1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallingConv.h" 31 #include "llvm/IR/Comdat.h" 32 #include "llvm/IR/Constant.h" 33 #include "llvm/IR/Constants.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/DebugInfo.h" 36 #include "llvm/IR/DebugInfoMetadata.h" 37 #include "llvm/IR/DebugLoc.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/Function.h" 40 #include "llvm/IR/GVMaterializer.h" 41 #include "llvm/IR/GlobalAlias.h" 42 #include "llvm/IR/GlobalIFunc.h" 43 #include "llvm/IR/GlobalIndirectSymbol.h" 44 #include "llvm/IR/GlobalObject.h" 45 #include "llvm/IR/GlobalValue.h" 46 #include "llvm/IR/GlobalVariable.h" 47 #include "llvm/IR/InlineAsm.h" 48 #include "llvm/IR/InstIterator.h" 49 #include "llvm/IR/InstrTypes.h" 50 #include "llvm/IR/Instruction.h" 51 #include "llvm/IR/Instructions.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/ModuleSummaryIndex.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Value.h" 60 #include "llvm/IR/Verifier.h" 61 #include "llvm/Support/AtomicOrdering.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/Debug.h" 66 #include "llvm/Support/Error.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ErrorOr.h" 69 #include "llvm/Support/ManagedStatic.h" 70 #include "llvm/Support/MathExtras.h" 71 #include "llvm/Support/MemoryBuffer.h" 72 #include "llvm/Support/raw_ostream.h" 73 #include <algorithm> 74 #include <cassert> 75 #include <cstddef> 76 #include <cstdint> 77 #include <deque> 78 #include <map> 79 #include <memory> 80 #include <set> 81 #include <string> 82 #include <system_error> 83 #include <tuple> 84 #include <utility> 85 #include <vector> 86 87 using namespace llvm; 88 89 static cl::opt<bool> PrintSummaryGUIDs( 90 "print-summary-global-ids", cl::init(false), cl::Hidden, 91 cl::desc( 92 "Print the global id for each value when reading the module summary")); 93 94 namespace { 95 96 enum { 97 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 98 }; 99 100 } // end anonymous namespace 101 102 static Error error(const Twine &Message) { 103 return make_error<StringError>( 104 Message, make_error_code(BitcodeError::CorruptedBitcode)); 105 } 106 107 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 108 if (!Stream.canSkipToPos(4)) 109 return createStringError(std::errc::illegal_byte_sequence, 110 "file too small to contain bitcode header"); 111 for (unsigned C : {'B', 'C'}) 112 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 113 if (Res.get() != C) 114 return createStringError(std::errc::illegal_byte_sequence, 115 "file doesn't start with bitcode header"); 116 } else 117 return Res.takeError(); 118 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 119 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 120 if (Res.get() != C) 121 return createStringError(std::errc::illegal_byte_sequence, 122 "file doesn't start with bitcode header"); 123 } else 124 return Res.takeError(); 125 return Error::success(); 126 } 127 128 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 129 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 130 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 131 132 if (Buffer.getBufferSize() & 3) 133 return error("Invalid bitcode signature"); 134 135 // If we have a wrapper header, parse it and ignore the non-bc file contents. 136 // The magic number is 0x0B17C0DE stored in little endian. 137 if (isBitcodeWrapper(BufPtr, BufEnd)) 138 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 139 return error("Invalid bitcode wrapper header"); 140 141 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 142 if (Error Err = hasInvalidBitcodeHeader(Stream)) 143 return std::move(Err); 144 145 return std::move(Stream); 146 } 147 148 /// Convert a string from a record into an std::string, return true on failure. 149 template <typename StrTy> 150 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 151 StrTy &Result) { 152 if (Idx > Record.size()) 153 return true; 154 155 Result.append(Record.begin() + Idx, Record.end()); 156 return false; 157 } 158 159 // Strip all the TBAA attachment for the module. 160 static void stripTBAA(Module *M) { 161 for (auto &F : *M) { 162 if (F.isMaterializable()) 163 continue; 164 for (auto &I : instructions(F)) 165 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 166 } 167 } 168 169 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 170 /// "epoch" encoded in the bitcode, and return the producer name if any. 171 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 172 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 173 return std::move(Err); 174 175 // Read all the records. 176 SmallVector<uint64_t, 64> Record; 177 178 std::string ProducerIdentification; 179 180 while (true) { 181 BitstreamEntry Entry; 182 if (Expected<BitstreamEntry> Res = Stream.advance()) 183 Entry = Res.get(); 184 else 185 return Res.takeError(); 186 187 switch (Entry.Kind) { 188 default: 189 case BitstreamEntry::Error: 190 return error("Malformed block"); 191 case BitstreamEntry::EndBlock: 192 return ProducerIdentification; 193 case BitstreamEntry::Record: 194 // The interesting case. 195 break; 196 } 197 198 // Read a record. 199 Record.clear(); 200 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 201 if (!MaybeBitCode) 202 return MaybeBitCode.takeError(); 203 switch (MaybeBitCode.get()) { 204 default: // Default behavior: reject 205 return error("Invalid value"); 206 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 207 convertToString(Record, 0, ProducerIdentification); 208 break; 209 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 210 unsigned epoch = (unsigned)Record[0]; 211 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 212 return error( 213 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 214 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 215 } 216 } 217 } 218 } 219 } 220 221 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 222 // We expect a number of well-defined blocks, though we don't necessarily 223 // need to understand them all. 224 while (true) { 225 if (Stream.AtEndOfStream()) 226 return ""; 227 228 BitstreamEntry Entry; 229 if (Expected<BitstreamEntry> Res = Stream.advance()) 230 Entry = std::move(Res.get()); 231 else 232 return Res.takeError(); 233 234 switch (Entry.Kind) { 235 case BitstreamEntry::EndBlock: 236 case BitstreamEntry::Error: 237 return error("Malformed block"); 238 239 case BitstreamEntry::SubBlock: 240 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 241 return readIdentificationBlock(Stream); 242 243 // Ignore other sub-blocks. 244 if (Error Err = Stream.SkipBlock()) 245 return std::move(Err); 246 continue; 247 case BitstreamEntry::Record: 248 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 249 continue; 250 else 251 return Skipped.takeError(); 252 } 253 } 254 } 255 256 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 257 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 258 return std::move(Err); 259 260 SmallVector<uint64_t, 64> Record; 261 // Read all the records for this module. 262 263 while (true) { 264 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 265 if (!MaybeEntry) 266 return MaybeEntry.takeError(); 267 BitstreamEntry Entry = MaybeEntry.get(); 268 269 switch (Entry.Kind) { 270 case BitstreamEntry::SubBlock: // Handled for us already. 271 case BitstreamEntry::Error: 272 return error("Malformed block"); 273 case BitstreamEntry::EndBlock: 274 return false; 275 case BitstreamEntry::Record: 276 // The interesting case. 277 break; 278 } 279 280 // Read a record. 281 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 282 if (!MaybeRecord) 283 return MaybeRecord.takeError(); 284 switch (MaybeRecord.get()) { 285 default: 286 break; // Default behavior, ignore unknown content. 287 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 288 std::string S; 289 if (convertToString(Record, 0, S)) 290 return error("Invalid record"); 291 // Check for the i386 and other (x86_64, ARM) conventions 292 if (S.find("__DATA,__objc_catlist") != std::string::npos || 293 S.find("__OBJC,__category") != std::string::npos) 294 return true; 295 break; 296 } 297 } 298 Record.clear(); 299 } 300 llvm_unreachable("Exit infinite loop"); 301 } 302 303 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 304 // We expect a number of well-defined blocks, though we don't necessarily 305 // need to understand them all. 306 while (true) { 307 BitstreamEntry Entry; 308 if (Expected<BitstreamEntry> Res = Stream.advance()) 309 Entry = std::move(Res.get()); 310 else 311 return Res.takeError(); 312 313 switch (Entry.Kind) { 314 case BitstreamEntry::Error: 315 return error("Malformed block"); 316 case BitstreamEntry::EndBlock: 317 return false; 318 319 case BitstreamEntry::SubBlock: 320 if (Entry.ID == bitc::MODULE_BLOCK_ID) 321 return hasObjCCategoryInModule(Stream); 322 323 // Ignore other sub-blocks. 324 if (Error Err = Stream.SkipBlock()) 325 return std::move(Err); 326 continue; 327 328 case BitstreamEntry::Record: 329 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 330 continue; 331 else 332 return Skipped.takeError(); 333 } 334 } 335 } 336 337 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 338 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 339 return std::move(Err); 340 341 SmallVector<uint64_t, 64> Record; 342 343 std::string Triple; 344 345 // Read all the records for this module. 346 while (true) { 347 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 348 if (!MaybeEntry) 349 return MaybeEntry.takeError(); 350 BitstreamEntry Entry = MaybeEntry.get(); 351 352 switch (Entry.Kind) { 353 case BitstreamEntry::SubBlock: // Handled for us already. 354 case BitstreamEntry::Error: 355 return error("Malformed block"); 356 case BitstreamEntry::EndBlock: 357 return Triple; 358 case BitstreamEntry::Record: 359 // The interesting case. 360 break; 361 } 362 363 // Read a record. 364 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 365 if (!MaybeRecord) 366 return MaybeRecord.takeError(); 367 switch (MaybeRecord.get()) { 368 default: break; // Default behavior, ignore unknown content. 369 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 370 std::string S; 371 if (convertToString(Record, 0, S)) 372 return error("Invalid record"); 373 Triple = S; 374 break; 375 } 376 } 377 Record.clear(); 378 } 379 llvm_unreachable("Exit infinite loop"); 380 } 381 382 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 383 // We expect a number of well-defined blocks, though we don't necessarily 384 // need to understand them all. 385 while (true) { 386 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 387 if (!MaybeEntry) 388 return MaybeEntry.takeError(); 389 BitstreamEntry Entry = MaybeEntry.get(); 390 391 switch (Entry.Kind) { 392 case BitstreamEntry::Error: 393 return error("Malformed block"); 394 case BitstreamEntry::EndBlock: 395 return ""; 396 397 case BitstreamEntry::SubBlock: 398 if (Entry.ID == bitc::MODULE_BLOCK_ID) 399 return readModuleTriple(Stream); 400 401 // Ignore other sub-blocks. 402 if (Error Err = Stream.SkipBlock()) 403 return std::move(Err); 404 continue; 405 406 case BitstreamEntry::Record: 407 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 408 continue; 409 else 410 return Skipped.takeError(); 411 } 412 } 413 } 414 415 namespace { 416 417 class BitcodeReaderBase { 418 protected: 419 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 420 : Stream(std::move(Stream)), Strtab(Strtab) { 421 this->Stream.setBlockInfo(&BlockInfo); 422 } 423 424 BitstreamBlockInfo BlockInfo; 425 BitstreamCursor Stream; 426 StringRef Strtab; 427 428 /// In version 2 of the bitcode we store names of global values and comdats in 429 /// a string table rather than in the VST. 430 bool UseStrtab = false; 431 432 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 433 434 /// If this module uses a string table, pop the reference to the string table 435 /// and return the referenced string and the rest of the record. Otherwise 436 /// just return the record itself. 437 std::pair<StringRef, ArrayRef<uint64_t>> 438 readNameFromStrtab(ArrayRef<uint64_t> Record); 439 440 bool readBlockInfo(); 441 442 // Contains an arbitrary and optional string identifying the bitcode producer 443 std::string ProducerIdentification; 444 445 Error error(const Twine &Message); 446 }; 447 448 } // end anonymous namespace 449 450 Error BitcodeReaderBase::error(const Twine &Message) { 451 std::string FullMsg = Message.str(); 452 if (!ProducerIdentification.empty()) 453 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 454 LLVM_VERSION_STRING "')"; 455 return ::error(FullMsg); 456 } 457 458 Expected<unsigned> 459 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 460 if (Record.empty()) 461 return error("Invalid record"); 462 unsigned ModuleVersion = Record[0]; 463 if (ModuleVersion > 2) 464 return error("Invalid value"); 465 UseStrtab = ModuleVersion >= 2; 466 return ModuleVersion; 467 } 468 469 std::pair<StringRef, ArrayRef<uint64_t>> 470 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 471 if (!UseStrtab) 472 return {"", Record}; 473 // Invalid reference. Let the caller complain about the record being empty. 474 if (Record[0] + Record[1] > Strtab.size()) 475 return {"", {}}; 476 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 477 } 478 479 namespace { 480 481 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 482 LLVMContext &Context; 483 Module *TheModule = nullptr; 484 // Next offset to start scanning for lazy parsing of function bodies. 485 uint64_t NextUnreadBit = 0; 486 // Last function offset found in the VST. 487 uint64_t LastFunctionBlockBit = 0; 488 bool SeenValueSymbolTable = false; 489 uint64_t VSTOffset = 0; 490 491 std::vector<std::string> SectionTable; 492 std::vector<std::string> GCTable; 493 494 std::vector<Type*> TypeList; 495 DenseMap<Function *, FunctionType *> FunctionTypes; 496 BitcodeReaderValueList ValueList; 497 Optional<MetadataLoader> MDLoader; 498 std::vector<Comdat *> ComdatList; 499 SmallVector<Instruction *, 64> InstructionList; 500 501 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 502 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 503 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 504 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 505 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 506 507 /// The set of attributes by index. Index zero in the file is for null, and 508 /// is thus not represented here. As such all indices are off by one. 509 std::vector<AttributeList> MAttributes; 510 511 /// The set of attribute groups. 512 std::map<unsigned, AttributeList> MAttributeGroups; 513 514 /// While parsing a function body, this is a list of the basic blocks for the 515 /// function. 516 std::vector<BasicBlock*> FunctionBBs; 517 518 // When reading the module header, this list is populated with functions that 519 // have bodies later in the file. 520 std::vector<Function*> FunctionsWithBodies; 521 522 // When intrinsic functions are encountered which require upgrading they are 523 // stored here with their replacement function. 524 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 525 UpdatedIntrinsicMap UpgradedIntrinsics; 526 // Intrinsics which were remangled because of types rename 527 UpdatedIntrinsicMap RemangledIntrinsics; 528 529 // Several operations happen after the module header has been read, but 530 // before function bodies are processed. This keeps track of whether 531 // we've done this yet. 532 bool SeenFirstFunctionBody = false; 533 534 /// When function bodies are initially scanned, this map contains info about 535 /// where to find deferred function body in the stream. 536 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 537 538 /// When Metadata block is initially scanned when parsing the module, we may 539 /// choose to defer parsing of the metadata. This vector contains info about 540 /// which Metadata blocks are deferred. 541 std::vector<uint64_t> DeferredMetadataInfo; 542 543 /// These are basic blocks forward-referenced by block addresses. They are 544 /// inserted lazily into functions when they're loaded. The basic block ID is 545 /// its index into the vector. 546 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 547 std::deque<Function *> BasicBlockFwdRefQueue; 548 549 /// Indicates that we are using a new encoding for instruction operands where 550 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 551 /// instruction number, for a more compact encoding. Some instruction 552 /// operands are not relative to the instruction ID: basic block numbers, and 553 /// types. Once the old style function blocks have been phased out, we would 554 /// not need this flag. 555 bool UseRelativeIDs = false; 556 557 /// True if all functions will be materialized, negating the need to process 558 /// (e.g.) blockaddress forward references. 559 bool WillMaterializeAllForwardRefs = false; 560 561 bool StripDebugInfo = false; 562 TBAAVerifier TBAAVerifyHelper; 563 564 std::vector<std::string> BundleTags; 565 SmallVector<SyncScope::ID, 8> SSIDs; 566 567 public: 568 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 569 StringRef ProducerIdentification, LLVMContext &Context); 570 571 Error materializeForwardReferencedFunctions(); 572 573 Error materialize(GlobalValue *GV) override; 574 Error materializeModule() override; 575 std::vector<StructType *> getIdentifiedStructTypes() const override; 576 577 /// Main interface to parsing a bitcode buffer. 578 /// \returns true if an error occurred. 579 Error parseBitcodeInto( 580 Module *M, bool ShouldLazyLoadMetadata = false, bool IsImporting = false, 581 DataLayoutCallbackTy DataLayoutCallback = [](std::string) { 582 return None; 583 }); 584 585 static uint64_t decodeSignRotatedValue(uint64_t V); 586 587 /// Materialize any deferred Metadata block. 588 Error materializeMetadata() override; 589 590 void setStripDebugInfo() override; 591 592 private: 593 std::vector<StructType *> IdentifiedStructTypes; 594 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 595 StructType *createIdentifiedStructType(LLVMContext &Context); 596 597 /// Map all pointer types within \param Ty to the opaque pointer 598 /// type in the same address space if opaque pointers are being 599 /// used, otherwise nop. This converts a bitcode-reader internal 600 /// type into one suitable for use in a Value. 601 Type *flattenPointerTypes(Type *Ty) { 602 return Ty; 603 } 604 605 /// Given a fully structured pointer type (i.e. not opaque), return 606 /// the flattened form of its element, suitable for use in a Value. 607 Type *getPointerElementFlatType(Type *Ty) { 608 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 609 } 610 611 /// Given a fully structured pointer type, get its element type in 612 /// both fully structured form, and flattened form suitable for use 613 /// in a Value. 614 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 615 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 616 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 617 } 618 619 /// Return the flattened type (suitable for use in a Value) 620 /// specified by the given \param ID . 621 Type *getTypeByID(unsigned ID) { 622 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 623 } 624 625 /// Return the fully structured (bitcode-reader internal) type 626 /// corresponding to the given \param ID . 627 Type *getFullyStructuredTypeByID(unsigned ID); 628 629 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 630 if (Ty && Ty->isMetadataTy()) 631 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 632 return ValueList.getValueFwdRef(ID, Ty, FullTy); 633 } 634 635 Metadata *getFnMetadataByID(unsigned ID) { 636 return MDLoader->getMetadataFwdRefOrLoad(ID); 637 } 638 639 BasicBlock *getBasicBlock(unsigned ID) const { 640 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 641 return FunctionBBs[ID]; 642 } 643 644 AttributeList getAttributes(unsigned i) const { 645 if (i-1 < MAttributes.size()) 646 return MAttributes[i-1]; 647 return AttributeList(); 648 } 649 650 /// Read a value/type pair out of the specified record from slot 'Slot'. 651 /// Increment Slot past the number of slots used in the record. Return true on 652 /// failure. 653 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 654 unsigned InstNum, Value *&ResVal, 655 Type **FullTy = nullptr) { 656 if (Slot == Record.size()) return true; 657 unsigned ValNo = (unsigned)Record[Slot++]; 658 // Adjust the ValNo, if it was encoded relative to the InstNum. 659 if (UseRelativeIDs) 660 ValNo = InstNum - ValNo; 661 if (ValNo < InstNum) { 662 // If this is not a forward reference, just return the value we already 663 // have. 664 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 665 return ResVal == nullptr; 666 } 667 if (Slot == Record.size()) 668 return true; 669 670 unsigned TypeNo = (unsigned)Record[Slot++]; 671 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 672 if (FullTy) 673 *FullTy = getFullyStructuredTypeByID(TypeNo); 674 return ResVal == nullptr; 675 } 676 677 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 678 /// past the number of slots used by the value in the record. Return true if 679 /// there is an error. 680 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 681 unsigned InstNum, Type *Ty, Value *&ResVal) { 682 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 683 return true; 684 // All values currently take a single record slot. 685 ++Slot; 686 return false; 687 } 688 689 /// Like popValue, but does not increment the Slot number. 690 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 691 unsigned InstNum, Type *Ty, Value *&ResVal) { 692 ResVal = getValue(Record, Slot, InstNum, Ty); 693 return ResVal == nullptr; 694 } 695 696 /// Version of getValue that returns ResVal directly, or 0 if there is an 697 /// error. 698 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 699 unsigned InstNum, Type *Ty) { 700 if (Slot == Record.size()) return nullptr; 701 unsigned ValNo = (unsigned)Record[Slot]; 702 // Adjust the ValNo, if it was encoded relative to the InstNum. 703 if (UseRelativeIDs) 704 ValNo = InstNum - ValNo; 705 return getFnValueByID(ValNo, Ty); 706 } 707 708 /// Like getValue, but decodes signed VBRs. 709 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 710 unsigned InstNum, Type *Ty) { 711 if (Slot == Record.size()) return nullptr; 712 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 713 // Adjust the ValNo, if it was encoded relative to the InstNum. 714 if (UseRelativeIDs) 715 ValNo = InstNum - ValNo; 716 return getFnValueByID(ValNo, Ty); 717 } 718 719 /// Upgrades old-style typeless byval attributes by adding the corresponding 720 /// argument's pointee type. 721 void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 722 723 /// Converts alignment exponent (i.e. power of two (or zero)) to the 724 /// corresponding alignment to use. If alignment is too large, returns 725 /// a corresponding error code. 726 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 727 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 728 Error parseModule( 729 uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false, 730 DataLayoutCallbackTy DataLayoutCallback = [](StringRef) { return None; }); 731 732 Error parseComdatRecord(ArrayRef<uint64_t> Record); 733 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 734 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 735 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 736 ArrayRef<uint64_t> Record); 737 738 Error parseAttributeBlock(); 739 Error parseAttributeGroupBlock(); 740 Error parseTypeTable(); 741 Error parseTypeTableBody(); 742 Error parseOperandBundleTags(); 743 Error parseSyncScopeNames(); 744 745 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 746 unsigned NameIndex, Triple &TT); 747 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 748 ArrayRef<uint64_t> Record); 749 Error parseValueSymbolTable(uint64_t Offset = 0); 750 Error parseGlobalValueSymbolTable(); 751 Error parseConstants(); 752 Error rememberAndSkipFunctionBodies(); 753 Error rememberAndSkipFunctionBody(); 754 /// Save the positions of the Metadata blocks and skip parsing the blocks. 755 Error rememberAndSkipMetadata(); 756 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 757 Error parseFunctionBody(Function *F); 758 Error globalCleanup(); 759 Error resolveGlobalAndIndirectSymbolInits(); 760 Error parseUseLists(); 761 Error findFunctionInStream( 762 Function *F, 763 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 764 765 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 766 }; 767 768 /// Class to manage reading and parsing function summary index bitcode 769 /// files/sections. 770 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 771 /// The module index built during parsing. 772 ModuleSummaryIndex &TheIndex; 773 774 /// Indicates whether we have encountered a global value summary section 775 /// yet during parsing. 776 bool SeenGlobalValSummary = false; 777 778 /// Indicates whether we have already parsed the VST, used for error checking. 779 bool SeenValueSymbolTable = false; 780 781 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 782 /// Used to enable on-demand parsing of the VST. 783 uint64_t VSTOffset = 0; 784 785 // Map to save ValueId to ValueInfo association that was recorded in the 786 // ValueSymbolTable. It is used after the VST is parsed to convert 787 // call graph edges read from the function summary from referencing 788 // callees by their ValueId to using the ValueInfo instead, which is how 789 // they are recorded in the summary index being built. 790 // We save a GUID which refers to the same global as the ValueInfo, but 791 // ignoring the linkage, i.e. for values other than local linkage they are 792 // identical. 793 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 794 ValueIdToValueInfoMap; 795 796 /// Map populated during module path string table parsing, from the 797 /// module ID to a string reference owned by the index's module 798 /// path string table, used to correlate with combined index 799 /// summary records. 800 DenseMap<uint64_t, StringRef> ModuleIdMap; 801 802 /// Original source file name recorded in a bitcode record. 803 std::string SourceFileName; 804 805 /// The string identifier given to this module by the client, normally the 806 /// path to the bitcode file. 807 StringRef ModulePath; 808 809 /// For per-module summary indexes, the unique numerical identifier given to 810 /// this module by the client. 811 unsigned ModuleId; 812 813 public: 814 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 815 ModuleSummaryIndex &TheIndex, 816 StringRef ModulePath, unsigned ModuleId); 817 818 Error parseModule(); 819 820 private: 821 void setValueGUID(uint64_t ValueID, StringRef ValueName, 822 GlobalValue::LinkageTypes Linkage, 823 StringRef SourceFileName); 824 Error parseValueSymbolTable( 825 uint64_t Offset, 826 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 827 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 828 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 829 bool IsOldProfileFormat, 830 bool HasProfile, 831 bool HasRelBF); 832 Error parseEntireSummary(unsigned ID); 833 Error parseModuleStringTable(); 834 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 835 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 836 TypeIdCompatibleVtableInfo &TypeId); 837 838 std::pair<ValueInfo, GlobalValue::GUID> 839 getValueInfoFromValueId(unsigned ValueId); 840 841 void addThisModule(); 842 ModuleSummaryIndex::ModuleInfo *getThisModule(); 843 }; 844 845 } // end anonymous namespace 846 847 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 848 Error Err) { 849 if (Err) { 850 std::error_code EC; 851 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 852 EC = EIB.convertToErrorCode(); 853 Ctx.emitError(EIB.message()); 854 }); 855 return EC; 856 } 857 return std::error_code(); 858 } 859 860 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 861 StringRef ProducerIdentification, 862 LLVMContext &Context) 863 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 864 ValueList(Context, Stream.SizeInBytes()) { 865 this->ProducerIdentification = std::string(ProducerIdentification); 866 } 867 868 Error BitcodeReader::materializeForwardReferencedFunctions() { 869 if (WillMaterializeAllForwardRefs) 870 return Error::success(); 871 872 // Prevent recursion. 873 WillMaterializeAllForwardRefs = true; 874 875 while (!BasicBlockFwdRefQueue.empty()) { 876 Function *F = BasicBlockFwdRefQueue.front(); 877 BasicBlockFwdRefQueue.pop_front(); 878 assert(F && "Expected valid function"); 879 if (!BasicBlockFwdRefs.count(F)) 880 // Already materialized. 881 continue; 882 883 // Check for a function that isn't materializable to prevent an infinite 884 // loop. When parsing a blockaddress stored in a global variable, there 885 // isn't a trivial way to check if a function will have a body without a 886 // linear search through FunctionsWithBodies, so just check it here. 887 if (!F->isMaterializable()) 888 return error("Never resolved function from blockaddress"); 889 890 // Try to materialize F. 891 if (Error Err = materialize(F)) 892 return Err; 893 } 894 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 895 896 // Reset state. 897 WillMaterializeAllForwardRefs = false; 898 return Error::success(); 899 } 900 901 //===----------------------------------------------------------------------===// 902 // Helper functions to implement forward reference resolution, etc. 903 //===----------------------------------------------------------------------===// 904 905 static bool hasImplicitComdat(size_t Val) { 906 switch (Val) { 907 default: 908 return false; 909 case 1: // Old WeakAnyLinkage 910 case 4: // Old LinkOnceAnyLinkage 911 case 10: // Old WeakODRLinkage 912 case 11: // Old LinkOnceODRLinkage 913 return true; 914 } 915 } 916 917 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 918 switch (Val) { 919 default: // Map unknown/new linkages to external 920 case 0: 921 return GlobalValue::ExternalLinkage; 922 case 2: 923 return GlobalValue::AppendingLinkage; 924 case 3: 925 return GlobalValue::InternalLinkage; 926 case 5: 927 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 928 case 6: 929 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 930 case 7: 931 return GlobalValue::ExternalWeakLinkage; 932 case 8: 933 return GlobalValue::CommonLinkage; 934 case 9: 935 return GlobalValue::PrivateLinkage; 936 case 12: 937 return GlobalValue::AvailableExternallyLinkage; 938 case 13: 939 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 940 case 14: 941 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 942 case 15: 943 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 944 case 1: // Old value with implicit comdat. 945 case 16: 946 return GlobalValue::WeakAnyLinkage; 947 case 10: // Old value with implicit comdat. 948 case 17: 949 return GlobalValue::WeakODRLinkage; 950 case 4: // Old value with implicit comdat. 951 case 18: 952 return GlobalValue::LinkOnceAnyLinkage; 953 case 11: // Old value with implicit comdat. 954 case 19: 955 return GlobalValue::LinkOnceODRLinkage; 956 } 957 } 958 959 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 960 FunctionSummary::FFlags Flags; 961 Flags.ReadNone = RawFlags & 0x1; 962 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 963 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 964 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 965 Flags.NoInline = (RawFlags >> 4) & 0x1; 966 Flags.AlwaysInline = (RawFlags >> 5) & 0x1; 967 return Flags; 968 } 969 970 /// Decode the flags for GlobalValue in the summary. 971 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 972 uint64_t Version) { 973 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 974 // like getDecodedLinkage() above. Any future change to the linkage enum and 975 // to getDecodedLinkage() will need to be taken into account here as above. 976 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 977 RawFlags = RawFlags >> 4; 978 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 979 // The Live flag wasn't introduced until version 3. For dead stripping 980 // to work correctly on earlier versions, we must conservatively treat all 981 // values as live. 982 bool Live = (RawFlags & 0x2) || Version < 3; 983 bool Local = (RawFlags & 0x4); 984 bool AutoHide = (RawFlags & 0x8); 985 986 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 987 } 988 989 // Decode the flags for GlobalVariable in the summary 990 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 991 return GlobalVarSummary::GVarFlags( 992 (RawFlags & 0x1) ? true : false, (RawFlags & 0x2) ? true : false, 993 (RawFlags & 0x4) ? true : false, 994 (GlobalObject::VCallVisibility)(RawFlags >> 3)); 995 } 996 997 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 998 switch (Val) { 999 default: // Map unknown visibilities to default. 1000 case 0: return GlobalValue::DefaultVisibility; 1001 case 1: return GlobalValue::HiddenVisibility; 1002 case 2: return GlobalValue::ProtectedVisibility; 1003 } 1004 } 1005 1006 static GlobalValue::DLLStorageClassTypes 1007 getDecodedDLLStorageClass(unsigned Val) { 1008 switch (Val) { 1009 default: // Map unknown values to default. 1010 case 0: return GlobalValue::DefaultStorageClass; 1011 case 1: return GlobalValue::DLLImportStorageClass; 1012 case 2: return GlobalValue::DLLExportStorageClass; 1013 } 1014 } 1015 1016 static bool getDecodedDSOLocal(unsigned Val) { 1017 switch(Val) { 1018 default: // Map unknown values to preemptable. 1019 case 0: return false; 1020 case 1: return true; 1021 } 1022 } 1023 1024 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1025 switch (Val) { 1026 case 0: return GlobalVariable::NotThreadLocal; 1027 default: // Map unknown non-zero value to general dynamic. 1028 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1029 case 2: return GlobalVariable::LocalDynamicTLSModel; 1030 case 3: return GlobalVariable::InitialExecTLSModel; 1031 case 4: return GlobalVariable::LocalExecTLSModel; 1032 } 1033 } 1034 1035 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1036 switch (Val) { 1037 default: // Map unknown to UnnamedAddr::None. 1038 case 0: return GlobalVariable::UnnamedAddr::None; 1039 case 1: return GlobalVariable::UnnamedAddr::Global; 1040 case 2: return GlobalVariable::UnnamedAddr::Local; 1041 } 1042 } 1043 1044 static int getDecodedCastOpcode(unsigned Val) { 1045 switch (Val) { 1046 default: return -1; 1047 case bitc::CAST_TRUNC : return Instruction::Trunc; 1048 case bitc::CAST_ZEXT : return Instruction::ZExt; 1049 case bitc::CAST_SEXT : return Instruction::SExt; 1050 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1051 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1052 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1053 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1054 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1055 case bitc::CAST_FPEXT : return Instruction::FPExt; 1056 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1057 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1058 case bitc::CAST_BITCAST : return Instruction::BitCast; 1059 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1060 } 1061 } 1062 1063 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1064 bool IsFP = Ty->isFPOrFPVectorTy(); 1065 // UnOps are only valid for int/fp or vector of int/fp types 1066 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1067 return -1; 1068 1069 switch (Val) { 1070 default: 1071 return -1; 1072 case bitc::UNOP_FNEG: 1073 return IsFP ? Instruction::FNeg : -1; 1074 } 1075 } 1076 1077 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1078 bool IsFP = Ty->isFPOrFPVectorTy(); 1079 // BinOps are only valid for int/fp or vector of int/fp types 1080 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1081 return -1; 1082 1083 switch (Val) { 1084 default: 1085 return -1; 1086 case bitc::BINOP_ADD: 1087 return IsFP ? Instruction::FAdd : Instruction::Add; 1088 case bitc::BINOP_SUB: 1089 return IsFP ? Instruction::FSub : Instruction::Sub; 1090 case bitc::BINOP_MUL: 1091 return IsFP ? Instruction::FMul : Instruction::Mul; 1092 case bitc::BINOP_UDIV: 1093 return IsFP ? -1 : Instruction::UDiv; 1094 case bitc::BINOP_SDIV: 1095 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1096 case bitc::BINOP_UREM: 1097 return IsFP ? -1 : Instruction::URem; 1098 case bitc::BINOP_SREM: 1099 return IsFP ? Instruction::FRem : Instruction::SRem; 1100 case bitc::BINOP_SHL: 1101 return IsFP ? -1 : Instruction::Shl; 1102 case bitc::BINOP_LSHR: 1103 return IsFP ? -1 : Instruction::LShr; 1104 case bitc::BINOP_ASHR: 1105 return IsFP ? -1 : Instruction::AShr; 1106 case bitc::BINOP_AND: 1107 return IsFP ? -1 : Instruction::And; 1108 case bitc::BINOP_OR: 1109 return IsFP ? -1 : Instruction::Or; 1110 case bitc::BINOP_XOR: 1111 return IsFP ? -1 : Instruction::Xor; 1112 } 1113 } 1114 1115 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1116 switch (Val) { 1117 default: return AtomicRMWInst::BAD_BINOP; 1118 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1119 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1120 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1121 case bitc::RMW_AND: return AtomicRMWInst::And; 1122 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1123 case bitc::RMW_OR: return AtomicRMWInst::Or; 1124 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1125 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1126 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1127 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1128 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1129 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1130 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1131 } 1132 } 1133 1134 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1135 switch (Val) { 1136 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1137 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1138 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1139 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1140 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1141 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1142 default: // Map unknown orderings to sequentially-consistent. 1143 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1144 } 1145 } 1146 1147 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1148 switch (Val) { 1149 default: // Map unknown selection kinds to any. 1150 case bitc::COMDAT_SELECTION_KIND_ANY: 1151 return Comdat::Any; 1152 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1153 return Comdat::ExactMatch; 1154 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1155 return Comdat::Largest; 1156 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1157 return Comdat::NoDuplicates; 1158 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1159 return Comdat::SameSize; 1160 } 1161 } 1162 1163 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1164 FastMathFlags FMF; 1165 if (0 != (Val & bitc::UnsafeAlgebra)) 1166 FMF.setFast(); 1167 if (0 != (Val & bitc::AllowReassoc)) 1168 FMF.setAllowReassoc(); 1169 if (0 != (Val & bitc::NoNaNs)) 1170 FMF.setNoNaNs(); 1171 if (0 != (Val & bitc::NoInfs)) 1172 FMF.setNoInfs(); 1173 if (0 != (Val & bitc::NoSignedZeros)) 1174 FMF.setNoSignedZeros(); 1175 if (0 != (Val & bitc::AllowReciprocal)) 1176 FMF.setAllowReciprocal(); 1177 if (0 != (Val & bitc::AllowContract)) 1178 FMF.setAllowContract(true); 1179 if (0 != (Val & bitc::ApproxFunc)) 1180 FMF.setApproxFunc(); 1181 return FMF; 1182 } 1183 1184 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1185 switch (Val) { 1186 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1187 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1188 } 1189 } 1190 1191 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1192 // The type table size is always specified correctly. 1193 if (ID >= TypeList.size()) 1194 return nullptr; 1195 1196 if (Type *Ty = TypeList[ID]) 1197 return Ty; 1198 1199 // If we have a forward reference, the only possible case is when it is to a 1200 // named struct. Just create a placeholder for now. 1201 return TypeList[ID] = createIdentifiedStructType(Context); 1202 } 1203 1204 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1205 StringRef Name) { 1206 auto *Ret = StructType::create(Context, Name); 1207 IdentifiedStructTypes.push_back(Ret); 1208 return Ret; 1209 } 1210 1211 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1212 auto *Ret = StructType::create(Context); 1213 IdentifiedStructTypes.push_back(Ret); 1214 return Ret; 1215 } 1216 1217 //===----------------------------------------------------------------------===// 1218 // Functions for parsing blocks from the bitcode file 1219 //===----------------------------------------------------------------------===// 1220 1221 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1222 switch (Val) { 1223 case Attribute::EndAttrKinds: 1224 case Attribute::EmptyKey: 1225 case Attribute::TombstoneKey: 1226 llvm_unreachable("Synthetic enumerators which should never get here"); 1227 1228 case Attribute::None: return 0; 1229 case Attribute::ZExt: return 1 << 0; 1230 case Attribute::SExt: return 1 << 1; 1231 case Attribute::NoReturn: return 1 << 2; 1232 case Attribute::InReg: return 1 << 3; 1233 case Attribute::StructRet: return 1 << 4; 1234 case Attribute::NoUnwind: return 1 << 5; 1235 case Attribute::NoAlias: return 1 << 6; 1236 case Attribute::ByVal: return 1 << 7; 1237 case Attribute::Nest: return 1 << 8; 1238 case Attribute::ReadNone: return 1 << 9; 1239 case Attribute::ReadOnly: return 1 << 10; 1240 case Attribute::NoInline: return 1 << 11; 1241 case Attribute::AlwaysInline: return 1 << 12; 1242 case Attribute::OptimizeForSize: return 1 << 13; 1243 case Attribute::StackProtect: return 1 << 14; 1244 case Attribute::StackProtectReq: return 1 << 15; 1245 case Attribute::Alignment: return 31 << 16; 1246 case Attribute::NoCapture: return 1 << 21; 1247 case Attribute::NoRedZone: return 1 << 22; 1248 case Attribute::NoImplicitFloat: return 1 << 23; 1249 case Attribute::Naked: return 1 << 24; 1250 case Attribute::InlineHint: return 1 << 25; 1251 case Attribute::StackAlignment: return 7 << 26; 1252 case Attribute::ReturnsTwice: return 1 << 29; 1253 case Attribute::UWTable: return 1 << 30; 1254 case Attribute::NonLazyBind: return 1U << 31; 1255 case Attribute::SanitizeAddress: return 1ULL << 32; 1256 case Attribute::MinSize: return 1ULL << 33; 1257 case Attribute::NoDuplicate: return 1ULL << 34; 1258 case Attribute::StackProtectStrong: return 1ULL << 35; 1259 case Attribute::SanitizeThread: return 1ULL << 36; 1260 case Attribute::SanitizeMemory: return 1ULL << 37; 1261 case Attribute::NoBuiltin: return 1ULL << 38; 1262 case Attribute::Returned: return 1ULL << 39; 1263 case Attribute::Cold: return 1ULL << 40; 1264 case Attribute::Builtin: return 1ULL << 41; 1265 case Attribute::OptimizeNone: return 1ULL << 42; 1266 case Attribute::InAlloca: return 1ULL << 43; 1267 case Attribute::NonNull: return 1ULL << 44; 1268 case Attribute::JumpTable: return 1ULL << 45; 1269 case Attribute::Convergent: return 1ULL << 46; 1270 case Attribute::SafeStack: return 1ULL << 47; 1271 case Attribute::NoRecurse: return 1ULL << 48; 1272 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1273 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1274 case Attribute::SwiftSelf: return 1ULL << 51; 1275 case Attribute::SwiftError: return 1ULL << 52; 1276 case Attribute::WriteOnly: return 1ULL << 53; 1277 case Attribute::Speculatable: return 1ULL << 54; 1278 case Attribute::StrictFP: return 1ULL << 55; 1279 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1280 case Attribute::NoCfCheck: return 1ULL << 57; 1281 case Attribute::OptForFuzzing: return 1ULL << 58; 1282 case Attribute::ShadowCallStack: return 1ULL << 59; 1283 case Attribute::SpeculativeLoadHardening: 1284 return 1ULL << 60; 1285 case Attribute::ImmArg: 1286 return 1ULL << 61; 1287 case Attribute::WillReturn: 1288 return 1ULL << 62; 1289 case Attribute::NoFree: 1290 return 1ULL << 63; 1291 default: 1292 // Other attributes are not supported in the raw format, 1293 // as we ran out of space. 1294 return 0; 1295 } 1296 llvm_unreachable("Unsupported attribute type"); 1297 } 1298 1299 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1300 if (!Val) return; 1301 1302 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1303 I = Attribute::AttrKind(I + 1)) { 1304 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1305 if (I == Attribute::Alignment) 1306 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1307 else if (I == Attribute::StackAlignment) 1308 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1309 else 1310 B.addAttribute(I); 1311 } 1312 } 1313 } 1314 1315 /// This fills an AttrBuilder object with the LLVM attributes that have 1316 /// been decoded from the given integer. This function must stay in sync with 1317 /// 'encodeLLVMAttributesForBitcode'. 1318 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1319 uint64_t EncodedAttrs) { 1320 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1321 // the bits above 31 down by 11 bits. 1322 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1323 assert((!Alignment || isPowerOf2_32(Alignment)) && 1324 "Alignment must be a power of two."); 1325 1326 if (Alignment) 1327 B.addAlignmentAttr(Alignment); 1328 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1329 (EncodedAttrs & 0xffff)); 1330 } 1331 1332 Error BitcodeReader::parseAttributeBlock() { 1333 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1334 return Err; 1335 1336 if (!MAttributes.empty()) 1337 return error("Invalid multiple blocks"); 1338 1339 SmallVector<uint64_t, 64> Record; 1340 1341 SmallVector<AttributeList, 8> Attrs; 1342 1343 // Read all the records. 1344 while (true) { 1345 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1346 if (!MaybeEntry) 1347 return MaybeEntry.takeError(); 1348 BitstreamEntry Entry = MaybeEntry.get(); 1349 1350 switch (Entry.Kind) { 1351 case BitstreamEntry::SubBlock: // Handled for us already. 1352 case BitstreamEntry::Error: 1353 return error("Malformed block"); 1354 case BitstreamEntry::EndBlock: 1355 return Error::success(); 1356 case BitstreamEntry::Record: 1357 // The interesting case. 1358 break; 1359 } 1360 1361 // Read a record. 1362 Record.clear(); 1363 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1364 if (!MaybeRecord) 1365 return MaybeRecord.takeError(); 1366 switch (MaybeRecord.get()) { 1367 default: // Default behavior: ignore. 1368 break; 1369 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1370 // Deprecated, but still needed to read old bitcode files. 1371 if (Record.size() & 1) 1372 return error("Invalid record"); 1373 1374 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1375 AttrBuilder B; 1376 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1377 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1378 } 1379 1380 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1381 Attrs.clear(); 1382 break; 1383 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1384 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1385 Attrs.push_back(MAttributeGroups[Record[i]]); 1386 1387 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1388 Attrs.clear(); 1389 break; 1390 } 1391 } 1392 } 1393 1394 // Returns Attribute::None on unrecognized codes. 1395 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1396 switch (Code) { 1397 default: 1398 return Attribute::None; 1399 case bitc::ATTR_KIND_ALIGNMENT: 1400 return Attribute::Alignment; 1401 case bitc::ATTR_KIND_ALWAYS_INLINE: 1402 return Attribute::AlwaysInline; 1403 case bitc::ATTR_KIND_ARGMEMONLY: 1404 return Attribute::ArgMemOnly; 1405 case bitc::ATTR_KIND_BUILTIN: 1406 return Attribute::Builtin; 1407 case bitc::ATTR_KIND_BY_VAL: 1408 return Attribute::ByVal; 1409 case bitc::ATTR_KIND_IN_ALLOCA: 1410 return Attribute::InAlloca; 1411 case bitc::ATTR_KIND_COLD: 1412 return Attribute::Cold; 1413 case bitc::ATTR_KIND_CONVERGENT: 1414 return Attribute::Convergent; 1415 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1416 return Attribute::InaccessibleMemOnly; 1417 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1418 return Attribute::InaccessibleMemOrArgMemOnly; 1419 case bitc::ATTR_KIND_INLINE_HINT: 1420 return Attribute::InlineHint; 1421 case bitc::ATTR_KIND_IN_REG: 1422 return Attribute::InReg; 1423 case bitc::ATTR_KIND_JUMP_TABLE: 1424 return Attribute::JumpTable; 1425 case bitc::ATTR_KIND_MIN_SIZE: 1426 return Attribute::MinSize; 1427 case bitc::ATTR_KIND_NAKED: 1428 return Attribute::Naked; 1429 case bitc::ATTR_KIND_NEST: 1430 return Attribute::Nest; 1431 case bitc::ATTR_KIND_NO_ALIAS: 1432 return Attribute::NoAlias; 1433 case bitc::ATTR_KIND_NO_BUILTIN: 1434 return Attribute::NoBuiltin; 1435 case bitc::ATTR_KIND_NO_CAPTURE: 1436 return Attribute::NoCapture; 1437 case bitc::ATTR_KIND_NO_DUPLICATE: 1438 return Attribute::NoDuplicate; 1439 case bitc::ATTR_KIND_NOFREE: 1440 return Attribute::NoFree; 1441 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1442 return Attribute::NoImplicitFloat; 1443 case bitc::ATTR_KIND_NO_INLINE: 1444 return Attribute::NoInline; 1445 case bitc::ATTR_KIND_NO_RECURSE: 1446 return Attribute::NoRecurse; 1447 case bitc::ATTR_KIND_NO_MERGE: 1448 return Attribute::NoMerge; 1449 case bitc::ATTR_KIND_NON_LAZY_BIND: 1450 return Attribute::NonLazyBind; 1451 case bitc::ATTR_KIND_NON_NULL: 1452 return Attribute::NonNull; 1453 case bitc::ATTR_KIND_DEREFERENCEABLE: 1454 return Attribute::Dereferenceable; 1455 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1456 return Attribute::DereferenceableOrNull; 1457 case bitc::ATTR_KIND_ALLOC_SIZE: 1458 return Attribute::AllocSize; 1459 case bitc::ATTR_KIND_NO_RED_ZONE: 1460 return Attribute::NoRedZone; 1461 case bitc::ATTR_KIND_NO_RETURN: 1462 return Attribute::NoReturn; 1463 case bitc::ATTR_KIND_NOSYNC: 1464 return Attribute::NoSync; 1465 case bitc::ATTR_KIND_NOCF_CHECK: 1466 return Attribute::NoCfCheck; 1467 case bitc::ATTR_KIND_NO_UNWIND: 1468 return Attribute::NoUnwind; 1469 case bitc::ATTR_KIND_NULL_POINTER_IS_VALID: 1470 return Attribute::NullPointerIsValid; 1471 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1472 return Attribute::OptForFuzzing; 1473 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1474 return Attribute::OptimizeForSize; 1475 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1476 return Attribute::OptimizeNone; 1477 case bitc::ATTR_KIND_READ_NONE: 1478 return Attribute::ReadNone; 1479 case bitc::ATTR_KIND_READ_ONLY: 1480 return Attribute::ReadOnly; 1481 case bitc::ATTR_KIND_RETURNED: 1482 return Attribute::Returned; 1483 case bitc::ATTR_KIND_RETURNS_TWICE: 1484 return Attribute::ReturnsTwice; 1485 case bitc::ATTR_KIND_S_EXT: 1486 return Attribute::SExt; 1487 case bitc::ATTR_KIND_SPECULATABLE: 1488 return Attribute::Speculatable; 1489 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1490 return Attribute::StackAlignment; 1491 case bitc::ATTR_KIND_STACK_PROTECT: 1492 return Attribute::StackProtect; 1493 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1494 return Attribute::StackProtectReq; 1495 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1496 return Attribute::StackProtectStrong; 1497 case bitc::ATTR_KIND_SAFESTACK: 1498 return Attribute::SafeStack; 1499 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1500 return Attribute::ShadowCallStack; 1501 case bitc::ATTR_KIND_STRICT_FP: 1502 return Attribute::StrictFP; 1503 case bitc::ATTR_KIND_STRUCT_RET: 1504 return Attribute::StructRet; 1505 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1506 return Attribute::SanitizeAddress; 1507 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1508 return Attribute::SanitizeHWAddress; 1509 case bitc::ATTR_KIND_SANITIZE_THREAD: 1510 return Attribute::SanitizeThread; 1511 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1512 return Attribute::SanitizeMemory; 1513 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1514 return Attribute::SpeculativeLoadHardening; 1515 case bitc::ATTR_KIND_SWIFT_ERROR: 1516 return Attribute::SwiftError; 1517 case bitc::ATTR_KIND_SWIFT_SELF: 1518 return Attribute::SwiftSelf; 1519 case bitc::ATTR_KIND_UW_TABLE: 1520 return Attribute::UWTable; 1521 case bitc::ATTR_KIND_WILLRETURN: 1522 return Attribute::WillReturn; 1523 case bitc::ATTR_KIND_WRITEONLY: 1524 return Attribute::WriteOnly; 1525 case bitc::ATTR_KIND_Z_EXT: 1526 return Attribute::ZExt; 1527 case bitc::ATTR_KIND_IMMARG: 1528 return Attribute::ImmArg; 1529 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1530 return Attribute::SanitizeMemTag; 1531 case bitc::ATTR_KIND_PREALLOCATED: 1532 return Attribute::Preallocated; 1533 } 1534 } 1535 1536 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1537 MaybeAlign &Alignment) { 1538 // Note: Alignment in bitcode files is incremented by 1, so that zero 1539 // can be used for default alignment. 1540 if (Exponent > Value::MaxAlignmentExponent + 1) 1541 return error("Invalid alignment value"); 1542 Alignment = decodeMaybeAlign(Exponent); 1543 return Error::success(); 1544 } 1545 1546 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1547 *Kind = getAttrFromCode(Code); 1548 if (*Kind == Attribute::None) 1549 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1550 return Error::success(); 1551 } 1552 1553 Error BitcodeReader::parseAttributeGroupBlock() { 1554 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1555 return Err; 1556 1557 if (!MAttributeGroups.empty()) 1558 return error("Invalid multiple blocks"); 1559 1560 SmallVector<uint64_t, 64> Record; 1561 1562 // Read all the records. 1563 while (true) { 1564 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1565 if (!MaybeEntry) 1566 return MaybeEntry.takeError(); 1567 BitstreamEntry Entry = MaybeEntry.get(); 1568 1569 switch (Entry.Kind) { 1570 case BitstreamEntry::SubBlock: // Handled for us already. 1571 case BitstreamEntry::Error: 1572 return error("Malformed block"); 1573 case BitstreamEntry::EndBlock: 1574 return Error::success(); 1575 case BitstreamEntry::Record: 1576 // The interesting case. 1577 break; 1578 } 1579 1580 // Read a record. 1581 Record.clear(); 1582 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1583 if (!MaybeRecord) 1584 return MaybeRecord.takeError(); 1585 switch (MaybeRecord.get()) { 1586 default: // Default behavior: ignore. 1587 break; 1588 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1589 if (Record.size() < 3) 1590 return error("Invalid record"); 1591 1592 uint64_t GrpID = Record[0]; 1593 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1594 1595 AttrBuilder B; 1596 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1597 if (Record[i] == 0) { // Enum attribute 1598 Attribute::AttrKind Kind; 1599 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1600 return Err; 1601 1602 // Upgrade old-style byval attribute to one with a type, even if it's 1603 // nullptr. We will have to insert the real type when we associate 1604 // this AttributeList with a function. 1605 if (Kind == Attribute::ByVal) 1606 B.addByValAttr(nullptr); 1607 1608 B.addAttribute(Kind); 1609 } else if (Record[i] == 1) { // Integer attribute 1610 Attribute::AttrKind Kind; 1611 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1612 return Err; 1613 if (Kind == Attribute::Alignment) 1614 B.addAlignmentAttr(Record[++i]); 1615 else if (Kind == Attribute::StackAlignment) 1616 B.addStackAlignmentAttr(Record[++i]); 1617 else if (Kind == Attribute::Dereferenceable) 1618 B.addDereferenceableAttr(Record[++i]); 1619 else if (Kind == Attribute::DereferenceableOrNull) 1620 B.addDereferenceableOrNullAttr(Record[++i]); 1621 else if (Kind == Attribute::AllocSize) 1622 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1623 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1624 bool HasValue = (Record[i++] == 4); 1625 SmallString<64> KindStr; 1626 SmallString<64> ValStr; 1627 1628 while (Record[i] != 0 && i != e) 1629 KindStr += Record[i++]; 1630 assert(Record[i] == 0 && "Kind string not null terminated"); 1631 1632 if (HasValue) { 1633 // Has a value associated with it. 1634 ++i; // Skip the '0' that terminates the "kind" string. 1635 while (Record[i] != 0 && i != e) 1636 ValStr += Record[i++]; 1637 assert(Record[i] == 0 && "Value string not null terminated"); 1638 } 1639 1640 B.addAttribute(KindStr.str(), ValStr.str()); 1641 } else { 1642 assert((Record[i] == 5 || Record[i] == 6) && 1643 "Invalid attribute group entry"); 1644 bool HasType = Record[i] == 6; 1645 Attribute::AttrKind Kind; 1646 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1647 return Err; 1648 if (Kind == Attribute::ByVal) { 1649 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1650 } else if (Kind == Attribute::Preallocated) { 1651 B.addPreallocatedAttr(getTypeByID(Record[++i])); 1652 } 1653 } 1654 } 1655 1656 UpgradeAttributes(B); 1657 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1658 break; 1659 } 1660 } 1661 } 1662 } 1663 1664 Error BitcodeReader::parseTypeTable() { 1665 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1666 return Err; 1667 1668 return parseTypeTableBody(); 1669 } 1670 1671 Error BitcodeReader::parseTypeTableBody() { 1672 if (!TypeList.empty()) 1673 return error("Invalid multiple blocks"); 1674 1675 SmallVector<uint64_t, 64> Record; 1676 unsigned NumRecords = 0; 1677 1678 SmallString<64> TypeName; 1679 1680 // Read all the records for this type table. 1681 while (true) { 1682 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1683 if (!MaybeEntry) 1684 return MaybeEntry.takeError(); 1685 BitstreamEntry Entry = MaybeEntry.get(); 1686 1687 switch (Entry.Kind) { 1688 case BitstreamEntry::SubBlock: // Handled for us already. 1689 case BitstreamEntry::Error: 1690 return error("Malformed block"); 1691 case BitstreamEntry::EndBlock: 1692 if (NumRecords != TypeList.size()) 1693 return error("Malformed block"); 1694 return Error::success(); 1695 case BitstreamEntry::Record: 1696 // The interesting case. 1697 break; 1698 } 1699 1700 // Read a record. 1701 Record.clear(); 1702 Type *ResultTy = nullptr; 1703 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1704 if (!MaybeRecord) 1705 return MaybeRecord.takeError(); 1706 switch (MaybeRecord.get()) { 1707 default: 1708 return error("Invalid value"); 1709 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1710 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1711 // type list. This allows us to reserve space. 1712 if (Record.size() < 1) 1713 return error("Invalid record"); 1714 TypeList.resize(Record[0]); 1715 continue; 1716 case bitc::TYPE_CODE_VOID: // VOID 1717 ResultTy = Type::getVoidTy(Context); 1718 break; 1719 case bitc::TYPE_CODE_HALF: // HALF 1720 ResultTy = Type::getHalfTy(Context); 1721 break; 1722 case bitc::TYPE_CODE_BFLOAT: // BFLOAT 1723 ResultTy = Type::getBFloatTy(Context); 1724 break; 1725 case bitc::TYPE_CODE_FLOAT: // FLOAT 1726 ResultTy = Type::getFloatTy(Context); 1727 break; 1728 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1729 ResultTy = Type::getDoubleTy(Context); 1730 break; 1731 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1732 ResultTy = Type::getX86_FP80Ty(Context); 1733 break; 1734 case bitc::TYPE_CODE_FP128: // FP128 1735 ResultTy = Type::getFP128Ty(Context); 1736 break; 1737 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1738 ResultTy = Type::getPPC_FP128Ty(Context); 1739 break; 1740 case bitc::TYPE_CODE_LABEL: // LABEL 1741 ResultTy = Type::getLabelTy(Context); 1742 break; 1743 case bitc::TYPE_CODE_METADATA: // METADATA 1744 ResultTy = Type::getMetadataTy(Context); 1745 break; 1746 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1747 ResultTy = Type::getX86_MMXTy(Context); 1748 break; 1749 case bitc::TYPE_CODE_TOKEN: // TOKEN 1750 ResultTy = Type::getTokenTy(Context); 1751 break; 1752 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1753 if (Record.size() < 1) 1754 return error("Invalid record"); 1755 1756 uint64_t NumBits = Record[0]; 1757 if (NumBits < IntegerType::MIN_INT_BITS || 1758 NumBits > IntegerType::MAX_INT_BITS) 1759 return error("Bitwidth for integer type out of range"); 1760 ResultTy = IntegerType::get(Context, NumBits); 1761 break; 1762 } 1763 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1764 // [pointee type, address space] 1765 if (Record.size() < 1) 1766 return error("Invalid record"); 1767 unsigned AddressSpace = 0; 1768 if (Record.size() == 2) 1769 AddressSpace = Record[1]; 1770 ResultTy = getTypeByID(Record[0]); 1771 if (!ResultTy || 1772 !PointerType::isValidElementType(ResultTy)) 1773 return error("Invalid type"); 1774 ResultTy = PointerType::get(ResultTy, AddressSpace); 1775 break; 1776 } 1777 case bitc::TYPE_CODE_FUNCTION_OLD: { 1778 // Deprecated, but still needed to read old bitcode files. 1779 // FUNCTION: [vararg, attrid, retty, paramty x N] 1780 if (Record.size() < 3) 1781 return error("Invalid record"); 1782 SmallVector<Type*, 8> ArgTys; 1783 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1784 if (Type *T = getTypeByID(Record[i])) 1785 ArgTys.push_back(T); 1786 else 1787 break; 1788 } 1789 1790 ResultTy = getTypeByID(Record[2]); 1791 if (!ResultTy || ArgTys.size() < Record.size()-3) 1792 return error("Invalid type"); 1793 1794 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1795 break; 1796 } 1797 case bitc::TYPE_CODE_FUNCTION: { 1798 // FUNCTION: [vararg, retty, paramty x N] 1799 if (Record.size() < 2) 1800 return error("Invalid record"); 1801 SmallVector<Type*, 8> ArgTys; 1802 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1803 if (Type *T = getTypeByID(Record[i])) { 1804 if (!FunctionType::isValidArgumentType(T)) 1805 return error("Invalid function argument type"); 1806 ArgTys.push_back(T); 1807 } 1808 else 1809 break; 1810 } 1811 1812 ResultTy = getTypeByID(Record[1]); 1813 if (!ResultTy || ArgTys.size() < Record.size()-2) 1814 return error("Invalid type"); 1815 1816 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1817 break; 1818 } 1819 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1820 if (Record.size() < 1) 1821 return error("Invalid record"); 1822 SmallVector<Type*, 8> EltTys; 1823 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1824 if (Type *T = getTypeByID(Record[i])) 1825 EltTys.push_back(T); 1826 else 1827 break; 1828 } 1829 if (EltTys.size() != Record.size()-1) 1830 return error("Invalid type"); 1831 ResultTy = StructType::get(Context, EltTys, Record[0]); 1832 break; 1833 } 1834 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1835 if (convertToString(Record, 0, TypeName)) 1836 return error("Invalid record"); 1837 continue; 1838 1839 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1840 if (Record.size() < 1) 1841 return error("Invalid record"); 1842 1843 if (NumRecords >= TypeList.size()) 1844 return error("Invalid TYPE table"); 1845 1846 // Check to see if this was forward referenced, if so fill in the temp. 1847 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1848 if (Res) { 1849 Res->setName(TypeName); 1850 TypeList[NumRecords] = nullptr; 1851 } else // Otherwise, create a new struct. 1852 Res = createIdentifiedStructType(Context, TypeName); 1853 TypeName.clear(); 1854 1855 SmallVector<Type*, 8> EltTys; 1856 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1857 if (Type *T = getTypeByID(Record[i])) 1858 EltTys.push_back(T); 1859 else 1860 break; 1861 } 1862 if (EltTys.size() != Record.size()-1) 1863 return error("Invalid record"); 1864 Res->setBody(EltTys, Record[0]); 1865 ResultTy = Res; 1866 break; 1867 } 1868 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1869 if (Record.size() != 1) 1870 return error("Invalid record"); 1871 1872 if (NumRecords >= TypeList.size()) 1873 return error("Invalid TYPE table"); 1874 1875 // Check to see if this was forward referenced, if so fill in the temp. 1876 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1877 if (Res) { 1878 Res->setName(TypeName); 1879 TypeList[NumRecords] = nullptr; 1880 } else // Otherwise, create a new struct with no body. 1881 Res = createIdentifiedStructType(Context, TypeName); 1882 TypeName.clear(); 1883 ResultTy = Res; 1884 break; 1885 } 1886 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1887 if (Record.size() < 2) 1888 return error("Invalid record"); 1889 ResultTy = getTypeByID(Record[1]); 1890 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1891 return error("Invalid type"); 1892 ResultTy = ArrayType::get(ResultTy, Record[0]); 1893 break; 1894 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1895 // [numelts, eltty, scalable] 1896 if (Record.size() < 2) 1897 return error("Invalid record"); 1898 if (Record[0] == 0) 1899 return error("Invalid vector length"); 1900 ResultTy = getTypeByID(Record[1]); 1901 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1902 return error("Invalid type"); 1903 bool Scalable = Record.size() > 2 ? Record[2] : false; 1904 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1905 break; 1906 } 1907 1908 if (NumRecords >= TypeList.size()) 1909 return error("Invalid TYPE table"); 1910 if (TypeList[NumRecords]) 1911 return error( 1912 "Invalid TYPE table: Only named structs can be forward referenced"); 1913 assert(ResultTy && "Didn't read a type?"); 1914 TypeList[NumRecords++] = ResultTy; 1915 } 1916 } 1917 1918 Error BitcodeReader::parseOperandBundleTags() { 1919 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1920 return Err; 1921 1922 if (!BundleTags.empty()) 1923 return error("Invalid multiple blocks"); 1924 1925 SmallVector<uint64_t, 64> Record; 1926 1927 while (true) { 1928 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1929 if (!MaybeEntry) 1930 return MaybeEntry.takeError(); 1931 BitstreamEntry Entry = MaybeEntry.get(); 1932 1933 switch (Entry.Kind) { 1934 case BitstreamEntry::SubBlock: // Handled for us already. 1935 case BitstreamEntry::Error: 1936 return error("Malformed block"); 1937 case BitstreamEntry::EndBlock: 1938 return Error::success(); 1939 case BitstreamEntry::Record: 1940 // The interesting case. 1941 break; 1942 } 1943 1944 // Tags are implicitly mapped to integers by their order. 1945 1946 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1947 if (!MaybeRecord) 1948 return MaybeRecord.takeError(); 1949 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1950 return error("Invalid record"); 1951 1952 // OPERAND_BUNDLE_TAG: [strchr x N] 1953 BundleTags.emplace_back(); 1954 if (convertToString(Record, 0, BundleTags.back())) 1955 return error("Invalid record"); 1956 Record.clear(); 1957 } 1958 } 1959 1960 Error BitcodeReader::parseSyncScopeNames() { 1961 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1962 return Err; 1963 1964 if (!SSIDs.empty()) 1965 return error("Invalid multiple synchronization scope names blocks"); 1966 1967 SmallVector<uint64_t, 64> Record; 1968 while (true) { 1969 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1970 if (!MaybeEntry) 1971 return MaybeEntry.takeError(); 1972 BitstreamEntry Entry = MaybeEntry.get(); 1973 1974 switch (Entry.Kind) { 1975 case BitstreamEntry::SubBlock: // Handled for us already. 1976 case BitstreamEntry::Error: 1977 return error("Malformed block"); 1978 case BitstreamEntry::EndBlock: 1979 if (SSIDs.empty()) 1980 return error("Invalid empty synchronization scope names block"); 1981 return Error::success(); 1982 case BitstreamEntry::Record: 1983 // The interesting case. 1984 break; 1985 } 1986 1987 // Synchronization scope names are implicitly mapped to synchronization 1988 // scope IDs by their order. 1989 1990 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1991 if (!MaybeRecord) 1992 return MaybeRecord.takeError(); 1993 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 1994 return error("Invalid record"); 1995 1996 SmallString<16> SSN; 1997 if (convertToString(Record, 0, SSN)) 1998 return error("Invalid record"); 1999 2000 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2001 Record.clear(); 2002 } 2003 } 2004 2005 /// Associate a value with its name from the given index in the provided record. 2006 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2007 unsigned NameIndex, Triple &TT) { 2008 SmallString<128> ValueName; 2009 if (convertToString(Record, NameIndex, ValueName)) 2010 return error("Invalid record"); 2011 unsigned ValueID = Record[0]; 2012 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2013 return error("Invalid record"); 2014 Value *V = ValueList[ValueID]; 2015 2016 StringRef NameStr(ValueName.data(), ValueName.size()); 2017 if (NameStr.find_first_of(0) != StringRef::npos) 2018 return error("Invalid value name"); 2019 V->setName(NameStr); 2020 auto *GO = dyn_cast<GlobalObject>(V); 2021 if (GO) { 2022 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2023 if (TT.supportsCOMDAT()) 2024 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2025 else 2026 GO->setComdat(nullptr); 2027 } 2028 } 2029 return V; 2030 } 2031 2032 /// Helper to note and return the current location, and jump to the given 2033 /// offset. 2034 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2035 BitstreamCursor &Stream) { 2036 // Save the current parsing location so we can jump back at the end 2037 // of the VST read. 2038 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2039 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2040 return std::move(JumpFailed); 2041 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2042 if (!MaybeEntry) 2043 return MaybeEntry.takeError(); 2044 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2045 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2046 return CurrentBit; 2047 } 2048 2049 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2050 Function *F, 2051 ArrayRef<uint64_t> Record) { 2052 // Note that we subtract 1 here because the offset is relative to one word 2053 // before the start of the identification or module block, which was 2054 // historically always the start of the regular bitcode header. 2055 uint64_t FuncWordOffset = Record[1] - 1; 2056 uint64_t FuncBitOffset = FuncWordOffset * 32; 2057 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2058 // Set the LastFunctionBlockBit to point to the last function block. 2059 // Later when parsing is resumed after function materialization, 2060 // we can simply skip that last function block. 2061 if (FuncBitOffset > LastFunctionBlockBit) 2062 LastFunctionBlockBit = FuncBitOffset; 2063 } 2064 2065 /// Read a new-style GlobalValue symbol table. 2066 Error BitcodeReader::parseGlobalValueSymbolTable() { 2067 unsigned FuncBitcodeOffsetDelta = 2068 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2069 2070 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2071 return Err; 2072 2073 SmallVector<uint64_t, 64> Record; 2074 while (true) { 2075 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2076 if (!MaybeEntry) 2077 return MaybeEntry.takeError(); 2078 BitstreamEntry Entry = MaybeEntry.get(); 2079 2080 switch (Entry.Kind) { 2081 case BitstreamEntry::SubBlock: 2082 case BitstreamEntry::Error: 2083 return error("Malformed block"); 2084 case BitstreamEntry::EndBlock: 2085 return Error::success(); 2086 case BitstreamEntry::Record: 2087 break; 2088 } 2089 2090 Record.clear(); 2091 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2092 if (!MaybeRecord) 2093 return MaybeRecord.takeError(); 2094 switch (MaybeRecord.get()) { 2095 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2096 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2097 cast<Function>(ValueList[Record[0]]), Record); 2098 break; 2099 } 2100 } 2101 } 2102 2103 /// Parse the value symbol table at either the current parsing location or 2104 /// at the given bit offset if provided. 2105 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2106 uint64_t CurrentBit; 2107 // Pass in the Offset to distinguish between calling for the module-level 2108 // VST (where we want to jump to the VST offset) and the function-level 2109 // VST (where we don't). 2110 if (Offset > 0) { 2111 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2112 if (!MaybeCurrentBit) 2113 return MaybeCurrentBit.takeError(); 2114 CurrentBit = MaybeCurrentBit.get(); 2115 // If this module uses a string table, read this as a module-level VST. 2116 if (UseStrtab) { 2117 if (Error Err = parseGlobalValueSymbolTable()) 2118 return Err; 2119 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2120 return JumpFailed; 2121 return Error::success(); 2122 } 2123 // Otherwise, the VST will be in a similar format to a function-level VST, 2124 // and will contain symbol names. 2125 } 2126 2127 // Compute the delta between the bitcode indices in the VST (the word offset 2128 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2129 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2130 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2131 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2132 // just before entering the VST subblock because: 1) the EnterSubBlock 2133 // changes the AbbrevID width; 2) the VST block is nested within the same 2134 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2135 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2136 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2137 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2138 unsigned FuncBitcodeOffsetDelta = 2139 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2140 2141 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2142 return Err; 2143 2144 SmallVector<uint64_t, 64> Record; 2145 2146 Triple TT(TheModule->getTargetTriple()); 2147 2148 // Read all the records for this value table. 2149 SmallString<128> ValueName; 2150 2151 while (true) { 2152 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2153 if (!MaybeEntry) 2154 return MaybeEntry.takeError(); 2155 BitstreamEntry Entry = MaybeEntry.get(); 2156 2157 switch (Entry.Kind) { 2158 case BitstreamEntry::SubBlock: // Handled for us already. 2159 case BitstreamEntry::Error: 2160 return error("Malformed block"); 2161 case BitstreamEntry::EndBlock: 2162 if (Offset > 0) 2163 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2164 return JumpFailed; 2165 return Error::success(); 2166 case BitstreamEntry::Record: 2167 // The interesting case. 2168 break; 2169 } 2170 2171 // Read a record. 2172 Record.clear(); 2173 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2174 if (!MaybeRecord) 2175 return MaybeRecord.takeError(); 2176 switch (MaybeRecord.get()) { 2177 default: // Default behavior: unknown type. 2178 break; 2179 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2180 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2181 if (Error Err = ValOrErr.takeError()) 2182 return Err; 2183 ValOrErr.get(); 2184 break; 2185 } 2186 case bitc::VST_CODE_FNENTRY: { 2187 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2188 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2189 if (Error Err = ValOrErr.takeError()) 2190 return Err; 2191 Value *V = ValOrErr.get(); 2192 2193 // Ignore function offsets emitted for aliases of functions in older 2194 // versions of LLVM. 2195 if (auto *F = dyn_cast<Function>(V)) 2196 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2197 break; 2198 } 2199 case bitc::VST_CODE_BBENTRY: { 2200 if (convertToString(Record, 1, ValueName)) 2201 return error("Invalid record"); 2202 BasicBlock *BB = getBasicBlock(Record[0]); 2203 if (!BB) 2204 return error("Invalid record"); 2205 2206 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2207 ValueName.clear(); 2208 break; 2209 } 2210 } 2211 } 2212 } 2213 2214 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2215 /// encoding. 2216 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2217 if ((V & 1) == 0) 2218 return V >> 1; 2219 if (V != 1) 2220 return -(V >> 1); 2221 // There is no such thing as -0 with integers. "-0" really means MININT. 2222 return 1ULL << 63; 2223 } 2224 2225 /// Resolve all of the initializers for global values and aliases that we can. 2226 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2227 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2228 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2229 IndirectSymbolInitWorklist; 2230 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2231 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2232 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2233 2234 GlobalInitWorklist.swap(GlobalInits); 2235 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2236 FunctionPrefixWorklist.swap(FunctionPrefixes); 2237 FunctionPrologueWorklist.swap(FunctionPrologues); 2238 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2239 2240 while (!GlobalInitWorklist.empty()) { 2241 unsigned ValID = GlobalInitWorklist.back().second; 2242 if (ValID >= ValueList.size()) { 2243 // Not ready to resolve this yet, it requires something later in the file. 2244 GlobalInits.push_back(GlobalInitWorklist.back()); 2245 } else { 2246 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2247 GlobalInitWorklist.back().first->setInitializer(C); 2248 else 2249 return error("Expected a constant"); 2250 } 2251 GlobalInitWorklist.pop_back(); 2252 } 2253 2254 while (!IndirectSymbolInitWorklist.empty()) { 2255 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2256 if (ValID >= ValueList.size()) { 2257 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2258 } else { 2259 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2260 if (!C) 2261 return error("Expected a constant"); 2262 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2263 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2264 return error("Alias and aliasee types don't match"); 2265 GIS->setIndirectSymbol(C); 2266 } 2267 IndirectSymbolInitWorklist.pop_back(); 2268 } 2269 2270 while (!FunctionPrefixWorklist.empty()) { 2271 unsigned ValID = FunctionPrefixWorklist.back().second; 2272 if (ValID >= ValueList.size()) { 2273 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2274 } else { 2275 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2276 FunctionPrefixWorklist.back().first->setPrefixData(C); 2277 else 2278 return error("Expected a constant"); 2279 } 2280 FunctionPrefixWorklist.pop_back(); 2281 } 2282 2283 while (!FunctionPrologueWorklist.empty()) { 2284 unsigned ValID = FunctionPrologueWorklist.back().second; 2285 if (ValID >= ValueList.size()) { 2286 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2287 } else { 2288 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2289 FunctionPrologueWorklist.back().first->setPrologueData(C); 2290 else 2291 return error("Expected a constant"); 2292 } 2293 FunctionPrologueWorklist.pop_back(); 2294 } 2295 2296 while (!FunctionPersonalityFnWorklist.empty()) { 2297 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2298 if (ValID >= ValueList.size()) { 2299 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2300 } else { 2301 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2302 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2303 else 2304 return error("Expected a constant"); 2305 } 2306 FunctionPersonalityFnWorklist.pop_back(); 2307 } 2308 2309 return Error::success(); 2310 } 2311 2312 APInt llvm::readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2313 SmallVector<uint64_t, 8> Words(Vals.size()); 2314 transform(Vals, Words.begin(), 2315 BitcodeReader::decodeSignRotatedValue); 2316 2317 return APInt(TypeBits, Words); 2318 } 2319 2320 Error BitcodeReader::parseConstants() { 2321 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2322 return Err; 2323 2324 SmallVector<uint64_t, 64> Record; 2325 2326 // Read all the records for this value table. 2327 Type *CurTy = Type::getInt32Ty(Context); 2328 Type *CurFullTy = Type::getInt32Ty(Context); 2329 unsigned NextCstNo = ValueList.size(); 2330 2331 struct DelayedShufTy { 2332 VectorType *OpTy; 2333 VectorType *RTy; 2334 Type *CurFullTy; 2335 uint64_t Op0Idx; 2336 uint64_t Op1Idx; 2337 uint64_t Op2Idx; 2338 unsigned CstNo; 2339 }; 2340 std::vector<DelayedShufTy> DelayedShuffles; 2341 while (true) { 2342 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2343 if (!MaybeEntry) 2344 return MaybeEntry.takeError(); 2345 BitstreamEntry Entry = MaybeEntry.get(); 2346 2347 switch (Entry.Kind) { 2348 case BitstreamEntry::SubBlock: // Handled for us already. 2349 case BitstreamEntry::Error: 2350 return error("Malformed block"); 2351 case BitstreamEntry::EndBlock: 2352 // Once all the constants have been read, go through and resolve forward 2353 // references. 2354 // 2355 // We have to treat shuffles specially because they don't have three 2356 // operands anymore. We need to convert the shuffle mask into an array, 2357 // and we can't convert a forward reference. 2358 for (auto &DelayedShuffle : DelayedShuffles) { 2359 VectorType *OpTy = DelayedShuffle.OpTy; 2360 VectorType *RTy = DelayedShuffle.RTy; 2361 uint64_t Op0Idx = DelayedShuffle.Op0Idx; 2362 uint64_t Op1Idx = DelayedShuffle.Op1Idx; 2363 uint64_t Op2Idx = DelayedShuffle.Op2Idx; 2364 uint64_t CstNo = DelayedShuffle.CstNo; 2365 Constant *Op0 = ValueList.getConstantFwdRef(Op0Idx, OpTy); 2366 Constant *Op1 = ValueList.getConstantFwdRef(Op1Idx, OpTy); 2367 Type *ShufTy = 2368 VectorType::get(Type::getInt32Ty(Context), RTy->getElementCount()); 2369 Constant *Op2 = ValueList.getConstantFwdRef(Op2Idx, ShufTy); 2370 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 2371 return error("Invalid shufflevector operands"); 2372 SmallVector<int, 16> Mask; 2373 ShuffleVectorInst::getShuffleMask(Op2, Mask); 2374 Value *V = ConstantExpr::getShuffleVector(Op0, Op1, Mask); 2375 ValueList.assignValue(V, CstNo, DelayedShuffle.CurFullTy); 2376 } 2377 2378 if (NextCstNo != ValueList.size()) 2379 return error("Invalid constant reference"); 2380 2381 ValueList.resolveConstantForwardRefs(); 2382 return Error::success(); 2383 case BitstreamEntry::Record: 2384 // The interesting case. 2385 break; 2386 } 2387 2388 // Read a record. 2389 Record.clear(); 2390 Type *VoidType = Type::getVoidTy(Context); 2391 Value *V = nullptr; 2392 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2393 if (!MaybeBitCode) 2394 return MaybeBitCode.takeError(); 2395 switch (unsigned BitCode = MaybeBitCode.get()) { 2396 default: // Default behavior: unknown constant 2397 case bitc::CST_CODE_UNDEF: // UNDEF 2398 V = UndefValue::get(CurTy); 2399 break; 2400 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2401 if (Record.empty()) 2402 return error("Invalid record"); 2403 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2404 return error("Invalid record"); 2405 if (TypeList[Record[0]] == VoidType) 2406 return error("Invalid constant type"); 2407 CurFullTy = TypeList[Record[0]]; 2408 CurTy = flattenPointerTypes(CurFullTy); 2409 continue; // Skip the ValueList manipulation. 2410 case bitc::CST_CODE_NULL: // NULL 2411 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2412 return error("Invalid type for a constant null value"); 2413 V = Constant::getNullValue(CurTy); 2414 break; 2415 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2416 if (!CurTy->isIntegerTy() || Record.empty()) 2417 return error("Invalid record"); 2418 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2419 break; 2420 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2421 if (!CurTy->isIntegerTy() || Record.empty()) 2422 return error("Invalid record"); 2423 2424 APInt VInt = 2425 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2426 V = ConstantInt::get(Context, VInt); 2427 2428 break; 2429 } 2430 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2431 if (Record.empty()) 2432 return error("Invalid record"); 2433 if (CurTy->isHalfTy()) 2434 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2435 APInt(16, (uint16_t)Record[0]))); 2436 else if (CurTy->isBFloatTy()) 2437 V = ConstantFP::get(Context, APFloat(APFloat::BFloat(), 2438 APInt(16, (uint32_t)Record[0]))); 2439 else if (CurTy->isFloatTy()) 2440 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2441 APInt(32, (uint32_t)Record[0]))); 2442 else if (CurTy->isDoubleTy()) 2443 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2444 APInt(64, Record[0]))); 2445 else if (CurTy->isX86_FP80Ty()) { 2446 // Bits are not stored the same way as a normal i80 APInt, compensate. 2447 uint64_t Rearrange[2]; 2448 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2449 Rearrange[1] = Record[0] >> 48; 2450 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2451 APInt(80, Rearrange))); 2452 } else if (CurTy->isFP128Ty()) 2453 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2454 APInt(128, Record))); 2455 else if (CurTy->isPPC_FP128Ty()) 2456 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2457 APInt(128, Record))); 2458 else 2459 V = UndefValue::get(CurTy); 2460 break; 2461 } 2462 2463 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2464 if (Record.empty()) 2465 return error("Invalid record"); 2466 2467 unsigned Size = Record.size(); 2468 SmallVector<Constant*, 16> Elts; 2469 2470 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2471 for (unsigned i = 0; i != Size; ++i) 2472 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2473 STy->getElementType(i))); 2474 V = ConstantStruct::get(STy, Elts); 2475 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2476 Type *EltTy = ATy->getElementType(); 2477 for (unsigned i = 0; i != Size; ++i) 2478 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2479 V = ConstantArray::get(ATy, Elts); 2480 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2481 Type *EltTy = VTy->getElementType(); 2482 for (unsigned i = 0; i != Size; ++i) 2483 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2484 V = ConstantVector::get(Elts); 2485 } else { 2486 V = UndefValue::get(CurTy); 2487 } 2488 break; 2489 } 2490 case bitc::CST_CODE_STRING: // STRING: [values] 2491 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2492 if (Record.empty()) 2493 return error("Invalid record"); 2494 2495 SmallString<16> Elts(Record.begin(), Record.end()); 2496 V = ConstantDataArray::getString(Context, Elts, 2497 BitCode == bitc::CST_CODE_CSTRING); 2498 break; 2499 } 2500 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2501 if (Record.empty()) 2502 return error("Invalid record"); 2503 2504 Type *EltTy; 2505 if (auto *Array = dyn_cast<ArrayType>(CurTy)) 2506 EltTy = Array->getElementType(); 2507 else 2508 EltTy = cast<VectorType>(CurTy)->getElementType(); 2509 if (EltTy->isIntegerTy(8)) { 2510 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2511 if (isa<VectorType>(CurTy)) 2512 V = ConstantDataVector::get(Context, Elts); 2513 else 2514 V = ConstantDataArray::get(Context, Elts); 2515 } else if (EltTy->isIntegerTy(16)) { 2516 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2517 if (isa<VectorType>(CurTy)) 2518 V = ConstantDataVector::get(Context, Elts); 2519 else 2520 V = ConstantDataArray::get(Context, Elts); 2521 } else if (EltTy->isIntegerTy(32)) { 2522 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2523 if (isa<VectorType>(CurTy)) 2524 V = ConstantDataVector::get(Context, Elts); 2525 else 2526 V = ConstantDataArray::get(Context, Elts); 2527 } else if (EltTy->isIntegerTy(64)) { 2528 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2529 if (isa<VectorType>(CurTy)) 2530 V = ConstantDataVector::get(Context, Elts); 2531 else 2532 V = ConstantDataArray::get(Context, Elts); 2533 } else if (EltTy->isHalfTy()) { 2534 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2535 if (isa<VectorType>(CurTy)) 2536 V = ConstantDataVector::getFP(EltTy, Elts); 2537 else 2538 V = ConstantDataArray::getFP(EltTy, Elts); 2539 } else if (EltTy->isBFloatTy()) { 2540 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2541 if (isa<VectorType>(CurTy)) 2542 V = ConstantDataVector::getFP(EltTy, Elts); 2543 else 2544 V = ConstantDataArray::getFP(EltTy, Elts); 2545 } else if (EltTy->isFloatTy()) { 2546 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2547 if (isa<VectorType>(CurTy)) 2548 V = ConstantDataVector::getFP(EltTy, Elts); 2549 else 2550 V = ConstantDataArray::getFP(EltTy, Elts); 2551 } else if (EltTy->isDoubleTy()) { 2552 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2553 if (isa<VectorType>(CurTy)) 2554 V = ConstantDataVector::getFP(EltTy, Elts); 2555 else 2556 V = ConstantDataArray::getFP(EltTy, Elts); 2557 } else { 2558 return error("Invalid type for value"); 2559 } 2560 break; 2561 } 2562 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2563 if (Record.size() < 2) 2564 return error("Invalid record"); 2565 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2566 if (Opc < 0) { 2567 V = UndefValue::get(CurTy); // Unknown unop. 2568 } else { 2569 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2570 unsigned Flags = 0; 2571 V = ConstantExpr::get(Opc, LHS, Flags); 2572 } 2573 break; 2574 } 2575 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2576 if (Record.size() < 3) 2577 return error("Invalid record"); 2578 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2579 if (Opc < 0) { 2580 V = UndefValue::get(CurTy); // Unknown binop. 2581 } else { 2582 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2583 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2584 unsigned Flags = 0; 2585 if (Record.size() >= 4) { 2586 if (Opc == Instruction::Add || 2587 Opc == Instruction::Sub || 2588 Opc == Instruction::Mul || 2589 Opc == Instruction::Shl) { 2590 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2591 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2592 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2593 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2594 } else if (Opc == Instruction::SDiv || 2595 Opc == Instruction::UDiv || 2596 Opc == Instruction::LShr || 2597 Opc == Instruction::AShr) { 2598 if (Record[3] & (1 << bitc::PEO_EXACT)) 2599 Flags |= SDivOperator::IsExact; 2600 } 2601 } 2602 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2603 } 2604 break; 2605 } 2606 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2607 if (Record.size() < 3) 2608 return error("Invalid record"); 2609 int Opc = getDecodedCastOpcode(Record[0]); 2610 if (Opc < 0) { 2611 V = UndefValue::get(CurTy); // Unknown cast. 2612 } else { 2613 Type *OpTy = getTypeByID(Record[1]); 2614 if (!OpTy) 2615 return error("Invalid record"); 2616 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2617 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2618 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2619 } 2620 break; 2621 } 2622 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2623 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2624 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2625 // operands] 2626 unsigned OpNum = 0; 2627 Type *PointeeType = nullptr; 2628 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2629 Record.size() % 2) 2630 PointeeType = getTypeByID(Record[OpNum++]); 2631 2632 bool InBounds = false; 2633 Optional<unsigned> InRangeIndex; 2634 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2635 uint64_t Op = Record[OpNum++]; 2636 InBounds = Op & 1; 2637 InRangeIndex = Op >> 1; 2638 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2639 InBounds = true; 2640 2641 SmallVector<Constant*, 16> Elts; 2642 Type *Elt0FullTy = nullptr; 2643 while (OpNum != Record.size()) { 2644 if (!Elt0FullTy) 2645 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2646 Type *ElTy = getTypeByID(Record[OpNum++]); 2647 if (!ElTy) 2648 return error("Invalid record"); 2649 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2650 } 2651 2652 if (Elts.size() < 1) 2653 return error("Invalid gep with no operands"); 2654 2655 Type *ImplicitPointeeType = 2656 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2657 if (!PointeeType) 2658 PointeeType = ImplicitPointeeType; 2659 else if (PointeeType != ImplicitPointeeType) 2660 return error("Explicit gep operator type does not match pointee type " 2661 "of pointer operand"); 2662 2663 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2664 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2665 InBounds, InRangeIndex); 2666 break; 2667 } 2668 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2669 if (Record.size() < 3) 2670 return error("Invalid record"); 2671 2672 Type *SelectorTy = Type::getInt1Ty(Context); 2673 2674 // The selector might be an i1, an <n x i1>, or a <vscale x n x i1> 2675 // Get the type from the ValueList before getting a forward ref. 2676 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2677 if (Value *V = ValueList[Record[0]]) 2678 if (SelectorTy != V->getType()) 2679 SelectorTy = VectorType::get(SelectorTy, 2680 VTy->getElementCount()); 2681 2682 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2683 SelectorTy), 2684 ValueList.getConstantFwdRef(Record[1],CurTy), 2685 ValueList.getConstantFwdRef(Record[2],CurTy)); 2686 break; 2687 } 2688 case bitc::CST_CODE_CE_EXTRACTELT 2689 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2690 if (Record.size() < 3) 2691 return error("Invalid record"); 2692 VectorType *OpTy = 2693 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2694 if (!OpTy) 2695 return error("Invalid record"); 2696 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2697 Constant *Op1 = nullptr; 2698 if (Record.size() == 4) { 2699 Type *IdxTy = getTypeByID(Record[2]); 2700 if (!IdxTy) 2701 return error("Invalid record"); 2702 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2703 } else { 2704 // Deprecated, but still needed to read old bitcode files. 2705 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2706 } 2707 if (!Op1) 2708 return error("Invalid record"); 2709 V = ConstantExpr::getExtractElement(Op0, Op1); 2710 break; 2711 } 2712 case bitc::CST_CODE_CE_INSERTELT 2713 : { // CE_INSERTELT: [opval, opval, opty, opval] 2714 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2715 if (Record.size() < 3 || !OpTy) 2716 return error("Invalid record"); 2717 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2718 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2719 OpTy->getElementType()); 2720 Constant *Op2 = nullptr; 2721 if (Record.size() == 4) { 2722 Type *IdxTy = getTypeByID(Record[2]); 2723 if (!IdxTy) 2724 return error("Invalid record"); 2725 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2726 } else { 2727 // Deprecated, but still needed to read old bitcode files. 2728 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2729 } 2730 if (!Op2) 2731 return error("Invalid record"); 2732 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2733 break; 2734 } 2735 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2736 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2737 if (Record.size() < 3 || !OpTy) 2738 return error("Invalid record"); 2739 DelayedShuffles.push_back( 2740 {OpTy, OpTy, CurFullTy, Record[0], Record[1], Record[2], NextCstNo}); 2741 ++NextCstNo; 2742 continue; 2743 } 2744 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2745 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2746 VectorType *OpTy = 2747 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2748 if (Record.size() < 4 || !RTy || !OpTy) 2749 return error("Invalid record"); 2750 DelayedShuffles.push_back( 2751 {OpTy, RTy, CurFullTy, Record[1], Record[2], Record[3], NextCstNo}); 2752 ++NextCstNo; 2753 continue; 2754 } 2755 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2756 if (Record.size() < 4) 2757 return error("Invalid record"); 2758 Type *OpTy = getTypeByID(Record[0]); 2759 if (!OpTy) 2760 return error("Invalid record"); 2761 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2762 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2763 2764 if (OpTy->isFPOrFPVectorTy()) 2765 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2766 else 2767 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2768 break; 2769 } 2770 // This maintains backward compatibility, pre-asm dialect keywords. 2771 // Deprecated, but still needed to read old bitcode files. 2772 case bitc::CST_CODE_INLINEASM_OLD: { 2773 if (Record.size() < 2) 2774 return error("Invalid record"); 2775 std::string AsmStr, ConstrStr; 2776 bool HasSideEffects = Record[0] & 1; 2777 bool IsAlignStack = Record[0] >> 1; 2778 unsigned AsmStrSize = Record[1]; 2779 if (2+AsmStrSize >= Record.size()) 2780 return error("Invalid record"); 2781 unsigned ConstStrSize = Record[2+AsmStrSize]; 2782 if (3+AsmStrSize+ConstStrSize > Record.size()) 2783 return error("Invalid record"); 2784 2785 for (unsigned i = 0; i != AsmStrSize; ++i) 2786 AsmStr += (char)Record[2+i]; 2787 for (unsigned i = 0; i != ConstStrSize; ++i) 2788 ConstrStr += (char)Record[3+AsmStrSize+i]; 2789 UpgradeInlineAsmString(&AsmStr); 2790 V = InlineAsm::get( 2791 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2792 ConstrStr, HasSideEffects, IsAlignStack); 2793 break; 2794 } 2795 // This version adds support for the asm dialect keywords (e.g., 2796 // inteldialect). 2797 case bitc::CST_CODE_INLINEASM: { 2798 if (Record.size() < 2) 2799 return error("Invalid record"); 2800 std::string AsmStr, ConstrStr; 2801 bool HasSideEffects = Record[0] & 1; 2802 bool IsAlignStack = (Record[0] >> 1) & 1; 2803 unsigned AsmDialect = Record[0] >> 2; 2804 unsigned AsmStrSize = Record[1]; 2805 if (2+AsmStrSize >= Record.size()) 2806 return error("Invalid record"); 2807 unsigned ConstStrSize = Record[2+AsmStrSize]; 2808 if (3+AsmStrSize+ConstStrSize > Record.size()) 2809 return error("Invalid record"); 2810 2811 for (unsigned i = 0; i != AsmStrSize; ++i) 2812 AsmStr += (char)Record[2+i]; 2813 for (unsigned i = 0; i != ConstStrSize; ++i) 2814 ConstrStr += (char)Record[3+AsmStrSize+i]; 2815 UpgradeInlineAsmString(&AsmStr); 2816 V = InlineAsm::get( 2817 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2818 ConstrStr, HasSideEffects, IsAlignStack, 2819 InlineAsm::AsmDialect(AsmDialect)); 2820 break; 2821 } 2822 case bitc::CST_CODE_BLOCKADDRESS:{ 2823 if (Record.size() < 3) 2824 return error("Invalid record"); 2825 Type *FnTy = getTypeByID(Record[0]); 2826 if (!FnTy) 2827 return error("Invalid record"); 2828 Function *Fn = 2829 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2830 if (!Fn) 2831 return error("Invalid record"); 2832 2833 // If the function is already parsed we can insert the block address right 2834 // away. 2835 BasicBlock *BB; 2836 unsigned BBID = Record[2]; 2837 if (!BBID) 2838 // Invalid reference to entry block. 2839 return error("Invalid ID"); 2840 if (!Fn->empty()) { 2841 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2842 for (size_t I = 0, E = BBID; I != E; ++I) { 2843 if (BBI == BBE) 2844 return error("Invalid ID"); 2845 ++BBI; 2846 } 2847 BB = &*BBI; 2848 } else { 2849 // Otherwise insert a placeholder and remember it so it can be inserted 2850 // when the function is parsed. 2851 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2852 if (FwdBBs.empty()) 2853 BasicBlockFwdRefQueue.push_back(Fn); 2854 if (FwdBBs.size() < BBID + 1) 2855 FwdBBs.resize(BBID + 1); 2856 if (!FwdBBs[BBID]) 2857 FwdBBs[BBID] = BasicBlock::Create(Context); 2858 BB = FwdBBs[BBID]; 2859 } 2860 V = BlockAddress::get(Fn, BB); 2861 break; 2862 } 2863 } 2864 2865 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2866 "Incorrect fully structured type provided for Constant"); 2867 ValueList.assignValue(V, NextCstNo, CurFullTy); 2868 ++NextCstNo; 2869 } 2870 } 2871 2872 Error BitcodeReader::parseUseLists() { 2873 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2874 return Err; 2875 2876 // Read all the records. 2877 SmallVector<uint64_t, 64> Record; 2878 2879 while (true) { 2880 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2881 if (!MaybeEntry) 2882 return MaybeEntry.takeError(); 2883 BitstreamEntry Entry = MaybeEntry.get(); 2884 2885 switch (Entry.Kind) { 2886 case BitstreamEntry::SubBlock: // Handled for us already. 2887 case BitstreamEntry::Error: 2888 return error("Malformed block"); 2889 case BitstreamEntry::EndBlock: 2890 return Error::success(); 2891 case BitstreamEntry::Record: 2892 // The interesting case. 2893 break; 2894 } 2895 2896 // Read a use list record. 2897 Record.clear(); 2898 bool IsBB = false; 2899 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2900 if (!MaybeRecord) 2901 return MaybeRecord.takeError(); 2902 switch (MaybeRecord.get()) { 2903 default: // Default behavior: unknown type. 2904 break; 2905 case bitc::USELIST_CODE_BB: 2906 IsBB = true; 2907 LLVM_FALLTHROUGH; 2908 case bitc::USELIST_CODE_DEFAULT: { 2909 unsigned RecordLength = Record.size(); 2910 if (RecordLength < 3) 2911 // Records should have at least an ID and two indexes. 2912 return error("Invalid record"); 2913 unsigned ID = Record.back(); 2914 Record.pop_back(); 2915 2916 Value *V; 2917 if (IsBB) { 2918 assert(ID < FunctionBBs.size() && "Basic block not found"); 2919 V = FunctionBBs[ID]; 2920 } else 2921 V = ValueList[ID]; 2922 unsigned NumUses = 0; 2923 SmallDenseMap<const Use *, unsigned, 16> Order; 2924 for (const Use &U : V->materialized_uses()) { 2925 if (++NumUses > Record.size()) 2926 break; 2927 Order[&U] = Record[NumUses - 1]; 2928 } 2929 if (Order.size() != Record.size() || NumUses > Record.size()) 2930 // Mismatches can happen if the functions are being materialized lazily 2931 // (out-of-order), or a value has been upgraded. 2932 break; 2933 2934 V->sortUseList([&](const Use &L, const Use &R) { 2935 return Order.lookup(&L) < Order.lookup(&R); 2936 }); 2937 break; 2938 } 2939 } 2940 } 2941 } 2942 2943 /// When we see the block for metadata, remember where it is and then skip it. 2944 /// This lets us lazily deserialize the metadata. 2945 Error BitcodeReader::rememberAndSkipMetadata() { 2946 // Save the current stream state. 2947 uint64_t CurBit = Stream.GetCurrentBitNo(); 2948 DeferredMetadataInfo.push_back(CurBit); 2949 2950 // Skip over the block for now. 2951 if (Error Err = Stream.SkipBlock()) 2952 return Err; 2953 return Error::success(); 2954 } 2955 2956 Error BitcodeReader::materializeMetadata() { 2957 for (uint64_t BitPos : DeferredMetadataInfo) { 2958 // Move the bit stream to the saved position. 2959 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2960 return JumpFailed; 2961 if (Error Err = MDLoader->parseModuleMetadata()) 2962 return Err; 2963 } 2964 2965 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2966 // metadata. 2967 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2968 NamedMDNode *LinkerOpts = 2969 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2970 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2971 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2972 } 2973 2974 DeferredMetadataInfo.clear(); 2975 return Error::success(); 2976 } 2977 2978 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2979 2980 /// When we see the block for a function body, remember where it is and then 2981 /// skip it. This lets us lazily deserialize the functions. 2982 Error BitcodeReader::rememberAndSkipFunctionBody() { 2983 // Get the function we are talking about. 2984 if (FunctionsWithBodies.empty()) 2985 return error("Insufficient function protos"); 2986 2987 Function *Fn = FunctionsWithBodies.back(); 2988 FunctionsWithBodies.pop_back(); 2989 2990 // Save the current stream state. 2991 uint64_t CurBit = Stream.GetCurrentBitNo(); 2992 assert( 2993 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2994 "Mismatch between VST and scanned function offsets"); 2995 DeferredFunctionInfo[Fn] = CurBit; 2996 2997 // Skip over the function block for now. 2998 if (Error Err = Stream.SkipBlock()) 2999 return Err; 3000 return Error::success(); 3001 } 3002 3003 Error BitcodeReader::globalCleanup() { 3004 // Patch the initializers for globals and aliases up. 3005 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3006 return Err; 3007 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 3008 return error("Malformed global initializer set"); 3009 3010 // Look for intrinsic functions which need to be upgraded at some point 3011 // and functions that need to have their function attributes upgraded. 3012 for (Function &F : *TheModule) { 3013 MDLoader->upgradeDebugIntrinsics(F); 3014 Function *NewFn; 3015 if (UpgradeIntrinsicFunction(&F, NewFn)) 3016 UpgradedIntrinsics[&F] = NewFn; 3017 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 3018 // Some types could be renamed during loading if several modules are 3019 // loaded in the same LLVMContext (LTO scenario). In this case we should 3020 // remangle intrinsics names as well. 3021 RemangledIntrinsics[&F] = Remangled.getValue(); 3022 // Look for functions that rely on old function attribute behavior. 3023 UpgradeFunctionAttributes(F); 3024 } 3025 3026 // Look for global variables which need to be renamed. 3027 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 3028 for (GlobalVariable &GV : TheModule->globals()) 3029 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 3030 UpgradedVariables.emplace_back(&GV, Upgraded); 3031 for (auto &Pair : UpgradedVariables) { 3032 Pair.first->eraseFromParent(); 3033 TheModule->getGlobalList().push_back(Pair.second); 3034 } 3035 3036 // Force deallocation of memory for these vectors to favor the client that 3037 // want lazy deserialization. 3038 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 3039 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 3040 IndirectSymbolInits); 3041 return Error::success(); 3042 } 3043 3044 /// Support for lazy parsing of function bodies. This is required if we 3045 /// either have an old bitcode file without a VST forward declaration record, 3046 /// or if we have an anonymous function being materialized, since anonymous 3047 /// functions do not have a name and are therefore not in the VST. 3048 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3049 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3050 return JumpFailed; 3051 3052 if (Stream.AtEndOfStream()) 3053 return error("Could not find function in stream"); 3054 3055 if (!SeenFirstFunctionBody) 3056 return error("Trying to materialize functions before seeing function blocks"); 3057 3058 // An old bitcode file with the symbol table at the end would have 3059 // finished the parse greedily. 3060 assert(SeenValueSymbolTable); 3061 3062 SmallVector<uint64_t, 64> Record; 3063 3064 while (true) { 3065 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3066 if (!MaybeEntry) 3067 return MaybeEntry.takeError(); 3068 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3069 3070 switch (Entry.Kind) { 3071 default: 3072 return error("Expect SubBlock"); 3073 case BitstreamEntry::SubBlock: 3074 switch (Entry.ID) { 3075 default: 3076 return error("Expect function block"); 3077 case bitc::FUNCTION_BLOCK_ID: 3078 if (Error Err = rememberAndSkipFunctionBody()) 3079 return Err; 3080 NextUnreadBit = Stream.GetCurrentBitNo(); 3081 return Error::success(); 3082 } 3083 } 3084 } 3085 } 3086 3087 bool BitcodeReaderBase::readBlockInfo() { 3088 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3089 Stream.ReadBlockInfoBlock(); 3090 if (!MaybeNewBlockInfo) 3091 return true; // FIXME Handle the error. 3092 Optional<BitstreamBlockInfo> NewBlockInfo = 3093 std::move(MaybeNewBlockInfo.get()); 3094 if (!NewBlockInfo) 3095 return true; 3096 BlockInfo = std::move(*NewBlockInfo); 3097 return false; 3098 } 3099 3100 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3101 // v1: [selection_kind, name] 3102 // v2: [strtab_offset, strtab_size, selection_kind] 3103 StringRef Name; 3104 std::tie(Name, Record) = readNameFromStrtab(Record); 3105 3106 if (Record.empty()) 3107 return error("Invalid record"); 3108 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3109 std::string OldFormatName; 3110 if (!UseStrtab) { 3111 if (Record.size() < 2) 3112 return error("Invalid record"); 3113 unsigned ComdatNameSize = Record[1]; 3114 OldFormatName.reserve(ComdatNameSize); 3115 for (unsigned i = 0; i != ComdatNameSize; ++i) 3116 OldFormatName += (char)Record[2 + i]; 3117 Name = OldFormatName; 3118 } 3119 Comdat *C = TheModule->getOrInsertComdat(Name); 3120 C->setSelectionKind(SK); 3121 ComdatList.push_back(C); 3122 return Error::success(); 3123 } 3124 3125 static void inferDSOLocal(GlobalValue *GV) { 3126 // infer dso_local from linkage and visibility if it is not encoded. 3127 if (GV->hasLocalLinkage() || 3128 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3129 GV->setDSOLocal(true); 3130 } 3131 3132 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3133 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3134 // visibility, threadlocal, unnamed_addr, externally_initialized, 3135 // dllstorageclass, comdat, attributes, preemption specifier, 3136 // partition strtab offset, partition strtab size] (name in VST) 3137 // v2: [strtab_offset, strtab_size, v1] 3138 StringRef Name; 3139 std::tie(Name, Record) = readNameFromStrtab(Record); 3140 3141 if (Record.size() < 6) 3142 return error("Invalid record"); 3143 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3144 Type *Ty = flattenPointerTypes(FullTy); 3145 if (!Ty) 3146 return error("Invalid record"); 3147 bool isConstant = Record[1] & 1; 3148 bool explicitType = Record[1] & 2; 3149 unsigned AddressSpace; 3150 if (explicitType) { 3151 AddressSpace = Record[1] >> 2; 3152 } else { 3153 if (!Ty->isPointerTy()) 3154 return error("Invalid type for value"); 3155 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3156 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3157 } 3158 3159 uint64_t RawLinkage = Record[3]; 3160 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3161 MaybeAlign Alignment; 3162 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3163 return Err; 3164 std::string Section; 3165 if (Record[5]) { 3166 if (Record[5] - 1 >= SectionTable.size()) 3167 return error("Invalid ID"); 3168 Section = SectionTable[Record[5] - 1]; 3169 } 3170 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3171 // Local linkage must have default visibility. 3172 // auto-upgrade `hidden` and `protected` for old bitcode. 3173 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3174 Visibility = getDecodedVisibility(Record[6]); 3175 3176 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3177 if (Record.size() > 7) 3178 TLM = getDecodedThreadLocalMode(Record[7]); 3179 3180 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3181 if (Record.size() > 8) 3182 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3183 3184 bool ExternallyInitialized = false; 3185 if (Record.size() > 9) 3186 ExternallyInitialized = Record[9]; 3187 3188 GlobalVariable *NewGV = 3189 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3190 nullptr, TLM, AddressSpace, ExternallyInitialized); 3191 NewGV->setAlignment(Alignment); 3192 if (!Section.empty()) 3193 NewGV->setSection(Section); 3194 NewGV->setVisibility(Visibility); 3195 NewGV->setUnnamedAddr(UnnamedAddr); 3196 3197 if (Record.size() > 10) 3198 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3199 else 3200 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3201 3202 FullTy = PointerType::get(FullTy, AddressSpace); 3203 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3204 "Incorrect fully specified type for GlobalVariable"); 3205 ValueList.push_back(NewGV, FullTy); 3206 3207 // Remember which value to use for the global initializer. 3208 if (unsigned InitID = Record[2]) 3209 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3210 3211 if (Record.size() > 11) { 3212 if (unsigned ComdatID = Record[11]) { 3213 if (ComdatID > ComdatList.size()) 3214 return error("Invalid global variable comdat ID"); 3215 NewGV->setComdat(ComdatList[ComdatID - 1]); 3216 } 3217 } else if (hasImplicitComdat(RawLinkage)) { 3218 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3219 } 3220 3221 if (Record.size() > 12) { 3222 auto AS = getAttributes(Record[12]).getFnAttributes(); 3223 NewGV->setAttributes(AS); 3224 } 3225 3226 if (Record.size() > 13) { 3227 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3228 } 3229 inferDSOLocal(NewGV); 3230 3231 // Check whether we have enough values to read a partition name. 3232 if (Record.size() > 15) 3233 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3234 3235 return Error::success(); 3236 } 3237 3238 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3239 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3240 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3241 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3242 // v2: [strtab_offset, strtab_size, v1] 3243 StringRef Name; 3244 std::tie(Name, Record) = readNameFromStrtab(Record); 3245 3246 if (Record.size() < 8) 3247 return error("Invalid record"); 3248 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3249 Type *FTy = flattenPointerTypes(FullFTy); 3250 if (!FTy) 3251 return error("Invalid record"); 3252 if (isa<PointerType>(FTy)) 3253 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3254 3255 if (!isa<FunctionType>(FTy)) 3256 return error("Invalid type for value"); 3257 auto CC = static_cast<CallingConv::ID>(Record[1]); 3258 if (CC & ~CallingConv::MaxID) 3259 return error("Invalid calling convention ID"); 3260 3261 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3262 if (Record.size() > 16) 3263 AddrSpace = Record[16]; 3264 3265 Function *Func = 3266 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3267 AddrSpace, Name, TheModule); 3268 3269 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3270 "Incorrect fully specified type provided for function"); 3271 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3272 3273 Func->setCallingConv(CC); 3274 bool isProto = Record[2]; 3275 uint64_t RawLinkage = Record[3]; 3276 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3277 Func->setAttributes(getAttributes(Record[4])); 3278 3279 // Upgrade any old-style byval without a type by propagating the argument's 3280 // pointee type. There should be no opaque pointers where the byval type is 3281 // implicit. 3282 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3283 if (!Func->hasParamAttribute(i, Attribute::ByVal)) 3284 continue; 3285 3286 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3287 Func->removeParamAttr(i, Attribute::ByVal); 3288 Func->addParamAttr(i, Attribute::getWithByValType( 3289 Context, getPointerElementFlatType(PTy))); 3290 } 3291 3292 MaybeAlign Alignment; 3293 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3294 return Err; 3295 Func->setAlignment(Alignment); 3296 if (Record[6]) { 3297 if (Record[6] - 1 >= SectionTable.size()) 3298 return error("Invalid ID"); 3299 Func->setSection(SectionTable[Record[6] - 1]); 3300 } 3301 // Local linkage must have default visibility. 3302 // auto-upgrade `hidden` and `protected` for old bitcode. 3303 if (!Func->hasLocalLinkage()) 3304 Func->setVisibility(getDecodedVisibility(Record[7])); 3305 if (Record.size() > 8 && Record[8]) { 3306 if (Record[8] - 1 >= GCTable.size()) 3307 return error("Invalid ID"); 3308 Func->setGC(GCTable[Record[8] - 1]); 3309 } 3310 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3311 if (Record.size() > 9) 3312 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3313 Func->setUnnamedAddr(UnnamedAddr); 3314 if (Record.size() > 10 && Record[10] != 0) 3315 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3316 3317 if (Record.size() > 11) 3318 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3319 else 3320 upgradeDLLImportExportLinkage(Func, RawLinkage); 3321 3322 if (Record.size() > 12) { 3323 if (unsigned ComdatID = Record[12]) { 3324 if (ComdatID > ComdatList.size()) 3325 return error("Invalid function comdat ID"); 3326 Func->setComdat(ComdatList[ComdatID - 1]); 3327 } 3328 } else if (hasImplicitComdat(RawLinkage)) { 3329 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3330 } 3331 3332 if (Record.size() > 13 && Record[13] != 0) 3333 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3334 3335 if (Record.size() > 14 && Record[14] != 0) 3336 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3337 3338 if (Record.size() > 15) { 3339 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3340 } 3341 inferDSOLocal(Func); 3342 3343 // Record[16] is the address space number. 3344 3345 // Check whether we have enough values to read a partition name. 3346 if (Record.size() > 18) 3347 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3348 3349 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3350 assert(Func->getType() == flattenPointerTypes(FullTy) && 3351 "Incorrect fully specified type provided for Function"); 3352 ValueList.push_back(Func, FullTy); 3353 3354 // If this is a function with a body, remember the prototype we are 3355 // creating now, so that we can match up the body with them later. 3356 if (!isProto) { 3357 Func->setIsMaterializable(true); 3358 FunctionsWithBodies.push_back(Func); 3359 DeferredFunctionInfo[Func] = 0; 3360 } 3361 return Error::success(); 3362 } 3363 3364 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3365 unsigned BitCode, ArrayRef<uint64_t> Record) { 3366 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3367 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3368 // dllstorageclass, threadlocal, unnamed_addr, 3369 // preemption specifier] (name in VST) 3370 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3371 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3372 // preemption specifier] (name in VST) 3373 // v2: [strtab_offset, strtab_size, v1] 3374 StringRef Name; 3375 std::tie(Name, Record) = readNameFromStrtab(Record); 3376 3377 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3378 if (Record.size() < (3 + (unsigned)NewRecord)) 3379 return error("Invalid record"); 3380 unsigned OpNum = 0; 3381 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3382 Type *Ty = flattenPointerTypes(FullTy); 3383 if (!Ty) 3384 return error("Invalid record"); 3385 3386 unsigned AddrSpace; 3387 if (!NewRecord) { 3388 auto *PTy = dyn_cast<PointerType>(Ty); 3389 if (!PTy) 3390 return error("Invalid type for value"); 3391 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3392 AddrSpace = PTy->getAddressSpace(); 3393 } else { 3394 AddrSpace = Record[OpNum++]; 3395 } 3396 3397 auto Val = Record[OpNum++]; 3398 auto Linkage = Record[OpNum++]; 3399 GlobalIndirectSymbol *NewGA; 3400 if (BitCode == bitc::MODULE_CODE_ALIAS || 3401 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3402 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3403 TheModule); 3404 else 3405 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3406 nullptr, TheModule); 3407 3408 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3409 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3410 // Local linkage must have default visibility. 3411 // auto-upgrade `hidden` and `protected` for old bitcode. 3412 if (OpNum != Record.size()) { 3413 auto VisInd = OpNum++; 3414 if (!NewGA->hasLocalLinkage()) 3415 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3416 } 3417 if (BitCode == bitc::MODULE_CODE_ALIAS || 3418 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3419 if (OpNum != Record.size()) 3420 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3421 else 3422 upgradeDLLImportExportLinkage(NewGA, Linkage); 3423 if (OpNum != Record.size()) 3424 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3425 if (OpNum != Record.size()) 3426 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3427 } 3428 if (OpNum != Record.size()) 3429 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3430 inferDSOLocal(NewGA); 3431 3432 // Check whether we have enough values to read a partition name. 3433 if (OpNum + 1 < Record.size()) { 3434 NewGA->setPartition( 3435 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3436 OpNum += 2; 3437 } 3438 3439 FullTy = PointerType::get(FullTy, AddrSpace); 3440 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3441 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3442 ValueList.push_back(NewGA, FullTy); 3443 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3444 return Error::success(); 3445 } 3446 3447 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3448 bool ShouldLazyLoadMetadata, 3449 DataLayoutCallbackTy DataLayoutCallback) { 3450 if (ResumeBit) { 3451 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3452 return JumpFailed; 3453 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3454 return Err; 3455 3456 SmallVector<uint64_t, 64> Record; 3457 3458 // Parts of bitcode parsing depend on the datalayout. Make sure we 3459 // finalize the datalayout before we run any of that code. 3460 bool ResolvedDataLayout = false; 3461 auto ResolveDataLayout = [&] { 3462 if (ResolvedDataLayout) 3463 return; 3464 3465 // datalayout and triple can't be parsed after this point. 3466 ResolvedDataLayout = true; 3467 3468 // Upgrade data layout string. 3469 std::string DL = llvm::UpgradeDataLayoutString( 3470 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3471 TheModule->setDataLayout(DL); 3472 3473 if (auto LayoutOverride = 3474 DataLayoutCallback(TheModule->getTargetTriple())) 3475 TheModule->setDataLayout(*LayoutOverride); 3476 }; 3477 3478 // Read all the records for this module. 3479 while (true) { 3480 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3481 if (!MaybeEntry) 3482 return MaybeEntry.takeError(); 3483 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3484 3485 switch (Entry.Kind) { 3486 case BitstreamEntry::Error: 3487 return error("Malformed block"); 3488 case BitstreamEntry::EndBlock: 3489 ResolveDataLayout(); 3490 return globalCleanup(); 3491 3492 case BitstreamEntry::SubBlock: 3493 switch (Entry.ID) { 3494 default: // Skip unknown content. 3495 if (Error Err = Stream.SkipBlock()) 3496 return Err; 3497 break; 3498 case bitc::BLOCKINFO_BLOCK_ID: 3499 if (readBlockInfo()) 3500 return error("Malformed block"); 3501 break; 3502 case bitc::PARAMATTR_BLOCK_ID: 3503 if (Error Err = parseAttributeBlock()) 3504 return Err; 3505 break; 3506 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3507 if (Error Err = parseAttributeGroupBlock()) 3508 return Err; 3509 break; 3510 case bitc::TYPE_BLOCK_ID_NEW: 3511 if (Error Err = parseTypeTable()) 3512 return Err; 3513 break; 3514 case bitc::VALUE_SYMTAB_BLOCK_ID: 3515 if (!SeenValueSymbolTable) { 3516 // Either this is an old form VST without function index and an 3517 // associated VST forward declaration record (which would have caused 3518 // the VST to be jumped to and parsed before it was encountered 3519 // normally in the stream), or there were no function blocks to 3520 // trigger an earlier parsing of the VST. 3521 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3522 if (Error Err = parseValueSymbolTable()) 3523 return Err; 3524 SeenValueSymbolTable = true; 3525 } else { 3526 // We must have had a VST forward declaration record, which caused 3527 // the parser to jump to and parse the VST earlier. 3528 assert(VSTOffset > 0); 3529 if (Error Err = Stream.SkipBlock()) 3530 return Err; 3531 } 3532 break; 3533 case bitc::CONSTANTS_BLOCK_ID: 3534 if (Error Err = parseConstants()) 3535 return Err; 3536 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3537 return Err; 3538 break; 3539 case bitc::METADATA_BLOCK_ID: 3540 if (ShouldLazyLoadMetadata) { 3541 if (Error Err = rememberAndSkipMetadata()) 3542 return Err; 3543 break; 3544 } 3545 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3546 if (Error Err = MDLoader->parseModuleMetadata()) 3547 return Err; 3548 break; 3549 case bitc::METADATA_KIND_BLOCK_ID: 3550 if (Error Err = MDLoader->parseMetadataKinds()) 3551 return Err; 3552 break; 3553 case bitc::FUNCTION_BLOCK_ID: 3554 ResolveDataLayout(); 3555 3556 // If this is the first function body we've seen, reverse the 3557 // FunctionsWithBodies list. 3558 if (!SeenFirstFunctionBody) { 3559 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3560 if (Error Err = globalCleanup()) 3561 return Err; 3562 SeenFirstFunctionBody = true; 3563 } 3564 3565 if (VSTOffset > 0) { 3566 // If we have a VST forward declaration record, make sure we 3567 // parse the VST now if we haven't already. It is needed to 3568 // set up the DeferredFunctionInfo vector for lazy reading. 3569 if (!SeenValueSymbolTable) { 3570 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3571 return Err; 3572 SeenValueSymbolTable = true; 3573 // Fall through so that we record the NextUnreadBit below. 3574 // This is necessary in case we have an anonymous function that 3575 // is later materialized. Since it will not have a VST entry we 3576 // need to fall back to the lazy parse to find its offset. 3577 } else { 3578 // If we have a VST forward declaration record, but have already 3579 // parsed the VST (just above, when the first function body was 3580 // encountered here), then we are resuming the parse after 3581 // materializing functions. The ResumeBit points to the 3582 // start of the last function block recorded in the 3583 // DeferredFunctionInfo map. Skip it. 3584 if (Error Err = Stream.SkipBlock()) 3585 return Err; 3586 continue; 3587 } 3588 } 3589 3590 // Support older bitcode files that did not have the function 3591 // index in the VST, nor a VST forward declaration record, as 3592 // well as anonymous functions that do not have VST entries. 3593 // Build the DeferredFunctionInfo vector on the fly. 3594 if (Error Err = rememberAndSkipFunctionBody()) 3595 return Err; 3596 3597 // Suspend parsing when we reach the function bodies. Subsequent 3598 // materialization calls will resume it when necessary. If the bitcode 3599 // file is old, the symbol table will be at the end instead and will not 3600 // have been seen yet. In this case, just finish the parse now. 3601 if (SeenValueSymbolTable) { 3602 NextUnreadBit = Stream.GetCurrentBitNo(); 3603 // After the VST has been parsed, we need to make sure intrinsic name 3604 // are auto-upgraded. 3605 return globalCleanup(); 3606 } 3607 break; 3608 case bitc::USELIST_BLOCK_ID: 3609 if (Error Err = parseUseLists()) 3610 return Err; 3611 break; 3612 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3613 if (Error Err = parseOperandBundleTags()) 3614 return Err; 3615 break; 3616 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3617 if (Error Err = parseSyncScopeNames()) 3618 return Err; 3619 break; 3620 } 3621 continue; 3622 3623 case BitstreamEntry::Record: 3624 // The interesting case. 3625 break; 3626 } 3627 3628 // Read a record. 3629 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3630 if (!MaybeBitCode) 3631 return MaybeBitCode.takeError(); 3632 switch (unsigned BitCode = MaybeBitCode.get()) { 3633 default: break; // Default behavior, ignore unknown content. 3634 case bitc::MODULE_CODE_VERSION: { 3635 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3636 if (!VersionOrErr) 3637 return VersionOrErr.takeError(); 3638 UseRelativeIDs = *VersionOrErr >= 1; 3639 break; 3640 } 3641 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3642 if (ResolvedDataLayout) 3643 return error("target triple too late in module"); 3644 std::string S; 3645 if (convertToString(Record, 0, S)) 3646 return error("Invalid record"); 3647 TheModule->setTargetTriple(S); 3648 break; 3649 } 3650 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3651 if (ResolvedDataLayout) 3652 return error("datalayout too late in module"); 3653 std::string S; 3654 if (convertToString(Record, 0, S)) 3655 return error("Invalid record"); 3656 TheModule->setDataLayout(S); 3657 break; 3658 } 3659 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3660 std::string S; 3661 if (convertToString(Record, 0, S)) 3662 return error("Invalid record"); 3663 TheModule->setModuleInlineAsm(S); 3664 break; 3665 } 3666 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3667 // Deprecated, but still needed to read old bitcode files. 3668 std::string S; 3669 if (convertToString(Record, 0, S)) 3670 return error("Invalid record"); 3671 // Ignore value. 3672 break; 3673 } 3674 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3675 std::string S; 3676 if (convertToString(Record, 0, S)) 3677 return error("Invalid record"); 3678 SectionTable.push_back(S); 3679 break; 3680 } 3681 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3682 std::string S; 3683 if (convertToString(Record, 0, S)) 3684 return error("Invalid record"); 3685 GCTable.push_back(S); 3686 break; 3687 } 3688 case bitc::MODULE_CODE_COMDAT: 3689 if (Error Err = parseComdatRecord(Record)) 3690 return Err; 3691 break; 3692 case bitc::MODULE_CODE_GLOBALVAR: 3693 if (Error Err = parseGlobalVarRecord(Record)) 3694 return Err; 3695 break; 3696 case bitc::MODULE_CODE_FUNCTION: 3697 ResolveDataLayout(); 3698 if (Error Err = parseFunctionRecord(Record)) 3699 return Err; 3700 break; 3701 case bitc::MODULE_CODE_IFUNC: 3702 case bitc::MODULE_CODE_ALIAS: 3703 case bitc::MODULE_CODE_ALIAS_OLD: 3704 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3705 return Err; 3706 break; 3707 /// MODULE_CODE_VSTOFFSET: [offset] 3708 case bitc::MODULE_CODE_VSTOFFSET: 3709 if (Record.size() < 1) 3710 return error("Invalid record"); 3711 // Note that we subtract 1 here because the offset is relative to one word 3712 // before the start of the identification or module block, which was 3713 // historically always the start of the regular bitcode header. 3714 VSTOffset = Record[0] - 1; 3715 break; 3716 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3717 case bitc::MODULE_CODE_SOURCE_FILENAME: 3718 SmallString<128> ValueName; 3719 if (convertToString(Record, 0, ValueName)) 3720 return error("Invalid record"); 3721 TheModule->setSourceFileName(ValueName); 3722 break; 3723 } 3724 Record.clear(); 3725 } 3726 } 3727 3728 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3729 bool IsImporting, 3730 DataLayoutCallbackTy DataLayoutCallback) { 3731 TheModule = M; 3732 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3733 [&](unsigned ID) { return getTypeByID(ID); }); 3734 return parseModule(0, ShouldLazyLoadMetadata, DataLayoutCallback); 3735 } 3736 3737 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3738 if (!isa<PointerType>(PtrType)) 3739 return error("Load/Store operand is not a pointer type"); 3740 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3741 3742 if (ValType && ValType != ElemType) 3743 return error("Explicit load/store type does not match pointee " 3744 "type of pointer operand"); 3745 if (!PointerType::isLoadableOrStorableType(ElemType)) 3746 return error("Cannot load/store from pointer"); 3747 return Error::success(); 3748 } 3749 3750 void BitcodeReader::propagateByValTypes(CallBase *CB, 3751 ArrayRef<Type *> ArgsFullTys) { 3752 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3753 if (!CB->paramHasAttr(i, Attribute::ByVal)) 3754 continue; 3755 3756 CB->removeParamAttr(i, Attribute::ByVal); 3757 CB->addParamAttr( 3758 i, Attribute::getWithByValType( 3759 Context, getPointerElementFlatType(ArgsFullTys[i]))); 3760 } 3761 } 3762 3763 /// Lazily parse the specified function body block. 3764 Error BitcodeReader::parseFunctionBody(Function *F) { 3765 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3766 return Err; 3767 3768 // Unexpected unresolved metadata when parsing function. 3769 if (MDLoader->hasFwdRefs()) 3770 return error("Invalid function metadata: incoming forward references"); 3771 3772 InstructionList.clear(); 3773 unsigned ModuleValueListSize = ValueList.size(); 3774 unsigned ModuleMDLoaderSize = MDLoader->size(); 3775 3776 // Add all the function arguments to the value table. 3777 unsigned ArgNo = 0; 3778 FunctionType *FullFTy = FunctionTypes[F]; 3779 for (Argument &I : F->args()) { 3780 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3781 "Incorrect fully specified type for Function Argument"); 3782 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3783 } 3784 unsigned NextValueNo = ValueList.size(); 3785 BasicBlock *CurBB = nullptr; 3786 unsigned CurBBNo = 0; 3787 3788 DebugLoc LastLoc; 3789 auto getLastInstruction = [&]() -> Instruction * { 3790 if (CurBB && !CurBB->empty()) 3791 return &CurBB->back(); 3792 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3793 !FunctionBBs[CurBBNo - 1]->empty()) 3794 return &FunctionBBs[CurBBNo - 1]->back(); 3795 return nullptr; 3796 }; 3797 3798 std::vector<OperandBundleDef> OperandBundles; 3799 3800 // Read all the records. 3801 SmallVector<uint64_t, 64> Record; 3802 3803 while (true) { 3804 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3805 if (!MaybeEntry) 3806 return MaybeEntry.takeError(); 3807 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3808 3809 switch (Entry.Kind) { 3810 case BitstreamEntry::Error: 3811 return error("Malformed block"); 3812 case BitstreamEntry::EndBlock: 3813 goto OutOfRecordLoop; 3814 3815 case BitstreamEntry::SubBlock: 3816 switch (Entry.ID) { 3817 default: // Skip unknown content. 3818 if (Error Err = Stream.SkipBlock()) 3819 return Err; 3820 break; 3821 case bitc::CONSTANTS_BLOCK_ID: 3822 if (Error Err = parseConstants()) 3823 return Err; 3824 NextValueNo = ValueList.size(); 3825 break; 3826 case bitc::VALUE_SYMTAB_BLOCK_ID: 3827 if (Error Err = parseValueSymbolTable()) 3828 return Err; 3829 break; 3830 case bitc::METADATA_ATTACHMENT_ID: 3831 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3832 return Err; 3833 break; 3834 case bitc::METADATA_BLOCK_ID: 3835 assert(DeferredMetadataInfo.empty() && 3836 "Must read all module-level metadata before function-level"); 3837 if (Error Err = MDLoader->parseFunctionMetadata()) 3838 return Err; 3839 break; 3840 case bitc::USELIST_BLOCK_ID: 3841 if (Error Err = parseUseLists()) 3842 return Err; 3843 break; 3844 } 3845 continue; 3846 3847 case BitstreamEntry::Record: 3848 // The interesting case. 3849 break; 3850 } 3851 3852 // Read a record. 3853 Record.clear(); 3854 Instruction *I = nullptr; 3855 Type *FullTy = nullptr; 3856 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3857 if (!MaybeBitCode) 3858 return MaybeBitCode.takeError(); 3859 switch (unsigned BitCode = MaybeBitCode.get()) { 3860 default: // Default behavior: reject 3861 return error("Invalid value"); 3862 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3863 if (Record.size() < 1 || Record[0] == 0) 3864 return error("Invalid record"); 3865 // Create all the basic blocks for the function. 3866 FunctionBBs.resize(Record[0]); 3867 3868 // See if anything took the address of blocks in this function. 3869 auto BBFRI = BasicBlockFwdRefs.find(F); 3870 if (BBFRI == BasicBlockFwdRefs.end()) { 3871 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3872 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3873 } else { 3874 auto &BBRefs = BBFRI->second; 3875 // Check for invalid basic block references. 3876 if (BBRefs.size() > FunctionBBs.size()) 3877 return error("Invalid ID"); 3878 assert(!BBRefs.empty() && "Unexpected empty array"); 3879 assert(!BBRefs.front() && "Invalid reference to entry block"); 3880 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3881 ++I) 3882 if (I < RE && BBRefs[I]) { 3883 BBRefs[I]->insertInto(F); 3884 FunctionBBs[I] = BBRefs[I]; 3885 } else { 3886 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3887 } 3888 3889 // Erase from the table. 3890 BasicBlockFwdRefs.erase(BBFRI); 3891 } 3892 3893 CurBB = FunctionBBs[0]; 3894 continue; 3895 } 3896 3897 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3898 // This record indicates that the last instruction is at the same 3899 // location as the previous instruction with a location. 3900 I = getLastInstruction(); 3901 3902 if (!I) 3903 return error("Invalid record"); 3904 I->setDebugLoc(LastLoc); 3905 I = nullptr; 3906 continue; 3907 3908 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3909 I = getLastInstruction(); 3910 if (!I || Record.size() < 4) 3911 return error("Invalid record"); 3912 3913 unsigned Line = Record[0], Col = Record[1]; 3914 unsigned ScopeID = Record[2], IAID = Record[3]; 3915 bool isImplicitCode = Record.size() == 5 && Record[4]; 3916 3917 MDNode *Scope = nullptr, *IA = nullptr; 3918 if (ScopeID) { 3919 Scope = dyn_cast_or_null<MDNode>( 3920 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3921 if (!Scope) 3922 return error("Invalid record"); 3923 } 3924 if (IAID) { 3925 IA = dyn_cast_or_null<MDNode>( 3926 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3927 if (!IA) 3928 return error("Invalid record"); 3929 } 3930 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3931 I->setDebugLoc(LastLoc); 3932 I = nullptr; 3933 continue; 3934 } 3935 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3936 unsigned OpNum = 0; 3937 Value *LHS; 3938 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3939 OpNum+1 > Record.size()) 3940 return error("Invalid record"); 3941 3942 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3943 if (Opc == -1) 3944 return error("Invalid record"); 3945 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3946 InstructionList.push_back(I); 3947 if (OpNum < Record.size()) { 3948 if (isa<FPMathOperator>(I)) { 3949 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3950 if (FMF.any()) 3951 I->setFastMathFlags(FMF); 3952 } 3953 } 3954 break; 3955 } 3956 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3957 unsigned OpNum = 0; 3958 Value *LHS, *RHS; 3959 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3960 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3961 OpNum+1 > Record.size()) 3962 return error("Invalid record"); 3963 3964 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3965 if (Opc == -1) 3966 return error("Invalid record"); 3967 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3968 InstructionList.push_back(I); 3969 if (OpNum < Record.size()) { 3970 if (Opc == Instruction::Add || 3971 Opc == Instruction::Sub || 3972 Opc == Instruction::Mul || 3973 Opc == Instruction::Shl) { 3974 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3975 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3976 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3977 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3978 } else if (Opc == Instruction::SDiv || 3979 Opc == Instruction::UDiv || 3980 Opc == Instruction::LShr || 3981 Opc == Instruction::AShr) { 3982 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3983 cast<BinaryOperator>(I)->setIsExact(true); 3984 } else if (isa<FPMathOperator>(I)) { 3985 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3986 if (FMF.any()) 3987 I->setFastMathFlags(FMF); 3988 } 3989 3990 } 3991 break; 3992 } 3993 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3994 unsigned OpNum = 0; 3995 Value *Op; 3996 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3997 OpNum+2 != Record.size()) 3998 return error("Invalid record"); 3999 4000 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 4001 Type *ResTy = flattenPointerTypes(FullTy); 4002 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 4003 if (Opc == -1 || !ResTy) 4004 return error("Invalid record"); 4005 Instruction *Temp = nullptr; 4006 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 4007 if (Temp) { 4008 InstructionList.push_back(Temp); 4009 assert(CurBB && "No current BB?"); 4010 CurBB->getInstList().push_back(Temp); 4011 } 4012 } else { 4013 auto CastOp = (Instruction::CastOps)Opc; 4014 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 4015 return error("Invalid cast"); 4016 I = CastInst::Create(CastOp, Op, ResTy); 4017 } 4018 InstructionList.push_back(I); 4019 break; 4020 } 4021 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 4022 case bitc::FUNC_CODE_INST_GEP_OLD: 4023 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 4024 unsigned OpNum = 0; 4025 4026 Type *Ty; 4027 bool InBounds; 4028 4029 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 4030 InBounds = Record[OpNum++]; 4031 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4032 Ty = flattenPointerTypes(FullTy); 4033 } else { 4034 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 4035 Ty = nullptr; 4036 } 4037 4038 Value *BasePtr; 4039 Type *FullBaseTy = nullptr; 4040 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 4041 return error("Invalid record"); 4042 4043 if (!Ty) { 4044 std::tie(FullTy, Ty) = 4045 getPointerElementTypes(FullBaseTy->getScalarType()); 4046 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 4047 return error( 4048 "Explicit gep type does not match pointee type of pointer operand"); 4049 4050 SmallVector<Value*, 16> GEPIdx; 4051 while (OpNum != Record.size()) { 4052 Value *Op; 4053 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4054 return error("Invalid record"); 4055 GEPIdx.push_back(Op); 4056 } 4057 4058 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 4059 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 4060 4061 InstructionList.push_back(I); 4062 if (InBounds) 4063 cast<GetElementPtrInst>(I)->setIsInBounds(true); 4064 break; 4065 } 4066 4067 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 4068 // EXTRACTVAL: [opty, opval, n x indices] 4069 unsigned OpNum = 0; 4070 Value *Agg; 4071 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4072 return error("Invalid record"); 4073 4074 unsigned RecSize = Record.size(); 4075 if (OpNum == RecSize) 4076 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4077 4078 SmallVector<unsigned, 4> EXTRACTVALIdx; 4079 for (; OpNum != RecSize; ++OpNum) { 4080 bool IsArray = FullTy->isArrayTy(); 4081 bool IsStruct = FullTy->isStructTy(); 4082 uint64_t Index = Record[OpNum]; 4083 4084 if (!IsStruct && !IsArray) 4085 return error("EXTRACTVAL: Invalid type"); 4086 if ((unsigned)Index != Index) 4087 return error("Invalid value"); 4088 if (IsStruct && Index >= FullTy->getStructNumElements()) 4089 return error("EXTRACTVAL: Invalid struct index"); 4090 if (IsArray && Index >= FullTy->getArrayNumElements()) 4091 return error("EXTRACTVAL: Invalid array index"); 4092 EXTRACTVALIdx.push_back((unsigned)Index); 4093 4094 if (IsStruct) 4095 FullTy = FullTy->getStructElementType(Index); 4096 else 4097 FullTy = FullTy->getArrayElementType(); 4098 } 4099 4100 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4101 InstructionList.push_back(I); 4102 break; 4103 } 4104 4105 case bitc::FUNC_CODE_INST_INSERTVAL: { 4106 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4107 unsigned OpNum = 0; 4108 Value *Agg; 4109 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4110 return error("Invalid record"); 4111 Value *Val; 4112 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4113 return error("Invalid record"); 4114 4115 unsigned RecSize = Record.size(); 4116 if (OpNum == RecSize) 4117 return error("INSERTVAL: Invalid instruction with 0 indices"); 4118 4119 SmallVector<unsigned, 4> INSERTVALIdx; 4120 Type *CurTy = Agg->getType(); 4121 for (; OpNum != RecSize; ++OpNum) { 4122 bool IsArray = CurTy->isArrayTy(); 4123 bool IsStruct = CurTy->isStructTy(); 4124 uint64_t Index = Record[OpNum]; 4125 4126 if (!IsStruct && !IsArray) 4127 return error("INSERTVAL: Invalid type"); 4128 if ((unsigned)Index != Index) 4129 return error("Invalid value"); 4130 if (IsStruct && Index >= CurTy->getStructNumElements()) 4131 return error("INSERTVAL: Invalid struct index"); 4132 if (IsArray && Index >= CurTy->getArrayNumElements()) 4133 return error("INSERTVAL: Invalid array index"); 4134 4135 INSERTVALIdx.push_back((unsigned)Index); 4136 if (IsStruct) 4137 CurTy = CurTy->getStructElementType(Index); 4138 else 4139 CurTy = CurTy->getArrayElementType(); 4140 } 4141 4142 if (CurTy != Val->getType()) 4143 return error("Inserted value type doesn't match aggregate type"); 4144 4145 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4146 InstructionList.push_back(I); 4147 break; 4148 } 4149 4150 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4151 // obsolete form of select 4152 // handles select i1 ... in old bitcode 4153 unsigned OpNum = 0; 4154 Value *TrueVal, *FalseVal, *Cond; 4155 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4156 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4157 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4158 return error("Invalid record"); 4159 4160 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4161 InstructionList.push_back(I); 4162 break; 4163 } 4164 4165 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4166 // new form of select 4167 // handles select i1 or select [N x i1] 4168 unsigned OpNum = 0; 4169 Value *TrueVal, *FalseVal, *Cond; 4170 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4171 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4172 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4173 return error("Invalid record"); 4174 4175 // select condition can be either i1 or [N x i1] 4176 if (VectorType* vector_type = 4177 dyn_cast<VectorType>(Cond->getType())) { 4178 // expect <n x i1> 4179 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4180 return error("Invalid type for value"); 4181 } else { 4182 // expect i1 4183 if (Cond->getType() != Type::getInt1Ty(Context)) 4184 return error("Invalid type for value"); 4185 } 4186 4187 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4188 InstructionList.push_back(I); 4189 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4190 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4191 if (FMF.any()) 4192 I->setFastMathFlags(FMF); 4193 } 4194 break; 4195 } 4196 4197 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4198 unsigned OpNum = 0; 4199 Value *Vec, *Idx; 4200 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4201 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4202 return error("Invalid record"); 4203 if (!Vec->getType()->isVectorTy()) 4204 return error("Invalid type for value"); 4205 I = ExtractElementInst::Create(Vec, Idx); 4206 FullTy = cast<VectorType>(FullTy)->getElementType(); 4207 InstructionList.push_back(I); 4208 break; 4209 } 4210 4211 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4212 unsigned OpNum = 0; 4213 Value *Vec, *Elt, *Idx; 4214 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4215 return error("Invalid record"); 4216 if (!Vec->getType()->isVectorTy()) 4217 return error("Invalid type for value"); 4218 if (popValue(Record, OpNum, NextValueNo, 4219 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4220 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4221 return error("Invalid record"); 4222 I = InsertElementInst::Create(Vec, Elt, Idx); 4223 InstructionList.push_back(I); 4224 break; 4225 } 4226 4227 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4228 unsigned OpNum = 0; 4229 Value *Vec1, *Vec2, *Mask; 4230 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4231 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4232 return error("Invalid record"); 4233 4234 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4235 return error("Invalid record"); 4236 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4237 return error("Invalid type for value"); 4238 4239 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4240 FullTy = 4241 VectorType::get(cast<VectorType>(FullTy)->getElementType(), 4242 cast<VectorType>(Mask->getType())->getElementCount()); 4243 InstructionList.push_back(I); 4244 break; 4245 } 4246 4247 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4248 // Old form of ICmp/FCmp returning bool 4249 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4250 // both legal on vectors but had different behaviour. 4251 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4252 // FCmp/ICmp returning bool or vector of bool 4253 4254 unsigned OpNum = 0; 4255 Value *LHS, *RHS; 4256 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4257 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4258 return error("Invalid record"); 4259 4260 if (OpNum >= Record.size()) 4261 return error( 4262 "Invalid record: operand number exceeded available operands"); 4263 4264 unsigned PredVal = Record[OpNum]; 4265 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4266 FastMathFlags FMF; 4267 if (IsFP && Record.size() > OpNum+1) 4268 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4269 4270 if (OpNum+1 != Record.size()) 4271 return error("Invalid record"); 4272 4273 if (LHS->getType()->isFPOrFPVectorTy()) 4274 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4275 else 4276 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4277 4278 if (FMF.any()) 4279 I->setFastMathFlags(FMF); 4280 InstructionList.push_back(I); 4281 break; 4282 } 4283 4284 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4285 { 4286 unsigned Size = Record.size(); 4287 if (Size == 0) { 4288 I = ReturnInst::Create(Context); 4289 InstructionList.push_back(I); 4290 break; 4291 } 4292 4293 unsigned OpNum = 0; 4294 Value *Op = nullptr; 4295 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4296 return error("Invalid record"); 4297 if (OpNum != Record.size()) 4298 return error("Invalid record"); 4299 4300 I = ReturnInst::Create(Context, Op); 4301 InstructionList.push_back(I); 4302 break; 4303 } 4304 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4305 if (Record.size() != 1 && Record.size() != 3) 4306 return error("Invalid record"); 4307 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4308 if (!TrueDest) 4309 return error("Invalid record"); 4310 4311 if (Record.size() == 1) { 4312 I = BranchInst::Create(TrueDest); 4313 InstructionList.push_back(I); 4314 } 4315 else { 4316 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4317 Value *Cond = getValue(Record, 2, NextValueNo, 4318 Type::getInt1Ty(Context)); 4319 if (!FalseDest || !Cond) 4320 return error("Invalid record"); 4321 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4322 InstructionList.push_back(I); 4323 } 4324 break; 4325 } 4326 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4327 if (Record.size() != 1 && Record.size() != 2) 4328 return error("Invalid record"); 4329 unsigned Idx = 0; 4330 Value *CleanupPad = 4331 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4332 if (!CleanupPad) 4333 return error("Invalid record"); 4334 BasicBlock *UnwindDest = nullptr; 4335 if (Record.size() == 2) { 4336 UnwindDest = getBasicBlock(Record[Idx++]); 4337 if (!UnwindDest) 4338 return error("Invalid record"); 4339 } 4340 4341 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4342 InstructionList.push_back(I); 4343 break; 4344 } 4345 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4346 if (Record.size() != 2) 4347 return error("Invalid record"); 4348 unsigned Idx = 0; 4349 Value *CatchPad = 4350 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4351 if (!CatchPad) 4352 return error("Invalid record"); 4353 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4354 if (!BB) 4355 return error("Invalid record"); 4356 4357 I = CatchReturnInst::Create(CatchPad, BB); 4358 InstructionList.push_back(I); 4359 break; 4360 } 4361 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4362 // We must have, at minimum, the outer scope and the number of arguments. 4363 if (Record.size() < 2) 4364 return error("Invalid record"); 4365 4366 unsigned Idx = 0; 4367 4368 Value *ParentPad = 4369 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4370 4371 unsigned NumHandlers = Record[Idx++]; 4372 4373 SmallVector<BasicBlock *, 2> Handlers; 4374 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4375 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4376 if (!BB) 4377 return error("Invalid record"); 4378 Handlers.push_back(BB); 4379 } 4380 4381 BasicBlock *UnwindDest = nullptr; 4382 if (Idx + 1 == Record.size()) { 4383 UnwindDest = getBasicBlock(Record[Idx++]); 4384 if (!UnwindDest) 4385 return error("Invalid record"); 4386 } 4387 4388 if (Record.size() != Idx) 4389 return error("Invalid record"); 4390 4391 auto *CatchSwitch = 4392 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4393 for (BasicBlock *Handler : Handlers) 4394 CatchSwitch->addHandler(Handler); 4395 I = CatchSwitch; 4396 InstructionList.push_back(I); 4397 break; 4398 } 4399 case bitc::FUNC_CODE_INST_CATCHPAD: 4400 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4401 // We must have, at minimum, the outer scope and the number of arguments. 4402 if (Record.size() < 2) 4403 return error("Invalid record"); 4404 4405 unsigned Idx = 0; 4406 4407 Value *ParentPad = 4408 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4409 4410 unsigned NumArgOperands = Record[Idx++]; 4411 4412 SmallVector<Value *, 2> Args; 4413 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4414 Value *Val; 4415 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4416 return error("Invalid record"); 4417 Args.push_back(Val); 4418 } 4419 4420 if (Record.size() != Idx) 4421 return error("Invalid record"); 4422 4423 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4424 I = CleanupPadInst::Create(ParentPad, Args); 4425 else 4426 I = CatchPadInst::Create(ParentPad, Args); 4427 InstructionList.push_back(I); 4428 break; 4429 } 4430 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4431 // Check magic 4432 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4433 // "New" SwitchInst format with case ranges. The changes to write this 4434 // format were reverted but we still recognize bitcode that uses it. 4435 // Hopefully someday we will have support for case ranges and can use 4436 // this format again. 4437 4438 Type *OpTy = getTypeByID(Record[1]); 4439 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4440 4441 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4442 BasicBlock *Default = getBasicBlock(Record[3]); 4443 if (!OpTy || !Cond || !Default) 4444 return error("Invalid record"); 4445 4446 unsigned NumCases = Record[4]; 4447 4448 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4449 InstructionList.push_back(SI); 4450 4451 unsigned CurIdx = 5; 4452 for (unsigned i = 0; i != NumCases; ++i) { 4453 SmallVector<ConstantInt*, 1> CaseVals; 4454 unsigned NumItems = Record[CurIdx++]; 4455 for (unsigned ci = 0; ci != NumItems; ++ci) { 4456 bool isSingleNumber = Record[CurIdx++]; 4457 4458 APInt Low; 4459 unsigned ActiveWords = 1; 4460 if (ValueBitWidth > 64) 4461 ActiveWords = Record[CurIdx++]; 4462 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4463 ValueBitWidth); 4464 CurIdx += ActiveWords; 4465 4466 if (!isSingleNumber) { 4467 ActiveWords = 1; 4468 if (ValueBitWidth > 64) 4469 ActiveWords = Record[CurIdx++]; 4470 APInt High = readWideAPInt( 4471 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4472 CurIdx += ActiveWords; 4473 4474 // FIXME: It is not clear whether values in the range should be 4475 // compared as signed or unsigned values. The partially 4476 // implemented changes that used this format in the past used 4477 // unsigned comparisons. 4478 for ( ; Low.ule(High); ++Low) 4479 CaseVals.push_back(ConstantInt::get(Context, Low)); 4480 } else 4481 CaseVals.push_back(ConstantInt::get(Context, Low)); 4482 } 4483 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4484 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4485 cve = CaseVals.end(); cvi != cve; ++cvi) 4486 SI->addCase(*cvi, DestBB); 4487 } 4488 I = SI; 4489 break; 4490 } 4491 4492 // Old SwitchInst format without case ranges. 4493 4494 if (Record.size() < 3 || (Record.size() & 1) == 0) 4495 return error("Invalid record"); 4496 Type *OpTy = getTypeByID(Record[0]); 4497 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4498 BasicBlock *Default = getBasicBlock(Record[2]); 4499 if (!OpTy || !Cond || !Default) 4500 return error("Invalid record"); 4501 unsigned NumCases = (Record.size()-3)/2; 4502 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4503 InstructionList.push_back(SI); 4504 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4505 ConstantInt *CaseVal = 4506 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4507 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4508 if (!CaseVal || !DestBB) { 4509 delete SI; 4510 return error("Invalid record"); 4511 } 4512 SI->addCase(CaseVal, DestBB); 4513 } 4514 I = SI; 4515 break; 4516 } 4517 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4518 if (Record.size() < 2) 4519 return error("Invalid record"); 4520 Type *OpTy = getTypeByID(Record[0]); 4521 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4522 if (!OpTy || !Address) 4523 return error("Invalid record"); 4524 unsigned NumDests = Record.size()-2; 4525 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4526 InstructionList.push_back(IBI); 4527 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4528 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4529 IBI->addDestination(DestBB); 4530 } else { 4531 delete IBI; 4532 return error("Invalid record"); 4533 } 4534 } 4535 I = IBI; 4536 break; 4537 } 4538 4539 case bitc::FUNC_CODE_INST_INVOKE: { 4540 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4541 if (Record.size() < 4) 4542 return error("Invalid record"); 4543 unsigned OpNum = 0; 4544 AttributeList PAL = getAttributes(Record[OpNum++]); 4545 unsigned CCInfo = Record[OpNum++]; 4546 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4547 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4548 4549 FunctionType *FTy = nullptr; 4550 FunctionType *FullFTy = nullptr; 4551 if ((CCInfo >> 13) & 1) { 4552 FullFTy = 4553 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4554 if (!FullFTy) 4555 return error("Explicit invoke type is not a function type"); 4556 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4557 } 4558 4559 Value *Callee; 4560 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4561 return error("Invalid record"); 4562 4563 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4564 if (!CalleeTy) 4565 return error("Callee is not a pointer"); 4566 if (!FTy) { 4567 FullFTy = 4568 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4569 if (!FullFTy) 4570 return error("Callee is not of pointer to function type"); 4571 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4572 } else if (getPointerElementFlatType(FullTy) != FTy) 4573 return error("Explicit invoke type does not match pointee type of " 4574 "callee operand"); 4575 if (Record.size() < FTy->getNumParams() + OpNum) 4576 return error("Insufficient operands to call"); 4577 4578 SmallVector<Value*, 16> Ops; 4579 SmallVector<Type *, 16> ArgsFullTys; 4580 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4581 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4582 FTy->getParamType(i))); 4583 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4584 if (!Ops.back()) 4585 return error("Invalid record"); 4586 } 4587 4588 if (!FTy->isVarArg()) { 4589 if (Record.size() != OpNum) 4590 return error("Invalid record"); 4591 } else { 4592 // Read type/value pairs for varargs params. 4593 while (OpNum != Record.size()) { 4594 Value *Op; 4595 Type *FullTy; 4596 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4597 return error("Invalid record"); 4598 Ops.push_back(Op); 4599 ArgsFullTys.push_back(FullTy); 4600 } 4601 } 4602 4603 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4604 OperandBundles); 4605 FullTy = FullFTy->getReturnType(); 4606 OperandBundles.clear(); 4607 InstructionList.push_back(I); 4608 cast<InvokeInst>(I)->setCallingConv( 4609 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4610 cast<InvokeInst>(I)->setAttributes(PAL); 4611 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 4612 4613 break; 4614 } 4615 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4616 unsigned Idx = 0; 4617 Value *Val = nullptr; 4618 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4619 return error("Invalid record"); 4620 I = ResumeInst::Create(Val); 4621 InstructionList.push_back(I); 4622 break; 4623 } 4624 case bitc::FUNC_CODE_INST_CALLBR: { 4625 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4626 unsigned OpNum = 0; 4627 AttributeList PAL = getAttributes(Record[OpNum++]); 4628 unsigned CCInfo = Record[OpNum++]; 4629 4630 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4631 unsigned NumIndirectDests = Record[OpNum++]; 4632 SmallVector<BasicBlock *, 16> IndirectDests; 4633 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4634 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4635 4636 FunctionType *FTy = nullptr; 4637 FunctionType *FullFTy = nullptr; 4638 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4639 FullFTy = 4640 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4641 if (!FullFTy) 4642 return error("Explicit call type is not a function type"); 4643 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4644 } 4645 4646 Value *Callee; 4647 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4648 return error("Invalid record"); 4649 4650 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4651 if (!OpTy) 4652 return error("Callee is not a pointer type"); 4653 if (!FTy) { 4654 FullFTy = 4655 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4656 if (!FullFTy) 4657 return error("Callee is not of pointer to function type"); 4658 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4659 } else if (getPointerElementFlatType(FullTy) != FTy) 4660 return error("Explicit call type does not match pointee type of " 4661 "callee operand"); 4662 if (Record.size() < FTy->getNumParams() + OpNum) 4663 return error("Insufficient operands to call"); 4664 4665 SmallVector<Value*, 16> Args; 4666 // Read the fixed params. 4667 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4668 if (FTy->getParamType(i)->isLabelTy()) 4669 Args.push_back(getBasicBlock(Record[OpNum])); 4670 else 4671 Args.push_back(getValue(Record, OpNum, NextValueNo, 4672 FTy->getParamType(i))); 4673 if (!Args.back()) 4674 return error("Invalid record"); 4675 } 4676 4677 // Read type/value pairs for varargs params. 4678 if (!FTy->isVarArg()) { 4679 if (OpNum != Record.size()) 4680 return error("Invalid record"); 4681 } else { 4682 while (OpNum != Record.size()) { 4683 Value *Op; 4684 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4685 return error("Invalid record"); 4686 Args.push_back(Op); 4687 } 4688 } 4689 4690 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4691 OperandBundles); 4692 FullTy = FullFTy->getReturnType(); 4693 OperandBundles.clear(); 4694 InstructionList.push_back(I); 4695 cast<CallBrInst>(I)->setCallingConv( 4696 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4697 cast<CallBrInst>(I)->setAttributes(PAL); 4698 break; 4699 } 4700 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4701 I = new UnreachableInst(Context); 4702 InstructionList.push_back(I); 4703 break; 4704 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4705 if (Record.size() < 1) 4706 return error("Invalid record"); 4707 // The first record specifies the type. 4708 FullTy = getFullyStructuredTypeByID(Record[0]); 4709 Type *Ty = flattenPointerTypes(FullTy); 4710 if (!Ty) 4711 return error("Invalid record"); 4712 4713 // Phi arguments are pairs of records of [value, basic block]. 4714 // There is an optional final record for fast-math-flags if this phi has a 4715 // floating-point type. 4716 size_t NumArgs = (Record.size() - 1) / 2; 4717 PHINode *PN = PHINode::Create(Ty, NumArgs); 4718 if ((Record.size() - 1) % 2 == 1 && !isa<FPMathOperator>(PN)) 4719 return error("Invalid record"); 4720 InstructionList.push_back(PN); 4721 4722 for (unsigned i = 0; i != NumArgs; i++) { 4723 Value *V; 4724 // With the new function encoding, it is possible that operands have 4725 // negative IDs (for forward references). Use a signed VBR 4726 // representation to keep the encoding small. 4727 if (UseRelativeIDs) 4728 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4729 else 4730 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4731 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4732 if (!V || !BB) 4733 return error("Invalid record"); 4734 PN->addIncoming(V, BB); 4735 } 4736 I = PN; 4737 4738 // If there are an even number of records, the final record must be FMF. 4739 if (Record.size() % 2 == 0) { 4740 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4741 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4742 if (FMF.any()) 4743 I->setFastMathFlags(FMF); 4744 } 4745 4746 break; 4747 } 4748 4749 case bitc::FUNC_CODE_INST_LANDINGPAD: 4750 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4751 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4752 unsigned Idx = 0; 4753 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4754 if (Record.size() < 3) 4755 return error("Invalid record"); 4756 } else { 4757 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4758 if (Record.size() < 4) 4759 return error("Invalid record"); 4760 } 4761 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4762 Type *Ty = flattenPointerTypes(FullTy); 4763 if (!Ty) 4764 return error("Invalid record"); 4765 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4766 Value *PersFn = nullptr; 4767 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4768 return error("Invalid record"); 4769 4770 if (!F->hasPersonalityFn()) 4771 F->setPersonalityFn(cast<Constant>(PersFn)); 4772 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4773 return error("Personality function mismatch"); 4774 } 4775 4776 bool IsCleanup = !!Record[Idx++]; 4777 unsigned NumClauses = Record[Idx++]; 4778 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4779 LP->setCleanup(IsCleanup); 4780 for (unsigned J = 0; J != NumClauses; ++J) { 4781 LandingPadInst::ClauseType CT = 4782 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4783 Value *Val; 4784 4785 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4786 delete LP; 4787 return error("Invalid record"); 4788 } 4789 4790 assert((CT != LandingPadInst::Catch || 4791 !isa<ArrayType>(Val->getType())) && 4792 "Catch clause has a invalid type!"); 4793 assert((CT != LandingPadInst::Filter || 4794 isa<ArrayType>(Val->getType())) && 4795 "Filter clause has invalid type!"); 4796 LP->addClause(cast<Constant>(Val)); 4797 } 4798 4799 I = LP; 4800 InstructionList.push_back(I); 4801 break; 4802 } 4803 4804 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4805 if (Record.size() != 4) 4806 return error("Invalid record"); 4807 uint64_t AlignRecord = Record[3]; 4808 const uint64_t InAllocaMask = uint64_t(1) << 5; 4809 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4810 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4811 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4812 SwiftErrorMask; 4813 bool InAlloca = AlignRecord & InAllocaMask; 4814 bool SwiftError = AlignRecord & SwiftErrorMask; 4815 FullTy = getFullyStructuredTypeByID(Record[0]); 4816 Type *Ty = flattenPointerTypes(FullTy); 4817 if ((AlignRecord & ExplicitTypeMask) == 0) { 4818 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4819 if (!PTy) 4820 return error("Old-style alloca with a non-pointer type"); 4821 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4822 } 4823 Type *OpTy = getTypeByID(Record[1]); 4824 Value *Size = getFnValueByID(Record[2], OpTy); 4825 MaybeAlign Align; 4826 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4827 return Err; 4828 } 4829 if (!Ty || !Size) 4830 return error("Invalid record"); 4831 4832 // FIXME: Make this an optional field. 4833 const DataLayout &DL = TheModule->getDataLayout(); 4834 unsigned AS = DL.getAllocaAddrSpace(); 4835 4836 SmallPtrSet<Type *, 4> Visited; 4837 if (!Align && !Ty->isSized(&Visited)) 4838 return error("alloca of unsized type"); 4839 if (!Align) 4840 Align = DL.getPrefTypeAlign(Ty); 4841 4842 AllocaInst *AI = new AllocaInst(Ty, AS, Size, *Align); 4843 AI->setUsedWithInAlloca(InAlloca); 4844 AI->setSwiftError(SwiftError); 4845 I = AI; 4846 FullTy = PointerType::get(FullTy, AS); 4847 InstructionList.push_back(I); 4848 break; 4849 } 4850 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4851 unsigned OpNum = 0; 4852 Value *Op; 4853 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4854 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4855 return error("Invalid record"); 4856 4857 if (!isa<PointerType>(Op->getType())) 4858 return error("Load operand is not a pointer type"); 4859 4860 Type *Ty = nullptr; 4861 if (OpNum + 3 == Record.size()) { 4862 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4863 Ty = flattenPointerTypes(FullTy); 4864 } else 4865 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4866 4867 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4868 return Err; 4869 4870 MaybeAlign Align; 4871 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4872 return Err; 4873 SmallPtrSet<Type *, 4> Visited; 4874 if (!Align && !Ty->isSized(&Visited)) 4875 return error("load of unsized type"); 4876 if (!Align) 4877 Align = TheModule->getDataLayout().getABITypeAlign(Ty); 4878 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align); 4879 InstructionList.push_back(I); 4880 break; 4881 } 4882 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4883 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4884 unsigned OpNum = 0; 4885 Value *Op; 4886 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4887 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4888 return error("Invalid record"); 4889 4890 if (!isa<PointerType>(Op->getType())) 4891 return error("Load operand is not a pointer type"); 4892 4893 Type *Ty = nullptr; 4894 if (OpNum + 5 == Record.size()) { 4895 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4896 Ty = flattenPointerTypes(FullTy); 4897 } else 4898 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4899 4900 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4901 return Err; 4902 4903 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4904 if (Ordering == AtomicOrdering::NotAtomic || 4905 Ordering == AtomicOrdering::Release || 4906 Ordering == AtomicOrdering::AcquireRelease) 4907 return error("Invalid record"); 4908 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4909 return error("Invalid record"); 4910 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4911 4912 MaybeAlign Align; 4913 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4914 return Err; 4915 if (!Align) 4916 return error("Alignment missing from atomic load"); 4917 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], *Align, Ordering, SSID); 4918 InstructionList.push_back(I); 4919 break; 4920 } 4921 case bitc::FUNC_CODE_INST_STORE: 4922 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4923 unsigned OpNum = 0; 4924 Value *Val, *Ptr; 4925 Type *FullTy; 4926 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4927 (BitCode == bitc::FUNC_CODE_INST_STORE 4928 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4929 : popValue(Record, OpNum, NextValueNo, 4930 getPointerElementFlatType(FullTy), Val)) || 4931 OpNum + 2 != Record.size()) 4932 return error("Invalid record"); 4933 4934 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4935 return Err; 4936 MaybeAlign Align; 4937 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4938 return Err; 4939 SmallPtrSet<Type *, 4> Visited; 4940 if (!Align && !Val->getType()->isSized(&Visited)) 4941 return error("store of unsized type"); 4942 if (!Align) 4943 Align = TheModule->getDataLayout().getABITypeAlign(Val->getType()); 4944 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align); 4945 InstructionList.push_back(I); 4946 break; 4947 } 4948 case bitc::FUNC_CODE_INST_STOREATOMIC: 4949 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4950 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4951 unsigned OpNum = 0; 4952 Value *Val, *Ptr; 4953 Type *FullTy; 4954 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4955 !isa<PointerType>(Ptr->getType()) || 4956 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4957 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4958 : popValue(Record, OpNum, NextValueNo, 4959 getPointerElementFlatType(FullTy), Val)) || 4960 OpNum + 4 != Record.size()) 4961 return error("Invalid record"); 4962 4963 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4964 return Err; 4965 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4966 if (Ordering == AtomicOrdering::NotAtomic || 4967 Ordering == AtomicOrdering::Acquire || 4968 Ordering == AtomicOrdering::AcquireRelease) 4969 return error("Invalid record"); 4970 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4971 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4972 return error("Invalid record"); 4973 4974 MaybeAlign Align; 4975 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4976 return Err; 4977 if (!Align) 4978 return error("Alignment missing from atomic store"); 4979 I = new StoreInst(Val, Ptr, Record[OpNum + 1], *Align, Ordering, SSID); 4980 InstructionList.push_back(I); 4981 break; 4982 } 4983 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4984 case bitc::FUNC_CODE_INST_CMPXCHG: { 4985 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4986 // failureordering?, isweak?] 4987 unsigned OpNum = 0; 4988 Value *Ptr, *Cmp, *New; 4989 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 4990 return error("Invalid record"); 4991 4992 if (!isa<PointerType>(Ptr->getType())) 4993 return error("Cmpxchg operand is not a pointer type"); 4994 4995 if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) { 4996 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 4997 return error("Invalid record"); 4998 } else if (popValue(Record, OpNum, NextValueNo, 4999 getPointerElementFlatType(FullTy), Cmp)) 5000 return error("Invalid record"); 5001 else 5002 FullTy = cast<PointerType>(FullTy)->getElementType(); 5003 5004 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 5005 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 5006 return error("Invalid record"); 5007 5008 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 5009 if (SuccessOrdering == AtomicOrdering::NotAtomic || 5010 SuccessOrdering == AtomicOrdering::Unordered) 5011 return error("Invalid record"); 5012 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 5013 5014 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 5015 return Err; 5016 AtomicOrdering FailureOrdering; 5017 if (Record.size() < 7) 5018 FailureOrdering = 5019 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 5020 else 5021 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 5022 5023 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 5024 SSID); 5025 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 5026 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 5027 5028 if (Record.size() < 8) { 5029 // Before weak cmpxchgs existed, the instruction simply returned the 5030 // value loaded from memory, so bitcode files from that era will be 5031 // expecting the first component of a modern cmpxchg. 5032 CurBB->getInstList().push_back(I); 5033 I = ExtractValueInst::Create(I, 0); 5034 FullTy = cast<StructType>(FullTy)->getElementType(0); 5035 } else { 5036 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 5037 } 5038 5039 InstructionList.push_back(I); 5040 break; 5041 } 5042 case bitc::FUNC_CODE_INST_ATOMICRMW: { 5043 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 5044 unsigned OpNum = 0; 5045 Value *Ptr, *Val; 5046 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 5047 !isa<PointerType>(Ptr->getType()) || 5048 popValue(Record, OpNum, NextValueNo, 5049 getPointerElementFlatType(FullTy), Val) || 5050 OpNum + 4 != Record.size()) 5051 return error("Invalid record"); 5052 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 5053 if (Operation < AtomicRMWInst::FIRST_BINOP || 5054 Operation > AtomicRMWInst::LAST_BINOP) 5055 return error("Invalid record"); 5056 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 5057 if (Ordering == AtomicOrdering::NotAtomic || 5058 Ordering == AtomicOrdering::Unordered) 5059 return error("Invalid record"); 5060 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 5061 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 5062 FullTy = getPointerElementFlatType(FullTy); 5063 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 5064 InstructionList.push_back(I); 5065 break; 5066 } 5067 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 5068 if (2 != Record.size()) 5069 return error("Invalid record"); 5070 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 5071 if (Ordering == AtomicOrdering::NotAtomic || 5072 Ordering == AtomicOrdering::Unordered || 5073 Ordering == AtomicOrdering::Monotonic) 5074 return error("Invalid record"); 5075 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 5076 I = new FenceInst(Context, Ordering, SSID); 5077 InstructionList.push_back(I); 5078 break; 5079 } 5080 case bitc::FUNC_CODE_INST_CALL: { 5081 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 5082 if (Record.size() < 3) 5083 return error("Invalid record"); 5084 5085 unsigned OpNum = 0; 5086 AttributeList PAL = getAttributes(Record[OpNum++]); 5087 unsigned CCInfo = Record[OpNum++]; 5088 5089 FastMathFlags FMF; 5090 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5091 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5092 if (!FMF.any()) 5093 return error("Fast math flags indicator set for call with no FMF"); 5094 } 5095 5096 FunctionType *FTy = nullptr; 5097 FunctionType *FullFTy = nullptr; 5098 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5099 FullFTy = 5100 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5101 if (!FullFTy) 5102 return error("Explicit call type is not a function type"); 5103 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5104 } 5105 5106 Value *Callee; 5107 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5108 return error("Invalid record"); 5109 5110 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5111 if (!OpTy) 5112 return error("Callee is not a pointer type"); 5113 if (!FTy) { 5114 FullFTy = 5115 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5116 if (!FullFTy) 5117 return error("Callee is not of pointer to function type"); 5118 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5119 } else if (getPointerElementFlatType(FullTy) != FTy) 5120 return error("Explicit call type does not match pointee type of " 5121 "callee operand"); 5122 if (Record.size() < FTy->getNumParams() + OpNum) 5123 return error("Insufficient operands to call"); 5124 5125 SmallVector<Value*, 16> Args; 5126 SmallVector<Type*, 16> ArgsFullTys; 5127 // Read the fixed params. 5128 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5129 if (FTy->getParamType(i)->isLabelTy()) 5130 Args.push_back(getBasicBlock(Record[OpNum])); 5131 else 5132 Args.push_back(getValue(Record, OpNum, NextValueNo, 5133 FTy->getParamType(i))); 5134 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5135 if (!Args.back()) 5136 return error("Invalid record"); 5137 } 5138 5139 // Read type/value pairs for varargs params. 5140 if (!FTy->isVarArg()) { 5141 if (OpNum != Record.size()) 5142 return error("Invalid record"); 5143 } else { 5144 while (OpNum != Record.size()) { 5145 Value *Op; 5146 Type *FullTy; 5147 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5148 return error("Invalid record"); 5149 Args.push_back(Op); 5150 ArgsFullTys.push_back(FullTy); 5151 } 5152 } 5153 5154 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5155 FullTy = FullFTy->getReturnType(); 5156 OperandBundles.clear(); 5157 InstructionList.push_back(I); 5158 cast<CallInst>(I)->setCallingConv( 5159 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5160 CallInst::TailCallKind TCK = CallInst::TCK_None; 5161 if (CCInfo & 1 << bitc::CALL_TAIL) 5162 TCK = CallInst::TCK_Tail; 5163 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5164 TCK = CallInst::TCK_MustTail; 5165 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5166 TCK = CallInst::TCK_NoTail; 5167 cast<CallInst>(I)->setTailCallKind(TCK); 5168 cast<CallInst>(I)->setAttributes(PAL); 5169 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 5170 if (FMF.any()) { 5171 if (!isa<FPMathOperator>(I)) 5172 return error("Fast-math-flags specified for call without " 5173 "floating-point scalar or vector return type"); 5174 I->setFastMathFlags(FMF); 5175 } 5176 break; 5177 } 5178 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5179 if (Record.size() < 3) 5180 return error("Invalid record"); 5181 Type *OpTy = getTypeByID(Record[0]); 5182 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5183 FullTy = getFullyStructuredTypeByID(Record[2]); 5184 Type *ResTy = flattenPointerTypes(FullTy); 5185 if (!OpTy || !Op || !ResTy) 5186 return error("Invalid record"); 5187 I = new VAArgInst(Op, ResTy); 5188 InstructionList.push_back(I); 5189 break; 5190 } 5191 5192 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5193 // A call or an invoke can be optionally prefixed with some variable 5194 // number of operand bundle blocks. These blocks are read into 5195 // OperandBundles and consumed at the next call or invoke instruction. 5196 5197 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5198 return error("Invalid record"); 5199 5200 std::vector<Value *> Inputs; 5201 5202 unsigned OpNum = 1; 5203 while (OpNum != Record.size()) { 5204 Value *Op; 5205 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5206 return error("Invalid record"); 5207 Inputs.push_back(Op); 5208 } 5209 5210 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5211 continue; 5212 } 5213 5214 case bitc::FUNC_CODE_INST_FREEZE: { // FREEZE: [opty,opval] 5215 unsigned OpNum = 0; 5216 Value *Op = nullptr; 5217 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5218 return error("Invalid record"); 5219 if (OpNum != Record.size()) 5220 return error("Invalid record"); 5221 5222 I = new FreezeInst(Op); 5223 InstructionList.push_back(I); 5224 break; 5225 } 5226 } 5227 5228 // Add instruction to end of current BB. If there is no current BB, reject 5229 // this file. 5230 if (!CurBB) { 5231 I->deleteValue(); 5232 return error("Invalid instruction with no BB"); 5233 } 5234 if (!OperandBundles.empty()) { 5235 I->deleteValue(); 5236 return error("Operand bundles found with no consumer"); 5237 } 5238 CurBB->getInstList().push_back(I); 5239 5240 // If this was a terminator instruction, move to the next block. 5241 if (I->isTerminator()) { 5242 ++CurBBNo; 5243 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5244 } 5245 5246 // Non-void values get registered in the value table for future use. 5247 if (!I->getType()->isVoidTy()) { 5248 if (!FullTy) { 5249 FullTy = I->getType(); 5250 assert( 5251 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5252 !isa<ArrayType>(FullTy) && 5253 (!isa<VectorType>(FullTy) || 5254 cast<VectorType>(FullTy)->getElementType()->isFloatingPointTy() || 5255 cast<VectorType>(FullTy)->getElementType()->isIntegerTy()) && 5256 "Structured types must be assigned with corresponding non-opaque " 5257 "pointer type"); 5258 } 5259 5260 assert(I->getType() == flattenPointerTypes(FullTy) && 5261 "Incorrect fully structured type provided for Instruction"); 5262 ValueList.assignValue(I, NextValueNo++, FullTy); 5263 } 5264 } 5265 5266 OutOfRecordLoop: 5267 5268 if (!OperandBundles.empty()) 5269 return error("Operand bundles found with no consumer"); 5270 5271 // Check the function list for unresolved values. 5272 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5273 if (!A->getParent()) { 5274 // We found at least one unresolved value. Nuke them all to avoid leaks. 5275 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5276 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5277 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5278 delete A; 5279 } 5280 } 5281 return error("Never resolved value found in function"); 5282 } 5283 } 5284 5285 // Unexpected unresolved metadata about to be dropped. 5286 if (MDLoader->hasFwdRefs()) 5287 return error("Invalid function metadata: outgoing forward refs"); 5288 5289 // Trim the value list down to the size it was before we parsed this function. 5290 ValueList.shrinkTo(ModuleValueListSize); 5291 MDLoader->shrinkTo(ModuleMDLoaderSize); 5292 std::vector<BasicBlock*>().swap(FunctionBBs); 5293 return Error::success(); 5294 } 5295 5296 /// Find the function body in the bitcode stream 5297 Error BitcodeReader::findFunctionInStream( 5298 Function *F, 5299 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5300 while (DeferredFunctionInfoIterator->second == 0) { 5301 // This is the fallback handling for the old format bitcode that 5302 // didn't contain the function index in the VST, or when we have 5303 // an anonymous function which would not have a VST entry. 5304 // Assert that we have one of those two cases. 5305 assert(VSTOffset == 0 || !F->hasName()); 5306 // Parse the next body in the stream and set its position in the 5307 // DeferredFunctionInfo map. 5308 if (Error Err = rememberAndSkipFunctionBodies()) 5309 return Err; 5310 } 5311 return Error::success(); 5312 } 5313 5314 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5315 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5316 return SyncScope::ID(Val); 5317 if (Val >= SSIDs.size()) 5318 return SyncScope::System; // Map unknown synchronization scopes to system. 5319 return SSIDs[Val]; 5320 } 5321 5322 //===----------------------------------------------------------------------===// 5323 // GVMaterializer implementation 5324 //===----------------------------------------------------------------------===// 5325 5326 Error BitcodeReader::materialize(GlobalValue *GV) { 5327 Function *F = dyn_cast<Function>(GV); 5328 // If it's not a function or is already material, ignore the request. 5329 if (!F || !F->isMaterializable()) 5330 return Error::success(); 5331 5332 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5333 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5334 // If its position is recorded as 0, its body is somewhere in the stream 5335 // but we haven't seen it yet. 5336 if (DFII->second == 0) 5337 if (Error Err = findFunctionInStream(F, DFII)) 5338 return Err; 5339 5340 // Materialize metadata before parsing any function bodies. 5341 if (Error Err = materializeMetadata()) 5342 return Err; 5343 5344 // Move the bit stream to the saved position of the deferred function body. 5345 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5346 return JumpFailed; 5347 if (Error Err = parseFunctionBody(F)) 5348 return Err; 5349 F->setIsMaterializable(false); 5350 5351 if (StripDebugInfo) 5352 stripDebugInfo(*F); 5353 5354 // Upgrade any old intrinsic calls in the function. 5355 for (auto &I : UpgradedIntrinsics) { 5356 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5357 UI != UE;) { 5358 User *U = *UI; 5359 ++UI; 5360 if (CallInst *CI = dyn_cast<CallInst>(U)) 5361 UpgradeIntrinsicCall(CI, I.second); 5362 } 5363 } 5364 5365 // Update calls to the remangled intrinsics 5366 for (auto &I : RemangledIntrinsics) 5367 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5368 UI != UE;) 5369 // Don't expect any other users than call sites 5370 cast<CallBase>(*UI++)->setCalledFunction(I.second); 5371 5372 // Finish fn->subprogram upgrade for materialized functions. 5373 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5374 F->setSubprogram(SP); 5375 5376 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5377 if (!MDLoader->isStrippingTBAA()) { 5378 for (auto &I : instructions(F)) { 5379 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5380 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5381 continue; 5382 MDLoader->setStripTBAA(true); 5383 stripTBAA(F->getParent()); 5384 } 5385 } 5386 5387 // Look for functions that rely on old function attribute behavior. 5388 UpgradeFunctionAttributes(*F); 5389 5390 // Bring in any functions that this function forward-referenced via 5391 // blockaddresses. 5392 return materializeForwardReferencedFunctions(); 5393 } 5394 5395 Error BitcodeReader::materializeModule() { 5396 if (Error Err = materializeMetadata()) 5397 return Err; 5398 5399 // Promise to materialize all forward references. 5400 WillMaterializeAllForwardRefs = true; 5401 5402 // Iterate over the module, deserializing any functions that are still on 5403 // disk. 5404 for (Function &F : *TheModule) { 5405 if (Error Err = materialize(&F)) 5406 return Err; 5407 } 5408 // At this point, if there are any function bodies, parse the rest of 5409 // the bits in the module past the last function block we have recorded 5410 // through either lazy scanning or the VST. 5411 if (LastFunctionBlockBit || NextUnreadBit) 5412 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5413 ? LastFunctionBlockBit 5414 : NextUnreadBit)) 5415 return Err; 5416 5417 // Check that all block address forward references got resolved (as we 5418 // promised above). 5419 if (!BasicBlockFwdRefs.empty()) 5420 return error("Never resolved function from blockaddress"); 5421 5422 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5423 // delete the old functions to clean up. We can't do this unless the entire 5424 // module is materialized because there could always be another function body 5425 // with calls to the old function. 5426 for (auto &I : UpgradedIntrinsics) { 5427 for (auto *U : I.first->users()) { 5428 if (CallInst *CI = dyn_cast<CallInst>(U)) 5429 UpgradeIntrinsicCall(CI, I.second); 5430 } 5431 if (!I.first->use_empty()) 5432 I.first->replaceAllUsesWith(I.second); 5433 I.first->eraseFromParent(); 5434 } 5435 UpgradedIntrinsics.clear(); 5436 // Do the same for remangled intrinsics 5437 for (auto &I : RemangledIntrinsics) { 5438 I.first->replaceAllUsesWith(I.second); 5439 I.first->eraseFromParent(); 5440 } 5441 RemangledIntrinsics.clear(); 5442 5443 UpgradeDebugInfo(*TheModule); 5444 5445 UpgradeModuleFlags(*TheModule); 5446 5447 UpgradeARCRuntime(*TheModule); 5448 5449 return Error::success(); 5450 } 5451 5452 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5453 return IdentifiedStructTypes; 5454 } 5455 5456 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5457 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5458 StringRef ModulePath, unsigned ModuleId) 5459 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5460 ModulePath(ModulePath), ModuleId(ModuleId) {} 5461 5462 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5463 TheIndex.addModule(ModulePath, ModuleId); 5464 } 5465 5466 ModuleSummaryIndex::ModuleInfo * 5467 ModuleSummaryIndexBitcodeReader::getThisModule() { 5468 return TheIndex.getModule(ModulePath); 5469 } 5470 5471 std::pair<ValueInfo, GlobalValue::GUID> 5472 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5473 auto VGI = ValueIdToValueInfoMap[ValueId]; 5474 assert(VGI.first); 5475 return VGI; 5476 } 5477 5478 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5479 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5480 StringRef SourceFileName) { 5481 std::string GlobalId = 5482 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5483 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5484 auto OriginalNameID = ValueGUID; 5485 if (GlobalValue::isLocalLinkage(Linkage)) 5486 OriginalNameID = GlobalValue::getGUID(ValueName); 5487 if (PrintSummaryGUIDs) 5488 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5489 << ValueName << "\n"; 5490 5491 // UseStrtab is false for legacy summary formats and value names are 5492 // created on stack. In that case we save the name in a string saver in 5493 // the index so that the value name can be recorded. 5494 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5495 TheIndex.getOrInsertValueInfo( 5496 ValueGUID, 5497 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5498 OriginalNameID); 5499 } 5500 5501 // Specialized value symbol table parser used when reading module index 5502 // blocks where we don't actually create global values. The parsed information 5503 // is saved in the bitcode reader for use when later parsing summaries. 5504 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5505 uint64_t Offset, 5506 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5507 // With a strtab the VST is not required to parse the summary. 5508 if (UseStrtab) 5509 return Error::success(); 5510 5511 assert(Offset > 0 && "Expected non-zero VST offset"); 5512 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5513 if (!MaybeCurrentBit) 5514 return MaybeCurrentBit.takeError(); 5515 uint64_t CurrentBit = MaybeCurrentBit.get(); 5516 5517 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5518 return Err; 5519 5520 SmallVector<uint64_t, 64> Record; 5521 5522 // Read all the records for this value table. 5523 SmallString<128> ValueName; 5524 5525 while (true) { 5526 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5527 if (!MaybeEntry) 5528 return MaybeEntry.takeError(); 5529 BitstreamEntry Entry = MaybeEntry.get(); 5530 5531 switch (Entry.Kind) { 5532 case BitstreamEntry::SubBlock: // Handled for us already. 5533 case BitstreamEntry::Error: 5534 return error("Malformed block"); 5535 case BitstreamEntry::EndBlock: 5536 // Done parsing VST, jump back to wherever we came from. 5537 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5538 return JumpFailed; 5539 return Error::success(); 5540 case BitstreamEntry::Record: 5541 // The interesting case. 5542 break; 5543 } 5544 5545 // Read a record. 5546 Record.clear(); 5547 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5548 if (!MaybeRecord) 5549 return MaybeRecord.takeError(); 5550 switch (MaybeRecord.get()) { 5551 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5552 break; 5553 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5554 if (convertToString(Record, 1, ValueName)) 5555 return error("Invalid record"); 5556 unsigned ValueID = Record[0]; 5557 assert(!SourceFileName.empty()); 5558 auto VLI = ValueIdToLinkageMap.find(ValueID); 5559 assert(VLI != ValueIdToLinkageMap.end() && 5560 "No linkage found for VST entry?"); 5561 auto Linkage = VLI->second; 5562 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5563 ValueName.clear(); 5564 break; 5565 } 5566 case bitc::VST_CODE_FNENTRY: { 5567 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5568 if (convertToString(Record, 2, ValueName)) 5569 return error("Invalid record"); 5570 unsigned ValueID = Record[0]; 5571 assert(!SourceFileName.empty()); 5572 auto VLI = ValueIdToLinkageMap.find(ValueID); 5573 assert(VLI != ValueIdToLinkageMap.end() && 5574 "No linkage found for VST entry?"); 5575 auto Linkage = VLI->second; 5576 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5577 ValueName.clear(); 5578 break; 5579 } 5580 case bitc::VST_CODE_COMBINED_ENTRY: { 5581 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5582 unsigned ValueID = Record[0]; 5583 GlobalValue::GUID RefGUID = Record[1]; 5584 // The "original name", which is the second value of the pair will be 5585 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5586 ValueIdToValueInfoMap[ValueID] = 5587 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5588 break; 5589 } 5590 } 5591 } 5592 } 5593 5594 // Parse just the blocks needed for building the index out of the module. 5595 // At the end of this routine the module Index is populated with a map 5596 // from global value id to GlobalValueSummary objects. 5597 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5598 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5599 return Err; 5600 5601 SmallVector<uint64_t, 64> Record; 5602 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5603 unsigned ValueId = 0; 5604 5605 // Read the index for this module. 5606 while (true) { 5607 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5608 if (!MaybeEntry) 5609 return MaybeEntry.takeError(); 5610 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5611 5612 switch (Entry.Kind) { 5613 case BitstreamEntry::Error: 5614 return error("Malformed block"); 5615 case BitstreamEntry::EndBlock: 5616 return Error::success(); 5617 5618 case BitstreamEntry::SubBlock: 5619 switch (Entry.ID) { 5620 default: // Skip unknown content. 5621 if (Error Err = Stream.SkipBlock()) 5622 return Err; 5623 break; 5624 case bitc::BLOCKINFO_BLOCK_ID: 5625 // Need to parse these to get abbrev ids (e.g. for VST) 5626 if (readBlockInfo()) 5627 return error("Malformed block"); 5628 break; 5629 case bitc::VALUE_SYMTAB_BLOCK_ID: 5630 // Should have been parsed earlier via VSTOffset, unless there 5631 // is no summary section. 5632 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5633 !SeenGlobalValSummary) && 5634 "Expected early VST parse via VSTOffset record"); 5635 if (Error Err = Stream.SkipBlock()) 5636 return Err; 5637 break; 5638 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5639 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5640 // Add the module if it is a per-module index (has a source file name). 5641 if (!SourceFileName.empty()) 5642 addThisModule(); 5643 assert(!SeenValueSymbolTable && 5644 "Already read VST when parsing summary block?"); 5645 // We might not have a VST if there were no values in the 5646 // summary. An empty summary block generated when we are 5647 // performing ThinLTO compiles so we don't later invoke 5648 // the regular LTO process on them. 5649 if (VSTOffset > 0) { 5650 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5651 return Err; 5652 SeenValueSymbolTable = true; 5653 } 5654 SeenGlobalValSummary = true; 5655 if (Error Err = parseEntireSummary(Entry.ID)) 5656 return Err; 5657 break; 5658 case bitc::MODULE_STRTAB_BLOCK_ID: 5659 if (Error Err = parseModuleStringTable()) 5660 return Err; 5661 break; 5662 } 5663 continue; 5664 5665 case BitstreamEntry::Record: { 5666 Record.clear(); 5667 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5668 if (!MaybeBitCode) 5669 return MaybeBitCode.takeError(); 5670 switch (MaybeBitCode.get()) { 5671 default: 5672 break; // Default behavior, ignore unknown content. 5673 case bitc::MODULE_CODE_VERSION: { 5674 if (Error Err = parseVersionRecord(Record).takeError()) 5675 return Err; 5676 break; 5677 } 5678 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5679 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5680 SmallString<128> ValueName; 5681 if (convertToString(Record, 0, ValueName)) 5682 return error("Invalid record"); 5683 SourceFileName = ValueName.c_str(); 5684 break; 5685 } 5686 /// MODULE_CODE_HASH: [5*i32] 5687 case bitc::MODULE_CODE_HASH: { 5688 if (Record.size() != 5) 5689 return error("Invalid hash length " + Twine(Record.size()).str()); 5690 auto &Hash = getThisModule()->second.second; 5691 int Pos = 0; 5692 for (auto &Val : Record) { 5693 assert(!(Val >> 32) && "Unexpected high bits set"); 5694 Hash[Pos++] = Val; 5695 } 5696 break; 5697 } 5698 /// MODULE_CODE_VSTOFFSET: [offset] 5699 case bitc::MODULE_CODE_VSTOFFSET: 5700 if (Record.size() < 1) 5701 return error("Invalid record"); 5702 // Note that we subtract 1 here because the offset is relative to one 5703 // word before the start of the identification or module block, which 5704 // was historically always the start of the regular bitcode header. 5705 VSTOffset = Record[0] - 1; 5706 break; 5707 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5708 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5709 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5710 // v2: [strtab offset, strtab size, v1] 5711 case bitc::MODULE_CODE_GLOBALVAR: 5712 case bitc::MODULE_CODE_FUNCTION: 5713 case bitc::MODULE_CODE_ALIAS: { 5714 StringRef Name; 5715 ArrayRef<uint64_t> GVRecord; 5716 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5717 if (GVRecord.size() <= 3) 5718 return error("Invalid record"); 5719 uint64_t RawLinkage = GVRecord[3]; 5720 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5721 if (!UseStrtab) { 5722 ValueIdToLinkageMap[ValueId++] = Linkage; 5723 break; 5724 } 5725 5726 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5727 break; 5728 } 5729 } 5730 } 5731 continue; 5732 } 5733 } 5734 } 5735 5736 std::vector<ValueInfo> 5737 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5738 std::vector<ValueInfo> Ret; 5739 Ret.reserve(Record.size()); 5740 for (uint64_t RefValueId : Record) 5741 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5742 return Ret; 5743 } 5744 5745 std::vector<FunctionSummary::EdgeTy> 5746 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5747 bool IsOldProfileFormat, 5748 bool HasProfile, bool HasRelBF) { 5749 std::vector<FunctionSummary::EdgeTy> Ret; 5750 Ret.reserve(Record.size()); 5751 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5752 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5753 uint64_t RelBF = 0; 5754 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5755 if (IsOldProfileFormat) { 5756 I += 1; // Skip old callsitecount field 5757 if (HasProfile) 5758 I += 1; // Skip old profilecount field 5759 } else if (HasProfile) 5760 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5761 else if (HasRelBF) 5762 RelBF = Record[++I]; 5763 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5764 } 5765 return Ret; 5766 } 5767 5768 static void 5769 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5770 WholeProgramDevirtResolution &Wpd) { 5771 uint64_t ArgNum = Record[Slot++]; 5772 WholeProgramDevirtResolution::ByArg &B = 5773 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5774 Slot += ArgNum; 5775 5776 B.TheKind = 5777 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5778 B.Info = Record[Slot++]; 5779 B.Byte = Record[Slot++]; 5780 B.Bit = Record[Slot++]; 5781 } 5782 5783 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5784 StringRef Strtab, size_t &Slot, 5785 TypeIdSummary &TypeId) { 5786 uint64_t Id = Record[Slot++]; 5787 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5788 5789 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5790 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5791 static_cast<size_t>(Record[Slot + 1])}; 5792 Slot += 2; 5793 5794 uint64_t ResByArgNum = Record[Slot++]; 5795 for (uint64_t I = 0; I != ResByArgNum; ++I) 5796 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5797 } 5798 5799 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5800 StringRef Strtab, 5801 ModuleSummaryIndex &TheIndex) { 5802 size_t Slot = 0; 5803 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5804 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5805 Slot += 2; 5806 5807 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5808 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5809 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5810 TypeId.TTRes.SizeM1 = Record[Slot++]; 5811 TypeId.TTRes.BitMask = Record[Slot++]; 5812 TypeId.TTRes.InlineBits = Record[Slot++]; 5813 5814 while (Slot < Record.size()) 5815 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5816 } 5817 5818 static std::vector<FunctionSummary::ParamAccess> 5819 parseParamAccesses(ArrayRef<uint64_t> Record) { 5820 auto ReadRange = [&]() { 5821 APInt Lower(FunctionSummary::ParamAccess::RangeWidth, 5822 BitcodeReader::decodeSignRotatedValue(Record.front())); 5823 Record = Record.drop_front(); 5824 APInt Upper(FunctionSummary::ParamAccess::RangeWidth, 5825 BitcodeReader::decodeSignRotatedValue(Record.front())); 5826 Record = Record.drop_front(); 5827 ConstantRange Range{Lower, Upper}; 5828 assert(!Range.isFullSet()); 5829 assert(!Range.isUpperSignWrapped()); 5830 return Range; 5831 }; 5832 5833 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 5834 while (!Record.empty()) { 5835 PendingParamAccesses.emplace_back(); 5836 FunctionSummary::ParamAccess &ParamAccess = PendingParamAccesses.back(); 5837 ParamAccess.ParamNo = Record.front(); 5838 Record = Record.drop_front(); 5839 ParamAccess.Use = ReadRange(); 5840 ParamAccess.Calls.resize(Record.front()); 5841 Record = Record.drop_front(); 5842 for (auto &Call : ParamAccess.Calls) { 5843 Call.ParamNo = Record.front(); 5844 Record = Record.drop_front(); 5845 Call.Callee = Record.front(); 5846 Record = Record.drop_front(); 5847 Call.Offsets = ReadRange(); 5848 } 5849 } 5850 return PendingParamAccesses; 5851 } 5852 5853 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5854 ArrayRef<uint64_t> Record, size_t &Slot, 5855 TypeIdCompatibleVtableInfo &TypeId) { 5856 uint64_t Offset = Record[Slot++]; 5857 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5858 TypeId.push_back({Offset, Callee}); 5859 } 5860 5861 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5862 ArrayRef<uint64_t> Record) { 5863 size_t Slot = 0; 5864 TypeIdCompatibleVtableInfo &TypeId = 5865 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5866 {Strtab.data() + Record[Slot], 5867 static_cast<size_t>(Record[Slot + 1])}); 5868 Slot += 2; 5869 5870 while (Slot < Record.size()) 5871 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5872 } 5873 5874 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 5875 unsigned WOCnt) { 5876 // Readonly and writeonly refs are in the end of the refs list. 5877 assert(ROCnt + WOCnt <= Refs.size()); 5878 unsigned FirstWORef = Refs.size() - WOCnt; 5879 unsigned RefNo = FirstWORef - ROCnt; 5880 for (; RefNo < FirstWORef; ++RefNo) 5881 Refs[RefNo].setReadOnly(); 5882 for (; RefNo < Refs.size(); ++RefNo) 5883 Refs[RefNo].setWriteOnly(); 5884 } 5885 5886 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5887 // objects in the index. 5888 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5889 if (Error Err = Stream.EnterSubBlock(ID)) 5890 return Err; 5891 SmallVector<uint64_t, 64> Record; 5892 5893 // Parse version 5894 { 5895 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5896 if (!MaybeEntry) 5897 return MaybeEntry.takeError(); 5898 BitstreamEntry Entry = MaybeEntry.get(); 5899 5900 if (Entry.Kind != BitstreamEntry::Record) 5901 return error("Invalid Summary Block: record for version expected"); 5902 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5903 if (!MaybeRecord) 5904 return MaybeRecord.takeError(); 5905 if (MaybeRecord.get() != bitc::FS_VERSION) 5906 return error("Invalid Summary Block: version expected"); 5907 } 5908 const uint64_t Version = Record[0]; 5909 const bool IsOldProfileFormat = Version == 1; 5910 if (Version < 1 || Version > ModuleSummaryIndex::BitcodeSummaryVersion) 5911 return error("Invalid summary version " + Twine(Version) + 5912 ". Version should be in the range [1-" + 5913 Twine(ModuleSummaryIndex::BitcodeSummaryVersion) + 5914 "]."); 5915 Record.clear(); 5916 5917 // Keep around the last seen summary to be used when we see an optional 5918 // "OriginalName" attachement. 5919 GlobalValueSummary *LastSeenSummary = nullptr; 5920 GlobalValue::GUID LastSeenGUID = 0; 5921 5922 // We can expect to see any number of type ID information records before 5923 // each function summary records; these variables store the information 5924 // collected so far so that it can be used to create the summary object. 5925 std::vector<GlobalValue::GUID> PendingTypeTests; 5926 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5927 PendingTypeCheckedLoadVCalls; 5928 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5929 PendingTypeCheckedLoadConstVCalls; 5930 std::vector<FunctionSummary::ParamAccess> PendingParamAccesses; 5931 5932 while (true) { 5933 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5934 if (!MaybeEntry) 5935 return MaybeEntry.takeError(); 5936 BitstreamEntry Entry = MaybeEntry.get(); 5937 5938 switch (Entry.Kind) { 5939 case BitstreamEntry::SubBlock: // Handled for us already. 5940 case BitstreamEntry::Error: 5941 return error("Malformed block"); 5942 case BitstreamEntry::EndBlock: 5943 return Error::success(); 5944 case BitstreamEntry::Record: 5945 // The interesting case. 5946 break; 5947 } 5948 5949 // Read a record. The record format depends on whether this 5950 // is a per-module index or a combined index file. In the per-module 5951 // case the records contain the associated value's ID for correlation 5952 // with VST entries. In the combined index the correlation is done 5953 // via the bitcode offset of the summary records (which were saved 5954 // in the combined index VST entries). The records also contain 5955 // information used for ThinLTO renaming and importing. 5956 Record.clear(); 5957 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5958 if (!MaybeBitCode) 5959 return MaybeBitCode.takeError(); 5960 switch (unsigned BitCode = MaybeBitCode.get()) { 5961 default: // Default behavior: ignore. 5962 break; 5963 case bitc::FS_FLAGS: { // [flags] 5964 TheIndex.setFlags(Record[0]); 5965 break; 5966 } 5967 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5968 uint64_t ValueID = Record[0]; 5969 GlobalValue::GUID RefGUID = Record[1]; 5970 ValueIdToValueInfoMap[ValueID] = 5971 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5972 break; 5973 } 5974 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5975 // numrefs x valueid, n x (valueid)] 5976 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5977 // numrefs x valueid, 5978 // n x (valueid, hotness)] 5979 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5980 // numrefs x valueid, 5981 // n x (valueid, relblockfreq)] 5982 case bitc::FS_PERMODULE: 5983 case bitc::FS_PERMODULE_RELBF: 5984 case bitc::FS_PERMODULE_PROFILE: { 5985 unsigned ValueID = Record[0]; 5986 uint64_t RawFlags = Record[1]; 5987 unsigned InstCount = Record[2]; 5988 uint64_t RawFunFlags = 0; 5989 unsigned NumRefs = Record[3]; 5990 unsigned NumRORefs = 0, NumWORefs = 0; 5991 int RefListStartIndex = 4; 5992 if (Version >= 4) { 5993 RawFunFlags = Record[3]; 5994 NumRefs = Record[4]; 5995 RefListStartIndex = 5; 5996 if (Version >= 5) { 5997 NumRORefs = Record[5]; 5998 RefListStartIndex = 6; 5999 if (Version >= 7) { 6000 NumWORefs = Record[6]; 6001 RefListStartIndex = 7; 6002 } 6003 } 6004 } 6005 6006 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6007 // The module path string ref set in the summary must be owned by the 6008 // index's module string table. Since we don't have a module path 6009 // string table section in the per-module index, we create a single 6010 // module path string table entry with an empty (0) ID to take 6011 // ownership. 6012 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6013 assert(Record.size() >= RefListStartIndex + NumRefs && 6014 "Record size inconsistent with number of references"); 6015 std::vector<ValueInfo> Refs = makeRefList( 6016 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6017 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 6018 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 6019 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 6020 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6021 IsOldProfileFormat, HasProfile, HasRelBF); 6022 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6023 auto FS = std::make_unique<FunctionSummary>( 6024 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 6025 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 6026 std::move(PendingTypeTestAssumeVCalls), 6027 std::move(PendingTypeCheckedLoadVCalls), 6028 std::move(PendingTypeTestAssumeConstVCalls), 6029 std::move(PendingTypeCheckedLoadConstVCalls), 6030 std::move(PendingParamAccesses)); 6031 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 6032 FS->setModulePath(getThisModule()->first()); 6033 FS->setOriginalName(VIAndOriginalGUID.second); 6034 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 6035 break; 6036 } 6037 // FS_ALIAS: [valueid, flags, valueid] 6038 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 6039 // they expect all aliasee summaries to be available. 6040 case bitc::FS_ALIAS: { 6041 unsigned ValueID = Record[0]; 6042 uint64_t RawFlags = Record[1]; 6043 unsigned AliaseeID = Record[2]; 6044 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6045 auto AS = std::make_unique<AliasSummary>(Flags); 6046 // The module path string ref set in the summary must be owned by the 6047 // index's module string table. Since we don't have a module path 6048 // string table section in the per-module index, we create a single 6049 // module path string table entry with an empty (0) ID to take 6050 // ownership. 6051 AS->setModulePath(getThisModule()->first()); 6052 6053 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 6054 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 6055 if (!AliaseeInModule) 6056 return error("Alias expects aliasee summary to be parsed"); 6057 AS->setAliasee(AliaseeVI, AliaseeInModule); 6058 6059 auto GUID = getValueInfoFromValueId(ValueID); 6060 AS->setOriginalName(GUID.second); 6061 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 6062 break; 6063 } 6064 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 6065 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 6066 unsigned ValueID = Record[0]; 6067 uint64_t RawFlags = Record[1]; 6068 unsigned RefArrayStart = 2; 6069 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6070 /* WriteOnly */ false, 6071 /* Constant */ false, 6072 GlobalObject::VCallVisibilityPublic); 6073 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6074 if (Version >= 5) { 6075 GVF = getDecodedGVarFlags(Record[2]); 6076 RefArrayStart = 3; 6077 } 6078 std::vector<ValueInfo> Refs = 6079 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6080 auto FS = 6081 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6082 FS->setModulePath(getThisModule()->first()); 6083 auto GUID = getValueInfoFromValueId(ValueID); 6084 FS->setOriginalName(GUID.second); 6085 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 6086 break; 6087 } 6088 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 6089 // numrefs, numrefs x valueid, 6090 // n x (valueid, offset)] 6091 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 6092 unsigned ValueID = Record[0]; 6093 uint64_t RawFlags = Record[1]; 6094 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 6095 unsigned NumRefs = Record[3]; 6096 unsigned RefListStartIndex = 4; 6097 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 6098 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6099 std::vector<ValueInfo> Refs = makeRefList( 6100 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6101 VTableFuncList VTableFuncs; 6102 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 6103 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 6104 uint64_t Offset = Record[++I]; 6105 VTableFuncs.push_back({Callee, Offset}); 6106 } 6107 auto VS = 6108 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6109 VS->setModulePath(getThisModule()->first()); 6110 VS->setVTableFuncs(VTableFuncs); 6111 auto GUID = getValueInfoFromValueId(ValueID); 6112 VS->setOriginalName(GUID.second); 6113 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 6114 break; 6115 } 6116 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6117 // numrefs x valueid, n x (valueid)] 6118 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6119 // numrefs x valueid, n x (valueid, hotness)] 6120 case bitc::FS_COMBINED: 6121 case bitc::FS_COMBINED_PROFILE: { 6122 unsigned ValueID = Record[0]; 6123 uint64_t ModuleId = Record[1]; 6124 uint64_t RawFlags = Record[2]; 6125 unsigned InstCount = Record[3]; 6126 uint64_t RawFunFlags = 0; 6127 uint64_t EntryCount = 0; 6128 unsigned NumRefs = Record[4]; 6129 unsigned NumRORefs = 0, NumWORefs = 0; 6130 int RefListStartIndex = 5; 6131 6132 if (Version >= 4) { 6133 RawFunFlags = Record[4]; 6134 RefListStartIndex = 6; 6135 size_t NumRefsIndex = 5; 6136 if (Version >= 5) { 6137 unsigned NumRORefsOffset = 1; 6138 RefListStartIndex = 7; 6139 if (Version >= 6) { 6140 NumRefsIndex = 6; 6141 EntryCount = Record[5]; 6142 RefListStartIndex = 8; 6143 if (Version >= 7) { 6144 RefListStartIndex = 9; 6145 NumWORefs = Record[8]; 6146 NumRORefsOffset = 2; 6147 } 6148 } 6149 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6150 } 6151 NumRefs = Record[NumRefsIndex]; 6152 } 6153 6154 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6155 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6156 assert(Record.size() >= RefListStartIndex + NumRefs && 6157 "Record size inconsistent with number of references"); 6158 std::vector<ValueInfo> Refs = makeRefList( 6159 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6160 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6161 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6162 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6163 IsOldProfileFormat, HasProfile, false); 6164 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6165 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6166 auto FS = std::make_unique<FunctionSummary>( 6167 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6168 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6169 std::move(PendingTypeTestAssumeVCalls), 6170 std::move(PendingTypeCheckedLoadVCalls), 6171 std::move(PendingTypeTestAssumeConstVCalls), 6172 std::move(PendingTypeCheckedLoadConstVCalls), 6173 std::move(PendingParamAccesses)); 6174 LastSeenSummary = FS.get(); 6175 LastSeenGUID = VI.getGUID(); 6176 FS->setModulePath(ModuleIdMap[ModuleId]); 6177 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6178 break; 6179 } 6180 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6181 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6182 // they expect all aliasee summaries to be available. 6183 case bitc::FS_COMBINED_ALIAS: { 6184 unsigned ValueID = Record[0]; 6185 uint64_t ModuleId = Record[1]; 6186 uint64_t RawFlags = Record[2]; 6187 unsigned AliaseeValueId = Record[3]; 6188 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6189 auto AS = std::make_unique<AliasSummary>(Flags); 6190 LastSeenSummary = AS.get(); 6191 AS->setModulePath(ModuleIdMap[ModuleId]); 6192 6193 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6194 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6195 AS->setAliasee(AliaseeVI, AliaseeInModule); 6196 6197 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6198 LastSeenGUID = VI.getGUID(); 6199 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6200 break; 6201 } 6202 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6203 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6204 unsigned ValueID = Record[0]; 6205 uint64_t ModuleId = Record[1]; 6206 uint64_t RawFlags = Record[2]; 6207 unsigned RefArrayStart = 3; 6208 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6209 /* WriteOnly */ false, 6210 /* Constant */ false, 6211 GlobalObject::VCallVisibilityPublic); 6212 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6213 if (Version >= 5) { 6214 GVF = getDecodedGVarFlags(Record[3]); 6215 RefArrayStart = 4; 6216 } 6217 std::vector<ValueInfo> Refs = 6218 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6219 auto FS = 6220 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6221 LastSeenSummary = FS.get(); 6222 FS->setModulePath(ModuleIdMap[ModuleId]); 6223 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6224 LastSeenGUID = VI.getGUID(); 6225 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6226 break; 6227 } 6228 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6229 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6230 uint64_t OriginalName = Record[0]; 6231 if (!LastSeenSummary) 6232 return error("Name attachment that does not follow a combined record"); 6233 LastSeenSummary->setOriginalName(OriginalName); 6234 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6235 // Reset the LastSeenSummary 6236 LastSeenSummary = nullptr; 6237 LastSeenGUID = 0; 6238 break; 6239 } 6240 case bitc::FS_TYPE_TESTS: 6241 assert(PendingTypeTests.empty()); 6242 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6243 Record.end()); 6244 break; 6245 6246 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6247 assert(PendingTypeTestAssumeVCalls.empty()); 6248 for (unsigned I = 0; I != Record.size(); I += 2) 6249 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6250 break; 6251 6252 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6253 assert(PendingTypeCheckedLoadVCalls.empty()); 6254 for (unsigned I = 0; I != Record.size(); I += 2) 6255 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6256 break; 6257 6258 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6259 PendingTypeTestAssumeConstVCalls.push_back( 6260 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6261 break; 6262 6263 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6264 PendingTypeCheckedLoadConstVCalls.push_back( 6265 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6266 break; 6267 6268 case bitc::FS_CFI_FUNCTION_DEFS: { 6269 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6270 for (unsigned I = 0; I != Record.size(); I += 2) 6271 CfiFunctionDefs.insert( 6272 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6273 break; 6274 } 6275 6276 case bitc::FS_CFI_FUNCTION_DECLS: { 6277 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6278 for (unsigned I = 0; I != Record.size(); I += 2) 6279 CfiFunctionDecls.insert( 6280 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6281 break; 6282 } 6283 6284 case bitc::FS_TYPE_ID: 6285 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6286 break; 6287 6288 case bitc::FS_TYPE_ID_METADATA: 6289 parseTypeIdCompatibleVtableSummaryRecord(Record); 6290 break; 6291 6292 case bitc::FS_BLOCK_COUNT: 6293 TheIndex.addBlockCount(Record[0]); 6294 break; 6295 6296 case bitc::FS_PARAM_ACCESS: { 6297 PendingParamAccesses = parseParamAccesses(Record); 6298 break; 6299 } 6300 } 6301 } 6302 llvm_unreachable("Exit infinite loop"); 6303 } 6304 6305 // Parse the module string table block into the Index. 6306 // This populates the ModulePathStringTable map in the index. 6307 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6308 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6309 return Err; 6310 6311 SmallVector<uint64_t, 64> Record; 6312 6313 SmallString<128> ModulePath; 6314 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6315 6316 while (true) { 6317 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6318 if (!MaybeEntry) 6319 return MaybeEntry.takeError(); 6320 BitstreamEntry Entry = MaybeEntry.get(); 6321 6322 switch (Entry.Kind) { 6323 case BitstreamEntry::SubBlock: // Handled for us already. 6324 case BitstreamEntry::Error: 6325 return error("Malformed block"); 6326 case BitstreamEntry::EndBlock: 6327 return Error::success(); 6328 case BitstreamEntry::Record: 6329 // The interesting case. 6330 break; 6331 } 6332 6333 Record.clear(); 6334 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6335 if (!MaybeRecord) 6336 return MaybeRecord.takeError(); 6337 switch (MaybeRecord.get()) { 6338 default: // Default behavior: ignore. 6339 break; 6340 case bitc::MST_CODE_ENTRY: { 6341 // MST_ENTRY: [modid, namechar x N] 6342 uint64_t ModuleId = Record[0]; 6343 6344 if (convertToString(Record, 1, ModulePath)) 6345 return error("Invalid record"); 6346 6347 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6348 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6349 6350 ModulePath.clear(); 6351 break; 6352 } 6353 /// MST_CODE_HASH: [5*i32] 6354 case bitc::MST_CODE_HASH: { 6355 if (Record.size() != 5) 6356 return error("Invalid hash length " + Twine(Record.size()).str()); 6357 if (!LastSeenModule) 6358 return error("Invalid hash that does not follow a module path"); 6359 int Pos = 0; 6360 for (auto &Val : Record) { 6361 assert(!(Val >> 32) && "Unexpected high bits set"); 6362 LastSeenModule->second.second[Pos++] = Val; 6363 } 6364 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6365 LastSeenModule = nullptr; 6366 break; 6367 } 6368 } 6369 } 6370 llvm_unreachable("Exit infinite loop"); 6371 } 6372 6373 namespace { 6374 6375 // FIXME: This class is only here to support the transition to llvm::Error. It 6376 // will be removed once this transition is complete. Clients should prefer to 6377 // deal with the Error value directly, rather than converting to error_code. 6378 class BitcodeErrorCategoryType : public std::error_category { 6379 const char *name() const noexcept override { 6380 return "llvm.bitcode"; 6381 } 6382 6383 std::string message(int IE) const override { 6384 BitcodeError E = static_cast<BitcodeError>(IE); 6385 switch (E) { 6386 case BitcodeError::CorruptedBitcode: 6387 return "Corrupted bitcode"; 6388 } 6389 llvm_unreachable("Unknown error type!"); 6390 } 6391 }; 6392 6393 } // end anonymous namespace 6394 6395 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6396 6397 const std::error_category &llvm::BitcodeErrorCategory() { 6398 return *ErrorCategory; 6399 } 6400 6401 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6402 unsigned Block, unsigned RecordID) { 6403 if (Error Err = Stream.EnterSubBlock(Block)) 6404 return std::move(Err); 6405 6406 StringRef Strtab; 6407 while (true) { 6408 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6409 if (!MaybeEntry) 6410 return MaybeEntry.takeError(); 6411 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6412 6413 switch (Entry.Kind) { 6414 case BitstreamEntry::EndBlock: 6415 return Strtab; 6416 6417 case BitstreamEntry::Error: 6418 return error("Malformed block"); 6419 6420 case BitstreamEntry::SubBlock: 6421 if (Error Err = Stream.SkipBlock()) 6422 return std::move(Err); 6423 break; 6424 6425 case BitstreamEntry::Record: 6426 StringRef Blob; 6427 SmallVector<uint64_t, 1> Record; 6428 Expected<unsigned> MaybeRecord = 6429 Stream.readRecord(Entry.ID, Record, &Blob); 6430 if (!MaybeRecord) 6431 return MaybeRecord.takeError(); 6432 if (MaybeRecord.get() == RecordID) 6433 Strtab = Blob; 6434 break; 6435 } 6436 } 6437 } 6438 6439 //===----------------------------------------------------------------------===// 6440 // External interface 6441 //===----------------------------------------------------------------------===// 6442 6443 Expected<std::vector<BitcodeModule>> 6444 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6445 auto FOrErr = getBitcodeFileContents(Buffer); 6446 if (!FOrErr) 6447 return FOrErr.takeError(); 6448 return std::move(FOrErr->Mods); 6449 } 6450 6451 Expected<BitcodeFileContents> 6452 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6453 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6454 if (!StreamOrErr) 6455 return StreamOrErr.takeError(); 6456 BitstreamCursor &Stream = *StreamOrErr; 6457 6458 BitcodeFileContents F; 6459 while (true) { 6460 uint64_t BCBegin = Stream.getCurrentByteNo(); 6461 6462 // We may be consuming bitcode from a client that leaves garbage at the end 6463 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6464 // the end that there cannot possibly be another module, stop looking. 6465 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6466 return F; 6467 6468 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6469 if (!MaybeEntry) 6470 return MaybeEntry.takeError(); 6471 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6472 6473 switch (Entry.Kind) { 6474 case BitstreamEntry::EndBlock: 6475 case BitstreamEntry::Error: 6476 return error("Malformed block"); 6477 6478 case BitstreamEntry::SubBlock: { 6479 uint64_t IdentificationBit = -1ull; 6480 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6481 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6482 if (Error Err = Stream.SkipBlock()) 6483 return std::move(Err); 6484 6485 { 6486 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6487 if (!MaybeEntry) 6488 return MaybeEntry.takeError(); 6489 Entry = MaybeEntry.get(); 6490 } 6491 6492 if (Entry.Kind != BitstreamEntry::SubBlock || 6493 Entry.ID != bitc::MODULE_BLOCK_ID) 6494 return error("Malformed block"); 6495 } 6496 6497 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6498 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6499 if (Error Err = Stream.SkipBlock()) 6500 return std::move(Err); 6501 6502 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6503 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6504 Buffer.getBufferIdentifier(), IdentificationBit, 6505 ModuleBit}); 6506 continue; 6507 } 6508 6509 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6510 Expected<StringRef> Strtab = 6511 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6512 if (!Strtab) 6513 return Strtab.takeError(); 6514 // This string table is used by every preceding bitcode module that does 6515 // not have its own string table. A bitcode file may have multiple 6516 // string tables if it was created by binary concatenation, for example 6517 // with "llvm-cat -b". 6518 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6519 if (!I->Strtab.empty()) 6520 break; 6521 I->Strtab = *Strtab; 6522 } 6523 // Similarly, the string table is used by every preceding symbol table; 6524 // normally there will be just one unless the bitcode file was created 6525 // by binary concatenation. 6526 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6527 F.StrtabForSymtab = *Strtab; 6528 continue; 6529 } 6530 6531 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6532 Expected<StringRef> SymtabOrErr = 6533 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6534 if (!SymtabOrErr) 6535 return SymtabOrErr.takeError(); 6536 6537 // We can expect the bitcode file to have multiple symbol tables if it 6538 // was created by binary concatenation. In that case we silently 6539 // ignore any subsequent symbol tables, which is fine because this is a 6540 // low level function. The client is expected to notice that the number 6541 // of modules in the symbol table does not match the number of modules 6542 // in the input file and regenerate the symbol table. 6543 if (F.Symtab.empty()) 6544 F.Symtab = *SymtabOrErr; 6545 continue; 6546 } 6547 6548 if (Error Err = Stream.SkipBlock()) 6549 return std::move(Err); 6550 continue; 6551 } 6552 case BitstreamEntry::Record: 6553 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6554 continue; 6555 else 6556 return StreamFailed.takeError(); 6557 } 6558 } 6559 } 6560 6561 /// Get a lazy one-at-time loading module from bitcode. 6562 /// 6563 /// This isn't always used in a lazy context. In particular, it's also used by 6564 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6565 /// in forward-referenced functions from block address references. 6566 /// 6567 /// \param[in] MaterializeAll Set to \c true if we should materialize 6568 /// everything. 6569 Expected<std::unique_ptr<Module>> 6570 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6571 bool ShouldLazyLoadMetadata, bool IsImporting, 6572 DataLayoutCallbackTy DataLayoutCallback) { 6573 BitstreamCursor Stream(Buffer); 6574 6575 std::string ProducerIdentification; 6576 if (IdentificationBit != -1ull) { 6577 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6578 return std::move(JumpFailed); 6579 Expected<std::string> ProducerIdentificationOrErr = 6580 readIdentificationBlock(Stream); 6581 if (!ProducerIdentificationOrErr) 6582 return ProducerIdentificationOrErr.takeError(); 6583 6584 ProducerIdentification = *ProducerIdentificationOrErr; 6585 } 6586 6587 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6588 return std::move(JumpFailed); 6589 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6590 Context); 6591 6592 std::unique_ptr<Module> M = 6593 std::make_unique<Module>(ModuleIdentifier, Context); 6594 M->setMaterializer(R); 6595 6596 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6597 if (Error Err = R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, 6598 IsImporting, DataLayoutCallback)) 6599 return std::move(Err); 6600 6601 if (MaterializeAll) { 6602 // Read in the entire module, and destroy the BitcodeReader. 6603 if (Error Err = M->materializeAll()) 6604 return std::move(Err); 6605 } else { 6606 // Resolve forward references from blockaddresses. 6607 if (Error Err = R->materializeForwardReferencedFunctions()) 6608 return std::move(Err); 6609 } 6610 return std::move(M); 6611 } 6612 6613 Expected<std::unique_ptr<Module>> 6614 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6615 bool IsImporting) { 6616 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting, 6617 [](StringRef) { return None; }); 6618 } 6619 6620 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6621 // We don't use ModuleIdentifier here because the client may need to control the 6622 // module path used in the combined summary (e.g. when reading summaries for 6623 // regular LTO modules). 6624 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6625 StringRef ModulePath, uint64_t ModuleId) { 6626 BitstreamCursor Stream(Buffer); 6627 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6628 return JumpFailed; 6629 6630 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6631 ModulePath, ModuleId); 6632 return R.parseModule(); 6633 } 6634 6635 // Parse the specified bitcode buffer, returning the function info index. 6636 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6637 BitstreamCursor Stream(Buffer); 6638 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6639 return std::move(JumpFailed); 6640 6641 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6642 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6643 ModuleIdentifier, 0); 6644 6645 if (Error Err = R.parseModule()) 6646 return std::move(Err); 6647 6648 return std::move(Index); 6649 } 6650 6651 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6652 unsigned ID) { 6653 if (Error Err = Stream.EnterSubBlock(ID)) 6654 return std::move(Err); 6655 SmallVector<uint64_t, 64> Record; 6656 6657 while (true) { 6658 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6659 if (!MaybeEntry) 6660 return MaybeEntry.takeError(); 6661 BitstreamEntry Entry = MaybeEntry.get(); 6662 6663 switch (Entry.Kind) { 6664 case BitstreamEntry::SubBlock: // Handled for us already. 6665 case BitstreamEntry::Error: 6666 return error("Malformed block"); 6667 case BitstreamEntry::EndBlock: 6668 // If no flags record found, conservatively return true to mimic 6669 // behavior before this flag was added. 6670 return true; 6671 case BitstreamEntry::Record: 6672 // The interesting case. 6673 break; 6674 } 6675 6676 // Look for the FS_FLAGS record. 6677 Record.clear(); 6678 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6679 if (!MaybeBitCode) 6680 return MaybeBitCode.takeError(); 6681 switch (MaybeBitCode.get()) { 6682 default: // Default behavior: ignore. 6683 break; 6684 case bitc::FS_FLAGS: { // [flags] 6685 uint64_t Flags = Record[0]; 6686 // Scan flags. 6687 assert(Flags <= 0x3f && "Unexpected bits in flag"); 6688 6689 return Flags & 0x8; 6690 } 6691 } 6692 } 6693 llvm_unreachable("Exit infinite loop"); 6694 } 6695 6696 // Check if the given bitcode buffer contains a global value summary block. 6697 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6698 BitstreamCursor Stream(Buffer); 6699 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6700 return std::move(JumpFailed); 6701 6702 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6703 return std::move(Err); 6704 6705 while (true) { 6706 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6707 if (!MaybeEntry) 6708 return MaybeEntry.takeError(); 6709 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6710 6711 switch (Entry.Kind) { 6712 case BitstreamEntry::Error: 6713 return error("Malformed block"); 6714 case BitstreamEntry::EndBlock: 6715 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6716 /*EnableSplitLTOUnit=*/false}; 6717 6718 case BitstreamEntry::SubBlock: 6719 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6720 Expected<bool> EnableSplitLTOUnit = 6721 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6722 if (!EnableSplitLTOUnit) 6723 return EnableSplitLTOUnit.takeError(); 6724 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6725 *EnableSplitLTOUnit}; 6726 } 6727 6728 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6729 Expected<bool> EnableSplitLTOUnit = 6730 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6731 if (!EnableSplitLTOUnit) 6732 return EnableSplitLTOUnit.takeError(); 6733 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6734 *EnableSplitLTOUnit}; 6735 } 6736 6737 // Ignore other sub-blocks. 6738 if (Error Err = Stream.SkipBlock()) 6739 return std::move(Err); 6740 continue; 6741 6742 case BitstreamEntry::Record: 6743 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6744 continue; 6745 else 6746 return StreamFailed.takeError(); 6747 } 6748 } 6749 } 6750 6751 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6752 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6753 if (!MsOrErr) 6754 return MsOrErr.takeError(); 6755 6756 if (MsOrErr->size() != 1) 6757 return error("Expected a single module"); 6758 6759 return (*MsOrErr)[0]; 6760 } 6761 6762 Expected<std::unique_ptr<Module>> 6763 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6764 bool ShouldLazyLoadMetadata, bool IsImporting) { 6765 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6766 if (!BM) 6767 return BM.takeError(); 6768 6769 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6770 } 6771 6772 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6773 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6774 bool ShouldLazyLoadMetadata, bool IsImporting) { 6775 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6776 IsImporting); 6777 if (MOrErr) 6778 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6779 return MOrErr; 6780 } 6781 6782 Expected<std::unique_ptr<Module>> 6783 BitcodeModule::parseModule(LLVMContext &Context, 6784 DataLayoutCallbackTy DataLayoutCallback) { 6785 return getModuleImpl(Context, true, false, false, DataLayoutCallback); 6786 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6787 // written. We must defer until the Module has been fully materialized. 6788 } 6789 6790 Expected<std::unique_ptr<Module>> 6791 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 6792 DataLayoutCallbackTy DataLayoutCallback) { 6793 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6794 if (!BM) 6795 return BM.takeError(); 6796 6797 return BM->parseModule(Context, DataLayoutCallback); 6798 } 6799 6800 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6801 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6802 if (!StreamOrErr) 6803 return StreamOrErr.takeError(); 6804 6805 return readTriple(*StreamOrErr); 6806 } 6807 6808 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6809 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6810 if (!StreamOrErr) 6811 return StreamOrErr.takeError(); 6812 6813 return hasObjCCategory(*StreamOrErr); 6814 } 6815 6816 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6817 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6818 if (!StreamOrErr) 6819 return StreamOrErr.takeError(); 6820 6821 return readIdentificationCode(*StreamOrErr); 6822 } 6823 6824 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6825 ModuleSummaryIndex &CombinedIndex, 6826 uint64_t ModuleId) { 6827 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6828 if (!BM) 6829 return BM.takeError(); 6830 6831 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6832 } 6833 6834 Expected<std::unique_ptr<ModuleSummaryIndex>> 6835 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6836 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6837 if (!BM) 6838 return BM.takeError(); 6839 6840 return BM->getSummary(); 6841 } 6842 6843 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6844 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6845 if (!BM) 6846 return BM.takeError(); 6847 6848 return BM->getLTOInfo(); 6849 } 6850 6851 Expected<std::unique_ptr<ModuleSummaryIndex>> 6852 llvm::getModuleSummaryIndexForFile(StringRef Path, 6853 bool IgnoreEmptyThinLTOIndexFile) { 6854 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6855 MemoryBuffer::getFileOrSTDIN(Path); 6856 if (!FileOrErr) 6857 return errorCodeToError(FileOrErr.getError()); 6858 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6859 return nullptr; 6860 return getModuleSummaryIndex(**FileOrErr); 6861 } 6862