1 //===- BitcodeReader.cpp - Internal BitcodeReader implementation ----------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "llvm/Bitcode/BitcodeReader.h" 10 #include "MetadataLoader.h" 11 #include "ValueList.h" 12 #include "llvm/ADT/APFloat.h" 13 #include "llvm/ADT/APInt.h" 14 #include "llvm/ADT/ArrayRef.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/ADT/Triple.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Bitstream/BitstreamReader.h" 24 #include "llvm/Bitcode/LLVMBitCodes.h" 25 #include "llvm/Config/llvm-config.h" 26 #include "llvm/IR/Argument.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/AutoUpgrade.h" 29 #include "llvm/IR/BasicBlock.h" 30 #include "llvm/IR/CallSite.h" 31 #include "llvm/IR/CallingConv.h" 32 #include "llvm/IR/Comdat.h" 33 #include "llvm/IR/Constant.h" 34 #include "llvm/IR/Constants.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/DebugInfo.h" 37 #include "llvm/IR/DebugInfoMetadata.h" 38 #include "llvm/IR/DebugLoc.h" 39 #include "llvm/IR/DerivedTypes.h" 40 #include "llvm/IR/Function.h" 41 #include "llvm/IR/GVMaterializer.h" 42 #include "llvm/IR/GlobalAlias.h" 43 #include "llvm/IR/GlobalIFunc.h" 44 #include "llvm/IR/GlobalIndirectSymbol.h" 45 #include "llvm/IR/GlobalObject.h" 46 #include "llvm/IR/GlobalValue.h" 47 #include "llvm/IR/GlobalVariable.h" 48 #include "llvm/IR/InlineAsm.h" 49 #include "llvm/IR/InstIterator.h" 50 #include "llvm/IR/InstrTypes.h" 51 #include "llvm/IR/Instruction.h" 52 #include "llvm/IR/Instructions.h" 53 #include "llvm/IR/Intrinsics.h" 54 #include "llvm/IR/LLVMContext.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/ModuleSummaryIndex.h" 58 #include "llvm/IR/Operator.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/Verifier.h" 62 #include "llvm/Support/AtomicOrdering.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/Debug.h" 67 #include "llvm/Support/Error.h" 68 #include "llvm/Support/ErrorHandling.h" 69 #include "llvm/Support/ErrorOr.h" 70 #include "llvm/Support/ManagedStatic.h" 71 #include "llvm/Support/MathExtras.h" 72 #include "llvm/Support/MemoryBuffer.h" 73 #include "llvm/Support/raw_ostream.h" 74 #include <algorithm> 75 #include <cassert> 76 #include <cstddef> 77 #include <cstdint> 78 #include <deque> 79 #include <map> 80 #include <memory> 81 #include <set> 82 #include <string> 83 #include <system_error> 84 #include <tuple> 85 #include <utility> 86 #include <vector> 87 88 using namespace llvm; 89 90 static cl::opt<bool> PrintSummaryGUIDs( 91 "print-summary-global-ids", cl::init(false), cl::Hidden, 92 cl::desc( 93 "Print the global id for each value when reading the module summary")); 94 95 namespace { 96 97 enum { 98 SWITCH_INST_MAGIC = 0x4B5 // May 2012 => 1205 => Hex 99 }; 100 101 } // end anonymous namespace 102 103 static Error error(const Twine &Message) { 104 return make_error<StringError>( 105 Message, make_error_code(BitcodeError::CorruptedBitcode)); 106 } 107 108 static Error hasInvalidBitcodeHeader(BitstreamCursor &Stream) { 109 if (!Stream.canSkipToPos(4)) 110 return createStringError(std::errc::illegal_byte_sequence, 111 "file too small to contain bitcode header"); 112 for (unsigned C : {'B', 'C'}) 113 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(8)) { 114 if (Res.get() != C) 115 return createStringError(std::errc::illegal_byte_sequence, 116 "file doesn't start with bitcode header"); 117 } else 118 return Res.takeError(); 119 for (unsigned C : {0x0, 0xC, 0xE, 0xD}) 120 if (Expected<SimpleBitstreamCursor::word_t> Res = Stream.Read(4)) { 121 if (Res.get() != C) 122 return createStringError(std::errc::illegal_byte_sequence, 123 "file doesn't start with bitcode header"); 124 } else 125 return Res.takeError(); 126 return Error::success(); 127 } 128 129 static Expected<BitstreamCursor> initStream(MemoryBufferRef Buffer) { 130 const unsigned char *BufPtr = (const unsigned char *)Buffer.getBufferStart(); 131 const unsigned char *BufEnd = BufPtr + Buffer.getBufferSize(); 132 133 if (Buffer.getBufferSize() & 3) 134 return error("Invalid bitcode signature"); 135 136 // If we have a wrapper header, parse it and ignore the non-bc file contents. 137 // The magic number is 0x0B17C0DE stored in little endian. 138 if (isBitcodeWrapper(BufPtr, BufEnd)) 139 if (SkipBitcodeWrapperHeader(BufPtr, BufEnd, true)) 140 return error("Invalid bitcode wrapper header"); 141 142 BitstreamCursor Stream(ArrayRef<uint8_t>(BufPtr, BufEnd)); 143 if (Error Err = hasInvalidBitcodeHeader(Stream)) 144 return std::move(Err); 145 146 return std::move(Stream); 147 } 148 149 /// Convert a string from a record into an std::string, return true on failure. 150 template <typename StrTy> 151 static bool convertToString(ArrayRef<uint64_t> Record, unsigned Idx, 152 StrTy &Result) { 153 if (Idx > Record.size()) 154 return true; 155 156 for (unsigned i = Idx, e = Record.size(); i != e; ++i) 157 Result += (char)Record[i]; 158 return false; 159 } 160 161 // Strip all the TBAA attachment for the module. 162 static void stripTBAA(Module *M) { 163 for (auto &F : *M) { 164 if (F.isMaterializable()) 165 continue; 166 for (auto &I : instructions(F)) 167 I.setMetadata(LLVMContext::MD_tbaa, nullptr); 168 } 169 } 170 171 /// Read the "IDENTIFICATION_BLOCK_ID" block, do some basic enforcement on the 172 /// "epoch" encoded in the bitcode, and return the producer name if any. 173 static Expected<std::string> readIdentificationBlock(BitstreamCursor &Stream) { 174 if (Error Err = Stream.EnterSubBlock(bitc::IDENTIFICATION_BLOCK_ID)) 175 return std::move(Err); 176 177 // Read all the records. 178 SmallVector<uint64_t, 64> Record; 179 180 std::string ProducerIdentification; 181 182 while (true) { 183 BitstreamEntry Entry; 184 if (Expected<BitstreamEntry> Res = Stream.advance()) 185 Entry = Res.get(); 186 else 187 return Res.takeError(); 188 189 switch (Entry.Kind) { 190 default: 191 case BitstreamEntry::Error: 192 return error("Malformed block"); 193 case BitstreamEntry::EndBlock: 194 return ProducerIdentification; 195 case BitstreamEntry::Record: 196 // The interesting case. 197 break; 198 } 199 200 // Read a record. 201 Record.clear(); 202 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 203 if (!MaybeBitCode) 204 return MaybeBitCode.takeError(); 205 switch (MaybeBitCode.get()) { 206 default: // Default behavior: reject 207 return error("Invalid value"); 208 case bitc::IDENTIFICATION_CODE_STRING: // IDENTIFICATION: [strchr x N] 209 convertToString(Record, 0, ProducerIdentification); 210 break; 211 case bitc::IDENTIFICATION_CODE_EPOCH: { // EPOCH: [epoch#] 212 unsigned epoch = (unsigned)Record[0]; 213 if (epoch != bitc::BITCODE_CURRENT_EPOCH) { 214 return error( 215 Twine("Incompatible epoch: Bitcode '") + Twine(epoch) + 216 "' vs current: '" + Twine(bitc::BITCODE_CURRENT_EPOCH) + "'"); 217 } 218 } 219 } 220 } 221 } 222 223 static Expected<std::string> readIdentificationCode(BitstreamCursor &Stream) { 224 // We expect a number of well-defined blocks, though we don't necessarily 225 // need to understand them all. 226 while (true) { 227 if (Stream.AtEndOfStream()) 228 return ""; 229 230 BitstreamEntry Entry; 231 if (Expected<BitstreamEntry> Res = Stream.advance()) 232 Entry = std::move(Res.get()); 233 else 234 return Res.takeError(); 235 236 switch (Entry.Kind) { 237 case BitstreamEntry::EndBlock: 238 case BitstreamEntry::Error: 239 return error("Malformed block"); 240 241 case BitstreamEntry::SubBlock: 242 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) 243 return readIdentificationBlock(Stream); 244 245 // Ignore other sub-blocks. 246 if (Error Err = Stream.SkipBlock()) 247 return std::move(Err); 248 continue; 249 case BitstreamEntry::Record: 250 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 251 continue; 252 else 253 return Skipped.takeError(); 254 } 255 } 256 } 257 258 static Expected<bool> hasObjCCategoryInModule(BitstreamCursor &Stream) { 259 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 260 return std::move(Err); 261 262 SmallVector<uint64_t, 64> Record; 263 // Read all the records for this module. 264 265 while (true) { 266 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 267 if (!MaybeEntry) 268 return MaybeEntry.takeError(); 269 BitstreamEntry Entry = MaybeEntry.get(); 270 271 switch (Entry.Kind) { 272 case BitstreamEntry::SubBlock: // Handled for us already. 273 case BitstreamEntry::Error: 274 return error("Malformed block"); 275 case BitstreamEntry::EndBlock: 276 return false; 277 case BitstreamEntry::Record: 278 // The interesting case. 279 break; 280 } 281 282 // Read a record. 283 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 284 if (!MaybeRecord) 285 return MaybeRecord.takeError(); 286 switch (MaybeRecord.get()) { 287 default: 288 break; // Default behavior, ignore unknown content. 289 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 290 std::string S; 291 if (convertToString(Record, 0, S)) 292 return error("Invalid record"); 293 // Check for the i386 and other (x86_64, ARM) conventions 294 if (S.find("__DATA,__objc_catlist") != std::string::npos || 295 S.find("__OBJC,__category") != std::string::npos) 296 return true; 297 break; 298 } 299 } 300 Record.clear(); 301 } 302 llvm_unreachable("Exit infinite loop"); 303 } 304 305 static Expected<bool> hasObjCCategory(BitstreamCursor &Stream) { 306 // We expect a number of well-defined blocks, though we don't necessarily 307 // need to understand them all. 308 while (true) { 309 BitstreamEntry Entry; 310 if (Expected<BitstreamEntry> Res = Stream.advance()) 311 Entry = std::move(Res.get()); 312 else 313 return Res.takeError(); 314 315 switch (Entry.Kind) { 316 case BitstreamEntry::Error: 317 return error("Malformed block"); 318 case BitstreamEntry::EndBlock: 319 return false; 320 321 case BitstreamEntry::SubBlock: 322 if (Entry.ID == bitc::MODULE_BLOCK_ID) 323 return hasObjCCategoryInModule(Stream); 324 325 // Ignore other sub-blocks. 326 if (Error Err = Stream.SkipBlock()) 327 return std::move(Err); 328 continue; 329 330 case BitstreamEntry::Record: 331 if (Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 332 continue; 333 else 334 return Skipped.takeError(); 335 } 336 } 337 } 338 339 static Expected<std::string> readModuleTriple(BitstreamCursor &Stream) { 340 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 341 return std::move(Err); 342 343 SmallVector<uint64_t, 64> Record; 344 345 std::string Triple; 346 347 // Read all the records for this module. 348 while (true) { 349 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 350 if (!MaybeEntry) 351 return MaybeEntry.takeError(); 352 BitstreamEntry Entry = MaybeEntry.get(); 353 354 switch (Entry.Kind) { 355 case BitstreamEntry::SubBlock: // Handled for us already. 356 case BitstreamEntry::Error: 357 return error("Malformed block"); 358 case BitstreamEntry::EndBlock: 359 return Triple; 360 case BitstreamEntry::Record: 361 // The interesting case. 362 break; 363 } 364 365 // Read a record. 366 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 367 if (!MaybeRecord) 368 return MaybeRecord.takeError(); 369 switch (MaybeRecord.get()) { 370 default: break; // Default behavior, ignore unknown content. 371 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 372 std::string S; 373 if (convertToString(Record, 0, S)) 374 return error("Invalid record"); 375 Triple = S; 376 break; 377 } 378 } 379 Record.clear(); 380 } 381 llvm_unreachable("Exit infinite loop"); 382 } 383 384 static Expected<std::string> readTriple(BitstreamCursor &Stream) { 385 // We expect a number of well-defined blocks, though we don't necessarily 386 // need to understand them all. 387 while (true) { 388 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 389 if (!MaybeEntry) 390 return MaybeEntry.takeError(); 391 BitstreamEntry Entry = MaybeEntry.get(); 392 393 switch (Entry.Kind) { 394 case BitstreamEntry::Error: 395 return error("Malformed block"); 396 case BitstreamEntry::EndBlock: 397 return ""; 398 399 case BitstreamEntry::SubBlock: 400 if (Entry.ID == bitc::MODULE_BLOCK_ID) 401 return readModuleTriple(Stream); 402 403 // Ignore other sub-blocks. 404 if (Error Err = Stream.SkipBlock()) 405 return std::move(Err); 406 continue; 407 408 case BitstreamEntry::Record: 409 if (llvm::Expected<unsigned> Skipped = Stream.skipRecord(Entry.ID)) 410 continue; 411 else 412 return Skipped.takeError(); 413 } 414 } 415 } 416 417 namespace { 418 419 class BitcodeReaderBase { 420 protected: 421 BitcodeReaderBase(BitstreamCursor Stream, StringRef Strtab) 422 : Stream(std::move(Stream)), Strtab(Strtab) { 423 this->Stream.setBlockInfo(&BlockInfo); 424 } 425 426 BitstreamBlockInfo BlockInfo; 427 BitstreamCursor Stream; 428 StringRef Strtab; 429 430 /// In version 2 of the bitcode we store names of global values and comdats in 431 /// a string table rather than in the VST. 432 bool UseStrtab = false; 433 434 Expected<unsigned> parseVersionRecord(ArrayRef<uint64_t> Record); 435 436 /// If this module uses a string table, pop the reference to the string table 437 /// and return the referenced string and the rest of the record. Otherwise 438 /// just return the record itself. 439 std::pair<StringRef, ArrayRef<uint64_t>> 440 readNameFromStrtab(ArrayRef<uint64_t> Record); 441 442 bool readBlockInfo(); 443 444 // Contains an arbitrary and optional string identifying the bitcode producer 445 std::string ProducerIdentification; 446 447 Error error(const Twine &Message); 448 }; 449 450 } // end anonymous namespace 451 452 Error BitcodeReaderBase::error(const Twine &Message) { 453 std::string FullMsg = Message.str(); 454 if (!ProducerIdentification.empty()) 455 FullMsg += " (Producer: '" + ProducerIdentification + "' Reader: 'LLVM " + 456 LLVM_VERSION_STRING "')"; 457 return ::error(FullMsg); 458 } 459 460 Expected<unsigned> 461 BitcodeReaderBase::parseVersionRecord(ArrayRef<uint64_t> Record) { 462 if (Record.empty()) 463 return error("Invalid record"); 464 unsigned ModuleVersion = Record[0]; 465 if (ModuleVersion > 2) 466 return error("Invalid value"); 467 UseStrtab = ModuleVersion >= 2; 468 return ModuleVersion; 469 } 470 471 std::pair<StringRef, ArrayRef<uint64_t>> 472 BitcodeReaderBase::readNameFromStrtab(ArrayRef<uint64_t> Record) { 473 if (!UseStrtab) 474 return {"", Record}; 475 // Invalid reference. Let the caller complain about the record being empty. 476 if (Record[0] + Record[1] > Strtab.size()) 477 return {"", {}}; 478 return {StringRef(Strtab.data() + Record[0], Record[1]), Record.slice(2)}; 479 } 480 481 namespace { 482 483 class BitcodeReader : public BitcodeReaderBase, public GVMaterializer { 484 LLVMContext &Context; 485 Module *TheModule = nullptr; 486 // Next offset to start scanning for lazy parsing of function bodies. 487 uint64_t NextUnreadBit = 0; 488 // Last function offset found in the VST. 489 uint64_t LastFunctionBlockBit = 0; 490 bool SeenValueSymbolTable = false; 491 uint64_t VSTOffset = 0; 492 493 std::vector<std::string> SectionTable; 494 std::vector<std::string> GCTable; 495 496 std::vector<Type*> TypeList; 497 DenseMap<Function *, FunctionType *> FunctionTypes; 498 BitcodeReaderValueList ValueList; 499 Optional<MetadataLoader> MDLoader; 500 std::vector<Comdat *> ComdatList; 501 SmallVector<Instruction *, 64> InstructionList; 502 503 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInits; 504 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> IndirectSymbolInits; 505 std::vector<std::pair<Function *, unsigned>> FunctionPrefixes; 506 std::vector<std::pair<Function *, unsigned>> FunctionPrologues; 507 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFns; 508 509 /// The set of attributes by index. Index zero in the file is for null, and 510 /// is thus not represented here. As such all indices are off by one. 511 std::vector<AttributeList> MAttributes; 512 513 /// The set of attribute groups. 514 std::map<unsigned, AttributeList> MAttributeGroups; 515 516 /// While parsing a function body, this is a list of the basic blocks for the 517 /// function. 518 std::vector<BasicBlock*> FunctionBBs; 519 520 // When reading the module header, this list is populated with functions that 521 // have bodies later in the file. 522 std::vector<Function*> FunctionsWithBodies; 523 524 // When intrinsic functions are encountered which require upgrading they are 525 // stored here with their replacement function. 526 using UpdatedIntrinsicMap = DenseMap<Function *, Function *>; 527 UpdatedIntrinsicMap UpgradedIntrinsics; 528 // Intrinsics which were remangled because of types rename 529 UpdatedIntrinsicMap RemangledIntrinsics; 530 531 // Several operations happen after the module header has been read, but 532 // before function bodies are processed. This keeps track of whether 533 // we've done this yet. 534 bool SeenFirstFunctionBody = false; 535 536 /// When function bodies are initially scanned, this map contains info about 537 /// where to find deferred function body in the stream. 538 DenseMap<Function*, uint64_t> DeferredFunctionInfo; 539 540 /// When Metadata block is initially scanned when parsing the module, we may 541 /// choose to defer parsing of the metadata. This vector contains info about 542 /// which Metadata blocks are deferred. 543 std::vector<uint64_t> DeferredMetadataInfo; 544 545 /// These are basic blocks forward-referenced by block addresses. They are 546 /// inserted lazily into functions when they're loaded. The basic block ID is 547 /// its index into the vector. 548 DenseMap<Function *, std::vector<BasicBlock *>> BasicBlockFwdRefs; 549 std::deque<Function *> BasicBlockFwdRefQueue; 550 551 /// Indicates that we are using a new encoding for instruction operands where 552 /// most operands in the current FUNCTION_BLOCK are encoded relative to the 553 /// instruction number, for a more compact encoding. Some instruction 554 /// operands are not relative to the instruction ID: basic block numbers, and 555 /// types. Once the old style function blocks have been phased out, we would 556 /// not need this flag. 557 bool UseRelativeIDs = false; 558 559 /// True if all functions will be materialized, negating the need to process 560 /// (e.g.) blockaddress forward references. 561 bool WillMaterializeAllForwardRefs = false; 562 563 bool StripDebugInfo = false; 564 TBAAVerifier TBAAVerifyHelper; 565 566 std::vector<std::string> BundleTags; 567 SmallVector<SyncScope::ID, 8> SSIDs; 568 569 public: 570 BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 571 StringRef ProducerIdentification, LLVMContext &Context); 572 573 Error materializeForwardReferencedFunctions(); 574 575 Error materialize(GlobalValue *GV) override; 576 Error materializeModule() override; 577 std::vector<StructType *> getIdentifiedStructTypes() const override; 578 579 /// Main interface to parsing a bitcode buffer. 580 /// \returns true if an error occurred. 581 Error parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata = false, 582 bool IsImporting = false); 583 584 static uint64_t decodeSignRotatedValue(uint64_t V); 585 586 /// Materialize any deferred Metadata block. 587 Error materializeMetadata() override; 588 589 void setStripDebugInfo() override; 590 591 private: 592 std::vector<StructType *> IdentifiedStructTypes; 593 StructType *createIdentifiedStructType(LLVMContext &Context, StringRef Name); 594 StructType *createIdentifiedStructType(LLVMContext &Context); 595 596 /// Map all pointer types within \param Ty to the opaque pointer 597 /// type in the same address space if opaque pointers are being 598 /// used, otherwise nop. This converts a bitcode-reader internal 599 /// type into one suitable for use in a Value. 600 Type *flattenPointerTypes(Type *Ty) { 601 return Ty; 602 } 603 604 /// Given a fully structured pointer type (i.e. not opaque), return 605 /// the flattened form of its element, suitable for use in a Value. 606 Type *getPointerElementFlatType(Type *Ty) { 607 return flattenPointerTypes(cast<PointerType>(Ty)->getElementType()); 608 } 609 610 /// Given a fully structured pointer type, get its element type in 611 /// both fully structured form, and flattened form suitable for use 612 /// in a Value. 613 std::pair<Type *, Type *> getPointerElementTypes(Type *FullTy) { 614 Type *ElTy = cast<PointerType>(FullTy)->getElementType(); 615 return std::make_pair(ElTy, flattenPointerTypes(ElTy)); 616 } 617 618 /// Return the flattened type (suitable for use in a Value) 619 /// specified by the given \param ID . 620 Type *getTypeByID(unsigned ID) { 621 return flattenPointerTypes(getFullyStructuredTypeByID(ID)); 622 } 623 624 /// Return the fully structured (bitcode-reader internal) type 625 /// corresponding to the given \param ID . 626 Type *getFullyStructuredTypeByID(unsigned ID); 627 628 Value *getFnValueByID(unsigned ID, Type *Ty, Type **FullTy = nullptr) { 629 if (Ty && Ty->isMetadataTy()) 630 return MetadataAsValue::get(Ty->getContext(), getFnMetadataByID(ID)); 631 return ValueList.getValueFwdRef(ID, Ty, FullTy); 632 } 633 634 Metadata *getFnMetadataByID(unsigned ID) { 635 return MDLoader->getMetadataFwdRefOrLoad(ID); 636 } 637 638 BasicBlock *getBasicBlock(unsigned ID) const { 639 if (ID >= FunctionBBs.size()) return nullptr; // Invalid ID 640 return FunctionBBs[ID]; 641 } 642 643 AttributeList getAttributes(unsigned i) const { 644 if (i-1 < MAttributes.size()) 645 return MAttributes[i-1]; 646 return AttributeList(); 647 } 648 649 /// Read a value/type pair out of the specified record from slot 'Slot'. 650 /// Increment Slot past the number of slots used in the record. Return true on 651 /// failure. 652 bool getValueTypePair(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 653 unsigned InstNum, Value *&ResVal, 654 Type **FullTy = nullptr) { 655 if (Slot == Record.size()) return true; 656 unsigned ValNo = (unsigned)Record[Slot++]; 657 // Adjust the ValNo, if it was encoded relative to the InstNum. 658 if (UseRelativeIDs) 659 ValNo = InstNum - ValNo; 660 if (ValNo < InstNum) { 661 // If this is not a forward reference, just return the value we already 662 // have. 663 ResVal = getFnValueByID(ValNo, nullptr, FullTy); 664 return ResVal == nullptr; 665 } 666 if (Slot == Record.size()) 667 return true; 668 669 unsigned TypeNo = (unsigned)Record[Slot++]; 670 ResVal = getFnValueByID(ValNo, getTypeByID(TypeNo)); 671 if (FullTy) 672 *FullTy = getFullyStructuredTypeByID(TypeNo); 673 return ResVal == nullptr; 674 } 675 676 /// Read a value out of the specified record from slot 'Slot'. Increment Slot 677 /// past the number of slots used by the value in the record. Return true if 678 /// there is an error. 679 bool popValue(SmallVectorImpl<uint64_t> &Record, unsigned &Slot, 680 unsigned InstNum, Type *Ty, Value *&ResVal) { 681 if (getValue(Record, Slot, InstNum, Ty, ResVal)) 682 return true; 683 // All values currently take a single record slot. 684 ++Slot; 685 return false; 686 } 687 688 /// Like popValue, but does not increment the Slot number. 689 bool getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 690 unsigned InstNum, Type *Ty, Value *&ResVal) { 691 ResVal = getValue(Record, Slot, InstNum, Ty); 692 return ResVal == nullptr; 693 } 694 695 /// Version of getValue that returns ResVal directly, or 0 if there is an 696 /// error. 697 Value *getValue(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 698 unsigned InstNum, Type *Ty) { 699 if (Slot == Record.size()) return nullptr; 700 unsigned ValNo = (unsigned)Record[Slot]; 701 // Adjust the ValNo, if it was encoded relative to the InstNum. 702 if (UseRelativeIDs) 703 ValNo = InstNum - ValNo; 704 return getFnValueByID(ValNo, Ty); 705 } 706 707 /// Like getValue, but decodes signed VBRs. 708 Value *getValueSigned(SmallVectorImpl<uint64_t> &Record, unsigned Slot, 709 unsigned InstNum, Type *Ty) { 710 if (Slot == Record.size()) return nullptr; 711 unsigned ValNo = (unsigned)decodeSignRotatedValue(Record[Slot]); 712 // Adjust the ValNo, if it was encoded relative to the InstNum. 713 if (UseRelativeIDs) 714 ValNo = InstNum - ValNo; 715 return getFnValueByID(ValNo, Ty); 716 } 717 718 /// Upgrades old-style typeless byval attributes by adding the corresponding 719 /// argument's pointee type. 720 void propagateByValTypes(CallBase *CB, ArrayRef<Type *> ArgsFullTys); 721 722 /// Converts alignment exponent (i.e. power of two (or zero)) to the 723 /// corresponding alignment to use. If alignment is too large, returns 724 /// a corresponding error code. 725 Error parseAlignmentValue(uint64_t Exponent, MaybeAlign &Alignment); 726 Error parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind); 727 Error parseModule(uint64_t ResumeBit, bool ShouldLazyLoadMetadata = false); 728 729 Error parseComdatRecord(ArrayRef<uint64_t> Record); 730 Error parseGlobalVarRecord(ArrayRef<uint64_t> Record); 731 Error parseFunctionRecord(ArrayRef<uint64_t> Record); 732 Error parseGlobalIndirectSymbolRecord(unsigned BitCode, 733 ArrayRef<uint64_t> Record); 734 735 Error parseAttributeBlock(); 736 Error parseAttributeGroupBlock(); 737 Error parseTypeTable(); 738 Error parseTypeTableBody(); 739 Error parseOperandBundleTags(); 740 Error parseSyncScopeNames(); 741 742 Expected<Value *> recordValue(SmallVectorImpl<uint64_t> &Record, 743 unsigned NameIndex, Triple &TT); 744 void setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, Function *F, 745 ArrayRef<uint64_t> Record); 746 Error parseValueSymbolTable(uint64_t Offset = 0); 747 Error parseGlobalValueSymbolTable(); 748 Error parseConstants(); 749 Error rememberAndSkipFunctionBodies(); 750 Error rememberAndSkipFunctionBody(); 751 /// Save the positions of the Metadata blocks and skip parsing the blocks. 752 Error rememberAndSkipMetadata(); 753 Error typeCheckLoadStoreInst(Type *ValType, Type *PtrType); 754 Error parseFunctionBody(Function *F); 755 Error globalCleanup(); 756 Error resolveGlobalAndIndirectSymbolInits(); 757 Error parseUseLists(); 758 Error findFunctionInStream( 759 Function *F, 760 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator); 761 762 SyncScope::ID getDecodedSyncScopeID(unsigned Val); 763 }; 764 765 /// Class to manage reading and parsing function summary index bitcode 766 /// files/sections. 767 class ModuleSummaryIndexBitcodeReader : public BitcodeReaderBase { 768 /// The module index built during parsing. 769 ModuleSummaryIndex &TheIndex; 770 771 /// Indicates whether we have encountered a global value summary section 772 /// yet during parsing. 773 bool SeenGlobalValSummary = false; 774 775 /// Indicates whether we have already parsed the VST, used for error checking. 776 bool SeenValueSymbolTable = false; 777 778 /// Set to the offset of the VST recorded in the MODULE_CODE_VSTOFFSET record. 779 /// Used to enable on-demand parsing of the VST. 780 uint64_t VSTOffset = 0; 781 782 // Map to save ValueId to ValueInfo association that was recorded in the 783 // ValueSymbolTable. It is used after the VST is parsed to convert 784 // call graph edges read from the function summary from referencing 785 // callees by their ValueId to using the ValueInfo instead, which is how 786 // they are recorded in the summary index being built. 787 // We save a GUID which refers to the same global as the ValueInfo, but 788 // ignoring the linkage, i.e. for values other than local linkage they are 789 // identical. 790 DenseMap<unsigned, std::pair<ValueInfo, GlobalValue::GUID>> 791 ValueIdToValueInfoMap; 792 793 /// Map populated during module path string table parsing, from the 794 /// module ID to a string reference owned by the index's module 795 /// path string table, used to correlate with combined index 796 /// summary records. 797 DenseMap<uint64_t, StringRef> ModuleIdMap; 798 799 /// Original source file name recorded in a bitcode record. 800 std::string SourceFileName; 801 802 /// The string identifier given to this module by the client, normally the 803 /// path to the bitcode file. 804 StringRef ModulePath; 805 806 /// For per-module summary indexes, the unique numerical identifier given to 807 /// this module by the client. 808 unsigned ModuleId; 809 810 public: 811 ModuleSummaryIndexBitcodeReader(BitstreamCursor Stream, StringRef Strtab, 812 ModuleSummaryIndex &TheIndex, 813 StringRef ModulePath, unsigned ModuleId); 814 815 Error parseModule(); 816 817 private: 818 void setValueGUID(uint64_t ValueID, StringRef ValueName, 819 GlobalValue::LinkageTypes Linkage, 820 StringRef SourceFileName); 821 Error parseValueSymbolTable( 822 uint64_t Offset, 823 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap); 824 std::vector<ValueInfo> makeRefList(ArrayRef<uint64_t> Record); 825 std::vector<FunctionSummary::EdgeTy> makeCallList(ArrayRef<uint64_t> Record, 826 bool IsOldProfileFormat, 827 bool HasProfile, 828 bool HasRelBF); 829 Error parseEntireSummary(unsigned ID); 830 Error parseModuleStringTable(); 831 void parseTypeIdCompatibleVtableSummaryRecord(ArrayRef<uint64_t> Record); 832 void parseTypeIdCompatibleVtableInfo(ArrayRef<uint64_t> Record, size_t &Slot, 833 TypeIdCompatibleVtableInfo &TypeId); 834 835 std::pair<ValueInfo, GlobalValue::GUID> 836 getValueInfoFromValueId(unsigned ValueId); 837 838 void addThisModule(); 839 ModuleSummaryIndex::ModuleInfo *getThisModule(); 840 }; 841 842 } // end anonymous namespace 843 844 std::error_code llvm::errorToErrorCodeAndEmitErrors(LLVMContext &Ctx, 845 Error Err) { 846 if (Err) { 847 std::error_code EC; 848 handleAllErrors(std::move(Err), [&](ErrorInfoBase &EIB) { 849 EC = EIB.convertToErrorCode(); 850 Ctx.emitError(EIB.message()); 851 }); 852 return EC; 853 } 854 return std::error_code(); 855 } 856 857 BitcodeReader::BitcodeReader(BitstreamCursor Stream, StringRef Strtab, 858 StringRef ProducerIdentification, 859 LLVMContext &Context) 860 : BitcodeReaderBase(std::move(Stream), Strtab), Context(Context), 861 ValueList(Context, Stream.SizeInBytes()) { 862 this->ProducerIdentification = ProducerIdentification; 863 } 864 865 Error BitcodeReader::materializeForwardReferencedFunctions() { 866 if (WillMaterializeAllForwardRefs) 867 return Error::success(); 868 869 // Prevent recursion. 870 WillMaterializeAllForwardRefs = true; 871 872 while (!BasicBlockFwdRefQueue.empty()) { 873 Function *F = BasicBlockFwdRefQueue.front(); 874 BasicBlockFwdRefQueue.pop_front(); 875 assert(F && "Expected valid function"); 876 if (!BasicBlockFwdRefs.count(F)) 877 // Already materialized. 878 continue; 879 880 // Check for a function that isn't materializable to prevent an infinite 881 // loop. When parsing a blockaddress stored in a global variable, there 882 // isn't a trivial way to check if a function will have a body without a 883 // linear search through FunctionsWithBodies, so just check it here. 884 if (!F->isMaterializable()) 885 return error("Never resolved function from blockaddress"); 886 887 // Try to materialize F. 888 if (Error Err = materialize(F)) 889 return Err; 890 } 891 assert(BasicBlockFwdRefs.empty() && "Function missing from queue"); 892 893 // Reset state. 894 WillMaterializeAllForwardRefs = false; 895 return Error::success(); 896 } 897 898 //===----------------------------------------------------------------------===// 899 // Helper functions to implement forward reference resolution, etc. 900 //===----------------------------------------------------------------------===// 901 902 static bool hasImplicitComdat(size_t Val) { 903 switch (Val) { 904 default: 905 return false; 906 case 1: // Old WeakAnyLinkage 907 case 4: // Old LinkOnceAnyLinkage 908 case 10: // Old WeakODRLinkage 909 case 11: // Old LinkOnceODRLinkage 910 return true; 911 } 912 } 913 914 static GlobalValue::LinkageTypes getDecodedLinkage(unsigned Val) { 915 switch (Val) { 916 default: // Map unknown/new linkages to external 917 case 0: 918 return GlobalValue::ExternalLinkage; 919 case 2: 920 return GlobalValue::AppendingLinkage; 921 case 3: 922 return GlobalValue::InternalLinkage; 923 case 5: 924 return GlobalValue::ExternalLinkage; // Obsolete DLLImportLinkage 925 case 6: 926 return GlobalValue::ExternalLinkage; // Obsolete DLLExportLinkage 927 case 7: 928 return GlobalValue::ExternalWeakLinkage; 929 case 8: 930 return GlobalValue::CommonLinkage; 931 case 9: 932 return GlobalValue::PrivateLinkage; 933 case 12: 934 return GlobalValue::AvailableExternallyLinkage; 935 case 13: 936 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateLinkage 937 case 14: 938 return GlobalValue::PrivateLinkage; // Obsolete LinkerPrivateWeakLinkage 939 case 15: 940 return GlobalValue::ExternalLinkage; // Obsolete LinkOnceODRAutoHideLinkage 941 case 1: // Old value with implicit comdat. 942 case 16: 943 return GlobalValue::WeakAnyLinkage; 944 case 10: // Old value with implicit comdat. 945 case 17: 946 return GlobalValue::WeakODRLinkage; 947 case 4: // Old value with implicit comdat. 948 case 18: 949 return GlobalValue::LinkOnceAnyLinkage; 950 case 11: // Old value with implicit comdat. 951 case 19: 952 return GlobalValue::LinkOnceODRLinkage; 953 } 954 } 955 956 static FunctionSummary::FFlags getDecodedFFlags(uint64_t RawFlags) { 957 FunctionSummary::FFlags Flags; 958 Flags.ReadNone = RawFlags & 0x1; 959 Flags.ReadOnly = (RawFlags >> 1) & 0x1; 960 Flags.NoRecurse = (RawFlags >> 2) & 0x1; 961 Flags.ReturnDoesNotAlias = (RawFlags >> 3) & 0x1; 962 Flags.NoInline = (RawFlags >> 4) & 0x1; 963 return Flags; 964 } 965 966 /// Decode the flags for GlobalValue in the summary. 967 static GlobalValueSummary::GVFlags getDecodedGVSummaryFlags(uint64_t RawFlags, 968 uint64_t Version) { 969 // Summary were not emitted before LLVM 3.9, we don't need to upgrade Linkage 970 // like getDecodedLinkage() above. Any future change to the linkage enum and 971 // to getDecodedLinkage() will need to be taken into account here as above. 972 auto Linkage = GlobalValue::LinkageTypes(RawFlags & 0xF); // 4 bits 973 RawFlags = RawFlags >> 4; 974 bool NotEligibleToImport = (RawFlags & 0x1) || Version < 3; 975 // The Live flag wasn't introduced until version 3. For dead stripping 976 // to work correctly on earlier versions, we must conservatively treat all 977 // values as live. 978 bool Live = (RawFlags & 0x2) || Version < 3; 979 bool Local = (RawFlags & 0x4); 980 bool AutoHide = (RawFlags & 0x8); 981 982 return GlobalValueSummary::GVFlags(Linkage, NotEligibleToImport, Live, Local, AutoHide); 983 } 984 985 // Decode the flags for GlobalVariable in the summary 986 static GlobalVarSummary::GVarFlags getDecodedGVarFlags(uint64_t RawFlags) { 987 return GlobalVarSummary::GVarFlags((RawFlags & 0x1) ? true : false, 988 (RawFlags & 0x2) ? true : false); 989 } 990 991 static GlobalValue::VisibilityTypes getDecodedVisibility(unsigned Val) { 992 switch (Val) { 993 default: // Map unknown visibilities to default. 994 case 0: return GlobalValue::DefaultVisibility; 995 case 1: return GlobalValue::HiddenVisibility; 996 case 2: return GlobalValue::ProtectedVisibility; 997 } 998 } 999 1000 static GlobalValue::DLLStorageClassTypes 1001 getDecodedDLLStorageClass(unsigned Val) { 1002 switch (Val) { 1003 default: // Map unknown values to default. 1004 case 0: return GlobalValue::DefaultStorageClass; 1005 case 1: return GlobalValue::DLLImportStorageClass; 1006 case 2: return GlobalValue::DLLExportStorageClass; 1007 } 1008 } 1009 1010 static bool getDecodedDSOLocal(unsigned Val) { 1011 switch(Val) { 1012 default: // Map unknown values to preemptable. 1013 case 0: return false; 1014 case 1: return true; 1015 } 1016 } 1017 1018 static GlobalVariable::ThreadLocalMode getDecodedThreadLocalMode(unsigned Val) { 1019 switch (Val) { 1020 case 0: return GlobalVariable::NotThreadLocal; 1021 default: // Map unknown non-zero value to general dynamic. 1022 case 1: return GlobalVariable::GeneralDynamicTLSModel; 1023 case 2: return GlobalVariable::LocalDynamicTLSModel; 1024 case 3: return GlobalVariable::InitialExecTLSModel; 1025 case 4: return GlobalVariable::LocalExecTLSModel; 1026 } 1027 } 1028 1029 static GlobalVariable::UnnamedAddr getDecodedUnnamedAddrType(unsigned Val) { 1030 switch (Val) { 1031 default: // Map unknown to UnnamedAddr::None. 1032 case 0: return GlobalVariable::UnnamedAddr::None; 1033 case 1: return GlobalVariable::UnnamedAddr::Global; 1034 case 2: return GlobalVariable::UnnamedAddr::Local; 1035 } 1036 } 1037 1038 static int getDecodedCastOpcode(unsigned Val) { 1039 switch (Val) { 1040 default: return -1; 1041 case bitc::CAST_TRUNC : return Instruction::Trunc; 1042 case bitc::CAST_ZEXT : return Instruction::ZExt; 1043 case bitc::CAST_SEXT : return Instruction::SExt; 1044 case bitc::CAST_FPTOUI : return Instruction::FPToUI; 1045 case bitc::CAST_FPTOSI : return Instruction::FPToSI; 1046 case bitc::CAST_UITOFP : return Instruction::UIToFP; 1047 case bitc::CAST_SITOFP : return Instruction::SIToFP; 1048 case bitc::CAST_FPTRUNC : return Instruction::FPTrunc; 1049 case bitc::CAST_FPEXT : return Instruction::FPExt; 1050 case bitc::CAST_PTRTOINT: return Instruction::PtrToInt; 1051 case bitc::CAST_INTTOPTR: return Instruction::IntToPtr; 1052 case bitc::CAST_BITCAST : return Instruction::BitCast; 1053 case bitc::CAST_ADDRSPACECAST: return Instruction::AddrSpaceCast; 1054 } 1055 } 1056 1057 static int getDecodedUnaryOpcode(unsigned Val, Type *Ty) { 1058 bool IsFP = Ty->isFPOrFPVectorTy(); 1059 // UnOps are only valid for int/fp or vector of int/fp types 1060 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1061 return -1; 1062 1063 switch (Val) { 1064 default: 1065 return -1; 1066 case bitc::UNOP_FNEG: 1067 return IsFP ? Instruction::FNeg : -1; 1068 } 1069 } 1070 1071 static int getDecodedBinaryOpcode(unsigned Val, Type *Ty) { 1072 bool IsFP = Ty->isFPOrFPVectorTy(); 1073 // BinOps are only valid for int/fp or vector of int/fp types 1074 if (!IsFP && !Ty->isIntOrIntVectorTy()) 1075 return -1; 1076 1077 switch (Val) { 1078 default: 1079 return -1; 1080 case bitc::BINOP_ADD: 1081 return IsFP ? Instruction::FAdd : Instruction::Add; 1082 case bitc::BINOP_SUB: 1083 return IsFP ? Instruction::FSub : Instruction::Sub; 1084 case bitc::BINOP_MUL: 1085 return IsFP ? Instruction::FMul : Instruction::Mul; 1086 case bitc::BINOP_UDIV: 1087 return IsFP ? -1 : Instruction::UDiv; 1088 case bitc::BINOP_SDIV: 1089 return IsFP ? Instruction::FDiv : Instruction::SDiv; 1090 case bitc::BINOP_UREM: 1091 return IsFP ? -1 : Instruction::URem; 1092 case bitc::BINOP_SREM: 1093 return IsFP ? Instruction::FRem : Instruction::SRem; 1094 case bitc::BINOP_SHL: 1095 return IsFP ? -1 : Instruction::Shl; 1096 case bitc::BINOP_LSHR: 1097 return IsFP ? -1 : Instruction::LShr; 1098 case bitc::BINOP_ASHR: 1099 return IsFP ? -1 : Instruction::AShr; 1100 case bitc::BINOP_AND: 1101 return IsFP ? -1 : Instruction::And; 1102 case bitc::BINOP_OR: 1103 return IsFP ? -1 : Instruction::Or; 1104 case bitc::BINOP_XOR: 1105 return IsFP ? -1 : Instruction::Xor; 1106 } 1107 } 1108 1109 static AtomicRMWInst::BinOp getDecodedRMWOperation(unsigned Val) { 1110 switch (Val) { 1111 default: return AtomicRMWInst::BAD_BINOP; 1112 case bitc::RMW_XCHG: return AtomicRMWInst::Xchg; 1113 case bitc::RMW_ADD: return AtomicRMWInst::Add; 1114 case bitc::RMW_SUB: return AtomicRMWInst::Sub; 1115 case bitc::RMW_AND: return AtomicRMWInst::And; 1116 case bitc::RMW_NAND: return AtomicRMWInst::Nand; 1117 case bitc::RMW_OR: return AtomicRMWInst::Or; 1118 case bitc::RMW_XOR: return AtomicRMWInst::Xor; 1119 case bitc::RMW_MAX: return AtomicRMWInst::Max; 1120 case bitc::RMW_MIN: return AtomicRMWInst::Min; 1121 case bitc::RMW_UMAX: return AtomicRMWInst::UMax; 1122 case bitc::RMW_UMIN: return AtomicRMWInst::UMin; 1123 case bitc::RMW_FADD: return AtomicRMWInst::FAdd; 1124 case bitc::RMW_FSUB: return AtomicRMWInst::FSub; 1125 } 1126 } 1127 1128 static AtomicOrdering getDecodedOrdering(unsigned Val) { 1129 switch (Val) { 1130 case bitc::ORDERING_NOTATOMIC: return AtomicOrdering::NotAtomic; 1131 case bitc::ORDERING_UNORDERED: return AtomicOrdering::Unordered; 1132 case bitc::ORDERING_MONOTONIC: return AtomicOrdering::Monotonic; 1133 case bitc::ORDERING_ACQUIRE: return AtomicOrdering::Acquire; 1134 case bitc::ORDERING_RELEASE: return AtomicOrdering::Release; 1135 case bitc::ORDERING_ACQREL: return AtomicOrdering::AcquireRelease; 1136 default: // Map unknown orderings to sequentially-consistent. 1137 case bitc::ORDERING_SEQCST: return AtomicOrdering::SequentiallyConsistent; 1138 } 1139 } 1140 1141 static Comdat::SelectionKind getDecodedComdatSelectionKind(unsigned Val) { 1142 switch (Val) { 1143 default: // Map unknown selection kinds to any. 1144 case bitc::COMDAT_SELECTION_KIND_ANY: 1145 return Comdat::Any; 1146 case bitc::COMDAT_SELECTION_KIND_EXACT_MATCH: 1147 return Comdat::ExactMatch; 1148 case bitc::COMDAT_SELECTION_KIND_LARGEST: 1149 return Comdat::Largest; 1150 case bitc::COMDAT_SELECTION_KIND_NO_DUPLICATES: 1151 return Comdat::NoDuplicates; 1152 case bitc::COMDAT_SELECTION_KIND_SAME_SIZE: 1153 return Comdat::SameSize; 1154 } 1155 } 1156 1157 static FastMathFlags getDecodedFastMathFlags(unsigned Val) { 1158 FastMathFlags FMF; 1159 if (0 != (Val & bitc::UnsafeAlgebra)) 1160 FMF.setFast(); 1161 if (0 != (Val & bitc::AllowReassoc)) 1162 FMF.setAllowReassoc(); 1163 if (0 != (Val & bitc::NoNaNs)) 1164 FMF.setNoNaNs(); 1165 if (0 != (Val & bitc::NoInfs)) 1166 FMF.setNoInfs(); 1167 if (0 != (Val & bitc::NoSignedZeros)) 1168 FMF.setNoSignedZeros(); 1169 if (0 != (Val & bitc::AllowReciprocal)) 1170 FMF.setAllowReciprocal(); 1171 if (0 != (Val & bitc::AllowContract)) 1172 FMF.setAllowContract(true); 1173 if (0 != (Val & bitc::ApproxFunc)) 1174 FMF.setApproxFunc(); 1175 return FMF; 1176 } 1177 1178 static void upgradeDLLImportExportLinkage(GlobalValue *GV, unsigned Val) { 1179 switch (Val) { 1180 case 5: GV->setDLLStorageClass(GlobalValue::DLLImportStorageClass); break; 1181 case 6: GV->setDLLStorageClass(GlobalValue::DLLExportStorageClass); break; 1182 } 1183 } 1184 1185 Type *BitcodeReader::getFullyStructuredTypeByID(unsigned ID) { 1186 // The type table size is always specified correctly. 1187 if (ID >= TypeList.size()) 1188 return nullptr; 1189 1190 if (Type *Ty = TypeList[ID]) 1191 return Ty; 1192 1193 // If we have a forward reference, the only possible case is when it is to a 1194 // named struct. Just create a placeholder for now. 1195 return TypeList[ID] = createIdentifiedStructType(Context); 1196 } 1197 1198 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context, 1199 StringRef Name) { 1200 auto *Ret = StructType::create(Context, Name); 1201 IdentifiedStructTypes.push_back(Ret); 1202 return Ret; 1203 } 1204 1205 StructType *BitcodeReader::createIdentifiedStructType(LLVMContext &Context) { 1206 auto *Ret = StructType::create(Context); 1207 IdentifiedStructTypes.push_back(Ret); 1208 return Ret; 1209 } 1210 1211 //===----------------------------------------------------------------------===// 1212 // Functions for parsing blocks from the bitcode file 1213 //===----------------------------------------------------------------------===// 1214 1215 static uint64_t getRawAttributeMask(Attribute::AttrKind Val) { 1216 switch (Val) { 1217 case Attribute::EndAttrKinds: 1218 llvm_unreachable("Synthetic enumerators which should never get here"); 1219 1220 case Attribute::None: return 0; 1221 case Attribute::ZExt: return 1 << 0; 1222 case Attribute::SExt: return 1 << 1; 1223 case Attribute::NoReturn: return 1 << 2; 1224 case Attribute::InReg: return 1 << 3; 1225 case Attribute::StructRet: return 1 << 4; 1226 case Attribute::NoUnwind: return 1 << 5; 1227 case Attribute::NoAlias: return 1 << 6; 1228 case Attribute::ByVal: return 1 << 7; 1229 case Attribute::Nest: return 1 << 8; 1230 case Attribute::ReadNone: return 1 << 9; 1231 case Attribute::ReadOnly: return 1 << 10; 1232 case Attribute::NoInline: return 1 << 11; 1233 case Attribute::AlwaysInline: return 1 << 12; 1234 case Attribute::OptimizeForSize: return 1 << 13; 1235 case Attribute::StackProtect: return 1 << 14; 1236 case Attribute::StackProtectReq: return 1 << 15; 1237 case Attribute::Alignment: return 31 << 16; 1238 case Attribute::NoCapture: return 1 << 21; 1239 case Attribute::NoRedZone: return 1 << 22; 1240 case Attribute::NoImplicitFloat: return 1 << 23; 1241 case Attribute::Naked: return 1 << 24; 1242 case Attribute::InlineHint: return 1 << 25; 1243 case Attribute::StackAlignment: return 7 << 26; 1244 case Attribute::ReturnsTwice: return 1 << 29; 1245 case Attribute::UWTable: return 1 << 30; 1246 case Attribute::NonLazyBind: return 1U << 31; 1247 case Attribute::SanitizeAddress: return 1ULL << 32; 1248 case Attribute::MinSize: return 1ULL << 33; 1249 case Attribute::NoDuplicate: return 1ULL << 34; 1250 case Attribute::StackProtectStrong: return 1ULL << 35; 1251 case Attribute::SanitizeThread: return 1ULL << 36; 1252 case Attribute::SanitizeMemory: return 1ULL << 37; 1253 case Attribute::NoBuiltin: return 1ULL << 38; 1254 case Attribute::Returned: return 1ULL << 39; 1255 case Attribute::Cold: return 1ULL << 40; 1256 case Attribute::Builtin: return 1ULL << 41; 1257 case Attribute::OptimizeNone: return 1ULL << 42; 1258 case Attribute::InAlloca: return 1ULL << 43; 1259 case Attribute::NonNull: return 1ULL << 44; 1260 case Attribute::JumpTable: return 1ULL << 45; 1261 case Attribute::Convergent: return 1ULL << 46; 1262 case Attribute::SafeStack: return 1ULL << 47; 1263 case Attribute::NoRecurse: return 1ULL << 48; 1264 case Attribute::InaccessibleMemOnly: return 1ULL << 49; 1265 case Attribute::InaccessibleMemOrArgMemOnly: return 1ULL << 50; 1266 case Attribute::SwiftSelf: return 1ULL << 51; 1267 case Attribute::SwiftError: return 1ULL << 52; 1268 case Attribute::WriteOnly: return 1ULL << 53; 1269 case Attribute::Speculatable: return 1ULL << 54; 1270 case Attribute::StrictFP: return 1ULL << 55; 1271 case Attribute::SanitizeHWAddress: return 1ULL << 56; 1272 case Attribute::NoCfCheck: return 1ULL << 57; 1273 case Attribute::OptForFuzzing: return 1ULL << 58; 1274 case Attribute::ShadowCallStack: return 1ULL << 59; 1275 case Attribute::SpeculativeLoadHardening: 1276 return 1ULL << 60; 1277 case Attribute::ImmArg: 1278 return 1ULL << 61; 1279 case Attribute::WillReturn: 1280 return 1ULL << 62; 1281 case Attribute::NoFree: 1282 return 1ULL << 63; 1283 case Attribute::NoSync: 1284 llvm_unreachable("nosync attribute not supported in raw format"); 1285 break; 1286 case Attribute::Dereferenceable: 1287 llvm_unreachable("dereferenceable attribute not supported in raw format"); 1288 break; 1289 case Attribute::DereferenceableOrNull: 1290 llvm_unreachable("dereferenceable_or_null attribute not supported in raw " 1291 "format"); 1292 break; 1293 case Attribute::ArgMemOnly: 1294 llvm_unreachable("argmemonly attribute not supported in raw format"); 1295 break; 1296 case Attribute::AllocSize: 1297 llvm_unreachable("allocsize not supported in raw format"); 1298 break; 1299 case Attribute::SanitizeMemTag: 1300 llvm_unreachable("sanitize_memtag attribute not supported in raw format"); 1301 break; 1302 } 1303 llvm_unreachable("Unsupported attribute type"); 1304 } 1305 1306 static void addRawAttributeValue(AttrBuilder &B, uint64_t Val) { 1307 if (!Val) return; 1308 1309 for (Attribute::AttrKind I = Attribute::None; I != Attribute::EndAttrKinds; 1310 I = Attribute::AttrKind(I + 1)) { 1311 if (I == Attribute::SanitizeMemTag || 1312 I == Attribute::Dereferenceable || 1313 I == Attribute::DereferenceableOrNull || 1314 I == Attribute::ArgMemOnly || 1315 I == Attribute::AllocSize || 1316 I == Attribute::NoSync) 1317 continue; 1318 if (uint64_t A = (Val & getRawAttributeMask(I))) { 1319 if (I == Attribute::Alignment) 1320 B.addAlignmentAttr(1ULL << ((A >> 16) - 1)); 1321 else if (I == Attribute::StackAlignment) 1322 B.addStackAlignmentAttr(1ULL << ((A >> 26)-1)); 1323 else 1324 B.addAttribute(I); 1325 } 1326 } 1327 } 1328 1329 /// This fills an AttrBuilder object with the LLVM attributes that have 1330 /// been decoded from the given integer. This function must stay in sync with 1331 /// 'encodeLLVMAttributesForBitcode'. 1332 static void decodeLLVMAttributesForBitcode(AttrBuilder &B, 1333 uint64_t EncodedAttrs) { 1334 // FIXME: Remove in 4.0. 1335 1336 // The alignment is stored as a 16-bit raw value from bits 31--16. We shift 1337 // the bits above 31 down by 11 bits. 1338 unsigned Alignment = (EncodedAttrs & (0xffffULL << 16)) >> 16; 1339 assert((!Alignment || isPowerOf2_32(Alignment)) && 1340 "Alignment must be a power of two."); 1341 1342 if (Alignment) 1343 B.addAlignmentAttr(Alignment); 1344 addRawAttributeValue(B, ((EncodedAttrs & (0xfffffULL << 32)) >> 11) | 1345 (EncodedAttrs & 0xffff)); 1346 } 1347 1348 Error BitcodeReader::parseAttributeBlock() { 1349 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_BLOCK_ID)) 1350 return Err; 1351 1352 if (!MAttributes.empty()) 1353 return error("Invalid multiple blocks"); 1354 1355 SmallVector<uint64_t, 64> Record; 1356 1357 SmallVector<AttributeList, 8> Attrs; 1358 1359 // Read all the records. 1360 while (true) { 1361 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1362 if (!MaybeEntry) 1363 return MaybeEntry.takeError(); 1364 BitstreamEntry Entry = MaybeEntry.get(); 1365 1366 switch (Entry.Kind) { 1367 case BitstreamEntry::SubBlock: // Handled for us already. 1368 case BitstreamEntry::Error: 1369 return error("Malformed block"); 1370 case BitstreamEntry::EndBlock: 1371 return Error::success(); 1372 case BitstreamEntry::Record: 1373 // The interesting case. 1374 break; 1375 } 1376 1377 // Read a record. 1378 Record.clear(); 1379 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1380 if (!MaybeRecord) 1381 return MaybeRecord.takeError(); 1382 switch (MaybeRecord.get()) { 1383 default: // Default behavior: ignore. 1384 break; 1385 case bitc::PARAMATTR_CODE_ENTRY_OLD: // ENTRY: [paramidx0, attr0, ...] 1386 // FIXME: Remove in 4.0. 1387 if (Record.size() & 1) 1388 return error("Invalid record"); 1389 1390 for (unsigned i = 0, e = Record.size(); i != e; i += 2) { 1391 AttrBuilder B; 1392 decodeLLVMAttributesForBitcode(B, Record[i+1]); 1393 Attrs.push_back(AttributeList::get(Context, Record[i], B)); 1394 } 1395 1396 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1397 Attrs.clear(); 1398 break; 1399 case bitc::PARAMATTR_CODE_ENTRY: // ENTRY: [attrgrp0, attrgrp1, ...] 1400 for (unsigned i = 0, e = Record.size(); i != e; ++i) 1401 Attrs.push_back(MAttributeGroups[Record[i]]); 1402 1403 MAttributes.push_back(AttributeList::get(Context, Attrs)); 1404 Attrs.clear(); 1405 break; 1406 } 1407 } 1408 } 1409 1410 // Returns Attribute::None on unrecognized codes. 1411 static Attribute::AttrKind getAttrFromCode(uint64_t Code) { 1412 switch (Code) { 1413 default: 1414 return Attribute::None; 1415 case bitc::ATTR_KIND_ALIGNMENT: 1416 return Attribute::Alignment; 1417 case bitc::ATTR_KIND_ALWAYS_INLINE: 1418 return Attribute::AlwaysInline; 1419 case bitc::ATTR_KIND_ARGMEMONLY: 1420 return Attribute::ArgMemOnly; 1421 case bitc::ATTR_KIND_BUILTIN: 1422 return Attribute::Builtin; 1423 case bitc::ATTR_KIND_BY_VAL: 1424 return Attribute::ByVal; 1425 case bitc::ATTR_KIND_IN_ALLOCA: 1426 return Attribute::InAlloca; 1427 case bitc::ATTR_KIND_COLD: 1428 return Attribute::Cold; 1429 case bitc::ATTR_KIND_CONVERGENT: 1430 return Attribute::Convergent; 1431 case bitc::ATTR_KIND_INACCESSIBLEMEM_ONLY: 1432 return Attribute::InaccessibleMemOnly; 1433 case bitc::ATTR_KIND_INACCESSIBLEMEM_OR_ARGMEMONLY: 1434 return Attribute::InaccessibleMemOrArgMemOnly; 1435 case bitc::ATTR_KIND_INLINE_HINT: 1436 return Attribute::InlineHint; 1437 case bitc::ATTR_KIND_IN_REG: 1438 return Attribute::InReg; 1439 case bitc::ATTR_KIND_JUMP_TABLE: 1440 return Attribute::JumpTable; 1441 case bitc::ATTR_KIND_MIN_SIZE: 1442 return Attribute::MinSize; 1443 case bitc::ATTR_KIND_NAKED: 1444 return Attribute::Naked; 1445 case bitc::ATTR_KIND_NEST: 1446 return Attribute::Nest; 1447 case bitc::ATTR_KIND_NO_ALIAS: 1448 return Attribute::NoAlias; 1449 case bitc::ATTR_KIND_NO_BUILTIN: 1450 return Attribute::NoBuiltin; 1451 case bitc::ATTR_KIND_NO_CAPTURE: 1452 return Attribute::NoCapture; 1453 case bitc::ATTR_KIND_NO_DUPLICATE: 1454 return Attribute::NoDuplicate; 1455 case bitc::ATTR_KIND_NOFREE: 1456 return Attribute::NoFree; 1457 case bitc::ATTR_KIND_NO_IMPLICIT_FLOAT: 1458 return Attribute::NoImplicitFloat; 1459 case bitc::ATTR_KIND_NO_INLINE: 1460 return Attribute::NoInline; 1461 case bitc::ATTR_KIND_NO_RECURSE: 1462 return Attribute::NoRecurse; 1463 case bitc::ATTR_KIND_NON_LAZY_BIND: 1464 return Attribute::NonLazyBind; 1465 case bitc::ATTR_KIND_NON_NULL: 1466 return Attribute::NonNull; 1467 case bitc::ATTR_KIND_DEREFERENCEABLE: 1468 return Attribute::Dereferenceable; 1469 case bitc::ATTR_KIND_DEREFERENCEABLE_OR_NULL: 1470 return Attribute::DereferenceableOrNull; 1471 case bitc::ATTR_KIND_ALLOC_SIZE: 1472 return Attribute::AllocSize; 1473 case bitc::ATTR_KIND_NO_RED_ZONE: 1474 return Attribute::NoRedZone; 1475 case bitc::ATTR_KIND_NO_RETURN: 1476 return Attribute::NoReturn; 1477 case bitc::ATTR_KIND_NOSYNC: 1478 return Attribute::NoSync; 1479 case bitc::ATTR_KIND_NOCF_CHECK: 1480 return Attribute::NoCfCheck; 1481 case bitc::ATTR_KIND_NO_UNWIND: 1482 return Attribute::NoUnwind; 1483 case bitc::ATTR_KIND_OPT_FOR_FUZZING: 1484 return Attribute::OptForFuzzing; 1485 case bitc::ATTR_KIND_OPTIMIZE_FOR_SIZE: 1486 return Attribute::OptimizeForSize; 1487 case bitc::ATTR_KIND_OPTIMIZE_NONE: 1488 return Attribute::OptimizeNone; 1489 case bitc::ATTR_KIND_READ_NONE: 1490 return Attribute::ReadNone; 1491 case bitc::ATTR_KIND_READ_ONLY: 1492 return Attribute::ReadOnly; 1493 case bitc::ATTR_KIND_RETURNED: 1494 return Attribute::Returned; 1495 case bitc::ATTR_KIND_RETURNS_TWICE: 1496 return Attribute::ReturnsTwice; 1497 case bitc::ATTR_KIND_S_EXT: 1498 return Attribute::SExt; 1499 case bitc::ATTR_KIND_SPECULATABLE: 1500 return Attribute::Speculatable; 1501 case bitc::ATTR_KIND_STACK_ALIGNMENT: 1502 return Attribute::StackAlignment; 1503 case bitc::ATTR_KIND_STACK_PROTECT: 1504 return Attribute::StackProtect; 1505 case bitc::ATTR_KIND_STACK_PROTECT_REQ: 1506 return Attribute::StackProtectReq; 1507 case bitc::ATTR_KIND_STACK_PROTECT_STRONG: 1508 return Attribute::StackProtectStrong; 1509 case bitc::ATTR_KIND_SAFESTACK: 1510 return Attribute::SafeStack; 1511 case bitc::ATTR_KIND_SHADOWCALLSTACK: 1512 return Attribute::ShadowCallStack; 1513 case bitc::ATTR_KIND_STRICT_FP: 1514 return Attribute::StrictFP; 1515 case bitc::ATTR_KIND_STRUCT_RET: 1516 return Attribute::StructRet; 1517 case bitc::ATTR_KIND_SANITIZE_ADDRESS: 1518 return Attribute::SanitizeAddress; 1519 case bitc::ATTR_KIND_SANITIZE_HWADDRESS: 1520 return Attribute::SanitizeHWAddress; 1521 case bitc::ATTR_KIND_SANITIZE_THREAD: 1522 return Attribute::SanitizeThread; 1523 case bitc::ATTR_KIND_SANITIZE_MEMORY: 1524 return Attribute::SanitizeMemory; 1525 case bitc::ATTR_KIND_SPECULATIVE_LOAD_HARDENING: 1526 return Attribute::SpeculativeLoadHardening; 1527 case bitc::ATTR_KIND_SWIFT_ERROR: 1528 return Attribute::SwiftError; 1529 case bitc::ATTR_KIND_SWIFT_SELF: 1530 return Attribute::SwiftSelf; 1531 case bitc::ATTR_KIND_UW_TABLE: 1532 return Attribute::UWTable; 1533 case bitc::ATTR_KIND_WILLRETURN: 1534 return Attribute::WillReturn; 1535 case bitc::ATTR_KIND_WRITEONLY: 1536 return Attribute::WriteOnly; 1537 case bitc::ATTR_KIND_Z_EXT: 1538 return Attribute::ZExt; 1539 case bitc::ATTR_KIND_IMMARG: 1540 return Attribute::ImmArg; 1541 case bitc::ATTR_KIND_SANITIZE_MEMTAG: 1542 return Attribute::SanitizeMemTag; 1543 } 1544 } 1545 1546 Error BitcodeReader::parseAlignmentValue(uint64_t Exponent, 1547 MaybeAlign &Alignment) { 1548 // Note: Alignment in bitcode files is incremented by 1, so that zero 1549 // can be used for default alignment. 1550 if (Exponent > Value::MaxAlignmentExponent + 1) 1551 return error("Invalid alignment value"); 1552 Alignment = decodeMaybeAlign(Exponent); 1553 return Error::success(); 1554 } 1555 1556 Error BitcodeReader::parseAttrKind(uint64_t Code, Attribute::AttrKind *Kind) { 1557 *Kind = getAttrFromCode(Code); 1558 if (*Kind == Attribute::None) 1559 return error("Unknown attribute kind (" + Twine(Code) + ")"); 1560 return Error::success(); 1561 } 1562 1563 Error BitcodeReader::parseAttributeGroupBlock() { 1564 if (Error Err = Stream.EnterSubBlock(bitc::PARAMATTR_GROUP_BLOCK_ID)) 1565 return Err; 1566 1567 if (!MAttributeGroups.empty()) 1568 return error("Invalid multiple blocks"); 1569 1570 SmallVector<uint64_t, 64> Record; 1571 1572 // Read all the records. 1573 while (true) { 1574 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1575 if (!MaybeEntry) 1576 return MaybeEntry.takeError(); 1577 BitstreamEntry Entry = MaybeEntry.get(); 1578 1579 switch (Entry.Kind) { 1580 case BitstreamEntry::SubBlock: // Handled for us already. 1581 case BitstreamEntry::Error: 1582 return error("Malformed block"); 1583 case BitstreamEntry::EndBlock: 1584 return Error::success(); 1585 case BitstreamEntry::Record: 1586 // The interesting case. 1587 break; 1588 } 1589 1590 // Read a record. 1591 Record.clear(); 1592 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1593 if (!MaybeRecord) 1594 return MaybeRecord.takeError(); 1595 switch (MaybeRecord.get()) { 1596 default: // Default behavior: ignore. 1597 break; 1598 case bitc::PARAMATTR_GRP_CODE_ENTRY: { // ENTRY: [grpid, idx, a0, a1, ...] 1599 if (Record.size() < 3) 1600 return error("Invalid record"); 1601 1602 uint64_t GrpID = Record[0]; 1603 uint64_t Idx = Record[1]; // Index of the object this attribute refers to. 1604 1605 AttrBuilder B; 1606 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1607 if (Record[i] == 0) { // Enum attribute 1608 Attribute::AttrKind Kind; 1609 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1610 return Err; 1611 1612 // Upgrade old-style byval attribute to one with a type, even if it's 1613 // nullptr. We will have to insert the real type when we associate 1614 // this AttributeList with a function. 1615 if (Kind == Attribute::ByVal) 1616 B.addByValAttr(nullptr); 1617 1618 B.addAttribute(Kind); 1619 } else if (Record[i] == 1) { // Integer attribute 1620 Attribute::AttrKind Kind; 1621 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1622 return Err; 1623 if (Kind == Attribute::Alignment) 1624 B.addAlignmentAttr(Record[++i]); 1625 else if (Kind == Attribute::StackAlignment) 1626 B.addStackAlignmentAttr(Record[++i]); 1627 else if (Kind == Attribute::Dereferenceable) 1628 B.addDereferenceableAttr(Record[++i]); 1629 else if (Kind == Attribute::DereferenceableOrNull) 1630 B.addDereferenceableOrNullAttr(Record[++i]); 1631 else if (Kind == Attribute::AllocSize) 1632 B.addAllocSizeAttrFromRawRepr(Record[++i]); 1633 } else if (Record[i] == 3 || Record[i] == 4) { // String attribute 1634 bool HasValue = (Record[i++] == 4); 1635 SmallString<64> KindStr; 1636 SmallString<64> ValStr; 1637 1638 while (Record[i] != 0 && i != e) 1639 KindStr += Record[i++]; 1640 assert(Record[i] == 0 && "Kind string not null terminated"); 1641 1642 if (HasValue) { 1643 // Has a value associated with it. 1644 ++i; // Skip the '0' that terminates the "kind" string. 1645 while (Record[i] != 0 && i != e) 1646 ValStr += Record[i++]; 1647 assert(Record[i] == 0 && "Value string not null terminated"); 1648 } 1649 1650 B.addAttribute(KindStr.str(), ValStr.str()); 1651 } else { 1652 assert((Record[i] == 5 || Record[i] == 6) && 1653 "Invalid attribute group entry"); 1654 bool HasType = Record[i] == 6; 1655 Attribute::AttrKind Kind; 1656 if (Error Err = parseAttrKind(Record[++i], &Kind)) 1657 return Err; 1658 if (Kind == Attribute::ByVal) 1659 B.addByValAttr(HasType ? getTypeByID(Record[++i]) : nullptr); 1660 } 1661 } 1662 1663 MAttributeGroups[GrpID] = AttributeList::get(Context, Idx, B); 1664 break; 1665 } 1666 } 1667 } 1668 } 1669 1670 Error BitcodeReader::parseTypeTable() { 1671 if (Error Err = Stream.EnterSubBlock(bitc::TYPE_BLOCK_ID_NEW)) 1672 return Err; 1673 1674 return parseTypeTableBody(); 1675 } 1676 1677 Error BitcodeReader::parseTypeTableBody() { 1678 if (!TypeList.empty()) 1679 return error("Invalid multiple blocks"); 1680 1681 SmallVector<uint64_t, 64> Record; 1682 unsigned NumRecords = 0; 1683 1684 SmallString<64> TypeName; 1685 1686 // Read all the records for this type table. 1687 while (true) { 1688 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1689 if (!MaybeEntry) 1690 return MaybeEntry.takeError(); 1691 BitstreamEntry Entry = MaybeEntry.get(); 1692 1693 switch (Entry.Kind) { 1694 case BitstreamEntry::SubBlock: // Handled for us already. 1695 case BitstreamEntry::Error: 1696 return error("Malformed block"); 1697 case BitstreamEntry::EndBlock: 1698 if (NumRecords != TypeList.size()) 1699 return error("Malformed block"); 1700 return Error::success(); 1701 case BitstreamEntry::Record: 1702 // The interesting case. 1703 break; 1704 } 1705 1706 // Read a record. 1707 Record.clear(); 1708 Type *ResultTy = nullptr; 1709 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1710 if (!MaybeRecord) 1711 return MaybeRecord.takeError(); 1712 switch (MaybeRecord.get()) { 1713 default: 1714 return error("Invalid value"); 1715 case bitc::TYPE_CODE_NUMENTRY: // TYPE_CODE_NUMENTRY: [numentries] 1716 // TYPE_CODE_NUMENTRY contains a count of the number of types in the 1717 // type list. This allows us to reserve space. 1718 if (Record.size() < 1) 1719 return error("Invalid record"); 1720 TypeList.resize(Record[0]); 1721 continue; 1722 case bitc::TYPE_CODE_VOID: // VOID 1723 ResultTy = Type::getVoidTy(Context); 1724 break; 1725 case bitc::TYPE_CODE_HALF: // HALF 1726 ResultTy = Type::getHalfTy(Context); 1727 break; 1728 case bitc::TYPE_CODE_FLOAT: // FLOAT 1729 ResultTy = Type::getFloatTy(Context); 1730 break; 1731 case bitc::TYPE_CODE_DOUBLE: // DOUBLE 1732 ResultTy = Type::getDoubleTy(Context); 1733 break; 1734 case bitc::TYPE_CODE_X86_FP80: // X86_FP80 1735 ResultTy = Type::getX86_FP80Ty(Context); 1736 break; 1737 case bitc::TYPE_CODE_FP128: // FP128 1738 ResultTy = Type::getFP128Ty(Context); 1739 break; 1740 case bitc::TYPE_CODE_PPC_FP128: // PPC_FP128 1741 ResultTy = Type::getPPC_FP128Ty(Context); 1742 break; 1743 case bitc::TYPE_CODE_LABEL: // LABEL 1744 ResultTy = Type::getLabelTy(Context); 1745 break; 1746 case bitc::TYPE_CODE_METADATA: // METADATA 1747 ResultTy = Type::getMetadataTy(Context); 1748 break; 1749 case bitc::TYPE_CODE_X86_MMX: // X86_MMX 1750 ResultTy = Type::getX86_MMXTy(Context); 1751 break; 1752 case bitc::TYPE_CODE_TOKEN: // TOKEN 1753 ResultTy = Type::getTokenTy(Context); 1754 break; 1755 case bitc::TYPE_CODE_INTEGER: { // INTEGER: [width] 1756 if (Record.size() < 1) 1757 return error("Invalid record"); 1758 1759 uint64_t NumBits = Record[0]; 1760 if (NumBits < IntegerType::MIN_INT_BITS || 1761 NumBits > IntegerType::MAX_INT_BITS) 1762 return error("Bitwidth for integer type out of range"); 1763 ResultTy = IntegerType::get(Context, NumBits); 1764 break; 1765 } 1766 case bitc::TYPE_CODE_POINTER: { // POINTER: [pointee type] or 1767 // [pointee type, address space] 1768 if (Record.size() < 1) 1769 return error("Invalid record"); 1770 unsigned AddressSpace = 0; 1771 if (Record.size() == 2) 1772 AddressSpace = Record[1]; 1773 ResultTy = getTypeByID(Record[0]); 1774 if (!ResultTy || 1775 !PointerType::isValidElementType(ResultTy)) 1776 return error("Invalid type"); 1777 ResultTy = PointerType::get(ResultTy, AddressSpace); 1778 break; 1779 } 1780 case bitc::TYPE_CODE_FUNCTION_OLD: { 1781 // FIXME: attrid is dead, remove it in LLVM 4.0 1782 // FUNCTION: [vararg, attrid, retty, paramty x N] 1783 if (Record.size() < 3) 1784 return error("Invalid record"); 1785 SmallVector<Type*, 8> ArgTys; 1786 for (unsigned i = 3, e = Record.size(); i != e; ++i) { 1787 if (Type *T = getTypeByID(Record[i])) 1788 ArgTys.push_back(T); 1789 else 1790 break; 1791 } 1792 1793 ResultTy = getTypeByID(Record[2]); 1794 if (!ResultTy || ArgTys.size() < Record.size()-3) 1795 return error("Invalid type"); 1796 1797 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1798 break; 1799 } 1800 case bitc::TYPE_CODE_FUNCTION: { 1801 // FUNCTION: [vararg, retty, paramty x N] 1802 if (Record.size() < 2) 1803 return error("Invalid record"); 1804 SmallVector<Type*, 8> ArgTys; 1805 for (unsigned i = 2, e = Record.size(); i != e; ++i) { 1806 if (Type *T = getTypeByID(Record[i])) { 1807 if (!FunctionType::isValidArgumentType(T)) 1808 return error("Invalid function argument type"); 1809 ArgTys.push_back(T); 1810 } 1811 else 1812 break; 1813 } 1814 1815 ResultTy = getTypeByID(Record[1]); 1816 if (!ResultTy || ArgTys.size() < Record.size()-2) 1817 return error("Invalid type"); 1818 1819 ResultTy = FunctionType::get(ResultTy, ArgTys, Record[0]); 1820 break; 1821 } 1822 case bitc::TYPE_CODE_STRUCT_ANON: { // STRUCT: [ispacked, eltty x N] 1823 if (Record.size() < 1) 1824 return error("Invalid record"); 1825 SmallVector<Type*, 8> EltTys; 1826 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1827 if (Type *T = getTypeByID(Record[i])) 1828 EltTys.push_back(T); 1829 else 1830 break; 1831 } 1832 if (EltTys.size() != Record.size()-1) 1833 return error("Invalid type"); 1834 ResultTy = StructType::get(Context, EltTys, Record[0]); 1835 break; 1836 } 1837 case bitc::TYPE_CODE_STRUCT_NAME: // STRUCT_NAME: [strchr x N] 1838 if (convertToString(Record, 0, TypeName)) 1839 return error("Invalid record"); 1840 continue; 1841 1842 case bitc::TYPE_CODE_STRUCT_NAMED: { // STRUCT: [ispacked, eltty x N] 1843 if (Record.size() < 1) 1844 return error("Invalid record"); 1845 1846 if (NumRecords >= TypeList.size()) 1847 return error("Invalid TYPE table"); 1848 1849 // Check to see if this was forward referenced, if so fill in the temp. 1850 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1851 if (Res) { 1852 Res->setName(TypeName); 1853 TypeList[NumRecords] = nullptr; 1854 } else // Otherwise, create a new struct. 1855 Res = createIdentifiedStructType(Context, TypeName); 1856 TypeName.clear(); 1857 1858 SmallVector<Type*, 8> EltTys; 1859 for (unsigned i = 1, e = Record.size(); i != e; ++i) { 1860 if (Type *T = getTypeByID(Record[i])) 1861 EltTys.push_back(T); 1862 else 1863 break; 1864 } 1865 if (EltTys.size() != Record.size()-1) 1866 return error("Invalid record"); 1867 Res->setBody(EltTys, Record[0]); 1868 ResultTy = Res; 1869 break; 1870 } 1871 case bitc::TYPE_CODE_OPAQUE: { // OPAQUE: [] 1872 if (Record.size() != 1) 1873 return error("Invalid record"); 1874 1875 if (NumRecords >= TypeList.size()) 1876 return error("Invalid TYPE table"); 1877 1878 // Check to see if this was forward referenced, if so fill in the temp. 1879 StructType *Res = cast_or_null<StructType>(TypeList[NumRecords]); 1880 if (Res) { 1881 Res->setName(TypeName); 1882 TypeList[NumRecords] = nullptr; 1883 } else // Otherwise, create a new struct with no body. 1884 Res = createIdentifiedStructType(Context, TypeName); 1885 TypeName.clear(); 1886 ResultTy = Res; 1887 break; 1888 } 1889 case bitc::TYPE_CODE_ARRAY: // ARRAY: [numelts, eltty] 1890 if (Record.size() < 2) 1891 return error("Invalid record"); 1892 ResultTy = getTypeByID(Record[1]); 1893 if (!ResultTy || !ArrayType::isValidElementType(ResultTy)) 1894 return error("Invalid type"); 1895 ResultTy = ArrayType::get(ResultTy, Record[0]); 1896 break; 1897 case bitc::TYPE_CODE_VECTOR: // VECTOR: [numelts, eltty] or 1898 // [numelts, eltty, scalable] 1899 if (Record.size() < 2) 1900 return error("Invalid record"); 1901 if (Record[0] == 0) 1902 return error("Invalid vector length"); 1903 ResultTy = getTypeByID(Record[1]); 1904 if (!ResultTy || !StructType::isValidElementType(ResultTy)) 1905 return error("Invalid type"); 1906 bool Scalable = Record.size() > 2 ? Record[2] : false; 1907 ResultTy = VectorType::get(ResultTy, Record[0], Scalable); 1908 break; 1909 } 1910 1911 if (NumRecords >= TypeList.size()) 1912 return error("Invalid TYPE table"); 1913 if (TypeList[NumRecords]) 1914 return error( 1915 "Invalid TYPE table: Only named structs can be forward referenced"); 1916 assert(ResultTy && "Didn't read a type?"); 1917 TypeList[NumRecords++] = ResultTy; 1918 } 1919 } 1920 1921 Error BitcodeReader::parseOperandBundleTags() { 1922 if (Error Err = Stream.EnterSubBlock(bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID)) 1923 return Err; 1924 1925 if (!BundleTags.empty()) 1926 return error("Invalid multiple blocks"); 1927 1928 SmallVector<uint64_t, 64> Record; 1929 1930 while (true) { 1931 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1932 if (!MaybeEntry) 1933 return MaybeEntry.takeError(); 1934 BitstreamEntry Entry = MaybeEntry.get(); 1935 1936 switch (Entry.Kind) { 1937 case BitstreamEntry::SubBlock: // Handled for us already. 1938 case BitstreamEntry::Error: 1939 return error("Malformed block"); 1940 case BitstreamEntry::EndBlock: 1941 return Error::success(); 1942 case BitstreamEntry::Record: 1943 // The interesting case. 1944 break; 1945 } 1946 1947 // Tags are implicitly mapped to integers by their order. 1948 1949 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1950 if (!MaybeRecord) 1951 return MaybeRecord.takeError(); 1952 if (MaybeRecord.get() != bitc::OPERAND_BUNDLE_TAG) 1953 return error("Invalid record"); 1954 1955 // OPERAND_BUNDLE_TAG: [strchr x N] 1956 BundleTags.emplace_back(); 1957 if (convertToString(Record, 0, BundleTags.back())) 1958 return error("Invalid record"); 1959 Record.clear(); 1960 } 1961 } 1962 1963 Error BitcodeReader::parseSyncScopeNames() { 1964 if (Error Err = Stream.EnterSubBlock(bitc::SYNC_SCOPE_NAMES_BLOCK_ID)) 1965 return Err; 1966 1967 if (!SSIDs.empty()) 1968 return error("Invalid multiple synchronization scope names blocks"); 1969 1970 SmallVector<uint64_t, 64> Record; 1971 while (true) { 1972 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 1973 if (!MaybeEntry) 1974 return MaybeEntry.takeError(); 1975 BitstreamEntry Entry = MaybeEntry.get(); 1976 1977 switch (Entry.Kind) { 1978 case BitstreamEntry::SubBlock: // Handled for us already. 1979 case BitstreamEntry::Error: 1980 return error("Malformed block"); 1981 case BitstreamEntry::EndBlock: 1982 if (SSIDs.empty()) 1983 return error("Invalid empty synchronization scope names block"); 1984 return Error::success(); 1985 case BitstreamEntry::Record: 1986 // The interesting case. 1987 break; 1988 } 1989 1990 // Synchronization scope names are implicitly mapped to synchronization 1991 // scope IDs by their order. 1992 1993 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 1994 if (!MaybeRecord) 1995 return MaybeRecord.takeError(); 1996 if (MaybeRecord.get() != bitc::SYNC_SCOPE_NAME) 1997 return error("Invalid record"); 1998 1999 SmallString<16> SSN; 2000 if (convertToString(Record, 0, SSN)) 2001 return error("Invalid record"); 2002 2003 SSIDs.push_back(Context.getOrInsertSyncScopeID(SSN)); 2004 Record.clear(); 2005 } 2006 } 2007 2008 /// Associate a value with its name from the given index in the provided record. 2009 Expected<Value *> BitcodeReader::recordValue(SmallVectorImpl<uint64_t> &Record, 2010 unsigned NameIndex, Triple &TT) { 2011 SmallString<128> ValueName; 2012 if (convertToString(Record, NameIndex, ValueName)) 2013 return error("Invalid record"); 2014 unsigned ValueID = Record[0]; 2015 if (ValueID >= ValueList.size() || !ValueList[ValueID]) 2016 return error("Invalid record"); 2017 Value *V = ValueList[ValueID]; 2018 2019 StringRef NameStr(ValueName.data(), ValueName.size()); 2020 if (NameStr.find_first_of(0) != StringRef::npos) 2021 return error("Invalid value name"); 2022 V->setName(NameStr); 2023 auto *GO = dyn_cast<GlobalObject>(V); 2024 if (GO) { 2025 if (GO->getComdat() == reinterpret_cast<Comdat *>(1)) { 2026 if (TT.supportsCOMDAT()) 2027 GO->setComdat(TheModule->getOrInsertComdat(V->getName())); 2028 else 2029 GO->setComdat(nullptr); 2030 } 2031 } 2032 return V; 2033 } 2034 2035 /// Helper to note and return the current location, and jump to the given 2036 /// offset. 2037 static Expected<uint64_t> jumpToValueSymbolTable(uint64_t Offset, 2038 BitstreamCursor &Stream) { 2039 // Save the current parsing location so we can jump back at the end 2040 // of the VST read. 2041 uint64_t CurrentBit = Stream.GetCurrentBitNo(); 2042 if (Error JumpFailed = Stream.JumpToBit(Offset * 32)) 2043 return std::move(JumpFailed); 2044 Expected<BitstreamEntry> MaybeEntry = Stream.advance(); 2045 if (!MaybeEntry) 2046 return MaybeEntry.takeError(); 2047 assert(MaybeEntry.get().Kind == BitstreamEntry::SubBlock); 2048 assert(MaybeEntry.get().ID == bitc::VALUE_SYMTAB_BLOCK_ID); 2049 return CurrentBit; 2050 } 2051 2052 void BitcodeReader::setDeferredFunctionInfo(unsigned FuncBitcodeOffsetDelta, 2053 Function *F, 2054 ArrayRef<uint64_t> Record) { 2055 // Note that we subtract 1 here because the offset is relative to one word 2056 // before the start of the identification or module block, which was 2057 // historically always the start of the regular bitcode header. 2058 uint64_t FuncWordOffset = Record[1] - 1; 2059 uint64_t FuncBitOffset = FuncWordOffset * 32; 2060 DeferredFunctionInfo[F] = FuncBitOffset + FuncBitcodeOffsetDelta; 2061 // Set the LastFunctionBlockBit to point to the last function block. 2062 // Later when parsing is resumed after function materialization, 2063 // we can simply skip that last function block. 2064 if (FuncBitOffset > LastFunctionBlockBit) 2065 LastFunctionBlockBit = FuncBitOffset; 2066 } 2067 2068 /// Read a new-style GlobalValue symbol table. 2069 Error BitcodeReader::parseGlobalValueSymbolTable() { 2070 unsigned FuncBitcodeOffsetDelta = 2071 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2072 2073 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2074 return Err; 2075 2076 SmallVector<uint64_t, 64> Record; 2077 while (true) { 2078 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2079 if (!MaybeEntry) 2080 return MaybeEntry.takeError(); 2081 BitstreamEntry Entry = MaybeEntry.get(); 2082 2083 switch (Entry.Kind) { 2084 case BitstreamEntry::SubBlock: 2085 case BitstreamEntry::Error: 2086 return error("Malformed block"); 2087 case BitstreamEntry::EndBlock: 2088 return Error::success(); 2089 case BitstreamEntry::Record: 2090 break; 2091 } 2092 2093 Record.clear(); 2094 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2095 if (!MaybeRecord) 2096 return MaybeRecord.takeError(); 2097 switch (MaybeRecord.get()) { 2098 case bitc::VST_CODE_FNENTRY: // [valueid, offset] 2099 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, 2100 cast<Function>(ValueList[Record[0]]), Record); 2101 break; 2102 } 2103 } 2104 } 2105 2106 /// Parse the value symbol table at either the current parsing location or 2107 /// at the given bit offset if provided. 2108 Error BitcodeReader::parseValueSymbolTable(uint64_t Offset) { 2109 uint64_t CurrentBit; 2110 // Pass in the Offset to distinguish between calling for the module-level 2111 // VST (where we want to jump to the VST offset) and the function-level 2112 // VST (where we don't). 2113 if (Offset > 0) { 2114 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 2115 if (!MaybeCurrentBit) 2116 return MaybeCurrentBit.takeError(); 2117 CurrentBit = MaybeCurrentBit.get(); 2118 // If this module uses a string table, read this as a module-level VST. 2119 if (UseStrtab) { 2120 if (Error Err = parseGlobalValueSymbolTable()) 2121 return Err; 2122 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2123 return JumpFailed; 2124 return Error::success(); 2125 } 2126 // Otherwise, the VST will be in a similar format to a function-level VST, 2127 // and will contain symbol names. 2128 } 2129 2130 // Compute the delta between the bitcode indices in the VST (the word offset 2131 // to the word-aligned ENTER_SUBBLOCK for the function block, and that 2132 // expected by the lazy reader. The reader's EnterSubBlock expects to have 2133 // already read the ENTER_SUBBLOCK code (size getAbbrevIDWidth) and BlockID 2134 // (size BlockIDWidth). Note that we access the stream's AbbrevID width here 2135 // just before entering the VST subblock because: 1) the EnterSubBlock 2136 // changes the AbbrevID width; 2) the VST block is nested within the same 2137 // outer MODULE_BLOCK as the FUNCTION_BLOCKs and therefore have the same 2138 // AbbrevID width before calling EnterSubBlock; and 3) when we want to 2139 // jump to the FUNCTION_BLOCK using this offset later, we don't want 2140 // to rely on the stream's AbbrevID width being that of the MODULE_BLOCK. 2141 unsigned FuncBitcodeOffsetDelta = 2142 Stream.getAbbrevIDWidth() + bitc::BlockIDWidth; 2143 2144 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 2145 return Err; 2146 2147 SmallVector<uint64_t, 64> Record; 2148 2149 Triple TT(TheModule->getTargetTriple()); 2150 2151 // Read all the records for this value table. 2152 SmallString<128> ValueName; 2153 2154 while (true) { 2155 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2156 if (!MaybeEntry) 2157 return MaybeEntry.takeError(); 2158 BitstreamEntry Entry = MaybeEntry.get(); 2159 2160 switch (Entry.Kind) { 2161 case BitstreamEntry::SubBlock: // Handled for us already. 2162 case BitstreamEntry::Error: 2163 return error("Malformed block"); 2164 case BitstreamEntry::EndBlock: 2165 if (Offset > 0) 2166 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 2167 return JumpFailed; 2168 return Error::success(); 2169 case BitstreamEntry::Record: 2170 // The interesting case. 2171 break; 2172 } 2173 2174 // Read a record. 2175 Record.clear(); 2176 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2177 if (!MaybeRecord) 2178 return MaybeRecord.takeError(); 2179 switch (MaybeRecord.get()) { 2180 default: // Default behavior: unknown type. 2181 break; 2182 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 2183 Expected<Value *> ValOrErr = recordValue(Record, 1, TT); 2184 if (Error Err = ValOrErr.takeError()) 2185 return Err; 2186 ValOrErr.get(); 2187 break; 2188 } 2189 case bitc::VST_CODE_FNENTRY: { 2190 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 2191 Expected<Value *> ValOrErr = recordValue(Record, 2, TT); 2192 if (Error Err = ValOrErr.takeError()) 2193 return Err; 2194 Value *V = ValOrErr.get(); 2195 2196 // Ignore function offsets emitted for aliases of functions in older 2197 // versions of LLVM. 2198 if (auto *F = dyn_cast<Function>(V)) 2199 setDeferredFunctionInfo(FuncBitcodeOffsetDelta, F, Record); 2200 break; 2201 } 2202 case bitc::VST_CODE_BBENTRY: { 2203 if (convertToString(Record, 1, ValueName)) 2204 return error("Invalid record"); 2205 BasicBlock *BB = getBasicBlock(Record[0]); 2206 if (!BB) 2207 return error("Invalid record"); 2208 2209 BB->setName(StringRef(ValueName.data(), ValueName.size())); 2210 ValueName.clear(); 2211 break; 2212 } 2213 } 2214 } 2215 } 2216 2217 /// Decode a signed value stored with the sign bit in the LSB for dense VBR 2218 /// encoding. 2219 uint64_t BitcodeReader::decodeSignRotatedValue(uint64_t V) { 2220 if ((V & 1) == 0) 2221 return V >> 1; 2222 if (V != 1) 2223 return -(V >> 1); 2224 // There is no such thing as -0 with integers. "-0" really means MININT. 2225 return 1ULL << 63; 2226 } 2227 2228 /// Resolve all of the initializers for global values and aliases that we can. 2229 Error BitcodeReader::resolveGlobalAndIndirectSymbolInits() { 2230 std::vector<std::pair<GlobalVariable *, unsigned>> GlobalInitWorklist; 2231 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>> 2232 IndirectSymbolInitWorklist; 2233 std::vector<std::pair<Function *, unsigned>> FunctionPrefixWorklist; 2234 std::vector<std::pair<Function *, unsigned>> FunctionPrologueWorklist; 2235 std::vector<std::pair<Function *, unsigned>> FunctionPersonalityFnWorklist; 2236 2237 GlobalInitWorklist.swap(GlobalInits); 2238 IndirectSymbolInitWorklist.swap(IndirectSymbolInits); 2239 FunctionPrefixWorklist.swap(FunctionPrefixes); 2240 FunctionPrologueWorklist.swap(FunctionPrologues); 2241 FunctionPersonalityFnWorklist.swap(FunctionPersonalityFns); 2242 2243 while (!GlobalInitWorklist.empty()) { 2244 unsigned ValID = GlobalInitWorklist.back().second; 2245 if (ValID >= ValueList.size()) { 2246 // Not ready to resolve this yet, it requires something later in the file. 2247 GlobalInits.push_back(GlobalInitWorklist.back()); 2248 } else { 2249 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2250 GlobalInitWorklist.back().first->setInitializer(C); 2251 else 2252 return error("Expected a constant"); 2253 } 2254 GlobalInitWorklist.pop_back(); 2255 } 2256 2257 while (!IndirectSymbolInitWorklist.empty()) { 2258 unsigned ValID = IndirectSymbolInitWorklist.back().second; 2259 if (ValID >= ValueList.size()) { 2260 IndirectSymbolInits.push_back(IndirectSymbolInitWorklist.back()); 2261 } else { 2262 Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID]); 2263 if (!C) 2264 return error("Expected a constant"); 2265 GlobalIndirectSymbol *GIS = IndirectSymbolInitWorklist.back().first; 2266 if (isa<GlobalAlias>(GIS) && C->getType() != GIS->getType()) 2267 return error("Alias and aliasee types don't match"); 2268 GIS->setIndirectSymbol(C); 2269 } 2270 IndirectSymbolInitWorklist.pop_back(); 2271 } 2272 2273 while (!FunctionPrefixWorklist.empty()) { 2274 unsigned ValID = FunctionPrefixWorklist.back().second; 2275 if (ValID >= ValueList.size()) { 2276 FunctionPrefixes.push_back(FunctionPrefixWorklist.back()); 2277 } else { 2278 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2279 FunctionPrefixWorklist.back().first->setPrefixData(C); 2280 else 2281 return error("Expected a constant"); 2282 } 2283 FunctionPrefixWorklist.pop_back(); 2284 } 2285 2286 while (!FunctionPrologueWorklist.empty()) { 2287 unsigned ValID = FunctionPrologueWorklist.back().second; 2288 if (ValID >= ValueList.size()) { 2289 FunctionPrologues.push_back(FunctionPrologueWorklist.back()); 2290 } else { 2291 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2292 FunctionPrologueWorklist.back().first->setPrologueData(C); 2293 else 2294 return error("Expected a constant"); 2295 } 2296 FunctionPrologueWorklist.pop_back(); 2297 } 2298 2299 while (!FunctionPersonalityFnWorklist.empty()) { 2300 unsigned ValID = FunctionPersonalityFnWorklist.back().second; 2301 if (ValID >= ValueList.size()) { 2302 FunctionPersonalityFns.push_back(FunctionPersonalityFnWorklist.back()); 2303 } else { 2304 if (Constant *C = dyn_cast_or_null<Constant>(ValueList[ValID])) 2305 FunctionPersonalityFnWorklist.back().first->setPersonalityFn(C); 2306 else 2307 return error("Expected a constant"); 2308 } 2309 FunctionPersonalityFnWorklist.pop_back(); 2310 } 2311 2312 return Error::success(); 2313 } 2314 2315 static APInt readWideAPInt(ArrayRef<uint64_t> Vals, unsigned TypeBits) { 2316 SmallVector<uint64_t, 8> Words(Vals.size()); 2317 transform(Vals, Words.begin(), 2318 BitcodeReader::decodeSignRotatedValue); 2319 2320 return APInt(TypeBits, Words); 2321 } 2322 2323 Error BitcodeReader::parseConstants() { 2324 if (Error Err = Stream.EnterSubBlock(bitc::CONSTANTS_BLOCK_ID)) 2325 return Err; 2326 2327 SmallVector<uint64_t, 64> Record; 2328 2329 // Read all the records for this value table. 2330 Type *CurTy = Type::getInt32Ty(Context); 2331 Type *CurFullTy = Type::getInt32Ty(Context); 2332 unsigned NextCstNo = ValueList.size(); 2333 2334 while (true) { 2335 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2336 if (!MaybeEntry) 2337 return MaybeEntry.takeError(); 2338 BitstreamEntry Entry = MaybeEntry.get(); 2339 2340 switch (Entry.Kind) { 2341 case BitstreamEntry::SubBlock: // Handled for us already. 2342 case BitstreamEntry::Error: 2343 return error("Malformed block"); 2344 case BitstreamEntry::EndBlock: 2345 if (NextCstNo != ValueList.size()) 2346 return error("Invalid constant reference"); 2347 2348 // Once all the constants have been read, go through and resolve forward 2349 // references. 2350 ValueList.resolveConstantForwardRefs(); 2351 return Error::success(); 2352 case BitstreamEntry::Record: 2353 // The interesting case. 2354 break; 2355 } 2356 2357 // Read a record. 2358 Record.clear(); 2359 Type *VoidType = Type::getVoidTy(Context); 2360 Value *V = nullptr; 2361 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 2362 if (!MaybeBitCode) 2363 return MaybeBitCode.takeError(); 2364 switch (unsigned BitCode = MaybeBitCode.get()) { 2365 default: // Default behavior: unknown constant 2366 case bitc::CST_CODE_UNDEF: // UNDEF 2367 V = UndefValue::get(CurTy); 2368 break; 2369 case bitc::CST_CODE_SETTYPE: // SETTYPE: [typeid] 2370 if (Record.empty()) 2371 return error("Invalid record"); 2372 if (Record[0] >= TypeList.size() || !TypeList[Record[0]]) 2373 return error("Invalid record"); 2374 if (TypeList[Record[0]] == VoidType) 2375 return error("Invalid constant type"); 2376 CurFullTy = TypeList[Record[0]]; 2377 CurTy = flattenPointerTypes(CurFullTy); 2378 continue; // Skip the ValueList manipulation. 2379 case bitc::CST_CODE_NULL: // NULL 2380 if (CurTy->isVoidTy() || CurTy->isFunctionTy() || CurTy->isLabelTy()) 2381 return error("Invalid type for a constant null value"); 2382 V = Constant::getNullValue(CurTy); 2383 break; 2384 case bitc::CST_CODE_INTEGER: // INTEGER: [intval] 2385 if (!CurTy->isIntegerTy() || Record.empty()) 2386 return error("Invalid record"); 2387 V = ConstantInt::get(CurTy, decodeSignRotatedValue(Record[0])); 2388 break; 2389 case bitc::CST_CODE_WIDE_INTEGER: {// WIDE_INTEGER: [n x intval] 2390 if (!CurTy->isIntegerTy() || Record.empty()) 2391 return error("Invalid record"); 2392 2393 APInt VInt = 2394 readWideAPInt(Record, cast<IntegerType>(CurTy)->getBitWidth()); 2395 V = ConstantInt::get(Context, VInt); 2396 2397 break; 2398 } 2399 case bitc::CST_CODE_FLOAT: { // FLOAT: [fpval] 2400 if (Record.empty()) 2401 return error("Invalid record"); 2402 if (CurTy->isHalfTy()) 2403 V = ConstantFP::get(Context, APFloat(APFloat::IEEEhalf(), 2404 APInt(16, (uint16_t)Record[0]))); 2405 else if (CurTy->isFloatTy()) 2406 V = ConstantFP::get(Context, APFloat(APFloat::IEEEsingle(), 2407 APInt(32, (uint32_t)Record[0]))); 2408 else if (CurTy->isDoubleTy()) 2409 V = ConstantFP::get(Context, APFloat(APFloat::IEEEdouble(), 2410 APInt(64, Record[0]))); 2411 else if (CurTy->isX86_FP80Ty()) { 2412 // Bits are not stored the same way as a normal i80 APInt, compensate. 2413 uint64_t Rearrange[2]; 2414 Rearrange[0] = (Record[1] & 0xffffLL) | (Record[0] << 16); 2415 Rearrange[1] = Record[0] >> 48; 2416 V = ConstantFP::get(Context, APFloat(APFloat::x87DoubleExtended(), 2417 APInt(80, Rearrange))); 2418 } else if (CurTy->isFP128Ty()) 2419 V = ConstantFP::get(Context, APFloat(APFloat::IEEEquad(), 2420 APInt(128, Record))); 2421 else if (CurTy->isPPC_FP128Ty()) 2422 V = ConstantFP::get(Context, APFloat(APFloat::PPCDoubleDouble(), 2423 APInt(128, Record))); 2424 else 2425 V = UndefValue::get(CurTy); 2426 break; 2427 } 2428 2429 case bitc::CST_CODE_AGGREGATE: {// AGGREGATE: [n x value number] 2430 if (Record.empty()) 2431 return error("Invalid record"); 2432 2433 unsigned Size = Record.size(); 2434 SmallVector<Constant*, 16> Elts; 2435 2436 if (StructType *STy = dyn_cast<StructType>(CurTy)) { 2437 for (unsigned i = 0; i != Size; ++i) 2438 Elts.push_back(ValueList.getConstantFwdRef(Record[i], 2439 STy->getElementType(i))); 2440 V = ConstantStruct::get(STy, Elts); 2441 } else if (ArrayType *ATy = dyn_cast<ArrayType>(CurTy)) { 2442 Type *EltTy = ATy->getElementType(); 2443 for (unsigned i = 0; i != Size; ++i) 2444 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2445 V = ConstantArray::get(ATy, Elts); 2446 } else if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) { 2447 Type *EltTy = VTy->getElementType(); 2448 for (unsigned i = 0; i != Size; ++i) 2449 Elts.push_back(ValueList.getConstantFwdRef(Record[i], EltTy)); 2450 V = ConstantVector::get(Elts); 2451 } else { 2452 V = UndefValue::get(CurTy); 2453 } 2454 break; 2455 } 2456 case bitc::CST_CODE_STRING: // STRING: [values] 2457 case bitc::CST_CODE_CSTRING: { // CSTRING: [values] 2458 if (Record.empty()) 2459 return error("Invalid record"); 2460 2461 SmallString<16> Elts(Record.begin(), Record.end()); 2462 V = ConstantDataArray::getString(Context, Elts, 2463 BitCode == bitc::CST_CODE_CSTRING); 2464 break; 2465 } 2466 case bitc::CST_CODE_DATA: {// DATA: [n x value] 2467 if (Record.empty()) 2468 return error("Invalid record"); 2469 2470 Type *EltTy = cast<SequentialType>(CurTy)->getElementType(); 2471 if (EltTy->isIntegerTy(8)) { 2472 SmallVector<uint8_t, 16> Elts(Record.begin(), Record.end()); 2473 if (isa<VectorType>(CurTy)) 2474 V = ConstantDataVector::get(Context, Elts); 2475 else 2476 V = ConstantDataArray::get(Context, Elts); 2477 } else if (EltTy->isIntegerTy(16)) { 2478 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2479 if (isa<VectorType>(CurTy)) 2480 V = ConstantDataVector::get(Context, Elts); 2481 else 2482 V = ConstantDataArray::get(Context, Elts); 2483 } else if (EltTy->isIntegerTy(32)) { 2484 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2485 if (isa<VectorType>(CurTy)) 2486 V = ConstantDataVector::get(Context, Elts); 2487 else 2488 V = ConstantDataArray::get(Context, Elts); 2489 } else if (EltTy->isIntegerTy(64)) { 2490 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2491 if (isa<VectorType>(CurTy)) 2492 V = ConstantDataVector::get(Context, Elts); 2493 else 2494 V = ConstantDataArray::get(Context, Elts); 2495 } else if (EltTy->isHalfTy()) { 2496 SmallVector<uint16_t, 16> Elts(Record.begin(), Record.end()); 2497 if (isa<VectorType>(CurTy)) 2498 V = ConstantDataVector::getFP(Context, Elts); 2499 else 2500 V = ConstantDataArray::getFP(Context, Elts); 2501 } else if (EltTy->isFloatTy()) { 2502 SmallVector<uint32_t, 16> Elts(Record.begin(), Record.end()); 2503 if (isa<VectorType>(CurTy)) 2504 V = ConstantDataVector::getFP(Context, Elts); 2505 else 2506 V = ConstantDataArray::getFP(Context, Elts); 2507 } else if (EltTy->isDoubleTy()) { 2508 SmallVector<uint64_t, 16> Elts(Record.begin(), Record.end()); 2509 if (isa<VectorType>(CurTy)) 2510 V = ConstantDataVector::getFP(Context, Elts); 2511 else 2512 V = ConstantDataArray::getFP(Context, Elts); 2513 } else { 2514 return error("Invalid type for value"); 2515 } 2516 break; 2517 } 2518 case bitc::CST_CODE_CE_UNOP: { // CE_UNOP: [opcode, opval] 2519 if (Record.size() < 2) 2520 return error("Invalid record"); 2521 int Opc = getDecodedUnaryOpcode(Record[0], CurTy); 2522 if (Opc < 0) { 2523 V = UndefValue::get(CurTy); // Unknown unop. 2524 } else { 2525 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2526 unsigned Flags = 0; 2527 V = ConstantExpr::get(Opc, LHS, Flags); 2528 } 2529 break; 2530 } 2531 case bitc::CST_CODE_CE_BINOP: { // CE_BINOP: [opcode, opval, opval] 2532 if (Record.size() < 3) 2533 return error("Invalid record"); 2534 int Opc = getDecodedBinaryOpcode(Record[0], CurTy); 2535 if (Opc < 0) { 2536 V = UndefValue::get(CurTy); // Unknown binop. 2537 } else { 2538 Constant *LHS = ValueList.getConstantFwdRef(Record[1], CurTy); 2539 Constant *RHS = ValueList.getConstantFwdRef(Record[2], CurTy); 2540 unsigned Flags = 0; 2541 if (Record.size() >= 4) { 2542 if (Opc == Instruction::Add || 2543 Opc == Instruction::Sub || 2544 Opc == Instruction::Mul || 2545 Opc == Instruction::Shl) { 2546 if (Record[3] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 2547 Flags |= OverflowingBinaryOperator::NoSignedWrap; 2548 if (Record[3] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 2549 Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2550 } else if (Opc == Instruction::SDiv || 2551 Opc == Instruction::UDiv || 2552 Opc == Instruction::LShr || 2553 Opc == Instruction::AShr) { 2554 if (Record[3] & (1 << bitc::PEO_EXACT)) 2555 Flags |= SDivOperator::IsExact; 2556 } 2557 } 2558 V = ConstantExpr::get(Opc, LHS, RHS, Flags); 2559 } 2560 break; 2561 } 2562 case bitc::CST_CODE_CE_CAST: { // CE_CAST: [opcode, opty, opval] 2563 if (Record.size() < 3) 2564 return error("Invalid record"); 2565 int Opc = getDecodedCastOpcode(Record[0]); 2566 if (Opc < 0) { 2567 V = UndefValue::get(CurTy); // Unknown cast. 2568 } else { 2569 Type *OpTy = getTypeByID(Record[1]); 2570 if (!OpTy) 2571 return error("Invalid record"); 2572 Constant *Op = ValueList.getConstantFwdRef(Record[2], OpTy); 2573 V = UpgradeBitCastExpr(Opc, Op, CurTy); 2574 if (!V) V = ConstantExpr::getCast(Opc, Op, CurTy); 2575 } 2576 break; 2577 } 2578 case bitc::CST_CODE_CE_INBOUNDS_GEP: // [ty, n x operands] 2579 case bitc::CST_CODE_CE_GEP: // [ty, n x operands] 2580 case bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX: { // [ty, flags, n x 2581 // operands] 2582 unsigned OpNum = 0; 2583 Type *PointeeType = nullptr; 2584 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX || 2585 Record.size() % 2) 2586 PointeeType = getTypeByID(Record[OpNum++]); 2587 2588 bool InBounds = false; 2589 Optional<unsigned> InRangeIndex; 2590 if (BitCode == bitc::CST_CODE_CE_GEP_WITH_INRANGE_INDEX) { 2591 uint64_t Op = Record[OpNum++]; 2592 InBounds = Op & 1; 2593 InRangeIndex = Op >> 1; 2594 } else if (BitCode == bitc::CST_CODE_CE_INBOUNDS_GEP) 2595 InBounds = true; 2596 2597 SmallVector<Constant*, 16> Elts; 2598 Type *Elt0FullTy = nullptr; 2599 while (OpNum != Record.size()) { 2600 if (!Elt0FullTy) 2601 Elt0FullTy = getFullyStructuredTypeByID(Record[OpNum]); 2602 Type *ElTy = getTypeByID(Record[OpNum++]); 2603 if (!ElTy) 2604 return error("Invalid record"); 2605 Elts.push_back(ValueList.getConstantFwdRef(Record[OpNum++], ElTy)); 2606 } 2607 2608 if (Elts.size() < 1) 2609 return error("Invalid gep with no operands"); 2610 2611 Type *ImplicitPointeeType = 2612 getPointerElementFlatType(Elt0FullTy->getScalarType()); 2613 if (!PointeeType) 2614 PointeeType = ImplicitPointeeType; 2615 else if (PointeeType != ImplicitPointeeType) 2616 return error("Explicit gep operator type does not match pointee type " 2617 "of pointer operand"); 2618 2619 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2620 V = ConstantExpr::getGetElementPtr(PointeeType, Elts[0], Indices, 2621 InBounds, InRangeIndex); 2622 break; 2623 } 2624 case bitc::CST_CODE_CE_SELECT: { // CE_SELECT: [opval#, opval#, opval#] 2625 if (Record.size() < 3) 2626 return error("Invalid record"); 2627 2628 Type *SelectorTy = Type::getInt1Ty(Context); 2629 2630 // The selector might be an i1 or an <n x i1> 2631 // Get the type from the ValueList before getting a forward ref. 2632 if (VectorType *VTy = dyn_cast<VectorType>(CurTy)) 2633 if (Value *V = ValueList[Record[0]]) 2634 if (SelectorTy != V->getType()) 2635 SelectorTy = VectorType::get(SelectorTy, VTy->getNumElements()); 2636 2637 V = ConstantExpr::getSelect(ValueList.getConstantFwdRef(Record[0], 2638 SelectorTy), 2639 ValueList.getConstantFwdRef(Record[1],CurTy), 2640 ValueList.getConstantFwdRef(Record[2],CurTy)); 2641 break; 2642 } 2643 case bitc::CST_CODE_CE_EXTRACTELT 2644 : { // CE_EXTRACTELT: [opty, opval, opty, opval] 2645 if (Record.size() < 3) 2646 return error("Invalid record"); 2647 VectorType *OpTy = 2648 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2649 if (!OpTy) 2650 return error("Invalid record"); 2651 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2652 Constant *Op1 = nullptr; 2653 if (Record.size() == 4) { 2654 Type *IdxTy = getTypeByID(Record[2]); 2655 if (!IdxTy) 2656 return error("Invalid record"); 2657 Op1 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2658 } else // TODO: Remove with llvm 4.0 2659 Op1 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2660 if (!Op1) 2661 return error("Invalid record"); 2662 V = ConstantExpr::getExtractElement(Op0, Op1); 2663 break; 2664 } 2665 case bitc::CST_CODE_CE_INSERTELT 2666 : { // CE_INSERTELT: [opval, opval, opty, opval] 2667 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2668 if (Record.size() < 3 || !OpTy) 2669 return error("Invalid record"); 2670 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2671 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], 2672 OpTy->getElementType()); 2673 Constant *Op2 = nullptr; 2674 if (Record.size() == 4) { 2675 Type *IdxTy = getTypeByID(Record[2]); 2676 if (!IdxTy) 2677 return error("Invalid record"); 2678 Op2 = ValueList.getConstantFwdRef(Record[3], IdxTy); 2679 } else // TODO: Remove with llvm 4.0 2680 Op2 = ValueList.getConstantFwdRef(Record[2], Type::getInt32Ty(Context)); 2681 if (!Op2) 2682 return error("Invalid record"); 2683 V = ConstantExpr::getInsertElement(Op0, Op1, Op2); 2684 break; 2685 } 2686 case bitc::CST_CODE_CE_SHUFFLEVEC: { // CE_SHUFFLEVEC: [opval, opval, opval] 2687 VectorType *OpTy = dyn_cast<VectorType>(CurTy); 2688 if (Record.size() < 3 || !OpTy) 2689 return error("Invalid record"); 2690 Constant *Op0 = ValueList.getConstantFwdRef(Record[0], OpTy); 2691 Constant *Op1 = ValueList.getConstantFwdRef(Record[1], OpTy); 2692 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2693 OpTy->getNumElements()); 2694 Constant *Op2 = ValueList.getConstantFwdRef(Record[2], ShufTy); 2695 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2696 break; 2697 } 2698 case bitc::CST_CODE_CE_SHUFVEC_EX: { // [opty, opval, opval, opval] 2699 VectorType *RTy = dyn_cast<VectorType>(CurTy); 2700 VectorType *OpTy = 2701 dyn_cast_or_null<VectorType>(getTypeByID(Record[0])); 2702 if (Record.size() < 4 || !RTy || !OpTy) 2703 return error("Invalid record"); 2704 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2705 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2706 Type *ShufTy = VectorType::get(Type::getInt32Ty(Context), 2707 RTy->getNumElements()); 2708 Constant *Op2 = ValueList.getConstantFwdRef(Record[3], ShufTy); 2709 V = ConstantExpr::getShuffleVector(Op0, Op1, Op2); 2710 break; 2711 } 2712 case bitc::CST_CODE_CE_CMP: { // CE_CMP: [opty, opval, opval, pred] 2713 if (Record.size() < 4) 2714 return error("Invalid record"); 2715 Type *OpTy = getTypeByID(Record[0]); 2716 if (!OpTy) 2717 return error("Invalid record"); 2718 Constant *Op0 = ValueList.getConstantFwdRef(Record[1], OpTy); 2719 Constant *Op1 = ValueList.getConstantFwdRef(Record[2], OpTy); 2720 2721 if (OpTy->isFPOrFPVectorTy()) 2722 V = ConstantExpr::getFCmp(Record[3], Op0, Op1); 2723 else 2724 V = ConstantExpr::getICmp(Record[3], Op0, Op1); 2725 break; 2726 } 2727 // This maintains backward compatibility, pre-asm dialect keywords. 2728 // FIXME: Remove with the 4.0 release. 2729 case bitc::CST_CODE_INLINEASM_OLD: { 2730 if (Record.size() < 2) 2731 return error("Invalid record"); 2732 std::string AsmStr, ConstrStr; 2733 bool HasSideEffects = Record[0] & 1; 2734 bool IsAlignStack = Record[0] >> 1; 2735 unsigned AsmStrSize = Record[1]; 2736 if (2+AsmStrSize >= Record.size()) 2737 return error("Invalid record"); 2738 unsigned ConstStrSize = Record[2+AsmStrSize]; 2739 if (3+AsmStrSize+ConstStrSize > Record.size()) 2740 return error("Invalid record"); 2741 2742 for (unsigned i = 0; i != AsmStrSize; ++i) 2743 AsmStr += (char)Record[2+i]; 2744 for (unsigned i = 0; i != ConstStrSize; ++i) 2745 ConstrStr += (char)Record[3+AsmStrSize+i]; 2746 UpgradeInlineAsmString(&AsmStr); 2747 V = InlineAsm::get( 2748 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2749 ConstrStr, HasSideEffects, IsAlignStack); 2750 break; 2751 } 2752 // This version adds support for the asm dialect keywords (e.g., 2753 // inteldialect). 2754 case bitc::CST_CODE_INLINEASM: { 2755 if (Record.size() < 2) 2756 return error("Invalid record"); 2757 std::string AsmStr, ConstrStr; 2758 bool HasSideEffects = Record[0] & 1; 2759 bool IsAlignStack = (Record[0] >> 1) & 1; 2760 unsigned AsmDialect = Record[0] >> 2; 2761 unsigned AsmStrSize = Record[1]; 2762 if (2+AsmStrSize >= Record.size()) 2763 return error("Invalid record"); 2764 unsigned ConstStrSize = Record[2+AsmStrSize]; 2765 if (3+AsmStrSize+ConstStrSize > Record.size()) 2766 return error("Invalid record"); 2767 2768 for (unsigned i = 0; i != AsmStrSize; ++i) 2769 AsmStr += (char)Record[2+i]; 2770 for (unsigned i = 0; i != ConstStrSize; ++i) 2771 ConstrStr += (char)Record[3+AsmStrSize+i]; 2772 UpgradeInlineAsmString(&AsmStr); 2773 V = InlineAsm::get( 2774 cast<FunctionType>(getPointerElementFlatType(CurFullTy)), AsmStr, 2775 ConstrStr, HasSideEffects, IsAlignStack, 2776 InlineAsm::AsmDialect(AsmDialect)); 2777 break; 2778 } 2779 case bitc::CST_CODE_BLOCKADDRESS:{ 2780 if (Record.size() < 3) 2781 return error("Invalid record"); 2782 Type *FnTy = getTypeByID(Record[0]); 2783 if (!FnTy) 2784 return error("Invalid record"); 2785 Function *Fn = 2786 dyn_cast_or_null<Function>(ValueList.getConstantFwdRef(Record[1],FnTy)); 2787 if (!Fn) 2788 return error("Invalid record"); 2789 2790 // If the function is already parsed we can insert the block address right 2791 // away. 2792 BasicBlock *BB; 2793 unsigned BBID = Record[2]; 2794 if (!BBID) 2795 // Invalid reference to entry block. 2796 return error("Invalid ID"); 2797 if (!Fn->empty()) { 2798 Function::iterator BBI = Fn->begin(), BBE = Fn->end(); 2799 for (size_t I = 0, E = BBID; I != E; ++I) { 2800 if (BBI == BBE) 2801 return error("Invalid ID"); 2802 ++BBI; 2803 } 2804 BB = &*BBI; 2805 } else { 2806 // Otherwise insert a placeholder and remember it so it can be inserted 2807 // when the function is parsed. 2808 auto &FwdBBs = BasicBlockFwdRefs[Fn]; 2809 if (FwdBBs.empty()) 2810 BasicBlockFwdRefQueue.push_back(Fn); 2811 if (FwdBBs.size() < BBID + 1) 2812 FwdBBs.resize(BBID + 1); 2813 if (!FwdBBs[BBID]) 2814 FwdBBs[BBID] = BasicBlock::Create(Context); 2815 BB = FwdBBs[BBID]; 2816 } 2817 V = BlockAddress::get(Fn, BB); 2818 break; 2819 } 2820 } 2821 2822 assert(V->getType() == flattenPointerTypes(CurFullTy) && 2823 "Incorrect fully structured type provided for Constant"); 2824 ValueList.assignValue(V, NextCstNo, CurFullTy); 2825 ++NextCstNo; 2826 } 2827 } 2828 2829 Error BitcodeReader::parseUseLists() { 2830 if (Error Err = Stream.EnterSubBlock(bitc::USELIST_BLOCK_ID)) 2831 return Err; 2832 2833 // Read all the records. 2834 SmallVector<uint64_t, 64> Record; 2835 2836 while (true) { 2837 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 2838 if (!MaybeEntry) 2839 return MaybeEntry.takeError(); 2840 BitstreamEntry Entry = MaybeEntry.get(); 2841 2842 switch (Entry.Kind) { 2843 case BitstreamEntry::SubBlock: // Handled for us already. 2844 case BitstreamEntry::Error: 2845 return error("Malformed block"); 2846 case BitstreamEntry::EndBlock: 2847 return Error::success(); 2848 case BitstreamEntry::Record: 2849 // The interesting case. 2850 break; 2851 } 2852 2853 // Read a use list record. 2854 Record.clear(); 2855 bool IsBB = false; 2856 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 2857 if (!MaybeRecord) 2858 return MaybeRecord.takeError(); 2859 switch (MaybeRecord.get()) { 2860 default: // Default behavior: unknown type. 2861 break; 2862 case bitc::USELIST_CODE_BB: 2863 IsBB = true; 2864 LLVM_FALLTHROUGH; 2865 case bitc::USELIST_CODE_DEFAULT: { 2866 unsigned RecordLength = Record.size(); 2867 if (RecordLength < 3) 2868 // Records should have at least an ID and two indexes. 2869 return error("Invalid record"); 2870 unsigned ID = Record.back(); 2871 Record.pop_back(); 2872 2873 Value *V; 2874 if (IsBB) { 2875 assert(ID < FunctionBBs.size() && "Basic block not found"); 2876 V = FunctionBBs[ID]; 2877 } else 2878 V = ValueList[ID]; 2879 unsigned NumUses = 0; 2880 SmallDenseMap<const Use *, unsigned, 16> Order; 2881 for (const Use &U : V->materialized_uses()) { 2882 if (++NumUses > Record.size()) 2883 break; 2884 Order[&U] = Record[NumUses - 1]; 2885 } 2886 if (Order.size() != Record.size() || NumUses > Record.size()) 2887 // Mismatches can happen if the functions are being materialized lazily 2888 // (out-of-order), or a value has been upgraded. 2889 break; 2890 2891 V->sortUseList([&](const Use &L, const Use &R) { 2892 return Order.lookup(&L) < Order.lookup(&R); 2893 }); 2894 break; 2895 } 2896 } 2897 } 2898 } 2899 2900 /// When we see the block for metadata, remember where it is and then skip it. 2901 /// This lets us lazily deserialize the metadata. 2902 Error BitcodeReader::rememberAndSkipMetadata() { 2903 // Save the current stream state. 2904 uint64_t CurBit = Stream.GetCurrentBitNo(); 2905 DeferredMetadataInfo.push_back(CurBit); 2906 2907 // Skip over the block for now. 2908 if (Error Err = Stream.SkipBlock()) 2909 return Err; 2910 return Error::success(); 2911 } 2912 2913 Error BitcodeReader::materializeMetadata() { 2914 for (uint64_t BitPos : DeferredMetadataInfo) { 2915 // Move the bit stream to the saved position. 2916 if (Error JumpFailed = Stream.JumpToBit(BitPos)) 2917 return JumpFailed; 2918 if (Error Err = MDLoader->parseModuleMetadata()) 2919 return Err; 2920 } 2921 2922 // Upgrade "Linker Options" module flag to "llvm.linker.options" module-level 2923 // metadata. 2924 if (Metadata *Val = TheModule->getModuleFlag("Linker Options")) { 2925 NamedMDNode *LinkerOpts = 2926 TheModule->getOrInsertNamedMetadata("llvm.linker.options"); 2927 for (const MDOperand &MDOptions : cast<MDNode>(Val)->operands()) 2928 LinkerOpts->addOperand(cast<MDNode>(MDOptions)); 2929 } 2930 2931 DeferredMetadataInfo.clear(); 2932 return Error::success(); 2933 } 2934 2935 void BitcodeReader::setStripDebugInfo() { StripDebugInfo = true; } 2936 2937 /// When we see the block for a function body, remember where it is and then 2938 /// skip it. This lets us lazily deserialize the functions. 2939 Error BitcodeReader::rememberAndSkipFunctionBody() { 2940 // Get the function we are talking about. 2941 if (FunctionsWithBodies.empty()) 2942 return error("Insufficient function protos"); 2943 2944 Function *Fn = FunctionsWithBodies.back(); 2945 FunctionsWithBodies.pop_back(); 2946 2947 // Save the current stream state. 2948 uint64_t CurBit = Stream.GetCurrentBitNo(); 2949 assert( 2950 (DeferredFunctionInfo[Fn] == 0 || DeferredFunctionInfo[Fn] == CurBit) && 2951 "Mismatch between VST and scanned function offsets"); 2952 DeferredFunctionInfo[Fn] = CurBit; 2953 2954 // Skip over the function block for now. 2955 if (Error Err = Stream.SkipBlock()) 2956 return Err; 2957 return Error::success(); 2958 } 2959 2960 Error BitcodeReader::globalCleanup() { 2961 // Patch the initializers for globals and aliases up. 2962 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 2963 return Err; 2964 if (!GlobalInits.empty() || !IndirectSymbolInits.empty()) 2965 return error("Malformed global initializer set"); 2966 2967 // Look for intrinsic functions which need to be upgraded at some point 2968 for (Function &F : *TheModule) { 2969 MDLoader->upgradeDebugIntrinsics(F); 2970 Function *NewFn; 2971 if (UpgradeIntrinsicFunction(&F, NewFn)) 2972 UpgradedIntrinsics[&F] = NewFn; 2973 else if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) 2974 // Some types could be renamed during loading if several modules are 2975 // loaded in the same LLVMContext (LTO scenario). In this case we should 2976 // remangle intrinsics names as well. 2977 RemangledIntrinsics[&F] = Remangled.getValue(); 2978 } 2979 2980 // Look for global variables which need to be renamed. 2981 std::vector<std::pair<GlobalVariable *, GlobalVariable *>> UpgradedVariables; 2982 for (GlobalVariable &GV : TheModule->globals()) 2983 if (GlobalVariable *Upgraded = UpgradeGlobalVariable(&GV)) 2984 UpgradedVariables.emplace_back(&GV, Upgraded); 2985 for (auto &Pair : UpgradedVariables) { 2986 Pair.first->eraseFromParent(); 2987 TheModule->getGlobalList().push_back(Pair.second); 2988 } 2989 2990 // Force deallocation of memory for these vectors to favor the client that 2991 // want lazy deserialization. 2992 std::vector<std::pair<GlobalVariable *, unsigned>>().swap(GlobalInits); 2993 std::vector<std::pair<GlobalIndirectSymbol *, unsigned>>().swap( 2994 IndirectSymbolInits); 2995 return Error::success(); 2996 } 2997 2998 /// Support for lazy parsing of function bodies. This is required if we 2999 /// either have an old bitcode file without a VST forward declaration record, 3000 /// or if we have an anonymous function being materialized, since anonymous 3001 /// functions do not have a name and are therefore not in the VST. 3002 Error BitcodeReader::rememberAndSkipFunctionBodies() { 3003 if (Error JumpFailed = Stream.JumpToBit(NextUnreadBit)) 3004 return JumpFailed; 3005 3006 if (Stream.AtEndOfStream()) 3007 return error("Could not find function in stream"); 3008 3009 if (!SeenFirstFunctionBody) 3010 return error("Trying to materialize functions before seeing function blocks"); 3011 3012 // An old bitcode file with the symbol table at the end would have 3013 // finished the parse greedily. 3014 assert(SeenValueSymbolTable); 3015 3016 SmallVector<uint64_t, 64> Record; 3017 3018 while (true) { 3019 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3020 if (!MaybeEntry) 3021 return MaybeEntry.takeError(); 3022 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3023 3024 switch (Entry.Kind) { 3025 default: 3026 return error("Expect SubBlock"); 3027 case BitstreamEntry::SubBlock: 3028 switch (Entry.ID) { 3029 default: 3030 return error("Expect function block"); 3031 case bitc::FUNCTION_BLOCK_ID: 3032 if (Error Err = rememberAndSkipFunctionBody()) 3033 return Err; 3034 NextUnreadBit = Stream.GetCurrentBitNo(); 3035 return Error::success(); 3036 } 3037 } 3038 } 3039 } 3040 3041 bool BitcodeReaderBase::readBlockInfo() { 3042 Expected<Optional<BitstreamBlockInfo>> MaybeNewBlockInfo = 3043 Stream.ReadBlockInfoBlock(); 3044 if (!MaybeNewBlockInfo) 3045 return true; // FIXME Handle the error. 3046 Optional<BitstreamBlockInfo> NewBlockInfo = 3047 std::move(MaybeNewBlockInfo.get()); 3048 if (!NewBlockInfo) 3049 return true; 3050 BlockInfo = std::move(*NewBlockInfo); 3051 return false; 3052 } 3053 3054 Error BitcodeReader::parseComdatRecord(ArrayRef<uint64_t> Record) { 3055 // v1: [selection_kind, name] 3056 // v2: [strtab_offset, strtab_size, selection_kind] 3057 StringRef Name; 3058 std::tie(Name, Record) = readNameFromStrtab(Record); 3059 3060 if (Record.empty()) 3061 return error("Invalid record"); 3062 Comdat::SelectionKind SK = getDecodedComdatSelectionKind(Record[0]); 3063 std::string OldFormatName; 3064 if (!UseStrtab) { 3065 if (Record.size() < 2) 3066 return error("Invalid record"); 3067 unsigned ComdatNameSize = Record[1]; 3068 OldFormatName.reserve(ComdatNameSize); 3069 for (unsigned i = 0; i != ComdatNameSize; ++i) 3070 OldFormatName += (char)Record[2 + i]; 3071 Name = OldFormatName; 3072 } 3073 Comdat *C = TheModule->getOrInsertComdat(Name); 3074 C->setSelectionKind(SK); 3075 ComdatList.push_back(C); 3076 return Error::success(); 3077 } 3078 3079 static void inferDSOLocal(GlobalValue *GV) { 3080 // infer dso_local from linkage and visibility if it is not encoded. 3081 if (GV->hasLocalLinkage() || 3082 (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage())) 3083 GV->setDSOLocal(true); 3084 } 3085 3086 Error BitcodeReader::parseGlobalVarRecord(ArrayRef<uint64_t> Record) { 3087 // v1: [pointer type, isconst, initid, linkage, alignment, section, 3088 // visibility, threadlocal, unnamed_addr, externally_initialized, 3089 // dllstorageclass, comdat, attributes, preemption specifier, 3090 // partition strtab offset, partition strtab size] (name in VST) 3091 // v2: [strtab_offset, strtab_size, v1] 3092 StringRef Name; 3093 std::tie(Name, Record) = readNameFromStrtab(Record); 3094 3095 if (Record.size() < 6) 3096 return error("Invalid record"); 3097 Type *FullTy = getFullyStructuredTypeByID(Record[0]); 3098 Type *Ty = flattenPointerTypes(FullTy); 3099 if (!Ty) 3100 return error("Invalid record"); 3101 bool isConstant = Record[1] & 1; 3102 bool explicitType = Record[1] & 2; 3103 unsigned AddressSpace; 3104 if (explicitType) { 3105 AddressSpace = Record[1] >> 2; 3106 } else { 3107 if (!Ty->isPointerTy()) 3108 return error("Invalid type for value"); 3109 AddressSpace = cast<PointerType>(Ty)->getAddressSpace(); 3110 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3111 } 3112 3113 uint64_t RawLinkage = Record[3]; 3114 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 3115 MaybeAlign Alignment; 3116 if (Error Err = parseAlignmentValue(Record[4], Alignment)) 3117 return Err; 3118 std::string Section; 3119 if (Record[5]) { 3120 if (Record[5] - 1 >= SectionTable.size()) 3121 return error("Invalid ID"); 3122 Section = SectionTable[Record[5] - 1]; 3123 } 3124 GlobalValue::VisibilityTypes Visibility = GlobalValue::DefaultVisibility; 3125 // Local linkage must have default visibility. 3126 if (Record.size() > 6 && !GlobalValue::isLocalLinkage(Linkage)) 3127 // FIXME: Change to an error if non-default in 4.0. 3128 Visibility = getDecodedVisibility(Record[6]); 3129 3130 GlobalVariable::ThreadLocalMode TLM = GlobalVariable::NotThreadLocal; 3131 if (Record.size() > 7) 3132 TLM = getDecodedThreadLocalMode(Record[7]); 3133 3134 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3135 if (Record.size() > 8) 3136 UnnamedAddr = getDecodedUnnamedAddrType(Record[8]); 3137 3138 bool ExternallyInitialized = false; 3139 if (Record.size() > 9) 3140 ExternallyInitialized = Record[9]; 3141 3142 GlobalVariable *NewGV = 3143 new GlobalVariable(*TheModule, Ty, isConstant, Linkage, nullptr, Name, 3144 nullptr, TLM, AddressSpace, ExternallyInitialized); 3145 NewGV->setAlignment(Alignment); 3146 if (!Section.empty()) 3147 NewGV->setSection(Section); 3148 NewGV->setVisibility(Visibility); 3149 NewGV->setUnnamedAddr(UnnamedAddr); 3150 3151 if (Record.size() > 10) 3152 NewGV->setDLLStorageClass(getDecodedDLLStorageClass(Record[10])); 3153 else 3154 upgradeDLLImportExportLinkage(NewGV, RawLinkage); 3155 3156 FullTy = PointerType::get(FullTy, AddressSpace); 3157 assert(NewGV->getType() == flattenPointerTypes(FullTy) && 3158 "Incorrect fully specified type for GlobalVariable"); 3159 ValueList.push_back(NewGV, FullTy); 3160 3161 // Remember which value to use for the global initializer. 3162 if (unsigned InitID = Record[2]) 3163 GlobalInits.push_back(std::make_pair(NewGV, InitID - 1)); 3164 3165 if (Record.size() > 11) { 3166 if (unsigned ComdatID = Record[11]) { 3167 if (ComdatID > ComdatList.size()) 3168 return error("Invalid global variable comdat ID"); 3169 NewGV->setComdat(ComdatList[ComdatID - 1]); 3170 } 3171 } else if (hasImplicitComdat(RawLinkage)) { 3172 NewGV->setComdat(reinterpret_cast<Comdat *>(1)); 3173 } 3174 3175 if (Record.size() > 12) { 3176 auto AS = getAttributes(Record[12]).getFnAttributes(); 3177 NewGV->setAttributes(AS); 3178 } 3179 3180 if (Record.size() > 13) { 3181 NewGV->setDSOLocal(getDecodedDSOLocal(Record[13])); 3182 } 3183 inferDSOLocal(NewGV); 3184 3185 // Check whether we have enough values to read a partition name. 3186 if (Record.size() > 15) 3187 NewGV->setPartition(StringRef(Strtab.data() + Record[14], Record[15])); 3188 3189 return Error::success(); 3190 } 3191 3192 Error BitcodeReader::parseFunctionRecord(ArrayRef<uint64_t> Record) { 3193 // v1: [type, callingconv, isproto, linkage, paramattr, alignment, section, 3194 // visibility, gc, unnamed_addr, prologuedata, dllstorageclass, comdat, 3195 // prefixdata, personalityfn, preemption specifier, addrspace] (name in VST) 3196 // v2: [strtab_offset, strtab_size, v1] 3197 StringRef Name; 3198 std::tie(Name, Record) = readNameFromStrtab(Record); 3199 3200 if (Record.size() < 8) 3201 return error("Invalid record"); 3202 Type *FullFTy = getFullyStructuredTypeByID(Record[0]); 3203 Type *FTy = flattenPointerTypes(FullFTy); 3204 if (!FTy) 3205 return error("Invalid record"); 3206 if (isa<PointerType>(FTy)) 3207 std::tie(FullFTy, FTy) = getPointerElementTypes(FullFTy); 3208 3209 if (!isa<FunctionType>(FTy)) 3210 return error("Invalid type for value"); 3211 auto CC = static_cast<CallingConv::ID>(Record[1]); 3212 if (CC & ~CallingConv::MaxID) 3213 return error("Invalid calling convention ID"); 3214 3215 unsigned AddrSpace = TheModule->getDataLayout().getProgramAddressSpace(); 3216 if (Record.size() > 16) 3217 AddrSpace = Record[16]; 3218 3219 Function *Func = 3220 Function::Create(cast<FunctionType>(FTy), GlobalValue::ExternalLinkage, 3221 AddrSpace, Name, TheModule); 3222 3223 assert(Func->getFunctionType() == flattenPointerTypes(FullFTy) && 3224 "Incorrect fully specified type provided for function"); 3225 FunctionTypes[Func] = cast<FunctionType>(FullFTy); 3226 3227 Func->setCallingConv(CC); 3228 bool isProto = Record[2]; 3229 uint64_t RawLinkage = Record[3]; 3230 Func->setLinkage(getDecodedLinkage(RawLinkage)); 3231 Func->setAttributes(getAttributes(Record[4])); 3232 3233 // Upgrade any old-style byval without a type by propagating the argument's 3234 // pointee type. There should be no opaque pointers where the byval type is 3235 // implicit. 3236 for (unsigned i = 0; i != Func->arg_size(); ++i) { 3237 if (!Func->hasParamAttribute(i, Attribute::ByVal)) 3238 continue; 3239 3240 Type *PTy = cast<FunctionType>(FullFTy)->getParamType(i); 3241 Func->removeParamAttr(i, Attribute::ByVal); 3242 Func->addParamAttr(i, Attribute::getWithByValType( 3243 Context, getPointerElementFlatType(PTy))); 3244 } 3245 3246 MaybeAlign Alignment; 3247 if (Error Err = parseAlignmentValue(Record[5], Alignment)) 3248 return Err; 3249 Func->setAlignment(Alignment); 3250 if (Record[6]) { 3251 if (Record[6] - 1 >= SectionTable.size()) 3252 return error("Invalid ID"); 3253 Func->setSection(SectionTable[Record[6] - 1]); 3254 } 3255 // Local linkage must have default visibility. 3256 if (!Func->hasLocalLinkage()) 3257 // FIXME: Change to an error if non-default in 4.0. 3258 Func->setVisibility(getDecodedVisibility(Record[7])); 3259 if (Record.size() > 8 && Record[8]) { 3260 if (Record[8] - 1 >= GCTable.size()) 3261 return error("Invalid ID"); 3262 Func->setGC(GCTable[Record[8] - 1]); 3263 } 3264 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 3265 if (Record.size() > 9) 3266 UnnamedAddr = getDecodedUnnamedAddrType(Record[9]); 3267 Func->setUnnamedAddr(UnnamedAddr); 3268 if (Record.size() > 10 && Record[10] != 0) 3269 FunctionPrologues.push_back(std::make_pair(Func, Record[10] - 1)); 3270 3271 if (Record.size() > 11) 3272 Func->setDLLStorageClass(getDecodedDLLStorageClass(Record[11])); 3273 else 3274 upgradeDLLImportExportLinkage(Func, RawLinkage); 3275 3276 if (Record.size() > 12) { 3277 if (unsigned ComdatID = Record[12]) { 3278 if (ComdatID > ComdatList.size()) 3279 return error("Invalid function comdat ID"); 3280 Func->setComdat(ComdatList[ComdatID - 1]); 3281 } 3282 } else if (hasImplicitComdat(RawLinkage)) { 3283 Func->setComdat(reinterpret_cast<Comdat *>(1)); 3284 } 3285 3286 if (Record.size() > 13 && Record[13] != 0) 3287 FunctionPrefixes.push_back(std::make_pair(Func, Record[13] - 1)); 3288 3289 if (Record.size() > 14 && Record[14] != 0) 3290 FunctionPersonalityFns.push_back(std::make_pair(Func, Record[14] - 1)); 3291 3292 if (Record.size() > 15) { 3293 Func->setDSOLocal(getDecodedDSOLocal(Record[15])); 3294 } 3295 inferDSOLocal(Func); 3296 3297 // Record[16] is the address space number. 3298 3299 // Check whether we have enough values to read a partition name. 3300 if (Record.size() > 18) 3301 Func->setPartition(StringRef(Strtab.data() + Record[17], Record[18])); 3302 3303 Type *FullTy = PointerType::get(FullFTy, AddrSpace); 3304 assert(Func->getType() == flattenPointerTypes(FullTy) && 3305 "Incorrect fully specified type provided for Function"); 3306 ValueList.push_back(Func, FullTy); 3307 3308 // If this is a function with a body, remember the prototype we are 3309 // creating now, so that we can match up the body with them later. 3310 if (!isProto) { 3311 Func->setIsMaterializable(true); 3312 FunctionsWithBodies.push_back(Func); 3313 DeferredFunctionInfo[Func] = 0; 3314 } 3315 return Error::success(); 3316 } 3317 3318 Error BitcodeReader::parseGlobalIndirectSymbolRecord( 3319 unsigned BitCode, ArrayRef<uint64_t> Record) { 3320 // v1 ALIAS_OLD: [alias type, aliasee val#, linkage] (name in VST) 3321 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, visibility, 3322 // dllstorageclass, threadlocal, unnamed_addr, 3323 // preemption specifier] (name in VST) 3324 // v1 IFUNC: [alias type, addrspace, aliasee val#, linkage, 3325 // visibility, dllstorageclass, threadlocal, unnamed_addr, 3326 // preemption specifier] (name in VST) 3327 // v2: [strtab_offset, strtab_size, v1] 3328 StringRef Name; 3329 std::tie(Name, Record) = readNameFromStrtab(Record); 3330 3331 bool NewRecord = BitCode != bitc::MODULE_CODE_ALIAS_OLD; 3332 if (Record.size() < (3 + (unsigned)NewRecord)) 3333 return error("Invalid record"); 3334 unsigned OpNum = 0; 3335 Type *FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3336 Type *Ty = flattenPointerTypes(FullTy); 3337 if (!Ty) 3338 return error("Invalid record"); 3339 3340 unsigned AddrSpace; 3341 if (!NewRecord) { 3342 auto *PTy = dyn_cast<PointerType>(Ty); 3343 if (!PTy) 3344 return error("Invalid type for value"); 3345 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 3346 AddrSpace = PTy->getAddressSpace(); 3347 } else { 3348 AddrSpace = Record[OpNum++]; 3349 } 3350 3351 auto Val = Record[OpNum++]; 3352 auto Linkage = Record[OpNum++]; 3353 GlobalIndirectSymbol *NewGA; 3354 if (BitCode == bitc::MODULE_CODE_ALIAS || 3355 BitCode == bitc::MODULE_CODE_ALIAS_OLD) 3356 NewGA = GlobalAlias::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3357 TheModule); 3358 else 3359 NewGA = GlobalIFunc::create(Ty, AddrSpace, getDecodedLinkage(Linkage), Name, 3360 nullptr, TheModule); 3361 3362 assert(NewGA->getValueType() == flattenPointerTypes(FullTy) && 3363 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3364 // Old bitcode files didn't have visibility field. 3365 // Local linkage must have default visibility. 3366 if (OpNum != Record.size()) { 3367 auto VisInd = OpNum++; 3368 if (!NewGA->hasLocalLinkage()) 3369 // FIXME: Change to an error if non-default in 4.0. 3370 NewGA->setVisibility(getDecodedVisibility(Record[VisInd])); 3371 } 3372 if (BitCode == bitc::MODULE_CODE_ALIAS || 3373 BitCode == bitc::MODULE_CODE_ALIAS_OLD) { 3374 if (OpNum != Record.size()) 3375 NewGA->setDLLStorageClass(getDecodedDLLStorageClass(Record[OpNum++])); 3376 else 3377 upgradeDLLImportExportLinkage(NewGA, Linkage); 3378 if (OpNum != Record.size()) 3379 NewGA->setThreadLocalMode(getDecodedThreadLocalMode(Record[OpNum++])); 3380 if (OpNum != Record.size()) 3381 NewGA->setUnnamedAddr(getDecodedUnnamedAddrType(Record[OpNum++])); 3382 } 3383 if (OpNum != Record.size()) 3384 NewGA->setDSOLocal(getDecodedDSOLocal(Record[OpNum++])); 3385 inferDSOLocal(NewGA); 3386 3387 // Check whether we have enough values to read a partition name. 3388 if (OpNum + 1 < Record.size()) { 3389 NewGA->setPartition( 3390 StringRef(Strtab.data() + Record[OpNum], Record[OpNum + 1])); 3391 OpNum += 2; 3392 } 3393 3394 FullTy = PointerType::get(FullTy, AddrSpace); 3395 assert(NewGA->getType() == flattenPointerTypes(FullTy) && 3396 "Incorrect fully structured type provided for GlobalIndirectSymbol"); 3397 ValueList.push_back(NewGA, FullTy); 3398 IndirectSymbolInits.push_back(std::make_pair(NewGA, Val)); 3399 return Error::success(); 3400 } 3401 3402 Error BitcodeReader::parseModule(uint64_t ResumeBit, 3403 bool ShouldLazyLoadMetadata) { 3404 if (ResumeBit) { 3405 if (Error JumpFailed = Stream.JumpToBit(ResumeBit)) 3406 return JumpFailed; 3407 } else if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 3408 return Err; 3409 3410 SmallVector<uint64_t, 64> Record; 3411 3412 // Read all the records for this module. 3413 while (true) { 3414 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3415 if (!MaybeEntry) 3416 return MaybeEntry.takeError(); 3417 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3418 3419 switch (Entry.Kind) { 3420 case BitstreamEntry::Error: 3421 return error("Malformed block"); 3422 case BitstreamEntry::EndBlock: 3423 return globalCleanup(); 3424 3425 case BitstreamEntry::SubBlock: 3426 switch (Entry.ID) { 3427 default: // Skip unknown content. 3428 if (Error Err = Stream.SkipBlock()) 3429 return Err; 3430 break; 3431 case bitc::BLOCKINFO_BLOCK_ID: 3432 if (readBlockInfo()) 3433 return error("Malformed block"); 3434 break; 3435 case bitc::PARAMATTR_BLOCK_ID: 3436 if (Error Err = parseAttributeBlock()) 3437 return Err; 3438 break; 3439 case bitc::PARAMATTR_GROUP_BLOCK_ID: 3440 if (Error Err = parseAttributeGroupBlock()) 3441 return Err; 3442 break; 3443 case bitc::TYPE_BLOCK_ID_NEW: 3444 if (Error Err = parseTypeTable()) 3445 return Err; 3446 break; 3447 case bitc::VALUE_SYMTAB_BLOCK_ID: 3448 if (!SeenValueSymbolTable) { 3449 // Either this is an old form VST without function index and an 3450 // associated VST forward declaration record (which would have caused 3451 // the VST to be jumped to and parsed before it was encountered 3452 // normally in the stream), or there were no function blocks to 3453 // trigger an earlier parsing of the VST. 3454 assert(VSTOffset == 0 || FunctionsWithBodies.empty()); 3455 if (Error Err = parseValueSymbolTable()) 3456 return Err; 3457 SeenValueSymbolTable = true; 3458 } else { 3459 // We must have had a VST forward declaration record, which caused 3460 // the parser to jump to and parse the VST earlier. 3461 assert(VSTOffset > 0); 3462 if (Error Err = Stream.SkipBlock()) 3463 return Err; 3464 } 3465 break; 3466 case bitc::CONSTANTS_BLOCK_ID: 3467 if (Error Err = parseConstants()) 3468 return Err; 3469 if (Error Err = resolveGlobalAndIndirectSymbolInits()) 3470 return Err; 3471 break; 3472 case bitc::METADATA_BLOCK_ID: 3473 if (ShouldLazyLoadMetadata) { 3474 if (Error Err = rememberAndSkipMetadata()) 3475 return Err; 3476 break; 3477 } 3478 assert(DeferredMetadataInfo.empty() && "Unexpected deferred metadata"); 3479 if (Error Err = MDLoader->parseModuleMetadata()) 3480 return Err; 3481 break; 3482 case bitc::METADATA_KIND_BLOCK_ID: 3483 if (Error Err = MDLoader->parseMetadataKinds()) 3484 return Err; 3485 break; 3486 case bitc::FUNCTION_BLOCK_ID: 3487 // If this is the first function body we've seen, reverse the 3488 // FunctionsWithBodies list. 3489 if (!SeenFirstFunctionBody) { 3490 std::reverse(FunctionsWithBodies.begin(), FunctionsWithBodies.end()); 3491 if (Error Err = globalCleanup()) 3492 return Err; 3493 SeenFirstFunctionBody = true; 3494 } 3495 3496 if (VSTOffset > 0) { 3497 // If we have a VST forward declaration record, make sure we 3498 // parse the VST now if we haven't already. It is needed to 3499 // set up the DeferredFunctionInfo vector for lazy reading. 3500 if (!SeenValueSymbolTable) { 3501 if (Error Err = BitcodeReader::parseValueSymbolTable(VSTOffset)) 3502 return Err; 3503 SeenValueSymbolTable = true; 3504 // Fall through so that we record the NextUnreadBit below. 3505 // This is necessary in case we have an anonymous function that 3506 // is later materialized. Since it will not have a VST entry we 3507 // need to fall back to the lazy parse to find its offset. 3508 } else { 3509 // If we have a VST forward declaration record, but have already 3510 // parsed the VST (just above, when the first function body was 3511 // encountered here), then we are resuming the parse after 3512 // materializing functions. The ResumeBit points to the 3513 // start of the last function block recorded in the 3514 // DeferredFunctionInfo map. Skip it. 3515 if (Error Err = Stream.SkipBlock()) 3516 return Err; 3517 continue; 3518 } 3519 } 3520 3521 // Support older bitcode files that did not have the function 3522 // index in the VST, nor a VST forward declaration record, as 3523 // well as anonymous functions that do not have VST entries. 3524 // Build the DeferredFunctionInfo vector on the fly. 3525 if (Error Err = rememberAndSkipFunctionBody()) 3526 return Err; 3527 3528 // Suspend parsing when we reach the function bodies. Subsequent 3529 // materialization calls will resume it when necessary. If the bitcode 3530 // file is old, the symbol table will be at the end instead and will not 3531 // have been seen yet. In this case, just finish the parse now. 3532 if (SeenValueSymbolTable) { 3533 NextUnreadBit = Stream.GetCurrentBitNo(); 3534 // After the VST has been parsed, we need to make sure intrinsic name 3535 // are auto-upgraded. 3536 return globalCleanup(); 3537 } 3538 break; 3539 case bitc::USELIST_BLOCK_ID: 3540 if (Error Err = parseUseLists()) 3541 return Err; 3542 break; 3543 case bitc::OPERAND_BUNDLE_TAGS_BLOCK_ID: 3544 if (Error Err = parseOperandBundleTags()) 3545 return Err; 3546 break; 3547 case bitc::SYNC_SCOPE_NAMES_BLOCK_ID: 3548 if (Error Err = parseSyncScopeNames()) 3549 return Err; 3550 break; 3551 } 3552 continue; 3553 3554 case BitstreamEntry::Record: 3555 // The interesting case. 3556 break; 3557 } 3558 3559 // Read a record. 3560 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3561 if (!MaybeBitCode) 3562 return MaybeBitCode.takeError(); 3563 switch (unsigned BitCode = MaybeBitCode.get()) { 3564 default: break; // Default behavior, ignore unknown content. 3565 case bitc::MODULE_CODE_VERSION: { 3566 Expected<unsigned> VersionOrErr = parseVersionRecord(Record); 3567 if (!VersionOrErr) 3568 return VersionOrErr.takeError(); 3569 UseRelativeIDs = *VersionOrErr >= 1; 3570 break; 3571 } 3572 case bitc::MODULE_CODE_TRIPLE: { // TRIPLE: [strchr x N] 3573 std::string S; 3574 if (convertToString(Record, 0, S)) 3575 return error("Invalid record"); 3576 TheModule->setTargetTriple(S); 3577 break; 3578 } 3579 case bitc::MODULE_CODE_DATALAYOUT: { // DATALAYOUT: [strchr x N] 3580 std::string S; 3581 if (convertToString(Record, 0, S)) 3582 return error("Invalid record"); 3583 TheModule->setDataLayout(S); 3584 break; 3585 } 3586 case bitc::MODULE_CODE_ASM: { // ASM: [strchr x N] 3587 std::string S; 3588 if (convertToString(Record, 0, S)) 3589 return error("Invalid record"); 3590 TheModule->setModuleInlineAsm(S); 3591 break; 3592 } 3593 case bitc::MODULE_CODE_DEPLIB: { // DEPLIB: [strchr x N] 3594 // FIXME: Remove in 4.0. 3595 std::string S; 3596 if (convertToString(Record, 0, S)) 3597 return error("Invalid record"); 3598 // Ignore value. 3599 break; 3600 } 3601 case bitc::MODULE_CODE_SECTIONNAME: { // SECTIONNAME: [strchr x N] 3602 std::string S; 3603 if (convertToString(Record, 0, S)) 3604 return error("Invalid record"); 3605 SectionTable.push_back(S); 3606 break; 3607 } 3608 case bitc::MODULE_CODE_GCNAME: { // SECTIONNAME: [strchr x N] 3609 std::string S; 3610 if (convertToString(Record, 0, S)) 3611 return error("Invalid record"); 3612 GCTable.push_back(S); 3613 break; 3614 } 3615 case bitc::MODULE_CODE_COMDAT: 3616 if (Error Err = parseComdatRecord(Record)) 3617 return Err; 3618 break; 3619 case bitc::MODULE_CODE_GLOBALVAR: 3620 if (Error Err = parseGlobalVarRecord(Record)) 3621 return Err; 3622 break; 3623 case bitc::MODULE_CODE_FUNCTION: 3624 if (Error Err = parseFunctionRecord(Record)) 3625 return Err; 3626 break; 3627 case bitc::MODULE_CODE_IFUNC: 3628 case bitc::MODULE_CODE_ALIAS: 3629 case bitc::MODULE_CODE_ALIAS_OLD: 3630 if (Error Err = parseGlobalIndirectSymbolRecord(BitCode, Record)) 3631 return Err; 3632 break; 3633 /// MODULE_CODE_VSTOFFSET: [offset] 3634 case bitc::MODULE_CODE_VSTOFFSET: 3635 if (Record.size() < 1) 3636 return error("Invalid record"); 3637 // Note that we subtract 1 here because the offset is relative to one word 3638 // before the start of the identification or module block, which was 3639 // historically always the start of the regular bitcode header. 3640 VSTOffset = Record[0] - 1; 3641 break; 3642 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 3643 case bitc::MODULE_CODE_SOURCE_FILENAME: 3644 SmallString<128> ValueName; 3645 if (convertToString(Record, 0, ValueName)) 3646 return error("Invalid record"); 3647 TheModule->setSourceFileName(ValueName); 3648 break; 3649 } 3650 Record.clear(); 3651 3652 // Upgrade data layout string. 3653 std::string DL = llvm::UpgradeDataLayoutString( 3654 TheModule->getDataLayoutStr(), TheModule->getTargetTriple()); 3655 TheModule->setDataLayout(DL); 3656 } 3657 } 3658 3659 Error BitcodeReader::parseBitcodeInto(Module *M, bool ShouldLazyLoadMetadata, 3660 bool IsImporting) { 3661 TheModule = M; 3662 MDLoader = MetadataLoader(Stream, *M, ValueList, IsImporting, 3663 [&](unsigned ID) { return getTypeByID(ID); }); 3664 return parseModule(0, ShouldLazyLoadMetadata); 3665 } 3666 3667 Error BitcodeReader::typeCheckLoadStoreInst(Type *ValType, Type *PtrType) { 3668 if (!isa<PointerType>(PtrType)) 3669 return error("Load/Store operand is not a pointer type"); 3670 Type *ElemType = cast<PointerType>(PtrType)->getElementType(); 3671 3672 if (ValType && ValType != ElemType) 3673 return error("Explicit load/store type does not match pointee " 3674 "type of pointer operand"); 3675 if (!PointerType::isLoadableOrStorableType(ElemType)) 3676 return error("Cannot load/store from pointer"); 3677 return Error::success(); 3678 } 3679 3680 void BitcodeReader::propagateByValTypes(CallBase *CB, 3681 ArrayRef<Type *> ArgsFullTys) { 3682 for (unsigned i = 0; i != CB->arg_size(); ++i) { 3683 if (!CB->paramHasAttr(i, Attribute::ByVal)) 3684 continue; 3685 3686 CB->removeParamAttr(i, Attribute::ByVal); 3687 CB->addParamAttr( 3688 i, Attribute::getWithByValType( 3689 Context, getPointerElementFlatType(ArgsFullTys[i]))); 3690 } 3691 } 3692 3693 /// Lazily parse the specified function body block. 3694 Error BitcodeReader::parseFunctionBody(Function *F) { 3695 if (Error Err = Stream.EnterSubBlock(bitc::FUNCTION_BLOCK_ID)) 3696 return Err; 3697 3698 // Unexpected unresolved metadata when parsing function. 3699 if (MDLoader->hasFwdRefs()) 3700 return error("Invalid function metadata: incoming forward references"); 3701 3702 InstructionList.clear(); 3703 unsigned ModuleValueListSize = ValueList.size(); 3704 unsigned ModuleMDLoaderSize = MDLoader->size(); 3705 3706 // Add all the function arguments to the value table. 3707 unsigned ArgNo = 0; 3708 FunctionType *FullFTy = FunctionTypes[F]; 3709 for (Argument &I : F->args()) { 3710 assert(I.getType() == flattenPointerTypes(FullFTy->getParamType(ArgNo)) && 3711 "Incorrect fully specified type for Function Argument"); 3712 ValueList.push_back(&I, FullFTy->getParamType(ArgNo++)); 3713 } 3714 unsigned NextValueNo = ValueList.size(); 3715 BasicBlock *CurBB = nullptr; 3716 unsigned CurBBNo = 0; 3717 3718 DebugLoc LastLoc; 3719 auto getLastInstruction = [&]() -> Instruction * { 3720 if (CurBB && !CurBB->empty()) 3721 return &CurBB->back(); 3722 else if (CurBBNo && FunctionBBs[CurBBNo - 1] && 3723 !FunctionBBs[CurBBNo - 1]->empty()) 3724 return &FunctionBBs[CurBBNo - 1]->back(); 3725 return nullptr; 3726 }; 3727 3728 std::vector<OperandBundleDef> OperandBundles; 3729 3730 // Read all the records. 3731 SmallVector<uint64_t, 64> Record; 3732 3733 while (true) { 3734 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 3735 if (!MaybeEntry) 3736 return MaybeEntry.takeError(); 3737 llvm::BitstreamEntry Entry = MaybeEntry.get(); 3738 3739 switch (Entry.Kind) { 3740 case BitstreamEntry::Error: 3741 return error("Malformed block"); 3742 case BitstreamEntry::EndBlock: 3743 goto OutOfRecordLoop; 3744 3745 case BitstreamEntry::SubBlock: 3746 switch (Entry.ID) { 3747 default: // Skip unknown content. 3748 if (Error Err = Stream.SkipBlock()) 3749 return Err; 3750 break; 3751 case bitc::CONSTANTS_BLOCK_ID: 3752 if (Error Err = parseConstants()) 3753 return Err; 3754 NextValueNo = ValueList.size(); 3755 break; 3756 case bitc::VALUE_SYMTAB_BLOCK_ID: 3757 if (Error Err = parseValueSymbolTable()) 3758 return Err; 3759 break; 3760 case bitc::METADATA_ATTACHMENT_ID: 3761 if (Error Err = MDLoader->parseMetadataAttachment(*F, InstructionList)) 3762 return Err; 3763 break; 3764 case bitc::METADATA_BLOCK_ID: 3765 assert(DeferredMetadataInfo.empty() && 3766 "Must read all module-level metadata before function-level"); 3767 if (Error Err = MDLoader->parseFunctionMetadata()) 3768 return Err; 3769 break; 3770 case bitc::USELIST_BLOCK_ID: 3771 if (Error Err = parseUseLists()) 3772 return Err; 3773 break; 3774 } 3775 continue; 3776 3777 case BitstreamEntry::Record: 3778 // The interesting case. 3779 break; 3780 } 3781 3782 // Read a record. 3783 Record.clear(); 3784 Instruction *I = nullptr; 3785 Type *FullTy = nullptr; 3786 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 3787 if (!MaybeBitCode) 3788 return MaybeBitCode.takeError(); 3789 switch (unsigned BitCode = MaybeBitCode.get()) { 3790 default: // Default behavior: reject 3791 return error("Invalid value"); 3792 case bitc::FUNC_CODE_DECLAREBLOCKS: { // DECLAREBLOCKS: [nblocks] 3793 if (Record.size() < 1 || Record[0] == 0) 3794 return error("Invalid record"); 3795 // Create all the basic blocks for the function. 3796 FunctionBBs.resize(Record[0]); 3797 3798 // See if anything took the address of blocks in this function. 3799 auto BBFRI = BasicBlockFwdRefs.find(F); 3800 if (BBFRI == BasicBlockFwdRefs.end()) { 3801 for (unsigned i = 0, e = FunctionBBs.size(); i != e; ++i) 3802 FunctionBBs[i] = BasicBlock::Create(Context, "", F); 3803 } else { 3804 auto &BBRefs = BBFRI->second; 3805 // Check for invalid basic block references. 3806 if (BBRefs.size() > FunctionBBs.size()) 3807 return error("Invalid ID"); 3808 assert(!BBRefs.empty() && "Unexpected empty array"); 3809 assert(!BBRefs.front() && "Invalid reference to entry block"); 3810 for (unsigned I = 0, E = FunctionBBs.size(), RE = BBRefs.size(); I != E; 3811 ++I) 3812 if (I < RE && BBRefs[I]) { 3813 BBRefs[I]->insertInto(F); 3814 FunctionBBs[I] = BBRefs[I]; 3815 } else { 3816 FunctionBBs[I] = BasicBlock::Create(Context, "", F); 3817 } 3818 3819 // Erase from the table. 3820 BasicBlockFwdRefs.erase(BBFRI); 3821 } 3822 3823 CurBB = FunctionBBs[0]; 3824 continue; 3825 } 3826 3827 case bitc::FUNC_CODE_DEBUG_LOC_AGAIN: // DEBUG_LOC_AGAIN 3828 // This record indicates that the last instruction is at the same 3829 // location as the previous instruction with a location. 3830 I = getLastInstruction(); 3831 3832 if (!I) 3833 return error("Invalid record"); 3834 I->setDebugLoc(LastLoc); 3835 I = nullptr; 3836 continue; 3837 3838 case bitc::FUNC_CODE_DEBUG_LOC: { // DEBUG_LOC: [line, col, scope, ia] 3839 I = getLastInstruction(); 3840 if (!I || Record.size() < 4) 3841 return error("Invalid record"); 3842 3843 unsigned Line = Record[0], Col = Record[1]; 3844 unsigned ScopeID = Record[2], IAID = Record[3]; 3845 bool isImplicitCode = Record.size() == 5 && Record[4]; 3846 3847 MDNode *Scope = nullptr, *IA = nullptr; 3848 if (ScopeID) { 3849 Scope = dyn_cast_or_null<MDNode>( 3850 MDLoader->getMetadataFwdRefOrLoad(ScopeID - 1)); 3851 if (!Scope) 3852 return error("Invalid record"); 3853 } 3854 if (IAID) { 3855 IA = dyn_cast_or_null<MDNode>( 3856 MDLoader->getMetadataFwdRefOrLoad(IAID - 1)); 3857 if (!IA) 3858 return error("Invalid record"); 3859 } 3860 LastLoc = DebugLoc::get(Line, Col, Scope, IA, isImplicitCode); 3861 I->setDebugLoc(LastLoc); 3862 I = nullptr; 3863 continue; 3864 } 3865 case bitc::FUNC_CODE_INST_UNOP: { // UNOP: [opval, ty, opcode] 3866 unsigned OpNum = 0; 3867 Value *LHS; 3868 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3869 OpNum+1 > Record.size()) 3870 return error("Invalid record"); 3871 3872 int Opc = getDecodedUnaryOpcode(Record[OpNum++], LHS->getType()); 3873 if (Opc == -1) 3874 return error("Invalid record"); 3875 I = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 3876 InstructionList.push_back(I); 3877 if (OpNum < Record.size()) { 3878 if (isa<FPMathOperator>(I)) { 3879 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3880 if (FMF.any()) 3881 I->setFastMathFlags(FMF); 3882 } 3883 } 3884 break; 3885 } 3886 case bitc::FUNC_CODE_INST_BINOP: { // BINOP: [opval, ty, opval, opcode] 3887 unsigned OpNum = 0; 3888 Value *LHS, *RHS; 3889 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 3890 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS) || 3891 OpNum+1 > Record.size()) 3892 return error("Invalid record"); 3893 3894 int Opc = getDecodedBinaryOpcode(Record[OpNum++], LHS->getType()); 3895 if (Opc == -1) 3896 return error("Invalid record"); 3897 I = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3898 InstructionList.push_back(I); 3899 if (OpNum < Record.size()) { 3900 if (Opc == Instruction::Add || 3901 Opc == Instruction::Sub || 3902 Opc == Instruction::Mul || 3903 Opc == Instruction::Shl) { 3904 if (Record[OpNum] & (1 << bitc::OBO_NO_SIGNED_WRAP)) 3905 cast<BinaryOperator>(I)->setHasNoSignedWrap(true); 3906 if (Record[OpNum] & (1 << bitc::OBO_NO_UNSIGNED_WRAP)) 3907 cast<BinaryOperator>(I)->setHasNoUnsignedWrap(true); 3908 } else if (Opc == Instruction::SDiv || 3909 Opc == Instruction::UDiv || 3910 Opc == Instruction::LShr || 3911 Opc == Instruction::AShr) { 3912 if (Record[OpNum] & (1 << bitc::PEO_EXACT)) 3913 cast<BinaryOperator>(I)->setIsExact(true); 3914 } else if (isa<FPMathOperator>(I)) { 3915 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 3916 if (FMF.any()) 3917 I->setFastMathFlags(FMF); 3918 } 3919 3920 } 3921 break; 3922 } 3923 case bitc::FUNC_CODE_INST_CAST: { // CAST: [opval, opty, destty, castopc] 3924 unsigned OpNum = 0; 3925 Value *Op; 3926 if (getValueTypePair(Record, OpNum, NextValueNo, Op) || 3927 OpNum+2 != Record.size()) 3928 return error("Invalid record"); 3929 3930 FullTy = getFullyStructuredTypeByID(Record[OpNum]); 3931 Type *ResTy = flattenPointerTypes(FullTy); 3932 int Opc = getDecodedCastOpcode(Record[OpNum + 1]); 3933 if (Opc == -1 || !ResTy) 3934 return error("Invalid record"); 3935 Instruction *Temp = nullptr; 3936 if ((I = UpgradeBitCastInst(Opc, Op, ResTy, Temp))) { 3937 if (Temp) { 3938 InstructionList.push_back(Temp); 3939 CurBB->getInstList().push_back(Temp); 3940 } 3941 } else { 3942 auto CastOp = (Instruction::CastOps)Opc; 3943 if (!CastInst::castIsValid(CastOp, Op, ResTy)) 3944 return error("Invalid cast"); 3945 I = CastInst::Create(CastOp, Op, ResTy); 3946 } 3947 InstructionList.push_back(I); 3948 break; 3949 } 3950 case bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD: 3951 case bitc::FUNC_CODE_INST_GEP_OLD: 3952 case bitc::FUNC_CODE_INST_GEP: { // GEP: type, [n x operands] 3953 unsigned OpNum = 0; 3954 3955 Type *Ty; 3956 bool InBounds; 3957 3958 if (BitCode == bitc::FUNC_CODE_INST_GEP) { 3959 InBounds = Record[OpNum++]; 3960 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 3961 Ty = flattenPointerTypes(FullTy); 3962 } else { 3963 InBounds = BitCode == bitc::FUNC_CODE_INST_INBOUNDS_GEP_OLD; 3964 Ty = nullptr; 3965 } 3966 3967 Value *BasePtr; 3968 Type *FullBaseTy = nullptr; 3969 if (getValueTypePair(Record, OpNum, NextValueNo, BasePtr, &FullBaseTy)) 3970 return error("Invalid record"); 3971 3972 if (!Ty) { 3973 std::tie(FullTy, Ty) = 3974 getPointerElementTypes(FullBaseTy->getScalarType()); 3975 } else if (Ty != getPointerElementFlatType(FullBaseTy->getScalarType())) 3976 return error( 3977 "Explicit gep type does not match pointee type of pointer operand"); 3978 3979 SmallVector<Value*, 16> GEPIdx; 3980 while (OpNum != Record.size()) { 3981 Value *Op; 3982 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 3983 return error("Invalid record"); 3984 GEPIdx.push_back(Op); 3985 } 3986 3987 I = GetElementPtrInst::Create(Ty, BasePtr, GEPIdx); 3988 FullTy = GetElementPtrInst::getGEPReturnType(FullTy, I, GEPIdx); 3989 3990 InstructionList.push_back(I); 3991 if (InBounds) 3992 cast<GetElementPtrInst>(I)->setIsInBounds(true); 3993 break; 3994 } 3995 3996 case bitc::FUNC_CODE_INST_EXTRACTVAL: { 3997 // EXTRACTVAL: [opty, opval, n x indices] 3998 unsigned OpNum = 0; 3999 Value *Agg; 4000 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4001 return error("Invalid record"); 4002 4003 unsigned RecSize = Record.size(); 4004 if (OpNum == RecSize) 4005 return error("EXTRACTVAL: Invalid instruction with 0 indices"); 4006 4007 SmallVector<unsigned, 4> EXTRACTVALIdx; 4008 for (; OpNum != RecSize; ++OpNum) { 4009 bool IsArray = FullTy->isArrayTy(); 4010 bool IsStruct = FullTy->isStructTy(); 4011 uint64_t Index = Record[OpNum]; 4012 4013 if (!IsStruct && !IsArray) 4014 return error("EXTRACTVAL: Invalid type"); 4015 if ((unsigned)Index != Index) 4016 return error("Invalid value"); 4017 if (IsStruct && Index >= FullTy->getStructNumElements()) 4018 return error("EXTRACTVAL: Invalid struct index"); 4019 if (IsArray && Index >= FullTy->getArrayNumElements()) 4020 return error("EXTRACTVAL: Invalid array index"); 4021 EXTRACTVALIdx.push_back((unsigned)Index); 4022 4023 if (IsStruct) 4024 FullTy = FullTy->getStructElementType(Index); 4025 else 4026 FullTy = FullTy->getArrayElementType(); 4027 } 4028 4029 I = ExtractValueInst::Create(Agg, EXTRACTVALIdx); 4030 InstructionList.push_back(I); 4031 break; 4032 } 4033 4034 case bitc::FUNC_CODE_INST_INSERTVAL: { 4035 // INSERTVAL: [opty, opval, opty, opval, n x indices] 4036 unsigned OpNum = 0; 4037 Value *Agg; 4038 if (getValueTypePair(Record, OpNum, NextValueNo, Agg, &FullTy)) 4039 return error("Invalid record"); 4040 Value *Val; 4041 if (getValueTypePair(Record, OpNum, NextValueNo, Val)) 4042 return error("Invalid record"); 4043 4044 unsigned RecSize = Record.size(); 4045 if (OpNum == RecSize) 4046 return error("INSERTVAL: Invalid instruction with 0 indices"); 4047 4048 SmallVector<unsigned, 4> INSERTVALIdx; 4049 Type *CurTy = Agg->getType(); 4050 for (; OpNum != RecSize; ++OpNum) { 4051 bool IsArray = CurTy->isArrayTy(); 4052 bool IsStruct = CurTy->isStructTy(); 4053 uint64_t Index = Record[OpNum]; 4054 4055 if (!IsStruct && !IsArray) 4056 return error("INSERTVAL: Invalid type"); 4057 if ((unsigned)Index != Index) 4058 return error("Invalid value"); 4059 if (IsStruct && Index >= CurTy->getStructNumElements()) 4060 return error("INSERTVAL: Invalid struct index"); 4061 if (IsArray && Index >= CurTy->getArrayNumElements()) 4062 return error("INSERTVAL: Invalid array index"); 4063 4064 INSERTVALIdx.push_back((unsigned)Index); 4065 if (IsStruct) 4066 CurTy = CurTy->getStructElementType(Index); 4067 else 4068 CurTy = CurTy->getArrayElementType(); 4069 } 4070 4071 if (CurTy != Val->getType()) 4072 return error("Inserted value type doesn't match aggregate type"); 4073 4074 I = InsertValueInst::Create(Agg, Val, INSERTVALIdx); 4075 InstructionList.push_back(I); 4076 break; 4077 } 4078 4079 case bitc::FUNC_CODE_INST_SELECT: { // SELECT: [opval, ty, opval, opval] 4080 // obsolete form of select 4081 // handles select i1 ... in old bitcode 4082 unsigned OpNum = 0; 4083 Value *TrueVal, *FalseVal, *Cond; 4084 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4085 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4086 popValue(Record, OpNum, NextValueNo, Type::getInt1Ty(Context), Cond)) 4087 return error("Invalid record"); 4088 4089 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4090 InstructionList.push_back(I); 4091 break; 4092 } 4093 4094 case bitc::FUNC_CODE_INST_VSELECT: {// VSELECT: [ty,opval,opval,predty,pred] 4095 // new form of select 4096 // handles select i1 or select [N x i1] 4097 unsigned OpNum = 0; 4098 Value *TrueVal, *FalseVal, *Cond; 4099 if (getValueTypePair(Record, OpNum, NextValueNo, TrueVal, &FullTy) || 4100 popValue(Record, OpNum, NextValueNo, TrueVal->getType(), FalseVal) || 4101 getValueTypePair(Record, OpNum, NextValueNo, Cond)) 4102 return error("Invalid record"); 4103 4104 // select condition can be either i1 or [N x i1] 4105 if (VectorType* vector_type = 4106 dyn_cast<VectorType>(Cond->getType())) { 4107 // expect <n x i1> 4108 if (vector_type->getElementType() != Type::getInt1Ty(Context)) 4109 return error("Invalid type for value"); 4110 } else { 4111 // expect i1 4112 if (Cond->getType() != Type::getInt1Ty(Context)) 4113 return error("Invalid type for value"); 4114 } 4115 4116 I = SelectInst::Create(Cond, TrueVal, FalseVal); 4117 InstructionList.push_back(I); 4118 if (OpNum < Record.size() && isa<FPMathOperator>(I)) { 4119 FastMathFlags FMF = getDecodedFastMathFlags(Record[OpNum]); 4120 if (FMF.any()) 4121 I->setFastMathFlags(FMF); 4122 } 4123 break; 4124 } 4125 4126 case bitc::FUNC_CODE_INST_EXTRACTELT: { // EXTRACTELT: [opty, opval, opval] 4127 unsigned OpNum = 0; 4128 Value *Vec, *Idx; 4129 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy) || 4130 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4131 return error("Invalid record"); 4132 if (!Vec->getType()->isVectorTy()) 4133 return error("Invalid type for value"); 4134 I = ExtractElementInst::Create(Vec, Idx); 4135 FullTy = FullTy->getVectorElementType(); 4136 InstructionList.push_back(I); 4137 break; 4138 } 4139 4140 case bitc::FUNC_CODE_INST_INSERTELT: { // INSERTELT: [ty, opval,opval,opval] 4141 unsigned OpNum = 0; 4142 Value *Vec, *Elt, *Idx; 4143 if (getValueTypePair(Record, OpNum, NextValueNo, Vec, &FullTy)) 4144 return error("Invalid record"); 4145 if (!Vec->getType()->isVectorTy()) 4146 return error("Invalid type for value"); 4147 if (popValue(Record, OpNum, NextValueNo, 4148 cast<VectorType>(Vec->getType())->getElementType(), Elt) || 4149 getValueTypePair(Record, OpNum, NextValueNo, Idx)) 4150 return error("Invalid record"); 4151 I = InsertElementInst::Create(Vec, Elt, Idx); 4152 InstructionList.push_back(I); 4153 break; 4154 } 4155 4156 case bitc::FUNC_CODE_INST_SHUFFLEVEC: {// SHUFFLEVEC: [opval,ty,opval,opval] 4157 unsigned OpNum = 0; 4158 Value *Vec1, *Vec2, *Mask; 4159 if (getValueTypePair(Record, OpNum, NextValueNo, Vec1, &FullTy) || 4160 popValue(Record, OpNum, NextValueNo, Vec1->getType(), Vec2)) 4161 return error("Invalid record"); 4162 4163 if (getValueTypePair(Record, OpNum, NextValueNo, Mask)) 4164 return error("Invalid record"); 4165 if (!Vec1->getType()->isVectorTy() || !Vec2->getType()->isVectorTy()) 4166 return error("Invalid type for value"); 4167 I = new ShuffleVectorInst(Vec1, Vec2, Mask); 4168 FullTy = VectorType::get(FullTy->getVectorElementType(), 4169 Mask->getType()->getVectorNumElements()); 4170 InstructionList.push_back(I); 4171 break; 4172 } 4173 4174 case bitc::FUNC_CODE_INST_CMP: // CMP: [opty, opval, opval, pred] 4175 // Old form of ICmp/FCmp returning bool 4176 // Existed to differentiate between icmp/fcmp and vicmp/vfcmp which were 4177 // both legal on vectors but had different behaviour. 4178 case bitc::FUNC_CODE_INST_CMP2: { // CMP2: [opty, opval, opval, pred] 4179 // FCmp/ICmp returning bool or vector of bool 4180 4181 unsigned OpNum = 0; 4182 Value *LHS, *RHS; 4183 if (getValueTypePair(Record, OpNum, NextValueNo, LHS) || 4184 popValue(Record, OpNum, NextValueNo, LHS->getType(), RHS)) 4185 return error("Invalid record"); 4186 4187 if (OpNum >= Record.size()) 4188 return error( 4189 "Invalid record: operand number exceeded available operands"); 4190 4191 unsigned PredVal = Record[OpNum]; 4192 bool IsFP = LHS->getType()->isFPOrFPVectorTy(); 4193 FastMathFlags FMF; 4194 if (IsFP && Record.size() > OpNum+1) 4195 FMF = getDecodedFastMathFlags(Record[++OpNum]); 4196 4197 if (OpNum+1 != Record.size()) 4198 return error("Invalid record"); 4199 4200 if (LHS->getType()->isFPOrFPVectorTy()) 4201 I = new FCmpInst((FCmpInst::Predicate)PredVal, LHS, RHS); 4202 else 4203 I = new ICmpInst((ICmpInst::Predicate)PredVal, LHS, RHS); 4204 4205 if (FMF.any()) 4206 I->setFastMathFlags(FMF); 4207 InstructionList.push_back(I); 4208 break; 4209 } 4210 4211 case bitc::FUNC_CODE_INST_RET: // RET: [opty,opval<optional>] 4212 { 4213 unsigned Size = Record.size(); 4214 if (Size == 0) { 4215 I = ReturnInst::Create(Context); 4216 InstructionList.push_back(I); 4217 break; 4218 } 4219 4220 unsigned OpNum = 0; 4221 Value *Op = nullptr; 4222 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4223 return error("Invalid record"); 4224 if (OpNum != Record.size()) 4225 return error("Invalid record"); 4226 4227 I = ReturnInst::Create(Context, Op); 4228 InstructionList.push_back(I); 4229 break; 4230 } 4231 case bitc::FUNC_CODE_INST_BR: { // BR: [bb#, bb#, opval] or [bb#] 4232 if (Record.size() != 1 && Record.size() != 3) 4233 return error("Invalid record"); 4234 BasicBlock *TrueDest = getBasicBlock(Record[0]); 4235 if (!TrueDest) 4236 return error("Invalid record"); 4237 4238 if (Record.size() == 1) { 4239 I = BranchInst::Create(TrueDest); 4240 InstructionList.push_back(I); 4241 } 4242 else { 4243 BasicBlock *FalseDest = getBasicBlock(Record[1]); 4244 Value *Cond = getValue(Record, 2, NextValueNo, 4245 Type::getInt1Ty(Context)); 4246 if (!FalseDest || !Cond) 4247 return error("Invalid record"); 4248 I = BranchInst::Create(TrueDest, FalseDest, Cond); 4249 InstructionList.push_back(I); 4250 } 4251 break; 4252 } 4253 case bitc::FUNC_CODE_INST_CLEANUPRET: { // CLEANUPRET: [val] or [val,bb#] 4254 if (Record.size() != 1 && Record.size() != 2) 4255 return error("Invalid record"); 4256 unsigned Idx = 0; 4257 Value *CleanupPad = 4258 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4259 if (!CleanupPad) 4260 return error("Invalid record"); 4261 BasicBlock *UnwindDest = nullptr; 4262 if (Record.size() == 2) { 4263 UnwindDest = getBasicBlock(Record[Idx++]); 4264 if (!UnwindDest) 4265 return error("Invalid record"); 4266 } 4267 4268 I = CleanupReturnInst::Create(CleanupPad, UnwindDest); 4269 InstructionList.push_back(I); 4270 break; 4271 } 4272 case bitc::FUNC_CODE_INST_CATCHRET: { // CATCHRET: [val,bb#] 4273 if (Record.size() != 2) 4274 return error("Invalid record"); 4275 unsigned Idx = 0; 4276 Value *CatchPad = 4277 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4278 if (!CatchPad) 4279 return error("Invalid record"); 4280 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4281 if (!BB) 4282 return error("Invalid record"); 4283 4284 I = CatchReturnInst::Create(CatchPad, BB); 4285 InstructionList.push_back(I); 4286 break; 4287 } 4288 case bitc::FUNC_CODE_INST_CATCHSWITCH: { // CATCHSWITCH: [tok,num,(bb)*,bb?] 4289 // We must have, at minimum, the outer scope and the number of arguments. 4290 if (Record.size() < 2) 4291 return error("Invalid record"); 4292 4293 unsigned Idx = 0; 4294 4295 Value *ParentPad = 4296 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4297 4298 unsigned NumHandlers = Record[Idx++]; 4299 4300 SmallVector<BasicBlock *, 2> Handlers; 4301 for (unsigned Op = 0; Op != NumHandlers; ++Op) { 4302 BasicBlock *BB = getBasicBlock(Record[Idx++]); 4303 if (!BB) 4304 return error("Invalid record"); 4305 Handlers.push_back(BB); 4306 } 4307 4308 BasicBlock *UnwindDest = nullptr; 4309 if (Idx + 1 == Record.size()) { 4310 UnwindDest = getBasicBlock(Record[Idx++]); 4311 if (!UnwindDest) 4312 return error("Invalid record"); 4313 } 4314 4315 if (Record.size() != Idx) 4316 return error("Invalid record"); 4317 4318 auto *CatchSwitch = 4319 CatchSwitchInst::Create(ParentPad, UnwindDest, NumHandlers); 4320 for (BasicBlock *Handler : Handlers) 4321 CatchSwitch->addHandler(Handler); 4322 I = CatchSwitch; 4323 InstructionList.push_back(I); 4324 break; 4325 } 4326 case bitc::FUNC_CODE_INST_CATCHPAD: 4327 case bitc::FUNC_CODE_INST_CLEANUPPAD: { // [tok,num,(ty,val)*] 4328 // We must have, at minimum, the outer scope and the number of arguments. 4329 if (Record.size() < 2) 4330 return error("Invalid record"); 4331 4332 unsigned Idx = 0; 4333 4334 Value *ParentPad = 4335 getValue(Record, Idx++, NextValueNo, Type::getTokenTy(Context)); 4336 4337 unsigned NumArgOperands = Record[Idx++]; 4338 4339 SmallVector<Value *, 2> Args; 4340 for (unsigned Op = 0; Op != NumArgOperands; ++Op) { 4341 Value *Val; 4342 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4343 return error("Invalid record"); 4344 Args.push_back(Val); 4345 } 4346 4347 if (Record.size() != Idx) 4348 return error("Invalid record"); 4349 4350 if (BitCode == bitc::FUNC_CODE_INST_CLEANUPPAD) 4351 I = CleanupPadInst::Create(ParentPad, Args); 4352 else 4353 I = CatchPadInst::Create(ParentPad, Args); 4354 InstructionList.push_back(I); 4355 break; 4356 } 4357 case bitc::FUNC_CODE_INST_SWITCH: { // SWITCH: [opty, op0, op1, ...] 4358 // Check magic 4359 if ((Record[0] >> 16) == SWITCH_INST_MAGIC) { 4360 // "New" SwitchInst format with case ranges. The changes to write this 4361 // format were reverted but we still recognize bitcode that uses it. 4362 // Hopefully someday we will have support for case ranges and can use 4363 // this format again. 4364 4365 Type *OpTy = getTypeByID(Record[1]); 4366 unsigned ValueBitWidth = cast<IntegerType>(OpTy)->getBitWidth(); 4367 4368 Value *Cond = getValue(Record, 2, NextValueNo, OpTy); 4369 BasicBlock *Default = getBasicBlock(Record[3]); 4370 if (!OpTy || !Cond || !Default) 4371 return error("Invalid record"); 4372 4373 unsigned NumCases = Record[4]; 4374 4375 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4376 InstructionList.push_back(SI); 4377 4378 unsigned CurIdx = 5; 4379 for (unsigned i = 0; i != NumCases; ++i) { 4380 SmallVector<ConstantInt*, 1> CaseVals; 4381 unsigned NumItems = Record[CurIdx++]; 4382 for (unsigned ci = 0; ci != NumItems; ++ci) { 4383 bool isSingleNumber = Record[CurIdx++]; 4384 4385 APInt Low; 4386 unsigned ActiveWords = 1; 4387 if (ValueBitWidth > 64) 4388 ActiveWords = Record[CurIdx++]; 4389 Low = readWideAPInt(makeArrayRef(&Record[CurIdx], ActiveWords), 4390 ValueBitWidth); 4391 CurIdx += ActiveWords; 4392 4393 if (!isSingleNumber) { 4394 ActiveWords = 1; 4395 if (ValueBitWidth > 64) 4396 ActiveWords = Record[CurIdx++]; 4397 APInt High = readWideAPInt( 4398 makeArrayRef(&Record[CurIdx], ActiveWords), ValueBitWidth); 4399 CurIdx += ActiveWords; 4400 4401 // FIXME: It is not clear whether values in the range should be 4402 // compared as signed or unsigned values. The partially 4403 // implemented changes that used this format in the past used 4404 // unsigned comparisons. 4405 for ( ; Low.ule(High); ++Low) 4406 CaseVals.push_back(ConstantInt::get(Context, Low)); 4407 } else 4408 CaseVals.push_back(ConstantInt::get(Context, Low)); 4409 } 4410 BasicBlock *DestBB = getBasicBlock(Record[CurIdx++]); 4411 for (SmallVector<ConstantInt*, 1>::iterator cvi = CaseVals.begin(), 4412 cve = CaseVals.end(); cvi != cve; ++cvi) 4413 SI->addCase(*cvi, DestBB); 4414 } 4415 I = SI; 4416 break; 4417 } 4418 4419 // Old SwitchInst format without case ranges. 4420 4421 if (Record.size() < 3 || (Record.size() & 1) == 0) 4422 return error("Invalid record"); 4423 Type *OpTy = getTypeByID(Record[0]); 4424 Value *Cond = getValue(Record, 1, NextValueNo, OpTy); 4425 BasicBlock *Default = getBasicBlock(Record[2]); 4426 if (!OpTy || !Cond || !Default) 4427 return error("Invalid record"); 4428 unsigned NumCases = (Record.size()-3)/2; 4429 SwitchInst *SI = SwitchInst::Create(Cond, Default, NumCases); 4430 InstructionList.push_back(SI); 4431 for (unsigned i = 0, e = NumCases; i != e; ++i) { 4432 ConstantInt *CaseVal = 4433 dyn_cast_or_null<ConstantInt>(getFnValueByID(Record[3+i*2], OpTy)); 4434 BasicBlock *DestBB = getBasicBlock(Record[1+3+i*2]); 4435 if (!CaseVal || !DestBB) { 4436 delete SI; 4437 return error("Invalid record"); 4438 } 4439 SI->addCase(CaseVal, DestBB); 4440 } 4441 I = SI; 4442 break; 4443 } 4444 case bitc::FUNC_CODE_INST_INDIRECTBR: { // INDIRECTBR: [opty, op0, op1, ...] 4445 if (Record.size() < 2) 4446 return error("Invalid record"); 4447 Type *OpTy = getTypeByID(Record[0]); 4448 Value *Address = getValue(Record, 1, NextValueNo, OpTy); 4449 if (!OpTy || !Address) 4450 return error("Invalid record"); 4451 unsigned NumDests = Record.size()-2; 4452 IndirectBrInst *IBI = IndirectBrInst::Create(Address, NumDests); 4453 InstructionList.push_back(IBI); 4454 for (unsigned i = 0, e = NumDests; i != e; ++i) { 4455 if (BasicBlock *DestBB = getBasicBlock(Record[2+i])) { 4456 IBI->addDestination(DestBB); 4457 } else { 4458 delete IBI; 4459 return error("Invalid record"); 4460 } 4461 } 4462 I = IBI; 4463 break; 4464 } 4465 4466 case bitc::FUNC_CODE_INST_INVOKE: { 4467 // INVOKE: [attrs, cc, normBB, unwindBB, fnty, op0,op1,op2, ...] 4468 if (Record.size() < 4) 4469 return error("Invalid record"); 4470 unsigned OpNum = 0; 4471 AttributeList PAL = getAttributes(Record[OpNum++]); 4472 unsigned CCInfo = Record[OpNum++]; 4473 BasicBlock *NormalBB = getBasicBlock(Record[OpNum++]); 4474 BasicBlock *UnwindBB = getBasicBlock(Record[OpNum++]); 4475 4476 FunctionType *FTy = nullptr; 4477 FunctionType *FullFTy = nullptr; 4478 if ((CCInfo >> 13) & 1) { 4479 FullFTy = 4480 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4481 if (!FullFTy) 4482 return error("Explicit invoke type is not a function type"); 4483 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4484 } 4485 4486 Value *Callee; 4487 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4488 return error("Invalid record"); 4489 4490 PointerType *CalleeTy = dyn_cast<PointerType>(Callee->getType()); 4491 if (!CalleeTy) 4492 return error("Callee is not a pointer"); 4493 if (!FTy) { 4494 FullFTy = 4495 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4496 if (!FullFTy) 4497 return error("Callee is not of pointer to function type"); 4498 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4499 } else if (getPointerElementFlatType(FullTy) != FTy) 4500 return error("Explicit invoke type does not match pointee type of " 4501 "callee operand"); 4502 if (Record.size() < FTy->getNumParams() + OpNum) 4503 return error("Insufficient operands to call"); 4504 4505 SmallVector<Value*, 16> Ops; 4506 SmallVector<Type *, 16> ArgsFullTys; 4507 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4508 Ops.push_back(getValue(Record, OpNum, NextValueNo, 4509 FTy->getParamType(i))); 4510 ArgsFullTys.push_back(FullFTy->getParamType(i)); 4511 if (!Ops.back()) 4512 return error("Invalid record"); 4513 } 4514 4515 if (!FTy->isVarArg()) { 4516 if (Record.size() != OpNum) 4517 return error("Invalid record"); 4518 } else { 4519 // Read type/value pairs for varargs params. 4520 while (OpNum != Record.size()) { 4521 Value *Op; 4522 Type *FullTy; 4523 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 4524 return error("Invalid record"); 4525 Ops.push_back(Op); 4526 ArgsFullTys.push_back(FullTy); 4527 } 4528 } 4529 4530 I = InvokeInst::Create(FTy, Callee, NormalBB, UnwindBB, Ops, 4531 OperandBundles); 4532 FullTy = FullFTy->getReturnType(); 4533 OperandBundles.clear(); 4534 InstructionList.push_back(I); 4535 cast<InvokeInst>(I)->setCallingConv( 4536 static_cast<CallingConv::ID>(CallingConv::MaxID & CCInfo)); 4537 cast<InvokeInst>(I)->setAttributes(PAL); 4538 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 4539 4540 break; 4541 } 4542 case bitc::FUNC_CODE_INST_RESUME: { // RESUME: [opval] 4543 unsigned Idx = 0; 4544 Value *Val = nullptr; 4545 if (getValueTypePair(Record, Idx, NextValueNo, Val)) 4546 return error("Invalid record"); 4547 I = ResumeInst::Create(Val); 4548 InstructionList.push_back(I); 4549 break; 4550 } 4551 case bitc::FUNC_CODE_INST_CALLBR: { 4552 // CALLBR: [attr, cc, norm, transfs, fty, fnid, args] 4553 unsigned OpNum = 0; 4554 AttributeList PAL = getAttributes(Record[OpNum++]); 4555 unsigned CCInfo = Record[OpNum++]; 4556 4557 BasicBlock *DefaultDest = getBasicBlock(Record[OpNum++]); 4558 unsigned NumIndirectDests = Record[OpNum++]; 4559 SmallVector<BasicBlock *, 16> IndirectDests; 4560 for (unsigned i = 0, e = NumIndirectDests; i != e; ++i) 4561 IndirectDests.push_back(getBasicBlock(Record[OpNum++])); 4562 4563 FunctionType *FTy = nullptr; 4564 FunctionType *FullFTy = nullptr; 4565 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 4566 FullFTy = 4567 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 4568 if (!FullFTy) 4569 return error("Explicit call type is not a function type"); 4570 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4571 } 4572 4573 Value *Callee; 4574 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 4575 return error("Invalid record"); 4576 4577 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 4578 if (!OpTy) 4579 return error("Callee is not a pointer type"); 4580 if (!FTy) { 4581 FullFTy = 4582 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 4583 if (!FullFTy) 4584 return error("Callee is not of pointer to function type"); 4585 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 4586 } else if (getPointerElementFlatType(FullTy) != FTy) 4587 return error("Explicit call type does not match pointee type of " 4588 "callee operand"); 4589 if (Record.size() < FTy->getNumParams() + OpNum) 4590 return error("Insufficient operands to call"); 4591 4592 SmallVector<Value*, 16> Args; 4593 // Read the fixed params. 4594 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 4595 if (FTy->getParamType(i)->isLabelTy()) 4596 Args.push_back(getBasicBlock(Record[OpNum])); 4597 else 4598 Args.push_back(getValue(Record, OpNum, NextValueNo, 4599 FTy->getParamType(i))); 4600 if (!Args.back()) 4601 return error("Invalid record"); 4602 } 4603 4604 // Read type/value pairs for varargs params. 4605 if (!FTy->isVarArg()) { 4606 if (OpNum != Record.size()) 4607 return error("Invalid record"); 4608 } else { 4609 while (OpNum != Record.size()) { 4610 Value *Op; 4611 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 4612 return error("Invalid record"); 4613 Args.push_back(Op); 4614 } 4615 } 4616 4617 I = CallBrInst::Create(FTy, Callee, DefaultDest, IndirectDests, Args, 4618 OperandBundles); 4619 FullTy = FullFTy->getReturnType(); 4620 OperandBundles.clear(); 4621 InstructionList.push_back(I); 4622 cast<CallBrInst>(I)->setCallingConv( 4623 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 4624 cast<CallBrInst>(I)->setAttributes(PAL); 4625 break; 4626 } 4627 case bitc::FUNC_CODE_INST_UNREACHABLE: // UNREACHABLE 4628 I = new UnreachableInst(Context); 4629 InstructionList.push_back(I); 4630 break; 4631 case bitc::FUNC_CODE_INST_PHI: { // PHI: [ty, val0,bb0, ...] 4632 if (Record.size() < 1) 4633 return error("Invalid record"); 4634 // The first record specifies the type. 4635 FullTy = getFullyStructuredTypeByID(Record[0]); 4636 Type *Ty = flattenPointerTypes(FullTy); 4637 if (!Ty) 4638 return error("Invalid record"); 4639 4640 // Phi arguments are pairs of records of [value, basic block]. 4641 // There is an optional final record for fast-math-flags if this phi has a 4642 // floating-point type. 4643 size_t NumArgs = (Record.size() - 1) / 2; 4644 if ((Record.size() - 1) % 2 == 1 && !Ty->isFPOrFPVectorTy()) 4645 return error("Invalid record"); 4646 4647 PHINode *PN = PHINode::Create(Ty, NumArgs); 4648 InstructionList.push_back(PN); 4649 4650 for (unsigned i = 0; i != NumArgs; i++) { 4651 Value *V; 4652 // With the new function encoding, it is possible that operands have 4653 // negative IDs (for forward references). Use a signed VBR 4654 // representation to keep the encoding small. 4655 if (UseRelativeIDs) 4656 V = getValueSigned(Record, i * 2 + 1, NextValueNo, Ty); 4657 else 4658 V = getValue(Record, i * 2 + 1, NextValueNo, Ty); 4659 BasicBlock *BB = getBasicBlock(Record[i * 2 + 2]); 4660 if (!V || !BB) 4661 return error("Invalid record"); 4662 PN->addIncoming(V, BB); 4663 } 4664 I = PN; 4665 4666 // If there are an even number of records, the final record must be FMF. 4667 if (Record.size() % 2 == 0) { 4668 assert(isa<FPMathOperator>(I) && "Unexpected phi type"); 4669 FastMathFlags FMF = getDecodedFastMathFlags(Record[Record.size() - 1]); 4670 if (FMF.any()) 4671 I->setFastMathFlags(FMF); 4672 } 4673 4674 break; 4675 } 4676 4677 case bitc::FUNC_CODE_INST_LANDINGPAD: 4678 case bitc::FUNC_CODE_INST_LANDINGPAD_OLD: { 4679 // LANDINGPAD: [ty, val, val, num, (id0,val0 ...)?] 4680 unsigned Idx = 0; 4681 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD) { 4682 if (Record.size() < 3) 4683 return error("Invalid record"); 4684 } else { 4685 assert(BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD); 4686 if (Record.size() < 4) 4687 return error("Invalid record"); 4688 } 4689 FullTy = getFullyStructuredTypeByID(Record[Idx++]); 4690 Type *Ty = flattenPointerTypes(FullTy); 4691 if (!Ty) 4692 return error("Invalid record"); 4693 if (BitCode == bitc::FUNC_CODE_INST_LANDINGPAD_OLD) { 4694 Value *PersFn = nullptr; 4695 if (getValueTypePair(Record, Idx, NextValueNo, PersFn)) 4696 return error("Invalid record"); 4697 4698 if (!F->hasPersonalityFn()) 4699 F->setPersonalityFn(cast<Constant>(PersFn)); 4700 else if (F->getPersonalityFn() != cast<Constant>(PersFn)) 4701 return error("Personality function mismatch"); 4702 } 4703 4704 bool IsCleanup = !!Record[Idx++]; 4705 unsigned NumClauses = Record[Idx++]; 4706 LandingPadInst *LP = LandingPadInst::Create(Ty, NumClauses); 4707 LP->setCleanup(IsCleanup); 4708 for (unsigned J = 0; J != NumClauses; ++J) { 4709 LandingPadInst::ClauseType CT = 4710 LandingPadInst::ClauseType(Record[Idx++]); (void)CT; 4711 Value *Val; 4712 4713 if (getValueTypePair(Record, Idx, NextValueNo, Val)) { 4714 delete LP; 4715 return error("Invalid record"); 4716 } 4717 4718 assert((CT != LandingPadInst::Catch || 4719 !isa<ArrayType>(Val->getType())) && 4720 "Catch clause has a invalid type!"); 4721 assert((CT != LandingPadInst::Filter || 4722 isa<ArrayType>(Val->getType())) && 4723 "Filter clause has invalid type!"); 4724 LP->addClause(cast<Constant>(Val)); 4725 } 4726 4727 I = LP; 4728 InstructionList.push_back(I); 4729 break; 4730 } 4731 4732 case bitc::FUNC_CODE_INST_ALLOCA: { // ALLOCA: [instty, opty, op, align] 4733 if (Record.size() != 4) 4734 return error("Invalid record"); 4735 uint64_t AlignRecord = Record[3]; 4736 const uint64_t InAllocaMask = uint64_t(1) << 5; 4737 const uint64_t ExplicitTypeMask = uint64_t(1) << 6; 4738 const uint64_t SwiftErrorMask = uint64_t(1) << 7; 4739 const uint64_t FlagMask = InAllocaMask | ExplicitTypeMask | 4740 SwiftErrorMask; 4741 bool InAlloca = AlignRecord & InAllocaMask; 4742 bool SwiftError = AlignRecord & SwiftErrorMask; 4743 FullTy = getFullyStructuredTypeByID(Record[0]); 4744 Type *Ty = flattenPointerTypes(FullTy); 4745 if ((AlignRecord & ExplicitTypeMask) == 0) { 4746 auto *PTy = dyn_cast_or_null<PointerType>(Ty); 4747 if (!PTy) 4748 return error("Old-style alloca with a non-pointer type"); 4749 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4750 } 4751 Type *OpTy = getTypeByID(Record[1]); 4752 Value *Size = getFnValueByID(Record[2], OpTy); 4753 MaybeAlign Align; 4754 if (Error Err = parseAlignmentValue(AlignRecord & ~FlagMask, Align)) { 4755 return Err; 4756 } 4757 if (!Ty || !Size) 4758 return error("Invalid record"); 4759 4760 // FIXME: Make this an optional field. 4761 const DataLayout &DL = TheModule->getDataLayout(); 4762 unsigned AS = DL.getAllocaAddrSpace(); 4763 4764 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Align ? Align->value() : 0); 4765 AI->setUsedWithInAlloca(InAlloca); 4766 AI->setSwiftError(SwiftError); 4767 I = AI; 4768 FullTy = PointerType::get(FullTy, AS); 4769 InstructionList.push_back(I); 4770 break; 4771 } 4772 case bitc::FUNC_CODE_INST_LOAD: { // LOAD: [opty, op, align, vol] 4773 unsigned OpNum = 0; 4774 Value *Op; 4775 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4776 (OpNum + 2 != Record.size() && OpNum + 3 != Record.size())) 4777 return error("Invalid record"); 4778 4779 if (!isa<PointerType>(Op->getType())) 4780 return error("Load operand is not a pointer type"); 4781 4782 Type *Ty = nullptr; 4783 if (OpNum + 3 == Record.size()) { 4784 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4785 Ty = flattenPointerTypes(FullTy); 4786 } else 4787 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4788 4789 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4790 return Err; 4791 4792 MaybeAlign Align; 4793 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4794 return Err; 4795 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], 4796 Align ? Align->value() : 0); 4797 InstructionList.push_back(I); 4798 break; 4799 } 4800 case bitc::FUNC_CODE_INST_LOADATOMIC: { 4801 // LOADATOMIC: [opty, op, align, vol, ordering, ssid] 4802 unsigned OpNum = 0; 4803 Value *Op; 4804 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy) || 4805 (OpNum + 4 != Record.size() && OpNum + 5 != Record.size())) 4806 return error("Invalid record"); 4807 4808 if (!isa<PointerType>(Op->getType())) 4809 return error("Load operand is not a pointer type"); 4810 4811 Type *Ty = nullptr; 4812 if (OpNum + 5 == Record.size()) { 4813 FullTy = getFullyStructuredTypeByID(Record[OpNum++]); 4814 Ty = flattenPointerTypes(FullTy); 4815 } else 4816 std::tie(FullTy, Ty) = getPointerElementTypes(FullTy); 4817 4818 if (Error Err = typeCheckLoadStoreInst(Ty, Op->getType())) 4819 return Err; 4820 4821 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4822 if (Ordering == AtomicOrdering::NotAtomic || 4823 Ordering == AtomicOrdering::Release || 4824 Ordering == AtomicOrdering::AcquireRelease) 4825 return error("Invalid record"); 4826 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4827 return error("Invalid record"); 4828 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4829 4830 MaybeAlign Align; 4831 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4832 return Err; 4833 I = new LoadInst(Ty, Op, "", Record[OpNum + 1], 4834 Align ? Align->value() : 0, Ordering, SSID); 4835 InstructionList.push_back(I); 4836 break; 4837 } 4838 case bitc::FUNC_CODE_INST_STORE: 4839 case bitc::FUNC_CODE_INST_STORE_OLD: { // STORE2:[ptrty, ptr, val, align, vol] 4840 unsigned OpNum = 0; 4841 Value *Val, *Ptr; 4842 Type *FullTy; 4843 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4844 (BitCode == bitc::FUNC_CODE_INST_STORE 4845 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4846 : popValue(Record, OpNum, NextValueNo, 4847 getPointerElementFlatType(FullTy), Val)) || 4848 OpNum + 2 != Record.size()) 4849 return error("Invalid record"); 4850 4851 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4852 return Err; 4853 MaybeAlign Align; 4854 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4855 return Err; 4856 I = new StoreInst(Val, Ptr, Record[OpNum + 1], 4857 Align ? Align->value() : 0); 4858 InstructionList.push_back(I); 4859 break; 4860 } 4861 case bitc::FUNC_CODE_INST_STOREATOMIC: 4862 case bitc::FUNC_CODE_INST_STOREATOMIC_OLD: { 4863 // STOREATOMIC: [ptrty, ptr, val, align, vol, ordering, ssid] 4864 unsigned OpNum = 0; 4865 Value *Val, *Ptr; 4866 Type *FullTy; 4867 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4868 !isa<PointerType>(Ptr->getType()) || 4869 (BitCode == bitc::FUNC_CODE_INST_STOREATOMIC 4870 ? getValueTypePair(Record, OpNum, NextValueNo, Val) 4871 : popValue(Record, OpNum, NextValueNo, 4872 getPointerElementFlatType(FullTy), Val)) || 4873 OpNum + 4 != Record.size()) 4874 return error("Invalid record"); 4875 4876 if (Error Err = typeCheckLoadStoreInst(Val->getType(), Ptr->getType())) 4877 return Err; 4878 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4879 if (Ordering == AtomicOrdering::NotAtomic || 4880 Ordering == AtomicOrdering::Acquire || 4881 Ordering == AtomicOrdering::AcquireRelease) 4882 return error("Invalid record"); 4883 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4884 if (Ordering != AtomicOrdering::NotAtomic && Record[OpNum] == 0) 4885 return error("Invalid record"); 4886 4887 MaybeAlign Align; 4888 if (Error Err = parseAlignmentValue(Record[OpNum], Align)) 4889 return Err; 4890 I = new StoreInst(Val, Ptr, Record[OpNum + 1], Align ? Align->value() : 0, 4891 Ordering, SSID); 4892 InstructionList.push_back(I); 4893 break; 4894 } 4895 case bitc::FUNC_CODE_INST_CMPXCHG_OLD: 4896 case bitc::FUNC_CODE_INST_CMPXCHG: { 4897 // CMPXCHG:[ptrty, ptr, cmp, new, vol, successordering, ssid, 4898 // failureordering?, isweak?] 4899 unsigned OpNum = 0; 4900 Value *Ptr, *Cmp, *New; 4901 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy)) 4902 return error("Invalid record"); 4903 4904 if (!isa<PointerType>(Ptr->getType())) 4905 return error("Cmpxchg operand is not a pointer type"); 4906 4907 if (BitCode == bitc::FUNC_CODE_INST_CMPXCHG) { 4908 if (getValueTypePair(Record, OpNum, NextValueNo, Cmp, &FullTy)) 4909 return error("Invalid record"); 4910 } else if (popValue(Record, OpNum, NextValueNo, 4911 getPointerElementFlatType(FullTy), Cmp)) 4912 return error("Invalid record"); 4913 else 4914 FullTy = cast<PointerType>(FullTy)->getElementType(); 4915 4916 if (popValue(Record, OpNum, NextValueNo, Cmp->getType(), New) || 4917 Record.size() < OpNum + 3 || Record.size() > OpNum + 5) 4918 return error("Invalid record"); 4919 4920 AtomicOrdering SuccessOrdering = getDecodedOrdering(Record[OpNum + 1]); 4921 if (SuccessOrdering == AtomicOrdering::NotAtomic || 4922 SuccessOrdering == AtomicOrdering::Unordered) 4923 return error("Invalid record"); 4924 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 2]); 4925 4926 if (Error Err = typeCheckLoadStoreInst(Cmp->getType(), Ptr->getType())) 4927 return Err; 4928 AtomicOrdering FailureOrdering; 4929 if (Record.size() < 7) 4930 FailureOrdering = 4931 AtomicCmpXchgInst::getStrongestFailureOrdering(SuccessOrdering); 4932 else 4933 FailureOrdering = getDecodedOrdering(Record[OpNum + 3]); 4934 4935 I = new AtomicCmpXchgInst(Ptr, Cmp, New, SuccessOrdering, FailureOrdering, 4936 SSID); 4937 FullTy = StructType::get(Context, {FullTy, Type::getInt1Ty(Context)}); 4938 cast<AtomicCmpXchgInst>(I)->setVolatile(Record[OpNum]); 4939 4940 if (Record.size() < 8) { 4941 // Before weak cmpxchgs existed, the instruction simply returned the 4942 // value loaded from memory, so bitcode files from that era will be 4943 // expecting the first component of a modern cmpxchg. 4944 CurBB->getInstList().push_back(I); 4945 I = ExtractValueInst::Create(I, 0); 4946 FullTy = cast<StructType>(FullTy)->getElementType(0); 4947 } else { 4948 cast<AtomicCmpXchgInst>(I)->setWeak(Record[OpNum+4]); 4949 } 4950 4951 InstructionList.push_back(I); 4952 break; 4953 } 4954 case bitc::FUNC_CODE_INST_ATOMICRMW: { 4955 // ATOMICRMW:[ptrty, ptr, val, op, vol, ordering, ssid] 4956 unsigned OpNum = 0; 4957 Value *Ptr, *Val; 4958 if (getValueTypePair(Record, OpNum, NextValueNo, Ptr, &FullTy) || 4959 !isa<PointerType>(Ptr->getType()) || 4960 popValue(Record, OpNum, NextValueNo, 4961 getPointerElementFlatType(FullTy), Val) || 4962 OpNum + 4 != Record.size()) 4963 return error("Invalid record"); 4964 AtomicRMWInst::BinOp Operation = getDecodedRMWOperation(Record[OpNum]); 4965 if (Operation < AtomicRMWInst::FIRST_BINOP || 4966 Operation > AtomicRMWInst::LAST_BINOP) 4967 return error("Invalid record"); 4968 AtomicOrdering Ordering = getDecodedOrdering(Record[OpNum + 2]); 4969 if (Ordering == AtomicOrdering::NotAtomic || 4970 Ordering == AtomicOrdering::Unordered) 4971 return error("Invalid record"); 4972 SyncScope::ID SSID = getDecodedSyncScopeID(Record[OpNum + 3]); 4973 I = new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 4974 FullTy = getPointerElementFlatType(FullTy); 4975 cast<AtomicRMWInst>(I)->setVolatile(Record[OpNum+1]); 4976 InstructionList.push_back(I); 4977 break; 4978 } 4979 case bitc::FUNC_CODE_INST_FENCE: { // FENCE:[ordering, ssid] 4980 if (2 != Record.size()) 4981 return error("Invalid record"); 4982 AtomicOrdering Ordering = getDecodedOrdering(Record[0]); 4983 if (Ordering == AtomicOrdering::NotAtomic || 4984 Ordering == AtomicOrdering::Unordered || 4985 Ordering == AtomicOrdering::Monotonic) 4986 return error("Invalid record"); 4987 SyncScope::ID SSID = getDecodedSyncScopeID(Record[1]); 4988 I = new FenceInst(Context, Ordering, SSID); 4989 InstructionList.push_back(I); 4990 break; 4991 } 4992 case bitc::FUNC_CODE_INST_CALL: { 4993 // CALL: [paramattrs, cc, fmf, fnty, fnid, arg0, arg1...] 4994 if (Record.size() < 3) 4995 return error("Invalid record"); 4996 4997 unsigned OpNum = 0; 4998 AttributeList PAL = getAttributes(Record[OpNum++]); 4999 unsigned CCInfo = Record[OpNum++]; 5000 5001 FastMathFlags FMF; 5002 if ((CCInfo >> bitc::CALL_FMF) & 1) { 5003 FMF = getDecodedFastMathFlags(Record[OpNum++]); 5004 if (!FMF.any()) 5005 return error("Fast math flags indicator set for call with no FMF"); 5006 } 5007 5008 FunctionType *FTy = nullptr; 5009 FunctionType *FullFTy = nullptr; 5010 if ((CCInfo >> bitc::CALL_EXPLICIT_TYPE) & 1) { 5011 FullFTy = 5012 dyn_cast<FunctionType>(getFullyStructuredTypeByID(Record[OpNum++])); 5013 if (!FullFTy) 5014 return error("Explicit call type is not a function type"); 5015 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5016 } 5017 5018 Value *Callee; 5019 if (getValueTypePair(Record, OpNum, NextValueNo, Callee, &FullTy)) 5020 return error("Invalid record"); 5021 5022 PointerType *OpTy = dyn_cast<PointerType>(Callee->getType()); 5023 if (!OpTy) 5024 return error("Callee is not a pointer type"); 5025 if (!FTy) { 5026 FullFTy = 5027 dyn_cast<FunctionType>(cast<PointerType>(FullTy)->getElementType()); 5028 if (!FullFTy) 5029 return error("Callee is not of pointer to function type"); 5030 FTy = cast<FunctionType>(flattenPointerTypes(FullFTy)); 5031 } else if (getPointerElementFlatType(FullTy) != FTy) 5032 return error("Explicit call type does not match pointee type of " 5033 "callee operand"); 5034 if (Record.size() < FTy->getNumParams() + OpNum) 5035 return error("Insufficient operands to call"); 5036 5037 SmallVector<Value*, 16> Args; 5038 SmallVector<Type*, 16> ArgsFullTys; 5039 // Read the fixed params. 5040 for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i, ++OpNum) { 5041 if (FTy->getParamType(i)->isLabelTy()) 5042 Args.push_back(getBasicBlock(Record[OpNum])); 5043 else 5044 Args.push_back(getValue(Record, OpNum, NextValueNo, 5045 FTy->getParamType(i))); 5046 ArgsFullTys.push_back(FullFTy->getParamType(i)); 5047 if (!Args.back()) 5048 return error("Invalid record"); 5049 } 5050 5051 // Read type/value pairs for varargs params. 5052 if (!FTy->isVarArg()) { 5053 if (OpNum != Record.size()) 5054 return error("Invalid record"); 5055 } else { 5056 while (OpNum != Record.size()) { 5057 Value *Op; 5058 Type *FullTy; 5059 if (getValueTypePair(Record, OpNum, NextValueNo, Op, &FullTy)) 5060 return error("Invalid record"); 5061 Args.push_back(Op); 5062 ArgsFullTys.push_back(FullTy); 5063 } 5064 } 5065 5066 I = CallInst::Create(FTy, Callee, Args, OperandBundles); 5067 FullTy = FullFTy->getReturnType(); 5068 OperandBundles.clear(); 5069 InstructionList.push_back(I); 5070 cast<CallInst>(I)->setCallingConv( 5071 static_cast<CallingConv::ID>((0x7ff & CCInfo) >> bitc::CALL_CCONV)); 5072 CallInst::TailCallKind TCK = CallInst::TCK_None; 5073 if (CCInfo & 1 << bitc::CALL_TAIL) 5074 TCK = CallInst::TCK_Tail; 5075 if (CCInfo & (1 << bitc::CALL_MUSTTAIL)) 5076 TCK = CallInst::TCK_MustTail; 5077 if (CCInfo & (1 << bitc::CALL_NOTAIL)) 5078 TCK = CallInst::TCK_NoTail; 5079 cast<CallInst>(I)->setTailCallKind(TCK); 5080 cast<CallInst>(I)->setAttributes(PAL); 5081 propagateByValTypes(cast<CallBase>(I), ArgsFullTys); 5082 if (FMF.any()) { 5083 if (!isa<FPMathOperator>(I)) 5084 return error("Fast-math-flags specified for call without " 5085 "floating-point scalar or vector return type"); 5086 I->setFastMathFlags(FMF); 5087 } 5088 break; 5089 } 5090 case bitc::FUNC_CODE_INST_VAARG: { // VAARG: [valistty, valist, instty] 5091 if (Record.size() < 3) 5092 return error("Invalid record"); 5093 Type *OpTy = getTypeByID(Record[0]); 5094 Value *Op = getValue(Record, 1, NextValueNo, OpTy); 5095 FullTy = getFullyStructuredTypeByID(Record[2]); 5096 Type *ResTy = flattenPointerTypes(FullTy); 5097 if (!OpTy || !Op || !ResTy) 5098 return error("Invalid record"); 5099 I = new VAArgInst(Op, ResTy); 5100 InstructionList.push_back(I); 5101 break; 5102 } 5103 5104 case bitc::FUNC_CODE_OPERAND_BUNDLE: { 5105 // A call or an invoke can be optionally prefixed with some variable 5106 // number of operand bundle blocks. These blocks are read into 5107 // OperandBundles and consumed at the next call or invoke instruction. 5108 5109 if (Record.size() < 1 || Record[0] >= BundleTags.size()) 5110 return error("Invalid record"); 5111 5112 std::vector<Value *> Inputs; 5113 5114 unsigned OpNum = 1; 5115 while (OpNum != Record.size()) { 5116 Value *Op; 5117 if (getValueTypePair(Record, OpNum, NextValueNo, Op)) 5118 return error("Invalid record"); 5119 Inputs.push_back(Op); 5120 } 5121 5122 OperandBundles.emplace_back(BundleTags[Record[0]], std::move(Inputs)); 5123 continue; 5124 } 5125 } 5126 5127 // Add instruction to end of current BB. If there is no current BB, reject 5128 // this file. 5129 if (!CurBB) { 5130 I->deleteValue(); 5131 return error("Invalid instruction with no BB"); 5132 } 5133 if (!OperandBundles.empty()) { 5134 I->deleteValue(); 5135 return error("Operand bundles found with no consumer"); 5136 } 5137 CurBB->getInstList().push_back(I); 5138 5139 // If this was a terminator instruction, move to the next block. 5140 if (I->isTerminator()) { 5141 ++CurBBNo; 5142 CurBB = CurBBNo < FunctionBBs.size() ? FunctionBBs[CurBBNo] : nullptr; 5143 } 5144 5145 // Non-void values get registered in the value table for future use. 5146 if (I && !I->getType()->isVoidTy()) { 5147 if (!FullTy) { 5148 FullTy = I->getType(); 5149 assert( 5150 !FullTy->isPointerTy() && !isa<StructType>(FullTy) && 5151 !isa<ArrayType>(FullTy) && 5152 (!isa<VectorType>(FullTy) || 5153 FullTy->getVectorElementType()->isFloatingPointTy() || 5154 FullTy->getVectorElementType()->isIntegerTy()) && 5155 "Structured types must be assigned with corresponding non-opaque " 5156 "pointer type"); 5157 } 5158 5159 assert(I->getType() == flattenPointerTypes(FullTy) && 5160 "Incorrect fully structured type provided for Instruction"); 5161 ValueList.assignValue(I, NextValueNo++, FullTy); 5162 } 5163 } 5164 5165 OutOfRecordLoop: 5166 5167 if (!OperandBundles.empty()) 5168 return error("Operand bundles found with no consumer"); 5169 5170 // Check the function list for unresolved values. 5171 if (Argument *A = dyn_cast<Argument>(ValueList.back())) { 5172 if (!A->getParent()) { 5173 // We found at least one unresolved value. Nuke them all to avoid leaks. 5174 for (unsigned i = ModuleValueListSize, e = ValueList.size(); i != e; ++i){ 5175 if ((A = dyn_cast_or_null<Argument>(ValueList[i])) && !A->getParent()) { 5176 A->replaceAllUsesWith(UndefValue::get(A->getType())); 5177 delete A; 5178 } 5179 } 5180 return error("Never resolved value found in function"); 5181 } 5182 } 5183 5184 // Unexpected unresolved metadata about to be dropped. 5185 if (MDLoader->hasFwdRefs()) 5186 return error("Invalid function metadata: outgoing forward refs"); 5187 5188 // Trim the value list down to the size it was before we parsed this function. 5189 ValueList.shrinkTo(ModuleValueListSize); 5190 MDLoader->shrinkTo(ModuleMDLoaderSize); 5191 std::vector<BasicBlock*>().swap(FunctionBBs); 5192 return Error::success(); 5193 } 5194 5195 /// Find the function body in the bitcode stream 5196 Error BitcodeReader::findFunctionInStream( 5197 Function *F, 5198 DenseMap<Function *, uint64_t>::iterator DeferredFunctionInfoIterator) { 5199 while (DeferredFunctionInfoIterator->second == 0) { 5200 // This is the fallback handling for the old format bitcode that 5201 // didn't contain the function index in the VST, or when we have 5202 // an anonymous function which would not have a VST entry. 5203 // Assert that we have one of those two cases. 5204 assert(VSTOffset == 0 || !F->hasName()); 5205 // Parse the next body in the stream and set its position in the 5206 // DeferredFunctionInfo map. 5207 if (Error Err = rememberAndSkipFunctionBodies()) 5208 return Err; 5209 } 5210 return Error::success(); 5211 } 5212 5213 SyncScope::ID BitcodeReader::getDecodedSyncScopeID(unsigned Val) { 5214 if (Val == SyncScope::SingleThread || Val == SyncScope::System) 5215 return SyncScope::ID(Val); 5216 if (Val >= SSIDs.size()) 5217 return SyncScope::System; // Map unknown synchronization scopes to system. 5218 return SSIDs[Val]; 5219 } 5220 5221 //===----------------------------------------------------------------------===// 5222 // GVMaterializer implementation 5223 //===----------------------------------------------------------------------===// 5224 5225 Error BitcodeReader::materialize(GlobalValue *GV) { 5226 Function *F = dyn_cast<Function>(GV); 5227 // If it's not a function or is already material, ignore the request. 5228 if (!F || !F->isMaterializable()) 5229 return Error::success(); 5230 5231 DenseMap<Function*, uint64_t>::iterator DFII = DeferredFunctionInfo.find(F); 5232 assert(DFII != DeferredFunctionInfo.end() && "Deferred function not found!"); 5233 // If its position is recorded as 0, its body is somewhere in the stream 5234 // but we haven't seen it yet. 5235 if (DFII->second == 0) 5236 if (Error Err = findFunctionInStream(F, DFII)) 5237 return Err; 5238 5239 // Materialize metadata before parsing any function bodies. 5240 if (Error Err = materializeMetadata()) 5241 return Err; 5242 5243 // Move the bit stream to the saved position of the deferred function body. 5244 if (Error JumpFailed = Stream.JumpToBit(DFII->second)) 5245 return JumpFailed; 5246 if (Error Err = parseFunctionBody(F)) 5247 return Err; 5248 F->setIsMaterializable(false); 5249 5250 if (StripDebugInfo) 5251 stripDebugInfo(*F); 5252 5253 // Upgrade any old intrinsic calls in the function. 5254 for (auto &I : UpgradedIntrinsics) { 5255 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5256 UI != UE;) { 5257 User *U = *UI; 5258 ++UI; 5259 if (CallInst *CI = dyn_cast<CallInst>(U)) 5260 UpgradeIntrinsicCall(CI, I.second); 5261 } 5262 } 5263 5264 // Update calls to the remangled intrinsics 5265 for (auto &I : RemangledIntrinsics) 5266 for (auto UI = I.first->materialized_user_begin(), UE = I.first->user_end(); 5267 UI != UE;) 5268 // Don't expect any other users than call sites 5269 CallSite(*UI++).setCalledFunction(I.second); 5270 5271 // Finish fn->subprogram upgrade for materialized functions. 5272 if (DISubprogram *SP = MDLoader->lookupSubprogramForFunction(F)) 5273 F->setSubprogram(SP); 5274 5275 // Check if the TBAA Metadata are valid, otherwise we will need to strip them. 5276 if (!MDLoader->isStrippingTBAA()) { 5277 for (auto &I : instructions(F)) { 5278 MDNode *TBAA = I.getMetadata(LLVMContext::MD_tbaa); 5279 if (!TBAA || TBAAVerifyHelper.visitTBAAMetadata(I, TBAA)) 5280 continue; 5281 MDLoader->setStripTBAA(true); 5282 stripTBAA(F->getParent()); 5283 } 5284 } 5285 5286 // Bring in any functions that this function forward-referenced via 5287 // blockaddresses. 5288 return materializeForwardReferencedFunctions(); 5289 } 5290 5291 Error BitcodeReader::materializeModule() { 5292 if (Error Err = materializeMetadata()) 5293 return Err; 5294 5295 // Promise to materialize all forward references. 5296 WillMaterializeAllForwardRefs = true; 5297 5298 // Iterate over the module, deserializing any functions that are still on 5299 // disk. 5300 for (Function &F : *TheModule) { 5301 if (Error Err = materialize(&F)) 5302 return Err; 5303 } 5304 // At this point, if there are any function bodies, parse the rest of 5305 // the bits in the module past the last function block we have recorded 5306 // through either lazy scanning or the VST. 5307 if (LastFunctionBlockBit || NextUnreadBit) 5308 if (Error Err = parseModule(LastFunctionBlockBit > NextUnreadBit 5309 ? LastFunctionBlockBit 5310 : NextUnreadBit)) 5311 return Err; 5312 5313 // Check that all block address forward references got resolved (as we 5314 // promised above). 5315 if (!BasicBlockFwdRefs.empty()) 5316 return error("Never resolved function from blockaddress"); 5317 5318 // Upgrade any intrinsic calls that slipped through (should not happen!) and 5319 // delete the old functions to clean up. We can't do this unless the entire 5320 // module is materialized because there could always be another function body 5321 // with calls to the old function. 5322 for (auto &I : UpgradedIntrinsics) { 5323 for (auto *U : I.first->users()) { 5324 if (CallInst *CI = dyn_cast<CallInst>(U)) 5325 UpgradeIntrinsicCall(CI, I.second); 5326 } 5327 if (!I.first->use_empty()) 5328 I.first->replaceAllUsesWith(I.second); 5329 I.first->eraseFromParent(); 5330 } 5331 UpgradedIntrinsics.clear(); 5332 // Do the same for remangled intrinsics 5333 for (auto &I : RemangledIntrinsics) { 5334 I.first->replaceAllUsesWith(I.second); 5335 I.first->eraseFromParent(); 5336 } 5337 RemangledIntrinsics.clear(); 5338 5339 UpgradeDebugInfo(*TheModule); 5340 5341 UpgradeModuleFlags(*TheModule); 5342 5343 UpgradeARCRuntime(*TheModule); 5344 5345 return Error::success(); 5346 } 5347 5348 std::vector<StructType *> BitcodeReader::getIdentifiedStructTypes() const { 5349 return IdentifiedStructTypes; 5350 } 5351 5352 ModuleSummaryIndexBitcodeReader::ModuleSummaryIndexBitcodeReader( 5353 BitstreamCursor Cursor, StringRef Strtab, ModuleSummaryIndex &TheIndex, 5354 StringRef ModulePath, unsigned ModuleId) 5355 : BitcodeReaderBase(std::move(Cursor), Strtab), TheIndex(TheIndex), 5356 ModulePath(ModulePath), ModuleId(ModuleId) {} 5357 5358 void ModuleSummaryIndexBitcodeReader::addThisModule() { 5359 TheIndex.addModule(ModulePath, ModuleId); 5360 } 5361 5362 ModuleSummaryIndex::ModuleInfo * 5363 ModuleSummaryIndexBitcodeReader::getThisModule() { 5364 return TheIndex.getModule(ModulePath); 5365 } 5366 5367 std::pair<ValueInfo, GlobalValue::GUID> 5368 ModuleSummaryIndexBitcodeReader::getValueInfoFromValueId(unsigned ValueId) { 5369 auto VGI = ValueIdToValueInfoMap[ValueId]; 5370 assert(VGI.first); 5371 return VGI; 5372 } 5373 5374 void ModuleSummaryIndexBitcodeReader::setValueGUID( 5375 uint64_t ValueID, StringRef ValueName, GlobalValue::LinkageTypes Linkage, 5376 StringRef SourceFileName) { 5377 std::string GlobalId = 5378 GlobalValue::getGlobalIdentifier(ValueName, Linkage, SourceFileName); 5379 auto ValueGUID = GlobalValue::getGUID(GlobalId); 5380 auto OriginalNameID = ValueGUID; 5381 if (GlobalValue::isLocalLinkage(Linkage)) 5382 OriginalNameID = GlobalValue::getGUID(ValueName); 5383 if (PrintSummaryGUIDs) 5384 dbgs() << "GUID " << ValueGUID << "(" << OriginalNameID << ") is " 5385 << ValueName << "\n"; 5386 5387 // UseStrtab is false for legacy summary formats and value names are 5388 // created on stack. In that case we save the name in a string saver in 5389 // the index so that the value name can be recorded. 5390 ValueIdToValueInfoMap[ValueID] = std::make_pair( 5391 TheIndex.getOrInsertValueInfo( 5392 ValueGUID, 5393 UseStrtab ? ValueName : TheIndex.saveString(ValueName)), 5394 OriginalNameID); 5395 } 5396 5397 // Specialized value symbol table parser used when reading module index 5398 // blocks where we don't actually create global values. The parsed information 5399 // is saved in the bitcode reader for use when later parsing summaries. 5400 Error ModuleSummaryIndexBitcodeReader::parseValueSymbolTable( 5401 uint64_t Offset, 5402 DenseMap<unsigned, GlobalValue::LinkageTypes> &ValueIdToLinkageMap) { 5403 // With a strtab the VST is not required to parse the summary. 5404 if (UseStrtab) 5405 return Error::success(); 5406 5407 assert(Offset > 0 && "Expected non-zero VST offset"); 5408 Expected<uint64_t> MaybeCurrentBit = jumpToValueSymbolTable(Offset, Stream); 5409 if (!MaybeCurrentBit) 5410 return MaybeCurrentBit.takeError(); 5411 uint64_t CurrentBit = MaybeCurrentBit.get(); 5412 5413 if (Error Err = Stream.EnterSubBlock(bitc::VALUE_SYMTAB_BLOCK_ID)) 5414 return Err; 5415 5416 SmallVector<uint64_t, 64> Record; 5417 5418 // Read all the records for this value table. 5419 SmallString<128> ValueName; 5420 5421 while (true) { 5422 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5423 if (!MaybeEntry) 5424 return MaybeEntry.takeError(); 5425 BitstreamEntry Entry = MaybeEntry.get(); 5426 5427 switch (Entry.Kind) { 5428 case BitstreamEntry::SubBlock: // Handled for us already. 5429 case BitstreamEntry::Error: 5430 return error("Malformed block"); 5431 case BitstreamEntry::EndBlock: 5432 // Done parsing VST, jump back to wherever we came from. 5433 if (Error JumpFailed = Stream.JumpToBit(CurrentBit)) 5434 return JumpFailed; 5435 return Error::success(); 5436 case BitstreamEntry::Record: 5437 // The interesting case. 5438 break; 5439 } 5440 5441 // Read a record. 5442 Record.clear(); 5443 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5444 if (!MaybeRecord) 5445 return MaybeRecord.takeError(); 5446 switch (MaybeRecord.get()) { 5447 default: // Default behavior: ignore (e.g. VST_CODE_BBENTRY records). 5448 break; 5449 case bitc::VST_CODE_ENTRY: { // VST_CODE_ENTRY: [valueid, namechar x N] 5450 if (convertToString(Record, 1, ValueName)) 5451 return error("Invalid record"); 5452 unsigned ValueID = Record[0]; 5453 assert(!SourceFileName.empty()); 5454 auto VLI = ValueIdToLinkageMap.find(ValueID); 5455 assert(VLI != ValueIdToLinkageMap.end() && 5456 "No linkage found for VST entry?"); 5457 auto Linkage = VLI->second; 5458 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5459 ValueName.clear(); 5460 break; 5461 } 5462 case bitc::VST_CODE_FNENTRY: { 5463 // VST_CODE_FNENTRY: [valueid, offset, namechar x N] 5464 if (convertToString(Record, 2, ValueName)) 5465 return error("Invalid record"); 5466 unsigned ValueID = Record[0]; 5467 assert(!SourceFileName.empty()); 5468 auto VLI = ValueIdToLinkageMap.find(ValueID); 5469 assert(VLI != ValueIdToLinkageMap.end() && 5470 "No linkage found for VST entry?"); 5471 auto Linkage = VLI->second; 5472 setValueGUID(ValueID, ValueName, Linkage, SourceFileName); 5473 ValueName.clear(); 5474 break; 5475 } 5476 case bitc::VST_CODE_COMBINED_ENTRY: { 5477 // VST_CODE_COMBINED_ENTRY: [valueid, refguid] 5478 unsigned ValueID = Record[0]; 5479 GlobalValue::GUID RefGUID = Record[1]; 5480 // The "original name", which is the second value of the pair will be 5481 // overriden later by a FS_COMBINED_ORIGINAL_NAME in the combined index. 5482 ValueIdToValueInfoMap[ValueID] = 5483 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5484 break; 5485 } 5486 } 5487 } 5488 } 5489 5490 // Parse just the blocks needed for building the index out of the module. 5491 // At the end of this routine the module Index is populated with a map 5492 // from global value id to GlobalValueSummary objects. 5493 Error ModuleSummaryIndexBitcodeReader::parseModule() { 5494 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 5495 return Err; 5496 5497 SmallVector<uint64_t, 64> Record; 5498 DenseMap<unsigned, GlobalValue::LinkageTypes> ValueIdToLinkageMap; 5499 unsigned ValueId = 0; 5500 5501 // Read the index for this module. 5502 while (true) { 5503 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 5504 if (!MaybeEntry) 5505 return MaybeEntry.takeError(); 5506 llvm::BitstreamEntry Entry = MaybeEntry.get(); 5507 5508 switch (Entry.Kind) { 5509 case BitstreamEntry::Error: 5510 return error("Malformed block"); 5511 case BitstreamEntry::EndBlock: 5512 return Error::success(); 5513 5514 case BitstreamEntry::SubBlock: 5515 switch (Entry.ID) { 5516 default: // Skip unknown content. 5517 if (Error Err = Stream.SkipBlock()) 5518 return Err; 5519 break; 5520 case bitc::BLOCKINFO_BLOCK_ID: 5521 // Need to parse these to get abbrev ids (e.g. for VST) 5522 if (readBlockInfo()) 5523 return error("Malformed block"); 5524 break; 5525 case bitc::VALUE_SYMTAB_BLOCK_ID: 5526 // Should have been parsed earlier via VSTOffset, unless there 5527 // is no summary section. 5528 assert(((SeenValueSymbolTable && VSTOffset > 0) || 5529 !SeenGlobalValSummary) && 5530 "Expected early VST parse via VSTOffset record"); 5531 if (Error Err = Stream.SkipBlock()) 5532 return Err; 5533 break; 5534 case bitc::GLOBALVAL_SUMMARY_BLOCK_ID: 5535 case bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID: 5536 // Add the module if it is a per-module index (has a source file name). 5537 if (!SourceFileName.empty()) 5538 addThisModule(); 5539 assert(!SeenValueSymbolTable && 5540 "Already read VST when parsing summary block?"); 5541 // We might not have a VST if there were no values in the 5542 // summary. An empty summary block generated when we are 5543 // performing ThinLTO compiles so we don't later invoke 5544 // the regular LTO process on them. 5545 if (VSTOffset > 0) { 5546 if (Error Err = parseValueSymbolTable(VSTOffset, ValueIdToLinkageMap)) 5547 return Err; 5548 SeenValueSymbolTable = true; 5549 } 5550 SeenGlobalValSummary = true; 5551 if (Error Err = parseEntireSummary(Entry.ID)) 5552 return Err; 5553 break; 5554 case bitc::MODULE_STRTAB_BLOCK_ID: 5555 if (Error Err = parseModuleStringTable()) 5556 return Err; 5557 break; 5558 } 5559 continue; 5560 5561 case BitstreamEntry::Record: { 5562 Record.clear(); 5563 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5564 if (!MaybeBitCode) 5565 return MaybeBitCode.takeError(); 5566 switch (MaybeBitCode.get()) { 5567 default: 5568 break; // Default behavior, ignore unknown content. 5569 case bitc::MODULE_CODE_VERSION: { 5570 if (Error Err = parseVersionRecord(Record).takeError()) 5571 return Err; 5572 break; 5573 } 5574 /// MODULE_CODE_SOURCE_FILENAME: [namechar x N] 5575 case bitc::MODULE_CODE_SOURCE_FILENAME: { 5576 SmallString<128> ValueName; 5577 if (convertToString(Record, 0, ValueName)) 5578 return error("Invalid record"); 5579 SourceFileName = ValueName.c_str(); 5580 break; 5581 } 5582 /// MODULE_CODE_HASH: [5*i32] 5583 case bitc::MODULE_CODE_HASH: { 5584 if (Record.size() != 5) 5585 return error("Invalid hash length " + Twine(Record.size()).str()); 5586 auto &Hash = getThisModule()->second.second; 5587 int Pos = 0; 5588 for (auto &Val : Record) { 5589 assert(!(Val >> 32) && "Unexpected high bits set"); 5590 Hash[Pos++] = Val; 5591 } 5592 break; 5593 } 5594 /// MODULE_CODE_VSTOFFSET: [offset] 5595 case bitc::MODULE_CODE_VSTOFFSET: 5596 if (Record.size() < 1) 5597 return error("Invalid record"); 5598 // Note that we subtract 1 here because the offset is relative to one 5599 // word before the start of the identification or module block, which 5600 // was historically always the start of the regular bitcode header. 5601 VSTOffset = Record[0] - 1; 5602 break; 5603 // v1 GLOBALVAR: [pointer type, isconst, initid, linkage, ...] 5604 // v1 FUNCTION: [type, callingconv, isproto, linkage, ...] 5605 // v1 ALIAS: [alias type, addrspace, aliasee val#, linkage, ...] 5606 // v2: [strtab offset, strtab size, v1] 5607 case bitc::MODULE_CODE_GLOBALVAR: 5608 case bitc::MODULE_CODE_FUNCTION: 5609 case bitc::MODULE_CODE_ALIAS: { 5610 StringRef Name; 5611 ArrayRef<uint64_t> GVRecord; 5612 std::tie(Name, GVRecord) = readNameFromStrtab(Record); 5613 if (GVRecord.size() <= 3) 5614 return error("Invalid record"); 5615 uint64_t RawLinkage = GVRecord[3]; 5616 GlobalValue::LinkageTypes Linkage = getDecodedLinkage(RawLinkage); 5617 if (!UseStrtab) { 5618 ValueIdToLinkageMap[ValueId++] = Linkage; 5619 break; 5620 } 5621 5622 setValueGUID(ValueId++, Name, Linkage, SourceFileName); 5623 break; 5624 } 5625 } 5626 } 5627 continue; 5628 } 5629 } 5630 } 5631 5632 std::vector<ValueInfo> 5633 ModuleSummaryIndexBitcodeReader::makeRefList(ArrayRef<uint64_t> Record) { 5634 std::vector<ValueInfo> Ret; 5635 Ret.reserve(Record.size()); 5636 for (uint64_t RefValueId : Record) 5637 Ret.push_back(getValueInfoFromValueId(RefValueId).first); 5638 return Ret; 5639 } 5640 5641 std::vector<FunctionSummary::EdgeTy> 5642 ModuleSummaryIndexBitcodeReader::makeCallList(ArrayRef<uint64_t> Record, 5643 bool IsOldProfileFormat, 5644 bool HasProfile, bool HasRelBF) { 5645 std::vector<FunctionSummary::EdgeTy> Ret; 5646 Ret.reserve(Record.size()); 5647 for (unsigned I = 0, E = Record.size(); I != E; ++I) { 5648 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 5649 uint64_t RelBF = 0; 5650 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5651 if (IsOldProfileFormat) { 5652 I += 1; // Skip old callsitecount field 5653 if (HasProfile) 5654 I += 1; // Skip old profilecount field 5655 } else if (HasProfile) 5656 Hotness = static_cast<CalleeInfo::HotnessType>(Record[++I]); 5657 else if (HasRelBF) 5658 RelBF = Record[++I]; 5659 Ret.push_back(FunctionSummary::EdgeTy{Callee, CalleeInfo(Hotness, RelBF)}); 5660 } 5661 return Ret; 5662 } 5663 5664 static void 5665 parseWholeProgramDevirtResolutionByArg(ArrayRef<uint64_t> Record, size_t &Slot, 5666 WholeProgramDevirtResolution &Wpd) { 5667 uint64_t ArgNum = Record[Slot++]; 5668 WholeProgramDevirtResolution::ByArg &B = 5669 Wpd.ResByArg[{Record.begin() + Slot, Record.begin() + Slot + ArgNum}]; 5670 Slot += ArgNum; 5671 5672 B.TheKind = 5673 static_cast<WholeProgramDevirtResolution::ByArg::Kind>(Record[Slot++]); 5674 B.Info = Record[Slot++]; 5675 B.Byte = Record[Slot++]; 5676 B.Bit = Record[Slot++]; 5677 } 5678 5679 static void parseWholeProgramDevirtResolution(ArrayRef<uint64_t> Record, 5680 StringRef Strtab, size_t &Slot, 5681 TypeIdSummary &TypeId) { 5682 uint64_t Id = Record[Slot++]; 5683 WholeProgramDevirtResolution &Wpd = TypeId.WPDRes[Id]; 5684 5685 Wpd.TheKind = static_cast<WholeProgramDevirtResolution::Kind>(Record[Slot++]); 5686 Wpd.SingleImplName = {Strtab.data() + Record[Slot], 5687 static_cast<size_t>(Record[Slot + 1])}; 5688 Slot += 2; 5689 5690 uint64_t ResByArgNum = Record[Slot++]; 5691 for (uint64_t I = 0; I != ResByArgNum; ++I) 5692 parseWholeProgramDevirtResolutionByArg(Record, Slot, Wpd); 5693 } 5694 5695 static void parseTypeIdSummaryRecord(ArrayRef<uint64_t> Record, 5696 StringRef Strtab, 5697 ModuleSummaryIndex &TheIndex) { 5698 size_t Slot = 0; 5699 TypeIdSummary &TypeId = TheIndex.getOrInsertTypeIdSummary( 5700 {Strtab.data() + Record[Slot], static_cast<size_t>(Record[Slot + 1])}); 5701 Slot += 2; 5702 5703 TypeId.TTRes.TheKind = static_cast<TypeTestResolution::Kind>(Record[Slot++]); 5704 TypeId.TTRes.SizeM1BitWidth = Record[Slot++]; 5705 TypeId.TTRes.AlignLog2 = Record[Slot++]; 5706 TypeId.TTRes.SizeM1 = Record[Slot++]; 5707 TypeId.TTRes.BitMask = Record[Slot++]; 5708 TypeId.TTRes.InlineBits = Record[Slot++]; 5709 5710 while (Slot < Record.size()) 5711 parseWholeProgramDevirtResolution(Record, Strtab, Slot, TypeId); 5712 } 5713 5714 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableInfo( 5715 ArrayRef<uint64_t> Record, size_t &Slot, 5716 TypeIdCompatibleVtableInfo &TypeId) { 5717 uint64_t Offset = Record[Slot++]; 5718 ValueInfo Callee = getValueInfoFromValueId(Record[Slot++]).first; 5719 TypeId.push_back({Offset, Callee}); 5720 } 5721 5722 void ModuleSummaryIndexBitcodeReader::parseTypeIdCompatibleVtableSummaryRecord( 5723 ArrayRef<uint64_t> Record) { 5724 size_t Slot = 0; 5725 TypeIdCompatibleVtableInfo &TypeId = 5726 TheIndex.getOrInsertTypeIdCompatibleVtableSummary( 5727 {Strtab.data() + Record[Slot], 5728 static_cast<size_t>(Record[Slot + 1])}); 5729 Slot += 2; 5730 5731 while (Slot < Record.size()) 5732 parseTypeIdCompatibleVtableInfo(Record, Slot, TypeId); 5733 } 5734 5735 static void setSpecialRefs(std::vector<ValueInfo> &Refs, unsigned ROCnt, 5736 unsigned WOCnt) { 5737 // Readonly and writeonly refs are in the end of the refs list. 5738 assert(ROCnt + WOCnt <= Refs.size()); 5739 unsigned FirstWORef = Refs.size() - WOCnt; 5740 unsigned RefNo = FirstWORef - ROCnt; 5741 for (; RefNo < FirstWORef; ++RefNo) 5742 Refs[RefNo].setReadOnly(); 5743 for (; RefNo < Refs.size(); ++RefNo) 5744 Refs[RefNo].setWriteOnly(); 5745 } 5746 5747 // Eagerly parse the entire summary block. This populates the GlobalValueSummary 5748 // objects in the index. 5749 Error ModuleSummaryIndexBitcodeReader::parseEntireSummary(unsigned ID) { 5750 if (Error Err = Stream.EnterSubBlock(ID)) 5751 return Err; 5752 SmallVector<uint64_t, 64> Record; 5753 5754 // Parse version 5755 { 5756 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5757 if (!MaybeEntry) 5758 return MaybeEntry.takeError(); 5759 BitstreamEntry Entry = MaybeEntry.get(); 5760 5761 if (Entry.Kind != BitstreamEntry::Record) 5762 return error("Invalid Summary Block: record for version expected"); 5763 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 5764 if (!MaybeRecord) 5765 return MaybeRecord.takeError(); 5766 if (MaybeRecord.get() != bitc::FS_VERSION) 5767 return error("Invalid Summary Block: version expected"); 5768 } 5769 const uint64_t Version = Record[0]; 5770 const bool IsOldProfileFormat = Version == 1; 5771 if (Version < 1 || Version > 7) 5772 return error("Invalid summary version " + Twine(Version) + 5773 ". Version should be in the range [1-7]."); 5774 Record.clear(); 5775 5776 // Keep around the last seen summary to be used when we see an optional 5777 // "OriginalName" attachement. 5778 GlobalValueSummary *LastSeenSummary = nullptr; 5779 GlobalValue::GUID LastSeenGUID = 0; 5780 5781 // We can expect to see any number of type ID information records before 5782 // each function summary records; these variables store the information 5783 // collected so far so that it can be used to create the summary object. 5784 std::vector<GlobalValue::GUID> PendingTypeTests; 5785 std::vector<FunctionSummary::VFuncId> PendingTypeTestAssumeVCalls, 5786 PendingTypeCheckedLoadVCalls; 5787 std::vector<FunctionSummary::ConstVCall> PendingTypeTestAssumeConstVCalls, 5788 PendingTypeCheckedLoadConstVCalls; 5789 5790 while (true) { 5791 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 5792 if (!MaybeEntry) 5793 return MaybeEntry.takeError(); 5794 BitstreamEntry Entry = MaybeEntry.get(); 5795 5796 switch (Entry.Kind) { 5797 case BitstreamEntry::SubBlock: // Handled for us already. 5798 case BitstreamEntry::Error: 5799 return error("Malformed block"); 5800 case BitstreamEntry::EndBlock: 5801 return Error::success(); 5802 case BitstreamEntry::Record: 5803 // The interesting case. 5804 break; 5805 } 5806 5807 // Read a record. The record format depends on whether this 5808 // is a per-module index or a combined index file. In the per-module 5809 // case the records contain the associated value's ID for correlation 5810 // with VST entries. In the combined index the correlation is done 5811 // via the bitcode offset of the summary records (which were saved 5812 // in the combined index VST entries). The records also contain 5813 // information used for ThinLTO renaming and importing. 5814 Record.clear(); 5815 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 5816 if (!MaybeBitCode) 5817 return MaybeBitCode.takeError(); 5818 switch (unsigned BitCode = MaybeBitCode.get()) { 5819 default: // Default behavior: ignore. 5820 break; 5821 case bitc::FS_FLAGS: { // [flags] 5822 uint64_t Flags = Record[0]; 5823 // Scan flags. 5824 assert(Flags <= 0x1f && "Unexpected bits in flag"); 5825 5826 // 1 bit: WithGlobalValueDeadStripping flag. 5827 // Set on combined index only. 5828 if (Flags & 0x1) 5829 TheIndex.setWithGlobalValueDeadStripping(); 5830 // 1 bit: SkipModuleByDistributedBackend flag. 5831 // Set on combined index only. 5832 if (Flags & 0x2) 5833 TheIndex.setSkipModuleByDistributedBackend(); 5834 // 1 bit: HasSyntheticEntryCounts flag. 5835 // Set on combined index only. 5836 if (Flags & 0x4) 5837 TheIndex.setHasSyntheticEntryCounts(); 5838 // 1 bit: DisableSplitLTOUnit flag. 5839 // Set on per module indexes. It is up to the client to validate 5840 // the consistency of this flag across modules being linked. 5841 if (Flags & 0x8) 5842 TheIndex.setEnableSplitLTOUnit(); 5843 // 1 bit: PartiallySplitLTOUnits flag. 5844 // Set on combined index only. 5845 if (Flags & 0x10) 5846 TheIndex.setPartiallySplitLTOUnits(); 5847 break; 5848 } 5849 case bitc::FS_VALUE_GUID: { // [valueid, refguid] 5850 uint64_t ValueID = Record[0]; 5851 GlobalValue::GUID RefGUID = Record[1]; 5852 ValueIdToValueInfoMap[ValueID] = 5853 std::make_pair(TheIndex.getOrInsertValueInfo(RefGUID), RefGUID); 5854 break; 5855 } 5856 // FS_PERMODULE: [valueid, flags, instcount, fflags, numrefs, 5857 // numrefs x valueid, n x (valueid)] 5858 // FS_PERMODULE_PROFILE: [valueid, flags, instcount, fflags, numrefs, 5859 // numrefs x valueid, 5860 // n x (valueid, hotness)] 5861 // FS_PERMODULE_RELBF: [valueid, flags, instcount, fflags, numrefs, 5862 // numrefs x valueid, 5863 // n x (valueid, relblockfreq)] 5864 case bitc::FS_PERMODULE: 5865 case bitc::FS_PERMODULE_RELBF: 5866 case bitc::FS_PERMODULE_PROFILE: { 5867 unsigned ValueID = Record[0]; 5868 uint64_t RawFlags = Record[1]; 5869 unsigned InstCount = Record[2]; 5870 uint64_t RawFunFlags = 0; 5871 unsigned NumRefs = Record[3]; 5872 unsigned NumRORefs = 0, NumWORefs = 0; 5873 int RefListStartIndex = 4; 5874 if (Version >= 4) { 5875 RawFunFlags = Record[3]; 5876 NumRefs = Record[4]; 5877 RefListStartIndex = 5; 5878 if (Version >= 5) { 5879 NumRORefs = Record[5]; 5880 RefListStartIndex = 6; 5881 if (Version >= 7) { 5882 NumWORefs = Record[6]; 5883 RefListStartIndex = 7; 5884 } 5885 } 5886 } 5887 5888 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5889 // The module path string ref set in the summary must be owned by the 5890 // index's module string table. Since we don't have a module path 5891 // string table section in the per-module index, we create a single 5892 // module path string table entry with an empty (0) ID to take 5893 // ownership. 5894 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 5895 assert(Record.size() >= RefListStartIndex + NumRefs && 5896 "Record size inconsistent with number of references"); 5897 std::vector<ValueInfo> Refs = makeRefList( 5898 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5899 bool HasProfile = (BitCode == bitc::FS_PERMODULE_PROFILE); 5900 bool HasRelBF = (BitCode == bitc::FS_PERMODULE_RELBF); 5901 std::vector<FunctionSummary::EdgeTy> Calls = makeCallList( 5902 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 5903 IsOldProfileFormat, HasProfile, HasRelBF); 5904 setSpecialRefs(Refs, NumRORefs, NumWORefs); 5905 auto FS = std::make_unique<FunctionSummary>( 5906 Flags, InstCount, getDecodedFFlags(RawFunFlags), /*EntryCount=*/0, 5907 std::move(Refs), std::move(Calls), std::move(PendingTypeTests), 5908 std::move(PendingTypeTestAssumeVCalls), 5909 std::move(PendingTypeCheckedLoadVCalls), 5910 std::move(PendingTypeTestAssumeConstVCalls), 5911 std::move(PendingTypeCheckedLoadConstVCalls)); 5912 PendingTypeTests.clear(); 5913 PendingTypeTestAssumeVCalls.clear(); 5914 PendingTypeCheckedLoadVCalls.clear(); 5915 PendingTypeTestAssumeConstVCalls.clear(); 5916 PendingTypeCheckedLoadConstVCalls.clear(); 5917 auto VIAndOriginalGUID = getValueInfoFromValueId(ValueID); 5918 FS->setModulePath(getThisModule()->first()); 5919 FS->setOriginalName(VIAndOriginalGUID.second); 5920 TheIndex.addGlobalValueSummary(VIAndOriginalGUID.first, std::move(FS)); 5921 break; 5922 } 5923 // FS_ALIAS: [valueid, flags, valueid] 5924 // Aliases must be emitted (and parsed) after all FS_PERMODULE entries, as 5925 // they expect all aliasee summaries to be available. 5926 case bitc::FS_ALIAS: { 5927 unsigned ValueID = Record[0]; 5928 uint64_t RawFlags = Record[1]; 5929 unsigned AliaseeID = Record[2]; 5930 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5931 auto AS = std::make_unique<AliasSummary>(Flags); 5932 // The module path string ref set in the summary must be owned by the 5933 // index's module string table. Since we don't have a module path 5934 // string table section in the per-module index, we create a single 5935 // module path string table entry with an empty (0) ID to take 5936 // ownership. 5937 AS->setModulePath(getThisModule()->first()); 5938 5939 auto AliaseeVI = getValueInfoFromValueId(AliaseeID).first; 5940 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, ModulePath); 5941 if (!AliaseeInModule) 5942 return error("Alias expects aliasee summary to be parsed"); 5943 AS->setAliasee(AliaseeVI, AliaseeInModule); 5944 5945 auto GUID = getValueInfoFromValueId(ValueID); 5946 AS->setOriginalName(GUID.second); 5947 TheIndex.addGlobalValueSummary(GUID.first, std::move(AS)); 5948 break; 5949 } 5950 // FS_PERMODULE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, n x valueid] 5951 case bitc::FS_PERMODULE_GLOBALVAR_INIT_REFS: { 5952 unsigned ValueID = Record[0]; 5953 uint64_t RawFlags = Record[1]; 5954 unsigned RefArrayStart = 2; 5955 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 5956 /* WriteOnly */ false); 5957 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5958 if (Version >= 5) { 5959 GVF = getDecodedGVarFlags(Record[2]); 5960 RefArrayStart = 3; 5961 } 5962 std::vector<ValueInfo> Refs = 5963 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 5964 auto FS = 5965 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5966 FS->setModulePath(getThisModule()->first()); 5967 auto GUID = getValueInfoFromValueId(ValueID); 5968 FS->setOriginalName(GUID.second); 5969 TheIndex.addGlobalValueSummary(GUID.first, std::move(FS)); 5970 break; 5971 } 5972 // FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: [valueid, flags, varflags, 5973 // numrefs, numrefs x valueid, 5974 // n x (valueid, offset)] 5975 case bitc::FS_PERMODULE_VTABLE_GLOBALVAR_INIT_REFS: { 5976 unsigned ValueID = Record[0]; 5977 uint64_t RawFlags = Record[1]; 5978 GlobalVarSummary::GVarFlags GVF = getDecodedGVarFlags(Record[2]); 5979 unsigned NumRefs = Record[3]; 5980 unsigned RefListStartIndex = 4; 5981 unsigned VTableListStartIndex = RefListStartIndex + NumRefs; 5982 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 5983 std::vector<ValueInfo> Refs = makeRefList( 5984 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 5985 VTableFuncList VTableFuncs; 5986 for (unsigned I = VTableListStartIndex, E = Record.size(); I != E; ++I) { 5987 ValueInfo Callee = getValueInfoFromValueId(Record[I]).first; 5988 uint64_t Offset = Record[++I]; 5989 VTableFuncs.push_back({Callee, Offset}); 5990 } 5991 auto VS = 5992 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 5993 VS->setModulePath(getThisModule()->first()); 5994 VS->setVTableFuncs(VTableFuncs); 5995 auto GUID = getValueInfoFromValueId(ValueID); 5996 VS->setOriginalName(GUID.second); 5997 TheIndex.addGlobalValueSummary(GUID.first, std::move(VS)); 5998 break; 5999 } 6000 // FS_COMBINED: [valueid, modid, flags, instcount, fflags, numrefs, 6001 // numrefs x valueid, n x (valueid)] 6002 // FS_COMBINED_PROFILE: [valueid, modid, flags, instcount, fflags, numrefs, 6003 // numrefs x valueid, n x (valueid, hotness)] 6004 case bitc::FS_COMBINED: 6005 case bitc::FS_COMBINED_PROFILE: { 6006 unsigned ValueID = Record[0]; 6007 uint64_t ModuleId = Record[1]; 6008 uint64_t RawFlags = Record[2]; 6009 unsigned InstCount = Record[3]; 6010 uint64_t RawFunFlags = 0; 6011 uint64_t EntryCount = 0; 6012 unsigned NumRefs = Record[4]; 6013 unsigned NumRORefs = 0, NumWORefs = 0; 6014 int RefListStartIndex = 5; 6015 6016 if (Version >= 4) { 6017 RawFunFlags = Record[4]; 6018 RefListStartIndex = 6; 6019 size_t NumRefsIndex = 5; 6020 if (Version >= 5) { 6021 unsigned NumRORefsOffset = 1; 6022 RefListStartIndex = 7; 6023 if (Version >= 6) { 6024 NumRefsIndex = 6; 6025 EntryCount = Record[5]; 6026 RefListStartIndex = 8; 6027 if (Version >= 7) { 6028 RefListStartIndex = 9; 6029 NumWORefs = Record[8]; 6030 NumRORefsOffset = 2; 6031 } 6032 } 6033 NumRORefs = Record[RefListStartIndex - NumRORefsOffset]; 6034 } 6035 NumRefs = Record[NumRefsIndex]; 6036 } 6037 6038 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6039 int CallGraphEdgeStartIndex = RefListStartIndex + NumRefs; 6040 assert(Record.size() >= RefListStartIndex + NumRefs && 6041 "Record size inconsistent with number of references"); 6042 std::vector<ValueInfo> Refs = makeRefList( 6043 ArrayRef<uint64_t>(Record).slice(RefListStartIndex, NumRefs)); 6044 bool HasProfile = (BitCode == bitc::FS_COMBINED_PROFILE); 6045 std::vector<FunctionSummary::EdgeTy> Edges = makeCallList( 6046 ArrayRef<uint64_t>(Record).slice(CallGraphEdgeStartIndex), 6047 IsOldProfileFormat, HasProfile, false); 6048 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6049 setSpecialRefs(Refs, NumRORefs, NumWORefs); 6050 auto FS = std::make_unique<FunctionSummary>( 6051 Flags, InstCount, getDecodedFFlags(RawFunFlags), EntryCount, 6052 std::move(Refs), std::move(Edges), std::move(PendingTypeTests), 6053 std::move(PendingTypeTestAssumeVCalls), 6054 std::move(PendingTypeCheckedLoadVCalls), 6055 std::move(PendingTypeTestAssumeConstVCalls), 6056 std::move(PendingTypeCheckedLoadConstVCalls)); 6057 PendingTypeTests.clear(); 6058 PendingTypeTestAssumeVCalls.clear(); 6059 PendingTypeCheckedLoadVCalls.clear(); 6060 PendingTypeTestAssumeConstVCalls.clear(); 6061 PendingTypeCheckedLoadConstVCalls.clear(); 6062 LastSeenSummary = FS.get(); 6063 LastSeenGUID = VI.getGUID(); 6064 FS->setModulePath(ModuleIdMap[ModuleId]); 6065 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6066 break; 6067 } 6068 // FS_COMBINED_ALIAS: [valueid, modid, flags, valueid] 6069 // Aliases must be emitted (and parsed) after all FS_COMBINED entries, as 6070 // they expect all aliasee summaries to be available. 6071 case bitc::FS_COMBINED_ALIAS: { 6072 unsigned ValueID = Record[0]; 6073 uint64_t ModuleId = Record[1]; 6074 uint64_t RawFlags = Record[2]; 6075 unsigned AliaseeValueId = Record[3]; 6076 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6077 auto AS = std::make_unique<AliasSummary>(Flags); 6078 LastSeenSummary = AS.get(); 6079 AS->setModulePath(ModuleIdMap[ModuleId]); 6080 6081 auto AliaseeVI = getValueInfoFromValueId(AliaseeValueId).first; 6082 auto AliaseeInModule = TheIndex.findSummaryInModule(AliaseeVI, AS->modulePath()); 6083 AS->setAliasee(AliaseeVI, AliaseeInModule); 6084 6085 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6086 LastSeenGUID = VI.getGUID(); 6087 TheIndex.addGlobalValueSummary(VI, std::move(AS)); 6088 break; 6089 } 6090 // FS_COMBINED_GLOBALVAR_INIT_REFS: [valueid, modid, flags, n x valueid] 6091 case bitc::FS_COMBINED_GLOBALVAR_INIT_REFS: { 6092 unsigned ValueID = Record[0]; 6093 uint64_t ModuleId = Record[1]; 6094 uint64_t RawFlags = Record[2]; 6095 unsigned RefArrayStart = 3; 6096 GlobalVarSummary::GVarFlags GVF(/* ReadOnly */ false, 6097 /* WriteOnly */ false); 6098 auto Flags = getDecodedGVSummaryFlags(RawFlags, Version); 6099 if (Version >= 5) { 6100 GVF = getDecodedGVarFlags(Record[3]); 6101 RefArrayStart = 4; 6102 } 6103 std::vector<ValueInfo> Refs = 6104 makeRefList(ArrayRef<uint64_t>(Record).slice(RefArrayStart)); 6105 auto FS = 6106 std::make_unique<GlobalVarSummary>(Flags, GVF, std::move(Refs)); 6107 LastSeenSummary = FS.get(); 6108 FS->setModulePath(ModuleIdMap[ModuleId]); 6109 ValueInfo VI = getValueInfoFromValueId(ValueID).first; 6110 LastSeenGUID = VI.getGUID(); 6111 TheIndex.addGlobalValueSummary(VI, std::move(FS)); 6112 break; 6113 } 6114 // FS_COMBINED_ORIGINAL_NAME: [original_name] 6115 case bitc::FS_COMBINED_ORIGINAL_NAME: { 6116 uint64_t OriginalName = Record[0]; 6117 if (!LastSeenSummary) 6118 return error("Name attachment that does not follow a combined record"); 6119 LastSeenSummary->setOriginalName(OriginalName); 6120 TheIndex.addOriginalName(LastSeenGUID, OriginalName); 6121 // Reset the LastSeenSummary 6122 LastSeenSummary = nullptr; 6123 LastSeenGUID = 0; 6124 break; 6125 } 6126 case bitc::FS_TYPE_TESTS: 6127 assert(PendingTypeTests.empty()); 6128 PendingTypeTests.insert(PendingTypeTests.end(), Record.begin(), 6129 Record.end()); 6130 break; 6131 6132 case bitc::FS_TYPE_TEST_ASSUME_VCALLS: 6133 assert(PendingTypeTestAssumeVCalls.empty()); 6134 for (unsigned I = 0; I != Record.size(); I += 2) 6135 PendingTypeTestAssumeVCalls.push_back({Record[I], Record[I+1]}); 6136 break; 6137 6138 case bitc::FS_TYPE_CHECKED_LOAD_VCALLS: 6139 assert(PendingTypeCheckedLoadVCalls.empty()); 6140 for (unsigned I = 0; I != Record.size(); I += 2) 6141 PendingTypeCheckedLoadVCalls.push_back({Record[I], Record[I+1]}); 6142 break; 6143 6144 case bitc::FS_TYPE_TEST_ASSUME_CONST_VCALL: 6145 PendingTypeTestAssumeConstVCalls.push_back( 6146 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6147 break; 6148 6149 case bitc::FS_TYPE_CHECKED_LOAD_CONST_VCALL: 6150 PendingTypeCheckedLoadConstVCalls.push_back( 6151 {{Record[0], Record[1]}, {Record.begin() + 2, Record.end()}}); 6152 break; 6153 6154 case bitc::FS_CFI_FUNCTION_DEFS: { 6155 std::set<std::string> &CfiFunctionDefs = TheIndex.cfiFunctionDefs(); 6156 for (unsigned I = 0; I != Record.size(); I += 2) 6157 CfiFunctionDefs.insert( 6158 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6159 break; 6160 } 6161 6162 case bitc::FS_CFI_FUNCTION_DECLS: { 6163 std::set<std::string> &CfiFunctionDecls = TheIndex.cfiFunctionDecls(); 6164 for (unsigned I = 0; I != Record.size(); I += 2) 6165 CfiFunctionDecls.insert( 6166 {Strtab.data() + Record[I], static_cast<size_t>(Record[I + 1])}); 6167 break; 6168 } 6169 6170 case bitc::FS_TYPE_ID: 6171 parseTypeIdSummaryRecord(Record, Strtab, TheIndex); 6172 break; 6173 6174 case bitc::FS_TYPE_ID_METADATA: 6175 parseTypeIdCompatibleVtableSummaryRecord(Record); 6176 break; 6177 } 6178 } 6179 llvm_unreachable("Exit infinite loop"); 6180 } 6181 6182 // Parse the module string table block into the Index. 6183 // This populates the ModulePathStringTable map in the index. 6184 Error ModuleSummaryIndexBitcodeReader::parseModuleStringTable() { 6185 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_STRTAB_BLOCK_ID)) 6186 return Err; 6187 6188 SmallVector<uint64_t, 64> Record; 6189 6190 SmallString<128> ModulePath; 6191 ModuleSummaryIndex::ModuleInfo *LastSeenModule = nullptr; 6192 6193 while (true) { 6194 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6195 if (!MaybeEntry) 6196 return MaybeEntry.takeError(); 6197 BitstreamEntry Entry = MaybeEntry.get(); 6198 6199 switch (Entry.Kind) { 6200 case BitstreamEntry::SubBlock: // Handled for us already. 6201 case BitstreamEntry::Error: 6202 return error("Malformed block"); 6203 case BitstreamEntry::EndBlock: 6204 return Error::success(); 6205 case BitstreamEntry::Record: 6206 // The interesting case. 6207 break; 6208 } 6209 6210 Record.clear(); 6211 Expected<unsigned> MaybeRecord = Stream.readRecord(Entry.ID, Record); 6212 if (!MaybeRecord) 6213 return MaybeRecord.takeError(); 6214 switch (MaybeRecord.get()) { 6215 default: // Default behavior: ignore. 6216 break; 6217 case bitc::MST_CODE_ENTRY: { 6218 // MST_ENTRY: [modid, namechar x N] 6219 uint64_t ModuleId = Record[0]; 6220 6221 if (convertToString(Record, 1, ModulePath)) 6222 return error("Invalid record"); 6223 6224 LastSeenModule = TheIndex.addModule(ModulePath, ModuleId); 6225 ModuleIdMap[ModuleId] = LastSeenModule->first(); 6226 6227 ModulePath.clear(); 6228 break; 6229 } 6230 /// MST_CODE_HASH: [5*i32] 6231 case bitc::MST_CODE_HASH: { 6232 if (Record.size() != 5) 6233 return error("Invalid hash length " + Twine(Record.size()).str()); 6234 if (!LastSeenModule) 6235 return error("Invalid hash that does not follow a module path"); 6236 int Pos = 0; 6237 for (auto &Val : Record) { 6238 assert(!(Val >> 32) && "Unexpected high bits set"); 6239 LastSeenModule->second.second[Pos++] = Val; 6240 } 6241 // Reset LastSeenModule to avoid overriding the hash unexpectedly. 6242 LastSeenModule = nullptr; 6243 break; 6244 } 6245 } 6246 } 6247 llvm_unreachable("Exit infinite loop"); 6248 } 6249 6250 namespace { 6251 6252 // FIXME: This class is only here to support the transition to llvm::Error. It 6253 // will be removed once this transition is complete. Clients should prefer to 6254 // deal with the Error value directly, rather than converting to error_code. 6255 class BitcodeErrorCategoryType : public std::error_category { 6256 const char *name() const noexcept override { 6257 return "llvm.bitcode"; 6258 } 6259 6260 std::string message(int IE) const override { 6261 BitcodeError E = static_cast<BitcodeError>(IE); 6262 switch (E) { 6263 case BitcodeError::CorruptedBitcode: 6264 return "Corrupted bitcode"; 6265 } 6266 llvm_unreachable("Unknown error type!"); 6267 } 6268 }; 6269 6270 } // end anonymous namespace 6271 6272 static ManagedStatic<BitcodeErrorCategoryType> ErrorCategory; 6273 6274 const std::error_category &llvm::BitcodeErrorCategory() { 6275 return *ErrorCategory; 6276 } 6277 6278 static Expected<StringRef> readBlobInRecord(BitstreamCursor &Stream, 6279 unsigned Block, unsigned RecordID) { 6280 if (Error Err = Stream.EnterSubBlock(Block)) 6281 return std::move(Err); 6282 6283 StringRef Strtab; 6284 while (true) { 6285 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6286 if (!MaybeEntry) 6287 return MaybeEntry.takeError(); 6288 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6289 6290 switch (Entry.Kind) { 6291 case BitstreamEntry::EndBlock: 6292 return Strtab; 6293 6294 case BitstreamEntry::Error: 6295 return error("Malformed block"); 6296 6297 case BitstreamEntry::SubBlock: 6298 if (Error Err = Stream.SkipBlock()) 6299 return std::move(Err); 6300 break; 6301 6302 case BitstreamEntry::Record: 6303 StringRef Blob; 6304 SmallVector<uint64_t, 1> Record; 6305 Expected<unsigned> MaybeRecord = 6306 Stream.readRecord(Entry.ID, Record, &Blob); 6307 if (!MaybeRecord) 6308 return MaybeRecord.takeError(); 6309 if (MaybeRecord.get() == RecordID) 6310 Strtab = Blob; 6311 break; 6312 } 6313 } 6314 } 6315 6316 //===----------------------------------------------------------------------===// 6317 // External interface 6318 //===----------------------------------------------------------------------===// 6319 6320 Expected<std::vector<BitcodeModule>> 6321 llvm::getBitcodeModuleList(MemoryBufferRef Buffer) { 6322 auto FOrErr = getBitcodeFileContents(Buffer); 6323 if (!FOrErr) 6324 return FOrErr.takeError(); 6325 return std::move(FOrErr->Mods); 6326 } 6327 6328 Expected<BitcodeFileContents> 6329 llvm::getBitcodeFileContents(MemoryBufferRef Buffer) { 6330 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6331 if (!StreamOrErr) 6332 return StreamOrErr.takeError(); 6333 BitstreamCursor &Stream = *StreamOrErr; 6334 6335 BitcodeFileContents F; 6336 while (true) { 6337 uint64_t BCBegin = Stream.getCurrentByteNo(); 6338 6339 // We may be consuming bitcode from a client that leaves garbage at the end 6340 // of the bitcode stream (e.g. Apple's ar tool). If we are close enough to 6341 // the end that there cannot possibly be another module, stop looking. 6342 if (BCBegin + 8 >= Stream.getBitcodeBytes().size()) 6343 return F; 6344 6345 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6346 if (!MaybeEntry) 6347 return MaybeEntry.takeError(); 6348 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6349 6350 switch (Entry.Kind) { 6351 case BitstreamEntry::EndBlock: 6352 case BitstreamEntry::Error: 6353 return error("Malformed block"); 6354 6355 case BitstreamEntry::SubBlock: { 6356 uint64_t IdentificationBit = -1ull; 6357 if (Entry.ID == bitc::IDENTIFICATION_BLOCK_ID) { 6358 IdentificationBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6359 if (Error Err = Stream.SkipBlock()) 6360 return std::move(Err); 6361 6362 { 6363 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6364 if (!MaybeEntry) 6365 return MaybeEntry.takeError(); 6366 Entry = MaybeEntry.get(); 6367 } 6368 6369 if (Entry.Kind != BitstreamEntry::SubBlock || 6370 Entry.ID != bitc::MODULE_BLOCK_ID) 6371 return error("Malformed block"); 6372 } 6373 6374 if (Entry.ID == bitc::MODULE_BLOCK_ID) { 6375 uint64_t ModuleBit = Stream.GetCurrentBitNo() - BCBegin * 8; 6376 if (Error Err = Stream.SkipBlock()) 6377 return std::move(Err); 6378 6379 F.Mods.push_back({Stream.getBitcodeBytes().slice( 6380 BCBegin, Stream.getCurrentByteNo() - BCBegin), 6381 Buffer.getBufferIdentifier(), IdentificationBit, 6382 ModuleBit}); 6383 continue; 6384 } 6385 6386 if (Entry.ID == bitc::STRTAB_BLOCK_ID) { 6387 Expected<StringRef> Strtab = 6388 readBlobInRecord(Stream, bitc::STRTAB_BLOCK_ID, bitc::STRTAB_BLOB); 6389 if (!Strtab) 6390 return Strtab.takeError(); 6391 // This string table is used by every preceding bitcode module that does 6392 // not have its own string table. A bitcode file may have multiple 6393 // string tables if it was created by binary concatenation, for example 6394 // with "llvm-cat -b". 6395 for (auto I = F.Mods.rbegin(), E = F.Mods.rend(); I != E; ++I) { 6396 if (!I->Strtab.empty()) 6397 break; 6398 I->Strtab = *Strtab; 6399 } 6400 // Similarly, the string table is used by every preceding symbol table; 6401 // normally there will be just one unless the bitcode file was created 6402 // by binary concatenation. 6403 if (!F.Symtab.empty() && F.StrtabForSymtab.empty()) 6404 F.StrtabForSymtab = *Strtab; 6405 continue; 6406 } 6407 6408 if (Entry.ID == bitc::SYMTAB_BLOCK_ID) { 6409 Expected<StringRef> SymtabOrErr = 6410 readBlobInRecord(Stream, bitc::SYMTAB_BLOCK_ID, bitc::SYMTAB_BLOB); 6411 if (!SymtabOrErr) 6412 return SymtabOrErr.takeError(); 6413 6414 // We can expect the bitcode file to have multiple symbol tables if it 6415 // was created by binary concatenation. In that case we silently 6416 // ignore any subsequent symbol tables, which is fine because this is a 6417 // low level function. The client is expected to notice that the number 6418 // of modules in the symbol table does not match the number of modules 6419 // in the input file and regenerate the symbol table. 6420 if (F.Symtab.empty()) 6421 F.Symtab = *SymtabOrErr; 6422 continue; 6423 } 6424 6425 if (Error Err = Stream.SkipBlock()) 6426 return std::move(Err); 6427 continue; 6428 } 6429 case BitstreamEntry::Record: 6430 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6431 continue; 6432 else 6433 return StreamFailed.takeError(); 6434 } 6435 } 6436 } 6437 6438 /// Get a lazy one-at-time loading module from bitcode. 6439 /// 6440 /// This isn't always used in a lazy context. In particular, it's also used by 6441 /// \a parseModule(). If this is truly lazy, then we need to eagerly pull 6442 /// in forward-referenced functions from block address references. 6443 /// 6444 /// \param[in] MaterializeAll Set to \c true if we should materialize 6445 /// everything. 6446 Expected<std::unique_ptr<Module>> 6447 BitcodeModule::getModuleImpl(LLVMContext &Context, bool MaterializeAll, 6448 bool ShouldLazyLoadMetadata, bool IsImporting) { 6449 BitstreamCursor Stream(Buffer); 6450 6451 std::string ProducerIdentification; 6452 if (IdentificationBit != -1ull) { 6453 if (Error JumpFailed = Stream.JumpToBit(IdentificationBit)) 6454 return std::move(JumpFailed); 6455 Expected<std::string> ProducerIdentificationOrErr = 6456 readIdentificationBlock(Stream); 6457 if (!ProducerIdentificationOrErr) 6458 return ProducerIdentificationOrErr.takeError(); 6459 6460 ProducerIdentification = *ProducerIdentificationOrErr; 6461 } 6462 6463 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6464 return std::move(JumpFailed); 6465 auto *R = new BitcodeReader(std::move(Stream), Strtab, ProducerIdentification, 6466 Context); 6467 6468 std::unique_ptr<Module> M = 6469 std::make_unique<Module>(ModuleIdentifier, Context); 6470 M->setMaterializer(R); 6471 6472 // Delay parsing Metadata if ShouldLazyLoadMetadata is true. 6473 if (Error Err = 6474 R->parseBitcodeInto(M.get(), ShouldLazyLoadMetadata, IsImporting)) 6475 return std::move(Err); 6476 6477 if (MaterializeAll) { 6478 // Read in the entire module, and destroy the BitcodeReader. 6479 if (Error Err = M->materializeAll()) 6480 return std::move(Err); 6481 } else { 6482 // Resolve forward references from blockaddresses. 6483 if (Error Err = R->materializeForwardReferencedFunctions()) 6484 return std::move(Err); 6485 } 6486 return std::move(M); 6487 } 6488 6489 Expected<std::unique_ptr<Module>> 6490 BitcodeModule::getLazyModule(LLVMContext &Context, bool ShouldLazyLoadMetadata, 6491 bool IsImporting) { 6492 return getModuleImpl(Context, false, ShouldLazyLoadMetadata, IsImporting); 6493 } 6494 6495 // Parse the specified bitcode buffer and merge the index into CombinedIndex. 6496 // We don't use ModuleIdentifier here because the client may need to control the 6497 // module path used in the combined summary (e.g. when reading summaries for 6498 // regular LTO modules). 6499 Error BitcodeModule::readSummary(ModuleSummaryIndex &CombinedIndex, 6500 StringRef ModulePath, uint64_t ModuleId) { 6501 BitstreamCursor Stream(Buffer); 6502 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6503 return JumpFailed; 6504 6505 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, CombinedIndex, 6506 ModulePath, ModuleId); 6507 return R.parseModule(); 6508 } 6509 6510 // Parse the specified bitcode buffer, returning the function info index. 6511 Expected<std::unique_ptr<ModuleSummaryIndex>> BitcodeModule::getSummary() { 6512 BitstreamCursor Stream(Buffer); 6513 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6514 return std::move(JumpFailed); 6515 6516 auto Index = std::make_unique<ModuleSummaryIndex>(/*HaveGVs=*/false); 6517 ModuleSummaryIndexBitcodeReader R(std::move(Stream), Strtab, *Index, 6518 ModuleIdentifier, 0); 6519 6520 if (Error Err = R.parseModule()) 6521 return std::move(Err); 6522 6523 return std::move(Index); 6524 } 6525 6526 static Expected<bool> getEnableSplitLTOUnitFlag(BitstreamCursor &Stream, 6527 unsigned ID) { 6528 if (Error Err = Stream.EnterSubBlock(ID)) 6529 return std::move(Err); 6530 SmallVector<uint64_t, 64> Record; 6531 6532 while (true) { 6533 Expected<BitstreamEntry> MaybeEntry = Stream.advanceSkippingSubblocks(); 6534 if (!MaybeEntry) 6535 return MaybeEntry.takeError(); 6536 BitstreamEntry Entry = MaybeEntry.get(); 6537 6538 switch (Entry.Kind) { 6539 case BitstreamEntry::SubBlock: // Handled for us already. 6540 case BitstreamEntry::Error: 6541 return error("Malformed block"); 6542 case BitstreamEntry::EndBlock: 6543 // If no flags record found, conservatively return true to mimic 6544 // behavior before this flag was added. 6545 return true; 6546 case BitstreamEntry::Record: 6547 // The interesting case. 6548 break; 6549 } 6550 6551 // Look for the FS_FLAGS record. 6552 Record.clear(); 6553 Expected<unsigned> MaybeBitCode = Stream.readRecord(Entry.ID, Record); 6554 if (!MaybeBitCode) 6555 return MaybeBitCode.takeError(); 6556 switch (MaybeBitCode.get()) { 6557 default: // Default behavior: ignore. 6558 break; 6559 case bitc::FS_FLAGS: { // [flags] 6560 uint64_t Flags = Record[0]; 6561 // Scan flags. 6562 assert(Flags <= 0x1f && "Unexpected bits in flag"); 6563 6564 return Flags & 0x8; 6565 } 6566 } 6567 } 6568 llvm_unreachable("Exit infinite loop"); 6569 } 6570 6571 // Check if the given bitcode buffer contains a global value summary block. 6572 Expected<BitcodeLTOInfo> BitcodeModule::getLTOInfo() { 6573 BitstreamCursor Stream(Buffer); 6574 if (Error JumpFailed = Stream.JumpToBit(ModuleBit)) 6575 return std::move(JumpFailed); 6576 6577 if (Error Err = Stream.EnterSubBlock(bitc::MODULE_BLOCK_ID)) 6578 return std::move(Err); 6579 6580 while (true) { 6581 Expected<llvm::BitstreamEntry> MaybeEntry = Stream.advance(); 6582 if (!MaybeEntry) 6583 return MaybeEntry.takeError(); 6584 llvm::BitstreamEntry Entry = MaybeEntry.get(); 6585 6586 switch (Entry.Kind) { 6587 case BitstreamEntry::Error: 6588 return error("Malformed block"); 6589 case BitstreamEntry::EndBlock: 6590 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/false, 6591 /*EnableSplitLTOUnit=*/false}; 6592 6593 case BitstreamEntry::SubBlock: 6594 if (Entry.ID == bitc::GLOBALVAL_SUMMARY_BLOCK_ID) { 6595 Expected<bool> EnableSplitLTOUnit = 6596 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6597 if (!EnableSplitLTOUnit) 6598 return EnableSplitLTOUnit.takeError(); 6599 return BitcodeLTOInfo{/*IsThinLTO=*/true, /*HasSummary=*/true, 6600 *EnableSplitLTOUnit}; 6601 } 6602 6603 if (Entry.ID == bitc::FULL_LTO_GLOBALVAL_SUMMARY_BLOCK_ID) { 6604 Expected<bool> EnableSplitLTOUnit = 6605 getEnableSplitLTOUnitFlag(Stream, Entry.ID); 6606 if (!EnableSplitLTOUnit) 6607 return EnableSplitLTOUnit.takeError(); 6608 return BitcodeLTOInfo{/*IsThinLTO=*/false, /*HasSummary=*/true, 6609 *EnableSplitLTOUnit}; 6610 } 6611 6612 // Ignore other sub-blocks. 6613 if (Error Err = Stream.SkipBlock()) 6614 return std::move(Err); 6615 continue; 6616 6617 case BitstreamEntry::Record: 6618 if (Expected<unsigned> StreamFailed = Stream.skipRecord(Entry.ID)) 6619 continue; 6620 else 6621 return StreamFailed.takeError(); 6622 } 6623 } 6624 } 6625 6626 static Expected<BitcodeModule> getSingleModule(MemoryBufferRef Buffer) { 6627 Expected<std::vector<BitcodeModule>> MsOrErr = getBitcodeModuleList(Buffer); 6628 if (!MsOrErr) 6629 return MsOrErr.takeError(); 6630 6631 if (MsOrErr->size() != 1) 6632 return error("Expected a single module"); 6633 6634 return (*MsOrErr)[0]; 6635 } 6636 6637 Expected<std::unique_ptr<Module>> 6638 llvm::getLazyBitcodeModule(MemoryBufferRef Buffer, LLVMContext &Context, 6639 bool ShouldLazyLoadMetadata, bool IsImporting) { 6640 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6641 if (!BM) 6642 return BM.takeError(); 6643 6644 return BM->getLazyModule(Context, ShouldLazyLoadMetadata, IsImporting); 6645 } 6646 6647 Expected<std::unique_ptr<Module>> llvm::getOwningLazyBitcodeModule( 6648 std::unique_ptr<MemoryBuffer> &&Buffer, LLVMContext &Context, 6649 bool ShouldLazyLoadMetadata, bool IsImporting) { 6650 auto MOrErr = getLazyBitcodeModule(*Buffer, Context, ShouldLazyLoadMetadata, 6651 IsImporting); 6652 if (MOrErr) 6653 (*MOrErr)->setOwnedMemoryBuffer(std::move(Buffer)); 6654 return MOrErr; 6655 } 6656 6657 Expected<std::unique_ptr<Module>> 6658 BitcodeModule::parseModule(LLVMContext &Context) { 6659 return getModuleImpl(Context, true, false, false); 6660 // TODO: Restore the use-lists to the in-memory state when the bitcode was 6661 // written. We must defer until the Module has been fully materialized. 6662 } 6663 6664 Expected<std::unique_ptr<Module>> llvm::parseBitcodeFile(MemoryBufferRef Buffer, 6665 LLVMContext &Context) { 6666 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6667 if (!BM) 6668 return BM.takeError(); 6669 6670 return BM->parseModule(Context); 6671 } 6672 6673 Expected<std::string> llvm::getBitcodeTargetTriple(MemoryBufferRef Buffer) { 6674 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6675 if (!StreamOrErr) 6676 return StreamOrErr.takeError(); 6677 6678 return readTriple(*StreamOrErr); 6679 } 6680 6681 Expected<bool> llvm::isBitcodeContainingObjCCategory(MemoryBufferRef Buffer) { 6682 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6683 if (!StreamOrErr) 6684 return StreamOrErr.takeError(); 6685 6686 return hasObjCCategory(*StreamOrErr); 6687 } 6688 6689 Expected<std::string> llvm::getBitcodeProducerString(MemoryBufferRef Buffer) { 6690 Expected<BitstreamCursor> StreamOrErr = initStream(Buffer); 6691 if (!StreamOrErr) 6692 return StreamOrErr.takeError(); 6693 6694 return readIdentificationCode(*StreamOrErr); 6695 } 6696 6697 Error llvm::readModuleSummaryIndex(MemoryBufferRef Buffer, 6698 ModuleSummaryIndex &CombinedIndex, 6699 uint64_t ModuleId) { 6700 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6701 if (!BM) 6702 return BM.takeError(); 6703 6704 return BM->readSummary(CombinedIndex, BM->getModuleIdentifier(), ModuleId); 6705 } 6706 6707 Expected<std::unique_ptr<ModuleSummaryIndex>> 6708 llvm::getModuleSummaryIndex(MemoryBufferRef Buffer) { 6709 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6710 if (!BM) 6711 return BM.takeError(); 6712 6713 return BM->getSummary(); 6714 } 6715 6716 Expected<BitcodeLTOInfo> llvm::getBitcodeLTOInfo(MemoryBufferRef Buffer) { 6717 Expected<BitcodeModule> BM = getSingleModule(Buffer); 6718 if (!BM) 6719 return BM.takeError(); 6720 6721 return BM->getLTOInfo(); 6722 } 6723 6724 Expected<std::unique_ptr<ModuleSummaryIndex>> 6725 llvm::getModuleSummaryIndexForFile(StringRef Path, 6726 bool IgnoreEmptyThinLTOIndexFile) { 6727 ErrorOr<std::unique_ptr<MemoryBuffer>> FileOrErr = 6728 MemoryBuffer::getFileOrSTDIN(Path); 6729 if (!FileOrErr) 6730 return errorCodeToError(FileOrErr.getError()); 6731 if (IgnoreEmptyThinLTOIndexFile && !(*FileOrErr)->getBufferSize()) 6732 return nullptr; 6733 return getModuleSummaryIndex(**FileOrErr); 6734 } 6735