1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitcode/BitcodeCommon.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Bitstream/BitstreamReader.h" 26 #include "llvm/Config/llvm-config.h" 27 #include "llvm/IR/Argument.h" 28 #include "llvm/IR/Attributes.h" 29 #include "llvm/IR/AutoUpgrade.h" 30 #include "llvm/IR/BasicBlock.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/Verifier.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/ManagedStatic.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <deque> 78 #include <map> 79 #include <memory> 80 #include <set> 81 #include <string> 82 #include <system_error> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 static cl::opt<bool> PrintSummaryGUIDs( 90 "print-summary-global-ids", cl::init(false), cl::Hidden, 91 cl::desc( 92 "Print the global id for each value when reading the module summary")); 93 94 namespace { 95 96 enum { 97 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 98 }; 99 100 } // end anonymous namespace 101 102 static Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 108 if (!Stream.canSkipToPos(4)) 109 return createStringError(std::errc::illegal_byte_sequence, 110 "file too small to contain bitcode header"); 111 for (unsigned C : {'B', 'C'}) 112 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 113 if (Res.get() != C) 114 return createStringError(std::errc::illegal_byte_sequence, 115 "file doesn't start with bitcode header"); 116 } else 117 return Res.takeError(); 118 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 119 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 120 if (Res.get() != C) 121 return createStringError(std::errc::illegal_byte_sequence, 122 "file doesn't start with bitcode header"); 123 } else 124 return Res.takeError(); 125 return Error::success(); 126 } 127 128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 129 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 130 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 131 132 if (Buffer.getBufferSize() & 3) 133 return error("Invalid bitcode signature"); 134 135 // If we have a wrapper header, parse it and ignore the non-bc file contents. 136 // The magic number is 0x0B17C0DE stored in little endian. 137 if (isBitcodeWrapper(BufPtr, BufEnd)) 138 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 139 return error("Invalid bitcode wrapper header"); 140 141 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 142 if (Error Err = hasInvalidBitcodeHeader(Stream)) 143 return std::move(Err); 144 145 return std::move(Stream); 146 } 147 148 /// Convert a string from a record into an std::string, return true on failure. 149 template <typename StrTy> 150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 Result.append(Record.begin() + Idx, Record.end()); 156 return false; 157 } 158 159 // Strip all the TBAA attachment for the module. 160 static void stripTBAA(Module *M) { 161 for (auto &F : *M) { 162 if (F.isMaterializable()) 163 continue; 164 for (auto &I : instructions(F)) 165 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 166 } 167 } 168 169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 170 /// "epoch" encoded in the bitcode, and return the producer name if any. 171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 172 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 173 return std::move(Err); 174 175 // Read all the records. 176 SmallVector<uint64_t, 64> Record; 177 178 std::string ProducerIdentification; 179 180 while (true) { 181 BitstreamEntry Entry; 182 if (Error E = Stream.advance().moveInto(Entry)) 183 return std::move(E); 184 185 switch (Entry.Kind) { 186 default: 187 case BitstreamEntry::Error: 188 return error("Malformed block"); 189 case BitstreamEntry::EndBlock: 190 return ProducerIdentification; 191 case BitstreamEntry::Record: 192 // The interesting case. 193 break; 194 } 195 196 // Read a record. 197 Record.clear(); 198 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 199 if (!MaybeBitCode) 200 return MaybeBitCode.takeError(); 201 switch (MaybeBitCode.get()) { 202 default: // Default behavior: reject 203 return error("Invalid value"); 204 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 205 convertToString(Record, 0, ProducerIdentification); 206 break; 207 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 208 unsigned epoch = (unsigned)Record[0]; 209 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 210 return error( 211 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 212 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 213 } 214 } 215 } 216 } 217 } 218 219 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 220 // We expect a number of well-defined blocks, though we don't necessarily 221 // need to understand them all. 222 while (true) { 223 if (Stream.AtEndOfStream()) 224 return ""; 225 226 BitstreamEntry Entry; 227 if (Error E = Stream.advance().moveInto(Entry)) 228 return std::move(E); 229 230 switch (Entry.Kind) { 231 case BitstreamEntry::EndBlock: 232 case BitstreamEntry::Error: 233 return error("Malformed block"); 234 235 case BitstreamEntry::SubBlock: 236 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 237 return readIdentificationBlock(Stream); 238 239 // Ignore other sub-blocks. 240 if (Error Err = Stream.SkipBlock()) 241 return std::move(Err); 242 continue; 243 case BitstreamEntry::Record: 244 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 245 return std::move(E); 246 continue; 247 } 248 } 249 } 250 251 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 252 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 253 return std::move(Err); 254 255 SmallVector<uint64_t, 64> Record; 256 // Read all the records for this module. 257 258 while (true) { 259 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 260 if (!MaybeEntry) 261 return MaybeEntry.takeError(); 262 BitstreamEntry Entry = MaybeEntry.get(); 263 264 switch (Entry.Kind) { 265 case BitstreamEntry::SubBlock: // Handled for us already. 266 case BitstreamEntry::Error: 267 return error("Malformed block"); 268 case BitstreamEntry::EndBlock: 269 return false; 270 case BitstreamEntry::Record: 271 // The interesting case. 272 break; 273 } 274 275 // Read a record. 276 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 277 if (!MaybeRecord) 278 return MaybeRecord.takeError(); 279 switch (MaybeRecord.get()) { 280 default: 281 break; // Default behavior, ignore unknown content. 282 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 283 std::string S; 284 if (convertToString(Record, 0, S)) 285 return error("Invalid record"); 286 // Check for the i386 and other (x86_64, ARM) conventions 287 if (S.find("__DATA,__objc_catlist") != std::string::npos || 288 S.find("__OBJC,__category") != std::string::npos) 289 return true; 290 break; 291 } 292 } 293 Record.clear(); 294 } 295 llvm_unreachable("Exit infinite loop"); 296 } 297 298 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 299 // We expect a number of well-defined blocks, though we don't necessarily 300 // need to understand them all. 301 while (true) { 302 BitstreamEntry Entry; 303 if (Error E = Stream.advance().moveInto(Entry)) 304 return std::move(E); 305 306 switch (Entry.Kind) { 307 case BitstreamEntry::Error: 308 return error("Malformed block"); 309 case BitstreamEntry::EndBlock: 310 return false; 311 312 case BitstreamEntry::SubBlock: 313 if (Entry.ID == bitc::MODULE_BLOCK_ID) 314 return hasObjCCategoryInModule(Stream); 315 316 // Ignore other sub-blocks. 317 if (Error Err = Stream.SkipBlock()) 318 return std::move(Err); 319 continue; 320 321 case BitstreamEntry::Record: 322 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 323 return std::move(E); 324 continue; 325 } 326 } 327 } 328 329 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 330 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 331 return std::move(Err); 332 333 SmallVector<uint64_t, 64> Record; 334 335 std::string Triple; 336 337 // Read all the records for this module. 338 while (true) { 339 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 340 if (!MaybeEntry) 341 return MaybeEntry.takeError(); 342 BitstreamEntry Entry = MaybeEntry.get(); 343 344 switch (Entry.Kind) { 345 case BitstreamEntry::SubBlock: // Handled for us already. 346 case BitstreamEntry::Error: 347 return error("Malformed block"); 348 case BitstreamEntry::EndBlock: 349 return Triple; 350 case BitstreamEntry::Record: 351 // The interesting case. 352 break; 353 } 354 355 // Read a record. 356 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 357 if (!MaybeRecord) 358 return MaybeRecord.takeError(); 359 switch (MaybeRecord.get()) { 360 default: break; // Default behavior, ignore unknown content. 361 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 362 std::string S; 363 if (convertToString(Record, 0, S)) 364 return error("Invalid record"); 365 Triple = S; 366 break; 367 } 368 } 369 Record.clear(); 370 } 371 llvm_unreachable("Exit infinite loop"); 372 } 373 374 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 375 // We expect a number of well-defined blocks, though we don't necessarily 376 // need to understand them all. 377 while (true) { 378 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 379 if (!MaybeEntry) 380 return MaybeEntry.takeError(); 381 BitstreamEntry Entry = MaybeEntry.get(); 382 383 switch (Entry.Kind) { 384 case BitstreamEntry::Error: 385 return error("Malformed block"); 386 case BitstreamEntry::EndBlock: 387 return ""; 388 389 case BitstreamEntry::SubBlock: 390 if (Entry.ID == bitc::MODULE_BLOCK_ID) 391 return readModuleTriple(Stream); 392 393 // Ignore other sub-blocks. 394 if (Error Err = Stream.SkipBlock()) 395 return std::move(Err); 396 continue; 397 398 case BitstreamEntry::Record: 399 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 400 continue; 401 else 402 return Skipped.takeError(); 403 } 404 } 405 } 406 407 namespace { 408 409 class BitcodeReaderBase { 410 protected: 411 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 412 : Stream(std::move(Stream)), Strtab(Strtab) { 413 this->Stream.setBlockInfo(&BlockInfo); 414 } 415 416 BitstreamBlockInfo BlockInfo; 417 BitstreamCursor Stream; 418 StringRef Strtab; 419 420 /// In version 2 of the bitcode we store names of global values and comdats in 421 /// a string table rather than in the VST. 422 bool UseStrtab = false; 423 424 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 425 426 /// If this module uses a string table, pop the reference to the string table 427 /// and return the referenced string and the rest of the record. Otherwise 428 /// just return the record itself. 429 std::pair<StringRef, ArrayRef<uint64_t>> 430 readNameFromStrtab(ArrayRef<uint64_t> Record); 431 432 bool readBlockInfo(); 433 434 // Contains an arbitrary and optional string identifying the bitcode producer 435 std::string ProducerIdentification; 436 437 Error error(const Twine &Message); 438 }; 439 440 } // end anonymous namespace 441 442 Error BitcodeReaderBase::error(const Twine &Message) { 443 std::string FullMsg = Message.str(); 444 if (!ProducerIdentification.empty()) 445 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 446 LLVM_VERSION_STRING "')"; 447 return ::error(FullMsg); 448 } 449 450 Expected<unsigned> 451 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 452 if (Record.empty()) 453 return error("Invalid record"); 454 unsigned ModuleVersion = Record[0]; 455 if (ModuleVersion > 2) 456 return error("Invalid value"); 457 UseStrtab = ModuleVersion >= 2; 458 return ModuleVersion; 459 } 460 461 std::pair<StringRef, ArrayRef<uint64_t>> 462 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 463 if (!UseStrtab) 464 return {"", Record}; 465 // Invalid reference. Let the caller complain about the record being empty. 466 if (Record[0] + Record[1] > Strtab.size()) 467 return {"", {}}; 468 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 469 } 470 471 namespace { 472 473 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 474 LLVMContext &Context; 475 Module *TheModule = nullptr; 476 // Next offset to start scanning for lazy parsing of function bodies. 477 uint64_t NextUnreadBit = 0; 478 // Last function offset found in the VST. 479 uint64_t LastFunctionBlockBit = 0; 480 bool SeenValueSymbolTable = false; 481 uint64_t VSTOffset = 0; 482 483 std::vector<std::string> SectionTable; 484 std::vector<std::string> GCTable; 485 486 std::vector<Type*> TypeList; 487 DenseMap<Function *, FunctionType *> FunctionTypes; 488 BitcodeReaderValueList ValueList; 489 Optional<MetadataLoader> MDLoader; 490 std::vector<Comdat *> ComdatList; 491 DenseSet<GlobalObject *> ImplicitComdatObjects; 492 SmallVector<Instruction *, 64> InstructionList; 493 494 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 495 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInits; 496 497 struct FunctionOperandInfo { 498 Function *F; 499 unsigned PersonalityFn; 500 unsigned Prefix; 501 unsigned Prologue; 502 }; 503 std::vector<FunctionOperandInfo> FunctionOperands; 504 505 /// The set of attributes by index. Index zero in the file is for null, and 506 /// is thus not represented here. As such all indices are off by one. 507 std::vector<AttributeList> MAttributes; 508 509 /// The set of attribute groups. 510 std::map<unsigned, AttributeList> MAttributeGroups; 511 512 /// While parsing a function body, this is a list of the basic blocks for the 513 /// function. 514 std::vector<BasicBlock*> FunctionBBs; 515 516 // When reading the module header, this list is populated with functions that 517 // have bodies later in the file. 518 std::vector<Function*> FunctionsWithBodies; 519 520 // When intrinsic functions are encountered which require upgrading they are 521 // stored here with their replacement function. 522 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 523 UpdatedIntrinsicMap UpgradedIntrinsics; 524 // Intrinsics which were remangled because of types rename 525 UpdatedIntrinsicMap RemangledIntrinsics; 526 527 // Several operations happen after the module header has been read, but 528 // before function bodies are processed. This keeps track of whether 529 // we've done this yet. 530 bool SeenFirstFunctionBody = false; 531 532 /// When function bodies are initially scanned, this map contains info about 533 /// where to find deferred function body in the stream. 534 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 535 536 /// When Metadata block is initially scanned when parsing the module, we may 537 /// choose to defer parsing of the metadata. This vector contains info about 538 /// which Metadata blocks are deferred. 539 std::vector<uint64_t> DeferredMetadataInfo; 540 541 /// These are basic blocks forward-referenced by block addresses. They are 542 /// inserted lazily into functions when they're loaded. The basic block ID is 543 /// its index into the vector. 544 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 545 std::deque<Function *> BasicBlockFwdRefQueue; 546 547 /// Indicates that we are using a new encoding for instruction operands where 548 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 549 /// instruction number, for a more compact encoding. Some instruction 550 /// operands are not relative to the instruction ID: basic block numbers, and 551 /// types. Once the old style function blocks have been phased out, we would 552 /// not need this flag. 553 bool UseRelativeIDs = false; 554 555 /// True if all functions will be materialized, negating the need to process 556 /// (e.g.) blockaddress forward references. 557 bool WillMaterializeAllForwardRefs = false; 558 559 bool StripDebugInfo = false; 560 TBAAVerifier TBAAVerifyHelper; 561 562 std::vector<std::string> BundleTags; 563 SmallVector<SyncScope::ID, 8> SSIDs; 564 565 public: 566 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 567 StringRef ProducerIdentification, LLVMContext &Context); 568 569 Error materializeForwardReferencedFunctions(); 570 571 Error materialize(GlobalValue *GV) override; 572 Error materializeModule() override; 573 std::vector<StructType *> getIdentifiedStructTypes() const override; 574 575 /// Main interface to parsing a bitcode buffer. 576 /// \returns true if an error occurred. 577 Error parseBitcodeInto( 578 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 579 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 580 581 static uint64_t decodeSignRotatedValue(uint64_t V); 582 583 /// Materialize any deferred Metadata block. 584 Error materializeMetadata() override; 585 586 void setStripDebugInfo() override; 587 588 private: 589 std::vector<StructType *> IdentifiedStructTypes; 590 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 591 StructType *createIdentifiedStructType(LLVMContext &Context); 592 593 Type *getTypeByID(unsigned ID); 594 595 Value *getFnValueByID(unsigned ID, Type *Ty) { 596 if (Ty && Ty->isMetadataTy()) 597 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 598 return ValueList.getValueFwdRef(ID, Ty); 599 } 600 601 Metadata *getFnMetadataByID(unsigned ID) { 602 return MDLoader->getMetadataFwdRefOrLoad(ID); 603 } 604 605 BasicBlock *getBasicBlock(unsigned ID) const { 606 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 607 return FunctionBBs[ID]; 608 } 609 610 AttributeList getAttributes(unsigned i) const { 611 if (i-1 < MAttributes.size()) 612 return MAttributes[i-1]; 613 return AttributeList(); 614 } 615 616 /// Read a value/type pair out of the specified record from slot 'Slot'. 617 /// Increment Slot past the number of slots used in the record. Return true on 618 /// failure. 619 bool getValueTypePair(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 620 unsigned InstNum, Value *&ResVal) { 621 if (Slot == Record.size()) return true; 622 unsigned ValNo = (unsigned)Record[Slot++]; 623 // Adjust the ValNo, if it was encoded relative to the InstNum. 624 if (UseRelativeIDs) 625 ValNo = InstNum - ValNo; 626 if (ValNo < InstNum) { 627 // If this is not a forward reference, just return the value we already 628 // have. 629 ResVal = getFnValueByID(ValNo, nullptr); 630 return ResVal == nullptr; 631 } 632 if (Slot == Record.size()) 633 return true; 634 635 unsigned TypeNo = (unsigned)Record[Slot++]; 636 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 637 return ResVal == nullptr; 638 } 639 640 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 641 /// past the number of slots used by the value in the record. Return true if 642 /// there is an error. 643 bool popValue(const SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 644 unsigned InstNum, Type *Ty, Value *&ResVal) { 645 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 646 return true; 647 // All values currently take a single record slot. 648 ++Slot; 649 return false; 650 } 651 652 /// Like popValue, but does not increment the Slot number. 653 bool getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 654 unsigned InstNum, Type *Ty, Value *&ResVal) { 655 ResVal = getValue(Record, Slot, InstNum, Ty); 656 return ResVal == nullptr; 657 } 658 659 /// Version of getValue that returns ResVal directly, or 0 if there is an 660 /// error. 661 Value *getValue(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 662 unsigned InstNum, Type *Ty) { 663 if (Slot == Record.size()) return nullptr; 664 unsigned ValNo = (unsigned)Record[Slot]; 665 // Adjust the ValNo, if it was encoded relative to the InstNum. 666 if (UseRelativeIDs) 667 ValNo = InstNum - ValNo; 668 return getFnValueByID(ValNo, Ty); 669 } 670 671 /// Like getValue, but decodes signed VBRs. 672 Value *getValueSigned(const SmallVectorImpl<uint64_t> &Record, unsigned Slot, 673 unsigned InstNum, Type *Ty) { 674 if (Slot == Record.size()) return nullptr; 675 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 676 // Adjust the ValNo, if it was encoded relative to the InstNum. 677 if (UseRelativeIDs) 678 ValNo = InstNum - ValNo; 679 return getFnValueByID(ValNo, Ty); 680 } 681 682 /// Upgrades old-style typeless byval/sret/inalloca attributes by adding the 683 /// corresponding argument's pointee type. Also upgrades intrinsics that now 684 /// require an elementtype attribute. 685 void propagateAttributeTypes(CallBase *CB, ArrayRef<Type *> ArgsTys); 686 687 /// Converts alignment exponent (i.e. power of two (or zero)) to the 688 /// corresponding alignment to use. If alignment is too large, returns 689 /// a corresponding error code. 690 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 691 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 692 Error parseModule( 693 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 694 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 695 696 Error parseComdatRecord(ArrayRef<uint64_t> Record); 697 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 698 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 699 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 700 ArrayRef<uint64_t> Record); 701 702 Error parseAttributeBlock(); 703 Error parseAttributeGroupBlock(); 704 Error parseTypeTable(); 705 Error parseTypeTableBody(); 706 Error parseOperandBundleTags(); 707 Error parseSyncScopeNames(); 708 709 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 710 unsigned NameIndex, Triple &TT); 711 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 712 ArrayRef<uint64_t> Record); 713 Error parseValueSymbolTable(uint64_t Offset = 0); 714 Error parseGlobalValueSymbolTable(); 715 Error parseConstants(); 716 Error rememberAndSkipFunctionBodies(); 717 Error rememberAndSkipFunctionBody(); 718 /// Save the positions of the Metadata blocks and skip parsing the blocks. 719 Error rememberAndSkipMetadata(); 720 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 721 Error parseFunctionBody(Function *F); 722 Error globalCleanup(); 723 Error resolveGlobalAndIndirectSymbolInits(); 724 Error parseUseLists(); 725 Error findFunctionInStream( 726 Function *F, 727 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 728 729 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 730 }; 731 732 /// Class to manage reading and parsing function summary index bitcode 733 /// files/sections. 734 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 735 /// The module index built during parsing. 736 ModuleSummaryIndex &TheIndex; 737 738 /// Indicates whether we have encountered a global value summary section 739 /// yet during parsing. 740 bool SeenGlobalValSummary = false; 741 742 /// Indicates whether we have already parsed the VST, used for error checking. 743 bool SeenValueSymbolTable = false; 744 745 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 746 /// Used to enable on-demand parsing of the VST. 747 uint64_t VSTOffset = 0; 748 749 // Map to save ValueId to ValueInfo association that was recorded in the 750 // ValueSymbolTable. It is used after the VST is parsed to convert 751 // call graph edges read from the function summary from referencing 752 // callees by their ValueId to using the ValueInfo instead, which is how 753 // they are recorded in the summary index being built. 754 // We save a GUID which refers to the same global as the ValueInfo, but 755 // ignoring the linkage, i.e. for values other than local linkage they are 756 // identical. 757 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 758 ValueIdToValueInfoMap; 759 760 /// Map populated during module path string table parsing, from the 761 /// module ID to a string reference owned by the index's module 762 /// path string table, used to correlate with combined index 763 /// summary records. 764 DenseMap<uint64_t, StringRef> ModuleIdMap; 765 766 /// Original source file name recorded in a bitcode record. 767 std::string SourceFileName; 768 769 /// The string identifier given to this module by the client, normally the 770 /// path to the bitcode file. 771 StringRef ModulePath; 772 773 /// For per-module summary indexes, the unique numerical identifier given to 774 /// this module by the client. 775 unsigned ModuleId; 776 777 public: 778 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 779 ModuleSummaryIndex &TheIndex, 780 StringRef ModulePath, unsigned ModuleId); 781 782 Error parseModule(); 783 784 private: 785 void setValueGUID(uint64_t ValueID, StringRef ValueName, 786 GlobalValue::LinkageTypes Linkage, 787 StringRef SourceFileName); 788 Error parseValueSymbolTable( 789 uint64_t Offset, 790 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 791 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 792 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 793 bool IsOldProfileFormat, 794 bool HasProfile, 795 bool HasRelBF); 796 Error parseEntireSummary(unsigned ID); 797 Error parseModuleStringTable(); 798 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 799 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 800 TypeIdCompatibleVtableInfo &TypeId); 801 std::vector<FunctionSummary::ParamAccess> 802 parseParamAccesses(ArrayRef<uint64_t> Record); 803 804 std::pair<ValueInfo, GlobalValue::GUID> 805 getValueInfoFromValueId(unsigned ValueId); 806 807 void addThisModule(); 808 ModuleSummaryIndex::ModuleInfo *getThisModule(); 809 }; 810 811 } // end anonymous namespace 812 813 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 814 Error Err) { 815 if (Err) { 816 std::error_code EC; 817 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 818 EC = EIB.convertToErrorCode(); 819 Ctx.emitError(EIB.message()); 820 }); 821 return EC; 822 } 823 return std::error_code(); 824 } 825 826 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 827 StringRef ProducerIdentification, 828 LLVMContext &Context) 829 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 830 ValueList(Context, Stream.SizeInBytes()) { 831 this->ProducerIdentification = std::string(ProducerIdentification); 832 } 833 834 Error BitcodeReader::materializeForwardReferencedFunctions() { 835 if (WillMaterializeAllForwardRefs) 836 return Error::success(); 837 838 // Prevent recursion. 839 WillMaterializeAllForwardRefs = true; 840 841 while (!BasicBlockFwdRefQueue.empty()) { 842 Function *F = BasicBlockFwdRefQueue.front(); 843 BasicBlockFwdRefQueue.pop_front(); 844 assert(F && "Expected valid function"); 845 if (!BasicBlockFwdRefs.count(F)) 846 // Already materialized. 847 continue; 848 849 // Check for a function that isn't materializable to prevent an infinite 850 // loop. When parsing a blockaddress stored in a global variable, there 851 // isn't a trivial way to check if a function will have a body without a 852 // linear search through FunctionsWithBodies, so just check it here. 853 if (!F->isMaterializable()) 854 return error("Never resolved function from blockaddress"); 855 856 // Try to materialize F. 857 if (Error Err = materialize(F)) 858 return Err; 859 } 860 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 861 862 // Reset state. 863 WillMaterializeAllForwardRefs = false; 864 return Error::success(); 865 } 866 867 //===----------------------------------------------------------------------===// 868 // Helper functions to implement forward reference resolution, etc. 869 //===----------------------------------------------------------------------===// 870 871 static bool hasImplicitComdat(size_t Val) { 872 switch (Val) { 873 default: 874 return false; 875 case 1: // Old WeakAnyLinkage 876 case 4: // Old LinkOnceAnyLinkage 877 case 10: // Old WeakODRLinkage 878 case 11: // Old LinkOnceODRLinkage 879 return true; 880 } 881 } 882 883 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 884 switch (Val) { 885 default: // Map unknown/new linkages to external 886 case 0: 887 return GlobalValue::ExternalLinkage; 888 case 2: 889 return GlobalValue::AppendingLinkage; 890 case 3: 891 return GlobalValue::InternalLinkage; 892 case 5: 893 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 894 case 6: 895 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 896 case 7: 897 return GlobalValue::ExternalWeakLinkage; 898 case 8: 899 return GlobalValue::CommonLinkage; 900 case 9: 901 return GlobalValue::PrivateLinkage; 902 case 12: 903 return GlobalValue::AvailableExternallyLinkage; 904 case 13: 905 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 906 case 14: 907 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 908 case 15: 909 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 910 case 1: // Old value with implicit comdat. 911 case 16: 912 return GlobalValue::WeakAnyLinkage; 913 case 10: // Old value with implicit comdat. 914 case 17: 915 return GlobalValue::WeakODRLinkage; 916 case 4: // Old value with implicit comdat. 917 case 18: 918 return GlobalValue::LinkOnceAnyLinkage; 919 case 11: // Old value with implicit comdat. 920 case 19: 921 return GlobalValue::LinkOnceODRLinkage; 922 } 923 } 924 925 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 926 FunctionSummary::FFlags Flags; 927 Flags.ReadNone = RawFlags & 0x1; 928 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 929 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 930 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 931 Flags.NoInline = (RawFlags >> 4) & 0x1; 932 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 933 Flags.NoUnwind = (RawFlags >> 6) & 0x1; 934 Flags.MayThrow = (RawFlags >> 7) & 0x1; 935 Flags.HasUnknownCall = (RawFlags >> 8) & 0x1; 936 Flags.MustBeUnreachable = (RawFlags >> 9) & 0x1; 937 return Flags; 938 } 939 940 // Decode the flags for GlobalValue in the summary. The bits for each attribute: 941 // 942 // linkage: [0,4), notEligibleToImport: 4, live: 5, local: 6, canAutoHide: 7, 943 // visibility: [8, 10). 944 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 945 uint64_t Version) { 946 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 947 // like getDecodedLinkage() above. Any future change to the linkage enum and 948 // to getDecodedLinkage() will need to be taken into account here as above. 949 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 950 auto Visibility = GlobalValue::VisibilityTypes((RawFlags >> 8) & 3); // 2 bits 951 RawFlags = RawFlags >> 4; 952 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 953 // The Live flag wasn't introduced until version 3. For dead stripping 954 // to work correctly on earlier versions, we must conservatively treat all 955 // values as live. 956 bool Live = (RawFlags & 0x2) || Version < 3; 957 bool Local = (RawFlags & 0x4); 958 bool AutoHide = (RawFlags & 0x8); 959 960 return GlobalValueSummary::GVFlags(Linkage, Visibility, NotEligibleToImport, 961 Live, Local, AutoHide); 962 } 963 964 // Decode the flags for GlobalVariable in the summary 965 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 966 return GlobalVarSummary::GVarFlags( 967 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 968 (RawFlags & 0x4) ? true : false, 969 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 970 } 971 972 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 973 switch (Val) { 974 default: // Map unknown visibilities to default. 975 case 0: return GlobalValue::DefaultVisibility; 976 case 1: return GlobalValue::HiddenVisibility; 977 case 2: return GlobalValue::ProtectedVisibility; 978 } 979 } 980 981 static GlobalValue::DLLStorageClassTypes 982 getDecodedDLLStorageClass(unsigned Val) { 983 switch (Val) { 984 default: // Map unknown values to default. 985 case 0: return GlobalValue::DefaultStorageClass; 986 case 1: return GlobalValue::DLLImportStorageClass; 987 case 2: return GlobalValue::DLLExportStorageClass; 988 } 989 } 990 991 static bool getDecodedDSOLocal(unsigned Val) { 992 switch(Val) { 993 default: // Map unknown values to preemptable. 994 case 0: return false; 995 case 1: return true; 996 } 997 } 998 999 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1000 switch (Val) { 1001 case 0: return GlobalVariable::NotThreadLocal; 1002 default: // Map unknown non-zero value to general dynamic. 1003 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1004 case 2: return GlobalVariable::LocalDynamicTLSModel; 1005 case 3: return GlobalVariable::InitialExecTLSModel; 1006 case 4: return GlobalVariable::LocalExecTLSModel; 1007 } 1008 } 1009 1010 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1011 switch (Val) { 1012 default: // Map unknown to UnnamedAddr::None. 1013 case 0: return GlobalVariable::UnnamedAddr::None; 1014 case 1: return GlobalVariable::UnnamedAddr::Global; 1015 case 2: return GlobalVariable::UnnamedAddr::Local; 1016 } 1017 } 1018 1019 static int getDecodedCastOpcode(unsigned Val) { 1020 switch (Val) { 1021 default: return -1; 1022 case bitc::CAST_TRUNC : return Instruction::Trunc; 1023 case bitc::CAST_ZEXT : return Instruction::ZExt; 1024 case bitc::CAST_SEXT : return Instruction::SExt; 1025 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1026 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1027 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1028 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1029 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1030 case bitc::CAST_FPEXT : return Instruction::FPExt; 1031 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1032 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1033 case bitc::CAST_BITCAST : return Instruction::BitCast; 1034 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1035 } 1036 } 1037 1038 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1039 bool IsFP = Ty->isFPOrFPVectorTy(); 1040 // UnOps are only valid for int/fp or vector of int/fp types 1041 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1042 return -1; 1043 1044 switch (Val) { 1045 default: 1046 return -1; 1047 case bitc::UNOP_FNEG: 1048 return IsFP ? Instruction::FNeg : -1; 1049 } 1050 } 1051 1052 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1053 bool IsFP = Ty->isFPOrFPVectorTy(); 1054 // BinOps are only valid for int/fp or vector of int/fp types 1055 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1056 return -1; 1057 1058 switch (Val) { 1059 default: 1060 return -1; 1061 case bitc::BINOP_ADD: 1062 return IsFP ? Instruction::FAdd : Instruction::Add; 1063 case bitc::BINOP_SUB: 1064 return IsFP ? Instruction::FSub : Instruction::Sub; 1065 case bitc::BINOP_MUL: 1066 return IsFP ? Instruction::FMul : Instruction::Mul; 1067 case bitc::BINOP_UDIV: 1068 return IsFP ? -1 : Instruction::UDiv; 1069 case bitc::BINOP_SDIV: 1070 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1071 case bitc::BINOP_UREM: 1072 return IsFP ? -1 : Instruction::URem; 1073 case bitc::BINOP_SREM: 1074 return IsFP ? Instruction::FRem : Instruction::SRem; 1075 case bitc::BINOP_SHL: 1076 return IsFP ? -1 : Instruction::Shl; 1077 case bitc::BINOP_LSHR: 1078 return IsFP ? -1 : Instruction::LShr; 1079 case bitc::BINOP_ASHR: 1080 return IsFP ? -1 : Instruction::AShr; 1081 case bitc::BINOP_AND: 1082 return IsFP ? -1 : Instruction::And; 1083 case bitc::BINOP_OR: 1084 return IsFP ? -1 : Instruction::Or; 1085 case bitc::BINOP_XOR: 1086 return IsFP ? -1 : Instruction::Xor; 1087 } 1088 } 1089 1090 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1091 switch (Val) { 1092 default: return AtomicRMWInst::BAD_BINOP; 1093 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1094 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1095 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1096 case bitc::RMW_AND: return AtomicRMWInst::And; 1097 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1098 case bitc::RMW_OR: return AtomicRMWInst::Or; 1099 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1100 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1101 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1102 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1103 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1104 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1105 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1106 } 1107 } 1108 1109 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1110 switch (Val) { 1111 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1112 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1113 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1114 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1115 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1116 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1117 default: // Map unknown orderings to sequentially-consistent. 1118 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1119 } 1120 } 1121 1122 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1123 switch (Val) { 1124 default: // Map unknown selection kinds to any. 1125 case bitc::COMDAT_SELECTION_KIND_ANY: 1126 return Comdat::Any; 1127 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1128 return Comdat::ExactMatch; 1129 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1130 return Comdat::Largest; 1131 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1132 return Comdat::NoDeduplicate; 1133 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1134 return Comdat::SameSize; 1135 } 1136 } 1137 1138 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1139 FastMathFlags FMF; 1140 if (0 != (Val & bitc::UnsafeAlgebra)) 1141 FMF.setFast(); 1142 if (0 != (Val & bitc::AllowReassoc)) 1143 FMF.setAllowReassoc(); 1144 if (0 != (Val & bitc::NoNaNs)) 1145 FMF.setNoNaNs(); 1146 if (0 != (Val & bitc::NoInfs)) 1147 FMF.setNoInfs(); 1148 if (0 != (Val & bitc::NoSignedZeros)) 1149 FMF.setNoSignedZeros(); 1150 if (0 != (Val & bitc::AllowReciprocal)) 1151 FMF.setAllowReciprocal(); 1152 if (0 != (Val & bitc::AllowContract)) 1153 FMF.setAllowContract(true); 1154 if (0 != (Val & bitc::ApproxFunc)) 1155 FMF.setApproxFunc(); 1156 return FMF; 1157 } 1158 1159 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1160 switch (Val) { 1161 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1162 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1163 } 1164 } 1165 1166 Type *BitcodeReader::getTypeByID(unsigned ID) { 1167 // The type table size is always specified correctly. 1168 if (ID >= TypeList.size()) 1169 return nullptr; 1170 1171 if (Type *Ty = TypeList[ID]) 1172 return Ty; 1173 1174 // If we have a forward reference, the only possible case is when it is to a 1175 // named struct. Just create a placeholder for now. 1176 return TypeList[ID] = createIdentifiedStructType(Context); 1177 } 1178 1179 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1180 StringRef Name) { 1181 auto *Ret = StructType::create(Context, Name); 1182 IdentifiedStructTypes.push_back(Ret); 1183 return Ret; 1184 } 1185 1186 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1187 auto *Ret = StructType::create(Context); 1188 IdentifiedStructTypes.push_back(Ret); 1189 return Ret; 1190 } 1191 1192 //===----------------------------------------------------------------------===// 1193 // Functions for parsing blocks from the bitcode file 1194 //===----------------------------------------------------------------------===// 1195 1196 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1197 switch (Val) { 1198 case Attribute::EndAttrKinds: 1199 case Attribute::EmptyKey: 1200 case Attribute::TombstoneKey: 1201 llvm_unreachable("Synthetic enumerators which should never get here"); 1202 1203 case Attribute::None: return 0; 1204 case Attribute::ZExt: return 1 << 0; 1205 case Attribute::SExt: return 1 << 1; 1206 case Attribute::NoReturn: return 1 << 2; 1207 case Attribute::InReg: return 1 << 3; 1208 case Attribute::StructRet: return 1 << 4; 1209 case Attribute::NoUnwind: return 1 << 5; 1210 case Attribute::NoAlias: return 1 << 6; 1211 case Attribute::ByVal: return 1 << 7; 1212 case Attribute::Nest: return 1 << 8; 1213 case Attribute::ReadNone: return 1 << 9; 1214 case Attribute::ReadOnly: return 1 << 10; 1215 case Attribute::NoInline: return 1 << 11; 1216 case Attribute::AlwaysInline: return 1 << 12; 1217 case Attribute::OptimizeForSize: return 1 << 13; 1218 case Attribute::StackProtect: return 1 << 14; 1219 case Attribute::StackProtectReq: return 1 << 15; 1220 case Attribute::Alignment: return 31 << 16; 1221 case Attribute::NoCapture: return 1 << 21; 1222 case Attribute::NoRedZone: return 1 << 22; 1223 case Attribute::NoImplicitFloat: return 1 << 23; 1224 case Attribute::Naked: return 1 << 24; 1225 case Attribute::InlineHint: return 1 << 25; 1226 case Attribute::StackAlignment: return 7 << 26; 1227 case Attribute::ReturnsTwice: return 1 << 29; 1228 case Attribute::UWTable: return 1 << 30; 1229 case Attribute::NonLazyBind: return 1U << 31; 1230 case Attribute::SanitizeAddress: return 1ULL << 32; 1231 case Attribute::MinSize: return 1ULL << 33; 1232 case Attribute::NoDuplicate: return 1ULL << 34; 1233 case Attribute::StackProtectStrong: return 1ULL << 35; 1234 case Attribute::SanitizeThread: return 1ULL << 36; 1235 case Attribute::SanitizeMemory: return 1ULL << 37; 1236 case Attribute::NoBuiltin: return 1ULL << 38; 1237 case Attribute::Returned: return 1ULL << 39; 1238 case Attribute::Cold: return 1ULL << 40; 1239 case Attribute::Builtin: return 1ULL << 41; 1240 case Attribute::OptimizeNone: return 1ULL << 42; 1241 case Attribute::InAlloca: return 1ULL << 43; 1242 case Attribute::NonNull: return 1ULL << 44; 1243 case Attribute::JumpTable: return 1ULL << 45; 1244 case Attribute::Convergent: return 1ULL << 46; 1245 case Attribute::SafeStack: return 1ULL << 47; 1246 case Attribute::NoRecurse: return 1ULL << 48; 1247 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1248 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1249 case Attribute::SwiftSelf: return 1ULL << 51; 1250 case Attribute::SwiftError: return 1ULL << 52; 1251 case Attribute::WriteOnly: return 1ULL << 53; 1252 case Attribute::Speculatable: return 1ULL << 54; 1253 case Attribute::StrictFP: return 1ULL << 55; 1254 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1255 case Attribute::NoCfCheck: return 1ULL << 57; 1256 case Attribute::OptForFuzzing: return 1ULL << 58; 1257 case Attribute::ShadowCallStack: return 1ULL << 59; 1258 case Attribute::SpeculativeLoadHardening: 1259 return 1ULL << 60; 1260 case Attribute::ImmArg: 1261 return 1ULL << 61; 1262 case Attribute::WillReturn: 1263 return 1ULL << 62; 1264 case Attribute::NoFree: 1265 return 1ULL << 63; 1266 default: 1267 // Other attributes are not supported in the raw format, 1268 // as we ran out of space. 1269 return 0; 1270 } 1271 llvm_unreachable("Unsupported attribute type"); 1272 } 1273 1274 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1275 if (!Val) return; 1276 1277 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1278 I = Attribute::AttrKind(I + 1)) { 1279 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1280 if (I == Attribute::Alignment) 1281 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1282 else if (I == Attribute::StackAlignment) 1283 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1284 else if (Attribute::isTypeAttrKind(I)) 1285 B.addTypeAttr(I, nullptr); // Type will be auto-upgraded. 1286 else 1287 B.addAttribute(I); 1288 } 1289 } 1290 } 1291 1292 /// This fills an AttrBuilder object with the LLVM attributes that have 1293 /// been decoded from the given integer. This function must stay in sync with 1294 /// 'encodeLLVMAttributesForBitcode'. 1295 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1296 uint64_t EncodedAttrs) { 1297 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1298 // the bits above 31 down by 11 bits. 1299 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1300 assert((!Alignment || isPowerOf2_32(Alignment)) && 1301 "Alignment must be a power of two."); 1302 1303 if (Alignment) 1304 B.addAlignmentAttr(Alignment); 1305 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1306 (EncodedAttrs & 0xffff)); 1307 } 1308 1309 Error BitcodeReader::parseAttributeBlock() { 1310 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1311 return Err; 1312 1313 if (!MAttributes.empty()) 1314 return error("Invalid multiple blocks"); 1315 1316 SmallVector<uint64_t, 64> Record; 1317 1318 SmallVector<AttributeList, 8> Attrs; 1319 1320 // Read all the records. 1321 while (true) { 1322 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1323 if (!MaybeEntry) 1324 return MaybeEntry.takeError(); 1325 BitstreamEntry Entry = MaybeEntry.get(); 1326 1327 switch (Entry.Kind) { 1328 case BitstreamEntry::SubBlock: // Handled for us already. 1329 case BitstreamEntry::Error: 1330 return error("Malformed block"); 1331 case BitstreamEntry::EndBlock: 1332 return Error::success(); 1333 case BitstreamEntry::Record: 1334 // The interesting case. 1335 break; 1336 } 1337 1338 // Read a record. 1339 Record.clear(); 1340 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1341 if (!MaybeRecord) 1342 return MaybeRecord.takeError(); 1343 switch (MaybeRecord.get()) { 1344 default: // Default behavior: ignore. 1345 break; 1346 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1347 // Deprecated, but still needed to read old bitcode files. 1348 if (Record.size() & 1) 1349 return error("Invalid record"); 1350 1351 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1352 AttrBuilder B; 1353 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1354 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1355 } 1356 1357 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1358 Attrs.clear(); 1359 break; 1360 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1361 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1362 Attrs.push_back(MAttributeGroups[Record[i]]); 1363 1364 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1365 Attrs.clear(); 1366 break; 1367 } 1368 } 1369 } 1370 1371 // Returns Attribute::None on unrecognized codes. 1372 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1373 switch (Code) { 1374 default: 1375 return Attribute::None; 1376 case bitc::ATTR_KIND_ALIGNMENT: 1377 return Attribute::Alignment; 1378 case bitc::ATTR_KIND_ALWAYS_INLINE: 1379 return Attribute::AlwaysInline; 1380 case bitc::ATTR_KIND_ARGMEMONLY: 1381 return Attribute::ArgMemOnly; 1382 case bitc::ATTR_KIND_BUILTIN: 1383 return Attribute::Builtin; 1384 case bitc::ATTR_KIND_BY_VAL: 1385 return Attribute::ByVal; 1386 case bitc::ATTR_KIND_IN_ALLOCA: 1387 return Attribute::InAlloca; 1388 case bitc::ATTR_KIND_COLD: 1389 return Attribute::Cold; 1390 case bitc::ATTR_KIND_CONVERGENT: 1391 return Attribute::Convergent; 1392 case bitc::ATTR_KIND_DISABLE_SANITIZER_INSTRUMENTATION: 1393 return Attribute::DisableSanitizerInstrumentation; 1394 case bitc::ATTR_KIND_ELEMENTTYPE: 1395 return Attribute::ElementType; 1396 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1397 return Attribute::InaccessibleMemOnly; 1398 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1399 return Attribute::InaccessibleMemOrArgMemOnly; 1400 case bitc::ATTR_KIND_INLINE_HINT: 1401 return Attribute::InlineHint; 1402 case bitc::ATTR_KIND_IN_REG: 1403 return Attribute::InReg; 1404 case bitc::ATTR_KIND_JUMP_TABLE: 1405 return Attribute::JumpTable; 1406 case bitc::ATTR_KIND_MIN_SIZE: 1407 return Attribute::MinSize; 1408 case bitc::ATTR_KIND_NAKED: 1409 return Attribute::Naked; 1410 case bitc::ATTR_KIND_NEST: 1411 return Attribute::Nest; 1412 case bitc::ATTR_KIND_NO_ALIAS: 1413 return Attribute::NoAlias; 1414 case bitc::ATTR_KIND_NO_BUILTIN: 1415 return Attribute::NoBuiltin; 1416 case bitc::ATTR_KIND_NO_CALLBACK: 1417 return Attribute::NoCallback; 1418 case bitc::ATTR_KIND_NO_CAPTURE: 1419 return Attribute::NoCapture; 1420 case bitc::ATTR_KIND_NO_DUPLICATE: 1421 return Attribute::NoDuplicate; 1422 case bitc::ATTR_KIND_NOFREE: 1423 return Attribute::NoFree; 1424 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1425 return Attribute::NoImplicitFloat; 1426 case bitc::ATTR_KIND_NO_INLINE: 1427 return Attribute::NoInline; 1428 case bitc::ATTR_KIND_NO_RECURSE: 1429 return Attribute::NoRecurse; 1430 case bitc::ATTR_KIND_NO_MERGE: 1431 return Attribute::NoMerge; 1432 case bitc::ATTR_KIND_NON_LAZY_BIND: 1433 return Attribute::NonLazyBind; 1434 case bitc::ATTR_KIND_NON_NULL: 1435 return Attribute::NonNull; 1436 case bitc::ATTR_KIND_DEREFERENCEABLE: 1437 return Attribute::Dereferenceable; 1438 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1439 return Attribute::DereferenceableOrNull; 1440 case bitc::ATTR_KIND_ALLOC_SIZE: 1441 return Attribute::AllocSize; 1442 case bitc::ATTR_KIND_NO_RED_ZONE: 1443 return Attribute::NoRedZone; 1444 case bitc::ATTR_KIND_NO_RETURN: 1445 return Attribute::NoReturn; 1446 case bitc::ATTR_KIND_NOSYNC: 1447 return Attribute::NoSync; 1448 case bitc::ATTR_KIND_NOCF_CHECK: 1449 return Attribute::NoCfCheck; 1450 case bitc::ATTR_KIND_NO_PROFILE: 1451 return Attribute::NoProfile; 1452 case bitc::ATTR_KIND_NO_UNWIND: 1453 return Attribute::NoUnwind; 1454 case bitc::ATTR_KIND_NO_SANITIZE_COVERAGE: 1455 return Attribute::NoSanitizeCoverage; 1456 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1457 return Attribute::NullPointerIsValid; 1458 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1459 return Attribute::OptForFuzzing; 1460 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1461 return Attribute::OptimizeForSize; 1462 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1463 return Attribute::OptimizeNone; 1464 case bitc::ATTR_KIND_READ_NONE: 1465 return Attribute::ReadNone; 1466 case bitc::ATTR_KIND_READ_ONLY: 1467 return Attribute::ReadOnly; 1468 case bitc::ATTR_KIND_RETURNED: 1469 return Attribute::Returned; 1470 case bitc::ATTR_KIND_RETURNS_TWICE: 1471 return Attribute::ReturnsTwice; 1472 case bitc::ATTR_KIND_S_EXT: 1473 return Attribute::SExt; 1474 case bitc::ATTR_KIND_SPECULATABLE: 1475 return Attribute::Speculatable; 1476 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1477 return Attribute::StackAlignment; 1478 case bitc::ATTR_KIND_STACK_PROTECT: 1479 return Attribute::StackProtect; 1480 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1481 return Attribute::StackProtectReq; 1482 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1483 return Attribute::StackProtectStrong; 1484 case bitc::ATTR_KIND_SAFESTACK: 1485 return Attribute::SafeStack; 1486 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1487 return Attribute::ShadowCallStack; 1488 case bitc::ATTR_KIND_STRICT_FP: 1489 return Attribute::StrictFP; 1490 case bitc::ATTR_KIND_STRUCT_RET: 1491 return Attribute::StructRet; 1492 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1493 return Attribute::SanitizeAddress; 1494 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1495 return Attribute::SanitizeHWAddress; 1496 case bitc::ATTR_KIND_SANITIZE_THREAD: 1497 return Attribute::SanitizeThread; 1498 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1499 return Attribute::SanitizeMemory; 1500 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1501 return Attribute::SpeculativeLoadHardening; 1502 case bitc::ATTR_KIND_SWIFT_ERROR: 1503 return Attribute::SwiftError; 1504 case bitc::ATTR_KIND_SWIFT_SELF: 1505 return Attribute::SwiftSelf; 1506 case bitc::ATTR_KIND_SWIFT_ASYNC: 1507 return Attribute::SwiftAsync; 1508 case bitc::ATTR_KIND_UW_TABLE: 1509 return Attribute::UWTable; 1510 case bitc::ATTR_KIND_VSCALE_RANGE: 1511 return Attribute::VScaleRange; 1512 case bitc::ATTR_KIND_WILLRETURN: 1513 return Attribute::WillReturn; 1514 case bitc::ATTR_KIND_WRITEONLY: 1515 return Attribute::WriteOnly; 1516 case bitc::ATTR_KIND_Z_EXT: 1517 return Attribute::ZExt; 1518 case bitc::ATTR_KIND_IMMARG: 1519 return Attribute::ImmArg; 1520 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1521 return Attribute::SanitizeMemTag; 1522 case bitc::ATTR_KIND_PREALLOCATED: 1523 return Attribute::Preallocated; 1524 case bitc::ATTR_KIND_NOUNDEF: 1525 return Attribute::NoUndef; 1526 case bitc::ATTR_KIND_BYREF: 1527 return Attribute::ByRef; 1528 case bitc::ATTR_KIND_MUSTPROGRESS: 1529 return Attribute::MustProgress; 1530 case bitc::ATTR_KIND_HOT: 1531 return Attribute::Hot; 1532 } 1533 } 1534 1535 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1536 MaybeAlign &Alignment) { 1537 // Note: Alignment in bitcode files is incremented by 1, so that zero 1538 // can be used for default alignment. 1539 if (Exponent > Value::MaxAlignmentExponent + 1) 1540 return error("Invalid alignment value"); 1541 Alignment = decodeMaybeAlign(Exponent); 1542 return Error::success(); 1543 } 1544 1545 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1546 *Kind = getAttrFromCode(Code); 1547 if (*Kind == Attribute::None) 1548 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1549 return Error::success(); 1550 } 1551 1552 Error BitcodeReader::parseAttributeGroupBlock() { 1553 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1554 return Err; 1555 1556 if (!MAttributeGroups.empty()) 1557 return error("Invalid multiple blocks"); 1558 1559 SmallVector<uint64_t, 64> Record; 1560 1561 // Read all the records. 1562 while (true) { 1563 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1564 if (!MaybeEntry) 1565 return MaybeEntry.takeError(); 1566 BitstreamEntry Entry = MaybeEntry.get(); 1567 1568 switch (Entry.Kind) { 1569 case BitstreamEntry::SubBlock: // Handled for us already. 1570 case BitstreamEntry::Error: 1571 return error("Malformed block"); 1572 case BitstreamEntry::EndBlock: 1573 return Error::success(); 1574 case BitstreamEntry::Record: 1575 // The interesting case. 1576 break; 1577 } 1578 1579 // Read a record. 1580 Record.clear(); 1581 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1582 if (!MaybeRecord) 1583 return MaybeRecord.takeError(); 1584 switch (MaybeRecord.get()) { 1585 default: // Default behavior: ignore. 1586 break; 1587 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1588 if (Record.size() < 3) 1589 return error("Invalid record"); 1590 1591 uint64_t GrpID = Record[0]; 1592 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1593 1594 AttrBuilder B; 1595 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1596 if (Record[i] == 0) { // Enum attribute 1597 Attribute::AttrKind Kind; 1598 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1599 return Err; 1600 1601 // Upgrade old-style byval attribute to one with a type, even if it's 1602 // nullptr. We will have to insert the real type when we associate 1603 // this AttributeList with a function. 1604 if (Kind == Attribute::ByVal) 1605 B.addByValAttr(nullptr); 1606 else if (Kind == Attribute::StructRet) 1607 B.addStructRetAttr(nullptr); 1608 else if (Kind == Attribute::InAlloca) 1609 B.addInAllocaAttr(nullptr); 1610 else if (Attribute::isEnumAttrKind(Kind)) 1611 B.addAttribute(Kind); 1612 else 1613 return error("Not an enum attribute"); 1614 } else if (Record[i] == 1) { // Integer attribute 1615 Attribute::AttrKind Kind; 1616 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1617 return Err; 1618 if (!Attribute::isIntAttrKind(Kind)) 1619 return error("Not an int attribute"); 1620 if (Kind == Attribute::Alignment) 1621 B.addAlignmentAttr(Record[++i]); 1622 else if (Kind == Attribute::StackAlignment) 1623 B.addStackAlignmentAttr(Record[++i]); 1624 else if (Kind == Attribute::Dereferenceable) 1625 B.addDereferenceableAttr(Record[++i]); 1626 else if (Kind == Attribute::DereferenceableOrNull) 1627 B.addDereferenceableOrNullAttr(Record[++i]); 1628 else if (Kind == Attribute::AllocSize) 1629 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1630 else if (Kind == Attribute::VScaleRange) 1631 B.addVScaleRangeAttrFromRawRepr(Record[++i]); 1632 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1633 bool HasValue = (Record[i++] == 4); 1634 SmallString<64> KindStr; 1635 SmallString<64> ValStr; 1636 1637 while (Record[i] != 0 && i != e) 1638 KindStr += Record[i++]; 1639 assert(Record[i] == 0 && "Kind string not null terminated"); 1640 1641 if (HasValue) { 1642 // Has a value associated with it. 1643 ++i; // Skip the '0' that terminates the "kind" string. 1644 while (Record[i] != 0 && i != e) 1645 ValStr += Record[i++]; 1646 assert(Record[i] == 0 && "Value string not null terminated"); 1647 } 1648 1649 B.addAttribute(KindStr.str(), ValStr.str()); 1650 } else { 1651 assert((Record[i] == 5 || Record[i] == 6) && 1652 "Invalid attribute group entry"); 1653 bool HasType = Record[i] == 6; 1654 Attribute::AttrKind Kind; 1655 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1656 return Err; 1657 if (!Attribute::isTypeAttrKind(Kind)) 1658 return error("Not a type attribute"); 1659 1660 B.addTypeAttr(Kind, HasType ? getTypeByID(Record[++i]) : nullptr); 1661 } 1662 } 1663 1664 UpgradeAttributes(B); 1665 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1666 break; 1667 } 1668 } 1669 } 1670 } 1671 1672 Error BitcodeReader::parseTypeTable() { 1673 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1674 return Err; 1675 1676 return parseTypeTableBody(); 1677 } 1678 1679 Error BitcodeReader::parseTypeTableBody() { 1680 if (!TypeList.empty()) 1681 return error("Invalid multiple blocks"); 1682 1683 SmallVector<uint64_t, 64> Record; 1684 unsigned NumRecords = 0; 1685 1686 SmallString<64> TypeName; 1687 1688 // Read all the records for this type table. 1689 while (true) { 1690 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1691 if (!MaybeEntry) 1692 return MaybeEntry.takeError(); 1693 BitstreamEntry Entry = MaybeEntry.get(); 1694 1695 switch (Entry.Kind) { 1696 case BitstreamEntry::SubBlock: // Handled for us already. 1697 case BitstreamEntry::Error: 1698 return error("Malformed block"); 1699 case BitstreamEntry::EndBlock: 1700 if (NumRecords != TypeList.size()) 1701 return error("Malformed block"); 1702 return Error::success(); 1703 case BitstreamEntry::Record: 1704 // The interesting case. 1705 break; 1706 } 1707 1708 // Read a record. 1709 Record.clear(); 1710 Type *ResultTy = nullptr; 1711 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1712 if (!MaybeRecord) 1713 return MaybeRecord.takeError(); 1714 switch (MaybeRecord.get()) { 1715 default: 1716 return error("Invalid value"); 1717 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1718 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1719 // type list. This allows us to reserve space. 1720 if (Record.empty()) 1721 return error("Invalid record"); 1722 TypeList.resize(Record[0]); 1723 continue; 1724 case bitc::TYPE_CODE_VOID: // VOID 1725 ResultTy = Type::getVoidTy(Context); 1726 break; 1727 case bitc::TYPE_CODE_HALF: // HALF 1728 ResultTy = Type::getHalfTy(Context); 1729 break; 1730 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1731 ResultTy = Type::getBFloatTy(Context); 1732 break; 1733 case bitc::TYPE_CODE_FLOAT: // FLOAT 1734 ResultTy = Type::getFloatTy(Context); 1735 break; 1736 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1737 ResultTy = Type::getDoubleTy(Context); 1738 break; 1739 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1740 ResultTy = Type::getX86_FP80Ty(Context); 1741 break; 1742 case bitc::TYPE_CODE_FP128: // FP128 1743 ResultTy = Type::getFP128Ty(Context); 1744 break; 1745 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1746 ResultTy = Type::getPPC_FP128Ty(Context); 1747 break; 1748 case bitc::TYPE_CODE_LABEL: // LABEL 1749 ResultTy = Type::getLabelTy(Context); 1750 break; 1751 case bitc::TYPE_CODE_METADATA: // METADATA 1752 ResultTy = Type::getMetadataTy(Context); 1753 break; 1754 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1755 ResultTy = Type::getX86_MMXTy(Context); 1756 break; 1757 case bitc::TYPE_CODE_X86_AMX: // X86_AMX 1758 ResultTy = Type::getX86_AMXTy(Context); 1759 break; 1760 case bitc::TYPE_CODE_TOKEN: // TOKEN 1761 ResultTy = Type::getTokenTy(Context); 1762 break; 1763 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1764 if (Record.empty()) 1765 return error("Invalid record"); 1766 1767 uint64_t NumBits = Record[0]; 1768 if (NumBits < IntegerType::MIN_INT_BITS || 1769 NumBits > IntegerType::MAX_INT_BITS) 1770 return error("Bitwidth for integer type out of range"); 1771 ResultTy = IntegerType::get(Context, NumBits); 1772 break; 1773 } 1774 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1775 // [pointee type, address space] 1776 if (Record.empty()) 1777 return error("Invalid record"); 1778 unsigned AddressSpace = 0; 1779 if (Record.size() == 2) 1780 AddressSpace = Record[1]; 1781 ResultTy = getTypeByID(Record[0]); 1782 if (!ResultTy || 1783 !PointerType::isValidElementType(ResultTy)) 1784 return error("Invalid type"); 1785 ResultTy = PointerType::get(ResultTy, AddressSpace); 1786 break; 1787 } 1788 case bitc::TYPE_CODE_OPAQUE_POINTER: { // OPAQUE_POINTER: [addrspace] 1789 if (Record.size() != 1) 1790 return error("Invalid record"); 1791 if (Context.supportsTypedPointers()) 1792 return error( 1793 "Opaque pointers are only supported in -opaque-pointers mode"); 1794 unsigned AddressSpace = Record[0]; 1795 ResultTy = PointerType::get(Context, AddressSpace); 1796 break; 1797 } 1798 case bitc::TYPE_CODE_FUNCTION_OLD: { 1799 // Deprecated, but still needed to read old bitcode files. 1800 // FUNCTION: [vararg, attrid, retty, paramty x N] 1801 if (Record.size() < 3) 1802 return error("Invalid record"); 1803 SmallVector<Type*, 8> ArgTys; 1804 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1805 if (Type *T = getTypeByID(Record[i])) 1806 ArgTys.push_back(T); 1807 else 1808 break; 1809 } 1810 1811 ResultTy = getTypeByID(Record[2]); 1812 if (!ResultTy || ArgTys.size() < Record.size()-3) 1813 return error("Invalid type"); 1814 1815 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1816 break; 1817 } 1818 case bitc::TYPE_CODE_FUNCTION: { 1819 // FUNCTION: [vararg, retty, paramty x N] 1820 if (Record.size() < 2) 1821 return error("Invalid record"); 1822 SmallVector<Type*, 8> ArgTys; 1823 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1824 if (Type *T = getTypeByID(Record[i])) { 1825 if (!FunctionType::isValidArgumentType(T)) 1826 return error("Invalid function argument type"); 1827 ArgTys.push_back(T); 1828 } 1829 else 1830 break; 1831 } 1832 1833 ResultTy = getTypeByID(Record[1]); 1834 if (!ResultTy || ArgTys.size() < Record.size()-2) 1835 return error("Invalid type"); 1836 1837 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1838 break; 1839 } 1840 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1841 if (Record.empty()) 1842 return error("Invalid record"); 1843 SmallVector<Type*, 8> EltTys; 1844 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1845 if (Type *T = getTypeByID(Record[i])) 1846 EltTys.push_back(T); 1847 else 1848 break; 1849 } 1850 if (EltTys.size() != Record.size()-1) 1851 return error("Invalid type"); 1852 ResultTy = StructType::get(Context, EltTys, Record[0]); 1853 break; 1854 } 1855 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1856 if (convertToString(Record, 0, TypeName)) 1857 return error("Invalid record"); 1858 continue; 1859 1860 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1861 if (Record.empty()) 1862 return error("Invalid record"); 1863 1864 if (NumRecords >= TypeList.size()) 1865 return error("Invalid TYPE table"); 1866 1867 // Check to see if this was forward referenced, if so fill in the temp. 1868 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1869 if (Res) { 1870 Res->setName(TypeName); 1871 TypeList[NumRecords] = nullptr; 1872 } else // Otherwise, create a new struct. 1873 Res = createIdentifiedStructType(Context, TypeName); 1874 TypeName.clear(); 1875 1876 SmallVector<Type*, 8> EltTys; 1877 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1878 if (Type *T = getTypeByID(Record[i])) 1879 EltTys.push_back(T); 1880 else 1881 break; 1882 } 1883 if (EltTys.size() != Record.size()-1) 1884 return error("Invalid record"); 1885 Res->setBody(EltTys, Record[0]); 1886 ResultTy = Res; 1887 break; 1888 } 1889 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1890 if (Record.size() != 1) 1891 return error("Invalid record"); 1892 1893 if (NumRecords >= TypeList.size()) 1894 return error("Invalid TYPE table"); 1895 1896 // Check to see if this was forward referenced, if so fill in the temp. 1897 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1898 if (Res) { 1899 Res->setName(TypeName); 1900 TypeList[NumRecords] = nullptr; 1901 } else // Otherwise, create a new struct with no body. 1902 Res = createIdentifiedStructType(Context, TypeName); 1903 TypeName.clear(); 1904 ResultTy = Res; 1905 break; 1906 } 1907 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1908 if (Record.size() < 2) 1909 return error("Invalid record"); 1910 ResultTy = getTypeByID(Record[1]); 1911 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1912 return error("Invalid type"); 1913 ResultTy = ArrayType::get(ResultTy, Record[0]); 1914 break; 1915 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1916 // [numelts, eltty, scalable] 1917 if (Record.size() < 2) 1918 return error("Invalid record"); 1919 if (Record[0] == 0) 1920 return error("Invalid vector length"); 1921 ResultTy = getTypeByID(Record[1]); 1922 if (!ResultTy || !VectorType::isValidElementType(ResultTy)) 1923 return error("Invalid type"); 1924 bool Scalable = Record.size() > 2 ? Record[2] : false; 1925 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1926 break; 1927 } 1928 1929 if (NumRecords >= TypeList.size()) 1930 return error("Invalid TYPE table"); 1931 if (TypeList[NumRecords]) 1932 return error( 1933 "Invalid TYPE table: Only named structs can be forward referenced"); 1934 assert(ResultTy && "Didn't read a type?"); 1935 TypeList[NumRecords++] = ResultTy; 1936 } 1937 } 1938 1939 Error BitcodeReader::parseOperandBundleTags() { 1940 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1941 return Err; 1942 1943 if (!BundleTags.empty()) 1944 return error("Invalid multiple blocks"); 1945 1946 SmallVector<uint64_t, 64> Record; 1947 1948 while (true) { 1949 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1950 if (!MaybeEntry) 1951 return MaybeEntry.takeError(); 1952 BitstreamEntry Entry = MaybeEntry.get(); 1953 1954 switch (Entry.Kind) { 1955 case BitstreamEntry::SubBlock: // Handled for us already. 1956 case BitstreamEntry::Error: 1957 return error("Malformed block"); 1958 case BitstreamEntry::EndBlock: 1959 return Error::success(); 1960 case BitstreamEntry::Record: 1961 // The interesting case. 1962 break; 1963 } 1964 1965 // Tags are implicitly mapped to integers by their order. 1966 1967 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1968 if (!MaybeRecord) 1969 return MaybeRecord.takeError(); 1970 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1971 return error("Invalid record"); 1972 1973 // OPERAND_BUNDLE_TAG: [strchr x N] 1974 BundleTags.emplace_back(); 1975 if (convertToString(Record, 0, BundleTags.back())) 1976 return error("Invalid record"); 1977 Record.clear(); 1978 } 1979 } 1980 1981 Error BitcodeReader::parseSyncScopeNames() { 1982 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1983 return Err; 1984 1985 if (!SSIDs.empty()) 1986 return error("Invalid multiple synchronization scope names blocks"); 1987 1988 SmallVector<uint64_t, 64> Record; 1989 while (true) { 1990 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1991 if (!MaybeEntry) 1992 return MaybeEntry.takeError(); 1993 BitstreamEntry Entry = MaybeEntry.get(); 1994 1995 switch (Entry.Kind) { 1996 case BitstreamEntry::SubBlock: // Handled for us already. 1997 case BitstreamEntry::Error: 1998 return error("Malformed block"); 1999 case BitstreamEntry::EndBlock: 2000 if (SSIDs.empty()) 2001 return error("Invalid empty synchronization scope names block"); 2002 return Error::success(); 2003 case BitstreamEntry::Record: 2004 // The interesting case. 2005 break; 2006 } 2007 2008 // Synchronization scope names are implicitly mapped to synchronization 2009 // scope IDs by their order. 2010 2011 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2012 if (!MaybeRecord) 2013 return MaybeRecord.takeError(); 2014 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 2015 return error("Invalid record"); 2016 2017 SmallString<16> SSN; 2018 if (convertToString(Record, 0, SSN)) 2019 return error("Invalid record"); 2020 2021 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2022 Record.clear(); 2023 } 2024 } 2025 2026 /// Associate a value with its name from the given index in the provided record. 2027 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2028 unsigned NameIndex, Triple &TT) { 2029 SmallString<128> ValueName; 2030 if (convertToString(Record, NameIndex, ValueName)) 2031 return error("Invalid record"); 2032 unsigned ValueID = Record[0]; 2033 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2034 return error("Invalid record"); 2035 Value *V = ValueList[ValueID]; 2036 2037 StringRef NameStr(ValueName.data(), ValueName.size()); 2038 if (NameStr.find_first_of(0) != StringRef::npos) 2039 return error("Invalid value name"); 2040 V->setName(NameStr); 2041 auto *GO = dyn_cast<GlobalObject>(V); 2042 if (GO && ImplicitComdatObjects.contains(GO) && TT.supportsCOMDAT()) 2043 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2044 return V; 2045 } 2046 2047 /// Helper to note and return the current location, and jump to the given 2048 /// offset. 2049 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2050 BitstreamCursor &Stream) { 2051 // Save the current parsing location so we can jump back at the end 2052 // of the VST read. 2053 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2054 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2055 return std::move(JumpFailed); 2056 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2057 if (!MaybeEntry) 2058 return MaybeEntry.takeError(); 2059 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2060 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2061 return CurrentBit; 2062 } 2063 2064 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2065 Function *F, 2066 ArrayRef<uint64_t> Record) { 2067 // Note that we subtract 1 here because the offset is relative to one word 2068 // before the start of the identification or module block, which was 2069 // historically always the start of the regular bitcode header. 2070 uint64_t FuncWordOffset = Record[1] - 1; 2071 uint64_t FuncBitOffset = FuncWordOffset * 32; 2072 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2073 // Set the LastFunctionBlockBit to point to the last function block. 2074 // Later when parsing is resumed after function materialization, 2075 // we can simply skip that last function block. 2076 if (FuncBitOffset > LastFunctionBlockBit) 2077 LastFunctionBlockBit = FuncBitOffset; 2078 } 2079 2080 /// Read a new-style GlobalValue symbol table. 2081 Error BitcodeReader::parseGlobalValueSymbolTable() { 2082 unsigned FuncBitcodeOffsetDelta = 2083 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2084 2085 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2086 return Err; 2087 2088 SmallVector<uint64_t, 64> Record; 2089 while (true) { 2090 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2091 if (!MaybeEntry) 2092 return MaybeEntry.takeError(); 2093 BitstreamEntry Entry = MaybeEntry.get(); 2094 2095 switch (Entry.Kind) { 2096 case BitstreamEntry::SubBlock: 2097 case BitstreamEntry::Error: 2098 return error("Malformed block"); 2099 case BitstreamEntry::EndBlock: 2100 return Error::success(); 2101 case BitstreamEntry::Record: 2102 break; 2103 } 2104 2105 Record.clear(); 2106 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2107 if (!MaybeRecord) 2108 return MaybeRecord.takeError(); 2109 switch (MaybeRecord.get()) { 2110 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2111 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2112 cast<Function>(ValueList[Record[0]]), Record); 2113 break; 2114 } 2115 } 2116 } 2117 2118 /// Parse the value symbol table at either the current parsing location or 2119 /// at the given bit offset if provided. 2120 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2121 uint64_t CurrentBit; 2122 // Pass in the Offset to distinguish between calling for the module-level 2123 // VST (where we want to jump to the VST offset) and the function-level 2124 // VST (where we don't). 2125 if (Offset > 0) { 2126 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2127 if (!MaybeCurrentBit) 2128 return MaybeCurrentBit.takeError(); 2129 CurrentBit = MaybeCurrentBit.get(); 2130 // If this module uses a string table, read this as a module-level VST. 2131 if (UseStrtab) { 2132 if (Error Err = parseGlobalValueSymbolTable()) 2133 return Err; 2134 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2135 return JumpFailed; 2136 return Error::success(); 2137 } 2138 // Otherwise, the VST will be in a similar format to a function-level VST, 2139 // and will contain symbol names. 2140 } 2141 2142 // Compute the delta between the bitcode indices in the VST (the word offset 2143 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2144 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2145 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2146 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2147 // just before entering the VST subblock because: 1) the EnterSubBlock 2148 // changes the AbbrevID width; 2) the VST block is nested within the same 2149 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2150 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2151 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2152 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2153 unsigned FuncBitcodeOffsetDelta = 2154 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2155 2156 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2157 return Err; 2158 2159 SmallVector<uint64_t, 64> Record; 2160 2161 Triple TT(TheModule->getTargetTriple()); 2162 2163 // Read all the records for this value table. 2164 SmallString<128> ValueName; 2165 2166 while (true) { 2167 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2168 if (!MaybeEntry) 2169 return MaybeEntry.takeError(); 2170 BitstreamEntry Entry = MaybeEntry.get(); 2171 2172 switch (Entry.Kind) { 2173 case BitstreamEntry::SubBlock: // Handled for us already. 2174 case BitstreamEntry::Error: 2175 return error("Malformed block"); 2176 case BitstreamEntry::EndBlock: 2177 if (Offset > 0) 2178 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2179 return JumpFailed; 2180 return Error::success(); 2181 case BitstreamEntry::Record: 2182 // The interesting case. 2183 break; 2184 } 2185 2186 // Read a record. 2187 Record.clear(); 2188 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2189 if (!MaybeRecord) 2190 return MaybeRecord.takeError(); 2191 switch (MaybeRecord.get()) { 2192 default: // Default behavior: unknown type. 2193 break; 2194 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2195 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2196 if (Error Err = ValOrErr.takeError()) 2197 return Err; 2198 ValOrErr.get(); 2199 break; 2200 } 2201 case bitc::VST_CODE_FNENTRY: { 2202 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2203 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2204 if (Error Err = ValOrErr.takeError()) 2205 return Err; 2206 Value *V = ValOrErr.get(); 2207 2208 // Ignore function offsets emitted for aliases of functions in older 2209 // versions of LLVM. 2210 if (auto *F = dyn_cast<Function>(V)) 2211 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2212 break; 2213 } 2214 case bitc::VST_CODE_BBENTRY: { 2215 if (convertToString(Record, 1, ValueName)) 2216 return error("Invalid record"); 2217 BasicBlock *BB = getBasicBlock(Record[0]); 2218 if (!BB) 2219 return error("Invalid record"); 2220 2221 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2222 ValueName.clear(); 2223 break; 2224 } 2225 } 2226 } 2227 } 2228 2229 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2230 /// encoding. 2231 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2232 if ((V & 1) == 0) 2233 return V >> 1; 2234 if (V != 1) 2235 return -(V >> 1); 2236 // There is no such thing as -0 with integers. "-0" really means MININT. 2237 return 1ULL << 63; 2238 } 2239 2240 /// Resolve all of the initializers for global values and aliases that we can. 2241 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2242 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2243 std::vector<std::pair<GlobalValue *, unsigned>> IndirectSymbolInitWorklist; 2244 std::vector<FunctionOperandInfo> FunctionOperandWorklist; 2245 2246 GlobalInitWorklist.swap(GlobalInits); 2247 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2248 FunctionOperandWorklist.swap(FunctionOperands); 2249 2250 while (!GlobalInitWorklist.empty()) { 2251 unsigned ValID = GlobalInitWorklist.back().second; 2252 if (ValID >= ValueList.size()) { 2253 // Not ready to resolve this yet, it requires something later in the file. 2254 GlobalInits.push_back(GlobalInitWorklist.back()); 2255 } else { 2256 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2257 GlobalInitWorklist.back().first->setInitializer(C); 2258 else 2259 return error("Expected a constant"); 2260 } 2261 GlobalInitWorklist.pop_back(); 2262 } 2263 2264 while (!IndirectSymbolInitWorklist.empty()) { 2265 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2266 if (ValID >= ValueList.size()) { 2267 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2268 } else { 2269 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2270 if (!C) 2271 return error("Expected a constant"); 2272 GlobalValue *GV = IndirectSymbolInitWorklist.back().first; 2273 if (auto *GA = dyn_cast<GlobalAlias>(GV)) { 2274 if (C->getType() != GV->getType()) 2275 return error("Alias and aliasee types don't match"); 2276 GA->setAliasee(C); 2277 } else if (auto *GI = dyn_cast<GlobalIFunc>(GV)) { 2278 Type *ResolverFTy = 2279 GlobalIFunc::getResolverFunctionType(GI->getValueType()); 2280 // Transparently fix up the type for compatiblity with older bitcode 2281 GI->setResolver( 2282 ConstantExpr::getBitCast(C, ResolverFTy->getPointerTo())); 2283 } else { 2284 return error("Expected an alias or an ifunc"); 2285 } 2286 } 2287 IndirectSymbolInitWorklist.pop_back(); 2288 } 2289 2290 while (!FunctionOperandWorklist.empty()) { 2291 FunctionOperandInfo &Info = FunctionOperandWorklist.back(); 2292 if (Info.PersonalityFn) { 2293 unsigned ValID = Info.PersonalityFn - 1; 2294 if (ValID < ValueList.size()) { 2295 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2296 Info.F->setPersonalityFn(C); 2297 else 2298 return error("Expected a constant"); 2299 Info.PersonalityFn = 0; 2300 } 2301 } 2302 if (Info.Prefix) { 2303 unsigned ValID = Info.Prefix - 1; 2304 if (ValID < ValueList.size()) { 2305 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2306 Info.F->setPrefixData(C); 2307 else 2308 return error("Expected a constant"); 2309 Info.Prefix = 0; 2310 } 2311 } 2312 if (Info.Prologue) { 2313 unsigned ValID = Info.Prologue - 1; 2314 if (ValID < ValueList.size()) { 2315 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2316 Info.F->setPrologueData(C); 2317 else 2318 return error("Expected a constant"); 2319 Info.Prologue = 0; 2320 } 2321 } 2322 if (Info.PersonalityFn || Info.Prefix || Info.Prologue) 2323 FunctionOperands.push_back(Info); 2324 FunctionOperandWorklist.pop_back(); 2325 } 2326 2327 return Error::success(); 2328 } 2329 2330 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2331 SmallVector<uint64_t, 8> Words(Vals.size()); 2332 transform(Vals, Words.begin(), 2333 BitcodeReader::decodeSignRotatedValue); 2334 2335 return APInt(TypeBits, Words); 2336 } 2337 2338 Error BitcodeReader::parseConstants() { 2339 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2340 return Err; 2341 2342 SmallVector<uint64_t, 64> Record; 2343 2344 // Read all the records for this value table. 2345 Type *CurTy = Type::getInt32Ty(Context); 2346 unsigned NextCstNo = ValueList.size(); 2347 2348 struct DelayedShufTy { 2349 VectorType *OpTy; 2350 VectorType *RTy; 2351 uint64_t Op0Idx; 2352 uint64_t Op1Idx; 2353 uint64_t Op2Idx; 2354 unsigned CstNo; 2355 }; 2356 std::vector<DelayedShufTy> DelayedShuffles; 2357 struct DelayedSelTy { 2358 Type *OpTy; 2359 uint64_t Op0Idx; 2360 uint64_t Op1Idx; 2361 uint64_t Op2Idx; 2362 unsigned CstNo; 2363 }; 2364 std::vector<DelayedSelTy> DelayedSelectors; 2365 2366 while (true) { 2367 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2368 if (!MaybeEntry) 2369 return MaybeEntry.takeError(); 2370 BitstreamEntry Entry = MaybeEntry.get(); 2371 2372 switch (Entry.Kind) { 2373 case BitstreamEntry::SubBlock: // Handled for us already. 2374 case BitstreamEntry::Error: 2375 return error("Malformed block"); 2376 case BitstreamEntry::EndBlock: 2377 // Once all the constants have been read, go through and resolve forward 2378 // references. 2379 // 2380 // We have to treat shuffles specially because they don't have three 2381 // operands anymore. We need to convert the shuffle mask into an array, 2382 // and we can't convert a forward reference. 2383 for (auto &DelayedShuffle : DelayedShuffles) { 2384 VectorType *OpTy = DelayedShuffle.OpTy; 2385 VectorType *RTy = DelayedShuffle.RTy; 2386 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2387 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2388 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2389 uint64_t CstNo = DelayedShuffle.CstNo; 2390 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2391 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2392 Type *ShufTy = 2393 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2394 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2395 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2396 return error("Invalid shufflevector operands"); 2397 SmallVector<int, 16> Mask; 2398 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2399 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2400 ValueList.assignValue(V, CstNo); 2401 } 2402 for (auto &DelayedSelector : DelayedSelectors) { 2403 Type *OpTy = DelayedSelector.OpTy; 2404 Type *SelectorTy = Type::getInt1Ty(Context); 2405 uint64_t Op0Idx = DelayedSelector.Op0Idx; 2406 uint64_t Op1Idx = DelayedSelector.Op1Idx; 2407 uint64_t Op2Idx = DelayedSelector.Op2Idx; 2408 uint64_t CstNo = DelayedSelector.CstNo; 2409 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2410 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, OpTy); 2411 // The selector might be an i1 or an <n x i1> 2412 // Get the type from the ValueList before getting a forward ref. 2413 if (VectorType *VTy = dyn_cast<VectorType>(OpTy)) { 2414 Value *V = ValueList[Op0Idx]; 2415 assert(V); 2416 if (SelectorTy != V->getType()) 2417 SelectorTy = VectorType::get(SelectorTy, VTy->getElementCount()); 2418 } 2419 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, SelectorTy); 2420 Value *V = ConstantExpr::getSelect(Op0, Op1, Op2); 2421 ValueList.assignValue(V, CstNo); 2422 } 2423 2424 if (NextCstNo != ValueList.size()) 2425 return error("Invalid constant reference"); 2426 2427 ValueList.resolveConstantForwardRefs(); 2428 return Error::success(); 2429 case BitstreamEntry::Record: 2430 // The interesting case. 2431 break; 2432 } 2433 2434 // Read a record. 2435 Record.clear(); 2436 Type *VoidType = Type::getVoidTy(Context); 2437 Value *V = nullptr; 2438 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2439 if (!MaybeBitCode) 2440 return MaybeBitCode.takeError(); 2441 switch (unsigned BitCode = MaybeBitCode.get()) { 2442 default: // Default behavior: unknown constant 2443 case bitc::CST_CODE_UNDEF: // UNDEF 2444 V = UndefValue::get(CurTy); 2445 break; 2446 case bitc::CST_CODE_POISON: // POISON 2447 V = PoisonValue::get(CurTy); 2448 break; 2449 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2450 if (Record.empty()) 2451 return error("Invalid record"); 2452 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2453 return error("Invalid record"); 2454 if (TypeList[Record[0]] == VoidType) 2455 return error("Invalid constant type"); 2456 CurTy = TypeList[Record[0]]; 2457 continue; // Skip the ValueList manipulation. 2458 case bitc::CST_CODE_NULL: // NULL 2459 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2460 return error("Invalid type for a constant null value"); 2461 V = Constant::getNullValue(CurTy); 2462 break; 2463 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2464 if (!CurTy->isIntegerTy() || Record.empty()) 2465 return error("Invalid record"); 2466 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2467 break; 2468 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2469 if (!CurTy->isIntegerTy() || Record.empty()) 2470 return error("Invalid record"); 2471 2472 APInt VInt = 2473 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2474 V = ConstantInt::get(Context, VInt); 2475 2476 break; 2477 } 2478 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2479 if (Record.empty()) 2480 return error("Invalid record"); 2481 if (CurTy->isHalfTy()) 2482 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2483 APInt(16, (uint16_t)Record[0]))); 2484 else if (CurTy->isBFloatTy()) 2485 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2486 APInt(16, (uint32_t)Record[0]))); 2487 else if (CurTy->isFloatTy()) 2488 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2489 APInt(32, (uint32_t)Record[0]))); 2490 else if (CurTy->isDoubleTy()) 2491 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2492 APInt(64, Record[0]))); 2493 else if (CurTy->isX86_FP80Ty()) { 2494 // Bits are not stored the same way as a normal i80 APInt, compensate. 2495 uint64_t Rearrange[2]; 2496 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2497 Rearrange[1] = Record[0] >> 48; 2498 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2499 APInt(80, Rearrange))); 2500 } else if (CurTy->isFP128Ty()) 2501 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2502 APInt(128, Record))); 2503 else if (CurTy->isPPC_FP128Ty()) 2504 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2505 APInt(128, Record))); 2506 else 2507 V = UndefValue::get(CurTy); 2508 break; 2509 } 2510 2511 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2512 if (Record.empty()) 2513 return error("Invalid record"); 2514 2515 unsigned Size = Record.size(); 2516 SmallVector<Constant*, 16> Elts; 2517 2518 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2519 for (unsigned i = 0; i != Size; ++i) 2520 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2521 STy->getElementType(i))); 2522 V = ConstantStruct::get(STy, Elts); 2523 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2524 Type *EltTy = ATy->getElementType(); 2525 for (unsigned i = 0; i != Size; ++i) 2526 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2527 V = ConstantArray::get(ATy, Elts); 2528 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2529 Type *EltTy = VTy->getElementType(); 2530 for (unsigned i = 0; i != Size; ++i) 2531 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2532 V = ConstantVector::get(Elts); 2533 } else { 2534 V = UndefValue::get(CurTy); 2535 } 2536 break; 2537 } 2538 case bitc::CST_CODE_STRING: // STRING: [values] 2539 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2540 if (Record.empty()) 2541 return error("Invalid record"); 2542 2543 SmallString<16> Elts(Record.begin(), Record.end()); 2544 V = ConstantDataArray::getString(Context, Elts, 2545 BitCode == bitc::CST_CODE_CSTRING); 2546 break; 2547 } 2548 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2549 if (Record.empty()) 2550 return error("Invalid record"); 2551 2552 Type *EltTy; 2553 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2554 EltTy = Array->getElementType(); 2555 else 2556 EltTy = cast<VectorType>(CurTy)->getElementType(); 2557 if (EltTy->isIntegerTy(8)) { 2558 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2559 if (isa<VectorType>(CurTy)) 2560 V = ConstantDataVector::get(Context, Elts); 2561 else 2562 V = ConstantDataArray::get(Context, Elts); 2563 } else if (EltTy->isIntegerTy(16)) { 2564 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2565 if (isa<VectorType>(CurTy)) 2566 V = ConstantDataVector::get(Context, Elts); 2567 else 2568 V = ConstantDataArray::get(Context, Elts); 2569 } else if (EltTy->isIntegerTy(32)) { 2570 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2571 if (isa<VectorType>(CurTy)) 2572 V = ConstantDataVector::get(Context, Elts); 2573 else 2574 V = ConstantDataArray::get(Context, Elts); 2575 } else if (EltTy->isIntegerTy(64)) { 2576 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2577 if (isa<VectorType>(CurTy)) 2578 V = ConstantDataVector::get(Context, Elts); 2579 else 2580 V = ConstantDataArray::get(Context, Elts); 2581 } else if (EltTy->isHalfTy()) { 2582 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2583 if (isa<VectorType>(CurTy)) 2584 V = ConstantDataVector::getFP(EltTy, Elts); 2585 else 2586 V = ConstantDataArray::getFP(EltTy, Elts); 2587 } else if (EltTy->isBFloatTy()) { 2588 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2589 if (isa<VectorType>(CurTy)) 2590 V = ConstantDataVector::getFP(EltTy, Elts); 2591 else 2592 V = ConstantDataArray::getFP(EltTy, Elts); 2593 } else if (EltTy->isFloatTy()) { 2594 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2595 if (isa<VectorType>(CurTy)) 2596 V = ConstantDataVector::getFP(EltTy, Elts); 2597 else 2598 V = ConstantDataArray::getFP(EltTy, Elts); 2599 } else if (EltTy->isDoubleTy()) { 2600 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2601 if (isa<VectorType>(CurTy)) 2602 V = ConstantDataVector::getFP(EltTy, Elts); 2603 else 2604 V = ConstantDataArray::getFP(EltTy, Elts); 2605 } else { 2606 return error("Invalid type for value"); 2607 } 2608 break; 2609 } 2610 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2611 if (Record.size() < 2) 2612 return error("Invalid record"); 2613 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2614 if (Opc < 0) { 2615 V = UndefValue::get(CurTy); // Unknown unop. 2616 } else { 2617 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2618 unsigned Flags = 0; 2619 V = ConstantExpr::get(Opc, LHS, Flags); 2620 } 2621 break; 2622 } 2623 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2624 if (Record.size() < 3) 2625 return error("Invalid record"); 2626 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2627 if (Opc < 0) { 2628 V = UndefValue::get(CurTy); // Unknown binop. 2629 } else { 2630 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2631 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2632 unsigned Flags = 0; 2633 if (Record.size() >= 4) { 2634 if (Opc == Instruction::Add || 2635 Opc == Instruction::Sub || 2636 Opc == Instruction::Mul || 2637 Opc == Instruction::Shl) { 2638 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2639 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2640 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2641 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2642 } else if (Opc == Instruction::SDiv || 2643 Opc == Instruction::UDiv || 2644 Opc == Instruction::LShr || 2645 Opc == Instruction::AShr) { 2646 if (Record[3] & (1 << bitc::PEO_EXACT)) 2647 Flags |= SDivOperator::IsExact; 2648 } 2649 } 2650 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2651 } 2652 break; 2653 } 2654 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2655 if (Record.size() < 3) 2656 return error("Invalid record"); 2657 int Opc = getDecodedCastOpcode(Record[0]); 2658 if (Opc < 0) { 2659 V = UndefValue::get(CurTy); // Unknown cast. 2660 } else { 2661 Type *OpTy = getTypeByID(Record[1]); 2662 if (!OpTy) 2663 return error("Invalid record"); 2664 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2665 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2666 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2667 } 2668 break; 2669 } 2670 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2671 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2672 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2673 // operands] 2674 unsigned OpNum = 0; 2675 Type *PointeeType = nullptr; 2676 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2677 Record.size() % 2) 2678 PointeeType = getTypeByID(Record[OpNum++]); 2679 2680 bool InBounds = false; 2681 Optional<unsigned> InRangeIndex; 2682 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2683 uint64_t Op = Record[OpNum++]; 2684 InBounds = Op & 1; 2685 InRangeIndex = Op >> 1; 2686 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2687 InBounds = true; 2688 2689 SmallVector<Constant*, 16> Elts; 2690 Type *Elt0FullTy = nullptr; 2691 while (OpNum != Record.size()) { 2692 if (!Elt0FullTy) 2693 Elt0FullTy = getTypeByID(Record[OpNum]); 2694 Type *ElTy = getTypeByID(Record[OpNum++]); 2695 if (!ElTy) 2696 return error("Invalid record"); 2697 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2698 } 2699 2700 if (Elts.size() < 1) 2701 return error("Invalid gep with no operands"); 2702 2703 PointerType *OrigPtrTy = cast<PointerType>(Elt0FullTy->getScalarType()); 2704 if (!PointeeType) 2705 PointeeType = OrigPtrTy->getElementType(); 2706 else if (!OrigPtrTy->isOpaqueOrPointeeTypeMatches(PointeeType)) 2707 return error("Explicit gep operator type does not match pointee type " 2708 "of pointer operand"); 2709 2710 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2711 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2712 InBounds, InRangeIndex); 2713 break; 2714 } 2715 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2716 if (Record.size() < 3) 2717 return error("Invalid record"); 2718 2719 DelayedSelectors.push_back( 2720 {CurTy, Record[0], Record[1], Record[2], NextCstNo}); 2721 (void)ValueList.getConstantFwdRef(NextCstNo, CurTy); 2722 ++NextCstNo; 2723 continue; 2724 } 2725 case bitc::CST_CODE_CE_EXTRACTELT 2726 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2727 if (Record.size() < 3) 2728 return error("Invalid record"); 2729 VectorType *OpTy = 2730 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2731 if (!OpTy) 2732 return error("Invalid record"); 2733 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2734 Constant *Op1 = nullptr; 2735 if (Record.size() == 4) { 2736 Type *IdxTy = getTypeByID(Record[2]); 2737 if (!IdxTy) 2738 return error("Invalid record"); 2739 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2740 } else { 2741 // Deprecated, but still needed to read old bitcode files. 2742 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2743 } 2744 if (!Op1) 2745 return error("Invalid record"); 2746 V = ConstantExpr::getExtractElement(Op0, Op1); 2747 break; 2748 } 2749 case bitc::CST_CODE_CE_INSERTELT 2750 : { // CE_INSERTELT: [opval, opval, opty, opval] 2751 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2752 if (Record.size() < 3 || !OpTy) 2753 return error("Invalid record"); 2754 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2755 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2756 OpTy->getElementType()); 2757 Constant *Op2 = nullptr; 2758 if (Record.size() == 4) { 2759 Type *IdxTy = getTypeByID(Record[2]); 2760 if (!IdxTy) 2761 return error("Invalid record"); 2762 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2763 } else { 2764 // Deprecated, but still needed to read old bitcode files. 2765 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2766 } 2767 if (!Op2) 2768 return error("Invalid record"); 2769 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2770 break; 2771 } 2772 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2773 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2774 if (Record.size() < 3 || !OpTy) 2775 return error("Invalid record"); 2776 DelayedShuffles.push_back( 2777 {OpTy, OpTy, Record[0], Record[1], Record[2], NextCstNo}); 2778 ++NextCstNo; 2779 continue; 2780 } 2781 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2782 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2783 VectorType *OpTy = 2784 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2785 if (Record.size() < 4 || !RTy || !OpTy) 2786 return error("Invalid record"); 2787 DelayedShuffles.push_back( 2788 {OpTy, RTy, Record[1], Record[2], Record[3], NextCstNo}); 2789 ++NextCstNo; 2790 continue; 2791 } 2792 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2793 if (Record.size() < 4) 2794 return error("Invalid record"); 2795 Type *OpTy = getTypeByID(Record[0]); 2796 if (!OpTy) 2797 return error("Invalid record"); 2798 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2799 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2800 2801 if (OpTy->isFPOrFPVectorTy()) 2802 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2803 else 2804 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2805 break; 2806 } 2807 // This maintains backward compatibility, pre-asm dialect keywords. 2808 // Deprecated, but still needed to read old bitcode files. 2809 case bitc::CST_CODE_INLINEASM_OLD: { 2810 if (Record.size() < 2) 2811 return error("Invalid record"); 2812 std::string AsmStr, ConstrStr; 2813 bool HasSideEffects = Record[0] & 1; 2814 bool IsAlignStack = Record[0] >> 1; 2815 unsigned AsmStrSize = Record[1]; 2816 if (2+AsmStrSize >= Record.size()) 2817 return error("Invalid record"); 2818 unsigned ConstStrSize = Record[2+AsmStrSize]; 2819 if (3+AsmStrSize+ConstStrSize > Record.size()) 2820 return error("Invalid record"); 2821 2822 for (unsigned i = 0; i != AsmStrSize; ++i) 2823 AsmStr += (char)Record[2+i]; 2824 for (unsigned i = 0; i != ConstStrSize; ++i) 2825 ConstrStr += (char)Record[3+AsmStrSize+i]; 2826 UpgradeInlineAsmString(&AsmStr); 2827 V = InlineAsm::get( 2828 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2829 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2830 break; 2831 } 2832 // This version adds support for the asm dialect keywords (e.g., 2833 // inteldialect). 2834 case bitc::CST_CODE_INLINEASM_OLD2: { 2835 if (Record.size() < 2) 2836 return error("Invalid record"); 2837 std::string AsmStr, ConstrStr; 2838 bool HasSideEffects = Record[0] & 1; 2839 bool IsAlignStack = (Record[0] >> 1) & 1; 2840 unsigned AsmDialect = Record[0] >> 2; 2841 unsigned AsmStrSize = Record[1]; 2842 if (2+AsmStrSize >= Record.size()) 2843 return error("Invalid record"); 2844 unsigned ConstStrSize = Record[2+AsmStrSize]; 2845 if (3+AsmStrSize+ConstStrSize > Record.size()) 2846 return error("Invalid record"); 2847 2848 for (unsigned i = 0; i != AsmStrSize; ++i) 2849 AsmStr += (char)Record[2+i]; 2850 for (unsigned i = 0; i != ConstStrSize; ++i) 2851 ConstrStr += (char)Record[3+AsmStrSize+i]; 2852 UpgradeInlineAsmString(&AsmStr); 2853 V = InlineAsm::get( 2854 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2855 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2856 InlineAsm::AsmDialect(AsmDialect)); 2857 break; 2858 } 2859 // This version adds support for the unwind keyword. 2860 case bitc::CST_CODE_INLINEASM: { 2861 if (Record.size() < 2) 2862 return error("Invalid record"); 2863 std::string AsmStr, ConstrStr; 2864 bool HasSideEffects = Record[0] & 1; 2865 bool IsAlignStack = (Record[0] >> 1) & 1; 2866 unsigned AsmDialect = (Record[0] >> 2) & 1; 2867 bool CanThrow = (Record[0] >> 3) & 1; 2868 unsigned AsmStrSize = Record[1]; 2869 if (2 + AsmStrSize >= Record.size()) 2870 return error("Invalid record"); 2871 unsigned ConstStrSize = Record[2 + AsmStrSize]; 2872 if (3 + AsmStrSize + ConstStrSize > Record.size()) 2873 return error("Invalid record"); 2874 2875 for (unsigned i = 0; i != AsmStrSize; ++i) 2876 AsmStr += (char)Record[2 + i]; 2877 for (unsigned i = 0; i != ConstStrSize; ++i) 2878 ConstrStr += (char)Record[3 + AsmStrSize + i]; 2879 UpgradeInlineAsmString(&AsmStr); 2880 V = InlineAsm::get( 2881 cast<FunctionType>(cast<PointerType>(CurTy)->getElementType()), 2882 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2883 InlineAsm::AsmDialect(AsmDialect), CanThrow); 2884 break; 2885 } 2886 case bitc::CST_CODE_BLOCKADDRESS:{ 2887 if (Record.size() < 3) 2888 return error("Invalid record"); 2889 Type *FnTy = getTypeByID(Record[0]); 2890 if (!FnTy) 2891 return error("Invalid record"); 2892 Function *Fn = 2893 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2894 if (!Fn) 2895 return error("Invalid record"); 2896 2897 // If the function is already parsed we can insert the block address right 2898 // away. 2899 BasicBlock *BB; 2900 unsigned BBID = Record[2]; 2901 if (!BBID) 2902 // Invalid reference to entry block. 2903 return error("Invalid ID"); 2904 if (!Fn->empty()) { 2905 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2906 for (size_t I = 0, E = BBID; I != E; ++I) { 2907 if (BBI == BBE) 2908 return error("Invalid ID"); 2909 ++BBI; 2910 } 2911 BB = &*BBI; 2912 } else { 2913 // Otherwise insert a placeholder and remember it so it can be inserted 2914 // when the function is parsed. 2915 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2916 if (FwdBBs.empty()) 2917 BasicBlockFwdRefQueue.push_back(Fn); 2918 if (FwdBBs.size() < BBID + 1) 2919 FwdBBs.resize(BBID + 1); 2920 if (!FwdBBs[BBID]) 2921 FwdBBs[BBID] = BasicBlock::Create(Context); 2922 BB = FwdBBs[BBID]; 2923 } 2924 V = BlockAddress::get(Fn, BB); 2925 break; 2926 } 2927 case bitc::CST_CODE_DSO_LOCAL_EQUIVALENT: { 2928 if (Record.size() < 2) 2929 return error("Invalid record"); 2930 Type *GVTy = getTypeByID(Record[0]); 2931 if (!GVTy) 2932 return error("Invalid record"); 2933 GlobalValue *GV = dyn_cast_or_null<GlobalValue>( 2934 ValueList.getConstantFwdRef(Record[1], GVTy)); 2935 if (!GV) 2936 return error("Invalid record"); 2937 2938 V = DSOLocalEquivalent::get(GV); 2939 break; 2940 } 2941 } 2942 2943 ValueList.assignValue(V, NextCstNo); 2944 ++NextCstNo; 2945 } 2946 } 2947 2948 Error BitcodeReader::parseUseLists() { 2949 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2950 return Err; 2951 2952 // Read all the records. 2953 SmallVector<uint64_t, 64> Record; 2954 2955 while (true) { 2956 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2957 if (!MaybeEntry) 2958 return MaybeEntry.takeError(); 2959 BitstreamEntry Entry = MaybeEntry.get(); 2960 2961 switch (Entry.Kind) { 2962 case BitstreamEntry::SubBlock: // Handled for us already. 2963 case BitstreamEntry::Error: 2964 return error("Malformed block"); 2965 case BitstreamEntry::EndBlock: 2966 return Error::success(); 2967 case BitstreamEntry::Record: 2968 // The interesting case. 2969 break; 2970 } 2971 2972 // Read a use list record. 2973 Record.clear(); 2974 bool IsBB = false; 2975 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2976 if (!MaybeRecord) 2977 return MaybeRecord.takeError(); 2978 switch (MaybeRecord.get()) { 2979 default: // Default behavior: unknown type. 2980 break; 2981 case bitc::USELIST_CODE_BB: 2982 IsBB = true; 2983 LLVM_FALLTHROUGH; 2984 case bitc::USELIST_CODE_DEFAULT: { 2985 unsigned RecordLength = Record.size(); 2986 if (RecordLength < 3) 2987 // Records should have at least an ID and two indexes. 2988 return error("Invalid record"); 2989 unsigned ID = Record.pop_back_val(); 2990 2991 Value *V; 2992 if (IsBB) { 2993 assert(ID < FunctionBBs.size() && "Basic block not found"); 2994 V = FunctionBBs[ID]; 2995 } else 2996 V = ValueList[ID]; 2997 unsigned NumUses = 0; 2998 SmallDenseMap<const Use *, unsigned, 16> Order; 2999 for (const Use &U : V->materialized_uses()) { 3000 if (++NumUses > Record.size()) 3001 break; 3002 Order[&U] = Record[NumUses - 1]; 3003 } 3004 if (Order.size() != Record.size() || NumUses > Record.size()) 3005 // Mismatches can happen if the functions are being materialized lazily 3006 // (out-of-order), or a value has been upgraded. 3007 break; 3008 3009 V->sortUseList([&](const Use &L, const Use &R) { 3010 return Order.lookup(&L) < Order.lookup(&R); 3011 }); 3012 break; 3013 } 3014 } 3015 } 3016 } 3017 3018 /// When we see the block for metadata, remember where it is and then skip it. 3019 /// This lets us lazily deserialize the metadata. 3020 Error BitcodeReader::rememberAndSkipMetadata() { 3021 // Save the current stream state. 3022 uint64_t CurBit = Stream.GetCurrentBitNo(); 3023 DeferredMetadataInfo.push_back(CurBit); 3024 3025 // Skip over the block for now. 3026 if (Error Err = Stream.SkipBlock()) 3027 return Err; 3028 return Error::success(); 3029 } 3030 3031 Error BitcodeReader::materializeMetadata() { 3032 for (uint64_t BitPos : DeferredMetadataInfo) { 3033 // Move the bit stream to the saved position. 3034 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 3035 return JumpFailed; 3036 if (Error Err = MDLoader->parseModuleMetadata()) 3037 return Err; 3038 } 3039 3040 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 3041 // metadata. Only upgrade if the new option doesn't exist to avoid upgrade 3042 // multiple times. 3043 if (!TheModule->getNamedMetadata("llvm.linker.options")) { 3044 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 3045 NamedMDNode *LinkerOpts = 3046 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 3047 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 3048 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 3049 } 3050 } 3051 3052 DeferredMetadataInfo.clear(); 3053 return Error::success(); 3054 } 3055 3056 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 3057 3058 /// When we see the block for a function body, remember where it is and then 3059 /// skip it. This lets us lazily deserialize the functions. 3060 Error BitcodeReader::rememberAndSkipFunctionBody() { 3061 // Get the function we are talking about. 3062 if (FunctionsWithBodies.empty()) 3063 return error("Insufficient function protos"); 3064 3065 Function *Fn = FunctionsWithBodies.back(); 3066 FunctionsWithBodies.pop_back(); 3067 3068 // Save the current stream state. 3069 uint64_t CurBit = Stream.GetCurrentBitNo(); 3070 assert( 3071 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 3072 "Mismatch between VST and scanned function offsets"); 3073 DeferredFunctionInfo[Fn] = CurBit; 3074 3075 // Skip over the function block for now. 3076 if (Error Err = Stream.SkipBlock()) 3077 return Err; 3078 return Error::success(); 3079 } 3080 3081 Error BitcodeReader::globalCleanup() { 3082 // Patch the initializers for globals and aliases up. 3083 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3084 return Err; 3085 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3086 return error("Malformed global initializer set"); 3087 3088 // Look for intrinsic functions which need to be upgraded at some point 3089 // and functions that need to have their function attributes upgraded. 3090 for (Function &F : *TheModule) { 3091 MDLoader->upgradeDebugIntrinsics(F); 3092 Function *NewFn; 3093 if (UpgradeIntrinsicFunction(&F, NewFn)) 3094 UpgradedIntrinsics[&F] = NewFn; 3095 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3096 // Some types could be renamed during loading if several modules are 3097 // loaded in the same LLVMContext (LTO scenario). In this case we should 3098 // remangle intrinsics names as well. 3099 RemangledIntrinsics[&F] = Remangled.getValue(); 3100 // Look for functions that rely on old function attribute behavior. 3101 UpgradeFunctionAttributes(F); 3102 } 3103 3104 // Look for global variables which need to be renamed. 3105 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3106 for (GlobalVariable &GV : TheModule->globals()) 3107 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3108 UpgradedVariables.emplace_back(&GV, Upgraded); 3109 for (auto &Pair : UpgradedVariables) { 3110 Pair.first->eraseFromParent(); 3111 TheModule->getGlobalList().push_back(Pair.second); 3112 } 3113 3114 // Force deallocation of memory for these vectors to favor the client that 3115 // want lazy deserialization. 3116 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3117 std::vector<std::pair<GlobalValue *, unsigned>>().swap(IndirectSymbolInits); 3118 return Error::success(); 3119 } 3120 3121 /// Support for lazy parsing of function bodies. This is required if we 3122 /// either have an old bitcode file without a VST forward declaration record, 3123 /// or if we have an anonymous function being materialized, since anonymous 3124 /// functions do not have a name and are therefore not in the VST. 3125 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3126 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3127 return JumpFailed; 3128 3129 if (Stream.AtEndOfStream()) 3130 return error("Could not find function in stream"); 3131 3132 if (!SeenFirstFunctionBody) 3133 return error("Trying to materialize functions before seeing function blocks"); 3134 3135 // An old bitcode file with the symbol table at the end would have 3136 // finished the parse greedily. 3137 assert(SeenValueSymbolTable); 3138 3139 SmallVector<uint64_t, 64> Record; 3140 3141 while (true) { 3142 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3143 if (!MaybeEntry) 3144 return MaybeEntry.takeError(); 3145 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3146 3147 switch (Entry.Kind) { 3148 default: 3149 return error("Expect SubBlock"); 3150 case BitstreamEntry::SubBlock: 3151 switch (Entry.ID) { 3152 default: 3153 return error("Expect function block"); 3154 case bitc::FUNCTION_BLOCK_ID: 3155 if (Error Err = rememberAndSkipFunctionBody()) 3156 return Err; 3157 NextUnreadBit = Stream.GetCurrentBitNo(); 3158 return Error::success(); 3159 } 3160 } 3161 } 3162 } 3163 3164 bool BitcodeReaderBase::readBlockInfo() { 3165 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3166 Stream.ReadBlockInfoBlock(); 3167 if (!MaybeNewBlockInfo) 3168 return true; // FIXME Handle the error. 3169 Optional<BitstreamBlockInfo> NewBlockInfo = 3170 std::move(MaybeNewBlockInfo.get()); 3171 if (!NewBlockInfo) 3172 return true; 3173 BlockInfo = std::move(*NewBlockInfo); 3174 return false; 3175 } 3176 3177 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3178 // v1: [selection_kind, name] 3179 // v2: [strtab_offset, strtab_size, selection_kind] 3180 StringRef Name; 3181 std::tie(Name, Record) = readNameFromStrtab(Record); 3182 3183 if (Record.empty()) 3184 return error("Invalid record"); 3185 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3186 std::string OldFormatName; 3187 if (!UseStrtab) { 3188 if (Record.size() < 2) 3189 return error("Invalid record"); 3190 unsigned ComdatNameSize = Record[1]; 3191 OldFormatName.reserve(ComdatNameSize); 3192 for (unsigned i = 0; i != ComdatNameSize; ++i) 3193 OldFormatName += (char)Record[2 + i]; 3194 Name = OldFormatName; 3195 } 3196 Comdat *C = TheModule->getOrInsertComdat(Name); 3197 C->setSelectionKind(SK); 3198 ComdatList.push_back(C); 3199 return Error::success(); 3200 } 3201 3202 static void inferDSOLocal(GlobalValue *GV) { 3203 // infer dso_local from linkage and visibility if it is not encoded. 3204 if (GV->hasLocalLinkage() || 3205 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3206 GV->setDSOLocal(true); 3207 } 3208 3209 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3210 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3211 // visibility, threadlocal, unnamed_addr, externally_initialized, 3212 // dllstorageclass, comdat, attributes, preemption specifier, 3213 // partition strtab offset, partition strtab size] (name in VST) 3214 // v2: [strtab_offset, strtab_size, v1] 3215 StringRef Name; 3216 std::tie(Name, Record) = readNameFromStrtab(Record); 3217 3218 if (Record.size() < 6) 3219 return error("Invalid record"); 3220 Type *Ty = getTypeByID(Record[0]); 3221 if (!Ty) 3222 return error("Invalid record"); 3223 bool isConstant = Record[1] & 1; 3224 bool explicitType = Record[1] & 2; 3225 unsigned AddressSpace; 3226 if (explicitType) { 3227 AddressSpace = Record[1] >> 2; 3228 } else { 3229 if (!Ty->isPointerTy()) 3230 return error("Invalid type for value"); 3231 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3232 Ty = cast<PointerType>(Ty)->getElementType(); 3233 } 3234 3235 uint64_t RawLinkage = Record[3]; 3236 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3237 MaybeAlign Alignment; 3238 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3239 return Err; 3240 std::string Section; 3241 if (Record[5]) { 3242 if (Record[5] - 1 >= SectionTable.size()) 3243 return error("Invalid ID"); 3244 Section = SectionTable[Record[5] - 1]; 3245 } 3246 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3247 // Local linkage must have default visibility. 3248 // auto-upgrade `hidden` and `protected` for old bitcode. 3249 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3250 Visibility = getDecodedVisibility(Record[6]); 3251 3252 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3253 if (Record.size() > 7) 3254 TLM = getDecodedThreadLocalMode(Record[7]); 3255 3256 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3257 if (Record.size() > 8) 3258 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3259 3260 bool ExternallyInitialized = false; 3261 if (Record.size() > 9) 3262 ExternallyInitialized = Record[9]; 3263 3264 GlobalVariable *NewGV = 3265 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3266 nullptr, TLM, AddressSpace, ExternallyInitialized); 3267 NewGV->setAlignment(Alignment); 3268 if (!Section.empty()) 3269 NewGV->setSection(Section); 3270 NewGV->setVisibility(Visibility); 3271 NewGV->setUnnamedAddr(UnnamedAddr); 3272 3273 if (Record.size() > 10) 3274 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3275 else 3276 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3277 3278 ValueList.push_back(NewGV); 3279 3280 // Remember which value to use for the global initializer. 3281 if (unsigned InitID = Record[2]) 3282 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3283 3284 if (Record.size() > 11) { 3285 if (unsigned ComdatID = Record[11]) { 3286 if (ComdatID > ComdatList.size()) 3287 return error("Invalid global variable comdat ID"); 3288 NewGV->setComdat(ComdatList[ComdatID - 1]); 3289 } 3290 } else if (hasImplicitComdat(RawLinkage)) { 3291 ImplicitComdatObjects.insert(NewGV); 3292 } 3293 3294 if (Record.size() > 12) { 3295 auto AS = getAttributes(Record[12]).getFnAttrs(); 3296 NewGV->setAttributes(AS); 3297 } 3298 3299 if (Record.size() > 13) { 3300 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3301 } 3302 inferDSOLocal(NewGV); 3303 3304 // Check whether we have enough values to read a partition name. 3305 if (Record.size() > 15) 3306 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3307 3308 return Error::success(); 3309 } 3310 3311 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3312 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3313 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3314 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3315 // v2: [strtab_offset, strtab_size, v1] 3316 StringRef Name; 3317 std::tie(Name, Record) = readNameFromStrtab(Record); 3318 3319 if (Record.size() < 8) 3320 return error("Invalid record"); 3321 Type *FTy = getTypeByID(Record[0]); 3322 if (!FTy) 3323 return error("Invalid record"); 3324 if (auto *PTy = dyn_cast<PointerType>(FTy)) 3325 FTy = PTy->getElementType(); 3326 3327 if (!isa<FunctionType>(FTy)) 3328 return error("Invalid type for value"); 3329 auto CC = static_cast<CallingConv::ID>(Record[1]); 3330 if (CC & ~CallingConv::MaxID) 3331 return error("Invalid calling convention ID"); 3332 3333 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3334 if (Record.size() > 16) 3335 AddrSpace = Record[16]; 3336 3337 Function *Func = 3338 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3339 AddrSpace, Name, TheModule); 3340 3341 assert(Func->getFunctionType() == FTy && 3342 "Incorrect fully specified type provided for function"); 3343 FunctionTypes[Func] = cast<FunctionType>(FTy); 3344 3345 Func->setCallingConv(CC); 3346 bool isProto = Record[2]; 3347 uint64_t RawLinkage = Record[3]; 3348 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3349 Func->setAttributes(getAttributes(Record[4])); 3350 3351 // Upgrade any old-style byval or sret without a type by propagating the 3352 // argument's pointee type. There should be no opaque pointers where the byval 3353 // type is implicit. 3354 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3355 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3356 Attribute::InAlloca}) { 3357 if (!Func->hasParamAttribute(i, Kind)) 3358 continue; 3359 3360 if (Func->getParamAttribute(i, Kind).getValueAsType()) 3361 continue; 3362 3363 Func->removeParamAttr(i, Kind); 3364 3365 Type *PTy = cast<FunctionType>(FTy)->getParamType(i); 3366 Type *PtrEltTy = cast<PointerType>(PTy)->getElementType(); 3367 Attribute NewAttr; 3368 switch (Kind) { 3369 case Attribute::ByVal: 3370 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3371 break; 3372 case Attribute::StructRet: 3373 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3374 break; 3375 case Attribute::InAlloca: 3376 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3377 break; 3378 default: 3379 llvm_unreachable("not an upgraded type attribute"); 3380 } 3381 3382 Func->addParamAttr(i, NewAttr); 3383 } 3384 } 3385 3386 MaybeAlign Alignment; 3387 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3388 return Err; 3389 Func->setAlignment(Alignment); 3390 if (Record[6]) { 3391 if (Record[6] - 1 >= SectionTable.size()) 3392 return error("Invalid ID"); 3393 Func->setSection(SectionTable[Record[6] - 1]); 3394 } 3395 // Local linkage must have default visibility. 3396 // auto-upgrade `hidden` and `protected` for old bitcode. 3397 if (!Func->hasLocalLinkage()) 3398 Func->setVisibility(getDecodedVisibility(Record[7])); 3399 if (Record.size() > 8 && Record[8]) { 3400 if (Record[8] - 1 >= GCTable.size()) 3401 return error("Invalid ID"); 3402 Func->setGC(GCTable[Record[8] - 1]); 3403 } 3404 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3405 if (Record.size() > 9) 3406 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3407 Func->setUnnamedAddr(UnnamedAddr); 3408 3409 FunctionOperandInfo OperandInfo = {Func, 0, 0, 0}; 3410 if (Record.size() > 10) 3411 OperandInfo.Prologue = Record[10]; 3412 3413 if (Record.size() > 11) 3414 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3415 else 3416 upgradeDLLImportExportLinkage(Func, RawLinkage); 3417 3418 if (Record.size() > 12) { 3419 if (unsigned ComdatID = Record[12]) { 3420 if (ComdatID > ComdatList.size()) 3421 return error("Invalid function comdat ID"); 3422 Func->setComdat(ComdatList[ComdatID - 1]); 3423 } 3424 } else if (hasImplicitComdat(RawLinkage)) { 3425 ImplicitComdatObjects.insert(Func); 3426 } 3427 3428 if (Record.size() > 13) 3429 OperandInfo.Prefix = Record[13]; 3430 3431 if (Record.size() > 14) 3432 OperandInfo.PersonalityFn = Record[14]; 3433 3434 if (Record.size() > 15) { 3435 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3436 } 3437 inferDSOLocal(Func); 3438 3439 // Record[16] is the address space number. 3440 3441 // Check whether we have enough values to read a partition name. Also make 3442 // sure Strtab has enough values. 3443 if (Record.size() > 18 && Strtab.data() && 3444 Record[17] + Record[18] <= Strtab.size()) { 3445 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3446 } 3447 3448 ValueList.push_back(Func); 3449 3450 if (OperandInfo.PersonalityFn || OperandInfo.Prefix || OperandInfo.Prologue) 3451 FunctionOperands.push_back(OperandInfo); 3452 3453 // If this is a function with a body, remember the prototype we are 3454 // creating now, so that we can match up the body with them later. 3455 if (!isProto) { 3456 Func->setIsMaterializable(true); 3457 FunctionsWithBodies.push_back(Func); 3458 DeferredFunctionInfo[Func] = 0; 3459 } 3460 return Error::success(); 3461 } 3462 3463 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3464 unsigned BitCode, ArrayRef<uint64_t> Record) { 3465 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3466 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3467 // dllstorageclass, threadlocal, unnamed_addr, 3468 // preemption specifier] (name in VST) 3469 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3470 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3471 // preemption specifier] (name in VST) 3472 // v2: [strtab_offset, strtab_size, v1] 3473 StringRef Name; 3474 std::tie(Name, Record) = readNameFromStrtab(Record); 3475 3476 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3477 if (Record.size() < (3 + (unsigned)NewRecord)) 3478 return error("Invalid record"); 3479 unsigned OpNum = 0; 3480 Type *Ty = getTypeByID(Record[OpNum++]); 3481 if (!Ty) 3482 return error("Invalid record"); 3483 3484 unsigned AddrSpace; 3485 if (!NewRecord) { 3486 auto *PTy = dyn_cast<PointerType>(Ty); 3487 if (!PTy) 3488 return error("Invalid type for value"); 3489 Ty = PTy->getElementType(); 3490 AddrSpace = PTy->getAddressSpace(); 3491 } else { 3492 AddrSpace = Record[OpNum++]; 3493 } 3494 3495 auto Val = Record[OpNum++]; 3496 auto Linkage = Record[OpNum++]; 3497 GlobalValue *NewGA; 3498 if (BitCode == bitc::MODULE_CODE_ALIAS || 3499 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3500 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3501 TheModule); 3502 else 3503 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3504 nullptr, TheModule); 3505 3506 // Local linkage must have default visibility. 3507 // auto-upgrade `hidden` and `protected` for old bitcode. 3508 if (OpNum != Record.size()) { 3509 auto VisInd = OpNum++; 3510 if (!NewGA->hasLocalLinkage()) 3511 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3512 } 3513 if (BitCode == bitc::MODULE_CODE_ALIAS || 3514 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3515 if (OpNum != Record.size()) 3516 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3517 else 3518 upgradeDLLImportExportLinkage(NewGA, Linkage); 3519 if (OpNum != Record.size()) 3520 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3521 if (OpNum != Record.size()) 3522 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3523 } 3524 if (OpNum != Record.size()) 3525 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3526 inferDSOLocal(NewGA); 3527 3528 // Check whether we have enough values to read a partition name. 3529 if (OpNum + 1 < Record.size()) { 3530 NewGA->setPartition( 3531 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3532 OpNum += 2; 3533 } 3534 3535 ValueList.push_back(NewGA); 3536 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3537 return Error::success(); 3538 } 3539 3540 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3541 bool ShouldLazyLoadMetadata, 3542 DataLayoutCallbackTy DataLayoutCallback) { 3543 if (ResumeBit) { 3544 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3545 return JumpFailed; 3546 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3547 return Err; 3548 3549 SmallVector<uint64_t, 64> Record; 3550 3551 // Parts of bitcode parsing depend on the datalayout. Make sure we 3552 // finalize the datalayout before we run any of that code. 3553 bool ResolvedDataLayout = false; 3554 auto ResolveDataLayout = [&] { 3555 if (ResolvedDataLayout) 3556 return; 3557 3558 // datalayout and triple can't be parsed after this point. 3559 ResolvedDataLayout = true; 3560 3561 // Upgrade data layout string. 3562 std::string DL = llvm::UpgradeDataLayoutString( 3563 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3564 TheModule->setDataLayout(DL); 3565 3566 if (auto LayoutOverride = 3567 DataLayoutCallback(TheModule->getTargetTriple())) 3568 TheModule->setDataLayout(*LayoutOverride); 3569 }; 3570 3571 // Read all the records for this module. 3572 while (true) { 3573 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3574 if (!MaybeEntry) 3575 return MaybeEntry.takeError(); 3576 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3577 3578 switch (Entry.Kind) { 3579 case BitstreamEntry::Error: 3580 return error("Malformed block"); 3581 case BitstreamEntry::EndBlock: 3582 ResolveDataLayout(); 3583 return globalCleanup(); 3584 3585 case BitstreamEntry::SubBlock: 3586 switch (Entry.ID) { 3587 default: // Skip unknown content. 3588 if (Error Err = Stream.SkipBlock()) 3589 return Err; 3590 break; 3591 case bitc::BLOCKINFO_BLOCK_ID: 3592 if (readBlockInfo()) 3593 return error("Malformed block"); 3594 break; 3595 case bitc::PARAMATTR_BLOCK_ID: 3596 if (Error Err = parseAttributeBlock()) 3597 return Err; 3598 break; 3599 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3600 if (Error Err = parseAttributeGroupBlock()) 3601 return Err; 3602 break; 3603 case bitc::TYPE_BLOCK_ID_NEW: 3604 if (Error Err = parseTypeTable()) 3605 return Err; 3606 break; 3607 case bitc::VALUE_SYMTAB_BLOCK_ID: 3608 if (!SeenValueSymbolTable) { 3609 // Either this is an old form VST without function index and an 3610 // associated VST forward declaration record (which would have caused 3611 // the VST to be jumped to and parsed before it was encountered 3612 // normally in the stream), or there were no function blocks to 3613 // trigger an earlier parsing of the VST. 3614 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3615 if (Error Err = parseValueSymbolTable()) 3616 return Err; 3617 SeenValueSymbolTable = true; 3618 } else { 3619 // We must have had a VST forward declaration record, which caused 3620 // the parser to jump to and parse the VST earlier. 3621 assert(VSTOffset > 0); 3622 if (Error Err = Stream.SkipBlock()) 3623 return Err; 3624 } 3625 break; 3626 case bitc::CONSTANTS_BLOCK_ID: 3627 if (Error Err = parseConstants()) 3628 return Err; 3629 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3630 return Err; 3631 break; 3632 case bitc::METADATA_BLOCK_ID: 3633 if (ShouldLazyLoadMetadata) { 3634 if (Error Err = rememberAndSkipMetadata()) 3635 return Err; 3636 break; 3637 } 3638 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3639 if (Error Err = MDLoader->parseModuleMetadata()) 3640 return Err; 3641 break; 3642 case bitc::METADATA_KIND_BLOCK_ID: 3643 if (Error Err = MDLoader->parseMetadataKinds()) 3644 return Err; 3645 break; 3646 case bitc::FUNCTION_BLOCK_ID: 3647 ResolveDataLayout(); 3648 3649 // If this is the first function body we've seen, reverse the 3650 // FunctionsWithBodies list. 3651 if (!SeenFirstFunctionBody) { 3652 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3653 if (Error Err = globalCleanup()) 3654 return Err; 3655 SeenFirstFunctionBody = true; 3656 } 3657 3658 if (VSTOffset > 0) { 3659 // If we have a VST forward declaration record, make sure we 3660 // parse the VST now if we haven't already. It is needed to 3661 // set up the DeferredFunctionInfo vector for lazy reading. 3662 if (!SeenValueSymbolTable) { 3663 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3664 return Err; 3665 SeenValueSymbolTable = true; 3666 // Fall through so that we record the NextUnreadBit below. 3667 // This is necessary in case we have an anonymous function that 3668 // is later materialized. Since it will not have a VST entry we 3669 // need to fall back to the lazy parse to find its offset. 3670 } else { 3671 // If we have a VST forward declaration record, but have already 3672 // parsed the VST (just above, when the first function body was 3673 // encountered here), then we are resuming the parse after 3674 // materializing functions. The ResumeBit points to the 3675 // start of the last function block recorded in the 3676 // DeferredFunctionInfo map. Skip it. 3677 if (Error Err = Stream.SkipBlock()) 3678 return Err; 3679 continue; 3680 } 3681 } 3682 3683 // Support older bitcode files that did not have the function 3684 // index in the VST, nor a VST forward declaration record, as 3685 // well as anonymous functions that do not have VST entries. 3686 // Build the DeferredFunctionInfo vector on the fly. 3687 if (Error Err = rememberAndSkipFunctionBody()) 3688 return Err; 3689 3690 // Suspend parsing when we reach the function bodies. Subsequent 3691 // materialization calls will resume it when necessary. If the bitcode 3692 // file is old, the symbol table will be at the end instead and will not 3693 // have been seen yet. In this case, just finish the parse now. 3694 if (SeenValueSymbolTable) { 3695 NextUnreadBit = Stream.GetCurrentBitNo(); 3696 // After the VST has been parsed, we need to make sure intrinsic name 3697 // are auto-upgraded. 3698 return globalCleanup(); 3699 } 3700 break; 3701 case bitc::USELIST_BLOCK_ID: 3702 if (Error Err = parseUseLists()) 3703 return Err; 3704 break; 3705 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3706 if (Error Err = parseOperandBundleTags()) 3707 return Err; 3708 break; 3709 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3710 if (Error Err = parseSyncScopeNames()) 3711 return Err; 3712 break; 3713 } 3714 continue; 3715 3716 case BitstreamEntry::Record: 3717 // The interesting case. 3718 break; 3719 } 3720 3721 // Read a record. 3722 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3723 if (!MaybeBitCode) 3724 return MaybeBitCode.takeError(); 3725 switch (unsigned BitCode = MaybeBitCode.get()) { 3726 default: break; // Default behavior, ignore unknown content. 3727 case bitc::MODULE_CODE_VERSION: { 3728 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3729 if (!VersionOrErr) 3730 return VersionOrErr.takeError(); 3731 UseRelativeIDs = *VersionOrErr >= 1; 3732 break; 3733 } 3734 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3735 if (ResolvedDataLayout) 3736 return error("target triple too late in module"); 3737 std::string S; 3738 if (convertToString(Record, 0, S)) 3739 return error("Invalid record"); 3740 TheModule->setTargetTriple(S); 3741 break; 3742 } 3743 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3744 if (ResolvedDataLayout) 3745 return error("datalayout too late in module"); 3746 std::string S; 3747 if (convertToString(Record, 0, S)) 3748 return error("Invalid record"); 3749 TheModule->setDataLayout(S); 3750 break; 3751 } 3752 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3753 std::string S; 3754 if (convertToString(Record, 0, S)) 3755 return error("Invalid record"); 3756 TheModule->setModuleInlineAsm(S); 3757 break; 3758 } 3759 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3760 // Deprecated, but still needed to read old bitcode files. 3761 std::string S; 3762 if (convertToString(Record, 0, S)) 3763 return error("Invalid record"); 3764 // Ignore value. 3765 break; 3766 } 3767 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3768 std::string S; 3769 if (convertToString(Record, 0, S)) 3770 return error("Invalid record"); 3771 SectionTable.push_back(S); 3772 break; 3773 } 3774 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3775 std::string S; 3776 if (convertToString(Record, 0, S)) 3777 return error("Invalid record"); 3778 GCTable.push_back(S); 3779 break; 3780 } 3781 case bitc::MODULE_CODE_COMDAT: 3782 if (Error Err = parseComdatRecord(Record)) 3783 return Err; 3784 break; 3785 case bitc::MODULE_CODE_GLOBALVAR: 3786 if (Error Err = parseGlobalVarRecord(Record)) 3787 return Err; 3788 break; 3789 case bitc::MODULE_CODE_FUNCTION: 3790 ResolveDataLayout(); 3791 if (Error Err = parseFunctionRecord(Record)) 3792 return Err; 3793 break; 3794 case bitc::MODULE_CODE_IFUNC: 3795 case bitc::MODULE_CODE_ALIAS: 3796 case bitc::MODULE_CODE_ALIAS_OLD: 3797 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3798 return Err; 3799 break; 3800 /// MODULE_CODE_VSTOFFSET: [offset] 3801 case bitc::MODULE_CODE_VSTOFFSET: 3802 if (Record.empty()) 3803 return error("Invalid record"); 3804 // Note that we subtract 1 here because the offset is relative to one word 3805 // before the start of the identification or module block, which was 3806 // historically always the start of the regular bitcode header. 3807 VSTOffset = Record[0] - 1; 3808 break; 3809 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3810 case bitc::MODULE_CODE_SOURCE_FILENAME: 3811 SmallString<128> ValueName; 3812 if (convertToString(Record, 0, ValueName)) 3813 return error("Invalid record"); 3814 TheModule->setSourceFileName(ValueName); 3815 break; 3816 } 3817 Record.clear(); 3818 } 3819 } 3820 3821 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3822 bool IsImporting, 3823 DataLayoutCallbackTy DataLayoutCallback) { 3824 TheModule = M; 3825 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3826 [&](unsigned ID) { return getTypeByID(ID); }); 3827 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3828 } 3829 3830 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3831 if (!isa<PointerType>(PtrType)) 3832 return error("Load/Store operand is not a pointer type"); 3833 3834 if (!cast<PointerType>(PtrType)->isOpaqueOrPointeeTypeMatches(ValType)) 3835 return error("Explicit load/store type does not match pointee " 3836 "type of pointer operand"); 3837 if (!PointerType::isLoadableOrStorableType(ValType)) 3838 return error("Cannot load/store from pointer"); 3839 return Error::success(); 3840 } 3841 3842 void BitcodeReader::propagateAttributeTypes(CallBase *CB, 3843 ArrayRef<Type *> ArgsTys) { 3844 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3845 for (Attribute::AttrKind Kind : {Attribute::ByVal, Attribute::StructRet, 3846 Attribute::InAlloca}) { 3847 if (!CB->paramHasAttr(i, Kind)) 3848 continue; 3849 3850 CB->removeParamAttr(i, Kind); 3851 3852 Type *PtrEltTy = cast<PointerType>(ArgsTys[i])->getElementType(); 3853 Attribute NewAttr; 3854 switch (Kind) { 3855 case Attribute::ByVal: 3856 NewAttr = Attribute::getWithByValType(Context, PtrEltTy); 3857 break; 3858 case Attribute::StructRet: 3859 NewAttr = Attribute::getWithStructRetType(Context, PtrEltTy); 3860 break; 3861 case Attribute::InAlloca: 3862 NewAttr = Attribute::getWithInAllocaType(Context, PtrEltTy); 3863 break; 3864 default: 3865 llvm_unreachable("not an upgraded type attribute"); 3866 } 3867 3868 CB->addParamAttr(i, NewAttr); 3869 } 3870 } 3871 3872 switch (CB->getIntrinsicID()) { 3873 case Intrinsic::preserve_array_access_index: 3874 case Intrinsic::preserve_struct_access_index: 3875 if (!CB->getAttributes().getParamElementType(0)) { 3876 Type *ElTy = cast<PointerType>(ArgsTys[0])->getElementType(); 3877 Attribute NewAttr = Attribute::get(Context, Attribute::ElementType, ElTy); 3878 CB->addParamAttr(0, NewAttr); 3879 } 3880 break; 3881 default: 3882 break; 3883 } 3884 } 3885 3886 /// Lazily parse the specified function body block. 3887 Error BitcodeReader::parseFunctionBody(Function *F) { 3888 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3889 return Err; 3890 3891 // Unexpected unresolved metadata when parsing function. 3892 if (MDLoader->hasFwdRefs()) 3893 return error("Invalid function metadata: incoming forward references"); 3894 3895 InstructionList.clear(); 3896 unsigned ModuleValueListSize = ValueList.size(); 3897 unsigned ModuleMDLoaderSize = MDLoader->size(); 3898 3899 // Add all the function arguments to the value table. 3900 #ifndef NDEBUG 3901 unsigned ArgNo = 0; 3902 FunctionType *FTy = FunctionTypes[F]; 3903 #endif 3904 for (Argument &I : F->args()) { 3905 assert(I.getType() == FTy->getParamType(ArgNo++) && 3906 "Incorrect fully specified type for Function Argument"); 3907 ValueList.push_back(&I); 3908 } 3909 unsigned NextValueNo = ValueList.size(); 3910 BasicBlock *CurBB = nullptr; 3911 unsigned CurBBNo = 0; 3912 3913 DebugLoc LastLoc; 3914 auto getLastInstruction = [&]() -> Instruction * { 3915 if (CurBB && !CurBB->empty()) 3916 return &CurBB->back(); 3917 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3918 !FunctionBBs[CurBBNo - 1]->empty()) 3919 return &FunctionBBs[CurBBNo - 1]->back(); 3920 return nullptr; 3921 }; 3922 3923 std::vector<OperandBundleDef> OperandBundles; 3924 3925 // Read all the records. 3926 SmallVector<uint64_t, 64> Record; 3927 3928 while (true) { 3929 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3930 if (!MaybeEntry) 3931 return MaybeEntry.takeError(); 3932 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3933 3934 switch (Entry.Kind) { 3935 case BitstreamEntry::Error: 3936 return error("Malformed block"); 3937 case BitstreamEntry::EndBlock: 3938 goto OutOfRecordLoop; 3939 3940 case BitstreamEntry::SubBlock: 3941 switch (Entry.ID) { 3942 default: // Skip unknown content. 3943 if (Error Err = Stream.SkipBlock()) 3944 return Err; 3945 break; 3946 case bitc::CONSTANTS_BLOCK_ID: 3947 if (Error Err = parseConstants()) 3948 return Err; 3949 NextValueNo = ValueList.size(); 3950 break; 3951 case bitc::VALUE_SYMTAB_BLOCK_ID: 3952 if (Error Err = parseValueSymbolTable()) 3953 return Err; 3954 break; 3955 case bitc::METADATA_ATTACHMENT_ID: 3956 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3957 return Err; 3958 break; 3959 case bitc::METADATA_BLOCK_ID: 3960 assert(DeferredMetadataInfo.empty() && 3961 "Must read all module-level metadata before function-level"); 3962 if (Error Err = MDLoader->parseFunctionMetadata()) 3963 return Err; 3964 break; 3965 case bitc::USELIST_BLOCK_ID: 3966 if (Error Err = parseUseLists()) 3967 return Err; 3968 break; 3969 } 3970 continue; 3971 3972 case BitstreamEntry::Record: 3973 // The interesting case. 3974 break; 3975 } 3976 3977 // Read a record. 3978 Record.clear(); 3979 Instruction *I = nullptr; 3980 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3981 if (!MaybeBitCode) 3982 return MaybeBitCode.takeError(); 3983 switch (unsigned BitCode = MaybeBitCode.get()) { 3984 default: // Default behavior: reject 3985 return error("Invalid value"); 3986 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3987 if (Record.empty() || Record[0] == 0) 3988 return error("Invalid record"); 3989 // Create all the basic blocks for the function. 3990 FunctionBBs.resize(Record[0]); 3991 3992 // See if anything took the address of blocks in this function. 3993 auto BBFRI = BasicBlockFwdRefs.find(F); 3994 if (BBFRI == BasicBlockFwdRefs.end()) { 3995 for (BasicBlock *&BB : FunctionBBs) 3996 BB = BasicBlock::Create(Context, "", F); 3997 } else { 3998 auto &BBRefs = BBFRI->second; 3999 // Check for invalid basic block references. 4000 if (BBRefs.size() > FunctionBBs.size()) 4001 return error("Invalid ID"); 4002 assert(!BBRefs.empty() && "Unexpected empty array"); 4003 assert(!BBRefs.front() && "Invalid reference to entry block"); 4004 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 4005 ++I) 4006 if (I < RE && BBRefs[I]) { 4007 BBRefs[I]->insertInto(F); 4008 FunctionBBs[I] = BBRefs[I]; 4009 } else { 4010 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 4011 } 4012 4013 // Erase from the table. 4014 BasicBlockFwdRefs.erase(BBFRI); 4015 } 4016 4017 CurBB = FunctionBBs[0]; 4018 continue; 4019 } 4020 4021 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 4022 // This record indicates that the last instruction is at the same 4023 // location as the previous instruction with a location. 4024 I = getLastInstruction(); 4025 4026 if (!I) 4027 return error("Invalid record"); 4028 I->setDebugLoc(LastLoc); 4029 I = nullptr; 4030 continue; 4031 4032 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 4033 I = getLastInstruction(); 4034 if (!I || Record.size() < 4) 4035 return error("Invalid record"); 4036 4037 unsigned Line = Record[0], Col = Record[1]; 4038 unsigned ScopeID = Record[2], IAID = Record[3]; 4039 bool isImplicitCode = Record.size() == 5 && Record[4]; 4040 4041 MDNode *Scope = nullptr, *IA = nullptr; 4042 if (ScopeID) { 4043 Scope = dyn_cast_or_null<MDNode>( 4044 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 4045 if (!Scope) 4046 return error("Invalid record"); 4047 } 4048 if (IAID) { 4049 IA = dyn_cast_or_null<MDNode>( 4050 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 4051 if (!IA) 4052 return error("Invalid record"); 4053 } 4054 LastLoc = DILocation::get(Scope->getContext(), Line, Col, Scope, IA, 4055 isImplicitCode); 4056 I->setDebugLoc(LastLoc); 4057 I = nullptr; 4058 continue; 4059 } 4060 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 4061 unsigned OpNum = 0; 4062 Value *LHS; 4063 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4064 OpNum+1 > Record.size()) 4065 return error("Invalid record"); 4066 4067 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 4068 if (Opc == -1) 4069 return error("Invalid record"); 4070 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 4071 InstructionList.push_back(I); 4072 if (OpNum < Record.size()) { 4073 if (isa<FPMathOperator>(I)) { 4074 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4075 if (FMF.any()) 4076 I->setFastMathFlags(FMF); 4077 } 4078 } 4079 break; 4080 } 4081 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 4082 unsigned OpNum = 0; 4083 Value *LHS, *RHS; 4084 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4085 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 4086 OpNum+1 > Record.size()) 4087 return error("Invalid record"); 4088 4089 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 4090 if (Opc == -1) 4091 return error("Invalid record"); 4092 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 4093 InstructionList.push_back(I); 4094 if (OpNum < Record.size()) { 4095 if (Opc == Instruction::Add || 4096 Opc == Instruction::Sub || 4097 Opc == Instruction::Mul || 4098 Opc == Instruction::Shl) { 4099 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 4100 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 4101 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 4102 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 4103 } else if (Opc == Instruction::SDiv || 4104 Opc == Instruction::UDiv || 4105 Opc == Instruction::LShr || 4106 Opc == Instruction::AShr) { 4107 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 4108 cast<BinaryOperator>(I)->setIsExact(true); 4109 } else if (isa<FPMathOperator>(I)) { 4110 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4111 if (FMF.any()) 4112 I->setFastMathFlags(FMF); 4113 } 4114 4115 } 4116 break; 4117 } 4118 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 4119 unsigned OpNum = 0; 4120 Value *Op; 4121 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4122 OpNum+2 != Record.size()) 4123 return error("Invalid record"); 4124 4125 Type *ResTy = getTypeByID(Record[OpNum]); 4126 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4127 if (Opc == -1 || !ResTy) 4128 return error("Invalid record"); 4129 Instruction *Temp = nullptr; 4130 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4131 if (Temp) { 4132 InstructionList.push_back(Temp); 4133 assert(CurBB && "No current BB?"); 4134 CurBB->getInstList().push_back(Temp); 4135 } 4136 } else { 4137 auto CastOp = (Instruction::CastOps)Opc; 4138 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4139 return error("Invalid cast"); 4140 I = CastInst::Create(CastOp, Op, ResTy); 4141 } 4142 InstructionList.push_back(I); 4143 break; 4144 } 4145 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4146 case bitc::FUNC_CODE_INST_GEP_OLD: 4147 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4148 unsigned OpNum = 0; 4149 4150 Type *Ty; 4151 bool InBounds; 4152 4153 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4154 InBounds = Record[OpNum++]; 4155 Ty = getTypeByID(Record[OpNum++]); 4156 } else { 4157 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4158 Ty = nullptr; 4159 } 4160 4161 Value *BasePtr; 4162 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 4163 return error("Invalid record"); 4164 4165 if (!Ty) { 4166 Ty = cast<PointerType>(BasePtr->getType()->getScalarType()) 4167 ->getElementType(); 4168 } else if (!cast<PointerType>(BasePtr->getType()->getScalarType()) 4169 ->isOpaqueOrPointeeTypeMatches(Ty)) { 4170 return error( 4171 "Explicit gep type does not match pointee type of pointer operand"); 4172 } 4173 4174 SmallVector<Value*, 16> GEPIdx; 4175 while (OpNum != Record.size()) { 4176 Value *Op; 4177 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4178 return error("Invalid record"); 4179 GEPIdx.push_back(Op); 4180 } 4181 4182 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4183 4184 InstructionList.push_back(I); 4185 if (InBounds) 4186 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4187 break; 4188 } 4189 4190 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4191 // EXTRACTVAL: [opty, opval, n x indices] 4192 unsigned OpNum = 0; 4193 Value *Agg; 4194 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4195 return error("Invalid record"); 4196 Type *Ty = Agg->getType(); 4197 4198 unsigned RecSize = Record.size(); 4199 if (OpNum == RecSize) 4200 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4201 4202 SmallVector<unsigned, 4> EXTRACTVALIdx; 4203 for (; OpNum != RecSize; ++OpNum) { 4204 bool IsArray = Ty->isArrayTy(); 4205 bool IsStruct = Ty->isStructTy(); 4206 uint64_t Index = Record[OpNum]; 4207 4208 if (!IsStruct && !IsArray) 4209 return error("EXTRACTVAL: Invalid type"); 4210 if ((unsigned)Index != Index) 4211 return error("Invalid value"); 4212 if (IsStruct && Index >= Ty->getStructNumElements()) 4213 return error("EXTRACTVAL: Invalid struct index"); 4214 if (IsArray && Index >= Ty->getArrayNumElements()) 4215 return error("EXTRACTVAL: Invalid array index"); 4216 EXTRACTVALIdx.push_back((unsigned)Index); 4217 4218 if (IsStruct) 4219 Ty = Ty->getStructElementType(Index); 4220 else 4221 Ty = Ty->getArrayElementType(); 4222 } 4223 4224 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4225 InstructionList.push_back(I); 4226 break; 4227 } 4228 4229 case bitc::FUNC_CODE_INST_INSERTVAL: { 4230 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4231 unsigned OpNum = 0; 4232 Value *Agg; 4233 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 4234 return error("Invalid record"); 4235 Value *Val; 4236 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4237 return error("Invalid record"); 4238 4239 unsigned RecSize = Record.size(); 4240 if (OpNum == RecSize) 4241 return error("INSERTVAL: Invalid instruction with 0 indices"); 4242 4243 SmallVector<unsigned, 4> INSERTVALIdx; 4244 Type *CurTy = Agg->getType(); 4245 for (; OpNum != RecSize; ++OpNum) { 4246 bool IsArray = CurTy->isArrayTy(); 4247 bool IsStruct = CurTy->isStructTy(); 4248 uint64_t Index = Record[OpNum]; 4249 4250 if (!IsStruct && !IsArray) 4251 return error("INSERTVAL: Invalid type"); 4252 if ((unsigned)Index != Index) 4253 return error("Invalid value"); 4254 if (IsStruct && Index >= CurTy->getStructNumElements()) 4255 return error("INSERTVAL: Invalid struct index"); 4256 if (IsArray && Index >= CurTy->getArrayNumElements()) 4257 return error("INSERTVAL: Invalid array index"); 4258 4259 INSERTVALIdx.push_back((unsigned)Index); 4260 if (IsStruct) 4261 CurTy = CurTy->getStructElementType(Index); 4262 else 4263 CurTy = CurTy->getArrayElementType(); 4264 } 4265 4266 if (CurTy != Val->getType()) 4267 return error("Inserted value type doesn't match aggregate type"); 4268 4269 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4270 InstructionList.push_back(I); 4271 break; 4272 } 4273 4274 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4275 // obsolete form of select 4276 // handles select i1 ... in old bitcode 4277 unsigned OpNum = 0; 4278 Value *TrueVal, *FalseVal, *Cond; 4279 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4280 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4281 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4282 return error("Invalid record"); 4283 4284 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4285 InstructionList.push_back(I); 4286 break; 4287 } 4288 4289 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4290 // new form of select 4291 // handles select i1 or select [N x i1] 4292 unsigned OpNum = 0; 4293 Value *TrueVal, *FalseVal, *Cond; 4294 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 4295 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4296 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4297 return error("Invalid record"); 4298 4299 // select condition can be either i1 or [N x i1] 4300 if (VectorType* vector_type = 4301 dyn_cast<VectorType>(Cond->getType())) { 4302 // expect <n x i1> 4303 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4304 return error("Invalid type for value"); 4305 } else { 4306 // expect i1 4307 if (Cond->getType() != Type::getInt1Ty(Context)) 4308 return error("Invalid type for value"); 4309 } 4310 4311 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4312 InstructionList.push_back(I); 4313 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4314 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4315 if (FMF.any()) 4316 I->setFastMathFlags(FMF); 4317 } 4318 break; 4319 } 4320 4321 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4322 unsigned OpNum = 0; 4323 Value *Vec, *Idx; 4324 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 4325 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4326 return error("Invalid record"); 4327 if (!Vec->getType()->isVectorTy()) 4328 return error("Invalid type for value"); 4329 I = ExtractElementInst::Create(Vec, Idx); 4330 InstructionList.push_back(I); 4331 break; 4332 } 4333 4334 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4335 unsigned OpNum = 0; 4336 Value *Vec, *Elt, *Idx; 4337 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 4338 return error("Invalid record"); 4339 if (!Vec->getType()->isVectorTy()) 4340 return error("Invalid type for value"); 4341 if (popValue(Record, OpNum, NextValueNo, 4342 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4343 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4344 return error("Invalid record"); 4345 I = InsertElementInst::Create(Vec, Elt, Idx); 4346 InstructionList.push_back(I); 4347 break; 4348 } 4349 4350 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4351 unsigned OpNum = 0; 4352 Value *Vec1, *Vec2, *Mask; 4353 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 4354 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4355 return error("Invalid record"); 4356 4357 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4358 return error("Invalid record"); 4359 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4360 return error("Invalid type for value"); 4361 4362 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4363 InstructionList.push_back(I); 4364 break; 4365 } 4366 4367 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4368 // Old form of ICmp/FCmp returning bool 4369 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4370 // both legal on vectors but had different behaviour. 4371 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4372 // FCmp/ICmp returning bool or vector of bool 4373 4374 unsigned OpNum = 0; 4375 Value *LHS, *RHS; 4376 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4377 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4378 return error("Invalid record"); 4379 4380 if (OpNum >= Record.size()) 4381 return error( 4382 "Invalid record: operand number exceeded available operands"); 4383 4384 unsigned PredVal = Record[OpNum]; 4385 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4386 FastMathFlags FMF; 4387 if (IsFP && Record.size() > OpNum+1) 4388 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4389 4390 if (OpNum+1 != Record.size()) 4391 return error("Invalid record"); 4392 4393 if (LHS->getType()->isFPOrFPVectorTy()) 4394 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4395 else 4396 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4397 4398 if (FMF.any()) 4399 I->setFastMathFlags(FMF); 4400 InstructionList.push_back(I); 4401 break; 4402 } 4403 4404 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4405 { 4406 unsigned Size = Record.size(); 4407 if (Size == 0) { 4408 I = ReturnInst::Create(Context); 4409 InstructionList.push_back(I); 4410 break; 4411 } 4412 4413 unsigned OpNum = 0; 4414 Value *Op = nullptr; 4415 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4416 return error("Invalid record"); 4417 if (OpNum != Record.size()) 4418 return error("Invalid record"); 4419 4420 I = ReturnInst::Create(Context, Op); 4421 InstructionList.push_back(I); 4422 break; 4423 } 4424 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4425 if (Record.size() != 1 && Record.size() != 3) 4426 return error("Invalid record"); 4427 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4428 if (!TrueDest) 4429 return error("Invalid record"); 4430 4431 if (Record.size() == 1) { 4432 I = BranchInst::Create(TrueDest); 4433 InstructionList.push_back(I); 4434 } 4435 else { 4436 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4437 Value *Cond = getValue(Record, 2, NextValueNo, 4438 Type::getInt1Ty(Context)); 4439 if (!FalseDest || !Cond) 4440 return error("Invalid record"); 4441 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4442 InstructionList.push_back(I); 4443 } 4444 break; 4445 } 4446 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4447 if (Record.size() != 1 && Record.size() != 2) 4448 return error("Invalid record"); 4449 unsigned Idx = 0; 4450 Value *CleanupPad = 4451 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4452 if (!CleanupPad) 4453 return error("Invalid record"); 4454 BasicBlock *UnwindDest = nullptr; 4455 if (Record.size() == 2) { 4456 UnwindDest = getBasicBlock(Record[Idx++]); 4457 if (!UnwindDest) 4458 return error("Invalid record"); 4459 } 4460 4461 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4462 InstructionList.push_back(I); 4463 break; 4464 } 4465 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4466 if (Record.size() != 2) 4467 return error("Invalid record"); 4468 unsigned Idx = 0; 4469 Value *CatchPad = 4470 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4471 if (!CatchPad) 4472 return error("Invalid record"); 4473 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4474 if (!BB) 4475 return error("Invalid record"); 4476 4477 I = CatchReturnInst::Create(CatchPad, BB); 4478 InstructionList.push_back(I); 4479 break; 4480 } 4481 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4482 // We must have, at minimum, the outer scope and the number of arguments. 4483 if (Record.size() < 2) 4484 return error("Invalid record"); 4485 4486 unsigned Idx = 0; 4487 4488 Value *ParentPad = 4489 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4490 4491 unsigned NumHandlers = Record[Idx++]; 4492 4493 SmallVector<BasicBlock *, 2> Handlers; 4494 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4495 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4496 if (!BB) 4497 return error("Invalid record"); 4498 Handlers.push_back(BB); 4499 } 4500 4501 BasicBlock *UnwindDest = nullptr; 4502 if (Idx + 1 == Record.size()) { 4503 UnwindDest = getBasicBlock(Record[Idx++]); 4504 if (!UnwindDest) 4505 return error("Invalid record"); 4506 } 4507 4508 if (Record.size() != Idx) 4509 return error("Invalid record"); 4510 4511 auto *CatchSwitch = 4512 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4513 for (BasicBlock *Handler : Handlers) 4514 CatchSwitch->addHandler(Handler); 4515 I = CatchSwitch; 4516 InstructionList.push_back(I); 4517 break; 4518 } 4519 case bitc::FUNC_CODE_INST_CATCHPAD: 4520 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4521 // We must have, at minimum, the outer scope and the number of arguments. 4522 if (Record.size() < 2) 4523 return error("Invalid record"); 4524 4525 unsigned Idx = 0; 4526 4527 Value *ParentPad = 4528 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4529 4530 unsigned NumArgOperands = Record[Idx++]; 4531 4532 SmallVector<Value *, 2> Args; 4533 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4534 Value *Val; 4535 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4536 return error("Invalid record"); 4537 Args.push_back(Val); 4538 } 4539 4540 if (Record.size() != Idx) 4541 return error("Invalid record"); 4542 4543 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4544 I = CleanupPadInst::Create(ParentPad, Args); 4545 else 4546 I = CatchPadInst::Create(ParentPad, Args); 4547 InstructionList.push_back(I); 4548 break; 4549 } 4550 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4551 // Check magic 4552 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4553 // "New" SwitchInst format with case ranges. The changes to write this 4554 // format were reverted but we still recognize bitcode that uses it. 4555 // Hopefully someday we will have support for case ranges and can use 4556 // this format again. 4557 4558 Type *OpTy = getTypeByID(Record[1]); 4559 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4560 4561 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4562 BasicBlock *Default = getBasicBlock(Record[3]); 4563 if (!OpTy || !Cond || !Default) 4564 return error("Invalid record"); 4565 4566 unsigned NumCases = Record[4]; 4567 4568 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4569 InstructionList.push_back(SI); 4570 4571 unsigned CurIdx = 5; 4572 for (unsigned i = 0; i != NumCases; ++i) { 4573 SmallVector<ConstantInt*, 1> CaseVals; 4574 unsigned NumItems = Record[CurIdx++]; 4575 for (unsigned ci = 0; ci != NumItems; ++ci) { 4576 bool isSingleNumber = Record[CurIdx++]; 4577 4578 APInt Low; 4579 unsigned ActiveWords = 1; 4580 if (ValueBitWidth > 64) 4581 ActiveWords = Record[CurIdx++]; 4582 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4583 ValueBitWidth); 4584 CurIdx += ActiveWords; 4585 4586 if (!isSingleNumber) { 4587 ActiveWords = 1; 4588 if (ValueBitWidth > 64) 4589 ActiveWords = Record[CurIdx++]; 4590 APInt High = readWideAPInt( 4591 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4592 CurIdx += ActiveWords; 4593 4594 // FIXME: It is not clear whether values in the range should be 4595 // compared as signed or unsigned values. The partially 4596 // implemented changes that used this format in the past used 4597 // unsigned comparisons. 4598 for ( ; Low.ule(High); ++Low) 4599 CaseVals.push_back(ConstantInt::get(Context, Low)); 4600 } else 4601 CaseVals.push_back(ConstantInt::get(Context, Low)); 4602 } 4603 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4604 for (ConstantInt *Cst : CaseVals) 4605 SI->addCase(Cst, DestBB); 4606 } 4607 I = SI; 4608 break; 4609 } 4610 4611 // Old SwitchInst format without case ranges. 4612 4613 if (Record.size() < 3 || (Record.size() & 1) == 0) 4614 return error("Invalid record"); 4615 Type *OpTy = getTypeByID(Record[0]); 4616 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4617 BasicBlock *Default = getBasicBlock(Record[2]); 4618 if (!OpTy || !Cond || !Default) 4619 return error("Invalid record"); 4620 unsigned NumCases = (Record.size()-3)/2; 4621 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4622 InstructionList.push_back(SI); 4623 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4624 ConstantInt *CaseVal = 4625 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4626 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4627 if (!CaseVal || !DestBB) { 4628 delete SI; 4629 return error("Invalid record"); 4630 } 4631 SI->addCase(CaseVal, DestBB); 4632 } 4633 I = SI; 4634 break; 4635 } 4636 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4637 if (Record.size() < 2) 4638 return error("Invalid record"); 4639 Type *OpTy = getTypeByID(Record[0]); 4640 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4641 if (!OpTy || !Address) 4642 return error("Invalid record"); 4643 unsigned NumDests = Record.size()-2; 4644 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4645 InstructionList.push_back(IBI); 4646 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4647 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4648 IBI->addDestination(DestBB); 4649 } else { 4650 delete IBI; 4651 return error("Invalid record"); 4652 } 4653 } 4654 I = IBI; 4655 break; 4656 } 4657 4658 case bitc::FUNC_CODE_INST_INVOKE: { 4659 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4660 if (Record.size() < 4) 4661 return error("Invalid record"); 4662 unsigned OpNum = 0; 4663 AttributeList PAL = getAttributes(Record[OpNum++]); 4664 unsigned CCInfo = Record[OpNum++]; 4665 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4666 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4667 4668 FunctionType *FTy = nullptr; 4669 if ((CCInfo >> 13) & 1) { 4670 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4671 if (!FTy) 4672 return error("Explicit invoke type is not a function type"); 4673 } 4674 4675 Value *Callee; 4676 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4677 return error("Invalid record"); 4678 4679 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4680 if (!CalleeTy) 4681 return error("Callee is not a pointer"); 4682 if (!FTy) { 4683 FTy = dyn_cast<FunctionType>( 4684 cast<PointerType>(Callee->getType())->getElementType()); 4685 if (!FTy) 4686 return error("Callee is not of pointer to function type"); 4687 } else if (!CalleeTy->isOpaqueOrPointeeTypeMatches(FTy)) 4688 return error("Explicit invoke type does not match pointee type of " 4689 "callee operand"); 4690 if (Record.size() < FTy->getNumParams() + OpNum) 4691 return error("Insufficient operands to call"); 4692 4693 SmallVector<Value*, 16> Ops; 4694 SmallVector<Type *, 16> ArgsTys; 4695 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4696 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4697 FTy->getParamType(i))); 4698 ArgsTys.push_back(FTy->getParamType(i)); 4699 if (!Ops.back()) 4700 return error("Invalid record"); 4701 } 4702 4703 if (!FTy->isVarArg()) { 4704 if (Record.size() != OpNum) 4705 return error("Invalid record"); 4706 } else { 4707 // Read type/value pairs for varargs params. 4708 while (OpNum != Record.size()) { 4709 Value *Op; 4710 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4711 return error("Invalid record"); 4712 Ops.push_back(Op); 4713 ArgsTys.push_back(Op->getType()); 4714 } 4715 } 4716 4717 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4718 OperandBundles); 4719 OperandBundles.clear(); 4720 InstructionList.push_back(I); 4721 cast<InvokeInst>(I)->setCallingConv( 4722 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4723 cast<InvokeInst>(I)->setAttributes(PAL); 4724 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 4725 4726 break; 4727 } 4728 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4729 unsigned Idx = 0; 4730 Value *Val = nullptr; 4731 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4732 return error("Invalid record"); 4733 I = ResumeInst::Create(Val); 4734 InstructionList.push_back(I); 4735 break; 4736 } 4737 case bitc::FUNC_CODE_INST_CALLBR: { 4738 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4739 unsigned OpNum = 0; 4740 AttributeList PAL = getAttributes(Record[OpNum++]); 4741 unsigned CCInfo = Record[OpNum++]; 4742 4743 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4744 unsigned NumIndirectDests = Record[OpNum++]; 4745 SmallVector<BasicBlock *, 16> IndirectDests; 4746 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4747 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4748 4749 FunctionType *FTy = nullptr; 4750 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4751 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 4752 if (!FTy) 4753 return error("Explicit call type is not a function type"); 4754 } 4755 4756 Value *Callee; 4757 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4758 return error("Invalid record"); 4759 4760 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4761 if (!OpTy) 4762 return error("Callee is not a pointer type"); 4763 if (!FTy) { 4764 FTy = dyn_cast<FunctionType>( 4765 cast<PointerType>(Callee->getType())->getElementType()); 4766 if (!FTy) 4767 return error("Callee is not of pointer to function type"); 4768 } else if (cast<PointerType>(Callee->getType())->getElementType() != FTy) 4769 return error("Explicit call type does not match pointee type of " 4770 "callee operand"); 4771 if (Record.size() < FTy->getNumParams() + OpNum) 4772 return error("Insufficient operands to call"); 4773 4774 SmallVector<Value*, 16> Args; 4775 // Read the fixed params. 4776 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4777 if (FTy->getParamType(i)->isLabelTy()) 4778 Args.push_back(getBasicBlock(Record[OpNum])); 4779 else 4780 Args.push_back(getValue(Record, OpNum, NextValueNo, 4781 FTy->getParamType(i))); 4782 if (!Args.back()) 4783 return error("Invalid record"); 4784 } 4785 4786 // Read type/value pairs for varargs params. 4787 if (!FTy->isVarArg()) { 4788 if (OpNum != Record.size()) 4789 return error("Invalid record"); 4790 } else { 4791 while (OpNum != Record.size()) { 4792 Value *Op; 4793 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4794 return error("Invalid record"); 4795 Args.push_back(Op); 4796 } 4797 } 4798 4799 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4800 OperandBundles); 4801 OperandBundles.clear(); 4802 InstructionList.push_back(I); 4803 cast<CallBrInst>(I)->setCallingConv( 4804 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4805 cast<CallBrInst>(I)->setAttributes(PAL); 4806 break; 4807 } 4808 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4809 I = new UnreachableInst(Context); 4810 InstructionList.push_back(I); 4811 break; 4812 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4813 if (Record.empty()) 4814 return error("Invalid record"); 4815 // The first record specifies the type. 4816 Type *Ty = getTypeByID(Record[0]); 4817 if (!Ty) 4818 return error("Invalid record"); 4819 4820 // Phi arguments are pairs of records of [value, basic block]. 4821 // There is an optional final record for fast-math-flags if this phi has a 4822 // floating-point type. 4823 size_t NumArgs = (Record.size() - 1) / 2; 4824 PHINode *PN = PHINode::Create(Ty, NumArgs); 4825 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4826 return error("Invalid record"); 4827 InstructionList.push_back(PN); 4828 4829 for (unsigned i = 0; i != NumArgs; i++) { 4830 Value *V; 4831 // With the new function encoding, it is possible that operands have 4832 // negative IDs (for forward references). Use a signed VBR 4833 // representation to keep the encoding small. 4834 if (UseRelativeIDs) 4835 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4836 else 4837 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4838 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4839 if (!V || !BB) 4840 return error("Invalid record"); 4841 PN->addIncoming(V, BB); 4842 } 4843 I = PN; 4844 4845 // If there are an even number of records, the final record must be FMF. 4846 if (Record.size() % 2 == 0) { 4847 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4848 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4849 if (FMF.any()) 4850 I->setFastMathFlags(FMF); 4851 } 4852 4853 break; 4854 } 4855 4856 case bitc::FUNC_CODE_INST_LANDINGPAD: 4857 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4858 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4859 unsigned Idx = 0; 4860 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4861 if (Record.size() < 3) 4862 return error("Invalid record"); 4863 } else { 4864 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4865 if (Record.size() < 4) 4866 return error("Invalid record"); 4867 } 4868 Type *Ty = getTypeByID(Record[Idx++]); 4869 if (!Ty) 4870 return error("Invalid record"); 4871 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4872 Value *PersFn = nullptr; 4873 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4874 return error("Invalid record"); 4875 4876 if (!F->hasPersonalityFn()) 4877 F->setPersonalityFn(cast<Constant>(PersFn)); 4878 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4879 return error("Personality function mismatch"); 4880 } 4881 4882 bool IsCleanup = !!Record[Idx++]; 4883 unsigned NumClauses = Record[Idx++]; 4884 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4885 LP->setCleanup(IsCleanup); 4886 for (unsigned J = 0; J != NumClauses; ++J) { 4887 LandingPadInst::ClauseType CT = 4888 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4889 Value *Val; 4890 4891 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4892 delete LP; 4893 return error("Invalid record"); 4894 } 4895 4896 assert((CT != LandingPadInst::Catch || 4897 !isa<ArrayType>(Val->getType())) && 4898 "Catch clause has a invalid type!"); 4899 assert((CT != LandingPadInst::Filter || 4900 isa<ArrayType>(Val->getType())) && 4901 "Filter clause has invalid type!"); 4902 LP->addClause(cast<Constant>(Val)); 4903 } 4904 4905 I = LP; 4906 InstructionList.push_back(I); 4907 break; 4908 } 4909 4910 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4911 if (Record.size() != 4) 4912 return error("Invalid record"); 4913 using APV = AllocaPackedValues; 4914 const uint64_t Rec = Record[3]; 4915 const bool InAlloca = Bitfield::get<APV::UsedWithInAlloca>(Rec); 4916 const bool SwiftError = Bitfield::get<APV::SwiftError>(Rec); 4917 Type *Ty = getTypeByID(Record[0]); 4918 if (!Bitfield::get<APV::ExplicitType>(Rec)) { 4919 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4920 if (!PTy) 4921 return error("Old-style alloca with a non-pointer type"); 4922 Ty = PTy->getElementType(); 4923 } 4924 Type *OpTy = getTypeByID(Record[1]); 4925 Value *Size = getFnValueByID(Record[2], OpTy); 4926 MaybeAlign Align; 4927 uint64_t AlignExp = 4928 Bitfield::get<APV::AlignLower>(Rec) | 4929 (Bitfield::get<APV::AlignUpper>(Rec) << APV::AlignLower::Bits); 4930 if (Error Err = parseAlignmentValue(AlignExp, Align)) { 4931 return Err; 4932 } 4933 if (!Ty || !Size) 4934 return error("Invalid record"); 4935 4936 // FIXME: Make this an optional field. 4937 const DataLayout &DL = TheModule->getDataLayout(); 4938 unsigned AS = DL.getAllocaAddrSpace(); 4939 4940 SmallPtrSet<Type *, 4> Visited; 4941 if (!Align && !Ty->isSized(&Visited)) 4942 return error("alloca of unsized type"); 4943 if (!Align) 4944 Align = DL.getPrefTypeAlign(Ty); 4945 4946 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4947 AI->setUsedWithInAlloca(InAlloca); 4948 AI->setSwiftError(SwiftError); 4949 I = AI; 4950 InstructionList.push_back(I); 4951 break; 4952 } 4953 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4954 unsigned OpNum = 0; 4955 Value *Op; 4956 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4957 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4958 return error("Invalid record"); 4959 4960 if (!isa<PointerType>(Op->getType())) 4961 return error("Load operand is not a pointer type"); 4962 4963 Type *Ty = nullptr; 4964 if (OpNum + 3 == Record.size()) { 4965 Ty = getTypeByID(Record[OpNum++]); 4966 } else { 4967 Ty = cast<PointerType>(Op->getType())->getElementType(); 4968 } 4969 4970 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4971 return Err; 4972 4973 MaybeAlign Align; 4974 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4975 return Err; 4976 SmallPtrSet<Type *, 4> Visited; 4977 if (!Align && !Ty->isSized(&Visited)) 4978 return error("load of unsized type"); 4979 if (!Align) 4980 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4981 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4982 InstructionList.push_back(I); 4983 break; 4984 } 4985 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4986 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4987 unsigned OpNum = 0; 4988 Value *Op; 4989 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4990 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4991 return error("Invalid record"); 4992 4993 if (!isa<PointerType>(Op->getType())) 4994 return error("Load operand is not a pointer type"); 4995 4996 Type *Ty = nullptr; 4997 if (OpNum + 5 == Record.size()) { 4998 Ty = getTypeByID(Record[OpNum++]); 4999 } else { 5000 Ty = cast<PointerType>(Op->getType())->getElementType(); 5001 } 5002 5003 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 5004 return Err; 5005 5006 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5007 if (Ordering == AtomicOrdering::NotAtomic || 5008 Ordering == AtomicOrdering::Release || 5009 Ordering == AtomicOrdering::AcquireRelease) 5010 return error("Invalid record"); 5011 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5012 return error("Invalid record"); 5013 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5014 5015 MaybeAlign Align; 5016 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5017 return Err; 5018 if (!Align) 5019 return error("Alignment missing from atomic load"); 5020 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 5021 InstructionList.push_back(I); 5022 break; 5023 } 5024 case bitc::FUNC_CODE_INST_STORE: 5025 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 5026 unsigned OpNum = 0; 5027 Value *Val, *Ptr; 5028 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5029 (BitCode == bitc::FUNC_CODE_INST_STORE 5030 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5031 : popValue(Record, OpNum, NextValueNo, 5032 cast<PointerType>(Ptr->getType())->getElementType(), 5033 Val)) || 5034 OpNum + 2 != Record.size()) 5035 return error("Invalid record"); 5036 5037 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5038 return Err; 5039 MaybeAlign Align; 5040 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5041 return Err; 5042 SmallPtrSet<Type *, 4> Visited; 5043 if (!Align && !Val->getType()->isSized(&Visited)) 5044 return error("store of unsized type"); 5045 if (!Align) 5046 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 5047 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 5048 InstructionList.push_back(I); 5049 break; 5050 } 5051 case bitc::FUNC_CODE_INST_STOREATOMIC: 5052 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 5053 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 5054 unsigned OpNum = 0; 5055 Value *Val, *Ptr; 5056 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 5057 !isa<PointerType>(Ptr->getType()) || 5058 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 5059 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 5060 : popValue(Record, OpNum, NextValueNo, 5061 cast<PointerType>(Ptr->getType())->getElementType(), 5062 Val)) || 5063 OpNum + 4 != Record.size()) 5064 return error("Invalid record"); 5065 5066 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 5067 return Err; 5068 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5069 if (Ordering == AtomicOrdering::NotAtomic || 5070 Ordering == AtomicOrdering::Acquire || 5071 Ordering == AtomicOrdering::AcquireRelease) 5072 return error("Invalid record"); 5073 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5074 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 5075 return error("Invalid record"); 5076 5077 MaybeAlign Align; 5078 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 5079 return Err; 5080 if (!Align) 5081 return error("Alignment missing from atomic store"); 5082 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 5083 InstructionList.push_back(I); 5084 break; 5085 } 5086 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: { 5087 // CMPXCHG_OLD: [ptrty, ptr, cmp, val, vol, ordering, synchscope, 5088 // failure_ordering?, weak?] 5089 const size_t NumRecords = Record.size(); 5090 unsigned OpNum = 0; 5091 Value *Ptr = nullptr; 5092 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5093 return error("Invalid record"); 5094 5095 if (!isa<PointerType>(Ptr->getType())) 5096 return error("Cmpxchg operand is not a pointer type"); 5097 5098 Value *Cmp = nullptr; 5099 if (popValue(Record, OpNum, NextValueNo, 5100 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5101 Cmp)) 5102 return error("Invalid record"); 5103 5104 Value *New = nullptr; 5105 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5106 NumRecords < OpNum + 3 || NumRecords > OpNum + 5) 5107 return error("Invalid record"); 5108 5109 const AtomicOrdering SuccessOrdering = 5110 getDecodedOrdering(Record[OpNum + 1]); 5111 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5112 SuccessOrdering == AtomicOrdering::Unordered) 5113 return error("Invalid record"); 5114 5115 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5116 5117 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5118 return Err; 5119 5120 const AtomicOrdering FailureOrdering = 5121 NumRecords < 7 5122 ? AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering) 5123 : getDecodedOrdering(Record[OpNum + 3]); 5124 5125 if (FailureOrdering == AtomicOrdering::NotAtomic || 5126 FailureOrdering == AtomicOrdering::Unordered) 5127 return error("Invalid record"); 5128 5129 const Align Alignment( 5130 TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5131 5132 I = new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment, SuccessOrdering, 5133 FailureOrdering, SSID); 5134 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5135 5136 if (NumRecords < 8) { 5137 // Before weak cmpxchgs existed, the instruction simply returned the 5138 // value loaded from memory, so bitcode files from that era will be 5139 // expecting the first component of a modern cmpxchg. 5140 CurBB->getInstList().push_back(I); 5141 I = ExtractValueInst::Create(I, 0); 5142 } else { 5143 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum + 4]); 5144 } 5145 5146 InstructionList.push_back(I); 5147 break; 5148 } 5149 case bitc::FUNC_CODE_INST_CMPXCHG: { 5150 // CMPXCHG: [ptrty, ptr, cmp, val, vol, success_ordering, synchscope, 5151 // failure_ordering, weak, align?] 5152 const size_t NumRecords = Record.size(); 5153 unsigned OpNum = 0; 5154 Value *Ptr = nullptr; 5155 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5156 return error("Invalid record"); 5157 5158 if (!isa<PointerType>(Ptr->getType())) 5159 return error("Cmpxchg operand is not a pointer type"); 5160 5161 Value *Cmp = nullptr; 5162 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp)) 5163 return error("Invalid record"); 5164 5165 Value *Val = nullptr; 5166 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), Val)) 5167 return error("Invalid record"); 5168 5169 if (NumRecords < OpNum + 3 || NumRecords > OpNum + 6) 5170 return error("Invalid record"); 5171 5172 const bool IsVol = Record[OpNum]; 5173 5174 const AtomicOrdering SuccessOrdering = 5175 getDecodedOrdering(Record[OpNum + 1]); 5176 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 5177 return error("Invalid cmpxchg success ordering"); 5178 5179 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5180 5181 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5182 return Err; 5183 5184 const AtomicOrdering FailureOrdering = 5185 getDecodedOrdering(Record[OpNum + 3]); 5186 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 5187 return error("Invalid cmpxchg failure ordering"); 5188 5189 const bool IsWeak = Record[OpNum + 4]; 5190 5191 MaybeAlign Alignment; 5192 5193 if (NumRecords == (OpNum + 6)) { 5194 if (Error Err = parseAlignmentValue(Record[OpNum + 5], Alignment)) 5195 return Err; 5196 } 5197 if (!Alignment) 5198 Alignment = 5199 Align(TheModule->getDataLayout().getTypeStoreSize(Cmp->getType())); 5200 5201 I = new AtomicCmpXchgInst(Ptr, Cmp, Val, *Alignment, SuccessOrdering, 5202 FailureOrdering, SSID); 5203 cast<AtomicCmpXchgInst>(I)->setVolatile(IsVol); 5204 cast<AtomicCmpXchgInst>(I)->setWeak(IsWeak); 5205 5206 InstructionList.push_back(I); 5207 break; 5208 } 5209 case bitc::FUNC_CODE_INST_ATOMICRMW_OLD: 5210 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5211 // ATOMICRMW_OLD: [ptrty, ptr, val, op, vol, ordering, ssid, align?] 5212 // ATOMICRMW: [ptrty, ptr, valty, val, op, vol, ordering, ssid, align?] 5213 const size_t NumRecords = Record.size(); 5214 unsigned OpNum = 0; 5215 5216 Value *Ptr = nullptr; 5217 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr)) 5218 return error("Invalid record"); 5219 5220 if (!isa<PointerType>(Ptr->getType())) 5221 return error("Invalid record"); 5222 5223 Value *Val = nullptr; 5224 if (BitCode == bitc::FUNC_CODE_INST_ATOMICRMW_OLD) { 5225 if (popValue(Record, OpNum, NextValueNo, 5226 cast<PointerType>(Ptr->getType())->getPointerElementType(), 5227 Val)) 5228 return error("Invalid record"); 5229 } else { 5230 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 5231 return error("Invalid record"); 5232 } 5233 5234 if (!(NumRecords == (OpNum + 4) || NumRecords == (OpNum + 5))) 5235 return error("Invalid record"); 5236 5237 const AtomicRMWInst::BinOp Operation = 5238 getDecodedRMWOperation(Record[OpNum]); 5239 if (Operation < AtomicRMWInst::FIRST_BINOP || 5240 Operation > AtomicRMWInst::LAST_BINOP) 5241 return error("Invalid record"); 5242 5243 const bool IsVol = Record[OpNum + 1]; 5244 5245 const AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5246 if (Ordering == AtomicOrdering::NotAtomic || 5247 Ordering == AtomicOrdering::Unordered) 5248 return error("Invalid record"); 5249 5250 const SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5251 5252 MaybeAlign Alignment; 5253 5254 if (NumRecords == (OpNum + 5)) { 5255 if (Error Err = parseAlignmentValue(Record[OpNum + 4], Alignment)) 5256 return Err; 5257 } 5258 5259 if (!Alignment) 5260 Alignment = 5261 Align(TheModule->getDataLayout().getTypeStoreSize(Val->getType())); 5262 5263 I = new AtomicRMWInst(Operation, Ptr, Val, *Alignment, Ordering, SSID); 5264 cast<AtomicRMWInst>(I)->setVolatile(IsVol); 5265 5266 InstructionList.push_back(I); 5267 break; 5268 } 5269 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5270 if (2 != Record.size()) 5271 return error("Invalid record"); 5272 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5273 if (Ordering == AtomicOrdering::NotAtomic || 5274 Ordering == AtomicOrdering::Unordered || 5275 Ordering == AtomicOrdering::Monotonic) 5276 return error("Invalid record"); 5277 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5278 I = new FenceInst(Context, Ordering, SSID); 5279 InstructionList.push_back(I); 5280 break; 5281 } 5282 case bitc::FUNC_CODE_INST_CALL: { 5283 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5284 if (Record.size() < 3) 5285 return error("Invalid record"); 5286 5287 unsigned OpNum = 0; 5288 AttributeList PAL = getAttributes(Record[OpNum++]); 5289 unsigned CCInfo = Record[OpNum++]; 5290 5291 FastMathFlags FMF; 5292 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5293 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5294 if (!FMF.any()) 5295 return error("Fast math flags indicator set for call with no FMF"); 5296 } 5297 5298 FunctionType *FTy = nullptr; 5299 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5300 FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])); 5301 if (!FTy) 5302 return error("Explicit call type is not a function type"); 5303 } 5304 5305 Value *Callee; 5306 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 5307 return error("Invalid record"); 5308 5309 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5310 if (!OpTy) 5311 return error("Callee is not a pointer type"); 5312 if (!FTy) { 5313 FTy = dyn_cast<FunctionType>( 5314 cast<PointerType>(Callee->getType())->getElementType()); 5315 if (!FTy) 5316 return error("Callee is not of pointer to function type"); 5317 } else if (!OpTy->isOpaqueOrPointeeTypeMatches(FTy)) 5318 return error("Explicit call type does not match pointee type of " 5319 "callee operand"); 5320 if (Record.size() < FTy->getNumParams() + OpNum) 5321 return error("Insufficient operands to call"); 5322 5323 SmallVector<Value*, 16> Args; 5324 SmallVector<Type *, 16> ArgsTys; 5325 // Read the fixed params. 5326 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5327 if (FTy->getParamType(i)->isLabelTy()) 5328 Args.push_back(getBasicBlock(Record[OpNum])); 5329 else 5330 Args.push_back(getValue(Record, OpNum, NextValueNo, 5331 FTy->getParamType(i))); 5332 ArgsTys.push_back(FTy->getParamType(i)); 5333 if (!Args.back()) 5334 return error("Invalid record"); 5335 } 5336 5337 // Read type/value pairs for varargs params. 5338 if (!FTy->isVarArg()) { 5339 if (OpNum != Record.size()) 5340 return error("Invalid record"); 5341 } else { 5342 while (OpNum != Record.size()) { 5343 Value *Op; 5344 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5345 return error("Invalid record"); 5346 Args.push_back(Op); 5347 ArgsTys.push_back(Op->getType()); 5348 } 5349 } 5350 5351 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5352 OperandBundles.clear(); 5353 InstructionList.push_back(I); 5354 cast<CallInst>(I)->setCallingConv( 5355 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5356 CallInst::TailCallKind TCK = CallInst::TCK_None; 5357 if (CCInfo & 1 << bitc::CALL_TAIL) 5358 TCK = CallInst::TCK_Tail; 5359 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5360 TCK = CallInst::TCK_MustTail; 5361 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5362 TCK = CallInst::TCK_NoTail; 5363 cast<CallInst>(I)->setTailCallKind(TCK); 5364 cast<CallInst>(I)->setAttributes(PAL); 5365 propagateAttributeTypes(cast<CallBase>(I), ArgsTys); 5366 if (FMF.any()) { 5367 if (!isa<FPMathOperator>(I)) 5368 return error("Fast-math-flags specified for call without " 5369 "floating-point scalar or vector return type"); 5370 I->setFastMathFlags(FMF); 5371 } 5372 break; 5373 } 5374 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5375 if (Record.size() < 3) 5376 return error("Invalid record"); 5377 Type *OpTy = getTypeByID(Record[0]); 5378 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5379 Type *ResTy = getTypeByID(Record[2]); 5380 if (!OpTy || !Op || !ResTy) 5381 return error("Invalid record"); 5382 I = new VAArgInst(Op, ResTy); 5383 InstructionList.push_back(I); 5384 break; 5385 } 5386 5387 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5388 // A call or an invoke can be optionally prefixed with some variable 5389 // number of operand bundle blocks. These blocks are read into 5390 // OperandBundles and consumed at the next call or invoke instruction. 5391 5392 if (Record.empty() || Record[0] >= BundleTags.size()) 5393 return error("Invalid record"); 5394 5395 std::vector<Value *> Inputs; 5396 5397 unsigned OpNum = 1; 5398 while (OpNum != Record.size()) { 5399 Value *Op; 5400 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5401 return error("Invalid record"); 5402 Inputs.push_back(Op); 5403 } 5404 5405 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5406 continue; 5407 } 5408 5409 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5410 unsigned OpNum = 0; 5411 Value *Op = nullptr; 5412 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5413 return error("Invalid record"); 5414 if (OpNum != Record.size()) 5415 return error("Invalid record"); 5416 5417 I = new FreezeInst(Op); 5418 InstructionList.push_back(I); 5419 break; 5420 } 5421 } 5422 5423 // Add instruction to end of current BB. If there is no current BB, reject 5424 // this file. 5425 if (!CurBB) { 5426 I->deleteValue(); 5427 return error("Invalid instruction with no BB"); 5428 } 5429 if (!OperandBundles.empty()) { 5430 I->deleteValue(); 5431 return error("Operand bundles found with no consumer"); 5432 } 5433 CurBB->getInstList().push_back(I); 5434 5435 // If this was a terminator instruction, move to the next block. 5436 if (I->isTerminator()) { 5437 ++CurBBNo; 5438 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5439 } 5440 5441 // Non-void values get registered in the value table for future use. 5442 if (!I->getType()->isVoidTy()) 5443 ValueList.assignValue(I, NextValueNo++); 5444 } 5445 5446 OutOfRecordLoop: 5447 5448 if (!OperandBundles.empty()) 5449 return error("Operand bundles found with no consumer"); 5450 5451 // Check the function list for unresolved values. 5452 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5453 if (!A->getParent()) { 5454 // We found at least one unresolved value. Nuke them all to avoid leaks. 5455 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5456 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5457 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5458 delete A; 5459 } 5460 } 5461 return error("Never resolved value found in function"); 5462 } 5463 } 5464 5465 // Unexpected unresolved metadata about to be dropped. 5466 if (MDLoader->hasFwdRefs()) 5467 return error("Invalid function metadata: outgoing forward refs"); 5468 5469 // Trim the value list down to the size it was before we parsed this function. 5470 ValueList.shrinkTo(ModuleValueListSize); 5471 MDLoader->shrinkTo(ModuleMDLoaderSize); 5472 std::vector<BasicBlock*>().swap(FunctionBBs); 5473 return Error::success(); 5474 } 5475 5476 /// Find the function body in the bitcode stream 5477 Error BitcodeReader::findFunctionInStream( 5478 Function *F, 5479 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5480 while (DeferredFunctionInfoIterator->second == 0) { 5481 // This is the fallback handling for the old format bitcode that 5482 // didn't contain the function index in the VST, or when we have 5483 // an anonymous function which would not have a VST entry. 5484 // Assert that we have one of those two cases. 5485 assert(VSTOffset == 0 || !F->hasName()); 5486 // Parse the next body in the stream and set its position in the 5487 // DeferredFunctionInfo map. 5488 if (Error Err = rememberAndSkipFunctionBodies()) 5489 return Err; 5490 } 5491 return Error::success(); 5492 } 5493 5494 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5495 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5496 return SyncScope::ID(Val); 5497 if (Val >= SSIDs.size()) 5498 return SyncScope::System; // Map unknown synchronization scopes to system. 5499 return SSIDs[Val]; 5500 } 5501 5502 //===----------------------------------------------------------------------===// 5503 // GVMaterializer implementation 5504 //===----------------------------------------------------------------------===// 5505 5506 Error BitcodeReader::materialize(GlobalValue *GV) { 5507 Function *F = dyn_cast<Function>(GV); 5508 // If it's not a function or is already material, ignore the request. 5509 if (!F || !F->isMaterializable()) 5510 return Error::success(); 5511 5512 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5513 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5514 // If its position is recorded as 0, its body is somewhere in the stream 5515 // but we haven't seen it yet. 5516 if (DFII->second == 0) 5517 if (Error Err = findFunctionInStream(F, DFII)) 5518 return Err; 5519 5520 // Materialize metadata before parsing any function bodies. 5521 if (Error Err = materializeMetadata()) 5522 return Err; 5523 5524 // Move the bit stream to the saved position of the deferred function body. 5525 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5526 return JumpFailed; 5527 if (Error Err = parseFunctionBody(F)) 5528 return Err; 5529 F->setIsMaterializable(false); 5530 5531 if (StripDebugInfo) 5532 stripDebugInfo(*F); 5533 5534 // Upgrade any old intrinsic calls in the function. 5535 for (auto &I : UpgradedIntrinsics) { 5536 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 5537 if (CallInst *CI = dyn_cast<CallInst>(U)) 5538 UpgradeIntrinsicCall(CI, I.second); 5539 } 5540 5541 // Update calls to the remangled intrinsics 5542 for (auto &I : RemangledIntrinsics) 5543 for (User *U : llvm::make_early_inc_range(I.first->materialized_users())) 5544 // Don't expect any other users than call sites 5545 cast<CallBase>(U)->setCalledFunction(I.second); 5546 5547 // Finish fn->subprogram upgrade for materialized functions. 5548 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5549 F->setSubprogram(SP); 5550 5551 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5552 if (!MDLoader->isStrippingTBAA()) { 5553 for (auto &I : instructions(F)) { 5554 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5555 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5556 continue; 5557 MDLoader->setStripTBAA(true); 5558 stripTBAA(F->getParent()); 5559 } 5560 } 5561 5562 for (auto &I : instructions(F)) { 5563 // "Upgrade" older incorrect branch weights by dropping them. 5564 if (auto *MD = I.getMetadata(LLVMContext::MD_prof)) { 5565 if (MD->getOperand(0) != nullptr && isa<MDString>(MD->getOperand(0))) { 5566 MDString *MDS = cast<MDString>(MD->getOperand(0)); 5567 StringRef ProfName = MDS->getString(); 5568 // Check consistency of !prof branch_weights metadata. 5569 if (!ProfName.equals("branch_weights")) 5570 continue; 5571 unsigned ExpectedNumOperands = 0; 5572 if (BranchInst *BI = dyn_cast<BranchInst>(&I)) 5573 ExpectedNumOperands = BI->getNumSuccessors(); 5574 else if (SwitchInst *SI = dyn_cast<SwitchInst>(&I)) 5575 ExpectedNumOperands = SI->getNumSuccessors(); 5576 else if (isa<CallInst>(&I)) 5577 ExpectedNumOperands = 1; 5578 else if (IndirectBrInst *IBI = dyn_cast<IndirectBrInst>(&I)) 5579 ExpectedNumOperands = IBI->getNumDestinations(); 5580 else if (isa<SelectInst>(&I)) 5581 ExpectedNumOperands = 2; 5582 else 5583 continue; // ignore and continue. 5584 5585 // If branch weight doesn't match, just strip branch weight. 5586 if (MD->getNumOperands() != 1 + ExpectedNumOperands) 5587 I.setMetadata(LLVMContext::MD_prof, nullptr); 5588 } 5589 } 5590 5591 // Remove incompatible attributes on function calls. 5592 if (auto *CI = dyn_cast<CallBase>(&I)) { 5593 CI->removeRetAttrs(AttributeFuncs::typeIncompatible( 5594 CI->getFunctionType()->getReturnType())); 5595 5596 for (unsigned ArgNo = 0; ArgNo < CI->arg_size(); ++ArgNo) 5597 CI->removeParamAttrs(ArgNo, AttributeFuncs::typeIncompatible( 5598 CI->getArgOperand(ArgNo)->getType())); 5599 } 5600 } 5601 5602 // Look for functions that rely on old function attribute behavior. 5603 UpgradeFunctionAttributes(*F); 5604 5605 // Bring in any functions that this function forward-referenced via 5606 // blockaddresses. 5607 return materializeForwardReferencedFunctions(); 5608 } 5609 5610 Error BitcodeReader::materializeModule() { 5611 if (Error Err = materializeMetadata()) 5612 return Err; 5613 5614 // Promise to materialize all forward references. 5615 WillMaterializeAllForwardRefs = true; 5616 5617 // Iterate over the module, deserializing any functions that are still on 5618 // disk. 5619 for (Function &F : *TheModule) { 5620 if (Error Err = materialize(&F)) 5621 return Err; 5622 } 5623 // At this point, if there are any function bodies, parse the rest of 5624 // the bits in the module past the last function block we have recorded 5625 // through either lazy scanning or the VST. 5626 if (LastFunctionBlockBit || NextUnreadBit) 5627 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5628 ? LastFunctionBlockBit 5629 : NextUnreadBit)) 5630 return Err; 5631 5632 // Check that all block address forward references got resolved (as we 5633 // promised above). 5634 if (!BasicBlockFwdRefs.empty()) 5635 return error("Never resolved function from blockaddress"); 5636 5637 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5638 // delete the old functions to clean up. We can't do this unless the entire 5639 // module is materialized because there could always be another function body 5640 // with calls to the old function. 5641 for (auto &I : UpgradedIntrinsics) { 5642 for (auto *U : I.first->users()) { 5643 if (CallInst *CI = dyn_cast<CallInst>(U)) 5644 UpgradeIntrinsicCall(CI, I.second); 5645 } 5646 if (!I.first->use_empty()) 5647 I.first->replaceAllUsesWith(I.second); 5648 I.first->eraseFromParent(); 5649 } 5650 UpgradedIntrinsics.clear(); 5651 // Do the same for remangled intrinsics 5652 for (auto &I : RemangledIntrinsics) { 5653 I.first->replaceAllUsesWith(I.second); 5654 I.first->eraseFromParent(); 5655 } 5656 RemangledIntrinsics.clear(); 5657 5658 UpgradeDebugInfo(*TheModule); 5659 5660 UpgradeModuleFlags(*TheModule); 5661 5662 UpgradeARCRuntime(*TheModule); 5663 5664 return Error::success(); 5665 } 5666 5667 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5668 return IdentifiedStructTypes; 5669 } 5670 5671 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5672 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5673 StringRef ModulePath, unsigned ModuleId) 5674 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5675 ModulePath(ModulePath), ModuleId(ModuleId) {} 5676 5677 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5678 TheIndex.addModule(ModulePath, ModuleId); 5679 } 5680 5681 ModuleSummaryIndex::ModuleInfo * 5682 ModuleSummaryIndexBitcodeReader::getThisModule() { 5683 return TheIndex.getModule(ModulePath); 5684 } 5685 5686 std::pair<ValueInfo, GlobalValue::GUID> 5687 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5688 auto VGI = ValueIdToValueInfoMap[ValueId]; 5689 assert(VGI.first); 5690 return VGI; 5691 } 5692 5693 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5694 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5695 StringRef SourceFileName) { 5696 std::string GlobalId = 5697 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5698 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5699 auto OriginalNameID = ValueGUID; 5700 if (GlobalValue::isLocalLinkage(Linkage)) 5701 OriginalNameID = GlobalValue::getGUID(ValueName); 5702 if (PrintSummaryGUIDs) 5703 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5704 << ValueName << "\n"; 5705 5706 // UseStrtab is false for legacy summary formats and value names are 5707 // created on stack. In that case we save the name in a string saver in 5708 // the index so that the value name can be recorded. 5709 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5710 TheIndex.getOrInsertValueInfo( 5711 ValueGUID, 5712 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5713 OriginalNameID); 5714 } 5715 5716 // Specialized value symbol table parser used when reading module index 5717 // blocks where we don't actually create global values. The parsed information 5718 // is saved in the bitcode reader for use when later parsing summaries. 5719 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5720 uint64_t Offset, 5721 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5722 // With a strtab the VST is not required to parse the summary. 5723 if (UseStrtab) 5724 return Error::success(); 5725 5726 assert(Offset > 0 && "Expected non-zero VST offset"); 5727 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5728 if (!MaybeCurrentBit) 5729 return MaybeCurrentBit.takeError(); 5730 uint64_t CurrentBit = MaybeCurrentBit.get(); 5731 5732 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5733 return Err; 5734 5735 SmallVector<uint64_t, 64> Record; 5736 5737 // Read all the records for this value table. 5738 SmallString<128> ValueName; 5739 5740 while (true) { 5741 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5742 if (!MaybeEntry) 5743 return MaybeEntry.takeError(); 5744 BitstreamEntry Entry = MaybeEntry.get(); 5745 5746 switch (Entry.Kind) { 5747 case BitstreamEntry::SubBlock: // Handled for us already. 5748 case BitstreamEntry::Error: 5749 return error("Malformed block"); 5750 case BitstreamEntry::EndBlock: 5751 // Done parsing VST, jump back to wherever we came from. 5752 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5753 return JumpFailed; 5754 return Error::success(); 5755 case BitstreamEntry::Record: 5756 // The interesting case. 5757 break; 5758 } 5759 5760 // Read a record. 5761 Record.clear(); 5762 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5763 if (!MaybeRecord) 5764 return MaybeRecord.takeError(); 5765 switch (MaybeRecord.get()) { 5766 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5767 break; 5768 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5769 if (convertToString(Record, 1, ValueName)) 5770 return error("Invalid record"); 5771 unsigned ValueID = Record[0]; 5772 assert(!SourceFileName.empty()); 5773 auto VLI = ValueIdToLinkageMap.find(ValueID); 5774 assert(VLI != ValueIdToLinkageMap.end() && 5775 "No linkage found for VST entry?"); 5776 auto Linkage = VLI->second; 5777 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5778 ValueName.clear(); 5779 break; 5780 } 5781 case bitc::VST_CODE_FNENTRY: { 5782 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5783 if (convertToString(Record, 2, ValueName)) 5784 return error("Invalid record"); 5785 unsigned ValueID = Record[0]; 5786 assert(!SourceFileName.empty()); 5787 auto VLI = ValueIdToLinkageMap.find(ValueID); 5788 assert(VLI != ValueIdToLinkageMap.end() && 5789 "No linkage found for VST entry?"); 5790 auto Linkage = VLI->second; 5791 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5792 ValueName.clear(); 5793 break; 5794 } 5795 case bitc::VST_CODE_COMBINED_ENTRY: { 5796 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5797 unsigned ValueID = Record[0]; 5798 GlobalValue::GUID RefGUID = Record[1]; 5799 // The "original name", which is the second value of the pair will be 5800 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5801 ValueIdToValueInfoMap[ValueID] = 5802 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5803 break; 5804 } 5805 } 5806 } 5807 } 5808 5809 // Parse just the blocks needed for building the index out of the module. 5810 // At the end of this routine the module Index is populated with a map 5811 // from global value id to GlobalValueSummary objects. 5812 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5813 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5814 return Err; 5815 5816 SmallVector<uint64_t, 64> Record; 5817 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5818 unsigned ValueId = 0; 5819 5820 // Read the index for this module. 5821 while (true) { 5822 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5823 if (!MaybeEntry) 5824 return MaybeEntry.takeError(); 5825 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5826 5827 switch (Entry.Kind) { 5828 case BitstreamEntry::Error: 5829 return error("Malformed block"); 5830 case BitstreamEntry::EndBlock: 5831 return Error::success(); 5832 5833 case BitstreamEntry::SubBlock: 5834 switch (Entry.ID) { 5835 default: // Skip unknown content. 5836 if (Error Err = Stream.SkipBlock()) 5837 return Err; 5838 break; 5839 case bitc::BLOCKINFO_BLOCK_ID: 5840 // Need to parse these to get abbrev ids (e.g. for VST) 5841 if (readBlockInfo()) 5842 return error("Malformed block"); 5843 break; 5844 case bitc::VALUE_SYMTAB_BLOCK_ID: 5845 // Should have been parsed earlier via VSTOffset, unless there 5846 // is no summary section. 5847 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5848 !SeenGlobalValSummary) && 5849 "Expected early VST parse via VSTOffset record"); 5850 if (Error Err = Stream.SkipBlock()) 5851 return Err; 5852 break; 5853 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5854 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5855 // Add the module if it is a per-module index (has a source file name). 5856 if (!SourceFileName.empty()) 5857 addThisModule(); 5858 assert(!SeenValueSymbolTable && 5859 "Already read VST when parsing summary block?"); 5860 // We might not have a VST if there were no values in the 5861 // summary. An empty summary block generated when we are 5862 // performing ThinLTO compiles so we don't later invoke 5863 // the regular LTO process on them. 5864 if (VSTOffset > 0) { 5865 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5866 return Err; 5867 SeenValueSymbolTable = true; 5868 } 5869 SeenGlobalValSummary = true; 5870 if (Error Err = parseEntireSummary(Entry.ID)) 5871 return Err; 5872 break; 5873 case bitc::MODULE_STRTAB_BLOCK_ID: 5874 if (Error Err = parseModuleStringTable()) 5875 return Err; 5876 break; 5877 } 5878 continue; 5879 5880 case BitstreamEntry::Record: { 5881 Record.clear(); 5882 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5883 if (!MaybeBitCode) 5884 return MaybeBitCode.takeError(); 5885 switch (MaybeBitCode.get()) { 5886 default: 5887 break; // Default behavior, ignore unknown content. 5888 case bitc::MODULE_CODE_VERSION: { 5889 if (Error Err = parseVersionRecord(Record).takeError()) 5890 return Err; 5891 break; 5892 } 5893 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5894 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5895 SmallString<128> ValueName; 5896 if (convertToString(Record, 0, ValueName)) 5897 return error("Invalid record"); 5898 SourceFileName = ValueName.c_str(); 5899 break; 5900 } 5901 /// MODULE_CODE_HASH: [5*i32] 5902 case bitc::MODULE_CODE_HASH: { 5903 if (Record.size() != 5) 5904 return error("Invalid hash length " + Twine(Record.size()).str()); 5905 auto &Hash = getThisModule()->second.second; 5906 int Pos = 0; 5907 for (auto &Val : Record) { 5908 assert(!(Val >> 32) && "Unexpected high bits set"); 5909 Hash[Pos++] = Val; 5910 } 5911 break; 5912 } 5913 /// MODULE_CODE_VSTOFFSET: [offset] 5914 case bitc::MODULE_CODE_VSTOFFSET: 5915 if (Record.empty()) 5916 return error("Invalid record"); 5917 // Note that we subtract 1 here because the offset is relative to one 5918 // word before the start of the identification or module block, which 5919 // was historically always the start of the regular bitcode header. 5920 VSTOffset = Record[0] - 1; 5921 break; 5922 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5923 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5924 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5925 // v2: [strtab offset, strtab size, v1] 5926 case bitc::MODULE_CODE_GLOBALVAR: 5927 case bitc::MODULE_CODE_FUNCTION: 5928 case bitc::MODULE_CODE_ALIAS: { 5929 StringRef Name; 5930 ArrayRef<uint64_t> GVRecord; 5931 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5932 if (GVRecord.size() <= 3) 5933 return error("Invalid record"); 5934 uint64_t RawLinkage = GVRecord[3]; 5935 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5936 if (!UseStrtab) { 5937 ValueIdToLinkageMap[ValueId++] = Linkage; 5938 break; 5939 } 5940 5941 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5942 break; 5943 } 5944 } 5945 } 5946 continue; 5947 } 5948 } 5949 } 5950 5951 std::vector<ValueInfo> 5952 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5953 std::vector<ValueInfo> Ret; 5954 Ret.reserve(Record.size()); 5955 for (uint64_t RefValueId : Record) 5956 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5957 return Ret; 5958 } 5959 5960 std::vector<FunctionSummary::EdgeTy> 5961 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5962 bool IsOldProfileFormat, 5963 bool HasProfile, bool HasRelBF) { 5964 std::vector<FunctionSummary::EdgeTy> Ret; 5965 Ret.reserve(Record.size()); 5966 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5967 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5968 uint64_t RelBF = 0; 5969 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5970 if (IsOldProfileFormat) { 5971 I += 1; // Skip old callsitecount field 5972 if (HasProfile) 5973 I += 1; // Skip old profilecount field 5974 } else if (HasProfile) 5975 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5976 else if (HasRelBF) 5977 RelBF = Record[++I]; 5978 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5979 } 5980 return Ret; 5981 } 5982 5983 static void 5984 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5985 WholeProgramDevirtResolution &Wpd) { 5986 uint64_t ArgNum = Record[Slot++]; 5987 WholeProgramDevirtResolution::ByArg &B = 5988 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5989 Slot += ArgNum; 5990 5991 B.TheKind = 5992 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5993 B.Info = Record[Slot++]; 5994 B.Byte = Record[Slot++]; 5995 B.Bit = Record[Slot++]; 5996 } 5997 5998 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5999 StringRef Strtab, size_t &Slot, 6000 TypeIdSummary &TypeId) { 6001 uint64_t Id = Record[Slot++]; 6002 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 6003 6004 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 6005 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 6006 static_cast<size_t>(Record[Slot + 1])}; 6007 Slot += 2; 6008 6009 uint64_t ResByArgNum = Record[Slot++]; 6010 for (uint64_t I = 0; I != ResByArgNum; ++I) 6011 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 6012 } 6013 6014 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 6015 StringRef Strtab, 6016 ModuleSummaryIndex &TheIndex) { 6017 size_t Slot = 0; 6018 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 6019 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 6020 Slot += 2; 6021 6022 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 6023 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 6024 TypeId.TTRes.AlignLog2 = Record[Slot++]; 6025 TypeId.TTRes.SizeM1 = Record[Slot++]; 6026 TypeId.TTRes.BitMask = Record[Slot++]; 6027 TypeId.TTRes.InlineBits = Record[Slot++]; 6028 6029 while (Slot < Record.size()) 6030 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 6031 } 6032 6033 std::vector<FunctionSummary::ParamAccess> 6034 ModuleSummaryIndexBitcodeReader::parseParamAccesses(ArrayRef<uint64_t> Record) { 6035 auto ReadRange = [&]() { 6036 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 6037 BitcodeReader::decodeSignRotatedValue(Record.front())); 6038 Record = Record.drop_front(); 6039 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 6040 BitcodeReader::decodeSignRotatedValue(Record.front())); 6041 Record = Record.drop_front(); 6042 ConstantRange Range{Lower, Upper}; 6043 assert(!Range.isFullSet()); 6044 assert(!Range.isUpperSignWrapped()); 6045 return Range; 6046 }; 6047 6048 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6049 while (!Record.empty()) { 6050 PendingParamAccesses.emplace_back(); 6051 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 6052 ParamAccess.ParamNo = Record.front(); 6053 Record = Record.drop_front(); 6054 ParamAccess.Use = ReadRange(); 6055 ParamAccess.Calls.resize(Record.front()); 6056 Record = Record.drop_front(); 6057 for (auto &Call : ParamAccess.Calls) { 6058 Call.ParamNo = Record.front(); 6059 Record = Record.drop_front(); 6060 Call.Callee = getValueInfoFromValueId(Record.front()).first; 6061 Record = Record.drop_front(); 6062 Call.Offsets = ReadRange(); 6063 } 6064 } 6065 return PendingParamAccesses; 6066 } 6067 6068 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 6069 ArrayRef<uint64_t> Record, size_t &Slot, 6070 TypeIdCompatibleVtableInfo &TypeId) { 6071 uint64_t Offset = Record[Slot++]; 6072 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 6073 TypeId.push_back({Offset, Callee}); 6074 } 6075 6076 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 6077 ArrayRef<uint64_t> Record) { 6078 size_t Slot = 0; 6079 TypeIdCompatibleVtableInfo &TypeId = 6080 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 6081 {Strtab.data() + Record[Slot], 6082 static_cast<size_t>(Record[Slot + 1])}); 6083 Slot += 2; 6084 6085 while (Slot < Record.size()) 6086 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 6087 } 6088 6089 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 6090 unsigned WOCnt) { 6091 // Readonly and writeonly refs are in the end of the refs list. 6092 assert(ROCnt + WOCnt <= Refs.size()); 6093 unsigned FirstWORef = Refs.size() - WOCnt; 6094 unsigned RefNo = FirstWORef - ROCnt; 6095 for (; RefNo < FirstWORef; ++RefNo) 6096 Refs[RefNo].setReadOnly(); 6097 for (; RefNo < Refs.size(); ++RefNo) 6098 Refs[RefNo].setWriteOnly(); 6099 } 6100 6101 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 6102 // objects in the index. 6103 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 6104 if (Error Err = Stream.EnterSubBlock(ID)) 6105 return Err; 6106 SmallVector<uint64_t, 64> Record; 6107 6108 // Parse version 6109 { 6110 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6111 if (!MaybeEntry) 6112 return MaybeEntry.takeError(); 6113 BitstreamEntry Entry = MaybeEntry.get(); 6114 6115 if (Entry.Kind != BitstreamEntry::Record) 6116 return error("Invalid Summary Block: record for version expected"); 6117 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6118 if (!MaybeRecord) 6119 return MaybeRecord.takeError(); 6120 if (MaybeRecord.get() != bitc::FS_VERSION) 6121 return error("Invalid Summary Block: version expected"); 6122 } 6123 const uint64_t Version = Record[0]; 6124 const bool IsOldProfileFormat = Version == 1; 6125 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 6126 return error("Invalid summary version " + Twine(Version) + 6127 ". Version should be in the range [1-" + 6128 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 6129 "]."); 6130 Record.clear(); 6131 6132 // Keep around the last seen summary to be used when we see an optional 6133 // "OriginalName" attachement. 6134 GlobalValueSummary *LastSeenSummary = nullptr; 6135 GlobalValue::GUID LastSeenGUID = 0; 6136 6137 // We can expect to see any number of type ID information records before 6138 // each function summary records; these variables store the information 6139 // collected so far so that it can be used to create the summary object. 6140 std::vector<GlobalValue::GUID> PendingTypeTests; 6141 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 6142 PendingTypeCheckedLoadVCalls; 6143 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 6144 PendingTypeCheckedLoadConstVCalls; 6145 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 6146 6147 while (true) { 6148 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6149 if (!MaybeEntry) 6150 return MaybeEntry.takeError(); 6151 BitstreamEntry Entry = MaybeEntry.get(); 6152 6153 switch (Entry.Kind) { 6154 case BitstreamEntry::SubBlock: // Handled for us already. 6155 case BitstreamEntry::Error: 6156 return error("Malformed block"); 6157 case BitstreamEntry::EndBlock: 6158 return Error::success(); 6159 case BitstreamEntry::Record: 6160 // The interesting case. 6161 break; 6162 } 6163 6164 // Read a record. The record format depends on whether this 6165 // is a per-module index or a combined index file. In the per-module 6166 // case the records contain the associated value's ID for correlation 6167 // with VST entries. In the combined index the correlation is done 6168 // via the bitcode offset of the summary records (which were saved 6169 // in the combined index VST entries). The records also contain 6170 // information used for ThinLTO renaming and importing. 6171 Record.clear(); 6172 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6173 if (!MaybeBitCode) 6174 return MaybeBitCode.takeError(); 6175 switch (unsigned BitCode = MaybeBitCode.get()) { 6176 default: // Default behavior: ignore. 6177 break; 6178 case bitc::FS_FLAGS: { // [flags] 6179 TheIndex.setFlags(Record[0]); 6180 break; 6181 } 6182 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 6183 uint64_t ValueID = Record[0]; 6184 GlobalValue::GUID RefGUID = Record[1]; 6185 ValueIdToValueInfoMap[ValueID] = 6186 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 6187 break; 6188 } 6189 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 6190 // numrefs x valueid, n x (valueid)] 6191 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 6192 // numrefs x valueid, 6193 // n x (valueid, hotness)] 6194 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 6195 // numrefs x valueid, 6196 // n x (valueid, relblockfreq)] 6197 case bitc::FS_PERMODULE: 6198 case bitc::FS_PERMODULE_RELBF: 6199 case bitc::FS_PERMODULE_PROFILE: { 6200 unsigned ValueID = Record[0]; 6201 uint64_t RawFlags = Record[1]; 6202 unsigned InstCount = Record[2]; 6203 uint64_t RawFunFlags = 0; 6204 unsigned NumRefs = Record[3]; 6205 unsigned NumRORefs = 0, NumWORefs = 0; 6206 int RefListStartIndex = 4; 6207 if (Version >= 4) { 6208 RawFunFlags = Record[3]; 6209 NumRefs = Record[4]; 6210 RefListStartIndex = 5; 6211 if (Version >= 5) { 6212 NumRORefs = Record[5]; 6213 RefListStartIndex = 6; 6214 if (Version >= 7) { 6215 NumWORefs = Record[6]; 6216 RefListStartIndex = 7; 6217 } 6218 } 6219 } 6220 6221 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6222 // The module path string ref set in the summary must be owned by the 6223 // index's module string table. Since we don't have a module path 6224 // string table section in the per-module index, we create a single 6225 // module path string table entry with an empty (0) ID to take 6226 // ownership. 6227 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6228 assert(Record.size() >= RefListStartIndex + NumRefs && 6229 "Record size inconsistent with number of references"); 6230 std::vector<ValueInfo> Refs = makeRefList( 6231 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6232 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6233 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6234 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6235 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6236 IsOldProfileFormat, HasProfile, HasRelBF); 6237 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6238 auto FS = std::make_unique<FunctionSummary>( 6239 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6240 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6241 std::move(PendingTypeTestAssumeVCalls), 6242 std::move(PendingTypeCheckedLoadVCalls), 6243 std::move(PendingTypeTestAssumeConstVCalls), 6244 std::move(PendingTypeCheckedLoadConstVCalls), 6245 std::move(PendingParamAccesses)); 6246 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6247 FS->setModulePath(getThisModule()->first()); 6248 FS->setOriginalName(VIAndOriginalGUID.second); 6249 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6250 break; 6251 } 6252 // FS_ALIAS: [valueid, flags, valueid] 6253 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6254 // they expect all aliasee summaries to be available. 6255 case bitc::FS_ALIAS: { 6256 unsigned ValueID = Record[0]; 6257 uint64_t RawFlags = Record[1]; 6258 unsigned AliaseeID = Record[2]; 6259 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6260 auto AS = std::make_unique<AliasSummary>(Flags); 6261 // The module path string ref set in the summary must be owned by the 6262 // index's module string table. Since we don't have a module path 6263 // string table section in the per-module index, we create a single 6264 // module path string table entry with an empty (0) ID to take 6265 // ownership. 6266 AS->setModulePath(getThisModule()->first()); 6267 6268 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6269 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6270 if (!AliaseeInModule) 6271 return error("Alias expects aliasee summary to be parsed"); 6272 AS->setAliasee(AliaseeVI, AliaseeInModule); 6273 6274 auto GUID = getValueInfoFromValueId(ValueID); 6275 AS->setOriginalName(GUID.second); 6276 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6277 break; 6278 } 6279 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6280 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6281 unsigned ValueID = Record[0]; 6282 uint64_t RawFlags = Record[1]; 6283 unsigned RefArrayStart = 2; 6284 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6285 /* WriteOnly */ false, 6286 /* Constant */ false, 6287 GlobalObject::VCallVisibilityPublic); 6288 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6289 if (Version >= 5) { 6290 GVF = getDecodedGVarFlags(Record[2]); 6291 RefArrayStart = 3; 6292 } 6293 std::vector<ValueInfo> Refs = 6294 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6295 auto FS = 6296 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6297 FS->setModulePath(getThisModule()->first()); 6298 auto GUID = getValueInfoFromValueId(ValueID); 6299 FS->setOriginalName(GUID.second); 6300 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6301 break; 6302 } 6303 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6304 // numrefs, numrefs x valueid, 6305 // n x (valueid, offset)] 6306 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6307 unsigned ValueID = Record[0]; 6308 uint64_t RawFlags = Record[1]; 6309 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6310 unsigned NumRefs = Record[3]; 6311 unsigned RefListStartIndex = 4; 6312 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6313 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6314 std::vector<ValueInfo> Refs = makeRefList( 6315 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6316 VTableFuncList VTableFuncs; 6317 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6318 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6319 uint64_t Offset = Record[++I]; 6320 VTableFuncs.push_back({Callee, Offset}); 6321 } 6322 auto VS = 6323 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6324 VS->setModulePath(getThisModule()->first()); 6325 VS->setVTableFuncs(VTableFuncs); 6326 auto GUID = getValueInfoFromValueId(ValueID); 6327 VS->setOriginalName(GUID.second); 6328 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6329 break; 6330 } 6331 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6332 // numrefs x valueid, n x (valueid)] 6333 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6334 // numrefs x valueid, n x (valueid, hotness)] 6335 case bitc::FS_COMBINED: 6336 case bitc::FS_COMBINED_PROFILE: { 6337 unsigned ValueID = Record[0]; 6338 uint64_t ModuleId = Record[1]; 6339 uint64_t RawFlags = Record[2]; 6340 unsigned InstCount = Record[3]; 6341 uint64_t RawFunFlags = 0; 6342 uint64_t EntryCount = 0; 6343 unsigned NumRefs = Record[4]; 6344 unsigned NumRORefs = 0, NumWORefs = 0; 6345 int RefListStartIndex = 5; 6346 6347 if (Version >= 4) { 6348 RawFunFlags = Record[4]; 6349 RefListStartIndex = 6; 6350 size_t NumRefsIndex = 5; 6351 if (Version >= 5) { 6352 unsigned NumRORefsOffset = 1; 6353 RefListStartIndex = 7; 6354 if (Version >= 6) { 6355 NumRefsIndex = 6; 6356 EntryCount = Record[5]; 6357 RefListStartIndex = 8; 6358 if (Version >= 7) { 6359 RefListStartIndex = 9; 6360 NumWORefs = Record[8]; 6361 NumRORefsOffset = 2; 6362 } 6363 } 6364 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6365 } 6366 NumRefs = Record[NumRefsIndex]; 6367 } 6368 6369 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6370 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6371 assert(Record.size() >= RefListStartIndex + NumRefs && 6372 "Record size inconsistent with number of references"); 6373 std::vector<ValueInfo> Refs = makeRefList( 6374 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6375 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6376 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6377 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6378 IsOldProfileFormat, HasProfile, false); 6379 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6380 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6381 auto FS = std::make_unique<FunctionSummary>( 6382 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6383 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6384 std::move(PendingTypeTestAssumeVCalls), 6385 std::move(PendingTypeCheckedLoadVCalls), 6386 std::move(PendingTypeTestAssumeConstVCalls), 6387 std::move(PendingTypeCheckedLoadConstVCalls), 6388 std::move(PendingParamAccesses)); 6389 LastSeenSummary = FS.get(); 6390 LastSeenGUID = VI.getGUID(); 6391 FS->setModulePath(ModuleIdMap[ModuleId]); 6392 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6393 break; 6394 } 6395 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6396 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6397 // they expect all aliasee summaries to be available. 6398 case bitc::FS_COMBINED_ALIAS: { 6399 unsigned ValueID = Record[0]; 6400 uint64_t ModuleId = Record[1]; 6401 uint64_t RawFlags = Record[2]; 6402 unsigned AliaseeValueId = Record[3]; 6403 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6404 auto AS = std::make_unique<AliasSummary>(Flags); 6405 LastSeenSummary = AS.get(); 6406 AS->setModulePath(ModuleIdMap[ModuleId]); 6407 6408 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6409 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6410 AS->setAliasee(AliaseeVI, AliaseeInModule); 6411 6412 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6413 LastSeenGUID = VI.getGUID(); 6414 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6415 break; 6416 } 6417 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6418 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6419 unsigned ValueID = Record[0]; 6420 uint64_t ModuleId = Record[1]; 6421 uint64_t RawFlags = Record[2]; 6422 unsigned RefArrayStart = 3; 6423 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6424 /* WriteOnly */ false, 6425 /* Constant */ false, 6426 GlobalObject::VCallVisibilityPublic); 6427 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6428 if (Version >= 5) { 6429 GVF = getDecodedGVarFlags(Record[3]); 6430 RefArrayStart = 4; 6431 } 6432 std::vector<ValueInfo> Refs = 6433 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6434 auto FS = 6435 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6436 LastSeenSummary = FS.get(); 6437 FS->setModulePath(ModuleIdMap[ModuleId]); 6438 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6439 LastSeenGUID = VI.getGUID(); 6440 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6441 break; 6442 } 6443 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6444 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6445 uint64_t OriginalName = Record[0]; 6446 if (!LastSeenSummary) 6447 return error("Name attachment that does not follow a combined record"); 6448 LastSeenSummary->setOriginalName(OriginalName); 6449 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6450 // Reset the LastSeenSummary 6451 LastSeenSummary = nullptr; 6452 LastSeenGUID = 0; 6453 break; 6454 } 6455 case bitc::FS_TYPE_TESTS: 6456 assert(PendingTypeTests.empty()); 6457 llvm::append_range(PendingTypeTests, Record); 6458 break; 6459 6460 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6461 assert(PendingTypeTestAssumeVCalls.empty()); 6462 for (unsigned I = 0; I != Record.size(); I += 2) 6463 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6464 break; 6465 6466 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6467 assert(PendingTypeCheckedLoadVCalls.empty()); 6468 for (unsigned I = 0; I != Record.size(); I += 2) 6469 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6470 break; 6471 6472 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6473 PendingTypeTestAssumeConstVCalls.push_back( 6474 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6475 break; 6476 6477 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6478 PendingTypeCheckedLoadConstVCalls.push_back( 6479 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6480 break; 6481 6482 case bitc::FS_CFI_FUNCTION_DEFS: { 6483 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6484 for (unsigned I = 0; I != Record.size(); I += 2) 6485 CfiFunctionDefs.insert( 6486 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6487 break; 6488 } 6489 6490 case bitc::FS_CFI_FUNCTION_DECLS: { 6491 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6492 for (unsigned I = 0; I != Record.size(); I += 2) 6493 CfiFunctionDecls.insert( 6494 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6495 break; 6496 } 6497 6498 case bitc::FS_TYPE_ID: 6499 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6500 break; 6501 6502 case bitc::FS_TYPE_ID_METADATA: 6503 parseTypeIdCompatibleVtableSummaryRecord(Record); 6504 break; 6505 6506 case bitc::FS_BLOCK_COUNT: 6507 TheIndex.addBlockCount(Record[0]); 6508 break; 6509 6510 case bitc::FS_PARAM_ACCESS: { 6511 PendingParamAccesses = parseParamAccesses(Record); 6512 break; 6513 } 6514 } 6515 } 6516 llvm_unreachable("Exit infinite loop"); 6517 } 6518 6519 // Parse the module string table block into the Index. 6520 // This populates the ModulePathStringTable map in the index. 6521 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6522 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6523 return Err; 6524 6525 SmallVector<uint64_t, 64> Record; 6526 6527 SmallString<128> ModulePath; 6528 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6529 6530 while (true) { 6531 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6532 if (!MaybeEntry) 6533 return MaybeEntry.takeError(); 6534 BitstreamEntry Entry = MaybeEntry.get(); 6535 6536 switch (Entry.Kind) { 6537 case BitstreamEntry::SubBlock: // Handled for us already. 6538 case BitstreamEntry::Error: 6539 return error("Malformed block"); 6540 case BitstreamEntry::EndBlock: 6541 return Error::success(); 6542 case BitstreamEntry::Record: 6543 // The interesting case. 6544 break; 6545 } 6546 6547 Record.clear(); 6548 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6549 if (!MaybeRecord) 6550 return MaybeRecord.takeError(); 6551 switch (MaybeRecord.get()) { 6552 default: // Default behavior: ignore. 6553 break; 6554 case bitc::MST_CODE_ENTRY: { 6555 // MST_ENTRY: [modid, namechar x N] 6556 uint64_t ModuleId = Record[0]; 6557 6558 if (convertToString(Record, 1, ModulePath)) 6559 return error("Invalid record"); 6560 6561 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6562 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6563 6564 ModulePath.clear(); 6565 break; 6566 } 6567 /// MST_CODE_HASH: [5*i32] 6568 case bitc::MST_CODE_HASH: { 6569 if (Record.size() != 5) 6570 return error("Invalid hash length " + Twine(Record.size()).str()); 6571 if (!LastSeenModule) 6572 return error("Invalid hash that does not follow a module path"); 6573 int Pos = 0; 6574 for (auto &Val : Record) { 6575 assert(!(Val >> 32) && "Unexpected high bits set"); 6576 LastSeenModule->second.second[Pos++] = Val; 6577 } 6578 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6579 LastSeenModule = nullptr; 6580 break; 6581 } 6582 } 6583 } 6584 llvm_unreachable("Exit infinite loop"); 6585 } 6586 6587 namespace { 6588 6589 // FIXME: This class is only here to support the transition to llvm::Error. It 6590 // will be removed once this transition is complete. Clients should prefer to 6591 // deal with the Error value directly, rather than converting to error_code. 6592 class BitcodeErrorCategoryType : public std::error_category { 6593 const char *name() const noexcept override { 6594 return "llvm.bitcode"; 6595 } 6596 6597 std::string message(int IE) const override { 6598 BitcodeError E = static_cast<BitcodeError>(IE); 6599 switch (E) { 6600 case BitcodeError::CorruptedBitcode: 6601 return "Corrupted bitcode"; 6602 } 6603 llvm_unreachable("Unknown error type!"); 6604 } 6605 }; 6606 6607 } // end anonymous namespace 6608 6609 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6610 6611 const std::error_category &llvm::BitcodeErrorCategory() { 6612 return *ErrorCategory; 6613 } 6614 6615 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6616 unsigned Block, unsigned RecordID) { 6617 if (Error Err = Stream.EnterSubBlock(Block)) 6618 return std::move(Err); 6619 6620 StringRef Strtab; 6621 while (true) { 6622 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6623 if (!MaybeEntry) 6624 return MaybeEntry.takeError(); 6625 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6626 6627 switch (Entry.Kind) { 6628 case BitstreamEntry::EndBlock: 6629 return Strtab; 6630 6631 case BitstreamEntry::Error: 6632 return error("Malformed block"); 6633 6634 case BitstreamEntry::SubBlock: 6635 if (Error Err = Stream.SkipBlock()) 6636 return std::move(Err); 6637 break; 6638 6639 case BitstreamEntry::Record: 6640 StringRef Blob; 6641 SmallVector<uint64_t, 1> Record; 6642 Expected<unsigned> MaybeRecord = 6643 Stream.readRecord(Entry.ID, Record, &Blob); 6644 if (!MaybeRecord) 6645 return MaybeRecord.takeError(); 6646 if (MaybeRecord.get() == RecordID) 6647 Strtab = Blob; 6648 break; 6649 } 6650 } 6651 } 6652 6653 //===----------------------------------------------------------------------===// 6654 // External interface 6655 //===----------------------------------------------------------------------===// 6656 6657 Expected<std::vector<BitcodeModule>> 6658 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6659 auto FOrErr = getBitcodeFileContents(Buffer); 6660 if (!FOrErr) 6661 return FOrErr.takeError(); 6662 return std::move(FOrErr->Mods); 6663 } 6664 6665 Expected<BitcodeFileContents> 6666 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6667 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6668 if (!StreamOrErr) 6669 return StreamOrErr.takeError(); 6670 BitstreamCursor &Stream = *StreamOrErr; 6671 6672 BitcodeFileContents F; 6673 while (true) { 6674 uint64_t BCBegin = Stream.getCurrentByteNo(); 6675 6676 // We may be consuming bitcode from a client that leaves garbage at the end 6677 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6678 // the end that there cannot possibly be another module, stop looking. 6679 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6680 return F; 6681 6682 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6683 if (!MaybeEntry) 6684 return MaybeEntry.takeError(); 6685 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6686 6687 switch (Entry.Kind) { 6688 case BitstreamEntry::EndBlock: 6689 case BitstreamEntry::Error: 6690 return error("Malformed block"); 6691 6692 case BitstreamEntry::SubBlock: { 6693 uint64_t IdentificationBit = -1ull; 6694 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6695 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6696 if (Error Err = Stream.SkipBlock()) 6697 return std::move(Err); 6698 6699 { 6700 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6701 if (!MaybeEntry) 6702 return MaybeEntry.takeError(); 6703 Entry = MaybeEntry.get(); 6704 } 6705 6706 if (Entry.Kind != BitstreamEntry::SubBlock || 6707 Entry.ID != bitc::MODULE_BLOCK_ID) 6708 return error("Malformed block"); 6709 } 6710 6711 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6712 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6713 if (Error Err = Stream.SkipBlock()) 6714 return std::move(Err); 6715 6716 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6717 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6718 Buffer.getBufferIdentifier(), IdentificationBit, 6719 ModuleBit}); 6720 continue; 6721 } 6722 6723 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6724 Expected<StringRef> Strtab = 6725 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6726 if (!Strtab) 6727 return Strtab.takeError(); 6728 // This string table is used by every preceding bitcode module that does 6729 // not have its own string table. A bitcode file may have multiple 6730 // string tables if it was created by binary concatenation, for example 6731 // with "llvm-cat -b". 6732 for (BitcodeModule &I : llvm::reverse(F.Mods)) { 6733 if (!I.Strtab.empty()) 6734 break; 6735 I.Strtab = *Strtab; 6736 } 6737 // Similarly, the string table is used by every preceding symbol table; 6738 // normally there will be just one unless the bitcode file was created 6739 // by binary concatenation. 6740 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6741 F.StrtabForSymtab = *Strtab; 6742 continue; 6743 } 6744 6745 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6746 Expected<StringRef> SymtabOrErr = 6747 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6748 if (!SymtabOrErr) 6749 return SymtabOrErr.takeError(); 6750 6751 // We can expect the bitcode file to have multiple symbol tables if it 6752 // was created by binary concatenation. In that case we silently 6753 // ignore any subsequent symbol tables, which is fine because this is a 6754 // low level function. The client is expected to notice that the number 6755 // of modules in the symbol table does not match the number of modules 6756 // in the input file and regenerate the symbol table. 6757 if (F.Symtab.empty()) 6758 F.Symtab = *SymtabOrErr; 6759 continue; 6760 } 6761 6762 if (Error Err = Stream.SkipBlock()) 6763 return std::move(Err); 6764 continue; 6765 } 6766 case BitstreamEntry::Record: 6767 if (Error E = Stream.skipRecord(Entry.ID).takeError()) 6768 return std::move(E); 6769 continue; 6770 } 6771 } 6772 } 6773 6774 /// Get a lazy one-at-time loading module from bitcode. 6775 /// 6776 /// This isn't always used in a lazy context. In particular, it's also used by 6777 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6778 /// in forward-referenced functions from block address references. 6779 /// 6780 /// \param[in] MaterializeAll Set to \c true if we should materialize 6781 /// everything. 6782 Expected<std::unique_ptr<Module>> 6783 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6784 bool ShouldLazyLoadMetadata, bool IsImporting, 6785 DataLayoutCallbackTy DataLayoutCallback) { 6786 BitstreamCursor Stream(Buffer); 6787 6788 std::string ProducerIdentification; 6789 if (IdentificationBit != -1ull) { 6790 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6791 return std::move(JumpFailed); 6792 if (Error E = 6793 readIdentificationBlock(Stream).moveInto(ProducerIdentification)) 6794 return std::move(E); 6795 } 6796 6797 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6798 return std::move(JumpFailed); 6799 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6800 Context); 6801 6802 std::unique_ptr<Module> M = 6803 std::make_unique<Module>(ModuleIdentifier, Context); 6804 M->setMaterializer(R); 6805 6806 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6807 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6808 IsImporting, DataLayoutCallback)) 6809 return std::move(Err); 6810 6811 if (MaterializeAll) { 6812 // Read in the entire module, and destroy the BitcodeReader. 6813 if (Error Err = M->materializeAll()) 6814 return std::move(Err); 6815 } else { 6816 // Resolve forward references from blockaddresses. 6817 if (Error Err = R->materializeForwardReferencedFunctions()) 6818 return std::move(Err); 6819 } 6820 return std::move(M); 6821 } 6822 6823 Expected<std::unique_ptr<Module>> 6824 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6825 bool IsImporting) { 6826 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6827 [](StringRef) { return None; }); 6828 } 6829 6830 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6831 // We don't use ModuleIdentifier here because the client may need to control the 6832 // module path used in the combined summary (e.g. when reading summaries for 6833 // regular LTO modules). 6834 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6835 StringRef ModulePath, uint64_t ModuleId) { 6836 BitstreamCursor Stream(Buffer); 6837 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6838 return JumpFailed; 6839 6840 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6841 ModulePath, ModuleId); 6842 return R.parseModule(); 6843 } 6844 6845 // Parse the specified bitcode buffer, returning the function info index. 6846 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6847 BitstreamCursor Stream(Buffer); 6848 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6849 return std::move(JumpFailed); 6850 6851 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6852 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6853 ModuleIdentifier, 0); 6854 6855 if (Error Err = R.parseModule()) 6856 return std::move(Err); 6857 6858 return std::move(Index); 6859 } 6860 6861 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6862 unsigned ID) { 6863 if (Error Err = Stream.EnterSubBlock(ID)) 6864 return std::move(Err); 6865 SmallVector<uint64_t, 64> Record; 6866 6867 while (true) { 6868 BitstreamEntry Entry; 6869 if (Error E = Stream.advanceSkippingSubblocks().moveInto(Entry)) 6870 return std::move(E); 6871 6872 switch (Entry.Kind) { 6873 case BitstreamEntry::SubBlock: // Handled for us already. 6874 case BitstreamEntry::Error: 6875 return error("Malformed block"); 6876 case BitstreamEntry::EndBlock: 6877 // If no flags record found, conservatively return true to mimic 6878 // behavior before this flag was added. 6879 return true; 6880 case BitstreamEntry::Record: 6881 // The interesting case. 6882 break; 6883 } 6884 6885 // Look for the FS_FLAGS record. 6886 Record.clear(); 6887 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6888 if (!MaybeBitCode) 6889 return MaybeBitCode.takeError(); 6890 switch (MaybeBitCode.get()) { 6891 default: // Default behavior: ignore. 6892 break; 6893 case bitc::FS_FLAGS: { // [flags] 6894 uint64_t Flags = Record[0]; 6895 // Scan flags. 6896 assert(Flags <= 0x7f && "Unexpected bits in flag"); 6897 6898 return Flags & 0x8; 6899 } 6900 } 6901 } 6902 llvm_unreachable("Exit infinite loop"); 6903 } 6904 6905 // Check if the given bitcode buffer contains a global value summary block. 6906 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6907 BitstreamCursor Stream(Buffer); 6908 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6909 return std::move(JumpFailed); 6910 6911 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6912 return std::move(Err); 6913 6914 while (true) { 6915 llvm::BitstreamEntry Entry; 6916 if (Error E = Stream.advance().moveInto(Entry)) 6917 return std::move(E); 6918 6919 switch (Entry.Kind) { 6920 case BitstreamEntry::Error: 6921 return error("Malformed block"); 6922 case BitstreamEntry::EndBlock: 6923 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6924 /*EnableSplitLTOUnit=*/false}; 6925 6926 case BitstreamEntry::SubBlock: 6927 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6928 Expected<bool> EnableSplitLTOUnit = 6929 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6930 if (!EnableSplitLTOUnit) 6931 return EnableSplitLTOUnit.takeError(); 6932 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6933 *EnableSplitLTOUnit}; 6934 } 6935 6936 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6937 Expected<bool> EnableSplitLTOUnit = 6938 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6939 if (!EnableSplitLTOUnit) 6940 return EnableSplitLTOUnit.takeError(); 6941 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6942 *EnableSplitLTOUnit}; 6943 } 6944 6945 // Ignore other sub-blocks. 6946 if (Error Err = Stream.SkipBlock()) 6947 return std::move(Err); 6948 continue; 6949 6950 case BitstreamEntry::Record: 6951 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6952 continue; 6953 else 6954 return StreamFailed.takeError(); 6955 } 6956 } 6957 } 6958 6959 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6960 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6961 if (!MsOrErr) 6962 return MsOrErr.takeError(); 6963 6964 if (MsOrErr->size() != 1) 6965 return error("Expected a single module"); 6966 6967 return (*MsOrErr)[0]; 6968 } 6969 6970 Expected<std::unique_ptr<Module>> 6971 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6972 bool ShouldLazyLoadMetadata, bool IsImporting) { 6973 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6974 if (!BM) 6975 return BM.takeError(); 6976 6977 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6978 } 6979 6980 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6981 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6982 bool ShouldLazyLoadMetadata, bool IsImporting) { 6983 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6984 IsImporting); 6985 if (MOrErr) 6986 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6987 return MOrErr; 6988 } 6989 6990 Expected<std::unique_ptr<Module>> 6991 BitcodeModule::parseModule(LLVMContext &Context, 6992 DataLayoutCallbackTy DataLayoutCallback) { 6993 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 6994 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6995 // written. We must defer until the Module has been fully materialized. 6996 } 6997 6998 Expected<std::unique_ptr<Module>> 6999 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 7000 DataLayoutCallbackTy DataLayoutCallback) { 7001 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7002 if (!BM) 7003 return BM.takeError(); 7004 7005 return BM->parseModule(Context, DataLayoutCallback); 7006 } 7007 7008 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 7009 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7010 if (!StreamOrErr) 7011 return StreamOrErr.takeError(); 7012 7013 return readTriple(*StreamOrErr); 7014 } 7015 7016 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 7017 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7018 if (!StreamOrErr) 7019 return StreamOrErr.takeError(); 7020 7021 return hasObjCCategory(*StreamOrErr); 7022 } 7023 7024 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 7025 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 7026 if (!StreamOrErr) 7027 return StreamOrErr.takeError(); 7028 7029 return readIdentificationCode(*StreamOrErr); 7030 } 7031 7032 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 7033 ModuleSummaryIndex &CombinedIndex, 7034 uint64_t ModuleId) { 7035 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7036 if (!BM) 7037 return BM.takeError(); 7038 7039 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 7040 } 7041 7042 Expected<std::unique_ptr<ModuleSummaryIndex>> 7043 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 7044 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7045 if (!BM) 7046 return BM.takeError(); 7047 7048 return BM->getSummary(); 7049 } 7050 7051 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 7052 Expected<BitcodeModule> BM = getSingleModule(Buffer); 7053 if (!BM) 7054 return BM.takeError(); 7055 7056 return BM->getLTOInfo(); 7057 } 7058 7059 Expected<std::unique_ptr<ModuleSummaryIndex>> 7060 llvm::getModuleSummaryIndexForFile(StringRef Path, 7061 bool IgnoreEmptyThinLTOIndexFile) { 7062 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 7063 MemoryBuffer::getFileOrSTDIN(Path); 7064 if (!FileOrErr) 7065 return errorCodeToError(FileOrErr.getError()); 7066 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 7067 return nullptr; 7068 return getModuleSummaryIndex(**FileOrErr); 7069 } 7070