1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "llvm/Bitcode/ReaderWriter.h" 11 #include "llvm/ADT/STLExtras.h" 12 #include "llvm/ADT/SmallString.h" 13 #include "llvm/ADT/SmallVector.h" 14 #include "llvm/ADT/Triple.h" 15 #include "llvm/Bitcode/BitstreamReader.h" 16 #include "llvm/Bitcode/LLVMBitCodes.h" 17 #include "llvm/IR/AutoUpgrade.h" 18 #include "llvm/IR/Constants.h" 19 #include "llvm/IR/DebugInfo.h" 20 #include "llvm/IR/DebugInfoMetadata.h" 21 #include "llvm/IR/DerivedTypes.h" 22 #include "llvm/IR/DiagnosticPrinter.h" 23 #include "llvm/IR/GVMaterializer.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/OperandTraits.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/ValueHandle.h" 31 #include "llvm/Support/DataStream.h" 32 #include "llvm/Support/ManagedStatic.h" 33 #include "llvm/Support/MathExtras.h" 34 #include "llvm/Support/MemoryBuffer.h" 35 #include "llvm/Support/raw_ostream.h" 36 #include <deque> 37 using namespace llvm; 38 39 namespace { 40 enum { 41 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 42 }; 43 44 class BitcodeReaderValueList { 45 std::vector<WeakVH> ValuePtrs; 46 47 /// ResolveConstants - As we resolve forward-referenced constants, we add 48 /// information about them to this vector. This allows us to resolve them in 49 /// bulk instead of resolving each reference at a time. See the code in 50 /// ResolveConstantForwardRefs for more information about this. 51 /// 52 /// The key of this vector is the placeholder constant, the value is the slot 53 /// number that holds the resolved value. 54 typedef std::vector<std::pair<Constant*, unsigned> > ResolveConstantsTy; 55 ResolveConstantsTy ResolveConstants; 56 LLVMContext &Context; 57 public: 58 BitcodeReaderValueList(LLVMContext &C) : Context(C) {} 59 ~BitcodeReaderValueList() { 60 assert(ResolveConstants.empty() && "Constants not resolved?"); 61 } 62 63 // vector compatibility methods 64 unsigned size() const { return ValuePtrs.size(); } 65 void resize(unsigned N) { ValuePtrs.resize(N); } 66 void push_back(Value *V) { 67 ValuePtrs.push_back(V); 68 } 69 70 void clear() { 71 assert(ResolveConstants.empty() && "Constants not resolved?"); 72 ValuePtrs.clear(); 73 } 74 75 Value *operator[](unsigned i) const { 76 assert(i < ValuePtrs.size()); 77 return ValuePtrs[i]; 78 } 79 80 Value *back() const { return ValuePtrs.back(); } 81 void pop_back() { ValuePtrs.pop_back(); } 82 bool empty() const { return ValuePtrs.empty(); } 83 void shrinkTo(unsigned N) { 84 assert(N <= size() && "Invalid shrinkTo request!"); 85 ValuePtrs.resize(N); 86 } 87 88 Constant *getConstantFwdRef(unsigned Idx, Type *Ty); 89 Value *getValueFwdRef(unsigned Idx, Type *Ty); 90 91 void AssignValue(Value *V, unsigned Idx); 92 93 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 94 /// resolves any forward references. 95 void ResolveConstantForwardRefs(); 96 }; 97 98 class BitcodeReaderMDValueList { 99 unsigned NumFwdRefs; 100 bool AnyFwdRefs; 101 unsigned MinFwdRef; 102 unsigned MaxFwdRef; 103 std::vector<TrackingMDRef> MDValuePtrs; 104 105 LLVMContext &Context; 106 public: 107 BitcodeReaderMDValueList(LLVMContext &C) 108 : NumFwdRefs(0), AnyFwdRefs(false), Context(C) {} 109 110 // vector compatibility methods 111 unsigned size() const { return MDValuePtrs.size(); } 112 void resize(unsigned N) { MDValuePtrs.resize(N); } 113 void push_back(Metadata *MD) { MDValuePtrs.emplace_back(MD); } 114 void clear() { MDValuePtrs.clear(); } 115 Metadata *back() const { return MDValuePtrs.back(); } 116 void pop_back() { MDValuePtrs.pop_back(); } 117 bool empty() const { return MDValuePtrs.empty(); } 118 119 Metadata *operator[](unsigned i) const { 120 assert(i < MDValuePtrs.size()); 121 return MDValuePtrs[i]; 122 } 123 124 void shrinkTo(unsigned N) { 125 assert(N <= size() && "Invalid shrinkTo request!"); 126 MDValuePtrs.resize(N); 127 } 128 129 Metadata *getValueFwdRef(unsigned Idx); 130 void AssignValue(Metadata *MD, unsigned Idx); 131 void tryToResolveCycles(); 132 }; 133 134 class BitcodeReader : public GVMaterializer { 135 LLVMContext &Context; 136 DiagnosticHandlerFunction DiagnosticHandler; 137 Module *TheModule; 138 std::unique_ptr<MemoryBuffer> Buffer; 139 std::unique_ptr<BitstreamReader> StreamFile; 140 BitstreamCursor Stream; 141 DataStreamer *LazyStreamer; 142 uint64_t NextUnreadBit; 143 bool SeenValueSymbolTable; 144 145 std::vector<Type*> TypeList; 146 BitcodeReaderValueList ValueList; 147 BitcodeReaderMDValueList MDValueList; 148 std::vector<Comdat *> ComdatList; 149 SmallVector<Instruction *, 64> InstructionList; 150 151 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInits; 152 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInits; 153 std::vector<std::pair<Function*, unsigned> > FunctionPrefixes; 154 std::vector<std::pair<Function*, unsigned> > FunctionPrologues; 155 156 SmallVector<Instruction*, 64> InstsWithTBAATag; 157 158 /// MAttributes - The set of attributes by index. Index zero in the 159 /// file is for null, and is thus not represented here. As such all indices 160 /// are off by one. 161 std::vector<AttributeSet> MAttributes; 162 163 /// \brief The set of attribute groups. 164 std::map<unsigned, AttributeSet> MAttributeGroups; 165 166 /// FunctionBBs - While parsing a function body, this is a list of the basic 167 /// blocks for the function. 168 std::vector<BasicBlock*> FunctionBBs; 169 170 // When reading the module header, this list is populated with functions that 171 // have bodies later in the file. 172 std::vector<Function*> FunctionsWithBodies; 173 174 // When intrinsic functions are encountered which require upgrading they are 175 // stored here with their replacement function. 176 typedef std::vector<std::pair<Function*, Function*> > UpgradedIntrinsicMap; 177 UpgradedIntrinsicMap UpgradedIntrinsics; 178 179 // Map the bitcode's custom MDKind ID to the Module's MDKind ID. 180 DenseMap<unsigned, unsigned> MDKindMap; 181 182 // Several operations happen after the module header has been read, but 183 // before function bodies are processed. This keeps track of whether 184 // we've done this yet. 185 bool SeenFirstFunctionBody; 186 187 /// DeferredFunctionInfo - When function bodies are initially scanned, this 188 /// map contains info about where to find deferred function body in the 189 /// stream. 190 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 191 192 /// When Metadata block is initially scanned when parsing the module, we may 193 /// choose to defer parsing of the metadata. This vector contains info about 194 /// which Metadata blocks are deferred. 195 std::vector<uint64_t> DeferredMetadataInfo; 196 197 /// These are basic blocks forward-referenced by block addresses. They are 198 /// inserted lazily into functions when they're loaded. The basic block ID is 199 /// its index into the vector. 200 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 201 std::deque<Function *> BasicBlockFwdRefQueue; 202 203 /// UseRelativeIDs - Indicates that we are using a new encoding for 204 /// instruction operands where most operands in the current 205 /// FUNCTION_BLOCK are encoded relative to the instruction number, 206 /// for a more compact encoding. Some instruction operands are not 207 /// relative to the instruction ID: basic block numbers, and types. 208 /// Once the old style function blocks have been phased out, we would 209 /// not need this flag. 210 bool UseRelativeIDs; 211 212 /// True if all functions will be materialized, negating the need to process 213 /// (e.g.) blockaddress forward references. 214 bool WillMaterializeAllForwardRefs; 215 216 /// Functions that have block addresses taken. This is usually empty. 217 SmallPtrSet<const Function *, 4> BlockAddressesTaken; 218 219 /// True if any Metadata block has been materialized. 220 bool IsMetadataMaterialized; 221 222 bool StripDebugInfo = false; 223 224 public: 225 std::error_code Error(BitcodeError E, const Twine &Message); 226 std::error_code Error(BitcodeError E); 227 std::error_code Error(const Twine &Message); 228 229 explicit BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 230 DiagnosticHandlerFunction DiagnosticHandler); 231 explicit BitcodeReader(DataStreamer *streamer, LLVMContext &C, 232 DiagnosticHandlerFunction DiagnosticHandler); 233 ~BitcodeReader() override { FreeState(); } 234 235 std::error_code materializeForwardReferencedFunctions(); 236 237 void FreeState(); 238 239 void releaseBuffer(); 240 241 bool isDematerializable(const GlobalValue *GV) const override; 242 std::error_code materialize(GlobalValue *GV) override; 243 std::error_code materializeModule(Module *M) override; 244 std::vector<StructType *> getIdentifiedStructTypes() const override; 245 void dematerialize(GlobalValue *GV) override; 246 247 /// @brief Main interface to parsing a bitcode buffer. 248 /// @returns true if an error occurred. 249 std::error_code ParseBitcodeInto(Module *M, 250 bool ShouldLazyLoadMetadata = false); 251 252 /// @brief Cheap mechanism to just extract module triple 253 /// @returns true if an error occurred. 254 ErrorOr<std::string> parseTriple(); 255 256 static uint64_t decodeSignRotatedValue(uint64_t V); 257 258 /// Materialize any deferred Metadata block. 259 std::error_code materializeMetadata() override; 260 261 void setStripDebugInfo() override; 262 263 private: 264 std::vector<StructType *> IdentifiedStructTypes; 265 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 266 StructType *createIdentifiedStructType(LLVMContext &Context); 267 268 Type *getTypeByID(unsigned ID); 269 Value *getFnValueByID(unsigned ID, Type *Ty) { 270 if (Ty && Ty->isMetadataTy()) 271 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 272 return ValueList.getValueFwdRef(ID, Ty); 273 } 274 Metadata *getFnMetadataByID(unsigned ID) { 275 return MDValueList.getValueFwdRef(ID); 276 } 277 BasicBlock *getBasicBlock(unsigned ID) const { 278 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 279 return FunctionBBs[ID]; 280 } 281 AttributeSet getAttributes(unsigned i) const { 282 if (i-1 < MAttributes.size()) 283 return MAttributes[i-1]; 284 return AttributeSet(); 285 } 286 287 /// getValueTypePair - Read a value/type pair out of the specified record from 288 /// slot 'Slot'. Increment Slot past the number of slots used in the record. 289 /// Return true on failure. 290 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 291 unsigned InstNum, Value *&ResVal) { 292 if (Slot == Record.size()) return true; 293 unsigned ValNo = (unsigned)Record[Slot++]; 294 // Adjust the ValNo, if it was encoded relative to the InstNum. 295 if (UseRelativeIDs) 296 ValNo = InstNum - ValNo; 297 if (ValNo < InstNum) { 298 // If this is not a forward reference, just return the value we already 299 // have. 300 ResVal = getFnValueByID(ValNo, nullptr); 301 return ResVal == nullptr; 302 } 303 if (Slot == Record.size()) 304 return true; 305 306 unsigned TypeNo = (unsigned)Record[Slot++]; 307 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 308 return ResVal == nullptr; 309 } 310 311 /// popValue - Read a value out of the specified record from slot 'Slot'. 312 /// Increment Slot past the number of slots used by the value in the record. 313 /// Return true if there is an error. 314 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 315 unsigned InstNum, Type *Ty, Value *&ResVal) { 316 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 317 return true; 318 // All values currently take a single record slot. 319 ++Slot; 320 return false; 321 } 322 323 /// getValue -- Like popValue, but does not increment the Slot number. 324 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 325 unsigned InstNum, Type *Ty, Value *&ResVal) { 326 ResVal = getValue(Record, Slot, InstNum, Ty); 327 return ResVal == nullptr; 328 } 329 330 /// getValue -- Version of getValue that returns ResVal directly, 331 /// or 0 if there is an error. 332 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 333 unsigned InstNum, Type *Ty) { 334 if (Slot == Record.size()) return nullptr; 335 unsigned ValNo = (unsigned)Record[Slot]; 336 // Adjust the ValNo, if it was encoded relative to the InstNum. 337 if (UseRelativeIDs) 338 ValNo = InstNum - ValNo; 339 return getFnValueByID(ValNo, Ty); 340 } 341 342 /// getValueSigned -- Like getValue, but decodes signed VBRs. 343 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 344 unsigned InstNum, Type *Ty) { 345 if (Slot == Record.size()) return nullptr; 346 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 347 // Adjust the ValNo, if it was encoded relative to the InstNum. 348 if (UseRelativeIDs) 349 ValNo = InstNum - ValNo; 350 return getFnValueByID(ValNo, Ty); 351 } 352 353 /// Converts alignment exponent (i.e. power of two (or zero)) to the 354 /// corresponding alignment to use. If alignment is too large, returns 355 /// a corresponding error code. 356 std::error_code parseAlignmentValue(uint64_t Exponent, unsigned &Alignment); 357 std::error_code ParseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 358 std::error_code ParseModule(bool Resume, bool ShouldLazyLoadMetadata = false); 359 std::error_code ParseAttributeBlock(); 360 std::error_code ParseAttributeGroupBlock(); 361 std::error_code ParseTypeTable(); 362 std::error_code ParseTypeTableBody(); 363 364 std::error_code ParseValueSymbolTable(); 365 std::error_code ParseConstants(); 366 std::error_code RememberAndSkipFunctionBody(); 367 /// Save the positions of the Metadata blocks and skip parsing the blocks. 368 std::error_code rememberAndSkipMetadata(); 369 std::error_code ParseFunctionBody(Function *F); 370 std::error_code GlobalCleanup(); 371 std::error_code ResolveGlobalAndAliasInits(); 372 std::error_code ParseMetadata(); 373 std::error_code ParseMetadataAttachment(Function &F); 374 ErrorOr<std::string> parseModuleTriple(); 375 std::error_code ParseUseLists(); 376 std::error_code InitStream(); 377 std::error_code InitStreamFromBuffer(); 378 std::error_code InitLazyStream(); 379 std::error_code FindFunctionInStream( 380 Function *F, 381 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 382 }; 383 } // namespace 384 385 BitcodeDiagnosticInfo::BitcodeDiagnosticInfo(std::error_code EC, 386 DiagnosticSeverity Severity, 387 const Twine &Msg) 388 : DiagnosticInfo(DK_Bitcode, Severity), Msg(Msg), EC(EC) {} 389 390 void BitcodeDiagnosticInfo::print(DiagnosticPrinter &DP) const { DP << Msg; } 391 392 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 393 std::error_code EC, const Twine &Message) { 394 BitcodeDiagnosticInfo DI(EC, DS_Error, Message); 395 DiagnosticHandler(DI); 396 return EC; 397 } 398 399 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 400 std::error_code EC) { 401 return Error(DiagnosticHandler, EC, EC.message()); 402 } 403 404 static std::error_code Error(DiagnosticHandlerFunction DiagnosticHandler, 405 const Twine &Message) { 406 return Error(DiagnosticHandler, 407 make_error_code(BitcodeError::CorruptedBitcode), Message); 408 } 409 410 std::error_code BitcodeReader::Error(BitcodeError E, const Twine &Message) { 411 return ::Error(DiagnosticHandler, make_error_code(E), Message); 412 } 413 414 std::error_code BitcodeReader::Error(const Twine &Message) { 415 return ::Error(DiagnosticHandler, 416 make_error_code(BitcodeError::CorruptedBitcode), Message); 417 } 418 419 std::error_code BitcodeReader::Error(BitcodeError E) { 420 return ::Error(DiagnosticHandler, make_error_code(E)); 421 } 422 423 static DiagnosticHandlerFunction getDiagHandler(DiagnosticHandlerFunction F, 424 LLVMContext &C) { 425 if (F) 426 return F; 427 return [&C](const DiagnosticInfo &DI) { C.diagnose(DI); }; 428 } 429 430 BitcodeReader::BitcodeReader(MemoryBuffer *buffer, LLVMContext &C, 431 DiagnosticHandlerFunction DiagnosticHandler) 432 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 433 TheModule(nullptr), Buffer(buffer), LazyStreamer(nullptr), 434 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 435 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 436 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 437 438 BitcodeReader::BitcodeReader(DataStreamer *streamer, LLVMContext &C, 439 DiagnosticHandlerFunction DiagnosticHandler) 440 : Context(C), DiagnosticHandler(getDiagHandler(DiagnosticHandler, C)), 441 TheModule(nullptr), Buffer(nullptr), LazyStreamer(streamer), 442 NextUnreadBit(0), SeenValueSymbolTable(false), ValueList(C), 443 MDValueList(C), SeenFirstFunctionBody(false), UseRelativeIDs(false), 444 WillMaterializeAllForwardRefs(false), IsMetadataMaterialized(false) {} 445 446 std::error_code BitcodeReader::materializeForwardReferencedFunctions() { 447 if (WillMaterializeAllForwardRefs) 448 return std::error_code(); 449 450 // Prevent recursion. 451 WillMaterializeAllForwardRefs = true; 452 453 while (!BasicBlockFwdRefQueue.empty()) { 454 Function *F = BasicBlockFwdRefQueue.front(); 455 BasicBlockFwdRefQueue.pop_front(); 456 assert(F && "Expected valid function"); 457 if (!BasicBlockFwdRefs.count(F)) 458 // Already materialized. 459 continue; 460 461 // Check for a function that isn't materializable to prevent an infinite 462 // loop. When parsing a blockaddress stored in a global variable, there 463 // isn't a trivial way to check if a function will have a body without a 464 // linear search through FunctionsWithBodies, so just check it here. 465 if (!F->isMaterializable()) 466 return Error("Never resolved function from blockaddress"); 467 468 // Try to materialize F. 469 if (std::error_code EC = materialize(F)) 470 return EC; 471 } 472 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 473 474 // Reset state. 475 WillMaterializeAllForwardRefs = false; 476 return std::error_code(); 477 } 478 479 void BitcodeReader::FreeState() { 480 Buffer = nullptr; 481 std::vector<Type*>().swap(TypeList); 482 ValueList.clear(); 483 MDValueList.clear(); 484 std::vector<Comdat *>().swap(ComdatList); 485 486 std::vector<AttributeSet>().swap(MAttributes); 487 std::vector<BasicBlock*>().swap(FunctionBBs); 488 std::vector<Function*>().swap(FunctionsWithBodies); 489 DeferredFunctionInfo.clear(); 490 DeferredMetadataInfo.clear(); 491 MDKindMap.clear(); 492 493 assert(BasicBlockFwdRefs.empty() && "Unresolved blockaddress fwd references"); 494 BasicBlockFwdRefQueue.clear(); 495 } 496 497 //===----------------------------------------------------------------------===// 498 // Helper functions to implement forward reference resolution, etc. 499 //===----------------------------------------------------------------------===// 500 501 /// ConvertToString - Convert a string from a record into an std::string, return 502 /// true on failure. 503 template<typename StrTy> 504 static bool ConvertToString(ArrayRef<uint64_t> Record, unsigned Idx, 505 StrTy &Result) { 506 if (Idx > Record.size()) 507 return true; 508 509 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 510 Result += (char)Record[i]; 511 return false; 512 } 513 514 static bool hasImplicitComdat(size_t Val) { 515 switch (Val) { 516 default: 517 return false; 518 case 1: // Old WeakAnyLinkage 519 case 4: // Old LinkOnceAnyLinkage 520 case 10: // Old WeakODRLinkage 521 case 11: // Old LinkOnceODRLinkage 522 return true; 523 } 524 } 525 526 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 527 switch (Val) { 528 default: // Map unknown/new linkages to external 529 case 0: 530 return GlobalValue::ExternalLinkage; 531 case 2: 532 return GlobalValue::AppendingLinkage; 533 case 3: 534 return GlobalValue::InternalLinkage; 535 case 5: 536 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 537 case 6: 538 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 539 case 7: 540 return GlobalValue::ExternalWeakLinkage; 541 case 8: 542 return GlobalValue::CommonLinkage; 543 case 9: 544 return GlobalValue::PrivateLinkage; 545 case 12: 546 return GlobalValue::AvailableExternallyLinkage; 547 case 13: 548 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 549 case 14: 550 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 551 case 15: 552 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 553 case 1: // Old value with implicit comdat. 554 case 16: 555 return GlobalValue::WeakAnyLinkage; 556 case 10: // Old value with implicit comdat. 557 case 17: 558 return GlobalValue::WeakODRLinkage; 559 case 4: // Old value with implicit comdat. 560 case 18: 561 return GlobalValue::LinkOnceAnyLinkage; 562 case 11: // Old value with implicit comdat. 563 case 19: 564 return GlobalValue::LinkOnceODRLinkage; 565 } 566 } 567 568 static GlobalValue::VisibilityTypes GetDecodedVisibility(unsigned Val) { 569 switch (Val) { 570 default: // Map unknown visibilities to default. 571 case 0: return GlobalValue::DefaultVisibility; 572 case 1: return GlobalValue::HiddenVisibility; 573 case 2: return GlobalValue::ProtectedVisibility; 574 } 575 } 576 577 static GlobalValue::DLLStorageClassTypes 578 GetDecodedDLLStorageClass(unsigned Val) { 579 switch (Val) { 580 default: // Map unknown values to default. 581 case 0: return GlobalValue::DefaultStorageClass; 582 case 1: return GlobalValue::DLLImportStorageClass; 583 case 2: return GlobalValue::DLLExportStorageClass; 584 } 585 } 586 587 static GlobalVariable::ThreadLocalMode GetDecodedThreadLocalMode(unsigned Val) { 588 switch (Val) { 589 case 0: return GlobalVariable::NotThreadLocal; 590 default: // Map unknown non-zero value to general dynamic. 591 case 1: return GlobalVariable::GeneralDynamicTLSModel; 592 case 2: return GlobalVariable::LocalDynamicTLSModel; 593 case 3: return GlobalVariable::InitialExecTLSModel; 594 case 4: return GlobalVariable::LocalExecTLSModel; 595 } 596 } 597 598 static int GetDecodedCastOpcode(unsigned Val) { 599 switch (Val) { 600 default: return -1; 601 case bitc::CAST_TRUNC : return Instruction::Trunc; 602 case bitc::CAST_ZEXT : return Instruction::ZExt; 603 case bitc::CAST_SEXT : return Instruction::SExt; 604 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 605 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 606 case bitc::CAST_UITOFP : return Instruction::UIToFP; 607 case bitc::CAST_SITOFP : return Instruction::SIToFP; 608 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 609 case bitc::CAST_FPEXT : return Instruction::FPExt; 610 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 611 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 612 case bitc::CAST_BITCAST : return Instruction::BitCast; 613 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 614 } 615 } 616 617 static int GetDecodedBinaryOpcode(unsigned Val, Type *Ty) { 618 bool IsFP = Ty->isFPOrFPVectorTy(); 619 // BinOps are only valid for int/fp or vector of int/fp types 620 if (!IsFP && !Ty->isIntOrIntVectorTy()) 621 return -1; 622 623 switch (Val) { 624 default: 625 return -1; 626 case bitc::BINOP_ADD: 627 return IsFP ? Instruction::FAdd : Instruction::Add; 628 case bitc::BINOP_SUB: 629 return IsFP ? Instruction::FSub : Instruction::Sub; 630 case bitc::BINOP_MUL: 631 return IsFP ? Instruction::FMul : Instruction::Mul; 632 case bitc::BINOP_UDIV: 633 return IsFP ? -1 : Instruction::UDiv; 634 case bitc::BINOP_SDIV: 635 return IsFP ? Instruction::FDiv : Instruction::SDiv; 636 case bitc::BINOP_UREM: 637 return IsFP ? -1 : Instruction::URem; 638 case bitc::BINOP_SREM: 639 return IsFP ? Instruction::FRem : Instruction::SRem; 640 case bitc::BINOP_SHL: 641 return IsFP ? -1 : Instruction::Shl; 642 case bitc::BINOP_LSHR: 643 return IsFP ? -1 : Instruction::LShr; 644 case bitc::BINOP_ASHR: 645 return IsFP ? -1 : Instruction::AShr; 646 case bitc::BINOP_AND: 647 return IsFP ? -1 : Instruction::And; 648 case bitc::BINOP_OR: 649 return IsFP ? -1 : Instruction::Or; 650 case bitc::BINOP_XOR: 651 return IsFP ? -1 : Instruction::Xor; 652 } 653 } 654 655 static AtomicRMWInst::BinOp GetDecodedRMWOperation(unsigned Val) { 656 switch (Val) { 657 default: return AtomicRMWInst::BAD_BINOP; 658 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 659 case bitc::RMW_ADD: return AtomicRMWInst::Add; 660 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 661 case bitc::RMW_AND: return AtomicRMWInst::And; 662 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 663 case bitc::RMW_OR: return AtomicRMWInst::Or; 664 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 665 case bitc::RMW_MAX: return AtomicRMWInst::Max; 666 case bitc::RMW_MIN: return AtomicRMWInst::Min; 667 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 668 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 669 } 670 } 671 672 static AtomicOrdering GetDecodedOrdering(unsigned Val) { 673 switch (Val) { 674 case bitc::ORDERING_NOTATOMIC: return NotAtomic; 675 case bitc::ORDERING_UNORDERED: return Unordered; 676 case bitc::ORDERING_MONOTONIC: return Monotonic; 677 case bitc::ORDERING_ACQUIRE: return Acquire; 678 case bitc::ORDERING_RELEASE: return Release; 679 case bitc::ORDERING_ACQREL: return AcquireRelease; 680 default: // Map unknown orderings to sequentially-consistent. 681 case bitc::ORDERING_SEQCST: return SequentiallyConsistent; 682 } 683 } 684 685 static SynchronizationScope GetDecodedSynchScope(unsigned Val) { 686 switch (Val) { 687 case bitc::SYNCHSCOPE_SINGLETHREAD: return SingleThread; 688 default: // Map unknown scopes to cross-thread. 689 case bitc::SYNCHSCOPE_CROSSTHREAD: return CrossThread; 690 } 691 } 692 693 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 694 switch (Val) { 695 default: // Map unknown selection kinds to any. 696 case bitc::COMDAT_SELECTION_KIND_ANY: 697 return Comdat::Any; 698 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 699 return Comdat::ExactMatch; 700 case bitc::COMDAT_SELECTION_KIND_LARGEST: 701 return Comdat::Largest; 702 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 703 return Comdat::NoDuplicates; 704 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 705 return Comdat::SameSize; 706 } 707 } 708 709 static void UpgradeDLLImportExportLinkage(llvm::GlobalValue *GV, unsigned Val) { 710 switch (Val) { 711 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 712 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 713 } 714 } 715 716 namespace llvm { 717 namespace { 718 /// @brief A class for maintaining the slot number definition 719 /// as a placeholder for the actual definition for forward constants defs. 720 class ConstantPlaceHolder : public ConstantExpr { 721 void operator=(const ConstantPlaceHolder &) = delete; 722 public: 723 // allocate space for exactly one operand 724 void *operator new(size_t s) { 725 return User::operator new(s, 1); 726 } 727 explicit ConstantPlaceHolder(Type *Ty, LLVMContext& Context) 728 : ConstantExpr(Ty, Instruction::UserOp1, &Op<0>(), 1) { 729 Op<0>() = UndefValue::get(Type::getInt32Ty(Context)); 730 } 731 732 /// @brief Methods to support type inquiry through isa, cast, and dyn_cast. 733 static bool classof(const Value *V) { 734 return isa<ConstantExpr>(V) && 735 cast<ConstantExpr>(V)->getOpcode() == Instruction::UserOp1; 736 } 737 738 739 /// Provide fast operand accessors 740 DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value); 741 }; 742 } 743 744 // FIXME: can we inherit this from ConstantExpr? 745 template <> 746 struct OperandTraits<ConstantPlaceHolder> : 747 public FixedNumOperandTraits<ConstantPlaceHolder, 1> { 748 }; 749 DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ConstantPlaceHolder, Value) 750 } 751 752 753 void BitcodeReaderValueList::AssignValue(Value *V, unsigned Idx) { 754 if (Idx == size()) { 755 push_back(V); 756 return; 757 } 758 759 if (Idx >= size()) 760 resize(Idx+1); 761 762 WeakVH &OldV = ValuePtrs[Idx]; 763 if (!OldV) { 764 OldV = V; 765 return; 766 } 767 768 // Handle constants and non-constants (e.g. instrs) differently for 769 // efficiency. 770 if (Constant *PHC = dyn_cast<Constant>(&*OldV)) { 771 ResolveConstants.push_back(std::make_pair(PHC, Idx)); 772 OldV = V; 773 } else { 774 // If there was a forward reference to this value, replace it. 775 Value *PrevVal = OldV; 776 OldV->replaceAllUsesWith(V); 777 delete PrevVal; 778 } 779 } 780 781 782 Constant *BitcodeReaderValueList::getConstantFwdRef(unsigned Idx, 783 Type *Ty) { 784 if (Idx >= size()) 785 resize(Idx + 1); 786 787 if (Value *V = ValuePtrs[Idx]) { 788 assert(Ty == V->getType() && "Type mismatch in constant table!"); 789 return cast<Constant>(V); 790 } 791 792 // Create and return a placeholder, which will later be RAUW'd. 793 Constant *C = new ConstantPlaceHolder(Ty, Context); 794 ValuePtrs[Idx] = C; 795 return C; 796 } 797 798 Value *BitcodeReaderValueList::getValueFwdRef(unsigned Idx, Type *Ty) { 799 // Bail out for a clearly invalid value. This would make us call resize(0) 800 if (Idx == UINT_MAX) 801 return nullptr; 802 803 if (Idx >= size()) 804 resize(Idx + 1); 805 806 if (Value *V = ValuePtrs[Idx]) { 807 // If the types don't match, it's invalid. 808 if (Ty && Ty != V->getType()) 809 return nullptr; 810 return V; 811 } 812 813 // No type specified, must be invalid reference. 814 if (!Ty) return nullptr; 815 816 // Create and return a placeholder, which will later be RAUW'd. 817 Value *V = new Argument(Ty); 818 ValuePtrs[Idx] = V; 819 return V; 820 } 821 822 /// ResolveConstantForwardRefs - Once all constants are read, this method bulk 823 /// resolves any forward references. The idea behind this is that we sometimes 824 /// get constants (such as large arrays) which reference *many* forward ref 825 /// constants. Replacing each of these causes a lot of thrashing when 826 /// building/reuniquing the constant. Instead of doing this, we look at all the 827 /// uses and rewrite all the place holders at once for any constant that uses 828 /// a placeholder. 829 void BitcodeReaderValueList::ResolveConstantForwardRefs() { 830 // Sort the values by-pointer so that they are efficient to look up with a 831 // binary search. 832 std::sort(ResolveConstants.begin(), ResolveConstants.end()); 833 834 SmallVector<Constant*, 64> NewOps; 835 836 while (!ResolveConstants.empty()) { 837 Value *RealVal = operator[](ResolveConstants.back().second); 838 Constant *Placeholder = ResolveConstants.back().first; 839 ResolveConstants.pop_back(); 840 841 // Loop over all users of the placeholder, updating them to reference the 842 // new value. If they reference more than one placeholder, update them all 843 // at once. 844 while (!Placeholder->use_empty()) { 845 auto UI = Placeholder->user_begin(); 846 User *U = *UI; 847 848 // If the using object isn't uniqued, just update the operands. This 849 // handles instructions and initializers for global variables. 850 if (!isa<Constant>(U) || isa<GlobalValue>(U)) { 851 UI.getUse().set(RealVal); 852 continue; 853 } 854 855 // Otherwise, we have a constant that uses the placeholder. Replace that 856 // constant with a new constant that has *all* placeholder uses updated. 857 Constant *UserC = cast<Constant>(U); 858 for (User::op_iterator I = UserC->op_begin(), E = UserC->op_end(); 859 I != E; ++I) { 860 Value *NewOp; 861 if (!isa<ConstantPlaceHolder>(*I)) { 862 // Not a placeholder reference. 863 NewOp = *I; 864 } else if (*I == Placeholder) { 865 // Common case is that it just references this one placeholder. 866 NewOp = RealVal; 867 } else { 868 // Otherwise, look up the placeholder in ResolveConstants. 869 ResolveConstantsTy::iterator It = 870 std::lower_bound(ResolveConstants.begin(), ResolveConstants.end(), 871 std::pair<Constant*, unsigned>(cast<Constant>(*I), 872 0)); 873 assert(It != ResolveConstants.end() && It->first == *I); 874 NewOp = operator[](It->second); 875 } 876 877 NewOps.push_back(cast<Constant>(NewOp)); 878 } 879 880 // Make the new constant. 881 Constant *NewC; 882 if (ConstantArray *UserCA = dyn_cast<ConstantArray>(UserC)) { 883 NewC = ConstantArray::get(UserCA->getType(), NewOps); 884 } else if (ConstantStruct *UserCS = dyn_cast<ConstantStruct>(UserC)) { 885 NewC = ConstantStruct::get(UserCS->getType(), NewOps); 886 } else if (isa<ConstantVector>(UserC)) { 887 NewC = ConstantVector::get(NewOps); 888 } else { 889 assert(isa<ConstantExpr>(UserC) && "Must be a ConstantExpr."); 890 NewC = cast<ConstantExpr>(UserC)->getWithOperands(NewOps); 891 } 892 893 UserC->replaceAllUsesWith(NewC); 894 UserC->destroyConstant(); 895 NewOps.clear(); 896 } 897 898 // Update all ValueHandles, they should be the only users at this point. 899 Placeholder->replaceAllUsesWith(RealVal); 900 delete Placeholder; 901 } 902 } 903 904 void BitcodeReaderMDValueList::AssignValue(Metadata *MD, unsigned Idx) { 905 if (Idx == size()) { 906 push_back(MD); 907 return; 908 } 909 910 if (Idx >= size()) 911 resize(Idx+1); 912 913 TrackingMDRef &OldMD = MDValuePtrs[Idx]; 914 if (!OldMD) { 915 OldMD.reset(MD); 916 return; 917 } 918 919 // If there was a forward reference to this value, replace it. 920 TempMDTuple PrevMD(cast<MDTuple>(OldMD.get())); 921 PrevMD->replaceAllUsesWith(MD); 922 --NumFwdRefs; 923 } 924 925 Metadata *BitcodeReaderMDValueList::getValueFwdRef(unsigned Idx) { 926 if (Idx >= size()) 927 resize(Idx + 1); 928 929 if (Metadata *MD = MDValuePtrs[Idx]) 930 return MD; 931 932 // Track forward refs to be resolved later. 933 if (AnyFwdRefs) { 934 MinFwdRef = std::min(MinFwdRef, Idx); 935 MaxFwdRef = std::max(MaxFwdRef, Idx); 936 } else { 937 AnyFwdRefs = true; 938 MinFwdRef = MaxFwdRef = Idx; 939 } 940 ++NumFwdRefs; 941 942 // Create and return a placeholder, which will later be RAUW'd. 943 Metadata *MD = MDNode::getTemporary(Context, None).release(); 944 MDValuePtrs[Idx].reset(MD); 945 return MD; 946 } 947 948 void BitcodeReaderMDValueList::tryToResolveCycles() { 949 if (!AnyFwdRefs) 950 // Nothing to do. 951 return; 952 953 if (NumFwdRefs) 954 // Still forward references... can't resolve cycles. 955 return; 956 957 // Resolve any cycles. 958 for (unsigned I = MinFwdRef, E = MaxFwdRef + 1; I != E; ++I) { 959 auto &MD = MDValuePtrs[I]; 960 auto *N = dyn_cast_or_null<MDNode>(MD); 961 if (!N) 962 continue; 963 964 assert(!N->isTemporary() && "Unexpected forward reference"); 965 N->resolveCycles(); 966 } 967 968 // Make sure we return early again until there's another forward ref. 969 AnyFwdRefs = false; 970 } 971 972 Type *BitcodeReader::getTypeByID(unsigned ID) { 973 // The type table size is always specified correctly. 974 if (ID >= TypeList.size()) 975 return nullptr; 976 977 if (Type *Ty = TypeList[ID]) 978 return Ty; 979 980 // If we have a forward reference, the only possible case is when it is to a 981 // named struct. Just create a placeholder for now. 982 return TypeList[ID] = createIdentifiedStructType(Context); 983 } 984 985 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 986 StringRef Name) { 987 auto *Ret = StructType::create(Context, Name); 988 IdentifiedStructTypes.push_back(Ret); 989 return Ret; 990 } 991 992 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 993 auto *Ret = StructType::create(Context); 994 IdentifiedStructTypes.push_back(Ret); 995 return Ret; 996 } 997 998 999 //===----------------------------------------------------------------------===// 1000 // Functions for parsing blocks from the bitcode file 1001 //===----------------------------------------------------------------------===// 1002 1003 1004 /// \brief This fills an AttrBuilder object with the LLVM attributes that have 1005 /// been decoded from the given integer. This function must stay in sync with 1006 /// 'encodeLLVMAttributesForBitcode'. 1007 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1008 uint64_t EncodedAttrs) { 1009 // FIXME: Remove in 4.0. 1010 1011 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1012 // the bits above 31 down by 11 bits. 1013 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1014 assert((!Alignment || isPowerOf2_32(Alignment)) && 1015 "Alignment must be a power of two."); 1016 1017 if (Alignment) 1018 B.addAlignmentAttr(Alignment); 1019 B.addRawValue(((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1020 (EncodedAttrs & 0xffff)); 1021 } 1022 1023 std::error_code BitcodeReader::ParseAttributeBlock() { 1024 if (Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1025 return Error("Invalid record"); 1026 1027 if (!MAttributes.empty()) 1028 return Error("Invalid multiple blocks"); 1029 1030 SmallVector<uint64_t, 64> Record; 1031 1032 SmallVector<AttributeSet, 8> Attrs; 1033 1034 // Read all the records. 1035 while (1) { 1036 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1037 1038 switch (Entry.Kind) { 1039 case BitstreamEntry::SubBlock: // Handled for us already. 1040 case BitstreamEntry::Error: 1041 return Error("Malformed block"); 1042 case BitstreamEntry::EndBlock: 1043 return std::error_code(); 1044 case BitstreamEntry::Record: 1045 // The interesting case. 1046 break; 1047 } 1048 1049 // Read a record. 1050 Record.clear(); 1051 switch (Stream.readRecord(Entry.ID, Record)) { 1052 default: // Default behavior: ignore. 1053 break; 1054 case bitc::PARAMATTR_CODE_ENTRY_OLD: { // ENTRY: [paramidx0, attr0, ...] 1055 // FIXME: Remove in 4.0. 1056 if (Record.size() & 1) 1057 return Error("Invalid record"); 1058 1059 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1060 AttrBuilder B; 1061 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1062 Attrs.push_back(AttributeSet::get(Context, Record[i], B)); 1063 } 1064 1065 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1066 Attrs.clear(); 1067 break; 1068 } 1069 case bitc::PARAMATTR_CODE_ENTRY: { // ENTRY: [attrgrp0, attrgrp1, ...] 1070 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1071 Attrs.push_back(MAttributeGroups[Record[i]]); 1072 1073 MAttributes.push_back(AttributeSet::get(Context, Attrs)); 1074 Attrs.clear(); 1075 break; 1076 } 1077 } 1078 } 1079 } 1080 1081 // Returns Attribute::None on unrecognized codes. 1082 static Attribute::AttrKind GetAttrFromCode(uint64_t Code) { 1083 switch (Code) { 1084 default: 1085 return Attribute::None; 1086 case bitc::ATTR_KIND_ALIGNMENT: 1087 return Attribute::Alignment; 1088 case bitc::ATTR_KIND_ALWAYS_INLINE: 1089 return Attribute::AlwaysInline; 1090 case bitc::ATTR_KIND_BUILTIN: 1091 return Attribute::Builtin; 1092 case bitc::ATTR_KIND_BY_VAL: 1093 return Attribute::ByVal; 1094 case bitc::ATTR_KIND_IN_ALLOCA: 1095 return Attribute::InAlloca; 1096 case bitc::ATTR_KIND_COLD: 1097 return Attribute::Cold; 1098 case bitc::ATTR_KIND_INLINE_HINT: 1099 return Attribute::InlineHint; 1100 case bitc::ATTR_KIND_IN_REG: 1101 return Attribute::InReg; 1102 case bitc::ATTR_KIND_JUMP_TABLE: 1103 return Attribute::JumpTable; 1104 case bitc::ATTR_KIND_MIN_SIZE: 1105 return Attribute::MinSize; 1106 case bitc::ATTR_KIND_NAKED: 1107 return Attribute::Naked; 1108 case bitc::ATTR_KIND_NEST: 1109 return Attribute::Nest; 1110 case bitc::ATTR_KIND_NO_ALIAS: 1111 return Attribute::NoAlias; 1112 case bitc::ATTR_KIND_NO_BUILTIN: 1113 return Attribute::NoBuiltin; 1114 case bitc::ATTR_KIND_NO_CAPTURE: 1115 return Attribute::NoCapture; 1116 case bitc::ATTR_KIND_NO_DUPLICATE: 1117 return Attribute::NoDuplicate; 1118 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1119 return Attribute::NoImplicitFloat; 1120 case bitc::ATTR_KIND_NO_INLINE: 1121 return Attribute::NoInline; 1122 case bitc::ATTR_KIND_NON_LAZY_BIND: 1123 return Attribute::NonLazyBind; 1124 case bitc::ATTR_KIND_NON_NULL: 1125 return Attribute::NonNull; 1126 case bitc::ATTR_KIND_DEREFERENCEABLE: 1127 return Attribute::Dereferenceable; 1128 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1129 return Attribute::DereferenceableOrNull; 1130 case bitc::ATTR_KIND_NO_RED_ZONE: 1131 return Attribute::NoRedZone; 1132 case bitc::ATTR_KIND_NO_RETURN: 1133 return Attribute::NoReturn; 1134 case bitc::ATTR_KIND_NO_UNWIND: 1135 return Attribute::NoUnwind; 1136 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1137 return Attribute::OptimizeForSize; 1138 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1139 return Attribute::OptimizeNone; 1140 case bitc::ATTR_KIND_READ_NONE: 1141 return Attribute::ReadNone; 1142 case bitc::ATTR_KIND_READ_ONLY: 1143 return Attribute::ReadOnly; 1144 case bitc::ATTR_KIND_RETURNED: 1145 return Attribute::Returned; 1146 case bitc::ATTR_KIND_RETURNS_TWICE: 1147 return Attribute::ReturnsTwice; 1148 case bitc::ATTR_KIND_S_EXT: 1149 return Attribute::SExt; 1150 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1151 return Attribute::StackAlignment; 1152 case bitc::ATTR_KIND_STACK_PROTECT: 1153 return Attribute::StackProtect; 1154 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1155 return Attribute::StackProtectReq; 1156 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1157 return Attribute::StackProtectStrong; 1158 case bitc::ATTR_KIND_STRUCT_RET: 1159 return Attribute::StructRet; 1160 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1161 return Attribute::SanitizeAddress; 1162 case bitc::ATTR_KIND_SANITIZE_THREAD: 1163 return Attribute::SanitizeThread; 1164 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1165 return Attribute::SanitizeMemory; 1166 case bitc::ATTR_KIND_UW_TABLE: 1167 return Attribute::UWTable; 1168 case bitc::ATTR_KIND_Z_EXT: 1169 return Attribute::ZExt; 1170 } 1171 } 1172 1173 std::error_code BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1174 unsigned &Alignment) { 1175 // Note: Alignment in bitcode files is incremented by 1, so that zero 1176 // can be used for default alignment. 1177 if (Exponent > Value::MaxAlignmentExponent + 1) 1178 return Error("Invalid alignment value"); 1179 Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1; 1180 return std::error_code(); 1181 } 1182 1183 std::error_code BitcodeReader::ParseAttrKind(uint64_t Code, 1184 Attribute::AttrKind *Kind) { 1185 *Kind = GetAttrFromCode(Code); 1186 if (*Kind == Attribute::None) 1187 return Error(BitcodeError::CorruptedBitcode, 1188 "Unknown attribute kind (" + Twine(Code) + ")"); 1189 return std::error_code(); 1190 } 1191 1192 std::error_code BitcodeReader::ParseAttributeGroupBlock() { 1193 if (Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1194 return Error("Invalid record"); 1195 1196 if (!MAttributeGroups.empty()) 1197 return Error("Invalid multiple blocks"); 1198 1199 SmallVector<uint64_t, 64> Record; 1200 1201 // Read all the records. 1202 while (1) { 1203 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1204 1205 switch (Entry.Kind) { 1206 case BitstreamEntry::SubBlock: // Handled for us already. 1207 case BitstreamEntry::Error: 1208 return Error("Malformed block"); 1209 case BitstreamEntry::EndBlock: 1210 return std::error_code(); 1211 case BitstreamEntry::Record: 1212 // The interesting case. 1213 break; 1214 } 1215 1216 // Read a record. 1217 Record.clear(); 1218 switch (Stream.readRecord(Entry.ID, Record)) { 1219 default: // Default behavior: ignore. 1220 break; 1221 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1222 if (Record.size() < 3) 1223 return Error("Invalid record"); 1224 1225 uint64_t GrpID = Record[0]; 1226 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1227 1228 AttrBuilder B; 1229 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1230 if (Record[i] == 0) { // Enum attribute 1231 Attribute::AttrKind Kind; 1232 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1233 return EC; 1234 1235 B.addAttribute(Kind); 1236 } else if (Record[i] == 1) { // Integer attribute 1237 Attribute::AttrKind Kind; 1238 if (std::error_code EC = ParseAttrKind(Record[++i], &Kind)) 1239 return EC; 1240 if (Kind == Attribute::Alignment) 1241 B.addAlignmentAttr(Record[++i]); 1242 else if (Kind == Attribute::StackAlignment) 1243 B.addStackAlignmentAttr(Record[++i]); 1244 else if (Kind == Attribute::Dereferenceable) 1245 B.addDereferenceableAttr(Record[++i]); 1246 else if (Kind == Attribute::DereferenceableOrNull) 1247 B.addDereferenceableOrNullAttr(Record[++i]); 1248 } else { // String attribute 1249 assert((Record[i] == 3 || Record[i] == 4) && 1250 "Invalid attribute group entry"); 1251 bool HasValue = (Record[i++] == 4); 1252 SmallString<64> KindStr; 1253 SmallString<64> ValStr; 1254 1255 while (Record[i] != 0 && i != e) 1256 KindStr += Record[i++]; 1257 assert(Record[i] == 0 && "Kind string not null terminated"); 1258 1259 if (HasValue) { 1260 // Has a value associated with it. 1261 ++i; // Skip the '0' that terminates the "kind" string. 1262 while (Record[i] != 0 && i != e) 1263 ValStr += Record[i++]; 1264 assert(Record[i] == 0 && "Value string not null terminated"); 1265 } 1266 1267 B.addAttribute(KindStr.str(), ValStr.str()); 1268 } 1269 } 1270 1271 MAttributeGroups[GrpID] = AttributeSet::get(Context, Idx, B); 1272 break; 1273 } 1274 } 1275 } 1276 } 1277 1278 std::error_code BitcodeReader::ParseTypeTable() { 1279 if (Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1280 return Error("Invalid record"); 1281 1282 return ParseTypeTableBody(); 1283 } 1284 1285 std::error_code BitcodeReader::ParseTypeTableBody() { 1286 if (!TypeList.empty()) 1287 return Error("Invalid multiple blocks"); 1288 1289 SmallVector<uint64_t, 64> Record; 1290 unsigned NumRecords = 0; 1291 1292 SmallString<64> TypeName; 1293 1294 // Read all the records for this type table. 1295 while (1) { 1296 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1297 1298 switch (Entry.Kind) { 1299 case BitstreamEntry::SubBlock: // Handled for us already. 1300 case BitstreamEntry::Error: 1301 return Error("Malformed block"); 1302 case BitstreamEntry::EndBlock: 1303 if (NumRecords != TypeList.size()) 1304 return Error("Malformed block"); 1305 return std::error_code(); 1306 case BitstreamEntry::Record: 1307 // The interesting case. 1308 break; 1309 } 1310 1311 // Read a record. 1312 Record.clear(); 1313 Type *ResultTy = nullptr; 1314 switch (Stream.readRecord(Entry.ID, Record)) { 1315 default: 1316 return Error("Invalid value"); 1317 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1318 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1319 // type list. This allows us to reserve space. 1320 if (Record.size() < 1) 1321 return Error("Invalid record"); 1322 TypeList.resize(Record[0]); 1323 continue; 1324 case bitc::TYPE_CODE_VOID: // VOID 1325 ResultTy = Type::getVoidTy(Context); 1326 break; 1327 case bitc::TYPE_CODE_HALF: // HALF 1328 ResultTy = Type::getHalfTy(Context); 1329 break; 1330 case bitc::TYPE_CODE_FLOAT: // FLOAT 1331 ResultTy = Type::getFloatTy(Context); 1332 break; 1333 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1334 ResultTy = Type::getDoubleTy(Context); 1335 break; 1336 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1337 ResultTy = Type::getX86_FP80Ty(Context); 1338 break; 1339 case bitc::TYPE_CODE_FP128: // FP128 1340 ResultTy = Type::getFP128Ty(Context); 1341 break; 1342 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1343 ResultTy = Type::getPPC_FP128Ty(Context); 1344 break; 1345 case bitc::TYPE_CODE_LABEL: // LABEL 1346 ResultTy = Type::getLabelTy(Context); 1347 break; 1348 case bitc::TYPE_CODE_METADATA: // METADATA 1349 ResultTy = Type::getMetadataTy(Context); 1350 break; 1351 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1352 ResultTy = Type::getX86_MMXTy(Context); 1353 break; 1354 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1355 if (Record.size() < 1) 1356 return Error("Invalid record"); 1357 1358 uint64_t NumBits = Record[0]; 1359 if (NumBits < IntegerType::MIN_INT_BITS || 1360 NumBits > IntegerType::MAX_INT_BITS) 1361 return Error("Bitwidth for integer type out of range"); 1362 ResultTy = IntegerType::get(Context, NumBits); 1363 break; 1364 } 1365 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1366 // [pointee type, address space] 1367 if (Record.size() < 1) 1368 return Error("Invalid record"); 1369 unsigned AddressSpace = 0; 1370 if (Record.size() == 2) 1371 AddressSpace = Record[1]; 1372 ResultTy = getTypeByID(Record[0]); 1373 if (!ResultTy || 1374 !PointerType::isValidElementType(ResultTy)) 1375 return Error("Invalid type"); 1376 ResultTy = PointerType::get(ResultTy, AddressSpace); 1377 break; 1378 } 1379 case bitc::TYPE_CODE_FUNCTION_OLD: { 1380 // FIXME: attrid is dead, remove it in LLVM 4.0 1381 // FUNCTION: [vararg, attrid, retty, paramty x N] 1382 if (Record.size() < 3) 1383 return Error("Invalid record"); 1384 SmallVector<Type*, 8> ArgTys; 1385 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1386 if (Type *T = getTypeByID(Record[i])) 1387 ArgTys.push_back(T); 1388 else 1389 break; 1390 } 1391 1392 ResultTy = getTypeByID(Record[2]); 1393 if (!ResultTy || ArgTys.size() < Record.size()-3) 1394 return Error("Invalid type"); 1395 1396 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1397 break; 1398 } 1399 case bitc::TYPE_CODE_FUNCTION: { 1400 // FUNCTION: [vararg, retty, paramty x N] 1401 if (Record.size() < 2) 1402 return Error("Invalid record"); 1403 SmallVector<Type*, 8> ArgTys; 1404 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1405 if (Type *T = getTypeByID(Record[i])) { 1406 if (!FunctionType::isValidArgumentType(T)) 1407 return Error("Invalid function argument type"); 1408 ArgTys.push_back(T); 1409 } 1410 else 1411 break; 1412 } 1413 1414 ResultTy = getTypeByID(Record[1]); 1415 if (!ResultTy || ArgTys.size() < Record.size()-2) 1416 return Error("Invalid type"); 1417 1418 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1419 break; 1420 } 1421 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1422 if (Record.size() < 1) 1423 return Error("Invalid record"); 1424 SmallVector<Type*, 8> EltTys; 1425 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1426 if (Type *T = getTypeByID(Record[i])) 1427 EltTys.push_back(T); 1428 else 1429 break; 1430 } 1431 if (EltTys.size() != Record.size()-1) 1432 return Error("Invalid type"); 1433 ResultTy = StructType::get(Context, EltTys, Record[0]); 1434 break; 1435 } 1436 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1437 if (ConvertToString(Record, 0, TypeName)) 1438 return Error("Invalid record"); 1439 continue; 1440 1441 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1442 if (Record.size() < 1) 1443 return Error("Invalid record"); 1444 1445 if (NumRecords >= TypeList.size()) 1446 return Error("Invalid TYPE table"); 1447 1448 // Check to see if this was forward referenced, if so fill in the temp. 1449 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1450 if (Res) { 1451 Res->setName(TypeName); 1452 TypeList[NumRecords] = nullptr; 1453 } else // Otherwise, create a new struct. 1454 Res = createIdentifiedStructType(Context, TypeName); 1455 TypeName.clear(); 1456 1457 SmallVector<Type*, 8> EltTys; 1458 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1459 if (Type *T = getTypeByID(Record[i])) 1460 EltTys.push_back(T); 1461 else 1462 break; 1463 } 1464 if (EltTys.size() != Record.size()-1) 1465 return Error("Invalid record"); 1466 Res->setBody(EltTys, Record[0]); 1467 ResultTy = Res; 1468 break; 1469 } 1470 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1471 if (Record.size() != 1) 1472 return Error("Invalid record"); 1473 1474 if (NumRecords >= TypeList.size()) 1475 return Error("Invalid TYPE table"); 1476 1477 // Check to see if this was forward referenced, if so fill in the temp. 1478 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1479 if (Res) { 1480 Res->setName(TypeName); 1481 TypeList[NumRecords] = nullptr; 1482 } else // Otherwise, create a new struct with no body. 1483 Res = createIdentifiedStructType(Context, TypeName); 1484 TypeName.clear(); 1485 ResultTy = Res; 1486 break; 1487 } 1488 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1489 if (Record.size() < 2) 1490 return Error("Invalid record"); 1491 ResultTy = getTypeByID(Record[1]); 1492 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1493 return Error("Invalid type"); 1494 ResultTy = ArrayType::get(ResultTy, Record[0]); 1495 break; 1496 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] 1497 if (Record.size() < 2) 1498 return Error("Invalid record"); 1499 ResultTy = getTypeByID(Record[1]); 1500 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1501 return Error("Invalid type"); 1502 ResultTy = VectorType::get(ResultTy, Record[0]); 1503 break; 1504 } 1505 1506 if (NumRecords >= TypeList.size()) 1507 return Error("Invalid TYPE table"); 1508 if (TypeList[NumRecords]) 1509 return Error( 1510 "Invalid TYPE table: Only named structs can be forward referenced"); 1511 assert(ResultTy && "Didn't read a type?"); 1512 TypeList[NumRecords++] = ResultTy; 1513 } 1514 } 1515 1516 std::error_code BitcodeReader::ParseValueSymbolTable() { 1517 if (Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 1518 return Error("Invalid record"); 1519 1520 SmallVector<uint64_t, 64> Record; 1521 1522 Triple TT(TheModule->getTargetTriple()); 1523 1524 // Read all the records for this value table. 1525 SmallString<128> ValueName; 1526 while (1) { 1527 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1528 1529 switch (Entry.Kind) { 1530 case BitstreamEntry::SubBlock: // Handled for us already. 1531 case BitstreamEntry::Error: 1532 return Error("Malformed block"); 1533 case BitstreamEntry::EndBlock: 1534 return std::error_code(); 1535 case BitstreamEntry::Record: 1536 // The interesting case. 1537 break; 1538 } 1539 1540 // Read a record. 1541 Record.clear(); 1542 switch (Stream.readRecord(Entry.ID, Record)) { 1543 default: // Default behavior: unknown type. 1544 break; 1545 case bitc::VST_CODE_ENTRY: { // VST_ENTRY: [valueid, namechar x N] 1546 if (ConvertToString(Record, 1, ValueName)) 1547 return Error("Invalid record"); 1548 unsigned ValueID = Record[0]; 1549 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 1550 return Error("Invalid record"); 1551 Value *V = ValueList[ValueID]; 1552 1553 V->setName(StringRef(ValueName.data(), ValueName.size())); 1554 if (auto *GO = dyn_cast<GlobalObject>(V)) { 1555 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 1556 if (TT.isOSBinFormatMachO()) 1557 GO->setComdat(nullptr); 1558 else 1559 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 1560 } 1561 } 1562 ValueName.clear(); 1563 break; 1564 } 1565 case bitc::VST_CODE_BBENTRY: { 1566 if (ConvertToString(Record, 1, ValueName)) 1567 return Error("Invalid record"); 1568 BasicBlock *BB = getBasicBlock(Record[0]); 1569 if (!BB) 1570 return Error("Invalid record"); 1571 1572 BB->setName(StringRef(ValueName.data(), ValueName.size())); 1573 ValueName.clear(); 1574 break; 1575 } 1576 } 1577 } 1578 } 1579 1580 static int64_t unrotateSign(uint64_t U) { return U & 1 ? ~(U >> 1) : U >> 1; } 1581 1582 std::error_code BitcodeReader::ParseMetadata() { 1583 IsMetadataMaterialized = true; 1584 unsigned NextMDValueNo = MDValueList.size(); 1585 1586 if (Stream.EnterSubBlock(bitc::METADATA_BLOCK_ID)) 1587 return Error("Invalid record"); 1588 1589 SmallVector<uint64_t, 64> Record; 1590 1591 auto getMD = 1592 [&](unsigned ID) -> Metadata *{ return MDValueList.getValueFwdRef(ID); }; 1593 auto getMDOrNull = [&](unsigned ID) -> Metadata *{ 1594 if (ID) 1595 return getMD(ID - 1); 1596 return nullptr; 1597 }; 1598 auto getMDString = [&](unsigned ID) -> MDString *{ 1599 // This requires that the ID is not really a forward reference. In 1600 // particular, the MDString must already have been resolved. 1601 return cast_or_null<MDString>(getMDOrNull(ID)); 1602 }; 1603 1604 #define GET_OR_DISTINCT(CLASS, DISTINCT, ARGS) \ 1605 (DISTINCT ? CLASS::getDistinct ARGS : CLASS::get ARGS) 1606 1607 // Read all the records. 1608 while (1) { 1609 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 1610 1611 switch (Entry.Kind) { 1612 case BitstreamEntry::SubBlock: // Handled for us already. 1613 case BitstreamEntry::Error: 1614 return Error("Malformed block"); 1615 case BitstreamEntry::EndBlock: 1616 MDValueList.tryToResolveCycles(); 1617 return std::error_code(); 1618 case BitstreamEntry::Record: 1619 // The interesting case. 1620 break; 1621 } 1622 1623 // Read a record. 1624 Record.clear(); 1625 unsigned Code = Stream.readRecord(Entry.ID, Record); 1626 bool IsDistinct = false; 1627 switch (Code) { 1628 default: // Default behavior: ignore. 1629 break; 1630 case bitc::METADATA_NAME: { 1631 // Read name of the named metadata. 1632 SmallString<8> Name(Record.begin(), Record.end()); 1633 Record.clear(); 1634 Code = Stream.ReadCode(); 1635 1636 // METADATA_NAME is always followed by METADATA_NAMED_NODE. 1637 unsigned NextBitCode = Stream.readRecord(Code, Record); 1638 assert(NextBitCode == bitc::METADATA_NAMED_NODE); (void)NextBitCode; 1639 1640 // Read named metadata elements. 1641 unsigned Size = Record.size(); 1642 NamedMDNode *NMD = TheModule->getOrInsertNamedMetadata(Name); 1643 for (unsigned i = 0; i != Size; ++i) { 1644 MDNode *MD = dyn_cast_or_null<MDNode>(MDValueList.getValueFwdRef(Record[i])); 1645 if (!MD) 1646 return Error("Invalid record"); 1647 NMD->addOperand(MD); 1648 } 1649 break; 1650 } 1651 case bitc::METADATA_OLD_FN_NODE: { 1652 // FIXME: Remove in 4.0. 1653 // This is a LocalAsMetadata record, the only type of function-local 1654 // metadata. 1655 if (Record.size() % 2 == 1) 1656 return Error("Invalid record"); 1657 1658 // If this isn't a LocalAsMetadata record, we're dropping it. This used 1659 // to be legal, but there's no upgrade path. 1660 auto dropRecord = [&] { 1661 MDValueList.AssignValue(MDNode::get(Context, None), NextMDValueNo++); 1662 }; 1663 if (Record.size() != 2) { 1664 dropRecord(); 1665 break; 1666 } 1667 1668 Type *Ty = getTypeByID(Record[0]); 1669 if (Ty->isMetadataTy() || Ty->isVoidTy()) { 1670 dropRecord(); 1671 break; 1672 } 1673 1674 MDValueList.AssignValue( 1675 LocalAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1676 NextMDValueNo++); 1677 break; 1678 } 1679 case bitc::METADATA_OLD_NODE: { 1680 // FIXME: Remove in 4.0. 1681 if (Record.size() % 2 == 1) 1682 return Error("Invalid record"); 1683 1684 unsigned Size = Record.size(); 1685 SmallVector<Metadata *, 8> Elts; 1686 for (unsigned i = 0; i != Size; i += 2) { 1687 Type *Ty = getTypeByID(Record[i]); 1688 if (!Ty) 1689 return Error("Invalid record"); 1690 if (Ty->isMetadataTy()) 1691 Elts.push_back(MDValueList.getValueFwdRef(Record[i+1])); 1692 else if (!Ty->isVoidTy()) { 1693 auto *MD = 1694 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[i + 1], Ty)); 1695 assert(isa<ConstantAsMetadata>(MD) && 1696 "Expected non-function-local metadata"); 1697 Elts.push_back(MD); 1698 } else 1699 Elts.push_back(nullptr); 1700 } 1701 MDValueList.AssignValue(MDNode::get(Context, Elts), NextMDValueNo++); 1702 break; 1703 } 1704 case bitc::METADATA_VALUE: { 1705 if (Record.size() != 2) 1706 return Error("Invalid record"); 1707 1708 Type *Ty = getTypeByID(Record[0]); 1709 if (Ty->isMetadataTy() || Ty->isVoidTy()) 1710 return Error("Invalid record"); 1711 1712 MDValueList.AssignValue( 1713 ValueAsMetadata::get(ValueList.getValueFwdRef(Record[1], Ty)), 1714 NextMDValueNo++); 1715 break; 1716 } 1717 case bitc::METADATA_DISTINCT_NODE: 1718 IsDistinct = true; 1719 // fallthrough... 1720 case bitc::METADATA_NODE: { 1721 SmallVector<Metadata *, 8> Elts; 1722 Elts.reserve(Record.size()); 1723 for (unsigned ID : Record) 1724 Elts.push_back(ID ? MDValueList.getValueFwdRef(ID - 1) : nullptr); 1725 MDValueList.AssignValue(IsDistinct ? MDNode::getDistinct(Context, Elts) 1726 : MDNode::get(Context, Elts), 1727 NextMDValueNo++); 1728 break; 1729 } 1730 case bitc::METADATA_LOCATION: { 1731 if (Record.size() != 5) 1732 return Error("Invalid record"); 1733 1734 unsigned Line = Record[1]; 1735 unsigned Column = Record[2]; 1736 MDNode *Scope = cast<MDNode>(MDValueList.getValueFwdRef(Record[3])); 1737 Metadata *InlinedAt = 1738 Record[4] ? MDValueList.getValueFwdRef(Record[4] - 1) : nullptr; 1739 MDValueList.AssignValue( 1740 GET_OR_DISTINCT(DILocation, Record[0], 1741 (Context, Line, Column, Scope, InlinedAt)), 1742 NextMDValueNo++); 1743 break; 1744 } 1745 case bitc::METADATA_GENERIC_DEBUG: { 1746 if (Record.size() < 4) 1747 return Error("Invalid record"); 1748 1749 unsigned Tag = Record[1]; 1750 unsigned Version = Record[2]; 1751 1752 if (Tag >= 1u << 16 || Version != 0) 1753 return Error("Invalid record"); 1754 1755 auto *Header = getMDString(Record[3]); 1756 SmallVector<Metadata *, 8> DwarfOps; 1757 for (unsigned I = 4, E = Record.size(); I != E; ++I) 1758 DwarfOps.push_back(Record[I] ? MDValueList.getValueFwdRef(Record[I] - 1) 1759 : nullptr); 1760 MDValueList.AssignValue(GET_OR_DISTINCT(GenericDINode, Record[0], 1761 (Context, Tag, Header, DwarfOps)), 1762 NextMDValueNo++); 1763 break; 1764 } 1765 case bitc::METADATA_SUBRANGE: { 1766 if (Record.size() != 3) 1767 return Error("Invalid record"); 1768 1769 MDValueList.AssignValue( 1770 GET_OR_DISTINCT(DISubrange, Record[0], 1771 (Context, Record[1], unrotateSign(Record[2]))), 1772 NextMDValueNo++); 1773 break; 1774 } 1775 case bitc::METADATA_ENUMERATOR: { 1776 if (Record.size() != 3) 1777 return Error("Invalid record"); 1778 1779 MDValueList.AssignValue(GET_OR_DISTINCT(DIEnumerator, Record[0], 1780 (Context, unrotateSign(Record[1]), 1781 getMDString(Record[2]))), 1782 NextMDValueNo++); 1783 break; 1784 } 1785 case bitc::METADATA_BASIC_TYPE: { 1786 if (Record.size() != 6) 1787 return Error("Invalid record"); 1788 1789 MDValueList.AssignValue( 1790 GET_OR_DISTINCT(DIBasicType, Record[0], 1791 (Context, Record[1], getMDString(Record[2]), 1792 Record[3], Record[4], Record[5])), 1793 NextMDValueNo++); 1794 break; 1795 } 1796 case bitc::METADATA_DERIVED_TYPE: { 1797 if (Record.size() != 12) 1798 return Error("Invalid record"); 1799 1800 MDValueList.AssignValue( 1801 GET_OR_DISTINCT(DIDerivedType, Record[0], 1802 (Context, Record[1], getMDString(Record[2]), 1803 getMDOrNull(Record[3]), Record[4], 1804 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1805 Record[7], Record[8], Record[9], Record[10], 1806 getMDOrNull(Record[11]))), 1807 NextMDValueNo++); 1808 break; 1809 } 1810 case bitc::METADATA_COMPOSITE_TYPE: { 1811 if (Record.size() != 16) 1812 return Error("Invalid record"); 1813 1814 MDValueList.AssignValue( 1815 GET_OR_DISTINCT(DICompositeType, Record[0], 1816 (Context, Record[1], getMDString(Record[2]), 1817 getMDOrNull(Record[3]), Record[4], 1818 getMDOrNull(Record[5]), getMDOrNull(Record[6]), 1819 Record[7], Record[8], Record[9], Record[10], 1820 getMDOrNull(Record[11]), Record[12], 1821 getMDOrNull(Record[13]), getMDOrNull(Record[14]), 1822 getMDString(Record[15]))), 1823 NextMDValueNo++); 1824 break; 1825 } 1826 case bitc::METADATA_SUBROUTINE_TYPE: { 1827 if (Record.size() != 3) 1828 return Error("Invalid record"); 1829 1830 MDValueList.AssignValue( 1831 GET_OR_DISTINCT(DISubroutineType, Record[0], 1832 (Context, Record[1], getMDOrNull(Record[2]))), 1833 NextMDValueNo++); 1834 break; 1835 } 1836 case bitc::METADATA_FILE: { 1837 if (Record.size() != 3) 1838 return Error("Invalid record"); 1839 1840 MDValueList.AssignValue( 1841 GET_OR_DISTINCT(DIFile, Record[0], (Context, getMDString(Record[1]), 1842 getMDString(Record[2]))), 1843 NextMDValueNo++); 1844 break; 1845 } 1846 case bitc::METADATA_COMPILE_UNIT: { 1847 if (Record.size() < 14 || Record.size() > 15) 1848 return Error("Invalid record"); 1849 1850 MDValueList.AssignValue( 1851 GET_OR_DISTINCT(DICompileUnit, Record[0], 1852 (Context, Record[1], getMDOrNull(Record[2]), 1853 getMDString(Record[3]), Record[4], 1854 getMDString(Record[5]), Record[6], 1855 getMDString(Record[7]), Record[8], 1856 getMDOrNull(Record[9]), getMDOrNull(Record[10]), 1857 getMDOrNull(Record[11]), getMDOrNull(Record[12]), 1858 getMDOrNull(Record[13]), 1859 Record.size() == 14 ? 0 : Record[14])), 1860 NextMDValueNo++); 1861 break; 1862 } 1863 case bitc::METADATA_SUBPROGRAM: { 1864 if (Record.size() != 19) 1865 return Error("Invalid record"); 1866 1867 MDValueList.AssignValue( 1868 GET_OR_DISTINCT( 1869 DISubprogram, Record[0], 1870 (Context, getMDOrNull(Record[1]), getMDString(Record[2]), 1871 getMDString(Record[3]), getMDOrNull(Record[4]), Record[5], 1872 getMDOrNull(Record[6]), Record[7], Record[8], Record[9], 1873 getMDOrNull(Record[10]), Record[11], Record[12], Record[13], 1874 Record[14], getMDOrNull(Record[15]), getMDOrNull(Record[16]), 1875 getMDOrNull(Record[17]), getMDOrNull(Record[18]))), 1876 NextMDValueNo++); 1877 break; 1878 } 1879 case bitc::METADATA_LEXICAL_BLOCK: { 1880 if (Record.size() != 5) 1881 return Error("Invalid record"); 1882 1883 MDValueList.AssignValue( 1884 GET_OR_DISTINCT(DILexicalBlock, Record[0], 1885 (Context, getMDOrNull(Record[1]), 1886 getMDOrNull(Record[2]), Record[3], Record[4])), 1887 NextMDValueNo++); 1888 break; 1889 } 1890 case bitc::METADATA_LEXICAL_BLOCK_FILE: { 1891 if (Record.size() != 4) 1892 return Error("Invalid record"); 1893 1894 MDValueList.AssignValue( 1895 GET_OR_DISTINCT(DILexicalBlockFile, Record[0], 1896 (Context, getMDOrNull(Record[1]), 1897 getMDOrNull(Record[2]), Record[3])), 1898 NextMDValueNo++); 1899 break; 1900 } 1901 case bitc::METADATA_NAMESPACE: { 1902 if (Record.size() != 5) 1903 return Error("Invalid record"); 1904 1905 MDValueList.AssignValue( 1906 GET_OR_DISTINCT(DINamespace, Record[0], 1907 (Context, getMDOrNull(Record[1]), 1908 getMDOrNull(Record[2]), getMDString(Record[3]), 1909 Record[4])), 1910 NextMDValueNo++); 1911 break; 1912 } 1913 case bitc::METADATA_TEMPLATE_TYPE: { 1914 if (Record.size() != 3) 1915 return Error("Invalid record"); 1916 1917 MDValueList.AssignValue(GET_OR_DISTINCT(DITemplateTypeParameter, 1918 Record[0], 1919 (Context, getMDString(Record[1]), 1920 getMDOrNull(Record[2]))), 1921 NextMDValueNo++); 1922 break; 1923 } 1924 case bitc::METADATA_TEMPLATE_VALUE: { 1925 if (Record.size() != 5) 1926 return Error("Invalid record"); 1927 1928 MDValueList.AssignValue( 1929 GET_OR_DISTINCT(DITemplateValueParameter, Record[0], 1930 (Context, Record[1], getMDString(Record[2]), 1931 getMDOrNull(Record[3]), getMDOrNull(Record[4]))), 1932 NextMDValueNo++); 1933 break; 1934 } 1935 case bitc::METADATA_GLOBAL_VAR: { 1936 if (Record.size() != 11) 1937 return Error("Invalid record"); 1938 1939 MDValueList.AssignValue( 1940 GET_OR_DISTINCT(DIGlobalVariable, Record[0], 1941 (Context, getMDOrNull(Record[1]), 1942 getMDString(Record[2]), getMDString(Record[3]), 1943 getMDOrNull(Record[4]), Record[5], 1944 getMDOrNull(Record[6]), Record[7], Record[8], 1945 getMDOrNull(Record[9]), getMDOrNull(Record[10]))), 1946 NextMDValueNo++); 1947 break; 1948 } 1949 case bitc::METADATA_LOCAL_VAR: { 1950 // 10th field is for the obseleted 'inlinedAt:' field. 1951 if (Record.size() != 9 && Record.size() != 10) 1952 return Error("Invalid record"); 1953 1954 MDValueList.AssignValue( 1955 GET_OR_DISTINCT(DILocalVariable, Record[0], 1956 (Context, Record[1], getMDOrNull(Record[2]), 1957 getMDString(Record[3]), getMDOrNull(Record[4]), 1958 Record[5], getMDOrNull(Record[6]), Record[7], 1959 Record[8])), 1960 NextMDValueNo++); 1961 break; 1962 } 1963 case bitc::METADATA_EXPRESSION: { 1964 if (Record.size() < 1) 1965 return Error("Invalid record"); 1966 1967 MDValueList.AssignValue( 1968 GET_OR_DISTINCT(DIExpression, Record[0], 1969 (Context, makeArrayRef(Record).slice(1))), 1970 NextMDValueNo++); 1971 break; 1972 } 1973 case bitc::METADATA_OBJC_PROPERTY: { 1974 if (Record.size() != 8) 1975 return Error("Invalid record"); 1976 1977 MDValueList.AssignValue( 1978 GET_OR_DISTINCT(DIObjCProperty, Record[0], 1979 (Context, getMDString(Record[1]), 1980 getMDOrNull(Record[2]), Record[3], 1981 getMDString(Record[4]), getMDString(Record[5]), 1982 Record[6], getMDOrNull(Record[7]))), 1983 NextMDValueNo++); 1984 break; 1985 } 1986 case bitc::METADATA_IMPORTED_ENTITY: { 1987 if (Record.size() != 6) 1988 return Error("Invalid record"); 1989 1990 MDValueList.AssignValue( 1991 GET_OR_DISTINCT(DIImportedEntity, Record[0], 1992 (Context, Record[1], getMDOrNull(Record[2]), 1993 getMDOrNull(Record[3]), Record[4], 1994 getMDString(Record[5]))), 1995 NextMDValueNo++); 1996 break; 1997 } 1998 case bitc::METADATA_STRING: { 1999 std::string String(Record.begin(), Record.end()); 2000 llvm::UpgradeMDStringConstant(String); 2001 Metadata *MD = MDString::get(Context, String); 2002 MDValueList.AssignValue(MD, NextMDValueNo++); 2003 break; 2004 } 2005 case bitc::METADATA_KIND: { 2006 if (Record.size() < 2) 2007 return Error("Invalid record"); 2008 2009 unsigned Kind = Record[0]; 2010 SmallString<8> Name(Record.begin()+1, Record.end()); 2011 2012 unsigned NewKind = TheModule->getMDKindID(Name.str()); 2013 if (!MDKindMap.insert(std::make_pair(Kind, NewKind)).second) 2014 return Error("Conflicting METADATA_KIND records"); 2015 break; 2016 } 2017 } 2018 } 2019 #undef GET_OR_DISTINCT 2020 } 2021 2022 /// decodeSignRotatedValue - Decode a signed value stored with the sign bit in 2023 /// the LSB for dense VBR encoding. 2024 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2025 if ((V & 1) == 0) 2026 return V >> 1; 2027 if (V != 1) 2028 return -(V >> 1); 2029 // There is no such thing as -0 with integers. "-0" really means MININT. 2030 return 1ULL << 63; 2031 } 2032 2033 /// ResolveGlobalAndAliasInits - Resolve all of the initializers for global 2034 /// values and aliases that we can. 2035 std::error_code BitcodeReader::ResolveGlobalAndAliasInits() { 2036 std::vector<std::pair<GlobalVariable*, unsigned> > GlobalInitWorklist; 2037 std::vector<std::pair<GlobalAlias*, unsigned> > AliasInitWorklist; 2038 std::vector<std::pair<Function*, unsigned> > FunctionPrefixWorklist; 2039 std::vector<std::pair<Function*, unsigned> > FunctionPrologueWorklist; 2040 2041 GlobalInitWorklist.swap(GlobalInits); 2042 AliasInitWorklist.swap(AliasInits); 2043 FunctionPrefixWorklist.swap(FunctionPrefixes); 2044 FunctionPrologueWorklist.swap(FunctionPrologues); 2045 2046 while (!GlobalInitWorklist.empty()) { 2047 unsigned ValID = GlobalInitWorklist.back().second; 2048 if (ValID >= ValueList.size()) { 2049 // Not ready to resolve this yet, it requires something later in the file. 2050 GlobalInits.push_back(GlobalInitWorklist.back()); 2051 } else { 2052 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2053 GlobalInitWorklist.back().first->setInitializer(C); 2054 else 2055 return Error("Expected a constant"); 2056 } 2057 GlobalInitWorklist.pop_back(); 2058 } 2059 2060 while (!AliasInitWorklist.empty()) { 2061 unsigned ValID = AliasInitWorklist.back().second; 2062 if (ValID >= ValueList.size()) { 2063 AliasInits.push_back(AliasInitWorklist.back()); 2064 } else { 2065 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2066 AliasInitWorklist.back().first->setAliasee(C); 2067 else 2068 return Error("Expected a constant"); 2069 } 2070 AliasInitWorklist.pop_back(); 2071 } 2072 2073 while (!FunctionPrefixWorklist.empty()) { 2074 unsigned ValID = FunctionPrefixWorklist.back().second; 2075 if (ValID >= ValueList.size()) { 2076 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2077 } else { 2078 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2079 FunctionPrefixWorklist.back().first->setPrefixData(C); 2080 else 2081 return Error("Expected a constant"); 2082 } 2083 FunctionPrefixWorklist.pop_back(); 2084 } 2085 2086 while (!FunctionPrologueWorklist.empty()) { 2087 unsigned ValID = FunctionPrologueWorklist.back().second; 2088 if (ValID >= ValueList.size()) { 2089 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2090 } else { 2091 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2092 FunctionPrologueWorklist.back().first->setPrologueData(C); 2093 else 2094 return Error("Expected a constant"); 2095 } 2096 FunctionPrologueWorklist.pop_back(); 2097 } 2098 2099 return std::error_code(); 2100 } 2101 2102 static APInt ReadWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2103 SmallVector<uint64_t, 8> Words(Vals.size()); 2104 std::transform(Vals.begin(), Vals.end(), Words.begin(), 2105 BitcodeReader::decodeSignRotatedValue); 2106 2107 return APInt(TypeBits, Words); 2108 } 2109 2110 std::error_code BitcodeReader::ParseConstants() { 2111 if (Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2112 return Error("Invalid record"); 2113 2114 SmallVector<uint64_t, 64> Record; 2115 2116 // Read all the records for this value table. 2117 Type *CurTy = Type::getInt32Ty(Context); 2118 unsigned NextCstNo = ValueList.size(); 2119 while (1) { 2120 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2121 2122 switch (Entry.Kind) { 2123 case BitstreamEntry::SubBlock: // Handled for us already. 2124 case BitstreamEntry::Error: 2125 return Error("Malformed block"); 2126 case BitstreamEntry::EndBlock: 2127 if (NextCstNo != ValueList.size()) 2128 return Error("Invalid ronstant reference"); 2129 2130 // Once all the constants have been read, go through and resolve forward 2131 // references. 2132 ValueList.ResolveConstantForwardRefs(); 2133 return std::error_code(); 2134 case BitstreamEntry::Record: 2135 // The interesting case. 2136 break; 2137 } 2138 2139 // Read a record. 2140 Record.clear(); 2141 Value *V = nullptr; 2142 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 2143 switch (BitCode) { 2144 default: // Default behavior: unknown constant 2145 case bitc::CST_CODE_UNDEF: // UNDEF 2146 V = UndefValue::get(CurTy); 2147 break; 2148 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2149 if (Record.empty()) 2150 return Error("Invalid record"); 2151 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2152 return Error("Invalid record"); 2153 CurTy = TypeList[Record[0]]; 2154 continue; // Skip the ValueList manipulation. 2155 case bitc::CST_CODE_NULL: // NULL 2156 V = Constant::getNullValue(CurTy); 2157 break; 2158 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2159 if (!CurTy->isIntegerTy() || Record.empty()) 2160 return Error("Invalid record"); 2161 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2162 break; 2163 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2164 if (!CurTy->isIntegerTy() || Record.empty()) 2165 return Error("Invalid record"); 2166 2167 APInt VInt = ReadWideAPInt(Record, 2168 cast<IntegerType>(CurTy)->getBitWidth()); 2169 V = ConstantInt::get(Context, VInt); 2170 2171 break; 2172 } 2173 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2174 if (Record.empty()) 2175 return Error("Invalid record"); 2176 if (CurTy->isHalfTy()) 2177 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf, 2178 APInt(16, (uint16_t)Record[0]))); 2179 else if (CurTy->isFloatTy()) 2180 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle, 2181 APInt(32, (uint32_t)Record[0]))); 2182 else if (CurTy->isDoubleTy()) 2183 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble, 2184 APInt(64, Record[0]))); 2185 else if (CurTy->isX86_FP80Ty()) { 2186 // Bits are not stored the same way as a normal i80 APInt, compensate. 2187 uint64_t Rearrange[2]; 2188 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2189 Rearrange[1] = Record[0] >> 48; 2190 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended, 2191 APInt(80, Rearrange))); 2192 } else if (CurTy->isFP128Ty()) 2193 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad, 2194 APInt(128, Record))); 2195 else if (CurTy->isPPC_FP128Ty()) 2196 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble, 2197 APInt(128, Record))); 2198 else 2199 V = UndefValue::get(CurTy); 2200 break; 2201 } 2202 2203 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2204 if (Record.empty()) 2205 return Error("Invalid record"); 2206 2207 unsigned Size = Record.size(); 2208 SmallVector<Constant*, 16> Elts; 2209 2210 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2211 for (unsigned i = 0; i != Size; ++i) 2212 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2213 STy->getElementType(i))); 2214 V = ConstantStruct::get(STy, Elts); 2215 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2216 Type *EltTy = ATy->getElementType(); 2217 for (unsigned i = 0; i != Size; ++i) 2218 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2219 V = ConstantArray::get(ATy, Elts); 2220 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2221 Type *EltTy = VTy->getElementType(); 2222 for (unsigned i = 0; i != Size; ++i) 2223 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2224 V = ConstantVector::get(Elts); 2225 } else { 2226 V = UndefValue::get(CurTy); 2227 } 2228 break; 2229 } 2230 case bitc::CST_CODE_STRING: // STRING: [values] 2231 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2232 if (Record.empty()) 2233 return Error("Invalid record"); 2234 2235 SmallString<16> Elts(Record.begin(), Record.end()); 2236 V = ConstantDataArray::getString(Context, Elts, 2237 BitCode == bitc::CST_CODE_CSTRING); 2238 break; 2239 } 2240 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2241 if (Record.empty()) 2242 return Error("Invalid record"); 2243 2244 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2245 unsigned Size = Record.size(); 2246 2247 if (EltTy->isIntegerTy(8)) { 2248 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2249 if (isa<VectorType>(CurTy)) 2250 V = ConstantDataVector::get(Context, Elts); 2251 else 2252 V = ConstantDataArray::get(Context, Elts); 2253 } else if (EltTy->isIntegerTy(16)) { 2254 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2255 if (isa<VectorType>(CurTy)) 2256 V = ConstantDataVector::get(Context, Elts); 2257 else 2258 V = ConstantDataArray::get(Context, Elts); 2259 } else if (EltTy->isIntegerTy(32)) { 2260 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2261 if (isa<VectorType>(CurTy)) 2262 V = ConstantDataVector::get(Context, Elts); 2263 else 2264 V = ConstantDataArray::get(Context, Elts); 2265 } else if (EltTy->isIntegerTy(64)) { 2266 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2267 if (isa<VectorType>(CurTy)) 2268 V = ConstantDataVector::get(Context, Elts); 2269 else 2270 V = ConstantDataArray::get(Context, Elts); 2271 } else if (EltTy->isFloatTy()) { 2272 SmallVector<float, 16> Elts(Size); 2273 std::transform(Record.begin(), Record.end(), Elts.begin(), BitsToFloat); 2274 if (isa<VectorType>(CurTy)) 2275 V = ConstantDataVector::get(Context, Elts); 2276 else 2277 V = ConstantDataArray::get(Context, Elts); 2278 } else if (EltTy->isDoubleTy()) { 2279 SmallVector<double, 16> Elts(Size); 2280 std::transform(Record.begin(), Record.end(), Elts.begin(), 2281 BitsToDouble); 2282 if (isa<VectorType>(CurTy)) 2283 V = ConstantDataVector::get(Context, Elts); 2284 else 2285 V = ConstantDataArray::get(Context, Elts); 2286 } else { 2287 return Error("Invalid type for value"); 2288 } 2289 break; 2290 } 2291 2292 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2293 if (Record.size() < 3) 2294 return Error("Invalid record"); 2295 int Opc = GetDecodedBinaryOpcode(Record[0], CurTy); 2296 if (Opc < 0) { 2297 V = UndefValue::get(CurTy); // Unknown binop. 2298 } else { 2299 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2300 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2301 unsigned Flags = 0; 2302 if (Record.size() >= 4) { 2303 if (Opc == Instruction::Add || 2304 Opc == Instruction::Sub || 2305 Opc == Instruction::Mul || 2306 Opc == Instruction::Shl) { 2307 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2308 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2309 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2310 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2311 } else if (Opc == Instruction::SDiv || 2312 Opc == Instruction::UDiv || 2313 Opc == Instruction::LShr || 2314 Opc == Instruction::AShr) { 2315 if (Record[3] & (1 << bitc::PEO_EXACT)) 2316 Flags |= SDivOperator::IsExact; 2317 } 2318 } 2319 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2320 } 2321 break; 2322 } 2323 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2324 if (Record.size() < 3) 2325 return Error("Invalid record"); 2326 int Opc = GetDecodedCastOpcode(Record[0]); 2327 if (Opc < 0) { 2328 V = UndefValue::get(CurTy); // Unknown cast. 2329 } else { 2330 Type *OpTy = getTypeByID(Record[1]); 2331 if (!OpTy) 2332 return Error("Invalid record"); 2333 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2334 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2335 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2336 } 2337 break; 2338 } 2339 case bitc::CST_CODE_CE_INBOUNDS_GEP: 2340 case bitc::CST_CODE_CE_GEP: { // CE_GEP: [n x operands] 2341 unsigned OpNum = 0; 2342 Type *PointeeType = nullptr; 2343 if (Record.size() % 2) 2344 PointeeType = getTypeByID(Record[OpNum++]); 2345 SmallVector<Constant*, 16> Elts; 2346 while (OpNum != Record.size()) { 2347 Type *ElTy = getTypeByID(Record[OpNum++]); 2348 if (!ElTy) 2349 return Error("Invalid record"); 2350 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2351 } 2352 2353 if (PointeeType && 2354 PointeeType != 2355 cast<SequentialType>(Elts[0]->getType()->getScalarType()) 2356 ->getElementType()) 2357 return Error("Explicit gep operator type does not match pointee type " 2358 "of pointer operand"); 2359 2360 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2361 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2362 BitCode == 2363 bitc::CST_CODE_CE_INBOUNDS_GEP); 2364 break; 2365 } 2366 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2367 if (Record.size() < 3) 2368 return Error("Invalid record"); 2369 2370 Type *SelectorTy = Type::getInt1Ty(Context); 2371 2372 // If CurTy is a vector of length n, then Record[0] must be a <n x i1> 2373 // vector. Otherwise, it must be a single bit. 2374 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2375 SelectorTy = VectorType::get(Type::getInt1Ty(Context), 2376 VTy->getNumElements()); 2377 2378 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2379 SelectorTy), 2380 ValueList.getConstantFwdRef(Record[1],CurTy), 2381 ValueList.getConstantFwdRef(Record[2],CurTy)); 2382 break; 2383 } 2384 case bitc::CST_CODE_CE_EXTRACTELT 2385 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2386 if (Record.size() < 3) 2387 return Error("Invalid record"); 2388 VectorType *OpTy = 2389 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2390 if (!OpTy) 2391 return Error("Invalid record"); 2392 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2393 Constant *Op1 = nullptr; 2394 if (Record.size() == 4) { 2395 Type *IdxTy = getTypeByID(Record[2]); 2396 if (!IdxTy) 2397 return Error("Invalid record"); 2398 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2399 } else // TODO: Remove with llvm 4.0 2400 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2401 if (!Op1) 2402 return Error("Invalid record"); 2403 V = ConstantExpr::getExtractElement(Op0, Op1); 2404 break; 2405 } 2406 case bitc::CST_CODE_CE_INSERTELT 2407 : { // CE_INSERTELT: [opval, opval, opty, opval] 2408 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2409 if (Record.size() < 3 || !OpTy) 2410 return Error("Invalid record"); 2411 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2412 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2413 OpTy->getElementType()); 2414 Constant *Op2 = nullptr; 2415 if (Record.size() == 4) { 2416 Type *IdxTy = getTypeByID(Record[2]); 2417 if (!IdxTy) 2418 return Error("Invalid record"); 2419 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2420 } else // TODO: Remove with llvm 4.0 2421 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2422 if (!Op2) 2423 return Error("Invalid record"); 2424 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2425 break; 2426 } 2427 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2428 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2429 if (Record.size() < 3 || !OpTy) 2430 return Error("Invalid record"); 2431 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2432 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2433 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2434 OpTy->getNumElements()); 2435 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2436 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2437 break; 2438 } 2439 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2440 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2441 VectorType *OpTy = 2442 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2443 if (Record.size() < 4 || !RTy || !OpTy) 2444 return Error("Invalid record"); 2445 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2446 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2447 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2448 RTy->getNumElements()); 2449 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2450 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2451 break; 2452 } 2453 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2454 if (Record.size() < 4) 2455 return Error("Invalid record"); 2456 Type *OpTy = getTypeByID(Record[0]); 2457 if (!OpTy) 2458 return Error("Invalid record"); 2459 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2460 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2461 2462 if (OpTy->isFPOrFPVectorTy()) 2463 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2464 else 2465 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2466 break; 2467 } 2468 // This maintains backward compatibility, pre-asm dialect keywords. 2469 // FIXME: Remove with the 4.0 release. 2470 case bitc::CST_CODE_INLINEASM_OLD: { 2471 if (Record.size() < 2) 2472 return Error("Invalid record"); 2473 std::string AsmStr, ConstrStr; 2474 bool HasSideEffects = Record[0] & 1; 2475 bool IsAlignStack = Record[0] >> 1; 2476 unsigned AsmStrSize = Record[1]; 2477 if (2+AsmStrSize >= Record.size()) 2478 return Error("Invalid record"); 2479 unsigned ConstStrSize = Record[2+AsmStrSize]; 2480 if (3+AsmStrSize+ConstStrSize > Record.size()) 2481 return Error("Invalid record"); 2482 2483 for (unsigned i = 0; i != AsmStrSize; ++i) 2484 AsmStr += (char)Record[2+i]; 2485 for (unsigned i = 0; i != ConstStrSize; ++i) 2486 ConstrStr += (char)Record[3+AsmStrSize+i]; 2487 PointerType *PTy = cast<PointerType>(CurTy); 2488 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2489 AsmStr, ConstrStr, HasSideEffects, IsAlignStack); 2490 break; 2491 } 2492 // This version adds support for the asm dialect keywords (e.g., 2493 // inteldialect). 2494 case bitc::CST_CODE_INLINEASM: { 2495 if (Record.size() < 2) 2496 return Error("Invalid record"); 2497 std::string AsmStr, ConstrStr; 2498 bool HasSideEffects = Record[0] & 1; 2499 bool IsAlignStack = (Record[0] >> 1) & 1; 2500 unsigned AsmDialect = Record[0] >> 2; 2501 unsigned AsmStrSize = Record[1]; 2502 if (2+AsmStrSize >= Record.size()) 2503 return Error("Invalid record"); 2504 unsigned ConstStrSize = Record[2+AsmStrSize]; 2505 if (3+AsmStrSize+ConstStrSize > Record.size()) 2506 return Error("Invalid record"); 2507 2508 for (unsigned i = 0; i != AsmStrSize; ++i) 2509 AsmStr += (char)Record[2+i]; 2510 for (unsigned i = 0; i != ConstStrSize; ++i) 2511 ConstrStr += (char)Record[3+AsmStrSize+i]; 2512 PointerType *PTy = cast<PointerType>(CurTy); 2513 V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()), 2514 AsmStr, ConstrStr, HasSideEffects, IsAlignStack, 2515 InlineAsm::AsmDialect(AsmDialect)); 2516 break; 2517 } 2518 case bitc::CST_CODE_BLOCKADDRESS:{ 2519 if (Record.size() < 3) 2520 return Error("Invalid record"); 2521 Type *FnTy = getTypeByID(Record[0]); 2522 if (!FnTy) 2523 return Error("Invalid record"); 2524 Function *Fn = 2525 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2526 if (!Fn) 2527 return Error("Invalid record"); 2528 2529 // Don't let Fn get dematerialized. 2530 BlockAddressesTaken.insert(Fn); 2531 2532 // If the function is already parsed we can insert the block address right 2533 // away. 2534 BasicBlock *BB; 2535 unsigned BBID = Record[2]; 2536 if (!BBID) 2537 // Invalid reference to entry block. 2538 return Error("Invalid ID"); 2539 if (!Fn->empty()) { 2540 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2541 for (size_t I = 0, E = BBID; I != E; ++I) { 2542 if (BBI == BBE) 2543 return Error("Invalid ID"); 2544 ++BBI; 2545 } 2546 BB = BBI; 2547 } else { 2548 // Otherwise insert a placeholder and remember it so it can be inserted 2549 // when the function is parsed. 2550 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2551 if (FwdBBs.empty()) 2552 BasicBlockFwdRefQueue.push_back(Fn); 2553 if (FwdBBs.size() < BBID + 1) 2554 FwdBBs.resize(BBID + 1); 2555 if (!FwdBBs[BBID]) 2556 FwdBBs[BBID] = BasicBlock::Create(Context); 2557 BB = FwdBBs[BBID]; 2558 } 2559 V = BlockAddress::get(Fn, BB); 2560 break; 2561 } 2562 } 2563 2564 ValueList.AssignValue(V, NextCstNo); 2565 ++NextCstNo; 2566 } 2567 } 2568 2569 std::error_code BitcodeReader::ParseUseLists() { 2570 if (Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2571 return Error("Invalid record"); 2572 2573 // Read all the records. 2574 SmallVector<uint64_t, 64> Record; 2575 while (1) { 2576 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 2577 2578 switch (Entry.Kind) { 2579 case BitstreamEntry::SubBlock: // Handled for us already. 2580 case BitstreamEntry::Error: 2581 return Error("Malformed block"); 2582 case BitstreamEntry::EndBlock: 2583 return std::error_code(); 2584 case BitstreamEntry::Record: 2585 // The interesting case. 2586 break; 2587 } 2588 2589 // Read a use list record. 2590 Record.clear(); 2591 bool IsBB = false; 2592 switch (Stream.readRecord(Entry.ID, Record)) { 2593 default: // Default behavior: unknown type. 2594 break; 2595 case bitc::USELIST_CODE_BB: 2596 IsBB = true; 2597 // fallthrough 2598 case bitc::USELIST_CODE_DEFAULT: { 2599 unsigned RecordLength = Record.size(); 2600 if (RecordLength < 3) 2601 // Records should have at least an ID and two indexes. 2602 return Error("Invalid record"); 2603 unsigned ID = Record.back(); 2604 Record.pop_back(); 2605 2606 Value *V; 2607 if (IsBB) { 2608 assert(ID < FunctionBBs.size() && "Basic block not found"); 2609 V = FunctionBBs[ID]; 2610 } else 2611 V = ValueList[ID]; 2612 unsigned NumUses = 0; 2613 SmallDenseMap<const Use *, unsigned, 16> Order; 2614 for (const Use &U : V->uses()) { 2615 if (++NumUses > Record.size()) 2616 break; 2617 Order[&U] = Record[NumUses - 1]; 2618 } 2619 if (Order.size() != Record.size() || NumUses > Record.size()) 2620 // Mismatches can happen if the functions are being materialized lazily 2621 // (out-of-order), or a value has been upgraded. 2622 break; 2623 2624 V->sortUseList([&](const Use &L, const Use &R) { 2625 return Order.lookup(&L) < Order.lookup(&R); 2626 }); 2627 break; 2628 } 2629 } 2630 } 2631 } 2632 2633 /// When we see the block for metadata, remember where it is and then skip it. 2634 /// This lets us lazily deserialize the metadata. 2635 std::error_code BitcodeReader::rememberAndSkipMetadata() { 2636 // Save the current stream state. 2637 uint64_t CurBit = Stream.GetCurrentBitNo(); 2638 DeferredMetadataInfo.push_back(CurBit); 2639 2640 // Skip over the block for now. 2641 if (Stream.SkipBlock()) 2642 return Error("Invalid record"); 2643 return std::error_code(); 2644 } 2645 2646 std::error_code BitcodeReader::materializeMetadata() { 2647 for (uint64_t BitPos : DeferredMetadataInfo) { 2648 // Move the bit stream to the saved position. 2649 Stream.JumpToBit(BitPos); 2650 if (std::error_code EC = ParseMetadata()) 2651 return EC; 2652 } 2653 DeferredMetadataInfo.clear(); 2654 return std::error_code(); 2655 } 2656 2657 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2658 2659 /// RememberAndSkipFunctionBody - When we see the block for a function body, 2660 /// remember where it is and then skip it. This lets us lazily deserialize the 2661 /// functions. 2662 std::error_code BitcodeReader::RememberAndSkipFunctionBody() { 2663 // Get the function we are talking about. 2664 if (FunctionsWithBodies.empty()) 2665 return Error("Insufficient function protos"); 2666 2667 Function *Fn = FunctionsWithBodies.back(); 2668 FunctionsWithBodies.pop_back(); 2669 2670 // Save the current stream state. 2671 uint64_t CurBit = Stream.GetCurrentBitNo(); 2672 DeferredFunctionInfo[Fn] = CurBit; 2673 2674 // Skip over the function block for now. 2675 if (Stream.SkipBlock()) 2676 return Error("Invalid record"); 2677 return std::error_code(); 2678 } 2679 2680 std::error_code BitcodeReader::GlobalCleanup() { 2681 // Patch the initializers for globals and aliases up. 2682 ResolveGlobalAndAliasInits(); 2683 if (!GlobalInits.empty() || !AliasInits.empty()) 2684 return Error("Malformed global initializer set"); 2685 2686 // Look for intrinsic functions which need to be upgraded at some point 2687 for (Module::iterator FI = TheModule->begin(), FE = TheModule->end(); 2688 FI != FE; ++FI) { 2689 Function *NewFn; 2690 if (UpgradeIntrinsicFunction(FI, NewFn)) 2691 UpgradedIntrinsics.push_back(std::make_pair(FI, NewFn)); 2692 } 2693 2694 // Look for global variables which need to be renamed. 2695 for (Module::global_iterator 2696 GI = TheModule->global_begin(), GE = TheModule->global_end(); 2697 GI != GE;) { 2698 GlobalVariable *GV = GI++; 2699 UpgradeGlobalVariable(GV); 2700 } 2701 2702 // Force deallocation of memory for these vectors to favor the client that 2703 // want lazy deserialization. 2704 std::vector<std::pair<GlobalVariable*, unsigned> >().swap(GlobalInits); 2705 std::vector<std::pair<GlobalAlias*, unsigned> >().swap(AliasInits); 2706 return std::error_code(); 2707 } 2708 2709 std::error_code BitcodeReader::ParseModule(bool Resume, 2710 bool ShouldLazyLoadMetadata) { 2711 if (Resume) 2712 Stream.JumpToBit(NextUnreadBit); 2713 else if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 2714 return Error("Invalid record"); 2715 2716 SmallVector<uint64_t, 64> Record; 2717 std::vector<std::string> SectionTable; 2718 std::vector<std::string> GCTable; 2719 2720 // Read all the records for this module. 2721 while (1) { 2722 BitstreamEntry Entry = Stream.advance(); 2723 2724 switch (Entry.Kind) { 2725 case BitstreamEntry::Error: 2726 return Error("Malformed block"); 2727 case BitstreamEntry::EndBlock: 2728 return GlobalCleanup(); 2729 2730 case BitstreamEntry::SubBlock: 2731 switch (Entry.ID) { 2732 default: // Skip unknown content. 2733 if (Stream.SkipBlock()) 2734 return Error("Invalid record"); 2735 break; 2736 case bitc::BLOCKINFO_BLOCK_ID: 2737 if (Stream.ReadBlockInfoBlock()) 2738 return Error("Malformed block"); 2739 break; 2740 case bitc::PARAMATTR_BLOCK_ID: 2741 if (std::error_code EC = ParseAttributeBlock()) 2742 return EC; 2743 break; 2744 case bitc::PARAMATTR_GROUP_BLOCK_ID: 2745 if (std::error_code EC = ParseAttributeGroupBlock()) 2746 return EC; 2747 break; 2748 case bitc::TYPE_BLOCK_ID_NEW: 2749 if (std::error_code EC = ParseTypeTable()) 2750 return EC; 2751 break; 2752 case bitc::VALUE_SYMTAB_BLOCK_ID: 2753 if (std::error_code EC = ParseValueSymbolTable()) 2754 return EC; 2755 SeenValueSymbolTable = true; 2756 break; 2757 case bitc::CONSTANTS_BLOCK_ID: 2758 if (std::error_code EC = ParseConstants()) 2759 return EC; 2760 if (std::error_code EC = ResolveGlobalAndAliasInits()) 2761 return EC; 2762 break; 2763 case bitc::METADATA_BLOCK_ID: 2764 if (ShouldLazyLoadMetadata && !IsMetadataMaterialized) { 2765 if (std::error_code EC = rememberAndSkipMetadata()) 2766 return EC; 2767 break; 2768 } 2769 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 2770 if (std::error_code EC = ParseMetadata()) 2771 return EC; 2772 break; 2773 case bitc::FUNCTION_BLOCK_ID: 2774 // If this is the first function body we've seen, reverse the 2775 // FunctionsWithBodies list. 2776 if (!SeenFirstFunctionBody) { 2777 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 2778 if (std::error_code EC = GlobalCleanup()) 2779 return EC; 2780 SeenFirstFunctionBody = true; 2781 } 2782 2783 if (std::error_code EC = RememberAndSkipFunctionBody()) 2784 return EC; 2785 // For streaming bitcode, suspend parsing when we reach the function 2786 // bodies. Subsequent materialization calls will resume it when 2787 // necessary. For streaming, the function bodies must be at the end of 2788 // the bitcode. If the bitcode file is old, the symbol table will be 2789 // at the end instead and will not have been seen yet. In this case, 2790 // just finish the parse now. 2791 if (LazyStreamer && SeenValueSymbolTable) { 2792 NextUnreadBit = Stream.GetCurrentBitNo(); 2793 return std::error_code(); 2794 } 2795 break; 2796 case bitc::USELIST_BLOCK_ID: 2797 if (std::error_code EC = ParseUseLists()) 2798 return EC; 2799 break; 2800 } 2801 continue; 2802 2803 case BitstreamEntry::Record: 2804 // The interesting case. 2805 break; 2806 } 2807 2808 2809 // Read a record. 2810 switch (Stream.readRecord(Entry.ID, Record)) { 2811 default: break; // Default behavior, ignore unknown content. 2812 case bitc::MODULE_CODE_VERSION: { // VERSION: [version#] 2813 if (Record.size() < 1) 2814 return Error("Invalid record"); 2815 // Only version #0 and #1 are supported so far. 2816 unsigned module_version = Record[0]; 2817 switch (module_version) { 2818 default: 2819 return Error("Invalid value"); 2820 case 0: 2821 UseRelativeIDs = false; 2822 break; 2823 case 1: 2824 UseRelativeIDs = true; 2825 break; 2826 } 2827 break; 2828 } 2829 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 2830 std::string S; 2831 if (ConvertToString(Record, 0, S)) 2832 return Error("Invalid record"); 2833 TheModule->setTargetTriple(S); 2834 break; 2835 } 2836 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 2837 std::string S; 2838 if (ConvertToString(Record, 0, S)) 2839 return Error("Invalid record"); 2840 TheModule->setDataLayout(S); 2841 break; 2842 } 2843 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 2844 std::string S; 2845 if (ConvertToString(Record, 0, S)) 2846 return Error("Invalid record"); 2847 TheModule->setModuleInlineAsm(S); 2848 break; 2849 } 2850 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 2851 // FIXME: Remove in 4.0. 2852 std::string S; 2853 if (ConvertToString(Record, 0, S)) 2854 return Error("Invalid record"); 2855 // Ignore value. 2856 break; 2857 } 2858 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 2859 std::string S; 2860 if (ConvertToString(Record, 0, S)) 2861 return Error("Invalid record"); 2862 SectionTable.push_back(S); 2863 break; 2864 } 2865 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 2866 std::string S; 2867 if (ConvertToString(Record, 0, S)) 2868 return Error("Invalid record"); 2869 GCTable.push_back(S); 2870 break; 2871 } 2872 case bitc::MODULE_CODE_COMDAT: { // COMDAT: [selection_kind, name] 2873 if (Record.size() < 2) 2874 return Error("Invalid record"); 2875 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 2876 unsigned ComdatNameSize = Record[1]; 2877 std::string ComdatName; 2878 ComdatName.reserve(ComdatNameSize); 2879 for (unsigned i = 0; i != ComdatNameSize; ++i) 2880 ComdatName += (char)Record[2 + i]; 2881 Comdat *C = TheModule->getOrInsertComdat(ComdatName); 2882 C->setSelectionKind(SK); 2883 ComdatList.push_back(C); 2884 break; 2885 } 2886 // GLOBALVAR: [pointer type, isconst, initid, 2887 // linkage, alignment, section, visibility, threadlocal, 2888 // unnamed_addr, externally_initialized, dllstorageclass, 2889 // comdat] 2890 case bitc::MODULE_CODE_GLOBALVAR: { 2891 if (Record.size() < 6) 2892 return Error("Invalid record"); 2893 Type *Ty = getTypeByID(Record[0]); 2894 if (!Ty) 2895 return Error("Invalid record"); 2896 bool isConstant = Record[1] & 1; 2897 bool explicitType = Record[1] & 2; 2898 unsigned AddressSpace; 2899 if (explicitType) { 2900 AddressSpace = Record[1] >> 2; 2901 } else { 2902 if (!Ty->isPointerTy()) 2903 return Error("Invalid type for value"); 2904 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 2905 Ty = cast<PointerType>(Ty)->getElementType(); 2906 } 2907 2908 uint64_t RawLinkage = Record[3]; 2909 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 2910 unsigned Alignment; 2911 if (std::error_code EC = parseAlignmentValue(Record[4], Alignment)) 2912 return EC; 2913 std::string Section; 2914 if (Record[5]) { 2915 if (Record[5]-1 >= SectionTable.size()) 2916 return Error("Invalid ID"); 2917 Section = SectionTable[Record[5]-1]; 2918 } 2919 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 2920 // Local linkage must have default visibility. 2921 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 2922 // FIXME: Change to an error if non-default in 4.0. 2923 Visibility = GetDecodedVisibility(Record[6]); 2924 2925 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 2926 if (Record.size() > 7) 2927 TLM = GetDecodedThreadLocalMode(Record[7]); 2928 2929 bool UnnamedAddr = false; 2930 if (Record.size() > 8) 2931 UnnamedAddr = Record[8]; 2932 2933 bool ExternallyInitialized = false; 2934 if (Record.size() > 9) 2935 ExternallyInitialized = Record[9]; 2936 2937 GlobalVariable *NewGV = 2938 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, "", nullptr, 2939 TLM, AddressSpace, ExternallyInitialized); 2940 NewGV->setAlignment(Alignment); 2941 if (!Section.empty()) 2942 NewGV->setSection(Section); 2943 NewGV->setVisibility(Visibility); 2944 NewGV->setUnnamedAddr(UnnamedAddr); 2945 2946 if (Record.size() > 10) 2947 NewGV->setDLLStorageClass(GetDecodedDLLStorageClass(Record[10])); 2948 else 2949 UpgradeDLLImportExportLinkage(NewGV, RawLinkage); 2950 2951 ValueList.push_back(NewGV); 2952 2953 // Remember which value to use for the global initializer. 2954 if (unsigned InitID = Record[2]) 2955 GlobalInits.push_back(std::make_pair(NewGV, InitID-1)); 2956 2957 if (Record.size() > 11) { 2958 if (unsigned ComdatID = Record[11]) { 2959 if (ComdatID > ComdatList.size()) 2960 return Error("Invalid global variable comdat ID"); 2961 NewGV->setComdat(ComdatList[ComdatID - 1]); 2962 } 2963 } else if (hasImplicitComdat(RawLinkage)) { 2964 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 2965 } 2966 break; 2967 } 2968 // FUNCTION: [type, callingconv, isproto, linkage, paramattr, 2969 // alignment, section, visibility, gc, unnamed_addr, 2970 // prologuedata, dllstorageclass, comdat, prefixdata] 2971 case bitc::MODULE_CODE_FUNCTION: { 2972 if (Record.size() < 8) 2973 return Error("Invalid record"); 2974 Type *Ty = getTypeByID(Record[0]); 2975 if (!Ty) 2976 return Error("Invalid record"); 2977 if (auto *PTy = dyn_cast<PointerType>(Ty)) 2978 Ty = PTy->getElementType(); 2979 auto *FTy = dyn_cast<FunctionType>(Ty); 2980 if (!FTy) 2981 return Error("Invalid type for value"); 2982 2983 Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage, 2984 "", TheModule); 2985 2986 Func->setCallingConv(static_cast<CallingConv::ID>(Record[1])); 2987 bool isProto = Record[2]; 2988 uint64_t RawLinkage = Record[3]; 2989 Func->setLinkage(getDecodedLinkage(RawLinkage)); 2990 Func->setAttributes(getAttributes(Record[4])); 2991 2992 unsigned Alignment; 2993 if (std::error_code EC = parseAlignmentValue(Record[5], Alignment)) 2994 return EC; 2995 Func->setAlignment(Alignment); 2996 if (Record[6]) { 2997 if (Record[6]-1 >= SectionTable.size()) 2998 return Error("Invalid ID"); 2999 Func->setSection(SectionTable[Record[6]-1]); 3000 } 3001 // Local linkage must have default visibility. 3002 if (!Func->hasLocalLinkage()) 3003 // FIXME: Change to an error if non-default in 4.0. 3004 Func->setVisibility(GetDecodedVisibility(Record[7])); 3005 if (Record.size() > 8 && Record[8]) { 3006 if (Record[8]-1 >= GCTable.size()) 3007 return Error("Invalid ID"); 3008 Func->setGC(GCTable[Record[8]-1].c_str()); 3009 } 3010 bool UnnamedAddr = false; 3011 if (Record.size() > 9) 3012 UnnamedAddr = Record[9]; 3013 Func->setUnnamedAddr(UnnamedAddr); 3014 if (Record.size() > 10 && Record[10] != 0) 3015 FunctionPrologues.push_back(std::make_pair(Func, Record[10]-1)); 3016 3017 if (Record.size() > 11) 3018 Func->setDLLStorageClass(GetDecodedDLLStorageClass(Record[11])); 3019 else 3020 UpgradeDLLImportExportLinkage(Func, RawLinkage); 3021 3022 if (Record.size() > 12) { 3023 if (unsigned ComdatID = Record[12]) { 3024 if (ComdatID > ComdatList.size()) 3025 return Error("Invalid function comdat ID"); 3026 Func->setComdat(ComdatList[ComdatID - 1]); 3027 } 3028 } else if (hasImplicitComdat(RawLinkage)) { 3029 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3030 } 3031 3032 if (Record.size() > 13 && Record[13] != 0) 3033 FunctionPrefixes.push_back(std::make_pair(Func, Record[13]-1)); 3034 3035 ValueList.push_back(Func); 3036 3037 // If this is a function with a body, remember the prototype we are 3038 // creating now, so that we can match up the body with them later. 3039 if (!isProto) { 3040 Func->setIsMaterializable(true); 3041 FunctionsWithBodies.push_back(Func); 3042 if (LazyStreamer) 3043 DeferredFunctionInfo[Func] = 0; 3044 } 3045 break; 3046 } 3047 // ALIAS: [alias type, aliasee val#, linkage] 3048 // ALIAS: [alias type, aliasee val#, linkage, visibility, dllstorageclass] 3049 case bitc::MODULE_CODE_ALIAS: { 3050 if (Record.size() < 3) 3051 return Error("Invalid record"); 3052 Type *Ty = getTypeByID(Record[0]); 3053 if (!Ty) 3054 return Error("Invalid record"); 3055 auto *PTy = dyn_cast<PointerType>(Ty); 3056 if (!PTy) 3057 return Error("Invalid type for value"); 3058 3059 auto *NewGA = 3060 GlobalAlias::create(PTy, getDecodedLinkage(Record[2]), "", TheModule); 3061 // Old bitcode files didn't have visibility field. 3062 // Local linkage must have default visibility. 3063 if (Record.size() > 3 && !NewGA->hasLocalLinkage()) 3064 // FIXME: Change to an error if non-default in 4.0. 3065 NewGA->setVisibility(GetDecodedVisibility(Record[3])); 3066 if (Record.size() > 4) 3067 NewGA->setDLLStorageClass(GetDecodedDLLStorageClass(Record[4])); 3068 else 3069 UpgradeDLLImportExportLinkage(NewGA, Record[2]); 3070 if (Record.size() > 5) 3071 NewGA->setThreadLocalMode(GetDecodedThreadLocalMode(Record[5])); 3072 if (Record.size() > 6) 3073 NewGA->setUnnamedAddr(Record[6]); 3074 ValueList.push_back(NewGA); 3075 AliasInits.push_back(std::make_pair(NewGA, Record[1])); 3076 break; 3077 } 3078 /// MODULE_CODE_PURGEVALS: [numvals] 3079 case bitc::MODULE_CODE_PURGEVALS: 3080 // Trim down the value list to the specified size. 3081 if (Record.size() < 1 || Record[0] > ValueList.size()) 3082 return Error("Invalid record"); 3083 ValueList.shrinkTo(Record[0]); 3084 break; 3085 } 3086 Record.clear(); 3087 } 3088 } 3089 3090 std::error_code BitcodeReader::ParseBitcodeInto(Module *M, 3091 bool ShouldLazyLoadMetadata) { 3092 TheModule = nullptr; 3093 3094 if (std::error_code EC = InitStream()) 3095 return EC; 3096 3097 // Sniff for the signature. 3098 if (Stream.Read(8) != 'B' || 3099 Stream.Read(8) != 'C' || 3100 Stream.Read(4) != 0x0 || 3101 Stream.Read(4) != 0xC || 3102 Stream.Read(4) != 0xE || 3103 Stream.Read(4) != 0xD) 3104 return Error("Invalid bitcode signature"); 3105 3106 // We expect a number of well-defined blocks, though we don't necessarily 3107 // need to understand them all. 3108 while (1) { 3109 if (Stream.AtEndOfStream()) { 3110 if (TheModule) 3111 return std::error_code(); 3112 // We didn't really read a proper Module. 3113 return Error("Malformed IR file"); 3114 } 3115 3116 BitstreamEntry Entry = 3117 Stream.advance(BitstreamCursor::AF_DontAutoprocessAbbrevs); 3118 3119 switch (Entry.Kind) { 3120 case BitstreamEntry::Error: 3121 return Error("Malformed block"); 3122 case BitstreamEntry::EndBlock: 3123 return std::error_code(); 3124 3125 case BitstreamEntry::SubBlock: 3126 switch (Entry.ID) { 3127 case bitc::BLOCKINFO_BLOCK_ID: 3128 if (Stream.ReadBlockInfoBlock()) 3129 return Error("Malformed block"); 3130 break; 3131 case bitc::MODULE_BLOCK_ID: 3132 // Reject multiple MODULE_BLOCK's in a single bitstream. 3133 if (TheModule) 3134 return Error("Invalid multiple blocks"); 3135 TheModule = M; 3136 if (std::error_code EC = ParseModule(false, ShouldLazyLoadMetadata)) 3137 return EC; 3138 if (LazyStreamer) 3139 return std::error_code(); 3140 break; 3141 default: 3142 if (Stream.SkipBlock()) 3143 return Error("Invalid record"); 3144 break; 3145 } 3146 continue; 3147 case BitstreamEntry::Record: 3148 // There should be no records in the top-level of blocks. 3149 3150 // The ranlib in Xcode 4 will align archive members by appending newlines 3151 // to the end of them. If this file size is a multiple of 4 but not 8, we 3152 // have to read and ignore these final 4 bytes :-( 3153 if (Stream.getAbbrevIDWidth() == 2 && Entry.ID == 2 && 3154 Stream.Read(6) == 2 && Stream.Read(24) == 0xa0a0a && 3155 Stream.AtEndOfStream()) 3156 return std::error_code(); 3157 3158 return Error("Invalid record"); 3159 } 3160 } 3161 } 3162 3163 ErrorOr<std::string> BitcodeReader::parseModuleTriple() { 3164 if (Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3165 return Error("Invalid record"); 3166 3167 SmallVector<uint64_t, 64> Record; 3168 3169 std::string Triple; 3170 // Read all the records for this module. 3171 while (1) { 3172 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3173 3174 switch (Entry.Kind) { 3175 case BitstreamEntry::SubBlock: // Handled for us already. 3176 case BitstreamEntry::Error: 3177 return Error("Malformed block"); 3178 case BitstreamEntry::EndBlock: 3179 return Triple; 3180 case BitstreamEntry::Record: 3181 // The interesting case. 3182 break; 3183 } 3184 3185 // Read a record. 3186 switch (Stream.readRecord(Entry.ID, Record)) { 3187 default: break; // Default behavior, ignore unknown content. 3188 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3189 std::string S; 3190 if (ConvertToString(Record, 0, S)) 3191 return Error("Invalid record"); 3192 Triple = S; 3193 break; 3194 } 3195 } 3196 Record.clear(); 3197 } 3198 llvm_unreachable("Exit infinite loop"); 3199 } 3200 3201 ErrorOr<std::string> BitcodeReader::parseTriple() { 3202 if (std::error_code EC = InitStream()) 3203 return EC; 3204 3205 // Sniff for the signature. 3206 if (Stream.Read(8) != 'B' || 3207 Stream.Read(8) != 'C' || 3208 Stream.Read(4) != 0x0 || 3209 Stream.Read(4) != 0xC || 3210 Stream.Read(4) != 0xE || 3211 Stream.Read(4) != 0xD) 3212 return Error("Invalid bitcode signature"); 3213 3214 // We expect a number of well-defined blocks, though we don't necessarily 3215 // need to understand them all. 3216 while (1) { 3217 BitstreamEntry Entry = Stream.advance(); 3218 3219 switch (Entry.Kind) { 3220 case BitstreamEntry::Error: 3221 return Error("Malformed block"); 3222 case BitstreamEntry::EndBlock: 3223 return std::error_code(); 3224 3225 case BitstreamEntry::SubBlock: 3226 if (Entry.ID == bitc::MODULE_BLOCK_ID) 3227 return parseModuleTriple(); 3228 3229 // Ignore other sub-blocks. 3230 if (Stream.SkipBlock()) 3231 return Error("Malformed block"); 3232 continue; 3233 3234 case BitstreamEntry::Record: 3235 Stream.skipRecord(Entry.ID); 3236 continue; 3237 } 3238 } 3239 } 3240 3241 /// ParseMetadataAttachment - Parse metadata attachments. 3242 std::error_code BitcodeReader::ParseMetadataAttachment(Function &F) { 3243 if (Stream.EnterSubBlock(bitc::METADATA_ATTACHMENT_ID)) 3244 return Error("Invalid record"); 3245 3246 SmallVector<uint64_t, 64> Record; 3247 while (1) { 3248 BitstreamEntry Entry = Stream.advanceSkippingSubblocks(); 3249 3250 switch (Entry.Kind) { 3251 case BitstreamEntry::SubBlock: // Handled for us already. 3252 case BitstreamEntry::Error: 3253 return Error("Malformed block"); 3254 case BitstreamEntry::EndBlock: 3255 return std::error_code(); 3256 case BitstreamEntry::Record: 3257 // The interesting case. 3258 break; 3259 } 3260 3261 // Read a metadata attachment record. 3262 Record.clear(); 3263 switch (Stream.readRecord(Entry.ID, Record)) { 3264 default: // Default behavior: ignore. 3265 break; 3266 case bitc::METADATA_ATTACHMENT: { 3267 unsigned RecordLength = Record.size(); 3268 if (Record.empty()) 3269 return Error("Invalid record"); 3270 if (RecordLength % 2 == 0) { 3271 // A function attachment. 3272 for (unsigned I = 0; I != RecordLength; I += 2) { 3273 auto K = MDKindMap.find(Record[I]); 3274 if (K == MDKindMap.end()) 3275 return Error("Invalid ID"); 3276 Metadata *MD = MDValueList.getValueFwdRef(Record[I + 1]); 3277 F.setMetadata(K->second, cast<MDNode>(MD)); 3278 } 3279 continue; 3280 } 3281 3282 // An instruction attachment. 3283 Instruction *Inst = InstructionList[Record[0]]; 3284 for (unsigned i = 1; i != RecordLength; i = i+2) { 3285 unsigned Kind = Record[i]; 3286 DenseMap<unsigned, unsigned>::iterator I = 3287 MDKindMap.find(Kind); 3288 if (I == MDKindMap.end()) 3289 return Error("Invalid ID"); 3290 Metadata *Node = MDValueList.getValueFwdRef(Record[i + 1]); 3291 if (isa<LocalAsMetadata>(Node)) 3292 // Drop the attachment. This used to be legal, but there's no 3293 // upgrade path. 3294 break; 3295 Inst->setMetadata(I->second, cast<MDNode>(Node)); 3296 if (I->second == LLVMContext::MD_tbaa) 3297 InstsWithTBAATag.push_back(Inst); 3298 } 3299 break; 3300 } 3301 } 3302 } 3303 } 3304 3305 static std::error_code TypeCheckLoadStoreInst(DiagnosticHandlerFunction DH, 3306 Type *ValType, Type *PtrType) { 3307 if (!isa<PointerType>(PtrType)) 3308 return Error(DH, "Load/Store operand is not a pointer type"); 3309 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3310 3311 if (ValType && ValType != ElemType) 3312 return Error(DH, "Explicit load/store type does not match pointee type of " 3313 "pointer operand"); 3314 if (!PointerType::isLoadableOrStorableType(ElemType)) 3315 return Error(DH, "Cannot load/store from pointer"); 3316 return std::error_code(); 3317 } 3318 3319 /// ParseFunctionBody - Lazily parse the specified function body block. 3320 std::error_code BitcodeReader::ParseFunctionBody(Function *F) { 3321 if (Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3322 return Error("Invalid record"); 3323 3324 InstructionList.clear(); 3325 unsigned ModuleValueListSize = ValueList.size(); 3326 unsigned ModuleMDValueListSize = MDValueList.size(); 3327 3328 // Add all the function arguments to the value table. 3329 for(Function::arg_iterator I = F->arg_begin(), E = F->arg_end(); I != E; ++I) 3330 ValueList.push_back(I); 3331 3332 unsigned NextValueNo = ValueList.size(); 3333 BasicBlock *CurBB = nullptr; 3334 unsigned CurBBNo = 0; 3335 3336 DebugLoc LastLoc; 3337 auto getLastInstruction = [&]() -> Instruction * { 3338 if (CurBB && !CurBB->empty()) 3339 return &CurBB->back(); 3340 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3341 !FunctionBBs[CurBBNo - 1]->empty()) 3342 return &FunctionBBs[CurBBNo - 1]->back(); 3343 return nullptr; 3344 }; 3345 3346 // Read all the records. 3347 SmallVector<uint64_t, 64> Record; 3348 while (1) { 3349 BitstreamEntry Entry = Stream.advance(); 3350 3351 switch (Entry.Kind) { 3352 case BitstreamEntry::Error: 3353 return Error("Malformed block"); 3354 case BitstreamEntry::EndBlock: 3355 goto OutOfRecordLoop; 3356 3357 case BitstreamEntry::SubBlock: 3358 switch (Entry.ID) { 3359 default: // Skip unknown content. 3360 if (Stream.SkipBlock()) 3361 return Error("Invalid record"); 3362 break; 3363 case bitc::CONSTANTS_BLOCK_ID: 3364 if (std::error_code EC = ParseConstants()) 3365 return EC; 3366 NextValueNo = ValueList.size(); 3367 break; 3368 case bitc::VALUE_SYMTAB_BLOCK_ID: 3369 if (std::error_code EC = ParseValueSymbolTable()) 3370 return EC; 3371 break; 3372 case bitc::METADATA_ATTACHMENT_ID: 3373 if (std::error_code EC = ParseMetadataAttachment(*F)) 3374 return EC; 3375 break; 3376 case bitc::METADATA_BLOCK_ID: 3377 if (std::error_code EC = ParseMetadata()) 3378 return EC; 3379 break; 3380 case bitc::USELIST_BLOCK_ID: 3381 if (std::error_code EC = ParseUseLists()) 3382 return EC; 3383 break; 3384 } 3385 continue; 3386 3387 case BitstreamEntry::Record: 3388 // The interesting case. 3389 break; 3390 } 3391 3392 // Read a record. 3393 Record.clear(); 3394 Instruction *I = nullptr; 3395 unsigned BitCode = Stream.readRecord(Entry.ID, Record); 3396 switch (BitCode) { 3397 default: // Default behavior: reject 3398 return Error("Invalid value"); 3399 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3400 if (Record.size() < 1 || Record[0] == 0) 3401 return Error("Invalid record"); 3402 // Create all the basic blocks for the function. 3403 FunctionBBs.resize(Record[0]); 3404 3405 // See if anything took the address of blocks in this function. 3406 auto BBFRI = BasicBlockFwdRefs.find(F); 3407 if (BBFRI == BasicBlockFwdRefs.end()) { 3408 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3409 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3410 } else { 3411 auto &BBRefs = BBFRI->second; 3412 // Check for invalid basic block references. 3413 if (BBRefs.size() > FunctionBBs.size()) 3414 return Error("Invalid ID"); 3415 assert(!BBRefs.empty() && "Unexpected empty array"); 3416 assert(!BBRefs.front() && "Invalid reference to entry block"); 3417 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3418 ++I) 3419 if (I < RE && BBRefs[I]) { 3420 BBRefs[I]->insertInto(F); 3421 FunctionBBs[I] = BBRefs[I]; 3422 } else { 3423 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3424 } 3425 3426 // Erase from the table. 3427 BasicBlockFwdRefs.erase(BBFRI); 3428 } 3429 3430 CurBB = FunctionBBs[0]; 3431 continue; 3432 } 3433 3434 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3435 // This record indicates that the last instruction is at the same 3436 // location as the previous instruction with a location. 3437 I = getLastInstruction(); 3438 3439 if (!I) 3440 return Error("Invalid record"); 3441 I->setDebugLoc(LastLoc); 3442 I = nullptr; 3443 continue; 3444 3445 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3446 I = getLastInstruction(); 3447 if (!I || Record.size() < 4) 3448 return Error("Invalid record"); 3449 3450 unsigned Line = Record[0], Col = Record[1]; 3451 unsigned ScopeID = Record[2], IAID = Record[3]; 3452 3453 MDNode *Scope = nullptr, *IA = nullptr; 3454 if (ScopeID) Scope = cast<MDNode>(MDValueList.getValueFwdRef(ScopeID-1)); 3455 if (IAID) IA = cast<MDNode>(MDValueList.getValueFwdRef(IAID-1)); 3456 LastLoc = DebugLoc::get(Line, Col, Scope, IA); 3457 I->setDebugLoc(LastLoc); 3458 I = nullptr; 3459 continue; 3460 } 3461 3462 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3463 unsigned OpNum = 0; 3464 Value *LHS, *RHS; 3465 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3466 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3467 OpNum+1 > Record.size()) 3468 return Error("Invalid record"); 3469 3470 int Opc = GetDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3471 if (Opc == -1) 3472 return Error("Invalid record"); 3473 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3474 InstructionList.push_back(I); 3475 if (OpNum < Record.size()) { 3476 if (Opc == Instruction::Add || 3477 Opc == Instruction::Sub || 3478 Opc == Instruction::Mul || 3479 Opc == Instruction::Shl) { 3480 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3481 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3482 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3483 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3484 } else if (Opc == Instruction::SDiv || 3485 Opc == Instruction::UDiv || 3486 Opc == Instruction::LShr || 3487 Opc == Instruction::AShr) { 3488 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3489 cast<BinaryOperator>(I)->setIsExact(true); 3490 } else if (isa<FPMathOperator>(I)) { 3491 FastMathFlags FMF; 3492 if (0 != (Record[OpNum] & FastMathFlags::UnsafeAlgebra)) 3493 FMF.setUnsafeAlgebra(); 3494 if (0 != (Record[OpNum] & FastMathFlags::NoNaNs)) 3495 FMF.setNoNaNs(); 3496 if (0 != (Record[OpNum] & FastMathFlags::NoInfs)) 3497 FMF.setNoInfs(); 3498 if (0 != (Record[OpNum] & FastMathFlags::NoSignedZeros)) 3499 FMF.setNoSignedZeros(); 3500 if (0 != (Record[OpNum] & FastMathFlags::AllowReciprocal)) 3501 FMF.setAllowReciprocal(); 3502 if (FMF.any()) 3503 I->setFastMathFlags(FMF); 3504 } 3505 3506 } 3507 break; 3508 } 3509 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3510 unsigned OpNum = 0; 3511 Value *Op; 3512 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3513 OpNum+2 != Record.size()) 3514 return Error("Invalid record"); 3515 3516 Type *ResTy = getTypeByID(Record[OpNum]); 3517 int Opc = GetDecodedCastOpcode(Record[OpNum+1]); 3518 if (Opc == -1 || !ResTy) 3519 return Error("Invalid record"); 3520 Instruction *Temp = nullptr; 3521 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3522 if (Temp) { 3523 InstructionList.push_back(Temp); 3524 CurBB->getInstList().push_back(Temp); 3525 } 3526 } else { 3527 I = CastInst::Create((Instruction::CastOps)Opc, Op, ResTy); 3528 } 3529 InstructionList.push_back(I); 3530 break; 3531 } 3532 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3533 case bitc::FUNC_CODE_INST_GEP_OLD: 3534 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3535 unsigned OpNum = 0; 3536 3537 Type *Ty; 3538 bool InBounds; 3539 3540 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3541 InBounds = Record[OpNum++]; 3542 Ty = getTypeByID(Record[OpNum++]); 3543 } else { 3544 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3545 Ty = nullptr; 3546 } 3547 3548 Value *BasePtr; 3549 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr)) 3550 return Error("Invalid record"); 3551 3552 if (!Ty) 3553 Ty = cast<SequentialType>(BasePtr->getType()->getScalarType()) 3554 ->getElementType(); 3555 else if (Ty != 3556 cast<SequentialType>(BasePtr->getType()->getScalarType()) 3557 ->getElementType()) 3558 return Error( 3559 "Explicit gep type does not match pointee type of pointer operand"); 3560 3561 SmallVector<Value*, 16> GEPIdx; 3562 while (OpNum != Record.size()) { 3563 Value *Op; 3564 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3565 return Error("Invalid record"); 3566 GEPIdx.push_back(Op); 3567 } 3568 3569 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3570 3571 InstructionList.push_back(I); 3572 if (InBounds) 3573 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3574 break; 3575 } 3576 3577 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3578 // EXTRACTVAL: [opty, opval, n x indices] 3579 unsigned OpNum = 0; 3580 Value *Agg; 3581 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3582 return Error("Invalid record"); 3583 3584 unsigned RecSize = Record.size(); 3585 if (OpNum == RecSize) 3586 return Error("EXTRACTVAL: Invalid instruction with 0 indices"); 3587 3588 SmallVector<unsigned, 4> EXTRACTVALIdx; 3589 Type *CurTy = Agg->getType(); 3590 for (; OpNum != RecSize; ++OpNum) { 3591 bool IsArray = CurTy->isArrayTy(); 3592 bool IsStruct = CurTy->isStructTy(); 3593 uint64_t Index = Record[OpNum]; 3594 3595 if (!IsStruct && !IsArray) 3596 return Error("EXTRACTVAL: Invalid type"); 3597 if ((unsigned)Index != Index) 3598 return Error("Invalid value"); 3599 if (IsStruct && Index >= CurTy->subtypes().size()) 3600 return Error("EXTRACTVAL: Invalid struct index"); 3601 if (IsArray && Index >= CurTy->getArrayNumElements()) 3602 return Error("EXTRACTVAL: Invalid array index"); 3603 EXTRACTVALIdx.push_back((unsigned)Index); 3604 3605 if (IsStruct) 3606 CurTy = CurTy->subtypes()[Index]; 3607 else 3608 CurTy = CurTy->subtypes()[0]; 3609 } 3610 3611 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 3612 InstructionList.push_back(I); 3613 break; 3614 } 3615 3616 case bitc::FUNC_CODE_INST_INSERTVAL: { 3617 // INSERTVAL: [opty, opval, opty, opval, n x indices] 3618 unsigned OpNum = 0; 3619 Value *Agg; 3620 if (getValueTypePair(Record, OpNum, NextValueNo, Agg)) 3621 return Error("Invalid record"); 3622 Value *Val; 3623 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 3624 return Error("Invalid record"); 3625 3626 unsigned RecSize = Record.size(); 3627 if (OpNum == RecSize) 3628 return Error("INSERTVAL: Invalid instruction with 0 indices"); 3629 3630 SmallVector<unsigned, 4> INSERTVALIdx; 3631 Type *CurTy = Agg->getType(); 3632 for (; OpNum != RecSize; ++OpNum) { 3633 bool IsArray = CurTy->isArrayTy(); 3634 bool IsStruct = CurTy->isStructTy(); 3635 uint64_t Index = Record[OpNum]; 3636 3637 if (!IsStruct && !IsArray) 3638 return Error("INSERTVAL: Invalid type"); 3639 if ((unsigned)Index != Index) 3640 return Error("Invalid value"); 3641 if (IsStruct && Index >= CurTy->subtypes().size()) 3642 return Error("INSERTVAL: Invalid struct index"); 3643 if (IsArray && Index >= CurTy->getArrayNumElements()) 3644 return Error("INSERTVAL: Invalid array index"); 3645 3646 INSERTVALIdx.push_back((unsigned)Index); 3647 if (IsStruct) 3648 CurTy = CurTy->subtypes()[Index]; 3649 else 3650 CurTy = CurTy->subtypes()[0]; 3651 } 3652 3653 if (CurTy != Val->getType()) 3654 return Error("Inserted value type doesn't match aggregate type"); 3655 3656 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 3657 InstructionList.push_back(I); 3658 break; 3659 } 3660 3661 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 3662 // obsolete form of select 3663 // handles select i1 ... in old bitcode 3664 unsigned OpNum = 0; 3665 Value *TrueVal, *FalseVal, *Cond; 3666 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3667 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3668 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 3669 return Error("Invalid record"); 3670 3671 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3672 InstructionList.push_back(I); 3673 break; 3674 } 3675 3676 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 3677 // new form of select 3678 // handles select i1 or select [N x i1] 3679 unsigned OpNum = 0; 3680 Value *TrueVal, *FalseVal, *Cond; 3681 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) || 3682 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 3683 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 3684 return Error("Invalid record"); 3685 3686 // select condition can be either i1 or [N x i1] 3687 if (VectorType* vector_type = 3688 dyn_cast<VectorType>(Cond->getType())) { 3689 // expect <n x i1> 3690 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 3691 return Error("Invalid type for value"); 3692 } else { 3693 // expect i1 3694 if (Cond->getType() != Type::getInt1Ty(Context)) 3695 return Error("Invalid type for value"); 3696 } 3697 3698 I = SelectInst::Create(Cond, TrueVal, FalseVal); 3699 InstructionList.push_back(I); 3700 break; 3701 } 3702 3703 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 3704 unsigned OpNum = 0; 3705 Value *Vec, *Idx; 3706 if (getValueTypePair(Record, OpNum, NextValueNo, Vec) || 3707 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3708 return Error("Invalid record"); 3709 if (!Vec->getType()->isVectorTy()) 3710 return Error("Invalid type for value"); 3711 I = ExtractElementInst::Create(Vec, Idx); 3712 InstructionList.push_back(I); 3713 break; 3714 } 3715 3716 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 3717 unsigned OpNum = 0; 3718 Value *Vec, *Elt, *Idx; 3719 if (getValueTypePair(Record, OpNum, NextValueNo, Vec)) 3720 return Error("Invalid record"); 3721 if (!Vec->getType()->isVectorTy()) 3722 return Error("Invalid type for value"); 3723 if (popValue(Record, OpNum, NextValueNo, 3724 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 3725 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 3726 return Error("Invalid record"); 3727 I = InsertElementInst::Create(Vec, Elt, Idx); 3728 InstructionList.push_back(I); 3729 break; 3730 } 3731 3732 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 3733 unsigned OpNum = 0; 3734 Value *Vec1, *Vec2, *Mask; 3735 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) || 3736 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 3737 return Error("Invalid record"); 3738 3739 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 3740 return Error("Invalid record"); 3741 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 3742 return Error("Invalid type for value"); 3743 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 3744 InstructionList.push_back(I); 3745 break; 3746 } 3747 3748 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 3749 // Old form of ICmp/FCmp returning bool 3750 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 3751 // both legal on vectors but had different behaviour. 3752 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 3753 // FCmp/ICmp returning bool or vector of bool 3754 3755 unsigned OpNum = 0; 3756 Value *LHS, *RHS; 3757 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3758 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3759 OpNum+1 != Record.size()) 3760 return Error("Invalid record"); 3761 3762 if (LHS->getType()->isFPOrFPVectorTy()) 3763 I = new FCmpInst((FCmpInst::Predicate)Record[OpNum], LHS, RHS); 3764 else 3765 I = new ICmpInst((ICmpInst::Predicate)Record[OpNum], LHS, RHS); 3766 InstructionList.push_back(I); 3767 break; 3768 } 3769 3770 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 3771 { 3772 unsigned Size = Record.size(); 3773 if (Size == 0) { 3774 I = ReturnInst::Create(Context); 3775 InstructionList.push_back(I); 3776 break; 3777 } 3778 3779 unsigned OpNum = 0; 3780 Value *Op = nullptr; 3781 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3782 return Error("Invalid record"); 3783 if (OpNum != Record.size()) 3784 return Error("Invalid record"); 3785 3786 I = ReturnInst::Create(Context, Op); 3787 InstructionList.push_back(I); 3788 break; 3789 } 3790 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 3791 if (Record.size() != 1 && Record.size() != 3) 3792 return Error("Invalid record"); 3793 BasicBlock *TrueDest = getBasicBlock(Record[0]); 3794 if (!TrueDest) 3795 return Error("Invalid record"); 3796 3797 if (Record.size() == 1) { 3798 I = BranchInst::Create(TrueDest); 3799 InstructionList.push_back(I); 3800 } 3801 else { 3802 BasicBlock *FalseDest = getBasicBlock(Record[1]); 3803 Value *Cond = getValue(Record, 2, NextValueNo, 3804 Type::getInt1Ty(Context)); 3805 if (!FalseDest || !Cond) 3806 return Error("Invalid record"); 3807 I = BranchInst::Create(TrueDest, FalseDest, Cond); 3808 InstructionList.push_back(I); 3809 } 3810 break; 3811 } 3812 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 3813 // Check magic 3814 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 3815 // "New" SwitchInst format with case ranges. The changes to write this 3816 // format were reverted but we still recognize bitcode that uses it. 3817 // Hopefully someday we will have support for case ranges and can use 3818 // this format again. 3819 3820 Type *OpTy = getTypeByID(Record[1]); 3821 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 3822 3823 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 3824 BasicBlock *Default = getBasicBlock(Record[3]); 3825 if (!OpTy || !Cond || !Default) 3826 return Error("Invalid record"); 3827 3828 unsigned NumCases = Record[4]; 3829 3830 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3831 InstructionList.push_back(SI); 3832 3833 unsigned CurIdx = 5; 3834 for (unsigned i = 0; i != NumCases; ++i) { 3835 SmallVector<ConstantInt*, 1> CaseVals; 3836 unsigned NumItems = Record[CurIdx++]; 3837 for (unsigned ci = 0; ci != NumItems; ++ci) { 3838 bool isSingleNumber = Record[CurIdx++]; 3839 3840 APInt Low; 3841 unsigned ActiveWords = 1; 3842 if (ValueBitWidth > 64) 3843 ActiveWords = Record[CurIdx++]; 3844 Low = ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3845 ValueBitWidth); 3846 CurIdx += ActiveWords; 3847 3848 if (!isSingleNumber) { 3849 ActiveWords = 1; 3850 if (ValueBitWidth > 64) 3851 ActiveWords = Record[CurIdx++]; 3852 APInt High = 3853 ReadWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 3854 ValueBitWidth); 3855 CurIdx += ActiveWords; 3856 3857 // FIXME: It is not clear whether values in the range should be 3858 // compared as signed or unsigned values. The partially 3859 // implemented changes that used this format in the past used 3860 // unsigned comparisons. 3861 for ( ; Low.ule(High); ++Low) 3862 CaseVals.push_back(ConstantInt::get(Context, Low)); 3863 } else 3864 CaseVals.push_back(ConstantInt::get(Context, Low)); 3865 } 3866 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 3867 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 3868 cve = CaseVals.end(); cvi != cve; ++cvi) 3869 SI->addCase(*cvi, DestBB); 3870 } 3871 I = SI; 3872 break; 3873 } 3874 3875 // Old SwitchInst format without case ranges. 3876 3877 if (Record.size() < 3 || (Record.size() & 1) == 0) 3878 return Error("Invalid record"); 3879 Type *OpTy = getTypeByID(Record[0]); 3880 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 3881 BasicBlock *Default = getBasicBlock(Record[2]); 3882 if (!OpTy || !Cond || !Default) 3883 return Error("Invalid record"); 3884 unsigned NumCases = (Record.size()-3)/2; 3885 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 3886 InstructionList.push_back(SI); 3887 for (unsigned i = 0, e = NumCases; i != e; ++i) { 3888 ConstantInt *CaseVal = 3889 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 3890 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 3891 if (!CaseVal || !DestBB) { 3892 delete SI; 3893 return Error("Invalid record"); 3894 } 3895 SI->addCase(CaseVal, DestBB); 3896 } 3897 I = SI; 3898 break; 3899 } 3900 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 3901 if (Record.size() < 2) 3902 return Error("Invalid record"); 3903 Type *OpTy = getTypeByID(Record[0]); 3904 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 3905 if (!OpTy || !Address) 3906 return Error("Invalid record"); 3907 unsigned NumDests = Record.size()-2; 3908 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 3909 InstructionList.push_back(IBI); 3910 for (unsigned i = 0, e = NumDests; i != e; ++i) { 3911 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 3912 IBI->addDestination(DestBB); 3913 } else { 3914 delete IBI; 3915 return Error("Invalid record"); 3916 } 3917 } 3918 I = IBI; 3919 break; 3920 } 3921 3922 case bitc::FUNC_CODE_INST_INVOKE: { 3923 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 3924 if (Record.size() < 4) 3925 return Error("Invalid record"); 3926 unsigned OpNum = 0; 3927 AttributeSet PAL = getAttributes(Record[OpNum++]); 3928 unsigned CCInfo = Record[OpNum++]; 3929 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 3930 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 3931 3932 FunctionType *FTy = nullptr; 3933 if (CCInfo >> 13 & 1 && 3934 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 3935 return Error("Explicit invoke type is not a function type"); 3936 3937 Value *Callee; 3938 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 3939 return Error("Invalid record"); 3940 3941 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 3942 if (!CalleeTy) 3943 return Error("Callee is not a pointer"); 3944 if (!FTy) { 3945 FTy = dyn_cast<FunctionType>(CalleeTy->getElementType()); 3946 if (!FTy) 3947 return Error("Callee is not of pointer to function type"); 3948 } else if (CalleeTy->getElementType() != FTy) 3949 return Error("Explicit invoke type does not match pointee type of " 3950 "callee operand"); 3951 if (Record.size() < FTy->getNumParams() + OpNum) 3952 return Error("Insufficient operands to call"); 3953 3954 SmallVector<Value*, 16> Ops; 3955 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 3956 Ops.push_back(getValue(Record, OpNum, NextValueNo, 3957 FTy->getParamType(i))); 3958 if (!Ops.back()) 3959 return Error("Invalid record"); 3960 } 3961 3962 if (!FTy->isVarArg()) { 3963 if (Record.size() != OpNum) 3964 return Error("Invalid record"); 3965 } else { 3966 // Read type/value pairs for varargs params. 3967 while (OpNum != Record.size()) { 3968 Value *Op; 3969 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3970 return Error("Invalid record"); 3971 Ops.push_back(Op); 3972 } 3973 } 3974 3975 I = InvokeInst::Create(Callee, NormalBB, UnwindBB, Ops); 3976 InstructionList.push_back(I); 3977 cast<InvokeInst>(I) 3978 ->setCallingConv(static_cast<CallingConv::ID>(~(1U << 13) & CCInfo)); 3979 cast<InvokeInst>(I)->setAttributes(PAL); 3980 break; 3981 } 3982 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 3983 unsigned Idx = 0; 3984 Value *Val = nullptr; 3985 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 3986 return Error("Invalid record"); 3987 I = ResumeInst::Create(Val); 3988 InstructionList.push_back(I); 3989 break; 3990 } 3991 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 3992 I = new UnreachableInst(Context); 3993 InstructionList.push_back(I); 3994 break; 3995 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 3996 if (Record.size() < 1 || ((Record.size()-1)&1)) 3997 return Error("Invalid record"); 3998 Type *Ty = getTypeByID(Record[0]); 3999 if (!Ty) 4000 return Error("Invalid record"); 4001 4002 PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2); 4003 InstructionList.push_back(PN); 4004 4005 for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) { 4006 Value *V; 4007 // With the new function encoding, it is possible that operands have 4008 // negative IDs (for forward references). Use a signed VBR 4009 // representation to keep the encoding small. 4010 if (UseRelativeIDs) 4011 V = getValueSigned(Record, 1+i, NextValueNo, Ty); 4012 else 4013 V = getValue(Record, 1+i, NextValueNo, Ty); 4014 BasicBlock *BB = getBasicBlock(Record[2+i]); 4015 if (!V || !BB) 4016 return Error("Invalid record"); 4017 PN->addIncoming(V, BB); 4018 } 4019 I = PN; 4020 break; 4021 } 4022 4023 case bitc::FUNC_CODE_INST_LANDINGPAD: { 4024 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4025 unsigned Idx = 0; 4026 if (Record.size() < 4) 4027 return Error("Invalid record"); 4028 Type *Ty = getTypeByID(Record[Idx++]); 4029 if (!Ty) 4030 return Error("Invalid record"); 4031 Value *PersFn = nullptr; 4032 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4033 return Error("Invalid record"); 4034 4035 bool IsCleanup = !!Record[Idx++]; 4036 unsigned NumClauses = Record[Idx++]; 4037 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, NumClauses); 4038 LP->setCleanup(IsCleanup); 4039 for (unsigned J = 0; J != NumClauses; ++J) { 4040 LandingPadInst::ClauseType CT = 4041 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4042 Value *Val; 4043 4044 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4045 delete LP; 4046 return Error("Invalid record"); 4047 } 4048 4049 assert((CT != LandingPadInst::Catch || 4050 !isa<ArrayType>(Val->getType())) && 4051 "Catch clause has a invalid type!"); 4052 assert((CT != LandingPadInst::Filter || 4053 isa<ArrayType>(Val->getType())) && 4054 "Filter clause has invalid type!"); 4055 LP->addClause(cast<Constant>(Val)); 4056 } 4057 4058 I = LP; 4059 InstructionList.push_back(I); 4060 break; 4061 } 4062 4063 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4064 if (Record.size() != 4) 4065 return Error("Invalid record"); 4066 uint64_t AlignRecord = Record[3]; 4067 const uint64_t InAllocaMask = uint64_t(1) << 5; 4068 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4069 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask; 4070 bool InAlloca = AlignRecord & InAllocaMask; 4071 Type *Ty = getTypeByID(Record[0]); 4072 if ((AlignRecord & ExplicitTypeMask) == 0) { 4073 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4074 if (!PTy) 4075 return Error("Old-style alloca with a non-pointer type"); 4076 Ty = PTy->getElementType(); 4077 } 4078 Type *OpTy = getTypeByID(Record[1]); 4079 Value *Size = getFnValueByID(Record[2], OpTy); 4080 unsigned Align; 4081 if (std::error_code EC = 4082 parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4083 return EC; 4084 } 4085 if (!Ty || !Size) 4086 return Error("Invalid record"); 4087 AllocaInst *AI = new AllocaInst(Ty, Size, Align); 4088 AI->setUsedWithInAlloca(InAlloca); 4089 I = AI; 4090 InstructionList.push_back(I); 4091 break; 4092 } 4093 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4094 unsigned OpNum = 0; 4095 Value *Op; 4096 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4097 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4098 return Error("Invalid record"); 4099 4100 Type *Ty = nullptr; 4101 if (OpNum + 3 == Record.size()) 4102 Ty = getTypeByID(Record[OpNum++]); 4103 if (std::error_code EC = 4104 TypeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4105 return EC; 4106 if (!Ty) 4107 Ty = cast<PointerType>(Op->getType())->getElementType(); 4108 4109 unsigned Align; 4110 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4111 return EC; 4112 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align); 4113 4114 InstructionList.push_back(I); 4115 break; 4116 } 4117 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4118 // LOADATOMIC: [opty, op, align, vol, ordering, synchscope] 4119 unsigned OpNum = 0; 4120 Value *Op; 4121 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 4122 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4123 return Error("Invalid record"); 4124 4125 Type *Ty = nullptr; 4126 if (OpNum + 5 == Record.size()) 4127 Ty = getTypeByID(Record[OpNum++]); 4128 if (std::error_code EC = 4129 TypeCheckLoadStoreInst(DiagnosticHandler, Ty, Op->getType())) 4130 return EC; 4131 if (!Ty) 4132 Ty = cast<PointerType>(Op->getType())->getElementType(); 4133 4134 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4135 if (Ordering == NotAtomic || Ordering == Release || 4136 Ordering == AcquireRelease) 4137 return Error("Invalid record"); 4138 if (Ordering != NotAtomic && Record[OpNum] == 0) 4139 return Error("Invalid record"); 4140 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4141 4142 unsigned Align; 4143 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4144 return EC; 4145 I = new LoadInst(Op, "", Record[OpNum+1], Align, Ordering, SynchScope); 4146 4147 InstructionList.push_back(I); 4148 break; 4149 } 4150 case bitc::FUNC_CODE_INST_STORE: 4151 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4152 unsigned OpNum = 0; 4153 Value *Val, *Ptr; 4154 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4155 (BitCode == bitc::FUNC_CODE_INST_STORE 4156 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4157 : popValue(Record, OpNum, NextValueNo, 4158 cast<PointerType>(Ptr->getType())->getElementType(), 4159 Val)) || 4160 OpNum + 2 != Record.size()) 4161 return Error("Invalid record"); 4162 4163 if (std::error_code EC = TypeCheckLoadStoreInst( 4164 DiagnosticHandler, Val->getType(), Ptr->getType())) 4165 return EC; 4166 unsigned Align; 4167 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4168 return EC; 4169 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align); 4170 InstructionList.push_back(I); 4171 break; 4172 } 4173 case bitc::FUNC_CODE_INST_STOREATOMIC: 4174 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4175 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, synchscope] 4176 unsigned OpNum = 0; 4177 Value *Val, *Ptr; 4178 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4179 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4180 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4181 : popValue(Record, OpNum, NextValueNo, 4182 cast<PointerType>(Ptr->getType())->getElementType(), 4183 Val)) || 4184 OpNum + 4 != Record.size()) 4185 return Error("Invalid record"); 4186 4187 if (std::error_code EC = TypeCheckLoadStoreInst( 4188 DiagnosticHandler, Val->getType(), Ptr->getType())) 4189 return EC; 4190 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4191 if (Ordering == NotAtomic || Ordering == Acquire || 4192 Ordering == AcquireRelease) 4193 return Error("Invalid record"); 4194 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4195 if (Ordering != NotAtomic && Record[OpNum] == 0) 4196 return Error("Invalid record"); 4197 4198 unsigned Align; 4199 if (std::error_code EC = parseAlignmentValue(Record[OpNum], Align)) 4200 return EC; 4201 I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SynchScope); 4202 InstructionList.push_back(I); 4203 break; 4204 } 4205 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4206 case bitc::FUNC_CODE_INST_CMPXCHG: { 4207 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, synchscope, 4208 // failureordering?, isweak?] 4209 unsigned OpNum = 0; 4210 Value *Ptr, *Cmp, *New; 4211 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4212 (BitCode == bitc::FUNC_CODE_INST_CMPXCHG 4213 ? getValueTypePair(Record, OpNum, NextValueNo, Cmp) 4214 : popValue(Record, OpNum, NextValueNo, 4215 cast<PointerType>(Ptr->getType())->getElementType(), 4216 Cmp)) || 4217 popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4218 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4219 return Error("Invalid record"); 4220 AtomicOrdering SuccessOrdering = GetDecodedOrdering(Record[OpNum+1]); 4221 if (SuccessOrdering == NotAtomic || SuccessOrdering == Unordered) 4222 return Error("Invalid record"); 4223 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+2]); 4224 4225 if (std::error_code EC = TypeCheckLoadStoreInst( 4226 DiagnosticHandler, Cmp->getType(), Ptr->getType())) 4227 return EC; 4228 AtomicOrdering FailureOrdering; 4229 if (Record.size() < 7) 4230 FailureOrdering = 4231 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4232 else 4233 FailureOrdering = GetDecodedOrdering(Record[OpNum+3]); 4234 4235 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4236 SynchScope); 4237 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4238 4239 if (Record.size() < 8) { 4240 // Before weak cmpxchgs existed, the instruction simply returned the 4241 // value loaded from memory, so bitcode files from that era will be 4242 // expecting the first component of a modern cmpxchg. 4243 CurBB->getInstList().push_back(I); 4244 I = ExtractValueInst::Create(I, 0); 4245 } else { 4246 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4247 } 4248 4249 InstructionList.push_back(I); 4250 break; 4251 } 4252 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4253 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, synchscope] 4254 unsigned OpNum = 0; 4255 Value *Ptr, *Val; 4256 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) || 4257 popValue(Record, OpNum, NextValueNo, 4258 cast<PointerType>(Ptr->getType())->getElementType(), Val) || 4259 OpNum+4 != Record.size()) 4260 return Error("Invalid record"); 4261 AtomicRMWInst::BinOp Operation = GetDecodedRMWOperation(Record[OpNum]); 4262 if (Operation < AtomicRMWInst::FIRST_BINOP || 4263 Operation > AtomicRMWInst::LAST_BINOP) 4264 return Error("Invalid record"); 4265 AtomicOrdering Ordering = GetDecodedOrdering(Record[OpNum+2]); 4266 if (Ordering == NotAtomic || Ordering == Unordered) 4267 return Error("Invalid record"); 4268 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[OpNum+3]); 4269 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SynchScope); 4270 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4271 InstructionList.push_back(I); 4272 break; 4273 } 4274 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, synchscope] 4275 if (2 != Record.size()) 4276 return Error("Invalid record"); 4277 AtomicOrdering Ordering = GetDecodedOrdering(Record[0]); 4278 if (Ordering == NotAtomic || Ordering == Unordered || 4279 Ordering == Monotonic) 4280 return Error("Invalid record"); 4281 SynchronizationScope SynchScope = GetDecodedSynchScope(Record[1]); 4282 I = new FenceInst(Context, Ordering, SynchScope); 4283 InstructionList.push_back(I); 4284 break; 4285 } 4286 case bitc::FUNC_CODE_INST_CALL: { 4287 // CALL: [paramattrs, cc, fnty, fnid, arg0, arg1...] 4288 if (Record.size() < 3) 4289 return Error("Invalid record"); 4290 4291 unsigned OpNum = 0; 4292 AttributeSet PAL = getAttributes(Record[OpNum++]); 4293 unsigned CCInfo = Record[OpNum++]; 4294 4295 FunctionType *FTy = nullptr; 4296 if (CCInfo >> 15 & 1 && 4297 !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++])))) 4298 return Error("Explicit call type is not a function type"); 4299 4300 Value *Callee; 4301 if (getValueTypePair(Record, OpNum, NextValueNo, Callee)) 4302 return Error("Invalid record"); 4303 4304 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4305 if (!OpTy) 4306 return Error("Callee is not a pointer type"); 4307 if (!FTy) { 4308 FTy = dyn_cast<FunctionType>(OpTy->getElementType()); 4309 if (!FTy) 4310 return Error("Callee is not of pointer to function type"); 4311 } else if (OpTy->getElementType() != FTy) 4312 return Error("Explicit call type does not match pointee type of " 4313 "callee operand"); 4314 if (Record.size() < FTy->getNumParams() + OpNum) 4315 return Error("Insufficient operands to call"); 4316 4317 SmallVector<Value*, 16> Args; 4318 // Read the fixed params. 4319 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4320 if (FTy->getParamType(i)->isLabelTy()) 4321 Args.push_back(getBasicBlock(Record[OpNum])); 4322 else 4323 Args.push_back(getValue(Record, OpNum, NextValueNo, 4324 FTy->getParamType(i))); 4325 if (!Args.back()) 4326 return Error("Invalid record"); 4327 } 4328 4329 // Read type/value pairs for varargs params. 4330 if (!FTy->isVarArg()) { 4331 if (OpNum != Record.size()) 4332 return Error("Invalid record"); 4333 } else { 4334 while (OpNum != Record.size()) { 4335 Value *Op; 4336 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4337 return Error("Invalid record"); 4338 Args.push_back(Op); 4339 } 4340 } 4341 4342 I = CallInst::Create(FTy, Callee, Args); 4343 InstructionList.push_back(I); 4344 cast<CallInst>(I)->setCallingConv( 4345 static_cast<CallingConv::ID>((~(1U << 14) & CCInfo) >> 1)); 4346 CallInst::TailCallKind TCK = CallInst::TCK_None; 4347 if (CCInfo & 1) 4348 TCK = CallInst::TCK_Tail; 4349 if (CCInfo & (1 << 14)) 4350 TCK = CallInst::TCK_MustTail; 4351 cast<CallInst>(I)->setTailCallKind(TCK); 4352 cast<CallInst>(I)->setAttributes(PAL); 4353 break; 4354 } 4355 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 4356 if (Record.size() < 3) 4357 return Error("Invalid record"); 4358 Type *OpTy = getTypeByID(Record[0]); 4359 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 4360 Type *ResTy = getTypeByID(Record[2]); 4361 if (!OpTy || !Op || !ResTy) 4362 return Error("Invalid record"); 4363 I = new VAArgInst(Op, ResTy); 4364 InstructionList.push_back(I); 4365 break; 4366 } 4367 } 4368 4369 // Add instruction to end of current BB. If there is no current BB, reject 4370 // this file. 4371 if (!CurBB) { 4372 delete I; 4373 return Error("Invalid instruction with no BB"); 4374 } 4375 CurBB->getInstList().push_back(I); 4376 4377 // If this was a terminator instruction, move to the next block. 4378 if (isa<TerminatorInst>(I)) { 4379 ++CurBBNo; 4380 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 4381 } 4382 4383 // Non-void values get registered in the value table for future use. 4384 if (I && !I->getType()->isVoidTy()) 4385 ValueList.AssignValue(I, NextValueNo++); 4386 } 4387 4388 OutOfRecordLoop: 4389 4390 // Check the function list for unresolved values. 4391 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 4392 if (!A->getParent()) { 4393 // We found at least one unresolved value. Nuke them all to avoid leaks. 4394 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 4395 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 4396 A->replaceAllUsesWith(UndefValue::get(A->getType())); 4397 delete A; 4398 } 4399 } 4400 return Error("Never resolved value found in function"); 4401 } 4402 } 4403 4404 // FIXME: Check for unresolved forward-declared metadata references 4405 // and clean up leaks. 4406 4407 // Trim the value list down to the size it was before we parsed this function. 4408 ValueList.shrinkTo(ModuleValueListSize); 4409 MDValueList.shrinkTo(ModuleMDValueListSize); 4410 std::vector<BasicBlock*>().swap(FunctionBBs); 4411 return std::error_code(); 4412 } 4413 4414 /// Find the function body in the bitcode stream 4415 std::error_code BitcodeReader::FindFunctionInStream( 4416 Function *F, 4417 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 4418 while (DeferredFunctionInfoIterator->second == 0) { 4419 if (Stream.AtEndOfStream()) 4420 return Error("Could not find function in stream"); 4421 // ParseModule will parse the next body in the stream and set its 4422 // position in the DeferredFunctionInfo map. 4423 if (std::error_code EC = ParseModule(true)) 4424 return EC; 4425 } 4426 return std::error_code(); 4427 } 4428 4429 //===----------------------------------------------------------------------===// 4430 // GVMaterializer implementation 4431 //===----------------------------------------------------------------------===// 4432 4433 void BitcodeReader::releaseBuffer() { Buffer.release(); } 4434 4435 std::error_code BitcodeReader::materialize(GlobalValue *GV) { 4436 if (std::error_code EC = materializeMetadata()) 4437 return EC; 4438 4439 Function *F = dyn_cast<Function>(GV); 4440 // If it's not a function or is already material, ignore the request. 4441 if (!F || !F->isMaterializable()) 4442 return std::error_code(); 4443 4444 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 4445 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 4446 // If its position is recorded as 0, its body is somewhere in the stream 4447 // but we haven't seen it yet. 4448 if (DFII->second == 0 && LazyStreamer) 4449 if (std::error_code EC = FindFunctionInStream(F, DFII)) 4450 return EC; 4451 4452 // Move the bit stream to the saved position of the deferred function body. 4453 Stream.JumpToBit(DFII->second); 4454 4455 if (std::error_code EC = ParseFunctionBody(F)) 4456 return EC; 4457 F->setIsMaterializable(false); 4458 4459 if (StripDebugInfo) 4460 stripDebugInfo(*F); 4461 4462 // Upgrade any old intrinsic calls in the function. 4463 for (UpgradedIntrinsicMap::iterator I = UpgradedIntrinsics.begin(), 4464 E = UpgradedIntrinsics.end(); I != E; ++I) { 4465 if (I->first != I->second) { 4466 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4467 UI != UE;) { 4468 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4469 UpgradeIntrinsicCall(CI, I->second); 4470 } 4471 } 4472 } 4473 4474 // Bring in any functions that this function forward-referenced via 4475 // blockaddresses. 4476 return materializeForwardReferencedFunctions(); 4477 } 4478 4479 bool BitcodeReader::isDematerializable(const GlobalValue *GV) const { 4480 const Function *F = dyn_cast<Function>(GV); 4481 if (!F || F->isDeclaration()) 4482 return false; 4483 4484 // Dematerializing F would leave dangling references that wouldn't be 4485 // reconnected on re-materialization. 4486 if (BlockAddressesTaken.count(F)) 4487 return false; 4488 4489 return DeferredFunctionInfo.count(const_cast<Function*>(F)); 4490 } 4491 4492 void BitcodeReader::dematerialize(GlobalValue *GV) { 4493 Function *F = dyn_cast<Function>(GV); 4494 // If this function isn't dematerializable, this is a noop. 4495 if (!F || !isDematerializable(F)) 4496 return; 4497 4498 assert(DeferredFunctionInfo.count(F) && "No info to read function later?"); 4499 4500 // Just forget the function body, we can remat it later. 4501 F->dropAllReferences(); 4502 F->setIsMaterializable(true); 4503 } 4504 4505 std::error_code BitcodeReader::materializeModule(Module *M) { 4506 assert(M == TheModule && 4507 "Can only Materialize the Module this BitcodeReader is attached to."); 4508 4509 if (std::error_code EC = materializeMetadata()) 4510 return EC; 4511 4512 // Promise to materialize all forward references. 4513 WillMaterializeAllForwardRefs = true; 4514 4515 // Iterate over the module, deserializing any functions that are still on 4516 // disk. 4517 for (Module::iterator F = TheModule->begin(), E = TheModule->end(); 4518 F != E; ++F) { 4519 if (std::error_code EC = materialize(F)) 4520 return EC; 4521 } 4522 // At this point, if there are any function bodies, the current bit is 4523 // pointing to the END_BLOCK record after them. Now make sure the rest 4524 // of the bits in the module have been read. 4525 if (NextUnreadBit) 4526 ParseModule(true); 4527 4528 // Check that all block address forward references got resolved (as we 4529 // promised above). 4530 if (!BasicBlockFwdRefs.empty()) 4531 return Error("Never resolved function from blockaddress"); 4532 4533 // Upgrade any intrinsic calls that slipped through (should not happen!) and 4534 // delete the old functions to clean up. We can't do this unless the entire 4535 // module is materialized because there could always be another function body 4536 // with calls to the old function. 4537 for (std::vector<std::pair<Function*, Function*> >::iterator I = 4538 UpgradedIntrinsics.begin(), E = UpgradedIntrinsics.end(); I != E; ++I) { 4539 if (I->first != I->second) { 4540 for (auto UI = I->first->user_begin(), UE = I->first->user_end(); 4541 UI != UE;) { 4542 if (CallInst* CI = dyn_cast<CallInst>(*UI++)) 4543 UpgradeIntrinsicCall(CI, I->second); 4544 } 4545 if (!I->first->use_empty()) 4546 I->first->replaceAllUsesWith(I->second); 4547 I->first->eraseFromParent(); 4548 } 4549 } 4550 std::vector<std::pair<Function*, Function*> >().swap(UpgradedIntrinsics); 4551 4552 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 4553 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 4554 4555 UpgradeDebugInfo(*M); 4556 return std::error_code(); 4557 } 4558 4559 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 4560 return IdentifiedStructTypes; 4561 } 4562 4563 std::error_code BitcodeReader::InitStream() { 4564 if (LazyStreamer) 4565 return InitLazyStream(); 4566 return InitStreamFromBuffer(); 4567 } 4568 4569 std::error_code BitcodeReader::InitStreamFromBuffer() { 4570 const unsigned char *BufPtr = (const unsigned char*)Buffer->getBufferStart(); 4571 const unsigned char *BufEnd = BufPtr+Buffer->getBufferSize(); 4572 4573 if (Buffer->getBufferSize() & 3) 4574 return Error("Invalid bitcode signature"); 4575 4576 // If we have a wrapper header, parse it and ignore the non-bc file contents. 4577 // The magic number is 0x0B17C0DE stored in little endian. 4578 if (isBitcodeWrapper(BufPtr, BufEnd)) 4579 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 4580 return Error("Invalid bitcode wrapper header"); 4581 4582 StreamFile.reset(new BitstreamReader(BufPtr, BufEnd)); 4583 Stream.init(&*StreamFile); 4584 4585 return std::error_code(); 4586 } 4587 4588 std::error_code BitcodeReader::InitLazyStream() { 4589 // Check and strip off the bitcode wrapper; BitstreamReader expects never to 4590 // see it. 4591 auto OwnedBytes = llvm::make_unique<StreamingMemoryObject>(LazyStreamer); 4592 StreamingMemoryObject &Bytes = *OwnedBytes; 4593 StreamFile = llvm::make_unique<BitstreamReader>(std::move(OwnedBytes)); 4594 Stream.init(&*StreamFile); 4595 4596 unsigned char buf[16]; 4597 if (Bytes.readBytes(buf, 16, 0) != 16) 4598 return Error("Invalid bitcode signature"); 4599 4600 if (!isBitcode(buf, buf + 16)) 4601 return Error("Invalid bitcode signature"); 4602 4603 if (isBitcodeWrapper(buf, buf + 4)) { 4604 const unsigned char *bitcodeStart = buf; 4605 const unsigned char *bitcodeEnd = buf + 16; 4606 SkipBitcodeWrapperHeader(bitcodeStart, bitcodeEnd, false); 4607 Bytes.dropLeadingBytes(bitcodeStart - buf); 4608 Bytes.setKnownObjectSize(bitcodeEnd - bitcodeStart); 4609 } 4610 return std::error_code(); 4611 } 4612 4613 namespace { 4614 class BitcodeErrorCategoryType : public std::error_category { 4615 const char *name() const LLVM_NOEXCEPT override { 4616 return "llvm.bitcode"; 4617 } 4618 std::string message(int IE) const override { 4619 BitcodeError E = static_cast<BitcodeError>(IE); 4620 switch (E) { 4621 case BitcodeError::InvalidBitcodeSignature: 4622 return "Invalid bitcode signature"; 4623 case BitcodeError::CorruptedBitcode: 4624 return "Corrupted bitcode"; 4625 } 4626 llvm_unreachable("Unknown error type!"); 4627 } 4628 }; 4629 } 4630 4631 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 4632 4633 const std::error_category &llvm::BitcodeErrorCategory() { 4634 return *ErrorCategory; 4635 } 4636 4637 //===----------------------------------------------------------------------===// 4638 // External interface 4639 //===----------------------------------------------------------------------===// 4640 4641 /// \brief Get a lazy one-at-time loading module from bitcode. 4642 /// 4643 /// This isn't always used in a lazy context. In particular, it's also used by 4644 /// \a parseBitcodeFile(). If this is truly lazy, then we need to eagerly pull 4645 /// in forward-referenced functions from block address references. 4646 /// 4647 /// \param[in] WillMaterializeAll Set to \c true if the caller promises to 4648 /// materialize everything -- in particular, if this isn't truly lazy. 4649 static ErrorOr<Module *> 4650 getLazyBitcodeModuleImpl(std::unique_ptr<MemoryBuffer> &&Buffer, 4651 LLVMContext &Context, bool WillMaterializeAll, 4652 DiagnosticHandlerFunction DiagnosticHandler, 4653 bool ShouldLazyLoadMetadata = false) { 4654 Module *M = new Module(Buffer->getBufferIdentifier(), Context); 4655 BitcodeReader *R = 4656 new BitcodeReader(Buffer.get(), Context, DiagnosticHandler); 4657 M->setMaterializer(R); 4658 4659 auto cleanupOnError = [&](std::error_code EC) { 4660 R->releaseBuffer(); // Never take ownership on error. 4661 delete M; // Also deletes R. 4662 return EC; 4663 }; 4664 4665 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 4666 if (std::error_code EC = R->ParseBitcodeInto(M, ShouldLazyLoadMetadata)) 4667 return cleanupOnError(EC); 4668 4669 if (!WillMaterializeAll) 4670 // Resolve forward references from blockaddresses. 4671 if (std::error_code EC = R->materializeForwardReferencedFunctions()) 4672 return cleanupOnError(EC); 4673 4674 Buffer.release(); // The BitcodeReader owns it now. 4675 return M; 4676 } 4677 4678 ErrorOr<Module *> 4679 llvm::getLazyBitcodeModule(std::unique_ptr<MemoryBuffer> &&Buffer, 4680 LLVMContext &Context, 4681 DiagnosticHandlerFunction DiagnosticHandler, 4682 bool ShouldLazyLoadMetadata) { 4683 return getLazyBitcodeModuleImpl(std::move(Buffer), Context, false, 4684 DiagnosticHandler, ShouldLazyLoadMetadata); 4685 } 4686 4687 ErrorOr<std::unique_ptr<Module>> 4688 llvm::getStreamedBitcodeModule(StringRef Name, DataStreamer *Streamer, 4689 LLVMContext &Context, 4690 DiagnosticHandlerFunction DiagnosticHandler) { 4691 std::unique_ptr<Module> M = make_unique<Module>(Name, Context); 4692 BitcodeReader *R = new BitcodeReader(Streamer, Context, DiagnosticHandler); 4693 M->setMaterializer(R); 4694 if (std::error_code EC = R->ParseBitcodeInto(M.get())) 4695 return EC; 4696 return std::move(M); 4697 } 4698 4699 ErrorOr<Module *> 4700 llvm::parseBitcodeFile(MemoryBufferRef Buffer, LLVMContext &Context, 4701 DiagnosticHandlerFunction DiagnosticHandler) { 4702 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4703 ErrorOr<Module *> ModuleOrErr = getLazyBitcodeModuleImpl( 4704 std::move(Buf), Context, true, DiagnosticHandler); 4705 if (!ModuleOrErr) 4706 return ModuleOrErr; 4707 Module *M = ModuleOrErr.get(); 4708 // Read in the entire module, and destroy the BitcodeReader. 4709 if (std::error_code EC = M->materializeAllPermanently()) { 4710 delete M; 4711 return EC; 4712 } 4713 4714 // TODO: Restore the use-lists to the in-memory state when the bitcode was 4715 // written. We must defer until the Module has been fully materialized. 4716 4717 return M; 4718 } 4719 4720 std::string 4721 llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer, LLVMContext &Context, 4722 DiagnosticHandlerFunction DiagnosticHandler) { 4723 std::unique_ptr<MemoryBuffer> Buf = MemoryBuffer::getMemBuffer(Buffer, false); 4724 auto R = llvm::make_unique<BitcodeReader>(Buf.release(), Context, 4725 DiagnosticHandler); 4726 ErrorOr<std::string> Triple = R->parseTriple(); 4727 if (Triple.getError()) 4728 return ""; 4729 return Triple.get(); 4730 } 4731