1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "BitcodeReader.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SmallString.h" 14 #include "llvm/ADT/SmallVector.h" 15 #include "llvm/ADT/Triple.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfoMetadata.h" 20 #include "llvm/IR/DerivedTypes.h" 21 #include "llvm/IR/DiagnosticPrinter.h" 22 #include "llvm/IR/InlineAsm.h" 23 #include "llvm/IR/IntrinsicInst.h" 24 #include "llvm/IR/LLVMContext.h" 25 #include "llvm/IR/Module.h" 26 #include "llvm/IR/OperandTraits.h" 27 #include "llvm/IR/Operator.h" 28 #include "llvm/Support/DataStream.h" 29 #include "llvm/Support/ManagedStatic.h" 30 #include "llvm/Support/MathExtras.h" 31 #include "llvm/Support/MemoryBuffer.h" 32 #include "llvm/Support/raw_ostream.h" 33 34 using namespace llvm; 35 36 enum { 37 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 38 }; 39 40 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 41 DiagnosticSeverity Severity, 42 const Twine &Msg) 43 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 44 45 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 46 47 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 48 std::error_code EC, const Twine &Message) { 49 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 50 DiagnosticHandler(DI); 51 return EC; 52 } 53 54 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 55 std::error_code EC) { 56 return Error(DiagnosticHandler, EC, EC.message()); 57 } 58 59 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 60 return ::Error(DiagnosticHandler, make_error_code(E), Message); 61 } 62 63 std::error_code BitcodeReader::Error(const Twine &Message) { 64 return ::Error(DiagnosticHandler, 65 make_error_code(BitcodeError::CorruptedBitcode), Message); 66 } 67 68 std::error_code BitcodeReader::Error(BitcodeError E) { 69 return ::Error(DiagnosticHandler, make_error_code(E)); 70 } 71 72 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 73 LLVMContext &C) { 74 if (F) 75 return F; 76 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 77 } 78 79 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 80 DiagnosticHandlerFunction DiagnosticHandler) 81 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 82 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 83 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 84 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 85 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 86 87 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 88 DiagnosticHandlerFunction DiagnosticHandler) 89 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 90 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 91 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 92 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 93 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 94 95 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 96 if (WillMaterializeAllForwardRefs) 97 return std::error_code(); 98 99 // Prevent recursion. 100 WillMaterializeAllForwardRefs = true; 101 102 while (!BasicBlockFwdRefQueue.empty()) { 103 Function *F = BasicBlockFwdRefQueue.front(); 104 BasicBlockFwdRefQueue.pop_front(); 105 assert(F && "Expected valid function"); 106 if (!BasicBlockFwdRefs.count(F)) 107 // Already materialized. 108 continue; 109 110 // Check for a function that isn't materializable to prevent an infinite 111 // loop. When parsing a blockaddress stored in a global variable, there 112 // isn't a trivial way to check if a function will have a body without a 113 // linear search through FunctionsWithBodies, so just check it here. 114 if (!F->isMaterializable()) 115 return Error("Never resolved function from blockaddress"); 116 117 // Try to materialize F. 118 if (std::error_code EC = materialize(F)) 119 return EC; 120 } 121 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 122 123 // Reset state. 124 WillMaterializeAllForwardRefs = false; 125 return std::error_code(); 126 } 127 128 void BitcodeReader::FreeState() { 129 Buffer = nullptr; 130 std::vector<Type*>().swap(TypeList); 131 ValueList.clear(); 132 MDValueList.clear(); 133 std::vector<Comdat *>().swap(ComdatList); 134 135 std::vector<AttributeSet>().swap(MAttributes); 136 std::vector<BasicBlock*>().swap(FunctionBBs); 137 std::vector<Function*>().swap(FunctionsWithBodies); 138 DeferredFunctionInfo.clear(); 139 DeferredMetadataInfo.clear(); 140 MDKindMap.clear(); 141 142 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 143 BasicBlockFwdRefQueue.clear(); 144 } 145 146 //===----------------------------------------------------------------------===// 147 // Helper functions to implement forward reference resolution, etc. 148 //===----------------------------------------------------------------------===// 149 150 /// ConvertToString - Convert a string from a record into an std::string, return 151 /// true on failure. 152 template<typename StrTy> 153 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 154 StrTy &Result) { 155 if (Idx > Record.size()) 156 return true; 157 158 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 159 Result += (char)Record[i]; 160 return false; 161 } 162 163 static bool hasImplicitComdat(size_t Val) { 164 switch (Val) { 165 default: 166 return false; 167 case 1: // Old WeakAnyLinkage 168 case 4: // Old LinkOnceAnyLinkage 169 case 10: // Old WeakODRLinkage 170 case 11: // Old LinkOnceODRLinkage 171 return true; 172 } 173 } 174 175 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 176 switch (Val) { 177 default: // Map unknown/new linkages to external 178 case 0: 179 return GlobalValue::ExternalLinkage; 180 case 2: 181 return GlobalValue::AppendingLinkage; 182 case 3: 183 return GlobalValue::InternalLinkage; 184 case 5: 185 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 186 case 6: 187 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 188 case 7: 189 return GlobalValue::ExternalWeakLinkage; 190 case 8: 191 return GlobalValue::CommonLinkage; 192 case 9: 193 return GlobalValue::PrivateLinkage; 194 case 12: 195 return GlobalValue::AvailableExternallyLinkage; 196 case 13: 197 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 198 case 14: 199 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 200 case 15: 201 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 202 case 1: // Old value with implicit comdat. 203 case 16: 204 return GlobalValue::WeakAnyLinkage; 205 case 10: // Old value with implicit comdat. 206 case 17: 207 return GlobalValue::WeakODRLinkage; 208 case 4: // Old value with implicit comdat. 209 case 18: 210 return GlobalValue::LinkOnceAnyLinkage; 211 case 11: // Old value with implicit comdat. 212 case 19: 213 return GlobalValue::LinkOnceODRLinkage; 214 } 215 } 216 217 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 218 switch (Val) { 219 default: // Map unknown visibilities to default. 220 case 0: return GlobalValue::DefaultVisibility; 221 case 1: return GlobalValue::HiddenVisibility; 222 case 2: return GlobalValue::ProtectedVisibility; 223 } 224 } 225 226 static GlobalValue::DLLStorageClassTypes 227 GetDecodedDLLStorageClass(unsigned Val) { 228 switch (Val) { 229 default: // Map unknown values to default. 230 case 0: return GlobalValue::DefaultStorageClass; 231 case 1: return GlobalValue::DLLImportStorageClass; 232 case 2: return GlobalValue::DLLExportStorageClass; 233 } 234 } 235 236 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 237 switch (Val) { 238 case 0: return GlobalVariable::NotThreadLocal; 239 default: // Map unknown non-zero value to general dynamic. 240 case 1: return GlobalVariable::GeneralDynamicTLSModel; 241 case 2: return GlobalVariable::LocalDynamicTLSModel; 242 case 3: return GlobalVariable::InitialExecTLSModel; 243 case 4: return GlobalVariable::LocalExecTLSModel; 244 } 245 } 246 247 static int GetDecodedCastOpcode(unsigned Val) { 248 switch (Val) { 249 default: return -1; 250 case bitc::CAST_TRUNC : return Instruction::Trunc; 251 case bitc::CAST_ZEXT : return Instruction::ZExt; 252 case bitc::CAST_SEXT : return Instruction::SExt; 253 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 254 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 255 case bitc::CAST_UITOFP : return Instruction::UIToFP; 256 case bitc::CAST_SITOFP : return Instruction::SIToFP; 257 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 258 case bitc::CAST_FPEXT : return Instruction::FPExt; 259 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 260 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 261 case bitc::CAST_BITCAST : return Instruction::BitCast; 262 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 263 } 264 } 265 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 266 switch (Val) { 267 default: return -1; 268 case bitc::BINOP_ADD: 269 return Ty->isFPOrFPVectorTy() ? Instruction::FAdd : Instruction::Add; 270 case bitc::BINOP_SUB: 271 return Ty->isFPOrFPVectorTy() ? Instruction::FSub : Instruction::Sub; 272 case bitc::BINOP_MUL: 273 return Ty->isFPOrFPVectorTy() ? Instruction::FMul : Instruction::Mul; 274 case bitc::BINOP_UDIV: return Instruction::UDiv; 275 case bitc::BINOP_SDIV: 276 return Ty->isFPOrFPVectorTy() ? Instruction::FDiv : Instruction::SDiv; 277 case bitc::BINOP_UREM: return Instruction::URem; 278 case bitc::BINOP_SREM: 279 return Ty->isFPOrFPVectorTy() ? Instruction::FRem : Instruction::SRem; 280 case bitc::BINOP_SHL: return Instruction::Shl; 281 case bitc::BINOP_LSHR: return Instruction::LShr; 282 case bitc::BINOP_ASHR: return Instruction::AShr; 283 case bitc::BINOP_AND: return Instruction::And; 284 case bitc::BINOP_OR: return Instruction::Or; 285 case bitc::BINOP_XOR: return Instruction::Xor; 286 } 287 } 288 289 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 290 switch (Val) { 291 default: return AtomicRMWInst::BAD_BINOP; 292 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 293 case bitc::RMW_ADD: return AtomicRMWInst::Add; 294 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 295 case bitc::RMW_AND: return AtomicRMWInst::And; 296 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 297 case bitc::RMW_OR: return AtomicRMWInst::Or; 298 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 299 case bitc::RMW_MAX: return AtomicRMWInst::Max; 300 case bitc::RMW_MIN: return AtomicRMWInst::Min; 301 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 302 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 303 } 304 } 305 306 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 307 switch (Val) { 308 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 309 case bitc::ORDERING_UNORDERED: return Unordered; 310 case bitc::ORDERING_MONOTONIC: return Monotonic; 311 case bitc::ORDERING_ACQUIRE: return Acquire; 312 case bitc::ORDERING_RELEASE: return Release; 313 case bitc::ORDERING_ACQREL: return AcquireRelease; 314 default: // Map unknown orderings to sequentially-consistent. 315 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 316 } 317 } 318 319 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 320 switch (Val) { 321 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 322 default: // Map unknown scopes to cross-thread. 323 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 324 } 325 } 326 327 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 328 switch (Val) { 329 default: // Map unknown selection kinds to any. 330 case bitc::COMDAT_SELECTION_KIND_ANY: 331 return Comdat::Any; 332 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 333 return Comdat::ExactMatch; 334 case bitc::COMDAT_SELECTION_KIND_LARGEST: 335 return Comdat::Largest; 336 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 337 return Comdat::NoDuplicates; 338 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 339 return Comdat::SameSize; 340 } 341 } 342 343 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 344 switch (Val) { 345 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 346 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 347 } 348 } 349 350 namespace llvm { 351 namespace { 352 /// @brief A class for maintaining the slot number definition 353 /// as a placeholder for the actual definition for forward constants defs. 354 class ConstantPlaceHolder : public ConstantExpr { 355 void operator=(const ConstantPlaceHolder &) = delete; 356 public: 357 // allocate space for exactly one operand 358 void *operator new(size_t s) { 359 return User::operator new(s, 1); 360 } 361 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 362 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 363 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 364 } 365 366 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 367 static bool classof(const Value *V) { 368 return isa<ConstantExpr>(V) && 369 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 370 } 371 372 373 /// Provide fast operand accessors 374 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 375 }; 376 } 377 378 // FIXME: can we inherit this from ConstantExpr? 379 template <> 380 struct OperandTraits<ConstantPlaceHolder> : 381 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 382 }; 383 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 384 } 385 386 387 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 388 if (Idx == size()) { 389 push_back(V); 390 return; 391 } 392 393 if (Idx >= size()) 394 resize(Idx+1); 395 396 WeakVH &OldV = ValuePtrs[Idx]; 397 if (!OldV) { 398 OldV = V; 399 return; 400 } 401 402 // Handle constants and non-constants (e.g. instrs) differently for 403 // efficiency. 404 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 405 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 406 OldV = V; 407 } else { 408 // If there was a forward reference to this value, replace it. 409 Value *PrevVal = OldV; 410 OldV->replaceAllUsesWith(V); 411 delete PrevVal; 412 } 413 } 414 415 416 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 417 Type *Ty) { 418 if (Idx >= size()) 419 resize(Idx + 1); 420 421 if (Value *V = ValuePtrs[Idx]) { 422 assert(Ty == V->getType() && "Type mismatch in constant table!"); 423 return cast<Constant>(V); 424 } 425 426 // Create and return a placeholder, which will later be RAUW'd. 427 Constant *C = new ConstantPlaceHolder(Ty, Context); 428 ValuePtrs[Idx] = C; 429 return C; 430 } 431 432 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 433 if (Idx >= size()) 434 resize(Idx + 1); 435 436 if (Value *V = ValuePtrs[Idx]) { 437 assert((!Ty || Ty == V->getType()) && "Type mismatch in value table!"); 438 return V; 439 } 440 441 // No type specified, must be invalid reference. 442 if (!Ty) return nullptr; 443 444 // Create and return a placeholder, which will later be RAUW'd. 445 Value *V = new Argument(Ty); 446 ValuePtrs[Idx] = V; 447 return V; 448 } 449 450 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 451 /// resolves any forward references. The idea behind this is that we sometimes 452 /// get constants (such as large arrays) which reference *many* forward ref 453 /// constants. Replacing each of these causes a lot of thrashing when 454 /// building/reuniquing the constant. Instead of doing this, we look at all the 455 /// uses and rewrite all the place holders at once for any constant that uses 456 /// a placeholder. 457 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 458 // Sort the values by-pointer so that they are efficient to look up with a 459 // binary search. 460 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 461 462 SmallVector<Constant*, 64> NewOps; 463 464 while (!ResolveConstants.empty()) { 465 Value *RealVal = operator[](ResolveConstants.back().second); 466 Constant *Placeholder = ResolveConstants.back().first; 467 ResolveConstants.pop_back(); 468 469 // Loop over all users of the placeholder, updating them to reference the 470 // new value. If they reference more than one placeholder, update them all 471 // at once. 472 while (!Placeholder->use_empty()) { 473 auto UI = Placeholder->user_begin(); 474 User *U = *UI; 475 476 // If the using object isn't uniqued, just update the operands. This 477 // handles instructions and initializers for global variables. 478 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 479 UI.getUse().set(RealVal); 480 continue; 481 } 482 483 // Otherwise, we have a constant that uses the placeholder. Replace that 484 // constant with a new constant that has *all* placeholder uses updated. 485 Constant *UserC = cast<Constant>(U); 486 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 487 I != E; ++I) { 488 Value *NewOp; 489 if (!isa<ConstantPlaceHolder>(*I)) { 490 // Not a placeholder reference. 491 NewOp = *I; 492 } else if (*I == Placeholder) { 493 // Common case is that it just references this one placeholder. 494 NewOp = RealVal; 495 } else { 496 // Otherwise, look up the placeholder in ResolveConstants. 497 ResolveConstantsTy::iterator It = 498 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 499 std::pair<Constant*, unsigned>(cast<Constant>(*I), 500 0)); 501 assert(It != ResolveConstants.end() && It->first == *I); 502 NewOp = operator[](It->second); 503 } 504 505 NewOps.push_back(cast<Constant>(NewOp)); 506 } 507 508 // Make the new constant. 509 Constant *NewC; 510 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 511 NewC = ConstantArray::get(UserCA->getType(), NewOps); 512 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 513 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 514 } else if (isa<ConstantVector>(UserC)) { 515 NewC = ConstantVector::get(NewOps); 516 } else { 517 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 518 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 519 } 520 521 UserC->replaceAllUsesWith(NewC); 522 UserC->destroyConstant(); 523 NewOps.clear(); 524 } 525 526 // Update all ValueHandles, they should be the only users at this point. 527 Placeholder->replaceAllUsesWith(RealVal); 528 delete Placeholder; 529 } 530 } 531 532 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 533 if (Idx == size()) { 534 push_back(MD); 535 return; 536 } 537 538 if (Idx >= size()) 539 resize(Idx+1); 540 541 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 542 if (!OldMD) { 543 OldMD.reset(MD); 544 return; 545 } 546 547 // If there was a forward reference to this value, replace it. 548 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 549 PrevMD->replaceAllUsesWith(MD); 550 --NumFwdRefs; 551 } 552 553 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 554 if (Idx >= size()) 555 resize(Idx + 1); 556 557 if (Metadata *MD = MDValuePtrs[Idx]) 558 return MD; 559 560 // Track forward refs to be resolved later. 561 if (AnyFwdRefs) { 562 MinFwdRef = std::min(MinFwdRef, Idx); 563 MaxFwdRef = std::max(MaxFwdRef, Idx); 564 } else { 565 AnyFwdRefs = true; 566 MinFwdRef = MaxFwdRef = Idx; 567 } 568 ++NumFwdRefs; 569 570 // Create and return a placeholder, which will later be RAUW'd. 571 Metadata *MD = MDNode::getTemporary(Context, None).release(); 572 MDValuePtrs[Idx].reset(MD); 573 return MD; 574 } 575 576 void BitcodeReaderMDValueList::tryToResolveCycles() { 577 if (!AnyFwdRefs) 578 // Nothing to do. 579 return; 580 581 if (NumFwdRefs) 582 // Still forward references... can't resolve cycles. 583 return; 584 585 // Resolve any cycles. 586 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 587 auto &MD = MDValuePtrs[I]; 588 auto *N = dyn_cast_or_null<MDNode>(MD); 589 if (!N) 590 continue; 591 592 assert(!N->isTemporary() && "Unexpected forward reference"); 593 N->resolveCycles(); 594 } 595 596 // Make sure we return early again until there's another forward ref. 597 AnyFwdRefs = false; 598 } 599 600 Type *BitcodeReader::getTypeByID(unsigned ID) { 601 // The type table size is always specified correctly. 602 if (ID >= TypeList.size()) 603 return nullptr; 604 605 if (Type *Ty = TypeList[ID]) 606 return Ty; 607 608 // If we have a forward reference, the only possible case is when it is to a 609 // named struct. Just create a placeholder for now. 610 return TypeList[ID] = createIdentifiedStructType(Context); 611 } 612 613 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 614 StringRef Name) { 615 auto *Ret = StructType::create(Context, Name); 616 IdentifiedStructTypes.push_back(Ret); 617 return Ret; 618 } 619 620 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 621 auto *Ret = StructType::create(Context); 622 IdentifiedStructTypes.push_back(Ret); 623 return Ret; 624 } 625 626 627 //===----------------------------------------------------------------------===// 628 // Functions for parsing blocks from the bitcode file 629 //===----------------------------------------------------------------------===// 630 631 632 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 633 /// been decoded from the given integer. This function must stay in sync with 634 /// 'encodeLLVMAttributesForBitcode'. 635 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 636 uint64_t EncodedAttrs) { 637 // FIXME: Remove in 4.0. 638 639 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 640 // the bits above 31 down by 11 bits. 641 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 642 assert((!Alignment || isPowerOf2_32(Alignment)) && 643 "Alignment must be a power of two."); 644 645 if (Alignment) 646 B.addAlignmentAttr(Alignment); 647 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 648 (EncodedAttrs & 0xffff)); 649 } 650 651 std::error_code BitcodeReader::ParseAttributeBlock() { 652 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 653 return Error("Invalid record"); 654 655 if (!MAttributes.empty()) 656 return Error("Invalid multiple blocks"); 657 658 SmallVector<uint64_t, 64> Record; 659 660 SmallVector<AttributeSet, 8> Attrs; 661 662 // Read all the records. 663 while (1) { 664 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 665 666 switch (Entry.Kind) { 667 case BitstreamEntry::SubBlock: // Handled for us already. 668 case BitstreamEntry::Error: 669 return Error("Malformed block"); 670 case BitstreamEntry::EndBlock: 671 return std::error_code(); 672 case BitstreamEntry::Record: 673 // The interesting case. 674 break; 675 } 676 677 // Read a record. 678 Record.clear(); 679 switch (Stream.readRecord(Entry.ID, Record)) { 680 default: // Default behavior: ignore. 681 break; 682 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 683 // FIXME: Remove in 4.0. 684 if (Record.size() & 1) 685 return Error("Invalid record"); 686 687 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 688 AttrBuilder B; 689 decodeLLVMAttributesForBitcode(B, Record[i+1]); 690 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 691 } 692 693 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 694 Attrs.clear(); 695 break; 696 } 697 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 698 for (unsigned i = 0, e = Record.size(); i != e; ++i) 699 Attrs.push_back(MAttributeGroups[Record[i]]); 700 701 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 702 Attrs.clear(); 703 break; 704 } 705 } 706 } 707 } 708 709 // Returns Attribute::None on unrecognized codes. 710 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 711 switch (Code) { 712 default: 713 return Attribute::None; 714 case bitc::ATTR_KIND_ALIGNMENT: 715 return Attribute::Alignment; 716 case bitc::ATTR_KIND_ALWAYS_INLINE: 717 return Attribute::AlwaysInline; 718 case bitc::ATTR_KIND_BUILTIN: 719 return Attribute::Builtin; 720 case bitc::ATTR_KIND_BY_VAL: 721 return Attribute::ByVal; 722 case bitc::ATTR_KIND_IN_ALLOCA: 723 return Attribute::InAlloca; 724 case bitc::ATTR_KIND_COLD: 725 return Attribute::Cold; 726 case bitc::ATTR_KIND_INLINE_HINT: 727 return Attribute::InlineHint; 728 case bitc::ATTR_KIND_IN_REG: 729 return Attribute::InReg; 730 case bitc::ATTR_KIND_JUMP_TABLE: 731 return Attribute::JumpTable; 732 case bitc::ATTR_KIND_MIN_SIZE: 733 return Attribute::MinSize; 734 case bitc::ATTR_KIND_NAKED: 735 return Attribute::Naked; 736 case bitc::ATTR_KIND_NEST: 737 return Attribute::Nest; 738 case bitc::ATTR_KIND_NO_ALIAS: 739 return Attribute::NoAlias; 740 case bitc::ATTR_KIND_NO_BUILTIN: 741 return Attribute::NoBuiltin; 742 case bitc::ATTR_KIND_NO_CAPTURE: 743 return Attribute::NoCapture; 744 case bitc::ATTR_KIND_NO_DUPLICATE: 745 return Attribute::NoDuplicate; 746 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 747 return Attribute::NoImplicitFloat; 748 case bitc::ATTR_KIND_NO_INLINE: 749 return Attribute::NoInline; 750 case bitc::ATTR_KIND_NON_LAZY_BIND: 751 return Attribute::NonLazyBind; 752 case bitc::ATTR_KIND_NON_NULL: 753 return Attribute::NonNull; 754 case bitc::ATTR_KIND_DEREFERENCEABLE: 755 return Attribute::Dereferenceable; 756 case bitc::ATTR_KIND_NO_RED_ZONE: 757 return Attribute::NoRedZone; 758 case bitc::ATTR_KIND_NO_RETURN: 759 return Attribute::NoReturn; 760 case bitc::ATTR_KIND_NO_UNWIND: 761 return Attribute::NoUnwind; 762 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 763 return Attribute::OptimizeForSize; 764 case bitc::ATTR_KIND_OPTIMIZE_NONE: 765 return Attribute::OptimizeNone; 766 case bitc::ATTR_KIND_READ_NONE: 767 return Attribute::ReadNone; 768 case bitc::ATTR_KIND_READ_ONLY: 769 return Attribute::ReadOnly; 770 case bitc::ATTR_KIND_RETURNED: 771 return Attribute::Returned; 772 case bitc::ATTR_KIND_RETURNS_TWICE: 773 return Attribute::ReturnsTwice; 774 case bitc::ATTR_KIND_S_EXT: 775 return Attribute::SExt; 776 case bitc::ATTR_KIND_STACK_ALIGNMENT: 777 return Attribute::StackAlignment; 778 case bitc::ATTR_KIND_STACK_PROTECT: 779 return Attribute::StackProtect; 780 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 781 return Attribute::StackProtectReq; 782 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 783 return Attribute::StackProtectStrong; 784 case bitc::ATTR_KIND_STRUCT_RET: 785 return Attribute::StructRet; 786 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 787 return Attribute::SanitizeAddress; 788 case bitc::ATTR_KIND_SANITIZE_THREAD: 789 return Attribute::SanitizeThread; 790 case bitc::ATTR_KIND_SANITIZE_MEMORY: 791 return Attribute::SanitizeMemory; 792 case bitc::ATTR_KIND_UW_TABLE: 793 return Attribute::UWTable; 794 case bitc::ATTR_KIND_Z_EXT: 795 return Attribute::ZExt; 796 } 797 } 798 799 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 800 unsigned &Alignment) { 801 // Note: Alignment in bitcode files is incremented by 1, so that zero 802 // can be used for default alignment. 803 if (Exponent > Value::MaxAlignmentExponent + 1) 804 return Error("Invalid alignment value"); 805 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 806 return std::error_code(); 807 } 808 809 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 810 Attribute::AttrKind *Kind) { 811 *Kind = GetAttrFromCode(Code); 812 if (*Kind == Attribute::None) 813 return Error(BitcodeError::CorruptedBitcode, 814 "Unknown attribute kind (" + Twine(Code) + ")"); 815 return std::error_code(); 816 } 817 818 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 819 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 820 return Error("Invalid record"); 821 822 if (!MAttributeGroups.empty()) 823 return Error("Invalid multiple blocks"); 824 825 SmallVector<uint64_t, 64> Record; 826 827 // Read all the records. 828 while (1) { 829 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 830 831 switch (Entry.Kind) { 832 case BitstreamEntry::SubBlock: // Handled for us already. 833 case BitstreamEntry::Error: 834 return Error("Malformed block"); 835 case BitstreamEntry::EndBlock: 836 return std::error_code(); 837 case BitstreamEntry::Record: 838 // The interesting case. 839 break; 840 } 841 842 // Read a record. 843 Record.clear(); 844 switch (Stream.readRecord(Entry.ID, Record)) { 845 default: // Default behavior: ignore. 846 break; 847 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 848 if (Record.size() < 3) 849 return Error("Invalid record"); 850 851 uint64_t GrpID = Record[0]; 852 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 853 854 AttrBuilder B; 855 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 856 if (Record[i] == 0) { // Enum attribute 857 Attribute::AttrKind Kind; 858 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 859 return EC; 860 861 B.addAttribute(Kind); 862 } else if (Record[i] == 1) { // Integer attribute 863 Attribute::AttrKind Kind; 864 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 865 return EC; 866 if (Kind == Attribute::Alignment) 867 B.addAlignmentAttr(Record[++i]); 868 else if (Kind == Attribute::StackAlignment) 869 B.addStackAlignmentAttr(Record[++i]); 870 else if (Kind == Attribute::Dereferenceable) 871 B.addDereferenceableAttr(Record[++i]); 872 } else { // String attribute 873 assert((Record[i] == 3 || Record[i] == 4) && 874 "Invalid attribute group entry"); 875 bool HasValue = (Record[i++] == 4); 876 SmallString<64> KindStr; 877 SmallString<64> ValStr; 878 879 while (Record[i] != 0 && i != e) 880 KindStr += Record[i++]; 881 assert(Record[i] == 0 && "Kind string not null terminated"); 882 883 if (HasValue) { 884 // Has a value associated with it. 885 ++i; // Skip the '0' that terminates the "kind" string. 886 while (Record[i] != 0 && i != e) 887 ValStr += Record[i++]; 888 assert(Record[i] == 0 && "Value string not null terminated"); 889 } 890 891 B.addAttribute(KindStr.str(), ValStr.str()); 892 } 893 } 894 895 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 896 break; 897 } 898 } 899 } 900 } 901 902 std::error_code BitcodeReader::ParseTypeTable() { 903 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 904 return Error("Invalid record"); 905 906 return ParseTypeTableBody(); 907 } 908 909 std::error_code BitcodeReader::ParseTypeTableBody() { 910 if (!TypeList.empty()) 911 return Error("Invalid multiple blocks"); 912 913 SmallVector<uint64_t, 64> Record; 914 unsigned NumRecords = 0; 915 916 SmallString<64> TypeName; 917 918 // Read all the records for this type table. 919 while (1) { 920 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 921 922 switch (Entry.Kind) { 923 case BitstreamEntry::SubBlock: // Handled for us already. 924 case BitstreamEntry::Error: 925 return Error("Malformed block"); 926 case BitstreamEntry::EndBlock: 927 if (NumRecords != TypeList.size()) 928 return Error("Malformed block"); 929 return std::error_code(); 930 case BitstreamEntry::Record: 931 // The interesting case. 932 break; 933 } 934 935 // Read a record. 936 Record.clear(); 937 Type *ResultTy = nullptr; 938 switch (Stream.readRecord(Entry.ID, Record)) { 939 default: 940 return Error("Invalid value"); 941 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 942 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 943 // type list. This allows us to reserve space. 944 if (Record.size() < 1) 945 return Error("Invalid record"); 946 TypeList.resize(Record[0]); 947 continue; 948 case bitc::TYPE_CODE_VOID: // VOID 949 ResultTy = Type::getVoidTy(Context); 950 break; 951 case bitc::TYPE_CODE_HALF: // HALF 952 ResultTy = Type::getHalfTy(Context); 953 break; 954 case bitc::TYPE_CODE_FLOAT: // FLOAT 955 ResultTy = Type::getFloatTy(Context); 956 break; 957 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 958 ResultTy = Type::getDoubleTy(Context); 959 break; 960 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 961 ResultTy = Type::getX86_FP80Ty(Context); 962 break; 963 case bitc::TYPE_CODE_FP128: // FP128 964 ResultTy = Type::getFP128Ty(Context); 965 break; 966 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 967 ResultTy = Type::getPPC_FP128Ty(Context); 968 break; 969 case bitc::TYPE_CODE_LABEL: // LABEL 970 ResultTy = Type::getLabelTy(Context); 971 break; 972 case bitc::TYPE_CODE_METADATA: // METADATA 973 ResultTy = Type::getMetadataTy(Context); 974 break; 975 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 976 ResultTy = Type::getX86_MMXTy(Context); 977 break; 978 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 979 if (Record.size() < 1) 980 return Error("Invalid record"); 981 982 uint64_t NumBits = Record[0]; 983 if (NumBits < IntegerType::MIN_INT_BITS || 984 NumBits > IntegerType::MAX_INT_BITS) 985 return Error("Bitwidth for integer type out of range"); 986 ResultTy = IntegerType::get(Context, NumBits); 987 break; 988 } 989 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 990 // [pointee type, address space] 991 if (Record.size() < 1) 992 return Error("Invalid record"); 993 unsigned AddressSpace = 0; 994 if (Record.size() == 2) 995 AddressSpace = Record[1]; 996 ResultTy = getTypeByID(Record[0]); 997 if (!ResultTy) 998 return Error("Invalid type"); 999 ResultTy = PointerType::get(ResultTy, AddressSpace); 1000 break; 1001 } 1002 case bitc::TYPE_CODE_FUNCTION_OLD: { 1003 // FIXME: attrid is dead, remove it in LLVM 4.0 1004 // FUNCTION: [vararg, attrid, retty, paramty x N] 1005 if (Record.size() < 3) 1006 return Error("Invalid record"); 1007 SmallVector<Type*, 8> ArgTys; 1008 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1009 if (Type *T = getTypeByID(Record[i])) 1010 ArgTys.push_back(T); 1011 else 1012 break; 1013 } 1014 1015 ResultTy = getTypeByID(Record[2]); 1016 if (!ResultTy || ArgTys.size() < Record.size()-3) 1017 return Error("Invalid type"); 1018 1019 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1020 break; 1021 } 1022 case bitc::TYPE_CODE_FUNCTION: { 1023 // FUNCTION: [vararg, retty, paramty x N] 1024 if (Record.size() < 2) 1025 return Error("Invalid record"); 1026 SmallVector<Type*, 8> ArgTys; 1027 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1028 if (Type *T = getTypeByID(Record[i])) 1029 ArgTys.push_back(T); 1030 else 1031 break; 1032 } 1033 1034 ResultTy = getTypeByID(Record[1]); 1035 if (!ResultTy || ArgTys.size() < Record.size()-2) 1036 return Error("Invalid type"); 1037 1038 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1039 break; 1040 } 1041 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1042 if (Record.size() < 1) 1043 return Error("Invalid record"); 1044 SmallVector<Type*, 8> EltTys; 1045 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1046 if (Type *T = getTypeByID(Record[i])) 1047 EltTys.push_back(T); 1048 else 1049 break; 1050 } 1051 if (EltTys.size() != Record.size()-1) 1052 return Error("Invalid type"); 1053 ResultTy = StructType::get(Context, EltTys, Record[0]); 1054 break; 1055 } 1056 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1057 if (ConvertToString(Record, 0, TypeName)) 1058 return Error("Invalid record"); 1059 continue; 1060 1061 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1062 if (Record.size() < 1) 1063 return Error("Invalid record"); 1064 1065 if (NumRecords >= TypeList.size()) 1066 return Error("Invalid TYPE table"); 1067 1068 // Check to see if this was forward referenced, if so fill in the temp. 1069 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1070 if (Res) { 1071 Res->setName(TypeName); 1072 TypeList[NumRecords] = nullptr; 1073 } else // Otherwise, create a new struct. 1074 Res = createIdentifiedStructType(Context, TypeName); 1075 TypeName.clear(); 1076 1077 SmallVector<Type*, 8> EltTys; 1078 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1079 if (Type *T = getTypeByID(Record[i])) 1080 EltTys.push_back(T); 1081 else 1082 break; 1083 } 1084 if (EltTys.size() != Record.size()-1) 1085 return Error("Invalid record"); 1086 Res->setBody(EltTys, Record[0]); 1087 ResultTy = Res; 1088 break; 1089 } 1090 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1091 if (Record.size() != 1) 1092 return Error("Invalid record"); 1093 1094 if (NumRecords >= TypeList.size()) 1095 return Error("Invalid TYPE table"); 1096 1097 // Check to see if this was forward referenced, if so fill in the temp. 1098 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1099 if (Res) { 1100 Res->setName(TypeName); 1101 TypeList[NumRecords] = nullptr; 1102 } else // Otherwise, create a new struct with no body. 1103 Res = createIdentifiedStructType(Context, TypeName); 1104 TypeName.clear(); 1105 ResultTy = Res; 1106 break; 1107 } 1108 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1109 if (Record.size() < 2) 1110 return Error("Invalid record"); 1111 if ((ResultTy = getTypeByID(Record[1]))) 1112 ResultTy = ArrayType::get(ResultTy, Record[0]); 1113 else 1114 return Error("Invalid type"); 1115 break; 1116 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1117 if (Record.size() < 2) 1118 return Error("Invalid record"); 1119 if ((ResultTy = getTypeByID(Record[1]))) 1120 ResultTy = VectorType::get(ResultTy, Record[0]); 1121 else 1122 return Error("Invalid type"); 1123 break; 1124 } 1125 1126 if (NumRecords >= TypeList.size()) 1127 return Error("Invalid TYPE table"); 1128 if (TypeList[NumRecords]) 1129 return Error( 1130 "Invalid TYPE table: Only named structs can be forward referenced"); 1131 assert(ResultTy && "Didn't read a type?"); 1132 TypeList[NumRecords++] = ResultTy; 1133 } 1134 } 1135 1136 std::error_code BitcodeReader::ParseValueSymbolTable() { 1137 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1138 return Error("Invalid record"); 1139 1140 SmallVector<uint64_t, 64> Record; 1141 1142 Triple TT(TheModule->getTargetTriple()); 1143 1144 // Read all the records for this value table. 1145 SmallString<128> ValueName; 1146 while (1) { 1147 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1148 1149 switch (Entry.Kind) { 1150 case BitstreamEntry::SubBlock: // Handled for us already. 1151 case BitstreamEntry::Error: 1152 return Error("Malformed block"); 1153 case BitstreamEntry::EndBlock: 1154 return std::error_code(); 1155 case BitstreamEntry::Record: 1156 // The interesting case. 1157 break; 1158 } 1159 1160 // Read a record. 1161 Record.clear(); 1162 switch (Stream.readRecord(Entry.ID, Record)) { 1163 default: // Default behavior: unknown type. 1164 break; 1165 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1166 if (ConvertToString(Record, 1, ValueName)) 1167 return Error("Invalid record"); 1168 unsigned ValueID = Record[0]; 1169 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1170 return Error("Invalid record"); 1171 Value *V = ValueList[ValueID]; 1172 1173 V->setName(StringRef(ValueName.data(), ValueName.size())); 1174 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1175 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1176 if (TT.isOSBinFormatMachO()) 1177 GO->setComdat(nullptr); 1178 else 1179 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1180 } 1181 } 1182 ValueName.clear(); 1183 break; 1184 } 1185 case bitc::VST_CODE_BBENTRY: { 1186 if (ConvertToString(Record, 1, ValueName)) 1187 return Error("Invalid record"); 1188 BasicBlock *BB = getBasicBlock(Record[0]); 1189 if (!BB) 1190 return Error("Invalid record"); 1191 1192 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1193 ValueName.clear(); 1194 break; 1195 } 1196 } 1197 } 1198 } 1199 1200 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1201 1202 std::error_code BitcodeReader::ParseMetadata() { 1203 IsMetadataMaterialized = true; 1204 unsigned NextMDValueNo = MDValueList.size(); 1205 1206 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1207 return Error("Invalid record"); 1208 1209 SmallVector<uint64_t, 64> Record; 1210 1211 auto getMD = 1212 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1213 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1214 if (ID) 1215 return getMD(ID - 1); 1216 return nullptr; 1217 }; 1218 auto getMDString = [&](unsigned ID) -> MDString *{ 1219 // This requires that the ID is not really a forward reference. In 1220 // particular, the MDString must already have been resolved. 1221 return cast_or_null<MDString>(getMDOrNull(ID)); 1222 }; 1223 1224 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1225 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1226 1227 // Read all the records. 1228 while (1) { 1229 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1230 1231 switch (Entry.Kind) { 1232 case BitstreamEntry::SubBlock: // Handled for us already. 1233 case BitstreamEntry::Error: 1234 return Error("Malformed block"); 1235 case BitstreamEntry::EndBlock: 1236 MDValueList.tryToResolveCycles(); 1237 return std::error_code(); 1238 case BitstreamEntry::Record: 1239 // The interesting case. 1240 break; 1241 } 1242 1243 // Read a record. 1244 Record.clear(); 1245 unsigned Code = Stream.readRecord(Entry.ID, Record); 1246 bool IsDistinct = false; 1247 switch (Code) { 1248 default: // Default behavior: ignore. 1249 break; 1250 case bitc::METADATA_NAME: { 1251 // Read name of the named metadata. 1252 SmallString<8> Name(Record.begin(), Record.end()); 1253 Record.clear(); 1254 Code = Stream.ReadCode(); 1255 1256 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1257 unsigned NextBitCode = Stream.readRecord(Code, Record); 1258 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1259 1260 // Read named metadata elements. 1261 unsigned Size = Record.size(); 1262 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1263 for (unsigned i = 0; i != Size; ++i) { 1264 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1265 if (!MD) 1266 return Error("Invalid record"); 1267 NMD->addOperand(MD); 1268 } 1269 break; 1270 } 1271 case bitc::METADATA_OLD_FN_NODE: { 1272 // FIXME: Remove in 4.0. 1273 // This is a LocalAsMetadata record, the only type of function-local 1274 // metadata. 1275 if (Record.size() % 2 == 1) 1276 return Error("Invalid record"); 1277 1278 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1279 // to be legal, but there's no upgrade path. 1280 auto dropRecord = [&] { 1281 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1282 }; 1283 if (Record.size() != 2) { 1284 dropRecord(); 1285 break; 1286 } 1287 1288 Type *Ty = getTypeByID(Record[0]); 1289 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1290 dropRecord(); 1291 break; 1292 } 1293 1294 MDValueList.AssignValue( 1295 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1296 NextMDValueNo++); 1297 break; 1298 } 1299 case bitc::METADATA_OLD_NODE: { 1300 // FIXME: Remove in 4.0. 1301 if (Record.size() % 2 == 1) 1302 return Error("Invalid record"); 1303 1304 unsigned Size = Record.size(); 1305 SmallVector<Metadata *, 8> Elts; 1306 for (unsigned i = 0; i != Size; i += 2) { 1307 Type *Ty = getTypeByID(Record[i]); 1308 if (!Ty) 1309 return Error("Invalid record"); 1310 if (Ty->isMetadataTy()) 1311 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1312 else if (!Ty->isVoidTy()) { 1313 auto *MD = 1314 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1315 assert(isa<ConstantAsMetadata>(MD) && 1316 "Expected non-function-local metadata"); 1317 Elts.push_back(MD); 1318 } else 1319 Elts.push_back(nullptr); 1320 } 1321 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1322 break; 1323 } 1324 case bitc::METADATA_VALUE: { 1325 if (Record.size() != 2) 1326 return Error("Invalid record"); 1327 1328 Type *Ty = getTypeByID(Record[0]); 1329 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1330 return Error("Invalid record"); 1331 1332 MDValueList.AssignValue( 1333 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1334 NextMDValueNo++); 1335 break; 1336 } 1337 case bitc::METADATA_DISTINCT_NODE: 1338 IsDistinct = true; 1339 // fallthrough... 1340 case bitc::METADATA_NODE: { 1341 SmallVector<Metadata *, 8> Elts; 1342 Elts.reserve(Record.size()); 1343 for (unsigned ID : Record) 1344 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1345 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1346 : MDNode::get(Context, Elts), 1347 NextMDValueNo++); 1348 break; 1349 } 1350 case bitc::METADATA_LOCATION: { 1351 if (Record.size() != 5) 1352 return Error("Invalid record"); 1353 1354 auto get = Record[0] ? MDLocation::getDistinct : MDLocation::get; 1355 unsigned Line = Record[1]; 1356 unsigned Column = Record[2]; 1357 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1358 Metadata *InlinedAt = 1359 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1360 MDValueList.AssignValue(get(Context, Line, Column, Scope, InlinedAt), 1361 NextMDValueNo++); 1362 break; 1363 } 1364 case bitc::METADATA_GENERIC_DEBUG: { 1365 if (Record.size() < 4) 1366 return Error("Invalid record"); 1367 1368 unsigned Tag = Record[1]; 1369 unsigned Version = Record[2]; 1370 1371 if (Tag >= 1u << 16 || Version != 0) 1372 return Error("Invalid record"); 1373 1374 auto *Header = getMDString(Record[3]); 1375 SmallVector<Metadata *, 8> DwarfOps; 1376 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1377 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1378 : nullptr); 1379 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDebugNode, Record[0], 1380 (Context, Tag, Header, DwarfOps)), 1381 NextMDValueNo++); 1382 break; 1383 } 1384 case bitc::METADATA_SUBRANGE: { 1385 if (Record.size() != 3) 1386 return Error("Invalid record"); 1387 1388 MDValueList.AssignValue( 1389 GET_OR_DISTINCT(MDSubrange, Record[0], 1390 (Context, Record[1], unrotateSign(Record[2]))), 1391 NextMDValueNo++); 1392 break; 1393 } 1394 case bitc::METADATA_ENUMERATOR: { 1395 if (Record.size() != 3) 1396 return Error("Invalid record"); 1397 1398 MDValueList.AssignValue(GET_OR_DISTINCT(MDEnumerator, Record[0], 1399 (Context, unrotateSign(Record[1]), 1400 getMDString(Record[2]))), 1401 NextMDValueNo++); 1402 break; 1403 } 1404 case bitc::METADATA_BASIC_TYPE: { 1405 if (Record.size() != 6) 1406 return Error("Invalid record"); 1407 1408 MDValueList.AssignValue( 1409 GET_OR_DISTINCT(MDBasicType, Record[0], 1410 (Context, Record[1], getMDString(Record[2]), 1411 Record[3], Record[4], Record[5])), 1412 NextMDValueNo++); 1413 break; 1414 } 1415 case bitc::METADATA_DERIVED_TYPE: { 1416 if (Record.size() != 12) 1417 return Error("Invalid record"); 1418 1419 MDValueList.AssignValue( 1420 GET_OR_DISTINCT(MDDerivedType, Record[0], 1421 (Context, Record[1], getMDString(Record[2]), 1422 getMDOrNull(Record[3]), Record[4], 1423 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1424 Record[7], Record[8], Record[9], Record[10], 1425 getMDOrNull(Record[11]))), 1426 NextMDValueNo++); 1427 break; 1428 } 1429 case bitc::METADATA_COMPOSITE_TYPE: { 1430 if (Record.size() != 16) 1431 return Error("Invalid record"); 1432 1433 MDValueList.AssignValue( 1434 GET_OR_DISTINCT(MDCompositeType, Record[0], 1435 (Context, Record[1], getMDString(Record[2]), 1436 getMDOrNull(Record[3]), Record[4], 1437 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1438 Record[7], Record[8], Record[9], Record[10], 1439 getMDOrNull(Record[11]), Record[12], 1440 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1441 getMDString(Record[15]))), 1442 NextMDValueNo++); 1443 break; 1444 } 1445 case bitc::METADATA_SUBROUTINE_TYPE: { 1446 if (Record.size() != 3) 1447 return Error("Invalid record"); 1448 1449 MDValueList.AssignValue( 1450 GET_OR_DISTINCT(MDSubroutineType, Record[0], 1451 (Context, Record[1], getMDOrNull(Record[2]))), 1452 NextMDValueNo++); 1453 break; 1454 } 1455 case bitc::METADATA_FILE: { 1456 if (Record.size() != 3) 1457 return Error("Invalid record"); 1458 1459 MDValueList.AssignValue( 1460 GET_OR_DISTINCT(MDFile, Record[0], (Context, getMDString(Record[1]), 1461 getMDString(Record[2]))), 1462 NextMDValueNo++); 1463 break; 1464 } 1465 case bitc::METADATA_COMPILE_UNIT: { 1466 if (Record.size() != 14) 1467 return Error("Invalid record"); 1468 1469 MDValueList.AssignValue( 1470 GET_OR_DISTINCT(MDCompileUnit, Record[0], 1471 (Context, Record[1], getMDOrNull(Record[2]), 1472 getMDString(Record[3]), Record[4], 1473 getMDString(Record[5]), Record[6], 1474 getMDString(Record[7]), Record[8], 1475 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1476 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1477 getMDOrNull(Record[13]))), 1478 NextMDValueNo++); 1479 break; 1480 } 1481 case bitc::METADATA_SUBPROGRAM: { 1482 if (Record.size() != 19) 1483 return Error("Invalid record"); 1484 1485 MDValueList.AssignValue( 1486 GET_OR_DISTINCT( 1487 MDSubprogram, Record[0], 1488 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1489 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1490 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1491 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1492 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1493 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1494 NextMDValueNo++); 1495 break; 1496 } 1497 case bitc::METADATA_LEXICAL_BLOCK: { 1498 if (Record.size() != 5) 1499 return Error("Invalid record"); 1500 1501 MDValueList.AssignValue( 1502 GET_OR_DISTINCT(MDLexicalBlock, Record[0], 1503 (Context, getMDOrNull(Record[1]), 1504 getMDOrNull(Record[2]), Record[3], Record[4])), 1505 NextMDValueNo++); 1506 break; 1507 } 1508 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1509 if (Record.size() != 4) 1510 return Error("Invalid record"); 1511 1512 MDValueList.AssignValue( 1513 GET_OR_DISTINCT(MDLexicalBlockFile, Record[0], 1514 (Context, getMDOrNull(Record[1]), 1515 getMDOrNull(Record[2]), Record[3])), 1516 NextMDValueNo++); 1517 break; 1518 } 1519 case bitc::METADATA_NAMESPACE: { 1520 if (Record.size() != 5) 1521 return Error("Invalid record"); 1522 1523 MDValueList.AssignValue( 1524 GET_OR_DISTINCT(MDNamespace, Record[0], 1525 (Context, getMDOrNull(Record[1]), 1526 getMDOrNull(Record[2]), getMDString(Record[3]), 1527 Record[4])), 1528 NextMDValueNo++); 1529 break; 1530 } 1531 case bitc::METADATA_TEMPLATE_TYPE: { 1532 if (Record.size() != 3) 1533 return Error("Invalid record"); 1534 1535 MDValueList.AssignValue(GET_OR_DISTINCT(MDTemplateTypeParameter, 1536 Record[0], 1537 (Context, getMDString(Record[1]), 1538 getMDOrNull(Record[2]))), 1539 NextMDValueNo++); 1540 break; 1541 } 1542 case bitc::METADATA_TEMPLATE_VALUE: { 1543 if (Record.size() != 5) 1544 return Error("Invalid record"); 1545 1546 MDValueList.AssignValue( 1547 GET_OR_DISTINCT(MDTemplateValueParameter, Record[0], 1548 (Context, Record[1], getMDString(Record[2]), 1549 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1550 NextMDValueNo++); 1551 break; 1552 } 1553 case bitc::METADATA_GLOBAL_VAR: { 1554 if (Record.size() != 11) 1555 return Error("Invalid record"); 1556 1557 MDValueList.AssignValue( 1558 GET_OR_DISTINCT(MDGlobalVariable, Record[0], 1559 (Context, getMDOrNull(Record[1]), 1560 getMDString(Record[2]), getMDString(Record[3]), 1561 getMDOrNull(Record[4]), Record[5], 1562 getMDOrNull(Record[6]), Record[7], Record[8], 1563 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1564 NextMDValueNo++); 1565 break; 1566 } 1567 case bitc::METADATA_LOCAL_VAR: { 1568 if (Record.size() != 10) 1569 return Error("Invalid record"); 1570 1571 MDValueList.AssignValue( 1572 GET_OR_DISTINCT(MDLocalVariable, Record[0], 1573 (Context, Record[1], getMDOrNull(Record[2]), 1574 getMDString(Record[3]), getMDOrNull(Record[4]), 1575 Record[5], getMDOrNull(Record[6]), Record[7], 1576 Record[8], getMDOrNull(Record[9]))), 1577 NextMDValueNo++); 1578 break; 1579 } 1580 case bitc::METADATA_EXPRESSION: { 1581 if (Record.size() < 1) 1582 return Error("Invalid record"); 1583 1584 MDValueList.AssignValue( 1585 GET_OR_DISTINCT(MDExpression, Record[0], 1586 (Context, makeArrayRef(Record).slice(1))), 1587 NextMDValueNo++); 1588 break; 1589 } 1590 case bitc::METADATA_OBJC_PROPERTY: { 1591 if (Record.size() != 8) 1592 return Error("Invalid record"); 1593 1594 MDValueList.AssignValue( 1595 GET_OR_DISTINCT(MDObjCProperty, Record[0], 1596 (Context, getMDString(Record[1]), 1597 getMDOrNull(Record[2]), Record[3], 1598 getMDString(Record[4]), getMDString(Record[5]), 1599 Record[6], getMDOrNull(Record[7]))), 1600 NextMDValueNo++); 1601 break; 1602 } 1603 case bitc::METADATA_IMPORTED_ENTITY: { 1604 if (Record.size() != 6) 1605 return Error("Invalid record"); 1606 1607 MDValueList.AssignValue( 1608 GET_OR_DISTINCT(MDImportedEntity, Record[0], 1609 (Context, Record[1], getMDOrNull(Record[2]), 1610 getMDOrNull(Record[3]), Record[4], 1611 getMDString(Record[5]))), 1612 NextMDValueNo++); 1613 break; 1614 } 1615 case bitc::METADATA_STRING: { 1616 std::string String(Record.begin(), Record.end()); 1617 llvm::UpgradeMDStringConstant(String); 1618 Metadata *MD = MDString::get(Context, String); 1619 MDValueList.AssignValue(MD, NextMDValueNo++); 1620 break; 1621 } 1622 case bitc::METADATA_KIND: { 1623 if (Record.size() < 2) 1624 return Error("Invalid record"); 1625 1626 unsigned Kind = Record[0]; 1627 SmallString<8> Name(Record.begin()+1, Record.end()); 1628 1629 unsigned NewKind = TheModule->getMDKindID(Name.str()); 1630 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 1631 return Error("Conflicting METADATA_KIND records"); 1632 break; 1633 } 1634 } 1635 } 1636 #undef GET_OR_DISTINCT 1637 } 1638 1639 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 1640 /// the LSB for dense VBR encoding. 1641 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 1642 if ((V & 1) == 0) 1643 return V >> 1; 1644 if (V != 1) 1645 return -(V >> 1); 1646 // There is no such thing as -0 with integers. "-0" really means MININT. 1647 return 1ULL << 63; 1648 } 1649 1650 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 1651 /// values and aliases that we can. 1652 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 1653 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 1654 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 1655 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 1656 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 1657 1658 GlobalInitWorklist.swap(GlobalInits); 1659 AliasInitWorklist.swap(AliasInits); 1660 FunctionPrefixWorklist.swap(FunctionPrefixes); 1661 FunctionPrologueWorklist.swap(FunctionPrologues); 1662 1663 while (!GlobalInitWorklist.empty()) { 1664 unsigned ValID = GlobalInitWorklist.back().second; 1665 if (ValID >= ValueList.size()) { 1666 // Not ready to resolve this yet, it requires something later in the file. 1667 GlobalInits.push_back(GlobalInitWorklist.back()); 1668 } else { 1669 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1670 GlobalInitWorklist.back().first->setInitializer(C); 1671 else 1672 return Error("Expected a constant"); 1673 } 1674 GlobalInitWorklist.pop_back(); 1675 } 1676 1677 while (!AliasInitWorklist.empty()) { 1678 unsigned ValID = AliasInitWorklist.back().second; 1679 if (ValID >= ValueList.size()) { 1680 AliasInits.push_back(AliasInitWorklist.back()); 1681 } else { 1682 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1683 AliasInitWorklist.back().first->setAliasee(C); 1684 else 1685 return Error("Expected a constant"); 1686 } 1687 AliasInitWorklist.pop_back(); 1688 } 1689 1690 while (!FunctionPrefixWorklist.empty()) { 1691 unsigned ValID = FunctionPrefixWorklist.back().second; 1692 if (ValID >= ValueList.size()) { 1693 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 1694 } else { 1695 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1696 FunctionPrefixWorklist.back().first->setPrefixData(C); 1697 else 1698 return Error("Expected a constant"); 1699 } 1700 FunctionPrefixWorklist.pop_back(); 1701 } 1702 1703 while (!FunctionPrologueWorklist.empty()) { 1704 unsigned ValID = FunctionPrologueWorklist.back().second; 1705 if (ValID >= ValueList.size()) { 1706 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 1707 } else { 1708 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 1709 FunctionPrologueWorklist.back().first->setPrologueData(C); 1710 else 1711 return Error("Expected a constant"); 1712 } 1713 FunctionPrologueWorklist.pop_back(); 1714 } 1715 1716 return std::error_code(); 1717 } 1718 1719 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 1720 SmallVector<uint64_t, 8> Words(Vals.size()); 1721 std::transform(Vals.begin(), Vals.end(), Words.begin(), 1722 BitcodeReader::decodeSignRotatedValue); 1723 1724 return APInt(TypeBits, Words); 1725 } 1726 1727 std::error_code BitcodeReader::ParseConstants() { 1728 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 1729 return Error("Invalid record"); 1730 1731 SmallVector<uint64_t, 64> Record; 1732 1733 // Read all the records for this value table. 1734 Type *CurTy = Type::getInt32Ty(Context); 1735 unsigned NextCstNo = ValueList.size(); 1736 while (1) { 1737 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1738 1739 switch (Entry.Kind) { 1740 case BitstreamEntry::SubBlock: // Handled for us already. 1741 case BitstreamEntry::Error: 1742 return Error("Malformed block"); 1743 case BitstreamEntry::EndBlock: 1744 if (NextCstNo != ValueList.size()) 1745 return Error("Invalid ronstant reference"); 1746 1747 // Once all the constants have been read, go through and resolve forward 1748 // references. 1749 ValueList.ResolveConstantForwardRefs(); 1750 return std::error_code(); 1751 case BitstreamEntry::Record: 1752 // The interesting case. 1753 break; 1754 } 1755 1756 // Read a record. 1757 Record.clear(); 1758 Value *V = nullptr; 1759 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 1760 switch (BitCode) { 1761 default: // Default behavior: unknown constant 1762 case bitc::CST_CODE_UNDEF: // UNDEF 1763 V = UndefValue::get(CurTy); 1764 break; 1765 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 1766 if (Record.empty()) 1767 return Error("Invalid record"); 1768 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 1769 return Error("Invalid record"); 1770 CurTy = TypeList[Record[0]]; 1771 continue; // Skip the ValueList manipulation. 1772 case bitc::CST_CODE_NULL: // NULL 1773 V = Constant::getNullValue(CurTy); 1774 break; 1775 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 1776 if (!CurTy->isIntegerTy() || Record.empty()) 1777 return Error("Invalid record"); 1778 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 1779 break; 1780 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 1781 if (!CurTy->isIntegerTy() || Record.empty()) 1782 return Error("Invalid record"); 1783 1784 APInt VInt = ReadWideAPInt(Record, 1785 cast<IntegerType>(CurTy)->getBitWidth()); 1786 V = ConstantInt::get(Context, VInt); 1787 1788 break; 1789 } 1790 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 1791 if (Record.empty()) 1792 return Error("Invalid record"); 1793 if (CurTy->isHalfTy()) 1794 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 1795 APInt(16, (uint16_t)Record[0]))); 1796 else if (CurTy->isFloatTy()) 1797 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 1798 APInt(32, (uint32_t)Record[0]))); 1799 else if (CurTy->isDoubleTy()) 1800 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 1801 APInt(64, Record[0]))); 1802 else if (CurTy->isX86_FP80Ty()) { 1803 // Bits are not stored the same way as a normal i80 APInt, compensate. 1804 uint64_t Rearrange[2]; 1805 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 1806 Rearrange[1] = Record[0] >> 48; 1807 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 1808 APInt(80, Rearrange))); 1809 } else if (CurTy->isFP128Ty()) 1810 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 1811 APInt(128, Record))); 1812 else if (CurTy->isPPC_FP128Ty()) 1813 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 1814 APInt(128, Record))); 1815 else 1816 V = UndefValue::get(CurTy); 1817 break; 1818 } 1819 1820 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 1821 if (Record.empty()) 1822 return Error("Invalid record"); 1823 1824 unsigned Size = Record.size(); 1825 SmallVector<Constant*, 16> Elts; 1826 1827 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 1828 for (unsigned i = 0; i != Size; ++i) 1829 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 1830 STy->getElementType(i))); 1831 V = ConstantStruct::get(STy, Elts); 1832 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 1833 Type *EltTy = ATy->getElementType(); 1834 for (unsigned i = 0; i != Size; ++i) 1835 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1836 V = ConstantArray::get(ATy, Elts); 1837 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 1838 Type *EltTy = VTy->getElementType(); 1839 for (unsigned i = 0; i != Size; ++i) 1840 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 1841 V = ConstantVector::get(Elts); 1842 } else { 1843 V = UndefValue::get(CurTy); 1844 } 1845 break; 1846 } 1847 case bitc::CST_CODE_STRING: // STRING: [values] 1848 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 1849 if (Record.empty()) 1850 return Error("Invalid record"); 1851 1852 SmallString<16> Elts(Record.begin(), Record.end()); 1853 V = ConstantDataArray::getString(Context, Elts, 1854 BitCode == bitc::CST_CODE_CSTRING); 1855 break; 1856 } 1857 case bitc::CST_CODE_DATA: {// DATA: [n x value] 1858 if (Record.empty()) 1859 return Error("Invalid record"); 1860 1861 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 1862 unsigned Size = Record.size(); 1863 1864 if (EltTy->isIntegerTy(8)) { 1865 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 1866 if (isa<VectorType>(CurTy)) 1867 V = ConstantDataVector::get(Context, Elts); 1868 else 1869 V = ConstantDataArray::get(Context, Elts); 1870 } else if (EltTy->isIntegerTy(16)) { 1871 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 1872 if (isa<VectorType>(CurTy)) 1873 V = ConstantDataVector::get(Context, Elts); 1874 else 1875 V = ConstantDataArray::get(Context, Elts); 1876 } else if (EltTy->isIntegerTy(32)) { 1877 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 1878 if (isa<VectorType>(CurTy)) 1879 V = ConstantDataVector::get(Context, Elts); 1880 else 1881 V = ConstantDataArray::get(Context, Elts); 1882 } else if (EltTy->isIntegerTy(64)) { 1883 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 1884 if (isa<VectorType>(CurTy)) 1885 V = ConstantDataVector::get(Context, Elts); 1886 else 1887 V = ConstantDataArray::get(Context, Elts); 1888 } else if (EltTy->isFloatTy()) { 1889 SmallVector<float, 16> Elts(Size); 1890 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 1891 if (isa<VectorType>(CurTy)) 1892 V = ConstantDataVector::get(Context, Elts); 1893 else 1894 V = ConstantDataArray::get(Context, Elts); 1895 } else if (EltTy->isDoubleTy()) { 1896 SmallVector<double, 16> Elts(Size); 1897 std::transform(Record.begin(), Record.end(), Elts.begin(), 1898 BitsToDouble); 1899 if (isa<VectorType>(CurTy)) 1900 V = ConstantDataVector::get(Context, Elts); 1901 else 1902 V = ConstantDataArray::get(Context, Elts); 1903 } else { 1904 return Error("Invalid type for value"); 1905 } 1906 break; 1907 } 1908 1909 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 1910 if (Record.size() < 3) 1911 return Error("Invalid record"); 1912 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 1913 if (Opc < 0) { 1914 V = UndefValue::get(CurTy); // Unknown binop. 1915 } else { 1916 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 1917 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 1918 unsigned Flags = 0; 1919 if (Record.size() >= 4) { 1920 if (Opc == Instruction::Add || 1921 Opc == Instruction::Sub || 1922 Opc == Instruction::Mul || 1923 Opc == Instruction::Shl) { 1924 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 1925 Flags |= OverflowingBinaryOperator::NoSignedWrap; 1926 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 1927 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 1928 } else if (Opc == Instruction::SDiv || 1929 Opc == Instruction::UDiv || 1930 Opc == Instruction::LShr || 1931 Opc == Instruction::AShr) { 1932 if (Record[3] & (1 << bitc::PEO_EXACT)) 1933 Flags |= SDivOperator::IsExact; 1934 } 1935 } 1936 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 1937 } 1938 break; 1939 } 1940 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 1941 if (Record.size() < 3) 1942 return Error("Invalid record"); 1943 int Opc = GetDecodedCastOpcode(Record[0]); 1944 if (Opc < 0) { 1945 V = UndefValue::get(CurTy); // Unknown cast. 1946 } else { 1947 Type *OpTy = getTypeByID(Record[1]); 1948 if (!OpTy) 1949 return Error("Invalid record"); 1950 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 1951 V = UpgradeBitCastExpr(Opc, Op, CurTy); 1952 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 1953 } 1954 break; 1955 } 1956 case bitc::CST_CODE_CE_INBOUNDS_GEP: 1957 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 1958 unsigned OpNum = 0; 1959 Type *PointeeType = nullptr; 1960 if (Record.size() % 2) 1961 PointeeType = getTypeByID(Record[OpNum++]); 1962 SmallVector<Constant*, 16> Elts; 1963 while (OpNum != Record.size()) { 1964 Type *ElTy = getTypeByID(Record[OpNum++]); 1965 if (!ElTy) 1966 return Error("Invalid record"); 1967 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 1968 } 1969 1970 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 1971 V = ConstantExpr::getGetElementPtr(Elts[0], Indices, 1972 BitCode == 1973 bitc::CST_CODE_CE_INBOUNDS_GEP); 1974 if (PointeeType && 1975 PointeeType != cast<GEPOperator>(V)->getSourceElementType()) 1976 return Error("Explicit gep operator type does not match pointee type " 1977 "of pointer operand"); 1978 break; 1979 } 1980 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 1981 if (Record.size() < 3) 1982 return Error("Invalid record"); 1983 1984 Type *SelectorTy = Type::getInt1Ty(Context); 1985 1986 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 1987 // vector. Otherwise, it must be a single bit. 1988 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 1989 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 1990 VTy->getNumElements()); 1991 1992 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 1993 SelectorTy), 1994 ValueList.getConstantFwdRef(Record[1],CurTy), 1995 ValueList.getConstantFwdRef(Record[2],CurTy)); 1996 break; 1997 } 1998 case bitc::CST_CODE_CE_EXTRACTELT 1999 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2000 if (Record.size() < 3) 2001 return Error("Invalid record"); 2002 VectorType *OpTy = 2003 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2004 if (!OpTy) 2005 return Error("Invalid record"); 2006 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2007 Constant *Op1 = nullptr; 2008 if (Record.size() == 4) { 2009 Type *IdxTy = getTypeByID(Record[2]); 2010 if (!IdxTy) 2011 return Error("Invalid record"); 2012 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2013 } else // TODO: Remove with llvm 4.0 2014 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2015 if (!Op1) 2016 return Error("Invalid record"); 2017 V = ConstantExpr::getExtractElement(Op0, Op1); 2018 break; 2019 } 2020 case bitc::CST_CODE_CE_INSERTELT 2021 : { // CE_INSERTELT: [opval, opval, opty, opval] 2022 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2023 if (Record.size() < 3 || !OpTy) 2024 return Error("Invalid record"); 2025 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2026 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2027 OpTy->getElementType()); 2028 Constant *Op2 = nullptr; 2029 if (Record.size() == 4) { 2030 Type *IdxTy = getTypeByID(Record[2]); 2031 if (!IdxTy) 2032 return Error("Invalid record"); 2033 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2034 } else // TODO: Remove with llvm 4.0 2035 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2036 if (!Op2) 2037 return Error("Invalid record"); 2038 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2039 break; 2040 } 2041 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2042 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2043 if (Record.size() < 3 || !OpTy) 2044 return Error("Invalid record"); 2045 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2046 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2047 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2048 OpTy->getNumElements()); 2049 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2050 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2051 break; 2052 } 2053 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2054 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2055 VectorType *OpTy = 2056 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2057 if (Record.size() < 4 || !RTy || !OpTy) 2058 return Error("Invalid record"); 2059 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2060 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2061 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2062 RTy->getNumElements()); 2063 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2064 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2065 break; 2066 } 2067 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2068 if (Record.size() < 4) 2069 return Error("Invalid record"); 2070 Type *OpTy = getTypeByID(Record[0]); 2071 if (!OpTy) 2072 return Error("Invalid record"); 2073 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2074 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2075 2076 if (OpTy->isFPOrFPVectorTy()) 2077 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2078 else 2079 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2080 break; 2081 } 2082 // This maintains backward compatibility, pre-asm dialect keywords. 2083 // FIXME: Remove with the 4.0 release. 2084 case bitc::CST_CODE_INLINEASM_OLD: { 2085 if (Record.size() < 2) 2086 return Error("Invalid record"); 2087 std::string AsmStr, ConstrStr; 2088 bool HasSideEffects = Record[0] & 1; 2089 bool IsAlignStack = Record[0] >> 1; 2090 unsigned AsmStrSize = Record[1]; 2091 if (2+AsmStrSize >= Record.size()) 2092 return Error("Invalid record"); 2093 unsigned ConstStrSize = Record[2+AsmStrSize]; 2094 if (3+AsmStrSize+ConstStrSize > Record.size()) 2095 return Error("Invalid record"); 2096 2097 for (unsigned i = 0; i != AsmStrSize; ++i) 2098 AsmStr += (char)Record[2+i]; 2099 for (unsigned i = 0; i != ConstStrSize; ++i) 2100 ConstrStr += (char)Record[3+AsmStrSize+i]; 2101 PointerType *PTy = cast<PointerType>(CurTy); 2102 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2103 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2104 break; 2105 } 2106 // This version adds support for the asm dialect keywords (e.g., 2107 // inteldialect). 2108 case bitc::CST_CODE_INLINEASM: { 2109 if (Record.size() < 2) 2110 return Error("Invalid record"); 2111 std::string AsmStr, ConstrStr; 2112 bool HasSideEffects = Record[0] & 1; 2113 bool IsAlignStack = (Record[0] >> 1) & 1; 2114 unsigned AsmDialect = Record[0] >> 2; 2115 unsigned AsmStrSize = Record[1]; 2116 if (2+AsmStrSize >= Record.size()) 2117 return Error("Invalid record"); 2118 unsigned ConstStrSize = Record[2+AsmStrSize]; 2119 if (3+AsmStrSize+ConstStrSize > Record.size()) 2120 return Error("Invalid record"); 2121 2122 for (unsigned i = 0; i != AsmStrSize; ++i) 2123 AsmStr += (char)Record[2+i]; 2124 for (unsigned i = 0; i != ConstStrSize; ++i) 2125 ConstrStr += (char)Record[3+AsmStrSize+i]; 2126 PointerType *PTy = cast<PointerType>(CurTy); 2127 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2128 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2129 InlineAsm::AsmDialect(AsmDialect)); 2130 break; 2131 } 2132 case bitc::CST_CODE_BLOCKADDRESS:{ 2133 if (Record.size() < 3) 2134 return Error("Invalid record"); 2135 Type *FnTy = getTypeByID(Record[0]); 2136 if (!FnTy) 2137 return Error("Invalid record"); 2138 Function *Fn = 2139 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2140 if (!Fn) 2141 return Error("Invalid record"); 2142 2143 // Don't let Fn get dematerialized. 2144 BlockAddressesTaken.insert(Fn); 2145 2146 // If the function is already parsed we can insert the block address right 2147 // away. 2148 BasicBlock *BB; 2149 unsigned BBID = Record[2]; 2150 if (!BBID) 2151 // Invalid reference to entry block. 2152 return Error("Invalid ID"); 2153 if (!Fn->empty()) { 2154 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2155 for (size_t I = 0, E = BBID; I != E; ++I) { 2156 if (BBI == BBE) 2157 return Error("Invalid ID"); 2158 ++BBI; 2159 } 2160 BB = BBI; 2161 } else { 2162 // Otherwise insert a placeholder and remember it so it can be inserted 2163 // when the function is parsed. 2164 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2165 if (FwdBBs.empty()) 2166 BasicBlockFwdRefQueue.push_back(Fn); 2167 if (FwdBBs.size() < BBID + 1) 2168 FwdBBs.resize(BBID + 1); 2169 if (!FwdBBs[BBID]) 2170 FwdBBs[BBID] = BasicBlock::Create(Context); 2171 BB = FwdBBs[BBID]; 2172 } 2173 V = BlockAddress::get(Fn, BB); 2174 break; 2175 } 2176 } 2177 2178 ValueList.AssignValue(V, NextCstNo); 2179 ++NextCstNo; 2180 } 2181 } 2182 2183 std::error_code BitcodeReader::ParseUseLists() { 2184 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2185 return Error("Invalid record"); 2186 2187 // Read all the records. 2188 SmallVector<uint64_t, 64> Record; 2189 while (1) { 2190 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2191 2192 switch (Entry.Kind) { 2193 case BitstreamEntry::SubBlock: // Handled for us already. 2194 case BitstreamEntry::Error: 2195 return Error("Malformed block"); 2196 case BitstreamEntry::EndBlock: 2197 return std::error_code(); 2198 case BitstreamEntry::Record: 2199 // The interesting case. 2200 break; 2201 } 2202 2203 // Read a use list record. 2204 Record.clear(); 2205 bool IsBB = false; 2206 switch (Stream.readRecord(Entry.ID, Record)) { 2207 default: // Default behavior: unknown type. 2208 break; 2209 case bitc::USELIST_CODE_BB: 2210 IsBB = true; 2211 // fallthrough 2212 case bitc::USELIST_CODE_DEFAULT: { 2213 unsigned RecordLength = Record.size(); 2214 if (RecordLength < 3) 2215 // Records should have at least an ID and two indexes. 2216 return Error("Invalid record"); 2217 unsigned ID = Record.back(); 2218 Record.pop_back(); 2219 2220 Value *V; 2221 if (IsBB) { 2222 assert(ID < FunctionBBs.size() && "Basic block not found"); 2223 V = FunctionBBs[ID]; 2224 } else 2225 V = ValueList[ID]; 2226 unsigned NumUses = 0; 2227 SmallDenseMap<const Use *, unsigned, 16> Order; 2228 for (const Use &U : V->uses()) { 2229 if (++NumUses > Record.size()) 2230 break; 2231 Order[&U] = Record[NumUses - 1]; 2232 } 2233 if (Order.size() != Record.size() || NumUses > Record.size()) 2234 // Mismatches can happen if the functions are being materialized lazily 2235 // (out-of-order), or a value has been upgraded. 2236 break; 2237 2238 V->sortUseList([&](const Use &L, const Use &R) { 2239 return Order.lookup(&L) < Order.lookup(&R); 2240 }); 2241 break; 2242 } 2243 } 2244 } 2245 } 2246 2247 /// When we see the block for metadata, remember where it is and then skip it. 2248 /// This lets us lazily deserialize the metadata. 2249 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2250 // Save the current stream state. 2251 uint64_t CurBit = Stream.GetCurrentBitNo(); 2252 DeferredMetadataInfo.push_back(CurBit); 2253 2254 // Skip over the block for now. 2255 if (Stream.SkipBlock()) 2256 return Error("Invalid record"); 2257 return std::error_code(); 2258 } 2259 2260 std::error_code BitcodeReader::materializeMetadata() { 2261 for (uint64_t BitPos : DeferredMetadataInfo) { 2262 // Move the bit stream to the saved position. 2263 Stream.JumpToBit(BitPos); 2264 if (std::error_code EC = ParseMetadata()) 2265 return EC; 2266 } 2267 DeferredMetadataInfo.clear(); 2268 return std::error_code(); 2269 } 2270 2271 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2272 /// remember where it is and then skip it. This lets us lazily deserialize the 2273 /// functions. 2274 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2275 // Get the function we are talking about. 2276 if (FunctionsWithBodies.empty()) 2277 return Error("Insufficient function protos"); 2278 2279 Function *Fn = FunctionsWithBodies.back(); 2280 FunctionsWithBodies.pop_back(); 2281 2282 // Save the current stream state. 2283 uint64_t CurBit = Stream.GetCurrentBitNo(); 2284 DeferredFunctionInfo[Fn] = CurBit; 2285 2286 // Skip over the function block for now. 2287 if (Stream.SkipBlock()) 2288 return Error("Invalid record"); 2289 return std::error_code(); 2290 } 2291 2292 std::error_code BitcodeReader::GlobalCleanup() { 2293 // Patch the initializers for globals and aliases up. 2294 ResolveGlobalAndAliasInits(); 2295 if (!GlobalInits.empty() || !AliasInits.empty()) 2296 return Error("Malformed global initializer set"); 2297 2298 // Look for intrinsic functions which need to be upgraded at some point 2299 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2300 FI != FE; ++FI) { 2301 Function *NewFn; 2302 if (UpgradeIntrinsicFunction(FI, NewFn)) 2303 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2304 } 2305 2306 // Look for global variables which need to be renamed. 2307 for (Module::global_iterator 2308 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2309 GI != GE;) { 2310 GlobalVariable *GV = GI++; 2311 UpgradeGlobalVariable(GV); 2312 } 2313 2314 // Force deallocation of memory for these vectors to favor the client that 2315 // want lazy deserialization. 2316 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2317 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2318 return std::error_code(); 2319 } 2320 2321 std::error_code BitcodeReader::ParseModule(bool Resume, 2322 bool ShouldLazyLoadMetadata) { 2323 if (Resume) 2324 Stream.JumpToBit(NextUnreadBit); 2325 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2326 return Error("Invalid record"); 2327 2328 SmallVector<uint64_t, 64> Record; 2329 std::vector<std::string> SectionTable; 2330 std::vector<std::string> GCTable; 2331 2332 // Read all the records for this module. 2333 while (1) { 2334 BitstreamEntry Entry = Stream.advance(); 2335 2336 switch (Entry.Kind) { 2337 case BitstreamEntry::Error: 2338 return Error("Malformed block"); 2339 case BitstreamEntry::EndBlock: 2340 return GlobalCleanup(); 2341 2342 case BitstreamEntry::SubBlock: 2343 switch (Entry.ID) { 2344 default: // Skip unknown content. 2345 if (Stream.SkipBlock()) 2346 return Error("Invalid record"); 2347 break; 2348 case bitc::BLOCKINFO_BLOCK_ID: 2349 if (Stream.ReadBlockInfoBlock()) 2350 return Error("Malformed block"); 2351 break; 2352 case bitc::PARAMATTR_BLOCK_ID: 2353 if (std::error_code EC = ParseAttributeBlock()) 2354 return EC; 2355 break; 2356 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2357 if (std::error_code EC = ParseAttributeGroupBlock()) 2358 return EC; 2359 break; 2360 case bitc::TYPE_BLOCK_ID_NEW: 2361 if (std::error_code EC = ParseTypeTable()) 2362 return EC; 2363 break; 2364 case bitc::VALUE_SYMTAB_BLOCK_ID: 2365 if (std::error_code EC = ParseValueSymbolTable()) 2366 return EC; 2367 SeenValueSymbolTable = true; 2368 break; 2369 case bitc::CONSTANTS_BLOCK_ID: 2370 if (std::error_code EC = ParseConstants()) 2371 return EC; 2372 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2373 return EC; 2374 break; 2375 case bitc::METADATA_BLOCK_ID: 2376 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2377 if (std::error_code EC = rememberAndSkipMetadata()) 2378 return EC; 2379 break; 2380 } 2381 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2382 if (std::error_code EC = ParseMetadata()) 2383 return EC; 2384 break; 2385 case bitc::FUNCTION_BLOCK_ID: 2386 // If this is the first function body we've seen, reverse the 2387 // FunctionsWithBodies list. 2388 if (!SeenFirstFunctionBody) { 2389 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2390 if (std::error_code EC = GlobalCleanup()) 2391 return EC; 2392 SeenFirstFunctionBody = true; 2393 } 2394 2395 if (std::error_code EC = RememberAndSkipFunctionBody()) 2396 return EC; 2397 // For streaming bitcode, suspend parsing when we reach the function 2398 // bodies. Subsequent materialization calls will resume it when 2399 // necessary. For streaming, the function bodies must be at the end of 2400 // the bitcode. If the bitcode file is old, the symbol table will be 2401 // at the end instead and will not have been seen yet. In this case, 2402 // just finish the parse now. 2403 if (LazyStreamer && SeenValueSymbolTable) { 2404 NextUnreadBit = Stream.GetCurrentBitNo(); 2405 return std::error_code(); 2406 } 2407 break; 2408 case bitc::USELIST_BLOCK_ID: 2409 if (std::error_code EC = ParseUseLists()) 2410 return EC; 2411 break; 2412 } 2413 continue; 2414 2415 case BitstreamEntry::Record: 2416 // The interesting case. 2417 break; 2418 } 2419 2420 2421 // Read a record. 2422 switch (Stream.readRecord(Entry.ID, Record)) { 2423 default: break; // Default behavior, ignore unknown content. 2424 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2425 if (Record.size() < 1) 2426 return Error("Invalid record"); 2427 // Only version #0 and #1 are supported so far. 2428 unsigned module_version = Record[0]; 2429 switch (module_version) { 2430 default: 2431 return Error("Invalid value"); 2432 case 0: 2433 UseRelativeIDs = false; 2434 break; 2435 case 1: 2436 UseRelativeIDs = true; 2437 break; 2438 } 2439 break; 2440 } 2441 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2442 std::string S; 2443 if (ConvertToString(Record, 0, S)) 2444 return Error("Invalid record"); 2445 TheModule->setTargetTriple(S); 2446 break; 2447 } 2448 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2449 std::string S; 2450 if (ConvertToString(Record, 0, S)) 2451 return Error("Invalid record"); 2452 TheModule->setDataLayout(S); 2453 break; 2454 } 2455 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2456 std::string S; 2457 if (ConvertToString(Record, 0, S)) 2458 return Error("Invalid record"); 2459 TheModule->setModuleInlineAsm(S); 2460 break; 2461 } 2462 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2463 // FIXME: Remove in 4.0. 2464 std::string S; 2465 if (ConvertToString(Record, 0, S)) 2466 return Error("Invalid record"); 2467 // Ignore value. 2468 break; 2469 } 2470 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2471 std::string S; 2472 if (ConvertToString(Record, 0, S)) 2473 return Error("Invalid record"); 2474 SectionTable.push_back(S); 2475 break; 2476 } 2477 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2478 std::string S; 2479 if (ConvertToString(Record, 0, S)) 2480 return Error("Invalid record"); 2481 GCTable.push_back(S); 2482 break; 2483 } 2484 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2485 if (Record.size() < 2) 2486 return Error("Invalid record"); 2487 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2488 unsigned ComdatNameSize = Record[1]; 2489 std::string ComdatName; 2490 ComdatName.reserve(ComdatNameSize); 2491 for (unsigned i = 0; i != ComdatNameSize; ++i) 2492 ComdatName += (char)Record[2 + i]; 2493 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2494 C->setSelectionKind(SK); 2495 ComdatList.push_back(C); 2496 break; 2497 } 2498 // GLOBALVAR: [pointer type, isconst, initid, 2499 // linkage, alignment, section, visibility, threadlocal, 2500 // unnamed_addr, externally_initialized, dllstorageclass, 2501 // comdat] 2502 case bitc::MODULE_CODE_GLOBALVAR: { 2503 if (Record.size() < 6) 2504 return Error("Invalid record"); 2505 Type *Ty = getTypeByID(Record[0]); 2506 if (!Ty) 2507 return Error("Invalid record"); 2508 if (!Ty->isPointerTy()) 2509 return Error("Invalid type for value"); 2510 unsigned AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2511 Ty = cast<PointerType>(Ty)->getElementType(); 2512 2513 bool isConstant = Record[1]; 2514 uint64_t RawLinkage = Record[3]; 2515 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2516 unsigned Alignment; 2517 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2518 return EC; 2519 std::string Section; 2520 if (Record[5]) { 2521 if (Record[5]-1 >= SectionTable.size()) 2522 return Error("Invalid ID"); 2523 Section = SectionTable[Record[5]-1]; 2524 } 2525 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2526 // Local linkage must have default visibility. 2527 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2528 // FIXME: Change to an error if non-default in 4.0. 2529 Visibility = GetDecodedVisibility(Record[6]); 2530 2531 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2532 if (Record.size() > 7) 2533 TLM = GetDecodedThreadLocalMode(Record[7]); 2534 2535 bool UnnamedAddr = false; 2536 if (Record.size() > 8) 2537 UnnamedAddr = Record[8]; 2538 2539 bool ExternallyInitialized = false; 2540 if (Record.size() > 9) 2541 ExternallyInitialized = Record[9]; 2542 2543 GlobalVariable *NewGV = 2544 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2545 TLM, AddressSpace, ExternallyInitialized); 2546 NewGV->setAlignment(Alignment); 2547 if (!Section.empty()) 2548 NewGV->setSection(Section); 2549 NewGV->setVisibility(Visibility); 2550 NewGV->setUnnamedAddr(UnnamedAddr); 2551 2552 if (Record.size() > 10) 2553 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2554 else 2555 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2556 2557 ValueList.push_back(NewGV); 2558 2559 // Remember which value to use for the global initializer. 2560 if (unsigned InitID = Record[2]) 2561 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2562 2563 if (Record.size() > 11) { 2564 if (unsigned ComdatID = Record[11]) { 2565 assert(ComdatID <= ComdatList.size()); 2566 NewGV->setComdat(ComdatList[ComdatID - 1]); 2567 } 2568 } else if (hasImplicitComdat(RawLinkage)) { 2569 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2570 } 2571 break; 2572 } 2573 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2574 // alignment, section, visibility, gc, unnamed_addr, 2575 // prologuedata, dllstorageclass, comdat, prefixdata] 2576 case bitc::MODULE_CODE_FUNCTION: { 2577 if (Record.size() < 8) 2578 return Error("Invalid record"); 2579 Type *Ty = getTypeByID(Record[0]); 2580 if (!Ty) 2581 return Error("Invalid record"); 2582 if (!Ty->isPointerTy()) 2583 return Error("Invalid type for value"); 2584 FunctionType *FTy = 2585 dyn_cast<FunctionType>(cast<PointerType>(Ty)->getElementType()); 2586 if (!FTy) 2587 return Error("Invalid type for value"); 2588 2589 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2590 "", TheModule); 2591 2592 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2593 bool isProto = Record[2]; 2594 uint64_t RawLinkage = Record[3]; 2595 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2596 Func->setAttributes(getAttributes(Record[4])); 2597 2598 unsigned Alignment; 2599 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 2600 return EC; 2601 Func->setAlignment(Alignment); 2602 if (Record[6]) { 2603 if (Record[6]-1 >= SectionTable.size()) 2604 return Error("Invalid ID"); 2605 Func->setSection(SectionTable[Record[6]-1]); 2606 } 2607 // Local linkage must have default visibility. 2608 if (!Func->hasLocalLinkage()) 2609 // FIXME: Change to an error if non-default in 4.0. 2610 Func->setVisibility(GetDecodedVisibility(Record[7])); 2611 if (Record.size() > 8 && Record[8]) { 2612 if (Record[8]-1 > GCTable.size()) 2613 return Error("Invalid ID"); 2614 Func->setGC(GCTable[Record[8]-1].c_str()); 2615 } 2616 bool UnnamedAddr = false; 2617 if (Record.size() > 9) 2618 UnnamedAddr = Record[9]; 2619 Func->setUnnamedAddr(UnnamedAddr); 2620 if (Record.size() > 10 && Record[10] != 0) 2621 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 2622 2623 if (Record.size() > 11) 2624 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 2625 else 2626 UpgradeDLLImportExportLinkage(Func, RawLinkage); 2627 2628 if (Record.size() > 12) { 2629 if (unsigned ComdatID = Record[12]) { 2630 assert(ComdatID <= ComdatList.size()); 2631 Func->setComdat(ComdatList[ComdatID - 1]); 2632 } 2633 } else if (hasImplicitComdat(RawLinkage)) { 2634 Func->setComdat(reinterpret_cast<Comdat *>(1)); 2635 } 2636 2637 if (Record.size() > 13 && Record[13] != 0) 2638 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 2639 2640 ValueList.push_back(Func); 2641 2642 // If this is a function with a body, remember the prototype we are 2643 // creating now, so that we can match up the body with them later. 2644 if (!isProto) { 2645 Func->setIsMaterializable(true); 2646 FunctionsWithBodies.push_back(Func); 2647 if (LazyStreamer) 2648 DeferredFunctionInfo[Func] = 0; 2649 } 2650 break; 2651 } 2652 // ALIAS: [alias type, aliasee val#, linkage] 2653 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 2654 case bitc::MODULE_CODE_ALIAS: { 2655 if (Record.size() < 3) 2656 return Error("Invalid record"); 2657 Type *Ty = getTypeByID(Record[0]); 2658 if (!Ty) 2659 return Error("Invalid record"); 2660 auto *PTy = dyn_cast<PointerType>(Ty); 2661 if (!PTy) 2662 return Error("Invalid type for value"); 2663 2664 auto *NewGA = 2665 GlobalAlias::create(PTy->getElementType(), PTy->getAddressSpace(), 2666 getDecodedLinkage(Record[2]), "", TheModule); 2667 // Old bitcode files didn't have visibility field. 2668 // Local linkage must have default visibility. 2669 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 2670 // FIXME: Change to an error if non-default in 4.0. 2671 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 2672 if (Record.size() > 4) 2673 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 2674 else 2675 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 2676 if (Record.size() > 5) 2677 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 2678 if (Record.size() > 6) 2679 NewGA->setUnnamedAddr(Record[6]); 2680 ValueList.push_back(NewGA); 2681 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 2682 break; 2683 } 2684 /// MODULE_CODE_PURGEVALS: [numvals] 2685 case bitc::MODULE_CODE_PURGEVALS: 2686 // Trim down the value list to the specified size. 2687 if (Record.size() < 1 || Record[0] > ValueList.size()) 2688 return Error("Invalid record"); 2689 ValueList.shrinkTo(Record[0]); 2690 break; 2691 } 2692 Record.clear(); 2693 } 2694 } 2695 2696 std::error_code BitcodeReader::ParseBitcodeInto(Module *M, 2697 bool ShouldLazyLoadMetadata) { 2698 TheModule = nullptr; 2699 2700 if (std::error_code EC = InitStream()) 2701 return EC; 2702 2703 // Sniff for the signature. 2704 if (Stream.Read(8) != 'B' || 2705 Stream.Read(8) != 'C' || 2706 Stream.Read(4) != 0x0 || 2707 Stream.Read(4) != 0xC || 2708 Stream.Read(4) != 0xE || 2709 Stream.Read(4) != 0xD) 2710 return Error("Invalid bitcode signature"); 2711 2712 // We expect a number of well-defined blocks, though we don't necessarily 2713 // need to understand them all. 2714 while (1) { 2715 if (Stream.AtEndOfStream()) 2716 return std::error_code(); 2717 2718 BitstreamEntry Entry = 2719 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 2720 2721 switch (Entry.Kind) { 2722 case BitstreamEntry::Error: 2723 return Error("Malformed block"); 2724 case BitstreamEntry::EndBlock: 2725 return std::error_code(); 2726 2727 case BitstreamEntry::SubBlock: 2728 switch (Entry.ID) { 2729 case bitc::BLOCKINFO_BLOCK_ID: 2730 if (Stream.ReadBlockInfoBlock()) 2731 return Error("Malformed block"); 2732 break; 2733 case bitc::MODULE_BLOCK_ID: 2734 // Reject multiple MODULE_BLOCK's in a single bitstream. 2735 if (TheModule) 2736 return Error("Invalid multiple blocks"); 2737 TheModule = M; 2738 if (std::error_code EC = ParseModule(false, ShouldLazyLoadMetadata)) 2739 return EC; 2740 if (LazyStreamer) 2741 return std::error_code(); 2742 break; 2743 default: 2744 if (Stream.SkipBlock()) 2745 return Error("Invalid record"); 2746 break; 2747 } 2748 continue; 2749 case BitstreamEntry::Record: 2750 // There should be no records in the top-level of blocks. 2751 2752 // The ranlib in Xcode 4 will align archive members by appending newlines 2753 // to the end of them. If this file size is a multiple of 4 but not 8, we 2754 // have to read and ignore these final 4 bytes :-( 2755 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 2756 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 2757 Stream.AtEndOfStream()) 2758 return std::error_code(); 2759 2760 return Error("Invalid record"); 2761 } 2762 } 2763 } 2764 2765 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 2766 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2767 return Error("Invalid record"); 2768 2769 SmallVector<uint64_t, 64> Record; 2770 2771 std::string Triple; 2772 // Read all the records for this module. 2773 while (1) { 2774 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2775 2776 switch (Entry.Kind) { 2777 case BitstreamEntry::SubBlock: // Handled for us already. 2778 case BitstreamEntry::Error: 2779 return Error("Malformed block"); 2780 case BitstreamEntry::EndBlock: 2781 return Triple; 2782 case BitstreamEntry::Record: 2783 // The interesting case. 2784 break; 2785 } 2786 2787 // Read a record. 2788 switch (Stream.readRecord(Entry.ID, Record)) { 2789 default: break; // Default behavior, ignore unknown content. 2790 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2791 std::string S; 2792 if (ConvertToString(Record, 0, S)) 2793 return Error("Invalid record"); 2794 Triple = S; 2795 break; 2796 } 2797 } 2798 Record.clear(); 2799 } 2800 llvm_unreachable("Exit infinite loop"); 2801 } 2802 2803 ErrorOr<std::string> BitcodeReader::parseTriple() { 2804 if (std::error_code EC = InitStream()) 2805 return EC; 2806 2807 // Sniff for the signature. 2808 if (Stream.Read(8) != 'B' || 2809 Stream.Read(8) != 'C' || 2810 Stream.Read(4) != 0x0 || 2811 Stream.Read(4) != 0xC || 2812 Stream.Read(4) != 0xE || 2813 Stream.Read(4) != 0xD) 2814 return Error("Invalid bitcode signature"); 2815 2816 // We expect a number of well-defined blocks, though we don't necessarily 2817 // need to understand them all. 2818 while (1) { 2819 BitstreamEntry Entry = Stream.advance(); 2820 2821 switch (Entry.Kind) { 2822 case BitstreamEntry::Error: 2823 return Error("Malformed block"); 2824 case BitstreamEntry::EndBlock: 2825 return std::error_code(); 2826 2827 case BitstreamEntry::SubBlock: 2828 if (Entry.ID == bitc::MODULE_BLOCK_ID) 2829 return parseModuleTriple(); 2830 2831 // Ignore other sub-blocks. 2832 if (Stream.SkipBlock()) 2833 return Error("Malformed block"); 2834 continue; 2835 2836 case BitstreamEntry::Record: 2837 Stream.skipRecord(Entry.ID); 2838 continue; 2839 } 2840 } 2841 } 2842 2843 /// ParseMetadataAttachment - Parse metadata attachments. 2844 std::error_code BitcodeReader::ParseMetadataAttachment() { 2845 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 2846 return Error("Invalid record"); 2847 2848 SmallVector<uint64_t, 64> Record; 2849 while (1) { 2850 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2851 2852 switch (Entry.Kind) { 2853 case BitstreamEntry::SubBlock: // Handled for us already. 2854 case BitstreamEntry::Error: 2855 return Error("Malformed block"); 2856 case BitstreamEntry::EndBlock: 2857 return std::error_code(); 2858 case BitstreamEntry::Record: 2859 // The interesting case. 2860 break; 2861 } 2862 2863 // Read a metadata attachment record. 2864 Record.clear(); 2865 switch (Stream.readRecord(Entry.ID, Record)) { 2866 default: // Default behavior: ignore. 2867 break; 2868 case bitc::METADATA_ATTACHMENT: { 2869 unsigned RecordLength = Record.size(); 2870 if (Record.empty() || (RecordLength - 1) % 2 == 1) 2871 return Error("Invalid record"); 2872 Instruction *Inst = InstructionList[Record[0]]; 2873 for (unsigned i = 1; i != RecordLength; i = i+2) { 2874 unsigned Kind = Record[i]; 2875 DenseMap<unsigned, unsigned>::iterator I = 2876 MDKindMap.find(Kind); 2877 if (I == MDKindMap.end()) 2878 return Error("Invalid ID"); 2879 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 2880 if (isa<LocalAsMetadata>(Node)) 2881 // Drop the attachment. This used to be legal, but there's no 2882 // upgrade path. 2883 break; 2884 Inst->setMetadata(I->second, cast<MDNode>(Node)); 2885 if (I->second == LLVMContext::MD_tbaa) 2886 InstsWithTBAATag.push_back(Inst); 2887 } 2888 break; 2889 } 2890 } 2891 } 2892 } 2893 2894 /// ParseFunctionBody - Lazily parse the specified function body block. 2895 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 2896 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 2897 return Error("Invalid record"); 2898 2899 InstructionList.clear(); 2900 unsigned ModuleValueListSize = ValueList.size(); 2901 unsigned ModuleMDValueListSize = MDValueList.size(); 2902 2903 // Add all the function arguments to the value table. 2904 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 2905 ValueList.push_back(I); 2906 2907 unsigned NextValueNo = ValueList.size(); 2908 BasicBlock *CurBB = nullptr; 2909 unsigned CurBBNo = 0; 2910 2911 DebugLoc LastLoc; 2912 auto getLastInstruction = [&]() -> Instruction * { 2913 if (CurBB && !CurBB->empty()) 2914 return &CurBB->back(); 2915 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 2916 !FunctionBBs[CurBBNo - 1]->empty()) 2917 return &FunctionBBs[CurBBNo - 1]->back(); 2918 return nullptr; 2919 }; 2920 2921 // Read all the records. 2922 SmallVector<uint64_t, 64> Record; 2923 while (1) { 2924 BitstreamEntry Entry = Stream.advance(); 2925 2926 switch (Entry.Kind) { 2927 case BitstreamEntry::Error: 2928 return Error("Malformed block"); 2929 case BitstreamEntry::EndBlock: 2930 goto OutOfRecordLoop; 2931 2932 case BitstreamEntry::SubBlock: 2933 switch (Entry.ID) { 2934 default: // Skip unknown content. 2935 if (Stream.SkipBlock()) 2936 return Error("Invalid record"); 2937 break; 2938 case bitc::CONSTANTS_BLOCK_ID: 2939 if (std::error_code EC = ParseConstants()) 2940 return EC; 2941 NextValueNo = ValueList.size(); 2942 break; 2943 case bitc::VALUE_SYMTAB_BLOCK_ID: 2944 if (std::error_code EC = ParseValueSymbolTable()) 2945 return EC; 2946 break; 2947 case bitc::METADATA_ATTACHMENT_ID: 2948 if (std::error_code EC = ParseMetadataAttachment()) 2949 return EC; 2950 break; 2951 case bitc::METADATA_BLOCK_ID: 2952 if (std::error_code EC = ParseMetadata()) 2953 return EC; 2954 break; 2955 case bitc::USELIST_BLOCK_ID: 2956 if (std::error_code EC = ParseUseLists()) 2957 return EC; 2958 break; 2959 } 2960 continue; 2961 2962 case BitstreamEntry::Record: 2963 // The interesting case. 2964 break; 2965 } 2966 2967 // Read a record. 2968 Record.clear(); 2969 Instruction *I = nullptr; 2970 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2971 switch (BitCode) { 2972 default: // Default behavior: reject 2973 return Error("Invalid value"); 2974 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 2975 if (Record.size() < 1 || Record[0] == 0) 2976 return Error("Invalid record"); 2977 // Create all the basic blocks for the function. 2978 FunctionBBs.resize(Record[0]); 2979 2980 // See if anything took the address of blocks in this function. 2981 auto BBFRI = BasicBlockFwdRefs.find(F); 2982 if (BBFRI == BasicBlockFwdRefs.end()) { 2983 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 2984 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 2985 } else { 2986 auto &BBRefs = BBFRI->second; 2987 // Check for invalid basic block references. 2988 if (BBRefs.size() > FunctionBBs.size()) 2989 return Error("Invalid ID"); 2990 assert(!BBRefs.empty() && "Unexpected empty array"); 2991 assert(!BBRefs.front() && "Invalid reference to entry block"); 2992 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 2993 ++I) 2994 if (I < RE && BBRefs[I]) { 2995 BBRefs[I]->insertInto(F); 2996 FunctionBBs[I] = BBRefs[I]; 2997 } else { 2998 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 2999 } 3000 3001 // Erase from the table. 3002 BasicBlockFwdRefs.erase(BBFRI); 3003 } 3004 3005 CurBB = FunctionBBs[0]; 3006 continue; 3007 } 3008 3009 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3010 // This record indicates that the last instruction is at the same 3011 // location as the previous instruction with a location. 3012 I = getLastInstruction(); 3013 3014 if (!I) 3015 return Error("Invalid record"); 3016 I->setDebugLoc(LastLoc); 3017 I = nullptr; 3018 continue; 3019 3020 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3021 I = getLastInstruction(); 3022 if (!I || Record.size() < 4) 3023 return Error("Invalid record"); 3024 3025 unsigned Line = Record[0], Col = Record[1]; 3026 unsigned ScopeID = Record[2], IAID = Record[3]; 3027 3028 MDNode *Scope = nullptr, *IA = nullptr; 3029 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3030 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3031 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3032 I->setDebugLoc(LastLoc); 3033 I = nullptr; 3034 continue; 3035 } 3036 3037 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3038 unsigned OpNum = 0; 3039 Value *LHS, *RHS; 3040 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3041 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3042 OpNum+1 > Record.size()) 3043 return Error("Invalid record"); 3044 3045 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3046 if (Opc == -1) 3047 return Error("Invalid record"); 3048 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3049 InstructionList.push_back(I); 3050 if (OpNum < Record.size()) { 3051 if (Opc == Instruction::Add || 3052 Opc == Instruction::Sub || 3053 Opc == Instruction::Mul || 3054 Opc == Instruction::Shl) { 3055 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3056 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3057 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3058 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3059 } else if (Opc == Instruction::SDiv || 3060 Opc == Instruction::UDiv || 3061 Opc == Instruction::LShr || 3062 Opc == Instruction::AShr) { 3063 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3064 cast<BinaryOperator>(I)->setIsExact(true); 3065 } else if (isa<FPMathOperator>(I)) { 3066 FastMathFlags FMF; 3067 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3068 FMF.setUnsafeAlgebra(); 3069 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3070 FMF.setNoNaNs(); 3071 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3072 FMF.setNoInfs(); 3073 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3074 FMF.setNoSignedZeros(); 3075 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3076 FMF.setAllowReciprocal(); 3077 if (FMF.any()) 3078 I->setFastMathFlags(FMF); 3079 } 3080 3081 } 3082 break; 3083 } 3084 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3085 unsigned OpNum = 0; 3086 Value *Op; 3087 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3088 OpNum+2 != Record.size()) 3089 return Error("Invalid record"); 3090 3091 Type *ResTy = getTypeByID(Record[OpNum]); 3092 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 3093 if (Opc == -1 || !ResTy) 3094 return Error("Invalid record"); 3095 Instruction *Temp = nullptr; 3096 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3097 if (Temp) { 3098 InstructionList.push_back(Temp); 3099 CurBB->getInstList().push_back(Temp); 3100 } 3101 } else { 3102 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3103 } 3104 InstructionList.push_back(I); 3105 break; 3106 } 3107 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3108 case bitc::FUNC_CODE_INST_GEP_OLD: 3109 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3110 unsigned OpNum = 0; 3111 3112 Type *Ty; 3113 bool InBounds; 3114 3115 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3116 InBounds = Record[OpNum++]; 3117 Ty = getTypeByID(Record[OpNum++]); 3118 } else { 3119 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3120 Ty = nullptr; 3121 } 3122 3123 Value *BasePtr; 3124 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3125 return Error("Invalid record"); 3126 3127 if (Ty && 3128 Ty != 3129 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3130 ->getElementType()) 3131 return Error( 3132 "Explicit gep type does not match pointee type of pointer operand"); 3133 3134 SmallVector<Value*, 16> GEPIdx; 3135 while (OpNum != Record.size()) { 3136 Value *Op; 3137 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3138 return Error("Invalid record"); 3139 GEPIdx.push_back(Op); 3140 } 3141 3142 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3143 3144 InstructionList.push_back(I); 3145 if (InBounds) 3146 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3147 break; 3148 } 3149 3150 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3151 // EXTRACTVAL: [opty, opval, n x indices] 3152 unsigned OpNum = 0; 3153 Value *Agg; 3154 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3155 return Error("Invalid record"); 3156 3157 SmallVector<unsigned, 4> EXTRACTVALIdx; 3158 Type *CurTy = Agg->getType(); 3159 for (unsigned RecSize = Record.size(); 3160 OpNum != RecSize; ++OpNum) { 3161 bool IsArray = CurTy->isArrayTy(); 3162 bool IsStruct = CurTy->isStructTy(); 3163 uint64_t Index = Record[OpNum]; 3164 3165 if (!IsStruct && !IsArray) 3166 return Error("EXTRACTVAL: Invalid type"); 3167 if ((unsigned)Index != Index) 3168 return Error("Invalid value"); 3169 if (IsStruct && Index >= CurTy->subtypes().size()) 3170 return Error("EXTRACTVAL: Invalid struct index"); 3171 if (IsArray && Index >= CurTy->getArrayNumElements()) 3172 return Error("EXTRACTVAL: Invalid array index"); 3173 EXTRACTVALIdx.push_back((unsigned)Index); 3174 3175 if (IsStruct) 3176 CurTy = CurTy->subtypes()[Index]; 3177 else 3178 CurTy = CurTy->subtypes()[0]; 3179 } 3180 3181 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3182 InstructionList.push_back(I); 3183 break; 3184 } 3185 3186 case bitc::FUNC_CODE_INST_INSERTVAL: { 3187 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3188 unsigned OpNum = 0; 3189 Value *Agg; 3190 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3191 return Error("Invalid record"); 3192 Value *Val; 3193 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3194 return Error("Invalid record"); 3195 3196 SmallVector<unsigned, 4> INSERTVALIdx; 3197 Type *CurTy = Agg->getType(); 3198 for (unsigned RecSize = Record.size(); 3199 OpNum != RecSize; ++OpNum) { 3200 bool IsArray = CurTy->isArrayTy(); 3201 bool IsStruct = CurTy->isStructTy(); 3202 uint64_t Index = Record[OpNum]; 3203 3204 if (!IsStruct && !IsArray) 3205 return Error("INSERTVAL: Invalid type"); 3206 if (!CurTy->isStructTy() && !CurTy->isArrayTy()) 3207 return Error("Invalid type"); 3208 if ((unsigned)Index != Index) 3209 return Error("Invalid value"); 3210 if (IsStruct && Index >= CurTy->subtypes().size()) 3211 return Error("INSERTVAL: Invalid struct index"); 3212 if (IsArray && Index >= CurTy->getArrayNumElements()) 3213 return Error("INSERTVAL: Invalid array index"); 3214 3215 INSERTVALIdx.push_back((unsigned)Index); 3216 if (IsStruct) 3217 CurTy = CurTy->subtypes()[Index]; 3218 else 3219 CurTy = CurTy->subtypes()[0]; 3220 } 3221 3222 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3223 InstructionList.push_back(I); 3224 break; 3225 } 3226 3227 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3228 // obsolete form of select 3229 // handles select i1 ... in old bitcode 3230 unsigned OpNum = 0; 3231 Value *TrueVal, *FalseVal, *Cond; 3232 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3233 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3234 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3235 return Error("Invalid record"); 3236 3237 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3238 InstructionList.push_back(I); 3239 break; 3240 } 3241 3242 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3243 // new form of select 3244 // handles select i1 or select [N x i1] 3245 unsigned OpNum = 0; 3246 Value *TrueVal, *FalseVal, *Cond; 3247 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3248 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3249 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3250 return Error("Invalid record"); 3251 3252 // select condition can be either i1 or [N x i1] 3253 if (VectorType* vector_type = 3254 dyn_cast<VectorType>(Cond->getType())) { 3255 // expect <n x i1> 3256 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3257 return Error("Invalid type for value"); 3258 } else { 3259 // expect i1 3260 if (Cond->getType() != Type::getInt1Ty(Context)) 3261 return Error("Invalid type for value"); 3262 } 3263 3264 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3265 InstructionList.push_back(I); 3266 break; 3267 } 3268 3269 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3270 unsigned OpNum = 0; 3271 Value *Vec, *Idx; 3272 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3273 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3274 return Error("Invalid record"); 3275 I = ExtractElementInst::Create(Vec, Idx); 3276 InstructionList.push_back(I); 3277 break; 3278 } 3279 3280 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3281 unsigned OpNum = 0; 3282 Value *Vec, *Elt, *Idx; 3283 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3284 popValue(Record, OpNum, NextValueNo, 3285 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3286 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3287 return Error("Invalid record"); 3288 I = InsertElementInst::Create(Vec, Elt, Idx); 3289 InstructionList.push_back(I); 3290 break; 3291 } 3292 3293 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3294 unsigned OpNum = 0; 3295 Value *Vec1, *Vec2, *Mask; 3296 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3297 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3298 return Error("Invalid record"); 3299 3300 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3301 return Error("Invalid record"); 3302 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3303 InstructionList.push_back(I); 3304 break; 3305 } 3306 3307 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3308 // Old form of ICmp/FCmp returning bool 3309 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3310 // both legal on vectors but had different behaviour. 3311 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3312 // FCmp/ICmp returning bool or vector of bool 3313 3314 unsigned OpNum = 0; 3315 Value *LHS, *RHS; 3316 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3317 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3318 OpNum+1 != Record.size()) 3319 return Error("Invalid record"); 3320 3321 if (LHS->getType()->isFPOrFPVectorTy()) 3322 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3323 else 3324 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3325 InstructionList.push_back(I); 3326 break; 3327 } 3328 3329 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3330 { 3331 unsigned Size = Record.size(); 3332 if (Size == 0) { 3333 I = ReturnInst::Create(Context); 3334 InstructionList.push_back(I); 3335 break; 3336 } 3337 3338 unsigned OpNum = 0; 3339 Value *Op = nullptr; 3340 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3341 return Error("Invalid record"); 3342 if (OpNum != Record.size()) 3343 return Error("Invalid record"); 3344 3345 I = ReturnInst::Create(Context, Op); 3346 InstructionList.push_back(I); 3347 break; 3348 } 3349 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3350 if (Record.size() != 1 && Record.size() != 3) 3351 return Error("Invalid record"); 3352 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3353 if (!TrueDest) 3354 return Error("Invalid record"); 3355 3356 if (Record.size() == 1) { 3357 I = BranchInst::Create(TrueDest); 3358 InstructionList.push_back(I); 3359 } 3360 else { 3361 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3362 Value *Cond = getValue(Record, 2, NextValueNo, 3363 Type::getInt1Ty(Context)); 3364 if (!FalseDest || !Cond) 3365 return Error("Invalid record"); 3366 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3367 InstructionList.push_back(I); 3368 } 3369 break; 3370 } 3371 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3372 // Check magic 3373 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3374 // "New" SwitchInst format with case ranges. The changes to write this 3375 // format were reverted but we still recognize bitcode that uses it. 3376 // Hopefully someday we will have support for case ranges and can use 3377 // this format again. 3378 3379 Type *OpTy = getTypeByID(Record[1]); 3380 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3381 3382 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3383 BasicBlock *Default = getBasicBlock(Record[3]); 3384 if (!OpTy || !Cond || !Default) 3385 return Error("Invalid record"); 3386 3387 unsigned NumCases = Record[4]; 3388 3389 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3390 InstructionList.push_back(SI); 3391 3392 unsigned CurIdx = 5; 3393 for (unsigned i = 0; i != NumCases; ++i) { 3394 SmallVector<ConstantInt*, 1> CaseVals; 3395 unsigned NumItems = Record[CurIdx++]; 3396 for (unsigned ci = 0; ci != NumItems; ++ci) { 3397 bool isSingleNumber = Record[CurIdx++]; 3398 3399 APInt Low; 3400 unsigned ActiveWords = 1; 3401 if (ValueBitWidth > 64) 3402 ActiveWords = Record[CurIdx++]; 3403 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3404 ValueBitWidth); 3405 CurIdx += ActiveWords; 3406 3407 if (!isSingleNumber) { 3408 ActiveWords = 1; 3409 if (ValueBitWidth > 64) 3410 ActiveWords = Record[CurIdx++]; 3411 APInt High = 3412 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3413 ValueBitWidth); 3414 CurIdx += ActiveWords; 3415 3416 // FIXME: It is not clear whether values in the range should be 3417 // compared as signed or unsigned values. The partially 3418 // implemented changes that used this format in the past used 3419 // unsigned comparisons. 3420 for ( ; Low.ule(High); ++Low) 3421 CaseVals.push_back(ConstantInt::get(Context, Low)); 3422 } else 3423 CaseVals.push_back(ConstantInt::get(Context, Low)); 3424 } 3425 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3426 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3427 cve = CaseVals.end(); cvi != cve; ++cvi) 3428 SI->addCase(*cvi, DestBB); 3429 } 3430 I = SI; 3431 break; 3432 } 3433 3434 // Old SwitchInst format without case ranges. 3435 3436 if (Record.size() < 3 || (Record.size() & 1) == 0) 3437 return Error("Invalid record"); 3438 Type *OpTy = getTypeByID(Record[0]); 3439 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3440 BasicBlock *Default = getBasicBlock(Record[2]); 3441 if (!OpTy || !Cond || !Default) 3442 return Error("Invalid record"); 3443 unsigned NumCases = (Record.size()-3)/2; 3444 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3445 InstructionList.push_back(SI); 3446 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3447 ConstantInt *CaseVal = 3448 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3449 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3450 if (!CaseVal || !DestBB) { 3451 delete SI; 3452 return Error("Invalid record"); 3453 } 3454 SI->addCase(CaseVal, DestBB); 3455 } 3456 I = SI; 3457 break; 3458 } 3459 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3460 if (Record.size() < 2) 3461 return Error("Invalid record"); 3462 Type *OpTy = getTypeByID(Record[0]); 3463 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3464 if (!OpTy || !Address) 3465 return Error("Invalid record"); 3466 unsigned NumDests = Record.size()-2; 3467 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3468 InstructionList.push_back(IBI); 3469 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3470 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3471 IBI->addDestination(DestBB); 3472 } else { 3473 delete IBI; 3474 return Error("Invalid record"); 3475 } 3476 } 3477 I = IBI; 3478 break; 3479 } 3480 3481 case bitc::FUNC_CODE_INST_INVOKE: { 3482 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3483 if (Record.size() < 4) 3484 return Error("Invalid record"); 3485 AttributeSet PAL = getAttributes(Record[0]); 3486 unsigned CCInfo = Record[1]; 3487 BasicBlock *NormalBB = getBasicBlock(Record[2]); 3488 BasicBlock *UnwindBB = getBasicBlock(Record[3]); 3489 3490 unsigned OpNum = 4; 3491 Value *Callee; 3492 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3493 return Error("Invalid record"); 3494 3495 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3496 FunctionType *FTy = !CalleeTy ? nullptr : 3497 dyn_cast<FunctionType>(CalleeTy->getElementType()); 3498 3499 // Check that the right number of fixed parameters are here. 3500 if (!FTy || !NormalBB || !UnwindBB || 3501 Record.size() < OpNum+FTy->getNumParams()) 3502 return Error("Invalid record"); 3503 3504 SmallVector<Value*, 16> Ops; 3505 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3506 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3507 FTy->getParamType(i))); 3508 if (!Ops.back()) 3509 return Error("Invalid record"); 3510 } 3511 3512 if (!FTy->isVarArg()) { 3513 if (Record.size() != OpNum) 3514 return Error("Invalid record"); 3515 } else { 3516 // Read type/value pairs for varargs params. 3517 while (OpNum != Record.size()) { 3518 Value *Op; 3519 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3520 return Error("Invalid record"); 3521 Ops.push_back(Op); 3522 } 3523 } 3524 3525 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3526 InstructionList.push_back(I); 3527 cast<InvokeInst>(I)->setCallingConv( 3528 static_cast<CallingConv::ID>(CCInfo)); 3529 cast<InvokeInst>(I)->setAttributes(PAL); 3530 break; 3531 } 3532 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3533 unsigned Idx = 0; 3534 Value *Val = nullptr; 3535 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3536 return Error("Invalid record"); 3537 I = ResumeInst::Create(Val); 3538 InstructionList.push_back(I); 3539 break; 3540 } 3541 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3542 I = new UnreachableInst(Context); 3543 InstructionList.push_back(I); 3544 break; 3545 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3546 if (Record.size() < 1 || ((Record.size()-1)&1)) 3547 return Error("Invalid record"); 3548 Type *Ty = getTypeByID(Record[0]); 3549 if (!Ty) 3550 return Error("Invalid record"); 3551 3552 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 3553 InstructionList.push_back(PN); 3554 3555 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 3556 Value *V; 3557 // With the new function encoding, it is possible that operands have 3558 // negative IDs (for forward references). Use a signed VBR 3559 // representation to keep the encoding small. 3560 if (UseRelativeIDs) 3561 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 3562 else 3563 V = getValue(Record, 1+i, NextValueNo, Ty); 3564 BasicBlock *BB = getBasicBlock(Record[2+i]); 3565 if (!V || !BB) 3566 return Error("Invalid record"); 3567 PN->addIncoming(V, BB); 3568 } 3569 I = PN; 3570 break; 3571 } 3572 3573 case bitc::FUNC_CODE_INST_LANDINGPAD: { 3574 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 3575 unsigned Idx = 0; 3576 if (Record.size() < 4) 3577 return Error("Invalid record"); 3578 Type *Ty = getTypeByID(Record[Idx++]); 3579 if (!Ty) 3580 return Error("Invalid record"); 3581 Value *PersFn = nullptr; 3582 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 3583 return Error("Invalid record"); 3584 3585 bool IsCleanup = !!Record[Idx++]; 3586 unsigned NumClauses = Record[Idx++]; 3587 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 3588 LP->setCleanup(IsCleanup); 3589 for (unsigned J = 0; J != NumClauses; ++J) { 3590 LandingPadInst::ClauseType CT = 3591 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 3592 Value *Val; 3593 3594 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 3595 delete LP; 3596 return Error("Invalid record"); 3597 } 3598 3599 assert((CT != LandingPadInst::Catch || 3600 !isa<ArrayType>(Val->getType())) && 3601 "Catch clause has a invalid type!"); 3602 assert((CT != LandingPadInst::Filter || 3603 isa<ArrayType>(Val->getType())) && 3604 "Filter clause has invalid type!"); 3605 LP->addClause(cast<Constant>(Val)); 3606 } 3607 3608 I = LP; 3609 InstructionList.push_back(I); 3610 break; 3611 } 3612 3613 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 3614 if (Record.size() != 4) 3615 return Error("Invalid record"); 3616 PointerType *Ty = 3617 dyn_cast_or_null<PointerType>(getTypeByID(Record[0])); 3618 Type *OpTy = getTypeByID(Record[1]); 3619 Value *Size = getFnValueByID(Record[2], OpTy); 3620 uint64_t AlignRecord = Record[3]; 3621 const uint64_t InAllocaMask = uint64_t(1) << 5; 3622 bool InAlloca = AlignRecord & InAllocaMask; 3623 unsigned Align; 3624 if (std::error_code EC = 3625 parseAlignmentValue(AlignRecord & ~InAllocaMask, Align)) { 3626 return EC; 3627 } 3628 if (!Ty || !Size) 3629 return Error("Invalid record"); 3630 AllocaInst *AI = new AllocaInst(Ty->getElementType(), Size, Align); 3631 AI->setUsedWithInAlloca(InAlloca); 3632 I = AI; 3633 InstructionList.push_back(I); 3634 break; 3635 } 3636 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 3637 unsigned OpNum = 0; 3638 Value *Op; 3639 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3640 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 3641 return Error("Invalid record"); 3642 3643 Type *Ty = nullptr; 3644 if (OpNum + 3 == Record.size()) 3645 Ty = getTypeByID(Record[OpNum++]); 3646 3647 unsigned Align; 3648 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 3649 return EC; 3650 I = new LoadInst(Op, "", Record[OpNum+1], Align); 3651 3652 if (Ty && Ty != I->getType()) 3653 return Error("Explicit load type does not match pointee type of " 3654 "pointer operand"); 3655 3656 InstructionList.push_back(I); 3657 break; 3658 } 3659 case bitc::FUNC_CODE_INST_LOADATOMIC: { 3660 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 3661 unsigned OpNum = 0; 3662 Value *Op; 3663 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3664 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 3665 return Error("Invalid record"); 3666 3667 Type *Ty = nullptr; 3668 if (OpNum + 5 == Record.size()) 3669 Ty = getTypeByID(Record[OpNum++]); 3670 3671 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3672 if (Ordering == NotAtomic || Ordering == Release || 3673 Ordering == AcquireRelease) 3674 return Error("Invalid record"); 3675 if (Ordering != NotAtomic && Record[OpNum] == 0) 3676 return Error("Invalid record"); 3677 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3678 3679 unsigned Align; 3680 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 3681 return EC; 3682 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 3683 3684 (void)Ty; 3685 assert((!Ty || Ty == I->getType()) && 3686 "Explicit type doesn't match pointee type of the first operand"); 3687 3688 InstructionList.push_back(I); 3689 break; 3690 } 3691 case bitc::FUNC_CODE_INST_STORE: { // STORE2:[ptrty, ptr, val, align, vol] 3692 unsigned OpNum = 0; 3693 Value *Val, *Ptr; 3694 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3695 popValue(Record, OpNum, NextValueNo, 3696 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3697 OpNum+2 != Record.size()) 3698 return Error("Invalid record"); 3699 unsigned Align; 3700 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 3701 return EC; 3702 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 3703 InstructionList.push_back(I); 3704 break; 3705 } 3706 case bitc::FUNC_CODE_INST_STOREATOMIC: { 3707 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 3708 unsigned OpNum = 0; 3709 Value *Val, *Ptr; 3710 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3711 popValue(Record, OpNum, NextValueNo, 3712 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3713 OpNum+4 != Record.size()) 3714 return Error("Invalid record"); 3715 3716 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3717 if (Ordering == NotAtomic || Ordering == Acquire || 3718 Ordering == AcquireRelease) 3719 return Error("Invalid record"); 3720 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3721 if (Ordering != NotAtomic && Record[OpNum] == 0) 3722 return Error("Invalid record"); 3723 3724 unsigned Align; 3725 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 3726 return EC; 3727 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 3728 InstructionList.push_back(I); 3729 break; 3730 } 3731 case bitc::FUNC_CODE_INST_CMPXCHG: { 3732 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 3733 // failureordering?, isweak?] 3734 unsigned OpNum = 0; 3735 Value *Ptr, *Cmp, *New; 3736 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3737 popValue(Record, OpNum, NextValueNo, 3738 cast<PointerType>(Ptr->getType())->getElementType(), Cmp) || 3739 popValue(Record, OpNum, NextValueNo, 3740 cast<PointerType>(Ptr->getType())->getElementType(), New) || 3741 (Record.size() < OpNum + 3 || Record.size() > OpNum + 5)) 3742 return Error("Invalid record"); 3743 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 3744 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 3745 return Error("Invalid record"); 3746 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 3747 3748 AtomicOrdering FailureOrdering; 3749 if (Record.size() < 7) 3750 FailureOrdering = 3751 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 3752 else 3753 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 3754 3755 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 3756 SynchScope); 3757 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 3758 3759 if (Record.size() < 8) { 3760 // Before weak cmpxchgs existed, the instruction simply returned the 3761 // value loaded from memory, so bitcode files from that era will be 3762 // expecting the first component of a modern cmpxchg. 3763 CurBB->getInstList().push_back(I); 3764 I = ExtractValueInst::Create(I, 0); 3765 } else { 3766 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 3767 } 3768 3769 InstructionList.push_back(I); 3770 break; 3771 } 3772 case bitc::FUNC_CODE_INST_ATOMICRMW: { 3773 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 3774 unsigned OpNum = 0; 3775 Value *Ptr, *Val; 3776 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 3777 popValue(Record, OpNum, NextValueNo, 3778 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 3779 OpNum+4 != Record.size()) 3780 return Error("Invalid record"); 3781 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 3782 if (Operation < AtomicRMWInst::FIRST_BINOP || 3783 Operation > AtomicRMWInst::LAST_BINOP) 3784 return Error("Invalid record"); 3785 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 3786 if (Ordering == NotAtomic || Ordering == Unordered) 3787 return Error("Invalid record"); 3788 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 3789 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 3790 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 3791 InstructionList.push_back(I); 3792 break; 3793 } 3794 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 3795 if (2 != Record.size()) 3796 return Error("Invalid record"); 3797 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 3798 if (Ordering == NotAtomic || Ordering == Unordered || 3799 Ordering == Monotonic) 3800 return Error("Invalid record"); 3801 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 3802 I = new FenceInst(Context, Ordering, SynchScope); 3803 InstructionList.push_back(I); 3804 break; 3805 } 3806 case bitc::FUNC_CODE_INST_CALL: { 3807 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 3808 if (Record.size() < 3) 3809 return Error("Invalid record"); 3810 3811 AttributeSet PAL = getAttributes(Record[0]); 3812 unsigned CCInfo = Record[1]; 3813 3814 unsigned OpNum = 2; 3815 Value *Callee; 3816 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3817 return Error("Invalid record"); 3818 3819 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 3820 FunctionType *FTy = nullptr; 3821 if (OpTy) FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 3822 if (!FTy || Record.size() < FTy->getNumParams()+OpNum) 3823 return Error("Invalid record"); 3824 3825 SmallVector<Value*, 16> Args; 3826 // Read the fixed params. 3827 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3828 if (FTy->getParamType(i)->isLabelTy()) 3829 Args.push_back(getBasicBlock(Record[OpNum])); 3830 else 3831 Args.push_back(getValue(Record, OpNum, NextValueNo, 3832 FTy->getParamType(i))); 3833 if (!Args.back()) 3834 return Error("Invalid record"); 3835 } 3836 3837 // Read type/value pairs for varargs params. 3838 if (!FTy->isVarArg()) { 3839 if (OpNum != Record.size()) 3840 return Error("Invalid record"); 3841 } else { 3842 while (OpNum != Record.size()) { 3843 Value *Op; 3844 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3845 return Error("Invalid record"); 3846 Args.push_back(Op); 3847 } 3848 } 3849 3850 I = CallInst::Create(Callee, Args); 3851 InstructionList.push_back(I); 3852 cast<CallInst>(I)->setCallingConv( 3853 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 3854 CallInst::TailCallKind TCK = CallInst::TCK_None; 3855 if (CCInfo & 1) 3856 TCK = CallInst::TCK_Tail; 3857 if (CCInfo & (1 << 14)) 3858 TCK = CallInst::TCK_MustTail; 3859 cast<CallInst>(I)->setTailCallKind(TCK); 3860 cast<CallInst>(I)->setAttributes(PAL); 3861 break; 3862 } 3863 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 3864 if (Record.size() < 3) 3865 return Error("Invalid record"); 3866 Type *OpTy = getTypeByID(Record[0]); 3867 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 3868 Type *ResTy = getTypeByID(Record[2]); 3869 if (!OpTy || !Op || !ResTy) 3870 return Error("Invalid record"); 3871 I = new VAArgInst(Op, ResTy); 3872 InstructionList.push_back(I); 3873 break; 3874 } 3875 } 3876 3877 // Add instruction to end of current BB. If there is no current BB, reject 3878 // this file. 3879 if (!CurBB) { 3880 delete I; 3881 return Error("Invalid instruction with no BB"); 3882 } 3883 CurBB->getInstList().push_back(I); 3884 3885 // If this was a terminator instruction, move to the next block. 3886 if (isa<TerminatorInst>(I)) { 3887 ++CurBBNo; 3888 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 3889 } 3890 3891 // Non-void values get registered in the value table for future use. 3892 if (I && !I->getType()->isVoidTy()) 3893 ValueList.AssignValue(I, NextValueNo++); 3894 } 3895 3896 OutOfRecordLoop: 3897 3898 // Check the function list for unresolved values. 3899 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 3900 if (!A->getParent()) { 3901 // We found at least one unresolved value. Nuke them all to avoid leaks. 3902 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 3903 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 3904 A->replaceAllUsesWith(UndefValue::get(A->getType())); 3905 delete A; 3906 } 3907 } 3908 return Error("Never resolved value found in function"); 3909 } 3910 } 3911 3912 // FIXME: Check for unresolved forward-declared metadata references 3913 // and clean up leaks. 3914 3915 // Trim the value list down to the size it was before we parsed this function. 3916 ValueList.shrinkTo(ModuleValueListSize); 3917 MDValueList.shrinkTo(ModuleMDValueListSize); 3918 std::vector<BasicBlock*>().swap(FunctionBBs); 3919 return std::error_code(); 3920 } 3921 3922 /// Find the function body in the bitcode stream 3923 std::error_code BitcodeReader::FindFunctionInStream( 3924 Function *F, 3925 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 3926 while (DeferredFunctionInfoIterator->second == 0) { 3927 if (Stream.AtEndOfStream()) 3928 return Error("Could not find function in stream"); 3929 // ParseModule will parse the next body in the stream and set its 3930 // position in the DeferredFunctionInfo map. 3931 if (std::error_code EC = ParseModule(true)) 3932 return EC; 3933 } 3934 return std::error_code(); 3935 } 3936 3937 //===----------------------------------------------------------------------===// 3938 // GVMaterializer implementation 3939 //===----------------------------------------------------------------------===// 3940 3941 void BitcodeReader::releaseBuffer() { Buffer.release(); } 3942 3943 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 3944 if (std::error_code EC = materializeMetadata()) 3945 return EC; 3946 3947 Function *F = dyn_cast<Function>(GV); 3948 // If it's not a function or is already material, ignore the request. 3949 if (!F || !F->isMaterializable()) 3950 return std::error_code(); 3951 3952 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 3953 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 3954 // If its position is recorded as 0, its body is somewhere in the stream 3955 // but we haven't seen it yet. 3956 if (DFII->second == 0 && LazyStreamer) 3957 if (std::error_code EC = FindFunctionInStream(F, DFII)) 3958 return EC; 3959 3960 // Move the bit stream to the saved position of the deferred function body. 3961 Stream.JumpToBit(DFII->second); 3962 3963 if (std::error_code EC = ParseFunctionBody(F)) 3964 return EC; 3965 F->setIsMaterializable(false); 3966 3967 // Upgrade any old intrinsic calls in the function. 3968 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 3969 E = UpgradedIntrinsics.end(); I != E; ++I) { 3970 if (I->first != I->second) { 3971 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 3972 UI != UE;) { 3973 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 3974 UpgradeIntrinsicCall(CI, I->second); 3975 } 3976 } 3977 } 3978 3979 // Bring in any functions that this function forward-referenced via 3980 // blockaddresses. 3981 return materializeForwardReferencedFunctions(); 3982 } 3983 3984 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 3985 const Function *F = dyn_cast<Function>(GV); 3986 if (!F || F->isDeclaration()) 3987 return false; 3988 3989 // Dematerializing F would leave dangling references that wouldn't be 3990 // reconnected on re-materialization. 3991 if (BlockAddressesTaken.count(F)) 3992 return false; 3993 3994 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 3995 } 3996 3997 void BitcodeReader::Dematerialize(GlobalValue *GV) { 3998 Function *F = dyn_cast<Function>(GV); 3999 // If this function isn't dematerializable, this is a noop. 4000 if (!F || !isDematerializable(F)) 4001 return; 4002 4003 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4004 4005 // Just forget the function body, we can remat it later. 4006 F->dropAllReferences(); 4007 F->setIsMaterializable(true); 4008 } 4009 4010 std::error_code BitcodeReader::MaterializeModule(Module *M) { 4011 assert(M == TheModule && 4012 "Can only Materialize the Module this BitcodeReader is attached to."); 4013 4014 if (std::error_code EC = materializeMetadata()) 4015 return EC; 4016 4017 // Promise to materialize all forward references. 4018 WillMaterializeAllForwardRefs = true; 4019 4020 // Iterate over the module, deserializing any functions that are still on 4021 // disk. 4022 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4023 F != E; ++F) { 4024 if (std::error_code EC = materialize(F)) 4025 return EC; 4026 } 4027 // At this point, if there are any function bodies, the current bit is 4028 // pointing to the END_BLOCK record after them. Now make sure the rest 4029 // of the bits in the module have been read. 4030 if (NextUnreadBit) 4031 ParseModule(true); 4032 4033 // Check that all block address forward references got resolved (as we 4034 // promised above). 4035 if (!BasicBlockFwdRefs.empty()) 4036 return Error("Never resolved function from blockaddress"); 4037 4038 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4039 // delete the old functions to clean up. We can't do this unless the entire 4040 // module is materialized because there could always be another function body 4041 // with calls to the old function. 4042 for (std::vector<std::pair<Function*, Function*> >::iterator I = 4043 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 4044 if (I->first != I->second) { 4045 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4046 UI != UE;) { 4047 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4048 UpgradeIntrinsicCall(CI, I->second); 4049 } 4050 if (!I->first->use_empty()) 4051 I->first->replaceAllUsesWith(I->second); 4052 I->first->eraseFromParent(); 4053 } 4054 } 4055 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 4056 4057 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4058 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4059 4060 UpgradeDebugInfo(*M); 4061 return std::error_code(); 4062 } 4063 4064 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4065 return IdentifiedStructTypes; 4066 } 4067 4068 std::error_code BitcodeReader::InitStream() { 4069 if (LazyStreamer) 4070 return InitLazyStream(); 4071 return InitStreamFromBuffer(); 4072 } 4073 4074 std::error_code BitcodeReader::InitStreamFromBuffer() { 4075 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4076 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4077 4078 if (Buffer->getBufferSize() & 3) 4079 return Error("Invalid bitcode signature"); 4080 4081 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4082 // The magic number is 0x0B17C0DE stored in little endian. 4083 if (isBitcodeWrapper(BufPtr, BufEnd)) 4084 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4085 return Error("Invalid bitcode wrapper header"); 4086 4087 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4088 Stream.init(&*StreamFile); 4089 4090 return std::error_code(); 4091 } 4092 4093 std::error_code BitcodeReader::InitLazyStream() { 4094 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4095 // see it. 4096 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 4097 StreamingMemoryObject &Bytes = *OwnedBytes; 4098 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4099 Stream.init(&*StreamFile); 4100 4101 unsigned char buf[16]; 4102 if (Bytes.readBytes(buf, 16, 0) != 16) 4103 return Error("Invalid bitcode signature"); 4104 4105 if (!isBitcode(buf, buf + 16)) 4106 return Error("Invalid bitcode signature"); 4107 4108 if (isBitcodeWrapper(buf, buf + 4)) { 4109 const unsigned char *bitcodeStart = buf; 4110 const unsigned char *bitcodeEnd = buf + 16; 4111 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4112 Bytes.dropLeadingBytes(bitcodeStart - buf); 4113 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4114 } 4115 return std::error_code(); 4116 } 4117 4118 namespace { 4119 class BitcodeErrorCategoryType : public std::error_category { 4120 const char *name() const LLVM_NOEXCEPT override { 4121 return "llvm.bitcode"; 4122 } 4123 std::string message(int IE) const override { 4124 BitcodeError E = static_cast<BitcodeError>(IE); 4125 switch (E) { 4126 case BitcodeError::InvalidBitcodeSignature: 4127 return "Invalid bitcode signature"; 4128 case BitcodeError::CorruptedBitcode: 4129 return "Corrupted bitcode"; 4130 } 4131 llvm_unreachable("Unknown error type!"); 4132 } 4133 }; 4134 } 4135 4136 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4137 4138 const std::error_category &llvm::BitcodeErrorCategory() { 4139 return *ErrorCategory; 4140 } 4141 4142 //===----------------------------------------------------------------------===// 4143 // External interface 4144 //===----------------------------------------------------------------------===// 4145 4146 /// \brief Get a lazy one-at-time loading module from bitcode. 4147 /// 4148 /// This isn't always used in a lazy context. In particular, it's also used by 4149 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4150 /// in forward-referenced functions from block address references. 4151 /// 4152 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 4153 /// materialize everything -- in particular, if this isn't truly lazy. 4154 static ErrorOr<Module *> 4155 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4156 LLVMContext &Context, bool WillMaterializeAll, 4157 DiagnosticHandlerFunction DiagnosticHandler, 4158 bool ShouldLazyLoadMetadata = false) { 4159 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 4160 BitcodeReader *R = 4161 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4162 M->setMaterializer(R); 4163 4164 auto cleanupOnError = [&](std::error_code EC) { 4165 R->releaseBuffer(); // Never take ownership on error. 4166 delete M; // Also deletes R. 4167 return EC; 4168 }; 4169 4170 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4171 if (std::error_code EC = R->ParseBitcodeInto(M, ShouldLazyLoadMetadata)) 4172 return cleanupOnError(EC); 4173 4174 if (!WillMaterializeAll) 4175 // Resolve forward references from blockaddresses. 4176 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4177 return cleanupOnError(EC); 4178 4179 Buffer.release(); // The BitcodeReader owns it now. 4180 return M; 4181 } 4182 4183 ErrorOr<Module *> 4184 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 4185 LLVMContext &Context, 4186 DiagnosticHandlerFunction DiagnosticHandler, 4187 bool ShouldLazyLoadMetadata) { 4188 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4189 DiagnosticHandler, ShouldLazyLoadMetadata); 4190 } 4191 4192 ErrorOr<std::unique_ptr<Module>> 4193 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 4194 LLVMContext &Context, 4195 DiagnosticHandlerFunction DiagnosticHandler) { 4196 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4197 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4198 M->setMaterializer(R); 4199 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 4200 return EC; 4201 return std::move(M); 4202 } 4203 4204 ErrorOr<Module *> 4205 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4206 DiagnosticHandlerFunction DiagnosticHandler) { 4207 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4208 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4209 std::move(Buf), Context, true, DiagnosticHandler); 4210 if (!ModuleOrErr) 4211 return ModuleOrErr; 4212 Module *M = ModuleOrErr.get(); 4213 // Read in the entire module, and destroy the BitcodeReader. 4214 if (std::error_code EC = M->materializeAllPermanently()) { 4215 delete M; 4216 return EC; 4217 } 4218 4219 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4220 // written. We must defer until the Module has been fully materialized. 4221 4222 return M; 4223 } 4224 4225 std::string 4226 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4227 DiagnosticHandlerFunction DiagnosticHandler) { 4228 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4229 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4230 DiagnosticHandler); 4231 ErrorOr<std::string> Triple = R->parseTriple(); 4232 if (Triple.getError()) 4233 return ""; 4234 return Triple.get(); 4235 } 4236