1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/LLVMBitCodes.h" 16 #include "llvm/IR/AutoUpgrade.h" 17 #include "llvm/IR/Constants.h" 18 #include "llvm/IR/DebugInfoMetadata.h" 19 #include "llvm/IR/DerivedTypes.h" 20 #include "llvm/IR/DiagnosticPrinter.h" 21 #include "llvm/IR/InlineAsm.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/IR/LLVMContext.h" 24 #include "llvm/IR/Module.h" 25 #include "llvm/IR/OperandTraits.h" 26 #include "llvm/IR/Operator.h" 27 #include "llvm/Support/DataStream.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/MathExtras.h" 30 #include "llvm/Support/MemoryBuffer.h" 31 #include "llvm/Support/raw_ostream.h" 32 33 using namespace llvm; 34 35 enum { 36 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 37 }; 38 39 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 40 DiagnosticSeverity Severity, 41 const Twine &Msg) 42 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 43 44 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 45 46 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 47 std::error_code EC, const Twine &Message) { 48 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 49 DiagnosticHandler(DI); 50 return EC; 51 } 52 53 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 54 std::error_code EC) { 55 return Error(DiagnosticHandler, EC, EC.message()); 56 } 57 58 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 59 return ::Error(DiagnosticHandler, make_error_code(E), Message); 60 } 61 62 std::error_code BitcodeReader::Error(const Twine &Message) { 63 return ::Error(DiagnosticHandler, 64 make_error_code(BitcodeError::CorruptedBitcode), Message); 65 } 66 67 std::error_code BitcodeReader::Error(BitcodeError E) { 68 return ::Error(DiagnosticHandler, make_error_code(E)); 69 } 70 71 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 72 LLVMContext &C) { 73 if (F) 74 return F; 75 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 76 } 77 78 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 79 DiagnosticHandlerFunction DiagnosticHandler) 80 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 81 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 82 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 83 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 84 WillMaterializeAllForwardRefs(false) {} 85 86 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 87 DiagnosticHandlerFunction DiagnosticHandler) 88 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 89 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 90 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 91 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 92 WillMaterializeAllForwardRefs(false) {} 93 94 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 95 if (WillMaterializeAllForwardRefs) 96 return std::error_code(); 97 98 // Prevent recursion. 99 WillMaterializeAllForwardRefs = true; 100 101 while (!BasicBlockFwdRefQueue.empty()) { 102 Function *F = BasicBlockFwdRefQueue.front(); 103 BasicBlockFwdRefQueue.pop_front(); 104 assert(F && "Expected valid function"); 105 if (!BasicBlockFwdRefs.count(F)) 106 // Already materialized. 107 continue; 108 109 // Check for a function that isn't materializable to prevent an infinite 110 // loop. When parsing a blockaddress stored in a global variable, there 111 // isn't a trivial way to check if a function will have a body without a 112 // linear search through FunctionsWithBodies, so just check it here. 113 if (!F->isMaterializable()) 114 return Error("Never resolved function from blockaddress"); 115 116 // Try to materialize F. 117 if (std::error_code EC = materialize(F)) 118 return EC; 119 } 120 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 121 122 // Reset state. 123 WillMaterializeAllForwardRefs = false; 124 return std::error_code(); 125 } 126 127 void BitcodeReader::FreeState() { 128 Buffer = nullptr; 129 std::vector<Type*>().swap(TypeList); 130 ValueList.clear(); 131 MDValueList.clear(); 132 std::vector<Comdat *>().swap(ComdatList); 133 134 std::vector<AttributeSet>().swap(MAttributes); 135 std::vector<BasicBlock*>().swap(FunctionBBs); 136 std::vector<Function*>().swap(FunctionsWithBodies); 137 DeferredFunctionInfo.clear(); 138 MDKindMap.clear(); 139 140 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 141 BasicBlockFwdRefQueue.clear(); 142 } 143 144 //===----------------------------------------------------------------------===// 145 // Helper functions to implement forward reference resolution, etc. 146 //===----------------------------------------------------------------------===// 147 148 /// ConvertToString - Convert a string from a record into an std::string, return 149 /// true on failure. 150 template<typename StrTy> 151 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 static bool hasImplicitComdat(size_t Val) { 162 switch (Val) { 163 default: 164 return false; 165 case 1: // Old WeakAnyLinkage 166 case 4: // Old LinkOnceAnyLinkage 167 case 10: // Old WeakODRLinkage 168 case 11: // Old LinkOnceODRLinkage 169 return true; 170 } 171 } 172 173 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 174 switch (Val) { 175 default: // Map unknown/new linkages to external 176 case 0: 177 return GlobalValue::ExternalLinkage; 178 case 2: 179 return GlobalValue::AppendingLinkage; 180 case 3: 181 return GlobalValue::InternalLinkage; 182 case 5: 183 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 184 case 6: 185 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 186 case 7: 187 return GlobalValue::ExternalWeakLinkage; 188 case 8: 189 return GlobalValue::CommonLinkage; 190 case 9: 191 return GlobalValue::PrivateLinkage; 192 case 12: 193 return GlobalValue::AvailableExternallyLinkage; 194 case 13: 195 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 196 case 14: 197 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 198 case 15: 199 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 200 case 1: // Old value with implicit comdat. 201 case 16: 202 return GlobalValue::WeakAnyLinkage; 203 case 10: // Old value with implicit comdat. 204 case 17: 205 return GlobalValue::WeakODRLinkage; 206 case 4: // Old value with implicit comdat. 207 case 18: 208 return GlobalValue::LinkOnceAnyLinkage; 209 case 11: // Old value with implicit comdat. 210 case 19: 211 return GlobalValue::LinkOnceODRLinkage; 212 } 213 } 214 215 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 216 switch (Val) { 217 default: // Map unknown visibilities to default. 218 case 0: return GlobalValue::DefaultVisibility; 219 case 1: return GlobalValue::HiddenVisibility; 220 case 2: return GlobalValue::ProtectedVisibility; 221 } 222 } 223 224 static GlobalValue::DLLStorageClassTypes 225 GetDecodedDLLStorageClass(unsigned Val) { 226 switch (Val) { 227 default: // Map unknown values to default. 228 case 0: return GlobalValue::DefaultStorageClass; 229 case 1: return GlobalValue::DLLImportStorageClass; 230 case 2: return GlobalValue::DLLExportStorageClass; 231 } 232 } 233 234 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 235 switch (Val) { 236 case 0: return GlobalVariable::NotThreadLocal; 237 default: // Map unknown non-zero value to general dynamic. 238 case 1: return GlobalVariable::GeneralDynamicTLSModel; 239 case 2: return GlobalVariable::LocalDynamicTLSModel; 240 case 3: return GlobalVariable::InitialExecTLSModel; 241 case 4: return GlobalVariable::LocalExecTLSModel; 242 } 243 } 244 245 static int GetDecodedCastOpcode(unsigned Val) { 246 switch (Val) { 247 default: return -1; 248 case bitc::CAST_TRUNC : return Instruction::Trunc; 249 case bitc::CAST_ZEXT : return Instruction::ZExt; 250 case bitc::CAST_SEXT : return Instruction::SExt; 251 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 252 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 253 case bitc::CAST_UITOFP : return Instruction::UIToFP; 254 case bitc::CAST_SITOFP : return Instruction::SIToFP; 255 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 256 case bitc::CAST_FPEXT : return Instruction::FPExt; 257 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 258 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 259 case bitc::CAST_BITCAST : return Instruction::BitCast; 260 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 261 } 262 } 263 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 264 switch (Val) { 265 default: return -1; 266 case bitc::BINOP_ADD: 267 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 268 case bitc::BINOP_SUB: 269 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 270 case bitc::BINOP_MUL: 271 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 272 case bitc::BINOP_UDIV: return Instruction::UDiv; 273 case bitc::BINOP_SDIV: 274 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 275 case bitc::BINOP_UREM: return Instruction::URem; 276 case bitc::BINOP_SREM: 277 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 278 case bitc::BINOP_SHL: return Instruction::Shl; 279 case bitc::BINOP_LSHR: return Instruction::LShr; 280 case bitc::BINOP_ASHR: return Instruction::AShr; 281 case bitc::BINOP_AND: return Instruction::And; 282 case bitc::BINOP_OR: return Instruction::Or; 283 case bitc::BINOP_XOR: return Instruction::Xor; 284 } 285 } 286 287 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 288 switch (Val) { 289 default: return AtomicRMWInst::BAD_BINOP; 290 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 291 case bitc::RMW_ADD: return AtomicRMWInst::Add; 292 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 293 case bitc::RMW_AND: return AtomicRMWInst::And; 294 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 295 case bitc::RMW_OR: return AtomicRMWInst::Or; 296 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 297 case bitc::RMW_MAX: return AtomicRMWInst::Max; 298 case bitc::RMW_MIN: return AtomicRMWInst::Min; 299 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 300 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 301 } 302 } 303 304 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 305 switch (Val) { 306 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 307 case bitc::ORDERING_UNORDERED: return Unordered; 308 case bitc::ORDERING_MONOTONIC: return Monotonic; 309 case bitc::ORDERING_ACQUIRE: return Acquire; 310 case bitc::ORDERING_RELEASE: return Release; 311 case bitc::ORDERING_ACQREL: return AcquireRelease; 312 default: // Map unknown orderings to sequentially-consistent. 313 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 314 } 315 } 316 317 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 318 switch (Val) { 319 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 320 default: // Map unknown scopes to cross-thread. 321 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 322 } 323 } 324 325 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 326 switch (Val) { 327 default: // Map unknown selection kinds to any. 328 case bitc::COMDAT_SELECTION_KIND_ANY: 329 return Comdat::Any; 330 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 331 return Comdat::ExactMatch; 332 case bitc::COMDAT_SELECTION_KIND_LARGEST: 333 return Comdat::Largest; 334 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 335 return Comdat::NoDuplicates; 336 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 337 return Comdat::SameSize; 338 } 339 } 340 341 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 342 switch (Val) { 343 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 344 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 345 } 346 } 347 348 namespace llvm { 349 namespace { 350 /// @brief A class for maintaining the slot number definition 351 /// as a placeholder for the actual definition for forward constants defs. 352 class ConstantPlaceHolder : public ConstantExpr { 353 void operator=(const ConstantPlaceHolder &) LLVM_DELETED_FUNCTION; 354 public: 355 // allocate space for exactly one operand 356 void *operator new(size_t s) { 357 return User::operator new(s, 1); 358 } 359 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 360 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 361 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 362 } 363 364 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 365 static bool classof(const Value *V) { 366 return isa<ConstantExpr>(V) && 367 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 368 } 369 370 371 /// Provide fast operand accessors 372 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 373 }; 374 } 375 376 // FIXME: can we inherit this from ConstantExpr? 377 template <> 378 struct OperandTraits<ConstantPlaceHolder> : 379 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 380 }; 381 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 382 } 383 384 385 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 386 if (Idx == size()) { 387 push_back(V); 388 return; 389 } 390 391 if (Idx >= size()) 392 resize(Idx+1); 393 394 WeakVH &OldV = ValuePtrs[Idx]; 395 if (!OldV) { 396 OldV = V; 397 return; 398 } 399 400 // Handle constants and non-constants (e.g. instrs) differently for 401 // efficiency. 402 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 403 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 404 OldV = V; 405 } else { 406 // If there was a forward reference to this value, replace it. 407 Value *PrevVal = OldV; 408 OldV->replaceAllUsesWith(V); 409 delete PrevVal; 410 } 411 } 412 413 414 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 415 Type *Ty) { 416 if (Idx >= size()) 417 resize(Idx + 1); 418 419 if (Value *V = ValuePtrs[Idx]) { 420 assert(Ty == V->getType() && "Type mismatch in constant table!"); 421 return cast<Constant>(V); 422 } 423 424 // Create and return a placeholder, which will later be RAUW'd. 425 Constant *C = new ConstantPlaceHolder(Ty, Context); 426 ValuePtrs[Idx] = C; 427 return C; 428 } 429 430 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 431 if (Idx >= size()) 432 resize(Idx + 1); 433 434 if (Value *V = ValuePtrs[Idx]) { 435 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 436 return V; 437 } 438 439 // No type specified, must be invalid reference. 440 if (!Ty) return nullptr; 441 442 // Create and return a placeholder, which will later be RAUW'd. 443 Value *V = new Argument(Ty); 444 ValuePtrs[Idx] = V; 445 return V; 446 } 447 448 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 449 /// resolves any forward references. The idea behind this is that we sometimes 450 /// get constants (such as large arrays) which reference *many* forward ref 451 /// constants. Replacing each of these causes a lot of thrashing when 452 /// building/reuniquing the constant. Instead of doing this, we look at all the 453 /// uses and rewrite all the place holders at once for any constant that uses 454 /// a placeholder. 455 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 456 // Sort the values by-pointer so that they are efficient to look up with a 457 // binary search. 458 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 459 460 SmallVector<Constant*, 64> NewOps; 461 462 while (!ResolveConstants.empty()) { 463 Value *RealVal = operator[](ResolveConstants.back().second); 464 Constant *Placeholder = ResolveConstants.back().first; 465 ResolveConstants.pop_back(); 466 467 // Loop over all users of the placeholder, updating them to reference the 468 // new value. If they reference more than one placeholder, update them all 469 // at once. 470 while (!Placeholder->use_empty()) { 471 auto UI = Placeholder->user_begin(); 472 User *U = *UI; 473 474 // If the using object isn't uniqued, just update the operands. This 475 // handles instructions and initializers for global variables. 476 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 477 UI.getUse().set(RealVal); 478 continue; 479 } 480 481 // Otherwise, we have a constant that uses the placeholder. Replace that 482 // constant with a new constant that has *all* placeholder uses updated. 483 Constant *UserC = cast<Constant>(U); 484 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 485 I != E; ++I) { 486 Value *NewOp; 487 if (!isa<ConstantPlaceHolder>(*I)) { 488 // Not a placeholder reference. 489 NewOp = *I; 490 } else if (*I == Placeholder) { 491 // Common case is that it just references this one placeholder. 492 NewOp = RealVal; 493 } else { 494 // Otherwise, look up the placeholder in ResolveConstants. 495 ResolveConstantsTy::iterator It = 496 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 497 std::pair<Constant*, unsigned>(cast<Constant>(*I), 498 0)); 499 assert(It != ResolveConstants.end() && It->first == *I); 500 NewOp = operator[](It->second); 501 } 502 503 NewOps.push_back(cast<Constant>(NewOp)); 504 } 505 506 // Make the new constant. 507 Constant *NewC; 508 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 509 NewC = ConstantArray::get(UserCA->getType(), NewOps); 510 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 511 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 512 } else if (isa<ConstantVector>(UserC)) { 513 NewC = ConstantVector::get(NewOps); 514 } else { 515 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 516 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 517 } 518 519 UserC->replaceAllUsesWith(NewC); 520 UserC->destroyConstant(); 521 NewOps.clear(); 522 } 523 524 // Update all ValueHandles, they should be the only users at this point. 525 Placeholder->replaceAllUsesWith(RealVal); 526 delete Placeholder; 527 } 528 } 529 530 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 531 if (Idx == size()) { 532 push_back(MD); 533 return; 534 } 535 536 if (Idx >= size()) 537 resize(Idx+1); 538 539 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 540 if (!OldMD) { 541 OldMD.reset(MD); 542 return; 543 } 544 545 // If there was a forward reference to this value, replace it. 546 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 547 PrevMD->replaceAllUsesWith(MD); 548 --NumFwdRefs; 549 } 550 551 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 552 if (Idx >= size()) 553 resize(Idx + 1); 554 555 if (Metadata *MD = MDValuePtrs[Idx]) 556 return MD; 557 558 // Create and return a placeholder, which will later be RAUW'd. 559 AnyFwdRefs = true; 560 ++NumFwdRefs; 561 Metadata *MD = MDNode::getTemporary(Context, None).release(); 562 MDValuePtrs[Idx].reset(MD); 563 return MD; 564 } 565 566 void BitcodeReaderMDValueList::tryToResolveCycles() { 567 if (!AnyFwdRefs) 568 // Nothing to do. 569 return; 570 571 if (NumFwdRefs) 572 // Still forward references... can't resolve cycles. 573 return; 574 575 // Resolve any cycles. 576 for (auto &MD : MDValuePtrs) { 577 auto *N = dyn_cast_or_null<MDNode>(MD); 578 if (!N) 579 continue; 580 581 assert(!N->isTemporary() && "Unexpected forward reference"); 582 N->resolveCycles(); 583 } 584 } 585 586 Type *BitcodeReader::getTypeByID(unsigned ID) { 587 // The type table size is always specified correctly. 588 if (ID >= TypeList.size()) 589 return nullptr; 590 591 if (Type *Ty = TypeList[ID]) 592 return Ty; 593 594 // If we have a forward reference, the only possible case is when it is to a 595 // named struct. Just create a placeholder for now. 596 return TypeList[ID] = createIdentifiedStructType(Context); 597 } 598 599 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 600 StringRef Name) { 601 auto *Ret = StructType::create(Context, Name); 602 IdentifiedStructTypes.push_back(Ret); 603 return Ret; 604 } 605 606 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 607 auto *Ret = StructType::create(Context); 608 IdentifiedStructTypes.push_back(Ret); 609 return Ret; 610 } 611 612 613 //===----------------------------------------------------------------------===// 614 // Functions for parsing blocks from the bitcode file 615 //===----------------------------------------------------------------------===// 616 617 618 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 619 /// been decoded from the given integer. This function must stay in sync with 620 /// 'encodeLLVMAttributesForBitcode'. 621 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 622 uint64_t EncodedAttrs) { 623 // FIXME: Remove in 4.0. 624 625 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 626 // the bits above 31 down by 11 bits. 627 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 628 assert((!Alignment || isPowerOf2_32(Alignment)) && 629 "Alignment must be a power of two."); 630 631 if (Alignment) 632 B.addAlignmentAttr(Alignment); 633 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 634 (EncodedAttrs & 0xffff)); 635 } 636 637 std::error_code BitcodeReader::ParseAttributeBlock() { 638 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 639 return Error("Invalid record"); 640 641 if (!MAttributes.empty()) 642 return Error("Invalid multiple blocks"); 643 644 SmallVector<uint64_t, 64> Record; 645 646 SmallVector<AttributeSet, 8> Attrs; 647 648 // Read all the records. 649 while (1) { 650 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 651 652 switch (Entry.Kind) { 653 case BitstreamEntry::SubBlock: // Handled for us already. 654 case BitstreamEntry::Error: 655 return Error("Malformed block"); 656 case BitstreamEntry::EndBlock: 657 return std::error_code(); 658 case BitstreamEntry::Record: 659 // The interesting case. 660 break; 661 } 662 663 // Read a record. 664 Record.clear(); 665 switch (Stream.readRecord(Entry.ID, Record)) { 666 default: // Default behavior: ignore. 667 break; 668 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 669 // FIXME: Remove in 4.0. 670 if (Record.size() & 1) 671 return Error("Invalid record"); 672 673 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 674 AttrBuilder B; 675 decodeLLVMAttributesForBitcode(B, Record[i+1]); 676 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 677 } 678 679 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 680 Attrs.clear(); 681 break; 682 } 683 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 684 for (unsigned i = 0, e = Record.size(); i != e; ++i) 685 Attrs.push_back(MAttributeGroups[Record[i]]); 686 687 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 688 Attrs.clear(); 689 break; 690 } 691 } 692 } 693 } 694 695 // Returns Attribute::None on unrecognized codes. 696 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 697 switch (Code) { 698 default: 699 return Attribute::None; 700 case bitc::ATTR_KIND_ALIGNMENT: 701 return Attribute::Alignment; 702 case bitc::ATTR_KIND_ALWAYS_INLINE: 703 return Attribute::AlwaysInline; 704 case bitc::ATTR_KIND_BUILTIN: 705 return Attribute::Builtin; 706 case bitc::ATTR_KIND_BY_VAL: 707 return Attribute::ByVal; 708 case bitc::ATTR_KIND_IN_ALLOCA: 709 return Attribute::InAlloca; 710 case bitc::ATTR_KIND_COLD: 711 return Attribute::Cold; 712 case bitc::ATTR_KIND_INLINE_HINT: 713 return Attribute::InlineHint; 714 case bitc::ATTR_KIND_IN_REG: 715 return Attribute::InReg; 716 case bitc::ATTR_KIND_JUMP_TABLE: 717 return Attribute::JumpTable; 718 case bitc::ATTR_KIND_MIN_SIZE: 719 return Attribute::MinSize; 720 case bitc::ATTR_KIND_NAKED: 721 return Attribute::Naked; 722 case bitc::ATTR_KIND_NEST: 723 return Attribute::Nest; 724 case bitc::ATTR_KIND_NO_ALIAS: 725 return Attribute::NoAlias; 726 case bitc::ATTR_KIND_NO_BUILTIN: 727 return Attribute::NoBuiltin; 728 case bitc::ATTR_KIND_NO_CAPTURE: 729 return Attribute::NoCapture; 730 case bitc::ATTR_KIND_NO_DUPLICATE: 731 return Attribute::NoDuplicate; 732 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 733 return Attribute::NoImplicitFloat; 734 case bitc::ATTR_KIND_NO_INLINE: 735 return Attribute::NoInline; 736 case bitc::ATTR_KIND_NON_LAZY_BIND: 737 return Attribute::NonLazyBind; 738 case bitc::ATTR_KIND_NON_NULL: 739 return Attribute::NonNull; 740 case bitc::ATTR_KIND_DEREFERENCEABLE: 741 return Attribute::Dereferenceable; 742 case bitc::ATTR_KIND_NO_RED_ZONE: 743 return Attribute::NoRedZone; 744 case bitc::ATTR_KIND_NO_RETURN: 745 return Attribute::NoReturn; 746 case bitc::ATTR_KIND_NO_UNWIND: 747 return Attribute::NoUnwind; 748 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 749 return Attribute::OptimizeForSize; 750 case bitc::ATTR_KIND_OPTIMIZE_NONE: 751 return Attribute::OptimizeNone; 752 case bitc::ATTR_KIND_READ_NONE: 753 return Attribute::ReadNone; 754 case bitc::ATTR_KIND_READ_ONLY: 755 return Attribute::ReadOnly; 756 case bitc::ATTR_KIND_RETURNED: 757 return Attribute::Returned; 758 case bitc::ATTR_KIND_RETURNS_TWICE: 759 return Attribute::ReturnsTwice; 760 case bitc::ATTR_KIND_S_EXT: 761 return Attribute::SExt; 762 case bitc::ATTR_KIND_STACK_ALIGNMENT: 763 return Attribute::StackAlignment; 764 case bitc::ATTR_KIND_STACK_PROTECT: 765 return Attribute::StackProtect; 766 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 767 return Attribute::StackProtectReq; 768 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 769 return Attribute::StackProtectStrong; 770 case bitc::ATTR_KIND_STRUCT_RET: 771 return Attribute::StructRet; 772 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 773 return Attribute::SanitizeAddress; 774 case bitc::ATTR_KIND_SANITIZE_THREAD: 775 return Attribute::SanitizeThread; 776 case bitc::ATTR_KIND_SANITIZE_MEMORY: 777 return Attribute::SanitizeMemory; 778 case bitc::ATTR_KIND_UW_TABLE: 779 return Attribute::UWTable; 780 case bitc::ATTR_KIND_Z_EXT: 781 return Attribute::ZExt; 782 } 783 } 784 785 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 786 Attribute::AttrKind *Kind) { 787 *Kind = GetAttrFromCode(Code); 788 if (*Kind == Attribute::None) 789 return Error(BitcodeError::CorruptedBitcode, 790 "Unknown attribute kind (" + Twine(Code) + ")"); 791 return std::error_code(); 792 } 793 794 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 795 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 796 return Error("Invalid record"); 797 798 if (!MAttributeGroups.empty()) 799 return Error("Invalid multiple blocks"); 800 801 SmallVector<uint64_t, 64> Record; 802 803 // Read all the records. 804 while (1) { 805 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 806 807 switch (Entry.Kind) { 808 case BitstreamEntry::SubBlock: // Handled for us already. 809 case BitstreamEntry::Error: 810 return Error("Malformed block"); 811 case BitstreamEntry::EndBlock: 812 return std::error_code(); 813 case BitstreamEntry::Record: 814 // The interesting case. 815 break; 816 } 817 818 // Read a record. 819 Record.clear(); 820 switch (Stream.readRecord(Entry.ID, Record)) { 821 default: // Default behavior: ignore. 822 break; 823 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 824 if (Record.size() < 3) 825 return Error("Invalid record"); 826 827 uint64_t GrpID = Record[0]; 828 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 829 830 AttrBuilder B; 831 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 832 if (Record[i] == 0) { // Enum attribute 833 Attribute::AttrKind Kind; 834 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 835 return EC; 836 837 B.addAttribute(Kind); 838 } else if (Record[i] == 1) { // Integer attribute 839 Attribute::AttrKind Kind; 840 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 841 return EC; 842 if (Kind == Attribute::Alignment) 843 B.addAlignmentAttr(Record[++i]); 844 else if (Kind == Attribute::StackAlignment) 845 B.addStackAlignmentAttr(Record[++i]); 846 else if (Kind == Attribute::Dereferenceable) 847 B.addDereferenceableAttr(Record[++i]); 848 } else { // String attribute 849 assert((Record[i] == 3 || Record[i] == 4) && 850 "Invalid attribute group entry"); 851 bool HasValue = (Record[i++] == 4); 852 SmallString<64> KindStr; 853 SmallString<64> ValStr; 854 855 while (Record[i] != 0 && i != e) 856 KindStr += Record[i++]; 857 assert(Record[i] == 0 && "Kind string not null terminated"); 858 859 if (HasValue) { 860 // Has a value associated with it. 861 ++i; // Skip the '0' that terminates the "kind" string. 862 while (Record[i] != 0 && i != e) 863 ValStr += Record[i++]; 864 assert(Record[i] == 0 && "Value string not null terminated"); 865 } 866 867 B.addAttribute(KindStr.str(), ValStr.str()); 868 } 869 } 870 871 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 872 break; 873 } 874 } 875 } 876 } 877 878 std::error_code BitcodeReader::ParseTypeTable() { 879 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 880 return Error("Invalid record"); 881 882 return ParseTypeTableBody(); 883 } 884 885 std::error_code BitcodeReader::ParseTypeTableBody() { 886 if (!TypeList.empty()) 887 return Error("Invalid multiple blocks"); 888 889 SmallVector<uint64_t, 64> Record; 890 unsigned NumRecords = 0; 891 892 SmallString<64> TypeName; 893 894 // Read all the records for this type table. 895 while (1) { 896 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 897 898 switch (Entry.Kind) { 899 case BitstreamEntry::SubBlock: // Handled for us already. 900 case BitstreamEntry::Error: 901 return Error("Malformed block"); 902 case BitstreamEntry::EndBlock: 903 if (NumRecords != TypeList.size()) 904 return Error("Malformed block"); 905 return std::error_code(); 906 case BitstreamEntry::Record: 907 // The interesting case. 908 break; 909 } 910 911 // Read a record. 912 Record.clear(); 913 Type *ResultTy = nullptr; 914 switch (Stream.readRecord(Entry.ID, Record)) { 915 default: 916 return Error("Invalid value"); 917 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 918 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 919 // type list. This allows us to reserve space. 920 if (Record.size() < 1) 921 return Error("Invalid record"); 922 TypeList.resize(Record[0]); 923 continue; 924 case bitc::TYPE_CODE_VOID: // VOID 925 ResultTy = Type::getVoidTy(Context); 926 break; 927 case bitc::TYPE_CODE_HALF: // HALF 928 ResultTy = Type::getHalfTy(Context); 929 break; 930 case bitc::TYPE_CODE_FLOAT: // FLOAT 931 ResultTy = Type::getFloatTy(Context); 932 break; 933 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 934 ResultTy = Type::getDoubleTy(Context); 935 break; 936 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 937 ResultTy = Type::getX86_FP80Ty(Context); 938 break; 939 case bitc::TYPE_CODE_FP128: // FP128 940 ResultTy = Type::getFP128Ty(Context); 941 break; 942 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 943 ResultTy = Type::getPPC_FP128Ty(Context); 944 break; 945 case bitc::TYPE_CODE_LABEL: // LABEL 946 ResultTy = Type::getLabelTy(Context); 947 break; 948 case bitc::TYPE_CODE_METADATA: // METADATA 949 ResultTy = Type::getMetadataTy(Context); 950 break; 951 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 952 ResultTy = Type::getX86_MMXTy(Context); 953 break; 954 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 955 if (Record.size() < 1) 956 return Error("Invalid record"); 957 958 uint64_t NumBits = Record[0]; 959 if (NumBits < IntegerType::MIN_INT_BITS || 960 NumBits > IntegerType::MAX_INT_BITS) 961 return Error("Bitwidth for integer type out of range"); 962 ResultTy = IntegerType::get(Context, NumBits); 963 break; 964 } 965 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 966 // [pointee type, address space] 967 if (Record.size() < 1) 968 return Error("Invalid record"); 969 unsigned AddressSpace = 0; 970 if (Record.size() == 2) 971 AddressSpace = Record[1]; 972 ResultTy = getTypeByID(Record[0]); 973 if (!ResultTy) 974 return Error("Invalid type"); 975 ResultTy = PointerType::get(ResultTy, AddressSpace); 976 break; 977 } 978 case bitc::TYPE_CODE_FUNCTION_OLD: { 979 // FIXME: attrid is dead, remove it in LLVM 4.0 980 // FUNCTION: [vararg, attrid, retty, paramty x N] 981 if (Record.size() < 3) 982 return Error("Invalid record"); 983 SmallVector<Type*, 8> ArgTys; 984 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 985 if (Type *T = getTypeByID(Record[i])) 986 ArgTys.push_back(T); 987 else 988 break; 989 } 990 991 ResultTy = getTypeByID(Record[2]); 992 if (!ResultTy || ArgTys.size() < Record.size()-3) 993 return Error("Invalid type"); 994 995 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 996 break; 997 } 998 case bitc::TYPE_CODE_FUNCTION: { 999 // FUNCTION: [vararg, retty, paramty x N] 1000 if (Record.size() < 2) 1001 return Error("Invalid record"); 1002 SmallVector<Type*, 8> ArgTys; 1003 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1004 if (Type *T = getTypeByID(Record[i])) 1005 ArgTys.push_back(T); 1006 else 1007 break; 1008 } 1009 1010 ResultTy = getTypeByID(Record[1]); 1011 if (!ResultTy || ArgTys.size() < Record.size()-2) 1012 return Error("Invalid type"); 1013 1014 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1015 break; 1016 } 1017 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1018 if (Record.size() < 1) 1019 return Error("Invalid record"); 1020 SmallVector<Type*, 8> EltTys; 1021 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1022 if (Type *T = getTypeByID(Record[i])) 1023 EltTys.push_back(T); 1024 else 1025 break; 1026 } 1027 if (EltTys.size() != Record.size()-1) 1028 return Error("Invalid type"); 1029 ResultTy = StructType::get(Context, EltTys, Record[0]); 1030 break; 1031 } 1032 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1033 if (ConvertToString(Record, 0, TypeName)) 1034 return Error("Invalid record"); 1035 continue; 1036 1037 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1038 if (Record.size() < 1) 1039 return Error("Invalid record"); 1040 1041 if (NumRecords >= TypeList.size()) 1042 return Error("Invalid TYPE table"); 1043 1044 // Check to see if this was forward referenced, if so fill in the temp. 1045 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1046 if (Res) { 1047 Res->setName(TypeName); 1048 TypeList[NumRecords] = nullptr; 1049 } else // Otherwise, create a new struct. 1050 Res = createIdentifiedStructType(Context, TypeName); 1051 TypeName.clear(); 1052 1053 SmallVector<Type*, 8> EltTys; 1054 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1055 if (Type *T = getTypeByID(Record[i])) 1056 EltTys.push_back(T); 1057 else 1058 break; 1059 } 1060 if (EltTys.size() != Record.size()-1) 1061 return Error("Invalid record"); 1062 Res->setBody(EltTys, Record[0]); 1063 ResultTy = Res; 1064 break; 1065 } 1066 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1067 if (Record.size() != 1) 1068 return Error("Invalid record"); 1069 1070 if (NumRecords >= TypeList.size()) 1071 return Error("Invalid TYPE table"); 1072 1073 // Check to see if this was forward referenced, if so fill in the temp. 1074 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1075 if (Res) { 1076 Res->setName(TypeName); 1077 TypeList[NumRecords] = nullptr; 1078 } else // Otherwise, create a new struct with no body. 1079 Res = createIdentifiedStructType(Context, TypeName); 1080 TypeName.clear(); 1081 ResultTy = Res; 1082 break; 1083 } 1084 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1085 if (Record.size() < 2) 1086 return Error("Invalid record"); 1087 if ((ResultTy = getTypeByID(Record[1]))) 1088 ResultTy = ArrayType::get(ResultTy, Record[0]); 1089 else 1090 return Error("Invalid type"); 1091 break; 1092 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1093 if (Record.size() < 2) 1094 return Error("Invalid record"); 1095 if ((ResultTy = getTypeByID(Record[1]))) 1096 ResultTy = VectorType::get(ResultTy, Record[0]); 1097 else 1098 return Error("Invalid type"); 1099 break; 1100 } 1101 1102 if (NumRecords >= TypeList.size()) 1103 return Error("Invalid TYPE table"); 1104 if (TypeList[NumRecords]) 1105 return Error( 1106 "Invalid TYPE table: Only named structs can be forward referenced"); 1107 assert(ResultTy && "Didn't read a type?"); 1108 TypeList[NumRecords++] = ResultTy; 1109 } 1110 } 1111 1112 std::error_code BitcodeReader::ParseValueSymbolTable() { 1113 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1114 return Error("Invalid record"); 1115 1116 SmallVector<uint64_t, 64> Record; 1117 1118 Triple TT(TheModule->getTargetTriple()); 1119 1120 // Read all the records for this value table. 1121 SmallString<128> ValueName; 1122 while (1) { 1123 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1124 1125 switch (Entry.Kind) { 1126 case BitstreamEntry::SubBlock: // Handled for us already. 1127 case BitstreamEntry::Error: 1128 return Error("Malformed block"); 1129 case BitstreamEntry::EndBlock: 1130 return std::error_code(); 1131 case BitstreamEntry::Record: 1132 // The interesting case. 1133 break; 1134 } 1135 1136 // Read a record. 1137 Record.clear(); 1138 switch (Stream.readRecord(Entry.ID, Record)) { 1139 default: // Default behavior: unknown type. 1140 break; 1141 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1142 if (ConvertToString(Record, 1, ValueName)) 1143 return Error("Invalid record"); 1144 unsigned ValueID = Record[0]; 1145 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1146 return Error("Invalid record"); 1147 Value *V = ValueList[ValueID]; 1148 1149 V->setName(StringRef(ValueName.data(), ValueName.size())); 1150 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1151 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1152 if (TT.isOSBinFormatMachO()) 1153 GO->setComdat(nullptr); 1154 else 1155 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1156 } 1157 } 1158 ValueName.clear(); 1159 break; 1160 } 1161 case bitc::VST_CODE_BBENTRY: { 1162 if (ConvertToString(Record, 1, ValueName)) 1163 return Error("Invalid record"); 1164 BasicBlock *BB = getBasicBlock(Record[0]); 1165 if (!BB) 1166 return Error("Invalid record"); 1167 1168 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1169 ValueName.clear(); 1170 break; 1171 } 1172 } 1173 } 1174 } 1175 1176 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1177 1178 std::error_code BitcodeReader::ParseMetadata() { 1179 unsigned NextMDValueNo = MDValueList.size(); 1180 1181 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1182 return Error("Invalid record"); 1183 1184 SmallVector<uint64_t, 64> Record; 1185 1186 auto getMD = 1187 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1188 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1189 if (ID) 1190 return getMD(ID - 1); 1191 return nullptr; 1192 }; 1193 auto getMDString = [&](unsigned ID) -> MDString *{ 1194 // This requires that the ID is not really a forward reference. In 1195 // particular, the MDString must already have been resolved. 1196 return cast_or_null<MDString>(getMDOrNull(ID)); 1197 }; 1198 1199 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1200 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1201 1202 // Read all the records. 1203 while (1) { 1204 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1205 1206 switch (Entry.Kind) { 1207 case BitstreamEntry::SubBlock: // Handled for us already. 1208 case BitstreamEntry::Error: 1209 return Error("Malformed block"); 1210 case BitstreamEntry::EndBlock: 1211 MDValueList.tryToResolveCycles(); 1212 return std::error_code(); 1213 case BitstreamEntry::Record: 1214 // The interesting case. 1215 break; 1216 } 1217 1218 // Read a record. 1219 Record.clear(); 1220 unsigned Code = Stream.readRecord(Entry.ID, Record); 1221 bool IsDistinct = false; 1222 switch (Code) { 1223 default: // Default behavior: ignore. 1224 break; 1225 case bitc::METADATA_NAME: { 1226 // Read name of the named metadata. 1227 SmallString<8> Name(Record.begin(), Record.end()); 1228 Record.clear(); 1229 Code = Stream.ReadCode(); 1230 1231 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1232 unsigned NextBitCode = Stream.readRecord(Code, Record); 1233 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1234 1235 // Read named metadata elements. 1236 unsigned Size = Record.size(); 1237 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1238 for (unsigned i = 0; i != Size; ++i) { 1239 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1240 if (!MD) 1241 return Error("Invalid record"); 1242 NMD->addOperand(MD); 1243 } 1244 break; 1245 } 1246 case bitc::METADATA_OLD_FN_NODE: { 1247 // FIXME: Remove in 4.0. 1248 // This is a LocalAsMetadata record, the only type of function-local 1249 // metadata. 1250 if (Record.size() % 2 == 1) 1251 return Error("Invalid record"); 1252 1253 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1254 // to be legal, but there's no upgrade path. 1255 auto dropRecord = [&] { 1256 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1257 }; 1258 if (Record.size() != 2) { 1259 dropRecord(); 1260 break; 1261 } 1262 1263 Type *Ty = getTypeByID(Record[0]); 1264 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1265 dropRecord(); 1266 break; 1267 } 1268 1269 MDValueList.AssignValue( 1270 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1271 NextMDValueNo++); 1272 break; 1273 } 1274 case bitc::METADATA_OLD_NODE: { 1275 // FIXME: Remove in 4.0. 1276 if (Record.size() % 2 == 1) 1277 return Error("Invalid record"); 1278 1279 unsigned Size = Record.size(); 1280 SmallVector<Metadata *, 8> Elts; 1281 for (unsigned i = 0; i != Size; i += 2) { 1282 Type *Ty = getTypeByID(Record[i]); 1283 if (!Ty) 1284 return Error("Invalid record"); 1285 if (Ty->isMetadataTy()) 1286 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1287 else if (!Ty->isVoidTy()) { 1288 auto *MD = 1289 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1290 assert(isa<ConstantAsMetadata>(MD) && 1291 "Expected non-function-local metadata"); 1292 Elts.push_back(MD); 1293 } else 1294 Elts.push_back(nullptr); 1295 } 1296 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1297 break; 1298 } 1299 case bitc::METADATA_VALUE: { 1300 if (Record.size() != 2) 1301 return Error("Invalid record"); 1302 1303 Type *Ty = getTypeByID(Record[0]); 1304 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1305 return Error("Invalid record"); 1306 1307 MDValueList.AssignValue( 1308 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1309 NextMDValueNo++); 1310 break; 1311 } 1312 case bitc::METADATA_DISTINCT_NODE: 1313 IsDistinct = true; 1314 // fallthrough... 1315 case bitc::METADATA_NODE: { 1316 SmallVector<Metadata *, 8> Elts; 1317 Elts.reserve(Record.size()); 1318 for (unsigned ID : Record) 1319 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1320 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1321 : MDNode::get(Context, Elts), 1322 NextMDValueNo++); 1323 break; 1324 } 1325 case bitc::METADATA_LOCATION: { 1326 if (Record.size() != 5) 1327 return Error("Invalid record"); 1328 1329 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1330 unsigned Line = Record[1]; 1331 unsigned Column = Record[2]; 1332 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1333 Metadata *InlinedAt = 1334 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1335 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1336 NextMDValueNo++); 1337 break; 1338 } 1339 case bitc::METADATA_GENERIC_DEBUG: { 1340 if (Record.size() < 4) 1341 return Error("Invalid record"); 1342 1343 unsigned Tag = Record[1]; 1344 unsigned Version = Record[2]; 1345 1346 if (Tag >= 1u << 16 || Version != 0) 1347 return Error("Invalid record"); 1348 1349 auto *Header = getMDString(Record[3]); 1350 SmallVector<Metadata *, 8> DwarfOps; 1351 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1352 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1353 : nullptr); 1354 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1355 (Context, Tag, Header, DwarfOps)), 1356 NextMDValueNo++); 1357 break; 1358 } 1359 case bitc::METADATA_SUBRANGE: { 1360 if (Record.size() != 3) 1361 return Error("Invalid record"); 1362 1363 MDValueList.AssignValue( 1364 GET_OR_DISTINCT(MDSubrange, Record[0], 1365 (Context, Record[1], unrotateSign(Record[2]))), 1366 NextMDValueNo++); 1367 break; 1368 } 1369 case bitc::METADATA_ENUMERATOR: { 1370 if (Record.size() != 3) 1371 return Error("Invalid record"); 1372 1373 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1374 (Context, unrotateSign(Record[1]), 1375 getMDString(Record[2]))), 1376 NextMDValueNo++); 1377 break; 1378 } 1379 case bitc::METADATA_BASIC_TYPE: { 1380 if (Record.size() != 6) 1381 return Error("Invalid record"); 1382 1383 MDValueList.AssignValue( 1384 GET_OR_DISTINCT(MDBasicType, Record[0], 1385 (Context, Record[1], getMDString(Record[2]), 1386 Record[3], Record[4], Record[5])), 1387 NextMDValueNo++); 1388 break; 1389 } 1390 case bitc::METADATA_DERIVED_TYPE: { 1391 if (Record.size() != 12) 1392 return Error("Invalid record"); 1393 1394 MDValueList.AssignValue( 1395 GET_OR_DISTINCT(MDDerivedType, Record[0], 1396 (Context, Record[1], getMDString(Record[2]), 1397 getMDOrNull(Record[3]), Record[4], 1398 getMDOrNull(Record[5]), getMD(Record[6]), Record[7], 1399 Record[8], Record[9], Record[10], 1400 getMDOrNull(Record[11]))), 1401 NextMDValueNo++); 1402 break; 1403 } 1404 case bitc::METADATA_COMPOSITE_TYPE: { 1405 if (Record.size() != 16) 1406 return Error("Invalid record"); 1407 1408 MDValueList.AssignValue( 1409 GET_OR_DISTINCT(MDCompositeType, Record[0], 1410 (Context, Record[1], getMDString(Record[2]), 1411 getMDOrNull(Record[3]), Record[4], 1412 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1413 Record[7], Record[8], Record[9], Record[10], 1414 getMDOrNull(Record[11]), Record[12], 1415 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1416 getMDString(Record[15]))), 1417 NextMDValueNo++); 1418 break; 1419 } 1420 case bitc::METADATA_FILE: { 1421 if (Record.size() != 3) 1422 return Error("Invalid record"); 1423 1424 MDValueList.AssignValue( 1425 GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]), 1426 getMDString(Record[2]))), 1427 NextMDValueNo++); 1428 break; 1429 } 1430 case bitc::METADATA_STRING: { 1431 std::string String(Record.begin(), Record.end()); 1432 llvm::UpgradeMDStringConstant(String); 1433 Metadata *MD = MDString::get(Context, String); 1434 MDValueList.AssignValue(MD, NextMDValueNo++); 1435 break; 1436 } 1437 case bitc::METADATA_KIND: { 1438 if (Record.size() < 2) 1439 return Error("Invalid record"); 1440 1441 unsigned Kind = Record[0]; 1442 SmallString<8> Name(Record.begin()+1, Record.end()); 1443 1444 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1445 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1446 return Error("Conflicting METADATA_KIND records"); 1447 break; 1448 } 1449 } 1450 } 1451 #undef GET_OR_DISTINCT 1452 } 1453 1454 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1455 /// the LSB for dense VBR encoding. 1456 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1457 if ((V & 1) == 0) 1458 return V >> 1; 1459 if (V != 1) 1460 return -(V >> 1); 1461 // There is no such thing as -0 with integers. "-0" really means MININT. 1462 return 1ULL << 63; 1463 } 1464 1465 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1466 /// values and aliases that we can. 1467 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1468 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1469 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1470 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1471 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1472 1473 GlobalInitWorklist.swap(GlobalInits); 1474 AliasInitWorklist.swap(AliasInits); 1475 FunctionPrefixWorklist.swap(FunctionPrefixes); 1476 FunctionPrologueWorklist.swap(FunctionPrologues); 1477 1478 while (!GlobalInitWorklist.empty()) { 1479 unsigned ValID = GlobalInitWorklist.back().second; 1480 if (ValID >= ValueList.size()) { 1481 // Not ready to resolve this yet, it requires something later in the file. 1482 GlobalInits.push_back(GlobalInitWorklist.back()); 1483 } else { 1484 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1485 GlobalInitWorklist.back().first->setInitializer(C); 1486 else 1487 return Error("Expected a constant"); 1488 } 1489 GlobalInitWorklist.pop_back(); 1490 } 1491 1492 while (!AliasInitWorklist.empty()) { 1493 unsigned ValID = AliasInitWorklist.back().second; 1494 if (ValID >= ValueList.size()) { 1495 AliasInits.push_back(AliasInitWorklist.back()); 1496 } else { 1497 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1498 AliasInitWorklist.back().first->setAliasee(C); 1499 else 1500 return Error("Expected a constant"); 1501 } 1502 AliasInitWorklist.pop_back(); 1503 } 1504 1505 while (!FunctionPrefixWorklist.empty()) { 1506 unsigned ValID = FunctionPrefixWorklist.back().second; 1507 if (ValID >= ValueList.size()) { 1508 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1509 } else { 1510 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1511 FunctionPrefixWorklist.back().first->setPrefixData(C); 1512 else 1513 return Error("Expected a constant"); 1514 } 1515 FunctionPrefixWorklist.pop_back(); 1516 } 1517 1518 while (!FunctionPrologueWorklist.empty()) { 1519 unsigned ValID = FunctionPrologueWorklist.back().second; 1520 if (ValID >= ValueList.size()) { 1521 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1522 } else { 1523 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1524 FunctionPrologueWorklist.back().first->setPrologueData(C); 1525 else 1526 return Error("Expected a constant"); 1527 } 1528 FunctionPrologueWorklist.pop_back(); 1529 } 1530 1531 return std::error_code(); 1532 } 1533 1534 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1535 SmallVector<uint64_t, 8> Words(Vals.size()); 1536 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1537 BitcodeReader::decodeSignRotatedValue); 1538 1539 return APInt(TypeBits, Words); 1540 } 1541 1542 std::error_code BitcodeReader::ParseConstants() { 1543 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1544 return Error("Invalid record"); 1545 1546 SmallVector<uint64_t, 64> Record; 1547 1548 // Read all the records for this value table. 1549 Type *CurTy = Type::getInt32Ty(Context); 1550 unsigned NextCstNo = ValueList.size(); 1551 while (1) { 1552 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1553 1554 switch (Entry.Kind) { 1555 case BitstreamEntry::SubBlock: // Handled for us already. 1556 case BitstreamEntry::Error: 1557 return Error("Malformed block"); 1558 case BitstreamEntry::EndBlock: 1559 if (NextCstNo != ValueList.size()) 1560 return Error("Invalid ronstant reference"); 1561 1562 // Once all the constants have been read, go through and resolve forward 1563 // references. 1564 ValueList.ResolveConstantForwardRefs(); 1565 return std::error_code(); 1566 case BitstreamEntry::Record: 1567 // The interesting case. 1568 break; 1569 } 1570 1571 // Read a record. 1572 Record.clear(); 1573 Value *V = nullptr; 1574 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1575 switch (BitCode) { 1576 default: // Default behavior: unknown constant 1577 case bitc::CST_CODE_UNDEF: // UNDEF 1578 V = UndefValue::get(CurTy); 1579 break; 1580 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1581 if (Record.empty()) 1582 return Error("Invalid record"); 1583 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1584 return Error("Invalid record"); 1585 CurTy = TypeList[Record[0]]; 1586 continue; // Skip the ValueList manipulation. 1587 case bitc::CST_CODE_NULL: // NULL 1588 V = Constant::getNullValue(CurTy); 1589 break; 1590 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1591 if (!CurTy->isIntegerTy() || Record.empty()) 1592 return Error("Invalid record"); 1593 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1594 break; 1595 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1596 if (!CurTy->isIntegerTy() || Record.empty()) 1597 return Error("Invalid record"); 1598 1599 APInt VInt = ReadWideAPInt(Record, 1600 cast<IntegerType>(CurTy)->getBitWidth()); 1601 V = ConstantInt::get(Context, VInt); 1602 1603 break; 1604 } 1605 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1606 if (Record.empty()) 1607 return Error("Invalid record"); 1608 if (CurTy->isHalfTy()) 1609 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1610 APInt(16, (uint16_t)Record[0]))); 1611 else if (CurTy->isFloatTy()) 1612 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1613 APInt(32, (uint32_t)Record[0]))); 1614 else if (CurTy->isDoubleTy()) 1615 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1616 APInt(64, Record[0]))); 1617 else if (CurTy->isX86_FP80Ty()) { 1618 // Bits are not stored the same way as a normal i80 APInt, compensate. 1619 uint64_t Rearrange[2]; 1620 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1621 Rearrange[1] = Record[0] >> 48; 1622 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1623 APInt(80, Rearrange))); 1624 } else if (CurTy->isFP128Ty()) 1625 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1626 APInt(128, Record))); 1627 else if (CurTy->isPPC_FP128Ty()) 1628 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1629 APInt(128, Record))); 1630 else 1631 V = UndefValue::get(CurTy); 1632 break; 1633 } 1634 1635 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1636 if (Record.empty()) 1637 return Error("Invalid record"); 1638 1639 unsigned Size = Record.size(); 1640 SmallVector<Constant*, 16> Elts; 1641 1642 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1643 for (unsigned i = 0; i != Size; ++i) 1644 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1645 STy->getElementType(i))); 1646 V = ConstantStruct::get(STy, Elts); 1647 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1648 Type *EltTy = ATy->getElementType(); 1649 for (unsigned i = 0; i != Size; ++i) 1650 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1651 V = ConstantArray::get(ATy, Elts); 1652 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1653 Type *EltTy = VTy->getElementType(); 1654 for (unsigned i = 0; i != Size; ++i) 1655 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1656 V = ConstantVector::get(Elts); 1657 } else { 1658 V = UndefValue::get(CurTy); 1659 } 1660 break; 1661 } 1662 case bitc::CST_CODE_STRING: // STRING: [values] 1663 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1664 if (Record.empty()) 1665 return Error("Invalid record"); 1666 1667 SmallString<16> Elts(Record.begin(), Record.end()); 1668 V = ConstantDataArray::getString(Context, Elts, 1669 BitCode == bitc::CST_CODE_CSTRING); 1670 break; 1671 } 1672 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1673 if (Record.empty()) 1674 return Error("Invalid record"); 1675 1676 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1677 unsigned Size = Record.size(); 1678 1679 if (EltTy->isIntegerTy(8)) { 1680 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1681 if (isa<VectorType>(CurTy)) 1682 V = ConstantDataVector::get(Context, Elts); 1683 else 1684 V = ConstantDataArray::get(Context, Elts); 1685 } else if (EltTy->isIntegerTy(16)) { 1686 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1687 if (isa<VectorType>(CurTy)) 1688 V = ConstantDataVector::get(Context, Elts); 1689 else 1690 V = ConstantDataArray::get(Context, Elts); 1691 } else if (EltTy->isIntegerTy(32)) { 1692 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1693 if (isa<VectorType>(CurTy)) 1694 V = ConstantDataVector::get(Context, Elts); 1695 else 1696 V = ConstantDataArray::get(Context, Elts); 1697 } else if (EltTy->isIntegerTy(64)) { 1698 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1699 if (isa<VectorType>(CurTy)) 1700 V = ConstantDataVector::get(Context, Elts); 1701 else 1702 V = ConstantDataArray::get(Context, Elts); 1703 } else if (EltTy->isFloatTy()) { 1704 SmallVector<float, 16> Elts(Size); 1705 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1706 if (isa<VectorType>(CurTy)) 1707 V = ConstantDataVector::get(Context, Elts); 1708 else 1709 V = ConstantDataArray::get(Context, Elts); 1710 } else if (EltTy->isDoubleTy()) { 1711 SmallVector<double, 16> Elts(Size); 1712 std::transform(Record.begin(), Record.end(), Elts.begin(), 1713 BitsToDouble); 1714 if (isa<VectorType>(CurTy)) 1715 V = ConstantDataVector::get(Context, Elts); 1716 else 1717 V = ConstantDataArray::get(Context, Elts); 1718 } else { 1719 return Error("Invalid type for value"); 1720 } 1721 break; 1722 } 1723 1724 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1725 if (Record.size() < 3) 1726 return Error("Invalid record"); 1727 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1728 if (Opc < 0) { 1729 V = UndefValue::get(CurTy); // Unknown binop. 1730 } else { 1731 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1732 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1733 unsigned Flags = 0; 1734 if (Record.size() >= 4) { 1735 if (Opc == Instruction::Add || 1736 Opc == Instruction::Sub || 1737 Opc == Instruction::Mul || 1738 Opc == Instruction::Shl) { 1739 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1740 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1741 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1742 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1743 } else if (Opc == Instruction::SDiv || 1744 Opc == Instruction::UDiv || 1745 Opc == Instruction::LShr || 1746 Opc == Instruction::AShr) { 1747 if (Record[3] & (1 << bitc::PEO_EXACT)) 1748 Flags |= SDivOperator::IsExact; 1749 } 1750 } 1751 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1752 } 1753 break; 1754 } 1755 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1756 if (Record.size() < 3) 1757 return Error("Invalid record"); 1758 int Opc = GetDecodedCastOpcode(Record[0]); 1759 if (Opc < 0) { 1760 V = UndefValue::get(CurTy); // Unknown cast. 1761 } else { 1762 Type *OpTy = getTypeByID(Record[1]); 1763 if (!OpTy) 1764 return Error("Invalid record"); 1765 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1766 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1767 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1768 } 1769 break; 1770 } 1771 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1772 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1773 if (Record.size() & 1) 1774 return Error("Invalid record"); 1775 SmallVector<Constant*, 16> Elts; 1776 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1777 Type *ElTy = getTypeByID(Record[i]); 1778 if (!ElTy) 1779 return Error("Invalid record"); 1780 Elts.push_back(ValueList.getConstantFwdRef(Record[i+1], ElTy)); 1781 } 1782 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1783 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1784 BitCode == 1785 bitc::CST_CODE_CE_INBOUNDS_GEP); 1786 break; 1787 } 1788 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1789 if (Record.size() < 3) 1790 return Error("Invalid record"); 1791 1792 Type *SelectorTy = Type::getInt1Ty(Context); 1793 1794 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1795 // vector. Otherwise, it must be a single bit. 1796 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1797 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1798 VTy->getNumElements()); 1799 1800 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1801 SelectorTy), 1802 ValueList.getConstantFwdRef(Record[1],CurTy), 1803 ValueList.getConstantFwdRef(Record[2],CurTy)); 1804 break; 1805 } 1806 case bitc::CST_CODE_CE_EXTRACTELT 1807 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 1808 if (Record.size() < 3) 1809 return Error("Invalid record"); 1810 VectorType *OpTy = 1811 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1812 if (!OpTy) 1813 return Error("Invalid record"); 1814 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1815 Constant *Op1 = nullptr; 1816 if (Record.size() == 4) { 1817 Type *IdxTy = getTypeByID(Record[2]); 1818 if (!IdxTy) 1819 return Error("Invalid record"); 1820 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1821 } else // TODO: Remove with llvm 4.0 1822 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1823 if (!Op1) 1824 return Error("Invalid record"); 1825 V = ConstantExpr::getExtractElement(Op0, Op1); 1826 break; 1827 } 1828 case bitc::CST_CODE_CE_INSERTELT 1829 : { // CE_INSERTELT: [opval, opval, opty, opval] 1830 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1831 if (Record.size() < 3 || !OpTy) 1832 return Error("Invalid record"); 1833 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1834 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 1835 OpTy->getElementType()); 1836 Constant *Op2 = nullptr; 1837 if (Record.size() == 4) { 1838 Type *IdxTy = getTypeByID(Record[2]); 1839 if (!IdxTy) 1840 return Error("Invalid record"); 1841 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 1842 } else // TODO: Remove with llvm 4.0 1843 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 1844 if (!Op2) 1845 return Error("Invalid record"); 1846 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 1847 break; 1848 } 1849 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 1850 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 1851 if (Record.size() < 3 || !OpTy) 1852 return Error("Invalid record"); 1853 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 1854 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 1855 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1856 OpTy->getNumElements()); 1857 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 1858 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1859 break; 1860 } 1861 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 1862 VectorType *RTy = dyn_cast<VectorType>(CurTy); 1863 VectorType *OpTy = 1864 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 1865 if (Record.size() < 4 || !RTy || !OpTy) 1866 return Error("Invalid record"); 1867 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1868 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1869 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 1870 RTy->getNumElements()); 1871 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 1872 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 1873 break; 1874 } 1875 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 1876 if (Record.size() < 4) 1877 return Error("Invalid record"); 1878 Type *OpTy = getTypeByID(Record[0]); 1879 if (!OpTy) 1880 return Error("Invalid record"); 1881 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 1882 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 1883 1884 if (OpTy->isFPOrFPVectorTy()) 1885 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 1886 else 1887 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 1888 break; 1889 } 1890 // This maintains backward compatibility, pre-asm dialect keywords. 1891 // FIXME: Remove with the 4.0 release. 1892 case bitc::CST_CODE_INLINEASM_OLD: { 1893 if (Record.size() < 2) 1894 return Error("Invalid record"); 1895 std::string AsmStr, ConstrStr; 1896 bool HasSideEffects = Record[0] & 1; 1897 bool IsAlignStack = Record[0] >> 1; 1898 unsigned AsmStrSize = Record[1]; 1899 if (2+AsmStrSize >= Record.size()) 1900 return Error("Invalid record"); 1901 unsigned ConstStrSize = Record[2+AsmStrSize]; 1902 if (3+AsmStrSize+ConstStrSize > Record.size()) 1903 return Error("Invalid record"); 1904 1905 for (unsigned i = 0; i != AsmStrSize; ++i) 1906 AsmStr += (char)Record[2+i]; 1907 for (unsigned i = 0; i != ConstStrSize; ++i) 1908 ConstrStr += (char)Record[3+AsmStrSize+i]; 1909 PointerType *PTy = cast<PointerType>(CurTy); 1910 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1911 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 1912 break; 1913 } 1914 // This version adds support for the asm dialect keywords (e.g., 1915 // inteldialect). 1916 case bitc::CST_CODE_INLINEASM: { 1917 if (Record.size() < 2) 1918 return Error("Invalid record"); 1919 std::string AsmStr, ConstrStr; 1920 bool HasSideEffects = Record[0] & 1; 1921 bool IsAlignStack = (Record[0] >> 1) & 1; 1922 unsigned AsmDialect = Record[0] >> 2; 1923 unsigned AsmStrSize = Record[1]; 1924 if (2+AsmStrSize >= Record.size()) 1925 return Error("Invalid record"); 1926 unsigned ConstStrSize = Record[2+AsmStrSize]; 1927 if (3+AsmStrSize+ConstStrSize > Record.size()) 1928 return Error("Invalid record"); 1929 1930 for (unsigned i = 0; i != AsmStrSize; ++i) 1931 AsmStr += (char)Record[2+i]; 1932 for (unsigned i = 0; i != ConstStrSize; ++i) 1933 ConstrStr += (char)Record[3+AsmStrSize+i]; 1934 PointerType *PTy = cast<PointerType>(CurTy); 1935 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 1936 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 1937 InlineAsm::AsmDialect(AsmDialect)); 1938 break; 1939 } 1940 case bitc::CST_CODE_BLOCKADDRESS:{ 1941 if (Record.size() < 3) 1942 return Error("Invalid record"); 1943 Type *FnTy = getTypeByID(Record[0]); 1944 if (!FnTy) 1945 return Error("Invalid record"); 1946 Function *Fn = 1947 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 1948 if (!Fn) 1949 return Error("Invalid record"); 1950 1951 // Don't let Fn get dematerialized. 1952 BlockAddressesTaken.insert(Fn); 1953 1954 // If the function is already parsed we can insert the block address right 1955 // away. 1956 BasicBlock *BB; 1957 unsigned BBID = Record[2]; 1958 if (!BBID) 1959 // Invalid reference to entry block. 1960 return Error("Invalid ID"); 1961 if (!Fn->empty()) { 1962 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 1963 for (size_t I = 0, E = BBID; I != E; ++I) { 1964 if (BBI == BBE) 1965 return Error("Invalid ID"); 1966 ++BBI; 1967 } 1968 BB = BBI; 1969 } else { 1970 // Otherwise insert a placeholder and remember it so it can be inserted 1971 // when the function is parsed. 1972 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 1973 if (FwdBBs.empty()) 1974 BasicBlockFwdRefQueue.push_back(Fn); 1975 if (FwdBBs.size() < BBID + 1) 1976 FwdBBs.resize(BBID + 1); 1977 if (!FwdBBs[BBID]) 1978 FwdBBs[BBID] = BasicBlock::Create(Context); 1979 BB = FwdBBs[BBID]; 1980 } 1981 V = BlockAddress::get(Fn, BB); 1982 break; 1983 } 1984 } 1985 1986 ValueList.AssignValue(V, NextCstNo); 1987 ++NextCstNo; 1988 } 1989 } 1990 1991 std::error_code BitcodeReader::ParseUseLists() { 1992 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 1993 return Error("Invalid record"); 1994 1995 // Read all the records. 1996 SmallVector<uint64_t, 64> Record; 1997 while (1) { 1998 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1999 2000 switch (Entry.Kind) { 2001 case BitstreamEntry::SubBlock: // Handled for us already. 2002 case BitstreamEntry::Error: 2003 return Error("Malformed block"); 2004 case BitstreamEntry::EndBlock: 2005 return std::error_code(); 2006 case BitstreamEntry::Record: 2007 // The interesting case. 2008 break; 2009 } 2010 2011 // Read a use list record. 2012 Record.clear(); 2013 bool IsBB = false; 2014 switch (Stream.readRecord(Entry.ID, Record)) { 2015 default: // Default behavior: unknown type. 2016 break; 2017 case bitc::USELIST_CODE_BB: 2018 IsBB = true; 2019 // fallthrough 2020 case bitc::USELIST_CODE_DEFAULT: { 2021 unsigned RecordLength = Record.size(); 2022 if (RecordLength < 3) 2023 // Records should have at least an ID and two indexes. 2024 return Error("Invalid record"); 2025 unsigned ID = Record.back(); 2026 Record.pop_back(); 2027 2028 Value *V; 2029 if (IsBB) { 2030 assert(ID < FunctionBBs.size() && "Basic block not found"); 2031 V = FunctionBBs[ID]; 2032 } else 2033 V = ValueList[ID]; 2034 unsigned NumUses = 0; 2035 SmallDenseMap<const Use *, unsigned, 16> Order; 2036 for (const Use &U : V->uses()) { 2037 if (++NumUses > Record.size()) 2038 break; 2039 Order[&U] = Record[NumUses - 1]; 2040 } 2041 if (Order.size() != Record.size() || NumUses > Record.size()) 2042 // Mismatches can happen if the functions are being materialized lazily 2043 // (out-of-order), or a value has been upgraded. 2044 break; 2045 2046 V->sortUseList([&](const Use &L, const Use &R) { 2047 return Order.lookup(&L) < Order.lookup(&R); 2048 }); 2049 break; 2050 } 2051 } 2052 } 2053 } 2054 2055 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2056 /// remember where it is and then skip it. This lets us lazily deserialize the 2057 /// functions. 2058 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2059 // Get the function we are talking about. 2060 if (FunctionsWithBodies.empty()) 2061 return Error("Insufficient function protos"); 2062 2063 Function *Fn = FunctionsWithBodies.back(); 2064 FunctionsWithBodies.pop_back(); 2065 2066 // Save the current stream state. 2067 uint64_t CurBit = Stream.GetCurrentBitNo(); 2068 DeferredFunctionInfo[Fn] = CurBit; 2069 2070 // Skip over the function block for now. 2071 if (Stream.SkipBlock()) 2072 return Error("Invalid record"); 2073 return std::error_code(); 2074 } 2075 2076 std::error_code BitcodeReader::GlobalCleanup() { 2077 // Patch the initializers for globals and aliases up. 2078 ResolveGlobalAndAliasInits(); 2079 if (!GlobalInits.empty() || !AliasInits.empty()) 2080 return Error("Malformed global initializer set"); 2081 2082 // Look for intrinsic functions which need to be upgraded at some point 2083 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2084 FI != FE; ++FI) { 2085 Function *NewFn; 2086 if (UpgradeIntrinsicFunction(FI, NewFn)) 2087 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2088 } 2089 2090 // Look for global variables which need to be renamed. 2091 for (Module::global_iterator 2092 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2093 GI != GE;) { 2094 GlobalVariable *GV = GI++; 2095 UpgradeGlobalVariable(GV); 2096 } 2097 2098 // Force deallocation of memory for these vectors to favor the client that 2099 // want lazy deserialization. 2100 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2101 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2102 return std::error_code(); 2103 } 2104 2105 std::error_code BitcodeReader::ParseModule(bool Resume) { 2106 if (Resume) 2107 Stream.JumpToBit(NextUnreadBit); 2108 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2109 return Error("Invalid record"); 2110 2111 SmallVector<uint64_t, 64> Record; 2112 std::vector<std::string> SectionTable; 2113 std::vector<std::string> GCTable; 2114 2115 // Read all the records for this module. 2116 while (1) { 2117 BitstreamEntry Entry = Stream.advance(); 2118 2119 switch (Entry.Kind) { 2120 case BitstreamEntry::Error: 2121 return Error("Malformed block"); 2122 case BitstreamEntry::EndBlock: 2123 return GlobalCleanup(); 2124 2125 case BitstreamEntry::SubBlock: 2126 switch (Entry.ID) { 2127 default: // Skip unknown content. 2128 if (Stream.SkipBlock()) 2129 return Error("Invalid record"); 2130 break; 2131 case bitc::BLOCKINFO_BLOCK_ID: 2132 if (Stream.ReadBlockInfoBlock()) 2133 return Error("Malformed block"); 2134 break; 2135 case bitc::PARAMATTR_BLOCK_ID: 2136 if (std::error_code EC = ParseAttributeBlock()) 2137 return EC; 2138 break; 2139 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2140 if (std::error_code EC = ParseAttributeGroupBlock()) 2141 return EC; 2142 break; 2143 case bitc::TYPE_BLOCK_ID_NEW: 2144 if (std::error_code EC = ParseTypeTable()) 2145 return EC; 2146 break; 2147 case bitc::VALUE_SYMTAB_BLOCK_ID: 2148 if (std::error_code EC = ParseValueSymbolTable()) 2149 return EC; 2150 SeenValueSymbolTable = true; 2151 break; 2152 case bitc::CONSTANTS_BLOCK_ID: 2153 if (std::error_code EC = ParseConstants()) 2154 return EC; 2155 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2156 return EC; 2157 break; 2158 case bitc::METADATA_BLOCK_ID: 2159 if (std::error_code EC = ParseMetadata()) 2160 return EC; 2161 break; 2162 case bitc::FUNCTION_BLOCK_ID: 2163 // If this is the first function body we've seen, reverse the 2164 // FunctionsWithBodies list. 2165 if (!SeenFirstFunctionBody) { 2166 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2167 if (std::error_code EC = GlobalCleanup()) 2168 return EC; 2169 SeenFirstFunctionBody = true; 2170 } 2171 2172 if (std::error_code EC = RememberAndSkipFunctionBody()) 2173 return EC; 2174 // For streaming bitcode, suspend parsing when we reach the function 2175 // bodies. Subsequent materialization calls will resume it when 2176 // necessary. For streaming, the function bodies must be at the end of 2177 // the bitcode. If the bitcode file is old, the symbol table will be 2178 // at the end instead and will not have been seen yet. In this case, 2179 // just finish the parse now. 2180 if (LazyStreamer && SeenValueSymbolTable) { 2181 NextUnreadBit = Stream.GetCurrentBitNo(); 2182 return std::error_code(); 2183 } 2184 break; 2185 case bitc::USELIST_BLOCK_ID: 2186 if (std::error_code EC = ParseUseLists()) 2187 return EC; 2188 break; 2189 } 2190 continue; 2191 2192 case BitstreamEntry::Record: 2193 // The interesting case. 2194 break; 2195 } 2196 2197 2198 // Read a record. 2199 switch (Stream.readRecord(Entry.ID, Record)) { 2200 default: break; // Default behavior, ignore unknown content. 2201 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2202 if (Record.size() < 1) 2203 return Error("Invalid record"); 2204 // Only version #0 and #1 are supported so far. 2205 unsigned module_version = Record[0]; 2206 switch (module_version) { 2207 default: 2208 return Error("Invalid value"); 2209 case 0: 2210 UseRelativeIDs = false; 2211 break; 2212 case 1: 2213 UseRelativeIDs = true; 2214 break; 2215 } 2216 break; 2217 } 2218 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2219 std::string S; 2220 if (ConvertToString(Record, 0, S)) 2221 return Error("Invalid record"); 2222 TheModule->setTargetTriple(S); 2223 break; 2224 } 2225 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2226 std::string S; 2227 if (ConvertToString(Record, 0, S)) 2228 return Error("Invalid record"); 2229 TheModule->setDataLayout(S); 2230 break; 2231 } 2232 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2233 std::string S; 2234 if (ConvertToString(Record, 0, S)) 2235 return Error("Invalid record"); 2236 TheModule->setModuleInlineAsm(S); 2237 break; 2238 } 2239 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2240 // FIXME: Remove in 4.0. 2241 std::string S; 2242 if (ConvertToString(Record, 0, S)) 2243 return Error("Invalid record"); 2244 // Ignore value. 2245 break; 2246 } 2247 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2248 std::string S; 2249 if (ConvertToString(Record, 0, S)) 2250 return Error("Invalid record"); 2251 SectionTable.push_back(S); 2252 break; 2253 } 2254 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2255 std::string S; 2256 if (ConvertToString(Record, 0, S)) 2257 return Error("Invalid record"); 2258 GCTable.push_back(S); 2259 break; 2260 } 2261 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2262 if (Record.size() < 2) 2263 return Error("Invalid record"); 2264 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2265 unsigned ComdatNameSize = Record[1]; 2266 std::string ComdatName; 2267 ComdatName.reserve(ComdatNameSize); 2268 for (unsigned i = 0; i != ComdatNameSize; ++i) 2269 ComdatName += (char)Record[2 + i]; 2270 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2271 C->setSelectionKind(SK); 2272 ComdatList.push_back(C); 2273 break; 2274 } 2275 // GLOBALVAR: [pointer type, isconst, initid, 2276 // linkage, alignment, section, visibility, threadlocal, 2277 // unnamed_addr, externally_initialized, dllstorageclass, 2278 // comdat] 2279 case bitc::MODULE_CODE_GLOBALVAR: { 2280 if (Record.size() < 6) 2281 return Error("Invalid record"); 2282 Type *Ty = getTypeByID(Record[0]); 2283 if (!Ty) 2284 return Error("Invalid record"); 2285 if (!Ty->isPointerTy()) 2286 return Error("Invalid type for value"); 2287 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2288 Ty = cast<PointerType>(Ty)->getElementType(); 2289 2290 bool isConstant = Record[1]; 2291 uint64_t RawLinkage = Record[3]; 2292 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2293 unsigned Alignment = (1 << Record[4]) >> 1; 2294 std::string Section; 2295 if (Record[5]) { 2296 if (Record[5]-1 >= SectionTable.size()) 2297 return Error("Invalid ID"); 2298 Section = SectionTable[Record[5]-1]; 2299 } 2300 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2301 // Local linkage must have default visibility. 2302 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2303 // FIXME: Change to an error if non-default in 4.0. 2304 Visibility = GetDecodedVisibility(Record[6]); 2305 2306 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2307 if (Record.size() > 7) 2308 TLM = GetDecodedThreadLocalMode(Record[7]); 2309 2310 bool UnnamedAddr = false; 2311 if (Record.size() > 8) 2312 UnnamedAddr = Record[8]; 2313 2314 bool ExternallyInitialized = false; 2315 if (Record.size() > 9) 2316 ExternallyInitialized = Record[9]; 2317 2318 GlobalVariable *NewGV = 2319 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2320 TLM, AddressSpace, ExternallyInitialized); 2321 NewGV->setAlignment(Alignment); 2322 if (!Section.empty()) 2323 NewGV->setSection(Section); 2324 NewGV->setVisibility(Visibility); 2325 NewGV->setUnnamedAddr(UnnamedAddr); 2326 2327 if (Record.size() > 10) 2328 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2329 else 2330 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2331 2332 ValueList.push_back(NewGV); 2333 2334 // Remember which value to use for the global initializer. 2335 if (unsigned InitID = Record[2]) 2336 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2337 2338 if (Record.size() > 11) { 2339 if (unsigned ComdatID = Record[11]) { 2340 assert(ComdatID <= ComdatList.size()); 2341 NewGV->setComdat(ComdatList[ComdatID - 1]); 2342 } 2343 } else if (hasImplicitComdat(RawLinkage)) { 2344 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2345 } 2346 break; 2347 } 2348 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2349 // alignment, section, visibility, gc, unnamed_addr, 2350 // prologuedata, dllstorageclass, comdat, prefixdata] 2351 case bitc::MODULE_CODE_FUNCTION: { 2352 if (Record.size() < 8) 2353 return Error("Invalid record"); 2354 Type *Ty = getTypeByID(Record[0]); 2355 if (!Ty) 2356 return Error("Invalid record"); 2357 if (!Ty->isPointerTy()) 2358 return Error("Invalid type for value"); 2359 FunctionType *FTy = 2360 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2361 if (!FTy) 2362 return Error("Invalid type for value"); 2363 2364 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2365 "", TheModule); 2366 2367 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2368 bool isProto = Record[2]; 2369 uint64_t RawLinkage = Record[3]; 2370 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2371 Func->setAttributes(getAttributes(Record[4])); 2372 2373 Func->setAlignment((1 << Record[5]) >> 1); 2374 if (Record[6]) { 2375 if (Record[6]-1 >= SectionTable.size()) 2376 return Error("Invalid ID"); 2377 Func->setSection(SectionTable[Record[6]-1]); 2378 } 2379 // Local linkage must have default visibility. 2380 if (!Func->hasLocalLinkage()) 2381 // FIXME: Change to an error if non-default in 4.0. 2382 Func->setVisibility(GetDecodedVisibility(Record[7])); 2383 if (Record.size() > 8 && Record[8]) { 2384 if (Record[8]-1 > GCTable.size()) 2385 return Error("Invalid ID"); 2386 Func->setGC(GCTable[Record[8]-1].c_str()); 2387 } 2388 bool UnnamedAddr = false; 2389 if (Record.size() > 9) 2390 UnnamedAddr = Record[9]; 2391 Func->setUnnamedAddr(UnnamedAddr); 2392 if (Record.size() > 10 && Record[10] != 0) 2393 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2394 2395 if (Record.size() > 11) 2396 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2397 else 2398 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2399 2400 if (Record.size() > 12) { 2401 if (unsigned ComdatID = Record[12]) { 2402 assert(ComdatID <= ComdatList.size()); 2403 Func->setComdat(ComdatList[ComdatID - 1]); 2404 } 2405 } else if (hasImplicitComdat(RawLinkage)) { 2406 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2407 } 2408 2409 if (Record.size() > 13 && Record[13] != 0) 2410 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2411 2412 ValueList.push_back(Func); 2413 2414 // If this is a function with a body, remember the prototype we are 2415 // creating now, so that we can match up the body with them later. 2416 if (!isProto) { 2417 Func->setIsMaterializable(true); 2418 FunctionsWithBodies.push_back(Func); 2419 if (LazyStreamer) 2420 DeferredFunctionInfo[Func] = 0; 2421 } 2422 break; 2423 } 2424 // ALIAS: [alias type, aliasee val#, linkage] 2425 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2426 case bitc::MODULE_CODE_ALIAS: { 2427 if (Record.size() < 3) 2428 return Error("Invalid record"); 2429 Type *Ty = getTypeByID(Record[0]); 2430 if (!Ty) 2431 return Error("Invalid record"); 2432 auto *PTy = dyn_cast<PointerType>(Ty); 2433 if (!PTy) 2434 return Error("Invalid type for value"); 2435 2436 auto *NewGA = 2437 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2438 getDecodedLinkage(Record[2]), "", TheModule); 2439 // Old bitcode files didn't have visibility field. 2440 // Local linkage must have default visibility. 2441 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2442 // FIXME: Change to an error if non-default in 4.0. 2443 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2444 if (Record.size() > 4) 2445 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2446 else 2447 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2448 if (Record.size() > 5) 2449 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2450 if (Record.size() > 6) 2451 NewGA->setUnnamedAddr(Record[6]); 2452 ValueList.push_back(NewGA); 2453 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2454 break; 2455 } 2456 /// MODULE_CODE_PURGEVALS: [numvals] 2457 case bitc::MODULE_CODE_PURGEVALS: 2458 // Trim down the value list to the specified size. 2459 if (Record.size() < 1 || Record[0] > ValueList.size()) 2460 return Error("Invalid record"); 2461 ValueList.shrinkTo(Record[0]); 2462 break; 2463 } 2464 Record.clear(); 2465 } 2466 } 2467 2468 std::error_code BitcodeReader::ParseBitcodeInto(Module *M) { 2469 TheModule = nullptr; 2470 2471 if (std::error_code EC = InitStream()) 2472 return EC; 2473 2474 // Sniff for the signature. 2475 if (Stream.Read(8) != 'B' || 2476 Stream.Read(8) != 'C' || 2477 Stream.Read(4) != 0x0 || 2478 Stream.Read(4) != 0xC || 2479 Stream.Read(4) != 0xE || 2480 Stream.Read(4) != 0xD) 2481 return Error("Invalid bitcode signature"); 2482 2483 // We expect a number of well-defined blocks, though we don't necessarily 2484 // need to understand them all. 2485 while (1) { 2486 if (Stream.AtEndOfStream()) 2487 return std::error_code(); 2488 2489 BitstreamEntry Entry = 2490 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2491 2492 switch (Entry.Kind) { 2493 case BitstreamEntry::Error: 2494 return Error("Malformed block"); 2495 case BitstreamEntry::EndBlock: 2496 return std::error_code(); 2497 2498 case BitstreamEntry::SubBlock: 2499 switch (Entry.ID) { 2500 case bitc::BLOCKINFO_BLOCK_ID: 2501 if (Stream.ReadBlockInfoBlock()) 2502 return Error("Malformed block"); 2503 break; 2504 case bitc::MODULE_BLOCK_ID: 2505 // Reject multiple MODULE_BLOCK's in a single bitstream. 2506 if (TheModule) 2507 return Error("Invalid multiple blocks"); 2508 TheModule = M; 2509 if (std::error_code EC = ParseModule(false)) 2510 return EC; 2511 if (LazyStreamer) 2512 return std::error_code(); 2513 break; 2514 default: 2515 if (Stream.SkipBlock()) 2516 return Error("Invalid record"); 2517 break; 2518 } 2519 continue; 2520 case BitstreamEntry::Record: 2521 // There should be no records in the top-level of blocks. 2522 2523 // The ranlib in Xcode 4 will align archive members by appending newlines 2524 // to the end of them. If this file size is a multiple of 4 but not 8, we 2525 // have to read and ignore these final 4 bytes :-( 2526 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2527 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2528 Stream.AtEndOfStream()) 2529 return std::error_code(); 2530 2531 return Error("Invalid record"); 2532 } 2533 } 2534 } 2535 2536 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2537 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2538 return Error("Invalid record"); 2539 2540 SmallVector<uint64_t, 64> Record; 2541 2542 std::string Triple; 2543 // Read all the records for this module. 2544 while (1) { 2545 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2546 2547 switch (Entry.Kind) { 2548 case BitstreamEntry::SubBlock: // Handled for us already. 2549 case BitstreamEntry::Error: 2550 return Error("Malformed block"); 2551 case BitstreamEntry::EndBlock: 2552 return Triple; 2553 case BitstreamEntry::Record: 2554 // The interesting case. 2555 break; 2556 } 2557 2558 // Read a record. 2559 switch (Stream.readRecord(Entry.ID, Record)) { 2560 default: break; // Default behavior, ignore unknown content. 2561 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2562 std::string S; 2563 if (ConvertToString(Record, 0, S)) 2564 return Error("Invalid record"); 2565 Triple = S; 2566 break; 2567 } 2568 } 2569 Record.clear(); 2570 } 2571 llvm_unreachable("Exit infinite loop"); 2572 } 2573 2574 ErrorOr<std::string> BitcodeReader::parseTriple() { 2575 if (std::error_code EC = InitStream()) 2576 return EC; 2577 2578 // Sniff for the signature. 2579 if (Stream.Read(8) != 'B' || 2580 Stream.Read(8) != 'C' || 2581 Stream.Read(4) != 0x0 || 2582 Stream.Read(4) != 0xC || 2583 Stream.Read(4) != 0xE || 2584 Stream.Read(4) != 0xD) 2585 return Error("Invalid bitcode signature"); 2586 2587 // We expect a number of well-defined blocks, though we don't necessarily 2588 // need to understand them all. 2589 while (1) { 2590 BitstreamEntry Entry = Stream.advance(); 2591 2592 switch (Entry.Kind) { 2593 case BitstreamEntry::Error: 2594 return Error("Malformed block"); 2595 case BitstreamEntry::EndBlock: 2596 return std::error_code(); 2597 2598 case BitstreamEntry::SubBlock: 2599 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2600 return parseModuleTriple(); 2601 2602 // Ignore other sub-blocks. 2603 if (Stream.SkipBlock()) 2604 return Error("Malformed block"); 2605 continue; 2606 2607 case BitstreamEntry::Record: 2608 Stream.skipRecord(Entry.ID); 2609 continue; 2610 } 2611 } 2612 } 2613 2614 /// ParseMetadataAttachment - Parse metadata attachments. 2615 std::error_code BitcodeReader::ParseMetadataAttachment() { 2616 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2617 return Error("Invalid record"); 2618 2619 SmallVector<uint64_t, 64> Record; 2620 while (1) { 2621 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2622 2623 switch (Entry.Kind) { 2624 case BitstreamEntry::SubBlock: // Handled for us already. 2625 case BitstreamEntry::Error: 2626 return Error("Malformed block"); 2627 case BitstreamEntry::EndBlock: 2628 return std::error_code(); 2629 case BitstreamEntry::Record: 2630 // The interesting case. 2631 break; 2632 } 2633 2634 // Read a metadata attachment record. 2635 Record.clear(); 2636 switch (Stream.readRecord(Entry.ID, Record)) { 2637 default: // Default behavior: ignore. 2638 break; 2639 case bitc::METADATA_ATTACHMENT: { 2640 unsigned RecordLength = Record.size(); 2641 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2642 return Error("Invalid record"); 2643 Instruction *Inst = InstructionList[Record[0]]; 2644 for (unsigned i = 1; i != RecordLength; i = i+2) { 2645 unsigned Kind = Record[i]; 2646 DenseMap<unsigned, unsigned>::iterator I = 2647 MDKindMap.find(Kind); 2648 if (I == MDKindMap.end()) 2649 return Error("Invalid ID"); 2650 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2651 if (isa<LocalAsMetadata>(Node)) 2652 // Drop the attachment. This used to be legal, but there's no 2653 // upgrade path. 2654 break; 2655 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2656 if (I->second == LLVMContext::MD_tbaa) 2657 InstsWithTBAATag.push_back(Inst); 2658 } 2659 break; 2660 } 2661 } 2662 } 2663 } 2664 2665 /// ParseFunctionBody - Lazily parse the specified function body block. 2666 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2667 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2668 return Error("Invalid record"); 2669 2670 InstructionList.clear(); 2671 unsigned ModuleValueListSize = ValueList.size(); 2672 unsigned ModuleMDValueListSize = MDValueList.size(); 2673 2674 // Add all the function arguments to the value table. 2675 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2676 ValueList.push_back(I); 2677 2678 unsigned NextValueNo = ValueList.size(); 2679 BasicBlock *CurBB = nullptr; 2680 unsigned CurBBNo = 0; 2681 2682 DebugLoc LastLoc; 2683 auto getLastInstruction = [&]() -> Instruction * { 2684 if (CurBB && !CurBB->empty()) 2685 return &CurBB->back(); 2686 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2687 !FunctionBBs[CurBBNo - 1]->empty()) 2688 return &FunctionBBs[CurBBNo - 1]->back(); 2689 return nullptr; 2690 }; 2691 2692 // Read all the records. 2693 SmallVector<uint64_t, 64> Record; 2694 while (1) { 2695 BitstreamEntry Entry = Stream.advance(); 2696 2697 switch (Entry.Kind) { 2698 case BitstreamEntry::Error: 2699 return Error("Malformed block"); 2700 case BitstreamEntry::EndBlock: 2701 goto OutOfRecordLoop; 2702 2703 case BitstreamEntry::SubBlock: 2704 switch (Entry.ID) { 2705 default: // Skip unknown content. 2706 if (Stream.SkipBlock()) 2707 return Error("Invalid record"); 2708 break; 2709 case bitc::CONSTANTS_BLOCK_ID: 2710 if (std::error_code EC = ParseConstants()) 2711 return EC; 2712 NextValueNo = ValueList.size(); 2713 break; 2714 case bitc::VALUE_SYMTAB_BLOCK_ID: 2715 if (std::error_code EC = ParseValueSymbolTable()) 2716 return EC; 2717 break; 2718 case bitc::METADATA_ATTACHMENT_ID: 2719 if (std::error_code EC = ParseMetadataAttachment()) 2720 return EC; 2721 break; 2722 case bitc::METADATA_BLOCK_ID: 2723 if (std::error_code EC = ParseMetadata()) 2724 return EC; 2725 break; 2726 case bitc::USELIST_BLOCK_ID: 2727 if (std::error_code EC = ParseUseLists()) 2728 return EC; 2729 break; 2730 } 2731 continue; 2732 2733 case BitstreamEntry::Record: 2734 // The interesting case. 2735 break; 2736 } 2737 2738 // Read a record. 2739 Record.clear(); 2740 Instruction *I = nullptr; 2741 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2742 switch (BitCode) { 2743 default: // Default behavior: reject 2744 return Error("Invalid value"); 2745 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2746 if (Record.size() < 1 || Record[0] == 0) 2747 return Error("Invalid record"); 2748 // Create all the basic blocks for the function. 2749 FunctionBBs.resize(Record[0]); 2750 2751 // See if anything took the address of blocks in this function. 2752 auto BBFRI = BasicBlockFwdRefs.find(F); 2753 if (BBFRI == BasicBlockFwdRefs.end()) { 2754 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2755 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2756 } else { 2757 auto &BBRefs = BBFRI->second; 2758 // Check for invalid basic block references. 2759 if (BBRefs.size() > FunctionBBs.size()) 2760 return Error("Invalid ID"); 2761 assert(!BBRefs.empty() && "Unexpected empty array"); 2762 assert(!BBRefs.front() && "Invalid reference to entry block"); 2763 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2764 ++I) 2765 if (I < RE && BBRefs[I]) { 2766 BBRefs[I]->insertInto(F); 2767 FunctionBBs[I] = BBRefs[I]; 2768 } else { 2769 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2770 } 2771 2772 // Erase from the table. 2773 BasicBlockFwdRefs.erase(BBFRI); 2774 } 2775 2776 CurBB = FunctionBBs[0]; 2777 continue; 2778 } 2779 2780 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 2781 // This record indicates that the last instruction is at the same 2782 // location as the previous instruction with a location. 2783 I = getLastInstruction(); 2784 2785 if (!I) 2786 return Error("Invalid record"); 2787 I->setDebugLoc(LastLoc); 2788 I = nullptr; 2789 continue; 2790 2791 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 2792 I = getLastInstruction(); 2793 if (!I || Record.size() < 4) 2794 return Error("Invalid record"); 2795 2796 unsigned Line = Record[0], Col = Record[1]; 2797 unsigned ScopeID = Record[2], IAID = Record[3]; 2798 2799 MDNode *Scope = nullptr, *IA = nullptr; 2800 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 2801 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 2802 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 2803 I->setDebugLoc(LastLoc); 2804 I = nullptr; 2805 continue; 2806 } 2807 2808 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 2809 unsigned OpNum = 0; 2810 Value *LHS, *RHS; 2811 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 2812 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 2813 OpNum+1 > Record.size()) 2814 return Error("Invalid record"); 2815 2816 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 2817 if (Opc == -1) 2818 return Error("Invalid record"); 2819 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 2820 InstructionList.push_back(I); 2821 if (OpNum < Record.size()) { 2822 if (Opc == Instruction::Add || 2823 Opc == Instruction::Sub || 2824 Opc == Instruction::Mul || 2825 Opc == Instruction::Shl) { 2826 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2827 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 2828 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2829 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 2830 } else if (Opc == Instruction::SDiv || 2831 Opc == Instruction::UDiv || 2832 Opc == Instruction::LShr || 2833 Opc == Instruction::AShr) { 2834 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 2835 cast<BinaryOperator>(I)->setIsExact(true); 2836 } else if (isa<FPMathOperator>(I)) { 2837 FastMathFlags FMF; 2838 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 2839 FMF.setUnsafeAlgebra(); 2840 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 2841 FMF.setNoNaNs(); 2842 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 2843 FMF.setNoInfs(); 2844 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 2845 FMF.setNoSignedZeros(); 2846 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 2847 FMF.setAllowReciprocal(); 2848 if (FMF.any()) 2849 I->setFastMathFlags(FMF); 2850 } 2851 2852 } 2853 break; 2854 } 2855 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 2856 unsigned OpNum = 0; 2857 Value *Op; 2858 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 2859 OpNum+2 != Record.size()) 2860 return Error("Invalid record"); 2861 2862 Type *ResTy = getTypeByID(Record[OpNum]); 2863 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 2864 if (Opc == -1 || !ResTy) 2865 return Error("Invalid record"); 2866 Instruction *Temp = nullptr; 2867 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 2868 if (Temp) { 2869 InstructionList.push_back(Temp); 2870 CurBB->getInstList().push_back(Temp); 2871 } 2872 } else { 2873 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 2874 } 2875 InstructionList.push_back(I); 2876 break; 2877 } 2878 case bitc::FUNC_CODE_INST_INBOUNDS_GEP: 2879 case bitc::FUNC_CODE_INST_GEP: { // GEP: [n x operands] 2880 unsigned OpNum = 0; 2881 Value *BasePtr; 2882 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 2883 return Error("Invalid record"); 2884 2885 SmallVector<Value*, 16> GEPIdx; 2886 while (OpNum != Record.size()) { 2887 Value *Op; 2888 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 2889 return Error("Invalid record"); 2890 GEPIdx.push_back(Op); 2891 } 2892 2893 I = GetElementPtrInst::Create(BasePtr, GEPIdx); 2894 InstructionList.push_back(I); 2895 if (BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP) 2896 cast<GetElementPtrInst>(I)->setIsInBounds(true); 2897 break; 2898 } 2899 2900 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 2901 // EXTRACTVAL: [opty, opval, n x indices] 2902 unsigned OpNum = 0; 2903 Value *Agg; 2904 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2905 return Error("Invalid record"); 2906 2907 SmallVector<unsigned, 4> EXTRACTVALIdx; 2908 for (unsigned RecSize = Record.size(); 2909 OpNum != RecSize; ++OpNum) { 2910 uint64_t Index = Record[OpNum]; 2911 if ((unsigned)Index != Index) 2912 return Error("Invalid value"); 2913 EXTRACTVALIdx.push_back((unsigned)Index); 2914 } 2915 2916 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 2917 InstructionList.push_back(I); 2918 break; 2919 } 2920 2921 case bitc::FUNC_CODE_INST_INSERTVAL: { 2922 // INSERTVAL: [opty, opval, opty, opval, n x indices] 2923 unsigned OpNum = 0; 2924 Value *Agg; 2925 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 2926 return Error("Invalid record"); 2927 Value *Val; 2928 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 2929 return Error("Invalid record"); 2930 2931 SmallVector<unsigned, 4> INSERTVALIdx; 2932 for (unsigned RecSize = Record.size(); 2933 OpNum != RecSize; ++OpNum) { 2934 uint64_t Index = Record[OpNum]; 2935 if ((unsigned)Index != Index) 2936 return Error("Invalid value"); 2937 INSERTVALIdx.push_back((unsigned)Index); 2938 } 2939 2940 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 2941 InstructionList.push_back(I); 2942 break; 2943 } 2944 2945 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 2946 // obsolete form of select 2947 // handles select i1 ... in old bitcode 2948 unsigned OpNum = 0; 2949 Value *TrueVal, *FalseVal, *Cond; 2950 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2951 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2952 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 2953 return Error("Invalid record"); 2954 2955 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2956 InstructionList.push_back(I); 2957 break; 2958 } 2959 2960 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 2961 // new form of select 2962 // handles select i1 or select [N x i1] 2963 unsigned OpNum = 0; 2964 Value *TrueVal, *FalseVal, *Cond; 2965 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 2966 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 2967 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 2968 return Error("Invalid record"); 2969 2970 // select condition can be either i1 or [N x i1] 2971 if (VectorType* vector_type = 2972 dyn_cast<VectorType>(Cond->getType())) { 2973 // expect <n x i1> 2974 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 2975 return Error("Invalid type for value"); 2976 } else { 2977 // expect i1 2978 if (Cond->getType() != Type::getInt1Ty(Context)) 2979 return Error("Invalid type for value"); 2980 } 2981 2982 I = SelectInst::Create(Cond, TrueVal, FalseVal); 2983 InstructionList.push_back(I); 2984 break; 2985 } 2986 2987 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 2988 unsigned OpNum = 0; 2989 Value *Vec, *Idx; 2990 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 2991 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 2992 return Error("Invalid record"); 2993 I = ExtractElementInst::Create(Vec, Idx); 2994 InstructionList.push_back(I); 2995 break; 2996 } 2997 2998 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 2999 unsigned OpNum = 0; 3000 Value *Vec, *Elt, *Idx; 3001 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3002 popValue(Record, OpNum, NextValueNo, 3003 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3004 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3005 return Error("Invalid record"); 3006 I = InsertElementInst::Create(Vec, Elt, Idx); 3007 InstructionList.push_back(I); 3008 break; 3009 } 3010 3011 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3012 unsigned OpNum = 0; 3013 Value *Vec1, *Vec2, *Mask; 3014 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3015 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3016 return Error("Invalid record"); 3017 3018 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3019 return Error("Invalid record"); 3020 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3021 InstructionList.push_back(I); 3022 break; 3023 } 3024 3025 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3026 // Old form of ICmp/FCmp returning bool 3027 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3028 // both legal on vectors but had different behaviour. 3029 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3030 // FCmp/ICmp returning bool or vector of bool 3031 3032 unsigned OpNum = 0; 3033 Value *LHS, *RHS; 3034 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3035 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3036 OpNum+1 != Record.size()) 3037 return Error("Invalid record"); 3038 3039 if (LHS->getType()->isFPOrFPVectorTy()) 3040 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3041 else 3042 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3043 InstructionList.push_back(I); 3044 break; 3045 } 3046 3047 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3048 { 3049 unsigned Size = Record.size(); 3050 if (Size == 0) { 3051 I = ReturnInst::Create(Context); 3052 InstructionList.push_back(I); 3053 break; 3054 } 3055 3056 unsigned OpNum = 0; 3057 Value *Op = nullptr; 3058 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3059 return Error("Invalid record"); 3060 if (OpNum != Record.size()) 3061 return Error("Invalid record"); 3062 3063 I = ReturnInst::Create(Context, Op); 3064 InstructionList.push_back(I); 3065 break; 3066 } 3067 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3068 if (Record.size() != 1 && Record.size() != 3) 3069 return Error("Invalid record"); 3070 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3071 if (!TrueDest) 3072 return Error("Invalid record"); 3073 3074 if (Record.size() == 1) { 3075 I = BranchInst::Create(TrueDest); 3076 InstructionList.push_back(I); 3077 } 3078 else { 3079 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3080 Value *Cond = getValue(Record, 2, NextValueNo, 3081 Type::getInt1Ty(Context)); 3082 if (!FalseDest || !Cond) 3083 return Error("Invalid record"); 3084 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3085 InstructionList.push_back(I); 3086 } 3087 break; 3088 } 3089 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3090 // Check magic 3091 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3092 // "New" SwitchInst format with case ranges. The changes to write this 3093 // format were reverted but we still recognize bitcode that uses it. 3094 // Hopefully someday we will have support for case ranges and can use 3095 // this format again. 3096 3097 Type *OpTy = getTypeByID(Record[1]); 3098 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3099 3100 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3101 BasicBlock *Default = getBasicBlock(Record[3]); 3102 if (!OpTy || !Cond || !Default) 3103 return Error("Invalid record"); 3104 3105 unsigned NumCases = Record[4]; 3106 3107 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3108 InstructionList.push_back(SI); 3109 3110 unsigned CurIdx = 5; 3111 for (unsigned i = 0; i != NumCases; ++i) { 3112 SmallVector<ConstantInt*, 1> CaseVals; 3113 unsigned NumItems = Record[CurIdx++]; 3114 for (unsigned ci = 0; ci != NumItems; ++ci) { 3115 bool isSingleNumber = Record[CurIdx++]; 3116 3117 APInt Low; 3118 unsigned ActiveWords = 1; 3119 if (ValueBitWidth > 64) 3120 ActiveWords = Record[CurIdx++]; 3121 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3122 ValueBitWidth); 3123 CurIdx += ActiveWords; 3124 3125 if (!isSingleNumber) { 3126 ActiveWords = 1; 3127 if (ValueBitWidth > 64) 3128 ActiveWords = Record[CurIdx++]; 3129 APInt High = 3130 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3131 ValueBitWidth); 3132 CurIdx += ActiveWords; 3133 3134 // FIXME: It is not clear whether values in the range should be 3135 // compared as signed or unsigned values. The partially 3136 // implemented changes that used this format in the past used 3137 // unsigned comparisons. 3138 for ( ; Low.ule(High); ++Low) 3139 CaseVals.push_back(ConstantInt::get(Context, Low)); 3140 } else 3141 CaseVals.push_back(ConstantInt::get(Context, Low)); 3142 } 3143 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3144 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3145 cve = CaseVals.end(); cvi != cve; ++cvi) 3146 SI->addCase(*cvi, DestBB); 3147 } 3148 I = SI; 3149 break; 3150 } 3151 3152 // Old SwitchInst format without case ranges. 3153 3154 if (Record.size() < 3 || (Record.size() & 1) == 0) 3155 return Error("Invalid record"); 3156 Type *OpTy = getTypeByID(Record[0]); 3157 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3158 BasicBlock *Default = getBasicBlock(Record[2]); 3159 if (!OpTy || !Cond || !Default) 3160 return Error("Invalid record"); 3161 unsigned NumCases = (Record.size()-3)/2; 3162 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3163 InstructionList.push_back(SI); 3164 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3165 ConstantInt *CaseVal = 3166 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3167 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3168 if (!CaseVal || !DestBB) { 3169 delete SI; 3170 return Error("Invalid record"); 3171 } 3172 SI->addCase(CaseVal, DestBB); 3173 } 3174 I = SI; 3175 break; 3176 } 3177 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3178 if (Record.size() < 2) 3179 return Error("Invalid record"); 3180 Type *OpTy = getTypeByID(Record[0]); 3181 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3182 if (!OpTy || !Address) 3183 return Error("Invalid record"); 3184 unsigned NumDests = Record.size()-2; 3185 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3186 InstructionList.push_back(IBI); 3187 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3188 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3189 IBI->addDestination(DestBB); 3190 } else { 3191 delete IBI; 3192 return Error("Invalid record"); 3193 } 3194 } 3195 I = IBI; 3196 break; 3197 } 3198 3199 case bitc::FUNC_CODE_INST_INVOKE: { 3200 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3201 if (Record.size() < 4) 3202 return Error("Invalid record"); 3203 AttributeSet PAL = getAttributes(Record[0]); 3204 unsigned CCInfo = Record[1]; 3205 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3206 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3207 3208 unsigned OpNum = 4; 3209 Value *Callee; 3210 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3211 return Error("Invalid record"); 3212 3213 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3214 FunctionType *FTy = !CalleeTy ? nullptr : 3215 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3216 3217 // Check that the right number of fixed parameters are here. 3218 if (!FTy || !NormalBB || !UnwindBB || 3219 Record.size() < OpNum+FTy->getNumParams()) 3220 return Error("Invalid record"); 3221 3222 SmallVector<Value*, 16> Ops; 3223 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3224 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3225 FTy->getParamType(i))); 3226 if (!Ops.back()) 3227 return Error("Invalid record"); 3228 } 3229 3230 if (!FTy->isVarArg()) { 3231 if (Record.size() != OpNum) 3232 return Error("Invalid record"); 3233 } else { 3234 // Read type/value pairs for varargs params. 3235 while (OpNum != Record.size()) { 3236 Value *Op; 3237 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3238 return Error("Invalid record"); 3239 Ops.push_back(Op); 3240 } 3241 } 3242 3243 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3244 InstructionList.push_back(I); 3245 cast<InvokeInst>(I)->setCallingConv( 3246 static_cast<CallingConv::ID>(CCInfo)); 3247 cast<InvokeInst>(I)->setAttributes(PAL); 3248 break; 3249 } 3250 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3251 unsigned Idx = 0; 3252 Value *Val = nullptr; 3253 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3254 return Error("Invalid record"); 3255 I = ResumeInst::Create(Val); 3256 InstructionList.push_back(I); 3257 break; 3258 } 3259 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3260 I = new UnreachableInst(Context); 3261 InstructionList.push_back(I); 3262 break; 3263 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3264 if (Record.size() < 1 || ((Record.size()-1)&1)) 3265 return Error("Invalid record"); 3266 Type *Ty = getTypeByID(Record[0]); 3267 if (!Ty) 3268 return Error("Invalid record"); 3269 3270 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3271 InstructionList.push_back(PN); 3272 3273 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3274 Value *V; 3275 // With the new function encoding, it is possible that operands have 3276 // negative IDs (for forward references). Use a signed VBR 3277 // representation to keep the encoding small. 3278 if (UseRelativeIDs) 3279 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3280 else 3281 V = getValue(Record, 1+i, NextValueNo, Ty); 3282 BasicBlock *BB = getBasicBlock(Record[2+i]); 3283 if (!V || !BB) 3284 return Error("Invalid record"); 3285 PN->addIncoming(V, BB); 3286 } 3287 I = PN; 3288 break; 3289 } 3290 3291 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3292 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3293 unsigned Idx = 0; 3294 if (Record.size() < 4) 3295 return Error("Invalid record"); 3296 Type *Ty = getTypeByID(Record[Idx++]); 3297 if (!Ty) 3298 return Error("Invalid record"); 3299 Value *PersFn = nullptr; 3300 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3301 return Error("Invalid record"); 3302 3303 bool IsCleanup = !!Record[Idx++]; 3304 unsigned NumClauses = Record[Idx++]; 3305 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3306 LP->setCleanup(IsCleanup); 3307 for (unsigned J = 0; J != NumClauses; ++J) { 3308 LandingPadInst::ClauseType CT = 3309 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3310 Value *Val; 3311 3312 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3313 delete LP; 3314 return Error("Invalid record"); 3315 } 3316 3317 assert((CT != LandingPadInst::Catch || 3318 !isa<ArrayType>(Val->getType())) && 3319 "Catch clause has a invalid type!"); 3320 assert((CT != LandingPadInst::Filter || 3321 isa<ArrayType>(Val->getType())) && 3322 "Filter clause has invalid type!"); 3323 LP->addClause(cast<Constant>(Val)); 3324 } 3325 3326 I = LP; 3327 InstructionList.push_back(I); 3328 break; 3329 } 3330 3331 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3332 if (Record.size() != 4) 3333 return Error("Invalid record"); 3334 PointerType *Ty = 3335 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3336 Type *OpTy = getTypeByID(Record[1]); 3337 Value *Size = getFnValueByID(Record[2], OpTy); 3338 unsigned AlignRecord = Record[3]; 3339 bool InAlloca = AlignRecord & (1 << 5); 3340 unsigned Align = AlignRecord & ((1 << 5) - 1); 3341 if (!Ty || !Size) 3342 return Error("Invalid record"); 3343 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, (1 << Align) >> 1); 3344 AI->setUsedWithInAlloca(InAlloca); 3345 I = AI; 3346 InstructionList.push_back(I); 3347 break; 3348 } 3349 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3350 unsigned OpNum = 0; 3351 Value *Op; 3352 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3353 OpNum+2 != Record.size()) 3354 return Error("Invalid record"); 3355 3356 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3357 InstructionList.push_back(I); 3358 break; 3359 } 3360 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3361 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3362 unsigned OpNum = 0; 3363 Value *Op; 3364 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3365 OpNum+4 != Record.size()) 3366 return Error("Invalid record"); 3367 3368 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3369 if (Ordering == NotAtomic || Ordering == Release || 3370 Ordering == AcquireRelease) 3371 return Error("Invalid record"); 3372 if (Ordering != NotAtomic && Record[OpNum] == 0) 3373 return Error("Invalid record"); 3374 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3375 3376 I = new LoadInst(Op, "", Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3377 Ordering, SynchScope); 3378 InstructionList.push_back(I); 3379 break; 3380 } 3381 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3382 unsigned OpNum = 0; 3383 Value *Val, *Ptr; 3384 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3385 popValue(Record, OpNum, NextValueNo, 3386 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3387 OpNum+2 != Record.size()) 3388 return Error("Invalid record"); 3389 3390 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1); 3391 InstructionList.push_back(I); 3392 break; 3393 } 3394 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3395 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3396 unsigned OpNum = 0; 3397 Value *Val, *Ptr; 3398 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3399 popValue(Record, OpNum, NextValueNo, 3400 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3401 OpNum+4 != Record.size()) 3402 return Error("Invalid record"); 3403 3404 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3405 if (Ordering == NotAtomic || Ordering == Acquire || 3406 Ordering == AcquireRelease) 3407 return Error("Invalid record"); 3408 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3409 if (Ordering != NotAtomic && Record[OpNum] == 0) 3410 return Error("Invalid record"); 3411 3412 I = new StoreInst(Val, Ptr, Record[OpNum+1], (1 << Record[OpNum]) >> 1, 3413 Ordering, SynchScope); 3414 InstructionList.push_back(I); 3415 break; 3416 } 3417 case bitc::FUNC_CODE_INST_CMPXCHG: { 3418 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3419 // failureordering?, isweak?] 3420 unsigned OpNum = 0; 3421 Value *Ptr, *Cmp, *New; 3422 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3423 popValue(Record, OpNum, NextValueNo, 3424 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3425 popValue(Record, OpNum, NextValueNo, 3426 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3427 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3428 return Error("Invalid record"); 3429 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3430 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3431 return Error("Invalid record"); 3432 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3433 3434 AtomicOrdering FailureOrdering; 3435 if (Record.size() < 7) 3436 FailureOrdering = 3437 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3438 else 3439 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3440 3441 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3442 SynchScope); 3443 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3444 3445 if (Record.size() < 8) { 3446 // Before weak cmpxchgs existed, the instruction simply returned the 3447 // value loaded from memory, so bitcode files from that era will be 3448 // expecting the first component of a modern cmpxchg. 3449 CurBB->getInstList().push_back(I); 3450 I = ExtractValueInst::Create(I, 0); 3451 } else { 3452 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3453 } 3454 3455 InstructionList.push_back(I); 3456 break; 3457 } 3458 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3459 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3460 unsigned OpNum = 0; 3461 Value *Ptr, *Val; 3462 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3463 popValue(Record, OpNum, NextValueNo, 3464 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3465 OpNum+4 != Record.size()) 3466 return Error("Invalid record"); 3467 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3468 if (Operation < AtomicRMWInst::FIRST_BINOP || 3469 Operation > AtomicRMWInst::LAST_BINOP) 3470 return Error("Invalid record"); 3471 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3472 if (Ordering == NotAtomic || Ordering == Unordered) 3473 return Error("Invalid record"); 3474 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3475 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3476 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3477 InstructionList.push_back(I); 3478 break; 3479 } 3480 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3481 if (2 != Record.size()) 3482 return Error("Invalid record"); 3483 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3484 if (Ordering == NotAtomic || Ordering == Unordered || 3485 Ordering == Monotonic) 3486 return Error("Invalid record"); 3487 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3488 I = new FenceInst(Context, Ordering, SynchScope); 3489 InstructionList.push_back(I); 3490 break; 3491 } 3492 case bitc::FUNC_CODE_INST_CALL: { 3493 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3494 if (Record.size() < 3) 3495 return Error("Invalid record"); 3496 3497 AttributeSet PAL = getAttributes(Record[0]); 3498 unsigned CCInfo = Record[1]; 3499 3500 unsigned OpNum = 2; 3501 Value *Callee; 3502 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3503 return Error("Invalid record"); 3504 3505 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3506 FunctionType *FTy = nullptr; 3507 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3508 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3509 return Error("Invalid record"); 3510 3511 SmallVector<Value*, 16> Args; 3512 // Read the fixed params. 3513 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3514 if (FTy->getParamType(i)->isLabelTy()) 3515 Args.push_back(getBasicBlock(Record[OpNum])); 3516 else 3517 Args.push_back(getValue(Record, OpNum, NextValueNo, 3518 FTy->getParamType(i))); 3519 if (!Args.back()) 3520 return Error("Invalid record"); 3521 } 3522 3523 // Read type/value pairs for varargs params. 3524 if (!FTy->isVarArg()) { 3525 if (OpNum != Record.size()) 3526 return Error("Invalid record"); 3527 } else { 3528 while (OpNum != Record.size()) { 3529 Value *Op; 3530 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3531 return Error("Invalid record"); 3532 Args.push_back(Op); 3533 } 3534 } 3535 3536 I = CallInst::Create(Callee, Args); 3537 InstructionList.push_back(I); 3538 cast<CallInst>(I)->setCallingConv( 3539 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3540 CallInst::TailCallKind TCK = CallInst::TCK_None; 3541 if (CCInfo & 1) 3542 TCK = CallInst::TCK_Tail; 3543 if (CCInfo & (1 << 14)) 3544 TCK = CallInst::TCK_MustTail; 3545 cast<CallInst>(I)->setTailCallKind(TCK); 3546 cast<CallInst>(I)->setAttributes(PAL); 3547 break; 3548 } 3549 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3550 if (Record.size() < 3) 3551 return Error("Invalid record"); 3552 Type *OpTy = getTypeByID(Record[0]); 3553 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3554 Type *ResTy = getTypeByID(Record[2]); 3555 if (!OpTy || !Op || !ResTy) 3556 return Error("Invalid record"); 3557 I = new VAArgInst(Op, ResTy); 3558 InstructionList.push_back(I); 3559 break; 3560 } 3561 } 3562 3563 // Add instruction to end of current BB. If there is no current BB, reject 3564 // this file. 3565 if (!CurBB) { 3566 delete I; 3567 return Error("Invalid instruction with no BB"); 3568 } 3569 CurBB->getInstList().push_back(I); 3570 3571 // If this was a terminator instruction, move to the next block. 3572 if (isa<TerminatorInst>(I)) { 3573 ++CurBBNo; 3574 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3575 } 3576 3577 // Non-void values get registered in the value table for future use. 3578 if (I && !I->getType()->isVoidTy()) 3579 ValueList.AssignValue(I, NextValueNo++); 3580 } 3581 3582 OutOfRecordLoop: 3583 3584 // Check the function list for unresolved values. 3585 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3586 if (!A->getParent()) { 3587 // We found at least one unresolved value. Nuke them all to avoid leaks. 3588 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3589 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3590 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3591 delete A; 3592 } 3593 } 3594 return Error("Never resolved value found in function"); 3595 } 3596 } 3597 3598 // FIXME: Check for unresolved forward-declared metadata references 3599 // and clean up leaks. 3600 3601 // Trim the value list down to the size it was before we parsed this function. 3602 ValueList.shrinkTo(ModuleValueListSize); 3603 MDValueList.shrinkTo(ModuleMDValueListSize); 3604 std::vector<BasicBlock*>().swap(FunctionBBs); 3605 return std::error_code(); 3606 } 3607 3608 /// Find the function body in the bitcode stream 3609 std::error_code BitcodeReader::FindFunctionInStream( 3610 Function *F, 3611 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3612 while (DeferredFunctionInfoIterator->second == 0) { 3613 if (Stream.AtEndOfStream()) 3614 return Error("Could not find function in stream"); 3615 // ParseModule will parse the next body in the stream and set its 3616 // position in the DeferredFunctionInfo map. 3617 if (std::error_code EC = ParseModule(true)) 3618 return EC; 3619 } 3620 return std::error_code(); 3621 } 3622 3623 //===----------------------------------------------------------------------===// 3624 // GVMaterializer implementation 3625 //===----------------------------------------------------------------------===// 3626 3627 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3628 3629 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3630 Function *F = dyn_cast<Function>(GV); 3631 // If it's not a function or is already material, ignore the request. 3632 if (!F || !F->isMaterializable()) 3633 return std::error_code(); 3634 3635 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3636 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3637 // If its position is recorded as 0, its body is somewhere in the stream 3638 // but we haven't seen it yet. 3639 if (DFII->second == 0 && LazyStreamer) 3640 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3641 return EC; 3642 3643 // Move the bit stream to the saved position of the deferred function body. 3644 Stream.JumpToBit(DFII->second); 3645 3646 if (std::error_code EC = ParseFunctionBody(F)) 3647 return EC; 3648 F->setIsMaterializable(false); 3649 3650 // Upgrade any old intrinsic calls in the function. 3651 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3652 E = UpgradedIntrinsics.end(); I != E; ++I) { 3653 if (I->first != I->second) { 3654 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3655 UI != UE;) { 3656 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3657 UpgradeIntrinsicCall(CI, I->second); 3658 } 3659 } 3660 } 3661 3662 // Bring in any functions that this function forward-referenced via 3663 // blockaddresses. 3664 return materializeForwardReferencedFunctions(); 3665 } 3666 3667 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3668 const Function *F = dyn_cast<Function>(GV); 3669 if (!F || F->isDeclaration()) 3670 return false; 3671 3672 // Dematerializing F would leave dangling references that wouldn't be 3673 // reconnected on re-materialization. 3674 if (BlockAddressesTaken.count(F)) 3675 return false; 3676 3677 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3678 } 3679 3680 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3681 Function *F = dyn_cast<Function>(GV); 3682 // If this function isn't dematerializable, this is a noop. 3683 if (!F || !isDematerializable(F)) 3684 return; 3685 3686 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 3687 3688 // Just forget the function body, we can remat it later. 3689 F->dropAllReferences(); 3690 F->setIsMaterializable(true); 3691 } 3692 3693 std::error_code BitcodeReader::MaterializeModule(Module *M) { 3694 assert(M == TheModule && 3695 "Can only Materialize the Module this BitcodeReader is attached to."); 3696 3697 // Promise to materialize all forward references. 3698 WillMaterializeAllForwardRefs = true; 3699 3700 // Iterate over the module, deserializing any functions that are still on 3701 // disk. 3702 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 3703 F != E; ++F) { 3704 if (std::error_code EC = materialize(F)) 3705 return EC; 3706 } 3707 // At this point, if there are any function bodies, the current bit is 3708 // pointing to the END_BLOCK record after them. Now make sure the rest 3709 // of the bits in the module have been read. 3710 if (NextUnreadBit) 3711 ParseModule(true); 3712 3713 // Check that all block address forward references got resolved (as we 3714 // promised above). 3715 if (!BasicBlockFwdRefs.empty()) 3716 return Error("Never resolved function from blockaddress"); 3717 3718 // Upgrade any intrinsic calls that slipped through (should not happen!) and 3719 // delete the old functions to clean up. We can't do this unless the entire 3720 // module is materialized because there could always be another function body 3721 // with calls to the old function. 3722 for (std::vector<std::pair<Function*, Function*> >::iterator I = 3723 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 3724 if (I->first != I->second) { 3725 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3726 UI != UE;) { 3727 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3728 UpgradeIntrinsicCall(CI, I->second); 3729 } 3730 if (!I->first->use_empty()) 3731 I->first->replaceAllUsesWith(I->second); 3732 I->first->eraseFromParent(); 3733 } 3734 } 3735 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 3736 3737 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 3738 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 3739 3740 UpgradeDebugInfo(*M); 3741 return std::error_code(); 3742 } 3743 3744 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 3745 return IdentifiedStructTypes; 3746 } 3747 3748 std::error_code BitcodeReader::InitStream() { 3749 if (LazyStreamer) 3750 return InitLazyStream(); 3751 return InitStreamFromBuffer(); 3752 } 3753 3754 std::error_code BitcodeReader::InitStreamFromBuffer() { 3755 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 3756 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 3757 3758 if (Buffer->getBufferSize() & 3) 3759 return Error("Invalid bitcode signature"); 3760 3761 // If we have a wrapper header, parse it and ignore the non-bc file contents. 3762 // The magic number is 0x0B17C0DE stored in little endian. 3763 if (isBitcodeWrapper(BufPtr, BufEnd)) 3764 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 3765 return Error("Invalid bitcode wrapper header"); 3766 3767 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 3768 Stream.init(&*StreamFile); 3769 3770 return std::error_code(); 3771 } 3772 3773 std::error_code BitcodeReader::InitLazyStream() { 3774 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 3775 // see it. 3776 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 3777 StreamingMemoryObject &Bytes = *OwnedBytes; 3778 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 3779 Stream.init(&*StreamFile); 3780 3781 unsigned char buf[16]; 3782 if (Bytes.readBytes(buf, 16, 0) != 16) 3783 return Error("Invalid bitcode signature"); 3784 3785 if (!isBitcode(buf, buf + 16)) 3786 return Error("Invalid bitcode signature"); 3787 3788 if (isBitcodeWrapper(buf, buf + 4)) { 3789 const unsigned char *bitcodeStart = buf; 3790 const unsigned char *bitcodeEnd = buf + 16; 3791 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 3792 Bytes.dropLeadingBytes(bitcodeStart - buf); 3793 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 3794 } 3795 return std::error_code(); 3796 } 3797 3798 namespace { 3799 class BitcodeErrorCategoryType : public std::error_category { 3800 const char *name() const LLVM_NOEXCEPT override { 3801 return "llvm.bitcode"; 3802 } 3803 std::string message(int IE) const override { 3804 BitcodeError E = static_cast<BitcodeError>(IE); 3805 switch (E) { 3806 case BitcodeError::InvalidBitcodeSignature: 3807 return "Invalid bitcode signature"; 3808 case BitcodeError::CorruptedBitcode: 3809 return "Corrupted bitcode"; 3810 } 3811 llvm_unreachable("Unknown error type!"); 3812 } 3813 }; 3814 } 3815 3816 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 3817 3818 const std::error_category &llvm::BitcodeErrorCategory() { 3819 return *ErrorCategory; 3820 } 3821 3822 //===----------------------------------------------------------------------===// 3823 // External interface 3824 //===----------------------------------------------------------------------===// 3825 3826 /// \brief Get a lazy one-at-time loading module from bitcode. 3827 /// 3828 /// This isn't always used in a lazy context. In particular, it's also used by 3829 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 3830 /// in forward-referenced functions from block address references. 3831 /// 3832 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 3833 /// materialize everything -- in particular, if this isn't truly lazy. 3834 static ErrorOr<Module *> 3835 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 3836 LLVMContext &Context, bool WillMaterializeAll, 3837 DiagnosticHandlerFunction DiagnosticHandler) { 3838 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 3839 BitcodeReader *R = 3840 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 3841 M->setMaterializer(R); 3842 3843 auto cleanupOnError = [&](std::error_code EC) { 3844 R->releaseBuffer(); // Never take ownership on error. 3845 delete M; // Also deletes R. 3846 return EC; 3847 }; 3848 3849 if (std::error_code EC = R->ParseBitcodeInto(M)) 3850 return cleanupOnError(EC); 3851 3852 if (!WillMaterializeAll) 3853 // Resolve forward references from blockaddresses. 3854 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 3855 return cleanupOnError(EC); 3856 3857 Buffer.release(); // The BitcodeReader owns it now. 3858 return M; 3859 } 3860 3861 ErrorOr<Module *> 3862 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 3863 LLVMContext &Context, 3864 DiagnosticHandlerFunction DiagnosticHandler) { 3865 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 3866 DiagnosticHandler); 3867 } 3868 3869 ErrorOr<std::unique_ptr<Module>> 3870 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 3871 LLVMContext &Context, 3872 DiagnosticHandlerFunction DiagnosticHandler) { 3873 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 3874 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 3875 M->setMaterializer(R); 3876 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 3877 return EC; 3878 return std::move(M); 3879 } 3880 3881 ErrorOr<Module *> 3882 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 3883 DiagnosticHandlerFunction DiagnosticHandler) { 3884 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3885 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 3886 std::move(Buf), Context, true, DiagnosticHandler); 3887 if (!ModuleOrErr) 3888 return ModuleOrErr; 3889 Module *M = ModuleOrErr.get(); 3890 // Read in the entire module, and destroy the BitcodeReader. 3891 if (std::error_code EC = M->materializeAllPermanently()) { 3892 delete M; 3893 return EC; 3894 } 3895 3896 // TODO: Restore the use-lists to the in-memory state when the bitcode was 3897 // written. We must defer until the Module has been fully materialized. 3898 3899 return M; 3900 } 3901 3902 std::string 3903 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 3904 DiagnosticHandlerFunction DiagnosticHandler) { 3905 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 3906 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 3907 DiagnosticHandler); 3908 ErrorOr<std::string> Triple = R->parseTriple(); 3909 if (Triple.getError()) 3910 return ""; 3911 return Triple.get(); 3912 } 3913