1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "llvm/Bitcode/BitcodeReader.h"
10 #include "MetadataLoader.h"
11 #include "ValueList.h"
12 #include "llvm/ADT/APFloat.h"
13 #include "llvm/ADT/APInt.h"
14 #include "llvm/ADT/ArrayRef.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/ADT/Triple.h"
22 #include "llvm/ADT/Twine.h"
23 #include "llvm/Bitcode/BitstreamReader.h"
24 #include "llvm/Bitcode/LLVMBitCodes.h"
25 #include "llvm/Config/llvm-config.h"
26 #include "llvm/IR/Argument.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/AutoUpgrade.h"
29 #include "llvm/IR/BasicBlock.h"
30 #include "llvm/IR/CallSite.h"
31 #include "llvm/IR/CallingConv.h"
32 #include "llvm/IR/Comdat.h"
33 #include "llvm/IR/Constant.h"
34 #include "llvm/IR/Constants.h"
35 #include "llvm/IR/DataLayout.h"
36 #include "llvm/IR/DebugInfo.h"
37 #include "llvm/IR/DebugInfoMetadata.h"
38 #include "llvm/IR/DebugLoc.h"
39 #include "llvm/IR/DerivedTypes.h"
40 #include "llvm/IR/Function.h"
41 #include "llvm/IR/GVMaterializer.h"
42 #include "llvm/IR/GlobalAlias.h"
43 #include "llvm/IR/GlobalIFunc.h"
44 #include "llvm/IR/GlobalIndirectSymbol.h"
45 #include "llvm/IR/GlobalObject.h"
46 #include "llvm/IR/GlobalValue.h"
47 #include "llvm/IR/GlobalVariable.h"
48 #include "llvm/IR/InlineAsm.h"
49 #include "llvm/IR/InstIterator.h"
50 #include "llvm/IR/InstrTypes.h"
51 #include "llvm/IR/Instruction.h"
52 #include "llvm/IR/Instructions.h"
53 #include "llvm/IR/Intrinsics.h"
54 #include "llvm/IR/LLVMContext.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/ModuleSummaryIndex.h"
58 #include "llvm/IR/Operator.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/Verifier.h"
62 #include "llvm/Support/AtomicOrdering.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/Debug.h"
67 #include "llvm/Support/Error.h"
68 #include "llvm/Support/ErrorHandling.h"
69 #include "llvm/Support/ErrorOr.h"
70 #include "llvm/Support/ManagedStatic.h"
71 #include "llvm/Support/MathExtras.h"
72 #include "llvm/Support/MemoryBuffer.h"
73 #include "llvm/Support/raw_ostream.h"
74 #include <algorithm>
75 #include <cassert>
76 #include <cstddef>
77 #include <cstdint>
78 #include <deque>
79 #include <map>
80 #include <memory>
81 #include <set>
82 #include <string>
83 #include <system_error>
84 #include <tuple>
85 #include <utility>
86 #include <vector>
87 
88 using namespace llvm;
89 
90 static cl::opt<bool> PrintSummaryGUIDs(
91     "print-summary-global-ids", cl::init(false), cl::Hidden,
92     cl::desc(
93         "Print the global id for each value when reading the module summary"));
94 
95 namespace {
96 
97 enum {
98   SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex
99 };
100 
101 } // end anonymous namespace
102 
103 static Error error(const Twine &Message) {
104   return make_error<StringError>(
105       Message, make_error_code(BitcodeError::CorruptedBitcode));
106 }
107 
108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) {
109   if (!Stream.canSkipToPos(4))
110     return createStringError(std::errc::illegal_byte_sequence,
111                              "file too small to contain bitcode header");
112   for (unsigned C : {'B', 'C'})
113     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) {
114       if (Res.get() != C)
115         return createStringError(std::errc::illegal_byte_sequence,
116                                  "file doesn't start with bitcode header");
117     } else
118       return Res.takeError();
119   for (unsigned C : {0x0, 0xC, 0xE, 0xD})
120     if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) {
121       if (Res.get() != C)
122         return createStringError(std::errc::illegal_byte_sequence,
123                                  "file doesn't start with bitcode header");
124     } else
125       return Res.takeError();
126   return Error::success();
127 }
128 
129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) {
130   const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart();
131   const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize();
132 
133   if (Buffer.getBufferSize() & 3)
134     return error("Invalid bitcode signature");
135 
136   // If we have a wrapper header, parse it and ignore the non-bc file contents.
137   // The magic number is 0x0B17C0DE stored in little endian.
138   if (isBitcodeWrapper(BufPtr, BufEnd))
139     if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true))
140       return error("Invalid bitcode wrapper header");
141 
142   BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd));
143   if (Error Err = hasInvalidBitcodeHeader(Stream))
144     return std::move(Err);
145 
146   return std::move(Stream);
147 }
148 
149 /// Convert a string from a record into an std::string, return true on failure.
150 template <typename StrTy>
151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx,
152                             StrTy &Result) {
153   if (Idx > Record.size())
154     return true;
155 
156   for (unsigned i = Idx, e = Record.size(); i != e; ++i)
157     Result += (char)Record[i];
158   return false;
159 }
160 
161 // Strip all the TBAA attachment for the module.
162 static void stripTBAA(Module *M) {
163   for (auto &F : *M) {
164     if (F.isMaterializable())
165       continue;
166     for (auto &I : instructions(F))
167       I.setMetadata(LLVMContext::MD_tbaa, nullptr);
168   }
169 }
170 
171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the
172 /// "epoch" encoded in the bitcode, and return the producer name if any.
173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) {
174   if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID))
175     return std::move(Err);
176 
177   // Read all the records.
178   SmallVector<uint64_t, 64> Record;
179 
180   std::string ProducerIdentification;
181 
182   while (true) {
183     BitstreamEntry Entry;
184     if (Expected<BitstreamEntry> Res = Stream.advance())
185       Entry = Res.get();
186     else
187       return Res.takeError();
188 
189     switch (Entry.Kind) {
190     default:
191     case BitstreamEntry::Error:
192       return error("Malformed block");
193     case BitstreamEntry::EndBlock:
194       return ProducerIdentification;
195     case BitstreamEntry::Record:
196       // The interesting case.
197       break;
198     }
199 
200     // Read a record.
201     Record.clear();
202     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
203     if (!MaybeBitCode)
204       return MaybeBitCode.takeError();
205     switch (unsigned BitCode = MaybeBitCode.get()) {
206     default: // Default behavior: reject
207       return error("Invalid value");
208     case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N]
209       convertToString(Record, 0, ProducerIdentification);
210       break;
211     case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#]
212       unsigned epoch = (unsigned)Record[0];
213       if (epoch != bitc::BITCODE_CURRENT_EPOCH) {
214         return error(
215           Twine("Incompatible epoch: Bitcode '") + Twine(epoch) +
216           "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'");
217       }
218     }
219     }
220   }
221 }
222 
223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) {
224   // We expect a number of well-defined blocks, though we don't necessarily
225   // need to understand them all.
226   while (true) {
227     if (Stream.AtEndOfStream())
228       return "";
229 
230     BitstreamEntry Entry;
231     if (Expected<BitstreamEntry> Res = Stream.advance())
232       Entry = std::move(Res.get());
233     else
234       return Res.takeError();
235 
236     switch (Entry.Kind) {
237     case BitstreamEntry::EndBlock:
238     case BitstreamEntry::Error:
239       return error("Malformed block");
240 
241     case BitstreamEntry::SubBlock:
242       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID)
243         return readIdentificationBlock(Stream);
244 
245       // Ignore other sub-blocks.
246       if (Error Err = Stream.SkipBlock())
247         return std::move(Err);
248       continue;
249     case BitstreamEntry::Record:
250       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
251         continue;
252       else
253         return Skipped.takeError();
254     }
255   }
256 }
257 
258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) {
259   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
260     return std::move(Err);
261 
262   SmallVector<uint64_t, 64> Record;
263   // Read all the records for this module.
264 
265   while (true) {
266     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
267     if (!MaybeEntry)
268       return MaybeEntry.takeError();
269     BitstreamEntry Entry = MaybeEntry.get();
270 
271     switch (Entry.Kind) {
272     case BitstreamEntry::SubBlock: // Handled for us already.
273     case BitstreamEntry::Error:
274       return error("Malformed block");
275     case BitstreamEntry::EndBlock:
276       return false;
277     case BitstreamEntry::Record:
278       // The interesting case.
279       break;
280     }
281 
282     // Read a record.
283     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
284     if (!MaybeRecord)
285       return MaybeRecord.takeError();
286     switch (MaybeRecord.get()) {
287     default:
288       break; // Default behavior, ignore unknown content.
289     case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N]
290       std::string S;
291       if (convertToString(Record, 0, S))
292         return error("Invalid record");
293       // Check for the i386 and other (x86_64, ARM) conventions
294       if (S.find("__DATA,__objc_catlist") != std::string::npos ||
295           S.find("__OBJC,__category") != std::string::npos)
296         return true;
297       break;
298     }
299     }
300     Record.clear();
301   }
302   llvm_unreachable("Exit infinite loop");
303 }
304 
305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) {
306   // We expect a number of well-defined blocks, though we don't necessarily
307   // need to understand them all.
308   while (true) {
309     BitstreamEntry Entry;
310     if (Expected<BitstreamEntry> Res = Stream.advance())
311       Entry = std::move(Res.get());
312     else
313       return Res.takeError();
314 
315     switch (Entry.Kind) {
316     case BitstreamEntry::Error:
317       return error("Malformed block");
318     case BitstreamEntry::EndBlock:
319       return false;
320 
321     case BitstreamEntry::SubBlock:
322       if (Entry.ID == bitc::MODULE_BLOCK_ID)
323         return hasObjCCategoryInModule(Stream);
324 
325       // Ignore other sub-blocks.
326       if (Error Err = Stream.SkipBlock())
327         return std::move(Err);
328       continue;
329 
330     case BitstreamEntry::Record:
331       if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
332         continue;
333       else
334         return Skipped.takeError();
335     }
336   }
337 }
338 
339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) {
340   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
341     return std::move(Err);
342 
343   SmallVector<uint64_t, 64> Record;
344 
345   std::string Triple;
346 
347   // Read all the records for this module.
348   while (true) {
349     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
350     if (!MaybeEntry)
351       return MaybeEntry.takeError();
352     BitstreamEntry Entry = MaybeEntry.get();
353 
354     switch (Entry.Kind) {
355     case BitstreamEntry::SubBlock: // Handled for us already.
356     case BitstreamEntry::Error:
357       return error("Malformed block");
358     case BitstreamEntry::EndBlock:
359       return Triple;
360     case BitstreamEntry::Record:
361       // The interesting case.
362       break;
363     }
364 
365     // Read a record.
366     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
367     if (!MaybeRecord)
368       return MaybeRecord.takeError();
369     switch (MaybeRecord.get()) {
370     default: break;  // Default behavior, ignore unknown content.
371     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
372       std::string S;
373       if (convertToString(Record, 0, S))
374         return error("Invalid record");
375       Triple = S;
376       break;
377     }
378     }
379     Record.clear();
380   }
381   llvm_unreachable("Exit infinite loop");
382 }
383 
384 static Expected<std::string> readTriple(BitstreamCursor &Stream) {
385   // We expect a number of well-defined blocks, though we don't necessarily
386   // need to understand them all.
387   while (true) {
388     Expected<BitstreamEntry> MaybeEntry = Stream.advance();
389     if (!MaybeEntry)
390       return MaybeEntry.takeError();
391     BitstreamEntry Entry = MaybeEntry.get();
392 
393     switch (Entry.Kind) {
394     case BitstreamEntry::Error:
395       return error("Malformed block");
396     case BitstreamEntry::EndBlock:
397       return "";
398 
399     case BitstreamEntry::SubBlock:
400       if (Entry.ID == bitc::MODULE_BLOCK_ID)
401         return readModuleTriple(Stream);
402 
403       // Ignore other sub-blocks.
404       if (Error Err = Stream.SkipBlock())
405         return std::move(Err);
406       continue;
407 
408     case BitstreamEntry::Record:
409       if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID))
410         continue;
411       else
412         return Skipped.takeError();
413     }
414   }
415 }
416 
417 namespace {
418 
419 class BitcodeReaderBase {
420 protected:
421   BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab)
422       : Stream(std::move(Stream)), Strtab(Strtab) {
423     this->Stream.setBlockInfo(&BlockInfo);
424   }
425 
426   BitstreamBlockInfo BlockInfo;
427   BitstreamCursor Stream;
428   StringRef Strtab;
429 
430   /// In version 2 of the bitcode we store names of global values and comdats in
431   /// a string table rather than in the VST.
432   bool UseStrtab = false;
433 
434   Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record);
435 
436   /// If this module uses a string table, pop the reference to the string table
437   /// and return the referenced string and the rest of the record. Otherwise
438   /// just return the record itself.
439   std::pair<StringRef, ArrayRef<uint64_t>>
440   readNameFromStrtab(ArrayRef<uint64_t> Record);
441 
442   bool readBlockInfo();
443 
444   // Contains an arbitrary and optional string identifying the bitcode producer
445   std::string ProducerIdentification;
446 
447   Error error(const Twine &Message);
448 };
449 
450 } // end anonymous namespace
451 
452 Error BitcodeReaderBase::error(const Twine &Message) {
453   std::string FullMsg = Message.str();
454   if (!ProducerIdentification.empty())
455     FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " +
456                LLVM_VERSION_STRING "')";
457   return ::error(FullMsg);
458 }
459 
460 Expected<unsigned>
461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) {
462   if (Record.empty())
463     return error("Invalid record");
464   unsigned ModuleVersion = Record[0];
465   if (ModuleVersion > 2)
466     return error("Invalid value");
467   UseStrtab = ModuleVersion >= 2;
468   return ModuleVersion;
469 }
470 
471 std::pair<StringRef, ArrayRef<uint64_t>>
472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) {
473   if (!UseStrtab)
474     return {"", Record};
475   // Invalid reference. Let the caller complain about the record being empty.
476   if (Record[0] + Record[1] > Strtab.size())
477     return {"", {}};
478   return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)};
479 }
480 
481 namespace {
482 
483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer {
484   LLVMContext &Context;
485   Module *TheModule = nullptr;
486   // Next offset to start scanning for lazy parsing of function bodies.
487   uint64_t NextUnreadBit = 0;
488   // Last function offset found in the VST.
489   uint64_t LastFunctionBlockBit = 0;
490   bool SeenValueSymbolTable = false;
491   uint64_t VSTOffset = 0;
492 
493   std::vector<std::string> SectionTable;
494   std::vector<std::string> GCTable;
495 
496   std::vector<Type*> TypeList;
497   BitcodeReaderValueList ValueList;
498   Optional<MetadataLoader> MDLoader;
499   std::vector<Comdat *> ComdatList;
500   SmallVector<Instruction *, 64> InstructionList;
501 
502   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits;
503   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits;
504   std::vector<std::pair<Function *, unsigned>> FunctionPrefixes;
505   std::vector<std::pair<Function *, unsigned>> FunctionPrologues;
506   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns;
507 
508   /// The set of attributes by index.  Index zero in the file is for null, and
509   /// is thus not represented here.  As such all indices are off by one.
510   std::vector<AttributeList> MAttributes;
511 
512   /// The set of attribute groups.
513   std::map<unsigned, AttributeList> MAttributeGroups;
514 
515   /// While parsing a function body, this is a list of the basic blocks for the
516   /// function.
517   std::vector<BasicBlock*> FunctionBBs;
518 
519   // When reading the module header, this list is populated with functions that
520   // have bodies later in the file.
521   std::vector<Function*> FunctionsWithBodies;
522 
523   // When intrinsic functions are encountered which require upgrading they are
524   // stored here with their replacement function.
525   using UpdatedIntrinsicMap = DenseMap<Function *, Function *>;
526   UpdatedIntrinsicMap UpgradedIntrinsics;
527   // Intrinsics which were remangled because of types rename
528   UpdatedIntrinsicMap RemangledIntrinsics;
529 
530   // Several operations happen after the module header has been read, but
531   // before function bodies are processed. This keeps track of whether
532   // we've done this yet.
533   bool SeenFirstFunctionBody = false;
534 
535   /// When function bodies are initially scanned, this map contains info about
536   /// where to find deferred function body in the stream.
537   DenseMap<Function*, uint64_t> DeferredFunctionInfo;
538 
539   /// When Metadata block is initially scanned when parsing the module, we may
540   /// choose to defer parsing of the metadata. This vector contains info about
541   /// which Metadata blocks are deferred.
542   std::vector<uint64_t> DeferredMetadataInfo;
543 
544   /// These are basic blocks forward-referenced by block addresses.  They are
545   /// inserted lazily into functions when they're loaded.  The basic block ID is
546   /// its index into the vector.
547   DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs;
548   std::deque<Function *> BasicBlockFwdRefQueue;
549 
550   /// Indicates that we are using a new encoding for instruction operands where
551   /// most operands in the current FUNCTION_BLOCK are encoded relative to the
552   /// instruction number, for a more compact encoding.  Some instruction
553   /// operands are not relative to the instruction ID: basic block numbers, and
554   /// types. Once the old style function blocks have been phased out, we would
555   /// not need this flag.
556   bool UseRelativeIDs = false;
557 
558   /// True if all functions will be materialized, negating the need to process
559   /// (e.g.) blockaddress forward references.
560   bool WillMaterializeAllForwardRefs = false;
561 
562   bool StripDebugInfo = false;
563   TBAAVerifier TBAAVerifyHelper;
564 
565   std::vector<std::string> BundleTags;
566   SmallVector<SyncScope::ID, 8> SSIDs;
567 
568 public:
569   BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
570                 StringRef ProducerIdentification, LLVMContext &Context);
571 
572   Error materializeForwardReferencedFunctions();
573 
574   Error materialize(GlobalValue *GV) override;
575   Error materializeModule() override;
576   std::vector<StructType *> getIdentifiedStructTypes() const override;
577 
578   /// Main interface to parsing a bitcode buffer.
579   /// \returns true if an error occurred.
580   Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false,
581                          bool IsImporting = false);
582 
583   static uint64_t decodeSignRotatedValue(uint64_t V);
584 
585   /// Materialize any deferred Metadata block.
586   Error materializeMetadata() override;
587 
588   void setStripDebugInfo() override;
589 
590 private:
591   std::vector<StructType *> IdentifiedStructTypes;
592   StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name);
593   StructType *createIdentifiedStructType(LLVMContext &Context);
594 
595   Type *getTypeByID(unsigned ID);
596 
597   Value *getFnValueByID(unsigned ID, Type *Ty) {
598     if (Ty && Ty->isMetadataTy())
599       return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID));
600     return ValueList.getValueFwdRef(ID, Ty);
601   }
602 
603   Metadata *getFnMetadataByID(unsigned ID) {
604     return MDLoader->getMetadataFwdRefOrLoad(ID);
605   }
606 
607   BasicBlock *getBasicBlock(unsigned ID) const {
608     if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID
609     return FunctionBBs[ID];
610   }
611 
612   AttributeList getAttributes(unsigned i) const {
613     if (i-1 < MAttributes.size())
614       return MAttributes[i-1];
615     return AttributeList();
616   }
617 
618   /// Read a value/type pair out of the specified record from slot 'Slot'.
619   /// Increment Slot past the number of slots used in the record. Return true on
620   /// failure.
621   bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
622                         unsigned InstNum, Value *&ResVal) {
623     if (Slot == Record.size()) return true;
624     unsigned ValNo = (unsigned)Record[Slot++];
625     // Adjust the ValNo, if it was encoded relative to the InstNum.
626     if (UseRelativeIDs)
627       ValNo = InstNum - ValNo;
628     if (ValNo < InstNum) {
629       // If this is not a forward reference, just return the value we already
630       // have.
631       ResVal = getFnValueByID(ValNo, nullptr);
632       return ResVal == nullptr;
633     }
634     if (Slot == Record.size())
635       return true;
636 
637     unsigned TypeNo = (unsigned)Record[Slot++];
638     ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo));
639     return ResVal == nullptr;
640   }
641 
642   /// Read a value out of the specified record from slot 'Slot'. Increment Slot
643   /// past the number of slots used by the value in the record. Return true if
644   /// there is an error.
645   bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot,
646                 unsigned InstNum, Type *Ty, Value *&ResVal) {
647     if (getValue(Record, Slot, InstNum, Ty, ResVal))
648       return true;
649     // All values currently take a single record slot.
650     ++Slot;
651     return false;
652   }
653 
654   /// Like popValue, but does not increment the Slot number.
655   bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
656                 unsigned InstNum, Type *Ty, Value *&ResVal) {
657     ResVal = getValue(Record, Slot, InstNum, Ty);
658     return ResVal == nullptr;
659   }
660 
661   /// Version of getValue that returns ResVal directly, or 0 if there is an
662   /// error.
663   Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
664                   unsigned InstNum, Type *Ty) {
665     if (Slot == Record.size()) return nullptr;
666     unsigned ValNo = (unsigned)Record[Slot];
667     // Adjust the ValNo, if it was encoded relative to the InstNum.
668     if (UseRelativeIDs)
669       ValNo = InstNum - ValNo;
670     return getFnValueByID(ValNo, Ty);
671   }
672 
673   /// Like getValue, but decodes signed VBRs.
674   Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot,
675                         unsigned InstNum, Type *Ty) {
676     if (Slot == Record.size()) return nullptr;
677     unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]);
678     // Adjust the ValNo, if it was encoded relative to the InstNum.
679     if (UseRelativeIDs)
680       ValNo = InstNum - ValNo;
681     return getFnValueByID(ValNo, Ty);
682   }
683 
684   /// Upgrades old-style typeless byval attributes by adding the corresponding
685   /// argument's pointee type.
686   void propagateByValTypes(CallBase *CB);
687 
688   /// Converts alignment exponent (i.e. power of two (or zero)) to the
689   /// corresponding alignment to use. If alignment is too large, returns
690   /// a corresponding error code.
691   Error parseAlignmentValue(uint64_t Exponent, unsigned &Alignment);
692   Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind);
693   Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false);
694 
695   Error parseComdatRecord(ArrayRef<uint64_t> Record);
696   Error parseGlobalVarRecord(ArrayRef<uint64_t> Record);
697   Error parseFunctionRecord(ArrayRef<uint64_t> Record);
698   Error parseGlobalIndirectSymbolRecord(unsigned BitCode,
699                                         ArrayRef<uint64_t> Record);
700 
701   Error parseAttributeBlock();
702   Error parseAttributeGroupBlock();
703   Error parseTypeTable();
704   Error parseTypeTableBody();
705   Error parseOperandBundleTags();
706   Error parseSyncScopeNames();
707 
708   Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record,
709                                 unsigned NameIndex, Triple &TT);
710   void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F,
711                                ArrayRef<uint64_t> Record);
712   Error parseValueSymbolTable(uint64_t Offset = 0);
713   Error parseGlobalValueSymbolTable();
714   Error parseConstants();
715   Error rememberAndSkipFunctionBodies();
716   Error rememberAndSkipFunctionBody();
717   /// Save the positions of the Metadata blocks and skip parsing the blocks.
718   Error rememberAndSkipMetadata();
719   Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType);
720   Error parseFunctionBody(Function *F);
721   Error globalCleanup();
722   Error resolveGlobalAndIndirectSymbolInits();
723   Error parseUseLists();
724   Error findFunctionInStream(
725       Function *F,
726       DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator);
727 
728   SyncScope::ID getDecodedSyncScopeID(unsigned Val);
729 };
730 
731 /// Class to manage reading and parsing function summary index bitcode
732 /// files/sections.
733 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase {
734   /// The module index built during parsing.
735   ModuleSummaryIndex &TheIndex;
736 
737   /// Indicates whether we have encountered a global value summary section
738   /// yet during parsing.
739   bool SeenGlobalValSummary = false;
740 
741   /// Indicates whether we have already parsed the VST, used for error checking.
742   bool SeenValueSymbolTable = false;
743 
744   /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record.
745   /// Used to enable on-demand parsing of the VST.
746   uint64_t VSTOffset = 0;
747 
748   // Map to save ValueId to ValueInfo association that was recorded in the
749   // ValueSymbolTable. It is used after the VST is parsed to convert
750   // call graph edges read from the function summary from referencing
751   // callees by their ValueId to using the ValueInfo instead, which is how
752   // they are recorded in the summary index being built.
753   // We save a GUID which refers to the same global as the ValueInfo, but
754   // ignoring the linkage, i.e. for values other than local linkage they are
755   // identical.
756   DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>>
757       ValueIdToValueInfoMap;
758 
759   /// Map populated during module path string table parsing, from the
760   /// module ID to a string reference owned by the index's module
761   /// path string table, used to correlate with combined index
762   /// summary records.
763   DenseMap<uint64_t, StringRef> ModuleIdMap;
764 
765   /// Original source file name recorded in a bitcode record.
766   std::string SourceFileName;
767 
768   /// The string identifier given to this module by the client, normally the
769   /// path to the bitcode file.
770   StringRef ModulePath;
771 
772   /// For per-module summary indexes, the unique numerical identifier given to
773   /// this module by the client.
774   unsigned ModuleId;
775 
776 public:
777   ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab,
778                                   ModuleSummaryIndex &TheIndex,
779                                   StringRef ModulePath, unsigned ModuleId);
780 
781   Error parseModule();
782 
783 private:
784   void setValueGUID(uint64_t ValueID, StringRef ValueName,
785                     GlobalValue::LinkageTypes Linkage,
786                     StringRef SourceFileName);
787   Error parseValueSymbolTable(
788       uint64_t Offset,
789       DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap);
790   std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record);
791   std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record,
792                                                     bool IsOldProfileFormat,
793                                                     bool HasProfile,
794                                                     bool HasRelBF);
795   Error parseEntireSummary(unsigned ID);
796   Error parseModuleStringTable();
797 
798   std::pair<ValueInfo, GlobalValue::GUID>
799   getValueInfoFromValueId(unsigned ValueId);
800 
801   void addThisModule();
802   ModuleSummaryIndex::ModuleInfo *getThisModule();
803 };
804 
805 } // end anonymous namespace
806 
807 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx,
808                                                     Error Err) {
809   if (Err) {
810     std::error_code EC;
811     handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) {
812       EC = EIB.convertToErrorCode();
813       Ctx.emitError(EIB.message());
814     });
815     return EC;
816   }
817   return std::error_code();
818 }
819 
820 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab,
821                              StringRef ProducerIdentification,
822                              LLVMContext &Context)
823     : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context),
824       ValueList(Context) {
825   this->ProducerIdentification = ProducerIdentification;
826 }
827 
828 Error BitcodeReader::materializeForwardReferencedFunctions() {
829   if (WillMaterializeAllForwardRefs)
830     return Error::success();
831 
832   // Prevent recursion.
833   WillMaterializeAllForwardRefs = true;
834 
835   while (!BasicBlockFwdRefQueue.empty()) {
836     Function *F = BasicBlockFwdRefQueue.front();
837     BasicBlockFwdRefQueue.pop_front();
838     assert(F && "Expected valid function");
839     if (!BasicBlockFwdRefs.count(F))
840       // Already materialized.
841       continue;
842 
843     // Check for a function that isn't materializable to prevent an infinite
844     // loop.  When parsing a blockaddress stored in a global variable, there
845     // isn't a trivial way to check if a function will have a body without a
846     // linear search through FunctionsWithBodies, so just check it here.
847     if (!F->isMaterializable())
848       return error("Never resolved function from blockaddress");
849 
850     // Try to materialize F.
851     if (Error Err = materialize(F))
852       return Err;
853   }
854   assert(BasicBlockFwdRefs.empty() && "Function missing from queue");
855 
856   // Reset state.
857   WillMaterializeAllForwardRefs = false;
858   return Error::success();
859 }
860 
861 //===----------------------------------------------------------------------===//
862 //  Helper functions to implement forward reference resolution, etc.
863 //===----------------------------------------------------------------------===//
864 
865 static bool hasImplicitComdat(size_t Val) {
866   switch (Val) {
867   default:
868     return false;
869   case 1:  // Old WeakAnyLinkage
870   case 4:  // Old LinkOnceAnyLinkage
871   case 10: // Old WeakODRLinkage
872   case 11: // Old LinkOnceODRLinkage
873     return true;
874   }
875 }
876 
877 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) {
878   switch (Val) {
879   default: // Map unknown/new linkages to external
880   case 0:
881     return GlobalValue::ExternalLinkage;
882   case 2:
883     return GlobalValue::AppendingLinkage;
884   case 3:
885     return GlobalValue::InternalLinkage;
886   case 5:
887     return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage
888   case 6:
889     return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage
890   case 7:
891     return GlobalValue::ExternalWeakLinkage;
892   case 8:
893     return GlobalValue::CommonLinkage;
894   case 9:
895     return GlobalValue::PrivateLinkage;
896   case 12:
897     return GlobalValue::AvailableExternallyLinkage;
898   case 13:
899     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage
900   case 14:
901     return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage
902   case 15:
903     return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage
904   case 1: // Old value with implicit comdat.
905   case 16:
906     return GlobalValue::WeakAnyLinkage;
907   case 10: // Old value with implicit comdat.
908   case 17:
909     return GlobalValue::WeakODRLinkage;
910   case 4: // Old value with implicit comdat.
911   case 18:
912     return GlobalValue::LinkOnceAnyLinkage;
913   case 11: // Old value with implicit comdat.
914   case 19:
915     return GlobalValue::LinkOnceODRLinkage;
916   }
917 }
918 
919 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) {
920   FunctionSummary::FFlags Flags;
921   Flags.ReadNone = RawFlags & 0x1;
922   Flags.ReadOnly = (RawFlags >> 1) & 0x1;
923   Flags.NoRecurse = (RawFlags >> 2) & 0x1;
924   Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1;
925   Flags.NoInline = (RawFlags >> 4) & 0x1;
926   return Flags;
927 }
928 
929 /// Decode the flags for GlobalValue in the summary.
930 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags,
931                                                             uint64_t Version) {
932   // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage
933   // like getDecodedLinkage() above. Any future change to the linkage enum and
934   // to getDecodedLinkage() will need to be taken into account here as above.
935   auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits
936   RawFlags = RawFlags >> 4;
937   bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3;
938   // The Live flag wasn't introduced until version 3. For dead stripping
939   // to work correctly on earlier versions, we must conservatively treat all
940   // values as live.
941   bool Live = (RawFlags & 0x2) || Version < 3;
942   bool Local = (RawFlags & 0x4);
943   bool AutoHide = (RawFlags & 0x8);
944 
945   return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide);
946 }
947 
948 // Decode the flags for GlobalVariable in the summary
949 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) {
950   return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false);
951 }
952 
953 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) {
954   switch (Val) {
955   default: // Map unknown visibilities to default.
956   case 0: return GlobalValue::DefaultVisibility;
957   case 1: return GlobalValue::HiddenVisibility;
958   case 2: return GlobalValue::ProtectedVisibility;
959   }
960 }
961 
962 static GlobalValue::DLLStorageClassTypes
963 getDecodedDLLStorageClass(unsigned Val) {
964   switch (Val) {
965   default: // Map unknown values to default.
966   case 0: return GlobalValue::DefaultStorageClass;
967   case 1: return GlobalValue::DLLImportStorageClass;
968   case 2: return GlobalValue::DLLExportStorageClass;
969   }
970 }
971 
972 static bool getDecodedDSOLocal(unsigned Val) {
973   switch(Val) {
974   default: // Map unknown values to preemptable.
975   case 0:  return false;
976   case 1:  return true;
977   }
978 }
979 
980 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) {
981   switch (Val) {
982     case 0: return GlobalVariable::NotThreadLocal;
983     default: // Map unknown non-zero value to general dynamic.
984     case 1: return GlobalVariable::GeneralDynamicTLSModel;
985     case 2: return GlobalVariable::LocalDynamicTLSModel;
986     case 3: return GlobalVariable::InitialExecTLSModel;
987     case 4: return GlobalVariable::LocalExecTLSModel;
988   }
989 }
990 
991 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) {
992   switch (Val) {
993     default: // Map unknown to UnnamedAddr::None.
994     case 0: return GlobalVariable::UnnamedAddr::None;
995     case 1: return GlobalVariable::UnnamedAddr::Global;
996     case 2: return GlobalVariable::UnnamedAddr::Local;
997   }
998 }
999 
1000 static int getDecodedCastOpcode(unsigned Val) {
1001   switch (Val) {
1002   default: return -1;
1003   case bitc::CAST_TRUNC   : return Instruction::Trunc;
1004   case bitc::CAST_ZEXT    : return Instruction::ZExt;
1005   case bitc::CAST_SEXT    : return Instruction::SExt;
1006   case bitc::CAST_FPTOUI  : return Instruction::FPToUI;
1007   case bitc::CAST_FPTOSI  : return Instruction::FPToSI;
1008   case bitc::CAST_UITOFP  : return Instruction::UIToFP;
1009   case bitc::CAST_SITOFP  : return Instruction::SIToFP;
1010   case bitc::CAST_FPTRUNC : return Instruction::FPTrunc;
1011   case bitc::CAST_FPEXT   : return Instruction::FPExt;
1012   case bitc::CAST_PTRTOINT: return Instruction::PtrToInt;
1013   case bitc::CAST_INTTOPTR: return Instruction::IntToPtr;
1014   case bitc::CAST_BITCAST : return Instruction::BitCast;
1015   case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast;
1016   }
1017 }
1018 
1019 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) {
1020   bool IsFP = Ty->isFPOrFPVectorTy();
1021   // UnOps are only valid for int/fp or vector of int/fp types
1022   if (!IsFP && !Ty->isIntOrIntVectorTy())
1023     return -1;
1024 
1025   switch (Val) {
1026   default:
1027     return -1;
1028   case bitc::UNOP_NEG:
1029     return IsFP ? Instruction::FNeg : -1;
1030   }
1031 }
1032 
1033 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) {
1034   bool IsFP = Ty->isFPOrFPVectorTy();
1035   // BinOps are only valid for int/fp or vector of int/fp types
1036   if (!IsFP && !Ty->isIntOrIntVectorTy())
1037     return -1;
1038 
1039   switch (Val) {
1040   default:
1041     return -1;
1042   case bitc::BINOP_ADD:
1043     return IsFP ? Instruction::FAdd : Instruction::Add;
1044   case bitc::BINOP_SUB:
1045     return IsFP ? Instruction::FSub : Instruction::Sub;
1046   case bitc::BINOP_MUL:
1047     return IsFP ? Instruction::FMul : Instruction::Mul;
1048   case bitc::BINOP_UDIV:
1049     return IsFP ? -1 : Instruction::UDiv;
1050   case bitc::BINOP_SDIV:
1051     return IsFP ? Instruction::FDiv : Instruction::SDiv;
1052   case bitc::BINOP_UREM:
1053     return IsFP ? -1 : Instruction::URem;
1054   case bitc::BINOP_SREM:
1055     return IsFP ? Instruction::FRem : Instruction::SRem;
1056   case bitc::BINOP_SHL:
1057     return IsFP ? -1 : Instruction::Shl;
1058   case bitc::BINOP_LSHR:
1059     return IsFP ? -1 : Instruction::LShr;
1060   case bitc::BINOP_ASHR:
1061     return IsFP ? -1 : Instruction::AShr;
1062   case bitc::BINOP_AND:
1063     return IsFP ? -1 : Instruction::And;
1064   case bitc::BINOP_OR:
1065     return IsFP ? -1 : Instruction::Or;
1066   case bitc::BINOP_XOR:
1067     return IsFP ? -1 : Instruction::Xor;
1068   }
1069 }
1070 
1071 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) {
1072   switch (Val) {
1073   default: return AtomicRMWInst::BAD_BINOP;
1074   case bitc::RMW_XCHG: return AtomicRMWInst::Xchg;
1075   case bitc::RMW_ADD: return AtomicRMWInst::Add;
1076   case bitc::RMW_SUB: return AtomicRMWInst::Sub;
1077   case bitc::RMW_AND: return AtomicRMWInst::And;
1078   case bitc::RMW_NAND: return AtomicRMWInst::Nand;
1079   case bitc::RMW_OR: return AtomicRMWInst::Or;
1080   case bitc::RMW_XOR: return AtomicRMWInst::Xor;
1081   case bitc::RMW_MAX: return AtomicRMWInst::Max;
1082   case bitc::RMW_MIN: return AtomicRMWInst::Min;
1083   case bitc::RMW_UMAX: return AtomicRMWInst::UMax;
1084   case bitc::RMW_UMIN: return AtomicRMWInst::UMin;
1085   case bitc::RMW_FADD: return AtomicRMWInst::FAdd;
1086   case bitc::RMW_FSUB: return AtomicRMWInst::FSub;
1087   }
1088 }
1089 
1090 static AtomicOrdering getDecodedOrdering(unsigned Val) {
1091   switch (Val) {
1092   case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic;
1093   case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered;
1094   case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic;
1095   case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire;
1096   case bitc::ORDERING_RELEASE: return AtomicOrdering::Release;
1097   case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease;
1098   default: // Map unknown orderings to sequentially-consistent.
1099   case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent;
1100   }
1101 }
1102 
1103 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) {
1104   switch (Val) {
1105   default: // Map unknown selection kinds to any.
1106   case bitc::COMDAT_SELECTION_KIND_ANY:
1107     return Comdat::Any;
1108   case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH:
1109     return Comdat::ExactMatch;
1110   case bitc::COMDAT_SELECTION_KIND_LARGEST:
1111     return Comdat::Largest;
1112   case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES:
1113     return Comdat::NoDuplicates;
1114   case bitc::COMDAT_SELECTION_KIND_SAME_SIZE:
1115     return Comdat::SameSize;
1116   }
1117 }
1118 
1119 static FastMathFlags getDecodedFastMathFlags(unsigned Val) {
1120   FastMathFlags FMF;
1121   if (0 != (Val & bitc::UnsafeAlgebra))
1122     FMF.setFast();
1123   if (0 != (Val & bitc::AllowReassoc))
1124     FMF.setAllowReassoc();
1125   if (0 != (Val & bitc::NoNaNs))
1126     FMF.setNoNaNs();
1127   if (0 != (Val & bitc::NoInfs))
1128     FMF.setNoInfs();
1129   if (0 != (Val & bitc::NoSignedZeros))
1130     FMF.setNoSignedZeros();
1131   if (0 != (Val & bitc::AllowReciprocal))
1132     FMF.setAllowReciprocal();
1133   if (0 != (Val & bitc::AllowContract))
1134     FMF.setAllowContract(true);
1135   if (0 != (Val & bitc::ApproxFunc))
1136     FMF.setApproxFunc();
1137   return FMF;
1138 }
1139 
1140 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) {
1141   switch (Val) {
1142   case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break;
1143   case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break;
1144   }
1145 }
1146 
1147 Type *BitcodeReader::getTypeByID(unsigned ID) {
1148   // The type table size is always specified correctly.
1149   if (ID >= TypeList.size())
1150     return nullptr;
1151 
1152   if (Type *Ty = TypeList[ID])
1153     return Ty;
1154 
1155   // If we have a forward reference, the only possible case is when it is to a
1156   // named struct.  Just create a placeholder for now.
1157   return TypeList[ID] = createIdentifiedStructType(Context);
1158 }
1159 
1160 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context,
1161                                                       StringRef Name) {
1162   auto *Ret = StructType::create(Context, Name);
1163   IdentifiedStructTypes.push_back(Ret);
1164   return Ret;
1165 }
1166 
1167 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) {
1168   auto *Ret = StructType::create(Context);
1169   IdentifiedStructTypes.push_back(Ret);
1170   return Ret;
1171 }
1172 
1173 //===----------------------------------------------------------------------===//
1174 //  Functions for parsing blocks from the bitcode file
1175 //===----------------------------------------------------------------------===//
1176 
1177 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) {
1178   switch (Val) {
1179   case Attribute::EndAttrKinds:
1180     llvm_unreachable("Synthetic enumerators which should never get here");
1181 
1182   case Attribute::None:            return 0;
1183   case Attribute::ZExt:            return 1 << 0;
1184   case Attribute::SExt:            return 1 << 1;
1185   case Attribute::NoReturn:        return 1 << 2;
1186   case Attribute::InReg:           return 1 << 3;
1187   case Attribute::StructRet:       return 1 << 4;
1188   case Attribute::NoUnwind:        return 1 << 5;
1189   case Attribute::NoAlias:         return 1 << 6;
1190   case Attribute::ByVal:           return 1 << 7;
1191   case Attribute::Nest:            return 1 << 8;
1192   case Attribute::ReadNone:        return 1 << 9;
1193   case Attribute::ReadOnly:        return 1 << 10;
1194   case Attribute::NoInline:        return 1 << 11;
1195   case Attribute::AlwaysInline:    return 1 << 12;
1196   case Attribute::OptimizeForSize: return 1 << 13;
1197   case Attribute::StackProtect:    return 1 << 14;
1198   case Attribute::StackProtectReq: return 1 << 15;
1199   case Attribute::Alignment:       return 31 << 16;
1200   case Attribute::NoCapture:       return 1 << 21;
1201   case Attribute::NoRedZone:       return 1 << 22;
1202   case Attribute::NoImplicitFloat: return 1 << 23;
1203   case Attribute::Naked:           return 1 << 24;
1204   case Attribute::InlineHint:      return 1 << 25;
1205   case Attribute::StackAlignment:  return 7 << 26;
1206   case Attribute::ReturnsTwice:    return 1 << 29;
1207   case Attribute::UWTable:         return 1 << 30;
1208   case Attribute::NonLazyBind:     return 1U << 31;
1209   case Attribute::SanitizeAddress: return 1ULL << 32;
1210   case Attribute::MinSize:         return 1ULL << 33;
1211   case Attribute::NoDuplicate:     return 1ULL << 34;
1212   case Attribute::StackProtectStrong: return 1ULL << 35;
1213   case Attribute::SanitizeThread:  return 1ULL << 36;
1214   case Attribute::SanitizeMemory:  return 1ULL << 37;
1215   case Attribute::NoBuiltin:       return 1ULL << 38;
1216   case Attribute::Returned:        return 1ULL << 39;
1217   case Attribute::Cold:            return 1ULL << 40;
1218   case Attribute::Builtin:         return 1ULL << 41;
1219   case Attribute::OptimizeNone:    return 1ULL << 42;
1220   case Attribute::InAlloca:        return 1ULL << 43;
1221   case Attribute::NonNull:         return 1ULL << 44;
1222   case Attribute::JumpTable:       return 1ULL << 45;
1223   case Attribute::Convergent:      return 1ULL << 46;
1224   case Attribute::SafeStack:       return 1ULL << 47;
1225   case Attribute::NoRecurse:       return 1ULL << 48;
1226   case Attribute::InaccessibleMemOnly:         return 1ULL << 49;
1227   case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50;
1228   case Attribute::SwiftSelf:       return 1ULL << 51;
1229   case Attribute::SwiftError:      return 1ULL << 52;
1230   case Attribute::WriteOnly:       return 1ULL << 53;
1231   case Attribute::Speculatable:    return 1ULL << 54;
1232   case Attribute::StrictFP:        return 1ULL << 55;
1233   case Attribute::SanitizeHWAddress: return 1ULL << 56;
1234   case Attribute::NoCfCheck:       return 1ULL << 57;
1235   case Attribute::OptForFuzzing:   return 1ULL << 58;
1236   case Attribute::ShadowCallStack: return 1ULL << 59;
1237   case Attribute::SpeculativeLoadHardening:
1238     return 1ULL << 60;
1239   case Attribute::ImmArg:
1240     return 1ULL << 61;
1241   case Attribute::Dereferenceable:
1242     llvm_unreachable("dereferenceable attribute not supported in raw format");
1243     break;
1244   case Attribute::DereferenceableOrNull:
1245     llvm_unreachable("dereferenceable_or_null attribute not supported in raw "
1246                      "format");
1247     break;
1248   case Attribute::ArgMemOnly:
1249     llvm_unreachable("argmemonly attribute not supported in raw format");
1250     break;
1251   case Attribute::AllocSize:
1252     llvm_unreachable("allocsize not supported in raw format");
1253     break;
1254   }
1255   llvm_unreachable("Unsupported attribute type");
1256 }
1257 
1258 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) {
1259   if (!Val) return;
1260 
1261   for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds;
1262        I = Attribute::AttrKind(I + 1)) {
1263     if (I == Attribute::Dereferenceable ||
1264         I == Attribute::DereferenceableOrNull ||
1265         I == Attribute::ArgMemOnly ||
1266         I == Attribute::AllocSize)
1267       continue;
1268     if (uint64_t A = (Val & getRawAttributeMask(I))) {
1269       if (I == Attribute::Alignment)
1270         B.addAlignmentAttr(1ULL << ((A >> 16) - 1));
1271       else if (I == Attribute::StackAlignment)
1272         B.addStackAlignmentAttr(1ULL << ((A >> 26)-1));
1273       else
1274         B.addAttribute(I);
1275     }
1276   }
1277 }
1278 
1279 /// This fills an AttrBuilder object with the LLVM attributes that have
1280 /// been decoded from the given integer. This function must stay in sync with
1281 /// 'encodeLLVMAttributesForBitcode'.
1282 static void decodeLLVMAttributesForBitcode(AttrBuilder &B,
1283                                            uint64_t EncodedAttrs) {
1284   // FIXME: Remove in 4.0.
1285 
1286   // The alignment is stored as a 16-bit raw value from bits 31--16.  We shift
1287   // the bits above 31 down by 11 bits.
1288   unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16;
1289   assert((!Alignment || isPowerOf2_32(Alignment)) &&
1290          "Alignment must be a power of two.");
1291 
1292   if (Alignment)
1293     B.addAlignmentAttr(Alignment);
1294   addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) |
1295                           (EncodedAttrs & 0xffff));
1296 }
1297 
1298 Error BitcodeReader::parseAttributeBlock() {
1299   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID))
1300     return Err;
1301 
1302   if (!MAttributes.empty())
1303     return error("Invalid multiple blocks");
1304 
1305   SmallVector<uint64_t, 64> Record;
1306 
1307   SmallVector<AttributeList, 8> Attrs;
1308 
1309   // Read all the records.
1310   while (true) {
1311     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1312     if (!MaybeEntry)
1313       return MaybeEntry.takeError();
1314     BitstreamEntry Entry = MaybeEntry.get();
1315 
1316     switch (Entry.Kind) {
1317     case BitstreamEntry::SubBlock: // Handled for us already.
1318     case BitstreamEntry::Error:
1319       return error("Malformed block");
1320     case BitstreamEntry::EndBlock:
1321       return Error::success();
1322     case BitstreamEntry::Record:
1323       // The interesting case.
1324       break;
1325     }
1326 
1327     // Read a record.
1328     Record.clear();
1329     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1330     if (!MaybeRecord)
1331       return MaybeRecord.takeError();
1332     switch (MaybeRecord.get()) {
1333     default:  // Default behavior: ignore.
1334       break;
1335     case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...]
1336       // FIXME: Remove in 4.0.
1337       if (Record.size() & 1)
1338         return error("Invalid record");
1339 
1340       for (unsigned i = 0, e = Record.size(); i != e; i += 2) {
1341         AttrBuilder B;
1342         decodeLLVMAttributesForBitcode(B, Record[i+1]);
1343         Attrs.push_back(AttributeList::get(Context, Record[i], B));
1344       }
1345 
1346       MAttributes.push_back(AttributeList::get(Context, Attrs));
1347       Attrs.clear();
1348       break;
1349     case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...]
1350       for (unsigned i = 0, e = Record.size(); i != e; ++i)
1351         Attrs.push_back(MAttributeGroups[Record[i]]);
1352 
1353       MAttributes.push_back(AttributeList::get(Context, Attrs));
1354       Attrs.clear();
1355       break;
1356     }
1357   }
1358 }
1359 
1360 // Returns Attribute::None on unrecognized codes.
1361 static Attribute::AttrKind getAttrFromCode(uint64_t Code) {
1362   switch (Code) {
1363   default:
1364     return Attribute::None;
1365   case bitc::ATTR_KIND_ALIGNMENT:
1366     return Attribute::Alignment;
1367   case bitc::ATTR_KIND_ALWAYS_INLINE:
1368     return Attribute::AlwaysInline;
1369   case bitc::ATTR_KIND_ARGMEMONLY:
1370     return Attribute::ArgMemOnly;
1371   case bitc::ATTR_KIND_BUILTIN:
1372     return Attribute::Builtin;
1373   case bitc::ATTR_KIND_BY_VAL:
1374     return Attribute::ByVal;
1375   case bitc::ATTR_KIND_IN_ALLOCA:
1376     return Attribute::InAlloca;
1377   case bitc::ATTR_KIND_COLD:
1378     return Attribute::Cold;
1379   case bitc::ATTR_KIND_CONVERGENT:
1380     return Attribute::Convergent;
1381   case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY:
1382     return Attribute::InaccessibleMemOnly;
1383   case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY:
1384     return Attribute::InaccessibleMemOrArgMemOnly;
1385   case bitc::ATTR_KIND_INLINE_HINT:
1386     return Attribute::InlineHint;
1387   case bitc::ATTR_KIND_IN_REG:
1388     return Attribute::InReg;
1389   case bitc::ATTR_KIND_JUMP_TABLE:
1390     return Attribute::JumpTable;
1391   case bitc::ATTR_KIND_MIN_SIZE:
1392     return Attribute::MinSize;
1393   case bitc::ATTR_KIND_NAKED:
1394     return Attribute::Naked;
1395   case bitc::ATTR_KIND_NEST:
1396     return Attribute::Nest;
1397   case bitc::ATTR_KIND_NO_ALIAS:
1398     return Attribute::NoAlias;
1399   case bitc::ATTR_KIND_NO_BUILTIN:
1400     return Attribute::NoBuiltin;
1401   case bitc::ATTR_KIND_NO_CAPTURE:
1402     return Attribute::NoCapture;
1403   case bitc::ATTR_KIND_NO_DUPLICATE:
1404     return Attribute::NoDuplicate;
1405   case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT:
1406     return Attribute::NoImplicitFloat;
1407   case bitc::ATTR_KIND_NO_INLINE:
1408     return Attribute::NoInline;
1409   case bitc::ATTR_KIND_NO_RECURSE:
1410     return Attribute::NoRecurse;
1411   case bitc::ATTR_KIND_NON_LAZY_BIND:
1412     return Attribute::NonLazyBind;
1413   case bitc::ATTR_KIND_NON_NULL:
1414     return Attribute::NonNull;
1415   case bitc::ATTR_KIND_DEREFERENCEABLE:
1416     return Attribute::Dereferenceable;
1417   case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL:
1418     return Attribute::DereferenceableOrNull;
1419   case bitc::ATTR_KIND_ALLOC_SIZE:
1420     return Attribute::AllocSize;
1421   case bitc::ATTR_KIND_NO_RED_ZONE:
1422     return Attribute::NoRedZone;
1423   case bitc::ATTR_KIND_NO_RETURN:
1424     return Attribute::NoReturn;
1425   case bitc::ATTR_KIND_NOCF_CHECK:
1426     return Attribute::NoCfCheck;
1427   case bitc::ATTR_KIND_NO_UNWIND:
1428     return Attribute::NoUnwind;
1429   case bitc::ATTR_KIND_OPT_FOR_FUZZING:
1430     return Attribute::OptForFuzzing;
1431   case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE:
1432     return Attribute::OptimizeForSize;
1433   case bitc::ATTR_KIND_OPTIMIZE_NONE:
1434     return Attribute::OptimizeNone;
1435   case bitc::ATTR_KIND_READ_NONE:
1436     return Attribute::ReadNone;
1437   case bitc::ATTR_KIND_READ_ONLY:
1438     return Attribute::ReadOnly;
1439   case bitc::ATTR_KIND_RETURNED:
1440     return Attribute::Returned;
1441   case bitc::ATTR_KIND_RETURNS_TWICE:
1442     return Attribute::ReturnsTwice;
1443   case bitc::ATTR_KIND_S_EXT:
1444     return Attribute::SExt;
1445   case bitc::ATTR_KIND_SPECULATABLE:
1446     return Attribute::Speculatable;
1447   case bitc::ATTR_KIND_STACK_ALIGNMENT:
1448     return Attribute::StackAlignment;
1449   case bitc::ATTR_KIND_STACK_PROTECT:
1450     return Attribute::StackProtect;
1451   case bitc::ATTR_KIND_STACK_PROTECT_REQ:
1452     return Attribute::StackProtectReq;
1453   case bitc::ATTR_KIND_STACK_PROTECT_STRONG:
1454     return Attribute::StackProtectStrong;
1455   case bitc::ATTR_KIND_SAFESTACK:
1456     return Attribute::SafeStack;
1457   case bitc::ATTR_KIND_SHADOWCALLSTACK:
1458     return Attribute::ShadowCallStack;
1459   case bitc::ATTR_KIND_STRICT_FP:
1460     return Attribute::StrictFP;
1461   case bitc::ATTR_KIND_STRUCT_RET:
1462     return Attribute::StructRet;
1463   case bitc::ATTR_KIND_SANITIZE_ADDRESS:
1464     return Attribute::SanitizeAddress;
1465   case bitc::ATTR_KIND_SANITIZE_HWADDRESS:
1466     return Attribute::SanitizeHWAddress;
1467   case bitc::ATTR_KIND_SANITIZE_THREAD:
1468     return Attribute::SanitizeThread;
1469   case bitc::ATTR_KIND_SANITIZE_MEMORY:
1470     return Attribute::SanitizeMemory;
1471   case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING:
1472     return Attribute::SpeculativeLoadHardening;
1473   case bitc::ATTR_KIND_SWIFT_ERROR:
1474     return Attribute::SwiftError;
1475   case bitc::ATTR_KIND_SWIFT_SELF:
1476     return Attribute::SwiftSelf;
1477   case bitc::ATTR_KIND_UW_TABLE:
1478     return Attribute::UWTable;
1479   case bitc::ATTR_KIND_WRITEONLY:
1480     return Attribute::WriteOnly;
1481   case bitc::ATTR_KIND_Z_EXT:
1482     return Attribute::ZExt;
1483   case bitc::ATTR_KIND_IMMARG:
1484     return Attribute::ImmArg;
1485   }
1486 }
1487 
1488 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent,
1489                                          unsigned &Alignment) {
1490   // Note: Alignment in bitcode files is incremented by 1, so that zero
1491   // can be used for default alignment.
1492   if (Exponent > Value::MaxAlignmentExponent + 1)
1493     return error("Invalid alignment value");
1494   Alignment = (1 << static_cast<unsigned>(Exponent)) >> 1;
1495   return Error::success();
1496 }
1497 
1498 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) {
1499   *Kind = getAttrFromCode(Code);
1500   if (*Kind == Attribute::None)
1501     return error("Unknown attribute kind (" + Twine(Code) + ")");
1502   return Error::success();
1503 }
1504 
1505 Error BitcodeReader::parseAttributeGroupBlock() {
1506   if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID))
1507     return Err;
1508 
1509   if (!MAttributeGroups.empty())
1510     return error("Invalid multiple blocks");
1511 
1512   SmallVector<uint64_t, 64> Record;
1513 
1514   // Read all the records.
1515   while (true) {
1516     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1517     if (!MaybeEntry)
1518       return MaybeEntry.takeError();
1519     BitstreamEntry Entry = MaybeEntry.get();
1520 
1521     switch (Entry.Kind) {
1522     case BitstreamEntry::SubBlock: // Handled for us already.
1523     case BitstreamEntry::Error:
1524       return error("Malformed block");
1525     case BitstreamEntry::EndBlock:
1526       return Error::success();
1527     case BitstreamEntry::Record:
1528       // The interesting case.
1529       break;
1530     }
1531 
1532     // Read a record.
1533     Record.clear();
1534     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1535     if (!MaybeRecord)
1536       return MaybeRecord.takeError();
1537     switch (MaybeRecord.get()) {
1538     default:  // Default behavior: ignore.
1539       break;
1540     case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...]
1541       if (Record.size() < 3)
1542         return error("Invalid record");
1543 
1544       uint64_t GrpID = Record[0];
1545       uint64_t Idx = Record[1]; // Index of the object this attribute refers to.
1546 
1547       AttrBuilder B;
1548       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1549         if (Record[i] == 0) {        // Enum attribute
1550           Attribute::AttrKind Kind;
1551           if (Error Err = parseAttrKind(Record[++i], &Kind))
1552             return Err;
1553 
1554           // Upgrade old-style byval attribute to one with a type, even if it's
1555           // nullptr. We will have to insert the real type when we associate
1556           // this AttributeList with a function.
1557           if (Kind == Attribute::ByVal)
1558             B.addByValAttr(nullptr);
1559 
1560           B.addAttribute(Kind);
1561         } else if (Record[i] == 1) { // Integer attribute
1562           Attribute::AttrKind Kind;
1563           if (Error Err = parseAttrKind(Record[++i], &Kind))
1564             return Err;
1565           if (Kind == Attribute::Alignment)
1566             B.addAlignmentAttr(Record[++i]);
1567           else if (Kind == Attribute::StackAlignment)
1568             B.addStackAlignmentAttr(Record[++i]);
1569           else if (Kind == Attribute::Dereferenceable)
1570             B.addDereferenceableAttr(Record[++i]);
1571           else if (Kind == Attribute::DereferenceableOrNull)
1572             B.addDereferenceableOrNullAttr(Record[++i]);
1573           else if (Kind == Attribute::AllocSize)
1574             B.addAllocSizeAttrFromRawRepr(Record[++i]);
1575         } else if (Record[i] == 3 || Record[i] == 4) { // String attribute
1576           bool HasValue = (Record[i++] == 4);
1577           SmallString<64> KindStr;
1578           SmallString<64> ValStr;
1579 
1580           while (Record[i] != 0 && i != e)
1581             KindStr += Record[i++];
1582           assert(Record[i] == 0 && "Kind string not null terminated");
1583 
1584           if (HasValue) {
1585             // Has a value associated with it.
1586             ++i; // Skip the '0' that terminates the "kind" string.
1587             while (Record[i] != 0 && i != e)
1588               ValStr += Record[i++];
1589             assert(Record[i] == 0 && "Value string not null terminated");
1590           }
1591 
1592           B.addAttribute(KindStr.str(), ValStr.str());
1593         } else {
1594           assert((Record[i] == 5 || Record[i] == 6) &&
1595                  "Invalid attribute group entry");
1596           bool HasType = Record[i] == 6;
1597           Attribute::AttrKind Kind;
1598           if (Error Err = parseAttrKind(Record[++i], &Kind))
1599             return Err;
1600           if (Kind == Attribute::ByVal)
1601             B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr);
1602         }
1603       }
1604 
1605       MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B);
1606       break;
1607     }
1608     }
1609   }
1610 }
1611 
1612 Error BitcodeReader::parseTypeTable() {
1613   if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW))
1614     return Err;
1615 
1616   return parseTypeTableBody();
1617 }
1618 
1619 Error BitcodeReader::parseTypeTableBody() {
1620   if (!TypeList.empty())
1621     return error("Invalid multiple blocks");
1622 
1623   SmallVector<uint64_t, 64> Record;
1624   unsigned NumRecords = 0;
1625 
1626   SmallString<64> TypeName;
1627 
1628   // Read all the records for this type table.
1629   while (true) {
1630     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1631     if (!MaybeEntry)
1632       return MaybeEntry.takeError();
1633     BitstreamEntry Entry = MaybeEntry.get();
1634 
1635     switch (Entry.Kind) {
1636     case BitstreamEntry::SubBlock: // Handled for us already.
1637     case BitstreamEntry::Error:
1638       return error("Malformed block");
1639     case BitstreamEntry::EndBlock:
1640       if (NumRecords != TypeList.size())
1641         return error("Malformed block");
1642       return Error::success();
1643     case BitstreamEntry::Record:
1644       // The interesting case.
1645       break;
1646     }
1647 
1648     // Read a record.
1649     Record.clear();
1650     Type *ResultTy = nullptr;
1651     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1652     if (!MaybeRecord)
1653       return MaybeRecord.takeError();
1654     switch (MaybeRecord.get()) {
1655     default:
1656       return error("Invalid value");
1657     case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries]
1658       // TYPE_CODE_NUMENTRY contains a count of the number of types in the
1659       // type list.  This allows us to reserve space.
1660       if (Record.size() < 1)
1661         return error("Invalid record");
1662       TypeList.resize(Record[0]);
1663       continue;
1664     case bitc::TYPE_CODE_VOID:      // VOID
1665       ResultTy = Type::getVoidTy(Context);
1666       break;
1667     case bitc::TYPE_CODE_HALF:     // HALF
1668       ResultTy = Type::getHalfTy(Context);
1669       break;
1670     case bitc::TYPE_CODE_FLOAT:     // FLOAT
1671       ResultTy = Type::getFloatTy(Context);
1672       break;
1673     case bitc::TYPE_CODE_DOUBLE:    // DOUBLE
1674       ResultTy = Type::getDoubleTy(Context);
1675       break;
1676     case bitc::TYPE_CODE_X86_FP80:  // X86_FP80
1677       ResultTy = Type::getX86_FP80Ty(Context);
1678       break;
1679     case bitc::TYPE_CODE_FP128:     // FP128
1680       ResultTy = Type::getFP128Ty(Context);
1681       break;
1682     case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128
1683       ResultTy = Type::getPPC_FP128Ty(Context);
1684       break;
1685     case bitc::TYPE_CODE_LABEL:     // LABEL
1686       ResultTy = Type::getLabelTy(Context);
1687       break;
1688     case bitc::TYPE_CODE_METADATA:  // METADATA
1689       ResultTy = Type::getMetadataTy(Context);
1690       break;
1691     case bitc::TYPE_CODE_X86_MMX:   // X86_MMX
1692       ResultTy = Type::getX86_MMXTy(Context);
1693       break;
1694     case bitc::TYPE_CODE_TOKEN:     // TOKEN
1695       ResultTy = Type::getTokenTy(Context);
1696       break;
1697     case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width]
1698       if (Record.size() < 1)
1699         return error("Invalid record");
1700 
1701       uint64_t NumBits = Record[0];
1702       if (NumBits < IntegerType::MIN_INT_BITS ||
1703           NumBits > IntegerType::MAX_INT_BITS)
1704         return error("Bitwidth for integer type out of range");
1705       ResultTy = IntegerType::get(Context, NumBits);
1706       break;
1707     }
1708     case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or
1709                                     //          [pointee type, address space]
1710       if (Record.size() < 1)
1711         return error("Invalid record");
1712       unsigned AddressSpace = 0;
1713       if (Record.size() == 2)
1714         AddressSpace = Record[1];
1715       ResultTy = getTypeByID(Record[0]);
1716       if (!ResultTy ||
1717           !PointerType::isValidElementType(ResultTy))
1718         return error("Invalid type");
1719       ResultTy = PointerType::get(ResultTy, AddressSpace);
1720       break;
1721     }
1722     case bitc::TYPE_CODE_FUNCTION_OLD: {
1723       // FIXME: attrid is dead, remove it in LLVM 4.0
1724       // FUNCTION: [vararg, attrid, retty, paramty x N]
1725       if (Record.size() < 3)
1726         return error("Invalid record");
1727       SmallVector<Type*, 8> ArgTys;
1728       for (unsigned i = 3, e = Record.size(); i != e; ++i) {
1729         if (Type *T = getTypeByID(Record[i]))
1730           ArgTys.push_back(T);
1731         else
1732           break;
1733       }
1734 
1735       ResultTy = getTypeByID(Record[2]);
1736       if (!ResultTy || ArgTys.size() < Record.size()-3)
1737         return error("Invalid type");
1738 
1739       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1740       break;
1741     }
1742     case bitc::TYPE_CODE_FUNCTION: {
1743       // FUNCTION: [vararg, retty, paramty x N]
1744       if (Record.size() < 2)
1745         return error("Invalid record");
1746       SmallVector<Type*, 8> ArgTys;
1747       for (unsigned i = 2, e = Record.size(); i != e; ++i) {
1748         if (Type *T = getTypeByID(Record[i])) {
1749           if (!FunctionType::isValidArgumentType(T))
1750             return error("Invalid function argument type");
1751           ArgTys.push_back(T);
1752         }
1753         else
1754           break;
1755       }
1756 
1757       ResultTy = getTypeByID(Record[1]);
1758       if (!ResultTy || ArgTys.size() < Record.size()-2)
1759         return error("Invalid type");
1760 
1761       ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]);
1762       break;
1763     }
1764     case bitc::TYPE_CODE_STRUCT_ANON: {  // STRUCT: [ispacked, eltty x N]
1765       if (Record.size() < 1)
1766         return error("Invalid record");
1767       SmallVector<Type*, 8> EltTys;
1768       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1769         if (Type *T = getTypeByID(Record[i]))
1770           EltTys.push_back(T);
1771         else
1772           break;
1773       }
1774       if (EltTys.size() != Record.size()-1)
1775         return error("Invalid type");
1776       ResultTy = StructType::get(Context, EltTys, Record[0]);
1777       break;
1778     }
1779     case bitc::TYPE_CODE_STRUCT_NAME:   // STRUCT_NAME: [strchr x N]
1780       if (convertToString(Record, 0, TypeName))
1781         return error("Invalid record");
1782       continue;
1783 
1784     case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N]
1785       if (Record.size() < 1)
1786         return error("Invalid record");
1787 
1788       if (NumRecords >= TypeList.size())
1789         return error("Invalid TYPE table");
1790 
1791       // Check to see if this was forward referenced, if so fill in the temp.
1792       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1793       if (Res) {
1794         Res->setName(TypeName);
1795         TypeList[NumRecords] = nullptr;
1796       } else  // Otherwise, create a new struct.
1797         Res = createIdentifiedStructType(Context, TypeName);
1798       TypeName.clear();
1799 
1800       SmallVector<Type*, 8> EltTys;
1801       for (unsigned i = 1, e = Record.size(); i != e; ++i) {
1802         if (Type *T = getTypeByID(Record[i]))
1803           EltTys.push_back(T);
1804         else
1805           break;
1806       }
1807       if (EltTys.size() != Record.size()-1)
1808         return error("Invalid record");
1809       Res->setBody(EltTys, Record[0]);
1810       ResultTy = Res;
1811       break;
1812     }
1813     case bitc::TYPE_CODE_OPAQUE: {       // OPAQUE: []
1814       if (Record.size() != 1)
1815         return error("Invalid record");
1816 
1817       if (NumRecords >= TypeList.size())
1818         return error("Invalid TYPE table");
1819 
1820       // Check to see if this was forward referenced, if so fill in the temp.
1821       StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]);
1822       if (Res) {
1823         Res->setName(TypeName);
1824         TypeList[NumRecords] = nullptr;
1825       } else  // Otherwise, create a new struct with no body.
1826         Res = createIdentifiedStructType(Context, TypeName);
1827       TypeName.clear();
1828       ResultTy = Res;
1829       break;
1830     }
1831     case bitc::TYPE_CODE_ARRAY:     // ARRAY: [numelts, eltty]
1832       if (Record.size() < 2)
1833         return error("Invalid record");
1834       ResultTy = getTypeByID(Record[1]);
1835       if (!ResultTy || !ArrayType::isValidElementType(ResultTy))
1836         return error("Invalid type");
1837       ResultTy = ArrayType::get(ResultTy, Record[0]);
1838       break;
1839     case bitc::TYPE_CODE_VECTOR:    // VECTOR: [numelts, eltty] or
1840                                     //         [numelts, eltty, scalable]
1841       if (Record.size() < 2)
1842         return error("Invalid record");
1843       if (Record[0] == 0)
1844         return error("Invalid vector length");
1845       ResultTy = getTypeByID(Record[1]);
1846       if (!ResultTy || !StructType::isValidElementType(ResultTy))
1847         return error("Invalid type");
1848       bool Scalable = Record.size() > 2 ? Record[2] : false;
1849       ResultTy = VectorType::get(ResultTy, Record[0], Scalable);
1850       break;
1851     }
1852 
1853     if (NumRecords >= TypeList.size())
1854       return error("Invalid TYPE table");
1855     if (TypeList[NumRecords])
1856       return error(
1857           "Invalid TYPE table: Only named structs can be forward referenced");
1858     assert(ResultTy && "Didn't read a type?");
1859     TypeList[NumRecords++] = ResultTy;
1860   }
1861 }
1862 
1863 Error BitcodeReader::parseOperandBundleTags() {
1864   if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID))
1865     return Err;
1866 
1867   if (!BundleTags.empty())
1868     return error("Invalid multiple blocks");
1869 
1870   SmallVector<uint64_t, 64> Record;
1871 
1872   while (true) {
1873     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1874     if (!MaybeEntry)
1875       return MaybeEntry.takeError();
1876     BitstreamEntry Entry = MaybeEntry.get();
1877 
1878     switch (Entry.Kind) {
1879     case BitstreamEntry::SubBlock: // Handled for us already.
1880     case BitstreamEntry::Error:
1881       return error("Malformed block");
1882     case BitstreamEntry::EndBlock:
1883       return Error::success();
1884     case BitstreamEntry::Record:
1885       // The interesting case.
1886       break;
1887     }
1888 
1889     // Tags are implicitly mapped to integers by their order.
1890 
1891     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1892     if (!MaybeRecord)
1893       return MaybeRecord.takeError();
1894     if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG)
1895       return error("Invalid record");
1896 
1897     // OPERAND_BUNDLE_TAG: [strchr x N]
1898     BundleTags.emplace_back();
1899     if (convertToString(Record, 0, BundleTags.back()))
1900       return error("Invalid record");
1901     Record.clear();
1902   }
1903 }
1904 
1905 Error BitcodeReader::parseSyncScopeNames() {
1906   if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID))
1907     return Err;
1908 
1909   if (!SSIDs.empty())
1910     return error("Invalid multiple synchronization scope names blocks");
1911 
1912   SmallVector<uint64_t, 64> Record;
1913   while (true) {
1914     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
1915     if (!MaybeEntry)
1916       return MaybeEntry.takeError();
1917     BitstreamEntry Entry = MaybeEntry.get();
1918 
1919     switch (Entry.Kind) {
1920     case BitstreamEntry::SubBlock: // Handled for us already.
1921     case BitstreamEntry::Error:
1922       return error("Malformed block");
1923     case BitstreamEntry::EndBlock:
1924       if (SSIDs.empty())
1925         return error("Invalid empty synchronization scope names block");
1926       return Error::success();
1927     case BitstreamEntry::Record:
1928       // The interesting case.
1929       break;
1930     }
1931 
1932     // Synchronization scope names are implicitly mapped to synchronization
1933     // scope IDs by their order.
1934 
1935     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
1936     if (!MaybeRecord)
1937       return MaybeRecord.takeError();
1938     if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME)
1939       return error("Invalid record");
1940 
1941     SmallString<16> SSN;
1942     if (convertToString(Record, 0, SSN))
1943       return error("Invalid record");
1944 
1945     SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN));
1946     Record.clear();
1947   }
1948 }
1949 
1950 /// Associate a value with its name from the given index in the provided record.
1951 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record,
1952                                              unsigned NameIndex, Triple &TT) {
1953   SmallString<128> ValueName;
1954   if (convertToString(Record, NameIndex, ValueName))
1955     return error("Invalid record");
1956   unsigned ValueID = Record[0];
1957   if (ValueID >= ValueList.size() || !ValueList[ValueID])
1958     return error("Invalid record");
1959   Value *V = ValueList[ValueID];
1960 
1961   StringRef NameStr(ValueName.data(), ValueName.size());
1962   if (NameStr.find_first_of(0) != StringRef::npos)
1963     return error("Invalid value name");
1964   V->setName(NameStr);
1965   auto *GO = dyn_cast<GlobalObject>(V);
1966   if (GO) {
1967     if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) {
1968       if (TT.supportsCOMDAT())
1969         GO->setComdat(TheModule->getOrInsertComdat(V->getName()));
1970       else
1971         GO->setComdat(nullptr);
1972     }
1973   }
1974   return V;
1975 }
1976 
1977 /// Helper to note and return the current location, and jump to the given
1978 /// offset.
1979 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset,
1980                                                  BitstreamCursor &Stream) {
1981   // Save the current parsing location so we can jump back at the end
1982   // of the VST read.
1983   uint64_t CurrentBit = Stream.GetCurrentBitNo();
1984   if (Error JumpFailed = Stream.JumpToBit(Offset * 32))
1985     return std::move(JumpFailed);
1986   Expected<BitstreamEntry> MaybeEntry = Stream.advance();
1987   if (!MaybeEntry)
1988     return MaybeEntry.takeError();
1989   assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock);
1990   assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID);
1991   return CurrentBit;
1992 }
1993 
1994 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta,
1995                                             Function *F,
1996                                             ArrayRef<uint64_t> Record) {
1997   // Note that we subtract 1 here because the offset is relative to one word
1998   // before the start of the identification or module block, which was
1999   // historically always the start of the regular bitcode header.
2000   uint64_t FuncWordOffset = Record[1] - 1;
2001   uint64_t FuncBitOffset = FuncWordOffset * 32;
2002   DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta;
2003   // Set the LastFunctionBlockBit to point to the last function block.
2004   // Later when parsing is resumed after function materialization,
2005   // we can simply skip that last function block.
2006   if (FuncBitOffset > LastFunctionBlockBit)
2007     LastFunctionBlockBit = FuncBitOffset;
2008 }
2009 
2010 /// Read a new-style GlobalValue symbol table.
2011 Error BitcodeReader::parseGlobalValueSymbolTable() {
2012   unsigned FuncBitcodeOffsetDelta =
2013       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2014 
2015   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2016     return Err;
2017 
2018   SmallVector<uint64_t, 64> Record;
2019   while (true) {
2020     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2021     if (!MaybeEntry)
2022       return MaybeEntry.takeError();
2023     BitstreamEntry Entry = MaybeEntry.get();
2024 
2025     switch (Entry.Kind) {
2026     case BitstreamEntry::SubBlock:
2027     case BitstreamEntry::Error:
2028       return error("Malformed block");
2029     case BitstreamEntry::EndBlock:
2030       return Error::success();
2031     case BitstreamEntry::Record:
2032       break;
2033     }
2034 
2035     Record.clear();
2036     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2037     if (!MaybeRecord)
2038       return MaybeRecord.takeError();
2039     switch (MaybeRecord.get()) {
2040     case bitc::VST_CODE_FNENTRY: // [valueid, offset]
2041       setDeferredFunctionInfo(FuncBitcodeOffsetDelta,
2042                               cast<Function>(ValueList[Record[0]]), Record);
2043       break;
2044     }
2045   }
2046 }
2047 
2048 /// Parse the value symbol table at either the current parsing location or
2049 /// at the given bit offset if provided.
2050 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) {
2051   uint64_t CurrentBit;
2052   // Pass in the Offset to distinguish between calling for the module-level
2053   // VST (where we want to jump to the VST offset) and the function-level
2054   // VST (where we don't).
2055   if (Offset > 0) {
2056     Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
2057     if (!MaybeCurrentBit)
2058       return MaybeCurrentBit.takeError();
2059     CurrentBit = MaybeCurrentBit.get();
2060     // If this module uses a string table, read this as a module-level VST.
2061     if (UseStrtab) {
2062       if (Error Err = parseGlobalValueSymbolTable())
2063         return Err;
2064       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2065         return JumpFailed;
2066       return Error::success();
2067     }
2068     // Otherwise, the VST will be in a similar format to a function-level VST,
2069     // and will contain symbol names.
2070   }
2071 
2072   // Compute the delta between the bitcode indices in the VST (the word offset
2073   // to the word-aligned ENTER_SUBBLOCK for the function block, and that
2074   // expected by the lazy reader. The reader's EnterSubBlock expects to have
2075   // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID
2076   // (size BlockIDWidth). Note that we access the stream's AbbrevID width here
2077   // just before entering the VST subblock because: 1) the EnterSubBlock
2078   // changes the AbbrevID width; 2) the VST block is nested within the same
2079   // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same
2080   // AbbrevID width before calling EnterSubBlock; and 3) when we want to
2081   // jump to the FUNCTION_BLOCK using this offset later, we don't want
2082   // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK.
2083   unsigned FuncBitcodeOffsetDelta =
2084       Stream.getAbbrevIDWidth() + bitc::BlockIDWidth;
2085 
2086   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
2087     return Err;
2088 
2089   SmallVector<uint64_t, 64> Record;
2090 
2091   Triple TT(TheModule->getTargetTriple());
2092 
2093   // Read all the records for this value table.
2094   SmallString<128> ValueName;
2095 
2096   while (true) {
2097     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2098     if (!MaybeEntry)
2099       return MaybeEntry.takeError();
2100     BitstreamEntry Entry = MaybeEntry.get();
2101 
2102     switch (Entry.Kind) {
2103     case BitstreamEntry::SubBlock: // Handled for us already.
2104     case BitstreamEntry::Error:
2105       return error("Malformed block");
2106     case BitstreamEntry::EndBlock:
2107       if (Offset > 0)
2108         if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
2109           return JumpFailed;
2110       return Error::success();
2111     case BitstreamEntry::Record:
2112       // The interesting case.
2113       break;
2114     }
2115 
2116     // Read a record.
2117     Record.clear();
2118     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2119     if (!MaybeRecord)
2120       return MaybeRecord.takeError();
2121     switch (MaybeRecord.get()) {
2122     default:  // Default behavior: unknown type.
2123       break;
2124     case bitc::VST_CODE_ENTRY: {  // VST_CODE_ENTRY: [valueid, namechar x N]
2125       Expected<Value *> ValOrErr = recordValue(Record, 1, TT);
2126       if (Error Err = ValOrErr.takeError())
2127         return Err;
2128       ValOrErr.get();
2129       break;
2130     }
2131     case bitc::VST_CODE_FNENTRY: {
2132       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
2133       Expected<Value *> ValOrErr = recordValue(Record, 2, TT);
2134       if (Error Err = ValOrErr.takeError())
2135         return Err;
2136       Value *V = ValOrErr.get();
2137 
2138       // Ignore function offsets emitted for aliases of functions in older
2139       // versions of LLVM.
2140       if (auto *F = dyn_cast<Function>(V))
2141         setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record);
2142       break;
2143     }
2144     case bitc::VST_CODE_BBENTRY: {
2145       if (convertToString(Record, 1, ValueName))
2146         return error("Invalid record");
2147       BasicBlock *BB = getBasicBlock(Record[0]);
2148       if (!BB)
2149         return error("Invalid record");
2150 
2151       BB->setName(StringRef(ValueName.data(), ValueName.size()));
2152       ValueName.clear();
2153       break;
2154     }
2155     }
2156   }
2157 }
2158 
2159 /// Decode a signed value stored with the sign bit in the LSB for dense VBR
2160 /// encoding.
2161 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) {
2162   if ((V & 1) == 0)
2163     return V >> 1;
2164   if (V != 1)
2165     return -(V >> 1);
2166   // There is no such thing as -0 with integers.  "-0" really means MININT.
2167   return 1ULL << 63;
2168 }
2169 
2170 /// Resolve all of the initializers for global values and aliases that we can.
2171 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() {
2172   std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist;
2173   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>
2174       IndirectSymbolInitWorklist;
2175   std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist;
2176   std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist;
2177   std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist;
2178 
2179   GlobalInitWorklist.swap(GlobalInits);
2180   IndirectSymbolInitWorklist.swap(IndirectSymbolInits);
2181   FunctionPrefixWorklist.swap(FunctionPrefixes);
2182   FunctionPrologueWorklist.swap(FunctionPrologues);
2183   FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns);
2184 
2185   while (!GlobalInitWorklist.empty()) {
2186     unsigned ValID = GlobalInitWorklist.back().second;
2187     if (ValID >= ValueList.size()) {
2188       // Not ready to resolve this yet, it requires something later in the file.
2189       GlobalInits.push_back(GlobalInitWorklist.back());
2190     } else {
2191       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2192         GlobalInitWorklist.back().first->setInitializer(C);
2193       else
2194         return error("Expected a constant");
2195     }
2196     GlobalInitWorklist.pop_back();
2197   }
2198 
2199   while (!IndirectSymbolInitWorklist.empty()) {
2200     unsigned ValID = IndirectSymbolInitWorklist.back().second;
2201     if (ValID >= ValueList.size()) {
2202       IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back());
2203     } else {
2204       Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]);
2205       if (!C)
2206         return error("Expected a constant");
2207       GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first;
2208       if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType())
2209         return error("Alias and aliasee types don't match");
2210       GIS->setIndirectSymbol(C);
2211     }
2212     IndirectSymbolInitWorklist.pop_back();
2213   }
2214 
2215   while (!FunctionPrefixWorklist.empty()) {
2216     unsigned ValID = FunctionPrefixWorklist.back().second;
2217     if (ValID >= ValueList.size()) {
2218       FunctionPrefixes.push_back(FunctionPrefixWorklist.back());
2219     } else {
2220       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2221         FunctionPrefixWorklist.back().first->setPrefixData(C);
2222       else
2223         return error("Expected a constant");
2224     }
2225     FunctionPrefixWorklist.pop_back();
2226   }
2227 
2228   while (!FunctionPrologueWorklist.empty()) {
2229     unsigned ValID = FunctionPrologueWorklist.back().second;
2230     if (ValID >= ValueList.size()) {
2231       FunctionPrologues.push_back(FunctionPrologueWorklist.back());
2232     } else {
2233       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2234         FunctionPrologueWorklist.back().first->setPrologueData(C);
2235       else
2236         return error("Expected a constant");
2237     }
2238     FunctionPrologueWorklist.pop_back();
2239   }
2240 
2241   while (!FunctionPersonalityFnWorklist.empty()) {
2242     unsigned ValID = FunctionPersonalityFnWorklist.back().second;
2243     if (ValID >= ValueList.size()) {
2244       FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back());
2245     } else {
2246       if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]))
2247         FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C);
2248       else
2249         return error("Expected a constant");
2250     }
2251     FunctionPersonalityFnWorklist.pop_back();
2252   }
2253 
2254   return Error::success();
2255 }
2256 
2257 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) {
2258   SmallVector<uint64_t, 8> Words(Vals.size());
2259   transform(Vals, Words.begin(),
2260                  BitcodeReader::decodeSignRotatedValue);
2261 
2262   return APInt(TypeBits, Words);
2263 }
2264 
2265 Error BitcodeReader::parseConstants() {
2266   if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID))
2267     return Err;
2268 
2269   SmallVector<uint64_t, 64> Record;
2270 
2271   // Read all the records for this value table.
2272   Type *CurTy = Type::getInt32Ty(Context);
2273   unsigned NextCstNo = ValueList.size();
2274 
2275   while (true) {
2276     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2277     if (!MaybeEntry)
2278       return MaybeEntry.takeError();
2279     BitstreamEntry Entry = MaybeEntry.get();
2280 
2281     switch (Entry.Kind) {
2282     case BitstreamEntry::SubBlock: // Handled for us already.
2283     case BitstreamEntry::Error:
2284       return error("Malformed block");
2285     case BitstreamEntry::EndBlock:
2286       if (NextCstNo != ValueList.size())
2287         return error("Invalid constant reference");
2288 
2289       // Once all the constants have been read, go through and resolve forward
2290       // references.
2291       ValueList.resolveConstantForwardRefs();
2292       return Error::success();
2293     case BitstreamEntry::Record:
2294       // The interesting case.
2295       break;
2296     }
2297 
2298     // Read a record.
2299     Record.clear();
2300     Type *VoidType = Type::getVoidTy(Context);
2301     Value *V = nullptr;
2302     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
2303     if (!MaybeBitCode)
2304       return MaybeBitCode.takeError();
2305     switch (unsigned BitCode = MaybeBitCode.get()) {
2306     default:  // Default behavior: unknown constant
2307     case bitc::CST_CODE_UNDEF:     // UNDEF
2308       V = UndefValue::get(CurTy);
2309       break;
2310     case bitc::CST_CODE_SETTYPE:   // SETTYPE: [typeid]
2311       if (Record.empty())
2312         return error("Invalid record");
2313       if (Record[0] >= TypeList.size() || !TypeList[Record[0]])
2314         return error("Invalid record");
2315       if (TypeList[Record[0]] == VoidType)
2316         return error("Invalid constant type");
2317       CurTy = TypeList[Record[0]];
2318       continue;  // Skip the ValueList manipulation.
2319     case bitc::CST_CODE_NULL:      // NULL
2320       V = Constant::getNullValue(CurTy);
2321       break;
2322     case bitc::CST_CODE_INTEGER:   // INTEGER: [intval]
2323       if (!CurTy->isIntegerTy() || Record.empty())
2324         return error("Invalid record");
2325       V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0]));
2326       break;
2327     case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval]
2328       if (!CurTy->isIntegerTy() || Record.empty())
2329         return error("Invalid record");
2330 
2331       APInt VInt =
2332           readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth());
2333       V = ConstantInt::get(Context, VInt);
2334 
2335       break;
2336     }
2337     case bitc::CST_CODE_FLOAT: {    // FLOAT: [fpval]
2338       if (Record.empty())
2339         return error("Invalid record");
2340       if (CurTy->isHalfTy())
2341         V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(),
2342                                              APInt(16, (uint16_t)Record[0])));
2343       else if (CurTy->isFloatTy())
2344         V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(),
2345                                              APInt(32, (uint32_t)Record[0])));
2346       else if (CurTy->isDoubleTy())
2347         V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(),
2348                                              APInt(64, Record[0])));
2349       else if (CurTy->isX86_FP80Ty()) {
2350         // Bits are not stored the same way as a normal i80 APInt, compensate.
2351         uint64_t Rearrange[2];
2352         Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16);
2353         Rearrange[1] = Record[0] >> 48;
2354         V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(),
2355                                              APInt(80, Rearrange)));
2356       } else if (CurTy->isFP128Ty())
2357         V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(),
2358                                              APInt(128, Record)));
2359       else if (CurTy->isPPC_FP128Ty())
2360         V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(),
2361                                              APInt(128, Record)));
2362       else
2363         V = UndefValue::get(CurTy);
2364       break;
2365     }
2366 
2367     case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number]
2368       if (Record.empty())
2369         return error("Invalid record");
2370 
2371       unsigned Size = Record.size();
2372       SmallVector<Constant*, 16> Elts;
2373 
2374       if (StructType *STy = dyn_cast<StructType>(CurTy)) {
2375         for (unsigned i = 0; i != Size; ++i)
2376           Elts.push_back(ValueList.getConstantFwdRef(Record[i],
2377                                                      STy->getElementType(i)));
2378         V = ConstantStruct::get(STy, Elts);
2379       } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) {
2380         Type *EltTy = ATy->getElementType();
2381         for (unsigned i = 0; i != Size; ++i)
2382           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2383         V = ConstantArray::get(ATy, Elts);
2384       } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) {
2385         Type *EltTy = VTy->getElementType();
2386         for (unsigned i = 0; i != Size; ++i)
2387           Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy));
2388         V = ConstantVector::get(Elts);
2389       } else {
2390         V = UndefValue::get(CurTy);
2391       }
2392       break;
2393     }
2394     case bitc::CST_CODE_STRING:    // STRING: [values]
2395     case bitc::CST_CODE_CSTRING: { // CSTRING: [values]
2396       if (Record.empty())
2397         return error("Invalid record");
2398 
2399       SmallString<16> Elts(Record.begin(), Record.end());
2400       V = ConstantDataArray::getString(Context, Elts,
2401                                        BitCode == bitc::CST_CODE_CSTRING);
2402       break;
2403     }
2404     case bitc::CST_CODE_DATA: {// DATA: [n x value]
2405       if (Record.empty())
2406         return error("Invalid record");
2407 
2408       Type *EltTy = cast<SequentialType>(CurTy)->getElementType();
2409       if (EltTy->isIntegerTy(8)) {
2410         SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end());
2411         if (isa<VectorType>(CurTy))
2412           V = ConstantDataVector::get(Context, Elts);
2413         else
2414           V = ConstantDataArray::get(Context, Elts);
2415       } else if (EltTy->isIntegerTy(16)) {
2416         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2417         if (isa<VectorType>(CurTy))
2418           V = ConstantDataVector::get(Context, Elts);
2419         else
2420           V = ConstantDataArray::get(Context, Elts);
2421       } else if (EltTy->isIntegerTy(32)) {
2422         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2423         if (isa<VectorType>(CurTy))
2424           V = ConstantDataVector::get(Context, Elts);
2425         else
2426           V = ConstantDataArray::get(Context, Elts);
2427       } else if (EltTy->isIntegerTy(64)) {
2428         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2429         if (isa<VectorType>(CurTy))
2430           V = ConstantDataVector::get(Context, Elts);
2431         else
2432           V = ConstantDataArray::get(Context, Elts);
2433       } else if (EltTy->isHalfTy()) {
2434         SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end());
2435         if (isa<VectorType>(CurTy))
2436           V = ConstantDataVector::getFP(Context, Elts);
2437         else
2438           V = ConstantDataArray::getFP(Context, Elts);
2439       } else if (EltTy->isFloatTy()) {
2440         SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end());
2441         if (isa<VectorType>(CurTy))
2442           V = ConstantDataVector::getFP(Context, Elts);
2443         else
2444           V = ConstantDataArray::getFP(Context, Elts);
2445       } else if (EltTy->isDoubleTy()) {
2446         SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end());
2447         if (isa<VectorType>(CurTy))
2448           V = ConstantDataVector::getFP(Context, Elts);
2449         else
2450           V = ConstantDataArray::getFP(Context, Elts);
2451       } else {
2452         return error("Invalid type for value");
2453       }
2454       break;
2455     }
2456     case bitc::CST_CODE_CE_UNOP: {  // CE_UNOP: [opcode, opval]
2457       if (Record.size() < 2)
2458         return error("Invalid record");
2459       int Opc = getDecodedUnaryOpcode(Record[0], CurTy);
2460       if (Opc < 0) {
2461         V = UndefValue::get(CurTy);  // Unknown unop.
2462       } else {
2463         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2464         unsigned Flags = 0;
2465         V = ConstantExpr::get(Opc, LHS, Flags);
2466       }
2467       break;
2468     }
2469     case bitc::CST_CODE_CE_BINOP: {  // CE_BINOP: [opcode, opval, opval]
2470       if (Record.size() < 3)
2471         return error("Invalid record");
2472       int Opc = getDecodedBinaryOpcode(Record[0], CurTy);
2473       if (Opc < 0) {
2474         V = UndefValue::get(CurTy);  // Unknown binop.
2475       } else {
2476         Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy);
2477         Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy);
2478         unsigned Flags = 0;
2479         if (Record.size() >= 4) {
2480           if (Opc == Instruction::Add ||
2481               Opc == Instruction::Sub ||
2482               Opc == Instruction::Mul ||
2483               Opc == Instruction::Shl) {
2484             if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP))
2485               Flags |= OverflowingBinaryOperator::NoSignedWrap;
2486             if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
2487               Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
2488           } else if (Opc == Instruction::SDiv ||
2489                      Opc == Instruction::UDiv ||
2490                      Opc == Instruction::LShr ||
2491                      Opc == Instruction::AShr) {
2492             if (Record[3] & (1 << bitc::PEO_EXACT))
2493               Flags |= SDivOperator::IsExact;
2494           }
2495         }
2496         V = ConstantExpr::get(Opc, LHS, RHS, Flags);
2497       }
2498       break;
2499     }
2500     case bitc::CST_CODE_CE_CAST: {  // CE_CAST: [opcode, opty, opval]
2501       if (Record.size() < 3)
2502         return error("Invalid record");
2503       int Opc = getDecodedCastOpcode(Record[0]);
2504       if (Opc < 0) {
2505         V = UndefValue::get(CurTy);  // Unknown cast.
2506       } else {
2507         Type *OpTy = getTypeByID(Record[1]);
2508         if (!OpTy)
2509           return error("Invalid record");
2510         Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy);
2511         V = UpgradeBitCastExpr(Opc, Op, CurTy);
2512         if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy);
2513       }
2514       break;
2515     }
2516     case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands]
2517     case bitc::CST_CODE_CE_GEP: // [ty, n x operands]
2518     case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x
2519                                                      // operands]
2520       unsigned OpNum = 0;
2521       Type *PointeeType = nullptr;
2522       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX ||
2523           Record.size() % 2)
2524         PointeeType = getTypeByID(Record[OpNum++]);
2525 
2526       bool InBounds = false;
2527       Optional<unsigned> InRangeIndex;
2528       if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) {
2529         uint64_t Op = Record[OpNum++];
2530         InBounds = Op & 1;
2531         InRangeIndex = Op >> 1;
2532       } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP)
2533         InBounds = true;
2534 
2535       SmallVector<Constant*, 16> Elts;
2536       while (OpNum != Record.size()) {
2537         Type *ElTy = getTypeByID(Record[OpNum++]);
2538         if (!ElTy)
2539           return error("Invalid record");
2540         Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy));
2541       }
2542 
2543       if (Elts.size() < 1)
2544         return error("Invalid gep with no operands");
2545 
2546       Type *ImplicitPointeeType =
2547           cast<PointerType>(Elts[0]->getType()->getScalarType())
2548               ->getElementType();
2549       if (!PointeeType)
2550         PointeeType = ImplicitPointeeType;
2551       else if (PointeeType != ImplicitPointeeType)
2552         return error("Explicit gep operator type does not match pointee type "
2553                      "of pointer operand");
2554 
2555       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
2556       V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices,
2557                                          InBounds, InRangeIndex);
2558       break;
2559     }
2560     case bitc::CST_CODE_CE_SELECT: {  // CE_SELECT: [opval#, opval#, opval#]
2561       if (Record.size() < 3)
2562         return error("Invalid record");
2563 
2564       Type *SelectorTy = Type::getInt1Ty(Context);
2565 
2566       // The selector might be an i1 or an <n x i1>
2567       // Get the type from the ValueList before getting a forward ref.
2568       if (VectorType *VTy = dyn_cast<VectorType>(CurTy))
2569         if (Value *V = ValueList[Record[0]])
2570           if (SelectorTy != V->getType())
2571             SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements());
2572 
2573       V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0],
2574                                                               SelectorTy),
2575                                   ValueList.getConstantFwdRef(Record[1],CurTy),
2576                                   ValueList.getConstantFwdRef(Record[2],CurTy));
2577       break;
2578     }
2579     case bitc::CST_CODE_CE_EXTRACTELT
2580         : { // CE_EXTRACTELT: [opty, opval, opty, opval]
2581       if (Record.size() < 3)
2582         return error("Invalid record");
2583       VectorType *OpTy =
2584         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2585       if (!OpTy)
2586         return error("Invalid record");
2587       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2588       Constant *Op1 = nullptr;
2589       if (Record.size() == 4) {
2590         Type *IdxTy = getTypeByID(Record[2]);
2591         if (!IdxTy)
2592           return error("Invalid record");
2593         Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2594       } else // TODO: Remove with llvm 4.0
2595         Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2596       if (!Op1)
2597         return error("Invalid record");
2598       V = ConstantExpr::getExtractElement(Op0, Op1);
2599       break;
2600     }
2601     case bitc::CST_CODE_CE_INSERTELT
2602         : { // CE_INSERTELT: [opval, opval, opty, opval]
2603       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2604       if (Record.size() < 3 || !OpTy)
2605         return error("Invalid record");
2606       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2607       Constant *Op1 = ValueList.getConstantFwdRef(Record[1],
2608                                                   OpTy->getElementType());
2609       Constant *Op2 = nullptr;
2610       if (Record.size() == 4) {
2611         Type *IdxTy = getTypeByID(Record[2]);
2612         if (!IdxTy)
2613           return error("Invalid record");
2614         Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy);
2615       } else // TODO: Remove with llvm 4.0
2616         Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context));
2617       if (!Op2)
2618         return error("Invalid record");
2619       V = ConstantExpr::getInsertElement(Op0, Op1, Op2);
2620       break;
2621     }
2622     case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval]
2623       VectorType *OpTy = dyn_cast<VectorType>(CurTy);
2624       if (Record.size() < 3 || !OpTy)
2625         return error("Invalid record");
2626       Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy);
2627       Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy);
2628       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2629                                                  OpTy->getNumElements());
2630       Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy);
2631       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2632       break;
2633     }
2634     case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval]
2635       VectorType *RTy = dyn_cast<VectorType>(CurTy);
2636       VectorType *OpTy =
2637         dyn_cast_or_null<VectorType>(getTypeByID(Record[0]));
2638       if (Record.size() < 4 || !RTy || !OpTy)
2639         return error("Invalid record");
2640       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2641       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2642       Type *ShufTy = VectorType::get(Type::getInt32Ty(Context),
2643                                                  RTy->getNumElements());
2644       Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy);
2645       V = ConstantExpr::getShuffleVector(Op0, Op1, Op2);
2646       break;
2647     }
2648     case bitc::CST_CODE_CE_CMP: {     // CE_CMP: [opty, opval, opval, pred]
2649       if (Record.size() < 4)
2650         return error("Invalid record");
2651       Type *OpTy = getTypeByID(Record[0]);
2652       if (!OpTy)
2653         return error("Invalid record");
2654       Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy);
2655       Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy);
2656 
2657       if (OpTy->isFPOrFPVectorTy())
2658         V = ConstantExpr::getFCmp(Record[3], Op0, Op1);
2659       else
2660         V = ConstantExpr::getICmp(Record[3], Op0, Op1);
2661       break;
2662     }
2663     // This maintains backward compatibility, pre-asm dialect keywords.
2664     // FIXME: Remove with the 4.0 release.
2665     case bitc::CST_CODE_INLINEASM_OLD: {
2666       if (Record.size() < 2)
2667         return error("Invalid record");
2668       std::string AsmStr, ConstrStr;
2669       bool HasSideEffects = Record[0] & 1;
2670       bool IsAlignStack = Record[0] >> 1;
2671       unsigned AsmStrSize = Record[1];
2672       if (2+AsmStrSize >= Record.size())
2673         return error("Invalid record");
2674       unsigned ConstStrSize = Record[2+AsmStrSize];
2675       if (3+AsmStrSize+ConstStrSize > Record.size())
2676         return error("Invalid record");
2677 
2678       for (unsigned i = 0; i != AsmStrSize; ++i)
2679         AsmStr += (char)Record[2+i];
2680       for (unsigned i = 0; i != ConstStrSize; ++i)
2681         ConstrStr += (char)Record[3+AsmStrSize+i];
2682       PointerType *PTy = cast<PointerType>(CurTy);
2683       UpgradeInlineAsmString(&AsmStr);
2684       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2685                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack);
2686       break;
2687     }
2688     // This version adds support for the asm dialect keywords (e.g.,
2689     // inteldialect).
2690     case bitc::CST_CODE_INLINEASM: {
2691       if (Record.size() < 2)
2692         return error("Invalid record");
2693       std::string AsmStr, ConstrStr;
2694       bool HasSideEffects = Record[0] & 1;
2695       bool IsAlignStack = (Record[0] >> 1) & 1;
2696       unsigned AsmDialect = Record[0] >> 2;
2697       unsigned AsmStrSize = Record[1];
2698       if (2+AsmStrSize >= Record.size())
2699         return error("Invalid record");
2700       unsigned ConstStrSize = Record[2+AsmStrSize];
2701       if (3+AsmStrSize+ConstStrSize > Record.size())
2702         return error("Invalid record");
2703 
2704       for (unsigned i = 0; i != AsmStrSize; ++i)
2705         AsmStr += (char)Record[2+i];
2706       for (unsigned i = 0; i != ConstStrSize; ++i)
2707         ConstrStr += (char)Record[3+AsmStrSize+i];
2708       PointerType *PTy = cast<PointerType>(CurTy);
2709       UpgradeInlineAsmString(&AsmStr);
2710       V = InlineAsm::get(cast<FunctionType>(PTy->getElementType()),
2711                          AsmStr, ConstrStr, HasSideEffects, IsAlignStack,
2712                          InlineAsm::AsmDialect(AsmDialect));
2713       break;
2714     }
2715     case bitc::CST_CODE_BLOCKADDRESS:{
2716       if (Record.size() < 3)
2717         return error("Invalid record");
2718       Type *FnTy = getTypeByID(Record[0]);
2719       if (!FnTy)
2720         return error("Invalid record");
2721       Function *Fn =
2722         dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy));
2723       if (!Fn)
2724         return error("Invalid record");
2725 
2726       // If the function is already parsed we can insert the block address right
2727       // away.
2728       BasicBlock *BB;
2729       unsigned BBID = Record[2];
2730       if (!BBID)
2731         // Invalid reference to entry block.
2732         return error("Invalid ID");
2733       if (!Fn->empty()) {
2734         Function::iterator BBI = Fn->begin(), BBE = Fn->end();
2735         for (size_t I = 0, E = BBID; I != E; ++I) {
2736           if (BBI == BBE)
2737             return error("Invalid ID");
2738           ++BBI;
2739         }
2740         BB = &*BBI;
2741       } else {
2742         // Otherwise insert a placeholder and remember it so it can be inserted
2743         // when the function is parsed.
2744         auto &FwdBBs = BasicBlockFwdRefs[Fn];
2745         if (FwdBBs.empty())
2746           BasicBlockFwdRefQueue.push_back(Fn);
2747         if (FwdBBs.size() < BBID + 1)
2748           FwdBBs.resize(BBID + 1);
2749         if (!FwdBBs[BBID])
2750           FwdBBs[BBID] = BasicBlock::Create(Context);
2751         BB = FwdBBs[BBID];
2752       }
2753       V = BlockAddress::get(Fn, BB);
2754       break;
2755     }
2756     }
2757 
2758     ValueList.assignValue(V, NextCstNo);
2759     ++NextCstNo;
2760   }
2761 }
2762 
2763 Error BitcodeReader::parseUseLists() {
2764   if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID))
2765     return Err;
2766 
2767   // Read all the records.
2768   SmallVector<uint64_t, 64> Record;
2769 
2770   while (true) {
2771     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
2772     if (!MaybeEntry)
2773       return MaybeEntry.takeError();
2774     BitstreamEntry Entry = MaybeEntry.get();
2775 
2776     switch (Entry.Kind) {
2777     case BitstreamEntry::SubBlock: // Handled for us already.
2778     case BitstreamEntry::Error:
2779       return error("Malformed block");
2780     case BitstreamEntry::EndBlock:
2781       return Error::success();
2782     case BitstreamEntry::Record:
2783       // The interesting case.
2784       break;
2785     }
2786 
2787     // Read a use list record.
2788     Record.clear();
2789     bool IsBB = false;
2790     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
2791     if (!MaybeRecord)
2792       return MaybeRecord.takeError();
2793     switch (MaybeRecord.get()) {
2794     default:  // Default behavior: unknown type.
2795       break;
2796     case bitc::USELIST_CODE_BB:
2797       IsBB = true;
2798       LLVM_FALLTHROUGH;
2799     case bitc::USELIST_CODE_DEFAULT: {
2800       unsigned RecordLength = Record.size();
2801       if (RecordLength < 3)
2802         // Records should have at least an ID and two indexes.
2803         return error("Invalid record");
2804       unsigned ID = Record.back();
2805       Record.pop_back();
2806 
2807       Value *V;
2808       if (IsBB) {
2809         assert(ID < FunctionBBs.size() && "Basic block not found");
2810         V = FunctionBBs[ID];
2811       } else
2812         V = ValueList[ID];
2813       unsigned NumUses = 0;
2814       SmallDenseMap<const Use *, unsigned, 16> Order;
2815       for (const Use &U : V->materialized_uses()) {
2816         if (++NumUses > Record.size())
2817           break;
2818         Order[&U] = Record[NumUses - 1];
2819       }
2820       if (Order.size() != Record.size() || NumUses > Record.size())
2821         // Mismatches can happen if the functions are being materialized lazily
2822         // (out-of-order), or a value has been upgraded.
2823         break;
2824 
2825       V->sortUseList([&](const Use &L, const Use &R) {
2826         return Order.lookup(&L) < Order.lookup(&R);
2827       });
2828       break;
2829     }
2830     }
2831   }
2832 }
2833 
2834 /// When we see the block for metadata, remember where it is and then skip it.
2835 /// This lets us lazily deserialize the metadata.
2836 Error BitcodeReader::rememberAndSkipMetadata() {
2837   // Save the current stream state.
2838   uint64_t CurBit = Stream.GetCurrentBitNo();
2839   DeferredMetadataInfo.push_back(CurBit);
2840 
2841   // Skip over the block for now.
2842   if (Error Err = Stream.SkipBlock())
2843     return Err;
2844   return Error::success();
2845 }
2846 
2847 Error BitcodeReader::materializeMetadata() {
2848   for (uint64_t BitPos : DeferredMetadataInfo) {
2849     // Move the bit stream to the saved position.
2850     if (Error JumpFailed = Stream.JumpToBit(BitPos))
2851       return JumpFailed;
2852     if (Error Err = MDLoader->parseModuleMetadata())
2853       return Err;
2854   }
2855 
2856   // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level
2857   // metadata.
2858   if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) {
2859     NamedMDNode *LinkerOpts =
2860         TheModule->getOrInsertNamedMetadata("llvm.linker.options");
2861     for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands())
2862       LinkerOpts->addOperand(cast<MDNode>(MDOptions));
2863   }
2864 
2865   DeferredMetadataInfo.clear();
2866   return Error::success();
2867 }
2868 
2869 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; }
2870 
2871 /// When we see the block for a function body, remember where it is and then
2872 /// skip it.  This lets us lazily deserialize the functions.
2873 Error BitcodeReader::rememberAndSkipFunctionBody() {
2874   // Get the function we are talking about.
2875   if (FunctionsWithBodies.empty())
2876     return error("Insufficient function protos");
2877 
2878   Function *Fn = FunctionsWithBodies.back();
2879   FunctionsWithBodies.pop_back();
2880 
2881   // Save the current stream state.
2882   uint64_t CurBit = Stream.GetCurrentBitNo();
2883   assert(
2884       (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) &&
2885       "Mismatch between VST and scanned function offsets");
2886   DeferredFunctionInfo[Fn] = CurBit;
2887 
2888   // Skip over the function block for now.
2889   if (Error Err = Stream.SkipBlock())
2890     return Err;
2891   return Error::success();
2892 }
2893 
2894 Error BitcodeReader::globalCleanup() {
2895   // Patch the initializers for globals and aliases up.
2896   if (Error Err = resolveGlobalAndIndirectSymbolInits())
2897     return Err;
2898   if (!GlobalInits.empty() || !IndirectSymbolInits.empty())
2899     return error("Malformed global initializer set");
2900 
2901   // Look for intrinsic functions which need to be upgraded at some point
2902   for (Function &F : *TheModule) {
2903     MDLoader->upgradeDebugIntrinsics(F);
2904     Function *NewFn;
2905     if (UpgradeIntrinsicFunction(&F, NewFn))
2906       UpgradedIntrinsics[&F] = NewFn;
2907     else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F))
2908       // Some types could be renamed during loading if several modules are
2909       // loaded in the same LLVMContext (LTO scenario). In this case we should
2910       // remangle intrinsics names as well.
2911       RemangledIntrinsics[&F] = Remangled.getValue();
2912   }
2913 
2914   // Look for global variables which need to be renamed.
2915   std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables;
2916   for (GlobalVariable &GV : TheModule->globals())
2917     if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV))
2918       UpgradedVariables.emplace_back(&GV, Upgraded);
2919   for (auto &Pair : UpgradedVariables) {
2920     Pair.first->eraseFromParent();
2921     TheModule->getGlobalList().push_back(Pair.second);
2922   }
2923 
2924   // Force deallocation of memory for these vectors to favor the client that
2925   // want lazy deserialization.
2926   std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits);
2927   std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap(
2928       IndirectSymbolInits);
2929   return Error::success();
2930 }
2931 
2932 /// Support for lazy parsing of function bodies. This is required if we
2933 /// either have an old bitcode file without a VST forward declaration record,
2934 /// or if we have an anonymous function being materialized, since anonymous
2935 /// functions do not have a name and are therefore not in the VST.
2936 Error BitcodeReader::rememberAndSkipFunctionBodies() {
2937   if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit))
2938     return JumpFailed;
2939 
2940   if (Stream.AtEndOfStream())
2941     return error("Could not find function in stream");
2942 
2943   if (!SeenFirstFunctionBody)
2944     return error("Trying to materialize functions before seeing function blocks");
2945 
2946   // An old bitcode file with the symbol table at the end would have
2947   // finished the parse greedily.
2948   assert(SeenValueSymbolTable);
2949 
2950   SmallVector<uint64_t, 64> Record;
2951 
2952   while (true) {
2953     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
2954     if (!MaybeEntry)
2955       return MaybeEntry.takeError();
2956     llvm::BitstreamEntry Entry = MaybeEntry.get();
2957 
2958     switch (Entry.Kind) {
2959     default:
2960       return error("Expect SubBlock");
2961     case BitstreamEntry::SubBlock:
2962       switch (Entry.ID) {
2963       default:
2964         return error("Expect function block");
2965       case bitc::FUNCTION_BLOCK_ID:
2966         if (Error Err = rememberAndSkipFunctionBody())
2967           return Err;
2968         NextUnreadBit = Stream.GetCurrentBitNo();
2969         return Error::success();
2970       }
2971     }
2972   }
2973 }
2974 
2975 bool BitcodeReaderBase::readBlockInfo() {
2976   Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo =
2977       Stream.ReadBlockInfoBlock();
2978   if (!MaybeNewBlockInfo)
2979     return true; // FIXME Handle the error.
2980   Optional<BitstreamBlockInfo> NewBlockInfo =
2981       std::move(MaybeNewBlockInfo.get());
2982   if (!NewBlockInfo)
2983     return true;
2984   BlockInfo = std::move(*NewBlockInfo);
2985   return false;
2986 }
2987 
2988 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) {
2989   // v1: [selection_kind, name]
2990   // v2: [strtab_offset, strtab_size, selection_kind]
2991   StringRef Name;
2992   std::tie(Name, Record) = readNameFromStrtab(Record);
2993 
2994   if (Record.empty())
2995     return error("Invalid record");
2996   Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]);
2997   std::string OldFormatName;
2998   if (!UseStrtab) {
2999     if (Record.size() < 2)
3000       return error("Invalid record");
3001     unsigned ComdatNameSize = Record[1];
3002     OldFormatName.reserve(ComdatNameSize);
3003     for (unsigned i = 0; i != ComdatNameSize; ++i)
3004       OldFormatName += (char)Record[2 + i];
3005     Name = OldFormatName;
3006   }
3007   Comdat *C = TheModule->getOrInsertComdat(Name);
3008   C->setSelectionKind(SK);
3009   ComdatList.push_back(C);
3010   return Error::success();
3011 }
3012 
3013 static void inferDSOLocal(GlobalValue *GV) {
3014   // infer dso_local from linkage and visibility if it is not encoded.
3015   if (GV->hasLocalLinkage() ||
3016       (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()))
3017     GV->setDSOLocal(true);
3018 }
3019 
3020 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) {
3021   // v1: [pointer type, isconst, initid, linkage, alignment, section,
3022   // visibility, threadlocal, unnamed_addr, externally_initialized,
3023   // dllstorageclass, comdat, attributes, preemption specifier,
3024   // partition strtab offset, partition strtab size] (name in VST)
3025   // v2: [strtab_offset, strtab_size, v1]
3026   StringRef Name;
3027   std::tie(Name, Record) = readNameFromStrtab(Record);
3028 
3029   if (Record.size() < 6)
3030     return error("Invalid record");
3031   Type *Ty = getTypeByID(Record[0]);
3032   if (!Ty)
3033     return error("Invalid record");
3034   bool isConstant = Record[1] & 1;
3035   bool explicitType = Record[1] & 2;
3036   unsigned AddressSpace;
3037   if (explicitType) {
3038     AddressSpace = Record[1] >> 2;
3039   } else {
3040     if (!Ty->isPointerTy())
3041       return error("Invalid type for value");
3042     AddressSpace = cast<PointerType>(Ty)->getAddressSpace();
3043     Ty = cast<PointerType>(Ty)->getElementType();
3044   }
3045 
3046   uint64_t RawLinkage = Record[3];
3047   GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
3048   unsigned Alignment;
3049   if (Error Err = parseAlignmentValue(Record[4], Alignment))
3050     return Err;
3051   std::string Section;
3052   if (Record[5]) {
3053     if (Record[5] - 1 >= SectionTable.size())
3054       return error("Invalid ID");
3055     Section = SectionTable[Record[5] - 1];
3056   }
3057   GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility;
3058   // Local linkage must have default visibility.
3059   if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage))
3060     // FIXME: Change to an error if non-default in 4.0.
3061     Visibility = getDecodedVisibility(Record[6]);
3062 
3063   GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal;
3064   if (Record.size() > 7)
3065     TLM = getDecodedThreadLocalMode(Record[7]);
3066 
3067   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3068   if (Record.size() > 8)
3069     UnnamedAddr = getDecodedUnnamedAddrType(Record[8]);
3070 
3071   bool ExternallyInitialized = false;
3072   if (Record.size() > 9)
3073     ExternallyInitialized = Record[9];
3074 
3075   GlobalVariable *NewGV =
3076       new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name,
3077                          nullptr, TLM, AddressSpace, ExternallyInitialized);
3078   NewGV->setAlignment(Alignment);
3079   if (!Section.empty())
3080     NewGV->setSection(Section);
3081   NewGV->setVisibility(Visibility);
3082   NewGV->setUnnamedAddr(UnnamedAddr);
3083 
3084   if (Record.size() > 10)
3085     NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10]));
3086   else
3087     upgradeDLLImportExportLinkage(NewGV, RawLinkage);
3088 
3089   ValueList.push_back(NewGV);
3090 
3091   // Remember which value to use for the global initializer.
3092   if (unsigned InitID = Record[2])
3093     GlobalInits.push_back(std::make_pair(NewGV, InitID - 1));
3094 
3095   if (Record.size() > 11) {
3096     if (unsigned ComdatID = Record[11]) {
3097       if (ComdatID > ComdatList.size())
3098         return error("Invalid global variable comdat ID");
3099       NewGV->setComdat(ComdatList[ComdatID - 1]);
3100     }
3101   } else if (hasImplicitComdat(RawLinkage)) {
3102     NewGV->setComdat(reinterpret_cast<Comdat *>(1));
3103   }
3104 
3105   if (Record.size() > 12) {
3106     auto AS = getAttributes(Record[12]).getFnAttributes();
3107     NewGV->setAttributes(AS);
3108   }
3109 
3110   if (Record.size() > 13) {
3111     NewGV->setDSOLocal(getDecodedDSOLocal(Record[13]));
3112   }
3113   inferDSOLocal(NewGV);
3114 
3115   // Check whether we have enough values to read a partition name.
3116   if (Record.size() > 15)
3117     NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15]));
3118 
3119   return Error::success();
3120 }
3121 
3122 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) {
3123   // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section,
3124   // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat,
3125   // prefixdata,  personalityfn, preemption specifier, addrspace] (name in VST)
3126   // v2: [strtab_offset, strtab_size, v1]
3127   StringRef Name;
3128   std::tie(Name, Record) = readNameFromStrtab(Record);
3129 
3130   if (Record.size() < 8)
3131     return error("Invalid record");
3132   Type *Ty = getTypeByID(Record[0]);
3133   if (!Ty)
3134     return error("Invalid record");
3135   if (auto *PTy = dyn_cast<PointerType>(Ty))
3136     Ty = PTy->getElementType();
3137   auto *FTy = dyn_cast<FunctionType>(Ty);
3138   if (!FTy)
3139     return error("Invalid type for value");
3140   auto CC = static_cast<CallingConv::ID>(Record[1]);
3141   if (CC & ~CallingConv::MaxID)
3142     return error("Invalid calling convention ID");
3143 
3144   unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace();
3145   if (Record.size() > 16)
3146     AddrSpace = Record[16];
3147 
3148   Function *Func = Function::Create(FTy, GlobalValue::ExternalLinkage,
3149                                     AddrSpace, Name, TheModule);
3150 
3151   Func->setCallingConv(CC);
3152   bool isProto = Record[2];
3153   uint64_t RawLinkage = Record[3];
3154   Func->setLinkage(getDecodedLinkage(RawLinkage));
3155   Func->setAttributes(getAttributes(Record[4]));
3156 
3157   // Upgrade any old-style byval without a type by propagating the argument's
3158   // pointee type. There should be no opaque pointers where the byval type is
3159   // implicit.
3160   for (auto &Arg : Func->args()) {
3161     if (Arg.hasByValAttr() &&
3162         !Arg.getAttribute(Attribute::ByVal).getValueAsType()) {
3163       Arg.removeAttr(Attribute::ByVal);
3164       Arg.addAttr(Attribute::getWithByValType(
3165           Context, Arg.getType()->getPointerElementType()));
3166     }
3167   }
3168 
3169   unsigned Alignment;
3170   if (Error Err = parseAlignmentValue(Record[5], Alignment))
3171     return Err;
3172   Func->setAlignment(Alignment);
3173   if (Record[6]) {
3174     if (Record[6] - 1 >= SectionTable.size())
3175       return error("Invalid ID");
3176     Func->setSection(SectionTable[Record[6] - 1]);
3177   }
3178   // Local linkage must have default visibility.
3179   if (!Func->hasLocalLinkage())
3180     // FIXME: Change to an error if non-default in 4.0.
3181     Func->setVisibility(getDecodedVisibility(Record[7]));
3182   if (Record.size() > 8 && Record[8]) {
3183     if (Record[8] - 1 >= GCTable.size())
3184       return error("Invalid ID");
3185     Func->setGC(GCTable[Record[8] - 1]);
3186   }
3187   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
3188   if (Record.size() > 9)
3189     UnnamedAddr = getDecodedUnnamedAddrType(Record[9]);
3190   Func->setUnnamedAddr(UnnamedAddr);
3191   if (Record.size() > 10 && Record[10] != 0)
3192     FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1));
3193 
3194   if (Record.size() > 11)
3195     Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11]));
3196   else
3197     upgradeDLLImportExportLinkage(Func, RawLinkage);
3198 
3199   if (Record.size() > 12) {
3200     if (unsigned ComdatID = Record[12]) {
3201       if (ComdatID > ComdatList.size())
3202         return error("Invalid function comdat ID");
3203       Func->setComdat(ComdatList[ComdatID - 1]);
3204     }
3205   } else if (hasImplicitComdat(RawLinkage)) {
3206     Func->setComdat(reinterpret_cast<Comdat *>(1));
3207   }
3208 
3209   if (Record.size() > 13 && Record[13] != 0)
3210     FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1));
3211 
3212   if (Record.size() > 14 && Record[14] != 0)
3213     FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1));
3214 
3215   if (Record.size() > 15) {
3216     Func->setDSOLocal(getDecodedDSOLocal(Record[15]));
3217   }
3218   inferDSOLocal(Func);
3219 
3220   // Record[16] is the address space number.
3221 
3222   // Check whether we have enough values to read a partition name.
3223   if (Record.size() > 18)
3224     Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18]));
3225 
3226   ValueList.push_back(Func);
3227 
3228   // If this is a function with a body, remember the prototype we are
3229   // creating now, so that we can match up the body with them later.
3230   if (!isProto) {
3231     Func->setIsMaterializable(true);
3232     FunctionsWithBodies.push_back(Func);
3233     DeferredFunctionInfo[Func] = 0;
3234   }
3235   return Error::success();
3236 }
3237 
3238 Error BitcodeReader::parseGlobalIndirectSymbolRecord(
3239     unsigned BitCode, ArrayRef<uint64_t> Record) {
3240   // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST)
3241   // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility,
3242   // dllstorageclass, threadlocal, unnamed_addr,
3243   // preemption specifier] (name in VST)
3244   // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage,
3245   // visibility, dllstorageclass, threadlocal, unnamed_addr,
3246   // preemption specifier] (name in VST)
3247   // v2: [strtab_offset, strtab_size, v1]
3248   StringRef Name;
3249   std::tie(Name, Record) = readNameFromStrtab(Record);
3250 
3251   bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD;
3252   if (Record.size() < (3 + (unsigned)NewRecord))
3253     return error("Invalid record");
3254   unsigned OpNum = 0;
3255   Type *Ty = getTypeByID(Record[OpNum++]);
3256   if (!Ty)
3257     return error("Invalid record");
3258 
3259   unsigned AddrSpace;
3260   if (!NewRecord) {
3261     auto *PTy = dyn_cast<PointerType>(Ty);
3262     if (!PTy)
3263       return error("Invalid type for value");
3264     Ty = PTy->getElementType();
3265     AddrSpace = PTy->getAddressSpace();
3266   } else {
3267     AddrSpace = Record[OpNum++];
3268   }
3269 
3270   auto Val = Record[OpNum++];
3271   auto Linkage = Record[OpNum++];
3272   GlobalIndirectSymbol *NewGA;
3273   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3274       BitCode == bitc::MODULE_CODE_ALIAS_OLD)
3275     NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3276                                 TheModule);
3277   else
3278     NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name,
3279                                 nullptr, TheModule);
3280   // Old bitcode files didn't have visibility field.
3281   // Local linkage must have default visibility.
3282   if (OpNum != Record.size()) {
3283     auto VisInd = OpNum++;
3284     if (!NewGA->hasLocalLinkage())
3285       // FIXME: Change to an error if non-default in 4.0.
3286       NewGA->setVisibility(getDecodedVisibility(Record[VisInd]));
3287   }
3288   if (BitCode == bitc::MODULE_CODE_ALIAS ||
3289       BitCode == bitc::MODULE_CODE_ALIAS_OLD) {
3290     if (OpNum != Record.size())
3291       NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++]));
3292     else
3293       upgradeDLLImportExportLinkage(NewGA, Linkage);
3294     if (OpNum != Record.size())
3295       NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++]));
3296     if (OpNum != Record.size())
3297       NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++]));
3298   }
3299   if (OpNum != Record.size())
3300     NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++]));
3301   inferDSOLocal(NewGA);
3302 
3303   // Check whether we have enough values to read a partition name.
3304   if (OpNum + 1 < Record.size()) {
3305     NewGA->setPartition(
3306         StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1]));
3307     OpNum += 2;
3308   }
3309 
3310   ValueList.push_back(NewGA);
3311   IndirectSymbolInits.push_back(std::make_pair(NewGA, Val));
3312   return Error::success();
3313 }
3314 
3315 Error BitcodeReader::parseModule(uint64_t ResumeBit,
3316                                  bool ShouldLazyLoadMetadata) {
3317   if (ResumeBit) {
3318     if (Error JumpFailed = Stream.JumpToBit(ResumeBit))
3319       return JumpFailed;
3320   } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
3321     return Err;
3322 
3323   SmallVector<uint64_t, 64> Record;
3324 
3325   // Read all the records for this module.
3326   while (true) {
3327     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3328     if (!MaybeEntry)
3329       return MaybeEntry.takeError();
3330     llvm::BitstreamEntry Entry = MaybeEntry.get();
3331 
3332     switch (Entry.Kind) {
3333     case BitstreamEntry::Error:
3334       return error("Malformed block");
3335     case BitstreamEntry::EndBlock:
3336       return globalCleanup();
3337 
3338     case BitstreamEntry::SubBlock:
3339       switch (Entry.ID) {
3340       default:  // Skip unknown content.
3341         if (Error Err = Stream.SkipBlock())
3342           return Err;
3343         break;
3344       case bitc::BLOCKINFO_BLOCK_ID:
3345         if (readBlockInfo())
3346           return error("Malformed block");
3347         break;
3348       case bitc::PARAMATTR_BLOCK_ID:
3349         if (Error Err = parseAttributeBlock())
3350           return Err;
3351         break;
3352       case bitc::PARAMATTR_GROUP_BLOCK_ID:
3353         if (Error Err = parseAttributeGroupBlock())
3354           return Err;
3355         break;
3356       case bitc::TYPE_BLOCK_ID_NEW:
3357         if (Error Err = parseTypeTable())
3358           return Err;
3359         break;
3360       case bitc::VALUE_SYMTAB_BLOCK_ID:
3361         if (!SeenValueSymbolTable) {
3362           // Either this is an old form VST without function index and an
3363           // associated VST forward declaration record (which would have caused
3364           // the VST to be jumped to and parsed before it was encountered
3365           // normally in the stream), or there were no function blocks to
3366           // trigger an earlier parsing of the VST.
3367           assert(VSTOffset == 0 || FunctionsWithBodies.empty());
3368           if (Error Err = parseValueSymbolTable())
3369             return Err;
3370           SeenValueSymbolTable = true;
3371         } else {
3372           // We must have had a VST forward declaration record, which caused
3373           // the parser to jump to and parse the VST earlier.
3374           assert(VSTOffset > 0);
3375           if (Error Err = Stream.SkipBlock())
3376             return Err;
3377         }
3378         break;
3379       case bitc::CONSTANTS_BLOCK_ID:
3380         if (Error Err = parseConstants())
3381           return Err;
3382         if (Error Err = resolveGlobalAndIndirectSymbolInits())
3383           return Err;
3384         break;
3385       case bitc::METADATA_BLOCK_ID:
3386         if (ShouldLazyLoadMetadata) {
3387           if (Error Err = rememberAndSkipMetadata())
3388             return Err;
3389           break;
3390         }
3391         assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata");
3392         if (Error Err = MDLoader->parseModuleMetadata())
3393           return Err;
3394         break;
3395       case bitc::METADATA_KIND_BLOCK_ID:
3396         if (Error Err = MDLoader->parseMetadataKinds())
3397           return Err;
3398         break;
3399       case bitc::FUNCTION_BLOCK_ID:
3400         // If this is the first function body we've seen, reverse the
3401         // FunctionsWithBodies list.
3402         if (!SeenFirstFunctionBody) {
3403           std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end());
3404           if (Error Err = globalCleanup())
3405             return Err;
3406           SeenFirstFunctionBody = true;
3407         }
3408 
3409         if (VSTOffset > 0) {
3410           // If we have a VST forward declaration record, make sure we
3411           // parse the VST now if we haven't already. It is needed to
3412           // set up the DeferredFunctionInfo vector for lazy reading.
3413           if (!SeenValueSymbolTable) {
3414             if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset))
3415               return Err;
3416             SeenValueSymbolTable = true;
3417             // Fall through so that we record the NextUnreadBit below.
3418             // This is necessary in case we have an anonymous function that
3419             // is later materialized. Since it will not have a VST entry we
3420             // need to fall back to the lazy parse to find its offset.
3421           } else {
3422             // If we have a VST forward declaration record, but have already
3423             // parsed the VST (just above, when the first function body was
3424             // encountered here), then we are resuming the parse after
3425             // materializing functions. The ResumeBit points to the
3426             // start of the last function block recorded in the
3427             // DeferredFunctionInfo map. Skip it.
3428             if (Error Err = Stream.SkipBlock())
3429               return Err;
3430             continue;
3431           }
3432         }
3433 
3434         // Support older bitcode files that did not have the function
3435         // index in the VST, nor a VST forward declaration record, as
3436         // well as anonymous functions that do not have VST entries.
3437         // Build the DeferredFunctionInfo vector on the fly.
3438         if (Error Err = rememberAndSkipFunctionBody())
3439           return Err;
3440 
3441         // Suspend parsing when we reach the function bodies. Subsequent
3442         // materialization calls will resume it when necessary. If the bitcode
3443         // file is old, the symbol table will be at the end instead and will not
3444         // have been seen yet. In this case, just finish the parse now.
3445         if (SeenValueSymbolTable) {
3446           NextUnreadBit = Stream.GetCurrentBitNo();
3447           // After the VST has been parsed, we need to make sure intrinsic name
3448           // are auto-upgraded.
3449           return globalCleanup();
3450         }
3451         break;
3452       case bitc::USELIST_BLOCK_ID:
3453         if (Error Err = parseUseLists())
3454           return Err;
3455         break;
3456       case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID:
3457         if (Error Err = parseOperandBundleTags())
3458           return Err;
3459         break;
3460       case bitc::SYNC_SCOPE_NAMES_BLOCK_ID:
3461         if (Error Err = parseSyncScopeNames())
3462           return Err;
3463         break;
3464       }
3465       continue;
3466 
3467     case BitstreamEntry::Record:
3468       // The interesting case.
3469       break;
3470     }
3471 
3472     // Read a record.
3473     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3474     if (!MaybeBitCode)
3475       return MaybeBitCode.takeError();
3476     switch (unsigned BitCode = MaybeBitCode.get()) {
3477     default: break;  // Default behavior, ignore unknown content.
3478     case bitc::MODULE_CODE_VERSION: {
3479       Expected<unsigned> VersionOrErr = parseVersionRecord(Record);
3480       if (!VersionOrErr)
3481         return VersionOrErr.takeError();
3482       UseRelativeIDs = *VersionOrErr >= 1;
3483       break;
3484     }
3485     case bitc::MODULE_CODE_TRIPLE: {  // TRIPLE: [strchr x N]
3486       std::string S;
3487       if (convertToString(Record, 0, S))
3488         return error("Invalid record");
3489       TheModule->setTargetTriple(S);
3490       break;
3491     }
3492     case bitc::MODULE_CODE_DATALAYOUT: {  // DATALAYOUT: [strchr x N]
3493       std::string S;
3494       if (convertToString(Record, 0, S))
3495         return error("Invalid record");
3496       TheModule->setDataLayout(S);
3497       break;
3498     }
3499     case bitc::MODULE_CODE_ASM: {  // ASM: [strchr x N]
3500       std::string S;
3501       if (convertToString(Record, 0, S))
3502         return error("Invalid record");
3503       TheModule->setModuleInlineAsm(S);
3504       break;
3505     }
3506     case bitc::MODULE_CODE_DEPLIB: {  // DEPLIB: [strchr x N]
3507       // FIXME: Remove in 4.0.
3508       std::string S;
3509       if (convertToString(Record, 0, S))
3510         return error("Invalid record");
3511       // Ignore value.
3512       break;
3513     }
3514     case bitc::MODULE_CODE_SECTIONNAME: {  // SECTIONNAME: [strchr x N]
3515       std::string S;
3516       if (convertToString(Record, 0, S))
3517         return error("Invalid record");
3518       SectionTable.push_back(S);
3519       break;
3520     }
3521     case bitc::MODULE_CODE_GCNAME: {  // SECTIONNAME: [strchr x N]
3522       std::string S;
3523       if (convertToString(Record, 0, S))
3524         return error("Invalid record");
3525       GCTable.push_back(S);
3526       break;
3527     }
3528     case bitc::MODULE_CODE_COMDAT:
3529       if (Error Err = parseComdatRecord(Record))
3530         return Err;
3531       break;
3532     case bitc::MODULE_CODE_GLOBALVAR:
3533       if (Error Err = parseGlobalVarRecord(Record))
3534         return Err;
3535       break;
3536     case bitc::MODULE_CODE_FUNCTION:
3537       if (Error Err = parseFunctionRecord(Record))
3538         return Err;
3539       break;
3540     case bitc::MODULE_CODE_IFUNC:
3541     case bitc::MODULE_CODE_ALIAS:
3542     case bitc::MODULE_CODE_ALIAS_OLD:
3543       if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record))
3544         return Err;
3545       break;
3546     /// MODULE_CODE_VSTOFFSET: [offset]
3547     case bitc::MODULE_CODE_VSTOFFSET:
3548       if (Record.size() < 1)
3549         return error("Invalid record");
3550       // Note that we subtract 1 here because the offset is relative to one word
3551       // before the start of the identification or module block, which was
3552       // historically always the start of the regular bitcode header.
3553       VSTOffset = Record[0] - 1;
3554       break;
3555     /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
3556     case bitc::MODULE_CODE_SOURCE_FILENAME:
3557       SmallString<128> ValueName;
3558       if (convertToString(Record, 0, ValueName))
3559         return error("Invalid record");
3560       TheModule->setSourceFileName(ValueName);
3561       break;
3562     }
3563     Record.clear();
3564   }
3565 }
3566 
3567 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata,
3568                                       bool IsImporting) {
3569   TheModule = M;
3570   MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting,
3571                             [&](unsigned ID) { return getTypeByID(ID); });
3572   return parseModule(0, ShouldLazyLoadMetadata);
3573 }
3574 
3575 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) {
3576   if (!isa<PointerType>(PtrType))
3577     return error("Load/Store operand is not a pointer type");
3578   Type *ElemType = cast<PointerType>(PtrType)->getElementType();
3579 
3580   if (ValType && ValType != ElemType)
3581     return error("Explicit load/store type does not match pointee "
3582                  "type of pointer operand");
3583   if (!PointerType::isLoadableOrStorableType(ElemType))
3584     return error("Cannot load/store from pointer");
3585   return Error::success();
3586 }
3587 
3588 void BitcodeReader::propagateByValTypes(CallBase *CB) {
3589   for (unsigned i = 0; i < CB->getNumArgOperands(); ++i) {
3590     if (CB->paramHasAttr(i, Attribute::ByVal) &&
3591         !CB->getAttribute(i, Attribute::ByVal).getValueAsType()) {
3592       CB->removeParamAttr(i, Attribute::ByVal);
3593       CB->addParamAttr(
3594           i, Attribute::getWithByValType(
3595                  Context,
3596                  CB->getArgOperand(i)->getType()->getPointerElementType()));
3597     }
3598   }
3599 }
3600 
3601 /// Lazily parse the specified function body block.
3602 Error BitcodeReader::parseFunctionBody(Function *F) {
3603   if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID))
3604     return Err;
3605 
3606   // Unexpected unresolved metadata when parsing function.
3607   if (MDLoader->hasFwdRefs())
3608     return error("Invalid function metadata: incoming forward references");
3609 
3610   InstructionList.clear();
3611   unsigned ModuleValueListSize = ValueList.size();
3612   unsigned ModuleMDLoaderSize = MDLoader->size();
3613 
3614   // Add all the function arguments to the value table.
3615   for (Argument &I : F->args())
3616     ValueList.push_back(&I);
3617 
3618   unsigned NextValueNo = ValueList.size();
3619   BasicBlock *CurBB = nullptr;
3620   unsigned CurBBNo = 0;
3621 
3622   DebugLoc LastLoc;
3623   auto getLastInstruction = [&]() -> Instruction * {
3624     if (CurBB && !CurBB->empty())
3625       return &CurBB->back();
3626     else if (CurBBNo && FunctionBBs[CurBBNo - 1] &&
3627              !FunctionBBs[CurBBNo - 1]->empty())
3628       return &FunctionBBs[CurBBNo - 1]->back();
3629     return nullptr;
3630   };
3631 
3632   std::vector<OperandBundleDef> OperandBundles;
3633 
3634   // Read all the records.
3635   SmallVector<uint64_t, 64> Record;
3636 
3637   while (true) {
3638     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
3639     if (!MaybeEntry)
3640       return MaybeEntry.takeError();
3641     llvm::BitstreamEntry Entry = MaybeEntry.get();
3642 
3643     switch (Entry.Kind) {
3644     case BitstreamEntry::Error:
3645       return error("Malformed block");
3646     case BitstreamEntry::EndBlock:
3647       goto OutOfRecordLoop;
3648 
3649     case BitstreamEntry::SubBlock:
3650       switch (Entry.ID) {
3651       default:  // Skip unknown content.
3652         if (Error Err = Stream.SkipBlock())
3653           return Err;
3654         break;
3655       case bitc::CONSTANTS_BLOCK_ID:
3656         if (Error Err = parseConstants())
3657           return Err;
3658         NextValueNo = ValueList.size();
3659         break;
3660       case bitc::VALUE_SYMTAB_BLOCK_ID:
3661         if (Error Err = parseValueSymbolTable())
3662           return Err;
3663         break;
3664       case bitc::METADATA_ATTACHMENT_ID:
3665         if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList))
3666           return Err;
3667         break;
3668       case bitc::METADATA_BLOCK_ID:
3669         assert(DeferredMetadataInfo.empty() &&
3670                "Must read all module-level metadata before function-level");
3671         if (Error Err = MDLoader->parseFunctionMetadata())
3672           return Err;
3673         break;
3674       case bitc::USELIST_BLOCK_ID:
3675         if (Error Err = parseUseLists())
3676           return Err;
3677         break;
3678       }
3679       continue;
3680 
3681     case BitstreamEntry::Record:
3682       // The interesting case.
3683       break;
3684     }
3685 
3686     // Read a record.
3687     Record.clear();
3688     Instruction *I = nullptr;
3689     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
3690     if (!MaybeBitCode)
3691       return MaybeBitCode.takeError();
3692     switch (unsigned BitCode = MaybeBitCode.get()) {
3693     default: // Default behavior: reject
3694       return error("Invalid value");
3695     case bitc::FUNC_CODE_DECLAREBLOCKS: {   // DECLAREBLOCKS: [nblocks]
3696       if (Record.size() < 1 || Record[0] == 0)
3697         return error("Invalid record");
3698       // Create all the basic blocks for the function.
3699       FunctionBBs.resize(Record[0]);
3700 
3701       // See if anything took the address of blocks in this function.
3702       auto BBFRI = BasicBlockFwdRefs.find(F);
3703       if (BBFRI == BasicBlockFwdRefs.end()) {
3704         for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i)
3705           FunctionBBs[i] = BasicBlock::Create(Context, "", F);
3706       } else {
3707         auto &BBRefs = BBFRI->second;
3708         // Check for invalid basic block references.
3709         if (BBRefs.size() > FunctionBBs.size())
3710           return error("Invalid ID");
3711         assert(!BBRefs.empty() && "Unexpected empty array");
3712         assert(!BBRefs.front() && "Invalid reference to entry block");
3713         for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E;
3714              ++I)
3715           if (I < RE && BBRefs[I]) {
3716             BBRefs[I]->insertInto(F);
3717             FunctionBBs[I] = BBRefs[I];
3718           } else {
3719             FunctionBBs[I] = BasicBlock::Create(Context, "", F);
3720           }
3721 
3722         // Erase from the table.
3723         BasicBlockFwdRefs.erase(BBFRI);
3724       }
3725 
3726       CurBB = FunctionBBs[0];
3727       continue;
3728     }
3729 
3730     case bitc::FUNC_CODE_DEBUG_LOC_AGAIN:  // DEBUG_LOC_AGAIN
3731       // This record indicates that the last instruction is at the same
3732       // location as the previous instruction with a location.
3733       I = getLastInstruction();
3734 
3735       if (!I)
3736         return error("Invalid record");
3737       I->setDebugLoc(LastLoc);
3738       I = nullptr;
3739       continue;
3740 
3741     case bitc::FUNC_CODE_DEBUG_LOC: {      // DEBUG_LOC: [line, col, scope, ia]
3742       I = getLastInstruction();
3743       if (!I || Record.size() < 4)
3744         return error("Invalid record");
3745 
3746       unsigned Line = Record[0], Col = Record[1];
3747       unsigned ScopeID = Record[2], IAID = Record[3];
3748       bool isImplicitCode = Record.size() == 5 && Record[4];
3749 
3750       MDNode *Scope = nullptr, *IA = nullptr;
3751       if (ScopeID) {
3752         Scope = dyn_cast_or_null<MDNode>(
3753             MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1));
3754         if (!Scope)
3755           return error("Invalid record");
3756       }
3757       if (IAID) {
3758         IA = dyn_cast_or_null<MDNode>(
3759             MDLoader->getMetadataFwdRefOrLoad(IAID - 1));
3760         if (!IA)
3761           return error("Invalid record");
3762       }
3763       LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode);
3764       I->setDebugLoc(LastLoc);
3765       I = nullptr;
3766       continue;
3767     }
3768     case bitc::FUNC_CODE_INST_UNOP: {    // UNOP: [opval, ty, opcode]
3769       unsigned OpNum = 0;
3770       Value *LHS;
3771       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3772           OpNum+1 > Record.size())
3773         return error("Invalid record");
3774 
3775       int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType());
3776       if (Opc == -1)
3777         return error("Invalid record");
3778       I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
3779       InstructionList.push_back(I);
3780       if (OpNum < Record.size()) {
3781         if (isa<FPMathOperator>(I)) {
3782           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3783           if (FMF.any())
3784             I->setFastMathFlags(FMF);
3785         }
3786       }
3787       break;
3788     }
3789     case bitc::FUNC_CODE_INST_BINOP: {    // BINOP: [opval, ty, opval, opcode]
3790       unsigned OpNum = 0;
3791       Value *LHS, *RHS;
3792       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
3793           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) ||
3794           OpNum+1 > Record.size())
3795         return error("Invalid record");
3796 
3797       int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType());
3798       if (Opc == -1)
3799         return error("Invalid record");
3800       I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
3801       InstructionList.push_back(I);
3802       if (OpNum < Record.size()) {
3803         if (Opc == Instruction::Add ||
3804             Opc == Instruction::Sub ||
3805             Opc == Instruction::Mul ||
3806             Opc == Instruction::Shl) {
3807           if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP))
3808             cast<BinaryOperator>(I)->setHasNoSignedWrap(true);
3809           if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP))
3810             cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true);
3811         } else if (Opc == Instruction::SDiv ||
3812                    Opc == Instruction::UDiv ||
3813                    Opc == Instruction::LShr ||
3814                    Opc == Instruction::AShr) {
3815           if (Record[OpNum] & (1 << bitc::PEO_EXACT))
3816             cast<BinaryOperator>(I)->setIsExact(true);
3817         } else if (isa<FPMathOperator>(I)) {
3818           FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
3819           if (FMF.any())
3820             I->setFastMathFlags(FMF);
3821         }
3822 
3823       }
3824       break;
3825     }
3826     case bitc::FUNC_CODE_INST_CAST: {    // CAST: [opval, opty, destty, castopc]
3827       unsigned OpNum = 0;
3828       Value *Op;
3829       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
3830           OpNum+2 != Record.size())
3831         return error("Invalid record");
3832 
3833       Type *ResTy = getTypeByID(Record[OpNum]);
3834       int Opc = getDecodedCastOpcode(Record[OpNum + 1]);
3835       if (Opc == -1 || !ResTy)
3836         return error("Invalid record");
3837       Instruction *Temp = nullptr;
3838       if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) {
3839         if (Temp) {
3840           InstructionList.push_back(Temp);
3841           CurBB->getInstList().push_back(Temp);
3842         }
3843       } else {
3844         auto CastOp = (Instruction::CastOps)Opc;
3845         if (!CastInst::castIsValid(CastOp, Op, ResTy))
3846           return error("Invalid cast");
3847         I = CastInst::Create(CastOp, Op, ResTy);
3848       }
3849       InstructionList.push_back(I);
3850       break;
3851     }
3852     case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD:
3853     case bitc::FUNC_CODE_INST_GEP_OLD:
3854     case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands]
3855       unsigned OpNum = 0;
3856 
3857       Type *Ty;
3858       bool InBounds;
3859 
3860       if (BitCode == bitc::FUNC_CODE_INST_GEP) {
3861         InBounds = Record[OpNum++];
3862         Ty = getTypeByID(Record[OpNum++]);
3863       } else {
3864         InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD;
3865         Ty = nullptr;
3866       }
3867 
3868       Value *BasePtr;
3869       if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr))
3870         return error("Invalid record");
3871 
3872       if (!Ty)
3873         Ty = cast<PointerType>(BasePtr->getType()->getScalarType())
3874                  ->getElementType();
3875       else if (Ty !=
3876                cast<PointerType>(BasePtr->getType()->getScalarType())
3877                    ->getElementType())
3878         return error(
3879             "Explicit gep type does not match pointee type of pointer operand");
3880 
3881       SmallVector<Value*, 16> GEPIdx;
3882       while (OpNum != Record.size()) {
3883         Value *Op;
3884         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
3885           return error("Invalid record");
3886         GEPIdx.push_back(Op);
3887       }
3888 
3889       I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx);
3890 
3891       InstructionList.push_back(I);
3892       if (InBounds)
3893         cast<GetElementPtrInst>(I)->setIsInBounds(true);
3894       break;
3895     }
3896 
3897     case bitc::FUNC_CODE_INST_EXTRACTVAL: {
3898                                        // EXTRACTVAL: [opty, opval, n x indices]
3899       unsigned OpNum = 0;
3900       Value *Agg;
3901       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3902         return error("Invalid record");
3903 
3904       unsigned RecSize = Record.size();
3905       if (OpNum == RecSize)
3906         return error("EXTRACTVAL: Invalid instruction with 0 indices");
3907 
3908       SmallVector<unsigned, 4> EXTRACTVALIdx;
3909       Type *CurTy = Agg->getType();
3910       for (; OpNum != RecSize; ++OpNum) {
3911         bool IsArray = CurTy->isArrayTy();
3912         bool IsStruct = CurTy->isStructTy();
3913         uint64_t Index = Record[OpNum];
3914 
3915         if (!IsStruct && !IsArray)
3916           return error("EXTRACTVAL: Invalid type");
3917         if ((unsigned)Index != Index)
3918           return error("Invalid value");
3919         if (IsStruct && Index >= CurTy->getStructNumElements())
3920           return error("EXTRACTVAL: Invalid struct index");
3921         if (IsArray && Index >= CurTy->getArrayNumElements())
3922           return error("EXTRACTVAL: Invalid array index");
3923         EXTRACTVALIdx.push_back((unsigned)Index);
3924 
3925         if (IsStruct)
3926           CurTy = CurTy->getStructElementType(Index);
3927         else
3928           CurTy = CurTy->getArrayElementType();
3929       }
3930 
3931       I = ExtractValueInst::Create(Agg, EXTRACTVALIdx);
3932       InstructionList.push_back(I);
3933       break;
3934     }
3935 
3936     case bitc::FUNC_CODE_INST_INSERTVAL: {
3937                            // INSERTVAL: [opty, opval, opty, opval, n x indices]
3938       unsigned OpNum = 0;
3939       Value *Agg;
3940       if (getValueTypePair(Record, OpNum, NextValueNo, Agg))
3941         return error("Invalid record");
3942       Value *Val;
3943       if (getValueTypePair(Record, OpNum, NextValueNo, Val))
3944         return error("Invalid record");
3945 
3946       unsigned RecSize = Record.size();
3947       if (OpNum == RecSize)
3948         return error("INSERTVAL: Invalid instruction with 0 indices");
3949 
3950       SmallVector<unsigned, 4> INSERTVALIdx;
3951       Type *CurTy = Agg->getType();
3952       for (; OpNum != RecSize; ++OpNum) {
3953         bool IsArray = CurTy->isArrayTy();
3954         bool IsStruct = CurTy->isStructTy();
3955         uint64_t Index = Record[OpNum];
3956 
3957         if (!IsStruct && !IsArray)
3958           return error("INSERTVAL: Invalid type");
3959         if ((unsigned)Index != Index)
3960           return error("Invalid value");
3961         if (IsStruct && Index >= CurTy->getStructNumElements())
3962           return error("INSERTVAL: Invalid struct index");
3963         if (IsArray && Index >= CurTy->getArrayNumElements())
3964           return error("INSERTVAL: Invalid array index");
3965 
3966         INSERTVALIdx.push_back((unsigned)Index);
3967         if (IsStruct)
3968           CurTy = CurTy->getStructElementType(Index);
3969         else
3970           CurTy = CurTy->getArrayElementType();
3971       }
3972 
3973       if (CurTy != Val->getType())
3974         return error("Inserted value type doesn't match aggregate type");
3975 
3976       I = InsertValueInst::Create(Agg, Val, INSERTVALIdx);
3977       InstructionList.push_back(I);
3978       break;
3979     }
3980 
3981     case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval]
3982       // obsolete form of select
3983       // handles select i1 ... in old bitcode
3984       unsigned OpNum = 0;
3985       Value *TrueVal, *FalseVal, *Cond;
3986       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
3987           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
3988           popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond))
3989         return error("Invalid record");
3990 
3991       I = SelectInst::Create(Cond, TrueVal, FalseVal);
3992       InstructionList.push_back(I);
3993       break;
3994     }
3995 
3996     case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred]
3997       // new form of select
3998       // handles select i1 or select [N x i1]
3999       unsigned OpNum = 0;
4000       Value *TrueVal, *FalseVal, *Cond;
4001       if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal) ||
4002           popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) ||
4003           getValueTypePair(Record, OpNum, NextValueNo, Cond))
4004         return error("Invalid record");
4005 
4006       // select condition can be either i1 or [N x i1]
4007       if (VectorType* vector_type =
4008           dyn_cast<VectorType>(Cond->getType())) {
4009         // expect <n x i1>
4010         if (vector_type->getElementType() != Type::getInt1Ty(Context))
4011           return error("Invalid type for value");
4012       } else {
4013         // expect i1
4014         if (Cond->getType() != Type::getInt1Ty(Context))
4015           return error("Invalid type for value");
4016       }
4017 
4018       I = SelectInst::Create(Cond, TrueVal, FalseVal);
4019       InstructionList.push_back(I);
4020       if (OpNum < Record.size() && isa<FPMathOperator>(I)) {
4021         FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]);
4022         if (FMF.any())
4023           I->setFastMathFlags(FMF);
4024       }
4025       break;
4026     }
4027 
4028     case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval]
4029       unsigned OpNum = 0;
4030       Value *Vec, *Idx;
4031       if (getValueTypePair(Record, OpNum, NextValueNo, Vec) ||
4032           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4033         return error("Invalid record");
4034       if (!Vec->getType()->isVectorTy())
4035         return error("Invalid type for value");
4036       I = ExtractElementInst::Create(Vec, Idx);
4037       InstructionList.push_back(I);
4038       break;
4039     }
4040 
4041     case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval]
4042       unsigned OpNum = 0;
4043       Value *Vec, *Elt, *Idx;
4044       if (getValueTypePair(Record, OpNum, NextValueNo, Vec))
4045         return error("Invalid record");
4046       if (!Vec->getType()->isVectorTy())
4047         return error("Invalid type for value");
4048       if (popValue(Record, OpNum, NextValueNo,
4049                    cast<VectorType>(Vec->getType())->getElementType(), Elt) ||
4050           getValueTypePair(Record, OpNum, NextValueNo, Idx))
4051         return error("Invalid record");
4052       I = InsertElementInst::Create(Vec, Elt, Idx);
4053       InstructionList.push_back(I);
4054       break;
4055     }
4056 
4057     case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval]
4058       unsigned OpNum = 0;
4059       Value *Vec1, *Vec2, *Mask;
4060       if (getValueTypePair(Record, OpNum, NextValueNo, Vec1) ||
4061           popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2))
4062         return error("Invalid record");
4063 
4064       if (getValueTypePair(Record, OpNum, NextValueNo, Mask))
4065         return error("Invalid record");
4066       if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy())
4067         return error("Invalid type for value");
4068       I = new ShuffleVectorInst(Vec1, Vec2, Mask);
4069       InstructionList.push_back(I);
4070       break;
4071     }
4072 
4073     case bitc::FUNC_CODE_INST_CMP:   // CMP: [opty, opval, opval, pred]
4074       // Old form of ICmp/FCmp returning bool
4075       // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were
4076       // both legal on vectors but had different behaviour.
4077     case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred]
4078       // FCmp/ICmp returning bool or vector of bool
4079 
4080       unsigned OpNum = 0;
4081       Value *LHS, *RHS;
4082       if (getValueTypePair(Record, OpNum, NextValueNo, LHS) ||
4083           popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS))
4084         return error("Invalid record");
4085 
4086       unsigned PredVal = Record[OpNum];
4087       bool IsFP = LHS->getType()->isFPOrFPVectorTy();
4088       FastMathFlags FMF;
4089       if (IsFP && Record.size() > OpNum+1)
4090         FMF = getDecodedFastMathFlags(Record[++OpNum]);
4091 
4092       if (OpNum+1 != Record.size())
4093         return error("Invalid record");
4094 
4095       if (LHS->getType()->isFPOrFPVectorTy())
4096         I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS);
4097       else
4098         I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS);
4099 
4100       if (FMF.any())
4101         I->setFastMathFlags(FMF);
4102       InstructionList.push_back(I);
4103       break;
4104     }
4105 
4106     case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>]
4107       {
4108         unsigned Size = Record.size();
4109         if (Size == 0) {
4110           I = ReturnInst::Create(Context);
4111           InstructionList.push_back(I);
4112           break;
4113         }
4114 
4115         unsigned OpNum = 0;
4116         Value *Op = nullptr;
4117         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4118           return error("Invalid record");
4119         if (OpNum != Record.size())
4120           return error("Invalid record");
4121 
4122         I = ReturnInst::Create(Context, Op);
4123         InstructionList.push_back(I);
4124         break;
4125       }
4126     case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#]
4127       if (Record.size() != 1 && Record.size() != 3)
4128         return error("Invalid record");
4129       BasicBlock *TrueDest = getBasicBlock(Record[0]);
4130       if (!TrueDest)
4131         return error("Invalid record");
4132 
4133       if (Record.size() == 1) {
4134         I = BranchInst::Create(TrueDest);
4135         InstructionList.push_back(I);
4136       }
4137       else {
4138         BasicBlock *FalseDest = getBasicBlock(Record[1]);
4139         Value *Cond = getValue(Record, 2, NextValueNo,
4140                                Type::getInt1Ty(Context));
4141         if (!FalseDest || !Cond)
4142           return error("Invalid record");
4143         I = BranchInst::Create(TrueDest, FalseDest, Cond);
4144         InstructionList.push_back(I);
4145       }
4146       break;
4147     }
4148     case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#]
4149       if (Record.size() != 1 && Record.size() != 2)
4150         return error("Invalid record");
4151       unsigned Idx = 0;
4152       Value *CleanupPad =
4153           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4154       if (!CleanupPad)
4155         return error("Invalid record");
4156       BasicBlock *UnwindDest = nullptr;
4157       if (Record.size() == 2) {
4158         UnwindDest = getBasicBlock(Record[Idx++]);
4159         if (!UnwindDest)
4160           return error("Invalid record");
4161       }
4162 
4163       I = CleanupReturnInst::Create(CleanupPad, UnwindDest);
4164       InstructionList.push_back(I);
4165       break;
4166     }
4167     case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#]
4168       if (Record.size() != 2)
4169         return error("Invalid record");
4170       unsigned Idx = 0;
4171       Value *CatchPad =
4172           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4173       if (!CatchPad)
4174         return error("Invalid record");
4175       BasicBlock *BB = getBasicBlock(Record[Idx++]);
4176       if (!BB)
4177         return error("Invalid record");
4178 
4179       I = CatchReturnInst::Create(CatchPad, BB);
4180       InstructionList.push_back(I);
4181       break;
4182     }
4183     case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?]
4184       // We must have, at minimum, the outer scope and the number of arguments.
4185       if (Record.size() < 2)
4186         return error("Invalid record");
4187 
4188       unsigned Idx = 0;
4189 
4190       Value *ParentPad =
4191           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4192 
4193       unsigned NumHandlers = Record[Idx++];
4194 
4195       SmallVector<BasicBlock *, 2> Handlers;
4196       for (unsigned Op = 0; Op != NumHandlers; ++Op) {
4197         BasicBlock *BB = getBasicBlock(Record[Idx++]);
4198         if (!BB)
4199           return error("Invalid record");
4200         Handlers.push_back(BB);
4201       }
4202 
4203       BasicBlock *UnwindDest = nullptr;
4204       if (Idx + 1 == Record.size()) {
4205         UnwindDest = getBasicBlock(Record[Idx++]);
4206         if (!UnwindDest)
4207           return error("Invalid record");
4208       }
4209 
4210       if (Record.size() != Idx)
4211         return error("Invalid record");
4212 
4213       auto *CatchSwitch =
4214           CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers);
4215       for (BasicBlock *Handler : Handlers)
4216         CatchSwitch->addHandler(Handler);
4217       I = CatchSwitch;
4218       InstructionList.push_back(I);
4219       break;
4220     }
4221     case bitc::FUNC_CODE_INST_CATCHPAD:
4222     case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*]
4223       // We must have, at minimum, the outer scope and the number of arguments.
4224       if (Record.size() < 2)
4225         return error("Invalid record");
4226 
4227       unsigned Idx = 0;
4228 
4229       Value *ParentPad =
4230           getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context));
4231 
4232       unsigned NumArgOperands = Record[Idx++];
4233 
4234       SmallVector<Value *, 2> Args;
4235       for (unsigned Op = 0; Op != NumArgOperands; ++Op) {
4236         Value *Val;
4237         if (getValueTypePair(Record, Idx, NextValueNo, Val))
4238           return error("Invalid record");
4239         Args.push_back(Val);
4240       }
4241 
4242       if (Record.size() != Idx)
4243         return error("Invalid record");
4244 
4245       if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD)
4246         I = CleanupPadInst::Create(ParentPad, Args);
4247       else
4248         I = CatchPadInst::Create(ParentPad, Args);
4249       InstructionList.push_back(I);
4250       break;
4251     }
4252     case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...]
4253       // Check magic
4254       if ((Record[0] >> 16) == SWITCH_INST_MAGIC) {
4255         // "New" SwitchInst format with case ranges. The changes to write this
4256         // format were reverted but we still recognize bitcode that uses it.
4257         // Hopefully someday we will have support for case ranges and can use
4258         // this format again.
4259 
4260         Type *OpTy = getTypeByID(Record[1]);
4261         unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth();
4262 
4263         Value *Cond = getValue(Record, 2, NextValueNo, OpTy);
4264         BasicBlock *Default = getBasicBlock(Record[3]);
4265         if (!OpTy || !Cond || !Default)
4266           return error("Invalid record");
4267 
4268         unsigned NumCases = Record[4];
4269 
4270         SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4271         InstructionList.push_back(SI);
4272 
4273         unsigned CurIdx = 5;
4274         for (unsigned i = 0; i != NumCases; ++i) {
4275           SmallVector<ConstantInt*, 1> CaseVals;
4276           unsigned NumItems = Record[CurIdx++];
4277           for (unsigned ci = 0; ci != NumItems; ++ci) {
4278             bool isSingleNumber = Record[CurIdx++];
4279 
4280             APInt Low;
4281             unsigned ActiveWords = 1;
4282             if (ValueBitWidth > 64)
4283               ActiveWords = Record[CurIdx++];
4284             Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords),
4285                                 ValueBitWidth);
4286             CurIdx += ActiveWords;
4287 
4288             if (!isSingleNumber) {
4289               ActiveWords = 1;
4290               if (ValueBitWidth > 64)
4291                 ActiveWords = Record[CurIdx++];
4292               APInt High = readWideAPInt(
4293                   makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth);
4294               CurIdx += ActiveWords;
4295 
4296               // FIXME: It is not clear whether values in the range should be
4297               // compared as signed or unsigned values. The partially
4298               // implemented changes that used this format in the past used
4299               // unsigned comparisons.
4300               for ( ; Low.ule(High); ++Low)
4301                 CaseVals.push_back(ConstantInt::get(Context, Low));
4302             } else
4303               CaseVals.push_back(ConstantInt::get(Context, Low));
4304           }
4305           BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]);
4306           for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(),
4307                  cve = CaseVals.end(); cvi != cve; ++cvi)
4308             SI->addCase(*cvi, DestBB);
4309         }
4310         I = SI;
4311         break;
4312       }
4313 
4314       // Old SwitchInst format without case ranges.
4315 
4316       if (Record.size() < 3 || (Record.size() & 1) == 0)
4317         return error("Invalid record");
4318       Type *OpTy = getTypeByID(Record[0]);
4319       Value *Cond = getValue(Record, 1, NextValueNo, OpTy);
4320       BasicBlock *Default = getBasicBlock(Record[2]);
4321       if (!OpTy || !Cond || !Default)
4322         return error("Invalid record");
4323       unsigned NumCases = (Record.size()-3)/2;
4324       SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases);
4325       InstructionList.push_back(SI);
4326       for (unsigned i = 0, e = NumCases; i != e; ++i) {
4327         ConstantInt *CaseVal =
4328           dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy));
4329         BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]);
4330         if (!CaseVal || !DestBB) {
4331           delete SI;
4332           return error("Invalid record");
4333         }
4334         SI->addCase(CaseVal, DestBB);
4335       }
4336       I = SI;
4337       break;
4338     }
4339     case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...]
4340       if (Record.size() < 2)
4341         return error("Invalid record");
4342       Type *OpTy = getTypeByID(Record[0]);
4343       Value *Address = getValue(Record, 1, NextValueNo, OpTy);
4344       if (!OpTy || !Address)
4345         return error("Invalid record");
4346       unsigned NumDests = Record.size()-2;
4347       IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests);
4348       InstructionList.push_back(IBI);
4349       for (unsigned i = 0, e = NumDests; i != e; ++i) {
4350         if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) {
4351           IBI->addDestination(DestBB);
4352         } else {
4353           delete IBI;
4354           return error("Invalid record");
4355         }
4356       }
4357       I = IBI;
4358       break;
4359     }
4360 
4361     case bitc::FUNC_CODE_INST_INVOKE: {
4362       // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...]
4363       if (Record.size() < 4)
4364         return error("Invalid record");
4365       unsigned OpNum = 0;
4366       AttributeList PAL = getAttributes(Record[OpNum++]);
4367       unsigned CCInfo = Record[OpNum++];
4368       BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]);
4369       BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]);
4370 
4371       FunctionType *FTy = nullptr;
4372       if (CCInfo >> 13 & 1 &&
4373           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4374         return error("Explicit invoke type is not a function type");
4375 
4376       Value *Callee;
4377       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4378         return error("Invalid record");
4379 
4380       PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType());
4381       if (!CalleeTy)
4382         return error("Callee is not a pointer");
4383       if (!FTy) {
4384         FTy = dyn_cast<FunctionType>(CalleeTy->getElementType());
4385         if (!FTy)
4386           return error("Callee is not of pointer to function type");
4387       } else if (CalleeTy->getElementType() != FTy)
4388         return error("Explicit invoke type does not match pointee type of "
4389                      "callee operand");
4390       if (Record.size() < FTy->getNumParams() + OpNum)
4391         return error("Insufficient operands to call");
4392 
4393       SmallVector<Value*, 16> Ops;
4394       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4395         Ops.push_back(getValue(Record, OpNum, NextValueNo,
4396                                FTy->getParamType(i)));
4397         if (!Ops.back())
4398           return error("Invalid record");
4399       }
4400 
4401       if (!FTy->isVarArg()) {
4402         if (Record.size() != OpNum)
4403           return error("Invalid record");
4404       } else {
4405         // Read type/value pairs for varargs params.
4406         while (OpNum != Record.size()) {
4407           Value *Op;
4408           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4409             return error("Invalid record");
4410           Ops.push_back(Op);
4411         }
4412       }
4413 
4414       I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops,
4415                              OperandBundles);
4416       OperandBundles.clear();
4417       InstructionList.push_back(I);
4418       cast<InvokeInst>(I)->setCallingConv(
4419           static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo));
4420       cast<InvokeInst>(I)->setAttributes(PAL);
4421       propagateByValTypes(cast<CallBase>(I));
4422 
4423       break;
4424     }
4425     case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval]
4426       unsigned Idx = 0;
4427       Value *Val = nullptr;
4428       if (getValueTypePair(Record, Idx, NextValueNo, Val))
4429         return error("Invalid record");
4430       I = ResumeInst::Create(Val);
4431       InstructionList.push_back(I);
4432       break;
4433     }
4434     case bitc::FUNC_CODE_INST_CALLBR: {
4435       // CALLBR: [attr, cc, norm, transfs, fty, fnid, args]
4436       unsigned OpNum = 0;
4437       AttributeList PAL = getAttributes(Record[OpNum++]);
4438       unsigned CCInfo = Record[OpNum++];
4439 
4440       BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]);
4441       unsigned NumIndirectDests = Record[OpNum++];
4442       SmallVector<BasicBlock *, 16> IndirectDests;
4443       for (unsigned i = 0, e = NumIndirectDests; i != e; ++i)
4444         IndirectDests.push_back(getBasicBlock(Record[OpNum++]));
4445 
4446       FunctionType *FTy = nullptr;
4447       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4448           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4449         return error("Explicit call type is not a function type");
4450 
4451       Value *Callee;
4452       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4453         return error("Invalid record");
4454 
4455       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4456       if (!OpTy)
4457         return error("Callee is not a pointer type");
4458       if (!FTy) {
4459         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4460         if (!FTy)
4461           return error("Callee is not of pointer to function type");
4462       } else if (OpTy->getElementType() != FTy)
4463         return error("Explicit call type does not match pointee type of "
4464                      "callee operand");
4465       if (Record.size() < FTy->getNumParams() + OpNum)
4466         return error("Insufficient operands to call");
4467 
4468       SmallVector<Value*, 16> Args;
4469       // Read the fixed params.
4470       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4471         if (FTy->getParamType(i)->isLabelTy())
4472           Args.push_back(getBasicBlock(Record[OpNum]));
4473         else
4474           Args.push_back(getValue(Record, OpNum, NextValueNo,
4475                                   FTy->getParamType(i)));
4476         if (!Args.back())
4477           return error("Invalid record");
4478       }
4479 
4480       // Read type/value pairs for varargs params.
4481       if (!FTy->isVarArg()) {
4482         if (OpNum != Record.size())
4483           return error("Invalid record");
4484       } else {
4485         while (OpNum != Record.size()) {
4486           Value *Op;
4487           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4488             return error("Invalid record");
4489           Args.push_back(Op);
4490         }
4491       }
4492 
4493       I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args,
4494                              OperandBundles);
4495       OperandBundles.clear();
4496       InstructionList.push_back(I);
4497       cast<CallBrInst>(I)->setCallingConv(
4498           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4499       cast<CallBrInst>(I)->setAttributes(PAL);
4500       break;
4501     }
4502     case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE
4503       I = new UnreachableInst(Context);
4504       InstructionList.push_back(I);
4505       break;
4506     case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...]
4507       if (Record.size() < 1 || ((Record.size()-1)&1))
4508         return error("Invalid record");
4509       Type *Ty = getTypeByID(Record[0]);
4510       if (!Ty)
4511         return error("Invalid record");
4512 
4513       PHINode *PN = PHINode::Create(Ty, (Record.size()-1)/2);
4514       InstructionList.push_back(PN);
4515 
4516       for (unsigned i = 0, e = Record.size()-1; i != e; i += 2) {
4517         Value *V;
4518         // With the new function encoding, it is possible that operands have
4519         // negative IDs (for forward references).  Use a signed VBR
4520         // representation to keep the encoding small.
4521         if (UseRelativeIDs)
4522           V = getValueSigned(Record, 1+i, NextValueNo, Ty);
4523         else
4524           V = getValue(Record, 1+i, NextValueNo, Ty);
4525         BasicBlock *BB = getBasicBlock(Record[2+i]);
4526         if (!V || !BB)
4527           return error("Invalid record");
4528         PN->addIncoming(V, BB);
4529       }
4530       I = PN;
4531       break;
4532     }
4533 
4534     case bitc::FUNC_CODE_INST_LANDINGPAD:
4535     case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: {
4536       // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?]
4537       unsigned Idx = 0;
4538       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) {
4539         if (Record.size() < 3)
4540           return error("Invalid record");
4541       } else {
4542         assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD);
4543         if (Record.size() < 4)
4544           return error("Invalid record");
4545       }
4546       Type *Ty = getTypeByID(Record[Idx++]);
4547       if (!Ty)
4548         return error("Invalid record");
4549       if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) {
4550         Value *PersFn = nullptr;
4551         if (getValueTypePair(Record, Idx, NextValueNo, PersFn))
4552           return error("Invalid record");
4553 
4554         if (!F->hasPersonalityFn())
4555           F->setPersonalityFn(cast<Constant>(PersFn));
4556         else if (F->getPersonalityFn() != cast<Constant>(PersFn))
4557           return error("Personality function mismatch");
4558       }
4559 
4560       bool IsCleanup = !!Record[Idx++];
4561       unsigned NumClauses = Record[Idx++];
4562       LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses);
4563       LP->setCleanup(IsCleanup);
4564       for (unsigned J = 0; J != NumClauses; ++J) {
4565         LandingPadInst::ClauseType CT =
4566           LandingPadInst::ClauseType(Record[Idx++]); (void)CT;
4567         Value *Val;
4568 
4569         if (getValueTypePair(Record, Idx, NextValueNo, Val)) {
4570           delete LP;
4571           return error("Invalid record");
4572         }
4573 
4574         assert((CT != LandingPadInst::Catch ||
4575                 !isa<ArrayType>(Val->getType())) &&
4576                "Catch clause has a invalid type!");
4577         assert((CT != LandingPadInst::Filter ||
4578                 isa<ArrayType>(Val->getType())) &&
4579                "Filter clause has invalid type!");
4580         LP->addClause(cast<Constant>(Val));
4581       }
4582 
4583       I = LP;
4584       InstructionList.push_back(I);
4585       break;
4586     }
4587 
4588     case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align]
4589       if (Record.size() != 4)
4590         return error("Invalid record");
4591       uint64_t AlignRecord = Record[3];
4592       const uint64_t InAllocaMask = uint64_t(1) << 5;
4593       const uint64_t ExplicitTypeMask = uint64_t(1) << 6;
4594       const uint64_t SwiftErrorMask = uint64_t(1) << 7;
4595       const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask |
4596                                 SwiftErrorMask;
4597       bool InAlloca = AlignRecord & InAllocaMask;
4598       bool SwiftError = AlignRecord & SwiftErrorMask;
4599       Type *Ty = getTypeByID(Record[0]);
4600       if ((AlignRecord & ExplicitTypeMask) == 0) {
4601         auto *PTy = dyn_cast_or_null<PointerType>(Ty);
4602         if (!PTy)
4603           return error("Old-style alloca with a non-pointer type");
4604         Ty = PTy->getElementType();
4605       }
4606       Type *OpTy = getTypeByID(Record[1]);
4607       Value *Size = getFnValueByID(Record[2], OpTy);
4608       unsigned Align;
4609       if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) {
4610         return Err;
4611       }
4612       if (!Ty || !Size)
4613         return error("Invalid record");
4614 
4615       // FIXME: Make this an optional field.
4616       const DataLayout &DL = TheModule->getDataLayout();
4617       unsigned AS = DL.getAllocaAddrSpace();
4618 
4619       AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align);
4620       AI->setUsedWithInAlloca(InAlloca);
4621       AI->setSwiftError(SwiftError);
4622       I = AI;
4623       InstructionList.push_back(I);
4624       break;
4625     }
4626     case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol]
4627       unsigned OpNum = 0;
4628       Value *Op;
4629       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4630           (OpNum + 2 != Record.size() && OpNum + 3 != Record.size()))
4631         return error("Invalid record");
4632 
4633       Type *Ty = nullptr;
4634       if (OpNum + 3 == Record.size())
4635         Ty = getTypeByID(Record[OpNum++]);
4636       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4637         return Err;
4638       if (!Ty)
4639         Ty = cast<PointerType>(Op->getType())->getElementType();
4640 
4641       unsigned Align;
4642       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4643         return Err;
4644       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align);
4645 
4646       InstructionList.push_back(I);
4647       break;
4648     }
4649     case bitc::FUNC_CODE_INST_LOADATOMIC: {
4650        // LOADATOMIC: [opty, op, align, vol, ordering, ssid]
4651       unsigned OpNum = 0;
4652       Value *Op;
4653       if (getValueTypePair(Record, OpNum, NextValueNo, Op) ||
4654           (OpNum + 4 != Record.size() && OpNum + 5 != Record.size()))
4655         return error("Invalid record");
4656 
4657       Type *Ty = nullptr;
4658       if (OpNum + 5 == Record.size())
4659         Ty = getTypeByID(Record[OpNum++]);
4660       if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType()))
4661         return Err;
4662       if (!Ty)
4663         Ty = cast<PointerType>(Op->getType())->getElementType();
4664 
4665       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4666       if (Ordering == AtomicOrdering::NotAtomic ||
4667           Ordering == AtomicOrdering::Release ||
4668           Ordering == AtomicOrdering::AcquireRelease)
4669         return error("Invalid record");
4670       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4671         return error("Invalid record");
4672       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4673 
4674       unsigned Align;
4675       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4676         return Err;
4677       I = new LoadInst(Ty, Op, "", Record[OpNum + 1], Align, Ordering, SSID);
4678 
4679       InstructionList.push_back(I);
4680       break;
4681     }
4682     case bitc::FUNC_CODE_INST_STORE:
4683     case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol]
4684       unsigned OpNum = 0;
4685       Value *Val, *Ptr;
4686       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4687           (BitCode == bitc::FUNC_CODE_INST_STORE
4688                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4689                : popValue(Record, OpNum, NextValueNo,
4690                           cast<PointerType>(Ptr->getType())->getElementType(),
4691                           Val)) ||
4692           OpNum + 2 != Record.size())
4693         return error("Invalid record");
4694 
4695       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4696         return Err;
4697       unsigned Align;
4698       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4699         return Err;
4700       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align);
4701       InstructionList.push_back(I);
4702       break;
4703     }
4704     case bitc::FUNC_CODE_INST_STOREATOMIC:
4705     case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: {
4706       // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid]
4707       unsigned OpNum = 0;
4708       Value *Val, *Ptr;
4709       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4710           !isa<PointerType>(Ptr->getType()) ||
4711           (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC
4712                ? getValueTypePair(Record, OpNum, NextValueNo, Val)
4713                : popValue(Record, OpNum, NextValueNo,
4714                           cast<PointerType>(Ptr->getType())->getElementType(),
4715                           Val)) ||
4716           OpNum + 4 != Record.size())
4717         return error("Invalid record");
4718 
4719       if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType()))
4720         return Err;
4721       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4722       if (Ordering == AtomicOrdering::NotAtomic ||
4723           Ordering == AtomicOrdering::Acquire ||
4724           Ordering == AtomicOrdering::AcquireRelease)
4725         return error("Invalid record");
4726       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4727       if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0)
4728         return error("Invalid record");
4729 
4730       unsigned Align;
4731       if (Error Err = parseAlignmentValue(Record[OpNum], Align))
4732         return Err;
4733       I = new StoreInst(Val, Ptr, Record[OpNum+1], Align, Ordering, SSID);
4734       InstructionList.push_back(I);
4735       break;
4736     }
4737     case bitc::FUNC_CODE_INST_CMPXCHG_OLD:
4738     case bitc::FUNC_CODE_INST_CMPXCHG: {
4739       // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid,
4740       //          failureordering?, isweak?]
4741       unsigned OpNum = 0;
4742       Value *Ptr, *Cmp, *New;
4743       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4744           (BitCode == bitc::FUNC_CODE_INST_CMPXCHG
4745                ? getValueTypePair(Record, OpNum, NextValueNo, Cmp)
4746                : popValue(Record, OpNum, NextValueNo,
4747                           cast<PointerType>(Ptr->getType())->getElementType(),
4748                           Cmp)) ||
4749           popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) ||
4750           Record.size() < OpNum + 3 || Record.size() > OpNum + 5)
4751         return error("Invalid record");
4752       AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]);
4753       if (SuccessOrdering == AtomicOrdering::NotAtomic ||
4754           SuccessOrdering == AtomicOrdering::Unordered)
4755         return error("Invalid record");
4756       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]);
4757 
4758       if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType()))
4759         return Err;
4760       AtomicOrdering FailureOrdering;
4761       if (Record.size() < 7)
4762         FailureOrdering =
4763             AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering);
4764       else
4765         FailureOrdering = getDecodedOrdering(Record[OpNum + 3]);
4766 
4767       I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering,
4768                                 SSID);
4769       cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]);
4770 
4771       if (Record.size() < 8) {
4772         // Before weak cmpxchgs existed, the instruction simply returned the
4773         // value loaded from memory, so bitcode files from that era will be
4774         // expecting the first component of a modern cmpxchg.
4775         CurBB->getInstList().push_back(I);
4776         I = ExtractValueInst::Create(I, 0);
4777       } else {
4778         cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]);
4779       }
4780 
4781       InstructionList.push_back(I);
4782       break;
4783     }
4784     case bitc::FUNC_CODE_INST_ATOMICRMW: {
4785       // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid]
4786       unsigned OpNum = 0;
4787       Value *Ptr, *Val;
4788       if (getValueTypePair(Record, OpNum, NextValueNo, Ptr) ||
4789           !isa<PointerType>(Ptr->getType()) ||
4790           popValue(Record, OpNum, NextValueNo,
4791                     cast<PointerType>(Ptr->getType())->getElementType(), Val) ||
4792           OpNum+4 != Record.size())
4793         return error("Invalid record");
4794       AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]);
4795       if (Operation < AtomicRMWInst::FIRST_BINOP ||
4796           Operation > AtomicRMWInst::LAST_BINOP)
4797         return error("Invalid record");
4798       AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]);
4799       if (Ordering == AtomicOrdering::NotAtomic ||
4800           Ordering == AtomicOrdering::Unordered)
4801         return error("Invalid record");
4802       SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]);
4803       I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
4804       cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]);
4805       InstructionList.push_back(I);
4806       break;
4807     }
4808     case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid]
4809       if (2 != Record.size())
4810         return error("Invalid record");
4811       AtomicOrdering Ordering = getDecodedOrdering(Record[0]);
4812       if (Ordering == AtomicOrdering::NotAtomic ||
4813           Ordering == AtomicOrdering::Unordered ||
4814           Ordering == AtomicOrdering::Monotonic)
4815         return error("Invalid record");
4816       SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]);
4817       I = new FenceInst(Context, Ordering, SSID);
4818       InstructionList.push_back(I);
4819       break;
4820     }
4821     case bitc::FUNC_CODE_INST_CALL: {
4822       // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...]
4823       if (Record.size() < 3)
4824         return error("Invalid record");
4825 
4826       unsigned OpNum = 0;
4827       AttributeList PAL = getAttributes(Record[OpNum++]);
4828       unsigned CCInfo = Record[OpNum++];
4829 
4830       FastMathFlags FMF;
4831       if ((CCInfo >> bitc::CALL_FMF) & 1) {
4832         FMF = getDecodedFastMathFlags(Record[OpNum++]);
4833         if (!FMF.any())
4834           return error("Fast math flags indicator set for call with no FMF");
4835       }
4836 
4837       FunctionType *FTy = nullptr;
4838       if (CCInfo >> bitc::CALL_EXPLICIT_TYPE & 1 &&
4839           !(FTy = dyn_cast<FunctionType>(getTypeByID(Record[OpNum++]))))
4840         return error("Explicit call type is not a function type");
4841 
4842       Value *Callee;
4843       if (getValueTypePair(Record, OpNum, NextValueNo, Callee))
4844         return error("Invalid record");
4845 
4846       PointerType *OpTy = dyn_cast<PointerType>(Callee->getType());
4847       if (!OpTy)
4848         return error("Callee is not a pointer type");
4849       if (!FTy) {
4850         FTy = dyn_cast<FunctionType>(OpTy->getElementType());
4851         if (!FTy)
4852           return error("Callee is not of pointer to function type");
4853       } else if (OpTy->getElementType() != FTy)
4854         return error("Explicit call type does not match pointee type of "
4855                      "callee operand");
4856       if (Record.size() < FTy->getNumParams() + OpNum)
4857         return error("Insufficient operands to call");
4858 
4859       SmallVector<Value*, 16> Args;
4860       // Read the fixed params.
4861       for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) {
4862         if (FTy->getParamType(i)->isLabelTy())
4863           Args.push_back(getBasicBlock(Record[OpNum]));
4864         else
4865           Args.push_back(getValue(Record, OpNum, NextValueNo,
4866                                   FTy->getParamType(i)));
4867         if (!Args.back())
4868           return error("Invalid record");
4869       }
4870 
4871       // Read type/value pairs for varargs params.
4872       if (!FTy->isVarArg()) {
4873         if (OpNum != Record.size())
4874           return error("Invalid record");
4875       } else {
4876         while (OpNum != Record.size()) {
4877           Value *Op;
4878           if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4879             return error("Invalid record");
4880           Args.push_back(Op);
4881         }
4882       }
4883 
4884       I = CallInst::Create(FTy, Callee, Args, OperandBundles);
4885       OperandBundles.clear();
4886       InstructionList.push_back(I);
4887       cast<CallInst>(I)->setCallingConv(
4888           static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV));
4889       CallInst::TailCallKind TCK = CallInst::TCK_None;
4890       if (CCInfo & 1 << bitc::CALL_TAIL)
4891         TCK = CallInst::TCK_Tail;
4892       if (CCInfo & (1 << bitc::CALL_MUSTTAIL))
4893         TCK = CallInst::TCK_MustTail;
4894       if (CCInfo & (1 << bitc::CALL_NOTAIL))
4895         TCK = CallInst::TCK_NoTail;
4896       cast<CallInst>(I)->setTailCallKind(TCK);
4897       cast<CallInst>(I)->setAttributes(PAL);
4898       propagateByValTypes(cast<CallBase>(I));
4899       if (FMF.any()) {
4900         if (!isa<FPMathOperator>(I))
4901           return error("Fast-math-flags specified for call without "
4902                        "floating-point scalar or vector return type");
4903         I->setFastMathFlags(FMF);
4904       }
4905       break;
4906     }
4907     case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty]
4908       if (Record.size() < 3)
4909         return error("Invalid record");
4910       Type *OpTy = getTypeByID(Record[0]);
4911       Value *Op = getValue(Record, 1, NextValueNo, OpTy);
4912       Type *ResTy = getTypeByID(Record[2]);
4913       if (!OpTy || !Op || !ResTy)
4914         return error("Invalid record");
4915       I = new VAArgInst(Op, ResTy);
4916       InstructionList.push_back(I);
4917       break;
4918     }
4919 
4920     case bitc::FUNC_CODE_OPERAND_BUNDLE: {
4921       // A call or an invoke can be optionally prefixed with some variable
4922       // number of operand bundle blocks.  These blocks are read into
4923       // OperandBundles and consumed at the next call or invoke instruction.
4924 
4925       if (Record.size() < 1 || Record[0] >= BundleTags.size())
4926         return error("Invalid record");
4927 
4928       std::vector<Value *> Inputs;
4929 
4930       unsigned OpNum = 1;
4931       while (OpNum != Record.size()) {
4932         Value *Op;
4933         if (getValueTypePair(Record, OpNum, NextValueNo, Op))
4934           return error("Invalid record");
4935         Inputs.push_back(Op);
4936       }
4937 
4938       OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs));
4939       continue;
4940     }
4941     }
4942 
4943     // Add instruction to end of current BB.  If there is no current BB, reject
4944     // this file.
4945     if (!CurBB) {
4946       I->deleteValue();
4947       return error("Invalid instruction with no BB");
4948     }
4949     if (!OperandBundles.empty()) {
4950       I->deleteValue();
4951       return error("Operand bundles found with no consumer");
4952     }
4953     CurBB->getInstList().push_back(I);
4954 
4955     // If this was a terminator instruction, move to the next block.
4956     if (I->isTerminator()) {
4957       ++CurBBNo;
4958       CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr;
4959     }
4960 
4961     // Non-void values get registered in the value table for future use.
4962     if (I && !I->getType()->isVoidTy())
4963       ValueList.assignValue(I, NextValueNo++);
4964   }
4965 
4966 OutOfRecordLoop:
4967 
4968   if (!OperandBundles.empty())
4969     return error("Operand bundles found with no consumer");
4970 
4971   // Check the function list for unresolved values.
4972   if (Argument *A = dyn_cast<Argument>(ValueList.back())) {
4973     if (!A->getParent()) {
4974       // We found at least one unresolved value.  Nuke them all to avoid leaks.
4975       for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){
4976         if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) {
4977           A->replaceAllUsesWith(UndefValue::get(A->getType()));
4978           delete A;
4979         }
4980       }
4981       return error("Never resolved value found in function");
4982     }
4983   }
4984 
4985   // Unexpected unresolved metadata about to be dropped.
4986   if (MDLoader->hasFwdRefs())
4987     return error("Invalid function metadata: outgoing forward refs");
4988 
4989   // Trim the value list down to the size it was before we parsed this function.
4990   ValueList.shrinkTo(ModuleValueListSize);
4991   MDLoader->shrinkTo(ModuleMDLoaderSize);
4992   std::vector<BasicBlock*>().swap(FunctionBBs);
4993   return Error::success();
4994 }
4995 
4996 /// Find the function body in the bitcode stream
4997 Error BitcodeReader::findFunctionInStream(
4998     Function *F,
4999     DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) {
5000   while (DeferredFunctionInfoIterator->second == 0) {
5001     // This is the fallback handling for the old format bitcode that
5002     // didn't contain the function index in the VST, or when we have
5003     // an anonymous function which would not have a VST entry.
5004     // Assert that we have one of those two cases.
5005     assert(VSTOffset == 0 || !F->hasName());
5006     // Parse the next body in the stream and set its position in the
5007     // DeferredFunctionInfo map.
5008     if (Error Err = rememberAndSkipFunctionBodies())
5009       return Err;
5010   }
5011   return Error::success();
5012 }
5013 
5014 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) {
5015   if (Val == SyncScope::SingleThread || Val == SyncScope::System)
5016     return SyncScope::ID(Val);
5017   if (Val >= SSIDs.size())
5018     return SyncScope::System; // Map unknown synchronization scopes to system.
5019   return SSIDs[Val];
5020 }
5021 
5022 //===----------------------------------------------------------------------===//
5023 // GVMaterializer implementation
5024 //===----------------------------------------------------------------------===//
5025 
5026 Error BitcodeReader::materialize(GlobalValue *GV) {
5027   Function *F = dyn_cast<Function>(GV);
5028   // If it's not a function or is already material, ignore the request.
5029   if (!F || !F->isMaterializable())
5030     return Error::success();
5031 
5032   DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F);
5033   assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!");
5034   // If its position is recorded as 0, its body is somewhere in the stream
5035   // but we haven't seen it yet.
5036   if (DFII->second == 0)
5037     if (Error Err = findFunctionInStream(F, DFII))
5038       return Err;
5039 
5040   // Materialize metadata before parsing any function bodies.
5041   if (Error Err = materializeMetadata())
5042     return Err;
5043 
5044   // Move the bit stream to the saved position of the deferred function body.
5045   if (Error JumpFailed = Stream.JumpToBit(DFII->second))
5046     return JumpFailed;
5047   if (Error Err = parseFunctionBody(F))
5048     return Err;
5049   F->setIsMaterializable(false);
5050 
5051   if (StripDebugInfo)
5052     stripDebugInfo(*F);
5053 
5054   // Upgrade any old intrinsic calls in the function.
5055   for (auto &I : UpgradedIntrinsics) {
5056     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5057          UI != UE;) {
5058       User *U = *UI;
5059       ++UI;
5060       if (CallInst *CI = dyn_cast<CallInst>(U))
5061         UpgradeIntrinsicCall(CI, I.second);
5062     }
5063   }
5064 
5065   // Update calls to the remangled intrinsics
5066   for (auto &I : RemangledIntrinsics)
5067     for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end();
5068          UI != UE;)
5069       // Don't expect any other users than call sites
5070       CallSite(*UI++).setCalledFunction(I.second);
5071 
5072   // Finish fn->subprogram upgrade for materialized functions.
5073   if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F))
5074     F->setSubprogram(SP);
5075 
5076   // Check if the TBAA Metadata are valid, otherwise we will need to strip them.
5077   if (!MDLoader->isStrippingTBAA()) {
5078     for (auto &I : instructions(F)) {
5079       MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa);
5080       if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA))
5081         continue;
5082       MDLoader->setStripTBAA(true);
5083       stripTBAA(F->getParent());
5084     }
5085   }
5086 
5087   // Bring in any functions that this function forward-referenced via
5088   // blockaddresses.
5089   return materializeForwardReferencedFunctions();
5090 }
5091 
5092 Error BitcodeReader::materializeModule() {
5093   if (Error Err = materializeMetadata())
5094     return Err;
5095 
5096   // Promise to materialize all forward references.
5097   WillMaterializeAllForwardRefs = true;
5098 
5099   // Iterate over the module, deserializing any functions that are still on
5100   // disk.
5101   for (Function &F : *TheModule) {
5102     if (Error Err = materialize(&F))
5103       return Err;
5104   }
5105   // At this point, if there are any function bodies, parse the rest of
5106   // the bits in the module past the last function block we have recorded
5107   // through either lazy scanning or the VST.
5108   if (LastFunctionBlockBit || NextUnreadBit)
5109     if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit
5110                                     ? LastFunctionBlockBit
5111                                     : NextUnreadBit))
5112       return Err;
5113 
5114   // Check that all block address forward references got resolved (as we
5115   // promised above).
5116   if (!BasicBlockFwdRefs.empty())
5117     return error("Never resolved function from blockaddress");
5118 
5119   // Upgrade any intrinsic calls that slipped through (should not happen!) and
5120   // delete the old functions to clean up. We can't do this unless the entire
5121   // module is materialized because there could always be another function body
5122   // with calls to the old function.
5123   for (auto &I : UpgradedIntrinsics) {
5124     for (auto *U : I.first->users()) {
5125       if (CallInst *CI = dyn_cast<CallInst>(U))
5126         UpgradeIntrinsicCall(CI, I.second);
5127     }
5128     if (!I.first->use_empty())
5129       I.first->replaceAllUsesWith(I.second);
5130     I.first->eraseFromParent();
5131   }
5132   UpgradedIntrinsics.clear();
5133   // Do the same for remangled intrinsics
5134   for (auto &I : RemangledIntrinsics) {
5135     I.first->replaceAllUsesWith(I.second);
5136     I.first->eraseFromParent();
5137   }
5138   RemangledIntrinsics.clear();
5139 
5140   UpgradeDebugInfo(*TheModule);
5141 
5142   UpgradeModuleFlags(*TheModule);
5143 
5144   UpgradeRetainReleaseMarker(*TheModule);
5145 
5146   return Error::success();
5147 }
5148 
5149 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const {
5150   return IdentifiedStructTypes;
5151 }
5152 
5153 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader(
5154     BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex,
5155     StringRef ModulePath, unsigned ModuleId)
5156     : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex),
5157       ModulePath(ModulePath), ModuleId(ModuleId) {}
5158 
5159 void ModuleSummaryIndexBitcodeReader::addThisModule() {
5160   TheIndex.addModule(ModulePath, ModuleId);
5161 }
5162 
5163 ModuleSummaryIndex::ModuleInfo *
5164 ModuleSummaryIndexBitcodeReader::getThisModule() {
5165   return TheIndex.getModule(ModulePath);
5166 }
5167 
5168 std::pair<ValueInfo, GlobalValue::GUID>
5169 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) {
5170   auto VGI = ValueIdToValueInfoMap[ValueId];
5171   assert(VGI.first);
5172   return VGI;
5173 }
5174 
5175 void ModuleSummaryIndexBitcodeReader::setValueGUID(
5176     uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage,
5177     StringRef SourceFileName) {
5178   std::string GlobalId =
5179       GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName);
5180   auto ValueGUID = GlobalValue::getGUID(GlobalId);
5181   auto OriginalNameID = ValueGUID;
5182   if (GlobalValue::isLocalLinkage(Linkage))
5183     OriginalNameID = GlobalValue::getGUID(ValueName);
5184   if (PrintSummaryGUIDs)
5185     dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is "
5186            << ValueName << "\n";
5187 
5188   // UseStrtab is false for legacy summary formats and value names are
5189   // created on stack. In that case we save the name in a string saver in
5190   // the index so that the value name can be recorded.
5191   ValueIdToValueInfoMap[ValueID] = std::make_pair(
5192       TheIndex.getOrInsertValueInfo(
5193           ValueGUID,
5194           UseStrtab ? ValueName : TheIndex.saveString(ValueName)),
5195       OriginalNameID);
5196 }
5197 
5198 // Specialized value symbol table parser used when reading module index
5199 // blocks where we don't actually create global values. The parsed information
5200 // is saved in the bitcode reader for use when later parsing summaries.
5201 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable(
5202     uint64_t Offset,
5203     DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) {
5204   // With a strtab the VST is not required to parse the summary.
5205   if (UseStrtab)
5206     return Error::success();
5207 
5208   assert(Offset > 0 && "Expected non-zero VST offset");
5209   Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream);
5210   if (!MaybeCurrentBit)
5211     return MaybeCurrentBit.takeError();
5212   uint64_t CurrentBit = MaybeCurrentBit.get();
5213 
5214   if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID))
5215     return Err;
5216 
5217   SmallVector<uint64_t, 64> Record;
5218 
5219   // Read all the records for this value table.
5220   SmallString<128> ValueName;
5221 
5222   while (true) {
5223     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5224     if (!MaybeEntry)
5225       return MaybeEntry.takeError();
5226     BitstreamEntry Entry = MaybeEntry.get();
5227 
5228     switch (Entry.Kind) {
5229     case BitstreamEntry::SubBlock: // Handled for us already.
5230     case BitstreamEntry::Error:
5231       return error("Malformed block");
5232     case BitstreamEntry::EndBlock:
5233       // Done parsing VST, jump back to wherever we came from.
5234       if (Error JumpFailed = Stream.JumpToBit(CurrentBit))
5235         return JumpFailed;
5236       return Error::success();
5237     case BitstreamEntry::Record:
5238       // The interesting case.
5239       break;
5240     }
5241 
5242     // Read a record.
5243     Record.clear();
5244     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5245     if (!MaybeRecord)
5246       return MaybeRecord.takeError();
5247     switch (MaybeRecord.get()) {
5248     default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records).
5249       break;
5250     case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N]
5251       if (convertToString(Record, 1, ValueName))
5252         return error("Invalid record");
5253       unsigned ValueID = Record[0];
5254       assert(!SourceFileName.empty());
5255       auto VLI = ValueIdToLinkageMap.find(ValueID);
5256       assert(VLI != ValueIdToLinkageMap.end() &&
5257              "No linkage found for VST entry?");
5258       auto Linkage = VLI->second;
5259       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5260       ValueName.clear();
5261       break;
5262     }
5263     case bitc::VST_CODE_FNENTRY: {
5264       // VST_CODE_FNENTRY: [valueid, offset, namechar x N]
5265       if (convertToString(Record, 2, ValueName))
5266         return error("Invalid record");
5267       unsigned ValueID = Record[0];
5268       assert(!SourceFileName.empty());
5269       auto VLI = ValueIdToLinkageMap.find(ValueID);
5270       assert(VLI != ValueIdToLinkageMap.end() &&
5271              "No linkage found for VST entry?");
5272       auto Linkage = VLI->second;
5273       setValueGUID(ValueID, ValueName, Linkage, SourceFileName);
5274       ValueName.clear();
5275       break;
5276     }
5277     case bitc::VST_CODE_COMBINED_ENTRY: {
5278       // VST_CODE_COMBINED_ENTRY: [valueid, refguid]
5279       unsigned ValueID = Record[0];
5280       GlobalValue::GUID RefGUID = Record[1];
5281       // The "original name", which is the second value of the pair will be
5282       // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index.
5283       ValueIdToValueInfoMap[ValueID] =
5284           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5285       break;
5286     }
5287     }
5288   }
5289 }
5290 
5291 // Parse just the blocks needed for building the index out of the module.
5292 // At the end of this routine the module Index is populated with a map
5293 // from global value id to GlobalValueSummary objects.
5294 Error ModuleSummaryIndexBitcodeReader::parseModule() {
5295   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
5296     return Err;
5297 
5298   SmallVector<uint64_t, 64> Record;
5299   DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap;
5300   unsigned ValueId = 0;
5301 
5302   // Read the index for this module.
5303   while (true) {
5304     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
5305     if (!MaybeEntry)
5306       return MaybeEntry.takeError();
5307     llvm::BitstreamEntry Entry = MaybeEntry.get();
5308 
5309     switch (Entry.Kind) {
5310     case BitstreamEntry::Error:
5311       return error("Malformed block");
5312     case BitstreamEntry::EndBlock:
5313       return Error::success();
5314 
5315     case BitstreamEntry::SubBlock:
5316       switch (Entry.ID) {
5317       default: // Skip unknown content.
5318         if (Error Err = Stream.SkipBlock())
5319           return Err;
5320         break;
5321       case bitc::BLOCKINFO_BLOCK_ID:
5322         // Need to parse these to get abbrev ids (e.g. for VST)
5323         if (readBlockInfo())
5324           return error("Malformed block");
5325         break;
5326       case bitc::VALUE_SYMTAB_BLOCK_ID:
5327         // Should have been parsed earlier via VSTOffset, unless there
5328         // is no summary section.
5329         assert(((SeenValueSymbolTable && VSTOffset > 0) ||
5330                 !SeenGlobalValSummary) &&
5331                "Expected early VST parse via VSTOffset record");
5332         if (Error Err = Stream.SkipBlock())
5333           return Err;
5334         break;
5335       case bitc::GLOBALVAL_SUMMARY_BLOCK_ID:
5336       case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID:
5337         // Add the module if it is a per-module index (has a source file name).
5338         if (!SourceFileName.empty())
5339           addThisModule();
5340         assert(!SeenValueSymbolTable &&
5341                "Already read VST when parsing summary block?");
5342         // We might not have a VST if there were no values in the
5343         // summary. An empty summary block generated when we are
5344         // performing ThinLTO compiles so we don't later invoke
5345         // the regular LTO process on them.
5346         if (VSTOffset > 0) {
5347           if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap))
5348             return Err;
5349           SeenValueSymbolTable = true;
5350         }
5351         SeenGlobalValSummary = true;
5352         if (Error Err = parseEntireSummary(Entry.ID))
5353           return Err;
5354         break;
5355       case bitc::MODULE_STRTAB_BLOCK_ID:
5356         if (Error Err = parseModuleStringTable())
5357           return Err;
5358         break;
5359       }
5360       continue;
5361 
5362     case BitstreamEntry::Record: {
5363         Record.clear();
5364         Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5365         if (!MaybeBitCode)
5366           return MaybeBitCode.takeError();
5367         switch (unsigned BitCode = MaybeBitCode.get()) {
5368         default:
5369           break; // Default behavior, ignore unknown content.
5370         case bitc::MODULE_CODE_VERSION: {
5371           if (Error Err = parseVersionRecord(Record).takeError())
5372             return Err;
5373           break;
5374         }
5375         /// MODULE_CODE_SOURCE_FILENAME: [namechar x N]
5376         case bitc::MODULE_CODE_SOURCE_FILENAME: {
5377           SmallString<128> ValueName;
5378           if (convertToString(Record, 0, ValueName))
5379             return error("Invalid record");
5380           SourceFileName = ValueName.c_str();
5381           break;
5382         }
5383         /// MODULE_CODE_HASH: [5*i32]
5384         case bitc::MODULE_CODE_HASH: {
5385           if (Record.size() != 5)
5386             return error("Invalid hash length " + Twine(Record.size()).str());
5387           auto &Hash = getThisModule()->second.second;
5388           int Pos = 0;
5389           for (auto &Val : Record) {
5390             assert(!(Val >> 32) && "Unexpected high bits set");
5391             Hash[Pos++] = Val;
5392           }
5393           break;
5394         }
5395         /// MODULE_CODE_VSTOFFSET: [offset]
5396         case bitc::MODULE_CODE_VSTOFFSET:
5397           if (Record.size() < 1)
5398             return error("Invalid record");
5399           // Note that we subtract 1 here because the offset is relative to one
5400           // word before the start of the identification or module block, which
5401           // was historically always the start of the regular bitcode header.
5402           VSTOffset = Record[0] - 1;
5403           break;
5404         // v1 GLOBALVAR: [pointer type, isconst,     initid,       linkage, ...]
5405         // v1 FUNCTION:  [type,         callingconv, isproto,      linkage, ...]
5406         // v1 ALIAS:     [alias type,   addrspace,   aliasee val#, linkage, ...]
5407         // v2: [strtab offset, strtab size, v1]
5408         case bitc::MODULE_CODE_GLOBALVAR:
5409         case bitc::MODULE_CODE_FUNCTION:
5410         case bitc::MODULE_CODE_ALIAS: {
5411           StringRef Name;
5412           ArrayRef<uint64_t> GVRecord;
5413           std::tie(Name, GVRecord) = readNameFromStrtab(Record);
5414           if (GVRecord.size() <= 3)
5415             return error("Invalid record");
5416           uint64_t RawLinkage = GVRecord[3];
5417           GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage);
5418           if (!UseStrtab) {
5419             ValueIdToLinkageMap[ValueId++] = Linkage;
5420             break;
5421           }
5422 
5423           setValueGUID(ValueId++, Name, Linkage, SourceFileName);
5424           break;
5425         }
5426         }
5427       }
5428       continue;
5429     }
5430   }
5431 }
5432 
5433 std::vector<ValueInfo>
5434 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) {
5435   std::vector<ValueInfo> Ret;
5436   Ret.reserve(Record.size());
5437   for (uint64_t RefValueId : Record)
5438     Ret.push_back(getValueInfoFromValueId(RefValueId).first);
5439   return Ret;
5440 }
5441 
5442 std::vector<FunctionSummary::EdgeTy>
5443 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record,
5444                                               bool IsOldProfileFormat,
5445                                               bool HasProfile, bool HasRelBF) {
5446   std::vector<FunctionSummary::EdgeTy> Ret;
5447   Ret.reserve(Record.size());
5448   for (unsigned I = 0, E = Record.size(); I != E; ++I) {
5449     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
5450     uint64_t RelBF = 0;
5451     ValueInfo Callee = getValueInfoFromValueId(Record[I]).first;
5452     if (IsOldProfileFormat) {
5453       I += 1; // Skip old callsitecount field
5454       if (HasProfile)
5455         I += 1; // Skip old profilecount field
5456     } else if (HasProfile)
5457       Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]);
5458     else if (HasRelBF)
5459       RelBF = Record[++I];
5460     Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)});
5461   }
5462   return Ret;
5463 }
5464 
5465 static void
5466 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot,
5467                                        WholeProgramDevirtResolution &Wpd) {
5468   uint64_t ArgNum = Record[Slot++];
5469   WholeProgramDevirtResolution::ByArg &B =
5470       Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}];
5471   Slot += ArgNum;
5472 
5473   B.TheKind =
5474       static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]);
5475   B.Info = Record[Slot++];
5476   B.Byte = Record[Slot++];
5477   B.Bit = Record[Slot++];
5478 }
5479 
5480 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record,
5481                                               StringRef Strtab, size_t &Slot,
5482                                               TypeIdSummary &TypeId) {
5483   uint64_t Id = Record[Slot++];
5484   WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id];
5485 
5486   Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]);
5487   Wpd.SingleImplName = {Strtab.data() + Record[Slot],
5488                         static_cast<size_t>(Record[Slot + 1])};
5489   Slot += 2;
5490 
5491   uint64_t ResByArgNum = Record[Slot++];
5492   for (uint64_t I = 0; I != ResByArgNum; ++I)
5493     parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd);
5494 }
5495 
5496 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record,
5497                                      StringRef Strtab,
5498                                      ModuleSummaryIndex &TheIndex) {
5499   size_t Slot = 0;
5500   TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary(
5501       {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])});
5502   Slot += 2;
5503 
5504   TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]);
5505   TypeId.TTRes.SizeM1BitWidth = Record[Slot++];
5506   TypeId.TTRes.AlignLog2 = Record[Slot++];
5507   TypeId.TTRes.SizeM1 = Record[Slot++];
5508   TypeId.TTRes.BitMask = Record[Slot++];
5509   TypeId.TTRes.InlineBits = Record[Slot++];
5510 
5511   while (Slot < Record.size())
5512     parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId);
5513 }
5514 
5515 static void setImmutableRefs(std::vector<ValueInfo> &Refs, unsigned Count) {
5516   // Read-only refs are in the end of the refs list.
5517   for (unsigned RefNo = Refs.size() - Count; RefNo < Refs.size(); ++RefNo)
5518     Refs[RefNo].setReadOnly();
5519 }
5520 
5521 // Eagerly parse the entire summary block. This populates the GlobalValueSummary
5522 // objects in the index.
5523 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) {
5524   if (Error Err = Stream.EnterSubBlock(ID))
5525     return Err;
5526   SmallVector<uint64_t, 64> Record;
5527 
5528   // Parse version
5529   {
5530     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5531     if (!MaybeEntry)
5532       return MaybeEntry.takeError();
5533     BitstreamEntry Entry = MaybeEntry.get();
5534 
5535     if (Entry.Kind != BitstreamEntry::Record)
5536       return error("Invalid Summary Block: record for version expected");
5537     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5538     if (!MaybeRecord)
5539       return MaybeRecord.takeError();
5540     if (MaybeRecord.get() != bitc::FS_VERSION)
5541       return error("Invalid Summary Block: version expected");
5542   }
5543   const uint64_t Version = Record[0];
5544   const bool IsOldProfileFormat = Version == 1;
5545   if (Version < 1 || Version > 6)
5546     return error("Invalid summary version " + Twine(Version) +
5547                  ". Version should be in the range [1-6].");
5548   Record.clear();
5549 
5550   // Keep around the last seen summary to be used when we see an optional
5551   // "OriginalName" attachement.
5552   GlobalValueSummary *LastSeenSummary = nullptr;
5553   GlobalValue::GUID LastSeenGUID = 0;
5554 
5555   // We can expect to see any number of type ID information records before
5556   // each function summary records; these variables store the information
5557   // collected so far so that it can be used to create the summary object.
5558   std::vector<GlobalValue::GUID> PendingTypeTests;
5559   std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls,
5560       PendingTypeCheckedLoadVCalls;
5561   std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls,
5562       PendingTypeCheckedLoadConstVCalls;
5563 
5564   while (true) {
5565     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5566     if (!MaybeEntry)
5567       return MaybeEntry.takeError();
5568     BitstreamEntry Entry = MaybeEntry.get();
5569 
5570     switch (Entry.Kind) {
5571     case BitstreamEntry::SubBlock: // Handled for us already.
5572     case BitstreamEntry::Error:
5573       return error("Malformed block");
5574     case BitstreamEntry::EndBlock:
5575       return Error::success();
5576     case BitstreamEntry::Record:
5577       // The interesting case.
5578       break;
5579     }
5580 
5581     // Read a record. The record format depends on whether this
5582     // is a per-module index or a combined index file. In the per-module
5583     // case the records contain the associated value's ID for correlation
5584     // with VST entries. In the combined index the correlation is done
5585     // via the bitcode offset of the summary records (which were saved
5586     // in the combined index VST entries). The records also contain
5587     // information used for ThinLTO renaming and importing.
5588     Record.clear();
5589     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
5590     if (!MaybeBitCode)
5591       return MaybeBitCode.takeError();
5592     switch (unsigned BitCode = MaybeBitCode.get()) {
5593     default: // Default behavior: ignore.
5594       break;
5595     case bitc::FS_FLAGS: {  // [flags]
5596       uint64_t Flags = Record[0];
5597       // Scan flags.
5598       assert(Flags <= 0x1f && "Unexpected bits in flag");
5599 
5600       // 1 bit: WithGlobalValueDeadStripping flag.
5601       // Set on combined index only.
5602       if (Flags & 0x1)
5603         TheIndex.setWithGlobalValueDeadStripping();
5604       // 1 bit: SkipModuleByDistributedBackend flag.
5605       // Set on combined index only.
5606       if (Flags & 0x2)
5607         TheIndex.setSkipModuleByDistributedBackend();
5608       // 1 bit: HasSyntheticEntryCounts flag.
5609       // Set on combined index only.
5610       if (Flags & 0x4)
5611         TheIndex.setHasSyntheticEntryCounts();
5612       // 1 bit: DisableSplitLTOUnit flag.
5613       // Set on per module indexes. It is up to the client to validate
5614       // the consistency of this flag across modules being linked.
5615       if (Flags & 0x8)
5616         TheIndex.setEnableSplitLTOUnit();
5617       // 1 bit: PartiallySplitLTOUnits flag.
5618       // Set on combined index only.
5619       if (Flags & 0x10)
5620         TheIndex.setPartiallySplitLTOUnits();
5621       break;
5622     }
5623     case bitc::FS_VALUE_GUID: { // [valueid, refguid]
5624       uint64_t ValueID = Record[0];
5625       GlobalValue::GUID RefGUID = Record[1];
5626       ValueIdToValueInfoMap[ValueID] =
5627           std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID);
5628       break;
5629     }
5630     // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs,
5631     //                numrefs x valueid, n x (valueid)]
5632     // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs,
5633     //                        numrefs x valueid,
5634     //                        n x (valueid, hotness)]
5635     // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs,
5636     //                      numrefs x valueid,
5637     //                      n x (valueid, relblockfreq)]
5638     case bitc::FS_PERMODULE:
5639     case bitc::FS_PERMODULE_RELBF:
5640     case bitc::FS_PERMODULE_PROFILE: {
5641       unsigned ValueID = Record[0];
5642       uint64_t RawFlags = Record[1];
5643       unsigned InstCount = Record[2];
5644       uint64_t RawFunFlags = 0;
5645       unsigned NumRefs = Record[3];
5646       unsigned NumImmutableRefs = 0;
5647       int RefListStartIndex = 4;
5648       if (Version >= 4) {
5649         RawFunFlags = Record[3];
5650         NumRefs = Record[4];
5651         RefListStartIndex = 5;
5652         if (Version >= 5) {
5653           NumImmutableRefs = Record[5];
5654           RefListStartIndex = 6;
5655         }
5656       }
5657 
5658       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5659       // The module path string ref set in the summary must be owned by the
5660       // index's module string table. Since we don't have a module path
5661       // string table section in the per-module index, we create a single
5662       // module path string table entry with an empty (0) ID to take
5663       // ownership.
5664       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5665       assert(Record.size() >= RefListStartIndex + NumRefs &&
5666              "Record size inconsistent with number of references");
5667       std::vector<ValueInfo> Refs = makeRefList(
5668           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5669       bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE);
5670       bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF);
5671       std::vector<FunctionSummary::EdgeTy> Calls = makeCallList(
5672           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5673           IsOldProfileFormat, HasProfile, HasRelBF);
5674       setImmutableRefs(Refs, NumImmutableRefs);
5675       auto FS = llvm::make_unique<FunctionSummary>(
5676           Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0,
5677           std::move(Refs), std::move(Calls), std::move(PendingTypeTests),
5678           std::move(PendingTypeTestAssumeVCalls),
5679           std::move(PendingTypeCheckedLoadVCalls),
5680           std::move(PendingTypeTestAssumeConstVCalls),
5681           std::move(PendingTypeCheckedLoadConstVCalls));
5682       PendingTypeTests.clear();
5683       PendingTypeTestAssumeVCalls.clear();
5684       PendingTypeCheckedLoadVCalls.clear();
5685       PendingTypeTestAssumeConstVCalls.clear();
5686       PendingTypeCheckedLoadConstVCalls.clear();
5687       auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID);
5688       FS->setModulePath(getThisModule()->first());
5689       FS->setOriginalName(VIAndOriginalGUID.second);
5690       TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS));
5691       break;
5692     }
5693     // FS_ALIAS: [valueid, flags, valueid]
5694     // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as
5695     // they expect all aliasee summaries to be available.
5696     case bitc::FS_ALIAS: {
5697       unsigned ValueID = Record[0];
5698       uint64_t RawFlags = Record[1];
5699       unsigned AliaseeID = Record[2];
5700       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5701       auto AS = llvm::make_unique<AliasSummary>(Flags);
5702       // The module path string ref set in the summary must be owned by the
5703       // index's module string table. Since we don't have a module path
5704       // string table section in the per-module index, we create a single
5705       // module path string table entry with an empty (0) ID to take
5706       // ownership.
5707       AS->setModulePath(getThisModule()->first());
5708 
5709       auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first;
5710       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath);
5711       if (!AliaseeInModule)
5712         return error("Alias expects aliasee summary to be parsed");
5713       AS->setAliasee(AliaseeVI, AliaseeInModule);
5714 
5715       auto GUID = getValueInfoFromValueId(ValueID);
5716       AS->setOriginalName(GUID.second);
5717       TheIndex.addGlobalValueSummary(GUID.first, std::move(AS));
5718       break;
5719     }
5720     // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid]
5721     case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: {
5722       unsigned ValueID = Record[0];
5723       uint64_t RawFlags = Record[1];
5724       unsigned RefArrayStart = 2;
5725       GlobalVarSummary::GVarFlags GVF;
5726       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5727       if (Version >= 5) {
5728         GVF = getDecodedGVarFlags(Record[2]);
5729         RefArrayStart = 3;
5730       }
5731       std::vector<ValueInfo> Refs =
5732           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5733       auto FS =
5734           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5735       FS->setModulePath(getThisModule()->first());
5736       auto GUID = getValueInfoFromValueId(ValueID);
5737       FS->setOriginalName(GUID.second);
5738       TheIndex.addGlobalValueSummary(GUID.first, std::move(FS));
5739       break;
5740     }
5741     // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs,
5742     //               numrefs x valueid, n x (valueid)]
5743     // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs,
5744     //                       numrefs x valueid, n x (valueid, hotness)]
5745     case bitc::FS_COMBINED:
5746     case bitc::FS_COMBINED_PROFILE: {
5747       unsigned ValueID = Record[0];
5748       uint64_t ModuleId = Record[1];
5749       uint64_t RawFlags = Record[2];
5750       unsigned InstCount = Record[3];
5751       uint64_t RawFunFlags = 0;
5752       uint64_t EntryCount = 0;
5753       unsigned NumRefs = Record[4];
5754       unsigned NumImmutableRefs = 0;
5755       int RefListStartIndex = 5;
5756 
5757       if (Version >= 4) {
5758         RawFunFlags = Record[4];
5759         RefListStartIndex = 6;
5760         size_t NumRefsIndex = 5;
5761         if (Version >= 5) {
5762           RefListStartIndex = 7;
5763           if (Version >= 6) {
5764             NumRefsIndex = 6;
5765             EntryCount = Record[5];
5766             RefListStartIndex = 8;
5767           }
5768           NumImmutableRefs = Record[RefListStartIndex - 1];
5769         }
5770         NumRefs = Record[NumRefsIndex];
5771       }
5772 
5773       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5774       int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs;
5775       assert(Record.size() >= RefListStartIndex + NumRefs &&
5776              "Record size inconsistent with number of references");
5777       std::vector<ValueInfo> Refs = makeRefList(
5778           ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs));
5779       bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE);
5780       std::vector<FunctionSummary::EdgeTy> Edges = makeCallList(
5781           ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex),
5782           IsOldProfileFormat, HasProfile, false);
5783       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5784       setImmutableRefs(Refs, NumImmutableRefs);
5785       auto FS = llvm::make_unique<FunctionSummary>(
5786           Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount,
5787           std::move(Refs), std::move(Edges), std::move(PendingTypeTests),
5788           std::move(PendingTypeTestAssumeVCalls),
5789           std::move(PendingTypeCheckedLoadVCalls),
5790           std::move(PendingTypeTestAssumeConstVCalls),
5791           std::move(PendingTypeCheckedLoadConstVCalls));
5792       PendingTypeTests.clear();
5793       PendingTypeTestAssumeVCalls.clear();
5794       PendingTypeCheckedLoadVCalls.clear();
5795       PendingTypeTestAssumeConstVCalls.clear();
5796       PendingTypeCheckedLoadConstVCalls.clear();
5797       LastSeenSummary = FS.get();
5798       LastSeenGUID = VI.getGUID();
5799       FS->setModulePath(ModuleIdMap[ModuleId]);
5800       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5801       break;
5802     }
5803     // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid]
5804     // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as
5805     // they expect all aliasee summaries to be available.
5806     case bitc::FS_COMBINED_ALIAS: {
5807       unsigned ValueID = Record[0];
5808       uint64_t ModuleId = Record[1];
5809       uint64_t RawFlags = Record[2];
5810       unsigned AliaseeValueId = Record[3];
5811       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5812       auto AS = llvm::make_unique<AliasSummary>(Flags);
5813       LastSeenSummary = AS.get();
5814       AS->setModulePath(ModuleIdMap[ModuleId]);
5815 
5816       auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first;
5817       auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath());
5818       AS->setAliasee(AliaseeVI, AliaseeInModule);
5819 
5820       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5821       LastSeenGUID = VI.getGUID();
5822       TheIndex.addGlobalValueSummary(VI, std::move(AS));
5823       break;
5824     }
5825     // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid]
5826     case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: {
5827       unsigned ValueID = Record[0];
5828       uint64_t ModuleId = Record[1];
5829       uint64_t RawFlags = Record[2];
5830       unsigned RefArrayStart = 3;
5831       GlobalVarSummary::GVarFlags GVF;
5832       auto Flags = getDecodedGVSummaryFlags(RawFlags, Version);
5833       if (Version >= 5) {
5834         GVF = getDecodedGVarFlags(Record[3]);
5835         RefArrayStart = 4;
5836       }
5837       std::vector<ValueInfo> Refs =
5838           makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart));
5839       auto FS =
5840           llvm::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs));
5841       LastSeenSummary = FS.get();
5842       FS->setModulePath(ModuleIdMap[ModuleId]);
5843       ValueInfo VI = getValueInfoFromValueId(ValueID).first;
5844       LastSeenGUID = VI.getGUID();
5845       TheIndex.addGlobalValueSummary(VI, std::move(FS));
5846       break;
5847     }
5848     // FS_COMBINED_ORIGINAL_NAME: [original_name]
5849     case bitc::FS_COMBINED_ORIGINAL_NAME: {
5850       uint64_t OriginalName = Record[0];
5851       if (!LastSeenSummary)
5852         return error("Name attachment that does not follow a combined record");
5853       LastSeenSummary->setOriginalName(OriginalName);
5854       TheIndex.addOriginalName(LastSeenGUID, OriginalName);
5855       // Reset the LastSeenSummary
5856       LastSeenSummary = nullptr;
5857       LastSeenGUID = 0;
5858       break;
5859     }
5860     case bitc::FS_TYPE_TESTS:
5861       assert(PendingTypeTests.empty());
5862       PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(),
5863                               Record.end());
5864       break;
5865 
5866     case bitc::FS_TYPE_TEST_ASSUME_VCALLS:
5867       assert(PendingTypeTestAssumeVCalls.empty());
5868       for (unsigned I = 0; I != Record.size(); I += 2)
5869         PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]});
5870       break;
5871 
5872     case bitc::FS_TYPE_CHECKED_LOAD_VCALLS:
5873       assert(PendingTypeCheckedLoadVCalls.empty());
5874       for (unsigned I = 0; I != Record.size(); I += 2)
5875         PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]});
5876       break;
5877 
5878     case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL:
5879       PendingTypeTestAssumeConstVCalls.push_back(
5880           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5881       break;
5882 
5883     case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL:
5884       PendingTypeCheckedLoadConstVCalls.push_back(
5885           {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}});
5886       break;
5887 
5888     case bitc::FS_CFI_FUNCTION_DEFS: {
5889       std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs();
5890       for (unsigned I = 0; I != Record.size(); I += 2)
5891         CfiFunctionDefs.insert(
5892             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5893       break;
5894     }
5895 
5896     case bitc::FS_CFI_FUNCTION_DECLS: {
5897       std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls();
5898       for (unsigned I = 0; I != Record.size(); I += 2)
5899         CfiFunctionDecls.insert(
5900             {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])});
5901       break;
5902     }
5903 
5904     case bitc::FS_TYPE_ID:
5905       parseTypeIdSummaryRecord(Record, Strtab, TheIndex);
5906       break;
5907     }
5908   }
5909   llvm_unreachable("Exit infinite loop");
5910 }
5911 
5912 // Parse the  module string table block into the Index.
5913 // This populates the ModulePathStringTable map in the index.
5914 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() {
5915   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID))
5916     return Err;
5917 
5918   SmallVector<uint64_t, 64> Record;
5919 
5920   SmallString<128> ModulePath;
5921   ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr;
5922 
5923   while (true) {
5924     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
5925     if (!MaybeEntry)
5926       return MaybeEntry.takeError();
5927     BitstreamEntry Entry = MaybeEntry.get();
5928 
5929     switch (Entry.Kind) {
5930     case BitstreamEntry::SubBlock: // Handled for us already.
5931     case BitstreamEntry::Error:
5932       return error("Malformed block");
5933     case BitstreamEntry::EndBlock:
5934       return Error::success();
5935     case BitstreamEntry::Record:
5936       // The interesting case.
5937       break;
5938     }
5939 
5940     Record.clear();
5941     Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record);
5942     if (!MaybeRecord)
5943       return MaybeRecord.takeError();
5944     switch (MaybeRecord.get()) {
5945     default: // Default behavior: ignore.
5946       break;
5947     case bitc::MST_CODE_ENTRY: {
5948       // MST_ENTRY: [modid, namechar x N]
5949       uint64_t ModuleId = Record[0];
5950 
5951       if (convertToString(Record, 1, ModulePath))
5952         return error("Invalid record");
5953 
5954       LastSeenModule = TheIndex.addModule(ModulePath, ModuleId);
5955       ModuleIdMap[ModuleId] = LastSeenModule->first();
5956 
5957       ModulePath.clear();
5958       break;
5959     }
5960     /// MST_CODE_HASH: [5*i32]
5961     case bitc::MST_CODE_HASH: {
5962       if (Record.size() != 5)
5963         return error("Invalid hash length " + Twine(Record.size()).str());
5964       if (!LastSeenModule)
5965         return error("Invalid hash that does not follow a module path");
5966       int Pos = 0;
5967       for (auto &Val : Record) {
5968         assert(!(Val >> 32) && "Unexpected high bits set");
5969         LastSeenModule->second.second[Pos++] = Val;
5970       }
5971       // Reset LastSeenModule to avoid overriding the hash unexpectedly.
5972       LastSeenModule = nullptr;
5973       break;
5974     }
5975     }
5976   }
5977   llvm_unreachable("Exit infinite loop");
5978 }
5979 
5980 namespace {
5981 
5982 // FIXME: This class is only here to support the transition to llvm::Error. It
5983 // will be removed once this transition is complete. Clients should prefer to
5984 // deal with the Error value directly, rather than converting to error_code.
5985 class BitcodeErrorCategoryType : public std::error_category {
5986   const char *name() const noexcept override {
5987     return "llvm.bitcode";
5988   }
5989 
5990   std::string message(int IE) const override {
5991     BitcodeError E = static_cast<BitcodeError>(IE);
5992     switch (E) {
5993     case BitcodeError::CorruptedBitcode:
5994       return "Corrupted bitcode";
5995     }
5996     llvm_unreachable("Unknown error type!");
5997   }
5998 };
5999 
6000 } // end anonymous namespace
6001 
6002 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory;
6003 
6004 const std::error_category &llvm::BitcodeErrorCategory() {
6005   return *ErrorCategory;
6006 }
6007 
6008 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream,
6009                                             unsigned Block, unsigned RecordID) {
6010   if (Error Err = Stream.EnterSubBlock(Block))
6011     return std::move(Err);
6012 
6013   StringRef Strtab;
6014   while (true) {
6015     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6016     if (!MaybeEntry)
6017       return MaybeEntry.takeError();
6018     llvm::BitstreamEntry Entry = MaybeEntry.get();
6019 
6020     switch (Entry.Kind) {
6021     case BitstreamEntry::EndBlock:
6022       return Strtab;
6023 
6024     case BitstreamEntry::Error:
6025       return error("Malformed block");
6026 
6027     case BitstreamEntry::SubBlock:
6028       if (Error Err = Stream.SkipBlock())
6029         return std::move(Err);
6030       break;
6031 
6032     case BitstreamEntry::Record:
6033       StringRef Blob;
6034       SmallVector<uint64_t, 1> Record;
6035       Expected<unsigned> MaybeRecord =
6036           Stream.readRecord(Entry.ID, Record, &Blob);
6037       if (!MaybeRecord)
6038         return MaybeRecord.takeError();
6039       if (MaybeRecord.get() == RecordID)
6040         Strtab = Blob;
6041       break;
6042     }
6043   }
6044 }
6045 
6046 //===----------------------------------------------------------------------===//
6047 // External interface
6048 //===----------------------------------------------------------------------===//
6049 
6050 Expected<std::vector<BitcodeModule>>
6051 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) {
6052   auto FOrErr = getBitcodeFileContents(Buffer);
6053   if (!FOrErr)
6054     return FOrErr.takeError();
6055   return std::move(FOrErr->Mods);
6056 }
6057 
6058 Expected<BitcodeFileContents>
6059 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) {
6060   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6061   if (!StreamOrErr)
6062     return StreamOrErr.takeError();
6063   BitstreamCursor &Stream = *StreamOrErr;
6064 
6065   BitcodeFileContents F;
6066   while (true) {
6067     uint64_t BCBegin = Stream.getCurrentByteNo();
6068 
6069     // We may be consuming bitcode from a client that leaves garbage at the end
6070     // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to
6071     // the end that there cannot possibly be another module, stop looking.
6072     if (BCBegin + 8 >= Stream.getBitcodeBytes().size())
6073       return F;
6074 
6075     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6076     if (!MaybeEntry)
6077       return MaybeEntry.takeError();
6078     llvm::BitstreamEntry Entry = MaybeEntry.get();
6079 
6080     switch (Entry.Kind) {
6081     case BitstreamEntry::EndBlock:
6082     case BitstreamEntry::Error:
6083       return error("Malformed block");
6084 
6085     case BitstreamEntry::SubBlock: {
6086       uint64_t IdentificationBit = -1ull;
6087       if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) {
6088         IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6089         if (Error Err = Stream.SkipBlock())
6090           return std::move(Err);
6091 
6092         {
6093           Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6094           if (!MaybeEntry)
6095             return MaybeEntry.takeError();
6096           Entry = MaybeEntry.get();
6097         }
6098 
6099         if (Entry.Kind != BitstreamEntry::SubBlock ||
6100             Entry.ID != bitc::MODULE_BLOCK_ID)
6101           return error("Malformed block");
6102       }
6103 
6104       if (Entry.ID == bitc::MODULE_BLOCK_ID) {
6105         uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8;
6106         if (Error Err = Stream.SkipBlock())
6107           return std::move(Err);
6108 
6109         F.Mods.push_back({Stream.getBitcodeBytes().slice(
6110                               BCBegin, Stream.getCurrentByteNo() - BCBegin),
6111                           Buffer.getBufferIdentifier(), IdentificationBit,
6112                           ModuleBit});
6113         continue;
6114       }
6115 
6116       if (Entry.ID == bitc::STRTAB_BLOCK_ID) {
6117         Expected<StringRef> Strtab =
6118             readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB);
6119         if (!Strtab)
6120           return Strtab.takeError();
6121         // This string table is used by every preceding bitcode module that does
6122         // not have its own string table. A bitcode file may have multiple
6123         // string tables if it was created by binary concatenation, for example
6124         // with "llvm-cat -b".
6125         for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) {
6126           if (!I->Strtab.empty())
6127             break;
6128           I->Strtab = *Strtab;
6129         }
6130         // Similarly, the string table is used by every preceding symbol table;
6131         // normally there will be just one unless the bitcode file was created
6132         // by binary concatenation.
6133         if (!F.Symtab.empty() && F.StrtabForSymtab.empty())
6134           F.StrtabForSymtab = *Strtab;
6135         continue;
6136       }
6137 
6138       if (Entry.ID == bitc::SYMTAB_BLOCK_ID) {
6139         Expected<StringRef> SymtabOrErr =
6140             readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB);
6141         if (!SymtabOrErr)
6142           return SymtabOrErr.takeError();
6143 
6144         // We can expect the bitcode file to have multiple symbol tables if it
6145         // was created by binary concatenation. In that case we silently
6146         // ignore any subsequent symbol tables, which is fine because this is a
6147         // low level function. The client is expected to notice that the number
6148         // of modules in the symbol table does not match the number of modules
6149         // in the input file and regenerate the symbol table.
6150         if (F.Symtab.empty())
6151           F.Symtab = *SymtabOrErr;
6152         continue;
6153       }
6154 
6155       if (Error Err = Stream.SkipBlock())
6156         return std::move(Err);
6157       continue;
6158     }
6159     case BitstreamEntry::Record:
6160       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6161         continue;
6162       else
6163         return StreamFailed.takeError();
6164     }
6165   }
6166 }
6167 
6168 /// Get a lazy one-at-time loading module from bitcode.
6169 ///
6170 /// This isn't always used in a lazy context.  In particular, it's also used by
6171 /// \a parseModule().  If this is truly lazy, then we need to eagerly pull
6172 /// in forward-referenced functions from block address references.
6173 ///
6174 /// \param[in] MaterializeAll Set to \c true if we should materialize
6175 /// everything.
6176 Expected<std::unique_ptr<Module>>
6177 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll,
6178                              bool ShouldLazyLoadMetadata, bool IsImporting) {
6179   BitstreamCursor Stream(Buffer);
6180 
6181   std::string ProducerIdentification;
6182   if (IdentificationBit != -1ull) {
6183     if (Error JumpFailed = Stream.JumpToBit(IdentificationBit))
6184       return std::move(JumpFailed);
6185     Expected<std::string> ProducerIdentificationOrErr =
6186         readIdentificationBlock(Stream);
6187     if (!ProducerIdentificationOrErr)
6188       return ProducerIdentificationOrErr.takeError();
6189 
6190     ProducerIdentification = *ProducerIdentificationOrErr;
6191   }
6192 
6193   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6194     return std::move(JumpFailed);
6195   auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification,
6196                               Context);
6197 
6198   std::unique_ptr<Module> M =
6199       llvm::make_unique<Module>(ModuleIdentifier, Context);
6200   M->setMaterializer(R);
6201 
6202   // Delay parsing Metadata if ShouldLazyLoadMetadata is true.
6203   if (Error Err =
6204           R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting))
6205     return std::move(Err);
6206 
6207   if (MaterializeAll) {
6208     // Read in the entire module, and destroy the BitcodeReader.
6209     if (Error Err = M->materializeAll())
6210       return std::move(Err);
6211   } else {
6212     // Resolve forward references from blockaddresses.
6213     if (Error Err = R->materializeForwardReferencedFunctions())
6214       return std::move(Err);
6215   }
6216   return std::move(M);
6217 }
6218 
6219 Expected<std::unique_ptr<Module>>
6220 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata,
6221                              bool IsImporting) {
6222   return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting);
6223 }
6224 
6225 // Parse the specified bitcode buffer and merge the index into CombinedIndex.
6226 // We don't use ModuleIdentifier here because the client may need to control the
6227 // module path used in the combined summary (e.g. when reading summaries for
6228 // regular LTO modules).
6229 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex,
6230                                  StringRef ModulePath, uint64_t ModuleId) {
6231   BitstreamCursor Stream(Buffer);
6232   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6233     return JumpFailed;
6234 
6235   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex,
6236                                     ModulePath, ModuleId);
6237   return R.parseModule();
6238 }
6239 
6240 // Parse the specified bitcode buffer, returning the function info index.
6241 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() {
6242   BitstreamCursor Stream(Buffer);
6243   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6244     return std::move(JumpFailed);
6245 
6246   auto Index = llvm::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false);
6247   ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index,
6248                                     ModuleIdentifier, 0);
6249 
6250   if (Error Err = R.parseModule())
6251     return std::move(Err);
6252 
6253   return std::move(Index);
6254 }
6255 
6256 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream,
6257                                                 unsigned ID) {
6258   if (Error Err = Stream.EnterSubBlock(ID))
6259     return std::move(Err);
6260   SmallVector<uint64_t, 64> Record;
6261 
6262   while (true) {
6263     Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks();
6264     if (!MaybeEntry)
6265       return MaybeEntry.takeError();
6266     BitstreamEntry Entry = MaybeEntry.get();
6267 
6268     switch (Entry.Kind) {
6269     case BitstreamEntry::SubBlock: // Handled for us already.
6270     case BitstreamEntry::Error:
6271       return error("Malformed block");
6272     case BitstreamEntry::EndBlock:
6273       // If no flags record found, conservatively return true to mimic
6274       // behavior before this flag was added.
6275       return true;
6276     case BitstreamEntry::Record:
6277       // The interesting case.
6278       break;
6279     }
6280 
6281     // Look for the FS_FLAGS record.
6282     Record.clear();
6283     Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record);
6284     if (!MaybeBitCode)
6285       return MaybeBitCode.takeError();
6286     switch (MaybeBitCode.get()) {
6287     default: // Default behavior: ignore.
6288       break;
6289     case bitc::FS_FLAGS: { // [flags]
6290       uint64_t Flags = Record[0];
6291       // Scan flags.
6292       assert(Flags <= 0x1f && "Unexpected bits in flag");
6293 
6294       return Flags & 0x8;
6295     }
6296     }
6297   }
6298   llvm_unreachable("Exit infinite loop");
6299 }
6300 
6301 // Check if the given bitcode buffer contains a global value summary block.
6302 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() {
6303   BitstreamCursor Stream(Buffer);
6304   if (Error JumpFailed = Stream.JumpToBit(ModuleBit))
6305     return std::move(JumpFailed);
6306 
6307   if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID))
6308     return std::move(Err);
6309 
6310   while (true) {
6311     Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance();
6312     if (!MaybeEntry)
6313       return MaybeEntry.takeError();
6314     llvm::BitstreamEntry Entry = MaybeEntry.get();
6315 
6316     switch (Entry.Kind) {
6317     case BitstreamEntry::Error:
6318       return error("Malformed block");
6319     case BitstreamEntry::EndBlock:
6320       return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false,
6321                             /*EnableSplitLTOUnit=*/false};
6322 
6323     case BitstreamEntry::SubBlock:
6324       if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) {
6325         Expected<bool> EnableSplitLTOUnit =
6326             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6327         if (!EnableSplitLTOUnit)
6328           return EnableSplitLTOUnit.takeError();
6329         return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true,
6330                               *EnableSplitLTOUnit};
6331       }
6332 
6333       if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) {
6334         Expected<bool> EnableSplitLTOUnit =
6335             getEnableSplitLTOUnitFlag(Stream, Entry.ID);
6336         if (!EnableSplitLTOUnit)
6337           return EnableSplitLTOUnit.takeError();
6338         return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true,
6339                               *EnableSplitLTOUnit};
6340       }
6341 
6342       // Ignore other sub-blocks.
6343       if (Error Err = Stream.SkipBlock())
6344         return std::move(Err);
6345       continue;
6346 
6347     case BitstreamEntry::Record:
6348       if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID))
6349         continue;
6350       else
6351         return StreamFailed.takeError();
6352     }
6353   }
6354 }
6355 
6356 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) {
6357   Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer);
6358   if (!MsOrErr)
6359     return MsOrErr.takeError();
6360 
6361   if (MsOrErr->size() != 1)
6362     return error("Expected a single module");
6363 
6364   return (*MsOrErr)[0];
6365 }
6366 
6367 Expected<std::unique_ptr<Module>>
6368 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context,
6369                            bool ShouldLazyLoadMetadata, bool IsImporting) {
6370   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6371   if (!BM)
6372     return BM.takeError();
6373 
6374   return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting);
6375 }
6376 
6377 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule(
6378     std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context,
6379     bool ShouldLazyLoadMetadata, bool IsImporting) {
6380   auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata,
6381                                      IsImporting);
6382   if (MOrErr)
6383     (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer));
6384   return MOrErr;
6385 }
6386 
6387 Expected<std::unique_ptr<Module>>
6388 BitcodeModule::parseModule(LLVMContext &Context) {
6389   return getModuleImpl(Context, true, false, false);
6390   // TODO: Restore the use-lists to the in-memory state when the bitcode was
6391   // written.  We must defer until the Module has been fully materialized.
6392 }
6393 
6394 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer,
6395                                                          LLVMContext &Context) {
6396   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6397   if (!BM)
6398     return BM.takeError();
6399 
6400   return BM->parseModule(Context);
6401 }
6402 
6403 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) {
6404   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6405   if (!StreamOrErr)
6406     return StreamOrErr.takeError();
6407 
6408   return readTriple(*StreamOrErr);
6409 }
6410 
6411 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) {
6412   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6413   if (!StreamOrErr)
6414     return StreamOrErr.takeError();
6415 
6416   return hasObjCCategory(*StreamOrErr);
6417 }
6418 
6419 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) {
6420   Expected<BitstreamCursor> StreamOrErr = initStream(Buffer);
6421   if (!StreamOrErr)
6422     return StreamOrErr.takeError();
6423 
6424   return readIdentificationCode(*StreamOrErr);
6425 }
6426 
6427 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer,
6428                                    ModuleSummaryIndex &CombinedIndex,
6429                                    uint64_t ModuleId) {
6430   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6431   if (!BM)
6432     return BM.takeError();
6433 
6434   return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId);
6435 }
6436 
6437 Expected<std::unique_ptr<ModuleSummaryIndex>>
6438 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) {
6439   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6440   if (!BM)
6441     return BM.takeError();
6442 
6443   return BM->getSummary();
6444 }
6445 
6446 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) {
6447   Expected<BitcodeModule> BM = getSingleModule(Buffer);
6448   if (!BM)
6449     return BM.takeError();
6450 
6451   return BM->getLTOInfo();
6452 }
6453 
6454 Expected<std::unique_ptr<ModuleSummaryIndex>>
6455 llvm::getModuleSummaryIndexForFile(StringRef Path,
6456                                    bool IgnoreEmptyThinLTOIndexFile) {
6457   ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr =
6458       MemoryBuffer::getFileOrSTDIN(Path);
6459   if (!FileOrErr)
6460     return errorCodeToError(FileOrErr.getError());
6461   if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize())
6462     return nullptr;
6463   return getModuleSummaryIndex(**FileOrErr);
6464 }
6465