isIntegerTy(8)) { 1079 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1080 if (isa<VectorType>(CurTy)) 1081 V = ConstantDataVector::get(Context, Elts); 1082 else 1083 V = ConstantDataArray::get(Context, Elts); 1084 } else if (EltTy->isIntegerTy(16)) { 1085 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1086 if (isa<VectorType>(CurTy)) 1087 V = ConstantDataVector::get(Context, Elts); 1088 else 1089 V = ConstantDataArray::get(Context, Elts); 1090 } else if (EltTy->isIntegerTy(32)) { 1091 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1092 if (isa<VectorType>(CurTy)) 1093 V = ConstantDataVector::get(Context, Elts); 1094 else 1095 V = ConstantDataArray::get(Context, Elts); 1096 } else if (EltTy->isIntegerTy(64)) { 1097 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1098 if (isa<VectorType>(CurTy)) 1099 V = ConstantDataVector::get(Context, Elts); 1100 else 1101 V = ConstantDataArray::get(Context, Elts); 1102 } else if (EltTy->isFloatTy()) { 1103 SmallVector<float, 16> Elts(Size); 1104 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1105 if (isa<VectorType>(CurTy)) 1106 V = ConstantDataVector::get(Context, Elts); 1107 else 1108 V = ConstantDataArray::get(Context, Elts); 1109 } else if (EltTy->isDoubleTy()) { 1110 SmallVector<double, 16> Elts(Size); 1111 std::transform(Record.begin(), Record.end(), Elts.begin(), 1112 BitsToDouble); 1113 if (isa<VectorType>(CurTy)) 1114 V = ConstantDataVector::get(Context, Elts); 1115 else 1116 V = ConstantDataArray::get(Context, Elts); 1117 } else { 1118 return Error("Unknown element type in CE_DATA"); 1119 } 1120 break; 1121 } 1122 1123 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1124 if (Record.size() < 3) return Error("Invalid CE_BINOP record"); 1125 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1126 if (Opc < 0) { 1127 V = UndefValue::get(CurTy); // Unknown binop. 1128 } else { 1129 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1130 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1131 unsigned Flags = 0; 1132 if (Record.size() >= 4) { 1133 if (Opc == Instruction::Add || 1134 Opc == Instruction::Sub || 1135 Opc == Instruction::Mul || 1136 Opc == Instruction::Shl) { 1137 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1138 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1139 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1140 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1141 } else if (Opc == Instruction::SDiv || 1142 Opc == Instruction::UDiv || 1143 Opc == Instruction::LShr || 1144 Opc == Instruction::AShr) { 1145 if (Record[3] & (1 << bitc::PEO_EXACT)) 1146 Flags |= SDivOperator::IsExact; 1147 } 1148 } 1149 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1150 } 1151 break; 1152 } 1153 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1154 if (Record.size() < 3) return Error("Invalid CE_CAST record"); 1155 int Opc = GetDecodedCastOpcode(Record[0]); 1156 if (Opc < 0) { 1157 V = UndefValue::get(CurTy); // Unknown cast. 1158 } else { 1159 Type *OpTy = getTypeByID(Record[1]); 1160 if (!OpTy) return Error("Invalid CE_CAST record"); 1161 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1162 V = ConstantExpr::getCast(Opc, Op, CurTy); 1163 } 1164 break; 1165 } 1166 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1167 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1168 if (Record.size() & 1) return Error("Invalid CE_GEP record"); 1169 SmallVector<Constant*, 16> Elts; 1170 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1171 Type *ElTy = getTypeByID(Record[i]); 1172 if (!ElTy) return Error("Invalid CE_GEP record"); 1173 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1174 } 1175 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1176 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1177 BitCode == 1178 bitc::CST_CODE_CE_INBOUNDS_GEP); 1179 break; 1180 } 1181 case bitc::CST_CODE_CE_SELECT: // CE_SELECT: [opval#, opval#, opval#] 1182 if (Record.size() < 3) return Error("Invalid CE_SELECT record"); 1183 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1184 Type::getInt1Ty(Context)), 1185 ValueList.getConstantFwdRef(Record[1],CurTy), 1186 ValueList.getConstantFwdRef(Record[2],CurTy)); 1187 break; 1188 case bitc::CST_CODE_CE_EXTRACTELT: { // CE_EXTRACTELT: [opty, opval, opval] 1189 if (Record.size() < 3) return Error("Invalid CE_EXTRACTELT record"); 1190 VectorType *OpTy = 1191 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1192 if (OpTy == 0) return Error("Invalid CE_EXTRACTELT record"); 1193 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1194 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1195 V = ConstantExpr::getExtractElement(Op0, Op1); 1196 break; 1197 } 1198 case bitc::CST_CODE_CE_INSERTELT: { // CE_INSERTELT: [opval, opval, opval] 1199 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1200 if (Record.size() < 3 || OpTy == 0) 1201 return Error("Invalid CE_INSERTELT record"); 1202 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1203 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1204 OpTy->getElementType()); 1205 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1206 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1207 break; 1208 } 1209 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1210 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1211 if (Record.size() < 3 || OpTy == 0) 1212 return Error("Invalid CE_SHUFFLEVEC record"); 1213 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1214 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1215 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1216 OpTy->getNumElements()); 1217 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1218 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1219 break; 1220 } 1221 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1222 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1223 VectorType *OpTy = 1224 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1225 if (Record.size() < 4 || RTy == 0 || OpTy == 0) 1226 return Error("Invalid CE_SHUFVEC_EX record"); 1227 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1228 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1229 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1230 RTy->getNumElements()); 1231 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1232 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1233 break; 1234 } 1235 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1236 if (Record.size() < 4) return Error("Invalid CE_CMP record"); 1237 Type *OpTy = getTypeByID(Record[0]); 1238 if (OpTy == 0) return Error("Invalid CE_CMP record"); 1239 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1240 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1241 1242 if (OpTy->isFPOrFPVectorTy()) 1243 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1244 else 1245 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1246 break; 1247 } 1248 // This maintains backward compatibility, pre-'nsdialect'. 1249 case bitc::CST_CODE_INLINEASM_OLD: { 1250 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 1251 std::string AsmStr, ConstrStr; 1252 bool HasSideEffects = Record[0] & 1; 1253 bool IsAlignStack = Record[0] >> 1; 1254 unsigned AsmStrSize = Record[1]; 1255 if (2+AsmStrSize >= Record.size()) 1256 return Error("Invalid INLINEASM record"); 1257 unsigned ConstStrSize = Record[2+AsmStrSize]; 1258 if (3+AsmStrSize+ConstStrSize > Record.size()) 1259 return Error("Invalid INLINEASM record"); 1260 1261 for (unsigned i = 0; i != AsmStrSize; ++i) 1262 AsmStr += (char)Record[2+i]; 1263 for (unsigned i = 0; i != ConstStrSize; ++i) 1264 ConstrStr += (char)Record[3+AsmStrSize+i]; 1265 PointerType *PTy = cast<PointerType>(CurTy); 1266 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1267 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1268 break; 1269 } 1270 // This version adds support for the 'nsdialect' keyword. 1271 case bitc::CST_CODE_INLINEASM: { 1272 if (Record.size() < 2) return Error("Invalid INLINEASM record"); 1273 std::string AsmStr, ConstrStr; 1274 bool HasSideEffects = Record[0] & 1; 1275 bool IsAlignStack = (Record[0] >> 1) & 1; 1276 unsigned AsmDialect = Record[0] >> 2; 1277 unsigned AsmStrSize = Record[1]; 1278 if (2+AsmStrSize >= Record.size()) 1279 return Error("Invalid INLINEASM record"); 1280 unsigned ConstStrSize = Record[2+AsmStrSize]; 1281 if (3+AsmStrSize+ConstStrSize > Record.size()) 1282 return Error("Invalid INLINEASM record"); 1283 1284 for (unsigned i = 0; i != AsmStrSize; ++i) 1285 AsmStr += (char)Record[2+i]; 1286 for (unsigned i = 0; i != ConstStrSize; ++i) 1287 ConstrStr += (char)Record[3+AsmStrSize+i]; 1288 PointerType *PTy = cast<PointerType>(CurTy); 1289 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1290 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1291 AsmDialect); 1292 break; 1293 } 1294 case bitc::CST_CODE_BLOCKADDRESS:{ 1295 if (Record.size() < 3) return Error("Invalid CE_BLOCKADDRESS record"); 1296 Type *FnTy = getTypeByID(Record[0]); 1297 if (FnTy == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1298 Function *Fn = 1299 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1300 if (Fn == 0) return Error("Invalid CE_BLOCKADDRESS record"); 1301 1302 GlobalVariable *FwdRef = new GlobalVariable(*Fn->getParent(), 1303 Type::getInt8Ty(Context), 1304 false, GlobalValue::InternalLinkage, 1305 0, ""); 1306 BlockAddrFwdRefs[Fn].push_back(std::make_pair(Record[2], FwdRef)); 1307 V = FwdRef; 1308 break; 1309 } 1310 } 1311 1312 ValueList.AssignValue(V, NextCstNo); 1313 ++NextCstNo; 1314 } 1315 1316 if (NextCstNo != ValueList.size()) 1317 return Error("Invalid constant reference!"); 1318 1319 if (Stream.ReadBlockEnd()) 1320 return Error("Error at end of constants block"); 1321 1322 // Once all the constants have been read, go through and resolve forward 1323 // references. 1324 ValueList.ResolveConstantForwardRefs(); 1325 return false; 1326 } 1327 1328 bool BitcodeReader::ParseUseLists() { 1329 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1330 return Error("Malformed block record"); 1331 1332 SmallVector<uint64_t, 64> Record; 1333 1334 // Read all the records. 1335 while (1) { 1336 unsigned Code = Stream.ReadCode(); 1337 if (Code == bitc::END_BLOCK) { 1338 if (Stream.ReadBlockEnd()) 1339 return Error("Error at end of use-list table block"); 1340 return false; 1341 } 1342 1343 if (Code == bitc::ENTER_SUBBLOCK) { 1344 // No known subblocks, always skip them. 1345 Stream.ReadSubBlockID(); 1346 if (Stream.SkipBlock()) 1347 return Error("Malformed block record"); 1348 continue; 1349 } 1350 1351 if (Code == bitc::DEFINE_ABBREV) { 1352 Stream.ReadAbbrevRecord(); 1353 continue; 1354 } 1355 1356 // Read a use list record. 1357 Record.clear(); 1358 switch (Stream.ReadRecord(Code, Record)) { 1359 default: // Default behavior: unknown type. 1360 break; 1361 case bitc::USELIST_CODE_ENTRY: { // USELIST_CODE_ENTRY: TBD. 1362 unsigned RecordLength = Record.size(); 1363 if (RecordLength < 1) 1364 return Error ("Invalid UseList reader!"); 1365 UseListRecords.push_back(Record); 1366 break; 1367 } 1368 } 1369 } 1370 } 1371 1372 /// RememberAndSkipFunctionBody - When we see the block for a function body, 1373 /// remember where it is and then skip it. This lets us lazily deserialize the 1374 /// functions. 1375 bool BitcodeReader::RememberAndSkipFunctionBody() { 1376 // Get the function we are talking about. 1377 if (FunctionsWithBodies.empty()) 1378 return Error("Insufficient function protos"); 1379 1380 Function *Fn = FunctionsWithBodies.back(); 1381 FunctionsWithBodies.pop_back(); 1382 1383 // Save the current stream state. 1384 uint64_t CurBit = Stream.GetCurrentBitNo(); 1385 DeferredFunctionInfo[Fn] = CurBit; 1386 1387 // Skip over the function block for now. 1388 if (Stream.SkipBlock()) 1389 return Error("Malformed block record"); 1390 return false; 1391 } 1392 1393 bool BitcodeReader::GlobalCleanup() { 1394 // Patch the initializers for globals and aliases up. 1395 ResolveGlobalAndAliasInits(); 1396 if (!GlobalInits.empty() || !AliasInits.empty()) 1397 return Error("Malformed global initializer set"); 1398 1399 // Look for intrinsic functions which need to be upgraded at some point 1400 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 1401 FI != FE; ++FI) { 1402 Function *NewFn; 1403 if (UpgradeIntrinsicFunction(FI, NewFn)) 1404 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 1405 } 1406 1407 // Look for global variables which need to be renamed. 1408 for (Module::global_iterator 1409 GI = TheModule->global_begin(), GE = TheModule->global_end(); 1410 GI != GE; ++GI) 1411 UpgradeGlobalVariable(GI); 1412 // Force deallocation of memory for these vectors to favor the client that 1413 // want lazy deserialization. 1414 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 1415 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 1416 return false; 1417 } 1418 1419 bool BitcodeReader::ParseModule(bool Resume) { 1420 if (Resume) 1421 Stream.JumpToBit(NextUnreadBit); 1422 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1423 return Error("Malformed block record"); 1424 1425 SmallVector<uint64_t, 64> Record; 1426 std::vector<std::string> SectionTable; 1427 std::vector<std::string> GCTable; 1428 1429 // Read all the records for this module. 1430 while (!Stream.AtEndOfStream()) { 1431 unsigned Code = Stream.ReadCode(); 1432 if (Code == bitc::END_BLOCK) { 1433 if (Stream.ReadBlockEnd()) 1434 return Error("Error at end of module block"); 1435 1436 return GlobalCleanup(); 1437 } 1438 1439 if (Code == bitc::ENTER_SUBBLOCK) { 1440 switch (Stream.ReadSubBlockID()) { 1441 default: // Skip unknown content. 1442 if (Stream.SkipBlock()) 1443 return Error("Malformed block record"); 1444 break; 1445 case bitc::BLOCKINFO_BLOCK_ID: 1446 if (Stream.ReadBlockInfoBlock()) 1447 return Error("Malformed BlockInfoBlock"); 1448 break; 1449 case bitc::PARAMATTR_BLOCK_ID: 1450 if (ParseAttributeBlock()) 1451 return true; 1452 break; 1453 case bitc::TYPE_BLOCK_ID_NEW: 1454 if (ParseTypeTable()) 1455 return true; 1456 break; 1457 case bitc::VALUE_SYMTAB_BLOCK_ID: 1458 if (ParseValueSymbolTable()) 1459 return true; 1460 SeenValueSymbolTable = true; 1461 break; 1462 case bitc::CONSTANTS_BLOCK_ID: 1463 if (ParseConstants() || ResolveGlobalAndAliasInits()) 1464 return true; 1465 break; 1466 case bitc::METADATA_BLOCK_ID: 1467 if (ParseMetadata()) 1468 return true; 1469 break; 1470 case bitc::FUNCTION_BLOCK_ID: 1471 // If this is the first function body we've seen, reverse the 1472 // FunctionsWithBodies list. 1473 if (!SeenFirstFunctionBody) { 1474 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 1475 if (GlobalCleanup()) 1476 return true; 1477 SeenFirstFunctionBody = true; 1478 } 1479 1480 if (RememberAndSkipFunctionBody()) 1481 return true; 1482 // For streaming bitcode, suspend parsing when we reach the function 1483 // bodies. Subsequent materialization calls will resume it when 1484 // necessary. For streaming, the function bodies must be at the end of 1485 // the bitcode. If the bitcode file is old, the symbol table will be 1486 // at the end instead and will not have been seen yet. In this case, 1487 // just finish the parse now. 1488 if (LazyStreamer && SeenValueSymbolTable) { 1489 NextUnreadBit = Stream.GetCurrentBitNo(); 1490 return false; 1491 } 1492 break; 1493 case bitc::USELIST_BLOCK_ID: 1494 if (ParseUseLists()) 1495 return true; 1496 break; 1497 } 1498 continue; 1499 } 1500 1501 if (Code == bitc::DEFINE_ABBREV) { 1502 Stream.ReadAbbrevRecord(); 1503 continue; 1504 } 1505 1506 // Read a record. 1507 switch (Stream.ReadRecord(Code, Record)) { 1508 default: break; // Default behavior, ignore unknown content. 1509 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1510 if (Record.size() < 1) 1511 return Error("Malformed MODULE_CODE_VERSION"); 1512 // Only version #0 is supported so far. 1513 if (Record[0] != 0) 1514 return Error("Unknown bitstream version!"); 1515 break; 1516 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1517 std::string S; 1518 if (ConvertToString(Record, 0, S)) 1519 return Error("Invalid MODULE_CODE_TRIPLE record"); 1520 TheModule->setTargetTriple(S); 1521 break; 1522 } 1523 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 1524 std::string S; 1525 if (ConvertToString(Record, 0, S)) 1526 return Error("Invalid MODULE_CODE_DATALAYOUT record"); 1527 TheModule->setDataLayout(S); 1528 break; 1529 } 1530 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 1531 std::string S; 1532 if (ConvertToString(Record, 0, S)) 1533 return Error("Invalid MODULE_CODE_ASM record"); 1534 TheModule->setModuleInlineAsm(S); 1535 break; 1536 } 1537 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 1538 std::string S; 1539 if (ConvertToString(Record, 0, S)) 1540 return Error("Invalid MODULE_CODE_DEPLIB record"); 1541 TheModule->addLibrary(S); 1542 break; 1543 } 1544 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 1545 std::string S; 1546 if (ConvertToString(Record, 0, S)) 1547 return Error("Invalid MODULE_CODE_SECTIONNAME record"); 1548 SectionTable.push_back(S); 1549 break; 1550 } 1551 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 1552 std::string S; 1553 if (ConvertToString(Record, 0, S)) 1554 return Error("Invalid MODULE_CODE_GCNAME record"); 1555 GCTable.push_back(S); 1556 break; 1557 } 1558 // GLOBALVAR: [pointer type, isconst, initid, 1559 // linkage, alignment, section, visibility, threadlocal, 1560 // unnamed_addr] 1561 case bitc::MODULE_CODE_GLOBALVAR: { 1562 if (Record.size() < 6) 1563 return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1564 Type *Ty = getTypeByID(Record[0]); 1565 if (!Ty) return Error("Invalid MODULE_CODE_GLOBALVAR record"); 1566 if (!Ty->isPointerTy()) 1567 return Error("Global not a pointer type!"); 1568 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 1569 Ty = cast<PointerType>(Ty)->getElementType(); 1570 1571 bool isConstant = Record[1]; 1572 GlobalValue::LinkageTypes Linkage = GetDecodedLinkage(Record[3]); 1573 unsigned Alignment = (1 << Record[4]) >> 1; 1574 std::string Section; 1575 if (Record[5]) { 1576 if (Record[5]-1 >= SectionTable.size()) 1577 return Error("Invalid section ID"); 1578 Section = SectionTable[Record[5]-1]; 1579 } 1580 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 1581 if (Record.size() > 6) 1582 Visibility = GetDecodedVisibility(Record[6]); 1583 1584 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 1585 if (Record.size() > 7) 1586 TLM = GetDecodedThreadLocalMode(Record[7]); 1587 1588 bool UnnamedAddr = false; 1589 if (Record.size() > 8) 1590 UnnamedAddr = Record[8]; 1591 1592 GlobalVariable *NewGV = 1593 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, 0, "", 0, 1594 TLM, AddressSpace); 1595 NewGV->setAlignment(Alignment); 1596 if (!Section.empty()) 1597 NewGV->setSection(Section); 1598 NewGV->setVisibility(Visibility); 1599 NewGV->setUnnamedAddr(UnnamedAddr); 1600 1601 ValueList.push_back(NewGV); 1602 1603 // Remember which value to use for the global initializer. 1604 if (unsigned InitID = Record[2]) 1605 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 1606 break; 1607 } 1608 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 1609 // alignment, section, visibility, gc, unnamed_addr] 1610 case bitc::MODULE_CODE_FUNCTION: { 1611 if (Record.size() < 8) 1612 return Error("Invalid MODULE_CODE_FUNCTION record"); 1613 Type *Ty = getTypeByID(Record[0]); 1614 if (!Ty) return Error("Invalid MODULE_CODE_FUNCTION record"); 1615 if (!Ty->isPointerTy()) 1616 return Error("Function not a pointer type!"); 1617 FunctionType *FTy = 1618 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 1619 if (!FTy) 1620 return Error("Function not a pointer to function type!"); 1621 1622 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 1623 "", TheModule); 1624 1625 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 1626 bool isProto = Record[2]; 1627 Func->setLinkage(GetDecodedLinkage(Record[3])); 1628 Func->setAttributes(getAttributes(Record[4])); 1629 1630 Func->setAlignment((1 << Record[5]) >> 1); 1631 if (Record[6]) { 1632 if (Record[6]-1 >= SectionTable.size()) 1633 return Error("Invalid section ID"); 1634 Func->setSection(SectionTable[Record[6]-1]); 1635 } 1636 Func->setVisibility(GetDecodedVisibility(Record[7])); 1637 if (Record.size() > 8 && Record[8]) { 1638 if (Record[8]-1 > GCTable.size()) 1639 return Error("Invalid GC ID"); 1640 Func->setGC(GCTable[Record[8]-1].c_str()); 1641 } 1642 bool UnnamedAddr = false; 1643 if (Record.size() > 9) 1644 UnnamedAddr = Record[9]; 1645 Func->setUnnamedAddr(UnnamedAddr); 1646 ValueList.push_back(Func); 1647 1648 // If this is a function with a body, remember the prototype we are 1649 // creating now, so that we can match up the body with them later. 1650 if (!isProto) { 1651 FunctionsWithBodies.push_back(Func); 1652 if (LazyStreamer) DeferredFunctionInfo[Func] = 0; 1653 } 1654 break; 1655 } 1656 // ALIAS: [alias type, aliasee val#, linkage] 1657 // ALIAS: [alias type, aliasee val#, linkage, visibility] 1658 case bitc::MODULE_CODE_ALIAS: { 1659 if (Record.size() < 3) 1660 return Error("Invalid MODULE_ALIAS record"); 1661 Type *Ty = getTypeByID(Record[0]); 1662 if (!Ty) return Error("Invalid MODULE_ALIAS record"); 1663 if (!Ty->isPointerTy()) 1664 return Error("Function not a pointer type!"); 1665 1666 GlobalAlias *NewGA = new GlobalAlias(Ty, GetDecodedLinkage(Record[2]), 1667 "", 0, TheModule); 1668 // Old bitcode files didn't have visibility field. 1669 if (Record.size() > 3) 1670 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 1671 ValueList.push_back(NewGA); 1672 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 1673 break; 1674 } 1675 /// MODULE_CODE_PURGEVALS: [numvals] 1676 case bitc::MODULE_CODE_PURGEVALS: 1677 // Trim down the value list to the specified size. 1678 if (Record.size() < 1 || Record[0] > ValueList.size()) 1679 return Error("Invalid MODULE_PURGEVALS record"); 1680 ValueList.shrinkTo(Record[0]); 1681 break; 1682 } 1683 Record.clear(); 1684 } 1685 1686 return Error("Premature end of bitstream"); 1687 } 1688 1689 bool BitcodeReader::ParseBitcodeInto(Module *M) { 1690 TheModule = 0; 1691 1692 if (InitStream()) return true; 1693 1694 // Sniff for the signature. 1695 if (Stream.Read(8) != 'B' || 1696 Stream.Read(8) != 'C' || 1697 Stream.Read(4) != 0x0 || 1698 Stream.Read(4) != 0xC || 1699 Stream.Read(4) != 0xE || 1700 Stream.Read(4) != 0xD) 1701 return Error("Invalid bitcode signature"); 1702 1703 // We expect a number of well-defined blocks, though we don't necessarily 1704 // need to understand them all. 1705 while (!Stream.AtEndOfStream()) { 1706 unsigned Code = Stream.ReadCode(); 1707 1708 if (Code != bitc::ENTER_SUBBLOCK) { 1709 1710 // The ranlib in xcode 4 will align archive members by appending newlines 1711 // to the end of them. If this file size is a multiple of 4 but not 8, we 1712 // have to read and ignore these final 4 bytes :-( 1713 if (Stream.GetAbbrevIDWidth() == 2 && Code == 2 && 1714 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 1715 Stream.AtEndOfStream()) 1716 return false; 1717 1718 return Error("Invalid record at top-level"); 1719 } 1720 1721 unsigned BlockID = Stream.ReadSubBlockID(); 1722 1723 // We only know the MODULE subblock ID. 1724 switch (BlockID) { 1725 case bitc::BLOCKINFO_BLOCK_ID: 1726 if (Stream.ReadBlockInfoBlock()) 1727 return Error("Malformed BlockInfoBlock"); 1728 break; 1729 case bitc::MODULE_BLOCK_ID: 1730 // Reject multiple MODULE_BLOCK's in a single bitstream. 1731 if (TheModule) 1732 return Error("Multiple MODULE_BLOCKs in same stream"); 1733 TheModule = M; 1734 if (ParseModule(false)) 1735 return true; 1736 if (LazyStreamer) return false; 1737 break; 1738 default: 1739 if (Stream.SkipBlock()) 1740 return Error("Malformed block record"); 1741 break; 1742 } 1743 } 1744 1745 return false; 1746 } 1747 1748 bool BitcodeReader::ParseModuleTriple(std::string &Triple) { 1749 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 1750 return Error("Malformed block record"); 1751 1752 SmallVector<uint64_t, 64> Record; 1753 1754 // Read all the records for this module. 1755 while (!Stream.AtEndOfStream()) { 1756 unsigned Code = Stream.ReadCode(); 1757 if (Code == bitc::END_BLOCK) { 1758 if (Stream.ReadBlockEnd()) 1759 return Error("Error at end of module block"); 1760 1761 return false; 1762 } 1763 1764 if (Code == bitc::ENTER_SUBBLOCK) { 1765 switch (Stream.ReadSubBlockID()) { 1766 default: // Skip unknown content. 1767 if (Stream.SkipBlock()) 1768 return Error("Malformed block record"); 1769 break; 1770 } 1771 continue; 1772 } 1773 1774 if (Code == bitc::DEFINE_ABBREV) { 1775 Stream.ReadAbbrevRecord(); 1776 continue; 1777 } 1778 1779 // Read a record. 1780 switch (Stream.ReadRecord(Code, Record)) { 1781 default: break; // Default behavior, ignore unknown content. 1782 case bitc::MODULE_CODE_VERSION: // VERSION: [version#] 1783 if (Record.size() < 1) 1784 return Error("Malformed MODULE_CODE_VERSION"); 1785 // Only version #0 is supported so far. 1786 if (Record[0] != 0) 1787 return Error("Unknown bitstream version!"); 1788 break; 1789 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 1790 std::string S; 1791 if (ConvertToString(Record, 0, S)) 1792 return Error("Invalid MODULE_CODE_TRIPLE record"); 1793 Triple = S; 1794 break; 1795 } 1796 } 1797 Record.clear(); 1798 } 1799 1800 return Error("Premature end of bitstream"); 1801 } 1802 1803 bool BitcodeReader::ParseTriple(std::string &Triple) { 1804 if (InitStream()) return true; 1805 1806 // Sniff for the signature. 1807 if (Stream.Read(8) != 'B' || 1808 Stream.Read(8) != 'C' || 1809 Stream.Read(4) != 0x0 || 1810 Stream.Read(4) != 0xC || 1811 Stream.Read(4) != 0xE || 1812 Stream.Read(4) != 0xD) 1813 return Error("Invalid bitcode signature"); 1814 1815 // We expect a number of well-defined blocks, though we don't necessarily 1816 // need to understand them all. 1817 while (!Stream.AtEndOfStream()) { 1818 unsigned Code = Stream.ReadCode(); 1819 1820 if (Code != bitc::ENTER_SUBBLOCK) 1821 return Error("Invalid record at top-level"); 1822 1823 unsigned BlockID = Stream.ReadSubBlockID(); 1824 1825 // We only know the MODULE subblock ID. 1826 switch (BlockID) { 1827 case bitc::MODULE_BLOCK_ID: 1828 if (ParseModuleTriple(Triple)) 1829 return true; 1830 break; 1831 default: 1832 if (Stream.SkipBlock()) 1833 return Error("Malformed block record"); 1834 break; 1835 } 1836 } 1837 1838 return false; 1839 } 1840 1841 /// ParseMetadataAttachment - Parse metadata attachments. 1842 bool BitcodeReader::ParseMetadataAttachment() { 1843 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 1844 return Error("Malformed block record"); 1845 1846 SmallVector<uint64_t, 64> Record; 1847 while(1) { 1848 unsigned Code = Stream.ReadCode(); 1849 if (Code == bitc::END_BLOCK) { 1850 if (Stream.ReadBlockEnd()) 1851 return Error("Error at end of PARAMATTR block"); 1852 break; 1853 } 1854 if (Code == bitc::DEFINE_ABBREV) { 1855 Stream.ReadAbbrevRecord(); 1856 continue; 1857 } 1858 // Read a metadata attachment record. 1859 Record.clear(); 1860 switch (Stream.ReadRecord(Code, Record)) { 1861 default: // Default behavior: ignore. 1862 break; 1863 case bitc::METADATA_ATTACHMENT: { 1864 unsigned RecordLength = Record.size(); 1865 if (Record.empty() || (RecordLength - 1) % 2 == 1) 1866 return Error ("Invalid METADATA_ATTACHMENT reader!"); 1867 Instruction *Inst = InstructionList[Record[0]]; 1868 for (unsigned i = 1; i != RecordLength; i = i+2) { 1869 unsigned Kind = Record[i]; 1870 DenseMap<unsigned, unsigned>::iterator I = 1871 MDKindMap.find(Kind); 1872 if (I == MDKindMap.end()) 1873 return Error("Invalid metadata kind ID"); 1874 Value *Node = MDValueList.getValueFwdRef(Record[i+1]); 1875 Inst->setMetadata(I->second, cast<MDNode>(Node)); 1876 } 1877 break; 1878 } 1879 } 1880 } 1881 return false; 1882 } 1883 1884 /// ParseFunctionBody - Lazily parse the specified function body block. 1885 bool BitcodeReader::ParseFunctionBody(Function *F) { 1886 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 1887 return Error("Malformed block record"); 1888 1889 InstructionList.clear(); 1890 unsigned ModuleValueListSize = ValueList.size(); 1891 unsigned ModuleMDValueListSize = MDValueList.size(); 1892 1893 // Add all the function arguments to the value table. 1894 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 1895 ValueList.push_back(I); 1896 1897 unsigned NextValueNo = ValueList.size(); 1898 BasicBlock *CurBB = 0; 1899 unsigned CurBBNo = 0; 1900 1901 DebugLoc LastLoc; 1902 1903 // Read all the records. 1904 SmallVector<uint64_t, 64> Record; 1905 while (1) { 1906 unsigned Code = Stream.ReadCode(); 1907 if (Code == bitc::END_BLOCK) { 1908 if (Stream.ReadBlockEnd()) 1909 return Error("Error at end of function block"); 1910 break; 1911 } 1912 1913 if (Code == bitc::ENTER_SUBBLOCK) { 1914 switch (Stream.ReadSubBlockID()) { 1915 default: // Skip unknown content. 1916 if (Stream.SkipBlock()) 1917 return Error("Malformed block record"); 1918 break; 1919 case bitc::CONSTANTS_BLOCK_ID: 1920 if (ParseConstants()) return true; 1921 NextValueNo = ValueList.size(); 1922 break; 1923 case bitc::VALUE_SYMTAB_BLOCK_ID: 1924 if (ParseValueSymbolTable()) return true; 1925 break; 1926 case bitc::METADATA_ATTACHMENT_ID: 1927 if (ParseMetadataAttachment()) return true; 1928 break; 1929 case bitc::METADATA_BLOCK_ID: 1930 if (ParseMetadata()) return true; 1931 break; 1932 } 1933 continue; 1934 } 1935 1936 if (Code == bitc::DEFINE_ABBREV) { 1937 Stream.ReadAbbrevRecord(); 1938 continue; 1939 } 1940 1941 // Read a record. 1942 Record.clear(); 1943 Instruction *I = 0; 1944 unsigned BitCode = Stream.ReadRecord(Code, Record); 1945 switch (BitCode) { 1946 default: // Default behavior: reject 1947 return Error("Unknown instruction"); 1948 case bitc::FUNC_CODE_DECLAREBLOCKS: // DECLAREBLOCKS: [nblocks] 1949 if (Record.size() < 1 || Record[0] == 0) 1950 return Error("Invalid DECLAREBLOCKS record"); 1951 // Create all the basic blocks for the function. 1952 FunctionBBs.resize(Record[0]); 1953 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 1954 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 1955 CurBB = FunctionBBs[0]; 1956 continue; 1957 1958 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 1959 // This record indicates that the last instruction is at the same 1960 // location as the previous instruction with a location. 1961 I = 0; 1962 1963 // Get the last instruction emitted. 1964 if (CurBB && !CurBB->empty()) 1965 I = &CurBB->back(); 1966 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1967 !FunctionBBs[CurBBNo-1]->empty()) 1968 I = &FunctionBBs[CurBBNo-1]->back(); 1969 1970 if (I == 0) return Error("Invalid DEBUG_LOC_AGAIN record"); 1971 I->setDebugLoc(LastLoc); 1972 I = 0; 1973 continue; 1974 1975 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 1976 I = 0; // Get the last instruction emitted. 1977 if (CurBB && !CurBB->empty()) 1978 I = &CurBB->back(); 1979 else if (CurBBNo && FunctionBBs[CurBBNo-1] && 1980 !FunctionBBs[CurBBNo-1]->empty()) 1981 I = &FunctionBBs[CurBBNo-1]->back(); 1982 if (I == 0 || Record.size() < 4) 1983 return Error("Invalid FUNC_CODE_DEBUG_LOC record"); 1984 1985 unsigned Line = Record[0], Col = Record[1]; 1986 unsigned ScopeID = Record[2], IAID = Record[3]; 1987 1988 MDNode *Scope = 0, *IA = 0; 1989 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 1990 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 1991 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 1992 I->setDebugLoc(LastLoc); 1993 I = 0; 1994 continue; 1995 } 1996 1997 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 1998 unsigned OpNum = 0; 1999 Value *LHS, *RHS; 2000 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2001 getValue(Record, OpNum, LHS->getType(), RHS) || 2002 OpNum+1 > Record.size()) 2003 return Error("Invalid BINOP record"); 2004 2005 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2006 if (Opc == -1) return Error("Invalid BINOP record"); 2007 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2008 InstructionList.push_back(I); 2009 if (OpNum < Record.size()) { 2010 if (Opc == Instruction::Add || 2011 Opc == Instruction::Sub || 2012 Opc == Instruction::Mul || 2013 Opc == Instruction::Shl) { 2014 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2015 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2016 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2017 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2018 } else if (Opc == Instruction::SDiv || 2019 Opc == Instruction::UDiv || 2020 Opc == Instruction::LShr || 2021 Opc == Instruction::AShr) { 2022 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2023 cast<BinaryOperator>(I)->setIsExact(true); 2024 } 2025 } 2026 break; 2027 } 2028 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2029 unsigned OpNum = 0; 2030 Value *Op; 2031 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2032 OpNum+2 != Record.size()) 2033 return Error("Invalid CAST record"); 2034 2035 Type *ResTy = getTypeByID(Record[OpNum]); 2036 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2037 if (Opc == -1 || ResTy == 0) 2038 return Error("Invalid CAST record"); 2039 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2040 InstructionList.push_back(I); 2041 break; 2042 } 2043 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2044 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2045 unsigned OpNum = 0; 2046 Value *BasePtr; 2047 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2048 return Error("Invalid GEP record"); 2049 2050 SmallVector<Value*, 16> GEPIdx; 2051 while (OpNum != Record.size()) { 2052 Value *Op; 2053 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2054 return Error("Invalid GEP record"); 2055 GEPIdx.push_back(Op); 2056 } 2057 2058 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2059 InstructionList.push_back(I); 2060 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2061 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2062 break; 2063 } 2064 2065 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2066 // EXTRACTVAL: [opty, opval, n x indices] 2067 unsigned OpNum = 0; 2068 Value *Agg; 2069 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2070 return Error("Invalid EXTRACTVAL record"); 2071 2072 SmallVector<unsigned, 4> EXTRACTVALIdx; 2073 for (unsigned RecSize = Record.size(); 2074 OpNum != RecSize; ++OpNum) { 2075 uint64_t Index = Record[OpNum]; 2076 if ((unsigned)Index != Index) 2077 return Error("Invalid EXTRACTVAL index"); 2078 EXTRACTVALIdx.push_back((unsigned)Index); 2079 } 2080 2081 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2082 InstructionList.push_back(I); 2083 break; 2084 } 2085 2086 case bitc::FUNC_CODE_INST_INSERTVAL: { 2087 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2088 unsigned OpNum = 0; 2089 Value *Agg; 2090 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2091 return Error("Invalid INSERTVAL record"); 2092 Value *Val; 2093 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2094 return Error("Invalid INSERTVAL record"); 2095 2096 SmallVector<unsigned, 4> INSERTVALIdx; 2097 for (unsigned RecSize = Record.size(); 2098 OpNum != RecSize; ++OpNum) { 2099 uint64_t Index = Record[OpNum]; 2100 if ((unsigned)Index != Index) 2101 return Error("Invalid INSERTVAL index"); 2102 INSERTVALIdx.push_back((unsigned)Index); 2103 } 2104 2105 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2106 InstructionList.push_back(I); 2107 break; 2108 } 2109 2110 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2111 // obsolete form of select 2112 // handles select i1 ... in old bitcode 2113 unsigned OpNum = 0; 2114 Value *TrueVal, *FalseVal, *Cond; 2115 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2116 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 2117 getValue(Record, OpNum, Type::getInt1Ty(Context), Cond)) 2118 return Error("Invalid SELECT record"); 2119 2120 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2121 InstructionList.push_back(I); 2122 break; 2123 } 2124 2125 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2126 // new form of select 2127 // handles select i1 or select [N x i1] 2128 unsigned OpNum = 0; 2129 Value *TrueVal, *FalseVal, *Cond; 2130 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2131 getValue(Record, OpNum, TrueVal->getType(), FalseVal) || 2132 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2133 return Error("Invalid SELECT record"); 2134 2135 // select condition can be either i1 or [N x i1] 2136 if (VectorType* vector_type = 2137 dyn_cast<VectorType>(Cond->getType())) { 2138 // expect <n x i1> 2139 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2140 return Error("Invalid SELECT condition type"); 2141 } else { 2142 // expect i1 2143 if (Cond->getType() != Type::getInt1Ty(Context)) 2144 return Error("Invalid SELECT condition type"); 2145 } 2146 2147 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2148 InstructionList.push_back(I); 2149 break; 2150 } 2151 2152 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2153 unsigned OpNum = 0; 2154 Value *Vec, *Idx; 2155 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2156 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 2157 return Error("Invalid EXTRACTELT record"); 2158 I = ExtractElementInst::Create(Vec, Idx); 2159 InstructionList.push_back(I); 2160 break; 2161 } 2162 2163 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2164 unsigned OpNum = 0; 2165 Value *Vec, *Elt, *Idx; 2166 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2167 getValue(Record, OpNum, 2168 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 2169 getValue(Record, OpNum, Type::getInt32Ty(Context), Idx)) 2170 return Error("Invalid INSERTELT record"); 2171 I = InsertElementInst::Create(Vec, Elt, Idx); 2172 InstructionList.push_back(I); 2173 break; 2174 } 2175 2176 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 2177 unsigned OpNum = 0; 2178 Value *Vec1, *Vec2, *Mask; 2179 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 2180 getValue(Record, OpNum, Vec1->getType(), Vec2)) 2181 return Error("Invalid SHUFFLEVEC record"); 2182 2183 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 2184 return Error("Invalid SHUFFLEVEC record"); 2185 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 2186 InstructionList.push_back(I); 2187 break; 2188 } 2189 2190 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 2191 // Old form of ICmp/FCmp returning bool 2192 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 2193 // both legal on vectors but had different behaviour. 2194 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 2195 // FCmp/ICmp returning bool or vector of bool 2196 2197 unsigned OpNum = 0; 2198 Value *LHS, *RHS; 2199 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2200 getValue(Record, OpNum, LHS->getType(), RHS) || 2201 OpNum+1 != Record.size()) 2202 return Error("Invalid CMP record"); 2203 2204 if (LHS->getType()->isFPOrFPVectorTy()) 2205 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 2206 else 2207 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 2208 InstructionList.push_back(I); 2209 break; 2210 } 2211 2212 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 2213 { 2214 unsigned Size = Record.size(); 2215 if (Size == 0) { 2216 I = ReturnInst::Create(Context); 2217 InstructionList.push_back(I); 2218 break; 2219 } 2220 2221 unsigned OpNum = 0; 2222 Value *Op = NULL; 2223 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2224 return Error("Invalid RET record"); 2225 if (OpNum != Record.size()) 2226 return Error("Invalid RET record"); 2227 2228 I = ReturnInst::Create(Context, Op); 2229 InstructionList.push_back(I); 2230 break; 2231 } 2232 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 2233 if (Record.size() != 1 && Record.size() != 3) 2234 return Error("Invalid BR record"); 2235 BasicBlock *TrueDest = getBasicBlock(Record[0]); 2236 if (TrueDest == 0) 2237 return Error("Invalid BR record"); 2238 2239 if (Record.size() == 1) { 2240 I = BranchInst::Create(TrueDest); 2241 InstructionList.push_back(I); 2242 } 2243 else { 2244 BasicBlock *FalseDest = getBasicBlock(Record[1]); 2245 Value *Cond = getFnValueByID(Record[2], Type::getInt1Ty(Context)); 2246 if (FalseDest == 0 || Cond == 0) 2247 return Error("Invalid BR record"); 2248 I = BranchInst::Create(TrueDest, FalseDest, Cond); 2249 InstructionList.push_back(I); 2250 } 2251 break; 2252 } 2253 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 2254 // Check magic 2255 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 2256 // New SwitchInst format with case ranges. 2257 2258 Type *OpTy = getTypeByID(Record[1]); 2259 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 2260 2261 Value *Cond = getFnValueByID(Record[2], OpTy); 2262 BasicBlock *Default = getBasicBlock(Record[3]); 2263 if (OpTy == 0 || Cond == 0 || Default == 0) 2264 return Error("Invalid SWITCH record"); 2265 2266 unsigned NumCases = Record[4]; 2267 2268 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2269 InstructionList.push_back(SI); 2270 2271 unsigned CurIdx = 5; 2272 for (unsigned i = 0; i != NumCases; ++i) { 2273 IntegersSubsetToBB CaseBuilder; 2274 unsigned NumItems = Record[CurIdx++]; 2275 for (unsigned ci = 0; ci != NumItems; ++ci) { 2276 bool isSingleNumber = Record[CurIdx++]; 2277 2278 APInt Low; 2279 unsigned ActiveWords = 1; 2280 if (ValueBitWidth > 64) 2281 ActiveWords = Record[CurIdx++]; 2282 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2283 ValueBitWidth); 2284 CurIdx += ActiveWords; 2285 2286 if (!isSingleNumber) { 2287 ActiveWords = 1; 2288 if (ValueBitWidth > 64) 2289 ActiveWords = Record[CurIdx++]; 2290 APInt High = 2291 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 2292 ValueBitWidth); 2293 2294 CaseBuilder.add(IntItem::fromType(OpTy, Low), 2295 IntItem::fromType(OpTy, High)); 2296 CurIdx += ActiveWords; 2297 } else 2298 CaseBuilder.add(IntItem::fromType(OpTy, Low)); 2299 } 2300 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 2301 IntegersSubset Case = CaseBuilder.getCase(); 2302 SI->addCase(Case, DestBB); 2303 } 2304 uint16_t Hash = SI->hash(); 2305 if (Hash != (Record[0] & 0xFFFF)) 2306 return Error("Invalid SWITCH record"); 2307 I = SI; 2308 break; 2309 } 2310 2311 // Old SwitchInst format without case ranges. 2312 2313 if (Record.size() < 3 || (Record.size() & 1) == 0) 2314 return Error("Invalid SWITCH record"); 2315 Type *OpTy = getTypeByID(Record[0]); 2316 Value *Cond = getFnValueByID(Record[1], OpTy); 2317 BasicBlock *Default = getBasicBlock(Record[2]); 2318 if (OpTy == 0 || Cond == 0 || Default == 0) 2319 return Error("Invalid SWITCH record"); 2320 unsigned NumCases = (Record.size()-3)/2; 2321 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 2322 InstructionList.push_back(SI); 2323 for (unsigned i = 0, e = NumCases; i != e; ++i) { 2324 ConstantInt *CaseVal = 2325 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 2326 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 2327 if (CaseVal == 0 || DestBB == 0) { 2328 delete SI; 2329 return Error("Invalid SWITCH record!"); 2330 } 2331 SI->addCase(CaseVal, DestBB); 2332 } 2333 I = SI; 2334 break; 2335 } 2336 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 2337 if (Record.size() < 2) 2338 return Error("Invalid INDIRECTBR record"); 2339 Type *OpTy = getTypeByID(Record[0]); 2340 Value *Address = getFnValueByID(Record[1], OpTy); 2341 if (OpTy == 0 || Address == 0) 2342 return Error("Invalid INDIRECTBR record"); 2343 unsigned NumDests = Record.size()-2; 2344 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 2345 InstructionList.push_back(IBI); 2346 for (unsigned i = 0, e = NumDests; i != e; ++i) { 2347 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 2348 IBI->addDestination(DestBB); 2349 } else { 2350 delete IBI; 2351 return Error("Invalid INDIRECTBR record!"); 2352 } 2353 } 2354 I = IBI; 2355 break; 2356 } 2357 2358 case bitc::FUNC_CODE_INST_INVOKE: { 2359 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 2360 if (Record.size() < 4) return Error("Invalid INVOKE record"); 2361 AttrListPtr PAL = getAttributes(Record[0]); 2362 unsigned CCInfo = Record[1]; 2363 BasicBlock *NormalBB = getBasicBlock(Record[2]); 2364 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 2365 2366 unsigned OpNum = 4; 2367 Value *Callee; 2368 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2369 return Error("Invalid INVOKE record"); 2370 2371 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 2372 FunctionType *FTy = !CalleeTy ? 0 : 2373 dyn_cast<FunctionType>(CalleeTy->getElementType()); 2374 2375 // Check that the right number of fixed parameters are here. 2376 if (FTy == 0 || NormalBB == 0 || UnwindBB == 0 || 2377 Record.size() < OpNum+FTy->getNumParams()) 2378 return Error("Invalid INVOKE record"); 2379 2380 SmallVector<Value*, 16> Ops; 2381 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2382 Ops.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2383 if (Ops.back() == 0) return Error("Invalid INVOKE record"); 2384 } 2385 2386 if (!FTy->isVarArg()) { 2387 if (Record.size() != OpNum) 2388 return Error("Invalid INVOKE record"); 2389 } else { 2390 // Read type/value pairs for varargs params. 2391 while (OpNum != Record.size()) { 2392 Value *Op; 2393 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2394 return Error("Invalid INVOKE record"); 2395 Ops.push_back(Op); 2396 } 2397 } 2398 2399 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 2400 InstructionList.push_back(I); 2401 cast<InvokeInst>(I)->setCallingConv( 2402 static_cast<CallingConv::ID>(CCInfo)); 2403 cast<InvokeInst>(I)->setAttributes(PAL); 2404 break; 2405 } 2406 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 2407 unsigned Idx = 0; 2408 Value *Val = 0; 2409 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 2410 return Error("Invalid RESUME record"); 2411 I = ResumeInst::Create(Val); 2412 InstructionList.push_back(I); 2413 break; 2414 } 2415 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 2416 I = new UnreachableInst(Context); 2417 InstructionList.push_back(I); 2418 break; 2419 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 2420 if (Record.size() < 1 || ((Record.size()-1)&1)) 2421 return Error("Invalid PHI record"); 2422 Type *Ty = getTypeByID(Record[0]); 2423 if (!Ty) return Error("Invalid PHI record"); 2424 2425 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 2426 InstructionList.push_back(PN); 2427 2428 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 2429 Value *V = getFnValueByID(Record[1+i], Ty); 2430 BasicBlock *BB = getBasicBlock(Record[2+i]); 2431 if (!V || !BB) return Error("Invalid PHI record"); 2432 PN->addIncoming(V, BB); 2433 } 2434 I = PN; 2435 break; 2436 } 2437 2438 case bitc::FUNC_CODE_INST_LANDINGPAD: { 2439 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 2440 unsigned Idx = 0; 2441 if (Record.size() < 4) 2442 return Error("Invalid LANDINGPAD record"); 2443 Type *Ty = getTypeByID(Record[Idx++]); 2444 if (!Ty) return Error("Invalid LANDINGPAD record"); 2445 Value *PersFn = 0; 2446 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 2447 return Error("Invalid LANDINGPAD record"); 2448 2449 bool IsCleanup = !!Record[Idx++]; 2450 unsigned NumClauses = Record[Idx++]; 2451 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 2452 LP->setCleanup(IsCleanup); 2453 for (unsigned J = 0; J != NumClauses; ++J) { 2454 LandingPadInst::ClauseType CT = 2455 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 2456 Value *Val; 2457 2458 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 2459 delete LP; 2460 return Error("Invalid LANDINGPAD record"); 2461 } 2462 2463 assert((CT != LandingPadInst::Catch || 2464 !isa<ArrayType>(Val->getType())) && 2465 "Catch clause has a invalid type!"); 2466 assert((CT != LandingPadInst::Filter || 2467 isa<ArrayType>(Val->getType())) && 2468 "Filter clause has invalid type!"); 2469 LP->addClause(Val); 2470 } 2471 2472 I = LP; 2473 InstructionList.push_back(I); 2474 break; 2475 } 2476 2477 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 2478 if (Record.size() != 4) 2479 return Error("Invalid ALLOCA record"); 2480 PointerType *Ty = 2481 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 2482 Type *OpTy = getTypeByID(Record[1]); 2483 Value *Size = getFnValueByID(Record[2], OpTy); 2484 unsigned Align = Record[3]; 2485 if (!Ty || !Size) return Error("Invalid ALLOCA record"); 2486 I = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 2487 InstructionList.push_back(I); 2488 break; 2489 } 2490 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 2491 unsigned OpNum = 0; 2492 Value *Op; 2493 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2494 OpNum+2 != Record.size()) 2495 return Error("Invalid LOAD record"); 2496 2497 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2498 InstructionList.push_back(I); 2499 break; 2500 } 2501 case bitc::FUNC_CODE_INST_LOADATOMIC: { 2502 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 2503 unsigned OpNum = 0; 2504 Value *Op; 2505 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2506 OpNum+4 != Record.size()) 2507 return Error("Invalid LOADATOMIC record"); 2508 2509 2510 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2511 if (Ordering == NotAtomic || Ordering == Release || 2512 Ordering == AcquireRelease) 2513 return Error("Invalid LOADATOMIC record"); 2514 if (Ordering != NotAtomic && Record[OpNum] == 0) 2515 return Error("Invalid LOADATOMIC record"); 2516 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2517 2518 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 2519 Ordering, SynchScope); 2520 InstructionList.push_back(I); 2521 break; 2522 } 2523 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 2524 unsigned OpNum = 0; 2525 Value *Val, *Ptr; 2526 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2527 getValue(Record, OpNum, 2528 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2529 OpNum+2 != Record.size()) 2530 return Error("Invalid STORE record"); 2531 2532 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 2533 InstructionList.push_back(I); 2534 break; 2535 } 2536 case bitc::FUNC_CODE_INST_STOREATOMIC: { 2537 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 2538 unsigned OpNum = 0; 2539 Value *Val, *Ptr; 2540 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2541 getValue(Record, OpNum, 2542 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2543 OpNum+4 != Record.size()) 2544 return Error("Invalid STOREATOMIC record"); 2545 2546 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2547 if (Ordering == NotAtomic || Ordering == Acquire || 2548 Ordering == AcquireRelease) 2549 return Error("Invalid STOREATOMIC record"); 2550 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2551 if (Ordering != NotAtomic && Record[OpNum] == 0) 2552 return Error("Invalid STOREATOMIC record"); 2553 2554 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 2555 Ordering, SynchScope); 2556 InstructionList.push_back(I); 2557 break; 2558 } 2559 case bitc::FUNC_CODE_INST_CMPXCHG: { 2560 // CMPXCHG:[ptrty, ptr, cmp, new, vol, ordering, synchscope] 2561 unsigned OpNum = 0; 2562 Value *Ptr, *Cmp, *New; 2563 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2564 getValue(Record, OpNum, 2565 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 2566 getValue(Record, OpNum, 2567 cast<PointerType>(Ptr->getType())->getElementType(), New) || 2568 OpNum+3 != Record.size()) 2569 return Error("Invalid CMPXCHG record"); 2570 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+1]); 2571 if (Ordering == NotAtomic || Ordering == Unordered) 2572 return Error("Invalid CMPXCHG record"); 2573 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 2574 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, SynchScope); 2575 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 2576 InstructionList.push_back(I); 2577 break; 2578 } 2579 case bitc::FUNC_CODE_INST_ATOMICRMW: { 2580 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 2581 unsigned OpNum = 0; 2582 Value *Ptr, *Val; 2583 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 2584 getValue(Record, OpNum, 2585 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 2586 OpNum+4 != Record.size()) 2587 return Error("Invalid ATOMICRMW record"); 2588 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 2589 if (Operation < AtomicRMWInst::FIRST_BINOP || 2590 Operation > AtomicRMWInst::LAST_BINOP) 2591 return Error("Invalid ATOMICRMW record"); 2592 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 2593 if (Ordering == NotAtomic || Ordering == Unordered) 2594 return Error("Invalid ATOMICRMW record"); 2595 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 2596 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 2597 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 2598 InstructionList.push_back(I); 2599 break; 2600 } 2601 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 2602 if (2 != Record.size()) 2603 return Error("Invalid FENCE record"); 2604 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 2605 if (Ordering == NotAtomic || Ordering == Unordered || 2606 Ordering == Monotonic) 2607 return Error("Invalid FENCE record"); 2608 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 2609 I = new FenceInst(Context, Ordering, SynchScope); 2610 InstructionList.push_back(I); 2611 break; 2612 } 2613 case bitc::FUNC_CODE_INST_CALL: { 2614 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 2615 if (Record.size() < 3) 2616 return Error("Invalid CALL record"); 2617 2618 AttrListPtr PAL = getAttributes(Record[0]); 2619 unsigned CCInfo = Record[1]; 2620 2621 unsigned OpNum = 2; 2622 Value *Callee; 2623 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 2624 return Error("Invalid CALL record"); 2625 2626 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 2627 FunctionType *FTy = 0; 2628 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 2629 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 2630 return Error("Invalid CALL record"); 2631 2632 SmallVector<Value*, 16> Args; 2633 // Read the fixed params. 2634 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 2635 if (FTy->getParamType(i)->isLabelTy()) 2636 Args.push_back(getBasicBlock(Record[OpNum])); 2637 else 2638 Args.push_back(getFnValueByID(Record[OpNum], FTy->getParamType(i))); 2639 if (Args.back() == 0) return Error("Invalid CALL record"); 2640 } 2641 2642 // Read type/value pairs for varargs params. 2643 if (!FTy->isVarArg()) { 2644 if (OpNum != Record.size()) 2645 return Error("Invalid CALL record"); 2646 } else { 2647 while (OpNum != Record.size()) { 2648 Value *Op; 2649 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2650 return Error("Invalid CALL record"); 2651 Args.push_back(Op); 2652 } 2653 } 2654 2655 I = CallInst::Create(Callee, Args); 2656 InstructionList.push_back(I); 2657 cast<CallInst>(I)->setCallingConv( 2658 static_cast<CallingConv::ID>(CCInfo>>1)); 2659 cast<CallInst>(I)->setTailCall(CCInfo & 1); 2660 cast<CallInst>(I)->setAttributes(PAL); 2661 break; 2662 } 2663 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 2664 if (Record.size() < 3) 2665 return Error("Invalid VAARG record"); 2666 Type *OpTy = getTypeByID(Record[0]); 2667 Value *Op = getFnValueByID(Record[1], OpTy); 2668 Type *ResTy = getTypeByID(Record[2]); 2669 if (!OpTy || !Op || !ResTy) 2670 return Error("Invalid VAARG record"); 2671 I = new VAArgInst(Op, ResTy); 2672 InstructionList.push_back(I); 2673 break; 2674 } 2675 } 2676 2677 // Add instruction to end of current BB. If there is no current BB, reject 2678 // this file. 2679 if (CurBB == 0) { 2680 delete I; 2681 return Error("Invalid instruction with no BB"); 2682 } 2683 CurBB->getInstList().push_back(I); 2684 2685 // If this was a terminator instruction, move to the next block. 2686 if (isa<TerminatorInst>(I)) { 2687 ++CurBBNo; 2688 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : 0; 2689 } 2690 2691 // Non-void values get registered in the value table for future use. 2692 if (I && !I->getType()->isVoidTy()) 2693 ValueList.AssignValue(I, NextValueNo++); 2694 } 2695 2696 // Check the function list for unresolved values. 2697 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 2698 if (A->getParent() == 0) { 2699 // We found at least one unresolved value. Nuke them all to avoid leaks. 2700 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 2701 if ((A = dyn_cast<Argument>(ValueList[i])) && A->getParent() == 0) { 2702 A->replaceAllUsesWith(UndefValue::get(A->getType())); 2703 delete A; 2704 } 2705 } 2706 return Error("Never resolved value found in function!"); 2707 } 2708 } 2709 2710 // FIXME: Check for unresolved forward-declared metadata references 2711 // and clean up leaks. 2712 2713 // See if anything took the address of blocks in this function. If so, 2714 // resolve them now. 2715 DenseMap<Function*, std::vector<BlockAddrRefTy> >::iterator BAFRI = 2716 BlockAddrFwdRefs.find(F); 2717 if (BAFRI != BlockAddrFwdRefs.end()) { 2718 std::vector<BlockAddrRefTy> &RefList = BAFRI->second; 2719 for (unsigned i = 0, e = RefList.size(); i != e; ++i) { 2720 unsigned BlockIdx = RefList[i].first; 2721 if (BlockIdx >= FunctionBBs.size()) 2722 return Error("Invalid blockaddress block #"); 2723 2724 GlobalVariable *FwdRef = RefList[i].second; 2725 FwdRef->replaceAllUsesWith(BlockAddress::get(F, FunctionBBs[BlockIdx])); 2726 FwdRef->eraseFromParent(); 2727 } 2728 2729 BlockAddrFwdRefs.erase(BAFRI); 2730 } 2731 2732 // Trim the value list down to the size it was before we parsed this function. 2733 ValueList.shrinkTo(ModuleValueListSize); 2734 MDValueList.shrinkTo(ModuleMDValueListSize); 2735 std::vector<BasicBlock*>().swap(FunctionBBs); 2736 return false; 2737 } 2738 2739 /// FindFunctionInStream - Find the function body in the bitcode stream 2740 bool BitcodeReader::FindFunctionInStream(Function *F, 2741 DenseMap<Function*, uint64_t>::iterator DeferredFunctionInfoIterator) { 2742 while (DeferredFunctionInfoIterator->second == 0) { 2743 if (Stream.AtEndOfStream()) 2744 return Error("Could not find Function in stream"); 2745 // ParseModule will parse the next body in the stream and set its 2746 // position in the DeferredFunctionInfo map. 2747 if (ParseModule(true)) return true; 2748 } 2749 return false; 2750 } 2751 2752 //===----------------------------------------------------------------------===// 2753 // GVMaterializer implementation 2754 //===----------------------------------------------------------------------===// 2755 2756 2757 bool BitcodeReader::isMaterializable(const GlobalValue *GV) const { 2758 if (const Function *F = dyn_cast<Function>(GV)) { 2759 return F->isDeclaration() && 2760 DeferredFunctionInfo.count(const_cast<Function*>(F)); 2761 } 2762 return false; 2763 } 2764 2765 bool BitcodeReader::Materialize(GlobalValue *GV, std::string *ErrInfo) { 2766 Function *F = dyn_cast<Function>(GV); 2767 // If it's not a function or is already material, ignore the request. 2768 if (!F || !F->isMaterializable()) return false; 2769 2770 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 2771 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 2772 // If its position is recorded as 0, its body is somewhere in the stream 2773 // but we haven't seen it yet. 2774 if (DFII->second == 0) 2775 if (LazyStreamer && FindFunctionInStream(F, DFII)) return true; 2776 2777 // Move the bit stream to the saved position of the deferred function body. 2778 Stream.JumpToBit(DFII->second); 2779 2780 if (ParseFunctionBody(F)) { 2781 if (ErrInfo) *ErrInfo = ErrorString; 2782 return true; 2783 } 2784 2785 // Upgrade any old intrinsic calls in the function. 2786 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 2787 E = UpgradedIntrinsics.end(); I != E; ++I) { 2788 if (I->first != I->second) { 2789 for (Value::use_iterator UI = I->first->use_begin(), 2790 UE = I->first->use_end(); UI != UE; ) { 2791 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2792 UpgradeIntrinsicCall(CI, I->second); 2793 } 2794 } 2795 } 2796 2797 return false; 2798 } 2799 2800 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 2801 const Function *F = dyn_cast<Function>(GV); 2802 if (!F || F->isDeclaration()) 2803 return false; 2804 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 2805 } 2806 2807 void BitcodeReader::Dematerialize(GlobalValue *GV) { 2808 Function *F = dyn_cast<Function>(GV); 2809 // If this function isn't dematerializable, this is a noop. 2810 if (!F || !isDematerializable(F)) 2811 return; 2812 2813 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 2814 2815 // Just forget the function body, we can remat it later. 2816 F->deleteBody(); 2817 } 2818 2819 2820 bool BitcodeReader::MaterializeModule(Module *M, std::string *ErrInfo) { 2821 assert(M == TheModule && 2822 "Can only Materialize the Module this BitcodeReader is attached to."); 2823 // Iterate over the module, deserializing any functions that are still on 2824 // disk. 2825 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 2826 F != E; ++F) 2827 if (F->isMaterializable() && 2828 Materialize(F, ErrInfo)) 2829 return true; 2830 2831 // At this point, if there are any function bodies, the current bit is 2832 // pointing to the END_BLOCK record after them. Now make sure the rest 2833 // of the bits in the module have been read. 2834 if (NextUnreadBit) 2835 ParseModule(true); 2836 2837 // Upgrade any intrinsic calls that slipped through (should not happen!) and 2838 // delete the old functions to clean up. We can't do this unless the entire 2839 // module is materialized because there could always be another function body 2840 // with calls to the old function. 2841 for (std::vector<std::pair<Function*, Function*> >::iterator I = 2842 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 2843 if (I->first != I->second) { 2844 for (Value::use_iterator UI = I->first->use_begin(), 2845 UE = I->first->use_end(); UI != UE; ) { 2846 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 2847 UpgradeIntrinsicCall(CI, I->second); 2848 } 2849 if (!I->first->use_empty()) 2850 I->first->replaceAllUsesWith(I->second); 2851 I->first->eraseFromParent(); 2852 } 2853 } 2854 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 2855 2856 return false; 2857 } 2858 2859 bool BitcodeReader::InitStream() { 2860 if (LazyStreamer) return InitLazyStream(); 2861 return InitStreamFromBuffer(); 2862 } 2863 2864 bool BitcodeReader::InitStreamFromBuffer() { 2865 const unsigned char *BufPtr = (unsigned char *)Buffer->getBufferStart(); 2866 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 2867 2868 if (Buffer->getBufferSize() & 3) { 2869 if (!isRawBitcode(BufPtr, BufEnd) && !isBitcodeWrapper(BufPtr, BufEnd)) 2870 return Error("Invalid bitcode signature"); 2871 else 2872 return Error("Bitcode stream should be a multiple of 4 bytes in length"); 2873 } 2874 2875 // If we have a wrapper header, parse it and ignore the non-bc file contents. 2876 // The magic number is 0x0B17C0DE stored in little endian. 2877 if (isBitcodeWrapper(BufPtr, BufEnd)) 2878 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 2879 return Error("Invalid bitcode wrapper header"); 2880 2881 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 2882 Stream.init(*StreamFile); 2883 2884 return false; 2885 } 2886 2887 bool BitcodeReader::InitLazyStream() { 2888 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 2889 // see it. 2890 StreamingMemoryObject *Bytes = new StreamingMemoryObject(LazyStreamer); 2891 StreamFile.reset(new BitstreamReader(Bytes)); 2892 Stream.init(*StreamFile); 2893 2894 unsigned char buf[16]; 2895 if (Bytes->readBytes(0, 16, buf, NULL) == -1) 2896 return Error("Bitcode stream must be at least 16 bytes in length"); 2897 2898 if (!isBitcode(buf, buf + 16)) 2899 return Error("Invalid bitcode signature"); 2900 2901 if (isBitcodeWrapper(buf, buf + 4)) { 2902 const unsigned char *bitcodeStart = buf; 2903 const unsigned char *bitcodeEnd = buf + 16; 2904 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 2905 Bytes->dropLeadingBytes(bitcodeStart - buf); 2906 Bytes->setKnownObjectSize(bitcodeEnd - bitcodeStart); 2907 } 2908 return false; 2909 } 2910 2911 //===----------------------------------------------------------------------===// 2912 // External interface 2913 //===----------------------------------------------------------------------===// 2914 2915 /// getLazyBitcodeModule - lazy function-at-a-time loading from a file. 2916 /// 2917 Module *llvm::getLazyBitcodeModule(MemoryBuffer *Buffer, 2918 LLVMContext& Context, 2919 std::string *ErrMsg) { 2920 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 2921 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2922 M->setMaterializer(R); 2923 if (R->ParseBitcodeInto(M)) { 2924 if (ErrMsg) 2925 *ErrMsg = R->getErrorString(); 2926 2927 delete M; // Also deletes R. 2928 return 0; 2929 } 2930 // Have the BitcodeReader dtor delete 'Buffer'. 2931 R->setBufferOwned(true); 2932 2933 R->materializeForwardReferencedFunctions(); 2934 2935 return M; 2936 } 2937 2938 2939 Module *llvm::getStreamedBitcodeModule(const std::string &name, 2940 DataStreamer *streamer, 2941 LLVMContext &Context, 2942 std::string *ErrMsg) { 2943 Module *M = new Module(name, Context); 2944 BitcodeReader *R = new BitcodeReader(streamer, Context); 2945 M->setMaterializer(R); 2946 if (R->ParseBitcodeInto(M)) { 2947 if (ErrMsg) 2948 *ErrMsg = R->getErrorString(); 2949 delete M; // Also deletes R. 2950 return 0; 2951 } 2952 R->setBufferOwned(false); // no buffer to delete 2953 return M; 2954 } 2955 2956 /// ParseBitcodeFile - Read the specified bitcode file, returning the module. 2957 /// If an error occurs, return null and fill in *ErrMsg if non-null. 2958 Module *llvm::ParseBitcodeFile(MemoryBuffer *Buffer, LLVMContext& Context, 2959 std::string *ErrMsg){ 2960 Module *M = getLazyBitcodeModule(Buffer, Context, ErrMsg); 2961 if (!M) return 0; 2962 2963 // Don't let the BitcodeReader dtor delete 'Buffer', regardless of whether 2964 // there was an error. 2965 static_cast<BitcodeReader*>(M->getMaterializer())->setBufferOwned(false); 2966 2967 // Read in the entire module, and destroy the BitcodeReader. 2968 if (M->MaterializeAllPermanently(ErrMsg)) { 2969 delete M; 2970 return 0; 2971 } 2972 2973 // TODO: Restore the use-lists to the in-memory state when the bitcode was 2974 // written. We must defer until the Module has been fully materialized. 2975 2976 return M; 2977 } 2978 2979 std::string llvm::getBitcodeTargetTriple(MemoryBuffer *Buffer, 2980 LLVMContext& Context, 2981 std::string *ErrMsg) { 2982 BitcodeReader *R = new BitcodeReader(Buffer, Context); 2983 // Don't let the BitcodeReader dtor delete 'Buffer'. 2984 R->setBufferOwned(false); 2985 2986 std::string Triple(""); 2987 if (R->ParseTriple(Triple)) 2988 if (ErrMsg) 2989 *ErrMsg = R->getErrorString(); 2990 2991 delete R; 2992 return Triple; 2993 } 2994