1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitstream/BitstreamReader.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallingConv.h"
31 #include "llvm/IR/Comdat.h"
32 #include "llvm/IR/Constant.h"
33 #include "llvm/IR/Constants.h"
34 #include "llvm/IR/DataLayout.h"
35 #include "llvm/IR/DebugInfo.h"
36 #include "llvm/IR/DebugInfoMetadata.h"
37 #include "llvm/IR/DebugLoc.h"
38 #include "llvm/IR/DerivedTypes.h"
39 #include "llvm/IR/Function.h"
40 #include "llvm/IR/GVMaterializer.h"
41 #include "llvm/IR/GlobalAlias.h"
42 #include "llvm/IR/GlobalIFunc.h"
43 #include "llvm/IR/GlobalIndirectSymbol.h"
44 #include "llvm/IR/GlobalObject.h"
45 #include "llvm/IR/GlobalValue.h"
46 #include "llvm/IR/GlobalVariable.h"
47 #include "llvm/IR/InlineAsm.h"
48 #include "llvm/IR/InstIterator.h"
49 #include "llvm/IR/InstrTypes.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Intrinsics.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/ModuleSummaryIndex.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Value.h"
60 #include "llvm/IR/Verifier.h"
61 #include "llvm/Support/AtomicOrdering.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/Debug.h"
66 #include "llvm/Support/Error.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ErrorOr.h"
69 #include "llvm/Support/ManagedStatic.h"
70 #include "llvm/Support/MathExtras.h"
71 #include "llvm/Support/MemoryBuffer.h"
72 #include "llvm/Support/raw_ostream.h"
73 #include <algorithm>
74 #include <cassert>
75 #include <cstddef>
76 #include <cstdint>
77 #include <deque>
78 #include <map>
79 #include <memory>
80 #include <set>
81 #include <string>
82 #include <system_error>
83 #include <tuple>
84 #include <utility>
85 #include <vector>
86 
87 using namespace llvm;
88 
89 static cl::opt<bool> PrintSummaryGUIDs(
90     "print-summary-global-ids", cl::init(false), cl::Hidden,
91     cl::desc(
92         "Print the global id for each value when reading the module summary"));
93 
94 namespace {
95 
96 enum {
97   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
98 };
99 
100 } // end anonymous namespace
101 
102 static Error error(const Twine &Message) {
103   return make_error<StringError>(
104       Message, make_error_code(BitcodeError::CorruptedBitcode));
105 }
106 
107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
108   if (!Stream.canSkipToPos(4))
109     return createStringError(std::errc::illegal_byte_sequence,
110                              "file too small to contain bitcode header");
111   for (unsigned C : {'B', 'C'})
112     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
113       if (Res.get() != C)
114         return createStringError(std::errc::illegal_byte_sequence,
115                                  "file doesn't start with bitcode header");
116     } else
117       return Res.takeError();
118   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
119     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
120       if (Res.get() != C)
121         return createStringError(std::errc::illegal_byte_sequence,
122                                  "file doesn't start with bitcode header");
123     } else
124       return Res.takeError();
125   return Error::success();
126 }
127 
128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
129   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
130   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
131 
132   if (Buffer.getBufferSize() & 3)
133     return error("Invalid bitcode signature");
134 
135   // If we have a wrapper header, parse it and ignore the non-bc file contents.
136   // The magic number is 0x0B17C0DE stored in little endian.
137   if (isBitcodeWrapper(BufPtr, BufEnd))
138     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
139       return error("Invalid bitcode wrapper header");
140 
141   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
142   if (Error Err = hasInvalidBitcodeHeader(Stream))
143     return std::move(Err);
144 
145   return std::move(Stream);
146 }
147 
148 /// Convert a string from a record into an std::string, return true on failure.
149 template <typename StrTy>
150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
151                             StrTy &Result) {
152   if (Idx > Record.size())
153     return true;
154 
155   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
156     Result += (char)Record[i];
157   return false;
158 }
159 
160 // Strip all the TBAA attachment for the module.
161 static void stripTBAA(Module *M) {
162   for (auto &F : *M) {
163     if (F.isMaterializable())
164       continue;
165     for (auto &I : instructions(F))
166       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
167   }
168 }
169 
170 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
171 /// "epoch" encoded in the bitcode, and return the producer name if any.
172 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
173   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
174     return std::move(Err);
175 
176   // Read all the records.
177   SmallVector<uint64_t, 64> Record;
178 
179   std::string ProducerIdentification;
180 
181   while (true) {
182     BitstreamEntry Entry;
183     if (Expected<BitstreamEntry> Res = Stream.advance())
184       Entry = Res.get();
185     else
186       return Res.takeError();
187 
188     switch (Entry.Kind) {
189     default:
190     case BitstreamEntry::Error:
191       return error("Malformed block");
192     case BitstreamEntry::EndBlock:
193       return ProducerIdentification;
194     case BitstreamEntry::Record:
195       // The interesting case.
196       break;
197     }
198 
199     // Read a record.
200     Record.clear();
201     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
202     if (!MaybeBitCode)
203       return MaybeBitCode.takeError();
204     switch (MaybeBitCode.get()) {
205     default: // Default behavior: reject
206       return error("Invalid value");
207     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
208       convertToString(Record, 0, ProducerIdentification);
209       break;
210     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
211       unsigned epoch = (unsigned)Record[0];
212       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
213         return error(
214           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
215           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
216       }
217     }
218     }
219   }
220 }
221 
222 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
223   // We expect a number of well-defined blocks, though we don't necessarily
224   // need to understand them all.
225   while (true) {
226     if (Stream.AtEndOfStream())
227       return "";
228 
229     BitstreamEntry Entry;
230     if (Expected<BitstreamEntry> Res = Stream.advance())
231       Entry = std::move(Res.get());
232     else
233       return Res.takeError();
234 
235     switch (Entry.Kind) {
236     case BitstreamEntry::EndBlock:
237     case BitstreamEntry::Error:
238       return error("Malformed block");
239 
240     case BitstreamEntry::SubBlock:
241       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
242         return readIdentificationBlock(Stream);
243 
244       // Ignore other sub-blocks.
245       if (Error Err = Stream.SkipBlock())
246         return std::move(Err);
247       continue;
248     case BitstreamEntry::Record:
249       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
250         continue;
251       else
252         return Skipped.takeError();
253     }
254   }
255 }
256 
257 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
258   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
259     return std::move(Err);
260 
261   SmallVector<uint64_t, 64> Record;
262   // Read all the records for this module.
263 
264   while (true) {
265     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
266     if (!MaybeEntry)
267       return MaybeEntry.takeError();
268     BitstreamEntry Entry = MaybeEntry.get();
269 
270     switch (Entry.Kind) {
271     case BitstreamEntry::SubBlock: // Handled for us already.
272     case BitstreamEntry::Error:
273       return error("Malformed block");
274     case BitstreamEntry::EndBlock:
275       return false;
276     case BitstreamEntry::Record:
277       // The interesting case.
278       break;
279     }
280 
281     // Read a record.
282     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
283     if (!MaybeRecord)
284       return MaybeRecord.takeError();
285     switch (MaybeRecord.get()) {
286     default:
287       break; // Default behavior, ignore unknown content.
288     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
289       std::string S;
290       if (convertToString(Record, 0, S))
291         return error("Invalid record");
292       // Check for the i386 and other (x86_64, ARM) conventions
293       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
294           S.find("__OBJC,__category") != std::string::npos)
295         return true;
296       break;
297     }
298     }
299     Record.clear();
300   }
301   llvm_unreachable("Exit infinite loop");
302 }
303 
304 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
305   // We expect a number of well-defined blocks, though we don't necessarily
306   // need to understand them all.
307   while (true) {
308     BitstreamEntry Entry;
309     if (Expected<BitstreamEntry> Res = Stream.advance())
310       Entry = std::move(Res.get());
311     else
312       return Res.takeError();
313 
314     switch (Entry.Kind) {
315     case BitstreamEntry::Error:
316       return error("Malformed block");
317     case BitstreamEntry::EndBlock:
318       return false;
319 
320     case BitstreamEntry::SubBlock:
321       if (Entry.ID == bitc::MODULE_BLOCK_ID)
322         return hasObjCCategoryInModule(Stream);
323 
324       // Ignore other sub-blocks.
325       if (Error Err = Stream.SkipBlock())
326         return std::move(Err);
327       continue;
328 
329     case BitstreamEntry::Record:
330       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
331         continue;
332       else
333         return Skipped.takeError();
334     }
335   }
336 }
337 
338 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
339   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
340     return std::move(Err);
341 
342   SmallVector<uint64_t, 64> Record;
343 
344   std::string Triple;
345 
346   // Read all the records for this module.
347   while (true) {
348     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
349     if (!MaybeEntry)
350       return MaybeEntry.takeError();
351     BitstreamEntry Entry = MaybeEntry.get();
352 
353     switch (Entry.Kind) {
354     case BitstreamEntry::SubBlock: // Handled for us already.
355     case BitstreamEntry::Error:
356       return error("Malformed block");
357     case BitstreamEntry::EndBlock:
358       return Triple;
359     case BitstreamEntry::Record:
360       // The interesting case.
361       break;
362     }
363 
364     // Read a record.
365     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
366     if (!MaybeRecord)
367       return MaybeRecord.takeError();
368     switch (MaybeRecord.get()) {
369     default: break;  // Default behavior, ignore unknown content.
370     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
371       std::string S;
372       if (convertToString(Record, 0, S))
373         return error("Invalid record");
374       Triple = S;
375       break;
376     }
377     }
378     Record.clear();
379   }
380   llvm_unreachable("Exit infinite loop");
381 }
382 
383 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
384   // We expect a number of well-defined blocks, though we don't necessarily
385   // need to understand them all.
386   while (true) {
387     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
388     if (!MaybeEntry)
389       return MaybeEntry.takeError();
390     BitstreamEntry Entry = MaybeEntry.get();
391 
392     switch (Entry.Kind) {
393     case BitstreamEntry::Error:
394       return error("Malformed block");
395     case BitstreamEntry::EndBlock:
396       return "";
397 
398     case BitstreamEntry::SubBlock:
399       if (Entry.ID == bitc::MODULE_BLOCK_ID)
400         return readModuleTriple(Stream);
401 
402       // Ignore other sub-blocks.
403       if (Error Err = Stream.SkipBlock())
404         return std::move(Err);
405       continue;
406 
407     case BitstreamEntry::Record:
408       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
409         continue;
410       else
411         return Skipped.takeError();
412     }
413   }
414 }
415 
416 namespace {
417 
418 class BitcodeReaderBase {
419 protected:
420   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
421       : Stream(std::move(Stream)), Strtab(Strtab) {
422     this->Stream.setBlockInfo(&BlockInfo);
423   }
424 
425   BitstreamBlockInfo BlockInfo;
426   BitstreamCursor Stream;
427   StringRef Strtab;
428 
429   /// In version 2 of the bitcode we store names of global values and comdats in
430   /// a string table rather than in the VST.
431   bool UseStrtab = false;
432 
433   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
434 
435   /// If this module uses a string table, pop the reference to the string table
436   /// and return the referenced string and the rest of the record. Otherwise
437   /// just return the record itself.
438   std::pair<StringRef, ArrayRef<uint64_t>>
439   readNameFromStrtab(ArrayRef<uint64_t> Record);
440 
441   bool readBlockInfo();
442 
443   // Contains an arbitrary and optional string identifying the bitcode producer
444   std::string ProducerIdentification;
445 
446   Error error(const Twine &Message);
447 };
448 
449 } // end anonymous namespace
450 
451 Error BitcodeReaderBase::error(const Twine &Message) {
452   std::string FullMsg = Message.str();
453   if (!ProducerIdentification.empty())
454     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
455                LLVM_VERSION_STRING "')";
456   return ::error(FullMsg);
457 }
458 
459 Expected<unsigned>
460 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
461   if (Record.empty())
462     return error("Invalid record");
463   unsigned ModuleVersion = Record[0];
464   if (ModuleVersion > 2)
465     return error("Invalid value");
466   UseStrtab = ModuleVersion >= 2;
467   return ModuleVersion;
468 }
469 
470 std::pair<StringRef, ArrayRef<uint64_t>>
471 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
472   if (!UseStrtab)
473     return {"", Record};
474   // Invalid reference. Let the caller complain about the record being empty.
475   if (Record[0] + Record[1] > Strtab.size())
476     return {"", {}};
477   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
478 }
479 
480 namespace {
481 
482 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
483   LLVMContext &Context;
484   Module *TheModule = nullptr;
485   // Next offset to start scanning for lazy parsing of function bodies.
486   uint64_t NextUnreadBit = 0;
487   // Last function offset found in the VST.
488   uint64_t LastFunctionBlockBit = 0;
489   bool SeenValueSymbolTable = false;
490   uint64_t VSTOffset = 0;
491 
492   std::vector<std::string> SectionTable;
493   std::vector<std::string> GCTable;
494 
495   std::vector<Type*> TypeList;
496   DenseMap<Function *, FunctionType *> FunctionTypes;
497   BitcodeReaderValueList ValueList;
498   Optional<MetadataLoader> MDLoader;
499   std::vector<Comdat *> ComdatList;
500   SmallVector<Instruction *, 64> InstructionList;
501 
502   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
503   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
504   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
506   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
507 
508   /// The set of attributes by index.  Index zero in the file is for null, and
509   /// is thus not represented here.  As such all indices are off by one.
510   std::vector<AttributeList> MAttributes;
511 
512   /// The set of attribute groups.
513   std::map<unsigned, AttributeList> MAttributeGroups;
514 
515   /// While parsing a function body, this is a list of the basic blocks for the
516   /// function.
517   std::vector<BasicBlock*> FunctionBBs;
518 
519   // When reading the module header, this list is populated with functions that
520   // have bodies later in the file.
521   std::vector<Function*> FunctionsWithBodies;
522 
523   // When intrinsic functions are encountered which require upgrading they are
524   // stored here with their replacement function.
525   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
526   UpdatedIntrinsicMap UpgradedIntrinsics;
527   // Intrinsics which were remangled because of types rename
528   UpdatedIntrinsicMap RemangledIntrinsics;
529 
530   // Several operations happen after the module header has been read, but
531   // before function bodies are processed. This keeps track of whether
532   // we've done this yet.
533   bool SeenFirstFunctionBody = false;
534 
535   /// When function bodies are initially scanned, this map contains info about
536   /// where to find deferred function body in the stream.
537   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
538 
539   /// When Metadata block is initially scanned when parsing the module, we may
540   /// choose to defer parsing of the metadata. This vector contains info about
541   /// which Metadata blocks are deferred.
542   std::vector<uint64_t> DeferredMetadataInfo;
543 
544   /// These are basic blocks forward-referenced by block addresses.  They are
545   /// inserted lazily into functions when they're loaded.  The basic block ID is
546   /// its index into the vector.
547   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
548   std::deque<Function *> BasicBlockFwdRefQueue;
549 
550   /// Indicates that we are using a new encoding for instruction operands where
551   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
552   /// instruction number, for a more compact encoding.  Some instruction
553   /// operands are not relative to the instruction ID: basic block numbers, and
554   /// types. Once the old style function blocks have been phased out, we would
555   /// not need this flag.
556   bool UseRelativeIDs = false;
557 
558   /// True if all functions will be materialized, negating the need to process
559   /// (e.g.) blockaddress forward references.
560   bool WillMaterializeAllForwardRefs = false;
561 
562   bool StripDebugInfo = false;
563   TBAAVerifier TBAAVerifyHelper;
564 
565   std::vector<std::string> BundleTags;
566   SmallVector<SyncScope::ID, 8> SSIDs;
567 
568 public:
569   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
570                 StringRef ProducerIdentification, LLVMContext &Context);
571 
572   Error materializeForwardReferencedFunctions();
573 
574   Error materialize(GlobalValue *GV) override;
575   Error materializeModule() override;
576   std::vector<StructType *> getIdentifiedStructTypes() const override;
577 
578   /// Main interface to parsing a bitcode buffer.
579   /// \returns true if an error occurred.
580   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
581                          bool IsImporting = false);
582 
583   static uint64_t decodeSignRotatedValue(uint64_t V);
584 
585   /// Materialize any deferred Metadata block.
586   Error materializeMetadata() override;
587 
588   void setStripDebugInfo() override;
589 
590 private:
591   std::vector<StructType *> IdentifiedStructTypes;
592   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
593   StructType *createIdentifiedStructType(LLVMContext &Context);
594 
595   /// Map all pointer types within \param Ty to the opaque pointer
596   /// type in the same address space if opaque pointers are being
597   /// used, otherwise nop. This converts a bitcode-reader internal
598   /// type into one suitable for use in a Value.
599   Type *flattenPointerTypes(Type *Ty) {
600     return Ty;
601   }
602 
603   /// Given a fully structured pointer type (i.e. not opaque), return
604   /// the flattened form of its element, suitable for use in a Value.
605   Type *getPointerElementFlatType(Type *Ty) {
606     return flattenPointerTypes(cast<PointerType>(Ty)->getElementType());
607   }
608 
609   /// Given a fully structured pointer type, get its element type in
610   /// both fully structured form, and flattened form suitable for use
611   /// in a Value.
612   std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) {
613     Type *ElTy = cast<PointerType>(FullTy)->getElementType();
614     return std::make_pair(ElTy, flattenPointerTypes(ElTy));
615   }
616 
617   /// Return the flattened type (suitable for use in a Value)
618   /// specified by the given \param ID .
619   Type *getTypeByID(unsigned ID) {
620     return flattenPointerTypes(getFullyStructuredTypeByID(ID));
621   }
622 
623   /// Return the fully structured (bitcode-reader internal) type
624   /// corresponding to the given \param ID .
625   Type *getFullyStructuredTypeByID(unsigned ID);
626 
627   Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) {
628     if (Ty && Ty->isMetadataTy())
629       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
630     return ValueList.getValueFwdRef(ID, Ty, FullTy);
631   }
632 
633   Metadata *getFnMetadataByID(unsigned ID) {
634     return MDLoader->getMetadataFwdRefOrLoad(ID);
635   }
636 
637   BasicBlock *getBasicBlock(unsigned ID) const {
638     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
639     return FunctionBBs[ID];
640   }
641 
642   AttributeList getAttributes(unsigned i) const {
643     if (i-1 < MAttributes.size())
644       return MAttributes[i-1];
645     return AttributeList();
646   }
647 
648   /// Read a value/type pair out of the specified record from slot 'Slot'.
649   /// Increment Slot past the number of slots used in the record. Return true on
650   /// failure.
651   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
652                         unsigned InstNum, Value *&ResVal,
653                         Type **FullTy = nullptr) {
654     if (Slot == Record.size()) return true;
655     unsigned ValNo = (unsigned)Record[Slot++];
656     // Adjust the ValNo, if it was encoded relative to the InstNum.
657     if (UseRelativeIDs)
658       ValNo = InstNum - ValNo;
659     if (ValNo < InstNum) {
660       // If this is not a forward reference, just return the value we already
661       // have.
662       ResVal = getFnValueByID(ValNo, nullptr, FullTy);
663       return ResVal == nullptr;
664     }
665     if (Slot == Record.size())
666       return true;
667 
668     unsigned TypeNo = (unsigned)Record[Slot++];
669     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
670     if (FullTy)
671       *FullTy = getFullyStructuredTypeByID(TypeNo);
672     return ResVal == nullptr;
673   }
674 
675   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
676   /// past the number of slots used by the value in the record. Return true if
677   /// there is an error.
678   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
679                 unsigned InstNum, Type *Ty, Value *&ResVal) {
680     if (getValue(Record, Slot, InstNum, Ty, ResVal))
681       return true;
682     // All values currently take a single record slot.
683     ++Slot;
684     return false;
685   }
686 
687   /// Like popValue, but does not increment the Slot number.
688   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
689                 unsigned InstNum, Type *Ty, Value *&ResVal) {
690     ResVal = getValue(Record, Slot, InstNum, Ty);
691     return ResVal == nullptr;
692   }
693 
694   /// Version of getValue that returns ResVal directly, or 0 if there is an
695   /// error.
696   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
697                   unsigned InstNum, Type *Ty) {
698     if (Slot == Record.size()) return nullptr;
699     unsigned ValNo = (unsigned)Record[Slot];
700     // Adjust the ValNo, if it was encoded relative to the InstNum.
701     if (UseRelativeIDs)
702       ValNo = InstNum - ValNo;
703     return getFnValueByID(ValNo, Ty);
704   }
705 
706   /// Like getValue, but decodes signed VBRs.
707   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
708                         unsigned InstNum, Type *Ty) {
709     if (Slot == Record.size()) return nullptr;
710     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
711     // Adjust the ValNo, if it was encoded relative to the InstNum.
712     if (UseRelativeIDs)
713       ValNo = InstNum - ValNo;
714     return getFnValueByID(ValNo, Ty);
715   }
716 
717   /// Upgrades old-style typeless byval attributes by adding the corresponding
718   /// argument's pointee type.
719   void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys);
720 
721   /// Converts alignment exponent (i.e. power of two (or zero)) to the
722   /// corresponding alignment to use. If alignment is too large, returns
723   /// a corresponding error code.
724   Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment);
725   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
726   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
727 
728   Error parseComdatRecord(ArrayRef<uint64_t> Record);
729   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
730   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
731   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
732                                         ArrayRef<uint64_t> Record);
733 
734   Error parseAttributeBlock();
735   Error parseAttributeGroupBlock();
736   Error parseTypeTable();
737   Error parseTypeTableBody();
738   Error parseOperandBundleTags();
739   Error parseSyncScopeNames();
740 
741   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
742                                 unsigned NameIndex, Triple &TT);
743   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
744                                ArrayRef<uint64_t> Record);
745   Error parseValueSymbolTable(uint64_t Offset = 0);
746   Error parseGlobalValueSymbolTable();
747   Error parseConstants();
748   Error rememberAndSkipFunctionBodies();
749   Error rememberAndSkipFunctionBody();
750   /// Save the positions of the Metadata blocks and skip parsing the blocks.
751   Error rememberAndSkipMetadata();
752   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
753   Error parseFunctionBody(Function *F);
754   Error globalCleanup();
755   Error resolveGlobalAndIndirectSymbolInits();
756   Error parseUseLists();
757   Error findFunctionInStream(
758       Function *F,
759       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
760 
761   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
762 };
763 
764 /// Class to manage reading and parsing function summary index bitcode
765 /// files/sections.
766 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
767   /// The module index built during parsing.
768   ModuleSummaryIndex &TheIndex;
769 
770   /// Indicates whether we have encountered a global value summary section
771   /// yet during parsing.
772   bool SeenGlobalValSummary = false;
773 
774   /// Indicates whether we have already parsed the VST, used for error checking.
775   bool SeenValueSymbolTable = false;
776 
777   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
778   /// Used to enable on-demand parsing of the VST.
779   uint64_t VSTOffset = 0;
780 
781   // Map to save ValueId to ValueInfo association that was recorded in the
782   // ValueSymbolTable. It is used after the VST is parsed to convert
783   // call graph edges read from the function summary from referencing
784   // callees by their ValueId to using the ValueInfo instead, which is how
785   // they are recorded in the summary index being built.
786   // We save a GUID which refers to the same global as the ValueInfo, but
787   // ignoring the linkage, i.e. for values other than local linkage they are
788   // identical.
789   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
790       ValueIdToValueInfoMap;
791 
792   /// Map populated during module path string table parsing, from the
793   /// module ID to a string reference owned by the index's module
794   /// path string table, used to correlate with combined index
795   /// summary records.
796   DenseMap<uint64_t, StringRef> ModuleIdMap;
797 
798   /// Original source file name recorded in a bitcode record.
799   std::string SourceFileName;
800 
801   /// The string identifier given to this module by the client, normally the
802   /// path to the bitcode file.
803   StringRef ModulePath;
804 
805   /// For per-module summary indexes, the unique numerical identifier given to
806   /// this module by the client.
807   unsigned ModuleId;
808 
809 public:
810   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
811                                   ModuleSummaryIndex &TheIndex,
812                                   StringRef ModulePath, unsigned ModuleId);
813 
814   Error parseModule();
815 
816 private:
817   void setValueGUID(uint64_t ValueID, StringRef ValueName,
818                     GlobalValue::LinkageTypes Linkage,
819                     StringRef SourceFileName);
820   Error parseValueSymbolTable(
821       uint64_t Offset,
822       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
823   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
824   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
825                                                     bool IsOldProfileFormat,
826                                                     bool HasProfile,
827                                                     bool HasRelBF);
828   Error parseEntireSummary(unsigned ID);
829   Error parseModuleStringTable();
830   void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record);
831   void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot,
832                                        TypeIdCompatibleVtableInfo &TypeId);
833 
834   std::pair<ValueInfo, GlobalValue::GUID>
835   getValueInfoFromValueId(unsigned ValueId);
836 
837   void addThisModule();
838   ModuleSummaryIndex::ModuleInfo *getThisModule();
839 };
840 
841 } // end anonymous namespace
842 
843 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
844                                                     Error Err) {
845   if (Err) {
846     std::error_code EC;
847     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
848       EC = EIB.convertToErrorCode();
849       Ctx.emitError(EIB.message());
850     });
851     return EC;
852   }
853   return std::error_code();
854 }
855 
856 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
857                              StringRef ProducerIdentification,
858                              LLVMContext &Context)
859     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
860       ValueList(Context, Stream.SizeInBytes()) {
861   this->ProducerIdentification = std::string(ProducerIdentification);
862 }
863 
864 Error BitcodeReader::materializeForwardReferencedFunctions() {
865   if (WillMaterializeAllForwardRefs)
866     return Error::success();
867 
868   // Prevent recursion.
869   WillMaterializeAllForwardRefs = true;
870 
871   while (!BasicBlockFwdRefQueue.empty()) {
872     Function *F = BasicBlockFwdRefQueue.front();
873     BasicBlockFwdRefQueue.pop_front();
874     assert(F && "Expected valid function");
875     if (!BasicBlockFwdRefs.count(F))
876       // Already materialized.
877       continue;
878 
879     // Check for a function that isn't materializable to prevent an infinite
880     // loop.  When parsing a blockaddress stored in a global variable, there
881     // isn't a trivial way to check if a function will have a body without a
882     // linear search through FunctionsWithBodies, so just check it here.
883     if (!F->isMaterializable())
884       return error("Never resolved function from blockaddress");
885 
886     // Try to materialize F.
887     if (Error Err = materialize(F))
888       return Err;
889   }
890   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
891 
892   // Reset state.
893   WillMaterializeAllForwardRefs = false;
894   return Error::success();
895 }
896 
897 //===----------------------------------------------------------------------===//
898 //  Helper functions to implement forward reference resolution, etc.
899 //===----------------------------------------------------------------------===//
900 
901 static bool hasImplicitComdat(size_t Val) {
902   switch (Val) {
903   default:
904     return false;
905   case 1:  // Old WeakAnyLinkage
906   case 4:  // Old LinkOnceAnyLinkage
907   case 10: // Old WeakODRLinkage
908   case 11: // Old LinkOnceODRLinkage
909     return true;
910   }
911 }
912 
913 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
914   switch (Val) {
915   default: // Map unknown/new linkages to external
916   case 0:
917     return GlobalValue::ExternalLinkage;
918   case 2:
919     return GlobalValue::AppendingLinkage;
920   case 3:
921     return GlobalValue::InternalLinkage;
922   case 5:
923     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
924   case 6:
925     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
926   case 7:
927     return GlobalValue::ExternalWeakLinkage;
928   case 8:
929     return GlobalValue::CommonLinkage;
930   case 9:
931     return GlobalValue::PrivateLinkage;
932   case 12:
933     return GlobalValue::AvailableExternallyLinkage;
934   case 13:
935     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
936   case 14:
937     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
938   case 15:
939     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
940   case 1: // Old value with implicit comdat.
941   case 16:
942     return GlobalValue::WeakAnyLinkage;
943   case 10: // Old value with implicit comdat.
944   case 17:
945     return GlobalValue::WeakODRLinkage;
946   case 4: // Old value with implicit comdat.
947   case 18:
948     return GlobalValue::LinkOnceAnyLinkage;
949   case 11: // Old value with implicit comdat.
950   case 19:
951     return GlobalValue::LinkOnceODRLinkage;
952   }
953 }
954 
955 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
956   FunctionSummary::FFlags Flags;
957   Flags.ReadNone = RawFlags & 0x1;
958   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
959   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
960   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
961   Flags.NoInline = (RawFlags >> 4) & 0x1;
962   Flags.AlwaysInline = (RawFlags >> 5) & 0x1;
963   return Flags;
964 }
965 
966 /// Decode the flags for GlobalValue in the summary.
967 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
968                                                             uint64_t Version) {
969   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
970   // like getDecodedLinkage() above. Any future change to the linkage enum and
971   // to getDecodedLinkage() will need to be taken into account here as above.
972   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
973   RawFlags = RawFlags >> 4;
974   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
975   // The Live flag wasn't introduced until version 3. For dead stripping
976   // to work correctly on earlier versions, we must conservatively treat all
977   // values as live.
978   bool Live = (RawFlags & 0x2) || Version < 3;
979   bool Local = (RawFlags & 0x4);
980   bool AutoHide = (RawFlags & 0x8);
981 
982   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
983 }
984 
985 // Decode the flags for GlobalVariable in the summary
986 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
987   return GlobalVarSummary::GVarFlags(
988       (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false,
989       (RawFlags & 0x4) ? true : false,
990       (GlobalObject::VCallVisibility)(RawFlags >> 3));
991 }
992 
993 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
994   switch (Val) {
995   default: // Map unknown visibilities to default.
996   case 0: return GlobalValue::DefaultVisibility;
997   case 1: return GlobalValue::HiddenVisibility;
998   case 2: return GlobalValue::ProtectedVisibility;
999   }
1000 }
1001 
1002 static GlobalValue::DLLStorageClassTypes
1003 getDecodedDLLStorageClass(unsigned Val) {
1004   switch (Val) {
1005   default: // Map unknown values to default.
1006   case 0: return GlobalValue::DefaultStorageClass;
1007   case 1: return GlobalValue::DLLImportStorageClass;
1008   case 2: return GlobalValue::DLLExportStorageClass;
1009   }
1010 }
1011 
1012 static bool getDecodedDSOLocal(unsigned Val) {
1013   switch(Val) {
1014   default: // Map unknown values to preemptable.
1015   case 0:  return false;
1016   case 1:  return true;
1017   }
1018 }
1019 
1020 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
1021   switch (Val) {
1022     case 0: return GlobalVariable::NotThreadLocal;
1023     default: // Map unknown non-zero value to general dynamic.
1024     case 1: return GlobalVariable::GeneralDynamicTLSModel;
1025     case 2: return GlobalVariable::LocalDynamicTLSModel;
1026     case 3: return GlobalVariable::InitialExecTLSModel;
1027     case 4: return GlobalVariable::LocalExecTLSModel;
1028   }
1029 }
1030 
1031 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
1032   switch (Val) {
1033     default: // Map unknown to UnnamedAddr::None.
1034     case 0: return GlobalVariable::UnnamedAddr::None;
1035     case 1: return GlobalVariable::UnnamedAddr::Global;
1036     case 2: return GlobalVariable::UnnamedAddr::Local;
1037   }
1038 }
1039 
1040 static int getDecodedCastOpcode(unsigned Val) {
1041   switch (Val) {
1042   default: return -1;
1043   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1044   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1045   case bitc::CAST_SEXT    : return Instruction::SExt;
1046   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1047   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1048   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1049   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1050   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1051   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1052   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1053   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1054   case bitc::CAST_BITCAST : return Instruction::BitCast;
1055   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1056   }
1057 }
1058 
1059 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1060   bool IsFP = Ty->isFPOrFPVectorTy();
1061   // UnOps are only valid for int/fp or vector of int/fp types
1062   if (!IsFP && !Ty->isIntOrIntVectorTy())
1063     return -1;
1064 
1065   switch (Val) {
1066   default:
1067     return -1;
1068   case bitc::UNOP_FNEG:
1069     return IsFP ? Instruction::FNeg : -1;
1070   }
1071 }
1072 
1073 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1074   bool IsFP = Ty->isFPOrFPVectorTy();
1075   // BinOps are only valid for int/fp or vector of int/fp types
1076   if (!IsFP && !Ty->isIntOrIntVectorTy())
1077     return -1;
1078 
1079   switch (Val) {
1080   default:
1081     return -1;
1082   case bitc::BINOP_ADD:
1083     return IsFP ? Instruction::FAdd : Instruction::Add;
1084   case bitc::BINOP_SUB:
1085     return IsFP ? Instruction::FSub : Instruction::Sub;
1086   case bitc::BINOP_MUL:
1087     return IsFP ? Instruction::FMul : Instruction::Mul;
1088   case bitc::BINOP_UDIV:
1089     return IsFP ? -1 : Instruction::UDiv;
1090   case bitc::BINOP_SDIV:
1091     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1092   case bitc::BINOP_UREM:
1093     return IsFP ? -1 : Instruction::URem;
1094   case bitc::BINOP_SREM:
1095     return IsFP ? Instruction::FRem : Instruction::SRem;
1096   case bitc::BINOP_SHL:
1097     return IsFP ? -1 : Instruction::Shl;
1098   case bitc::BINOP_LSHR:
1099     return IsFP ? -1 : Instruction::LShr;
1100   case bitc::BINOP_ASHR:
1101     return IsFP ? -1 : Instruction::AShr;
1102   case bitc::BINOP_AND:
1103     return IsFP ? -1 : Instruction::And;
1104   case bitc::BINOP_OR:
1105     return IsFP ? -1 : Instruction::Or;
1106   case bitc::BINOP_XOR:
1107     return IsFP ? -1 : Instruction::Xor;
1108   }
1109 }
1110 
1111 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1112   switch (Val) {
1113   default: return AtomicRMWInst::BAD_BINOP;
1114   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1115   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1116   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1117   case bitc::RMW_AND: return AtomicRMWInst::And;
1118   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1119   case bitc::RMW_OR: return AtomicRMWInst::Or;
1120   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1121   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1122   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1123   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1124   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1125   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1126   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1127   }
1128 }
1129 
1130 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1131   switch (Val) {
1132   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1133   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1134   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1135   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1136   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1137   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1138   default: // Map unknown orderings to sequentially-consistent.
1139   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1140   }
1141 }
1142 
1143 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1144   switch (Val) {
1145   default: // Map unknown selection kinds to any.
1146   case bitc::COMDAT_SELECTION_KIND_ANY:
1147     return Comdat::Any;
1148   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1149     return Comdat::ExactMatch;
1150   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1151     return Comdat::Largest;
1152   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1153     return Comdat::NoDuplicates;
1154   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1155     return Comdat::SameSize;
1156   }
1157 }
1158 
1159 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1160   FastMathFlags FMF;
1161   if (0 != (Val & bitc::UnsafeAlgebra))
1162     FMF.setFast();
1163   if (0 != (Val & bitc::AllowReassoc))
1164     FMF.setAllowReassoc();
1165   if (0 != (Val & bitc::NoNaNs))
1166     FMF.setNoNaNs();
1167   if (0 != (Val & bitc::NoInfs))
1168     FMF.setNoInfs();
1169   if (0 != (Val & bitc::NoSignedZeros))
1170     FMF.setNoSignedZeros();
1171   if (0 != (Val & bitc::AllowReciprocal))
1172     FMF.setAllowReciprocal();
1173   if (0 != (Val & bitc::AllowContract))
1174     FMF.setAllowContract(true);
1175   if (0 != (Val & bitc::ApproxFunc))
1176     FMF.setApproxFunc();
1177   return FMF;
1178 }
1179 
1180 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1181   switch (Val) {
1182   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1183   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1184   }
1185 }
1186 
1187 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) {
1188   // The type table size is always specified correctly.
1189   if (ID >= TypeList.size())
1190     return nullptr;
1191 
1192   if (Type *Ty = TypeList[ID])
1193     return Ty;
1194 
1195   // If we have a forward reference, the only possible case is when it is to a
1196   // named struct.  Just create a placeholder for now.
1197   return TypeList[ID] = createIdentifiedStructType(Context);
1198 }
1199 
1200 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1201                                                       StringRef Name) {
1202   auto *Ret = StructType::create(Context, Name);
1203   IdentifiedStructTypes.push_back(Ret);
1204   return Ret;
1205 }
1206 
1207 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1208   auto *Ret = StructType::create(Context);
1209   IdentifiedStructTypes.push_back(Ret);
1210   return Ret;
1211 }
1212 
1213 //===----------------------------------------------------------------------===//
1214 //  Functions for parsing blocks from the bitcode file
1215 //===----------------------------------------------------------------------===//
1216 
1217 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1218   switch (Val) {
1219   case Attribute::EndAttrKinds:
1220   case Attribute::EmptyKey:
1221   case Attribute::TombstoneKey:
1222     llvm_unreachable("Synthetic enumerators which should never get here");
1223 
1224   case Attribute::None:            return 0;
1225   case Attribute::ZExt:            return 1 << 0;
1226   case Attribute::SExt:            return 1 << 1;
1227   case Attribute::NoReturn:        return 1 << 2;
1228   case Attribute::InReg:           return 1 << 3;
1229   case Attribute::StructRet:       return 1 << 4;
1230   case Attribute::NoUnwind:        return 1 << 5;
1231   case Attribute::NoAlias:         return 1 << 6;
1232   case Attribute::ByVal:           return 1 << 7;
1233   case Attribute::Nest:            return 1 << 8;
1234   case Attribute::ReadNone:        return 1 << 9;
1235   case Attribute::ReadOnly:        return 1 << 10;
1236   case Attribute::NoInline:        return 1 << 11;
1237   case Attribute::AlwaysInline:    return 1 << 12;
1238   case Attribute::OptimizeForSize: return 1 << 13;
1239   case Attribute::StackProtect:    return 1 << 14;
1240   case Attribute::StackProtectReq: return 1 << 15;
1241   case Attribute::Alignment:       return 31 << 16;
1242   case Attribute::NoCapture:       return 1 << 21;
1243   case Attribute::NoRedZone:       return 1 << 22;
1244   case Attribute::NoImplicitFloat: return 1 << 23;
1245   case Attribute::Naked:           return 1 << 24;
1246   case Attribute::InlineHint:      return 1 << 25;
1247   case Attribute::StackAlignment:  return 7 << 26;
1248   case Attribute::ReturnsTwice:    return 1 << 29;
1249   case Attribute::UWTable:         return 1 << 30;
1250   case Attribute::NonLazyBind:     return 1U << 31;
1251   case Attribute::SanitizeAddress: return 1ULL << 32;
1252   case Attribute::MinSize:         return 1ULL << 33;
1253   case Attribute::NoDuplicate:     return 1ULL << 34;
1254   case Attribute::StackProtectStrong: return 1ULL << 35;
1255   case Attribute::SanitizeThread:  return 1ULL << 36;
1256   case Attribute::SanitizeMemory:  return 1ULL << 37;
1257   case Attribute::NoBuiltin:       return 1ULL << 38;
1258   case Attribute::Returned:        return 1ULL << 39;
1259   case Attribute::Cold:            return 1ULL << 40;
1260   case Attribute::Builtin:         return 1ULL << 41;
1261   case Attribute::OptimizeNone:    return 1ULL << 42;
1262   case Attribute::InAlloca:        return 1ULL << 43;
1263   case Attribute::NonNull:         return 1ULL << 44;
1264   case Attribute::JumpTable:       return 1ULL << 45;
1265   case Attribute::Convergent:      return 1ULL << 46;
1266   case Attribute::SafeStack:       return 1ULL << 47;
1267   case Attribute::NoRecurse:       return 1ULL << 48;
1268   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1269   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1270   case Attribute::SwiftSelf:       return 1ULL << 51;
1271   case Attribute::SwiftError:      return 1ULL << 52;
1272   case Attribute::WriteOnly:       return 1ULL << 53;
1273   case Attribute::Speculatable:    return 1ULL << 54;
1274   case Attribute::StrictFP:        return 1ULL << 55;
1275   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1276   case Attribute::NoCfCheck:       return 1ULL << 57;
1277   case Attribute::OptForFuzzing:   return 1ULL << 58;
1278   case Attribute::ShadowCallStack: return 1ULL << 59;
1279   case Attribute::SpeculativeLoadHardening:
1280     return 1ULL << 60;
1281   case Attribute::ImmArg:
1282     return 1ULL << 61;
1283   case Attribute::WillReturn:
1284     return 1ULL << 62;
1285   case Attribute::NoFree:
1286     return 1ULL << 63;
1287   default:
1288     // Other attributes are not supported in the raw format,
1289     // as we ran out of space.
1290     return 0;
1291   }
1292   llvm_unreachable("Unsupported attribute type");
1293 }
1294 
1295 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1296   if (!Val) return;
1297 
1298   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1299        I = Attribute::AttrKind(I + 1)) {
1300     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1301       if (I == Attribute::Alignment)
1302         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1303       else if (I == Attribute::StackAlignment)
1304         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1305       else
1306         B.addAttribute(I);
1307     }
1308   }
1309 }
1310 
1311 /// This fills an AttrBuilder object with the LLVM attributes that have
1312 /// been decoded from the given integer. This function must stay in sync with
1313 /// 'encodeLLVMAttributesForBitcode'.
1314 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1315                                            uint64_t EncodedAttrs) {
1316   // FIXME: Remove in 4.0.
1317 
1318   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1319   // the bits above 31 down by 11 bits.
1320   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1321   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1322          "Alignment must be a power of two.");
1323 
1324   if (Alignment)
1325     B.addAlignmentAttr(Alignment);
1326   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1327                           (EncodedAttrs & 0xffff));
1328 }
1329 
1330 Error BitcodeReader::parseAttributeBlock() {
1331   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1332     return Err;
1333 
1334   if (!MAttributes.empty())
1335     return error("Invalid multiple blocks");
1336 
1337   SmallVector<uint64_t, 64> Record;
1338 
1339   SmallVector<AttributeList, 8> Attrs;
1340 
1341   // Read all the records.
1342   while (true) {
1343     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1344     if (!MaybeEntry)
1345       return MaybeEntry.takeError();
1346     BitstreamEntry Entry = MaybeEntry.get();
1347 
1348     switch (Entry.Kind) {
1349     case BitstreamEntry::SubBlock: // Handled for us already.
1350     case BitstreamEntry::Error:
1351       return error("Malformed block");
1352     case BitstreamEntry::EndBlock:
1353       return Error::success();
1354     case BitstreamEntry::Record:
1355       // The interesting case.
1356       break;
1357     }
1358 
1359     // Read a record.
1360     Record.clear();
1361     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1362     if (!MaybeRecord)
1363       return MaybeRecord.takeError();
1364     switch (MaybeRecord.get()) {
1365     default:  // Default behavior: ignore.
1366       break;
1367     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1368       // FIXME: Remove in 4.0.
1369       if (Record.size() & 1)
1370         return error("Invalid record");
1371 
1372       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1373         AttrBuilder B;
1374         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1375         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1376       }
1377 
1378       MAttributes.push_back(AttributeList::get(Context, Attrs));
1379       Attrs.clear();
1380       break;
1381     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1382       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1383         Attrs.push_back(MAttributeGroups[Record[i]]);
1384 
1385       MAttributes.push_back(AttributeList::get(Context, Attrs));
1386       Attrs.clear();
1387       break;
1388     }
1389   }
1390 }
1391 
1392 // Returns Attribute::None on unrecognized codes.
1393 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1394   switch (Code) {
1395   default:
1396     return Attribute::None;
1397   case bitc::ATTR_KIND_ALIGNMENT:
1398     return Attribute::Alignment;
1399   case bitc::ATTR_KIND_ALWAYS_INLINE:
1400     return Attribute::AlwaysInline;
1401   case bitc::ATTR_KIND_ARGMEMONLY:
1402     return Attribute::ArgMemOnly;
1403   case bitc::ATTR_KIND_BUILTIN:
1404     return Attribute::Builtin;
1405   case bitc::ATTR_KIND_BY_VAL:
1406     return Attribute::ByVal;
1407   case bitc::ATTR_KIND_IN_ALLOCA:
1408     return Attribute::InAlloca;
1409   case bitc::ATTR_KIND_COLD:
1410     return Attribute::Cold;
1411   case bitc::ATTR_KIND_CONVERGENT:
1412     return Attribute::Convergent;
1413   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1414     return Attribute::InaccessibleMemOnly;
1415   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1416     return Attribute::InaccessibleMemOrArgMemOnly;
1417   case bitc::ATTR_KIND_INLINE_HINT:
1418     return Attribute::InlineHint;
1419   case bitc::ATTR_KIND_IN_REG:
1420     return Attribute::InReg;
1421   case bitc::ATTR_KIND_JUMP_TABLE:
1422     return Attribute::JumpTable;
1423   case bitc::ATTR_KIND_MIN_SIZE:
1424     return Attribute::MinSize;
1425   case bitc::ATTR_KIND_NAKED:
1426     return Attribute::Naked;
1427   case bitc::ATTR_KIND_NEST:
1428     return Attribute::Nest;
1429   case bitc::ATTR_KIND_NO_ALIAS:
1430     return Attribute::NoAlias;
1431   case bitc::ATTR_KIND_NO_BUILTIN:
1432     return Attribute::NoBuiltin;
1433   case bitc::ATTR_KIND_NO_CAPTURE:
1434     return Attribute::NoCapture;
1435   case bitc::ATTR_KIND_NO_DUPLICATE:
1436     return Attribute::NoDuplicate;
1437   case bitc::ATTR_KIND_NOFREE:
1438     return Attribute::NoFree;
1439   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1440     return Attribute::NoImplicitFloat;
1441   case bitc::ATTR_KIND_NO_INLINE:
1442     return Attribute::NoInline;
1443   case bitc::ATTR_KIND_NO_RECURSE:
1444     return Attribute::NoRecurse;
1445   case bitc::ATTR_KIND_NON_LAZY_BIND:
1446     return Attribute::NonLazyBind;
1447   case bitc::ATTR_KIND_NON_NULL:
1448     return Attribute::NonNull;
1449   case bitc::ATTR_KIND_DEREFERENCEABLE:
1450     return Attribute::Dereferenceable;
1451   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1452     return Attribute::DereferenceableOrNull;
1453   case bitc::ATTR_KIND_ALLOC_SIZE:
1454     return Attribute::AllocSize;
1455   case bitc::ATTR_KIND_NO_RED_ZONE:
1456     return Attribute::NoRedZone;
1457   case bitc::ATTR_KIND_NO_RETURN:
1458     return Attribute::NoReturn;
1459   case bitc::ATTR_KIND_NOSYNC:
1460     return Attribute::NoSync;
1461   case bitc::ATTR_KIND_NOCF_CHECK:
1462     return Attribute::NoCfCheck;
1463   case bitc::ATTR_KIND_NO_UNWIND:
1464     return Attribute::NoUnwind;
1465   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1466     return Attribute::OptForFuzzing;
1467   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1468     return Attribute::OptimizeForSize;
1469   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1470     return Attribute::OptimizeNone;
1471   case bitc::ATTR_KIND_READ_NONE:
1472     return Attribute::ReadNone;
1473   case bitc::ATTR_KIND_READ_ONLY:
1474     return Attribute::ReadOnly;
1475   case bitc::ATTR_KIND_RETURNED:
1476     return Attribute::Returned;
1477   case bitc::ATTR_KIND_RETURNS_TWICE:
1478     return Attribute::ReturnsTwice;
1479   case bitc::ATTR_KIND_S_EXT:
1480     return Attribute::SExt;
1481   case bitc::ATTR_KIND_SPECULATABLE:
1482     return Attribute::Speculatable;
1483   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1484     return Attribute::StackAlignment;
1485   case bitc::ATTR_KIND_STACK_PROTECT:
1486     return Attribute::StackProtect;
1487   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1488     return Attribute::StackProtectReq;
1489   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1490     return Attribute::StackProtectStrong;
1491   case bitc::ATTR_KIND_SAFESTACK:
1492     return Attribute::SafeStack;
1493   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1494     return Attribute::ShadowCallStack;
1495   case bitc::ATTR_KIND_STRICT_FP:
1496     return Attribute::StrictFP;
1497   case bitc::ATTR_KIND_STRUCT_RET:
1498     return Attribute::StructRet;
1499   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1500     return Attribute::SanitizeAddress;
1501   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1502     return Attribute::SanitizeHWAddress;
1503   case bitc::ATTR_KIND_SANITIZE_THREAD:
1504     return Attribute::SanitizeThread;
1505   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1506     return Attribute::SanitizeMemory;
1507   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1508     return Attribute::SpeculativeLoadHardening;
1509   case bitc::ATTR_KIND_SWIFT_ERROR:
1510     return Attribute::SwiftError;
1511   case bitc::ATTR_KIND_SWIFT_SELF:
1512     return Attribute::SwiftSelf;
1513   case bitc::ATTR_KIND_UW_TABLE:
1514     return Attribute::UWTable;
1515   case bitc::ATTR_KIND_WILLRETURN:
1516     return Attribute::WillReturn;
1517   case bitc::ATTR_KIND_WRITEONLY:
1518     return Attribute::WriteOnly;
1519   case bitc::ATTR_KIND_Z_EXT:
1520     return Attribute::ZExt;
1521   case bitc::ATTR_KIND_IMMARG:
1522     return Attribute::ImmArg;
1523   case bitc::ATTR_KIND_SANITIZE_MEMTAG:
1524     return Attribute::SanitizeMemTag;
1525   case bitc::ATTR_KIND_PREALLOCATED:
1526     return Attribute::Preallocated;
1527   }
1528 }
1529 
1530 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1531                                          MaybeAlign &Alignment) {
1532   // Note: Alignment in bitcode files is incremented by 1, so that zero
1533   // can be used for default alignment.
1534   if (Exponent > Value::MaxAlignmentExponent + 1)
1535     return error("Invalid alignment value");
1536   Alignment = decodeMaybeAlign(Exponent);
1537   return Error::success();
1538 }
1539 
1540 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1541   *Kind = getAttrFromCode(Code);
1542   if (*Kind == Attribute::None)
1543     return error("Unknown attribute kind (" + Twine(Code) + ")");
1544   return Error::success();
1545 }
1546 
1547 Error BitcodeReader::parseAttributeGroupBlock() {
1548   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1549     return Err;
1550 
1551   if (!MAttributeGroups.empty())
1552     return error("Invalid multiple blocks");
1553 
1554   SmallVector<uint64_t, 64> Record;
1555 
1556   // Read all the records.
1557   while (true) {
1558     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1559     if (!MaybeEntry)
1560       return MaybeEntry.takeError();
1561     BitstreamEntry Entry = MaybeEntry.get();
1562 
1563     switch (Entry.Kind) {
1564     case BitstreamEntry::SubBlock: // Handled for us already.
1565     case BitstreamEntry::Error:
1566       return error("Malformed block");
1567     case BitstreamEntry::EndBlock:
1568       return Error::success();
1569     case BitstreamEntry::Record:
1570       // The interesting case.
1571       break;
1572     }
1573 
1574     // Read a record.
1575     Record.clear();
1576     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1577     if (!MaybeRecord)
1578       return MaybeRecord.takeError();
1579     switch (MaybeRecord.get()) {
1580     default:  // Default behavior: ignore.
1581       break;
1582     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1583       if (Record.size() < 3)
1584         return error("Invalid record");
1585 
1586       uint64_t GrpID = Record[0];
1587       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1588 
1589       AttrBuilder B;
1590       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1591         if (Record[i] == 0) {        // Enum attribute
1592           Attribute::AttrKind Kind;
1593           if (Error Err = parseAttrKind(Record[++i], &Kind))
1594             return Err;
1595 
1596           // Upgrade old-style byval attribute to one with a type, even if it's
1597           // nullptr. We will have to insert the real type when we associate
1598           // this AttributeList with a function.
1599           if (Kind == Attribute::ByVal)
1600             B.addByValAttr(nullptr);
1601 
1602           B.addAttribute(Kind);
1603         } else if (Record[i] == 1) { // Integer attribute
1604           Attribute::AttrKind Kind;
1605           if (Error Err = parseAttrKind(Record[++i], &Kind))
1606             return Err;
1607           if (Kind == Attribute::Alignment)
1608             B.addAlignmentAttr(Record[++i]);
1609           else if (Kind == Attribute::StackAlignment)
1610             B.addStackAlignmentAttr(Record[++i]);
1611           else if (Kind == Attribute::Dereferenceable)
1612             B.addDereferenceableAttr(Record[++i]);
1613           else if (Kind == Attribute::DereferenceableOrNull)
1614             B.addDereferenceableOrNullAttr(Record[++i]);
1615           else if (Kind == Attribute::AllocSize)
1616             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1617         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1618           bool HasValue = (Record[i++] == 4);
1619           SmallString<64> KindStr;
1620           SmallString<64> ValStr;
1621 
1622           while (Record[i] != 0 && i != e)
1623             KindStr += Record[i++];
1624           assert(Record[i] == 0 && "Kind string not null terminated");
1625 
1626           if (HasValue) {
1627             // Has a value associated with it.
1628             ++i; // Skip the '0' that terminates the "kind" string.
1629             while (Record[i] != 0 && i != e)
1630               ValStr += Record[i++];
1631             assert(Record[i] == 0 && "Value string not null terminated");
1632           }
1633 
1634           B.addAttribute(KindStr.str(), ValStr.str());
1635         } else {
1636           assert((Record[i] == 5 || Record[i] == 6) &&
1637                  "Invalid attribute group entry");
1638           bool HasType = Record[i] == 6;
1639           Attribute::AttrKind Kind;
1640           if (Error Err = parseAttrKind(Record[++i], &Kind))
1641             return Err;
1642           if (Kind == Attribute::ByVal) {
1643             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1644           } else if (Kind == Attribute::Preallocated) {
1645             B.addPreallocatedAttr(getTypeByID(Record[++i]));
1646           }
1647         }
1648       }
1649 
1650       UpgradeFramePointerAttributes(B);
1651       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1652       break;
1653     }
1654     }
1655   }
1656 }
1657 
1658 Error BitcodeReader::parseTypeTable() {
1659   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1660     return Err;
1661 
1662   return parseTypeTableBody();
1663 }
1664 
1665 Error BitcodeReader::parseTypeTableBody() {
1666   if (!TypeList.empty())
1667     return error("Invalid multiple blocks");
1668 
1669   SmallVector<uint64_t, 64> Record;
1670   unsigned NumRecords = 0;
1671 
1672   SmallString<64> TypeName;
1673 
1674   // Read all the records for this type table.
1675   while (true) {
1676     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1677     if (!MaybeEntry)
1678       return MaybeEntry.takeError();
1679     BitstreamEntry Entry = MaybeEntry.get();
1680 
1681     switch (Entry.Kind) {
1682     case BitstreamEntry::SubBlock: // Handled for us already.
1683     case BitstreamEntry::Error:
1684       return error("Malformed block");
1685     case BitstreamEntry::EndBlock:
1686       if (NumRecords != TypeList.size())
1687         return error("Malformed block");
1688       return Error::success();
1689     case BitstreamEntry::Record:
1690       // The interesting case.
1691       break;
1692     }
1693 
1694     // Read a record.
1695     Record.clear();
1696     Type *ResultTy = nullptr;
1697     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1698     if (!MaybeRecord)
1699       return MaybeRecord.takeError();
1700     switch (MaybeRecord.get()) {
1701     default:
1702       return error("Invalid value");
1703     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1704       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1705       // type list.  This allows us to reserve space.
1706       if (Record.size() < 1)
1707         return error("Invalid record");
1708       TypeList.resize(Record[0]);
1709       continue;
1710     case bitc::TYPE_CODE_VOID:      // VOID
1711       ResultTy = Type::getVoidTy(Context);
1712       break;
1713     case bitc::TYPE_CODE_HALF:     // HALF
1714       ResultTy = Type::getHalfTy(Context);
1715       break;
1716     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1717       ResultTy = Type::getFloatTy(Context);
1718       break;
1719     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1720       ResultTy = Type::getDoubleTy(Context);
1721       break;
1722     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1723       ResultTy = Type::getX86_FP80Ty(Context);
1724       break;
1725     case bitc::TYPE_CODE_FP128:     // FP128
1726       ResultTy = Type::getFP128Ty(Context);
1727       break;
1728     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1729       ResultTy = Type::getPPC_FP128Ty(Context);
1730       break;
1731     case bitc::TYPE_CODE_LABEL:     // LABEL
1732       ResultTy = Type::getLabelTy(Context);
1733       break;
1734     case bitc::TYPE_CODE_METADATA:  // METADATA
1735       ResultTy = Type::getMetadataTy(Context);
1736       break;
1737     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1738       ResultTy = Type::getX86_MMXTy(Context);
1739       break;
1740     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1741       ResultTy = Type::getTokenTy(Context);
1742       break;
1743     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1744       if (Record.size() < 1)
1745         return error("Invalid record");
1746 
1747       uint64_t NumBits = Record[0];
1748       if (NumBits < IntegerType::MIN_INT_BITS ||
1749           NumBits > IntegerType::MAX_INT_BITS)
1750         return error("Bitwidth for integer type out of range");
1751       ResultTy = IntegerType::get(Context, NumBits);
1752       break;
1753     }
1754     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1755                                     //          [pointee type, address space]
1756       if (Record.size() < 1)
1757         return error("Invalid record");
1758       unsigned AddressSpace = 0;
1759       if (Record.size() == 2)
1760         AddressSpace = Record[1];
1761       ResultTy = getTypeByID(Record[0]);
1762       if (!ResultTy ||
1763           !PointerType::isValidElementType(ResultTy))
1764         return error("Invalid type");
1765       ResultTy = PointerType::get(ResultTy, AddressSpace);
1766       break;
1767     }
1768     case bitc::TYPE_CODE_FUNCTION_OLD: {
1769       // FIXME: attrid is dead, remove it in LLVM 4.0
1770       // FUNCTION: [vararg, attrid, retty, paramty x N]
1771       if (Record.size() < 3)
1772         return error("Invalid record");
1773       SmallVector<Type*, 8> ArgTys;
1774       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1775         if (Type *T = getTypeByID(Record[i]))
1776           ArgTys.push_back(T);
1777         else
1778           break;
1779       }
1780 
1781       ResultTy = getTypeByID(Record[2]);
1782       if (!ResultTy || ArgTys.size() < Record.size()-3)
1783         return error("Invalid type");
1784 
1785       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1786       break;
1787     }
1788     case bitc::TYPE_CODE_FUNCTION: {
1789       // FUNCTION: [vararg, retty, paramty x N]
1790       if (Record.size() < 2)
1791         return error("Invalid record");
1792       SmallVector<Type*, 8> ArgTys;
1793       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1794         if (Type *T = getTypeByID(Record[i])) {
1795           if (!FunctionType::isValidArgumentType(T))
1796             return error("Invalid function argument type");
1797           ArgTys.push_back(T);
1798         }
1799         else
1800           break;
1801       }
1802 
1803       ResultTy = getTypeByID(Record[1]);
1804       if (!ResultTy || ArgTys.size() < Record.size()-2)
1805         return error("Invalid type");
1806 
1807       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1808       break;
1809     }
1810     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1811       if (Record.size() < 1)
1812         return error("Invalid record");
1813       SmallVector<Type*, 8> EltTys;
1814       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1815         if (Type *T = getTypeByID(Record[i]))
1816           EltTys.push_back(T);
1817         else
1818           break;
1819       }
1820       if (EltTys.size() != Record.size()-1)
1821         return error("Invalid type");
1822       ResultTy = StructType::get(Context, EltTys, Record[0]);
1823       break;
1824     }
1825     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1826       if (convertToString(Record, 0, TypeName))
1827         return error("Invalid record");
1828       continue;
1829 
1830     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1831       if (Record.size() < 1)
1832         return error("Invalid record");
1833 
1834       if (NumRecords >= TypeList.size())
1835         return error("Invalid TYPE table");
1836 
1837       // Check to see if this was forward referenced, if so fill in the temp.
1838       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1839       if (Res) {
1840         Res->setName(TypeName);
1841         TypeList[NumRecords] = nullptr;
1842       } else  // Otherwise, create a new struct.
1843         Res = createIdentifiedStructType(Context, TypeName);
1844       TypeName.clear();
1845 
1846       SmallVector<Type*, 8> EltTys;
1847       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1848         if (Type *T = getTypeByID(Record[i]))
1849           EltTys.push_back(T);
1850         else
1851           break;
1852       }
1853       if (EltTys.size() != Record.size()-1)
1854         return error("Invalid record");
1855       Res->setBody(EltTys, Record[0]);
1856       ResultTy = Res;
1857       break;
1858     }
1859     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1860       if (Record.size() != 1)
1861         return error("Invalid record");
1862 
1863       if (NumRecords >= TypeList.size())
1864         return error("Invalid TYPE table");
1865 
1866       // Check to see if this was forward referenced, if so fill in the temp.
1867       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1868       if (Res) {
1869         Res->setName(TypeName);
1870         TypeList[NumRecords] = nullptr;
1871       } else  // Otherwise, create a new struct with no body.
1872         Res = createIdentifiedStructType(Context, TypeName);
1873       TypeName.clear();
1874       ResultTy = Res;
1875       break;
1876     }
1877     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1878       if (Record.size() < 2)
1879         return error("Invalid record");
1880       ResultTy = getTypeByID(Record[1]);
1881       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1882         return error("Invalid type");
1883       ResultTy = ArrayType::get(ResultTy, Record[0]);
1884       break;
1885     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1886                                     //         [numelts, eltty, scalable]
1887       if (Record.size() < 2)
1888         return error("Invalid record");
1889       if (Record[0] == 0)
1890         return error("Invalid vector length");
1891       ResultTy = getTypeByID(Record[1]);
1892       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1893         return error("Invalid type");
1894       bool Scalable = Record.size() > 2 ? Record[2] : false;
1895       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1896       break;
1897     }
1898 
1899     if (NumRecords >= TypeList.size())
1900       return error("Invalid TYPE table");
1901     if (TypeList[NumRecords])
1902       return error(
1903           "Invalid TYPE table: Only named structs can be forward referenced");
1904     assert(ResultTy && "Didn't read a type?");
1905     TypeList[NumRecords++] = ResultTy;
1906   }
1907 }
1908 
1909 Error BitcodeReader::parseOperandBundleTags() {
1910   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1911     return Err;
1912 
1913   if (!BundleTags.empty())
1914     return error("Invalid multiple blocks");
1915 
1916   SmallVector<uint64_t, 64> Record;
1917 
1918   while (true) {
1919     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1920     if (!MaybeEntry)
1921       return MaybeEntry.takeError();
1922     BitstreamEntry Entry = MaybeEntry.get();
1923 
1924     switch (Entry.Kind) {
1925     case BitstreamEntry::SubBlock: // Handled for us already.
1926     case BitstreamEntry::Error:
1927       return error("Malformed block");
1928     case BitstreamEntry::EndBlock:
1929       return Error::success();
1930     case BitstreamEntry::Record:
1931       // The interesting case.
1932       break;
1933     }
1934 
1935     // Tags are implicitly mapped to integers by their order.
1936 
1937     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1938     if (!MaybeRecord)
1939       return MaybeRecord.takeError();
1940     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1941       return error("Invalid record");
1942 
1943     // OPERAND_BUNDLE_TAG: [strchr x N]
1944     BundleTags.emplace_back();
1945     if (convertToString(Record, 0, BundleTags.back()))
1946       return error("Invalid record");
1947     Record.clear();
1948   }
1949 }
1950 
1951 Error BitcodeReader::parseSyncScopeNames() {
1952   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1953     return Err;
1954 
1955   if (!SSIDs.empty())
1956     return error("Invalid multiple synchronization scope names blocks");
1957 
1958   SmallVector<uint64_t, 64> Record;
1959   while (true) {
1960     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1961     if (!MaybeEntry)
1962       return MaybeEntry.takeError();
1963     BitstreamEntry Entry = MaybeEntry.get();
1964 
1965     switch (Entry.Kind) {
1966     case BitstreamEntry::SubBlock: // Handled for us already.
1967     case BitstreamEntry::Error:
1968       return error("Malformed block");
1969     case BitstreamEntry::EndBlock:
1970       if (SSIDs.empty())
1971         return error("Invalid empty synchronization scope names block");
1972       return Error::success();
1973     case BitstreamEntry::Record:
1974       // The interesting case.
1975       break;
1976     }
1977 
1978     // Synchronization scope names are implicitly mapped to synchronization
1979     // scope IDs by their order.
1980 
1981     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1982     if (!MaybeRecord)
1983       return MaybeRecord.takeError();
1984     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
1985       return error("Invalid record");
1986 
1987     SmallString<16> SSN;
1988     if (convertToString(Record, 0, SSN))
1989       return error("Invalid record");
1990 
1991     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1992     Record.clear();
1993   }
1994 }
1995 
1996 /// Associate a value with its name from the given index in the provided record.
1997 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1998                                              unsigned NameIndex, Triple &TT) {
1999   SmallString<128> ValueName;
2000   if (convertToString(Record, NameIndex, ValueName))
2001     return error("Invalid record");
2002   unsigned ValueID = Record[0];
2003   if (ValueID >= ValueList.size() || !ValueList[ValueID])
2004     return error("Invalid record");
2005   Value *V = ValueList[ValueID];
2006 
2007   StringRef NameStr(ValueName.data(), ValueName.size());
2008   if (NameStr.find_first_of(0) != StringRef::npos)
2009     return error("Invalid value name");
2010   V->setName(NameStr);
2011   auto *GO = dyn_cast<GlobalObject>(V);
2012   if (GO) {
2013     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
2014       if (TT.supportsCOMDAT())
2015         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
2016       else
2017         GO->setComdat(nullptr);
2018     }
2019   }
2020   return V;
2021 }
2022 
2023 /// Helper to note and return the current location, and jump to the given
2024 /// offset.
2025 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
2026                                                  BitstreamCursor &Stream) {
2027   // Save the current parsing location so we can jump back at the end
2028   // of the VST read.
2029   uint64_t CurrentBit = Stream.GetCurrentBitNo();
2030   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
2031     return std::move(JumpFailed);
2032   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
2033   if (!MaybeEntry)
2034     return MaybeEntry.takeError();
2035   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
2036   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
2037   return CurrentBit;
2038 }
2039 
2040 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
2041                                             Function *F,
2042                                             ArrayRef<uint64_t> Record) {
2043   // Note that we subtract 1 here because the offset is relative to one word
2044   // before the start of the identification or module block, which was
2045   // historically always the start of the regular bitcode header.
2046   uint64_t FuncWordOffset = Record[1] - 1;
2047   uint64_t FuncBitOffset = FuncWordOffset * 32;
2048   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2049   // Set the LastFunctionBlockBit to point to the last function block.
2050   // Later when parsing is resumed after function materialization,
2051   // we can simply skip that last function block.
2052   if (FuncBitOffset > LastFunctionBlockBit)
2053     LastFunctionBlockBit = FuncBitOffset;
2054 }
2055 
2056 /// Read a new-style GlobalValue symbol table.
2057 Error BitcodeReader::parseGlobalValueSymbolTable() {
2058   unsigned FuncBitcodeOffsetDelta =
2059       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2060 
2061   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2062     return Err;
2063 
2064   SmallVector<uint64_t, 64> Record;
2065   while (true) {
2066     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2067     if (!MaybeEntry)
2068       return MaybeEntry.takeError();
2069     BitstreamEntry Entry = MaybeEntry.get();
2070 
2071     switch (Entry.Kind) {
2072     case BitstreamEntry::SubBlock:
2073     case BitstreamEntry::Error:
2074       return error("Malformed block");
2075     case BitstreamEntry::EndBlock:
2076       return Error::success();
2077     case BitstreamEntry::Record:
2078       break;
2079     }
2080 
2081     Record.clear();
2082     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2083     if (!MaybeRecord)
2084       return MaybeRecord.takeError();
2085     switch (MaybeRecord.get()) {
2086     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2087       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2088                               cast<Function>(ValueList[Record[0]]), Record);
2089       break;
2090     }
2091   }
2092 }
2093 
2094 /// Parse the value symbol table at either the current parsing location or
2095 /// at the given bit offset if provided.
2096 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2097   uint64_t CurrentBit;
2098   // Pass in the Offset to distinguish between calling for the module-level
2099   // VST (where we want to jump to the VST offset) and the function-level
2100   // VST (where we don't).
2101   if (Offset > 0) {
2102     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2103     if (!MaybeCurrentBit)
2104       return MaybeCurrentBit.takeError();
2105     CurrentBit = MaybeCurrentBit.get();
2106     // If this module uses a string table, read this as a module-level VST.
2107     if (UseStrtab) {
2108       if (Error Err = parseGlobalValueSymbolTable())
2109         return Err;
2110       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2111         return JumpFailed;
2112       return Error::success();
2113     }
2114     // Otherwise, the VST will be in a similar format to a function-level VST,
2115     // and will contain symbol names.
2116   }
2117 
2118   // Compute the delta between the bitcode indices in the VST (the word offset
2119   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2120   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2121   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2122   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2123   // just before entering the VST subblock because: 1) the EnterSubBlock
2124   // changes the AbbrevID width; 2) the VST block is nested within the same
2125   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2126   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2127   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2128   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2129   unsigned FuncBitcodeOffsetDelta =
2130       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2131 
2132   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2133     return Err;
2134 
2135   SmallVector<uint64_t, 64> Record;
2136 
2137   Triple TT(TheModule->getTargetTriple());
2138 
2139   // Read all the records for this value table.
2140   SmallString<128> ValueName;
2141 
2142   while (true) {
2143     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2144     if (!MaybeEntry)
2145       return MaybeEntry.takeError();
2146     BitstreamEntry Entry = MaybeEntry.get();
2147 
2148     switch (Entry.Kind) {
2149     case BitstreamEntry::SubBlock: // Handled for us already.
2150     case BitstreamEntry::Error:
2151       return error("Malformed block");
2152     case BitstreamEntry::EndBlock:
2153       if (Offset > 0)
2154         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2155           return JumpFailed;
2156       return Error::success();
2157     case BitstreamEntry::Record:
2158       // The interesting case.
2159       break;
2160     }
2161 
2162     // Read a record.
2163     Record.clear();
2164     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2165     if (!MaybeRecord)
2166       return MaybeRecord.takeError();
2167     switch (MaybeRecord.get()) {
2168     default:  // Default behavior: unknown type.
2169       break;
2170     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2171       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2172       if (Error Err = ValOrErr.takeError())
2173         return Err;
2174       ValOrErr.get();
2175       break;
2176     }
2177     case bitc::VST_CODE_FNENTRY: {
2178       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2179       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2180       if (Error Err = ValOrErr.takeError())
2181         return Err;
2182       Value *V = ValOrErr.get();
2183 
2184       // Ignore function offsets emitted for aliases of functions in older
2185       // versions of LLVM.
2186       if (auto *F = dyn_cast<Function>(V))
2187         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2188       break;
2189     }
2190     case bitc::VST_CODE_BBENTRY: {
2191       if (convertToString(Record, 1, ValueName))
2192         return error("Invalid record");
2193       BasicBlock *BB = getBasicBlock(Record[0]);
2194       if (!BB)
2195         return error("Invalid record");
2196 
2197       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2198       ValueName.clear();
2199       break;
2200     }
2201     }
2202   }
2203 }
2204 
2205 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2206 /// encoding.
2207 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2208   if ((V & 1) == 0)
2209     return V >> 1;
2210   if (V != 1)
2211     return -(V >> 1);
2212   // There is no such thing as -0 with integers.  "-0" really means MININT.
2213   return 1ULL << 63;
2214 }
2215 
2216 /// Resolve all of the initializers for global values and aliases that we can.
2217 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2218   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2219   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2220       IndirectSymbolInitWorklist;
2221   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2222   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2223   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2224 
2225   GlobalInitWorklist.swap(GlobalInits);
2226   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2227   FunctionPrefixWorklist.swap(FunctionPrefixes);
2228   FunctionPrologueWorklist.swap(FunctionPrologues);
2229   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2230 
2231   while (!GlobalInitWorklist.empty()) {
2232     unsigned ValID = GlobalInitWorklist.back().second;
2233     if (ValID >= ValueList.size()) {
2234       // Not ready to resolve this yet, it requires something later in the file.
2235       GlobalInits.push_back(GlobalInitWorklist.back());
2236     } else {
2237       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2238         GlobalInitWorklist.back().first->setInitializer(C);
2239       else
2240         return error("Expected a constant");
2241     }
2242     GlobalInitWorklist.pop_back();
2243   }
2244 
2245   while (!IndirectSymbolInitWorklist.empty()) {
2246     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2247     if (ValID >= ValueList.size()) {
2248       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2249     } else {
2250       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2251       if (!C)
2252         return error("Expected a constant");
2253       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2254       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2255         return error("Alias and aliasee types don't match");
2256       GIS->setIndirectSymbol(C);
2257     }
2258     IndirectSymbolInitWorklist.pop_back();
2259   }
2260 
2261   while (!FunctionPrefixWorklist.empty()) {
2262     unsigned ValID = FunctionPrefixWorklist.back().second;
2263     if (ValID >= ValueList.size()) {
2264       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2265     } else {
2266       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2267         FunctionPrefixWorklist.back().first->setPrefixData(C);
2268       else
2269         return error("Expected a constant");
2270     }
2271     FunctionPrefixWorklist.pop_back();
2272   }
2273 
2274   while (!FunctionPrologueWorklist.empty()) {
2275     unsigned ValID = FunctionPrologueWorklist.back().second;
2276     if (ValID >= ValueList.size()) {
2277       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2278     } else {
2279       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2280         FunctionPrologueWorklist.back().first->setPrologueData(C);
2281       else
2282         return error("Expected a constant");
2283     }
2284     FunctionPrologueWorklist.pop_back();
2285   }
2286 
2287   while (!FunctionPersonalityFnWorklist.empty()) {
2288     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2289     if (ValID >= ValueList.size()) {
2290       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2291     } else {
2292       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2293         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2294       else
2295         return error("Expected a constant");
2296     }
2297     FunctionPersonalityFnWorklist.pop_back();
2298   }
2299 
2300   return Error::success();
2301 }
2302 
2303 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2304   SmallVector<uint64_t, 8> Words(Vals.size());
2305   transform(Vals, Words.begin(),
2306                  BitcodeReader::decodeSignRotatedValue);
2307 
2308   return APInt(TypeBits, Words);
2309 }
2310 
2311 Error BitcodeReader::parseConstants() {
2312   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2313     return Err;
2314 
2315   SmallVector<uint64_t, 64> Record;
2316 
2317   // Read all the records for this value table.
2318   Type *CurTy = Type::getInt32Ty(Context);
2319   Type *CurFullTy = Type::getInt32Ty(Context);
2320   unsigned NextCstNo = ValueList.size();
2321 
2322   struct DelayedShufTy {
2323     VectorType *OpTy;
2324     VectorType *RTy;
2325     Type *CurFullTy;
2326     uint64_t Op0Idx;
2327     uint64_t Op1Idx;
2328     uint64_t Op2Idx;
2329   };
2330   std::vector<DelayedShufTy> DelayedShuffles;
2331   while (true) {
2332     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2333     if (!MaybeEntry)
2334       return MaybeEntry.takeError();
2335     BitstreamEntry Entry = MaybeEntry.get();
2336 
2337     switch (Entry.Kind) {
2338     case BitstreamEntry::SubBlock: // Handled for us already.
2339     case BitstreamEntry::Error:
2340       return error("Malformed block");
2341     case BitstreamEntry::EndBlock:
2342       if (NextCstNo != ValueList.size())
2343         return error("Invalid constant reference");
2344 
2345       // Once all the constants have been read, go through and resolve forward
2346       // references.
2347       //
2348       // We have to treat shuffles specially because they don't have three
2349       // operands anymore.  We need to convert the shuffle mask into an array,
2350       // and we can't convert a forward reference.
2351       for (auto &DelayedShuffle : DelayedShuffles) {
2352         VectorType *OpTy = DelayedShuffle.OpTy;
2353         VectorType *RTy = DelayedShuffle.RTy;
2354         uint64_t Op0Idx = DelayedShuffle.Op0Idx;
2355         uint64_t Op1Idx = DelayedShuffle.Op1Idx;
2356         uint64_t Op2Idx = DelayedShuffle.Op2Idx;
2357         Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy);
2358         Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy);
2359         Type *ShufTy =
2360             VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount());
2361         Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy);
2362         if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
2363           return error("Invalid shufflevector operands");
2364         SmallVector<int, 16> Mask;
2365         ShuffleVectorInst::getShuffleMask(Op2, Mask);
2366         Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask);
2367         ValueList.assignValue(V, NextCstNo, DelayedShuffle.CurFullTy);
2368         ++NextCstNo;
2369       }
2370       ValueList.resolveConstantForwardRefs();
2371       return Error::success();
2372     case BitstreamEntry::Record:
2373       // The interesting case.
2374       break;
2375     }
2376 
2377     // Read a record.
2378     Record.clear();
2379     Type *VoidType = Type::getVoidTy(Context);
2380     Value *V = nullptr;
2381     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2382     if (!MaybeBitCode)
2383       return MaybeBitCode.takeError();
2384     switch (unsigned BitCode = MaybeBitCode.get()) {
2385     default:  // Default behavior: unknown constant
2386     case bitc::CST_CODE_UNDEF:     // UNDEF
2387       V = UndefValue::get(CurTy);
2388       break;
2389     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2390       if (Record.empty())
2391         return error("Invalid record");
2392       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2393         return error("Invalid record");
2394       if (TypeList[Record[0]] == VoidType)
2395         return error("Invalid constant type");
2396       CurFullTy = TypeList[Record[0]];
2397       CurTy = flattenPointerTypes(CurFullTy);
2398       continue;  // Skip the ValueList manipulation.
2399     case bitc::CST_CODE_NULL:      // NULL
2400       if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy())
2401         return error("Invalid type for a constant null value");
2402       V = Constant::getNullValue(CurTy);
2403       break;
2404     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2405       if (!CurTy->isIntegerTy() || Record.empty())
2406         return error("Invalid record");
2407       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2408       break;
2409     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2410       if (!CurTy->isIntegerTy() || Record.empty())
2411         return error("Invalid record");
2412 
2413       APInt VInt =
2414           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2415       V = ConstantInt::get(Context, VInt);
2416 
2417       break;
2418     }
2419     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2420       if (Record.empty())
2421         return error("Invalid record");
2422       if (CurTy->isHalfTy())
2423         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2424                                              APInt(16, (uint16_t)Record[0])));
2425       else if (CurTy->isFloatTy())
2426         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2427                                              APInt(32, (uint32_t)Record[0])));
2428       else if (CurTy->isDoubleTy())
2429         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2430                                              APInt(64, Record[0])));
2431       else if (CurTy->isX86_FP80Ty()) {
2432         // Bits are not stored the same way as a normal i80 APInt, compensate.
2433         uint64_t Rearrange[2];
2434         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2435         Rearrange[1] = Record[0] >> 48;
2436         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2437                                              APInt(80, Rearrange)));
2438       } else if (CurTy->isFP128Ty())
2439         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2440                                              APInt(128, Record)));
2441       else if (CurTy->isPPC_FP128Ty())
2442         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2443                                              APInt(128, Record)));
2444       else
2445         V = UndefValue::get(CurTy);
2446       break;
2447     }
2448 
2449     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2450       if (Record.empty())
2451         return error("Invalid record");
2452 
2453       unsigned Size = Record.size();
2454       SmallVector<Constant*, 16> Elts;
2455 
2456       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2457         for (unsigned i = 0; i != Size; ++i)
2458           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2459                                                      STy->getElementType(i)));
2460         V = ConstantStruct::get(STy, Elts);
2461       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2462         Type *EltTy = ATy->getElementType();
2463         for (unsigned i = 0; i != Size; ++i)
2464           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2465         V = ConstantArray::get(ATy, Elts);
2466       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2467         Type *EltTy = VTy->getElementType();
2468         for (unsigned i = 0; i != Size; ++i)
2469           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2470         V = ConstantVector::get(Elts);
2471       } else {
2472         V = UndefValue::get(CurTy);
2473       }
2474       break;
2475     }
2476     case bitc::CST_CODE_STRING:    // STRING: [values]
2477     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2478       if (Record.empty())
2479         return error("Invalid record");
2480 
2481       SmallString<16> Elts(Record.begin(), Record.end());
2482       V = ConstantDataArray::getString(Context, Elts,
2483                                        BitCode == bitc::CST_CODE_CSTRING);
2484       break;
2485     }
2486     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2487       if (Record.empty())
2488         return error("Invalid record");
2489 
2490       Type *EltTy;
2491       if (auto *Array = dyn_cast<ArrayType>(CurTy))
2492         EltTy = Array->getElementType();
2493       else
2494         EltTy = cast<VectorType>(CurTy)->getElementType();
2495       if (EltTy->isIntegerTy(8)) {
2496         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2497         if (isa<VectorType>(CurTy))
2498           V = ConstantDataVector::get(Context, Elts);
2499         else
2500           V = ConstantDataArray::get(Context, Elts);
2501       } else if (EltTy->isIntegerTy(16)) {
2502         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2503         if (isa<VectorType>(CurTy))
2504           V = ConstantDataVector::get(Context, Elts);
2505         else
2506           V = ConstantDataArray::get(Context, Elts);
2507       } else if (EltTy->isIntegerTy(32)) {
2508         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2509         if (isa<VectorType>(CurTy))
2510           V = ConstantDataVector::get(Context, Elts);
2511         else
2512           V = ConstantDataArray::get(Context, Elts);
2513       } else if (EltTy->isIntegerTy(64)) {
2514         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2515         if (isa<VectorType>(CurTy))
2516           V = ConstantDataVector::get(Context, Elts);
2517         else
2518           V = ConstantDataArray::get(Context, Elts);
2519       } else if (EltTy->isHalfTy()) {
2520         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2521         if (isa<VectorType>(CurTy))
2522           V = ConstantDataVector::getFP(Context, Elts);
2523         else
2524           V = ConstantDataArray::getFP(Context, Elts);
2525       } else if (EltTy->isFloatTy()) {
2526         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2527         if (isa<VectorType>(CurTy))
2528           V = ConstantDataVector::getFP(Context, Elts);
2529         else
2530           V = ConstantDataArray::getFP(Context, Elts);
2531       } else if (EltTy->isDoubleTy()) {
2532         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2533         if (isa<VectorType>(CurTy))
2534           V = ConstantDataVector::getFP(Context, Elts);
2535         else
2536           V = ConstantDataArray::getFP(Context, Elts);
2537       } else {
2538         return error("Invalid type for value");
2539       }
2540       break;
2541     }
2542     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2543       if (Record.size() < 2)
2544         return error("Invalid record");
2545       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2546       if (Opc < 0) {
2547         V = UndefValue::get(CurTy);  // Unknown unop.
2548       } else {
2549         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2550         unsigned Flags = 0;
2551         V = ConstantExpr::get(Opc, LHS, Flags);
2552       }
2553       break;
2554     }
2555     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2556       if (Record.size() < 3)
2557         return error("Invalid record");
2558       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2559       if (Opc < 0) {
2560         V = UndefValue::get(CurTy);  // Unknown binop.
2561       } else {
2562         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2563         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2564         unsigned Flags = 0;
2565         if (Record.size() >= 4) {
2566           if (Opc == Instruction::Add ||
2567               Opc == Instruction::Sub ||
2568               Opc == Instruction::Mul ||
2569               Opc == Instruction::Shl) {
2570             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2571               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2572             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2573               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2574           } else if (Opc == Instruction::SDiv ||
2575                      Opc == Instruction::UDiv ||
2576                      Opc == Instruction::LShr ||
2577                      Opc == Instruction::AShr) {
2578             if (Record[3] & (1 << bitc::PEO_EXACT))
2579               Flags |= SDivOperator::IsExact;
2580           }
2581         }
2582         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2583       }
2584       break;
2585     }
2586     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2587       if (Record.size() < 3)
2588         return error("Invalid record");
2589       int Opc = getDecodedCastOpcode(Record[0]);
2590       if (Opc < 0) {
2591         V = UndefValue::get(CurTy);  // Unknown cast.
2592       } else {
2593         Type *OpTy = getTypeByID(Record[1]);
2594         if (!OpTy)
2595           return error("Invalid record");
2596         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2597         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2598         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2599       }
2600       break;
2601     }
2602     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2603     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2604     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2605                                                      // operands]
2606       unsigned OpNum = 0;
2607       Type *PointeeType = nullptr;
2608       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2609           Record.size() % 2)
2610         PointeeType = getTypeByID(Record[OpNum++]);
2611 
2612       bool InBounds = false;
2613       Optional<unsigned> InRangeIndex;
2614       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2615         uint64_t Op = Record[OpNum++];
2616         InBounds = Op & 1;
2617         InRangeIndex = Op >> 1;
2618       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2619         InBounds = true;
2620 
2621       SmallVector<Constant*, 16> Elts;
2622       Type *Elt0FullTy = nullptr;
2623       while (OpNum != Record.size()) {
2624         if (!Elt0FullTy)
2625           Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]);
2626         Type *ElTy = getTypeByID(Record[OpNum++]);
2627         if (!ElTy)
2628           return error("Invalid record");
2629         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2630       }
2631 
2632       if (Elts.size() < 1)
2633         return error("Invalid gep with no operands");
2634 
2635       Type *ImplicitPointeeType =
2636           getPointerElementFlatType(Elt0FullTy->getScalarType());
2637       if (!PointeeType)
2638         PointeeType = ImplicitPointeeType;
2639       else if (PointeeType != ImplicitPointeeType)
2640         return error("Explicit gep operator type does not match pointee type "
2641                      "of pointer operand");
2642 
2643       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2644       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2645                                          InBounds, InRangeIndex);
2646       break;
2647     }
2648     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2649       if (Record.size() < 3)
2650         return error("Invalid record");
2651 
2652       Type *SelectorTy = Type::getInt1Ty(Context);
2653 
2654       // The selector might be an i1, an <n x i1>, or a <vscale x n x i1>
2655       // Get the type from the ValueList before getting a forward ref.
2656       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2657         if (Value *V = ValueList[Record[0]])
2658           if (SelectorTy != V->getType())
2659             SelectorTy = VectorType::get(SelectorTy,
2660                                          VTy->getElementCount());
2661 
2662       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2663                                                               SelectorTy),
2664                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2665                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2666       break;
2667     }
2668     case bitc::CST_CODE_CE_EXTRACTELT
2669         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2670       if (Record.size() < 3)
2671         return error("Invalid record");
2672       VectorType *OpTy =
2673         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2674       if (!OpTy)
2675         return error("Invalid record");
2676       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2677       Constant *Op1 = nullptr;
2678       if (Record.size() == 4) {
2679         Type *IdxTy = getTypeByID(Record[2]);
2680         if (!IdxTy)
2681           return error("Invalid record");
2682         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2683       } else // TODO: Remove with llvm 4.0
2684         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2685       if (!Op1)
2686         return error("Invalid record");
2687       V = ConstantExpr::getExtractElement(Op0, Op1);
2688       break;
2689     }
2690     case bitc::CST_CODE_CE_INSERTELT
2691         : { // CE_INSERTELT: [opval, opval, opty, opval]
2692       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2693       if (Record.size() < 3 || !OpTy)
2694         return error("Invalid record");
2695       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2696       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2697                                                   OpTy->getElementType());
2698       Constant *Op2 = nullptr;
2699       if (Record.size() == 4) {
2700         Type *IdxTy = getTypeByID(Record[2]);
2701         if (!IdxTy)
2702           return error("Invalid record");
2703         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2704       } else // TODO: Remove with llvm 4.0
2705         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2706       if (!Op2)
2707         return error("Invalid record");
2708       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2709       break;
2710     }
2711     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2712       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2713       if (Record.size() < 3 || !OpTy)
2714         return error("Invalid record");
2715       DelayedShuffles.push_back(
2716           {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2]});
2717       continue;
2718     }
2719     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2720       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2721       VectorType *OpTy =
2722         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2723       if (Record.size() < 4 || !RTy || !OpTy)
2724         return error("Invalid record");
2725       DelayedShuffles.push_back(
2726           {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3]});
2727       continue;
2728     }
2729     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2730       if (Record.size() < 4)
2731         return error("Invalid record");
2732       Type *OpTy = getTypeByID(Record[0]);
2733       if (!OpTy)
2734         return error("Invalid record");
2735       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2736       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2737 
2738       if (OpTy->isFPOrFPVectorTy())
2739         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2740       else
2741         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2742       break;
2743     }
2744     // This maintains backward compatibility, pre-asm dialect keywords.
2745     // FIXME: Remove with the 4.0 release.
2746     case bitc::CST_CODE_INLINEASM_OLD: {
2747       if (Record.size() < 2)
2748         return error("Invalid record");
2749       std::string AsmStr, ConstrStr;
2750       bool HasSideEffects = Record[0] & 1;
2751       bool IsAlignStack = Record[0] >> 1;
2752       unsigned AsmStrSize = Record[1];
2753       if (2+AsmStrSize >= Record.size())
2754         return error("Invalid record");
2755       unsigned ConstStrSize = Record[2+AsmStrSize];
2756       if (3+AsmStrSize+ConstStrSize > Record.size())
2757         return error("Invalid record");
2758 
2759       for (unsigned i = 0; i != AsmStrSize; ++i)
2760         AsmStr += (char)Record[2+i];
2761       for (unsigned i = 0; i != ConstStrSize; ++i)
2762         ConstrStr += (char)Record[3+AsmStrSize+i];
2763       UpgradeInlineAsmString(&AsmStr);
2764       V = InlineAsm::get(
2765           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2766           ConstrStr, HasSideEffects, IsAlignStack);
2767       break;
2768     }
2769     // This version adds support for the asm dialect keywords (e.g.,
2770     // inteldialect).
2771     case bitc::CST_CODE_INLINEASM: {
2772       if (Record.size() < 2)
2773         return error("Invalid record");
2774       std::string AsmStr, ConstrStr;
2775       bool HasSideEffects = Record[0] & 1;
2776       bool IsAlignStack = (Record[0] >> 1) & 1;
2777       unsigned AsmDialect = Record[0] >> 2;
2778       unsigned AsmStrSize = Record[1];
2779       if (2+AsmStrSize >= Record.size())
2780         return error("Invalid record");
2781       unsigned ConstStrSize = Record[2+AsmStrSize];
2782       if (3+AsmStrSize+ConstStrSize > Record.size())
2783         return error("Invalid record");
2784 
2785       for (unsigned i = 0; i != AsmStrSize; ++i)
2786         AsmStr += (char)Record[2+i];
2787       for (unsigned i = 0; i != ConstStrSize; ++i)
2788         ConstrStr += (char)Record[3+AsmStrSize+i];
2789       UpgradeInlineAsmString(&AsmStr);
2790       V = InlineAsm::get(
2791           cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr,
2792           ConstrStr, HasSideEffects, IsAlignStack,
2793           InlineAsm::AsmDialect(AsmDialect));
2794       break;
2795     }
2796     case bitc::CST_CODE_BLOCKADDRESS:{
2797       if (Record.size() < 3)
2798         return error("Invalid record");
2799       Type *FnTy = getTypeByID(Record[0]);
2800       if (!FnTy)
2801         return error("Invalid record");
2802       Function *Fn =
2803         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2804       if (!Fn)
2805         return error("Invalid record");
2806 
2807       // If the function is already parsed we can insert the block address right
2808       // away.
2809       BasicBlock *BB;
2810       unsigned BBID = Record[2];
2811       if (!BBID)
2812         // Invalid reference to entry block.
2813         return error("Invalid ID");
2814       if (!Fn->empty()) {
2815         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2816         for (size_t I = 0, E = BBID; I != E; ++I) {
2817           if (BBI == BBE)
2818             return error("Invalid ID");
2819           ++BBI;
2820         }
2821         BB = &*BBI;
2822       } else {
2823         // Otherwise insert a placeholder and remember it so it can be inserted
2824         // when the function is parsed.
2825         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2826         if (FwdBBs.empty())
2827           BasicBlockFwdRefQueue.push_back(Fn);
2828         if (FwdBBs.size() < BBID + 1)
2829           FwdBBs.resize(BBID + 1);
2830         if (!FwdBBs[BBID])
2831           FwdBBs[BBID] = BasicBlock::Create(Context);
2832         BB = FwdBBs[BBID];
2833       }
2834       V = BlockAddress::get(Fn, BB);
2835       break;
2836     }
2837     }
2838 
2839     assert(V->getType() == flattenPointerTypes(CurFullTy) &&
2840            "Incorrect fully structured type provided for Constant");
2841     ValueList.assignValue(V, NextCstNo, CurFullTy);
2842     ++NextCstNo;
2843   }
2844 }
2845 
2846 Error BitcodeReader::parseUseLists() {
2847   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2848     return Err;
2849 
2850   // Read all the records.
2851   SmallVector<uint64_t, 64> Record;
2852 
2853   while (true) {
2854     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2855     if (!MaybeEntry)
2856       return MaybeEntry.takeError();
2857     BitstreamEntry Entry = MaybeEntry.get();
2858 
2859     switch (Entry.Kind) {
2860     case BitstreamEntry::SubBlock: // Handled for us already.
2861     case BitstreamEntry::Error:
2862       return error("Malformed block");
2863     case BitstreamEntry::EndBlock:
2864       return Error::success();
2865     case BitstreamEntry::Record:
2866       // The interesting case.
2867       break;
2868     }
2869 
2870     // Read a use list record.
2871     Record.clear();
2872     bool IsBB = false;
2873     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2874     if (!MaybeRecord)
2875       return MaybeRecord.takeError();
2876     switch (MaybeRecord.get()) {
2877     default:  // Default behavior: unknown type.
2878       break;
2879     case bitc::USELIST_CODE_BB:
2880       IsBB = true;
2881       LLVM_FALLTHROUGH;
2882     case bitc::USELIST_CODE_DEFAULT: {
2883       unsigned RecordLength = Record.size();
2884       if (RecordLength < 3)
2885         // Records should have at least an ID and two indexes.
2886         return error("Invalid record");
2887       unsigned ID = Record.back();
2888       Record.pop_back();
2889 
2890       Value *V;
2891       if (IsBB) {
2892         assert(ID < FunctionBBs.size() && "Basic block not found");
2893         V = FunctionBBs[ID];
2894       } else
2895         V = ValueList[ID];
2896       unsigned NumUses = 0;
2897       SmallDenseMap<const Use *, unsigned, 16> Order;
2898       for (const Use &U : V->materialized_uses()) {
2899         if (++NumUses > Record.size())
2900           break;
2901         Order[&U] = Record[NumUses - 1];
2902       }
2903       if (Order.size() != Record.size() || NumUses > Record.size())
2904         // Mismatches can happen if the functions are being materialized lazily
2905         // (out-of-order), or a value has been upgraded.
2906         break;
2907 
2908       V->sortUseList([&](const Use &L, const Use &R) {
2909         return Order.lookup(&L) < Order.lookup(&R);
2910       });
2911       break;
2912     }
2913     }
2914   }
2915 }
2916 
2917 /// When we see the block for metadata, remember where it is and then skip it.
2918 /// This lets us lazily deserialize the metadata.
2919 Error BitcodeReader::rememberAndSkipMetadata() {
2920   // Save the current stream state.
2921   uint64_t CurBit = Stream.GetCurrentBitNo();
2922   DeferredMetadataInfo.push_back(CurBit);
2923 
2924   // Skip over the block for now.
2925   if (Error Err = Stream.SkipBlock())
2926     return Err;
2927   return Error::success();
2928 }
2929 
2930 Error BitcodeReader::materializeMetadata() {
2931   for (uint64_t BitPos : DeferredMetadataInfo) {
2932     // Move the bit stream to the saved position.
2933     if (Error JumpFailed = Stream.JumpToBit(BitPos))
2934       return JumpFailed;
2935     if (Error Err = MDLoader->parseModuleMetadata())
2936       return Err;
2937   }
2938 
2939   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2940   // metadata.
2941   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2942     NamedMDNode *LinkerOpts =
2943         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2944     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2945       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2946   }
2947 
2948   DeferredMetadataInfo.clear();
2949   return Error::success();
2950 }
2951 
2952 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2953 
2954 /// When we see the block for a function body, remember where it is and then
2955 /// skip it.  This lets us lazily deserialize the functions.
2956 Error BitcodeReader::rememberAndSkipFunctionBody() {
2957   // Get the function we are talking about.
2958   if (FunctionsWithBodies.empty())
2959     return error("Insufficient function protos");
2960 
2961   Function *Fn = FunctionsWithBodies.back();
2962   FunctionsWithBodies.pop_back();
2963 
2964   // Save the current stream state.
2965   uint64_t CurBit = Stream.GetCurrentBitNo();
2966   assert(
2967       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2968       "Mismatch between VST and scanned function offsets");
2969   DeferredFunctionInfo[Fn] = CurBit;
2970 
2971   // Skip over the function block for now.
2972   if (Error Err = Stream.SkipBlock())
2973     return Err;
2974   return Error::success();
2975 }
2976 
2977 Error BitcodeReader::globalCleanup() {
2978   // Patch the initializers for globals and aliases up.
2979   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2980     return Err;
2981   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2982     return error("Malformed global initializer set");
2983 
2984   // Look for intrinsic functions which need to be upgraded at some point
2985   for (Function &F : *TheModule) {
2986     MDLoader->upgradeDebugIntrinsics(F);
2987     Function *NewFn;
2988     if (UpgradeIntrinsicFunction(&F, NewFn))
2989       UpgradedIntrinsics[&F] = NewFn;
2990     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2991       // Some types could be renamed during loading if several modules are
2992       // loaded in the same LLVMContext (LTO scenario). In this case we should
2993       // remangle intrinsics names as well.
2994       RemangledIntrinsics[&F] = Remangled.getValue();
2995   }
2996 
2997   // Look for global variables which need to be renamed.
2998   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
2999   for (GlobalVariable &GV : TheModule->globals())
3000     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
3001       UpgradedVariables.emplace_back(&GV, Upgraded);
3002   for (auto &Pair : UpgradedVariables) {
3003     Pair.first->eraseFromParent();
3004     TheModule->getGlobalList().push_back(Pair.second);
3005   }
3006 
3007   // Force deallocation of memory for these vectors to favor the client that
3008   // want lazy deserialization.
3009   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
3010   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
3011       IndirectSymbolInits);
3012   return Error::success();
3013 }
3014 
3015 /// Support for lazy parsing of function bodies. This is required if we
3016 /// either have an old bitcode file without a VST forward declaration record,
3017 /// or if we have an anonymous function being materialized, since anonymous
3018 /// functions do not have a name and are therefore not in the VST.
3019 Error BitcodeReader::rememberAndSkipFunctionBodies() {
3020   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
3021     return JumpFailed;
3022 
3023   if (Stream.AtEndOfStream())
3024     return error("Could not find function in stream");
3025 
3026   if (!SeenFirstFunctionBody)
3027     return error("Trying to materialize functions before seeing function blocks");
3028 
3029   // An old bitcode file with the symbol table at the end would have
3030   // finished the parse greedily.
3031   assert(SeenValueSymbolTable);
3032 
3033   SmallVector<uint64_t, 64> Record;
3034 
3035   while (true) {
3036     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3037     if (!MaybeEntry)
3038       return MaybeEntry.takeError();
3039     llvm::BitstreamEntry Entry = MaybeEntry.get();
3040 
3041     switch (Entry.Kind) {
3042     default:
3043       return error("Expect SubBlock");
3044     case BitstreamEntry::SubBlock:
3045       switch (Entry.ID) {
3046       default:
3047         return error("Expect function block");
3048       case bitc::FUNCTION_BLOCK_ID:
3049         if (Error Err = rememberAndSkipFunctionBody())
3050           return Err;
3051         NextUnreadBit = Stream.GetCurrentBitNo();
3052         return Error::success();
3053       }
3054     }
3055   }
3056 }
3057 
3058 bool BitcodeReaderBase::readBlockInfo() {
3059   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
3060       Stream.ReadBlockInfoBlock();
3061   if (!MaybeNewBlockInfo)
3062     return true; // FIXME Handle the error.
3063   Optional<BitstreamBlockInfo> NewBlockInfo =
3064       std::move(MaybeNewBlockInfo.get());
3065   if (!NewBlockInfo)
3066     return true;
3067   BlockInfo = std::move(*NewBlockInfo);
3068   return false;
3069 }
3070 
3071 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
3072   // v1: [selection_kind, name]
3073   // v2: [strtab_offset, strtab_size, selection_kind]
3074   StringRef Name;
3075   std::tie(Name, Record) = readNameFromStrtab(Record);
3076 
3077   if (Record.empty())
3078     return error("Invalid record");
3079   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
3080   std::string OldFormatName;
3081   if (!UseStrtab) {
3082     if (Record.size() < 2)
3083       return error("Invalid record");
3084     unsigned ComdatNameSize = Record[1];
3085     OldFormatName.reserve(ComdatNameSize);
3086     for (unsigned i = 0; i != ComdatNameSize; ++i)
3087       OldFormatName += (char)Record[2 + i];
3088     Name = OldFormatName;
3089   }
3090   Comdat *C = TheModule->getOrInsertComdat(Name);
3091   C->setSelectionKind(SK);
3092   ComdatList.push_back(C);
3093   return Error::success();
3094 }
3095 
3096 static void inferDSOLocal(GlobalValue *GV) {
3097   // infer dso_local from linkage and visibility if it is not encoded.
3098   if (GV->hasLocalLinkage() ||
3099       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3100     GV->setDSOLocal(true);
3101 }
3102 
3103 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3104   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3105   // visibility, threadlocal, unnamed_addr, externally_initialized,
3106   // dllstorageclass, comdat, attributes, preemption specifier,
3107   // partition strtab offset, partition strtab size] (name in VST)
3108   // v2: [strtab_offset, strtab_size, v1]
3109   StringRef Name;
3110   std::tie(Name, Record) = readNameFromStrtab(Record);
3111 
3112   if (Record.size() < 6)
3113     return error("Invalid record");
3114   Type *FullTy = getFullyStructuredTypeByID(Record[0]);
3115   Type *Ty = flattenPointerTypes(FullTy);
3116   if (!Ty)
3117     return error("Invalid record");
3118   bool isConstant = Record[1] & 1;
3119   bool explicitType = Record[1] & 2;
3120   unsigned AddressSpace;
3121   if (explicitType) {
3122     AddressSpace = Record[1] >> 2;
3123   } else {
3124     if (!Ty->isPointerTy())
3125       return error("Invalid type for value");
3126     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3127     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3128   }
3129 
3130   uint64_t RawLinkage = Record[3];
3131   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3132   MaybeAlign Alignment;
3133   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3134     return Err;
3135   std::string Section;
3136   if (Record[5]) {
3137     if (Record[5] - 1 >= SectionTable.size())
3138       return error("Invalid ID");
3139     Section = SectionTable[Record[5] - 1];
3140   }
3141   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3142   // Local linkage must have default visibility.
3143   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3144     // FIXME: Change to an error if non-default in 4.0.
3145     Visibility = getDecodedVisibility(Record[6]);
3146 
3147   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3148   if (Record.size() > 7)
3149     TLM = getDecodedThreadLocalMode(Record[7]);
3150 
3151   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3152   if (Record.size() > 8)
3153     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3154 
3155   bool ExternallyInitialized = false;
3156   if (Record.size() > 9)
3157     ExternallyInitialized = Record[9];
3158 
3159   GlobalVariable *NewGV =
3160       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3161                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3162   NewGV->setAlignment(Alignment);
3163   if (!Section.empty())
3164     NewGV->setSection(Section);
3165   NewGV->setVisibility(Visibility);
3166   NewGV->setUnnamedAddr(UnnamedAddr);
3167 
3168   if (Record.size() > 10)
3169     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3170   else
3171     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3172 
3173   FullTy = PointerType::get(FullTy, AddressSpace);
3174   assert(NewGV->getType() == flattenPointerTypes(FullTy) &&
3175          "Incorrect fully specified type for GlobalVariable");
3176   ValueList.push_back(NewGV, FullTy);
3177 
3178   // Remember which value to use for the global initializer.
3179   if (unsigned InitID = Record[2])
3180     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3181 
3182   if (Record.size() > 11) {
3183     if (unsigned ComdatID = Record[11]) {
3184       if (ComdatID > ComdatList.size())
3185         return error("Invalid global variable comdat ID");
3186       NewGV->setComdat(ComdatList[ComdatID - 1]);
3187     }
3188   } else if (hasImplicitComdat(RawLinkage)) {
3189     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3190   }
3191 
3192   if (Record.size() > 12) {
3193     auto AS = getAttributes(Record[12]).getFnAttributes();
3194     NewGV->setAttributes(AS);
3195   }
3196 
3197   if (Record.size() > 13) {
3198     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3199   }
3200   inferDSOLocal(NewGV);
3201 
3202   // Check whether we have enough values to read a partition name.
3203   if (Record.size() > 15)
3204     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3205 
3206   return Error::success();
3207 }
3208 
3209 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3210   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3211   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3212   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3213   // v2: [strtab_offset, strtab_size, v1]
3214   StringRef Name;
3215   std::tie(Name, Record) = readNameFromStrtab(Record);
3216 
3217   if (Record.size() < 8)
3218     return error("Invalid record");
3219   Type *FullFTy = getFullyStructuredTypeByID(Record[0]);
3220   Type *FTy = flattenPointerTypes(FullFTy);
3221   if (!FTy)
3222     return error("Invalid record");
3223   if (isa<PointerType>(FTy))
3224     std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy);
3225 
3226   if (!isa<FunctionType>(FTy))
3227     return error("Invalid type for value");
3228   auto CC = static_cast<CallingConv::ID>(Record[1]);
3229   if (CC & ~CallingConv::MaxID)
3230     return error("Invalid calling convention ID");
3231 
3232   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3233   if (Record.size() > 16)
3234     AddrSpace = Record[16];
3235 
3236   Function *Func =
3237       Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage,
3238                        AddrSpace, Name, TheModule);
3239 
3240   assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) &&
3241          "Incorrect fully specified type provided for function");
3242   FunctionTypes[Func] = cast<FunctionType>(FullFTy);
3243 
3244   Func->setCallingConv(CC);
3245   bool isProto = Record[2];
3246   uint64_t RawLinkage = Record[3];
3247   Func->setLinkage(getDecodedLinkage(RawLinkage));
3248   Func->setAttributes(getAttributes(Record[4]));
3249 
3250   // Upgrade any old-style byval without a type by propagating the argument's
3251   // pointee type. There should be no opaque pointers where the byval type is
3252   // implicit.
3253   for (unsigned i = 0; i != Func->arg_size(); ++i) {
3254     if (!Func->hasParamAttribute(i, Attribute::ByVal))
3255       continue;
3256 
3257     Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i);
3258     Func->removeParamAttr(i, Attribute::ByVal);
3259     Func->addParamAttr(i, Attribute::getWithByValType(
3260                               Context, getPointerElementFlatType(PTy)));
3261   }
3262 
3263   MaybeAlign Alignment;
3264   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3265     return Err;
3266   Func->setAlignment(Alignment);
3267   if (Record[6]) {
3268     if (Record[6] - 1 >= SectionTable.size())
3269       return error("Invalid ID");
3270     Func->setSection(SectionTable[Record[6] - 1]);
3271   }
3272   // Local linkage must have default visibility.
3273   if (!Func->hasLocalLinkage())
3274     // FIXME: Change to an error if non-default in 4.0.
3275     Func->setVisibility(getDecodedVisibility(Record[7]));
3276   if (Record.size() > 8 && Record[8]) {
3277     if (Record[8] - 1 >= GCTable.size())
3278       return error("Invalid ID");
3279     Func->setGC(GCTable[Record[8] - 1]);
3280   }
3281   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3282   if (Record.size() > 9)
3283     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3284   Func->setUnnamedAddr(UnnamedAddr);
3285   if (Record.size() > 10 && Record[10] != 0)
3286     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3287 
3288   if (Record.size() > 11)
3289     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3290   else
3291     upgradeDLLImportExportLinkage(Func, RawLinkage);
3292 
3293   if (Record.size() > 12) {
3294     if (unsigned ComdatID = Record[12]) {
3295       if (ComdatID > ComdatList.size())
3296         return error("Invalid function comdat ID");
3297       Func->setComdat(ComdatList[ComdatID - 1]);
3298     }
3299   } else if (hasImplicitComdat(RawLinkage)) {
3300     Func->setComdat(reinterpret_cast<Comdat *>(1));
3301   }
3302 
3303   if (Record.size() > 13 && Record[13] != 0)
3304     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3305 
3306   if (Record.size() > 14 && Record[14] != 0)
3307     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3308 
3309   if (Record.size() > 15) {
3310     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3311   }
3312   inferDSOLocal(Func);
3313 
3314   // Record[16] is the address space number.
3315 
3316   // Check whether we have enough values to read a partition name.
3317   if (Record.size() > 18)
3318     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3319 
3320   Type *FullTy = PointerType::get(FullFTy, AddrSpace);
3321   assert(Func->getType() == flattenPointerTypes(FullTy) &&
3322          "Incorrect fully specified type provided for Function");
3323   ValueList.push_back(Func, FullTy);
3324 
3325   // If this is a function with a body, remember the prototype we are
3326   // creating now, so that we can match up the body with them later.
3327   if (!isProto) {
3328     Func->setIsMaterializable(true);
3329     FunctionsWithBodies.push_back(Func);
3330     DeferredFunctionInfo[Func] = 0;
3331   }
3332   return Error::success();
3333 }
3334 
3335 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3336     unsigned BitCode, ArrayRef<uint64_t> Record) {
3337   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3338   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3339   // dllstorageclass, threadlocal, unnamed_addr,
3340   // preemption specifier] (name in VST)
3341   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3342   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3343   // preemption specifier] (name in VST)
3344   // v2: [strtab_offset, strtab_size, v1]
3345   StringRef Name;
3346   std::tie(Name, Record) = readNameFromStrtab(Record);
3347 
3348   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3349   if (Record.size() < (3 + (unsigned)NewRecord))
3350     return error("Invalid record");
3351   unsigned OpNum = 0;
3352   Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3353   Type *Ty = flattenPointerTypes(FullTy);
3354   if (!Ty)
3355     return error("Invalid record");
3356 
3357   unsigned AddrSpace;
3358   if (!NewRecord) {
3359     auto *PTy = dyn_cast<PointerType>(Ty);
3360     if (!PTy)
3361       return error("Invalid type for value");
3362     std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
3363     AddrSpace = PTy->getAddressSpace();
3364   } else {
3365     AddrSpace = Record[OpNum++];
3366   }
3367 
3368   auto Val = Record[OpNum++];
3369   auto Linkage = Record[OpNum++];
3370   GlobalIndirectSymbol *NewGA;
3371   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3372       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3373     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3374                                 TheModule);
3375   else
3376     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3377                                 nullptr, TheModule);
3378 
3379   assert(NewGA->getValueType() == flattenPointerTypes(FullTy) &&
3380          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3381   // Old bitcode files didn't have visibility field.
3382   // Local linkage must have default visibility.
3383   if (OpNum != Record.size()) {
3384     auto VisInd = OpNum++;
3385     if (!NewGA->hasLocalLinkage())
3386       // FIXME: Change to an error if non-default in 4.0.
3387       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3388   }
3389   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3390       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3391     if (OpNum != Record.size())
3392       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3393     else
3394       upgradeDLLImportExportLinkage(NewGA, Linkage);
3395     if (OpNum != Record.size())
3396       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3397     if (OpNum != Record.size())
3398       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3399   }
3400   if (OpNum != Record.size())
3401     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3402   inferDSOLocal(NewGA);
3403 
3404   // Check whether we have enough values to read a partition name.
3405   if (OpNum + 1 < Record.size()) {
3406     NewGA->setPartition(
3407         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3408     OpNum += 2;
3409   }
3410 
3411   FullTy = PointerType::get(FullTy, AddrSpace);
3412   assert(NewGA->getType() == flattenPointerTypes(FullTy) &&
3413          "Incorrect fully structured type provided for GlobalIndirectSymbol");
3414   ValueList.push_back(NewGA, FullTy);
3415   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3416   return Error::success();
3417 }
3418 
3419 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3420                                  bool ShouldLazyLoadMetadata) {
3421   if (ResumeBit) {
3422     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3423       return JumpFailed;
3424   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3425     return Err;
3426 
3427   SmallVector<uint64_t, 64> Record;
3428 
3429   // Read all the records for this module.
3430   while (true) {
3431     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3432     if (!MaybeEntry)
3433       return MaybeEntry.takeError();
3434     llvm::BitstreamEntry Entry = MaybeEntry.get();
3435 
3436     switch (Entry.Kind) {
3437     case BitstreamEntry::Error:
3438       return error("Malformed block");
3439     case BitstreamEntry::EndBlock:
3440       return globalCleanup();
3441 
3442     case BitstreamEntry::SubBlock:
3443       switch (Entry.ID) {
3444       default:  // Skip unknown content.
3445         if (Error Err = Stream.SkipBlock())
3446           return Err;
3447         break;
3448       case bitc::BLOCKINFO_BLOCK_ID:
3449         if (readBlockInfo())
3450           return error("Malformed block");
3451         break;
3452       case bitc::PARAMATTR_BLOCK_ID:
3453         if (Error Err = parseAttributeBlock())
3454           return Err;
3455         break;
3456       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3457         if (Error Err = parseAttributeGroupBlock())
3458           return Err;
3459         break;
3460       case bitc::TYPE_BLOCK_ID_NEW:
3461         if (Error Err = parseTypeTable())
3462           return Err;
3463         break;
3464       case bitc::VALUE_SYMTAB_BLOCK_ID:
3465         if (!SeenValueSymbolTable) {
3466           // Either this is an old form VST without function index and an
3467           // associated VST forward declaration record (which would have caused
3468           // the VST to be jumped to and parsed before it was encountered
3469           // normally in the stream), or there were no function blocks to
3470           // trigger an earlier parsing of the VST.
3471           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3472           if (Error Err = parseValueSymbolTable())
3473             return Err;
3474           SeenValueSymbolTable = true;
3475         } else {
3476           // We must have had a VST forward declaration record, which caused
3477           // the parser to jump to and parse the VST earlier.
3478           assert(VSTOffset > 0);
3479           if (Error Err = Stream.SkipBlock())
3480             return Err;
3481         }
3482         break;
3483       case bitc::CONSTANTS_BLOCK_ID:
3484         if (Error Err = parseConstants())
3485           return Err;
3486         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3487           return Err;
3488         break;
3489       case bitc::METADATA_BLOCK_ID:
3490         if (ShouldLazyLoadMetadata) {
3491           if (Error Err = rememberAndSkipMetadata())
3492             return Err;
3493           break;
3494         }
3495         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3496         if (Error Err = MDLoader->parseModuleMetadata())
3497           return Err;
3498         break;
3499       case bitc::METADATA_KIND_BLOCK_ID:
3500         if (Error Err = MDLoader->parseMetadataKinds())
3501           return Err;
3502         break;
3503       case bitc::FUNCTION_BLOCK_ID:
3504         // If this is the first function body we've seen, reverse the
3505         // FunctionsWithBodies list.
3506         if (!SeenFirstFunctionBody) {
3507           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3508           if (Error Err = globalCleanup())
3509             return Err;
3510           SeenFirstFunctionBody = true;
3511         }
3512 
3513         if (VSTOffset > 0) {
3514           // If we have a VST forward declaration record, make sure we
3515           // parse the VST now if we haven't already. It is needed to
3516           // set up the DeferredFunctionInfo vector for lazy reading.
3517           if (!SeenValueSymbolTable) {
3518             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3519               return Err;
3520             SeenValueSymbolTable = true;
3521             // Fall through so that we record the NextUnreadBit below.
3522             // This is necessary in case we have an anonymous function that
3523             // is later materialized. Since it will not have a VST entry we
3524             // need to fall back to the lazy parse to find its offset.
3525           } else {
3526             // If we have a VST forward declaration record, but have already
3527             // parsed the VST (just above, when the first function body was
3528             // encountered here), then we are resuming the parse after
3529             // materializing functions. The ResumeBit points to the
3530             // start of the last function block recorded in the
3531             // DeferredFunctionInfo map. Skip it.
3532             if (Error Err = Stream.SkipBlock())
3533               return Err;
3534             continue;
3535           }
3536         }
3537 
3538         // Support older bitcode files that did not have the function
3539         // index in the VST, nor a VST forward declaration record, as
3540         // well as anonymous functions that do not have VST entries.
3541         // Build the DeferredFunctionInfo vector on the fly.
3542         if (Error Err = rememberAndSkipFunctionBody())
3543           return Err;
3544 
3545         // Suspend parsing when we reach the function bodies. Subsequent
3546         // materialization calls will resume it when necessary. If the bitcode
3547         // file is old, the symbol table will be at the end instead and will not
3548         // have been seen yet. In this case, just finish the parse now.
3549         if (SeenValueSymbolTable) {
3550           NextUnreadBit = Stream.GetCurrentBitNo();
3551           // After the VST has been parsed, we need to make sure intrinsic name
3552           // are auto-upgraded.
3553           return globalCleanup();
3554         }
3555         break;
3556       case bitc::USELIST_BLOCK_ID:
3557         if (Error Err = parseUseLists())
3558           return Err;
3559         break;
3560       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3561         if (Error Err = parseOperandBundleTags())
3562           return Err;
3563         break;
3564       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3565         if (Error Err = parseSyncScopeNames())
3566           return Err;
3567         break;
3568       }
3569       continue;
3570 
3571     case BitstreamEntry::Record:
3572       // The interesting case.
3573       break;
3574     }
3575 
3576     // Read a record.
3577     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3578     if (!MaybeBitCode)
3579       return MaybeBitCode.takeError();
3580     switch (unsigned BitCode = MaybeBitCode.get()) {
3581     default: break;  // Default behavior, ignore unknown content.
3582     case bitc::MODULE_CODE_VERSION: {
3583       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3584       if (!VersionOrErr)
3585         return VersionOrErr.takeError();
3586       UseRelativeIDs = *VersionOrErr >= 1;
3587       break;
3588     }
3589     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3590       std::string S;
3591       if (convertToString(Record, 0, S))
3592         return error("Invalid record");
3593       TheModule->setTargetTriple(S);
3594       break;
3595     }
3596     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3597       std::string S;
3598       if (convertToString(Record, 0, S))
3599         return error("Invalid record");
3600       TheModule->setDataLayout(S);
3601       break;
3602     }
3603     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3604       std::string S;
3605       if (convertToString(Record, 0, S))
3606         return error("Invalid record");
3607       TheModule->setModuleInlineAsm(S);
3608       break;
3609     }
3610     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3611       // FIXME: Remove in 4.0.
3612       std::string S;
3613       if (convertToString(Record, 0, S))
3614         return error("Invalid record");
3615       // Ignore value.
3616       break;
3617     }
3618     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3619       std::string S;
3620       if (convertToString(Record, 0, S))
3621         return error("Invalid record");
3622       SectionTable.push_back(S);
3623       break;
3624     }
3625     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3626       std::string S;
3627       if (convertToString(Record, 0, S))
3628         return error("Invalid record");
3629       GCTable.push_back(S);
3630       break;
3631     }
3632     case bitc::MODULE_CODE_COMDAT:
3633       if (Error Err = parseComdatRecord(Record))
3634         return Err;
3635       break;
3636     case bitc::MODULE_CODE_GLOBALVAR:
3637       if (Error Err = parseGlobalVarRecord(Record))
3638         return Err;
3639       break;
3640     case bitc::MODULE_CODE_FUNCTION:
3641       if (Error Err = parseFunctionRecord(Record))
3642         return Err;
3643       break;
3644     case bitc::MODULE_CODE_IFUNC:
3645     case bitc::MODULE_CODE_ALIAS:
3646     case bitc::MODULE_CODE_ALIAS_OLD:
3647       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3648         return Err;
3649       break;
3650     /// MODULE_CODE_VSTOFFSET: [offset]
3651     case bitc::MODULE_CODE_VSTOFFSET:
3652       if (Record.size() < 1)
3653         return error("Invalid record");
3654       // Note that we subtract 1 here because the offset is relative to one word
3655       // before the start of the identification or module block, which was
3656       // historically always the start of the regular bitcode header.
3657       VSTOffset = Record[0] - 1;
3658       break;
3659     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3660     case bitc::MODULE_CODE_SOURCE_FILENAME:
3661       SmallString<128> ValueName;
3662       if (convertToString(Record, 0, ValueName))
3663         return error("Invalid record");
3664       TheModule->setSourceFileName(ValueName);
3665       break;
3666     }
3667     Record.clear();
3668 
3669     // Upgrade data layout string.
3670     std::string DL = llvm::UpgradeDataLayoutString(
3671         TheModule->getDataLayoutStr(), TheModule->getTargetTriple());
3672     TheModule->setDataLayout(DL);
3673   }
3674 }
3675 
3676 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3677                                       bool IsImporting) {
3678   TheModule = M;
3679   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3680                             [&](unsigned ID) { return getTypeByID(ID); });
3681   return parseModule(0, ShouldLazyLoadMetadata);
3682 }
3683 
3684 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3685   if (!isa<PointerType>(PtrType))
3686     return error("Load/Store operand is not a pointer type");
3687   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3688 
3689   if (ValType && ValType != ElemType)
3690     return error("Explicit load/store type does not match pointee "
3691                  "type of pointer operand");
3692   if (!PointerType::isLoadableOrStorableType(ElemType))
3693     return error("Cannot load/store from pointer");
3694   return Error::success();
3695 }
3696 
3697 void BitcodeReader::propagateByValTypes(CallBase *CB,
3698                                         ArrayRef<Type *> ArgsFullTys) {
3699   for (unsigned i = 0; i != CB->arg_size(); ++i) {
3700     if (!CB->paramHasAttr(i, Attribute::ByVal))
3701       continue;
3702 
3703     CB->removeParamAttr(i, Attribute::ByVal);
3704     CB->addParamAttr(
3705         i, Attribute::getWithByValType(
3706                Context, getPointerElementFlatType(ArgsFullTys[i])));
3707   }
3708 }
3709 
3710 /// Lazily parse the specified function body block.
3711 Error BitcodeReader::parseFunctionBody(Function *F) {
3712   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3713     return Err;
3714 
3715   // Unexpected unresolved metadata when parsing function.
3716   if (MDLoader->hasFwdRefs())
3717     return error("Invalid function metadata: incoming forward references");
3718 
3719   InstructionList.clear();
3720   unsigned ModuleValueListSize = ValueList.size();
3721   unsigned ModuleMDLoaderSize = MDLoader->size();
3722 
3723   // Add all the function arguments to the value table.
3724   unsigned ArgNo = 0;
3725   FunctionType *FullFTy = FunctionTypes[F];
3726   for (Argument &I : F->args()) {
3727     assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) &&
3728            "Incorrect fully specified type for Function Argument");
3729     ValueList.push_back(&I, FullFTy->getParamType(ArgNo++));
3730   }
3731   unsigned NextValueNo = ValueList.size();
3732   BasicBlock *CurBB = nullptr;
3733   unsigned CurBBNo = 0;
3734 
3735   DebugLoc LastLoc;
3736   auto getLastInstruction = [&]() -> Instruction * {
3737     if (CurBB && !CurBB->empty())
3738       return &CurBB->back();
3739     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3740              !FunctionBBs[CurBBNo - 1]->empty())
3741       return &FunctionBBs[CurBBNo - 1]->back();
3742     return nullptr;
3743   };
3744 
3745   std::vector<OperandBundleDef> OperandBundles;
3746 
3747   // Read all the records.
3748   SmallVector<uint64_t, 64> Record;
3749 
3750   while (true) {
3751     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3752     if (!MaybeEntry)
3753       return MaybeEntry.takeError();
3754     llvm::BitstreamEntry Entry = MaybeEntry.get();
3755 
3756     switch (Entry.Kind) {
3757     case BitstreamEntry::Error:
3758       return error("Malformed block");
3759     case BitstreamEntry::EndBlock:
3760       goto OutOfRecordLoop;
3761 
3762     case BitstreamEntry::SubBlock:
3763       switch (Entry.ID) {
3764       default:  // Skip unknown content.
3765         if (Error Err = Stream.SkipBlock())
3766           return Err;
3767         break;
3768       case bitc::CONSTANTS_BLOCK_ID:
3769         if (Error Err = parseConstants())
3770           return Err;
3771         NextValueNo = ValueList.size();
3772         break;
3773       case bitc::VALUE_SYMTAB_BLOCK_ID:
3774         if (Error Err = parseValueSymbolTable())
3775           return Err;
3776         break;
3777       case bitc::METADATA_ATTACHMENT_ID:
3778         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3779           return Err;
3780         break;
3781       case bitc::METADATA_BLOCK_ID:
3782         assert(DeferredMetadataInfo.empty() &&
3783                "Must read all module-level metadata before function-level");
3784         if (Error Err = MDLoader->parseFunctionMetadata())
3785           return Err;
3786         break;
3787       case bitc::USELIST_BLOCK_ID:
3788         if (Error Err = parseUseLists())
3789           return Err;
3790         break;
3791       }
3792       continue;
3793 
3794     case BitstreamEntry::Record:
3795       // The interesting case.
3796       break;
3797     }
3798 
3799     // Read a record.
3800     Record.clear();
3801     Instruction *I = nullptr;
3802     Type *FullTy = nullptr;
3803     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3804     if (!MaybeBitCode)
3805       return MaybeBitCode.takeError();
3806     switch (unsigned BitCode = MaybeBitCode.get()) {
3807     default: // Default behavior: reject
3808       return error("Invalid value");
3809     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3810       if (Record.size() < 1 || Record[0] == 0)
3811         return error("Invalid record");
3812       // Create all the basic blocks for the function.
3813       FunctionBBs.resize(Record[0]);
3814 
3815       // See if anything took the address of blocks in this function.
3816       auto BBFRI = BasicBlockFwdRefs.find(F);
3817       if (BBFRI == BasicBlockFwdRefs.end()) {
3818         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3819           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3820       } else {
3821         auto &BBRefs = BBFRI->second;
3822         // Check for invalid basic block references.
3823         if (BBRefs.size() > FunctionBBs.size())
3824           return error("Invalid ID");
3825         assert(!BBRefs.empty() && "Unexpected empty array");
3826         assert(!BBRefs.front() && "Invalid reference to entry block");
3827         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3828              ++I)
3829           if (I < RE && BBRefs[I]) {
3830             BBRefs[I]->insertInto(F);
3831             FunctionBBs[I] = BBRefs[I];
3832           } else {
3833             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3834           }
3835 
3836         // Erase from the table.
3837         BasicBlockFwdRefs.erase(BBFRI);
3838       }
3839 
3840       CurBB = FunctionBBs[0];
3841       continue;
3842     }
3843 
3844     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3845       // This record indicates that the last instruction is at the same
3846       // location as the previous instruction with a location.
3847       I = getLastInstruction();
3848 
3849       if (!I)
3850         return error("Invalid record");
3851       I->setDebugLoc(LastLoc);
3852       I = nullptr;
3853       continue;
3854 
3855     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3856       I = getLastInstruction();
3857       if (!I || Record.size() < 4)
3858         return error("Invalid record");
3859 
3860       unsigned Line = Record[0], Col = Record[1];
3861       unsigned ScopeID = Record[2], IAID = Record[3];
3862       bool isImplicitCode = Record.size() == 5 && Record[4];
3863 
3864       MDNode *Scope = nullptr, *IA = nullptr;
3865       if (ScopeID) {
3866         Scope = dyn_cast_or_null<MDNode>(
3867             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3868         if (!Scope)
3869           return error("Invalid record");
3870       }
3871       if (IAID) {
3872         IA = dyn_cast_or_null<MDNode>(
3873             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3874         if (!IA)
3875           return error("Invalid record");
3876       }
3877       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3878       I->setDebugLoc(LastLoc);
3879       I = nullptr;
3880       continue;
3881     }
3882     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3883       unsigned OpNum = 0;
3884       Value *LHS;
3885       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3886           OpNum+1 > Record.size())
3887         return error("Invalid record");
3888 
3889       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3890       if (Opc == -1)
3891         return error("Invalid record");
3892       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3893       InstructionList.push_back(I);
3894       if (OpNum < Record.size()) {
3895         if (isa<FPMathOperator>(I)) {
3896           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3897           if (FMF.any())
3898             I->setFastMathFlags(FMF);
3899         }
3900       }
3901       break;
3902     }
3903     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3904       unsigned OpNum = 0;
3905       Value *LHS, *RHS;
3906       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3907           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3908           OpNum+1 > Record.size())
3909         return error("Invalid record");
3910 
3911       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3912       if (Opc == -1)
3913         return error("Invalid record");
3914       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3915       InstructionList.push_back(I);
3916       if (OpNum < Record.size()) {
3917         if (Opc == Instruction::Add ||
3918             Opc == Instruction::Sub ||
3919             Opc == Instruction::Mul ||
3920             Opc == Instruction::Shl) {
3921           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3922             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3923           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3924             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3925         } else if (Opc == Instruction::SDiv ||
3926                    Opc == Instruction::UDiv ||
3927                    Opc == Instruction::LShr ||
3928                    Opc == Instruction::AShr) {
3929           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3930             cast<BinaryOperator>(I)->setIsExact(true);
3931         } else if (isa<FPMathOperator>(I)) {
3932           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3933           if (FMF.any())
3934             I->setFastMathFlags(FMF);
3935         }
3936 
3937       }
3938       break;
3939     }
3940     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3941       unsigned OpNum = 0;
3942       Value *Op;
3943       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3944           OpNum+2 != Record.size())
3945         return error("Invalid record");
3946 
3947       FullTy = getFullyStructuredTypeByID(Record[OpNum]);
3948       Type *ResTy = flattenPointerTypes(FullTy);
3949       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3950       if (Opc == -1 || !ResTy)
3951         return error("Invalid record");
3952       Instruction *Temp = nullptr;
3953       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3954         if (Temp) {
3955           InstructionList.push_back(Temp);
3956           assert(CurBB && "No current BB?");
3957           CurBB->getInstList().push_back(Temp);
3958         }
3959       } else {
3960         auto CastOp = (Instruction::CastOps)Opc;
3961         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3962           return error("Invalid cast");
3963         I = CastInst::Create(CastOp, Op, ResTy);
3964       }
3965       InstructionList.push_back(I);
3966       break;
3967     }
3968     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3969     case bitc::FUNC_CODE_INST_GEP_OLD:
3970     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3971       unsigned OpNum = 0;
3972 
3973       Type *Ty;
3974       bool InBounds;
3975 
3976       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3977         InBounds = Record[OpNum++];
3978         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
3979         Ty = flattenPointerTypes(FullTy);
3980       } else {
3981         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3982         Ty = nullptr;
3983       }
3984 
3985       Value *BasePtr;
3986       Type *FullBaseTy = nullptr;
3987       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy))
3988         return error("Invalid record");
3989 
3990       if (!Ty) {
3991         std::tie(FullTy, Ty) =
3992             getPointerElementTypes(FullBaseTy->getScalarType());
3993       } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType()))
3994         return error(
3995             "Explicit gep type does not match pointee type of pointer operand");
3996 
3997       SmallVector<Value*, 16> GEPIdx;
3998       while (OpNum != Record.size()) {
3999         Value *Op;
4000         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4001           return error("Invalid record");
4002         GEPIdx.push_back(Op);
4003       }
4004 
4005       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
4006       FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx);
4007 
4008       InstructionList.push_back(I);
4009       if (InBounds)
4010         cast<GetElementPtrInst>(I)->setIsInBounds(true);
4011       break;
4012     }
4013 
4014     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
4015                                        // EXTRACTVAL: [opty, opval, n x indices]
4016       unsigned OpNum = 0;
4017       Value *Agg;
4018       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4019         return error("Invalid record");
4020 
4021       unsigned RecSize = Record.size();
4022       if (OpNum == RecSize)
4023         return error("EXTRACTVAL: Invalid instruction with 0 indices");
4024 
4025       SmallVector<unsigned, 4> EXTRACTVALIdx;
4026       for (; OpNum != RecSize; ++OpNum) {
4027         bool IsArray = FullTy->isArrayTy();
4028         bool IsStruct = FullTy->isStructTy();
4029         uint64_t Index = Record[OpNum];
4030 
4031         if (!IsStruct && !IsArray)
4032           return error("EXTRACTVAL: Invalid type");
4033         if ((unsigned)Index != Index)
4034           return error("Invalid value");
4035         if (IsStruct && Index >= FullTy->getStructNumElements())
4036           return error("EXTRACTVAL: Invalid struct index");
4037         if (IsArray && Index >= FullTy->getArrayNumElements())
4038           return error("EXTRACTVAL: Invalid array index");
4039         EXTRACTVALIdx.push_back((unsigned)Index);
4040 
4041         if (IsStruct)
4042           FullTy = FullTy->getStructElementType(Index);
4043         else
4044           FullTy = FullTy->getArrayElementType();
4045       }
4046 
4047       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
4048       InstructionList.push_back(I);
4049       break;
4050     }
4051 
4052     case bitc::FUNC_CODE_INST_INSERTVAL: {
4053                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
4054       unsigned OpNum = 0;
4055       Value *Agg;
4056       if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy))
4057         return error("Invalid record");
4058       Value *Val;
4059       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
4060         return error("Invalid record");
4061 
4062       unsigned RecSize = Record.size();
4063       if (OpNum == RecSize)
4064         return error("INSERTVAL: Invalid instruction with 0 indices");
4065 
4066       SmallVector<unsigned, 4> INSERTVALIdx;
4067       Type *CurTy = Agg->getType();
4068       for (; OpNum != RecSize; ++OpNum) {
4069         bool IsArray = CurTy->isArrayTy();
4070         bool IsStruct = CurTy->isStructTy();
4071         uint64_t Index = Record[OpNum];
4072 
4073         if (!IsStruct && !IsArray)
4074           return error("INSERTVAL: Invalid type");
4075         if ((unsigned)Index != Index)
4076           return error("Invalid value");
4077         if (IsStruct && Index >= CurTy->getStructNumElements())
4078           return error("INSERTVAL: Invalid struct index");
4079         if (IsArray && Index >= CurTy->getArrayNumElements())
4080           return error("INSERTVAL: Invalid array index");
4081 
4082         INSERTVALIdx.push_back((unsigned)Index);
4083         if (IsStruct)
4084           CurTy = CurTy->getStructElementType(Index);
4085         else
4086           CurTy = CurTy->getArrayElementType();
4087       }
4088 
4089       if (CurTy != Val->getType())
4090         return error("Inserted value type doesn't match aggregate type");
4091 
4092       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
4093       InstructionList.push_back(I);
4094       break;
4095     }
4096 
4097     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
4098       // obsolete form of select
4099       // handles select i1 ... in old bitcode
4100       unsigned OpNum = 0;
4101       Value *TrueVal, *FalseVal, *Cond;
4102       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4103           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4104           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
4105         return error("Invalid record");
4106 
4107       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4108       InstructionList.push_back(I);
4109       break;
4110     }
4111 
4112     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
4113       // new form of select
4114       // handles select i1 or select [N x i1]
4115       unsigned OpNum = 0;
4116       Value *TrueVal, *FalseVal, *Cond;
4117       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) ||
4118           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4119           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4120         return error("Invalid record");
4121 
4122       // select condition can be either i1 or [N x i1]
4123       if (VectorType* vector_type =
4124           dyn_cast<VectorType>(Cond->getType())) {
4125         // expect <n x i1>
4126         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4127           return error("Invalid type for value");
4128       } else {
4129         // expect i1
4130         if (Cond->getType() != Type::getInt1Ty(Context))
4131           return error("Invalid type for value");
4132       }
4133 
4134       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4135       InstructionList.push_back(I);
4136       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4137         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4138         if (FMF.any())
4139           I->setFastMathFlags(FMF);
4140       }
4141       break;
4142     }
4143 
4144     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4145       unsigned OpNum = 0;
4146       Value *Vec, *Idx;
4147       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) ||
4148           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4149         return error("Invalid record");
4150       if (!Vec->getType()->isVectorTy())
4151         return error("Invalid type for value");
4152       I = ExtractElementInst::Create(Vec, Idx);
4153       FullTy = cast<VectorType>(FullTy)->getElementType();
4154       InstructionList.push_back(I);
4155       break;
4156     }
4157 
4158     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4159       unsigned OpNum = 0;
4160       Value *Vec, *Elt, *Idx;
4161       if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy))
4162         return error("Invalid record");
4163       if (!Vec->getType()->isVectorTy())
4164         return error("Invalid type for value");
4165       if (popValue(Record, OpNum, NextValueNo,
4166                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4167           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4168         return error("Invalid record");
4169       I = InsertElementInst::Create(Vec, Elt, Idx);
4170       InstructionList.push_back(I);
4171       break;
4172     }
4173 
4174     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4175       unsigned OpNum = 0;
4176       Value *Vec1, *Vec2, *Mask;
4177       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) ||
4178           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4179         return error("Invalid record");
4180 
4181       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4182         return error("Invalid record");
4183       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4184         return error("Invalid type for value");
4185 
4186       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4187       FullTy =
4188           VectorType::get(cast<VectorType>(FullTy)->getElementType(),
4189                           cast<VectorType>(Mask->getType())->getElementCount());
4190       InstructionList.push_back(I);
4191       break;
4192     }
4193 
4194     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4195       // Old form of ICmp/FCmp returning bool
4196       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4197       // both legal on vectors but had different behaviour.
4198     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4199       // FCmp/ICmp returning bool or vector of bool
4200 
4201       unsigned OpNum = 0;
4202       Value *LHS, *RHS;
4203       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4204           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4205         return error("Invalid record");
4206 
4207       if (OpNum >= Record.size())
4208         return error(
4209             "Invalid record: operand number exceeded available operands");
4210 
4211       unsigned PredVal = Record[OpNum];
4212       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4213       FastMathFlags FMF;
4214       if (IsFP && Record.size() > OpNum+1)
4215         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4216 
4217       if (OpNum+1 != Record.size())
4218         return error("Invalid record");
4219 
4220       if (LHS->getType()->isFPOrFPVectorTy())
4221         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4222       else
4223         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4224 
4225       if (FMF.any())
4226         I->setFastMathFlags(FMF);
4227       InstructionList.push_back(I);
4228       break;
4229     }
4230 
4231     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4232       {
4233         unsigned Size = Record.size();
4234         if (Size == 0) {
4235           I = ReturnInst::Create(Context);
4236           InstructionList.push_back(I);
4237           break;
4238         }
4239 
4240         unsigned OpNum = 0;
4241         Value *Op = nullptr;
4242         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4243           return error("Invalid record");
4244         if (OpNum != Record.size())
4245           return error("Invalid record");
4246 
4247         I = ReturnInst::Create(Context, Op);
4248         InstructionList.push_back(I);
4249         break;
4250       }
4251     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4252       if (Record.size() != 1 && Record.size() != 3)
4253         return error("Invalid record");
4254       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4255       if (!TrueDest)
4256         return error("Invalid record");
4257 
4258       if (Record.size() == 1) {
4259         I = BranchInst::Create(TrueDest);
4260         InstructionList.push_back(I);
4261       }
4262       else {
4263         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4264         Value *Cond = getValue(Record, 2, NextValueNo,
4265                                Type::getInt1Ty(Context));
4266         if (!FalseDest || !Cond)
4267           return error("Invalid record");
4268         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4269         InstructionList.push_back(I);
4270       }
4271       break;
4272     }
4273     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4274       if (Record.size() != 1 && Record.size() != 2)
4275         return error("Invalid record");
4276       unsigned Idx = 0;
4277       Value *CleanupPad =
4278           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4279       if (!CleanupPad)
4280         return error("Invalid record");
4281       BasicBlock *UnwindDest = nullptr;
4282       if (Record.size() == 2) {
4283         UnwindDest = getBasicBlock(Record[Idx++]);
4284         if (!UnwindDest)
4285           return error("Invalid record");
4286       }
4287 
4288       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4289       InstructionList.push_back(I);
4290       break;
4291     }
4292     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4293       if (Record.size() != 2)
4294         return error("Invalid record");
4295       unsigned Idx = 0;
4296       Value *CatchPad =
4297           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4298       if (!CatchPad)
4299         return error("Invalid record");
4300       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4301       if (!BB)
4302         return error("Invalid record");
4303 
4304       I = CatchReturnInst::Create(CatchPad, BB);
4305       InstructionList.push_back(I);
4306       break;
4307     }
4308     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4309       // We must have, at minimum, the outer scope and the number of arguments.
4310       if (Record.size() < 2)
4311         return error("Invalid record");
4312 
4313       unsigned Idx = 0;
4314 
4315       Value *ParentPad =
4316           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4317 
4318       unsigned NumHandlers = Record[Idx++];
4319 
4320       SmallVector<BasicBlock *, 2> Handlers;
4321       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4322         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4323         if (!BB)
4324           return error("Invalid record");
4325         Handlers.push_back(BB);
4326       }
4327 
4328       BasicBlock *UnwindDest = nullptr;
4329       if (Idx + 1 == Record.size()) {
4330         UnwindDest = getBasicBlock(Record[Idx++]);
4331         if (!UnwindDest)
4332           return error("Invalid record");
4333       }
4334 
4335       if (Record.size() != Idx)
4336         return error("Invalid record");
4337 
4338       auto *CatchSwitch =
4339           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4340       for (BasicBlock *Handler : Handlers)
4341         CatchSwitch->addHandler(Handler);
4342       I = CatchSwitch;
4343       InstructionList.push_back(I);
4344       break;
4345     }
4346     case bitc::FUNC_CODE_INST_CATCHPAD:
4347     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4348       // We must have, at minimum, the outer scope and the number of arguments.
4349       if (Record.size() < 2)
4350         return error("Invalid record");
4351 
4352       unsigned Idx = 0;
4353 
4354       Value *ParentPad =
4355           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4356 
4357       unsigned NumArgOperands = Record[Idx++];
4358 
4359       SmallVector<Value *, 2> Args;
4360       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4361         Value *Val;
4362         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4363           return error("Invalid record");
4364         Args.push_back(Val);
4365       }
4366 
4367       if (Record.size() != Idx)
4368         return error("Invalid record");
4369 
4370       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4371         I = CleanupPadInst::Create(ParentPad, Args);
4372       else
4373         I = CatchPadInst::Create(ParentPad, Args);
4374       InstructionList.push_back(I);
4375       break;
4376     }
4377     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4378       // Check magic
4379       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4380         // "New" SwitchInst format with case ranges. The changes to write this
4381         // format were reverted but we still recognize bitcode that uses it.
4382         // Hopefully someday we will have support for case ranges and can use
4383         // this format again.
4384 
4385         Type *OpTy = getTypeByID(Record[1]);
4386         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4387 
4388         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4389         BasicBlock *Default = getBasicBlock(Record[3]);
4390         if (!OpTy || !Cond || !Default)
4391           return error("Invalid record");
4392 
4393         unsigned NumCases = Record[4];
4394 
4395         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4396         InstructionList.push_back(SI);
4397 
4398         unsigned CurIdx = 5;
4399         for (unsigned i = 0; i != NumCases; ++i) {
4400           SmallVector<ConstantInt*, 1> CaseVals;
4401           unsigned NumItems = Record[CurIdx++];
4402           for (unsigned ci = 0; ci != NumItems; ++ci) {
4403             bool isSingleNumber = Record[CurIdx++];
4404 
4405             APInt Low;
4406             unsigned ActiveWords = 1;
4407             if (ValueBitWidth > 64)
4408               ActiveWords = Record[CurIdx++];
4409             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4410                                 ValueBitWidth);
4411             CurIdx += ActiveWords;
4412 
4413             if (!isSingleNumber) {
4414               ActiveWords = 1;
4415               if (ValueBitWidth > 64)
4416                 ActiveWords = Record[CurIdx++];
4417               APInt High = readWideAPInt(
4418                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4419               CurIdx += ActiveWords;
4420 
4421               // FIXME: It is not clear whether values in the range should be
4422               // compared as signed or unsigned values. The partially
4423               // implemented changes that used this format in the past used
4424               // unsigned comparisons.
4425               for ( ; Low.ule(High); ++Low)
4426                 CaseVals.push_back(ConstantInt::get(Context, Low));
4427             } else
4428               CaseVals.push_back(ConstantInt::get(Context, Low));
4429           }
4430           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4431           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4432                  cve = CaseVals.end(); cvi != cve; ++cvi)
4433             SI->addCase(*cvi, DestBB);
4434         }
4435         I = SI;
4436         break;
4437       }
4438 
4439       // Old SwitchInst format without case ranges.
4440 
4441       if (Record.size() < 3 || (Record.size() & 1) == 0)
4442         return error("Invalid record");
4443       Type *OpTy = getTypeByID(Record[0]);
4444       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4445       BasicBlock *Default = getBasicBlock(Record[2]);
4446       if (!OpTy || !Cond || !Default)
4447         return error("Invalid record");
4448       unsigned NumCases = (Record.size()-3)/2;
4449       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4450       InstructionList.push_back(SI);
4451       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4452         ConstantInt *CaseVal =
4453           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4454         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4455         if (!CaseVal || !DestBB) {
4456           delete SI;
4457           return error("Invalid record");
4458         }
4459         SI->addCase(CaseVal, DestBB);
4460       }
4461       I = SI;
4462       break;
4463     }
4464     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4465       if (Record.size() < 2)
4466         return error("Invalid record");
4467       Type *OpTy = getTypeByID(Record[0]);
4468       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4469       if (!OpTy || !Address)
4470         return error("Invalid record");
4471       unsigned NumDests = Record.size()-2;
4472       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4473       InstructionList.push_back(IBI);
4474       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4475         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4476           IBI->addDestination(DestBB);
4477         } else {
4478           delete IBI;
4479           return error("Invalid record");
4480         }
4481       }
4482       I = IBI;
4483       break;
4484     }
4485 
4486     case bitc::FUNC_CODE_INST_INVOKE: {
4487       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4488       if (Record.size() < 4)
4489         return error("Invalid record");
4490       unsigned OpNum = 0;
4491       AttributeList PAL = getAttributes(Record[OpNum++]);
4492       unsigned CCInfo = Record[OpNum++];
4493       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4494       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4495 
4496       FunctionType *FTy = nullptr;
4497       FunctionType *FullFTy = nullptr;
4498       if ((CCInfo >> 13) & 1) {
4499         FullFTy =
4500             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4501         if (!FullFTy)
4502           return error("Explicit invoke type is not a function type");
4503         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4504       }
4505 
4506       Value *Callee;
4507       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4508         return error("Invalid record");
4509 
4510       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4511       if (!CalleeTy)
4512         return error("Callee is not a pointer");
4513       if (!FTy) {
4514         FullFTy =
4515             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4516         if (!FullFTy)
4517           return error("Callee is not of pointer to function type");
4518         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4519       } else if (getPointerElementFlatType(FullTy) != FTy)
4520         return error("Explicit invoke type does not match pointee type of "
4521                      "callee operand");
4522       if (Record.size() < FTy->getNumParams() + OpNum)
4523         return error("Insufficient operands to call");
4524 
4525       SmallVector<Value*, 16> Ops;
4526       SmallVector<Type *, 16> ArgsFullTys;
4527       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4528         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4529                                FTy->getParamType(i)));
4530         ArgsFullTys.push_back(FullFTy->getParamType(i));
4531         if (!Ops.back())
4532           return error("Invalid record");
4533       }
4534 
4535       if (!FTy->isVarArg()) {
4536         if (Record.size() != OpNum)
4537           return error("Invalid record");
4538       } else {
4539         // Read type/value pairs for varargs params.
4540         while (OpNum != Record.size()) {
4541           Value *Op;
4542           Type *FullTy;
4543           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
4544             return error("Invalid record");
4545           Ops.push_back(Op);
4546           ArgsFullTys.push_back(FullTy);
4547         }
4548       }
4549 
4550       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4551                              OperandBundles);
4552       FullTy = FullFTy->getReturnType();
4553       OperandBundles.clear();
4554       InstructionList.push_back(I);
4555       cast<InvokeInst>(I)->setCallingConv(
4556           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4557       cast<InvokeInst>(I)->setAttributes(PAL);
4558       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
4559 
4560       break;
4561     }
4562     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4563       unsigned Idx = 0;
4564       Value *Val = nullptr;
4565       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4566         return error("Invalid record");
4567       I = ResumeInst::Create(Val);
4568       InstructionList.push_back(I);
4569       break;
4570     }
4571     case bitc::FUNC_CODE_INST_CALLBR: {
4572       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4573       unsigned OpNum = 0;
4574       AttributeList PAL = getAttributes(Record[OpNum++]);
4575       unsigned CCInfo = Record[OpNum++];
4576 
4577       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4578       unsigned NumIndirectDests = Record[OpNum++];
4579       SmallVector<BasicBlock *, 16> IndirectDests;
4580       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4581         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4582 
4583       FunctionType *FTy = nullptr;
4584       FunctionType *FullFTy = nullptr;
4585       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
4586         FullFTy =
4587             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
4588         if (!FullFTy)
4589           return error("Explicit call type is not a function type");
4590         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4591       }
4592 
4593       Value *Callee;
4594       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
4595         return error("Invalid record");
4596 
4597       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4598       if (!OpTy)
4599         return error("Callee is not a pointer type");
4600       if (!FTy) {
4601         FullFTy =
4602             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
4603         if (!FullFTy)
4604           return error("Callee is not of pointer to function type");
4605         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
4606       } else if (getPointerElementFlatType(FullTy) != FTy)
4607         return error("Explicit call type does not match pointee type of "
4608                      "callee operand");
4609       if (Record.size() < FTy->getNumParams() + OpNum)
4610         return error("Insufficient operands to call");
4611 
4612       SmallVector<Value*, 16> Args;
4613       // Read the fixed params.
4614       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4615         if (FTy->getParamType(i)->isLabelTy())
4616           Args.push_back(getBasicBlock(Record[OpNum]));
4617         else
4618           Args.push_back(getValue(Record, OpNum, NextValueNo,
4619                                   FTy->getParamType(i)));
4620         if (!Args.back())
4621           return error("Invalid record");
4622       }
4623 
4624       // Read type/value pairs for varargs params.
4625       if (!FTy->isVarArg()) {
4626         if (OpNum != Record.size())
4627           return error("Invalid record");
4628       } else {
4629         while (OpNum != Record.size()) {
4630           Value *Op;
4631           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4632             return error("Invalid record");
4633           Args.push_back(Op);
4634         }
4635       }
4636 
4637       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4638                              OperandBundles);
4639       FullTy = FullFTy->getReturnType();
4640       OperandBundles.clear();
4641       InstructionList.push_back(I);
4642       cast<CallBrInst>(I)->setCallingConv(
4643           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4644       cast<CallBrInst>(I)->setAttributes(PAL);
4645       break;
4646     }
4647     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4648       I = new UnreachableInst(Context);
4649       InstructionList.push_back(I);
4650       break;
4651     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4652       if (Record.size() < 1)
4653         return error("Invalid record");
4654       // The first record specifies the type.
4655       FullTy = getFullyStructuredTypeByID(Record[0]);
4656       Type *Ty = flattenPointerTypes(FullTy);
4657       if (!Ty)
4658         return error("Invalid record");
4659 
4660       // Phi arguments are pairs of records of [value, basic block].
4661       // There is an optional final record for fast-math-flags if this phi has a
4662       // floating-point type.
4663       size_t NumArgs = (Record.size() - 1) / 2;
4664       PHINode *PN = PHINode::Create(Ty, NumArgs);
4665       if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN))
4666         return error("Invalid record");
4667       InstructionList.push_back(PN);
4668 
4669       for (unsigned i = 0; i != NumArgs; i++) {
4670         Value *V;
4671         // With the new function encoding, it is possible that operands have
4672         // negative IDs (for forward references).  Use a signed VBR
4673         // representation to keep the encoding small.
4674         if (UseRelativeIDs)
4675           V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty);
4676         else
4677           V = getValue(Record, i * 2 + 1, NextValueNo, Ty);
4678         BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]);
4679         if (!V || !BB)
4680           return error("Invalid record");
4681         PN->addIncoming(V, BB);
4682       }
4683       I = PN;
4684 
4685       // If there are an even number of records, the final record must be FMF.
4686       if (Record.size() % 2 == 0) {
4687         assert(isa<FPMathOperator>(I) && "Unexpected phi type");
4688         FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]);
4689         if (FMF.any())
4690           I->setFastMathFlags(FMF);
4691       }
4692 
4693       break;
4694     }
4695 
4696     case bitc::FUNC_CODE_INST_LANDINGPAD:
4697     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4698       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4699       unsigned Idx = 0;
4700       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4701         if (Record.size() < 3)
4702           return error("Invalid record");
4703       } else {
4704         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4705         if (Record.size() < 4)
4706           return error("Invalid record");
4707       }
4708       FullTy = getFullyStructuredTypeByID(Record[Idx++]);
4709       Type *Ty = flattenPointerTypes(FullTy);
4710       if (!Ty)
4711         return error("Invalid record");
4712       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4713         Value *PersFn = nullptr;
4714         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4715           return error("Invalid record");
4716 
4717         if (!F->hasPersonalityFn())
4718           F->setPersonalityFn(cast<Constant>(PersFn));
4719         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4720           return error("Personality function mismatch");
4721       }
4722 
4723       bool IsCleanup = !!Record[Idx++];
4724       unsigned NumClauses = Record[Idx++];
4725       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4726       LP->setCleanup(IsCleanup);
4727       for (unsigned J = 0; J != NumClauses; ++J) {
4728         LandingPadInst::ClauseType CT =
4729           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4730         Value *Val;
4731 
4732         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4733           delete LP;
4734           return error("Invalid record");
4735         }
4736 
4737         assert((CT != LandingPadInst::Catch ||
4738                 !isa<ArrayType>(Val->getType())) &&
4739                "Catch clause has a invalid type!");
4740         assert((CT != LandingPadInst::Filter ||
4741                 isa<ArrayType>(Val->getType())) &&
4742                "Filter clause has invalid type!");
4743         LP->addClause(cast<Constant>(Val));
4744       }
4745 
4746       I = LP;
4747       InstructionList.push_back(I);
4748       break;
4749     }
4750 
4751     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4752       if (Record.size() != 4)
4753         return error("Invalid record");
4754       uint64_t AlignRecord = Record[3];
4755       const uint64_t InAllocaMask = uint64_t(1) << 5;
4756       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4757       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4758       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4759                                 SwiftErrorMask;
4760       bool InAlloca = AlignRecord & InAllocaMask;
4761       bool SwiftError = AlignRecord & SwiftErrorMask;
4762       FullTy = getFullyStructuredTypeByID(Record[0]);
4763       Type *Ty = flattenPointerTypes(FullTy);
4764       if ((AlignRecord & ExplicitTypeMask) == 0) {
4765         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4766         if (!PTy)
4767           return error("Old-style alloca with a non-pointer type");
4768         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4769       }
4770       Type *OpTy = getTypeByID(Record[1]);
4771       Value *Size = getFnValueByID(Record[2], OpTy);
4772       MaybeAlign Align;
4773       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4774         return Err;
4775       }
4776       if (!Ty || !Size)
4777         return error("Invalid record");
4778 
4779       // FIXME: Make this an optional field.
4780       const DataLayout &DL = TheModule->getDataLayout();
4781       unsigned AS = DL.getAllocaAddrSpace();
4782 
4783       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4784       AI->setUsedWithInAlloca(InAlloca);
4785       AI->setSwiftError(SwiftError);
4786       I = AI;
4787       FullTy = PointerType::get(FullTy, AS);
4788       InstructionList.push_back(I);
4789       break;
4790     }
4791     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4792       unsigned OpNum = 0;
4793       Value *Op;
4794       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4795           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4796         return error("Invalid record");
4797 
4798       if (!isa<PointerType>(Op->getType()))
4799         return error("Load operand is not a pointer type");
4800 
4801       Type *Ty = nullptr;
4802       if (OpNum + 3 == Record.size()) {
4803         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4804         Ty = flattenPointerTypes(FullTy);
4805       } else
4806         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4807 
4808       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4809         return Err;
4810 
4811       MaybeAlign Align;
4812       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4813         return Err;
4814       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4815       InstructionList.push_back(I);
4816       break;
4817     }
4818     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4819        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4820       unsigned OpNum = 0;
4821       Value *Op;
4822       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) ||
4823           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4824         return error("Invalid record");
4825 
4826       if (!isa<PointerType>(Op->getType()))
4827         return error("Load operand is not a pointer type");
4828 
4829       Type *Ty = nullptr;
4830       if (OpNum + 5 == Record.size()) {
4831         FullTy = getFullyStructuredTypeByID(Record[OpNum++]);
4832         Ty = flattenPointerTypes(FullTy);
4833       } else
4834         std::tie(FullTy, Ty) = getPointerElementTypes(FullTy);
4835 
4836       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4837         return Err;
4838 
4839       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4840       if (Ordering == AtomicOrdering::NotAtomic ||
4841           Ordering == AtomicOrdering::Release ||
4842           Ordering == AtomicOrdering::AcquireRelease)
4843         return error("Invalid record");
4844       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4845         return error("Invalid record");
4846       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4847 
4848       MaybeAlign Align;
4849       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4850         return Err;
4851       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID);
4852       InstructionList.push_back(I);
4853       break;
4854     }
4855     case bitc::FUNC_CODE_INST_STORE:
4856     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4857       unsigned OpNum = 0;
4858       Value *Val, *Ptr;
4859       Type *FullTy;
4860       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4861           (BitCode == bitc::FUNC_CODE_INST_STORE
4862                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4863                : popValue(Record, OpNum, NextValueNo,
4864                           getPointerElementFlatType(FullTy), Val)) ||
4865           OpNum + 2 != Record.size())
4866         return error("Invalid record");
4867 
4868       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4869         return Err;
4870       MaybeAlign Align;
4871       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4872         return Err;
4873       I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align);
4874       InstructionList.push_back(I);
4875       break;
4876     }
4877     case bitc::FUNC_CODE_INST_STOREATOMIC:
4878     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4879       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4880       unsigned OpNum = 0;
4881       Value *Val, *Ptr;
4882       Type *FullTy;
4883       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4884           !isa<PointerType>(Ptr->getType()) ||
4885           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4886                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4887                : popValue(Record, OpNum, NextValueNo,
4888                           getPointerElementFlatType(FullTy), Val)) ||
4889           OpNum + 4 != Record.size())
4890         return error("Invalid record");
4891 
4892       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4893         return Err;
4894       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4895       if (Ordering == AtomicOrdering::NotAtomic ||
4896           Ordering == AtomicOrdering::Acquire ||
4897           Ordering == AtomicOrdering::AcquireRelease)
4898         return error("Invalid record");
4899       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4900       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4901         return error("Invalid record");
4902 
4903       MaybeAlign Align;
4904       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4905         return Err;
4906       I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align, Ordering, SSID);
4907       InstructionList.push_back(I);
4908       break;
4909     }
4910     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4911     case bitc::FUNC_CODE_INST_CMPXCHG: {
4912       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4913       //          failureordering?, isweak?]
4914       unsigned OpNum = 0;
4915       Value *Ptr, *Cmp, *New;
4916       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy))
4917         return error("Invalid record");
4918 
4919       if (!isa<PointerType>(Ptr->getType()))
4920         return error("Cmpxchg operand is not a pointer type");
4921 
4922       if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) {
4923         if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy))
4924           return error("Invalid record");
4925       } else if (popValue(Record, OpNum, NextValueNo,
4926                           getPointerElementFlatType(FullTy), Cmp))
4927         return error("Invalid record");
4928       else
4929         FullTy = cast<PointerType>(FullTy)->getElementType();
4930 
4931       if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4932           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4933         return error("Invalid record");
4934 
4935       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4936       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4937           SuccessOrdering == AtomicOrdering::Unordered)
4938         return error("Invalid record");
4939       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4940 
4941       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4942         return Err;
4943       AtomicOrdering FailureOrdering;
4944       if (Record.size() < 7)
4945         FailureOrdering =
4946             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4947       else
4948         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4949 
4950       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4951                                 SSID);
4952       FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)});
4953       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4954 
4955       if (Record.size() < 8) {
4956         // Before weak cmpxchgs existed, the instruction simply returned the
4957         // value loaded from memory, so bitcode files from that era will be
4958         // expecting the first component of a modern cmpxchg.
4959         CurBB->getInstList().push_back(I);
4960         I = ExtractValueInst::Create(I, 0);
4961         FullTy = cast<StructType>(FullTy)->getElementType(0);
4962       } else {
4963         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4964       }
4965 
4966       InstructionList.push_back(I);
4967       break;
4968     }
4969     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4970       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4971       unsigned OpNum = 0;
4972       Value *Ptr, *Val;
4973       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) ||
4974           !isa<PointerType>(Ptr->getType()) ||
4975           popValue(Record, OpNum, NextValueNo,
4976                    getPointerElementFlatType(FullTy), Val) ||
4977           OpNum + 4 != Record.size())
4978         return error("Invalid record");
4979       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4980       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4981           Operation > AtomicRMWInst::LAST_BINOP)
4982         return error("Invalid record");
4983       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4984       if (Ordering == AtomicOrdering::NotAtomic ||
4985           Ordering == AtomicOrdering::Unordered)
4986         return error("Invalid record");
4987       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4988       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4989       FullTy = getPointerElementFlatType(FullTy);
4990       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4991       InstructionList.push_back(I);
4992       break;
4993     }
4994     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4995       if (2 != Record.size())
4996         return error("Invalid record");
4997       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4998       if (Ordering == AtomicOrdering::NotAtomic ||
4999           Ordering == AtomicOrdering::Unordered ||
5000           Ordering == AtomicOrdering::Monotonic)
5001         return error("Invalid record");
5002       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
5003       I = new FenceInst(Context, Ordering, SSID);
5004       InstructionList.push_back(I);
5005       break;
5006     }
5007     case bitc::FUNC_CODE_INST_CALL: {
5008       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
5009       if (Record.size() < 3)
5010         return error("Invalid record");
5011 
5012       unsigned OpNum = 0;
5013       AttributeList PAL = getAttributes(Record[OpNum++]);
5014       unsigned CCInfo = Record[OpNum++];
5015 
5016       FastMathFlags FMF;
5017       if ((CCInfo >> bitc::CALL_FMF) & 1) {
5018         FMF = getDecodedFastMathFlags(Record[OpNum++]);
5019         if (!FMF.any())
5020           return error("Fast math flags indicator set for call with no FMF");
5021       }
5022 
5023       FunctionType *FTy = nullptr;
5024       FunctionType *FullFTy = nullptr;
5025       if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) {
5026         FullFTy =
5027             dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++]));
5028         if (!FullFTy)
5029           return error("Explicit call type is not a function type");
5030         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5031       }
5032 
5033       Value *Callee;
5034       if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy))
5035         return error("Invalid record");
5036 
5037       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
5038       if (!OpTy)
5039         return error("Callee is not a pointer type");
5040       if (!FTy) {
5041         FullFTy =
5042             dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType());
5043         if (!FullFTy)
5044           return error("Callee is not of pointer to function type");
5045         FTy = cast<FunctionType>(flattenPointerTypes(FullFTy));
5046       } else if (getPointerElementFlatType(FullTy) != FTy)
5047         return error("Explicit call type does not match pointee type of "
5048                      "callee operand");
5049       if (Record.size() < FTy->getNumParams() + OpNum)
5050         return error("Insufficient operands to call");
5051 
5052       SmallVector<Value*, 16> Args;
5053       SmallVector<Type*, 16> ArgsFullTys;
5054       // Read the fixed params.
5055       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
5056         if (FTy->getParamType(i)->isLabelTy())
5057           Args.push_back(getBasicBlock(Record[OpNum]));
5058         else
5059           Args.push_back(getValue(Record, OpNum, NextValueNo,
5060                                   FTy->getParamType(i)));
5061         ArgsFullTys.push_back(FullFTy->getParamType(i));
5062         if (!Args.back())
5063           return error("Invalid record");
5064       }
5065 
5066       // Read type/value pairs for varargs params.
5067       if (!FTy->isVarArg()) {
5068         if (OpNum != Record.size())
5069           return error("Invalid record");
5070       } else {
5071         while (OpNum != Record.size()) {
5072           Value *Op;
5073           Type *FullTy;
5074           if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5075             return error("Invalid record");
5076           Args.push_back(Op);
5077           ArgsFullTys.push_back(FullTy);
5078         }
5079       }
5080 
5081       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
5082       FullTy = FullFTy->getReturnType();
5083       OperandBundles.clear();
5084       InstructionList.push_back(I);
5085       cast<CallInst>(I)->setCallingConv(
5086           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
5087       CallInst::TailCallKind TCK = CallInst::TCK_None;
5088       if (CCInfo & 1 << bitc::CALL_TAIL)
5089         TCK = CallInst::TCK_Tail;
5090       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
5091         TCK = CallInst::TCK_MustTail;
5092       if (CCInfo & (1 << bitc::CALL_NOTAIL))
5093         TCK = CallInst::TCK_NoTail;
5094       cast<CallInst>(I)->setTailCallKind(TCK);
5095       cast<CallInst>(I)->setAttributes(PAL);
5096       propagateByValTypes(cast<CallBase>(I), ArgsFullTys);
5097       if (FMF.any()) {
5098         if (!isa<FPMathOperator>(I))
5099           return error("Fast-math-flags specified for call without "
5100                        "floating-point scalar or vector return type");
5101         I->setFastMathFlags(FMF);
5102       }
5103       break;
5104     }
5105     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
5106       if (Record.size() < 3)
5107         return error("Invalid record");
5108       Type *OpTy = getTypeByID(Record[0]);
5109       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
5110       FullTy = getFullyStructuredTypeByID(Record[2]);
5111       Type *ResTy = flattenPointerTypes(FullTy);
5112       if (!OpTy || !Op || !ResTy)
5113         return error("Invalid record");
5114       I = new VAArgInst(Op, ResTy);
5115       InstructionList.push_back(I);
5116       break;
5117     }
5118 
5119     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
5120       // A call or an invoke can be optionally prefixed with some variable
5121       // number of operand bundle blocks.  These blocks are read into
5122       // OperandBundles and consumed at the next call or invoke instruction.
5123 
5124       if (Record.size() < 1 || Record[0] >= BundleTags.size())
5125         return error("Invalid record");
5126 
5127       std::vector<Value *> Inputs;
5128 
5129       unsigned OpNum = 1;
5130       while (OpNum != Record.size()) {
5131         Value *Op;
5132         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
5133           return error("Invalid record");
5134         Inputs.push_back(Op);
5135       }
5136 
5137       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
5138       continue;
5139     }
5140 
5141     case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval]
5142       unsigned OpNum = 0;
5143       Value *Op = nullptr;
5144       if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy))
5145         return error("Invalid record");
5146       if (OpNum != Record.size())
5147         return error("Invalid record");
5148 
5149       I = new FreezeInst(Op);
5150       InstructionList.push_back(I);
5151       break;
5152     }
5153     }
5154 
5155     // Add instruction to end of current BB.  If there is no current BB, reject
5156     // this file.
5157     if (!CurBB) {
5158       I->deleteValue();
5159       return error("Invalid instruction with no BB");
5160     }
5161     if (!OperandBundles.empty()) {
5162       I->deleteValue();
5163       return error("Operand bundles found with no consumer");
5164     }
5165     CurBB->getInstList().push_back(I);
5166 
5167     // If this was a terminator instruction, move to the next block.
5168     if (I->isTerminator()) {
5169       ++CurBBNo;
5170       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
5171     }
5172 
5173     // Non-void values get registered in the value table for future use.
5174     if (!I->getType()->isVoidTy()) {
5175       if (!FullTy) {
5176         FullTy = I->getType();
5177         assert(
5178             !FullTy->isPointerTy() && !isa<StructType>(FullTy) &&
5179             !isa<ArrayType>(FullTy) &&
5180             (!isa<VectorType>(FullTy) ||
5181              cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() ||
5182              cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) &&
5183             "Structured types must be assigned with corresponding non-opaque "
5184             "pointer type");
5185       }
5186 
5187       assert(I->getType() == flattenPointerTypes(FullTy) &&
5188              "Incorrect fully structured type provided for Instruction");
5189       ValueList.assignValue(I, NextValueNo++, FullTy);
5190     }
5191   }
5192 
5193 OutOfRecordLoop:
5194 
5195   if (!OperandBundles.empty())
5196     return error("Operand bundles found with no consumer");
5197 
5198   // Check the function list for unresolved values.
5199   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
5200     if (!A->getParent()) {
5201       // We found at least one unresolved value.  Nuke them all to avoid leaks.
5202       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
5203         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
5204           A->replaceAllUsesWith(UndefValue::get(A->getType()));
5205           delete A;
5206         }
5207       }
5208       return error("Never resolved value found in function");
5209     }
5210   }
5211 
5212   // Unexpected unresolved metadata about to be dropped.
5213   if (MDLoader->hasFwdRefs())
5214     return error("Invalid function metadata: outgoing forward refs");
5215 
5216   // Trim the value list down to the size it was before we parsed this function.
5217   ValueList.shrinkTo(ModuleValueListSize);
5218   MDLoader->shrinkTo(ModuleMDLoaderSize);
5219   std::vector<BasicBlock*>().swap(FunctionBBs);
5220   return Error::success();
5221 }
5222 
5223 /// Find the function body in the bitcode stream
5224 Error BitcodeReader::findFunctionInStream(
5225     Function *F,
5226     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5227   while (DeferredFunctionInfoIterator->second == 0) {
5228     // This is the fallback handling for the old format bitcode that
5229     // didn't contain the function index in the VST, or when we have
5230     // an anonymous function which would not have a VST entry.
5231     // Assert that we have one of those two cases.
5232     assert(VSTOffset == 0 || !F->hasName());
5233     // Parse the next body in the stream and set its position in the
5234     // DeferredFunctionInfo map.
5235     if (Error Err = rememberAndSkipFunctionBodies())
5236       return Err;
5237   }
5238   return Error::success();
5239 }
5240 
5241 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5242   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5243     return SyncScope::ID(Val);
5244   if (Val >= SSIDs.size())
5245     return SyncScope::System; // Map unknown synchronization scopes to system.
5246   return SSIDs[Val];
5247 }
5248 
5249 //===----------------------------------------------------------------------===//
5250 // GVMaterializer implementation
5251 //===----------------------------------------------------------------------===//
5252 
5253 Error BitcodeReader::materialize(GlobalValue *GV) {
5254   Function *F = dyn_cast<Function>(GV);
5255   // If it's not a function or is already material, ignore the request.
5256   if (!F || !F->isMaterializable())
5257     return Error::success();
5258 
5259   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5260   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5261   // If its position is recorded as 0, its body is somewhere in the stream
5262   // but we haven't seen it yet.
5263   if (DFII->second == 0)
5264     if (Error Err = findFunctionInStream(F, DFII))
5265       return Err;
5266 
5267   // Materialize metadata before parsing any function bodies.
5268   if (Error Err = materializeMetadata())
5269     return Err;
5270 
5271   // Move the bit stream to the saved position of the deferred function body.
5272   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5273     return JumpFailed;
5274   if (Error Err = parseFunctionBody(F))
5275     return Err;
5276   F->setIsMaterializable(false);
5277 
5278   if (StripDebugInfo)
5279     stripDebugInfo(*F);
5280 
5281   // Upgrade any old intrinsic calls in the function.
5282   for (auto &I : UpgradedIntrinsics) {
5283     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5284          UI != UE;) {
5285       User *U = *UI;
5286       ++UI;
5287       if (CallInst *CI = dyn_cast<CallInst>(U))
5288         UpgradeIntrinsicCall(CI, I.second);
5289     }
5290   }
5291 
5292   // Update calls to the remangled intrinsics
5293   for (auto &I : RemangledIntrinsics)
5294     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5295          UI != UE;)
5296       // Don't expect any other users than call sites
5297       cast<CallBase>(*UI++)->setCalledFunction(I.second);
5298 
5299   // Finish fn->subprogram upgrade for materialized functions.
5300   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5301     F->setSubprogram(SP);
5302 
5303   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5304   if (!MDLoader->isStrippingTBAA()) {
5305     for (auto &I : instructions(F)) {
5306       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5307       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5308         continue;
5309       MDLoader->setStripTBAA(true);
5310       stripTBAA(F->getParent());
5311     }
5312   }
5313 
5314   // Bring in any functions that this function forward-referenced via
5315   // blockaddresses.
5316   return materializeForwardReferencedFunctions();
5317 }
5318 
5319 Error BitcodeReader::materializeModule() {
5320   if (Error Err = materializeMetadata())
5321     return Err;
5322 
5323   // Promise to materialize all forward references.
5324   WillMaterializeAllForwardRefs = true;
5325 
5326   // Iterate over the module, deserializing any functions that are still on
5327   // disk.
5328   for (Function &F : *TheModule) {
5329     if (Error Err = materialize(&F))
5330       return Err;
5331   }
5332   // At this point, if there are any function bodies, parse the rest of
5333   // the bits in the module past the last function block we have recorded
5334   // through either lazy scanning or the VST.
5335   if (LastFunctionBlockBit || NextUnreadBit)
5336     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5337                                     ? LastFunctionBlockBit
5338                                     : NextUnreadBit))
5339       return Err;
5340 
5341   // Check that all block address forward references got resolved (as we
5342   // promised above).
5343   if (!BasicBlockFwdRefs.empty())
5344     return error("Never resolved function from blockaddress");
5345 
5346   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5347   // delete the old functions to clean up. We can't do this unless the entire
5348   // module is materialized because there could always be another function body
5349   // with calls to the old function.
5350   for (auto &I : UpgradedIntrinsics) {
5351     for (auto *U : I.first->users()) {
5352       if (CallInst *CI = dyn_cast<CallInst>(U))
5353         UpgradeIntrinsicCall(CI, I.second);
5354     }
5355     if (!I.first->use_empty())
5356       I.first->replaceAllUsesWith(I.second);
5357     I.first->eraseFromParent();
5358   }
5359   UpgradedIntrinsics.clear();
5360   // Do the same for remangled intrinsics
5361   for (auto &I : RemangledIntrinsics) {
5362     I.first->replaceAllUsesWith(I.second);
5363     I.first->eraseFromParent();
5364   }
5365   RemangledIntrinsics.clear();
5366 
5367   UpgradeDebugInfo(*TheModule);
5368 
5369   UpgradeModuleFlags(*TheModule);
5370 
5371   UpgradeARCRuntime(*TheModule);
5372 
5373   return Error::success();
5374 }
5375 
5376 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5377   return IdentifiedStructTypes;
5378 }
5379 
5380 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5381     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5382     StringRef ModulePath, unsigned ModuleId)
5383     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5384       ModulePath(ModulePath), ModuleId(ModuleId) {}
5385 
5386 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5387   TheIndex.addModule(ModulePath, ModuleId);
5388 }
5389 
5390 ModuleSummaryIndex::ModuleInfo *
5391 ModuleSummaryIndexBitcodeReader::getThisModule() {
5392   return TheIndex.getModule(ModulePath);
5393 }
5394 
5395 std::pair<ValueInfo, GlobalValue::GUID>
5396 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5397   auto VGI = ValueIdToValueInfoMap[ValueId];
5398   assert(VGI.first);
5399   return VGI;
5400 }
5401 
5402 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5403     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5404     StringRef SourceFileName) {
5405   std::string GlobalId =
5406       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5407   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5408   auto OriginalNameID = ValueGUID;
5409   if (GlobalValue::isLocalLinkage(Linkage))
5410     OriginalNameID = GlobalValue::getGUID(ValueName);
5411   if (PrintSummaryGUIDs)
5412     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5413            << ValueName << "\n";
5414 
5415   // UseStrtab is false for legacy summary formats and value names are
5416   // created on stack. In that case we save the name in a string saver in
5417   // the index so that the value name can be recorded.
5418   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5419       TheIndex.getOrInsertValueInfo(
5420           ValueGUID,
5421           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5422       OriginalNameID);
5423 }
5424 
5425 // Specialized value symbol table parser used when reading module index
5426 // blocks where we don't actually create global values. The parsed information
5427 // is saved in the bitcode reader for use when later parsing summaries.
5428 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5429     uint64_t Offset,
5430     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5431   // With a strtab the VST is not required to parse the summary.
5432   if (UseStrtab)
5433     return Error::success();
5434 
5435   assert(Offset > 0 && "Expected non-zero VST offset");
5436   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5437   if (!MaybeCurrentBit)
5438     return MaybeCurrentBit.takeError();
5439   uint64_t CurrentBit = MaybeCurrentBit.get();
5440 
5441   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5442     return Err;
5443 
5444   SmallVector<uint64_t, 64> Record;
5445 
5446   // Read all the records for this value table.
5447   SmallString<128> ValueName;
5448 
5449   while (true) {
5450     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5451     if (!MaybeEntry)
5452       return MaybeEntry.takeError();
5453     BitstreamEntry Entry = MaybeEntry.get();
5454 
5455     switch (Entry.Kind) {
5456     case BitstreamEntry::SubBlock: // Handled for us already.
5457     case BitstreamEntry::Error:
5458       return error("Malformed block");
5459     case BitstreamEntry::EndBlock:
5460       // Done parsing VST, jump back to wherever we came from.
5461       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5462         return JumpFailed;
5463       return Error::success();
5464     case BitstreamEntry::Record:
5465       // The interesting case.
5466       break;
5467     }
5468 
5469     // Read a record.
5470     Record.clear();
5471     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5472     if (!MaybeRecord)
5473       return MaybeRecord.takeError();
5474     switch (MaybeRecord.get()) {
5475     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5476       break;
5477     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5478       if (convertToString(Record, 1, ValueName))
5479         return error("Invalid record");
5480       unsigned ValueID = Record[0];
5481       assert(!SourceFileName.empty());
5482       auto VLI = ValueIdToLinkageMap.find(ValueID);
5483       assert(VLI != ValueIdToLinkageMap.end() &&
5484              "No linkage found for VST entry?");
5485       auto Linkage = VLI->second;
5486       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5487       ValueName.clear();
5488       break;
5489     }
5490     case bitc::VST_CODE_FNENTRY: {
5491       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5492       if (convertToString(Record, 2, ValueName))
5493         return error("Invalid record");
5494       unsigned ValueID = Record[0];
5495       assert(!SourceFileName.empty());
5496       auto VLI = ValueIdToLinkageMap.find(ValueID);
5497       assert(VLI != ValueIdToLinkageMap.end() &&
5498              "No linkage found for VST entry?");
5499       auto Linkage = VLI->second;
5500       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5501       ValueName.clear();
5502       break;
5503     }
5504     case bitc::VST_CODE_COMBINED_ENTRY: {
5505       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5506       unsigned ValueID = Record[0];
5507       GlobalValue::GUID RefGUID = Record[1];
5508       // The "original name", which is the second value of the pair will be
5509       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5510       ValueIdToValueInfoMap[ValueID] =
5511           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5512       break;
5513     }
5514     }
5515   }
5516 }
5517 
5518 // Parse just the blocks needed for building the index out of the module.
5519 // At the end of this routine the module Index is populated with a map
5520 // from global value id to GlobalValueSummary objects.
5521 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5522   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5523     return Err;
5524 
5525   SmallVector<uint64_t, 64> Record;
5526   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5527   unsigned ValueId = 0;
5528 
5529   // Read the index for this module.
5530   while (true) {
5531     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5532     if (!MaybeEntry)
5533       return MaybeEntry.takeError();
5534     llvm::BitstreamEntry Entry = MaybeEntry.get();
5535 
5536     switch (Entry.Kind) {
5537     case BitstreamEntry::Error:
5538       return error("Malformed block");
5539     case BitstreamEntry::EndBlock:
5540       return Error::success();
5541 
5542     case BitstreamEntry::SubBlock:
5543       switch (Entry.ID) {
5544       default: // Skip unknown content.
5545         if (Error Err = Stream.SkipBlock())
5546           return Err;
5547         break;
5548       case bitc::BLOCKINFO_BLOCK_ID:
5549         // Need to parse these to get abbrev ids (e.g. for VST)
5550         if (readBlockInfo())
5551           return error("Malformed block");
5552         break;
5553       case bitc::VALUE_SYMTAB_BLOCK_ID:
5554         // Should have been parsed earlier via VSTOffset, unless there
5555         // is no summary section.
5556         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5557                 !SeenGlobalValSummary) &&
5558                "Expected early VST parse via VSTOffset record");
5559         if (Error Err = Stream.SkipBlock())
5560           return Err;
5561         break;
5562       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5563       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5564         // Add the module if it is a per-module index (has a source file name).
5565         if (!SourceFileName.empty())
5566           addThisModule();
5567         assert(!SeenValueSymbolTable &&
5568                "Already read VST when parsing summary block?");
5569         // We might not have a VST if there were no values in the
5570         // summary. An empty summary block generated when we are
5571         // performing ThinLTO compiles so we don't later invoke
5572         // the regular LTO process on them.
5573         if (VSTOffset > 0) {
5574           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5575             return Err;
5576           SeenValueSymbolTable = true;
5577         }
5578         SeenGlobalValSummary = true;
5579         if (Error Err = parseEntireSummary(Entry.ID))
5580           return Err;
5581         break;
5582       case bitc::MODULE_STRTAB_BLOCK_ID:
5583         if (Error Err = parseModuleStringTable())
5584           return Err;
5585         break;
5586       }
5587       continue;
5588 
5589     case BitstreamEntry::Record: {
5590         Record.clear();
5591         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5592         if (!MaybeBitCode)
5593           return MaybeBitCode.takeError();
5594         switch (MaybeBitCode.get()) {
5595         default:
5596           break; // Default behavior, ignore unknown content.
5597         case bitc::MODULE_CODE_VERSION: {
5598           if (Error Err = parseVersionRecord(Record).takeError())
5599             return Err;
5600           break;
5601         }
5602         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5603         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5604           SmallString<128> ValueName;
5605           if (convertToString(Record, 0, ValueName))
5606             return error("Invalid record");
5607           SourceFileName = ValueName.c_str();
5608           break;
5609         }
5610         /// MODULE_CODE_HASH: [5*i32]
5611         case bitc::MODULE_CODE_HASH: {
5612           if (Record.size() != 5)
5613             return error("Invalid hash length " + Twine(Record.size()).str());
5614           auto &Hash = getThisModule()->second.second;
5615           int Pos = 0;
5616           for (auto &Val : Record) {
5617             assert(!(Val >> 32) && "Unexpected high bits set");
5618             Hash[Pos++] = Val;
5619           }
5620           break;
5621         }
5622         /// MODULE_CODE_VSTOFFSET: [offset]
5623         case bitc::MODULE_CODE_VSTOFFSET:
5624           if (Record.size() < 1)
5625             return error("Invalid record");
5626           // Note that we subtract 1 here because the offset is relative to one
5627           // word before the start of the identification or module block, which
5628           // was historically always the start of the regular bitcode header.
5629           VSTOffset = Record[0] - 1;
5630           break;
5631         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5632         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5633         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5634         // v2: [strtab offset, strtab size, v1]
5635         case bitc::MODULE_CODE_GLOBALVAR:
5636         case bitc::MODULE_CODE_FUNCTION:
5637         case bitc::MODULE_CODE_ALIAS: {
5638           StringRef Name;
5639           ArrayRef<uint64_t> GVRecord;
5640           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5641           if (GVRecord.size() <= 3)
5642             return error("Invalid record");
5643           uint64_t RawLinkage = GVRecord[3];
5644           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5645           if (!UseStrtab) {
5646             ValueIdToLinkageMap[ValueId++] = Linkage;
5647             break;
5648           }
5649 
5650           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5651           break;
5652         }
5653         }
5654       }
5655       continue;
5656     }
5657   }
5658 }
5659 
5660 std::vector<ValueInfo>
5661 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5662   std::vector<ValueInfo> Ret;
5663   Ret.reserve(Record.size());
5664   for (uint64_t RefValueId : Record)
5665     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5666   return Ret;
5667 }
5668 
5669 std::vector<FunctionSummary::EdgeTy>
5670 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5671                                               bool IsOldProfileFormat,
5672                                               bool HasProfile, bool HasRelBF) {
5673   std::vector<FunctionSummary::EdgeTy> Ret;
5674   Ret.reserve(Record.size());
5675   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5676     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5677     uint64_t RelBF = 0;
5678     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5679     if (IsOldProfileFormat) {
5680       I += 1; // Skip old callsitecount field
5681       if (HasProfile)
5682         I += 1; // Skip old profilecount field
5683     } else if (HasProfile)
5684       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5685     else if (HasRelBF)
5686       RelBF = Record[++I];
5687     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5688   }
5689   return Ret;
5690 }
5691 
5692 static void
5693 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5694                                        WholeProgramDevirtResolution &Wpd) {
5695   uint64_t ArgNum = Record[Slot++];
5696   WholeProgramDevirtResolution::ByArg &B =
5697       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5698   Slot += ArgNum;
5699 
5700   B.TheKind =
5701       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5702   B.Info = Record[Slot++];
5703   B.Byte = Record[Slot++];
5704   B.Bit = Record[Slot++];
5705 }
5706 
5707 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5708                                               StringRef Strtab, size_t &Slot,
5709                                               TypeIdSummary &TypeId) {
5710   uint64_t Id = Record[Slot++];
5711   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5712 
5713   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5714   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5715                         static_cast<size_t>(Record[Slot + 1])};
5716   Slot += 2;
5717 
5718   uint64_t ResByArgNum = Record[Slot++];
5719   for (uint64_t I = 0; I != ResByArgNum; ++I)
5720     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5721 }
5722 
5723 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5724                                      StringRef Strtab,
5725                                      ModuleSummaryIndex &TheIndex) {
5726   size_t Slot = 0;
5727   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5728       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5729   Slot += 2;
5730 
5731   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5732   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5733   TypeId.TTRes.AlignLog2 = Record[Slot++];
5734   TypeId.TTRes.SizeM1 = Record[Slot++];
5735   TypeId.TTRes.BitMask = Record[Slot++];
5736   TypeId.TTRes.InlineBits = Record[Slot++];
5737 
5738   while (Slot < Record.size())
5739     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5740 }
5741 
5742 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo(
5743     ArrayRef<uint64_t> Record, size_t &Slot,
5744     TypeIdCompatibleVtableInfo &TypeId) {
5745   uint64_t Offset = Record[Slot++];
5746   ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first;
5747   TypeId.push_back({Offset, Callee});
5748 }
5749 
5750 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord(
5751     ArrayRef<uint64_t> Record) {
5752   size_t Slot = 0;
5753   TypeIdCompatibleVtableInfo &TypeId =
5754       TheIndex.getOrInsertTypeIdCompatibleVtableSummary(
5755           {Strtab.data() + Record[Slot],
5756            static_cast<size_t>(Record[Slot + 1])});
5757   Slot += 2;
5758 
5759   while (Slot < Record.size())
5760     parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId);
5761 }
5762 
5763 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt,
5764                            unsigned WOCnt) {
5765   // Readonly and writeonly refs are in the end of the refs list.
5766   assert(ROCnt + WOCnt <= Refs.size());
5767   unsigned FirstWORef = Refs.size() - WOCnt;
5768   unsigned RefNo = FirstWORef - ROCnt;
5769   for (; RefNo < FirstWORef; ++RefNo)
5770     Refs[RefNo].setReadOnly();
5771   for (; RefNo < Refs.size(); ++RefNo)
5772     Refs[RefNo].setWriteOnly();
5773 }
5774 
5775 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5776 // objects in the index.
5777 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5778   if (Error Err = Stream.EnterSubBlock(ID))
5779     return Err;
5780   SmallVector<uint64_t, 64> Record;
5781 
5782   // Parse version
5783   {
5784     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5785     if (!MaybeEntry)
5786       return MaybeEntry.takeError();
5787     BitstreamEntry Entry = MaybeEntry.get();
5788 
5789     if (Entry.Kind != BitstreamEntry::Record)
5790       return error("Invalid Summary Block: record for version expected");
5791     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5792     if (!MaybeRecord)
5793       return MaybeRecord.takeError();
5794     if (MaybeRecord.get() != bitc::FS_VERSION)
5795       return error("Invalid Summary Block: version expected");
5796   }
5797   const uint64_t Version = Record[0];
5798   const bool IsOldProfileFormat = Version == 1;
5799   if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion)
5800     return error("Invalid summary version " + Twine(Version) +
5801                  ". Version should be in the range [1-" +
5802                  Twine(ModuleSummaryIndex::BitcodeSummaryVersion) +
5803                  "].");
5804   Record.clear();
5805 
5806   // Keep around the last seen summary to be used when we see an optional
5807   // "OriginalName" attachement.
5808   GlobalValueSummary *LastSeenSummary = nullptr;
5809   GlobalValue::GUID LastSeenGUID = 0;
5810 
5811   // We can expect to see any number of type ID information records before
5812   // each function summary records; these variables store the information
5813   // collected so far so that it can be used to create the summary object.
5814   std::vector<GlobalValue::GUID> PendingTypeTests;
5815   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5816       PendingTypeCheckedLoadVCalls;
5817   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5818       PendingTypeCheckedLoadConstVCalls;
5819 
5820   while (true) {
5821     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5822     if (!MaybeEntry)
5823       return MaybeEntry.takeError();
5824     BitstreamEntry Entry = MaybeEntry.get();
5825 
5826     switch (Entry.Kind) {
5827     case BitstreamEntry::SubBlock: // Handled for us already.
5828     case BitstreamEntry::Error:
5829       return error("Malformed block");
5830     case BitstreamEntry::EndBlock:
5831       return Error::success();
5832     case BitstreamEntry::Record:
5833       // The interesting case.
5834       break;
5835     }
5836 
5837     // Read a record. The record format depends on whether this
5838     // is a per-module index or a combined index file. In the per-module
5839     // case the records contain the associated value's ID for correlation
5840     // with VST entries. In the combined index the correlation is done
5841     // via the bitcode offset of the summary records (which were saved
5842     // in the combined index VST entries). The records also contain
5843     // information used for ThinLTO renaming and importing.
5844     Record.clear();
5845     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5846     if (!MaybeBitCode)
5847       return MaybeBitCode.takeError();
5848     switch (unsigned BitCode = MaybeBitCode.get()) {
5849     default: // Default behavior: ignore.
5850       break;
5851     case bitc::FS_FLAGS: {  // [flags]
5852       TheIndex.setFlags(Record[0]);
5853       break;
5854     }
5855     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5856       uint64_t ValueID = Record[0];
5857       GlobalValue::GUID RefGUID = Record[1];
5858       ValueIdToValueInfoMap[ValueID] =
5859           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5860       break;
5861     }
5862     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5863     //                numrefs x valueid, n x (valueid)]
5864     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5865     //                        numrefs x valueid,
5866     //                        n x (valueid, hotness)]
5867     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5868     //                      numrefs x valueid,
5869     //                      n x (valueid, relblockfreq)]
5870     case bitc::FS_PERMODULE:
5871     case bitc::FS_PERMODULE_RELBF:
5872     case bitc::FS_PERMODULE_PROFILE: {
5873       unsigned ValueID = Record[0];
5874       uint64_t RawFlags = Record[1];
5875       unsigned InstCount = Record[2];
5876       uint64_t RawFunFlags = 0;
5877       unsigned NumRefs = Record[3];
5878       unsigned NumRORefs = 0, NumWORefs = 0;
5879       int RefListStartIndex = 4;
5880       if (Version >= 4) {
5881         RawFunFlags = Record[3];
5882         NumRefs = Record[4];
5883         RefListStartIndex = 5;
5884         if (Version >= 5) {
5885           NumRORefs = Record[5];
5886           RefListStartIndex = 6;
5887           if (Version >= 7) {
5888             NumWORefs = Record[6];
5889             RefListStartIndex = 7;
5890           }
5891         }
5892       }
5893 
5894       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5895       // The module path string ref set in the summary must be owned by the
5896       // index's module string table. Since we don't have a module path
5897       // string table section in the per-module index, we create a single
5898       // module path string table entry with an empty (0) ID to take
5899       // ownership.
5900       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5901       assert(Record.size() >= RefListStartIndex + NumRefs &&
5902              "Record size inconsistent with number of references");
5903       std::vector<ValueInfo> Refs = makeRefList(
5904           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5905       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5906       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5907       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5908           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5909           IsOldProfileFormat, HasProfile, HasRelBF);
5910       setSpecialRefs(Refs, NumRORefs, NumWORefs);
5911       auto FS = std::make_unique<FunctionSummary>(
5912           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
5913           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
5914           std::move(PendingTypeTestAssumeVCalls),
5915           std::move(PendingTypeCheckedLoadVCalls),
5916           std::move(PendingTypeTestAssumeConstVCalls),
5917           std::move(PendingTypeCheckedLoadConstVCalls));
5918       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5919       FS->setModulePath(getThisModule()->first());
5920       FS->setOriginalName(VIAndOriginalGUID.second);
5921       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5922       break;
5923     }
5924     // FS_ALIAS: [valueid, flags, valueid]
5925     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5926     // they expect all aliasee summaries to be available.
5927     case bitc::FS_ALIAS: {
5928       unsigned ValueID = Record[0];
5929       uint64_t RawFlags = Record[1];
5930       unsigned AliaseeID = Record[2];
5931       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5932       auto AS = std::make_unique<AliasSummary>(Flags);
5933       // The module path string ref set in the summary must be owned by the
5934       // index's module string table. Since we don't have a module path
5935       // string table section in the per-module index, we create a single
5936       // module path string table entry with an empty (0) ID to take
5937       // ownership.
5938       AS->setModulePath(getThisModule()->first());
5939 
5940       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
5941       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
5942       if (!AliaseeInModule)
5943         return error("Alias expects aliasee summary to be parsed");
5944       AS->setAliasee(AliaseeVI, AliaseeInModule);
5945 
5946       auto GUID = getValueInfoFromValueId(ValueID);
5947       AS->setOriginalName(GUID.second);
5948       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5949       break;
5950     }
5951     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
5952     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5953       unsigned ValueID = Record[0];
5954       uint64_t RawFlags = Record[1];
5955       unsigned RefArrayStart = 2;
5956       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
5957                                       /* WriteOnly */ false,
5958                                       /* Constant */ false,
5959                                       GlobalObject::VCallVisibilityPublic);
5960       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5961       if (Version >= 5) {
5962         GVF = getDecodedGVarFlags(Record[2]);
5963         RefArrayStart = 3;
5964       }
5965       std::vector<ValueInfo> Refs =
5966           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5967       auto FS =
5968           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5969       FS->setModulePath(getThisModule()->first());
5970       auto GUID = getValueInfoFromValueId(ValueID);
5971       FS->setOriginalName(GUID.second);
5972       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5973       break;
5974     }
5975     // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags,
5976     //                        numrefs, numrefs x valueid,
5977     //                        n x (valueid, offset)]
5978     case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: {
5979       unsigned ValueID = Record[0];
5980       uint64_t RawFlags = Record[1];
5981       GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]);
5982       unsigned NumRefs = Record[3];
5983       unsigned RefListStartIndex = 4;
5984       unsigned VTableListStartIndex = RefListStartIndex + NumRefs;
5985       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5986       std::vector<ValueInfo> Refs = makeRefList(
5987           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5988       VTableFuncList VTableFuncs;
5989       for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) {
5990         ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5991         uint64_t Offset = Record[++I];
5992         VTableFuncs.push_back({Callee, Offset});
5993       }
5994       auto VS =
5995           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5996       VS->setModulePath(getThisModule()->first());
5997       VS->setVTableFuncs(VTableFuncs);
5998       auto GUID = getValueInfoFromValueId(ValueID);
5999       VS->setOriginalName(GUID.second);
6000       TheIndex.addGlobalValueSummary(GUID.first, std::move(VS));
6001       break;
6002     }
6003     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
6004     //               numrefs x valueid, n x (valueid)]
6005     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
6006     //                       numrefs x valueid, n x (valueid, hotness)]
6007     case bitc::FS_COMBINED:
6008     case bitc::FS_COMBINED_PROFILE: {
6009       unsigned ValueID = Record[0];
6010       uint64_t ModuleId = Record[1];
6011       uint64_t RawFlags = Record[2];
6012       unsigned InstCount = Record[3];
6013       uint64_t RawFunFlags = 0;
6014       uint64_t EntryCount = 0;
6015       unsigned NumRefs = Record[4];
6016       unsigned NumRORefs = 0, NumWORefs = 0;
6017       int RefListStartIndex = 5;
6018 
6019       if (Version >= 4) {
6020         RawFunFlags = Record[4];
6021         RefListStartIndex = 6;
6022         size_t NumRefsIndex = 5;
6023         if (Version >= 5) {
6024           unsigned NumRORefsOffset = 1;
6025           RefListStartIndex = 7;
6026           if (Version >= 6) {
6027             NumRefsIndex = 6;
6028             EntryCount = Record[5];
6029             RefListStartIndex = 8;
6030             if (Version >= 7) {
6031               RefListStartIndex = 9;
6032               NumWORefs = Record[8];
6033               NumRORefsOffset = 2;
6034             }
6035           }
6036           NumRORefs = Record[RefListStartIndex - NumRORefsOffset];
6037         }
6038         NumRefs = Record[NumRefsIndex];
6039       }
6040 
6041       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6042       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
6043       assert(Record.size() >= RefListStartIndex + NumRefs &&
6044              "Record size inconsistent with number of references");
6045       std::vector<ValueInfo> Refs = makeRefList(
6046           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
6047       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
6048       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
6049           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
6050           IsOldProfileFormat, HasProfile, false);
6051       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6052       setSpecialRefs(Refs, NumRORefs, NumWORefs);
6053       auto FS = std::make_unique<FunctionSummary>(
6054           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
6055           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
6056           std::move(PendingTypeTestAssumeVCalls),
6057           std::move(PendingTypeCheckedLoadVCalls),
6058           std::move(PendingTypeTestAssumeConstVCalls),
6059           std::move(PendingTypeCheckedLoadConstVCalls));
6060       LastSeenSummary = FS.get();
6061       LastSeenGUID = VI.getGUID();
6062       FS->setModulePath(ModuleIdMap[ModuleId]);
6063       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6064       break;
6065     }
6066     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
6067     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
6068     // they expect all aliasee summaries to be available.
6069     case bitc::FS_COMBINED_ALIAS: {
6070       unsigned ValueID = Record[0];
6071       uint64_t ModuleId = Record[1];
6072       uint64_t RawFlags = Record[2];
6073       unsigned AliaseeValueId = Record[3];
6074       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6075       auto AS = std::make_unique<AliasSummary>(Flags);
6076       LastSeenSummary = AS.get();
6077       AS->setModulePath(ModuleIdMap[ModuleId]);
6078 
6079       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
6080       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
6081       AS->setAliasee(AliaseeVI, AliaseeInModule);
6082 
6083       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6084       LastSeenGUID = VI.getGUID();
6085       TheIndex.addGlobalValueSummary(VI, std::move(AS));
6086       break;
6087     }
6088     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
6089     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
6090       unsigned ValueID = Record[0];
6091       uint64_t ModuleId = Record[1];
6092       uint64_t RawFlags = Record[2];
6093       unsigned RefArrayStart = 3;
6094       GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false,
6095                                       /* WriteOnly */ false,
6096                                       /* Constant */ false,
6097                                       GlobalObject::VCallVisibilityPublic);
6098       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
6099       if (Version >= 5) {
6100         GVF = getDecodedGVarFlags(Record[3]);
6101         RefArrayStart = 4;
6102       }
6103       std::vector<ValueInfo> Refs =
6104           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
6105       auto FS =
6106           std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
6107       LastSeenSummary = FS.get();
6108       FS->setModulePath(ModuleIdMap[ModuleId]);
6109       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
6110       LastSeenGUID = VI.getGUID();
6111       TheIndex.addGlobalValueSummary(VI, std::move(FS));
6112       break;
6113     }
6114     // FS_COMBINED_ORIGINAL_NAME: [original_name]
6115     case bitc::FS_COMBINED_ORIGINAL_NAME: {
6116       uint64_t OriginalName = Record[0];
6117       if (!LastSeenSummary)
6118         return error("Name attachment that does not follow a combined record");
6119       LastSeenSummary->setOriginalName(OriginalName);
6120       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
6121       // Reset the LastSeenSummary
6122       LastSeenSummary = nullptr;
6123       LastSeenGUID = 0;
6124       break;
6125     }
6126     case bitc::FS_TYPE_TESTS:
6127       assert(PendingTypeTests.empty());
6128       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
6129                               Record.end());
6130       break;
6131 
6132     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
6133       assert(PendingTypeTestAssumeVCalls.empty());
6134       for (unsigned I = 0; I != Record.size(); I += 2)
6135         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
6136       break;
6137 
6138     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
6139       assert(PendingTypeCheckedLoadVCalls.empty());
6140       for (unsigned I = 0; I != Record.size(); I += 2)
6141         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
6142       break;
6143 
6144     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
6145       PendingTypeTestAssumeConstVCalls.push_back(
6146           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6147       break;
6148 
6149     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
6150       PendingTypeCheckedLoadConstVCalls.push_back(
6151           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
6152       break;
6153 
6154     case bitc::FS_CFI_FUNCTION_DEFS: {
6155       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
6156       for (unsigned I = 0; I != Record.size(); I += 2)
6157         CfiFunctionDefs.insert(
6158             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6159       break;
6160     }
6161 
6162     case bitc::FS_CFI_FUNCTION_DECLS: {
6163       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
6164       for (unsigned I = 0; I != Record.size(); I += 2)
6165         CfiFunctionDecls.insert(
6166             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
6167       break;
6168     }
6169 
6170     case bitc::FS_TYPE_ID:
6171       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
6172       break;
6173 
6174     case bitc::FS_TYPE_ID_METADATA:
6175       parseTypeIdCompatibleVtableSummaryRecord(Record);
6176       break;
6177     }
6178   }
6179   llvm_unreachable("Exit infinite loop");
6180 }
6181 
6182 // Parse the  module string table block into the Index.
6183 // This populates the ModulePathStringTable map in the index.
6184 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
6185   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
6186     return Err;
6187 
6188   SmallVector<uint64_t, 64> Record;
6189 
6190   SmallString<128> ModulePath;
6191   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
6192 
6193   while (true) {
6194     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6195     if (!MaybeEntry)
6196       return MaybeEntry.takeError();
6197     BitstreamEntry Entry = MaybeEntry.get();
6198 
6199     switch (Entry.Kind) {
6200     case BitstreamEntry::SubBlock: // Handled for us already.
6201     case BitstreamEntry::Error:
6202       return error("Malformed block");
6203     case BitstreamEntry::EndBlock:
6204       return Error::success();
6205     case BitstreamEntry::Record:
6206       // The interesting case.
6207       break;
6208     }
6209 
6210     Record.clear();
6211     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
6212     if (!MaybeRecord)
6213       return MaybeRecord.takeError();
6214     switch (MaybeRecord.get()) {
6215     default: // Default behavior: ignore.
6216       break;
6217     case bitc::MST_CODE_ENTRY: {
6218       // MST_ENTRY: [modid, namechar x N]
6219       uint64_t ModuleId = Record[0];
6220 
6221       if (convertToString(Record, 1, ModulePath))
6222         return error("Invalid record");
6223 
6224       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
6225       ModuleIdMap[ModuleId] = LastSeenModule->first();
6226 
6227       ModulePath.clear();
6228       break;
6229     }
6230     /// MST_CODE_HASH: [5*i32]
6231     case bitc::MST_CODE_HASH: {
6232       if (Record.size() != 5)
6233         return error("Invalid hash length " + Twine(Record.size()).str());
6234       if (!LastSeenModule)
6235         return error("Invalid hash that does not follow a module path");
6236       int Pos = 0;
6237       for (auto &Val : Record) {
6238         assert(!(Val >> 32) && "Unexpected high bits set");
6239         LastSeenModule->second.second[Pos++] = Val;
6240       }
6241       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
6242       LastSeenModule = nullptr;
6243       break;
6244     }
6245     }
6246   }
6247   llvm_unreachable("Exit infinite loop");
6248 }
6249 
6250 namespace {
6251 
6252 // FIXME: This class is only here to support the transition to llvm::Error. It
6253 // will be removed once this transition is complete. Clients should prefer to
6254 // deal with the Error value directly, rather than converting to error_code.
6255 class BitcodeErrorCategoryType : public std::error_category {
6256   const char *name() const noexcept override {
6257     return "llvm.bitcode";
6258   }
6259 
6260   std::string message(int IE) const override {
6261     BitcodeError E = static_cast<BitcodeError>(IE);
6262     switch (E) {
6263     case BitcodeError::CorruptedBitcode:
6264       return "Corrupted bitcode";
6265     }
6266     llvm_unreachable("Unknown error type!");
6267   }
6268 };
6269 
6270 } // end anonymous namespace
6271 
6272 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6273 
6274 const std::error_category &llvm::BitcodeErrorCategory() {
6275   return *ErrorCategory;
6276 }
6277 
6278 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6279                                             unsigned Block, unsigned RecordID) {
6280   if (Error Err = Stream.EnterSubBlock(Block))
6281     return std::move(Err);
6282 
6283   StringRef Strtab;
6284   while (true) {
6285     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6286     if (!MaybeEntry)
6287       return MaybeEntry.takeError();
6288     llvm::BitstreamEntry Entry = MaybeEntry.get();
6289 
6290     switch (Entry.Kind) {
6291     case BitstreamEntry::EndBlock:
6292       return Strtab;
6293 
6294     case BitstreamEntry::Error:
6295       return error("Malformed block");
6296 
6297     case BitstreamEntry::SubBlock:
6298       if (Error Err = Stream.SkipBlock())
6299         return std::move(Err);
6300       break;
6301 
6302     case BitstreamEntry::Record:
6303       StringRef Blob;
6304       SmallVector<uint64_t, 1> Record;
6305       Expected<unsigned> MaybeRecord =
6306           Stream.readRecord(Entry.ID, Record, &Blob);
6307       if (!MaybeRecord)
6308         return MaybeRecord.takeError();
6309       if (MaybeRecord.get() == RecordID)
6310         Strtab = Blob;
6311       break;
6312     }
6313   }
6314 }
6315 
6316 //===----------------------------------------------------------------------===//
6317 // External interface
6318 //===----------------------------------------------------------------------===//
6319 
6320 Expected<std::vector<BitcodeModule>>
6321 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6322   auto FOrErr = getBitcodeFileContents(Buffer);
6323   if (!FOrErr)
6324     return FOrErr.takeError();
6325   return std::move(FOrErr->Mods);
6326 }
6327 
6328 Expected<BitcodeFileContents>
6329 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6330   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6331   if (!StreamOrErr)
6332     return StreamOrErr.takeError();
6333   BitstreamCursor &Stream = *StreamOrErr;
6334 
6335   BitcodeFileContents F;
6336   while (true) {
6337     uint64_t BCBegin = Stream.getCurrentByteNo();
6338 
6339     // We may be consuming bitcode from a client that leaves garbage at the end
6340     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6341     // the end that there cannot possibly be another module, stop looking.
6342     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6343       return F;
6344 
6345     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6346     if (!MaybeEntry)
6347       return MaybeEntry.takeError();
6348     llvm::BitstreamEntry Entry = MaybeEntry.get();
6349 
6350     switch (Entry.Kind) {
6351     case BitstreamEntry::EndBlock:
6352     case BitstreamEntry::Error:
6353       return error("Malformed block");
6354 
6355     case BitstreamEntry::SubBlock: {
6356       uint64_t IdentificationBit = -1ull;
6357       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6358         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6359         if (Error Err = Stream.SkipBlock())
6360           return std::move(Err);
6361 
6362         {
6363           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6364           if (!MaybeEntry)
6365             return MaybeEntry.takeError();
6366           Entry = MaybeEntry.get();
6367         }
6368 
6369         if (Entry.Kind != BitstreamEntry::SubBlock ||
6370             Entry.ID != bitc::MODULE_BLOCK_ID)
6371           return error("Malformed block");
6372       }
6373 
6374       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6375         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6376         if (Error Err = Stream.SkipBlock())
6377           return std::move(Err);
6378 
6379         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6380                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6381                           Buffer.getBufferIdentifier(), IdentificationBit,
6382                           ModuleBit});
6383         continue;
6384       }
6385 
6386       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6387         Expected<StringRef> Strtab =
6388             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6389         if (!Strtab)
6390           return Strtab.takeError();
6391         // This string table is used by every preceding bitcode module that does
6392         // not have its own string table. A bitcode file may have multiple
6393         // string tables if it was created by binary concatenation, for example
6394         // with "llvm-cat -b".
6395         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6396           if (!I->Strtab.empty())
6397             break;
6398           I->Strtab = *Strtab;
6399         }
6400         // Similarly, the string table is used by every preceding symbol table;
6401         // normally there will be just one unless the bitcode file was created
6402         // by binary concatenation.
6403         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6404           F.StrtabForSymtab = *Strtab;
6405         continue;
6406       }
6407 
6408       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6409         Expected<StringRef> SymtabOrErr =
6410             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6411         if (!SymtabOrErr)
6412           return SymtabOrErr.takeError();
6413 
6414         // We can expect the bitcode file to have multiple symbol tables if it
6415         // was created by binary concatenation. In that case we silently
6416         // ignore any subsequent symbol tables, which is fine because this is a
6417         // low level function. The client is expected to notice that the number
6418         // of modules in the symbol table does not match the number of modules
6419         // in the input file and regenerate the symbol table.
6420         if (F.Symtab.empty())
6421           F.Symtab = *SymtabOrErr;
6422         continue;
6423       }
6424 
6425       if (Error Err = Stream.SkipBlock())
6426         return std::move(Err);
6427       continue;
6428     }
6429     case BitstreamEntry::Record:
6430       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6431         continue;
6432       else
6433         return StreamFailed.takeError();
6434     }
6435   }
6436 }
6437 
6438 /// Get a lazy one-at-time loading module from bitcode.
6439 ///
6440 /// This isn't always used in a lazy context.  In particular, it's also used by
6441 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6442 /// in forward-referenced functions from block address references.
6443 ///
6444 /// \param[in] MaterializeAll Set to \c true if we should materialize
6445 /// everything.
6446 Expected<std::unique_ptr<Module>>
6447 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6448                              bool ShouldLazyLoadMetadata, bool IsImporting) {
6449   BitstreamCursor Stream(Buffer);
6450 
6451   std::string ProducerIdentification;
6452   if (IdentificationBit != -1ull) {
6453     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6454       return std::move(JumpFailed);
6455     Expected<std::string> ProducerIdentificationOrErr =
6456         readIdentificationBlock(Stream);
6457     if (!ProducerIdentificationOrErr)
6458       return ProducerIdentificationOrErr.takeError();
6459 
6460     ProducerIdentification = *ProducerIdentificationOrErr;
6461   }
6462 
6463   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6464     return std::move(JumpFailed);
6465   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6466                               Context);
6467 
6468   std::unique_ptr<Module> M =
6469       std::make_unique<Module>(ModuleIdentifier, Context);
6470   M->setMaterializer(R);
6471 
6472   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6473   if (Error Err =
6474           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
6475     return std::move(Err);
6476 
6477   if (MaterializeAll) {
6478     // Read in the entire module, and destroy the BitcodeReader.
6479     if (Error Err = M->materializeAll())
6480       return std::move(Err);
6481   } else {
6482     // Resolve forward references from blockaddresses.
6483     if (Error Err = R->materializeForwardReferencedFunctions())
6484       return std::move(Err);
6485   }
6486   return std::move(M);
6487 }
6488 
6489 Expected<std::unique_ptr<Module>>
6490 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6491                              bool IsImporting) {
6492   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
6493 }
6494 
6495 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6496 // We don't use ModuleIdentifier here because the client may need to control the
6497 // module path used in the combined summary (e.g. when reading summaries for
6498 // regular LTO modules).
6499 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6500                                  StringRef ModulePath, uint64_t ModuleId) {
6501   BitstreamCursor Stream(Buffer);
6502   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6503     return JumpFailed;
6504 
6505   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6506                                     ModulePath, ModuleId);
6507   return R.parseModule();
6508 }
6509 
6510 // Parse the specified bitcode buffer, returning the function info index.
6511 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6512   BitstreamCursor Stream(Buffer);
6513   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6514     return std::move(JumpFailed);
6515 
6516   auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6517   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6518                                     ModuleIdentifier, 0);
6519 
6520   if (Error Err = R.parseModule())
6521     return std::move(Err);
6522 
6523   return std::move(Index);
6524 }
6525 
6526 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6527                                                 unsigned ID) {
6528   if (Error Err = Stream.EnterSubBlock(ID))
6529     return std::move(Err);
6530   SmallVector<uint64_t, 64> Record;
6531 
6532   while (true) {
6533     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6534     if (!MaybeEntry)
6535       return MaybeEntry.takeError();
6536     BitstreamEntry Entry = MaybeEntry.get();
6537 
6538     switch (Entry.Kind) {
6539     case BitstreamEntry::SubBlock: // Handled for us already.
6540     case BitstreamEntry::Error:
6541       return error("Malformed block");
6542     case BitstreamEntry::EndBlock:
6543       // If no flags record found, conservatively return true to mimic
6544       // behavior before this flag was added.
6545       return true;
6546     case BitstreamEntry::Record:
6547       // The interesting case.
6548       break;
6549     }
6550 
6551     // Look for the FS_FLAGS record.
6552     Record.clear();
6553     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6554     if (!MaybeBitCode)
6555       return MaybeBitCode.takeError();
6556     switch (MaybeBitCode.get()) {
6557     default: // Default behavior: ignore.
6558       break;
6559     case bitc::FS_FLAGS: { // [flags]
6560       uint64_t Flags = Record[0];
6561       // Scan flags.
6562       assert(Flags <= 0x3f && "Unexpected bits in flag");
6563 
6564       return Flags & 0x8;
6565     }
6566     }
6567   }
6568   llvm_unreachable("Exit infinite loop");
6569 }
6570 
6571 // Check if the given bitcode buffer contains a global value summary block.
6572 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6573   BitstreamCursor Stream(Buffer);
6574   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6575     return std::move(JumpFailed);
6576 
6577   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6578     return std::move(Err);
6579 
6580   while (true) {
6581     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6582     if (!MaybeEntry)
6583       return MaybeEntry.takeError();
6584     llvm::BitstreamEntry Entry = MaybeEntry.get();
6585 
6586     switch (Entry.Kind) {
6587     case BitstreamEntry::Error:
6588       return error("Malformed block");
6589     case BitstreamEntry::EndBlock:
6590       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6591                             /*EnableSplitLTOUnit=*/false};
6592 
6593     case BitstreamEntry::SubBlock:
6594       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6595         Expected<bool> EnableSplitLTOUnit =
6596             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6597         if (!EnableSplitLTOUnit)
6598           return EnableSplitLTOUnit.takeError();
6599         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6600                               *EnableSplitLTOUnit};
6601       }
6602 
6603       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6604         Expected<bool> EnableSplitLTOUnit =
6605             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6606         if (!EnableSplitLTOUnit)
6607           return EnableSplitLTOUnit.takeError();
6608         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6609                               *EnableSplitLTOUnit};
6610       }
6611 
6612       // Ignore other sub-blocks.
6613       if (Error Err = Stream.SkipBlock())
6614         return std::move(Err);
6615       continue;
6616 
6617     case BitstreamEntry::Record:
6618       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6619         continue;
6620       else
6621         return StreamFailed.takeError();
6622     }
6623   }
6624 }
6625 
6626 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6627   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6628   if (!MsOrErr)
6629     return MsOrErr.takeError();
6630 
6631   if (MsOrErr->size() != 1)
6632     return error("Expected a single module");
6633 
6634   return (*MsOrErr)[0];
6635 }
6636 
6637 Expected<std::unique_ptr<Module>>
6638 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6639                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6640   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6641   if (!BM)
6642     return BM.takeError();
6643 
6644   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6645 }
6646 
6647 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6648     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6649     bool ShouldLazyLoadMetadata, bool IsImporting) {
6650   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6651                                      IsImporting);
6652   if (MOrErr)
6653     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6654   return MOrErr;
6655 }
6656 
6657 Expected<std::unique_ptr<Module>>
6658 BitcodeModule::parseModule(LLVMContext &Context) {
6659   return getModuleImpl(Context, true, false, false);
6660   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6661   // written.  We must defer until the Module has been fully materialized.
6662 }
6663 
6664 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6665                                                          LLVMContext &Context) {
6666   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6667   if (!BM)
6668     return BM.takeError();
6669 
6670   return BM->parseModule(Context);
6671 }
6672 
6673 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6674   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6675   if (!StreamOrErr)
6676     return StreamOrErr.takeError();
6677 
6678   return readTriple(*StreamOrErr);
6679 }
6680 
6681 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6682   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6683   if (!StreamOrErr)
6684     return StreamOrErr.takeError();
6685 
6686   return hasObjCCategory(*StreamOrErr);
6687 }
6688 
6689 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6690   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6691   if (!StreamOrErr)
6692     return StreamOrErr.takeError();
6693 
6694   return readIdentificationCode(*StreamOrErr);
6695 }
6696 
6697 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6698                                    ModuleSummaryIndex &CombinedIndex,
6699                                    uint64_t ModuleId) {
6700   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6701   if (!BM)
6702     return BM.takeError();
6703 
6704   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6705 }
6706 
6707 Expected<std::unique_ptr<ModuleSummaryIndex>>
6708 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6709   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6710   if (!BM)
6711     return BM.takeError();
6712 
6713   return BM->getSummary();
6714 }
6715 
6716 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6717   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6718   if (!BM)
6719     return BM.takeError();
6720 
6721   return BM->getLTOInfo();
6722 }
6723 
6724 Expected<std::unique_ptr<ModuleSummaryIndex>>
6725 llvm::getModuleSummaryIndexForFile(StringRef Path,
6726                                    bool IgnoreEmptyThinLTOIndexFile) {
6727   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6728       MemoryBuffer::getFileOrSTDIN(Path);
6729   if (!FileOrErr)
6730     return errorCodeToError(FileOrErr.getError());
6731   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6732     return nullptr;
6733   return getModuleSummaryIndex(**FileOrErr);
6734 }
6735